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ABSTRACT

Tree-like data structures are very commonly used data types found in the wild in a wide
array of projects JavaScript projects. A specific example of one of these structures is an
abstract syntax tree (AST). However, the lack of good libraries to handle trees has led to
many developers and large-scale code bases having to implement their utility functions over
and over again. To address these concerns within the JavaScript developer community, we
propose Treecle and Vastly: two free open-source libraries that provide utility functions and
operations to help developers work with trees and ASTs respectively.
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Chapter 1

Introduction

1.1 Challenges and Motivation

Trees are everywhere in the field of software engineering and computer science; JavaScript
and web-related projects are no exception. They can present themselves in a variety of ways:
in obvious ones like the standard binary tree, and in more subtle ones like JSON [12].

This project stemmed from a desire to refactor and improve the handling of abstract
syntax trees (ASTs) in Mavo [22]. Mavo is a low-code web framework for developing user
interfaces to lower the barrier to entry of creating high-quality reactive websites. One of
the key features of Mavo is its custom expression set, allowing users to use spreadsheet-like
formulas to render data. Mavo handles these expressions by parsing them into an AST,
performing some manipulations to get the data all in order, and then evaluating the tree.
However, the existing code for handling these ASTs is all custom-implemented and could use
improvement to clean up the already large code base.

The two libraries proposed in this project, Treecle and Vastly, snowballed from this
desire to abstract away commonly used tree operations into separate and modular libraries.
In this thesis, we define Treecle as the library built for handling a variety of traversal and

manipulation operations on general tree structures which can have varying schemas. In
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addition, we define Vastly, which is built on top of Treecle, as the library built for handling
several operations on the more specific use case of ASTs. The goal of both libraries is simple:

provide developers with a tool that is flexible, powerful, and easy to use.

1.2 Approach

As mentioned, the idea for Vastly originated from abstracting complex AST operations
from an already existing large code base. While the original idea was to eliminate some
complexity from Mavo’s code base, we learned that a lot of the needed functionality could
be generalized to many other projects. Therefore, we decided to make it widely accessible
to anyone, not just us. We created an NPM [17] package to enable importing Vastly to
anyone using ECMAScript modules [6], as well as bundling it so that it could be imported
in a standard HTML script element.

After working on Vastly, we came to a second important revelation: while trying to
abstract away common AST operations, we realized we were creating many standard tree
operations in the process, which suggested that there is a need for a general library for
handling any tree of any schema, not just the specific use case of an AST. Upon further
investigation, we found that there did not exist a proper utility library for handling general
tree-like data structures.

To fix that hole, and abstract many common tree operations that we found ourselves
needing in Vastly, we created a more robust library for handling general and flexible oper-
ations on trees with customizable and varying schemas, Treecle. We realized that while
Vastly caters to a niche and specific use case, Treecle could be more impactful given its flex-
ible design, which lets it handle any custom-defined structure a user could want. Because of

this, Vastly serves simultaneously as a novel contribution and as a use case of Treecle.
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1.3 Contributions

In this thesis, we aim to produce two libraries, Treecle and Vastly, where each can handle
a broad array of researched use cases needed by developers. Specifically, we set out to
implement over 10 commonly needed operations for each library and validate each function
by showing how it could be applied to popular JavaScript frameworks or getting direct
feedback from actual developers via interviews, which is discussed in full detail in section 5.

In addition to the functionality in each library, we focus on creating high-quality open-
source material, which includes test suites for each of the proposed functions, and rich
documentation for each which can be found both in the source code and on our custom-built
documentation sites. Due to the scope of this work, we will be focusing on implementation
and impact, and less so on testing and documentation. A list of relevant links to Treecle and
Vastly’s sources are included in appendix A.

This paper proposes and discusses Treecle and Vastly, diving into their designs, purposes,
features, implementations, and use cases. This paper is organized as follows: section 2
includes related work and background; section 3 introduces Treecle; section 4 covers Vastly;

section 5 includes interview results from JavaScript developers; and section 6 concludes this

paper.
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Chapter 2

Related Work

2.1 Tree-like Data Structures

First, it is necessary to venture into what trees are, and the different variations and forms
they can take in the context of this thesis. In graph theory, a tree is defined as an acyclic
graph with n vertices and n — 1 edges. Typically, we view trees in a top-down manner where
there exists one root node, with an arbitrary number of children, where each of those children
has an arbitrary number of children, and so on.

Importantly, in this thesis, we refer to trees in a general sense: each node in the tree
can have an arbitrary number of children. We call this a directed n-ary tree, where n is the
maximum number of children that any node has in the tree over its lifespan. For example, a
binary tree is a 2-ary tree, since any node may have a maximum of 2 children. An example
of an n-ary tree for n = 3 is shown in figure 2.1.

Nodes are described and characterized by a few main factors: their children, their meta-
data, and sometimes, their parent node. In terms of their children, nodes can either be
complete (have the maximum n children), incomplete (have k children for some 0 < k < n),
or a leaf (have 0 children). Metadata refers to any other data stored in a node that does

not indicate children or child pointers. For example, nodes might have a name or a value
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Figure 2.1: Example of a directed n-ary tree where n = 3
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associated with it.

Another key factor is how parents are represented. Some trees are defined in a bottom-up
manner where they only store parent pointers and no child pointers. For the scope of this
work, we will be focusing on trees with a bounded number of children, the n-ary tree. For
trees defined in the standard top-down approach, trees can be augmented to store parent
pointers, which enables a node to follow an edge backward to its parent.

This thesis focuses on trees within the context of JavaScript. Given this, it’s important

to drill down into how trees can look concretely in JavaScript.

2.2 Different Tree Schemas

We define schema to be the way a tree is organized. Every node in the tree stores some
information. Broadly, this can be broken up into two categories: metadata (terminal data),
or child relations (non-terminal data). When we refer to varying schemas in this paper,
we refer to the differences in metadata stored by nodes, and more importantly, how child
relations are defined. In this section, we will focus on exploring varying schemas by looking
into different ways child relations can be defined, exploring different types of metadata, and

finally discussing how nodes are stored in JavaScript.

2.2.1 Children

In theory, children can be easily defined by simply drawing a set of edges from a parent to
each of its children, regardless of how many children there are. In practice, an important
consideration is how children are stored for a given node. There are 4! primary ways of
defining children: one special property points to an array of child nodes; one special property

points to an object that maps keys to child nodes; each child is referred to by its distinct

LA fifth could be storing children in a linked list data structure, which is used in trees like the Fibonacci
Heap. However, we consider this case outside the scope of this work, as it’s primarily used in specialized
cases.
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name: s
children: [{name: }, {name: }]
}
Figure 2.2: Special property points to an array of children
{
name: ,
children: A{
{name: },
{name:
}
}

Figure 2.3: Special property points to an object of children

child property; and finally, an unconstrained schema that uses a mix of any of the methods
above.

The first case we will examine is the case where one special property points to an array
of child nodes. What this means is a node defines a special keyword, for example, children,
which points to an array of its child nodes. An example is shown in figure 2.2. Importantly,
this special property is arbitrary. It could be called children, childNodes, or anything else.

The case where one special property points to an object of children is also fairly common
in JavaScript. Similar to the example defined above, a special keyword property, for example,
children, points to an object which maps keys to children. The benefit of this structure
is that children can have names pointing to them instead of array indices. An example is
shown in figure 2.3. To reiterate, this special property is also arbitrary. It could be called
children, childNodes, or anything else.

There is also the case where special keyword properties point to nodes themselves. There
could be multiple properties, for example, a binary tree node might have a left and right
property, each pointing to the corresponding nodes. But perhaps a certain node type might
only have a single child, in which case it could have a child property pointing to its only

child. This would be classified as an incomplete node, where incomplete refers to the fact
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name: ,
left: {name: },
right: {name: }
}
Figure 2.4: Special properties each point to children
{
name: ,
children: [
{
name: ,
left: {name: },
right: {name: }
3,
{name: }
]
}

Figure 2.5: Any properties point to any type of children

that the node’s degree is not maximal. An example is rendered in figure 2.4.

Finally, there is the case where the schema is unconstrained, and can use any combination
of the techniques defined above. In other words, any properties in a node could point to a
single node, an array of nodes, or an object of nodes. This is what Treecle assumes under its
default configuration, which is further described in section 3.2.1. An example of this mixed
schema type is shown in figure 2.5, which uses properties pointing to arrays of children, and

properties pointing to a single child.

2.2.2 Metadata

The second main way a tree schema varies is in its metadata, which is data a node stores
that is terminal, i.e. it doesn’t include child relations. Metadata is simple, trees will want
to store different information depending on the context they’re in; for example, metadata
is often used as the primary way of labeling and classifying nodes. Nodes might have a
defined type property to identify which type of node they are relative to the kind of tree

they’re present in. A simple tree might label nodes with either root, internal, or leaf
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types. A more complex tree, like the ASTs defined below in section 2.3, may choose a more
informative type of node to help identify them, for example, Identifier.

Parent pointers are one of the most important pieces of metadata associated with a node.
They are augmentations added to trees for two primary reasons: to support operations where
walking up the tree is necessary, or to improve performance when walking up the tree is
better than traversing down. Many tree operations rely on accessing ancestors of a given

node, which makes this an important optimization to add to a tree structure.

2.2.3 Storage

Until now, we’ve been working under the assumption that all nodes are standard JavaScript
objects. However, this is not always the case. There are many instances where developers
choose to define their custom node class. In JavaScript, a given instance of a class can have
its instance variables accessed the same way as JavaScript objects. That is, using the dot
(.) operator allows retrieval of a specific property/variable.

As an example, suppose one node is an object and has the metadata property name.
A second node is an instance of a custom node class and has an instance variable name.
then, you could access both node’s name attribute simply by computing node.name. For
all intents and purposes of this project, we’d view an object node and an instance node
containing the same properties/instance variables to be the same. In short, for this thesis,
we define trees and their nodes as objects or class instances, but with the restriction that all

of their properties must be able to be accessed with the dot (.) operator.

2.3 Abstract Syntax Trees

Abstract syntax trees (ASTS) are a specific example of the general tree described above
in section 2.1. An AST is generally used as a data structure to store a representation of

a program or piece of code [5]. In this project, we will specifically talk about ASTs for
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// A CallExpression node representing the expression "foo(2 + 2)"
{
type: >
arguments: [
{
{
2,
3,
{
2)
}
¥
1,
callee: {
}
¥

Figure 2.6: Example of a CallExpression node type

JavaScript, i.e., ASTs that have been formed from parsing JavaScript.

2.3.1 Node Types

As mentioned in section 2.2.2, ASTs leverage metadata to store useful information about
each node, including its type. In this thesis, we will focus on ASTs that match the structure
produced by any JavaScript parser. An example of such a parser is jsep [7]. As mentioned,
each node in the output AST has a type. Some examples of these types include: Literal,
Identifier, ThisExpression, Compound, UnaryExpression, Binary Expression, ConditionalExpressi
MemberExpression, ArrayExpression, and CallExpression. Figure 2.6 demonstrates what

a CallExpression node would look like for the expression foo(2 + 2).
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2.3.2 Children

As described above in section 2.2.1, there are four ways to store children: in a single array,
in a single object, in multiple designated properties, or in a mix. Our definition of an
AST uses both the array method, and the designated properties method. For example, a
BinaryExpression node stores its children in two designated properties: left and right.
Each of those properties points to the left and right child respectively. This is in contrast to
a type like CallExpression, which uses a single property to store an array of children. A
CallExpression node will store a property called arguments, which is an array of all child

nodes representing the arguments to that function. See figure 2.6 for an example of both.

2.4 Existing Libraries

An important step in the motivation and justification for this thesis is an investigation into
the existing libraries that attempt to solve the same or similar goals that Treecle and Vastly
set out to solve. This section will dive into some relevant libraries for both Treecle and
Vastly, and explain why although the libraries possess value, none of them can completely

and effectively achieve the goals that Treecle and Vastly set out to solve.

2.4.1 Libraries For General Trees

The main goal of Treecle, as defined in section 1.1, is to provide a library for developers that
is flexible, powerful, and easy to use. We will be investigating three tree libraries that are
each available for distribution like Treecle: installation via NPM. The three packages are:

Tree.js [19], Treeize [13], and TreeModel [11].
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Tree.js

The first library, Tree.js [19], is described as a "JavaScript library for creating and manip-
ulating hierarchical tree structures." Tree.js provides a node class and a set of operations
as instance methods of that node class. Some of the operations provided include append (),
insert (), remove(), find(), and size(). Tree.js gives a good amount of flexibility and
power with its simple set of operations, yet lacks in one key area: developers are forced to use
this specific node class built by Tree.js. If a developer already designed their implementation
of a tree structure, they would either be forced to fit their design as a subclass of Tree.js’s

node class or be out of luck.

Treeize

The second library, Treeize [13|, is described as a library that "converts row data (in
JSON /associative array format or flat array format) to object/tree structure based on simple
column naming conventions." Treeize’s goal is to enable easy creation of trees, but not much
more. The library has a primary operation called grow(), which takes in an arbitrary array
or object that is tree-like in structure and attempts to turn it into a proper tree, all masked
behind a custom tree class. The library is useful because it’s very flexible: it can take in a
wide array of different data types to create trees, and it’s also easy to use. However, what
this library lacks is power. Once the tree is created, the library doesn’t implement any tree
traversal or mutation functionality, which again, renders the user out of luck if they wish to

do anything with the tree once it’s created.

TreeModel

The third library, TreeModel [11], is described as a library that enables the user to "ma-
nipulate and traverse tree-like structures in JavaScript." Perhaps the most robust library of
the three, TreeModel implements its custom tree class and supports the creation of empty

trees or by passing in a JSON object literal. The library also supports some common tree
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operations including addChild (), walk(), getPath(), and find(). This makes the library
well-rounded but lacks a subtle idea which we intend to solve with Treecle: the library is
very strict about tree structure, and only supports nodes having an array of children, as
described in figure 2.2. So while this library is high-quality and checks most of the boxes,

it’s lacking in terms of flexibility.

2.4.2 Libraries For ASTs

Vastly shares the same tenets and major goals as Treecle, to be flexible, powerful, and easy
to use. The following three libraries will be investigated to justify the existence of Vastly,
since none of the three meet all three goals Vastly sets out to achieve. The three libraries

are Acorn [1], AST Types [2], and Estraverse [9].

Acorn

The first library, Acorn [1], is built to parse JavaScript into ASTs. Its purpose is to be a
smaller, lightweight alternative to giant libraries like Esprima [8] and others. Acorn’s primary
job is to handle the complex and intricate logic of being a full-blown JavaScript parser. A
subsection is devoted to walking the ASTs but doesn’t support any other explicit operations
or transformations. While walk() is one of the most commonly used and powerful operations
for an AST, or any tree, this library is partially lacking features that could be commonly
needed by developers. JS parsers like Acorn sometimes provide conveniences for handling
ASTs, but oftentimes these operations and functions fall short of a developer’s needs, both

in terms of power and flexibility.

AST Types

The second library, AST Types [2], provides utilities for initializing ASTs in the same format
as Esprima and subsequently provides operations for traversing and manipulating those

ASTs. AST Types doesn’t provide a parser to parse JavaScript into an AST, but it contains
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a builder functionality that allows users to define ASTs by creating building block node
instances. Once a user has an instance of this AST class, AST Types has several available
functions for these trees, including visit () and eachField(). Similar to Acorn, this library
focuses heavily on traversal and not much else. Developers, like in Acorn, can use these
traversal operations to do a wide array of tasks, but the downside is that it makes this
library somewhat challenging to use. One example, which is listed in the documentation for
this library, is how a developer could make a copy of a tree by creating a new object, calling
eachField (), and passing in a callback to the function that copies each key/value pair from
the existing tree into a new one. This is opposed to a library which might provide a clone ()

or map() function to make simple tasks like this far easier for a developer.

Estraverse

The third library, Estaverse [9], is designed for ASTs conforming to the ECMAScript JS
syntax and provides traversal functionality for said trees. This library does not contain any
parser and depends on the user already having a constructed AST before using it. Like the
previous two libraries, this one focuses heavily on the traverse operation, and only exposes 3
operations for developers to import and use: traverse(), replace(), and remove (). These
three operations make this library easy to use, but hard for developers to do everything they

could want to do with ASTs.
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Chapter 3

Treecle

3.1 Motivation and Purpose

The idea to create Treecle arose from our inability to find a library flexible and powerful
enough to perform operations on trees that we needed for our other work. Prior research
discussed in section 2.4 indicated that existing libraries don’t contain enough operations and
functionality or don’t support commonly used tree schemas defined in section 2.2. Thus, we
decided to create Treecle: a utility library for handling tree-like structures that is general
enough to handle all common schemas and maintain a level of power by supporting many
useful operations.

At a high level, the functions defined in this library can be classified as one of the follow-
ing three groups: traversal, manipulation, or augmentation. Traversing refers to visiting a
subset, or all, of the nodes in the tree and computing some useful information. Manipulation
implies performing some arbitrary operation on nodes of the tree that mutates the tree in
some way. Finally, augmentation refers to the intentional process of adding metadata to
nodes to improve the ease and efficiency of various other operations. Section 3.2 will discuss
the functions and operations Treecle provides, and section 3.3 will discuss use cases where

Treecle can be most aptly used and applied, which justifies its existence.
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3.2 Functions and Operations

3.2.1 Setup

Before discussing Treecle’s functions, we must discuss the configuration options necessary
to ensure it can support all types of schemas for defining children. Treecle can be used in
two ways: by using the default configuration or by providing a custom configuration. By
default, a user could import any of Treecle’s functions directly into their code, and call them
on their tree structures. However, we also provided a way to create custom configuration
options by creating an instance of the Treecle class and passing in the desired configuration
options. This allows the user to define their child relations arbitrarily, which can be useful in
cases where the default configuration does not suffice. The configuration options that can be
set are: getChildProperties(node: Node): Array and isNode(thing: any): boolean.
The former is a function that takes a node and returns an array of property names that
point to children. The latter is a function that takes an object and returns whether or not
it is a node. Under the default configuration, all key-value pairs in a node such that the
value is an array or object are considered children, and all objects are considered nodes.
This is an example of the unconstrained schema type; an example can be found in figure
2.5. However, this can be changed by providing custom configuration options. For example,
the configuration shown in 3.1 defines a tree schema where children are stored in a property
called children and nodes are objects with a property called type that can be either root,
internal, or leaf. After a user sets up this configuration, they can call Treecle functions
and pass in this context as the first argument, which lets Treecle know how to traverse any

tree matching the given schema.
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const treecle = new Treecle ({
getChildProperties: (mnode) => {

return [ 1;
1,
isNode: (obj) => {

return [ s s ].includes (obj?.type);
}

IO

// const rootNode =

// Uses the custom configuration to find the first leaf

const firstLeaf = treecle.find(rootNode, (node) => node.type === )

Figure 3.1: Example of a custom configuration

3.2.2 Traversal Functions

The following section details all traversal functions, which visit nodes in the tree but do
not perform any mutation on the tree itself. These functions are useful for computing some
information about the tree or its nodes and are often used as a precursor to manipulation

functions.

The children() Function

The children() function is returns all children of a node. Internally, this is implemented
by calling childPaths() and then getting the children at each path. This is an essential
function as it provides a means of traversing the tree by finding descendants of a given node.

As a result, it is an important function both internally, and for external users.

The childPaths() Function

The childPaths () function is similar to the children() function, with the exception that
it also returns additional metadata on what path was taken to get from the given node to
each of its children. With some schemas, like for that of a binary tree shown in figure 2.4,
the paths to the children are trivially length 1, while for others, like for that of a tree with

children stored in an object shown in figure 2.3, the paths to the children are more complex.
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The closest() Function

The closest () function is a utility function that returns the closest ancestor of a node that
satisfies a given predicate, or none if no node matches the conditions. Importantly, since this
function needs to be able to walk up the tree, this function relies on having parent pointers

set, which will be discussed in further detail in section 3.2.4.

The find() Function

find() is a function that takes a node and a predicate as a parameter and traverses down
the tree from that node and terminates and returns once it finds a node satisfying the given
conditions or explores the entire subtree rooted at that node without finding any matches.

This function is important for implementing searching functionality.

The map() Function

The map () function is a way to create a new tree based on an existing one. The function
takes a tree and a mapping function as parameters and returns a new tree where each node is
the result of applying the mapping function to the corresponding node in the original tree, in
a depth-first manner. For example, if we have a tree where each node has a value property
which is a number, and we want to create a new tree where each node is the square of the

corresponding node in the original tree, we could use the map () function to do this.

The reduce() Function

With the reduce () function, a user can reduce a tree to a single value by applying a function
to each node in the tree. This function is very similar to the standard reduce() function in
JavaScript, but instead of a simple array, it applies the reducing operation by walking the

tree in a depth-first (pre-order) manner.
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The walk() Function

Finally, we discuss perhaps the most important operation in Treecle, the walk() function.
This function is a general-purpose function that can be used to traverse a tree in a depth-first
manner, where it takes in a tree and a callback function as parameters, visits each node in
the tree, and calls the callback function on each node until the callback function produces a
terminating value. This function is incredibly versatile and can be used as a foundation to

implement many other tree-related operations and functions.

3.2.3 Manipulation Functions

This section defines and explains the manipulation functions in Treecle, which are defined
as functions that apply some mutation or augmentation to the tree in some way.

The replace() Function

The replace() function takes in a node and a replacement node, and replaces the subtree
rooted at the given node with the subtree rooted at the replacement node.

The transform() Function

The transform() function works analogously to the map () function; instead of creating and
returning a new tree with the given mapping function, it mutates the input tree with the
given transforming function. Like map(), this function works in a depth-first manner. This
function is useful when a user wants to apply some transformation to a tree in place, rather

than creating a new tree.

3.2.4 Augmentation Functions

This section defines and explains the augmentation functions in Treecle, which are defined

as functions that add some metadata to the nodes in the tree to improve the ease of other
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operations.

The Parents Module

Perhaps the most critical and useful augmentation for any tree is the ability to have parent
pointers. It was important to us to abstract away all of the complications of handling and
maintaining parent pointers, especially concerning storing them inside nodes. We implement
parent pointers in Treecle using JavaScript’s WeakMap data structure [24], which is a way to
map arbitrary objects to another object. We use this data structure instead of an ordinary
Map because it uses weak references, meaning it does not affect garbage collection. In this
case, we have a parent map which maps nodes to an object containing their parent and the
path that leads from the parent to that node. parents is a module that encapsulates this
functionality and has three functions: setPath(), getPath(), and getParent (). setPath()
takes in a node and a path and sets the key-value pair in the parent map. getPath() takes
in a node and returns the parent along with the path from the parent to that node. Finally,
getParent () takes in a node and returns the parent of that node. These functions are useful

for other operations that require parent pointers, such as closest().

The clearParents() Function

The clearParents () function is a utility function that clears all parent pointers from a tree.
This function is useful both internally and externally, as it could be used before transforming

a tree to ensure that the parent pointers are correct for the transformed tree.

The updateParents() Function

The updateParents() function will either set if the tree has no parent pointers or update
all parent pointers in the tree. Often, this function is used after a tree has been transformed,

to ensure that the parent pointers are correct for the transformed tree.
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3.3 Use Cases

The following section details potential use cases for Treecle. We define a use case as a
project or space that can use Treecle to simplify its logic in some way, typically in terms of
shortening its code footprint. Research was conducted to retrieve a large and diverse set of
use cases for Treecle. The goal was to gather a list of projects that varied in a handful of
metrics including complexity, size, and popularity. Most of the research was spent trying to
find larger JavaScript frameworks that would likely implement their tree function in-house,
allowing Treecle to have the biggest impact by reducing lines of code. However, we also
wanted to find smaller-scale and less-used GitHub repositories that could use Treecle to full
effect. By showing how Treecle could be applied in a diversity of settings, we justify Treecle’s
existence and purpose as a helpful utility library for handling trees. The use cases, which
are discussed in detail below, are ordered in ascending order of project size, in terms of lines

of code!.

3.3.1 Vastly

As mentioned briefly in section 1.2, Vastly is both a novel contribution to this thesis as
well as a use case that validates Treecle. After developing Vastly originally, we ported all
of the logic about common tree data structures into Treecle, meaning that many of Vastly’s
functions already use various Treecle functions. That means this section is not hypothetical
since Treecle is a dependency of Vastly.

As described later in section 4.1, many of Vastly’s operations are trivial wrappers around
some of Treecle’s functions. They are fully enumerated in section 4.1, but to reiterate a few,

Vastly’s children(), closest(), find(), walk(), and more are all just simple wrappers

!Throughout this project, any reference made to lines of code is an approximate statistic that is calculated
on GitHub repositories by cloning and executing the shell command git 1s-files SRC_FOLDER | grep
".js$" | xargs wc -1, which is used to count the number of lines in all JavaScript files in the source folder
of the project.
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import >
import treecleClosest from 5

export default function closest (node, type) {
return treecleClosest(node, n => n.type === type);

}

Figure 3.2: Vastly implements closest using Treecle’s closest

around Treecle’s functions. Figure 3.2 is Vastly’s current implementation of the closest ()

function, which uses Treecle’s closest () function to make it more specific for ASTs.

3.3.2 LeetCode Problems

LeetCode is a popular platform for practicing coding problems, particularly in the context of
technical interviews. The platform has a wide array of exercises, some of which involve trees,
in particular, problems revolving around binary trees. LeetCode problems are typically small
and bite-sized, so we found that many of them could be solved with ease using Treecle.

We identified a subset of all tree-related questions on LeetCode that could adequately
demonstrate the utility of Treecle. These problems include the questions N-ary Tree Preorder
Traversal, Evaluate Boolean Binary Tree, Search in a Binary Search Tree, Maximum Depth
of Binary Tree, Univalued Binary Tree, Leaf Similar Trees, Sum of Left Leaves, and more
[21]. These problems are all relatively simple and can be solved with a few lines of code using
Treecle’s functions. Looking into LeetCode problems was useful in helping to inform which
functions in Treecle are more important and generalizable than others. For example, most
of these selected problems can be solved using Treecle’s walk() or reduce(). An example

is shown in figure 3.3 for how Treecle could be used to solve N-ary Tree Preorder Traversal.

3.3.3 Cheerio

Cheerio is a library for parsing, manipulating, and traversing HTML and XML documents

using a jQuery-like API. Cheerio is a popular library with nearly 28,000 stars, 2,000 forks,
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// A potential implementation of LeetCode’s N-ary Tree Preorder Traversal
problem using Treecle’s reduce
// Assumes treecle instance has been properly configured with this tree’s
custom settings
/* specs */
function preorder (root) {
return treecle.reduce(root, (acc, node) => {
acc.push(node.val);
return acc;

o s

Figure 3.3: Using Treecle’s reduce in LeetCode’s N-ary Tree Preorder Traversal Problem

// A potential implementation of Cheerio’s contains function using Treecle
’s closest

// Assumes treecle instance has been properly configured with this tree’s
custom settings

/* specs */

export function contains (container, contained): boolean {
if (container === contained) {

return false;

}

return Boolean(treecle.closest (contained, (node) => {
return node === container;

)

Figure 3.4: Using Treecle’s closest in Cheerio

and approximately 10,000 lines of code [4]. HTML documents are tree-like, meaning Cheerio
parses them into a tree data structure to perform all operations in its API.

Given its use of a DOM-like tree structure, Cheerio is a prime example of a library that
could benefit from using Treecle. Cheerio implements the following tree-related functions:
contains(), find(), and replaceWith(). The contains() function checks whether a
given node is a descendant of another node, find () searches for nodes that match a given
predicate, and replaceWith() replaces all nodes matching a predicate with another node.
These functions could be implemented using Treecle’s closest (), £ind(), and replace()
functions respectively. An example of how Treecle’s closest () could be used to implement

Cheerio’s contains () is shown in figure 3.4.
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// A potential implementation of one of Vue.js’s traversal functions using
Treecle’s walk
// Assumes treecle instance has been properly configured with this tree’s
custom settings
/* specs */
function walk(vnode, children) {
treecle.walk (vnode, (node) => {
if (node.component) {
children.push(node.component.proxy)
X
IO

Figure 3.5: Using Treecle’s walk in Vue.js Core

3.3.4 Vue.js Core

Vue.js is a popular JavaScript framework for building reactive web applications in a modular,
component-based manner. Their core repository is where much of their behind-the-scenes
logic and computations are implemented, which includes a wide array of things such as their
reactivity engine, compiler, and runtime system. The core repository is a large and complex
codebase, with nearly 45,000 stars, 8,000 forks, and approximately 120,000 lines of code [23].
The repository contains multiple types of trees used in distinct locations, with the prime
examples being in the compiler and runtime system modules.

The primary way trees are used is a Virtual DOM tree, which is a tree representation
of what the DOM should look like with the applied Vue components. Vue is such a large
and complex framework that it’s hard to extract all locations where Treecle could come be
used. We found that this package implements a custom tree traversal function on more
than three separate occasions. These traversals’ implementations could be replaced with
Treecle’s walk () function to reduce the chance of bugs in the current implementation which
contains more than three variants of a similar function. An example of how this might be

implemented is shown in figure 3.5.
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3.3.5 Summary of Use Cases

Each of the above use cases provides evidence that Treecle is a useful utility library that can
be used to improve existing codebases by simplifying all tree-related operations. The benefits
of using Treecle over implementing a custom solution are numerous, including reducing the
chances of bugs, reducing the amount of work and code that must be written, and increasing
the readability and maintainability of the code. In addition, the diversity of each of these
use cases demonstrates Treecle’s ability to perform well regardless of the size of the project
or the complexity of the tree operations that need to be performed. Our research uncovered
many other examples of potential use cases for Treecle, but due to scope, we can’t cover all
of them in full detail like the ones listed above. Instead, table 3.1 is provided that gives a
short overview of the remaining use cases. In short, these use cases demonstrate Treecle’s

versatility and ability to be used in many projects.

Table 3.1: Overview of additional Treecle use cases

Name Stars | Lines of Code | Number of Use Cases | URL

Mavo 2.8k 12k 9 https:
//github.com/

mavoweb /mavo

hTest 19 2k 3 https:
//github.com/

leaverou /htest /

estraverse | 921 1k 2 https://github.
com/estools/

estraverse

Continued on next page
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Table 3.1 — continued from previous page

Name Stars | Lines of Code | Number of Use Cases | URL

eslint 24.2k 82k 2 https:
//github.com/
eslint /eslint

pdf.js 46.2k 110k 2 https:

//github.com/

mozilla/pdf.js
virtual- 11.6k 2k 1 https:
dom //github.com/

Matt-Esch/

virtual-dom

formatjs 14.1k 355k 1 https://github.
com/formatjs/
formatjs

tailwindcsg 78.2k 29k 1 https:

//github.com/
tailwindlabs/

tailwindcss

uikit 18.1k 13k 3 https://github.

com /uikit /uikit

vscode 158k 1.2m 3 https://github.

com/microsoft/

vscode

Continued on next page
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Table 3.1 — continued from previous page

Name Stars | Lines of Code | Number of Use Cases | URL
treejs 52 600 1 https:
//github.com/

m-thalmann/

treejs
obj- 102 500 2 https://github.
traverse com/brojd/

obj-traverse

dom- 320 900 1 https://github.
handler com/fb55/

domhandler
scour 305 1k 2 https:

//github.com/

rstacruz/scour
react- 305 400 2 https://github.
tree- com/ctrlplusb/
walker react-tree-walker
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Chapter 4

Vastly

4.1 Motivation and Purpose

As mentioned briefly in section 1.1, the original motivation to create Vastly stemmed from
the desire to simplify the codebase of a web framework called Mavo [22]. Mavo is a declarative
web framework that allows users to build reactive web apps simply by annotating HTML
elements with custom expressions to populate them with custom data. As a result of these
expressions, Mavo’s source code implements a variety of AST operations from scratch, which
clog the codebase with relevant yet tangential code that could be abstracted away. Originally,
the plan was to modularize this functionality to simplify Mavo, but we then realized that
these operations are common for ASTs, and could prove useful to other developers. Vastly
was created as a public, open-source library to abstract away these AST operations and
provide a simple, easy-to-use API. Now, most of the operations we created in Vastly have
been abstracted into Treecle, meaning Vastly is both a novel library and a use case for
Treecle.

Recall from section 2.3 that ASTs are a specific type of tree that are typically used to
represent a piece of logic in an expression. For the scope of this thesis, we will be only

considering ASTs with the structure defined precisely in section 2.3.1, where each node has
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a predefined node type. Throughout this section, when we refer to an AST, we will be
assuming an AST that conforms to that structure.

Given that Vastly now uses Treecle and many of its functions, we will discuss only the
ones novel to Vastly in this section. The list of functions that are implemented in Vastly
as a trivial wrapper around a Treecle function is as follows: childPaths(), children(),
clearParents(), closest (), map(), parents(), replace(), transform(), updateParents(),
and walk(). Similar to Treecle, each of Vastly’s novel functions can be classified into three
categories, which differ slightly: creation, traversal, and manipulation. Creation refers to
functions that produce or build an AST, traversal refers to functions that visit nodes in the
AST but do not perform any mutation, and manipulation refers to functions that apply some

mutation and or augmentation to the AST in some way.

4.2 Functions and Operations

4.2.1 Creation Functions

The parse() Function

Importantly, Vastly does not implement its own JavaScript expression parser from scratch.
The parse function provides a wrapper around a user-chosen parser, or if none is provided,
uses the jsep parser |7]. The parse function takes an expression as a string and returns an
AST representing that expression. An example AST is shown in figure 4.1 for the expression
2 4 5. The parse function gives users flexibility in choosing their parser or omitting its use

entirely by using the default parser.
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4.2.2 Traversal Functions

The evaluate() function

The evaluate () function is a function that takes in an AST and a list of contexts in ascend-
ing order of precedence and evaluates the AST in terms of those contexts. A context is a
mapping of identifiers to values, and the function recursively traverses the AST and contin-
uously computes the value of subexpressions until it reaches leaf nodes, such as identifiers,
when it looks up the value of the identifier in the context. In addition, the way each node

type is evaluated can be customized.

The serialize() Function

serialize() is simply a function that takes in an AST and converts it back into a string
expression. Besides it is nice to have a function to represent a complex data structure as a
string, making it easier to read a human, one case in particular where this function could

prove useful is getting an updated expression value after the AST is mutated in some way.

The variables() Function

The variables() function is a function that returns a list of all top-level identifier nodes in
the AST. This function was created within Mavo as part of the refactoring of the expression
evaluation pipeline but would prove useful in other contexts. Importantly, the function
doesn’t simply return all identifiers, but only the top-level ones, which include all simple
identifiers, e.g. x; the root of member expressions, e.g. a for the expression a.b; and
function names as well, e.g. foo for foo(1). Mavo will use this function with the prepend ()

function to prefix all top-level identifiers with \$data.
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4.2.3 Manipulation Functions

The prepend() Function

The prepend() function is perhaps the most specific and complex in the codebase besides
evaluate(). This function is titled prepend() because it takes in as input two ASTs, and
returns a new AST where the second AST is prepended to the first AST. For example, if we
had one AST, astl, representing the expression bar, and another, ast2, representing the
expression foo, then the output of prepend(astl, ast2) would yield a brand new AST
corresponding to the expression foo[bar]. This function was built with Mavo in mind,
where to refactor the expression evaluation pipeline, we needed to be able to prepend the

data root $data to all identifiers, e.g. x to $data.x.

4.3 Use Cases

The following section details potential use cases for Vastly, or in other words, projects and
spaces where Vastly could be used to simplify a piece of code in some meaningful way. The
goal was to find use cases that vary in metrics like complexity, size, and popularity. For
example, we tried to find popular JavaScript frameworks that used ASTs, and other smaller-
scale and less-used GitHub repositories that could use Vastly to full effect. By showing how
Vastly could be applied in a diversity of settings, we justify Vastly’s existence and purpose
as a helpful utility library for handling ASTs. The projects will be discussed in ascending

order of project size, in terms of lines of code in the codebase.

4.3.1 simple-eval

simple-eval [20] is a package for evaluating simple JavaScript expressions. The library
utilizes ASTS in the expression evaluation pipeline by converting expressions to an AST, and

then evaluating that AST to produce a value. This package already has a relatively large
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// A potential implementation of simple-eval’s reduce function using
Vastly’s evaluate

/* specs x*/

export default function reduce(node, ctx) {
return Vastly.evaluate(node, ctx);

}

Figure 4.2: Using Vastly’s evaluate in simple-eval

amount of users, accumulating almost 500,000 weekly downloads on NPM. The package is
relatively small, containing approximately 1,000 lines of code [18].

The package defines two functions that could be perfectly adapted to using Vastly. First,
this library defines a function called parse (), which takes in a string expression and returns
an AST. This function could be replaced with Vastly’s parse () function. Second, the library
defines a function called reduce (), which takes as input an AST conforming to the same
structure used in this paper, and evaluates the AST given a context. This function’s behavior
is identical to that of evaluate () which Vastly implements. By swapping these two functions
with Vastly’s, this library reduces its size by an estimated 100 lines of code, which would
improve the maintainability and readability of the codebase. An example is pictured in figure

4.2 of how reduce () might be implemented to use Vastly’s evaluate() function.

4.3.2 Mavo

As mentioned briefly in 4.1, Mavo is a new web framework that allows users to build reactive
web apps simply by annotating HT'ML elements with custom expressions to populate them
with custom data. Mavo represents a medium-sized use case; it has 2,800 stars and 181
forks on GitHub, and its source code is on the order of 10,000 lines [15]. We'll take look at
relevant areas within Mavo where any of Vastly’s functions defined in section 4.2 could be
applied.

Within Mavo’s source code is file called Mavoscript.js [15]. This module contains
various functions related to the expression language that Mavo uses. This file is a perfect

candidate for Vastly, as it includes many AST operations that could be abstracted away
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// A potential implementation of Mavo’s walk function using Vastly’s walk
/* specs x*/
walk: function(node, callback, o = {}) {
return Vastly.walk(node, callback, {only: o.type, except: o.ignorel});
}

Figure 4.3: Using Vastly’s walk in Mavo

into Vastly’s API. For example, the module contains functions called walk (), serialize(),
parse(), and closest(), all of which are functions within Vastly. Because of this, each of
these functions could be replaced with Vastly’s, which would save an estimated 150 lines of
code in the module. This would significantly cut down the complexity of the module, which
would in turn increase its maintainability and readiness for change. An example is pictured

in figure 4.3 of how Mavo’s walk() might be implemented to use Vastly’s walk() function.

4.3.3 CesiumdJS

CesiumJS [3] is a visualization library for building 3D globes and 2D maps in-browser. It
is another large-scale project with nearly 12,000 stars, 4,000 forks, 40,000 commits, and a
codebase size of approximately 680,000 lines of code [3]. To aid in creating these visual
elements and scenes, CesiumJS implements its own expression language to define attributes
in scenes. It can be used to define and perform calculations on data like temperature, color,
and other metadata about the scene [10|. As a result, CesiumJS needs to handle the ASTs
that come from parsing these custom expressions, which makes it a reasonable candidate to
use Vastly given its already monumental size.

Within CesiumJS’s expression module are some functions that operate on ASTs including
getVariables() and the Expression constructor. For simplicity, these are the two that
will be discussed, as the entire module is thousands of lines long and has other functions
that could be non-trivially adapted to use Vastly. The getVariables() function returns
all variables used in the AST, meaning it could be replaced with Vastly’s variables()

function. The Expression constructor takes in a string expression and parses it into an
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// A potential implementation of CesiumJS’s Expression datatype’s
getVariables method using Vastly’s variables
/* specs x*/
Expression.prototype.getVariables = function () {
return Vastly.variables (this._runtimeAst);

};

Figure 4.4: Using Vastly’s variables in CesiumJS

AST, meaning it could use Vastly’s parse() function. An example is pictured in figure 4.4
of how CesiumlJS’s getVariables() might be implemented to use Vastly’s variables()

function.

4.3.4 Summary of Use Cases

All of the aforementioned use cases are examples of how Vastly could be used to simplify and
improve the maintainability of a codebase. By replacing the AST operations in these projects
with Vastly’s, the codebase would be simplified, and the maintainability and readability of
the code would be improved. These three projects also show Vastly’s ability to operate at
different scales, being able to fit in with a project like simple-eval with about 1,000 lines of
code, Mavo with more than 10,000 lines of code, and CesiumJS with more than 100,000 lines
of code. Importantly, this is a small set of use cases that was identified. In short, these use
cases demonstrate Vastly’s versatility and ability to be used in many projects. Additional

use cases that weren’t elaborated upon can be found in table 4.1.

Table 4.1: Overview of additional Vastly use cases

Name Stars | Lines of Code | Number of Use Cases | URL
expression- 2 600 2 https:
to-mql //github.com/

mongodb-js/

expression-to-mql

Continued on next page
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Table 4.1 — continued from previous page

Name Stars | Lines of Code | Number of Use Cases | URL

Vue.js Core | 44.5k 120k 3 https://github.
com/vuejs/core

estraverse 921 1k 2 https://github.

com /estools/

estraverse
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Chapter 5

Developer Interviews

5.1 Purpose of Interviews

The subsequent sections contain the findings of two interviews conducted with software
engineers. The purpose was to gather more information on the potential use cases for Treecle,
and more generally the problems real developers have revolving around trees. The interviews
were semi-structured [14], and the questions were designed to gather information on the
interviewee’s background, their past and current use cases with trees, and what they look
for and don’t look for in a library. The interviews were conducted over Zoom, and consent
was given from both interviewees to have their responses and information included in this
thesis. They have both had their names anonymized to Interviewee 1 and Interviewee 2 out
of respect for privacy. The two candidates were chosen given their experience in the software
industry combined with the fact that they are both currently working on tree-related projects.

The insights and takeaways from these interviews are discussed in the following sections.

95



5.2 Interview 1

5.2.1 Introduction of Interviewee

Interviewee 1 is an experienced software engineer and developer. They have been in the
software industry for roughly 15-20 years, and have had experience working at a range of
companies, including being a principal architect for Salesforce. Currently, they are working
on a startup where they are a co-founder and CEQO. The company’s platform is a tool for
handling building data, such as floors and rooms, and the hierarchical structure that the
data takes made them a relevant candidate to interview given that they have a use case in

solving problems with tree-like data.

5.2.2 Summary of Findings

The goal of the interview was to dig into Interviewee 1’s past and current use cases with
trees, and what sorts of problems they’re trying to solve. In addition, we tried to get a sense
of what types of tree-related functions they had to build in-house, particularly, if they had
any problems or issues.

Starting with their past use cases, in a previous role, Interviewee 1 mentioned that their
team had to build a large-scale Ul for a website completely from the ground up. Over the
years, they dealt with many tree-related problems, mostly involving walkers and traversals
for the DOM or Virtual DOM. After asking a follow-up question about why they chose to
repeatedly implement everything in-house, and multiple times at that, they responded with
insight into adopting libraries. They noted issues with previous experiences with libraries
mainly included lack of documentation, lack of examples or a playground, and difficulty to
start using. They said that 90% of libraries suffer from these issues, and also mentioned that
documentation is the cornerstone to building a library that is easily adoptable.

Moving onto their current use case, Interviewee 1, as mentioned above, is the founder
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and CEO of a startup working with building data. After asking how their building data
is structured, they replied that the root of their data is a portfolio, where a portfolio can
contain any number of buildings as children in addition to some other metadata. Moving
down a level, each building can have any number of floors as children, as well as other
metadata, for example, the name of the building. Each floor is comprised of any number of
rooms as children, and similarly has associated metadata. This hierarchical structure keeps
going a couple more levels, with other nodes including sensors and other physical objects as
leaf nodes.

With this building data, Interviewee 1 described the various end goals of working with
this data. The main one being a way to render a 2D or 3D view of the building. The process
of rendering the building involved traversing the tree structure and using it to recursively

build an SVG drawing. Because of this, traversal operations are fundamental to their system.

5.2.3 Insights and Takeaways

Interviewee 1 presented a use case that validates the general design of Treecle. The way
the building data is structured means there exist around 10 distinct node types, where each
node type is either a leaf node or stores its children in an array in its children property,
just like described in section 2.2. This means the structure can be described using Treecle’s
configuration options with ease.

One important point brought up during the interview was efficiency and performance. I
asked what the approximate node count would be in typical buildings in a typical dataset,
and they replied that there wouldn’t usually be more than 10,000. They mentioned that
they hadn’t needed to make significant performance optimizations yet, but added that it
is an important consideration to keep in mind when developing a library like Treecle. We
discussed that typically performance is a tradeoff with the simplicity of a piece of code
and that it’s usually better to focus on performance last. Nevertheless, the tradeoff is an

important consideration for future work.
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Overall, this interview was incredibly useful to our research. The use case described by
Interviewee 1 reinforces how trees are defined and structured in JavaScript and supports
Treecle’s goal and ability to support varying schemas, including this one. In addition, the
emphasis Interviewee 1 put on documentation and the performance versus simplicity tradeoff
helped to influence the plans for future work for this project, which is discussed in detail in

section 6.2.2.

5.3 Interview 2

5.3.1 Introduction of Interviewee

Interviewee 2 is a similarly experienced software engineer and developer to Interviewee 2,
having nearly 15 years in the field. Their background, however, is unique given that they
were originally an artist and designer, and turned into a self-taught software engineer after
getting into web programming as a hobby. Interviewee 2’s unique background allows them to
give a great perspective on design, as their work with companies typically focuses on front-
end development and emphasizes the end-user experience side of things. Interviewee 2 was
deemed an appropriate candidate to interview for this project given their current personal

project developing a visual editor for building websites.

5.3.2 Summary of Findings

As mentioned, Interviewee 2’s primary use case involves a project they are currently devel-
oping. They described this project as a "cross between Vim [26] and Webflow [25]." It’s
supposed to be a visual editor for creating websites but with an extensive set of keyboard
shortcuts to do so. Currently, Interviewee 2’s implementation of this editor involves manipu-
lating the DOM directly and using its built-in functions for nodes, including appendChild (),

replaceChild(), and removeChild() [16]. The shape of the data they are working with is
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inherently hierarchical in nature given that the DOM is a tree itself. Interviewee 2 went on
to describe the various types of nodes that they planned to use. They described the root
node as a "site" node, which could contain any number of intermediate nodes like "pages"
or "sections". Finally, the leaves of the tree are text, images, or shapes.

The purpose of this project is to be able to use the editor to create websites visually, and
then export it into code. However, the grand vision of Interviewee 2 is to create an inter-
mediate syntax that can be used to describe the websites, and then create some transpilers
to convert that intermediate representation into the various front-end frameworks, such as
Vue, React, Angular, and plain HTML. Because of this, they are looking to make their own
custom virtual DOM implementation to handle the intermediate representation instead of
using the native DOM and its functions. This made them a good candidate because they
are looking for libraries to aid in the implementation of this custom tree structure and its
operations. While the structure is undetermined completely, Interviewee 2 described that
the plan would be to have nodes with their corresponding types, along with children stored
in an array, meaning this schema again could be supported by Treecle.

In addition to asking about their specific use case, and how Treecle may lend itself to that
tree schema, we also discussed what makes good and bad libraries, or more specifically, what
a library would have to do to get adopted. Interviewee 2 mentioned the following traits, which
are similar to the ones mentioned by Interviewee 1: ease of integration; ease of setting up the
development environment; active maintenance and contributions; and great documentation
including specifications, examples, and tutorials. When asked about past experiences with
good and bad libraries, Interviewee 2 identified that overall the most important element
is trust. They mentioned how thorough documentation and testing coupled with active
maintenance and contributions are the most important factors in building trust with a library.
They also added that they're extremely unlikely to use a library if it hasn’t been updated in

over 2 years.
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5.3.3 Insights and Takeaways

Interviewee 2’s use case would also lend itself well to Treecle given that it defines a schema
in a way supported by Treecle, and requires operations that Treecle currently provides.
Similarly to Interviewee 1’s use case, this use case would also choose to store children in
an array property, meaning the schema could be easily defined using Treecle’s configuration
options.

The unique background of Interviewee 2 also allowed them to give an interesting insight
into the user experience of a library, particularly related to the trust essential to building a
widely and easily adoptable library. The main point they made regarding building trust is
including rich documentation, specifically, types of documentation for every skill level. What
they meant by that is having specifications and technical API documentation for someone
experienced who needs to find what a particular function does; having examples of uses for
someone starting to familiarize themself with the library, and finally, having tutorials for
someone completely new to the library. This insight was particularly useful in shaping the

future of this project and is discussed in more detail in section 6.2.2.

60



Chapter 6

Conclusion

6.1 Summary of Contributions

This thesis introduces and proposes Treecle and Vastly: two JavaScript libraries that aim to
provide simple, easy-to-use APIs for tree and AST operations respectively. The contributions
of this project include the design, implementation, testing, and documentation for both
libraries, as well as research into the justification of each one.

We have demonstrated via the use cases shown in sections 3.3 and 4.3 that both libraries
have the potential to simplify codebases, which has additional benefits that include making
the clients of these libraries safer from bugs, more readable, and more maintainable. In
addition, through the interviews conducted and discussed in sections 5.2 and 5.3, we saw
two more real-life use cases that Treecle could, in theory, be applied to. In short, Treecle
and Vastly serve as useful utility libraries that can improve the quality of any codebase with

trees or ASTs.

6.2 Future Work

Although both libraries boast a variety of functions already, the libraries are still currently

in an alpha state, meaning there is still much work to be done. Listed below, and discussed
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in more detail, are areas for future improvement for both libraries in general.

6.2.1 Expanding Functionality

The most significant area of improvement for future work in both libraries is expanding the
set of offered operations to include more functions that have been justified as needed via
the use cases that were researched. Researching potential use cases for Treecle uncovered a
lot of typically-used procedures related to trees. The following is an incomplete list of the

functions that could be added to Treecle in the future.

1. clone(): Takes in a tree and returns a deep copy of that tree.

2. deepEquals(): Takes in two trees and returns whether they are equal in structure and

values.

3. filter(): Takes in a tree and a predicate and returns a new tree with only the nodes

that satisfy the predicate.

4. stringify(): Takes in a tree and returns a string representation of that tree, which

can be customized from use case to use case.

5. remove(): Takes in a node and removes itself from the tree, adjusting parent pointers

as necessary.

6.2.2 Testing and Documentation

One area of improvement both libraries could benefit from significantly is testing and docu-
mentation. Currently, both libraries contain test suites that cover the majority of functions
in the library, but there are a minority of functions left uncovered, as well as some more
complex functions that could use more robust testing strategies. In addition, the documen-
tation for both libraries is pretty well organized but could be improved by adding more

examples and such for each function, as the documentation is currently sparse. Specifically,

62



more robust descriptions of functions could be added, and more importantly, examples and
a playground. Interview 1, which was discussed in section 5.2, gave the important insight
that having thorough documentation increases the chances that a developer would choose
to adopt the library. Interview 2, from section 5.3 had a concurring opinion, emphasizing
the important role documentation plays in the trust relationship between a library and a

developer looking to use it.

6.2.3 Performance

Performance was considered a relatively low priority at each stage of the design process when
implementing both Treecle and Vastly. It was considered loosely only in terms of asymptotic
runtime, but we intentionally added constant factors to the runtime of some functions if it
resulted in cleaner code. Now that the codebases are stable and have implemented most of
the functions we wanted at the offset, it could prove useful to go back and optimize each

function for performance, wherever possible.
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Appendix A

Relevant Links

The following is a list of links relevant to Treecle and Vastly:

A.1 Treecle

1. Source code: https://github.com/mavoweb /treecle
2. Documentation and deployment: https://treecle.mavo.io/

3. NPM package: https://www.npmjs.com/package/treecle

A.2 Vastly

1. Source code: https://github.com/mavoweb /vastly
2. Documentation and deployment: https://vastly.mavo.io/

3. NPM package: https://www.npmjs.com/package/vastly
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