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ABSTRACT

In this work, we give the first implementation of an algorithm to learn a mixture of linear
dynamical systems (LDS’s), and an analysis of algorithms to learn a single linear dynamical
system. Following the work of Bakshi et al. ([1]), we implement a recent polynomial-time
algorithm based on a tensor decomposition with learning guarantees in a general setting,
with some simplifications and minor optimizations. Our largest contribution is giving the
first expectation-maximization (E-M) algorithm for learning a mixture of LDS’s, and an
experimental evaluation against the Tensor Decomposition algorithm. We find that the
E-M algorithm performs extremely well, and much better than the Tensor Decomposition
algorithm. We analyze performance of these and other algorithms to learn both a single LDS
and a mixture of LDS’s under various conditions (such as how much noise is present) and
algorithm settings.
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Chapter 1

LDS Background

1.1 What does it mean to learn an LDS?

Definition 1 (Linear Dynamical System). Formally, a linear dynamical system (LDS)
consists of a sequence of inputs ut ∈ Rp, hidden states xt ∈ Rn, and outputs yt ∈ Rm.
The hidden state evolves as a linear function of its previous value and the previous input, plus
some noise term:

xt = Axt−1 +But−1 +wt

and the output is a linear function of the hidden state and the input, again with some noise:

yt = Cxt +Dut + zt

The matrices A,B,C, and D are called the system parameters. This model describes a
plethora of systems. For instance, because differentiation and integration are linear operators,
a discretization of system evolving according to Newtonian mechanics would be a linear
dynamical system.

Our goal is to learn (mixtures of) LDS’s, by which we mean that we would like to estimate
the system parameters A,B,C, and D. This would be much easier if we could observe the
input ut, the hidden state xt, and the output yt, as we could just regress xt on xt−1 and ut

to find A and B, and similarly regress yt on xt and ut to find C and D. We will restrict
ourselves to the partially observed setting, where we do not observe the hidden state; we only
observe the input and the output. We call a set of inputs and outputs together a trajectory.

Because we never observe the hidden state, we can only hope to learn it up to some invertible
linear transformation T. To illustrate this point, let x′

t = Txt. Then, our LDS could be
equivalently described by the equations:

x′
t = TAT−1x′

t−1 +TBut−1 +wt

yt = CT−1x′
t +Dut + zt

9



Thus, if we can learn some Â, B̂, Ĉ, and D̂ from the inputs and outputs such that for some
invertible lienar transformation T, we have

Â ≈ TAT−1, B̂ ≈ TB, Ĉ ≈ CT−1, D̂ ≈ D

then we have succeeded.

There are some more technical conditions for the learnability of an LDS. (To give some
idea of why this is: if we had C = 0, then the output would not depend on the hid-
den state, so learning A and B would be impossible). See [1] for more details. All the
examples we will use in this paper satisfy learnability assumptions that make learning possible.

We make a few more assumptions on the problem setup. For simplicity, we will also assume
that the noises wt and zt are each i.i.d. and Gaussian. Further, we will assume that the
ut are exogenous (as opposed to being chosen by us) and that they are also i.i.d. Gaussian
random variables with distribution N (0, Ip).

1.2 Markov Parameters of an LDS

As a conceptual aid, we can imagine that the effect of the input is propagated to the hidden
state and the output via the following diagram:

xt

yt

ut

B

C

D A

Informally, ut contributes Dut to yt and But to xt+1. Then, xt+1 contributes Axt+1 to xt+2,
and similarly xt+2 contributes Axt+2 to xt+3, and so on, so the net effect is that for i ≥ 1, ut

contributes Ai−1But to xt+i, and thus contributes CAi−1But to yt+i. The contribution of
ut to yt+i for i ≥ 0 motivates our definition of the ith Markov parameter of an LDS.

Definition 2 (Markov Parameters of an LDS). We define the ith Markov parameter Mi

of an LDS to be D if i = 0 and CAi−1B for i ≥ 1. Note that if we ignore the effects of noise

10



(i.e. set wt = 0 and zt = 0) and the initial state (i.e. set x0 = 0), then we get that

yt =
t∑

i=0

Mt−iui (1.1)

It is apparent that how the size of the Markov parameters changes is important. Since
Mi = CAi−1B for i ≥ 1, the Markov parameters will grow if the spectral radius ρ(A) > 1,
shrink if ρ(A) < 1, and remain relatively constant if ρ(A) = 1. If ρ(A) > 1, the system
will blow up exponentially, with earlier inputs having a dominant effect on the output.
We won’t work much with this setting because as the Markov parameters grow, the noise
becomes relatively smaller and smaller, making the system easy to learn. If ρ(A) < 1, the
system is easier to learn, since the impact of earlier inputs becomes negligible eventually, and
consequently the covariance between outputs tends to zero as the time between the outputs
increases. This is called the strictly stable case. The ρ(A) = 1 case is the hardest for
learning, and is called the marginally stable case.

The system is also determined by these Markov parameters. As discussed in the previous
section, we can only learn the system parameters of an LDS up to an invertible transformation
T of the hidden state, but such a transformation preserves the Markov parameters. That is,
if we replace A with TAT−1, B with TB, and C with CT−1, then the Markov parameters D
and CT−1(TAT−1)i−1TB = CAi−1B are unchanged. Further, if the system is learnable, then
the Markov parameters will determine the system parameters up to a linear transformation
of the hidden state. Consequently, we will measure our learning error by measuring the error
in the Markov parameters that we recover.

1.3 Existing Literature and Our Contributions

The problem of learning a mixture of linear dynamical systems from unlabeled trajectories
is relatively recent. The first work ([2]) was done by Chen and Poor in 2022. However,
this work was done in the fully observed case, without inputs or a hidden state (i.e., with
B = 0,C = I,D = 0, and zt = 0). The partially observed setting is significantly more
challenging.

Bakshi, Liu, Moitra, and Yau give the first algorithm for learning a mixture of linear dy-
namical systems in the partially observed setting in polynomial time ([1]), and do so even
in great generality (including when the system is marginally stable). We write down for
the first time an expectation-maximization (EM) algorithm for learning a mixture of linear
dynamical systems. Given that linear dynamical systems are so widely used, it is important
to implement them and evaluate the practicality of algorithms to learn them, which we aim
to do in this work. The code we wrote can be found in Appendix A.

11



It is worth mentioning that much research has been done on how to learn a single LDS from
a single long trajectory (see [3]) for example. This problem is related to ours, but not the
same.
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Chapter 2

Learning a Single LDS

2.1 Overview

We now turn to the problem of learning a single LDS, given many short trajectories from
the LDS. These ideas will be helpful when trying to learn mixtures of LDS’s, and sometimes
algorithms for learning a single LDS may even be used as a subroutine.

The two major ideas in this section are both based on the approximation from earlier (1.1):

yt ≈
t∑

i=0

Mt−iui

In both cases, we will first estimate the first few Markov parameters, and then use the Robust
Ho-Kalman algorithm ([4]) to recover system parameters. First, we explain how to estimate
the Markov parameters.

For some parameter s, we will want to estimate M0,M1, . . . ,M2s. There are a few considera-
tions to account for when choosing s:

• There are some technical conditions about the observability and controllability of
the system that may require us to choose fairly large values of s, or make matrices
better-conditioned for larger values of s. See [1] for more details.

• Larger values of s will give us more Markov parameters from which to estimate the
system parameters, which can improve accuracy. On the other hand, if we increase s
too much, our estimates of Markov parameters can become very poor, which can hurt
accuracy.

• Larger values of s will increase time complexity.

• In order for M2s to appear in the above sum, we need trajectories of length at least
2s+ 1.

13



2.2 Direct Covariance Algorithm

Our first algorithm is based on the following idea: for j ≤ t,

E
[
ytu

⊤
j

]
=

t∑
i=0

Mt−iE
[
uiu

⊤
j

]
(linearity of expectation)

= Mt−jE
[
uju

⊤
j

]
(ui are zero-mean and independent)

= Mt−jI (uj ∼ N (0, I))
= Mt−j (2.1)

Of course, there can be significant variance, but as long as the length of the trajectories is
bounded, the variance is finite, so we should expect that the empirical mean of ytu

⊤
j does

converge to Mt−j with enough samples. This gives us our estimate of the Markov parameters
for what we call the Direct Covariance algorithm.

Here is the Python code that implements this algorithm:

def get_markov_params_cov(trajectories, s):
return [np.mean([

np.outer(y[i+k1], u[i]) for u, y in trajectories
for i in range(len(u) - k1)↪→

], axis=0) for k1 in range(2*s+1)]

2.3 Regression Algorithm

We can do a bit better with the same number of trajectories by trying to account for more
terms in the sum. For convenience, we define ui = 0 for i < 0. Then, we can approximate:

yt ≈
t∑

i=0

Mt−iui ≈
t∑

i=t−s

Mt−iui =
s∑

j=0

Mjut−j

Since we know the yt and ui, we can now estimate M0,M1, . . . ,M2s via linear regression.
This gives us our estimate of the Markov parameters for what we call the Regression algorithm.

Here is the Python code that implements this algorithm:

14



def get_markov_params_regression(trajectories, s):
traj_len, p = trajectories[0][0].shape
coeffs = np.empty((len(trajectories)*traj_len, (2*s+1)*p))
targets = np.concatenate([y for _, y in trajectories], axis=0)
for i, (u, _) in enumerate(trajectories):

flat_inp = np.concatenate([np.zeros(2*s*p), np.concatenate(u)])
for j in range(traj_len):

coeffs[i*traj_len + j] = flat_inp[j*p:(j+2*s+1)*p]

markov_params = la.lstsq(coeffs, targets)[0].reshape((2*s+1, p,
-1)).transpose((0, 2, 1))↪→

return np.flip(markov_params, axis=0)

2.4 Robust Ho-Kalman Algorithm

Now, we need to estimate the system parameters. We already have our estimate of D = M0.
The Robust Ho-Kalman algorithm to estimate the remaining system parameters is motivated
by the following block matrix factorizations:

H− :=


M1 M2 . . . Ms

M2 M3 . . . Ms+1
...

... . . . ...
Ms Ms+1 . . . M2s−1



=


CB CAB . . . CAs−1B
CAB CA2B . . . CAsB

...
... . . . ...

CAs−1B CAsB . . . CA2s−2B



=


C
CA

...
CAs−1

 [
B AB . . . As−1B

]
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and

H+ :=


M2 M3 . . . Ms+1

M3 M4 . . . Ms+2
...

... . . . ...
Ms+1 Ms+2 . . . M2s



=


CAB CA2B . . . CAsB
CA2B CA3B . . . CAs+1B

...
... . . . ...

CAsB CAs+1B . . . CA2s−1B



=


C
CA

...
CAs−1

A
[
B AB . . . As−1B

]

Using these matrix factorizations, it turns out that if we take any O ∈ Rms×n and Q ∈ Rn×ps

such that H− = OQ, this is equivalent to taking O =


C
CA

...
CAs−1

 and Q =
[
B AB . . . As−1B

]
.

That is, we can take C to be the first m rows of O, B to be the first p columns of Q, and A
to be O−1H+Q−1 (here X−1 denotes the pseudo-inverse of X) to recover the parameters of
the LDS up to a rotation of the hidden state. This algorithm is fairly stable when we use
estimations of the Markov parameters instead of the real values. See [4] for more details.
Here is the Python code that implements this algorithm:
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def get_lds_parameters(markov_params, m, n, p):
markov_params = np.array(markov_params).reshape((-1, m, p))
D = markov_params[0]
s = len(markov_params)//2

# Ho-Kalman
H = np.block([[markov_params[i+j+1] for j in range(s+1)] for i in

range(s)])↪→

H_minus, H_plus = H[:, :p*s], H[:, -p*s:]
U, S, Vh = la.svd(H_minus)
U, S, Vh = U[:,:n], S[:n], Vh[:n,:]
O, Q = U * np.sqrt(S), np.sqrt(S.reshape((-1, 1))) * Vh
C, B = O[:m], Q[:,:p]
A = la.pinv(O) @ H_plus @ la.pinv(Q)
return A, B, C, D

We can piece together the two algorithms to approximate the Markov parameters with the
Robust Ho-Kalman Algorithm:

def learn_single_cov(trajectories, s, m, n, p):
return LDS(*get_lds_parameters(get_markov_params_cov(trajectories,

s), m, n, p))↪→

def learn_single_regression(trajectories, s, m, n, p):
return

LDS(*get_lds_parameters(get_markov_params_regression(trajectories,
s), m, n, p))

↪→

↪→

2.5 Results

Both the Direct Covariance algorithm and the Regression algorithm worked fairly well.
To measure the performance of these algorithms, we first ran the algorithms to recover an
approximation to the LDS. Then, we computed the first 10 Markov parameters of the recovered
LDS and measured the R2 value of the recovered Markov parameters as a prediction of the true
Markov parameters. That is, if the true Markov parameters are M(10) :=

[
M0 M1 . . .M9

]
and the recovered Markov parameters are M̂(10) :=

[
M̂0 M̂1 . . . M̂9

]
, we report

R2 = 1− ||M(10) − M̂(10)||22
||M(10)||22

17



Unless otherwise specified, we took A,B,C, and D to be identity matrices, s = 2, wt ∼
N (0, I), zt ∼ N (0, I), m = n = p = 2, and 100 trajectories of length 20. We varied several
parameters to test the algorithm under different conditions. Note that varying m = n = p
should not affect the performance of the algorithm significantly, since the components are
essentially kept separate. (Even if we pick the system parameters differently, the components
are still essentially unmixed in the eigenbasis of A).

First, to test the effect of noise, we changed the noise distributions to wt ∼ N (0, αI) and
zt ∼ N (0, αI). When reporting results, the error bars are always two standard errors of the
mean. Here are the results for each setting:

0.0 0.5 1.0 1.5 2.0 2.5 3.0
alpha

0.88

0.90

0.92

0.94

0.96

0.98

R^
2

Sensitivity to Noise
direct covariance mean R^2
regression mean R^2

(Note that the only reason that the regression algorithm does not perform perfectly in the
zero-noise (α = 0) case is because we limit the number of inputs that it takes into account, so
the old inputs are effectively a source of noise. Since A = I, the old inputs are as important
as the new inputs, and since s = 2, we account for the last 2s+ 1 = 5 inputs. This means
that for a trajectory of length 20, we have accounted for all the inputs at the start of the
trajectory, but only 25% of the inputs at the end of the trajectory.)

We also tested the effect of the number of trajectories used to learn the system and the length
of trajectories used to learn the system.

18



30 100 300 1000
number of trajectories (log scale)

0.80

0.85

0.90

0.95

1.00

R^
2

Sensitivity to Number of Trajectories
direct covariance mean R^2
regression mean R^2

5 10 20 40 80
trajectory length (log scale)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R^
2

Sensitivity to Trajectory Lengths

direct covariance mean R^2
regression mean R^2

We found that after a trajectory length of about 15, increasing the length of trajecto-
ries was essentially like increasing the number of trajectories. Both increase the number
of data points used by the Direct Covariance and Regression algorithms in much the same way.

Varying s can improve the algorithm, but eventually performance will drop off, for the reasons
discussed above. When s = 1, the Direct Covariance and Regression algorithms become very
similar, so their performance turns out to be very similar as well.
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1 2 3 4 5 6 7 8 9
s

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

R^
2

Performance as a function of s

direct covariance mean R^2
regression mean R^2

As the spectral norm of A decreases, the importance of old inputs decreases, and so the
system is easier to learn. We can measure the resulting performance increase by changing A
to β · I. As β goes farther from 1, the system becomes more and more strictly stable.

0.600
0.800

0.900
0.950

0.975
1.000

beta

0.94

0.95

0.96

0.97

0.98

0.99

R^
2

Sensitivity to Stability
direct covariance mean R^2
regression mean R^2

The system also becomes harder to learn if we cannot fully observe the hidden state, which

happens when C does not have full rank. To measure this effect, we set C =

ï
1 0
0 0

ò
. However,

20



we need to mix the components so that we no longer only observe the first component, so

we set A =

ï
0 1
1 0

ò
. We will call the original system S and call this new system with partial

observability S ′.

Algorithm System Mean 2x SEM

Direct Covariance S 0.938 2.7 · 10−3

Regression S 0.950 2.6 · 10−3

Direct Covariance S ′ 0.952 2.0 · 10−3

Regression S ′ 0.964 1.7 · 10−3

2.5.1 Conclusions

As expected, the results bore out that the Regression algorithm performs slightly better than
the Direct Covariance algorithm. Both can learn the trajectory quite well, even with a few
short trajectories, especially for slightly higher values for s. We have made the problem
especially difficult by choosing a marginally stable A, a low value of s, and a fair amount of
noise, so this success is fairly promising. The algorithms were also fairly robust in harder
settings, such as when they had fewer or shorter trajectories or more noise.
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Chapter 3

Learning a Mixture of LDS’s

3.1 Overview

It may happen that we want to learn a mixture of LDS’s. Formally, a mixture of LDS’s
is a finite set of LDS’s S1,S2, . . . ,Sk along with corresponding nonnegative mixing weights
w1, w2, . . . , wk that sum to 1. We observe trajectories from this mixture of LDS’s, which
means that we first sample a system Si according to the mixing weights, and then obtain a
trajectory from Si. From unlabeled trajectories from the mixture of LDS’s, we would like to
learn the mixing weights and the parameters of each LDS.

To motivate this problem, imagine a biological setting in which we are modeling the evolution
of a population of some species. The populations may differ in phenotype, or have qualitative
differences in their environment that affect the population dynamics, even if we may not be
able to observe these differences.

Our learning problem is now slightly more complicated. As before, we can only hope to
learn the system parameters up to a rotation of the hidden state. Additionally, we want
to learn the approximate mixing weight for each LDS. We have no canonical order for the
component LDS’s, so we will also only try to learn the mixture up to a permutation of the
component LDS’s (and corresponding mixing weights). Additionally, we need the LDS’s to be
reasonably different from each other, so that we can distinguish them. We measure similarity
by ensuring the Markov parameters are not too close to linearly dependent. There are some
more technical conditions for learnability; see [1] for more details.

Bakshi et. al. devised a polynomial algorithm for solving this problem in a recent paper
([1]). We implement this algorithm (which we call the Tensor Decomposition algorithm) and
compare it to an E-M algorithm, which is a classic approach to learning mixture models ([5]).
We also try using the output from the first algorithm as a warm start to the E-M algorithm
to see if we can improve performance further.
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3.2 Tensor Decomposition Algorithm

3.2.1 Algorithm Overview

To motivate this algorithm, let’s first imagine what would happen if we tried to use the
Direct Covariance algorithm on trajectories from a mixture of LDS’s. For ease of notation,
we denote the ith Markov parameter of system Sj by M

(j)
i . As before, if we sampled from Sj ,

we would find that E
[
ytu

⊤
a

]
= M

(j)
t−a. Therefore, if our trajectory is from the mixture, we

end up with a mixture of the Markov parameters:

E
[
ytu

⊤
a

]
=

k∑
j=1

wjM
(j)
t−a (3.1)

If we knew how to decompose E
[
ytu

⊤
a

]
into the terms in the sum, we could recover the

Markov parameters. To do such a general decomposition, we turn to three-dimensional
tensors. In general, we can decompose a three-dimensional tensor into rank-one components,
and further there is an efficient algorithm called Jennrich’s algorithm to do so (see [6] for
a full explanation of Jennrich’s algorithm, or the original paper on the algorithm [1] for an
overview of how it is used). Formally, for a tensor

T ≈
r∑

i=1

(ai ⊗ bi ⊗ ci)

Jennrich’s algorithm can approximately recover the terms in the sum in general. (It is
impossible to recover the terms if, for instance, (ai ⊗ bi) ≈ (aj ⊗ bj) for i ̸= j.)

Let f be the “flattening operation” that converts two-dimensional matrices into one-dimensional
vectors by concatenating their rows. Further, since we will again use the Robust Ho-Kalman
algorithm to recover the Markov parameters, we define:

M(j) =
[
M

(j)
0 M

(j)
1 . . . M

(j)
2s

]
Then, we will try to estimate the 3-d tensors that are a linear combination of f

(
M(j)

)
⊗

f
(
M(j)

)
⊗ f

(
M(j)

)
. In particular, it follows from (2.1) that:

E
[
f
(
yk1+1u

⊤
1

)
⊗ f

(
yk1+k2+2u

⊤
k1+2

)
⊗ f

(
yk1+k2+k3+3u

⊤
k1+k2+3

)]
=

k∑
j=1

wjf
Ä
M

(j)
k1

ä
⊗ f
Ä
M

(j)
k2

ä
⊗ f
Ä
M

(j)
k3

ä
We have succeeded at our goal! We can form a “block tensor”, where the block indexed by
(k1, k2, k3) is the quantity above, and so we can estimate each block from the trajectories.
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The full tensor will be:

Π :=
k∑

j=1

î
wjf
Ä
M(j)
ä
⊗ f
Ä
M(j)
ä
⊗ f
Ä
M(j)
äó

=
k∑

j=1

î
f
Ä
w

1/3
j M(j)

ä
⊗ f
Ä
w

1/3
j M(j)

ä
⊗ f
Ä
w

1/3
j M(j)

äó
and so from Jennrich’s algorithm we can recover w

1/3
j M(j), which we will call Markov

components. We also know from (3.1) that we can estimate
k∑

j=1

wjM
(j), which is a linear

combination of the Markov components. From linear regression, we can find the weights of
the linear combination, which will be the w

2/3
j , from which we can find the weights and the

Markov parameters. As before, we finish with the Robust Ho-Kalman algorithm for each LDS.

Intuitively, if the system is well-conditioned, every quantity we need to find the average of has
finite variance, and so we can expect the quantities converge to the mean in time polynomial
in the error tolerance. Thus, the algorithm should be able to approximate the mixture of
LDS’s in polynomial time. For more details, see the original paper ([1]) on the algorithm.

3.2.2 Optimizations and Implementation Tricks

The algorithm as described above (and in the original paper) is fairly impractical. There are
a number of issues, but the main ones are:

• Simply writing down and averaging the terms in the three-dimensional tensor (each of
which is really a product of six vectors) takes a long time.

• While the variance may be bounded because the trajectories have finite length, the
variance can still be very large – after all, to calculate each term, we are multiplying
six vector entries.

• Jennrich’s algorithm can be fairly sensitive to noise. The decomposition of a tensor
into rank-one components is inherently somewhat delicate. This means we need a fairly
good approximation to reasonably approximate the mixture.

Two Dimensions Instead of Three

To ameliorate these issues, we would really like to get away with a two-dimensional matrix
instead of a three-dimensional tensor. Unfortunately, decomposing the matrix

k∑
j=1

î
wjf
Ä
M(j)
ä
⊗ f
Ä
M(j)
äó
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into the terms in the sum is an impossible problem in general. However, if for random weights
w′

1, w
′
2, . . . w

′
k, we can also find

k∑
j=1

î
w′

jf
Ä
M(j)
ä
⊗ f
Ä
M(j)
äó

then the decomposition becomes possible. In fact, this is the main idea of Jennrich’s algorithm
([6]).

Firstly, if we could find two sources of trajectories that are mixtures of the same LDS’s, but
with different weights, then we would be able to do the decomposition immediately.

Otherwise, Jennrich’s algorithm attempts to do the re-weighting via taking a random linear
combination of each layer of the three-dimensional tensor. Formally, for a random vector v,
we can approximate

Π · v =
k∑

j=1

î
wjf
Ä
M(j)
ä
⊗ f
Ä
M(j)
ä
·
Ä
f
Ä
M(j)
ä
· v
äó

= E
[
f
(
yk1+1u

⊤
1

)
⊗ f

(
yk1+k2+2u

⊤
k1+2

)
·
(
f
(
yk1+k2+k3+3u

⊤
k1+k2+3

)
· v

)]
which allows us to use

w′
j := wj ·

Ä
f
Ä
M(j)
ä
· v
ä

This is already a big improvement for the practicality of implementation: instead of writing
out the full three-dimensional tensor, we can do this dot product as we go so that we only
have to write down a two-dimensional tensor instead.

Reducing Noise from Collapsing a Dimension

We can make a couple more improvements: first, since M(j) must be significantly different
for each j, there will often be some l for which the M

(j)
l are significantly different. (Further,

when the mixture consists of only a few LDS’s, this must happen.) In this case, we can get
a replace the re-weighting factor

(
f
(
M(j)

)
· v

)
with

Ä
f
Ä
M

(j)
l

ä
· v
ä

(where, in each case, v
is just a random vector). This greatly reduces the amount of computation we need to do,
since we only have to estimate one of the Markov parameters, rather than several of them.
In practice, we may not be able to determine l a priori, but we can try multiple values of l.

Additionally, especially when l is small, our estimate of M(j)
l will have lower variance. The

estimation we are making is based on (2.1); if we know that y and u are from LDS j:

E
[
yt2u

⊤
t1

]
= M

(j)
t2−t1
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yt2u
⊤
t1

will have lower variance for lower values of t2 and (t2 − t1), because inputs and noise
before t2 other than ut1 are effectively noise. l corresponds to (t2 − t1), so if l can be small,
then our estimate can have lower variance, which means we will need fewer samples.
Moreover, we can set t1 to be 1 by moving the dot product with v to the first dimension of
the tensor. This means that in our estimation of

k∑
j=1

î
w′

jf
Ä
M(j)
ä
⊗ f
Ä
M(j)
äó

our estimate of w′
j will become better, but our estimate of f

(
M(j)

)
⊗ f

(
M(j)

)
will become

worse, because the inputs and outputs we use to estimate them now come later in the
trajectory. We might believe this could benefit us overall, because wildly varying weightings
can slow convergence of our estimate, and also because for a small value of k1, the inputs and
outputs we use to estimate f

(
M(j)

)
⊗ f

(
M(j)

)
will not come much later in the trajectory.

This does help our estimates empirically.

Other Tricks to Reduce Noise

The original Jennrich’s algorithm takes two random weightings to collapse the three-dimensional
tensor into two matrices, and uses both to extract the Markov components. We obtain a large
savings by only getting one matrix this way, and constructing the other matrix without doing
any re-weighting, as discussed. When we have two sets of trajectories with exogeneously
different mixing weights, we don’t need to do any random weighting at all, and so we achieve
even better rates.

Another simple observation which can help us reduce noise is that the matrices we are trying
to estimate,

k∑
j=1

î
wjf
Ä
M(j)
ä
⊗ f
Ä
M(j)
äó

and
k∑

j=1

î
w′

jf
Ä
M(j)
ä
⊗ f
Ä
M(j)
äó

are the sum of symmetric matrices, and thus themselves symmetric. Therefore, symmetrizing
our estimates of these matrices (by averaging them with their transpose) is an easy way to
reduce noise. As a bonus, it also ensures that when we do the decomposition into rank-one
components, the rank-one components are also symmetric matrices.

3.2.3 Code

Here is the code which implements this algorithm. We have the function that estimates
k∑

j=1

î
wjf
Ä
M(j)
ä
⊗ f
Ä
M(j)
äó

:
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def get_equal_weighted_Pi_M(trajectories, s):
ans = np.block([[

np.mean([
np.outer(np.kron(y[k1 + k2 + 1], u[k1+1]),

np.kron(y[k1], u[0]))↪→

for u, y in trajectories], axis=0)
for k1 in range(2*s + 1)] for k2 in tqdm(range(2*s +

1))])↪→

return (ans + ans.T)/2 # denoise

and the function for estimating
k∑

j=1

î
w′

jf
Ä
M(j)
ä
⊗ f
Ä
M(j)
äó

:

def get_random_weighting(m, p):
return normal(size=m*p)

def get_random_weighted_Pi_M(trajectories, s, differs_at,
random_weighting = None):↪→

if random_weighting is None:
u0, y0 = trajectories[0]
random_weighting = get_random_weighting(y0.shape[1],

u0.shape[1])↪→

ans = np.block([[
np.mean([

np.outer(np.kron(y[differs_at + k1 + k2 +
2], u[differs_at + k1 + 2]),
np.kron(y[differs_at + k1 + 1],
u[differs_at + 1])) *
np.dot(random_weighting,
np.kron(y[differs_at], u[0]))

↪→

↪→

↪→

↪→

↪→

for u, y in trajectories], axis=0)
for k1 in range(2*s + 1)] for k2 in tqdm(range(2*s +

1))])↪→

return (ans + ans.T)/2

From these two estimations, we can extract an estimate of ±w
1/2
j · f(M(j)) (these are the

Markov components when using the two-dimensional tensor). We take the top k rank one
components from the decomposition, since we have a mixture of k LDS’s. The code is:
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def extract_components(Pi_M1, Pi_M2, k):
U1, S1, Vh1 = la.svd(Pi_M1, hermitian=True)
U2, S2, Vh2 = la.svd(Pi_M2, hermitian=True)
S1[k:] = 0
S2[k:] = 0

# because of symmetry, we actually don't need the full Jennrich's
algorithm, we can get by with just the eigenvectors of U↪→

U = (U1 * S1) @ Vh1 @ (Vh2.T * np.reciprocal(S2, where=(S2 != 0)))
@ U2.T↪→

#V = (U2 * S2) @ Vh2 @ (Vh1.T * np.reciprocal(S1, where=(S2 != 0)))
@ U1.T↪→

U_lambdas, U_eigvecs = la.eig(U)
U_lambdas, U_eigvecs = np.real(U_lambdas), np.real(U_eigvecs).T
# V_lambdas, V_eigvecs = la.eig(V)
return [vec for lmbda, vec in zip(U_lambdas, U_eigvecs) if

np.abs(lmbda) > 1e-4]↪→

def rescale_components(components, Pi_M):
square_reweighting, _, _ , _ = la.lstsq(np.array([np.kron(vec, vec)

for vec in components]).T, Pi_M.flatten())↪→

return components * np.sqrt(square_reweighting).reshape((-1, 1))

Finally, we need to find the weights, in a process analogous to in the three-dimensional tensor
case. First, we estimate

∑k
j=1 wjM

(j):

def get_R(trajectories, s):
return np.array([np.mean([np.kron(y[k1], u[0]) for u, y in

trajectories], axis=0) for k1 in range(2*s+1)]).flatten()↪→

and then we use linear regression to recover the weights and the Markov parameters:

def get_weights_and_components(components, R):
sqrt_weights, _, _, _ = la.lstsq(components.T, R)
return sqrt_weights**2, components/sqrt_weights.reshape((-1, 1))

We then finish by converting the Markov parameters into system parameters via the same
function we used when learning a single LDS.
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3.3 E-M Algorithm

3.3.1 Algorithm Overview

An E-M Algorithm is a classic approach to learning mixture models ([5]). It is harder to give
provable guarantees for an E-M algorithm, but it has historically been a practically efficient
and accurate algorithm. For instance, an E-M algorithm is a popular approach to learning a
mixture of Gaussians given a set of points ([7]). It has become popular due to its general
robustness, although it is possible to run into spurious local minima. Such issues can largely
be avoided by re-initializing the algorithm randomly and running it again, and after this fix
the algorithm becomes fairly robust.

Let’s describe what an E-M algorithm would look like for learning a mixture of LDS’s.

After somehow initializing the mixture model, the algorithm consists of two steps that we
repeat until convergence:

1. E-step: Classify trajectories according to which LDS they most likely came from.

2. M-step: Re-learn the mixture model. For each label, learn an LDS from the trajectories
with that label as if all the trajectories are the same.

We know how to do the M-step already: this is just learning a single LDS, as in the previous
chapter. We will use the Regression algorithm to do this. For the E-step, we will be able
to utilize the celebrated Kalman filter. The Kalman filter ([8]) is traditionally used for
estimating the hidden state when the LDS is known, but we will be able to adapt it to our
purposes.

We will also examine various methods of initialization, and test accuracy in learning the
mixture (the outcome of the M-step) and classifying trajectories according to which LDS
they came from (the outcome of the E-step).

3.3.2 Finding Likelihood via the Kalman Filter

The Kalman filter ([8]) is widely used in controls for estimating the hidden state of a known
LDS based on the previous inputs. It treats the inputs as exogenous, and updates its state
upon seeing the outputs. The main idea is that for an LDS with Gaussian noise, the hidden
state is a Gaussian process. There are three main updates we need make:

• Accounting for a new input: to account for ut, we just need to add But to the mean of
the distribution of xt+1

• Updating upon seeing an output: this turns out to be a linear update to the Gaussian
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• Accounting for the introduction of noise: we just need to add to the covariance of the
distribution of the hidden state

It turns out we can also utilize the Kalman filter to estimate the likelihood of a trajectory
from a given LDS. The Kalman filter can be broken down into two stages: first, a “prediction”
phase in which we find the Gaussian distribution of the output, and secondly, an “update”
phase in which we account for the actual value of the output. The first stage will give us
what we need. Formally, for a trajectory of length l from a given LDS, we want to calculate
the likelihood of the outputs given the inputs:

p
(
(y1,y2, . . . ,yl)

∣∣(u1,u2, . . . ,ul)
)

=
l∏

i=1

p
(
yi

∣∣(u1,u2, . . . ,ul), (y1,y2, . . . ,yi−1)
)

(Bayes’s Rule)

=
l∏

i=1

p
(
yi

∣∣(u1,u2, . . . ,ui), (y1,y2, . . . ,yi−1)
)

We can calculate the terms in the product as we run the Kalman filter, since we calculate the
Gaussian that is the PDF of the yi given the previous inputs and outputs. Here is the code
that finds the negative log-likelihood of a trajectory given an LDS:

def get_nll(self, trajectory):
ans = np.double(0)

u, y = trajectory
x_mean, x_cov = np.zeros(self.n), np.eye(self.n)
for t in range(len(u)):

prefit_resid = y[t] - self.C @ x_mean - self.D @ u[t]
prefit_cov = self.C @ x_cov @ self.C.T + self.output_cov
prefit_cov_inv = la.inv(prefit_cov)
nl_pdf = self.m/2 * np.log(2*np.pi) +

np.log(la.det(prefit_cov))/2 + (prefit_resid @
prefit_cov_inv @ prefit_resid)/2

↪→

↪→

ans += nl_pdf

kalman_gain = x_cov @ self.C.T @ prefit_cov_inv
postfit_x_mean = x_mean + kalman_gain @ prefit_resid
postfit_x_cov = x_cov - kalman_gain @ self.C @ x_cov
x_mean = self.A @ postfit_x_mean + self.B @ u[t]
x_cov = self.A @ postfit_x_cov @ self.A.T + self.process_cov

return ans
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3.3.3 Initializing the E-M Algorithm

We consider two main possibilities for initializing the E-M algorithm. We could initialize the
algorithm with random LDS’s, but we might worry that all the trajectories would be more
likely to come from LDS’s. To address this issue, for a random initialization, we can do the
first E-step randomly; randomly assigning labels to each trajectory. Then, we can do the
first M-step as normal, specifying a mixture for the first time by learning an LDS from each
set of trajectories with the same label. For our E-M algorithm, we fell into spurious local
minima when all the trajectories would get the same label. Like in the case of mixtures of
Gaussians ([7]), when reaching these spurious local minima, we reinitialize and restart. This
makes our algorithm very reliable in achieving high classification accuracy.

Another possibility is to use the Tensor Decomposition algorithm as a “warm start” for the
E-M algorithm. This could help us get much faster convergence, since we will hopefully start
with a mixture that is not too far from correct. From another lens, this is also an augmentation
to the Tensor Decomposition algorithm: after running the Tensor Decomposition algorithm,
we can run a few steps of the E-M algorithm to make the results even better. This also may
allow us to use much less data than we would need to get good convergence from the Tensor
Decomposition algorithm, since instead of relying on statistics that are fourth- or sixth-order
to learn the Markov parameters, we can start using lower-noise second-order statistics in the
E-M algorithm. The E-M algorithm cannot decrease the likelihood arising from the mixture
outputted together with the label for each trajectory, so this is a strict improvement over the
Tensor Decomposition algorithm alone.

3.4 Results

Despite a lack of proven guarantees about performance, we found that an E-M algorithm
performed much better than the Tensor Decomposition algorithm in every setting we tested.
(We tested over many variables, including sensitivity to noise, number of trajectories, trajec-
tory lengths, values of s, sensitivity to stability, whether or not C was full-rank, different
numbers of LDS’s in the mixture, and different weights.) The E-M algorithm did not even
benefit much from a warm start from the tensor decomposition algorithm: it converged in
less than 10 iterations (often 5 or less) to the correct labels in all of the settings where the
Tensor Decomposition algorithm was able to give any useful recovery of the mixture. As
such, we would recommend using the E-M algorithm for learning mixtures of LDS’s over the
Tensor Decomposition algorithm.

To report the performance of each mixture-learning algorithm, we will use two fairly natural
metrics:

• As before, when we were testing performance of algorithms to learn a single LDS, we
will report the R2 value from the first 10 Markov parameters arising from the outputted
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systems to the true Markov parameters. In all of our tests, each system in the mixture
has an equal weight, we will take the average R2 value for each system.

• We will report classification accuracy of the trajectories for the E-M algorithm, and the
reported mixing weights for the Tensor Decomposition algorithm. The proportions of
trajectories classified into each system are the mixing weights for the E-M algorithm.

Our mixture consisted of two systems. Both systems had mixing weight 1/2, m = n = p = 2,
B = D = I, and the same noise distributions wt ∼ N (0, αI) and zt ∼ N (0, αI). The systems
were otherwise given by

1. A = βI, C = I

2. A = β

0 1

1 0

, C =

1 0

0 0


Notice that while system 1 is fairly simple, and the components operate independently,
system 1 is different in that the components of the hidden state switch places at every
step, and because of the construction of C, we only observe one of the components at
each step. α represents how much noise the system has, and β represents how stable the
system is, with β = 1 giving marginally stable systems and β < 1 giving strictly stable systems.

It is notable that the algorithm does eventually converge: with 100,000 trajectories, we
achieve an average R2 of 0.947, and an average mixture weight error of about .0203.

If we make the weights exogenously different, so that we have 5,000 trajectories with mixing
weights of 50% for both systems 1 and 2, and 5,000 trajectories with a mixing weight of 25%
for system 1 and 75% for system 2, we achieve an average R2 of 0.965 and an average mixture
weight error of 0.082. In this way, we can use many fewer trajectories to get comparable
results.

3.4.1 Tensor Decomposition Algorithm Results

The E-M outperformed the Tensor Decomposition algorithm so heavily that comparing the two
would not be useful. However, we will examine the sensitivity to noise of the Tensor Decom-
position algorithm to understand its effects. Additionally, because the Tensor Decomposition
algorithm can operate in the marginally stable case, we also examine the sensitivity to stability.

For learning, we used s = 3 and 10,000 trajectories of length 30 from each LDS (note that
these are much more generous conditions than the 100 trajectories of length 20 with s = 2
that we used for learning a single LDS).
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Here are the results for sensitivity to noise, where we vary α and keep β = 0.95 (we don’t
show the R2 value for α = 3, since it is significantly less than 0 and makes the graph hard to
read):
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Here are the results for sensitivity to stability, where we vary β and keep α = 1:
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3.4.2 E-M Algorithm Results

Since the E-step step of the E-M algorithm is based on the Regression algorithm, which
we have already studied, we are mostly interested in cases where not every trajectory will
be perfectly classified eventually. (Otherwise, we are just running the Regression algorithm
for multiple LDS’s at the end). To this end, we will vary the amount of noise, number of
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trajectories, and lengths of trajectories (in particular, we will keep β = 1 throughout).

Unless otherwise specified, we used s = 2 and 100 trajectories of length 20 from each LDS.
Note that these are the same conditions we used when learning a single LDS, and vastly
more generous parameters then we used for the Tensor Decomposition algorithm. As before,
the error bars represent two standard errors of the mean. For classification error, when the
trajectories are very short or the noise is very high, trajectories may be misclassified even if
the true mixture is known. This establishes a theoretical limit on the classification accuracy,
which we also report.

Here are the results for sensitivity to noise, where we vary α:
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Here are the results for varying the number of trajectories:
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Here are the results for varying the length of each trajectory:
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3.4.3 Conclusions

The better methods, practically speaking, for learning mixtures of an LDS, were the ones
that used lower-order statistics. The E-M algorithm uses the Regression algorithm, which
uses only second-order statistics of the trajectories, and performed extremely well. On the
other hand, the Tensor Decomposition algorithm, which uses sixth-order statistics of the
trajectories, performed much worse, despite theoretical guarantees on the performance. The
performance of the Tensor Decomposition algorithm with access to two sets of trajectories
with different mixing weights was somewhere in between, and it used fourth-order statistics.

In addition to improved accuracy in recovering the mixture, the E-M algorithm also had a
much lower runtime on the same set of inputs.
The E-M algorithm proved to be extremely robust, and we had to intentionally introduce very
challenging conditions for learning in order to see cases of failure. For example, when α = 5,
the noise has more than twice the effect as the input on the hidden state, and the output
also has a lot of noise. Despite this, the E-M algorithm is still able to achieve a classification
accuracy above 97%, handicapped by using s = 2, without a large number of trajectories,
and without long trajectories.
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Appendix A

Project Code

The full code can be found at https://github.com/nitinjan06/learning_lds_mixtures.

There are a few sections of the code which may be relevant for understanding other code
excerpts in the thesis, listed below.

The first is lds.py, which defines the LDS class:

1 from macros import *
2 from typing import Optional
3

4 @dataclass
5 class LDS:
6 A: np.ndarray
7 B: np.ndarray
8 C: np.ndarray
9 D: np.ndarray

10 process_cov: Optional[np.ndarray] = None
11 output_cov: Optional[np.ndarray] = None
12

13 markov_params: list = field(default_factory=list)
14

15 def get_observability(self, s):
16 return np.concatenate([self.C @ mpow(self.A, i) for i in range(s)])
17

18 def get_controllability(self, s):
19 return np.concatenate([mpow(self.A, i) @ self.B for i in range(s)],

axis = 1)↪→

20

21 def get_s(self):
22 # can make this faster
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23 self.s = 1
24 while rank(self.get_observability(self.s)) != self.n: self.s += 1
25 while rank(self.get_controllability(self.s)) != self.n: self.s += 1
26

27 def get_markov_param(self, i):
28 # can make this faster
29 while len(self.markov_params) <= i:
30 self.markov_params.append(self.C @ mpow(self.A,

len(self.markov_params)-1) @ self.B)↪→

31

32 return self.markov_params[i]
33

34 def __post_init__(self):
35 self.n, self.p = self.B.shape
36 self.m = self.C.shape[0]
37 assert self.A.shape == (self.n, self.n)
38 assert self.C.shape == (self.m, self.n)
39 assert self.D.shape == (self.m, self.p)
40

41 if self.process_cov is None: self.process_cov = np.eye(self.n)
42 if self.output_cov is None: self.output_cov = np.eye(self.m)
43 self.markov_params.append(self.D)
44

45 # check individual assumptions
46 opA, opB, opC, opD = [op_norm(x) for x in [self.A, self.B, self.C,

self.D]]↪→

47 # assert 1 <= opB and 1 <= opC
48 self.kappa = max(opA, opB, opC, opD)
49

50 self.get_s()
51

52 def generate_trajectory(self, length):
53 u, w, z = normal(size=(length, self.p)),

multivariate_normal(np.zeros(self.n), self.process_cov,
size=length), multivariate_normal(np.zeros(self.m),
self.output_cov, size=length)

↪→

↪→

↪→

54 x, y = [normal(size=self.n)], []
55 for t in range(length):
56 y.append(self.C @ x[t] + self.D @ u[t] + z[t])
57 x.append(self.A @ x[t] + self.B @ u[t] + w[t])
58

59 return u, np.array(y)
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60

61 def get_nll(self, trajectory):
62 ans = np.double(0)
63

64 u, y = trajectory
65 x_mean, x_cov = np.zeros(self.n), np.eye(self.n)
66 for t in range(len(u)):
67 prefit_resid = y[t] - self.C @ x_mean - self.D @ u[t]
68 prefit_cov = self.C @ x_cov @ self.C.T + self.output_cov
69 prefit_cov_inv = la.inv(prefit_cov)
70 nl_pdf = self.m/2 * np.log(2*np.pi) +

np.log(la.det(prefit_cov))/2 + (prefit_resid @
prefit_cov_inv @ prefit_resid)/2

↪→

↪→

71 ans += nl_pdf
72

73 kalman_gain = x_cov @ self.C.T @ prefit_cov_inv
74 postfit_x_mean = x_mean + kalman_gain @ prefit_resid
75 postfit_x_cov = x_cov - kalman_gain @ self.C @ x_cov
76 x_mean = self.A @ postfit_x_mean + self.B @ u[t]
77 x_cov = self.A @ postfit_x_cov @ self.A.T + self.process_cov
78

79 return ans

The second is macros.py, which sets us some imports and shortcuts used throughout the
code:

1 from functools import partial
2 from dataclasses import dataclass, field
3 import numpy as np
4 import numpy.linalg as la
5 normal = np.random.normal
6 multivariate_normal = np.random.multivariate_normal
7 op_norm = partial(la.norm, ord=2)
8 min_sv = partial(la.norm, ord=-2)
9 rank = la.matrix_rank
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10 mpow = la.matrix_power
11

12 def get_r2(pred, goal):
13 return 1-la.norm(goal - pred)**2/la.norm(goal)**2
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