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Abstract

Degenerate quantum gases of magnetic atoms such as dysprosium (Dy) and erbium
(Er) offer new opportunities to quantum simulation research due to their large spin
degree of freedom and long-range dipole-dipole interactions. In this thesis, following
an introduction to the fundamental properties of Dy, we introduce the design and
construction of an experimental apparatus that is capable of producing Bose-Eintein
codensates of more than 105 Dy atoms in every 10 seconds. In addition, we describe
two experiments that advances the quantum control over the spin, the motion, the
interaction, and the dynamics of ultracold dipolar gases.

In the first experiment, we introduce a super-resolution control scheme using a
spin-dependent optical potential that localizes Dy atoms on a sub-50 nm scale, a
distance that is more than 10 times shorter than the optical wavelength. With the
interatomic distances shortened by a factor of 10, the interatomic dipole-dipole in-
teraction is significantly enhanced. We will discuss how this strong and tunable
long-range interaction enables the simulation of new classes of many-body Hamilto-
nians. We experimentally demonstrate the super-resolution technique by creating a
bilayer of ultracold Dy atoms and mapping out the atomic density distribution with
sub-10 nm resolution. The interlayer dipole-dipole interaction are detected via two
out-of-equilibrium experiments.

In the second experiment, we study the suppression of dipolar relaxation, an in-
elastic process that limits the lifetime of higher spin states, using external optical
confinements. By confining ultracold dysprosium atoms in ultrathin optical layers,
the magnetic atoms can approach each other only side by side. The interatomic
dipole-dipole repulsion provides a protective shield that stops the atoms from tunnel-
ing to short-range. We observe an order of magnitude suppression of inelastic dipolar
relaxation losses in the presence of the dipolar shield. This scheme can extend the
lifetime of quantum gases of spin mixtures, thereby offering more opportunities for
exploring physics such as spin-orbit coupled Bose gases, dipolar spinor condensates,
etc.
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Chapter 1

Introduction

Since the first realizations of Bose-Einstein condensates (BECs) in 1995 [30, 4], quan-
tum gases of neutral atoms have become an ideal platform for creating, probing,
and understanding interacting many-body systems. Despite the complex structures
of their constituent electrons and nuclei, interactions among these dilute, ultracold
atoms can be precisely described by only a handful of parameters, opening up nu-
merous opportunities for constructing many-body Hamiltonians through a bottom-up
approach [17]. The short-range contact interaction parameterized by the scattering
length a has allowed for the investigation of topics such as the fundamental proper-
ties of superfluids and the physics of Hubbard Hamiltonians [16, 82]. The ability to
tune the scattering length in ultracold atomic gases using Feshbach resonances has
enabled the exploration of systems such as unitary Fermi gases [40], the anisotropic
Heisenberg model [51], and Bose gases in lower dimensions [27]. These examples
highlight the important role of precise control over atomic motion and interactions
in advancing the study of many-body systems with ultracold atoms.

In addition to short-range contact interactions, quantum gases of magnetic atoms,
polar molecules, Rydberg atoms, and optical cavity QED systems present long-range
interactions that give rise to an even broader range of physics. This thesis will in-
troduce one of these platforms based on ultracold gases of dysprosium (Dy), the most
magnetic atom. Owing to its electronic configuration with a submerged open 4/ shell,

Dy has several special properties: a large ground-state spin, a large magnetic mo-
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ment, strong long-range magnetic dipole-dipole interactions, dense Feshbach spectra
and so on. These properties offer additional degrees of freedom and different types of
inter-particle interactions, hence providing new opportunities for engineering, syn-

thesizing, and investigating novel quantum systems.

In the following chapters of this thesis, I will introduce our effort in designing and
constructing the experimental apparatus for creating BECs of Dy atoms and control-
ling their motion, spin states, and long-range dipole-dipole interaction using external
fields including lasers, magnetic fields, and RF pulses. By using a new type of spin-
dependent optical potential, we achieve the localization of two layers of Dy atoms in
opposite spin states on a subwavelength scale of 50 nm. The super-resolution optical
potential significantly enhances the strength of dipole-dipole interactions, enabling
the observation of many-body effects arising from interlayer dipole-dipole couplings.
By confining cold Dy gases in a tight quasi-2D optical potential, we observe a reduc-
tion in inelastic collisions due to dipole-dipole repulsion. These are the two principal

experiments that I will describe in this thesis.

1.1 Bosonic Atoms at Ultralow Temperature: Bose-

Einstein Condensates

Bose-Einstein condensation is a phenomenon arising from quantum statistics of iden-
tical bosons. It was predicted by Satyendra Nath Bose and Albert Einstein in 1924
[18, 35], and was first realized in ultracold dilute gases of rubidium [4] and sodium
[30] in 1995. These interacting atomic gases exhibit superfluid behavior. Unlike
conventional superfluid *He, which is in strongly-correlated liquid phase, weakly-
interacting BECs of dilute atomic gases can be fully described by macroscopic wave-
functions that follow the Gross-Pitaevskii equation [17], making it a clean system for
studying collective behaviors of superfluids such as vortex formation, sound propaga-
tion, and soliton physics. The BECs of dilute atomic gases are in the low-temperature

and low-density thermodynamically forbidden regime [28] and can decay toward
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chemical equilibrium (i.e., forming molecules) via three-body recombination. There-
fore, maintaining a low density is necessary for keeping the gases at metastable

kinetic equilibrium via two-body collisions.
Ideal Bose Gases

To understand the formation of BECs at ultracold temperatures, let’s consider
non-interacting identical bosons confined in a volume V with single-particle energy
spectrum {E;}. The partition function of a grand canonical ensemble that exchanges

energy and particles with a reservoir is given by

1
- -XiniE-wkpT _
Z= {,,Z’}e N U 1— e~ Ei-wikpT (1.1)

where the occupation n; of each energy level E; takes values between 0 and oo for
bosons. The average occupation of each state with energy E;, known as the Bose-

Einstein distribution, is then

olnZ 1
o " oBi—w/kpT _ 1

(ni)=kpT (1.2)

For homogeneous confinement of a box potential, the single-particle energy spectrum
is E(p) = p%/2m. Without macroscopic occupation of a single momentum state (i.e., no
Bose condensation), the total atom number in the box can be evaluated by integrating

over the momentum space

1 \% 1
N:Z<nP>ZZ p2 ~ 3h3fdp p?
P P olom—wkT _q Y em—W/kBT _ 1
174 [e's) p2
== dp——"—— .
2n2h3f0 p 2 (1.3)

elom—W/EkBT _ 1

1% 3
= ———PolyLog(5, e**57)
AdB(T) 2

onh2
mkgT

where the thermal de Broglie wavelength A4g(T') = characterizes the size of

the matter wave at temperature 7. Based on this expression, we define the phase-
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space density as

D =nA3e(T) (1.4)

which, under the assumption of no Bose condensation, is equal to PolyLog(%,e“/ kpT),
However, this polylogarithm function saturates to a maximum value of {(3/2) = 2.61
at u — 0 with {(x) being the Riemann-Zeta function, indicating a saturation of ther-
mal states [35]. A further increase of the phase-space density results in macroscopic
particle occupation of the ground state p = 0, leading to the phase transition of Bose-
Einstein condensation.

We can therefore obtain the BEC transition temperature 7'; from the maximum

phase-space density of thermal particles

21h%2, n 23
" mkp (5(3/2)) (15)

When the temperature T is lower than T'., the matter waves are so delocalized that

their de Broglie wavelength 145 becomes comparable to the interparticle spacing

n~V3, and a Bose condensate starts to form. In the limit of u — 0, only the ground
state with (np-o) = m = % has macroscopic occupancy, in which case we have
N-Nj N 3
—— Aap(D) = AT =((5) (1.6)

where Ny is the particle number of the Bose condensate. Hence the condensate frac-
tion when T' < T, is given by

No _ 1 T )3/2, (1.7)

N T,
We can estimate, based on these results, that the critical temperature for liquid *He
with typical densities of 1022 ecm™3 [47] is T\, ~ 1.9 K, which is similar to the A-point
at Ty = 2.2 K for superfluid phase transition. For ultracold dilute gases with typical
densities of 10! to 10'® cm™3, the typical BEC transition temperature 7T is in the
0.1 uK to 1 uK regime.

The above results of BEC transition temperature and the condensate fraction are

based on the assumption of a homogeneous box potential. For harmonic confinements
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that we use more frequently in ultracold atom experiments, the trap-averaged phase
R
space density is D = nA?lB(T) =N (%) with @ = (a)xa)ya)z)l/ 3 being the geometric
mean of trap frequencies. In this case, the transition temperature and condensate
1/3 1
. _ho( N No _ T
fraction become T, = ﬁ(@) and F =1- (T_c)

law dependences on particle number N and temperature 7T'.

3
[108], which have different power

Interacting Bose Gases

From the analysis on the quantum statistic of ideal Bose gases, we see that parti-
cles forming a BEC occupy the same quantum state — they “march in lock step” [68].
Now let’s consider interactions among particles. In ultracold dilute atomic gases,

3 are on the order

the inter-particle distances for typical densities around 10'* ¢cm™
of n=13 ~ 200 nm, much larger than the size of the atoms ro. Therefore, on a time
scale of a few seconds, we can neglect three-body recombination processes and only
consider two-body elastic collisions. In addition, the de Broglie wavenumber % that
is comparable to the inter-atomic distance for BECs satisfies kry < 1. This means
that we are in the low-energy regime where details of inter-atomic molecular poten-
tials are not resolved during collisions. The effect of two-body collisions can be fully

described by a phase shift of the inter-atomic wavefunction, which can be expressed

in terms of a single universal value called the scattering length a.

These two conditions bring us into the dilute regime where the many-body prob-

lem is governed by the following Hamiltonian

A 1 / ~ -~ / / Nl N7
w(r)+§ j dr [ dr @) @ )Wine @, 2)i (e )i (r)
(1.8)

2
H= jdrﬁﬁ(r) - h_v2+vext(r)
2m

with Vit (r',r) being the two-body interaction potential and ¥ (x), ¥/(r) being the field
operators creating and annihilating a bosonic particle at position r. This Hamil-
tonian was used to describe superfluid systems such as ‘He [39]. However, the
theory is only a phenomenological description due to the high density of liquid he-
lium. With ultracold dilute atomic gases, we have a physical system that is fully de-

scribed by this many-body Hamiltonian. Under the mean-field approximation where
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the field operators are replaced by a quantum fluctuation on top of a classical field
w(r,t) — (y(r,t)) + oy(r,t) = y(r,t) + 6w(r,t), we obtain the time-dependent Gross-
Pitaevskii equation (GPE) for weakly-interacting BECs

2
ih%‘//(r,t): —2h_V2+Vext(r)+gIW(r,t)I2+ f dr'Vaa(e )y, 01 |y(x,1)  (1.9)
m

Here, the coupling strength g is related to the scattering length a as

3 4 h?
T m

a (1.10)

8

, which characterizes the strength of the short-range contact interaction. In addition,
we also include in the above equation a magnetic dipole-dipole interaction for spin-

polarized atoms such as Dy, which has the following form of

tofm 1—3cos?0
47 rd

Vaa(r) = (1.11)

with p,, being the magnetic moment. We will discuss the properties of the dipole-
dipole interaction potential in greater detail in Chapter 2. For convenience, we can

characterize the strength of dipole-dipole interaction by defining the dipolar length

Hopip,m
12002

as agqq = which is approximately 7 nm for Dy, comparable to the s-wave scat-
tering length of around 6 nm. Hence we expect that the dipolar superfluids of Dy can
present many different behaviors compared to alkali superfluids where the short-

range contact interaction plays the major role [27].

1.2 Quantum Gases of Magnetic Atoms

So far, three species of magnetic atoms have been Bose condensed: chromium (Cr)
atoms with y,, =6 up [41, 43], erbium (Er) atoms with y,, =8 up [2], and Dy atoms
with u,,, = 10 up [73], where up is the Bohr magneton. To motivate the experiments
that will be introduced in the following chapters, we first summarize some recent

advancements in the field of dipolar quantum gases.
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1.2.1 Physics of Dipole-Dipole Interaction

The dipole-dipole interaction among magnetic atoms, due to its long-range, anisotropic,
and non-integrability properties, has led to discoveries of new types of quantum mat-

ter in different optical confinements. Some examples are listed below.
Dipolar Superfluids and Supersolids

By fine-tuning the strength of contact interaction via Feshbach resonances, Dy
BEC was discovered to present a droplet phase that resembles the Rosensweig in-
stability of classical ferrofluid [53]. These quantum droplets can be self-bound with-
out an external trapping potential [93] with lifetimes around 100 ms. The droplet
phase is due to the instability of the Bogoliubov modes when the scattering length
a is tuned to be smaller than the dipolar length a4q such that the attractive dipo-
lar interaction of head-to-tail dipoles kicks in and the BEC starts to collapse — this
mechanism is known as the roton-maxon instability. The collapsing gases are stabi-
lized due to the beyond mean-field repulsion that scales with density as n%2 known as
the Lee-Huang-Yang (LHY) correction, leading to the formation of quantum droplets.
The roton minimum of the Bogoliubov spectrum (i.e. the most unstable momentum
kroton) In an oblate optical confinement is set by the thickness [, of the dipolar gas as

kroton ~ 1/1; [89], hence, the droplet phase is in part a geometric effect.

As a quantum phase of matter arises from weakly-interacting supersolids and
has spatial density modulation, a natural question is then “Is this matter a type of
supersolid?” Supersoild is a special phase of matter that simultaneously breaks the
internal gauge symmetry (leading to global phase coherence) and the spatial trans-
lational symmetry (leading to a crystalline density distribution). It was first claimed
to be discovered in the liquid helium system [59], which later turned out to be a false
claim [58, 8]. A stripe phase with supersolid properties was first reported in ultra-
cold quantum gases in spin-orbit coupled systems and cavity QED systems [70, 64].
With dipolar quantum gases, it was shown that global phase coherence exists when
the droplets have extensive spatial overlap [102, 26, 19], signifying the formation of

dipolar supersolids. Two branches of low-energy Goldstone modes corresponding to
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the breaking of two symmetries are observed in several experiments [101, 44, 84, 49].

Dipolar Physics in 1D: Quantum Thermalization

Another aspect of dipole-dipole interaction is its non-integrability. In 1D geom-
etry, Bose gases with only short-range contact interaction are an integrable system
described by the Lieb-Liniger Hamiltonian Hrry = —) atoms %% + X pairs §1D0 (%)
where the 1D coupling strength is defined as g1p = 2772a/mazl witha | = \/W be-
ing the oscillator length along the transverse direction. In the strong-coupling limit
g1p — +oo, collisions between two bosons lead to a total reflection of the incident
wavefunction—these bosons are impenetrable. In this regime, the 1D Bose gas be-
comes a Tonk-Girardeau (T'G) gas whose wavefunction is equal to the absolute value

of its fermionic counterpart. The density anti-correlations become so strong that the

mean-field description breaks down.

In a classical picture, particles in a TG gas experience elastic hard-ball collisions.
Two particles exchange their velocities in each collision event. As such, the momen-
tum distribution of the whole ensemble of particles is retained during time evolution.
Hence, a TG gas is an integrable system that does not thermalize. This phenomenon
was first observed with cesium atoms confined in 1D tubes [60]. Now with dipo-
lar quantum gases, a tunable non-integrable component can be introduced into the
system Hamiltonian in a controlled way, allowing the investigation of how quantum

systems thermalize near the boundary of integrability [100].

Another interesting topic along this line of research is about super Tonks-Girardeau
gases. By scanning through a Feshbach resonance and quenching the coupling strength
g1p of a TG gas from +oco to —oo, stable 1D gases with positive stiffness are found
[13, 25, 6, 46, 5], whereas such attractive gases typically collapse via three-body re-
combinations in 3D. The stabilization of such super-TG gases is due to the strong
anti-bunching effect of the many-body state. With 1D quantum gas of Dy, it was dis-
covered that the presence of dipole-dipole interaction leads to stronger correlations
and further stabilizes the gas at all negative values of gip [54], which allowed for

scanning through multiple Feshbach resonances and pumping the 1D gas into in-
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creasingly excited many-body states caused by a quantum holonomy (gip=... — 0 —

+00— —00—0—...).

Quantum Simulation of Lattice Models

Beyond bulk experiments, lattice models, including the extended Bose-Hubbard
Hamiltonian, can be studied by loading ultracold dipolar gases into 3D optical lat-
tices. The anisotropic dipolar interaction was detected using spectroscopic methods
and time-of-flight measurements with ultarcold Er gases [7]. A more recent exper-
iment using a quantum gas microscope has led to the discovery of multiple stripe

phases in a dipolar Bose-Hubbard quantum simulator with Er [98].

1.2.2 Physics of Large Spin

Besides the long-range dipole-dipole interaction, the additional degrees of freedom
from the large spins of ground-state magnetic atoms open avenues to interesting

physics.

Spinor Condensates

BECs with a spin degree of freedom can exhibit different spinor phases [95,
56]. Theoretical works have predicted diverse spinor condensate phases in magnetic
atoms [71]. Phenomena like spin mixing dynamics and spontaneous demagnetiza-

tion have been extensively studied in cold gases of Cr atoms. [65, 66, 87, 86].

Synthetic Dimension

The spin degree of freedom in dipolar atoms can also be treated as a synthetic
spatial dimension. Introducing off-diagonal matrix elements through two-photon Ra-
man couplings allows for the engineering of tunneling terms between these synthetic
lattice sites. This has enabled the simulation of chiral edge states in a synthetic

quantum Hall system [23].
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1.2.3 More is Different

The electronic structures of dipolar atoms make their responses to external mag-
netic and laser fields different from those of alkali atoms. While this complexity
affords greater flexibility in manipulating quantum gases, it also introduces bigger
challenges in understanding the details of the interatomic molecular potentials that

mediate the interactions among atoms.

Feshbach Resonance

Different from the Feshbach spectra of alkali atoms with mostly broad and sparse
resonance features, magnetic atoms like Er and Dy exhibit much narrower and
denser Feshbach resonances [38, 78]. Statistical analysis of the neighbouring energy
spacings of these resonances reveals a Wigner-Dyson distribution with strong level
repulsion for small energy spacings, indicating chaotic behavior of dipolar atoms dur-

ing cold collisions.

Photoassociation

Although the interatomic interaction is dominated by two-body collisions in dilute
gases of ultracold atoms, it might not be the case in the presence of optical confine-
ments. Photons from laser beams can act as the “third body” and make two free
atoms to form a molecular bound state, thereby converting the molecular binding en-
ergy into external kinetic energy. This process, known as photoassociation, can affect

the metastability of Bose condensates.

Distinct resonance features have been detected on the red side of atomic lines
in lanthanide atoms such as ytterbium (Yb) [99, 61, 105]. Yet, for magnetic atoms
such as Er and Dy, no observation of discretized photoassociation features has been
reported so far to the best of our knowledge. Our preliminary photoassociation spec-
troscopy experiments with Dy showed no discretized features within 1 GHz range on
the red side of the 626 nm atomic line, nor within 100 MHz range on the red side

of the 741 nm atomic line. The underlying physics of this observation needs further
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investigation.

1.3 Thesis Outline

In this thesis, we summarize the design and construction of the Dy quantum gas
apparatus in Professor Wolfgang Ketterle’s research group at MIT. Additionally, we
describe two experimental studies conducted with Bose gases of Dy [33, 11].

Chapter 2 provides an overview of the fundamental properties of Dy, including
its electronic structure, optical transitions, and the dipole-dipole interaction Hamil-
tonian. In Chapter 3, we introduce the interactions between atoms and lasers via
the electric-dipole Hamiltonian, with a focus on categorizing atom-light interactions
into scalar, vector, and tensor components. Chapter 4 describes the design of our ex-
perimental apparatus, covering details of the Zeeman slower, magneto-optical trap,
crossed optical-dipole trap, and RF control of spin states.

Chapter 5 details an experiment in which we achieved a bilayer configuration of
Dy atoms with a 50 nm separation, enabling the observation of interlayer dipole-
dipole interactions. This experiment paves the way for exploring novel many-body
states that rely on strong long-range interactions.

In Chapter 6, we investigate the dynamics of dipolar relaxation, an inelastic col-
lisional process that leads to heating in multi-component atomic gases. We explore
the possibility of suppressing dipolar relaxation using the repulsive interaction of
side-by-side dipoles under tight external confinement. This investigation offers new

insights and possibilities for studying the physics of spin mixtures.
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Chapter 2

Dysprosium

Dysprosium (Dy), a member of the lanthanide series, was first discovered from Holmium
oxide by the French chemist Paul-Emile Lecoq de Boisbaudran in 1886. However,
due to the similar chemical properties shared among the lanthanide elements (atom
numbers 57-71), pure Dy was not isolated from other lanthanides until the advent
of the ion-exchange technique in the 1950s. A single Dy atom possesses the largest
total angular momentum (J = 8) among all atomic species in the periodic table, re-
sulting in the strongest magnetic dipole momentum of 10 Bohr magnetons (ug). The
periodic table in Fig. 2-1 uses a colormap to present different atomic species’ relative
dipole-dipole interaction strengths, which are proportional to the square of the mag-
netic dipole moments. With a magnetic dipole moment 10 times larger, Dy atoms
exhibit interatomic dipole-dipole interactions 100 times stronger than those among

alkali atoms, providing new opportunities for quantum simulation experiments.

This chapter will introduce several fundamental aspects of Dy atoms, including
their electronic structure and optical transitions, interatomic interactions via the
dipole-dipole interaction Hamiltonian, and the manipulation of internal spin states

through the dressing of Dy atoms with RF photons.
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Figure 2-1: Periodic table showing the relative magnetic dipolar interaction
strengths of different elements measured by (u/ug)?, where u is the magnetic mo-
ment of the ground-state atom and pp is the Bohr magneton.

2.1 Electronic Structure

Dy, with an atomic number Z = 66, has a ground-state configuration of 66 electrons

following the Madelung’s rule, which is expressed as:
(1s22522p%3523p%3d104524p%4d 105525 p%)4 £ 10652 (2.1)

In addition to a xenon core denoted by the expression in the parentheses above, Dy
has two outer orbitals: a fully-filled 6s orbital and a submerged partially-filled 4f
orbitals. The ground-state quantum numbers S, L, and J are determined using

Hund’s rules as follows.

The First Hund’s Rule. The first Hund’s rule states that the lowest energy state
corresponds to the one with the highest multiplicity 2S + 1 in the open subshell.
For Dy, the 10 electrons in the seven 4f orbitals with m; = —3... +3 add up to
a maximum total spin of 2, resulting in a ground-state total spin S = 2. One of
the explanations of the first Hund’s rule can be understood by considering a sim-

ple system with two electrons in two orbitals 11(r) and ya(r). If the two electrons
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form a spin singlet state with multiplicity of one, the spatial wavefunction has to be
symmetric ¥g(ry,re) x ¥1(r)wa(re) + wi(re)wa(ry); if the two electrons form a spin
triplet state with multiplicity of three, the spatial wavefunction is antisymmetric
wa(ry,re) x wi(r)ywa(re) —wi(r2)wa(ry). In the triplet case, a node in the spatial
wavefunction forms when two electrons come together, reducing the Coulomb re-
pulsion. This simple model illustrates that the electronic structure with the lowest
energy corresponds to the configuration of maximum S. There are more advanced
discussions on the origin of the first Hund’s rule in quantum chemistry related to the
screening effects from the electrons, but the details of these topics are beyond the

scope of this text.

The Second Hund’s Rule. The second Hund’s rule states that, for a given multi-
plicity, the electronic configuration that maximizes the total orbital angular momen-
tum L has the lowest energy. This corresponds to the occupation of orbitals with
my, = 0,+1,+2,+3 by the unpaired electrons in the ground state of Dy, leading to
L =6. The second Hund’s rule minimizes the Coulomb repulsion with respect to the

orbital quantum numbers mj, of the electronic wavefunction.

The Third Hund’s Rule. The first and second Hund’s rules lock the valence elec-
trons to the total spin eigenstate S = 2 and total orbital angular momentum eigen-
state L = 6. The third Hund’s rule accounts for the energy penalty due to spin-orbit
couplings of electrons. The most general spin-orbit coupling Hamiltonian is writ-
ten as Hgo =) ; a;Si -Lj, which is approximated to first order as Hso = ayS-L =
%a r(J 2_L2-82). For the 4f shell that is more than half-filled, the state with the

largest J corresponds to the lowest energy. Hence we have J = |L + S| =8 for Dy.

Written in term symbol, the ground-state of Dy is a ®°Ig state. Thus, the ground-
state of the most common bosonic isotopes 199Dy, 162Dy, and 64Dy, with zero nuclear
spins (I = 0), is composed of a J = 8 Zeeman manifold; the ground-state of the most
common fermionic isotopes 181Dy and 18Dy, with nuclear spin I = 5/2, is composed
of 6 Zeeman manifolds with F' = 11/2, 13/2, 15/2, 17/2, 19/2, and 21/2. As the focus
of this thesis is on bosonics physics, we exclusively utilize the bosonic isotopes $2Dy

and 1%4Dy.
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2.2 Optical Transitions

Presented in Fig. 2-2 are the energy levels of Dy obtained from the NIST database
[79, 62]. In this section, we are going to discuss several typical optical transitions

that are particularly relevant to the experiments detailed in this thesis.
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Figure 2-2: Energy levels of Dy. The ground-to-singlet transition associated with
the two 6s electrons gives rise to the 421 nm line (J = 8 — J' = 9), the 419 nm line
(J =8 — J' =8), and the 405 nm line (J = 8 — J' = 7) marked in blue arrows; The
ground-to-triplet transition associated with the two 6s electrons gives rise to the
626 nm line (J =8 — J' = 9), the 598 nm line (J = 8 — J’ = 8), and the 599 nm line
(J =8 — J' = 7) marked in orange arrows. Two narrow transitions associated with

the 4f electrons are marked in red arrows: the 741 nm line (I' = 27 x 1.78 kHz [74])
and the 1001 nm line (I' =27 x 11.5 Hz [88]).

2.2.1 Outer Shell Transitions: Singlet and Triplet States

Let us first consider the optical transitions associated with the excitation of the two
6s electrons in the outer shell. The lowest excitations are then 6s?> — 6s6p. If
we disregard the couplings between the outer-shell and inner-shell electrons and

treat the Coulomb repulsion between the two outer electrons as a perturbation,
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the wavefunction of the two electrons in the atomic orbital basis can be expressed
as Y(ry,re) = ayes(r1)yep(re) + byes(re)yep(ry). Correspondingly, the Coulomb in-

teraction Hamiltonian in degenerate perturbation theory is written as Hcoulomb =

J K .
( P ), where the direct interaction is J = ﬁ S drldr2IWGs(r1)Izﬁ|1,l/6p(r2)|2

and the exchange integral is K = 47¢g [ dl‘ldI'2W§S(1'1)U/§p(l'z)ﬁ_zmwss(rz)w«sly(1'1)-
Diagonalizing the Hamiltonian yields a symmetric spatial wavefunction yg(ry,re) =
%(1//63(1'1 WWep(ra) +1Wes(r2)ysy(ry)) with a higher eigen-energy of JJ + K, and an anti-
symmetric spatial wavefunction 1 4 (ry,re) = %(wGs(rl Wep(re)—wes(r2)yep(ry)) with
alower eigen-energy of J —K. Without couplings to the inner-shell electrons, the total
wavefunction for the two outer-shell electrons needs to be anti-symmetric. Hence, the
spin part of yg(ry,re) is a singlet state |[S =0) = %(I T1y—111)), whereas the spin parts
of Ya(ry,re) are triplet states |S =1,ms=1) = |11), IS =1Lms =0) = —=(111) +[I1)),
and |S=1,mg =-1) =||]). In term symbol, the singlet state is denoted as 1p,, and
the three triplet states as 2Py, 2P, and 3Ps.

It can be noticed that the ground-to-singlet transition is electric-dipole allowed,
leading to Dy’s strongest atomic lines around 400 nm with natural linewidths around
27 x 30 MHz. However, the ground-to-triplet transitions, which involve a flip in elec-
tron spins, are electric-dipole forbidden. The natural linewidths of the triplets states
are given by the strength of spin-orbit interactions that couple electron spins with
their orbital motions. For the 1Sy —3 P; transitions, the wavelengths are around

600 nm and the natural linewidths are around 100 kHz (see Fig. 2-2).

In the above analysis, we have neglected the couplings between the outer-shell
and inner-shell electrons. Under this assumption, their total angular momenta J,yter
and Jinner remain good quantum numbers. Couplings between the inner- and outer-
shell electrons lead to an energy shift of all 6p states due to quantum defect. More-
over, for the 1P; singlet excited state or the 3p, triplet excited state (both with
Jouter = 1), adding in the inner-shell electrons with Ji e = 8 gives rise to 24 ex-
cited sublevels with m,_ = -8,...,+8 and m, . = —1,0,+1. Now if we consider

angular momentum couplings between inner- and outer-shell electrons in the form
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of Hj5 = ajjdouter ' Jinner, the good quantum number now becomes J = Jinner + Jouter-
This would split the 1P; and the 3P; states each into three excited-state manifolds
with J' =7, 8, and 9.

For the ground-to-singlet transition, the angular-momentum coupling gives rise
to three blue lines at 421 nm (J =8 — J' =9), 419 nm (J =8 — J’ = 8), and 405 nm
(J =8 —J' =7). These are the three broadest optical transitions of Dy with theoreti-
cally predicted natural linewidths of I' = 27 x 33 MHz, 27 x 34 MHz, and 27 x 33 MHz
[69]. The measured linewidth of the 421 nm is 27 x 32.2 MHz [77]. For the ground-
to-triplet (3P;) transition, the angular-momentum coupling gives rise to three lines
at 626 nm (J =8 —J' =9),598 nm (J =8 — J' =8), and 599 nm (J =8 — J' = 7). The
predicted natural linewidths of these transitions are I' = 27 x 180 kHz, 27 x 160 kHz,
and 27 x 210 kHz [69]. The measured linewidth of the 626 nm is 27 x 136 kHz [77].

In laser cooling experiments, one need to use cycling optical transitions for persis-
tent photon scattering. This can be achieved by choosing J = 8 — J' =9 atomic lines
combined with circularly-polarized lasers. For our apparatus, we choose the 421 nm
transition for Zeeman slowing, and the 626 nm transition for magneto-optical trap-
ping. The 32.2 MHz fast photon scattering rate of the 421 nm transition provides a
large light pressure, allowing us to decelerate hot Dy atoms to a stop in a shorter dis-
tance using the Zeeman slower. On the other hand, the 136 kHz narrow linewidth of
the 626 nm transition provides a low Doppler temperature of Tp = 3.3 uK, allowing
us to cool Dy atoms down to the 10 uK regime using the magneto-optical trap. We

will cover the details of these two devices in Chapter 4.

2.2.2 Inner Shell Transitions

There are many optical transitions associated with the excitations of inner-shell elec-
trons. Two of these transitions at 741 nm and 1001 nm are shown in Fig. 2-2. The in-
ner shell transitions are usually narrow and more isolated. For example, the 741 nm
transition has a narrow linewidth of I' = 27 x 1.78 kHz and couples to a single excited
state Ky [74, 29]. As we will discuss in Chapter 3, such isolated inner-shell transi-

tions enables the implementation of optical potentials with strong spin-dependence,
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strong Raman coupling strength, and negligible heating due to spontaneous pho-
ton scattering. The 1001 nm transition has an even narrower natural linewidth of
11.5 Hz [88], opening up new possibilities for precision measurements and multi-

species quantum simulation experiments [88, 97].

2.3 Dipole-Dipole Interaction

The large angular momentum of ground-state Dy arising from the spin and orbital
motions of electrons results in a large magnetic moment. For bosonic isotopes, the

magnetic moment p is related to the total angular momentum J as

1=gyupd (2.2)

where the Landé g-factor gy is approximately 1.24 [77]. Therefore in the direction of
a given quantization axis, the magnetic moment of a bosonic Dy atom in the m ;= -8
ground state is |u| =(J =8,m j=-8|u,|J =8,mj=-8) = -9.9up. This result is eas-
ily extended to fermionic isotopes by replacing o with F. The corresponding Landé
g-factor gr is approximately 0.95 [77], leading to a magnetic momentum of fermionic
Dy atoms in the stretched spin-state mpr = —21/2 of also —9.9up. In the following
parts of this section, we will introduce how the long-range dipole-dipole interaction

Hamiltonian couples the motion of Dy atoms with large magnetic moments.

2.3.1 Coupling between Spin and Orbital Motion

The long-range dipole-dipole interaction is in the following form

od1-Ja—=3(J1-T)J2-T)
gJ)

~ (2.3)

Uga(r) = &(IJB
4

where r =r; —rg is the relative position operator between two magnetic dipoles, and
J1 and Jy are the internal angular momenta of the Dy atoms. In the limit of classical

point dipoles polarized in an external magnetic field, the dipole-dipole potential can
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Figure 2-3: (a) Illustration of two polarized magnetic dipoles with relative distance
r and relative orientation 6. (b) Dipole-dipole interaction strength as a function of
(r,0). The interaction is attractive in head-to-tail configuration, and is repulsive in
side-by-side configuration.

2
be reduced to an algebraic form of Ugaq(r,0) = %1_3‘:#. As plotted in Fig. 2-3, the
interaction is attractive for head-to-tail configuration at 0 = 0, and is repulsive for
side-by-side configuration at 0 = 90°. The interaction vanishes at the magic angle of

0 ~55°.

Now let’s turn to quantum mechanical description and express the wavefunction
of two Dy atoms as |1//(r)> Imgi1,mg2). The relative position operator r acts on the
spatial part |1//(r)>, and the angular momentum operators J; and Jy act on the spin
part [m j1,m2). By introducing the spin-flip operators /. = J, + i, and noticing the
identity Jq-dJo = J1,Jo, + %(J1+J2_ + J1-J2.), we can expand Eq. 2.3 as

1
Uaa) = 2 (ung.)* 5 {1~ 3cos® )1, T3
4n r

1
- Z(l —3¢082ONJ1_ oy + J1sdo)

3 . —i¢ +i¢
-5 sin® cos6 [e (J1zfos + J1rJos) + e (T, do + J1_Jay)

3 . .
- sin20(e 2P, Jy, + e+2“/’J1_J2_)}
(2.4)

The above expression is divided into four parts. The angular dependence of each

part can be expressed in terms of spherical harmonics Y} ,,(#). The first line propor-
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tional to Y3 ()1, J2; is the classical part of the dipole-dipole interaction; The second
line proportional to Ys o(#)(J1-J2+ +J14J2-) is the spin-exchange coupling which cou-
ples the internal spins of two atoms; The third line proportional to Yg 1(&)(J1,J21 +
J1+9,) converts one unit of the internal spin to the external orbital angular momen-
tum (and vice versa); And the fourth line proportional to Y3 2(1)JJ1.J24 converts two
units of the internal spin to the external orbital angular momentum (and vice versa).
These couplings between the internal spins and external orbital motions due to the
dipole-dipole interaction give rise to interesting physics of spin mixtures including
dipolar relaxation (as we will introduce in Chapter 6), Einstein de Haas effect [55],

new phases of spinor BECs [92], and so on.

2.3.2 Fourier Transform

From Eq. 2.4, we have already seen that the angular part of the dipole-dipole in-
teraction Hamiltonian can be described by spherical harmonics. This becomes more

evident if we factorize the spin and spatial operators as
_Ho 2
Ugqa(r) = E(,UBgJ) J1-Q(r)-Jo (2.5)

where the traceless rank-2 tensor Q(r) is defined as

Qr) = %(11-31%) - vl
r r

\/ngo ~Yo2-Ys o 1(Yo2—Y2 _2) Yo1-Ya_1
6r 1 ) 3 )
=\ 5% i(Yo2—-Y2-2) \/;Yz,o +Yo2+Ys o —i(Yg1+Y2-1)
Yo1-Yo_1 —i(Yg1+Y2 1) -2 \/ng,o

(2.6)
This is a particularly convenient form for some mathematical purposes such as eval-
uating the Fourier transform of Ugq(r) in scattering theory, which can be done by

noticing the following two properties of spherical harmonics.

Property 1. Spherical harmonics Y;,,(0,¢) are eigen-functions of Fourier transform
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on a unit sphere, i.e.

T 2n . R
f dQe™ 7Y, (&) = 47i' j;(kr)Y;, (k) 2.7)
0=0J¢p=0

Proof. Using the spherical harmonics addition theorem, we expand the plane wave

into
+oo  +l .
=any Y i jikn)Y ), ®)Y (k) (2.8)
I=0m=-1

And the Fourier transform can be evaluated using the orthogonality of spherical har-

monics

) +oo +l .
f dQe™ ™Y, @) =41 Y il j(kr)Y k) f A0, (Y (@)
[=0m=-1 < J
5”/5 (29)

mm

=47’ j,(kr)Y (k)

Property 2. The Fourier transform of Y, (#)/r? preserves spherical harmonics sym-

metry in angular direction, but the radial 1/72 dependence vanishes:

I )
By zkrYlm(r) n3/2ilinm(k) (2.10)
It

where I'(x) is the gamma function. Specifically, for spherical harmonics with [ = 2,
the right-hand-side gives Ys,,(k)/3. This result can be proven using Property 1.

From Property 2, it becomes obvious that the matrix elements of the tensor Q(r)
loses 1/r3 radial dependence, but the angular dependence is preserved after Fourier
transform. Hence the Fourier transform of the dipole-dipole interaction Hamiltonian
is

- . 1 ~ ~
Uga(k) = f dPr-e®TU(r) = —gﬂo(ﬂBgJ)z J1-Jo - 3(J1 - k)(Js - k) (2.11)
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Chapter 3

Interaction between Atoms and

Light

This chapter presents the theoretical framework that describes how lasers interact
with Dy atoms via the electric-dipole interaction Hamiltonian. We will start with a
scenario where only one ground state and one excited state are coupled by the laser,
and show how the dissipative and conservative forces experienced by this two-level
atom can be described by a complex polarizability. As more atomic states are in-
volved in the ground- and excited-state manifolds, we will see that the polarizability
of the atom becomes state-dependent: the interaction energy depends on the relative
orientation between the atomic spin and the polarization of light. Such anisotropic
interaction can be fully categorized into a scalar term, a vector term, and a tensor
term. This categorization is essential for the optical trapping of Dy, or in general,

atoms with large angular momentum studied in the following chapters.

3.1 Laser-Induced Electric Dipole Moment

An atom placed in the electric field of a laser beam E¢(¢) = eE coswt obtains a non-
zero oscillating electric dipole moment (d(¢)) = ed(us;coswt + vgsinwt) due to the
electric-dipole interaction via Hamiltonian V = —d - E, here e is the polarization di-

rection of the electric field, us; and vgs; denote the in-phase and in-quadrature compo-
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nents of the induced electric dipole moment, the electric dipole operator d is related
to the electron dipolar operators ri asd =e) ; rij. Since the operator d has odd parity,
it only couples atomic eigenstates in opposite parities (we(ri)| d|1//o(ri)> # 0. Hence
the mean electric dipole moment of an atom in energy eigenstates is zero, unless mul-
tiple different atomic orbitals in opposite parities are admixed by an electric field.

In complex notation, we can re-write the electric field and the dipole moment as

1 .
E.(t)= —eEe " tc.c.

H | (3.1)
d(@@) = Eed(ust +ivg)e 4.

and hence the complex amplitude d of the dipole moment can be related to the com-
plex field amplitude E as
d=aE 3.2)

where we define a x (ug; + ivgs) as the complex polarizability.
The induced oscillating electric dipole obtains a polarization energy in the laser

field that is proportional to the real part of a
1 1
U=-——=(d-E)=———Re(a)I (3.3)
2 2600

with the laser intensity I = 1/2¢oc|E|?. This is a conservative dipole force used for
optical trapping of neutral atoms. On the other hand, the oscillating electric dipole
also radiates photons dissipatively at the driving frequency w — a process known as
spontaneous scattering. The average power of the dipole radiation can be calculated
as P = —(d-E) = —2wIm(a)E?, hence the spontaneous photon scattering rate is given
by '

(d-E) 1

Tge = =

- I A4
hiw fiegc m(@)I 3.4

which is proportional to the imaginary part of a.
To conclude, we see from the above analysis that the in-phase component of the in-
duced electric dipole causes a conservative dipole potential, whereas the quadrature

component causes spontaneous scattering. These two components are proportional
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to the real and imaginary parts of the complex polarizability a, which is determined
by the electronic structure of the atoms and the laser frequency, as will be discussed

in the following sections.

3.2 Complex Polarizability of a Two-Level Atom

Here we consider a simple case where a two-level atom with a ground state |g) and

an excited state |e) is coupled by an electric field via the electric-dipole interaction.

The evolution of the density matrix p = ( Peg Pee ) for the system is determined by
Peg Pee
the following equation of motion
1 r -5
p=—[H.p]+ rpee 20 (3.5)
! —5Pge 1—‘Pee

—wo Qe+zwt

Qe—Lwt wo

with Q = (e|d-E|g)/h being the Rabi frequency, and hiwg = E. — E 4 being the energy

where the Hamiltonian in the rotating-wave approximation is H = g(

splitting between the ground and excited states. By defining the reduced density
Pgg Pge )_ ( peg  Pgee

~ ~ +iwt
Peg Pee Peg€ 1 Pee

introducing the Bloch vector r = (u,v,w) by decomposing p using the Pauli matrices

matrix p = ( co-rotating with the laser field, and

p= %(I +r-0)= %(I +uo,+v0,+wo;), the equation of motion can be re-written as

I
-+ 6 0 0
r=| -§ _g Q |r+ 0 (3.6)
0 Q -T -1/2

where 6 = wog — w is the laser detuning, I' is the natural linewidth of the excited
state, and the three components of the Bloch vector are related to the density matrix
elements as u = %(ﬁab +Ppa), U = %(ﬁab —Pba), and w = %(,b’bb —Paa)- This is the optical

Bloch equation (OBE) of a two-level system. From Eq. 3.6 we see that the detuning
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6 controls the z-rotation of the Bloch vector, known as Lamor precesion; the Rabi

frequency () controls the x-rotation of the Bloch vector, known as Rabi flopping; and

the damping rate I' controls the relaxation of the Bloch vector. By setting i = 0, we

obtain the stationary solution of the OBE

1 Ust

Ugst =

Wst =

0

Q

262+ 02/2+12/4
Q /2

2 62+Q2%/2+T2/4
02 1

1

4 52+Q2/2+T12/4 2

(3.7

o/ T

o/T

Figure 3-1: (a) Imaginary and (b) real parts of the complex polarizability a of a two-
level atom. Dashed lines are weak-saturation limit where Q < T, 9.

Using the density matrix description, the mean electric dipole moment is given

by

d@®)) =Tr(pd) = (eldlg) ). (il[pgglg) (el + peele) (gl + pgelg) (gl + pegle) (el | 17D

=g,

— <€|d|g> (p~gee—iwt + ﬁege+iwt)

=(e|ld|g) [(p’eg + Pge) coswt — iPeg — Pge) sinwt]

=2{(eld|g) (ust coswt — Ugt sinwt)

(3.8)

which is the sum of an in-phase and an in-quadrature component. (explain what

is weak saturation limit with a plot) By expanding the dipole moment to the linear

term of electric field E in the weak saturation limit (2 < I',6, we obtain the complex
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polarizability of the two-level system under rotating approximation

(3.9

Q  5+il/2 1 |(eld-elg)|?
CK(CU)ZE

52+ Q2/2+T2/4 Z§E6_Eg_hw_i%r

The real part of the expressions scales with 1/6, whereas the imaginary part scales
with 1/62 in the far detuned limit (see Fig. 3-1). This enables the creation of conser-
vative optical potentials U o« Im(a) with negligible spontaneous photon scattering
rate I'sc o« Re(a) using far-detuned high power lasers. This part of the light-atom
interaction is used for techniques such as evaporative cooling, optical lattice, optical
tweezers, etc. On the other hand, in the near-detuned regime where spontaneous
scattering is dominant, lasers are used for cooling techniques such as Zeeman slow-
ing, magneto-optical trapping, etc. The above result was based on rotating-wave
approximation. Without dropping the counter-rotating term, the expression for the

complex polarizability of a two-level atom can be extended to

_l(eld-elg)|? 1 1
- -hr)

a(w) =T T
2 E.-Eg-hw-iy E.-Egt+hw—-175

(3.10)

3.3 Anisotropic Polarizability

The two-level system we considered in the above section is a model with zero angu-
lar momentum. However, ideal two-level systems do not truly exist: S-to-S atomic
transitions are electric-dipole forbidden. For atoms with angular momenta in the
ground and excited states, their interaction with laser photons become anisotropic.
The anisotropic nature of atom-light interaction is due to the addition of angular

momenta of laser photons and atoms, as we will see in this section.

3.3.1 Near-Resonance Coupling: the Clebsch-Gordan Picture

To illustrate the anisotropic nature of atom-light interaction, here we consider a sim-
ple model where a ground-state manifold with angular momentum / is coupled to an

excited-state manifold with angular momentum «J’. Specifically for bosonic dyspro-
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sium, the angular momentum carried by its ground state is / = 8, and that carried
by the excited-state we study is J' =9 (e.g. the dysprosium 741 nm line). Fig. 3-2
illustrates all possible couplings among 17 ground states and 19 excited states medi-
ated by laser photons in different polarizations. Taking the Cartesian z axis as the

quantization axis, we define spherical basis as

. 1.
e+1——ﬁex—ﬁey
1 l
e 1= +—b,———& (3.11)
vz ©ove
€y)=¢,

Hence the electric field of the laser at the position of the atom can be written under

the spherical basis as

E(f) = &0 [ES e 0 4 EDemio! (3.12)

o=0,%+1

where amplitudes Ef,_) and £ f;L) are complex conjugates.

On the other hand, the electric-dipole operator can be written in terms of matrix

elements (g;J,mJ|d|e;J',m:]> as

d= Y (gdmyld]e; T m) 0, m, +0;J,m:] (3.13)
mg,m;

where we define the operator Omym!, = lg;dJ,mg) <e;J’,mi,|. We can decompose the

mgj -8|-7|1-6|-5|-4|-3|-2|-11]0

I — _1ls . - 2 8 40 35 | 91 | 26 22 | 55 | &
el =0my 1o xlJ=8mAl L 1 L g Lo Lo gl g Loy
ef7 ~Omlg TSl Ly Ly Ly L g
le(S' =9,my+1|6.vlJ=8m)1* | 757 | 57 | & | 153 | 51 | 51 | 1531 17 | 1%

Table 3.1: Values of the relative strengths of the 741nm transitions between differ-
ent Zeeman levels. Normalization is done with respect to the mj;=-8 - m jy = -9
transition.



m'-9 -8 -7 -6 5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9

m 8 7 6 5 4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8

0.8F ®
0.6F ¢

04F * o
0.2F e o

0.8F
0.6}
04F ® @ ® P

0.2} bl ®

Relative Transition Strength

0.8 °
0.6F @ ¢ O+

0.2F e ©®

Figure 3-2: Possible couplings among the JJ = 8 ground-state manifold and the J =9
excited-state manifold. Lasers with o_ circular polarization causes couplings with
Am g = —1 (blue); lasers with 7 circular polarization causes couplings with Am ;=0
(black); lasers with o circular polarization causes couplings with Am j = +1 (red).
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operator d = e} ; r; under spherical basis as

d:lei:eZ Z re€s (3.14)

; 0=0,+1

with r_1 = —(x —iy)/V2, ro1 = (x +iy)/V2, and r( = z being proportional to the three
spherical harmonics Y7 1, Y7 1, and Y7 . Since these operators d,, rotate like spin-1
objects, we can factorize out the Clebsch-Gordan coefficients using the Wigner-Eckart

theorem for the evaluation of the matrix elements:
(g;d,myld|e;J",m';) = (g;Jl|dlle;J ) (J,my; 10| ,m/;) (3.15)

This factorization gives rise to a part {(g;J||d||e;J’) in the electric-dipole interaction

Hamiltonian that is independent of the internal spin state mj, leaving the state-

dependent part completely described by the Clebsch-Gordan coefficients <J ,myg;1,0 | J', m:] >,

as written in the following

V=-d-E
=—(g;Jlldlle;dy Y (J,mg;l0ld,m/)

!
omg,m;

(3.16)
In second-order perturbation theory, we see that relative transition strengths be-
tween the |J,m ) ground state and the |J ! ,mi,) excited state of a spin-J atom is
proportional to |(J ,MJ; 1,0|J ',mi,) |2. Therefore in contrast to a spinless two-level
atom, the complex polarizability now depends on the relative orientation between the
atomic spin and the laser polarization — the atom-light interaction is anisotropic.
Listed in Table 3.1 are the relative transition strengths for dypsrosium / = 8 to
J =9 transitions. Remarkably, for the spin-polarized ground state |JJ =8,m s = £8),
the relative transition strength for o, circular polarization is 153 stronger than

for o7 polarization. This big contrast leads to a scenario where Dy atoms in the

|/ = 8,mj = —8) spin state interact almost only with lasers in o_ polarization, whereas

Dy atoms in the |J = 8, m j = +8) spin state interact almost only with lasers in o, po-
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larization. Such near-independent addressing of different atomic spin states with
different polarizations of light enables the realization of bilayers system of Dy atoms
with tunable interlayer spacings all the way down to a 50 nm scale, as will be intro-

duced in the following chapters.

3.3.2 Scalar, Vector, and Tensor Polarizabilities

The previous section illustrated why atom-light interactions are generally anisotropic

using a model with one ground-state manifold and one excited-state manifold. The
complex polarizability of the ground-state atom that is proportional to the (matrix element)2
of the —d-E Hamiltonian comes down to the square of the Clebsch-Gordan coefficient

that corresponds to the conservation of angular momenta between the excited state

|J + 1,m£]> and the ground state |J,m ;) with one unit of angular momentum con-

tributed by the laser photon.

] .
Excited states

B .~ Shifted ground states
Ground states

-m, -mJ+1 -mJ+2 mJ-2 mJ-1 m,

Figure 3-3: The ground state with angular momentum </ is coupled to a bunch of
excited states using a detuned laser field at frequency wy, via the electric-dipole in-
teraction Hamiltonian V = —d-E, resulting in state-dependent level shifts in the
ground-state manifold.

This section will introduce a more general approach for the categorization of
anisotropic complex atomic polarizability, without assuming specific structures of
the excited-state manifolds. We will show that, regardless of the electronic structure
of the atom, its complex polarizability can always be categorized into a scalar term
a'®). a vector term a”, and a tensor term a'”). The fundamental reason for this cat-
egorization is due to a maximum of 277 angular-momentum change with two photons

involved in the second-order perturbation theory.
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In second-order perturbation theory, the energy shift of the ground-state atom

with angular momentum < can be written as (see Fig. 3-3)

(J,mJId-E|J’,mi,><J’,m£]|d-E|J,mJ>
wgg—w)

AE(J,mj;w) = Z

J'\m/; (3.17)
where the complex polarizability is expressed as
(JamJl T/JV |J7mJ>
ay(J,my;w)= (3.18)
i) = Y
with the dipole-product operator defined as
Ty =) dyld ,m))(J',m/;|d, (3.19)

!
my

The dipole-product operator is a Cartesian tensor of rank 2. It can be proven [96] that
arank-2 Cartesian tensor with 9 independent components can always be decomposed

into three irreducible parts

1 1
Ty = 5TV + ZTf,l’O)em + T (3.20)

where the rank-0 tensor 70 = Tr[T,,]1 =T,y is the trace of the original tensor op-
erator T, with 1 independent component, the rank-1 tensor TLI’O) = €uap(Tap—Tpa)
is the traceless asymmetric part of T, with 3 independent components, and what is
left over is a symmetric and traceless rank-2 tensor operator TLQV’O) = %(TW +Tyy) -
%T(mﬁ wv With 5 independent components. These irreducible tensors T*.@ transform
under rotations in the same way as the angular-momentum states |/ =k,m = q) or

spherical harmonics Yy, ,(0,¢), i.e. RIT®OR = Xq T(k’q)D(qk;,, where R = exp (—i@ﬁ-J)

(k)
qq’

angular-momentum addition rules T*.9) = 241,99 k1.0 k2,92) (]| qg1i;k2,q2lk,q). Based

is the rotation operator, and D", is the Wigner-D matrix. Hence they satisfy the

on the decomposition given by Eq. 3.20, we can categorize the complex polarizability

expressed in Eq. 3.18 into a scalar part a'®, a vector part a’, and a tensor part
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a9, We can apply Wigner-Eckart theorem to the three irreducible spherical tensor
operators
a® o (J,ms|T%?|J,ms) independent of my

a® o (J,m g TYO T, my) o (J,myld,my;1,0) x m (3.21)

a¥ <J,mJ|T(2’O)|J,mJ>O( (J,mgld,mj;2,0) x m?,

and find that the scalar polarizability a® contributes to state-independent level
shifts, the vector polarizability a) contributes to level shifts that is linear in m,
and the tensor polarizability a'® contributes to level shifts that is quadratic in m.;.
By using the above categorization, and contracting a,, with the polarization vector

e of the laser electric field, the complex polarizability can be expressed as [63]

3|(e* - J)e -J)+(e-J)e* -J)|—2J?

a; (322)

o _ . we xe)d
ra * 2J2J - 1)

2J

a=«

As we see, the atom-light interaction associated with the vector polarizability o'V’
is completely analogous to the Zeeman interaction Hamiltonian H, = —upg B -J:
a circular polarization of light acts as an effective magnetic field that provides a
quantization axis perpendicular to the polarization vector e, and thus gives rise to a
level shift that is linear in m . This analogy between the vector light shift and an
effective magnetic field provides an intuitive way for understanding the formation
and the loading of the super-resolution optical potentials which will be introduced in

the following chapter.

By using the properties of spherical tensor operators, we have already seen the
m j-dependence of each polarizability component. A complete calculation of the ma-
trix elements in Eq. 3.18 gives the explicit forms of the three complex polarizabilities

[63, 69]

o = 1o
V3(@2J +1)
2J
W) _ _ (1)
197 \/(J NI (848)
o 2J(2J -1) e
3(J +1)(2J +1)(2dJ +3)
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with

1K1
aB(w) = (~DE VK +1 Y (-1)7 [(g; T l1dlle; |
e S (3.24)
1 (-
( hl', g + hr /)
Ee’J/—Eg,J—h(l)—. ;’J Ee’J/—Eg,J‘Fh(l)—i ;’J

1K1

J JJ
the knowledge of the transition energies (E, j —Eg ), the atomic line strengths

where we have used the notation { } for the Wigner 6-j symbol. With

|<g;J l1d|le;J") |2, the lifetimes of the excited states I', ;/, and the angular momenta
in ground and excited states J and J'!, the complex polarizabilities of the ground-
state 152Dy atoms are plotted in Fig. 3-4 as functions of laser wavelength according

to Eqgs. 3.23 and 3.24.

3.3.3 The Blue Trio

From the result presented in Fig. 3-4, we see that each atomic line corresponds to a
resonance feature in the ground-state complex polarizability, around which we obtain
strong scalar, vector, and tensor components. In addition, it can be noticed that the
scalar component a'® has a finite positive background value in the red-to-infrared
regime due to the extension of three broad blue atomic lines centered at 421 nm,
419 nm, and 405 nm, whereas the vector and tensor components @) and a'? are van-
ishingly small compared to a®. This behavior excludes the possibility of obtaining
strongly spin-dependent optical potentials using far-detuned light. Here let’s explore
the underlying physics of such destructive cancellation of anisotropic polarizability
components a® and a®.

As illustrated in Fig. 3-5 (a), if we only consider the two 6s electrons in the outer
shell, a blue laser coupling the 1S, ground state with angular momentum Jyuter = 0

and the 6s6p spin singlet excited state 'P; with angular momentum J, ! ter = 1 ad-

uter

mixes the three excited states into the ground state, leading to a light shift U.

IData provided by Maxence Lepers et al, authors of Ref. [69].
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The coupling strength is independent of the polarization of light due to the iden-
tical Clebsch-Gordon coefficients ¢0,0;1,—1|1,—1) = ¢0,0;1,0]1,0) = ¢0,0;1,1]1,1) =
1. Therefore without angular-momentum coupling between the outer two electrons
Jouter and the inner shell electrons Jinner, the ground-state light shifts are indepen-
(s)

dent of laser polarization. In this case, only the scalar polarizability of the atom «a

is non-zero.

However, once the angular momentum coupling term H;; = a.jjJdouter - Jinner 1S
introduced, the good quantum number becomes J = J,yter +Jinner- As shown in Fig. 3-
5 (b), the three excited states with m jipper = —1, 0, and +1 now branch into three
manifolds with total angular momenta of J' =7, 8, and 9, at wavelengths 405 nm,
419 nm, and 421 nm. With a;s # 0, the splitting caused H ;s modifies the admixture
of the three excited-state manifolds in the ground state, and therefore the ground-
state light shifts become polarization-dependent. In this case, the atom obtains the

vector and the tensor polarizability components a®) and a®®.

To further quantify the magnitudes of @, ¢, and a®® due to the contributions
of the three blue lines, we re-write the energy shift Eq. 3.18 in terms of an operator
form

1
—Pe)d-EIJ,mJ) (3.25)

AE(J,m. ;)= (J,my1d-E(P,

atom
where P, = Y Jm!, |J m! ) (J ,mi,| is the projection operator onto the excite-state
manifold, and H ;t%)m = (h(erJ —w)+ ajjdouter -Jinner)_IPe is the inverse of the many-
body Hamiltonian for the bare atom in the rotating-frame. Under the assumption
that the splittings A1 and As among the J' =7, 8, and 9 excited-state manifolds
are much smaller than the laser detuning w_; —w, we can do the following Taylor

expansion

1 1( 1 B aggJdouter *Jinner
H atom h

"\ —w (wgrg — w)? )Pe (3.26)
From this expression we can conclude that under the rotating-wave approximation
and in the limit where the laser detuning exceeds the excited-state splittings, the
scalar polarizability scales with laser detuning as a'® «x 1/wjj — w), whereas the

vector and tensor polarizabilities scale with laser detuning as a®, a¥) x 1/w 1 j—w)?.
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This explains why in the red-to-infrared regime, the scalar polarizability of Dy is

much larger than the vector and tensor components.
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+¢|'P,,m=+1> +¢|'P,,m=0> +¢|'P,,m=-1>
(b)
405 nm line (J'=7) ~  — — — 4
. . A, :
419 nm line (J'=8) T

421 nmline(J=9) — — — — — — — — — — — — — — — — — — —

Ground state (J=8) — — — — — — — — — — — — — — — —

Figure 3-5: (a) Level shifts under different polarizations of light addressing the
ground-to-singlet transition 1Sy —! P; associated with the outer two electrons. The
angular momenta of the ground and excited states are Jyuter = 0 and J (;uter =1.
Excited states with different magnetic quantum numbers m =0, +£1 are admixed
into the ground-state wavefunction depending on the polarization of the laser. The
ground-state manifold splits into 8 states, whereas the excited-state manifold splits
into 24 states when the outer two electrons are coupled to the inner shell electrons
with total angular momentum Jinner = 8. The J —J coupling between the three ad-
mixed 'P; excited states and inner shell electrons gives rise to the spin dependence
in the J = 8 ground state. (b) Due to the J — J coupling between the inner-shell elec-
trons and the outer two electrons, the total angular momentum of all electrons now
become a good quantum number. Consequently, the excited state consists of three
manifolds with total angular momenta of J’' =9, 8, and 7, corresponding to the Dy
421 nm, 419 nm, and 405 nm strong transitions. The splittings A; and Ay among
these three manifolds characterizes the strength of J —<J coupling. The level shifts in
the J = 8 ground state is state-dependent only when the laser detuning is comparable
or smaller than the J — J coupling strengths, i.e. § <Ay, Ag. In the limit where the
detuning is much larger than excited-state splittings § > A1, Ao, the ground-state
level shifts are almost identical. In this case, the complex polarizability of the atoms
only has a scalar part a®. The vector and tensor components '’ and a®® are much
smaller.
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Chapter 4

Experimental Apparatus

This chapter will introduce the experimental apparatus we have been constructing
since 2016 for producing, manipulating, and measuring quantum gases of Dy atoms.
Existing techniques for alkali experiments, such as Zeeman slowing, magneto-optical
trapping, and evaporative cooling, are employed in our apparatus. But due to many
different properties of Dy, these techniques are not directly translated to our exper-
iment. For example, the optical transition with a linewidth of 136 kHz used for our
magneto-optical trap (MOT) is much narrower than the MHz transitions for alkali
MOQTs, leading to lower Doppler temperature, lower capture velocity, and a spin-
polarized regime of the MOT; In addition, with a much higher oven temperature of
around 1200°C, hot atoms effusing out of the oven nozzle travel at high thermal ve-
locities of around 400 m/s, leading to reduction of flux due to transverse spreading of

the atomic beam at the end of the Zeeman slower.

Aspects like these necessitate the development of new laser cooling techniques
for better performance of the apparatus and to explore new physics underlying these
techniques. We will describe in the following sections how our quantum gas appara-
tus is designed and characterized, and discuss how the performance of the machine

can be further optimized for the next-generation experiments.
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4.1 Effusive Oven

We use an effusive oven as our atomic beam source. The effusive oven manufactured
by SVT Associates (Model SVTA-DF-2.75/4.5”) heats up Dy metal powder to around
1150°C to 1250°C, temperatures that are below the melting point of 1412°C but high
enough to build up vapor pressure inside the oven crucible. The Dy atoms then effuse
from the nozzle of the crucible, forming a flow of hot gaseous atoms ejecting into the
vacuum chamber. In the effusive regime where the mean free path of Dy atoms inside
the crucible A ris larger than the size of the orifice d, collisions among atoms can be
neglected while emerging from the oven, leading to an atomic flux per solid angle d(2
satisfying (see Fig. 4-1)
dNdQ  dQ

— A 4.1
7 yp nvcos6 (4.1)

where n is the density of Dy gas inside the crucible, A is the area of the orifice, and
dQ =27msin6dl. The velocity of the atoms v = |v| follows the 3D Maxwell Boltzmann

distribution

mv2 )

2kpT

m
2nkpT

f()= ( )3/24nv2 exp ( - (4.2)

Integrating Eq. 4.1 over solid angle and averaging over velocity classes gives the total

flux out of the oven in the effusive regime

P = %nﬁA (4.3)

with o = /8kgT/mm being the average velocity of the Maxwell-Boltzmann distribu-

tion.

From the analysis above, we see that the angular distribution of atomic flux fol-
lows a cosine pattern in the effusive regime, which is peaked in the forward direction
with 0 = 0° and is zero at 0 = 90°. Different from the effusive flow, a more collimated
hydrodynamic flow can be achieved using special oven nozzles with micro-channel
plates [94] such that the mean free paths of the atoms A, s are smaller than the

characteristic size d of the nozzle, leading to more directional atomic fluxes.
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heat shield

Y ,
orifice of /

crucible

Figure 4-1: (a) A photo of the Dy effusive oven operating at 1250°C. Atom flux in
the forward direction illuminated by the Zeeman slower laser beam fluoresces at
421 nm. (b) Schematics of the effusive oven with the colormap showing the angular
distribution of the atom flux in the effusive regime (Eq. 4.1).

4.2 Zeeman Slower

An increasing-field Zeeman slower is used to reduce the linear velocity of the atomic
beam from the effusive oven to around 40 m/s. This section will introduce the work-
ing principle of Zeeman slowers, revisit how our Zeeman slower was designed and

characterized, and discuss how the performance of Zeeman slowers can be optimized.

4.2.1 Working Principle

The Zeeman slower is a solenoid that produces a spatially-varying magnetic field,
such that the Zeeman shift due to the magnetic field compensates for the Doppler
shift of the atoms undergoing constant deceleration. The circularly-polarized laser
beam of the Zeeman slower addresses the Dy 421 nm transition, and optically pumps
the atoms out of the effusive oven into the |J =8,mj=-8) — |J =9',m/, = -9) cy-
cling transition. The detuning of the cycling transition is determined by (i) the bare
laser detuning A, (ii) the differential Zeeman shift g B(z)/li between the ground state
|J =8,m = —8) and the excited state | =9’ ,m/; = —9) caused by the varying mag-
netic field B(z), and (iii) the Doppler shift kv due to the motion of atoms inside the

Zeeman slower. We select the bare laser detuning A such that the laser beam is res-
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onant with the root-mean-square velocity vg = \/3kpT/m = 484 m/s of the Maxwell

Boltmann distribution at 1250°C at the entrance of the Zeeman slower:

UBBpias

A=—kvo+ (4.4)

Inside the Zeeman slower, the velocity class vg is designed to experience constant
deceleration v = \/vg —2az such that it comes to a stop at the exit of the Zeeman

slower z = L, with L being the length of the slower. Hence we can write the nominal

v:uo,/l—% (4.5)

To compensate for the varying Doppler shift due to such velocity profile, the following

velocity profile as

spatially-varying magnetic field profile is needed for the atoms to be on resonance

with the laser beam during deceleration

B(z) :30(1 —y/1- %) + Bpias (4.6)

with the bias field By;,s determined by Eq. 4.4, and the Zeeman shift caused by Bg +
Byias at z = L compensates for the bare detuning from the laser beam, i.e. ug(Bg+
Byias) = BA. The length of the slower L is determined by the deceleration a provided

by the laser scattering force given by

r T
g L 50 __IkT s )

2
m21+30+ %(A+kv_ﬂB§(2)) m21+sy

By selecting a saturation parameter so = 20212 based on the power budget of the
laser, we can select the deceleration of the slower and hence the length of the slower
L. For our experiment, with a saturation parameter of around 0.5, the length L is
designed to be 42 cm for addressing the highest velocity class of vy = 484 m/s with
the magnitude of the magnetic profile By = kvg = 822 G.

In the above part, we have designed an ideal magnetic profile of the Zeeman

slower which can slow the atoms in velocity class vg down to zero velocity. But what
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Figure 4-2: Force acting on the atoms in the non-inertial frame following the nom-
inal velocity v (Eq. 4.5) with deceleration a in the Zeeman slower. With a negative
deviation 6 from the nominal laser detuning A, atoms with velocity deviation smaller
than 6/k will be damped to the nominal velocity v, leading to slowed atomic beam at
the exit of the Zeeman slower.

will happen if the actual magnetic field profile, laser detuning, and the initial velocity
of the atoms deviate from the ideal case? Actually, Zeeman slowers are not only able
to slow down one velocity class vg, but are also able to slow down atoms with initial
velocities below vg. The performance of the Zeeman slower is also robust against
small deviations in the laser detuning and magnetic field profile. These two aspects
can be understood as the following. On top of the nominal velocity v in Eq. 4.5, we
assume a relative deviation v’ from the nominal velocity, and a deviation 6 from the
nominal laser detuning A. Transforming into the non-inertial reference frame with
velocity v and deceleration a gives rise to an inertial force F; = —ma. Hence the total

force that acts on the atoms in the non-inertial frame can be written as

S0 SO

T
F(v) = hk—| - —
1+ s+ (2Othv T )2)2 1+so+(¥)2

(4.8)

As plotted in Fig. 4-2, the combined effect of the photon scattering force and the
inertial force act like a linear frictional force f = —av’ in the vicinity of v’ = 0 which
damps the relative velocity v’ to zero. We can discuss the following three cases of

laser detunings based on Eq. 4.8:

Nominal laser detuning (6 =0)

63



In this case, atoms traveling slower than the nominal velocity v’ < 0 are subject to a
damping force with negative slope, and thus are attracted to v’ = 0. Therefore atoms
with initial velocities below the threshold value vg can keep up with the the nominal

velocity profile Eq. 4.5 and get decelerated as they travel through the Zeeman slower.

Laser detuning smaller than nominal value (6 <0)

This is the case plotted in Fig. 4-2. As we see, an attractor exists in the relative ve-
locity space at v’ = 0 for velocity classes with v < v+ 6/k. However, the magnitude of
the damping force in this case is smaller compared to 6 = 0, hence not all the atoms
with v < vy + d/k are guarenteed to keep up with the nominal velocity Eq. 4.5 within

the finite time they spend inside the Zeeman slower.

Laser detuning larger than nominal value (6 > 0)

When the laser detuning is larger than the designed value (6 >0), the attractor in
the v’ spapce is now at v’ = —6/k < 0. In this case, atoms with initial velocity v >
vo — O/k are accelerated, whereas those with v < vg— 6/k are decelerated over time
and eventually turned around in the long-time limit. What are delivered at the exist
of the Zeeman slower are therefore atoms which don’t have enough time to reach the

attactor at v’ = —§/k due to the finite time they travel inside the slower.

4.2.2 Design and Characterization

The Zeeman slower of our apparatus is composed of three coil sets with indepen-
dently controlled current sources: a bias coil for producing a uniform axial magnetic
field By;as inside the slower, a primary coil and a counterwind coil for producing
the increasing part of the magnetic field Bo(l - M) and cancelling the remi-
nant magnetic field at the center of the main chamber. These coils are wound using
hollow-core square magnetic wires with an edge length of 3.68 mm. The bias and
the primary coils were wound on a lathe around a brass tube (see Fig. 4-3 (e)). The
counterwind coils were wound on a high density polyethylene (HDPE) substrate, and

later attached to the end of the main and primary coils using epoxy (see Fig. 4-3 (b-
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d)). The wires are water cooled when the machine is under operation.

The primary coil contains 16 layers. Each layer has a doubly-pitched region and
a singly-pitched region. In order to produce a magnetic field that approximates the
nominal magnetic field profile in Eq. 4.6, the starting points of the doubly-pitched
and the singly-pitched regions were designed using a simulated annealing algorithm
with 32 free parameters. The resulting configuration sketched in Fig. 4-3 (a) produces
a magnetic field shown in Fig. 4-4, where the currents of primary and the counter-
wind coils are set to be 26.3 A and 69.0 A, respectively. Tuning the bias current is
equivalent to tuning the laser detuning, hence the bias coil is a convenient tool for
tweaking the performance of the Zeeman slower when laser frequency needs to be

fixed under some scenarios.

To characterize the performance the Zeeman slower, we did Doppler-sensitive
spectroscopy by illuminating the atomic beam at the center of the main chamber with
a laser beam at 45° addressing the Dy 626 nm transition. The 626 nm fluorescence
was collected using a photomultiplier tube (PMT) with interference filters. By scan-
ning the laser frequency and triggering the fluorescence signal on the scan voltage,
the velocity distribution of the atomic beam can be detected. As we see in Fig. 4-4,
a narrow peak centered at 40 m/s appears in the fluorescence signal as the Zeeman
slower is switched on, indicating the detection of slowed atomic flux delivered by the
Zeeman slower. However, not all the atmos below the threshold value vy = 484 m/s
are piled up into the 40 m/s peak. This can be due to the inhomogeneous intensity
of the Zeeman slower laser beam or the non-ideal magnetic field profile produced by

the Zeeman slower.

It is worth noting that we were not able to decelerate the atoms below 40 m/s
without losing population. As we tune the Zeeman slower parameters such that the
atoms pile up at velocities below 40 m/s, the height of the peak also decreases. This
can be explained by the transverse spreading of slowed atomic beam due to the extra
distance between the exit of the Zeeman slower regime and the center of the main
chamber. For our design, this distance d = 22 cm. Consider a transverse velocity

Utrans that is 1% of the root-mean-square velocity of vg = 484 m/s, slowing down the
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Figure 4-3: (a) Schematics of the Zeeman slower designed with a simulated annealing
algorithm. The bias coil is used to produce the bias field By,s, the primary and
the counterwind coils with independently-controlled current are used to produce the

increasing part of the magnetic field profile By|1—/1— £ | inside the Zeeman slower,
L

as well as cancelling the residue magnetic field at the center of the main chamber.
(b) The assembled Zeeman slower coils with epoxy being cured. (c) Photo of one of
the two counterwind coils with two layers of magnetic wire in spiraled shape. (d) A
counterwind coil being wound on an HDPE substrate. (e) The bias and the primary
coils being wound layer by layer on a lathe.
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Figure 4-4: (a) Magnetic profile of the Zeeman slower. The gray dashed curve is
the nominal profile given by Eq. 4.6, the black solid curve is the modeled profile
optimized using simulated annealing algorithm, the red dots are measured magnetic
fields using a gauss meter. (b) Doppler sensitive spectroscopy signals measured using
a 626 nm laser beam at 45° at the center of the main chamber. The fluoresence signal
is collected using a PMT. The signal is piled up at 50 m/s when the Zeeman slower is
switched on.

atomic beam to the capture velocity of the MOT v = 8 m/s (see next section) would

lead to a transverse spreading of

o= 2c1lM ~ 26 cm (4.9)
Ucap

which significantly reduces the slowed atomic flux in the detection regime. To mit-
igate this issue for the loading of the narrow-line MOT, as we will see in the next
section, we developed the angled slowing technique which enhances the capture ve-
locity of the MOT, such that more atoms can be captured at higher terminal velocity

out of the Zeeman slower.

4.2.3 How to Design an Optimal Zeeman Slower?

As a final discussion of this section, let’s revisit why Zeeman slower is a useful tool
for our Dy experiment. Although an ideal Zeeman slower can bring atoms with high
initial velocities almost to a stand still, the long distance inside the Zeeman slower
also leads to a reduction of solid angle and therefore a reduction of atomic flux. Set-

ting aside technical issues such as geometry constrains of the vacuum chamber and
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maintenance of ultra-high vacuum in the effusive oven section, whether a Zeeman
slower can lead to an enhancement of slowed atom flux is therefore a question of
whether the atoms piled up in the low-velocity region by the Zeeman slower can com-
pensate for the reduction of solid-angle due to the presence of the Zeeman slower. To
address this question, let’s consider the following two simple models.

(@) _ vf(v) (b) 4 F(L)

A

\ ~|_2 L0=L*

>\ > |
~| 1/2
A L

Figure 4-5: (a) The total slowed atomic flux scales as L? in the region where the
threshold velocity v is much smaller than the most probable velocity v, = /2kgT/m
of the Maxwell-Boltzmann distribution. (b) Offsetting the oven nozzle from the en-
trance of the Zeeman slower by distance L leads to an optimal Zeeman slower length
of L = /3LoL* (dashed line), where L* is related to the most-probable velocity v, as
L= v§/2a.

Zero Distance between Oven Nozzle and Zeeman Slower Entrance

In the first case, we assume that velocity of interest (e.g. the capture velocity
of the MOT) is only the zero velocity class, and the threshold velocity vy in Eq. 4.5
is much smaller than the root-mean-square velocity of the Maxwell-Boltzmann dis-
tribution vy « \/m. In this region, the Maxwell-Boltzmann distribution is

quadratic, which can be expressed as

m
271'kBT

f()= ( )3/24nv2 x v? (4.10)

Since the maximum deceleration a provided by the Zeeman slower is determined by
the available laser power according to Eq. 4.7, the threshold velocity vy addressed by
the Zeeman slower is related to the length L by vy = v2aL. Therefore the number
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of slowed atoms produced by the Zeeman slower per unit time can be calculated as

(Total Flux x Solid Angle) (see Fig. 4-5 (a)), which scales with length L as

dN AQ[ dvf(v)v i—Qvo e $L2 ~ independent of L (4.11)
This indicates that a longer slower does not lead to a reduction of slowed atom flux. In
fact, as the threshold velocity vo become comparable to v, = \/m , the total flux
scales weaker than L2, and cannot compensate for the 1/L? scaling of solid angle.
Thus the most optimal design is having no Zeeman slower and placing the oven
nozzle in the front of the magneto-optical trap.

We notice some recent papers in which Dy apparatuses with no Zeeman slower
are reported [52, 15]. By loading a 2D MOT in the front of the oven nozzle at a lower

oven temperature of 800°C to 1000°C and subsequently transferring the atoms into

a 3D MOT, they obtained MOT loading rates of 108 atoms/s.

Finite Distance between Oven Nozzle and Zeeman Slower Entrance
However, due to geometric constraints and other technical considerations, there is
always a extra distance L between the oven nozzle and the entrance of the Zeeman
slower. In this case, the solid angle AQ scales as 1/(Lo+ L)?. By defining a character-
istic length related to the most-probable velocity of the Maxwell-Boltmann distribu-
tion L* = v?,/2a and evaluate the integral in Eq. 4.11 without assuming vy < v, the

number of slowed atoms delivered per unit time now can be expressed as

dN ( 1

2 1 V2 _
- l+lo) —(1+1)(l+lo) el =F() (4.12)

with [ = L/L* and [ = Lo/L*. In the [g — 0 limit, we find that F(/) asymptotes to
a constant as / — 0, consistent with our analysis in the previous paragraph. For
nonzero /g, the maximum of F () is determined by the equation 12+ (log+2)+2(1—-
e!)=0. In the I = L/L* « 1 limit, the maximum of F(I) can be approximated as

= \/m (see Fig. 4-5 (b)). This result indicates that the optimal length of the

Zeeman slower is determined by the geometric mean of Ly and L*. For Dy oven at
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1250°C, the most-probable velocity is around v, = 395 m/s. With the acceleration pro-
vided 421 nm photon scattering with saturation parameter s = 0.5, the characteristic
length L* = 40 cm. For 50 cm separation between the oven nozzle and the Zeeman

slower entrance, the optimal length of the Zeeman slower is around /3L yL* =~ 77 cm.

From these two simple cases, we can conclude that having a Zeeman slower is
not always beneficial for the enhancement of slowed atomic flux. This is because
that the total flux of slowed atoms produced by the Zeeman slower scales as L? in
the vo < v, regime, which is compensated by the 1/L? scaling of solid angle AQ. A
nonzero optimal length exists when the Zeeman slower is offset from the oven nozzle
by distance L, so that we go to the tail of the 1/L? function.

There are, of course, many other factors that could affect the optimal length of
the Zeeman slower. For instance, we assumed that all velocity classes below the
threshold value v are slowed down by the Zeeman slower — this is usually not the
case (see PMT signals in Fig. 4-4 (b)). Aspects like this make the scaling law of
total flux even weaker than L2. Therefore it is more preferential to have a shorter
Zeeman slower. On the other hand, we have assumed that the solid angle AQ scales
as 1/L? — this is not the case if we consider the angular distribution of the atomic
flux from the effusive oven. In the effusive regime, the angular distribution shown
in Eq. 4.1 follows a cosine pattern, which leads to the scaling of AQ very close to
1/L?. Having an oven with special nozzles that is capable of producing much more
collimated atomic beams [52, 94] will make the scaling law weaker than 1/L2. In

these cases, it is preferential to have a longer Zeeman slower.

4.3 Narrow-Line Magneto-Optical Trapping (MOT)

Subsequent to Zeeman slowing, the atomic beam is captured and cooled by the 626 nm
narrow-line MOT (see Fig. 4-6). The 136 kHz linewidth of the 626 nm optical tran-
sition leads to several special aspects of the MOT. First, different from the 421 nm
transition with a linewidth of I' = 27 x 32 MHz and a Doppler temperature of Tp =
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Figure 4-6: A picture of more than 3 x 108 dysprosium atoms confined in the 626 nm
narrow-line magneto-optical trap inside the vacuum chamber.

0.77 mK, the 626 nm transition with Tp of 3.3uK leads to much lower Doppler mo-
lasses temperatures. In addition, with properly adjusted laser detunings, atoms con-
fined in the narrow-line MOT can be polarized in the lowest spin state |/ = 8, m s = —8)
rather than being in mixed spin states [32]. This section will elaborate on the physics

behind these aspects of the 626 nm narrow-line MOT.

Fig. 4-6 is a photo showing the red fluorescence from the atoms confined in the
MOT. The setup consists of a quadrupole magnetic field produced by a set of anti-
Helmbholtz coils and three orthogonal pairs of counter-propagating laser beams. Each
laser beam is circularly polarized!, and has a 1/e? diameter of D = 2.3 cm and a
maximum power of 42 mW, corresponding to a saturation parameter of s ~ 280. In
our experiments, We first perform a MOT loading step for capturing slowed atomic
flux delivered by the Zeeman slower with a magnetic gradient of 2.5 G/cm along
the strong direction. Subsequently, we perform a compression step by ramping the
magnetic gradient to 1.75 G/cm, reducing the light power from 42 mW to 10 uW,
turning off frequency dithering of MOT light (see following), and adjusting the laser
detuning in 100 ms followed by a 200 ms hold. We obtain a spin-polarized atomic

gases at 10 uK temperature at the end of compression.

IRefer to Fig. 4-7 for the polarizations of one of the beam pairs.
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Figure 4-7: Energy levels of ground- and excited-state manifolds in the magnetic gra-
dient of the 626 nm narrow-line MOT. With a natural linewidth of I' = 27 x 136 kHz
for the 626 nm transition and a magnetic gradient of a few gauss per centimeter,
the MOT region can be divided into a spin-mixture regime with g jugpB/h ~ I where
different spin states are not resolved, and a spin-polarized regime with g jupB/h < T’
where different spin states are resolved. Hence by selecting bare laser detunings of
A = 8g upB/h = 10I', we can create a spin-polarized MOT in the |J =8,m j=-8) —
|J'=9,m', = -9) cycling transition.

72



4.3.1 Spin-Polarized and Spin-Mixture Regimes

Fig. 4-7 illustrates the Zeeman levels of the J = 8 ground-state and the J' = 9 excited-
state manifold addressed by the MOT beams. Under a magnetic gradient of 1.75 G/cm,
each Zeeman level experiences a linear spatial energy shift. At 1 cm distance away
from the center of the quadrupole field, the spacing between adjacent Zeeman lev-
els AE = upgjB is approximately 1.5 MHz. For broad optical transitions such as
the 421 nm transition of Dy (I' = 27 x 32 MHz) and the 780 nm D2 transition of Rb
(I' =27 x6 MHz), 1.5 MHz of Zeeman splitting is not large enough to resolve differ-
ent spin states. However, the 136 kHz linewidth of the 626 nm narrow transition of
Dy makes it possible to resolve the spin states within a few centimeter range of the
MOT. We can hence divide the spatial region of the MOT into two parts according to
the distance to the center of the quadrupole magnetic field: a spin-unresolved center

region with g jupB/hi ~ T, and a spin-resolved shell-shaped region with g jupB/ii > T'.

Spin-Polarized MOT (A>1)

When the MOT detuning is larger than 8I' * 1 MHz, the cycling transition in the
spin-resolved region between the |JJ = 8, m s = —8) ground state and the |J '=9, mi, =-9)
excited state becomes the most resonant with laser field (see Fig. 4-7). With optical
transitions coupled by other polarization components detuned out of resonance by
the local magnetic field, we obtain spin-polarized samples in the MOT which sags
below the center of the quadrupole magnetic field due to gravity. In our experiment,
the spin-polarized MOT is approximately 1 cm below the quadrupole center, and is

produced with a laser detuning of 2.5 MHz.

Spin-Mixed MOT (A «<T)

When the detuning is smaller than 81" = 1 MHz, atoms in the proximity of the
quadrupole center become the most resonant with the laser (see Fig. 4-7). This is a
spatial region where the internal spin states are not resolved by the laser linewidth,

thus a spin mixture is obtained due to complicated optical pumping and Raman cou-
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plings caused by multiple laser beams.

Atomic samples of spin mixtures are detrimental for evaporative cooling due to
rapid inelastic losses caused by dipolar relaxations: atoms in higher spin states can
collide and convert their internal Zeeman energy to external kinetic energy of orbital
motions, leading to heating and population loss of the sample. Hence it is avoided in
our experiment by characterizing the lifetime of the atomic gases after transferring

into the 1064 nm crossed optical dipole trap (XODT).

4.3.2 Enhancement of Capture Velocity

The narrow linewidth of the 626 nm transition leads to atomic gases in the 10 uK
temperature regime after MOT compression, which is a good starting point for evap-
orative cooling to Bose-Einstein condensates. However, it also leads to a smaller
capture velocity and limits the number of atoms captured from the Zeeman slower
during loading. The capture velocity of the MOT can be estimated as the maximum
velocity of atoms that can be decelerated to a stop within the region of the laser
beams. Assuming the atoms are in the fully saturated regime therefore experience
the maximum deceleration rate of ayax = ik1/2m due to photon scattering, the cap-

ture velocity can be expressed as

| hkT
Ucap = 7D ~9m/s (413)

which is much smaller than the capture velocities of typical alkali MOTs. For ex-
ample, with the same beam geometry, the capture velocity of a 8Rb MOT using the
780 nm D2 transition is 71 m/s, an order of magnitude higher than the Dy narrow-
line MOT. This low capture velocity raises a more stringent requirement on how slow
the atoms need to be decelerated by the Zeeman slower. But as we have discussed
in the previous section, a low terminal velocity from the Zeeman slower leads to a
significant reduction of the flux due to transverse spreading (see Eq. 4.9). To miti-

gate this issue, we operate the Zeeman slower at a slightly higher terminal velocity
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of around 40 m/s, and use two techniques to enhance the capture velocity of the MO'T.

Zeeman Slower

Zeeman Slower Beam

Figure 4-8: Setup of the Zeeman slowing beam, the angled slowing beams, and the
horizontal MOT beams. The angle slowing beams intersect in front of the MOT which
enhances the capture velocity of the 626 nm narrow-line MOT.

MOT Frequency Dithering

We dither the frequency of the MOT light during the loading stage at a frequency
of 120 kHz and a depth of 1.3 MHz during loading. These parameters are chosen such
that the effective saturation parameter is on the order of unity within each frequency
bin, and that the time spent in each frequency bin during frequency modulation is
long enough for scattering a photon. With the frequency dithering technique, we are

able to enhance the MOT population by a factor of 3.

Angled Slowing

In addition to frequency dithering, we developed a technique named angled slow-
ing which enhances the capture velocity of the MOT and leads to a factor of 20 en-
hancement in the MOT population [75]. As shown in Fig. 4-8, the angled slowing

technique utilizes a pair of near-resonant angled beams addressing the Dy 421 nm
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broad transition in the front of the MOT. Each of these two beams has a power be-
low 10 mW and a 1/e? beam size of dag ~ 1 cm. As atoms with linear velocities
of vzs = 40 m/s travel through the angled slowing region, the number of 421 nm
photons scattered by each atom is around Nas = ['491das/vzs ~ 7500, resulting in
an average velocity change of Av = Naghk/m ~ 40 m/s and a velocity diffusion of
\/ZWShk/m ~ 0.5 m/s. Therefore although the Doppler limit of the 421 nm transition
is not favorable, by combining a pair of angled 421 nm laser beam with the 626 nm
narrow-line MOT, and giving atoms a strong kick right before loading, it is possible to
achieve a narrow-line MOT with low Doppler temperature but high capture velocity

at the cost of two extra low-power laser beams.
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Figure 4-9: (a) MOT population as a function of loading time when both angled slow-
ing and transverse cooling are on (blue), when angled slowing is on but transverse
cooling is off (orange), and when neither angled slowing nor transverse cooling is on.
The data for the last case is multiplied for a factor of 10 for visual clarity. The detun-
ing and power for the angled slowing beam is 6 = =50 MHz and 7 mW per beam. (b)
MOT population after a fixed amount of loading time as a function of angled-slowing
power and detuning.

Fig. 4-9 (b) plots the population of the narrow-line MOT under different powers
and detunings of the angled slowing beams. As we see, an optimal laser power exists
for a fixed detuning. This can be explained by a simple model: At small power, more
atoms are decelerated to below the capture velocity by the angled slowing beam,
therefore the MOT population increases with power; At large power, however, atoms
are turned around by the angled slowing beam, therefore the MOT population de-

creases due to reduction of flux. By parking the laser detuning and power at the
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optimal point, we can load 3 x 108 152Dy atoms in 2 seconds, which is enhanced by a

factor of 20 due to angled slowing (see Fig. 4-9 (a)).

4.4 Evaporative Cooling to Quantum Degeneracy

After MOT loading and compression, we perform evaporative cooling in a cross optical-
dipole trap (XODT) to further lower the temperature of the atomic gases for produc-
ing BECs. Unlike alkali atoms, magnetic traps are not used for evaporative cooling of
Dy for the reason that the low-field seeking states which are magnetically trappable,
such as |J =8,m s = +8), are subject to dipolar relaxation losses?.

Fig. 4-10 (a) illustrates the geometry of the XODT. We cross two focusing laser
beams with a maximum power of 10 W per beam and a 100 um of beam waist at
an 8° angle in the horizontal plane, and the third laser beam with 3 W of power
and 100 um of beam waist at 90° with the two horizontal laser beams. Three laser
beams at 1064 nm wavelength, detuned far away from Dy atomic transitions, create
a conservative potential for the Dy atoms given by Eq. 3.3 — the shallow-angle ODT
beams in the horizontal plane a big volume for capturing atoms from the MOT; the
vertical ODT beam creates a dimple at the center of the conservative trap (see Fig. 4-
10 (b)).

The XODT is switched on to maximum power during the 100 rm MOT compres-
sion step. The compressed MOT is then held for 200 ms, resulting in spin-polarized
cold atoms at 12 uK loaded inside the XODT. We use a two-step evaporative cooling
sequence. In step one, we ramp down the power of the two horizontal ODTs within
around 1 second, such that most atoms are cooled into the dimple region created by
the vertical ODT beam. The temperature of the atoms at this point is around 1 uK.
In step two, we further ramp down the powers of all three laser beams to their final

values within around 2 seconds, which leads to Bose-Einstein condensation of more

2We are able to observe magnetic trapping of Dy atoms by precisely placing atoms in the XODT in
the |J = 8,m . = —8) absolute ground state at the center of a quadrupole magnetic field that provides
a magnetic force stronger than gravity, and quenching the atoms into higher spin states by quickly
switching a few milligauss bias magnetic field. But the population of the magnetic trap is limited to a
few thousand, and the lifetime of the trap is typically less than 100 ms.
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0 ¢cm~3 (see Fig. 4-11). The presence of the dim-

than 10° atoms with a density of 1
ple potential created by the vertical ODT beam speeds up thermalization at the end
of evaporative cooling. We are also able to produce elongated BECs only with the two
shallow-angle horizontal beams, but the evaporation takes a much longer time of 8

seconds.

(a)

Figure 4-10: (a) Beam geometry of the 1064 nm XODT. Two horizontal beams are
crossed at an 8° shallow angle. The third vertical beam is crossed with the horiontal
beams at 90°. (b) The shallow angle trap formed by horizontal beams gives rise to
a big trap volume for capturing cold atoms from the MOT at temperature T. The
dimple at the center created by the vertical beam leads to a faster thermalization
rate for evaporative cooling.

It took us more than a year from obtaining the first BEC signal (described in Will
Lunden’s thesis [75]) to being capable of producing stable BECs on an everyday basis.
The essential aspects for achieving this goal are listed in the following. Once they
are harnessed, obtaining Dy BECs is as straightforward as finding the final powers
of the ODT beams, the total time of evaporation, and an optimal magnetic field by
maximizing the remaining atom number after some time of evaporation to avoid in-

elastic collisions in the vicinity of Feshbach resonances.

Loading XODT from a spin-polarized MOT. Instead of using small values of final

detunings and compressing the MOT close to the center of the quadrupole magnetic
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Figure 4-11: Time-of-flight absorption images taken at (a) 2.1 ms, (b) 2.2 ms, (c)
2.3 ms, (d) 2.4 ms, (e) 2.5 ms, (f)) 2.6 ms, (g) 2.7 ms, (h) 2.8 ms, (i) 2.9 ms, (j) 3.0 ms,
(k) 3.1 ms, and () 3.2 ms into evaporative cooling with the colormap showing the
optical densities of the absorption images, and the red traces showing the integrated
signals along one direction. The momenta of atoms turn from thermal distributions
to bimodal distributions, signaling the formation of Dy BECs with 10° atoms.
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field to obtain more regular cloud shapes, we need to use large final detunings to
avoid spin mixtures that experience inelastic dipolar relaxation losses after loading
into the XODT. This corresponds to a sag of ~ 1 cm in the equilibrium position of the
compressed MOT below the center of the quadrupole magnetic field.

Cooling atoms into the XODT with low MOT intensity. At the end of MOT
compression, we cool the atoms into the XODT by maintaining a low final intensity of
around 1 uW/cm? per beam for 200 ms, which corresponds to a saturation parameter
s = 0.02. This extra holding step enables more atoms to be loaded into the dimple
region of the XODT.

Eliminating laser noise. The Toptica laser system for delivering the 626 nm light
needs to be parked in a mode-hop free region. This is done by tuning the diode current
and the grating position of the ECDL seed while monitoring the error signal from the
ULE cavity system. Whether or not stable BECs are obtained can be sensitive to the

ripples of the error signal baseline.

4.5 Spin Control Using RF Pulses

After being able to produce Dy BECs in the absolute ground state |/ = 8,m s = —8), we
can manipulate the internal spin states using RF photons. This section demonstrates
how spin rotations can be implemented using resonance RF pulses, and detected with
the Stern-Gerlach experiments. Since this thesis focuses on bosonic dysprosium,
we do not consider RF couplings within different hyperfine manifolds of fermionic
isotopes with GHz spacings. Hence the RF photons used here is in the MHz energy

range.

4.5.1 Generating RF Pulses in the MHz Range

The RF signals are derived from the Rigol DG1022 arbitrary waveform function gen-
erator, amplified using a 30W Mini-Circuits RF amplifier LZY-22X+, and sent to a
double-loop antenna placed on the top viewport that is approximately 2 cm away

from the atoms impedance matched by the antenna tuner MFJ-993B. At the begin-
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ning of each experimental cycle, the Rigol function generator is programmed with
updated experimental parameters using SCPI commands via USB communication
(see Fig. 4-13 for the software interface). The waveform is later triggered by digital
control signals during experiment cycles.

By measuring the peak-to-peak voltage V}, across a single-loop pickup antenna
with area A, we characterize the peak-to-peak transverse magnetic field produced
by the RF antenna at the position of the atoms to be around By, = V,,/(wgrA) =
100 mG at RF frequencies above wrp = 27 x 1 MHz. With the impedance of the
antenna matched to the rest of the circuit by the tuner, we observe sinusoidal voltage
signals across the pickup antenna. However, the tuner we use only operates above
1 MHz, hence we need to bypass the tuner for RF applications below 1 MHz, in which
cases we observe anharmonic RF signals across the pickup antenna probably due to

nonlinear responses of the circuit in the presence of strong back reflections.

4.5.2 Stern-Gerlach Experiment

To demonstrate our spin control capability, we apply 5.3 MHz resonant RF pulses to
the spin-polarized BECs prepared inside the XODT, with a vertical magnetic field of
B, =3.12 G and a magnetic gradient of dB,/dz = 2.84 G/cm. We subsequently switch
off the XODT and perform time-of-flight measurements. The magnetic gradient is
chosen such that the spin-polarized state |J = 8,m = —8) is levitated during time-
of-flight, i.e. mg = 8gup(dB,/dz). Therefore the spin-dependent net force acting on
the spin state with magnetic quantum number m_; can be written as (m /8 +1)mg,
which leads to flight distances of %(% +1)gt? that have quadratic dependence on m ;.
This Stern-Gerlach technique enables us to resolve and analyze different spin-states
during time-of-flight.

Fig. 4-12 shows the Stern-Gerlach signals we obtain during the first cycle of Rabi
oscillation, in which we observe the spin of the BEC oscillates from |J =8,m j = —8)
to |J =8,m g = +8) through all 15 spin states in between. The Rabi period of 14.20 us
corresponds to a Rabi frequency of Qr = 27 x70.4 kHz. We are able to observe at least

70 cycles of Rabi oscillation before losing atomic signals due to dipolar relaxation.
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Figure 4-12: Stern-Gerlach signal in a 27 Rabi cycle after applying resonant RF

pulses for different amount of time. A magnetic gradient of 2.86 G/cm is applied to
separate different spin states during time of flight.
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Figure 4-13: Software interface of the USB controller. SCPI commands with updated
experimental parameters are sent to the function generator via USB at the beginning
of each experimental cycle.
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Chapter 5

Super-Resolution Control of

Dipolar Atoms on 50 nm Scales

The interatomic distances for most ultracold atom experiments are on the order of
hundreds of nanometers. For example, a typical quantum gas with n = 10'* ¢cm™2
density has an interatomic distance of around n'/3 ~ 215 nm. In lattice experiments,
a square optical lattice formed by interfering counter-propagating laser beams with a
wavelength of 1 = 1064 nm corresponds to a distance between nearest lattice sites of
A/2 =532 nm. Although being the atom with the largest magnetic moment of 10up,
the dipolar interaction strength between two head-to-tail Dy atoms in the polar-
ized spin state separated by d = 532 nm is only Ugq/h = p0(10y3)2/(2nhd3) ~ 17 Hz,
which is relatively weak compared to the typical energy scales in quantum simula-
tion experiments. By using optical lattices with a shorter wavelength of 532 nm, the
nearest-neighbour dipole-dipole interactions have been enhanced to around 100 Hz
in extend Bose-Hubbard quantum simulators [7, 98], leading to the recent discovery
of dipolar stripe phases [98].

In this chapter, we will introduce a super-resolution scheme which can localize
Dy atoms to distances around 50 nm, more than 10 times shorter than the optical
wavelength. Since the dipole-dipole interaction has a favorable scaling with dis-
tance as 1/r2, we obtain a maximum dipole-dipole interaction strength of 20 kHz.

We apply this technique to the creation of a bilayer array of Dy atoms with tunable
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interlayer distances, and observe the interlayer long-range interaction via two out-
of-equilibrium experiments. The enhanced dipole-dipole interaction opens up new
possibilities for exploring physics such as quantum thermalization, superradiance

light scattering, interlayer pairing, exciton physics, etc. [9, 36]

Dy m, =+8

Figure 5-1: Illustration of the super-resolution control of Dy atoms. Two different
types of atoms (Dy atoms in m j = £8 spin states) are indepdently controlled by two
different types of light (near-resonant lasers in opposite circular polarizations offset
by a frequency gap).

5.1 The Dual Frequency and Dual Polarization Scheme

Fig. 5-1 illustrates how the diffraction limit of light can be overcome using our super-
resolution scheme. Two different types of atoms are each in the respective harmonic-
oscillator ground states of the light potentials marked in red and orange. The root-
mean-square size of the wavefunctions o are related to the trap frequency w as o =
ano/Vv2 with the oscillator length defined as apo = Vii/2mw. With a trap frequency
of 100 kHz, the size o is approximately 12 nm, much smaller than the diffraction
limit of light. Hence by decoupling the red (orange) atom from the orange (red) light,
we can localize the two atoms to tens of nanometer separation without contact.

In the super-resolution scheme we are going to introduce in this section, the two
different atoms are Dy atoms in the opposite spin states with m . = +8, and the two
different types of light are near-resonant 741 nm lasers in opposite circular polar-
ization with a frequency offset around 300 MHz. The fundamental principle of this

dual-frequency and dual polarization scheme is based on the anisotropic nature of
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atom-light interaction introduced in Chapter 3. In the presence of vector and tensor
polarizabilities in the ground state, Dy atoms experience different light shift under
different laser polarizations. By tailoring the polarization and frequency of the light
field, we can realize independent control of the two spin states m . = +8 of Dy atoms

in the subwavelength regime.

To understand the super-resolution scheme, let’s consider the electric-dipole in-
teraction of Dy atoms exposed to two optical standing waves in opposite circular
polarizations o, and o_. The intensity maxima of the two standing waves are con-
trolled by the relative phase ¢p. We will first study the diagonal part of the atom-light
interaction and calculate the light shifts experienced by each spin state m.;, and then

study the off-diagonal two-photon Raman couplings among different spin states.
Engineering the Diagonal Part

The electric fields of the two standing waves in ¢, and o_ circular polarizations

can be written in the spherical basis as

E;:(2,t)=2E(cos(kz £ ¢) (ex coswt + ey sinwt)

. (5.1)
= Ejcos(kz +¢) [(ex +ieg)e W+ c.c.]
which gives rise to the following light shift in the ground state
U()=- 2cx(0)Eg(1 + cos2kz cos 2(/))
+2a(1)E% sin2kz sinZ(p% (5.2)

3m3—J(J+ 1)
J2J-1)

+ a(Z)E% (1 + cos2kz cos 2(/))

As illustrated in Fig. 5-2, with only a scalar polarizability a'®, the light shift is iden-
tical for all 17 spin states, which is proportional to the sum of intensities of the two
standing waves. The vector polarizability a®) leads to light shifts that are linear in
m, and can be regarded as Zeeman shifts caused by fictitious magnetic fields — the
o, and o_ standing waves are analogous to magnetic fields along +z and —z direc-

tions with sinusoidal modulation which lift the degeneracy of 17 spin states besides
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the points where the two magnetic fields cancel. As such, we obtain a spin-dependent
optical potential that realizes independent control of the distance between two local

ground states |J =8,m = —8) and |J = 8,m j = +8) with the relative phase ¢.

(a) (b) (c)

1

2 miA 0 w4 w2 -m2 w4 0 T4 T2 -m2 w4 0 w4 T2

kz

Figure 5-2: Contributions of (a) scalar polarizability a'®, (b) vector polarizability
a®), and (c) tensor polarizability a® to the light shifts of m.j = —8 (blue) to mj = +8
(red) spin states. The shaded regions refer to the intensities of lasers in two opposite
circular polarizations.

However, due to the presence of the 17-fold degenerate point, off-diagonal cou-
plings caused by e.g. a small transverse magnetic field B, would create avoided
crossings and lead to spin mixtures in the ground state. By adding in the contribu-
tion of tensor polarizability a®, we obtain tensorial light shifts that are proportional
to sz Therefore the 17-fold degenerate points are lifted such that only spin states
with the same |m | cross in the middle. The presence of the tensor polarizability
makes off-diagonal spin-flip couplings between m. = —8 and +8 spin states higher-
order processes, providing robustness of the super-resolution scheme
Engineering the Off-Diagonal Part

In addition to the diagonal part of the optical potential, we consider here the
effects of two-photon Raman couplings contributed by the off-diagonal parts of vector
and tensor polarizabilities [63]. In the presence of two opposite circular polarizations,
the tensor polarizability a'® allows for Raman processes with Am j = +2. As shown in
Fig. 5-3, when the frequencies of the two lasers are the same, the off-diagonal Raman
couplings weaken the adiabatic potential curves when the separation between the
potential minima is smaller than A1/10, hence becoming a fundamental limitation of

how close the atoms can be localized using the spin-dependent potential.
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Figure 5-3: If the two laser beams have the same frequency A = 0, the off-diagonal
part of the tensor polarizability mixes spin states. As a result, the two minima merge
into a single minimum for small separation s. This is avoided in our experiment by
using two different frequencies for the o, light. The color of the curves indicate the
m character of the adiabatic eigenstates.
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By introducing a big frequency gap A to the two laser beams, however, we can de-
tune the two-photon Raman couplings out of resonance. In our experiment, the two-
photon detuning A = 300 MHz, much larger than the light shift and the energy spac-
ings between adjacent vibrational levels. Hence the Raman couplings between dif-
ferent spin states and vibrational levels are negligible, leading to an isolated Hilbert
space for |J =8,m =-8) and |J =8,m j = +8).

By using extra laser beams with proper polarizations and detunings, it is possi-
ble to introduce Raman couplings that change vibrational quantum number. This
could be used for Raman sideband cooling of atoms confined in the super-resolution

potential.

5.2 A Bilayer System of Dipolar Atoms

Atoms loading in the ground state of the optical potential described in the above sec-
tion form an array of bilayer systems with head-to-head magnetic dipoles. We will
introduce in this section how such bilayer systems are created, loaded, and charac-

terized.

5.2.1 Optical Setup

Fig. 5-4 illustrates the optical setup for producing the bilayer potential. Two lasers
addressing the Dy 741 nm transition in different detunings and orthogonal linear

polarizations are synthesized on the laser table using a single-passed acousto-optic
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modulator (AOM) (Model ATM-2001A1) and a double-passed phased-array acousto-
optic deflector (AOD) (Model ATD-801A6), and combined at a polarization beamsplit-
ter (PBS). The two laser beams are coupled into a polarization-maintaining fiber
whose fast and slow axes are adjusted to be aligned with the polarization directions
of light. It is important to couple both lasers into a same fiber, rather than spa-
tially combining two lasers on the machine table, to ensure precise overlap of the two

transverse laser modes.

On the other side of the fiber, the laser beam with two frequency components
along the two orthogonal linear polarizations is passed through an achromatic quar-
ter waveplate (QWP) which converts linear polarizations into opposite circular po-
larizations. The beam is then focused onto the atoms and retro-reflected by a mirror
on the other side of the vacuum chamber to form two optical standing waves. The
intensity maxima of two standing waves are displaced at the position of atoms by
a distance s = L - A/f, with A being the frequency gap between the two polarization
components, f being the frequency of the laser, and L being the length of the retro
path. By tuning the frequency gap A using the double-passed phased-array AOD, we
can control the distance s between the two layers dynamically during experiments
with a speed on the order to 10 us. Before the achromatic QWP, the two polarization
components of the laser are picked off by a 90-10 beamsplitter followed by a PBS, and
detected by two photodiodes for intensity control and stabilization with PID electron-
ics.

Below we would like to introduce two technical aspects of our optical design that
are important for the realization of the bilayer potential. To achieve wide tunability
of the interlayer distance s, we use a phased-array AOD that has high diffraction
efficiency across 40 MHz of RF frequency. In addition, to produce high-quality circu-
lar polarizations, we used several tilted waveplats to compensate for the unwanted

phase shifts introduced by optical elements such as dichroic mirrors.

Frequency Tuning with Phased-Array AOD

The tuning range of interlayer distance s is related to the laser frequency tuning
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Figure 5-4: Optics setups for the bilayer potential. (a) Two 741 nm laser beams in
orthogonal linear polarizations are produced by a single-passed AOM and a double-
passed phased-array AOD, merged on a PBS, and coupled into a PM fiber. (b) On the
machine table, the laser beam with two frequency components along two orthogonal
linear polarizations are picked off by a 90-10 BS followed by a PBS for PID inten-
sity control. An achromatic QWP converts the two linear polarization components
into circular polarizations. The light is then sent into the vacuum chamber after a
compensation HWP. (¢) Two overlapping laser beams with opposite circular polariza-
tions 0+ and o_ are retro-reflected by mirror (I) to form two optical standing waves.
The two standing waves are displaced at the position of the atoms (II), controlled by
the frequency offset A between the two laser beams. Dy atoms in this configuration
form an array of pancake-shaped bilayers of head-to-head dipoles with adjustable
interlayer distance s.
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range as 6s =L -0f/f. For a retro-path length L = 1.9 m and a desired interlayer dis-
tance tuning range of A/2 = 370 nm, the corresponding dynamic tuning range of laser
frequency is around 6 f = 79 MHz. This tuning range is too large for ordinary AOMs.
As illustrated in Fig. 5-5, the k-vectors of the zeroth order and the frequency-shifted
first-order output of an ascouto-optical device have to satisfy the Bragg condition
ko + q = k_1, where q is the momentum provided by the acoustic phonon. As we
tune the RF frequency, the magnitude of the vector q changes, therefore the crystal

orientation needs to be adjusted to meet the Bragg condition in order.
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Figure 5-5: (a) Bragg condition between the zeroth-order photon momentum kg, the
-1st-order photon momentum k_;, and the phonon momentum q. When the RF fre-
quency is changed, the direction of q also changes in order for the new Bragg con-
dition to be satisfied. (b) Upper panel: Diffraction efficiency of the -1-order and the
+1 order output with the orientation of the AOD being fixed; Lower panel: total effi-
ciency after double-passing the phased-array AOD and fiber coupling.

In order to achieve high diffraction efficiency across a wide frequency range with-
out changing the crystal orientation, we use a device called phased-array AOD man-
ufactured by IntraAction Corp. The acousto-optic crystal inside such a phased-array
AQOD has a staircase-shaped edge, which is designed to shape the wavefront and au-
tomatically steer the orientation of the acoustic wave to meet the Bragg condition for
the -1st order when the RF frequency is being changed. As shown in Fig. 5-5 (b), in

contrast to diffraction orders such as the +1st order, the diffraction efficiency of the
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-1st order has a flat region when the RF frequency is between 60 MHz and 100 MHz.
After double passing and fiber coupling, we achieve 50 MHz frequency tunability in
one of the laser beams with efficiency above 30%. This allows us to dynamically scan
the bilayer array from interlaced configuration to overlapped configuration during

each experimental cycle.

Phase Compensation with Tilted Waveplates

After reflecting off some optical elements at large incidence angles, especially
when merging laser beams using dichroic mirrors, the circular polarizations of the
optics beam can be significantly affected. We have seen that some dichroic mirros
can lead to relative phase shifts of around (n + 1/4)A along vertical and horizontal
directions, and convert circularly-polarized incident beams into linearly-polarized
output beams. To compensate for these extra phase shifts, we insert a tilted half
waveplate (HWP) whose fast and slow axes are along the horizontal and vertical
directions (see Fig. 5-4). Since the optical elements in the path are angled along the
axes that are perpendicular to the plane of optics rays, the resulting phase shifts can
be undone by adjusting the tilt angle of the compensation HWP.

We characterize the quality of the circular polarization by passing the beam
through a polarizer, and measure the maximum and minimum transmitted powers
I,ax and I, as we rotate the polarizer. Using the tilted-waveplate technique, we
are able to produce high quality circular polarizations at the position of the atoms

with Inyin/Imax > 97%

5.2.2 Kapitza-Dirac Calibration of Interlayer Distance

We calibrate the interlayer distance s using a Kapitza-Dirac experiment [42] in which
the diffraction patterns of atoms are used to reveal the structure of the pulsed optical
standing waves. This is done with a BEC in the m j = —8 Zeeman state polarized
along the transverse direction x in a magnetic field of 1.3 G. After the preparation of
the condensate, we simultaneously pulse on the two optical standing waves with the

same intensity for 7 = 5 us, such that most of the population is in the the first order of
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the Kapitza-Dirac diffraction pattern. Since the transversely-polarized atomic spins
see both circular polarizations as a superposition of (o_,7,0.) light with weights of
(1,2,1), taking x as the quantization axis, the light-atom interaction Hamiltonian
for the m = —8 state can be expressed as the superposition of two phase-shifted

sinusoidal potentials of the same amplitudes Vo(x, y)[sin?(kz) + sin®(kz + ¢)].

Fig. 5-6 shows the typical first-order Kapitza-Dirac signals in the short pulse
limit Vy(x,y)1/h < 1. The result presents an oscillatory behavior as we vary the rel-
ative detuning A. When the bilayers are in an interlaced configuration (¢ = 7/2), the
first-order Kapitza-Dirac signal vanishes. When the bilayers are in an overlapped
configuration (¢ = 0) the amplitude of the sinusoidal potential is maximized, corre-
sponding to the strongest Kapitza-Dirac signal. The resulting oscillation period of
the Kapitza-Dirac signal indicates the tuning sensitivity of the interlayer distance to

be 4.7 nm/MHz with respect to the relative laser detuning A.
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Figure 5-6: Characterization of the interlayer distance using Kapitza-Dirac diffrac-
tion. The 1st-order fraction of the Kapitza-Dirac signals N,1/Ny, versus relative
detuning A with m; = —8 Bose-Einstein condensates polarized along the x direction.
The Kaptiza-Dirac signal vanishes at interlaced bilayer configurations (I) and (III),
whereas it is maximized for overlapped bilayer configurations (II) and (IV).
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5.2.3 Adiabatic Loading

The ground state of the bilayer is loaded using an adiabatic transfer method, as
depicted in Fig. 5-7. First, mj = —8 atoms are prepared in a magnetic field with a
transverse component B, = 200 mG and an axial component B, around 10 mG. We
then ramp up the o, and o_ standing waves in the interlaced configuration (i.e. with
s =A/4) in 100 ms, loading all layers with atoms aligned with the x axis (Fig. 5-7. By
ramping down the transverse magnetic component B, in 15 ms, the potential depth
increases while a bilayer array is formed with dipoles that are aligned head-to-head
(Fig. 5-7. We ensure balanced loading by making sure that the energy offset between
the minima of the o, and o_ potentials 6 = U, —-U_+ Ez =0, where U, are the
AC Starks shift of the layers, and the differential Zeeman energy is given by Ez =
16gsupB;. It is crucial that the atoms stay in their local ground state throughout
the experiment to prevent losses and heating due to dipolar relaxation. Therefore,
the Zeeman shifts caused by the external magnetic field B, have to be smaller than

the differential AC Stark shift between the m jy = —8 and mj = —7 states.
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Figure 5-7: Adiabatic loading of the bilayer array. (i) Starting with the optical poten-
tial in the interlaced configuration in the presence of a dominating transverse mag-
netic field B, = 200 mG, the atoms are initialized in the m = —8 spin state along the
x direction. (ii) As B, is ramped down in 15 ms, the light shift dominates over the
Zeeman shift, thereby adiabatically loading the bilayer array. (iii) The power of the
o, and o_ potentials are adjusted for identical trap frequencies. (iv) The interlayer
distance is adjusted to designated values in 0.5 ms.

After loading a balanced bilayer array, the powers of the two optical standing
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waves are ramped up, ensuring that the two layers have the same trap frequencies
of typically (wy,wy,w;) =27 x(0.5,0.5,140) kHz. The strong axial confinement results
in a harmonic oscillator length apo = \/M of 21.1 nm, where 7 = h/27 and m is
the atomic mass. We load 4.2 x 10% ultracold 2Dy atoms into an array of 42 bilayers,
with a temperature of 1.7 uK determined from the cloud size after ballistic expansion
(see Methods). Subsequently, the interlayer distance s is ramped from 1/4 to different
designated values in 0.5 ms by changing the frequency of the o_ standing wave. The
interlayer distance s is calibrated with Kapitza-Dirac diffraction measurements (see
Methods). At the end of each experimental sequence, the atoms are released from the
bilayer array within 1 us and are imaged after ballistic expansion. With the small
axial magnetic field B, serving as a guiding field, atoms remain in the m . = +8 states
and are imaged by a spin-resolved absorption imaging technique. This method allows

us to measure the population in each of the two layers simultaneously.

5.2.4 Spin-Resolved Imaging

Our spin-resolved absorption imaging system operates in the weak saturation limit
of the 421 nm cyling transition. It utilizes the big contrast of photon scattering
rates of atoms in the stretched m,j = £8 Zeeman states for two opposite circular
polarizations of light. The resonant imaging light addressing the 421 nm transition is
linearly polarized along x, and propagates along the axial direction z. Taking z as the
quantization axis, the imaging light contains equal amount of 0_ and o, polarization
components. Due to the big difference between the Clebsch—Gordan coefficients for
the |J =8,m;=-8) —|J'=9,m’, =—9) and the |J =8,m;=-8) — |J =9,m/, = -7)
electric dipole transitions, the o, photons are predominantly scattered by the atoms
in the o, layer, whereas the o_ photons are predominantly scattered by the atoms
in the o_ layer. The two polarization components are then spatially separated by a
1° angle via a quarter-wave plate and a Wollaston prism (see Fig. 5-8), leading to two
nearly-independent imaging channels for the o, and the o_ layers on the camera.
The duration of the imaging pulse is adjusted to reduce optical pumping which would

lead to crosstalk between the two imaging channels.
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Figure 5-8: The spin-resolved absorption imaging scheme. The atoms are exposed to
linearly polarized light that is co-propagating with the bilayer optical beams and that
is resonant with the 421 nm transition. After the relay lenses (L1 and L2) and the
magnification lenses (L3 and L4), the o, and 0_ components of the imaging light are
separated using a quarter-wave plate (QWP) and a Wollaston prism. The spatially
separated images of the o, and the o_ layers are recorded by a CMOS camera.

Figure 5-9: A spin-resolved absorption image showing the time-of-flight signals of
atoms in 0, and o_ layers in two imaging channels.
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5.2.5 Lifetime Measurement

We demonstrate the spatial control over the bilayer geometry to be better than 10
nm by scanning the two layers across each other, and measuring the lifetime of the
atoms due to loss. As presented in Fig. 5-10, the loss rates are significantly enhanced
when the two layers are fully overlapped. Assuming that loss processes occur at
short range, the sharp peak in the loss rate as a function of layer separation s is
essentially the convolution between the density profiles of the two layers, from which

we can extract the information of the thickness of each layer.
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Figure 5-10: Demonstration of controlling the interlayer distance on a 10 nm scale by
recording atom loss as a function of layer separation. (a) Evolution of the population
in o, layers at two different interlayer distances s = 185 nm and 0 nm. The loss
is much faster when the layers are overlapped. Initial loss rates I's;, are obtained
from the fits to the decay curves. (b) Gaussian fits of the initial loss rates I's, to the
interlayer distances s according to Eq. 5.4 (solid lines) provide a value of 6, = 18.6 nm
for the layer thickness.

Due to the partial condensation of the cloud and technical heating during the

loading, we assume a Gaussian distribution in the transverse direction such that the
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atomic density is

nfa)D(P,Z) = n0,3De_%(i2”3DT)28_%(‘711]26 %[22/2)2 (5.3)
where n 3p is the peak local density, i = 0,+1,+2,... is the index of the bilayer, o |
and o, are the RMS widths of each layer along transverse and axial directions, and
the superscript (+) denotes the o, or o_ layer. By integrating along x, y, z, and
summing over index i, we obtain the relation between the peak density and the total
atom number of the o layers ngsp = 3N, 1E;—rt)/Veff, with the effective volume defined as
Vet = 127120302(200]31‘/1).

Since two-body inelastic collisions such as dipolar relaxation between mj; = —8
and +8 states require higher-order couplings, we assume the interlayer inelastic
losses to be three-body processes. Taking into account the intralayer and interlayer
three-body losses and assume balanced bilayers n*) = n{~) = n, we can write the loss

_1l(sy2
equation for local density as % = —Bintrat® — Bintern’e 500",

Integrating the rate
equation over space and summing over layer index i gives rise to the following rate
equation for total atom numbers

L2 Niot

I'sp = 'intra + Uintere 3 o2 (5.4)

where Dintra = Bintra(Ntot/Vest)?, and Uinter = Binter(Wtot/Ver)?. For spin-independent
three-body collisions and thermal clouds, we expect I'intra = I'inter- Unexpectedly, we
observed about a fiftyfold increase in loss rate when the two layers are overlapped,
which implies that three-body recombination involving mixed spin states is much
faster than recombination of three atoms all in the same spin state. This strongly-
enhanced loss feature serves as a highly sensitive monitor for the density overlap
between the two layers, while fitting the loss curve determines the thickness of each
layer o, = 18.6 nm. This is slightly larger than the RMS size of the harmonic os-
cillator ground state apo/v2 = 14.3 nm, and can be explained by a small fraction of

atoms in excited states of the axial potential 1. The observed losses in the two layers

1By taking into account thermal excitation into the higher axial vibrational levels due to finite
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are almost equal, implying equal loss rates for three-body collisions involving one
spin-up and two spin-down atoms, or vice versa. With this technique of scanning two
layers across each other, we have mapped out an atomic density distribution with a

resolution much better than 10 nm.

We conclude from the loss measurement that for s £ 50 nm we can regard the lay-
ers as coupled only by long-range dipolar forces. The dipolar energy Ugq/h between
two Dy atoms with opposite spins at this separation is 20 kHz. This geometry now
allows us to study dipolar physics in new regimes. In the following, we present two
out-of-equilibrium experiments which demonstrate strong interlayer dipole-dipole

interactions.

5.3 Detection of Interlayer Dipole-Dipole Interac-

tion

5.3.1 Interlayer Thermalization

One novel experiment is energy-transfer via dipolar interactions, or sympathetic
cooling between two atomic systems separated by vacuum [90, 24]. Each layer is
heated up by the fluctuating magnetic field created by the dipoles in the other layer.
For equal temperatures, in detailed balance, the heat flows cancel. For unequal tem-
peratures, the dipolar fluctuations cause thermalization. Fig. 5-11 (b) shows the

experimental results.

We can estimate the interlayer collision rate as nopogqurel, where nop is the 2D
density distribution, and o4q is the cross section for two dipolar atoms passing each
other at the separation s. Using the Born approximation, we calculate the elastic

cross section between two atoms in thin layers separated by a distance s, and the

T2 @n+lemhozkpl o

z;o;o o~nhwz/kpT ﬁ =
1.3lapo/V2 = 18.8 nm. Note that the data in Fig. 5-10 were taken at higher temperature than the
other data.

temperature T = 5.5 K, the thickness of each layer is estimated to be o, = \/
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Figure 5-11: Observation of interlayer thermalization. (a) Interlayer elastic scatter-
ing cross sections as functions of separation s calculated using the Born approxima-
tion. The grey curves correspond to dipolar cross sections for infinitely-thin o, =0
layers (thin grey) along with its large interlayer distance limit ks > 1 (dashed, fol-
lowing Eq. 5.5, and for layers with finite thickness o, = 14.9 nm (quasi 2D, solid
grey). The red curve is for simple contact interactions at the background scattering
length (red, quasi 2D), and the shaded area corresponds to a 10 times enhanced cross
section. (b) Observed thermalization rates I’y obtained from the pseudo-exponential
fits. The black and red solid lines show the expected thermalization rate from dipo-
lar and contact interactions (see Methods). The dotted line is for reference and is
proportional to 1/s3.

101



analytic large-s limit is

@D _ 2 T
044 _add_k233 (5.5)

Here, agq = 10.2 nm is the dipolar length and % is the relative momentum between
the colliding particles. For s = 75 nm, the quasi-2D cross section ggq = 0.38 nm (see
Fig. 5-11 (a)). With a typical 2D peak density of nap = 1.3 x 10° em™2 and a thermal
velocity of 2.1 cm/s one obtains an interlayer collision rate of 100 s™1. The observed
thermalization times are much slower, around 160 ms (rate of 6 s~!). This can be
fully accounted for by the anisotropy of dipolar scattering, which is peaked in the for-
ward direction and reduces the effective cross section by a factor of 6, and by multiple
averaging arising from the inhomogeneity of our sample (see Methods). In Fig. 5-11
(b), we compare the observed thermalization rates to calculations. They don’t have
any adjustable parameters and fully take into account the momentum and angular
dependence of dipolar scattering and the finite thickness of the layer. The calcula-
tions are in semi-quantitative agreement with the observations. The drop-off of the
thermalization rate is much weaker than the steep exponential decrease in density
overlap, and therefore in the contact interactions between the two layers. This is
clear evidence for purely dipolar collisions in the range of 50 to 100 nm interlayer

distances.

The observed dependence on s roughly follows a 1/s3 dependence which is less
steep than predicted. This is possibly due to the assumptions of the theory based
on purely dipolar binary collisions. For small s, there can be an interference term
with s-wave contact interactions and a contribution from non-universal short-range
dipolar s-wave scattering [91] which is not included in the Born approximation. The
largest separations s studied are comparable to the interparticle separation and the
binary collision approximation may no longer be accurate, i.e. there are now more

then two particles interacting with each other.
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5.3.2 Coupled Oscillation

In the second experiment, we look for coupled collective oscillations of the bilayer
system. Several theoretical papers [81, 50] predicted the coupling of transverse os-
cillations by the mean dipolar field between the layers. Indeed, when we excite trans-
verse oscillations in one layer, we find that they cause oscillations of the other layer
(Fig. 5-12). Experimentally, after loading a balanced bilayer array and adjusting the
interlayer distance to a designated value in 0.5 ms, we adiabatically displace the o
layer along the transverse direction y in 10 ms using an extra laser beam with o,
polarization. This beam, blue-detuned from the 626 nm transition by 458 MHz, is
misaligned from the atoms by about one beam waist, and almost only displaces the
atoms in the o, layer. A sudden switch-off of the displacement beam hence creates a
center-of-mass oscillation of the o, layer at the transverse trap frequency of 500 Hz
with an adjustable amplitude ranging from 0 to 8 um depending on the final power
of the beam. As a function of hold time, the in-trap velocity of each layer is obtained
from time-of-flight images to reveal how momentum is transferred between layers.
The displacement beam also displaces the o_ layer due to crosstalk, but 100 times
less. The crosstalk could be observed only at much larger oscillation amplitudes than

shown in Fig. 5-12.
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Figure 5-12: Observation of coupled oscillations of the two layers at 62 nm inter-
layer distance. The center-of-mass oscillation of the o layer is excited by suddenly
switching off a displacement force. The o_ layer oscillates due to dipolar coupling.
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Fig. 5-12 shows the time evolution of the velocity of each layer as obtained from
ballistic expansion images. The harmonic oscillation of the o layer shows damping
whereas the o_ layer starts at rest and shows a growing in-phase oscillation. Our
observation is in contrast to the theoretical treatments [81, 50], where the mean-
field coupling potential would cause a beat note, which is initially an oscillation 90
degrees out of phase. Furthermore, the predicted mean-field coupling [81, 50] results
in a normal-mode splitting of less than 1 Hz, which is too slow to be observed on
the experimental time scale. Our observation is fully consistent with a friction force
caused by dipolar collisions. First, frictional coupling between harmonic oscillators
causes an in-phase oscillation of the driven oscillator. Second, the time-constant for
the damping of the relative motion between the two layers of 25 ms is similar to
the observed interlayer thermalization times. These observations establish dipolar
coupling between two layers which are completely physically separated.

When we explored the coupled oscillations for longer times and for larger ampli-
tudes and separations, we found that the observations depended critically on a pre-
cise matching of the potentials of the two bilayers. Non-isotropic radial confinement
could cause two-dimensional motion of the layers and Lissajous figure type orbits.
Nevertheless, all observations showed an initial in-phase oscillation of the o_ layer

consistent with a frictional force.
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Chapter 6

Control of Dipolar Relaxation

Quantum gas experiments with ultracold atoms and molecules are often limited by
inelastic processes. In ultracold molecule experiments, inelastic collisions due to
complex chemical reactions have hampered the creation of degenerate gases of cold
molecules. Similarly, in experiments with ultracold magnetic atoms such as Dy, Er,
and Cr, atoms in different spin states undergo inelastic dipolar relaxation. This
inelastic collision process converts internal Zeeman energy into the external kinetic
energy of atoms, thereby severely limiting the lifetime of ultracold Bose gases that
are not in the ground spin state — the lifetime of a typical Dy BEC in the highest spin
state |J = 8,m. = +8) with density of 101 ecm™3 is only on the order of milliseconds
[11, 21].

In cold molecule experiments, suppressing short-range chemical reactions using
microwave shielding effect [3] or dipolar shielding effect in external quasi-2D con-
finement [80] have been proven to be the most effective technique for producing de-
generate gases of polar molecules so far. Efforts along this technical path have led
to the recent successful creation of Bose-Einstein condensates [14] and degenerate
Fermi gases [106] of ground-state polar molecules. On the other hand, suppressing
inelastic dipolar relaxation of magnetic atoms using dipolar repulsion is a more chal-
lenging task: the strength of dipolar repulsion among magnetic atoms is three orders
of magnitudes weaker compared to that of polar molecules.

This chapter introduces our result [12] of controlling dipolar relaxations of Dy

105



atoms using an external quasi-2D optical confinement. The optical potential is pro-
duced by a blue-detuned 741 nm optical standing wave providing tight axial con-
finement with trap frequency w, greater than 200 kHz, and a high-power 1064 nm
optical dipole potential providing transverse confinement with trap frequency around
200 Hz. We observe one order of magnetude suppression of dipolar relaxation rate

with Dy atoms in the highest spin state m ; = +8 in such a quasi-2D geometry.

6.1 Elastic and Inelastic Collisions in 3D

(a) (b)

Figure 6-1: Illustration of (a) elastic (on-shell) scattering and (b) inelastic (off-shell)
scattering with the initial incident momentum denoted as k and the final momentum
denoted as k. The momentum change is defined as q = k—k’. The internal spin
states of the atoms |m j1,m o) are unchanged before and after an elastic scattering
event, hence the kinetic energy is conserved. On the contrary, spin flip happens
before and after an inelastic scattering event, converting internal Zeeman energy
into external kinetic energy of the two atoms.

We start by discussing quantum collision theory between two Dy atoms. For sim-
plicity of analysis, we assume in this chapter that the two incoming atoms are in
the same initial spin state, hence the spin part of the two-body wavefunction can be
written as [mj,m ). After scattering off the dipole-dipole potential Eq. 2.4, as dis-
cussed in Chapter 2, the initial spin state is coupled to three channels of final sym-
metric spin states: |S©) = |m ,m,), [SP) = %(ImJ,mJ—l) +|my-1,my)), and
|S(2)> =|myj—1,m y—1). These three channels correspond to scattering processes

with 0, 1, and 2 units of spin flip — the first being elastic collision, and the latter two
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being inelastic dipolar relaxations.

Fig. 6-1 illustrates the relation between incident momentum k and final momen-
tum k' during elastic and inelastic scattering processes. For elastic scattering where
spin-flip is not involved, the kinetic energy is conserved, hence & = k’. For inelastic
scattering where spin states of the atoms are changed, the internal energy is con-
verted into external kinetic energy. Therefore we have hzk,z % = AE, which leads
to

k' mAE

—=1/1+
k h2k?

(6.1)

where the released energy AE is given by O for zero unit of spin flip, upg.jB for one

unit of spin flip, and 2ugg B for two units of spin flip.

6.1.1 Born Approximation

In this section, we study the 3D dipolar collision processes using Born approximation.
The two-body wavefunction in the center-of-mass frame involves an incident plane

wave and a scattered spherical wave:

&

|w(i)(r)> — (1_ E){(eik-r_I_ee—ik-l')

SO+ [FO0 )+ ef (K B |S<”>} (6.2)

where € = +1 for bosons and —1 for fermions, i = 0,1,2 corresponds to different units
of spin flip, and f®(k’, k) corresponds to the respective scattering amplitude. Using
the first Born approximation, the scattering amplitude can be written as the Fourier

transform of the dipole-dipole interaction potential [21, 48]:

f(i)(k/’k): e hgfdrelqr S(l) Ud (r)|s(0)>
aa (6.3)
= S5 (89919230102 0 [)

where q = k — Kk’ is the momentum change during a scattering event, and agq =
# po(upgJ)? is defined as the dipolar length. For Dy atoms in the highest Zee-

man level |8,+8), we have agq = 6.82 nm. The corresponding matrix elements are
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listed in the following (see Chapter 2):

N—'

<s<°> J1-Js— 31 - @Iz § S(°)> = J2(1-3cos20q)

(S]d1-d2-3(1- @z &

N—

S(0)> = —3J32,%i0 sinfgcosbq (6.4)

3 .
S(0)> — _§Je+2l(/) Sinz Qq

<S(2) J1-Js— 31 - Q2§

N—

with 0y being the angle between q and the external magnetic field B. Here we see
that the momentum components q provided by the dipole-dipole potential possess d-
wave patterns, and that the magnitudes of the three matrix elements differ by factors
of V/J. Since the scattering cross-section scales as the square of the matrix element
(as will be introduced in the following paragraph), we expect, for bosonic Dy atoms
with J = 8, that the elastic scattering rate is an order of magnitude faster than the
dipolar relaxation rate with AL = 1, which is another order of magnitude faster than

the dipolar relaxation rate with AL = 2.

(a) } Z (b)

Fermion

Boson

Ogq ! 7T agd
S I @
i
U

X n

Figure 6-2: (a) The coordinate system under which collisional cross-sections are
solved using the Born approximation. The incident k are chosen to align with the
z axis, the guiding magnetic field B is chosen to lie within the XOZ plane, and the
outgoing momentum K’ is scattered into all directions. Angles 1, @5, and 6, are as
indicated in the figure. (b) Elastic cross-section of bosonic and fermionic Dy atoms as
functions of incident angle 7. 7 = 0° corresponds to head-to-tail collisions, and = 90°
corresponds to side-by-side collisions.

In the coordinate system defined in Fig. 6-2, we express the quantization axis, the
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incident momentum, and the outgoing momentum as

B = (sinn,0,cosn)
k=£%(0,0,1) (6.5)

k' = k' (sin 0 cos @5, sin O sin ¢, cos O)

And therefore 0y can be expressed as

2

(k—k’)-ﬁ)Z - [cosn(l - %cos@s)— %sinnsin@s COoS (g

2
cos“0Oq =
4 ( |k —-K| 1+(%)2—2%cos93

(6.6)
Using the expressions for the scattering amplitudes Eq. 6.3, the total cross-sections
of the three scattering channels can be evaluated as the integral of the differential
cross-sections over the whole solid angle in k' space:

@ _ do \ _ ., _lely [* " 0. sing. {0 A1 102
o = kor(dT)_(l—E) dgs | d,sind, {0 k) +efO(-K K[> (6.7)
Kk 0 0

6.1.2 Elastic Cross-Section of Dipolar Collisions

The elastic collisions of neutral atoms due to contact interaction in the low-energy
regime is usually characterized by the scattering length a which can be interpreted
as the phase shift of the asymptotic wavefunction at the short range [57]. For bosonic
atoms, the elastic cross section due to s-wave contact interaction is op = 87a? with
as being the s-wave scattering length. For identical fermionic atoms, however, the
elastic cross section or vanishes in the low-energy regime due to Pauli exclusion,
or due to the presence of the p-wave centrifugal barrier. This vanishing elastic
cross-section necessitates the use of sympathetic cooling method [45] or employing
fermionic atoms in different hyperfine states [31] for producing degenerate Fermi

gases of alkali atoms.

The presence of magnetic dipole-dipole interaction among Dy atoms modifies the
above conclusions. The elastic cross-section contributed by the dipole-dipole inter-

action given an incident momentum k, according to Eq. 6.3, Eq. 6.4, and Eq. 6.5,
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is

a2

U%DF :$(1 - %) fzn d(psfn dfgsinfg
’ 0 0
[(1 — 3cos? Ox—x’ )2 + (1 - 3cos? 9k+k’)2 +2¢(1 - 3cos? Or_x)(1-3 cos> Or+x!)
(6.8)
Using the expressions of Ox_j and Oy, given by Eq. 6.6 and assuming k& = &’ for

elastic scattering, we obtain the dipolar elastic cross-section for bosons and fermions

g 11-30cos®n+27cos*n  (bosons)
o _2* 2
IBF = g %ad (6.9
9 + 54 cos? n—39 cos* n (fermions)

which are both anisotropic and depend on the angle between the incident momentum
k and the quantization axis B defined by the external magnetic field. The angular

dependence of the elastic cross-sections are plotted in Fig. 6-2 (b). By integrating

(0)

BF / f_+11 d(cosn), the averaged elastic dipolar

over all incident directions f_+11 d(cosn)o

cross-sections for bosons and fermions can be obtained

8
(cr?)k = gna(zld + Snag
(6.10)
(0w = =ag,

The above expressions also include the contribution of s-wave contact interaction,
and neglect the interference term between the s-wave and dipolar scattering ampli-
tudes. For bosons, the presence of dipole-dipole interaction leads to a correction term
to the elastic cross-section on top of the s-wave contact interaction (consistent with
the result shown in Chapter 3 of Ref. [77]). For fermions, the effect of dipole-dipole
interaction is more significant: it leads to a non-zero universal elastic cross-section in
the low-energy regime and enables evaporative cooling of single-component fermionic
gases to quantum degeneracy. This has been first demonstrated by Francesca Fer-

laino’s group in Ref. [1].
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6.1.3 Inelastic Cross-Sections of Dipolar Relaxations

The above integrals can be extended to the calculation inelastic dipolar cross-sections
averaged over all incident directions. Here we list the results for scattering processes

with AL =0, 1, and 2

16
(0(0) k= = naﬁd[1+eh(1)]
24 %
$ 05 = ?nadd [1+ h(k’/k)]— (6.11)
24 k'
(0K = Emddﬂ[l h(k’/k)]—

2,2
where h(x) = —1 -3 1=x7) (L.x

58 ¥ (12D ) is a monotonically increasing function. In the limit

where the Zeeman energy is much larger than the incident kinetic energy AE >
1i2k%/m, the dimensionless variable x = k'/k = VmAE/lik asymptotes to infinity (see
Eq. 6.1) and the function A(x) asymptotes to 1— 4/x?. Therefore we conclude that
the inelastic cross-sections scale as VB for bosons, and as 1/v/B for fermions in the
large-B limit, i.e. dipolar relaxation is enhanced with increasing magnetic field for

bosons, whereas is suppressed by a larger magnetic field for fermions [72].

A

Interatomic Potential

R* Interatomic Distance r

Figure 6-3: The interatomic potential for the incoming channel with L = 0 and the
outgoing channel with L = 1. Two channels cross at r = R* where dipolar relaxation
of two bosonic atoms happens [85].

The scaling laws of the magnetic-field dependences of dipolar relaxation rates for
bosons and fermions can also be understood from the Fermi’s golden rule perspective.

This is discussed in great details in P. Barral’s thesis [10] and by B. Pasquiou et al.
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in Ref. [85].

In essence, for the case of bosons, two Dy atoms in the s-wave channel with L =0
are scattered into the L = 1 and the L = 2 channels through the dipole-dipole inter-
action. In 3D, the reaction resonantly happens at a specific interatomic distance R*,
known as the Condon point, where the potential curves of the incoming and the out-
going channels form a cross. For the dominant dipolar relaxation with AL =1, the
position of the Condon point R* is approximately given by the Zeeman energy upg.jB
and the centrifugal barrier #2L(L + 1)/mr? of the L = 1 channel (see Fig. 6-3), leading
to R* = iy / — NBZ 28 & 1/vVB. Hence a larger magnetic field would push the Condon

point to a shorter range.

In the vicinity of the Condon point, the incoming radial wavefunction is propor-
tional to the zeroth-order spherical Bessel function v, (r) < jo(kr) — 1 which asymp-
totes to a constant in the low-energy and short-range limit 2r << 1. On the other
hand, the outgoing wavefunction vy is highly oscillatory due to the released kinetic
energy. Therefore the matrix element that enters the Fermi’s golden rule is propor-
tional to the amplitude of incoming wavefunction evaluated at R* upon integrating
out Wout, i.e. | (Wout| Uaa |1,1/in> 12 o |1in(R*)|? ~ const.

In addition, two atoms after collision are scattered into a continuum of momen-
tum states with an energy given by the released Zeeman energy upg B. This cor-
responds to a 3D density of states p(AE) x VAE « vB. Thus we conclude that the
dipolar relaxation rate scales as vB for bosonic Dy according to the Fermi’s golden

rule.

On the other hand, two fermionic atoms in the same initial spin state mj = +8
only approach in the p-wave channel with L = 1 due to the anti-symmetrized total
wavefunction. The incoming radial wavefunction in this case is given by the first-
order spherical Bessel function which, due to the presence of the centrifugal barrier,
has a node at r = 0. At short range, the incoming wavefunction linearly asymptotes
to zero, i.e. YWin(r) o« jo(kr) — %kr as kr — 0. Therefore the square of the matrix
element in the fermionic case follows |<1//0ut| Uaa |1//in> 12 o [pin(R*)12 x R*?  1/B.

Combined with the B-field dependence of density of states, we conclude that the
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dipolar relaxation rate scales as 1/v/B for fermions.

The scaling laws of dipolar relaxation rates with magnetic field obtained from the
Fermi’s golden rule are fully consistent with those obtained from the Born approxi-
mation [85]. Moreover, we see from the Fermi’s golden rule analysis that by reducing
the amplitude of the incoming wavefunction at short range, or in other words, by
shielding the Condon point using a repulsive potential, any general inelastic pro-
cesses which happen at short range should be suppressed.

Besides the p-wave centrifugal barrier for identical fermions, repulsive barriers
have been achieved, for example, by addressing different rotational states of cold
molecules using microwave photons [3], and by utilizing dipolar repulsion in tight
quasi-2D confinements [80]. But most of these techniques are used for suppress-
ing inelastic losses (or chemical reactions) in cold molecule experiments, which have

clear short-range characteristics.

6.2 Dipolar Relaxation in a Quasi-2D Confinement

Motivated by the above analysis, we study below how dipolar relaxation of Dy atoms
in the m = +8 spin state can be suppressed using dipolar repulsion in a tight-2D
confinement. Different from typical polar molecule experiments where long-range
repulsive forces are used to suppress short-range inelastic losses, here we attempt
to suppress the inelastic part of the magnetic dipole-dipole interaction (3rd and 4th
lines of Eq. 2.4) using its elastic part (1st line of Eq. 2.4). We observe that, despite
the similar long-range behaviors of the elastic and the inelastic potentials, the dipo-
lar relaxation rate can be suppressed by an order of magnitude under a tight axial

confinement with a trap frequency of 200 kHz.

6.2.1 Introduction to Dipolar Shielding

The concept of dipolar shielding was developed by several theoretical papers [20, 104,
103]. Let’s understand this concept by considering two dipolar particles confined in

a harmonic oscillator with a trap frequency of w, along the z direction. The two-
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particle wavefunction can be factorized into a center-of-mass part and a relative part

by transforming into the following coordinates

1
R=—=(r;+ry) P=p:+p2
2 : (6.12)

’ 1
r=r;—ry p=§(p1—pz)
where R and P are the center-of-mass coordinate and momentum, and r and p are
the relative position and momentum. By using this definition, the two-body Hamil-
tonian (neglecting the Zeeman energy and the inelastic parts of dipole-dipole inter-

action) can be re-written in terms of a center-of-mass part and a relative part

1,P? 9,9 p2 1 55 o 5 1—3cos?6
H—é(%+2msz l+?(%+§mwzz )+E(uBgJJ) T (613)
center—of?Irnass part relati;; part
with the corresponding Schrodinger equations written as
1/P?
~(5= +2me?Z?|¥(R) = E¥(R)
2\2m
| 1-3cos?6 614
L + —mwgz2 + &(yBgJJ)2—3]1//(r) =ey(r)
m 4 4 r

2 3 4 5 6
pla

Figure 6-4: (a) Contour plot of the dipole-dipole potential with an axial harmonic
confinement (Eq. 6.15). A saddle point exists at p = 1.83d@ and z = 0.92d. As Dy
atoms move across the saddle point from (z = 0, p = 00), their dipolar interaction turn
from repulsive to attractive. (b) 1D cuts of Ui (p,z) from z = 0.0 to z = 3.0d (dark red
to light red) with a step of Az =0.24. The dipolar barrier vanishes as z increases.
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Combining the harmonic confinement and the elastic dipole-dipole interaction,

we define the total potential as the following

_ Ho 128G 1 5,
Utot(p,2) = E(,UBgJJ) —g T sz

h? aqd as 22q® 1z

) (6.15)
_gq” rTdd _ + ==
m as [(02 + 22)3/2 (pz +22)52 12 G2

where agqq = 2 po(kpgsd )2 and @ = (a‘ﬁoadd)y5 with the axial oscillator length
amo = \/sz . The total potential with two saddle points locating at (p = 1.83d,z =
+0.92a) is plotted in Fig. 6-4 (also see Ref. [20]). As we see, a dipolar barrier exists
when |z| < 0.924 and vanishes when |z| > 0.924. Hence, we expect that when the
axial confinement is so tight that the oscillator length a0 becomes comparable to the
dipolar length a44, the incoming wavefunction needs to penetrate through a barrier
before reaching the short range, leading to an exponential suppression of short-range
inelastic processes. This is the basic concept of dipolar shielding.

For the case of 3D dipolar relaxation, the Condon point at which dipolar relax-
ation resonantly happens can be tuned to shorter range with increasing magnetic
field. For the quasi-2D geometry, on the other hand, the concept of Condon point is
more complicated with more vibrational channels and Zeeman channels coming into
play. The full discussion on this matter is included in P. Barral’s thesis [10]. In the
following parts, we focus on introducing the experimental setups for implementing

the suppression of dipolar relaxations in a quasi-2D confinement.

6.2.2 Experimental Protocol

The main experimental challenges for measuring dipolar relaxation rates come from
the following two aspects: (1) achieving tight axial confinement without increasing
atomic density too much to avoid strong three-body losses, and (2) adjusting the mag-
netic field to designated values quickly so that dipolar relaxation processes, which
typically occur on millisecond timescales, can be measured under constant magnetic

fields.
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Blue-Detuned Optical Lattice

To create tight axial confinement while keeping the atomic density low, we use a
blue-detuned circularly-polarized optical standing wave with a beam waist of approx-
imately 50 ym addressing the 741 nm narrow-line transition of Dy. The blue-detuned
standing wave produces axial confinements at the intensity minima with a trap fre-
quency of w,. However, it also produces a transverse repulsive potential proportional
to the gradient of the axial zero-point energy, i.e. U (p) = —hVw,. To compensate for
this repulsion, we add a coaxial high-power (up to 8 W) 1064 nm circularly-polarized

laser beam with a beam waist of 64 um for transverse confinement (see Fig. 6-5).

1064 741
red beam blue lattice

Figure 6-5: Illustration of the trap geometry. A blue-detuned 741 nm optical standing
wave is used for producing tight axial confinement. A 1064 nm beam is used for
transverse confinement.

We experimentally determine the required power for the 1064 nm compensation
beam by imaging the atoms in situ using off-resonant 421 nm light and ensuring that
the atomic clouds are not fragmented in the transverse direction. The resulting pow-
ers are typically much higher than the values estimated from the zero-point energy
gradient. This can be attributed to the imperfect contrast of the optical standing
wave when the powers of the intro- and the retro-beams are not balanced, and to

aberrations of the intro- and the retro-beams.
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Zeroing of Magnetic Field

To measure dipolar relaxation rates in an external magnetic field on a milligauss
level, we need to zero the transverse magnetic field with high precision. This is ac-
complished using two calibration methods: (1) measuring absorption imaging signals
with circularly-polarized imaging light, and (2) measuring Kapitza-Dirac signals by
pulsing on a circularly-polarized optical lattice. Both methods are based on the same
principle that the strength of the m s = —8 — —9 transition is 153 times larger than
that of the m; = -8 — —7 transition due to the ratio of the corresponding Clebsch-
Gordan coefficients. When the transverse magnetic field is perfectly zeroed, the ab-
sorption imaging signal or the Kapitza-Dirac diffraction signal should experience a
drastic change when the axial magnetic field B, is scanned through zero. By maxi-
mizing the steepness of the step functions (see Fig. 6-6), we achieve zero transverse
magnetic field with an accuracy higher than 10 mG.
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Figure 6-6: Transverse magnetic field is zeroed utilizing the high-contrast absorp-
tion imaging signals of the mj = -8 — —9 and the mj = -8 — —7 transitions. The
absorption imaging beam is prepared with high-quality circular polarization. The
transverse magnetic field is adjusted to produce a step-like change in the imaging
signal when the axial magnetic field B, is scanned through zero.

The calibrations based on the absorption imaging method and the Kapitza-Dirac
diffraction method give a consistent magnetic zero point. We used the former method
for the dipolar relaxation experiment and the latter for the bilayer experiment intro-

duced in Chapter 5.
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Fast Adjustment of Magnetic Field

The dipolar relaxation of the m,; = +8 state occurs on a millisecond timescale,
with a typical atomic density of 10 to 10" ¢cm™. To measure atom losses and
temperature increases on this timescale under different magnetic field strengths, we
need to adjust the magnetic field faster than the millisecond timescale immediately
after preparing the atoms in the m = +8 spin state.

To address this issue, we generate a total magnetic field of 3.5 G along the z di-
rection using two Helmholtz coil pairs, referred to as pairs A and B. Pair A produces
the designated field, B, for measuring dipolar relaxation, while pair B provides the
remaining field to ensure the total field is consistently 3.5 G at the beginning. We
then transfer the atoms from the m ; = —8 state to the m = +8 state using a linear
Landau-Zener sweep. The adiabaticity of the spin flip is verified by performing a re-
verse sweep and ensuring that the lifetime of the resulting atomic cloud is consistent
with that of the original cloud in the m = —8 state. After the spin transfer, we open
the solid-state relay controlling coil pair B. The current in coil pair B is then dissi-
pated by the varistor connected in parallel within 50 us. This procedure of adjusting

magnetic field by switching off coils allows us to change the magnitude of the axial

magnetic field much faster than the millisecond timescale.

6.2.3 Measurement of Dipolar Relaxation Rates

Loaded from a thermal cloud with a temperature of 7' = 150 nK and the root-mean-
square axial extension of oopr ~ 4.7 um, we populate around 4\/7oopr/A =~ 45 copies
of pancake-shaped gases with an initial transverse temperature of 1 uK. Following
the above experimental procedures, we measure the evolution of total population and
temperature of the quasi-2D gases in the m j = +8 spin state under different values
of axial trap frequencies and magnetic fields. We extract the dipolar relaxation rates
Bsp from these measurements based on the local rate equation dﬁ—iD =- ,B3Dn§D. The
full analysis involves the calculation of averaged atomic densities according to the
effective trap volume that takes into account inhomogeneous density distributions

within each pancake and across different pancakes, which is described in P. Barral’s
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and M. Cantara’s thesis [10, 22] and in Ref. [12]. Here we directly present the results
in Fig. 6-7.

(a) . _ (b)
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Figure 6-7: (a) Experimentally measured dipolar relaxation rates in 3D (red points)
and in a quasi-2D confinement with an axial trap frequency of w, = 27 x 185 kHz
(blue points). The red and blue solid curves are the corresponding theoretical curves;
The dashed blue curve is a theory curve for non-shielded atoms in the same quasi-2D
confinement [10] (same for (b)). (b) Measured dipolar relaxation rates in quasi-2D

confinements with different axial trap frequencies in an external magnetic field of
B, =200 mG.

We see from Fig.6-7(a) that, with an axial trap frequency of w, = 27 x 185kHz,
the dipolar relaxation rates of quasi-2D gases are reduced to the 1072cm3/s regime,
which is an order magnitude slower than those of 3D gases confined in a XODT.
Under such a tight quasi-2D confinement, more axial vibrational channels open up
with increasing magnetic field, thereby shifting dipolar relaxation processes to larger
distances and weakening the dipolar shielding effect.

Fig.6-7(b) shows the measured dipolar relaxation rates in an axial magnetic field
of 200mG. As the axial trap frequency reaches 260 kHz, we observe an order of mag-
nitude suppression in the dipolar relaxation rate coefficient f3p. The extrapolation of
the theoretical curve suggests that another order of magnitude suppression is achiev-
able when the axial trap frequency exceeds 500 kHz. This would be comparable to
the lowest dipolar relaxation rate obtained with fermions through Pauli suppression,
as reported in Ref.[21]. The theoretical curves presented in Fig.6-7 contain no free

parameters and agree well with the experimental results. The dashed curves repre-
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sent the calculated dipolar relaxation rate with the dipolar barrier removed from the

Hamiltonian (see Refs. [10] and [12] for details).
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Chapter 7

The Future, At Present

This thesis explored several aspects of using ultracold Dy atoms as fundamental
building blocks to assemble and study interesting quantum systems. The unique
electronic structure of Dy gives rise to many distinctive atomic properties, such as a
large angular momentum in the ground state, a large magnetic moment that leads to
strong long-range dipole-dipole interactions, and optical transitions that differ from
those of typical alkali atoms. We introduced the experimental apparatus for produc-
ing Bose-Einstein condensates of Dy atoms and for controlling their internal spin
states. Based on this, we conducted two experiments with ultracold Dy atoms.

Utilizing the large ground-state angular momentum, we developed a dual-frequency
and dual-polarization super-resolution optical potential capable of bringing two lay-
ers of Dy atoms in opposite spin states m, = £8 to a separation of 50 nm. Such close
proximity significantly enhances the interlayer dipolar interaction strength by three
orders of magnitude and allowed us to observe motional couplings between the two
layers arising purely from the long-range effect.

By confining Dy atoms in tight quasi-2D geometries, we realized dipolar shielding
in the ultracold regime and observed an order of magnitude suppression of inelastic
dipolar relaxation processes in Dy atoms in the m ; = +8 spin state. This opens up
possibilities for studying physics of spin mixtures that would otherwise be short-lived
due to inelastic collisions.

While the story of this thesis concludes here, the exploration of intriguing physics
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continues in the lab. On the technical front, with the new lab ‘Dypole I’ ramping up,
alternative slowed-atom sources, such as a 2D MOT and a 3D moving molasses, can
be implemented to deliver the cold flux of Dy. These techniques could make the
new apparatus more compact compared to the old Zeeman slower design. Moreover,
by integrating a glass cell and a high-N.A. objective into the apparatus, a quantum
gas microscope with single-site imaging and potential projection capabilities can be
implemented. Such technical advances and upgrades could elevate the quantum gas

machine to a new level for experiments with dipolar gases of Dy.

On the scientific front, there is still much to understand about Dy atoms and their
interactions with laser photons. As mentioned in Chapter 1, no discretized photoas-
sociation features have yet been discovered in Dy Bose-Einstein condensates (BECs)
or thermal gases, to the best of our knowledge. This topic can be more systematically

investigated using well-prepared Mott insulators in optical lattices.

In addition, all experiments discussed in this thesis utilized the bosonic isotopes
162Dy and '64Dy. There are also intriguing topics to explore with the fermionic iso-
topes 91Dy and 3Dy, such as p-wave superfluidity [107], dipolar pairing [37], and
more. Unlike bosons, for fermions, the Fermi energy Er, which characterizes the

23 where n is the density of the

kinetic energy due to Pauli exclusion, scales with n
Fermi gas. But the strength of the dipolar interaction, inversely proportional to the
cubic power of the interparticle spacing, scales with n. Therefore, one needs to reach
a high-density regime for significant dipolar effects to occur in fermions. For single-
component Fermi gases in 3D, this would require an inter-atomic distance n~3 that
is comparable to the dipolar length a 44 = 7 nm, which is not feasible for Dy. However,
this can be achieved either by confining two fermionic atoms at each site of an optical

lattice, or by reducing the effective kinetic energy of atoms using flat energy band in
an optical kagome lattice [67] or in a twist bilayer optical lattice [83].

Finally, the super-resolution technique introduced in this thesis can open up
many research directions. By adding extra transverse optical potentials, it is pos-
sible to study 1D tubes or 2D lattices separated by 50 nm with strong proximity

dipolar couplings. Applying this technique to optical tweezer arrays enables the im-
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plementation of two-qubit quantum gates at kilohertz speeds driven by magnetic
dipolar interactions. By moving one set of tweezers back and forth, a 1D chain of
dipolar atoms with full connectivity can be implemented. Additionally, if degenerate
gases of bosonic and fermionic isotopes can be co-trapped, subwavelength indepen-
dent control using two lasers at tune-out wavelengths can be realized, allowing for
the implementation of a head-to-tail dipole configuration in a bilayer. Many of these

new research directions are described in Ref. [34] (also see Appendix C).
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Appendix A

Calculation of magnetic field

The design of magnetic coils of the machine requires accurate calculations of mag-
netic fields based on the geometries of the coils. This appendix introduces the ap-
proach for modeling the spatial distribution of magnetic field given the winding pat-

tern and the cross-sectional shape of the magnetic wires.

(a) (b) .

Figure A-1: (a) Local coordinate system where e; is the unit vector along the tangen-
tial direction of the center line, e; and e;, are orthogonal unit vectors perpendicular to
e¢. (b) The cross section of the wire is described by vector é in the 2D space spanned
by e; and e;,.

We describe the current distribution j(rg) inside the magnetic wire as a perturba-
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tion é around its center line r:
j(ro) =j(re +06) (A1)

where we define 6(¢,7n) = {e; + e, to be the local right-handed coordinate describing
the cross section of the wire with e; and e; being the local Cartesian basis, and
ro(0) = x(0)ex + y(0)ey + z(0)e, to be the coordinate of the center line of the magnetic
wire parameterized by 0 (see Fig. A-1). The local tangential basis, analogous to the
velocity vector moving along the magnetic wire, can be expressed in terms of the
derivative of the local coordinate as
rp 1, o
e=—— = r—,ﬂl [re(0) + e +ney | (A.2)

/
ol

Thus the current density can be written as j(rg) = je;. Under the local coordinate

spanned by basis {e;,e;, e}, a Jacobi determinant appears in volume integrals

(I’:) -ex) (r6 : ey) (I‘:) ‘€y)
dVo = dxodyodzo = | (e;-ey) (e:-ey) (e¢-e,) [dOdEdn = (rg-e)ddidn  (A.3)

(en ‘ex) (en : ey) (en ‘ey)

By using the Biot-Savart law, the vector potential in the Coulomb gauge due to the

current inside magnetic wires can be derived as

_Ho [ v jo) _ poj

A(r) = =
(r) 47 Jv, OIr—rol 47

fd@d«fdn -(cosy-rg) (A.4)

[r — x|

where cosy = (ry -1, )/|rylIr.| denote the angle between the local tangential vector and
the tangential vector of the center line. To summarize, by parameterizing the shape
of the center line and the cross section of the magnetic wire, one can calculate the

spatial magnetic field distribution B =V, x A based on Eq. A.4.

Under the approximation that |§| < |r¢| and |r|, we can do far-field expansion and

factorize out the integral with respect to ¢ and nin Eq. A.4. This is done by expanding
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the propagator 1/|r —rp| as

1 1 1 1
~ —(6-V) +=(6-V)? F...
r—ro| [r—rl r—rel 2 |r —rel (A5)
1 [0lemrd) Lgss s2qy, FTT)E o) |
lr—rel Ir—rel® 2 Ir—rel®

where the column operator is defined for vectors as ab :cd = (a-d)(b-c¢). By also
noticing the expansion of cosy in Eq. A.4, we can organize the terms of the vector

potential A(r) according to different orders in é as

/
A(O)( ) IJOJf d d f rc d0
4 Jem ¢ 0 lr—rel
' (r—re)
Ay = B [ s14eq LR sigean | 5 d0
3 4 Jew o =rel 47 Jiem 7)o =€
! 2/ !
A(Z)( ) uo]f (6 6/ 6/2]1)d d rcrc rc lu‘O.] 66 d d _rc
4n Jign 2 san: 0 r4 lr— rcl @&m ¢ o lr—rel3
/
+“°J (366 821)dédn: f (r r.)(r— rc)) Te ——=db
(A.6)

where AV(r) is related to the first moment of the cross section, and A®(r) is related
to the second moments of the cross section. For the commonly-used magnetic wires
with square or round cross sections, the first moments are zero hence AV(r) van-
ishes. The lowest-correction term in addition to the vector potential A®(r) caused
by zero-thickness magnetic wires is then A®(r). By modeling the magnetic wires
in terms of the parametric equations for {r.(0),e:(0),e;(0)} and evaluating the ma-
trix elements in Eq. A.6, the vector potential induced by the magnetic wire can be

calculated.

Attached to the end of this appendix is the code for evaluating A®(r) and A®(r)
written in Mathematica. As an example, we calculate the magnetic field from a
solenoid wound using a square wire with an edge length of the cross section a =
0.5 cm. The solenoid has a diameter of 6 cm, and a length of 50 cm. The zeroth
order term and the second order correction to the magnetic field distribution of the
solenoid is plotted in Fig. A-2. The zeroth order term is consistent with the result

obtained simply from the Ampere’s law B/I = po/a = 2.51 G/A. Since the second-order
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correction is 4 orders of magnitudes smaller than the zeroth-order term, we neglect

this correction for all the coil-design applications.

(@) ® _

25 § 0.0004
2.0 :
g s g 0.0002+
et S 0.0000
s. 1.0 S,
o @' -0.0002f
0.5 1
] ~0.0004}
00 L L L L = L L L L L I
60 -40 -20 0 20 40 60 60 -40 -20 0 20 40 60

z (cm) z (cm)
Figure A-2: (a) The axial zeroth-order magnetic field B(ZO)(z) from a solenoid made by
a tightly-wound square wire with edge length of 6 cm. The length of the solenoid is
50 cm. (b) The second-order correction to the magnetic field B(f)(z) from the same
solenoid, taking the finite cross-section of the wire into consideration.
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Magnetic Field Calculation

Zeroth-order Magnetic Field (BFieldO Module)

The BField0 module is for calculating the magnetic field caused by an electric wire to the zeroth order.
The shape of the center line of the wire is describe by the parametric equation {x.(6), y.(6), z.(6)}.

Format:
Magnetic Field at location (x,y,z) = BFieldO [X, Y, Z, Bmin, Bmaxs Xc» Yes Zcl;

BFieldo[x00_, yo0_, z00_, emind_, emax0_, xcO_, ycO_, zcO_] := Module|
{xfield = x00, yfield = yoo, zfield = z00, 6émin = 6éMinoO,
émax = émax0, xc = xc0, yc = yc0, zc = zc0, 10, rc, dB, B, x, y, z, ud, 60},
10 = 1; (%A+)
u0 =4 %Pix10A (-7); (*H/mx)
rc[e0_] := {xc[e0], yc[60], zc[60] };
(» B-field calculation x)
100 » 10000 * uO * I0 / (4 % Pi) *
NIntegrate[Cross[D[rc[60], 60], ({xfield, yfield, zfield} -rc[60])] /
Norm[rc[60] - {xfield, yfield, zfield}] 3, {60, 6min, 6max}]

Second-order Magnetic Field (BField2 Module)

The BField2 module for calculating the second-order residue of the magnetic field. The shape of the
center line of the wire is describe by the parametric equation {x.(8), y.(6), z.(6)}. The two orthonormal
basis {e¢, e,} are also parameterized by 6, illustrating how the wire is twisted. To specify the size effect
of the cross-section, the second-moment integral defined as %J'(fzmz)dfdr]/fdfdn also needs to be

specified.

Format:
Second-order residue at location (x,y,z) =BField2 [X, Y, Z, Bmin, Bmax, Integral, xc, Ve, Zc, ¢, €,];

Printed by Wolfram Mathematica Student Edition



2 | Package_B_Field.nb

BField2[x00 , y0o® , z0®_, emin0_,

emax0_, itgd_, xcO_, ycO_, zcO_, e§0_, end_] := Module[
{xfield = x00, yfield = y00, 6émin = émin0®, émax = émax0, zfield = z00,

itg = itgd, xc = xcO, yc = ycO, zc = zcO, e§ = e£0, en = end, 10, rc,

&, 66, 661, 66ppl, 66pp, 66p, m1i, m2, m3, dB, B, x, y, z, u@, 60},
I0 =1; (*%A%*)
4O = 4 % Pi %102 (-7); (*H/mx)
rc[e0_] := {xc[e0], yc[60], zc[60]};
6[€_,n_, 80_] :=E+xef[60] +n*en[60];

(» matrix elements =x)
56[00_] :=

itg» Table[e£[00] [1] * e£[60] [J] + en[60]1[i] »en[60]1[j1, {i, 1, 3}, {j, 1, 3}1;
56I[60_] :=itgxNorm[e£[60] +en[60]] "2 * {{1, 06, 0}, {6, 1, 0}, {0, O, 1}};
56ppI[60_] := itgx Norm[eE'[60] +en'[60]172* {{1, O, 0}, {6, 1, O}, {6, 0, 1}};
66pp[60_] :=itg =

Table[eg'[60][i] »e£'[60]1[j] +en'[60][i] xen'[60]1[jl, {i, 1, 3}, {j, 1, 3}1;

56p[e0_] :=

itgx Table[e£ ' [60][1] *e£[60] [j] +en'[60] [i] *en[60]1[jl, {i, 1, 3}, {j, 1, 3}1;

mi[ed_, x_,y_, z_] :=Sum[(665ppI[60] - 55pp[60])[i, jl *rc'[60][]j] * rc'[60][1i],
{i, 1, 3}, {j, 1, 3}] / Norm[rc'[60]] "4;
m2[e0_, x_,y_,z_] :=
Sum[Transpose[&6p[60]] [l * ({x, Y, z} -rc[60]) [il, {i, 1, 3}1;
(xproblem maybe exists here!x)
m3[e0_, x_,y_,z_] :=
Sum[ (3 *66[60] -S66I[60]) [T, jl * ({X, y, z} -rc[60]) [J] * ({x, y, z} -rc[60]) [iI,
{i, 1, 3}, {j, 1, 3}] /Norm[{x, Yy, z} -rc[60]] A5}
(* B-field calculation =)
dB[60_, x0_, yO_, z0_] := ComplexExpand [
Curl[100 (xcm -» m*) * 10000 (xTesla » Gaussx) * u@ * I0 / (4 % Pi) * (
-1/2x*ml[60, X, y, z] xrc'[60] /Norm[{x, Yy, z} -rc[60]]
+m2[60, x, y, z] /Norm[{x, y, z} -rc[60]] 73
+1/2%*m3[60, X, y, z] *rc'[60]
)
» (X5 ¥, 2}]11 /. {x>x0,y->y0, z-> z0};
Re[
NIntegrate[ (dB[60, xfield, yfield, zfield]), {60, émin, &émax}]
]
1

Example
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Here we present an example to evaluate the zeroth order and the second-order residue of the magnetic

field induced by a spiral wire.

Off[NIntegrate::ncvb];

Off[NIntegrate::slwcon];

d=6; (xcmx)

a=0.5;(xcmx)

L =503 (xcmx*)

¢ =0.2; (xcmx)

(* 2nd moment =*)

itg=2+ah2/3/8;

(» center line x)

xc[e0_] := (d/2+a/2) xCos[60];

yc[60_] := (d/2+a/2) *Sin[60];

zc[60_] :=a/ (2*Pi) *60;

(* local basis x)

eg[60_] := {Cos[60], Sin[60], O};

en[e0_] :=1/ (Sqrt[(d/2+a/2)"2+ (a/ (2%Pi))Ar2]) *
{-(a/ (2%Pi)) »Sin[60], (a/ (2*Pi)) xCos[60], -(d/2+a/2)};

Dynamic[z]
BAxial =
Table[BFieldo[0, O, z, -Pi*xL/a, PixL/a, xc, yc, zc1[31, {z, -70, 70, 2}1;
BAxialRes = Table[BField2[0, O, z, -PixL/a, PixL/a, itg, xc, yc, zc, e§, en] [31,
{z, -70, 70, 2}];
ListPlot[BAxial, Joined » True, PlotRange -» All, PlotStyle » {Blue, Thick},
Frame » True, FrameLabel -» {"z (cm)", "Bz/I (G/A)"},
FrameStyle -» Directive[Black, 12], ImageSize - 200]
ListPlot[BAxialRes, Joined -» True, PlotRange - All,
PlotStyle -» {Blue, Thick}, Frame » True, FrameLabel » {"z (cm)", "Bz/I (G/A)"},
FrameStyle -» Directive[Black, 12], ImageSize - 200]
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Appendix B

Enhancing the Capture Velocity of
a Dy Magneto-Optical Trap with
Two-Stage Slowing

This appendix contains a reprint of Ref. [76]: William Lunden, Li Du, Michael Can-
tara, Pierre Barral, Alan O. Jamison, and Wolfgang Ketterle, Enhancing the cap-
ture velocity of a Dy magneto-optical trap with two-stage slowing Physical Review A,

101(6), 063403.
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Enhancing the capture velocity of a Dy magneto-optical trap with two-stage slowing
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Magneto-optical traps (MOTS) based on the 626-nm, 136-kHz-wide intercombination line of Dy, which has
an attractively low Doppler temperature of 3.3 <K, have been implemented in a growing number of experiments
over the last several years. A challenge in loading these MOTs comes from their low capture velocities. Slowed
atomic beams can spread out significantly during free flight from the Zeeman slower to the MOT position,
reducing the fraction of the beam captured by the MOT. Here we apply a scheme for enhancing the loading rate
of the MOT wherein atoms are Zeeman slowed to a final velocity larger than the MOT’s capture velocity and
then undergo a final stage of slowing by a pair of near-detuned beams addressing the 421-nm transition directly
in front of the MOT. By reducing the free-flight time of the Zeeman-slowed atomic beam. we greatly enhance the
slowed flux delivered to the MOT, leading to more than an order-of-magnitude enhancement in the final MOT

population.

DOI: 10.1103/PhysRevA.101.063403

I. INTRODUCTION

Dysprosium, which possesses the largest magnetic moment
(u ~ 10pp) of any atomic species, has grown in popularity
in the ultracold quantum gas community over the last decade
[I-11]. The large magnetic moment, as well as several other
useful properties, arises from its [Xe] 4f1'°6s> electronic
configuration. The two 6s electrons give rise to a heliumlike
excitation spectrum, including a strong transition at 421 nm
and a weak, intercombination transition at 626 nm. The un-
filled 4f shell gives rise to narrow clocklike transitions. It
also leads to spin-orbit coupling in the ground state, which
is useful for many quantum simulations, including simulating
gauge fields [11,12].

The narrow linewidth of the 626-nm transition in Dy
corresponds to a low Doppler temperature of 3.3 K, making
it an attractive option for magneto-optical trapping (MOT).
The downside of using a narrow transition is that the capture
velocity of the MOT is lower than for a broader transition.
Slowing an atomic beam to within a low capture velocity
can lead to a situation where the slowed beam transversely
spreads out so much that many slowed atoms miss the MOT.
Cooling the transverse degrees of freedom of the atomic
beam and increasing the capture velocity of the MOT by
frequency dithering the MOT light are two measures which
are typically employed to mitigate this limitation [2—-6,13], but
their effectiveness can be limited.

In the present work, we add an approach which we refer to
as “angled slowing,” which applies a second stage of slowing
to the atomic beam with a pair of low-power beams that
intersect directly in front of the MOT. This allows us to
choose a sufficiently large final velocity for the first stage of
slowing (i.e., Zeeman slowing) where atoms do not spread
out appreciably before reaching the MOT. This approach
was introduced in a Yb experiment, where it gave a small
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enhancement to the MOT loading rate [14]. The Yb experi-
ment has recently explored the approach in more detail [15].
In our experiment, angled slowing enhances the MOT popula-
tion by more than a factor of 20. Compared to other methods
which have been employed to increase the capture velocity of
narrow-line MOTs—such as the two-stage MOT [1] and the
core-shell MOT [16]—the angled slowing approach requires
fewer beams and less laser power.

In Sec. IT we briefly describe the aspects of our experiment
that are similar to those previously reported by other experi-
ments. In Sec. III, the idea behind angled slowing and how it is
particularly applicable to experiments with narrow-line MOT's
is discussed. In Sec. IV, we describe how we optimized the
performance of angled slowing with respect to beam pointing,
laser power, and frequency. In Sec. V, the compression and
detection sequence that follows the loading of our MOT is
described, and the temperature and phase-space density of the
compressed MOT are reported.

II. EXPERIMENTAL SETUP

Due to the recent explosion in popularity of dysprosium,
several groups have developed similar cooling and trapping
protocols in parallel [2-6,13]. Here we briefly describe our
approach and give references to more detailed explanations of
similar systems.

Our atomic beam of Dy is generated by a commercial
molecular beam epitaxy oven [17] heated to 1250 °C. The
dysprosium vapor is collimated into an atomic beam by a
7-nm-diameter nozzle, which is 90 mm from the opening of
the oven, followed by a 10-cm-long, 7-mm-diameter differen-
tial pumping tube that starts 19 cm from the nozzle.

We use 421-nm laser light for Zeeman slowing, trans-
verse cooling, and absorption imaging. This light is gener-

©2020 American Physical Society
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Zeeman Slower

Zeeman Slower Beam

FIG. 1. Geometry of our Zeeman slowing, MOT, and angled slowing beams. The vertical MOT beam pair is not shown in this top view
of the machine. The angled slowing beams enter through the same viewports as the MOT beams and are aligned such that they intersect the
atomic beam without hitting the MOT (indicated by the dark circle in the center of the chamber).

ated using an M-squared Ti:sapphire laser and an ECD-X
fixed-frequency second-harmonic generation cavity (1.6 W
total output), as well as two injection-locked laser diodes
(90 mW total output each). The frequency of the Ti:sapphire
laser is stabilized by measuring the frequency of the doubled
light with a HighFinesse WLM-7 wavemeter, and feeding
back on a piezo-actuated mirror in the laser cavily using an
Arduino Due. The wavemeter lock drifts by a few megahertz
(verified at multiple wavelengths with lasers locked to atomic
references) over the course of a few days if the wavemeter
is not physically moved or perturbed. We periodically adjust
for drifts in the calibration of the wavemeter (which are
typically a few megahertz per day) by checking the resonance
frequency of the 421-nm transition via absorption imaging.
A Toptica TA-SHG system (700 mW total output) generates
the 626-nm light for the MOT. For frequency stabilization of
this laser, we shift the light by about +1 GHz and employ
a modulation transfer spectroscopy scheme to lock the laser
frequency to a transition in a room-temperature iodine cell.
We stabilize our laser frequency to at least the few-hundred-
kHz level with this setup.

In the present work we slow the bosonic isotope '®*Dy,
which has 25.5% natural abundance [18]. Our Zeeman slow-
ing light consists of 300 mW of light addressing the 421-nm
transition (I'4p; = 32.2 MHz), which comes to a focus at
the position of the oven. Light enters the vacuum chamber

with a beam diameter of about 2 cm, bouncing off of a
45-degree in-vacuum mirror as shown in Fig. 1. This scheme
was implemented so the entrance window for the slowing light
does not get coated by the Dy atomic beam.

To minimize the effect of the Zeeman slower light on
atoms trapped in our MOT, we use an increasing-field Zeeman
slower design. This allows us to employ a larger detuning in
our slowing beam, which reduces the losses due to scattering
in the MOT. A counterwound segment of coils at the end
of the slower cancels the [ringing magnetic field [rom the
slowing coils at the position of the MOT. We use light de-
tuned about 1.1 GHz from the zero-velocity transition, which
resonantly addresses atoms moving at 480 m/s (close to the
most probable velocity of the atoms emitted from the oven).
We have an additional, uniformly wound bias coil running
the length of the Zeeman slower, which creates a constant
offset magnetic field inside the slowing region. This allows
adjustment of the effective detuning of the Zeeman slower
beam by up to several hundred megahertz without needing to
employ an acousto-optic modulator (AOM).

Our MOT is formed by three retroreflected 626-nm beams.
Each beam has a 1/¢? diameter of 2.3 cm and a total power
of 42 mW (£5%), corresponding to a (peak) saturation pa-
rameter of s &~ 280. The quadrupole field’s gradient along
the strong direction is approximately 2.5 G/cm. To improve
the capture velocity of the MOT, we dither the frequency
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of the MOT light using a double-passed AOM. The dithering
occurs at a frequency of 120 kHz and broadens the laser
linewidth to 2.6 MHz (30@'26). Three pairs of rectangular
coils in Helmholtz configuration allow us to cancel back-
ground magnetic fields and will also allow us to employ
feedback- and feedforward-based magnetic field stabilization
schemes during future experiments.

III. ANGLED SLOWING

Atoms that have been slowed by a Zeeman slower must
travel some nonzero distance at their final, slowed velocity
from the end of the Zeeman slower to the position of the
MOT. During this period of free {light, the transverse velocity
distribution of the beam causes the atomic beam to spread out.
If the free-flight time is sufficiently long, then the atoms can
spread out far enough that they are not captured by the MOT.

While this is not typically a limiting factor in experiments,
the combination of an increasing-field slower and the narrow
linewidth of the MOT transition creates a situation in which
the transverse spread plays a significant role. To clarify this
point, we compare Dy to the more common alkali MOTs.

The capture velocity of a MOT can be estimated by calcu-
lating the largest velocity that can possibly be slowed to a stop
within the profile of the MOT beams. Assuming that the atoms

T

scatter photons at the maximum possible rate 5 across an

entire beam diameter D, an expression for the capture velocity

is given by
nkm
Ucap = 2%D, ()

where m is the atomic mass and k = QT” is the wave number
of the MOT light.

The spatial spread o of the atomic beam can be
estimated as

o A 2g s )
Viong

where d is the free-flight distance, vyans is the rms transverse
speed, and vjon, is the average longitudinal speed. Collimation
of the atomic beam by one or more apertures typically leads
to a transverse velocity distribution with an rms speed around
1% of the average (unslowed) longitudinal velocity [19].

Let us compare the case of a ’Rb MOT to a '®Dy
MOT, taking typical values of D =2 cm for the MOT beam
diameters. For Rb, A = 780 nm, m = 87 amu, and I' = 27 x
6 MHz. This corresponds to a capture velocity of 67 m/s,
although due to the large Doppler shift at this velocity, a
more realistic [20] capture velocity is about 43 m/s [21]. A
typical initial most-probable velocity for atoms effusing from
a Rb oven is about 330 m/s, and so 3.3 m/s is a reason-
able estimate of the rms transverse speed of the atoms. If
we consider an atomic beam slowed to the capture velocity
value and an example free-flight distance of 10 cm we can
estimate the spread of the atomic beam to be

orp ~ 1.5 cm, 3)

which is smaller than or comparable to the size of the MOT
beams.

For a Dy MOT, A = 626 nm, m = 162 amu, and g =
2 x 136 kHz. This gives a capture velocity of (no more than)
8 m/s. The most probable velocity of the Dy atoms effusing
from our oven is about 480 m/s, so 4.8 m/s is a rcasonable
estimate of the average transverse speed. For a free-flight
distance of 10 cm, we estimate the spread of the atomic beam
to be

opy ~ 12 cm, “4)

which is much larger than the size of the MOT beams. We thus
see that the narrow linewidth of the 626-nm transition already
leads to a significantly larger spreading of the atomic beam
than in a typical alkali MOT.

Employing an increasing-field slower, while effective in
reducing scattering losses in the MOT due to the larger Zee-
man slower laser detuning, further exacerbates the transverse
spreading problem. One reason is that the larger detuning
reduces the amount of off-resonant slowing that occurs during
the free-flight distance. The more off-resonant slowing that
occurs during the free flight, the larger the initial exit velocity
from the Zeeman slowing region can be. We can estimate the
typical effect of off-resonant slowing in a Dy experiment: a
typical Zeeman slower beam detuning in a spin-flip slower
is around —18I"yp;, with (resonant) saturation parameters of
so ~ 1 [2]. If we assume that the slowed atoms scatter at a
(detuned) saturation parameter of s = T‘tzﬁ/ﬂr- ~ 7.7 %1074
over a 10-cm free-flight distance, then we can estimate that
atoms with exit velocities as high as 13 m/s will be deceler-
ated to within the capture velocity of the MOT.

A second reason is the increased free-flight distance due
to the need for field-canceling coils near the MOT. In an
increasing-field Zeeman slower, the largest numbers of wind-
ings are closest to the MOT. As a result, it is necessary to
compensate for the large fringing fields with an oppositely
wound compensation coil so that the total residual magnetic
field and field curvature at the position of the MOT is close
to zero. Slowed atoms must thus travel an extra distance of
several centimeters compared to the travel distance in spin-flip
Zeeman slowers. In our experiment, the free-flight distance is
16 cm.

The purpose of the angled slowing scheme is to reduce the
[ree-flight time by allowing atoms to exit the Zeeman slower
at velocities well above the MOT’s capture velocity. A few
centimeters before the MOT, two beams with red detuning on
the order of I'yp; intersect the atomic beam to provide a net
longitudinal slowing force, slowing the atomic beam to within
the capture velocity of the MOT. The transverse components
of the two beams’ scattering forces are oppositely oriented
and thus cancel. In effect, the addition of the angled slowing
beams increases the capture velocity of the MOT.

The advantage of using a pair of angled beams over a
single beam colinear with the main Zeeman slower light, or
adding a near-resonant sideband to the Zeeman slower, is that
scattering losses in the MOT are avoided. Angled slowing also
requires fewer beams and less laser power than the recently
reported core-shell MOTs for alkaline-earth-like atoms [16].
The setup for the angled slowing beams is depicted in Fig. 1.

Without employing angled slowing, optimization of our
Zeeman slowing parameters led to a steady-state MOT
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FIG. 2. Population of the MOT as a function of loading time.
The blue curve (circles) shows the population when both transverse
cooling and angled slowing with the optimal parameters of § =
—50 MHz and 7 mW per beam are employed. The purple curve
(diamonds) shows the population when angled slowing with the same
optimal parameters is employed but the transverse cooling beams are
turned off. The orange curve (squares) shows the population when
both the transverse cooling and angled slowing beams are turned off,
multiplied by a factor of ten for visual clarity.

population of about 107 atoms. We observe more than a factor
of 20 gain in the final population of our MOT when using
angled slowing. As described in the next section, we found op-
timal angled slowing performance with only 7 mW per beam
and a detuning of —50 MHz (—1.6I"4,;). The beam diameters
are about 5 mm, putting us far below the saturation regime
(lga = 56 mW/cm2). Figure 2 shows the population with and
without angled slowing as a function of MOT loading time. As
shown in the figure, the improvement in MOT population we
see due to transverse Doppler cooling is approximately a fac-
tor of 1.4, limited by laser power. This factor is independent
of whether or not angled slowing is employed.

IV. OPTIMIZATION OF ANGLED SLOWING

We determined the optimal alignment of our angled slow-
ing beams by maximizing the steady-state MOT population as
measured by the integrated 626-nm fluorescence scattered by
the MOT. While o~ light is used to pump and cycle atoms
that are being slowed by our Zeeman slower, the magnetic
field magnitude and direction at the position where the an-
gled slowing beams intersect the atomic beam are not easily
known, so we varied the polarization of the angled slowing
beams to maximize the MOT population after the pointing had
been optimized.
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FIG. 3. Optimizing angled slowing. Dependence of the MOT
population on the detuning and power of the angled slowing beams.
A fixed loading time and compression sequence were employed for
all of the data shown. The powers in the two beams were balanced to
within 15%. The detuning from the 421-nm resonance was known to
within £2 MHz.

The angled slowing light is prepared by frequency shifting
light from our 421-nm master laser with a 500-MHz AOM
in a double-pass configuration and then splitting the shifted
light into two separate fibers. With more than 200 mW of
input power to this frequency shifting setup, thermal lensing in
the AOM causes sensitively power-dependent variations in the
spatial mode of the beams reaching the fibers, greatly reducing
the fiber coupling efficiency. To avoid thermal lensing (and
allow for more controlled variation of the angled slowing
power via the rf power), we keep the power going to this AOM
low, resulting in a maximum power of about 10 mW per beam
in our angled slowing light.

Given this power constraint, we looked for an optimal
combination of power and detuning for the angled slowing
beams. Figure 3 shows the population after a fixed load
time and fixed compression sequence (see the following
section) as a function of both detuning (always red) and
power per beam. The uncertainty in our beam power was at
most £15%, and the uncertainty in our frequency was about
42 MHz, with the latter uncertainty arising from drifts in our
wavemeter.

The general trends are explained by a simple physical pic-
ture: At small detunings, a small amount of power kicks some
of the slowed flux to below the capture velocity of the MOT,
but increasing power causes significant additional scattering
in the nearly-zero-velocity atoms and causes them to turn
around. At intermediate detunings, more flux is kicked out of
the broad, slowed distribution to velocities below the capture
velocity. Eventually, with enough power, off-resonant slowing
begins to turn the atoms around again. At large detunings, the
majority of the slowed flux is only addressed off-resonantly
by the angled slowing beams. Eventually, atoms will also
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be turned around off-resonantly, and thus there should be an
optimal power for any given detuning.

At each detuning, we scanned the constant offset field
in the slower, which is equivalent to scanning the Zeeman
slower laser frequency and hence the final velocity. We found
that the optimal bias field was the same for all detunings
to within the step size we explored (steps of 1 A = %ﬂ of
effective Zeeman slower detuning). We also found that the
same bias field was optimal when loading a MOT without
angled slowing. Together, these observations suggest that the
final velocity distribution of the Zeeman-slowed atoms is
broad compared to T'4;;. If the final velocity distribution were
narrow, we would expect the optimum to vary with the choice
of angled slowing detuning.

V. COMPRESSION AND DETECTION

We load about 3 x 10% atoms in 2 s with our optimized
angled slowing parameters. To prepare the captured atoms to
be loaded into an optical dipole trap (ODT) for evaporation,
we compress the cloud over 50 ms and let the compressed
cloud equilibrate for at least 300 ms. Compression consists
of switching off the dithering of the MOT light frequency
and ramping the [requency [rom the initial detuning to within
about a few linewidths of resonance. To minimize losses
due to light-assisted collisions and to reach the lowest final
temperature of the cloud, the MOT beams are ramped down
to a final power of 22 uW per arm. We also reduce the
magnetic field gradient from 2.5 to 1.75 G/cm in order to
further minimize losses. At the end of the compression, the
MOT is approximately 400 x 800 x 800 wm (dimensions of
the optically dense region). We lose up to half of our atoms
during the 300 ms of postcompression equilibration but obtain
a net gain in phase-space density due to the simultaneous
reduction in temperature.

To detect the number of atoms captured in our trap, we
perform absorption imaging using light resonant with the
421-nm transition. We expect a high degree of spin polar-
ization in the m; = —8 spin state as a result of the force of
gravity on our narrow-line MOT as discussed in [4], and so
we image using o~ light to address the m; = —8 — m}; = =9
transition, which has a Clebsch-Gordon coefficient of nearly
unity [22]. We let the cloud expand freely for between 10 and
30 ms before shining a 100-us imaging light pulse. We have
verified that we have a high degree of spin polarization by
using o+ light instead of o~ light and observe that the optical
depth was reduced by more than an order of magnitude.

We measure the temperature of our cloud after compres-
sion by loading successive MOTs with identical parameters

and varying the time-of-flight (TOF) after turning off the
MOT beams and quadrupole. By fitting the cloud size as a
function of the TOF, we can observe the mean speed of the
cloud and hence the temperature. We observe faster expansion
along the vertical direction than along the horizontal direction,
corresponding to a “vertical temperature” of 8.8 uK and a
“transverse temperature” of 12.7 uK [23].

To obtain the optimal phase-space density, nA3., we varied
the MOT [requency, detuning, and gradient during the com-
pression sequence. We used the size in large TOF (20-25 ms)
as a proxy for velocity (and therefore temperature), which in
combination with the measured number allowed for single-
shot estimation of the phase-space density. We optimized the
phase-space density both through manual parameter scans and
by automating the search using a simple genetic algorithm. We
obtained similar results from both approaches and measured
an optimal phase-space density of 107 after 10 s of loading.

VI. CONCLUSION

In conclusion, we used the described angled slowing
technique to reduce the effect of transverse atomic beam
spreading on our MOT loading, effectively increasing the
capture velocity of our narrow-line MOT. We observe more
than an order-of-magnitude increase in the number of atoms
captured in the MOT when the angled slowing is operated
with optimal parameters, allowing us to load MOTs in the 108
regime in a few seconds. In our experiment, the combination
of a narrow cooling transition, long free-flight distance, and
reduced off-resonant slowing means that the free-flight time is
particularly long; we believe that angled slowing can be of use
in similarly designed experiments using species with narrow
cooling transitions (such as Dy, Er, or Yb). Even in experi-
ments where transverse spread can be avoided by employing
other techniques, such as transverse Doppler cooling or the
core-shell MOT configuration, the low power requirements
and simple geometry of the angled slowing scheme may make
it a comparatively attractive option.
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Atomic Physics on a 50-nm Scale:
Realization of a Bilayer System of

Dipolar Atoms

This appendix contains a reprint of Ref. [34]: Li Du, Pierre Barral, Michael Cantara,
Julius de Hond, Yu-Kun Lu, and Wolfgang Ketterle, Atomic physics on a 50-nm scale:
Realization of a bilayer system of dipolar atoms Science, 2024, 384(6695): 546-551.
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Atomic physics on a 50-nm scale: Realization of a
bilayer system of dipolar atoms

Li Du*t, Pierre Barralt1, Michael Cantarat§, Julius de Hondq], Yu-Kun Lu, Wolfgang Ketterle

Controlling ultracold atoms with laser light has greatly advanced quantum science. The wavelength

of light sets a typical length scale for most experiments to the order of 500 nanometers (nm) or greater.
In this work, we implemented a super-resolution technique that localizes and arranges atoms on a sub-
50-nm scale, without any fundamental limit in resolution. We demonstrate this technique by creating
a bilayer of dysprosium atoms and observing dipolar interactions between two physically separated
layers through interlayer sympathetic cooling and coupled collective excitations. At 50-nm distance,
dipolar interactions are 1000 times stronger than at 500 nm. For two atoms in optical tweezers, this
should enable purely magnetic dipolar gates with kilohertz speed.

major frontier in many-body physics is

the realization and study of strongly cor-

related quantum phases (7-3). In ultracold

atomic systems, the typical short-range

contact interaction has led to the creation
of a variety of exotic quantum phases (3, 4).
However, a wide range of quantum pheno-
mena require long-range dipolar interactions
(5-7). But even for the most magnetic atoms
such as chromium, erbium, and dysprosium
(Dy), the magnetic dipole-dipole interaction is
rather weak. For Dy, with a magnetic dipole
moment of 10 Bohr magneton (up), the dipo-
lar interaction at 500-nm distance is only A x
20 Hz, where A is Planck’s constant. Although
such weak interactions could be observed
(8, 9), and supersolidity and other forms of
matter could be realized with magnetic atoms
(5), there are major efforts to harness the much
stronger interactions of polar molecules (10, 11)
and Rydberg atoms (12). The electric dipolar
interaction of molecules (at 3 D) can be 1000
times stronger than the magnetic dipolar in-
teraction (at 10 pp). In this work, we show how
this factor of 1000 can be compensated for by
decreasing the distance between two magnetic
atoms to 50 nm. Studying dipolar physics with
neutral atoms has major advantages: It is
simpler to cool atoms to quantum degeneracy,
and atoms have more favorable collisional
properties.

It has been a long-standing goal to create
optical potentials with subwavelength com-
ponents to enhance tunneling and interaction
strengths. Early works on atom lithography
achieved deposition of metal structures with
spatial periods one-eighth the size of optical
wavelengths (13, 14) and feature sizes of tens
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of nanometers (I5) using state-dependent po-
tentials. With ultracold atoms, many schemes
have been suggested (16-20), and methods
such as dark states (21, 22), radio frequency-
photon dressing (23), stroboscopic techniques
(24, and multiphoton processes through Raman
transitions between hyperfine states (13, 25, 26)
have been demonstrated. Challenges, such as
additional heating, limited coherence time,
and limited reduction of atomic spacing, have
hindered a wide adoption of these methods.
In this work, we introduce a method that has
no fundamental limit. It is based on the key
concept of optical super-resolution microscopy:
One can determine the center of a diffraction-
limited Airy disk with a precision that exceeds
the diffraction limit. Similarly, a deep optical
lattice or a strong tweezer beam can localize
an atom to 10 nm (5, 27, 28), limited only by
available power and heating from spontaneous
light scattering. In a typical super-resolution
microscopy experiment, molecules are imaged
sequentially, whereas for trapping atoms, sim-
ultaneous confinement on a subwavelength
scale is required. One possible solution is to
trap two different kinds of atoms with two
different colors of light. But, usually, for quan-
tum science, one needs identical atoms. The
strategy we implemented was to use two oppo-
site spin states of Dy and two different polar-
izations of light at different frequencies—a
dual-polarization and dual-frequency super-
resolution scheme. Unlike spin-1/2 and alkali
atoms, ground-state Dy has a strong tensor
polarizability (29). It can cause detrimental
two-photon Raman couplings between spin
states with different m; quantum numbers,
which are suppressed by the frequency offset
between the two optical potentials. The remain-
ing diagonal part of the tensor couplings makes
our scheme much more robust because it
creates, for 1**Dy, an isolated two-state Hilbert
space for m; = £8 spin states with a big energy
gap to all the other 15 spin states.
Spin-dependent potentials have been realized
with rubidium (30-34) and cesium (27, 35). In

dependent potentials can be realized witl——-
with negligible spontaneous emission as a re-
sult of Dy’s electronic orbital angular momen-
tum in the ground state. Furthermore, with a
magnetic dipole moment of only 1 pp, the di-
polar interaction for alkali atoms is 100 times
weaker than for Dy. Therefore, previous work
on alkalis has used spin-dependent forces to
control the overlap between sites with spin up
and down (27, 33) but not to study interactions
between nonoverlapping sites.

The subwavelength scheme

An illustration of the experimental scheme is
shown in Fig. 1B, which demonstrates a bi-
layer potential created by two optical standing
waves of o, and o_ polarizations with a small
spatial displacement s. This illustration also
applies to the case of spin-dependent optical
tweezers. The figure shows the adiabatic po-
tentials of all 17 spin states (quantized along
the g direction in the lab frame), with differ-
ent polarizability components taken into ac-
count. With only a scalar polarizability o,
the ac Stark shifts are the same for all 17 m;,
states, so there is only one potential minimum.
The vector polarizability o, leads to ac Stark
shifts that are linear in m; and therefore can
be regarded as a Zeeman shift caused by a fic-
titious sinusoidal magnetic field—it lifts the
degeneracy except for points where the ficti-
tious magnetic fields from the o, and the 6_
standing waves cancel. This creates a double-
well potential even for an arbitrarily small dis-
placement of the standing waves. However,
small transverse magnetic fields would couple
the degenerate states, leading to mixing among
different m; states. This is where the tensor
polarizability o, makes a qualitative difference.
The diagonal part of the tensor light-atom in-
teraction (which has an m,> dependence) par-
tially lifts the degeneracy. The m; = +8 ground
states are separated from all other states by a
large gap and are coupled by transverse fields
only in 16th order. Note that the m,; = +8 states
are the local ground states of the o.. potential
minima, and therefore inelastic two-body losses
are prevented in each of the layers.

Although the tensor polarizability o; pro-
vides robustness against transverse magnetic
fields, it allows for two-photon Raman pro-
cesses with Am; = +2 using one ¢, and one c_
photon. Figure 1C shows the effect of the reso-
nant Raman process caused by off-diagonal
tensor couplings when both polarization com-
ponents have the same frequency. This is the
situation when the o, and the o_ standing
waves are created by retroreflecting a single
beam with rotated linear polarization, as often
used for alkalis [e.g., see (30, 31, 33)]. For Dy,
the Raman couplings weaken the potential
minima for separations smaller than /10,
where A is the wavelength of the light. For
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Fig. 1. Creation of the subwavelength bilayer array. (A) Experimental setup.
Two overlapping laser beams with opposite circular polarizations o, and o_ are
retroreflected by a mirror (1) to form two optical standing waves. The two
standing waves are displaced at the position of the atoms (lI), which is controlled
by the frequency offset A between the two laser beams. Dy atoms in this
configuration form an array of pancake-shaped bilayers of head-to-head dipoles
with adjustable interlayer distance s. (B) Contributions of different polarizability
components. Solid lines denote adiabatic potential curves for different m,
states (-8 = m, < 8, represented by dark blue to dark red, assuming red
detuning), and the shaded regions refer to the intensities of the o.. light for a
particular interlayer separation. (C) If the two laser beams have the same

(iii) ¥ /,*'(IV)
Trap frequency E L’ &
equalization - ¢
20 t (ms)

frequency A = 0, the off-diagonal part of the tensor polarizability mixes spin
states. As a result, the two minima merge into a single minimum for a small
separation s. This is avoided in our experiment by using two different frequencies
for the .. light. The color of the curves indicate the m, character of the adiabatic
eigenstates. (D) Adiabatic loading of the bilayer array. (i) Starting with the
optical potential in the interlaced configuration in the presence of a dominating
transverse magnetic field B, = 200 mG, the atoms are initialized in the m; =
-8 spin state along the x direction. (i) As B, is ramped down in 15 ms, the light
shift dominates over the Zeeman shift, thereby adiabatically loading the bilayer
array. (i) The power of the o, and o_ potentials is adjusted for identical trap
frequencies. (iv) The interlayer distance is adjusted to designated values in 0.5 ms.

displacements of the standing waves of less
than A/30, the double minima have merged. We
eliminated the Raman coupling by offsetting the
frequencies for the o, and o_ optical standing
waves by more than 300 MHz, much larger
than the ac Stark shifts, which makes the
two-photon Raman process off-resonant (37).
The conclusion is that the dual-polarization
and dual-frequency scheme isolates the
Hilbert space for the m; = +8 spin states
and creates a double-minimum potential that
is not flattened out even for very small separa-
tions of the two minima.

Dy, with its high angular momentum of J =
8 in the ground state, is the ideal atom for this
scheme. ForaJ = 8 — J' = 9 transition, the ;=8
state has a transition strength ratio of 153
between the o, and o_ transitions (38). For
atoms with J = 1 (2), the ratio is only 6 (15).
Therefore, this stretched transition in Dy is
very similar to a hypothetically isolated J =
1/2 — J' = 1/2 transition, where the spin-up
state sees only o_ light and vice versa. Dy is
even more ideal than the J = 1/2 case in which
spin-up and down states are directly connected
by possible one- or two-body couplings (e.g.,
transverse magnetic fields, dipolar relaxa-
tion), whereas those couplings act only in 16th
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or 8th order in our Dy scheme. The robustness
of the scheme comes from the ac Stark shifts
that stem from the tensor polarizability.

Experimental protocol

Experimentally, we created a stack of bilayers
by superimposing red-detuned optical stand-
ing waves with o, and o_ polarizations ope-
rating near the Dy narrowline transition at
741 nm (linewidth I'/2r = 1.78 kHz) (39). The
two optical beams were delivered through the
same polarization-maintaining fiber, such that
they shared the same transverse Gaussian
mode. The frequency of the o_ standing wave
can be dynamically tuned using a double-passed
phased-array acousto-optic deflector, leading
to a precise control of the interlayer distance
s with a sensitivity of 4.7 nm MHz ™ (40).
The ground state of the bilayer was loaded
using an adiabatic transfer method, as de-
picted in Fig. 1D. First, m; = —8 atoms were
prepared in a magnetic field with a trans-
verse component B, = 200 mG and an axial
component B, around 10 mG. We then ramped
up the o, and o_ standing waves in the in-
terlaced configuration with s = A/4 in 100 ms,
loading all layers with atoms aligned with
the 2 axis (Fig. 1D, i). By ramping down B, in

15 ms, the potential depth increased while
a bilayer array was formed with dipoles
aligned head to head (Fig. 1D, ii and iii). We
ensured balanced loading by making sure
that the energy offset (including Zeeman en-
ergies) between the minima of the o, and o_
potentials was zero. It was crucial that the atoms
stayed in their local ground state throughout
the experiment to prevent losses and heating
caused by dipolar relaxation. Therefore, the
Zeeman shifts caused by the external mag-
netic field B, had to be smaller than the dif-
ferential ac Stark shift between the m; = -8
and mjy = -7 states.

After loading a balanced bilayer array, the
powers of the two optical standing waves were
ramped up, ensuring that the two layers had the
same trap frequencies of typically (®,, ©,, ©,) =
21 x (0.5, 0.5, 140) kHz. The strong axial
confinement resulted in a harmonic oscilla-
tor length ayo = \/h/mw, of 21.1 nm, where
h = h/2n and m is the atomic mass. We loaded
4.2 x 10" ultracold '**Dy atoms into an array of
42 bilayers, with a temperature of 1.7 uK de-
termined from the cloud size after ballistic
expansion (40, 4I). Subsequently, the inter-
layer distance s was ramped from A/4 to dif-
ferent designated values in 0.5 ms by changing
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Fig. 2. Subwavelength control of
the interlayer distance, as demon-

strated by recording atom loss

as a function of layer separation.
(A) Evolution of the population in o,
layers at two different interlayer
distances s of 185 and 0 nm. The

© 185 nm
o0nm

Interlayer Distance

Population (x10%) >

loss is much faster when the layers
are overlapped. Initial loss rates T3,
are obtained from the fits to the
decay curves. (B) Gaussian fits of
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Time (ms)

s/ayy
-4 0 4 8 -8 -4 0 4 8

the initial loss rates I'gy to the
interlayer distances s according
to Eq. 1 (solid lines) provide a
value of 6, =19 + 1 nm for the
layer thickness.
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Fig. 3. Observation of interlayer
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thermalization. (A) Interlayer elas- 100
tic scattering cross sections as
functions of separation s calculated
using the Born approximation.

The gray curves correspond to
dipolar cross sections for infinitely
thin o, = O layers (thin gray) along
with its large interlayer distance limit

N
o
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— 0, (pure 2D)
— 0, (large s limit)
—— 0o, (contact)

ks>1 (dashed gray, following Eq. 2)
and for layers with finite thickness

@  Cross Section o (hm) >

o, = 14.9 nm (quasi-2D, solid
gray). The red curve is for simple
contact interactions at the
background scattering length (red,
quasi 2D), and the shaded area
corresponds to a 10-times-enhanced
cross section. (B) Observed ther-
malization rates I'p obtained from
the pseudo-exponential fits. The
black and red solid lines show the
expected thermalization rate from
dipolar and contact interactions

10'5

-
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(40). The dashed line is for reference
and is proportional to 1/s°. Error
bars represent the standard errors
of the rates obtained from the
pseudo-exponential fits.

o

the frequency of the o_ standing wave. The in-
terlayer distance s was calibrated with Kapitza-
Dirac diffraction measurements (40). At the
end of each experimental sequence, the atoms
were released from the bilayer array within
1 us and were imaged after ballistic expansion.
With the small axial magnetic field B, serving
as a guiding field, atoms remained in the m; =
+8 states and were imaged by a spin-resolved
absorption imaging technique (40). This meth-
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50 100
Interlayer Distance s (nm)

150

od allowed us to measure the population in
each of the two layers simultaneously.

Demonstration of spatial control

We demonstrated the subwavelength spatial
control over the bilayer geometry by measur-
ing the lifetime of atomic samples at different
layer separations. The sharp peak in the loss
rate as a function of interlayer distance s in
Fig. 2 is essentially the convolution between

the density profiles of the two layers. Assum-
ing that loss processes occur at short range, we
derived a rate equation for the total loss rate
I3, of each layer

_1(s)? N,
er = Dintra + Dintere ;(“Z) - 1\7—mt (1)
tot

where N, is the total number of atoms in a
layer and o, is the root-mean-square thickness
of each layer. The loss rate contains both an
intra- and interlayer contribution characterized
by ingra and Tipeer The factor of one-third in
the exponent of the interlayer term reflects
that the loss is caused by three-body recombi-
nation (40). For spin-independent three-body
collisions and thermal clouds, we expect that
[Nintra = Dinter- Unexpectedly, we observed about
a 50-fold increase in the loss rate when the
two layers were overlapped, which implies
that three-body recombination involving mixed
spin states is much faster than recombination
of three atoms that are all in the same spin
state. This strongly enhanced loss feature serves
as a highly sensitive monitor for the density
overlap between the two layers; fitting the loss
curve determines the thickness of each layer
6, =19 + 1 nm, consistent with the calculated
value of 1.3lapo/v/2~18.8+0.1nm that we
obtained from trap frequency and tempera-
ture measurements (41). The observed losses
in the two layers are almost equal, which im-
plies equal loss rates for three-body collisions
involving one spin-up and two spin-down atoms,
or vice versa. This measurement of the atomic
density distribution has no discernible broad-
ening: The measured and calculated widths
agreed to within 1 nm. Expressing this as an
instrumental point spread function gives an
upper limit to the Gaussian width of the point-
spread function of 6 nm. This result can be
compared with what was achieved in dark-state
super-resolution microscopy. McDonald et al.
(22) measured an atom cloud size of 55 nm
with a broadening of 32 nm due to the width of the
dark-state probe. A similar experiment reported
by Subhankar et al. (42) measured a size of 26
nm with a broadening of 11 nm from the probe.

We conclude from the loss measurement
that the two layers can be regarded as coupled
predominantly by long-range dipolar forces
for s> 50 nm. The dipolar energy Ugag/h be-
tween two Dy atoms with opposite spins at
this separation is 20 kHz. This geometry now
allows us to study physics with strong inter-
layer dipole-dipole interactions.

Interlayer thermalization

We applied our technique to study energy
transfer through interlayer dipolar interactions,
or sympathetic cooling between two atomic
systems separated by vacuum (43, 44). Each
layer receives heat through the fluctuating
magnetic field created by the dipoles in the
other layer. For equal temperatures, in detailed
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Fig. 4. Observation of coupled oscillations of the two layers at a 62-nm interlayer distance. The
center-of-mass oscillation of the o layer is excited by suddenly switching off a displacement force. The o-
layer oscillates because of dipolar coupling. Error bars represent the standard errors of the means of

independent measurements.

balance, the heat flows cancel. For unequal
temperatures, the dipolar fluctuations cause
thermalization. Figure 3B shows the exper-
imental results.

‘We experimentally created a controlled tem-
perature difference between the two layers by
heating up the o, layer using a parametric drive
by modulating the o, light intensity at twice
the transverse trap frequency for 30 ms, fol-
lowed by a 5-ms hold to ensure any residual
breathing motion is damped out. This proce-
dure prepares the o, layer at 3.9 uK and leaves
the o_ layer at 1.7 uK. We then adjusted the
interlayer distance over 0.5 ms and monitored
the temperature evolution. We fit the temper-
ature difference between two layers to a pseudo-
exponential decay 4L = —T'y % AT to obtain
the interlayer thermalization rate I'y, where
N(t) accounts for the measured particle num-
ber decay caused by inelastic collisions (40).
Figure 3B shows that the thermalization rate
strongly drops with interlayer distance.

We could estimate the interlayer collision
rate as 7,pcaqUrel, Where nop is the 2D den-
sity distribution and c44 is the cross section
for two dipolar atoms passing each other at a
separation s. Using the Born approximation
(45-48), we calculated the elastic cross sec-
tion between two atoms in thin layers sepa-
rated by a distance s (40), and the analytic
large-s limit is

n
dfi) = aﬁd 2 (2)

Here, agq = 10.2 nm is the dipolar length and &
is the relative momentum between the collid-
ing particles. For s = 75 nm, the quasi-2D cross
section cgq is 0.38 nm (see Fig. 3A). With a
typical 2D peak density of 72,p ~ 1.3 x 10° cm™
and a thermal velocity of 2.1 cm s~ one obtains
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an interlayer collision rate of 100 s™’. The ob-
served thermalization times are much slower,
around 160 ms (rate of 6 s™"). This can be fully
accounted for by the anisotropy of dipolar scat-
tering peaked in the forward direction, which
reduces the effective cross section by a factor
of six, and by multiple averaging arising from
the inhomogeneity of our sample (40). In Fig.
3B, we compare the observed thermalization
rates to calculations (40). They do not have
any adjustable parameters and fully take into
account the momentum and angular depen-
dence of dipolar scattering and the finite
thickness of the layer. The calculations are in
semiquantitative agreement with the observa-
tions. The drop-off of the thermalization rate
is much weaker than the steep exponential
decrease in density overlap and, therefore, in
the contact interactions between the two layers.
This is clear evidence for purely dipolar cou-
plings in the range of 50- to 100-nm interlayer
distances.

The observed dependence on s roughly fol-
lows a 1/s® dependence, which is less steep
than predicted. This is possibly a consequence
of the assumption of purely dipolar binary
collisions. For small s, there can be an inter-
ference term with s-wave contact interactions
and a contribution from nonuniversal short-
range dipolar s-wave scattering (49), which is
not included in the Born approximation. The
largest separations s studied are comparable
to the interparticle separation, and the binary
collision approximation may no longer be ac-
curate; that is, there are now more than two
particles interacting with each other.

Coupled collective oscillations

In the second experiment, we looked for cou-
pled collective oscillations of the bilayer system.

Several theoretical papers (50, 51) predicted
the coupling of transverse oscillations by the
mean dipolar field between the layers. Indeed,
when we excited transverse oscillations in one
layer, we found that they caused oscillations in
the other layer (Fig. 4). Experimentally, after
loading a balanced bilayer array and adjusting
the interlayer distance to a designated value in
0.5 ms, we adiabatically displaced the o, layer
along the transverse direction ¥ in 10 ms using
an extra laser beam with o, polarization. This
beam, blue-detuned from the 626-nm transition
by 458 MHz, is misaligned from the atoms by
about one beam waist and displaces the atoms
only in the o, layer (40). A sudden switch-off of
this beam hence creates a center-of-mass oscil-
lation of the o, layer at the transverse trap fre-
quency with an adjustable amplitude ranging
from O to 8 um, depending on the final power
of the beam. As a function of hold time, we
obtained the in-trap velocity of each layer from
time-of-flight images to reveal how momentum
is transferred between layers.

Figure 4 shows the time evolution of the
velocity of each layer at s = 62 nm, as obtained
from ballistic expansion images. The harmonic
oscillation of the o, layer shows damping,
whereas the o_ layer starts at rest and shows
a growing in-phase oscillation. Our observa-
tion contrasts with the theoretical treatments
(50, 51), where the mean-field coupling po-
tential would cause a beat note, which is initial-
ly an oscillation 90° out of phase. Furthermore,
the predicted mean-field coupling (50, 51) re-
sulted in a normal-mode splitting of less than
1 Hz, which is too slow to be observed on the
experimental timescale. Our observation is fully
consistent with a friction force caused by di-
polar collisions: The time constant for the
damping of the relative motion between the
two layers of 25 ms is similar to the observed
interlayer thermalization times. These obser-
vations establish dipolar drag between two
physically separated layers, which have fea-
tures in common with Coulomb drag studied
in bilayer semiconductors (52).

Discussion and outlook

We expect that the technique we developed
here should work for all atoms that have elec-
tronic orbital angular momentum in the ground
state and allow strong vector and tensor ac
Stark shifts at sufficiently far detuning. Al-
though it requires the two layers to be in dif-
ferent spin states, those states can be tilted by
a transverse magnetic field to angles within
20° A modified scheme with an in-plane quan-
tization axis could realize attractive interac-
tions and interlayer pairing (47, 53).

Looking ahead, lower temperatures should
lead to strong correlations between the layers
beyond a mean-field description. Adding trans-
verse optical lattices to the layers will create
large repulsive interaction energies between
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pairs on the same lattice site (7) but can also
realize a system described by attractive inter-
actions between particles and holes analogous
to electron-hole pairs in bilayer excitons (54).
Tt is possible to project separate arbitrary po-
tentials into the ¢, and o_ layers, which could
realize twisted bilayer potentials (55) and more
general geometries, including quasi-crystals.
These geometries should allow the study of
many phenomena that have been predicted
for interacting bilayers (7, 50, 51, 56-62). Ap-
plying the super-resolution technique to optical
tweezers will allow the study of super-radiance
and radiative shifts at separations much
smaller than the optical wavelength as well as
the study of magnetic interactions and spin
exchange between two isolated atoms, which
was done recently with polar molecules (63-66).
The tweezer setup can be generalized to a linear
array of atoms alternating in spin-up and spin-
down states. Moving the spin-up atoms back
and forth would provide full connectivity along
the chain and realize a spin chain with strong
magnetic coupling between nearest neighbors.
These ideas can be generalized to higher
dimensions.
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The dipolar interaction can be attractive or repulsive, depending on the
position and orientation of the dipoles. Constraining atoms to a plane with
their magnetic moment aligned perpendicularly leads to a largely side-by-side
repulsion and generates a dipolar barrier which prevents atoms from
approaching each other. We show experimentally and theoretically how this
can suppress dipolar relaxation, the dominant loss process in spin mixtures of
highly magnetic atoms. Using dysprosium, we observe an order of magnitude
reduction in the relaxation rate constant, and another factor of ten is within

reach based on the models which we have validated with our experimental
study. The loss suppression opens up many new possibilities for quantum
simulations with spin mixtures of highly magnetic atoms.

Experiments with ultracold atoms or molecules are often limited by
unfavorable inelastic collision rates. Several methods have been
developed to control collisions such as isolating atoms in deep
lattices', reducing collisional channels via confinement?, or by miti-
gating their effects through the enhancement of elastic collisions via
Feshbach resonances®. Polar molecules with electric or magnetic
dipoles have been shielded from chemical reactions at short range by
using repulsive interactions between dipoles, either in two dimensions
or via microwave dressing*™.

Using dipolar shielding” with highly magnetic atoms is more
challenging than with polar molecules as the dipolar interaction of the
former is two orders of magnitude smaller than for the latter. Magnetic
atoms have a simpler structure than molecules, allowing them to
achieve lower temperatures while providing a controlled, tunable, and
relatively simple platform for exploring novel forms of matter with
long-range forces'*®. Dysprosium, with a magnetic moment of 10,
has a magnetic dipole-dipole interaction that is 100 times larger than
that of alkali atoms. However, dipolar relaxation - an inelastic spin-flip
process that converts Zeeman energy into kinetic energy - occurs at a
rate that scales as the square of the dipolar interaction, severely lim-
iting the lifetime of any cloud with population in an excited Zeeman
level. The dominance of dipolar relaxation has, thus far, precluded the
experimental realization of many proposed new phenomena in spin
mixtures of highly magnetic atoms” . Using dipolar shielding to
prevent the atoms from undergoing dipolar relaxation requires a deep

understanding of the dipolar interaction as it drives both the elastic
and inelastic processes.

In this work we show that suppression of dipolar relaxation is
possible since it occurs mainly at specific interatomic separations,
where the dipolar potential reduces the wave function amplitude. It
proves that confinement can not only affect the collisional channels
between atoms?, but also modify the interaction potential and provide
shielding, as it was original proposed for molecules’’. We observe an
order of magnitude suppression of the dipolar relaxation rate, and,
supported by comprehensive simulations of the decay rate?, we show
that another order of magnitude is within reach given reasonable
parameters. In the limit of high magnetic fields, or for very low tem-
peratures, the amount of suppression can be made arbitrary large. We
first describe qualitatively the interplay of magnetic field, temperature,
and shielding, then present our experimental results, followed by
theoretical simulations.

Results

Basic principles of dipolar shielding

As mentioned, the dipole-dipole interaction is attractive in the case of a
tip-to-tail orientation and repulsive for the side-by-side one. Con-
straining atoms to an xy plane, with a magnetic moment aligned per-
pendicularly along z, leads to a largely side-by-side repulsizon and
generates a dipolar barrier. The dipolar length ay4 = f:—g"(“z—é'ﬂ’ repre-
sents the strength of the interaction and the two-particle oscillator

'Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, and Department of Physics, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA. ?These authors contributed equally: Pierre Barral, Michael Cantara, Li Du. " e-mail: pbarral@mit.edu
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length a, = \/h/pw, the extension of the cloud in the z direction. We
denoted i and w, the reduced mass and the trap frequency respec-
tively. A dipolar barrier appears when the dipolar length aqq > 0.34a,’,
which we refer to as the quasi-2D regime. Thus, experiments with
dysprosium require 10,000 times higher axial frequencies than polar
molecules to compensate for the 100 times smaller dipolar length. Our
experiments have reached this regime with @, =20 nm and aqq =10 nm.

Three parameters determine the loss rate in quasi-2D: the ratio
aqq/a, set by the confinement, the temperature 7, and the magnetic
field B. The potential barrier increases with confinement, ultimately
reaching the pure-2D limit as a,~> 0 as shown Fig. 1a. As the tempera-
ture decreases, the wave function of an incoming pair is suppressed by
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Fig. 1| Principle of dipolar shielding. a Effective radial potential between two
atoms from equation (6) for: no confinement (light blue, 3D), quasi-2D with
/2 =300 kHz (steel blue) and pure-2D (dark blue). The incoming energy is given
by the temperature T=1 uK. b Wave function solutions of equation (6) with n=0
and initial orbital momentum m; = O for the three confinement strengths described
above, and inred the spin-flipped outgoing wave function to ms=2 and B=500 mG.
The effect of shielding of the outgoing wave function is negligible for these para-
meters. ¢ Integrand of Fermi’s golden rule (equation (2) and see equation (SI-10)
in Supplementary Information Note 2). Each curve is the product of the respective
wave function in b, the outgoing wave function, and the double spin-flip operator
from equation (4) integrated with the harmonic oscillator wave functions in the
z-direction. The shielding we implement here corresponds to the difference
between the light blue and steel blue curves. The minimum attainable decay rate for
this incoming energy corresponds to the dark blue curve. See Supplementary
Information Note 5 for insights on the behavior of the integrand.

the barrier over a longer range, thereby decreasing the chance of two
atoms reaching close range. This shielding effect on the wave function
isillustrated in Fig. 1b. As the magnetic field increases, the range where
dipolar relaxation occurs is shortened and the shielding increases.
Indeed, a higher magnetic field leads to a higher released energy, and
correspondingly a more rapidly oscillating outgoing wave function
(see red curve Fig. 1b). Since the dipolar potential falls off as 1/, the
majority of the decay will come from the first oscillating lobe of the
outgoing wave function, as seen in Fig. 1c. The range of dipolar
relaxation, therefore, decreases as the magnetic field increases. This
can also be explained in a semi-classical picture: the Franck-Condon
principle predicts spin flips to occur at the classical turning point of the
outgoing wave function®”, i.e. when the released Zeeman energy
equals the energy of the centrifugal barrier. Correspondingly, higher
magnetic fields cause spin-flips to occur at a shorter range, ultimately
behind the barrier felt by the incoming atoms, where they are strongly
suppressed. In addition to increasing shielding, magnetic fields affect
dipolar relaxation rates via the density of final states. Without shielding
in 3D and 2D*"%, this leads to an increasing rate (for bosons). Shielding
qualitatively changes the magnetic field dependence of the dipolar
relaxation rate which now decreases with magnetic field (see Supple-
mentary Information Note 4).

Experiment
Here we study these principles experimentally. We load ~ 8 x 10* spin-
polarized *’Dy atoms in the excited |/=8,m;=8) Zeeman level (see
Methods for details) in an optical lattice and get a stack of about 45
thin pancakes (‘crépes’). The crépes reach an a,/2 =10 nm root-mean-
square (RMS) width and a 5.7 pm radius. The peak density is
2.9 x10° cm™. The experiment is performed at T=1.6 pK, above the
BEC transition temperature (300 nK), to prevent convolving our
results with changes in the two-particle correlation function®?, The
quantization axis is set by an external magnetic field along the z
direction. The lattice beam is blue detuned, with its radial repulsion
compensated by a coaxial red-detuned optical dipole trap, as shown in
Fig. 2a. Axial trap frequencies are limited to w.,/2m=260 kHz by the
maximum laser power of the compensation beam.

By measuring the atom losses we determine the inelastic decay
coefficient, B3p, as defined by the differential equation for the 3D
density n:

% = — Bypn®. @)

We obtain densities from the measured atom number, temperature
and trap frequencies, and average over the stack of crépes (also see the
Methods section). We sometimes refer to the 2D loss rate B,p in cm?/s,
which uses the 2D density instead. It is related to Bsp through the axial
harmonic confinement via B, = B3p/(a,/1).

Our experimental results are shown in Fig. 2b, c. We also compare
the theoretical shielded decay rate (solid blue) with the one we would
expect in the same crépe geometry if there was no elastic dipolar
potential to repel the atoms (dashed blue). In contrast to the loss rate
in a 3D geometry (red), which increases with +/B (see Supplementary
Information Note 5), we observe the signature of shielding in Fig. 2b: a
much weaker dependence on magnetic fields (solid blue). Our results
are also qualitatively different from those presented in?, represented
by the dash-blue curve. Their approach relies solely on shaping the
trap to modify the available outgoing channels, whereas we go further
by altering the interaction potential experienced by the atoms.

We operate in the quasi-2D regime which differs from the pure-2D
one in several aspects. Compared to pure-2D, the finite axial extent of
the quasi-2D geometry softens the radial barrier, reducing the barrier
height to energies comparable to typical temperatures in the experi-
ment. Furthermore, for Zeeman energies that are larger than the axial
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Fig. 2 | Experiment scheme and results. a Trap geometry. A blue-detuned 741 nm
retroreflected beam repels the atoms to create a 1D lattice. The finite contrast of the
lattice and the zero-point motion of the atoms in the ground state create a repulsive
transverse potential, which is compensated by a 1064 nm red-detuned beam to
create an adjustable transverse harmonic confinement. b, ¢ Experimentally mea-
sured fB3p in a large volume trap (red) and in a thin layer (blue). The lines are theory
curves obtained by using Fermi’s golden rule (see Supplementary Information
Note 2 for derivations). The red curve shows the decay rate in 3D"%, the dashed
blue curve is for non-shielded atoms in a lattice” The solid blue line takes into
account the shielding induced by the elastic dipole-dipole interaction. All theore-
tical curves are thermally averaged over the incoming momenta. The shaded blue

region corresponds to the inclusion of contact interactions (see an extended dis-
cussion of the short-range physics in Methods). b Measurement of 3p as a function
of magnetic field. The axial trap frequency is w./2m = 185 kHz which corresponds to
a,/2=13nm. ¢ Measurement of fB5p in a constant magnetic field of 200mG while
varying the trap frequency. The uncertainties are set by the atom number stability,
cloud temperature measurement and trap frequency measurements (see Methods
section). The relaxation rates measured at very low fields deviate from the theo-
retical values, most likely because the imperfect circular polarization of the lattice
and compensating beams changes the orientation of the dipoles (see Methods
section).
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Fig. 3 | Theoretical loss rate coefficients. Channel-by-channel decomposition of
the dipolar relaxation rates of the m; =0 incoming state (valid when ugB > kT,
see Supplementary Information Note 3) in a 300 kHz trap, both for free wave
functions (a) and shielded ones (b). The blue and red colors correspond to single
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suppression factor defined as the ratio of 5, obtained from shielded and free wave
functions, both at fixed temperature T; (c), and at fixed magnetic field B; (d). For
each of the graphs we present curves for w,/2m = 300 kHz (dotted), w,/2m = 1.8 MHz
(dashed dotted), the pure-2D case (solid line) as well as the analytical approxima-
tion (grey dotted) from equations (SI-17) and (SI-22) detailed in Supplementary
Information Note 4.

trapping frequency, new collisional channels open, with a portion of
the released energy converted into axial excitation and the remainder
into radial motion. As a result, the relaxation for these processes is
shifted to larger distances, thereby weakening the shielding. The first
channel opening is visible in Fig. 2b around 100 mG as well as in Fig. 3a,
b. The aforementioned factors lead to a relaxation rate that does not
decrease with magnetic field, as it would in the pure-2D case, but
instead shows a weaker increase compared to the case without a
dipolar barrier (dashed blue). Figure 2c shows the loss rate coefficient
as a function of axial confinement. The loss rate decreases with con-
finement due to enhanced shielding by the dipolar repulsion and
closing axially excited states channels.

We have reduced the loss rate coefficient to approximately
1x10™ cm?/s. Over a large range of magnetic fields in a lattice, we

achieved more than an order of magnitude reduction in the dipolar
relaxation rate coefficient compared to the unshielded case. The
agreement between the numerical calculations and the experiment
enables extrapolation beyond the current limitation of the experiment:
very favorable loss rate coefficients of 2 x 10™cm?/s can be achieved at
200 mG with an axial confinement of 500 kHz at 1 uK. This matches the
lowest rate obtained with fermions through Pauli suppression in
reference'. Under such conditions, axial excitations are energetically
forbidden and the 2D decay rate is less than a factor of 3 above the
pure-2D limit. By lowering the temperature to 100 nK, the relaxation
rate would be suppressed by an additional factor of three and reach
the 10™cm?/s regime. To further understand how these numbers are
computed, we describe our theoretical model in the following
paragraphs.
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Theoretical model
Dipolar relaxation rates can be calculated from Fermi’s golden rule.
The decay rate I of 2 particles is given by

~ 2
A0 =2 [ (W oIV 4 Wi )| P(E), 2)

where p(E) is the final density of states at energy E. The incoming wave
function is an excited Zeeman state with transverse momentum k; in
the lowest harmonic oscillator state, n;= 0. The outgoing wave func-
tion is a lower Zeeman state with momentum kg in the harmonic
oscillator state ny. The loss rate coefficient ,p is related to I' through
Bop=mnLT, with L being the radius of the transverse box used to nor-
malize the wave functions. The atoms are coupled by the magnetic
dipole-dipole interaction:

v _ Ho 211'12—301'11)02'“)

Via = HT(gjﬂB) p L r, 3)
where r is the interatomic separation (with corresponding unit vector
u,). The magnetic field points along z. Atoms in the initial spin state
Vo) =Im; =8,m; =8) can collide and remain in the same spin state, or
relax to either |j;)=(17,8) +18,7))/+/2 or |j,) =|7,7). The dipole-dipole
operator acting on |j,) is:

5o ’ - 3zr, .. 3F% .
Vaalo) = 2GR [ (- 32)i0) 20 -3 0) | )
=Vaaolio) * Vaalir) + Vaaolin) )

withz=z/r and 7, = (x +iy)/r. Equation (4) shows the three effects of
the dipolar interaction: an elastic scattering process, a single spin-flip
proportional to z, and a double spin-flip which implicitly depends on z
through r.

In the two-dimensional limit where z =0, the single spin-flip term
vanishes and the elastic term is a purely repulsive 1/p* potential (where
p=+/x%+)2). This potential has an analytic solution at zero tempera-
ture (k; = 0)**, while other cases have to be solved numerically.

We assume a quasi-2D geometry where we ignore the effect of
Vad,0 on the z motion, which is then factorized and described by har-
monic oscillator wave functions (see Methods for a discussion on this
approximation). The elastic portion of the operator in equation (4) is
averaged over the z direction. This leads to an effective repulsive
potential (see Fig. 1a) in the one-dimensional radial Schrodinger
equation:

w( d& m?-1/4 1k
{ﬂ (_d_pz + ,D—2> + <n|Vdd,0|”>}¢— Wd’- (6)

Here, the state |n) is the n'" harmonic oscillator’s state along z. We
focus on incoming states with zero projection of orbital angular
momentum, m;=0, as this channel dominates for any reasonable
magnetic field (see Supplementary Information Note 3).

We solve the Schrédinger equation for the radial wave function
using numerical techniques, and use it to perturbatively calculate the
dipolar relaxation rate with Fermi’s golden rule (2). In Fig. 1 we show
how dipolar repulsion (Fig. 1a) modifies the incoming wave function
(Fig. 1b) and reduces the integral of the transition matrix ele-
ment (Fig. 1c).

Without axial excitation, only double spin flips to the final spin
state |/,) =17,7) and orbital state my= 2 are allowed. At sufficiently high
magnetic field the energy released during the collision can exceed fiw,,
thereby opening up new collisional channels resulting in axial

excitations. Energy conservation requires

Wk 12k

2_pf = % + Ajppg)B — Anha,. @)
The single spin-flip channel (Aj=1) requires odd An due to the odd
symmetry of the z term in equation (4), whereas double spin flips
(Aj=2) require even An. Newly opened channels increase the decay
rate, as shown in Fig. 3a, b. Furthermore, as previously explained, they
also decrease the shielding factor, as visible in the small notch
in Fig. 3c.

Remaining in the ground state of the harmonic oscillator is
therefore necessary for obtaining extremely low relaxation rates, but
that requires working at low enough fields. Unfortunately, the relaxa-
tion rates we measure at very low fields deviate from the theoretical
values in Fig. 2b, most likely because of imperfect circular polarization
of the lattice and compensating beams. The mixture of ¢" and o™ light
induces Raman couplings between |m, = +8) and other even |m,)
states, thereby opening additional relaxation channels via spin
exchange®. With a>95% circular polarization purity, we find agree-
ment between experimental decay rates and calculated dipolar
relaxation rates for fields>100mG, where the Raman coupling is
suppressed by Zeeman detuning.

Discussion

We have shown that confinement in thin layers not only reduces the
number of available collisional channels, but additionally provides
dipolar shielding, thereby strongly suppressing dipolar relaxation
between atoms. In principle, arbitrarily low loss rates and infinite
shielding factors are possible at very low temperatures. Strong mag-
netic fields are also predicted to reduce the shielded collision rate to
arbitrary low values if strong axial confinement suppresses the open-
ing of collision channels. As we have discussed above, rather
straightforward improvements in axial confinement, purity of polar-
ization and temperature should result in rate coefficients in the
10™cm?/s regime.

Our simulations and experiments show that there is already sub-
stantial shielding at thermal energies comparable to the barrier height.
Lowering the temperature well below the barrier eventually results in
exponential suppression®. For our experimental parameters, going
from 1 pK to 100 nK would increase the suppression by a factor
of three.

In this work, we have discussed the interplay between the elastic
and inelastic aspects of dipolar interactions. Both scale with the
dipolar length, which could be 10,000 times larger for polar mole-
cules. Yet the large total angular momentum /=8 works in favors of
dysprosium over molecules, as the elastic part of the dipole-dipole
potential scales as/* in a stretched state, while the relaxation rate scales
as J° for single spin-flips and /? for double spin-flips.

An important point of comparison is the elastic scattering rate. At
1 Gauss in a trap with a 2 MHz axial frequency, the inelastic 2D cross-
section would be 20 nm without shielding. Shielding drops this num-
ber to 0.3 nm, while the semi-classical dipolar elastic collisional cross
section is 0sc =180 nm*. Shielding is necessary to obtain a ratio of
good to bad collisions in excess of 100. Shielding is also necessary to
study dipolar exchange. Given our density n,p=2.9x10° cm™, an
estimated spin exchange rate is 200/s, which is comparable to the
observed shielded dipolar decay rates.

Dipolar shielding has previously been observed in polar molecules
with fermionic statistics’, for which the shielding is qualitatively dif-
ferent. Since identical fermions already have an isotropic p-wave bar-
rier, adding moderate dipolar interactions in a confined geometry will
first strengthen this barrier in the radial direction but also weaken it in
the axial one. As a result, the inelastic collision rate will first decrease
with the dipole moment and then increase®. This cannot be seen with
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Fig. 4 | Determining the zero of the magnetic field. For spin-polarized m;=-8
dysprosium atoms and left-circularly polarized imaging light, the drastic difference
in Clebsch-Gordan coefficients for o, and o- transitions produces a step-like change
in imaging signal as the magnetic field traverses through zero.

bosons. For both particle types, the inelastic collision rate will even-
tually decrease when entering more deeply into the 2D regime, as we
have explored in this work. Our technique would be crucial to study
spin mixtures of bulk gases of bosonic dipolar species.

In conclusion, we have demonstrated a way to realize long-lived
spin mixtures in dense bosonic lanthanide clouds, opening up new
possibilities for quantum simulation experiments in two dimensions.
With such technique, dysprosium can be used to study quantum
materials with dipolar interactions in regimes different from those
currently possible for polar molecules” and Rydberg atoms®. Stable
spin mixtures are important for implementing spin-orbit coupling and
artificial gauge potentials via Raman coupling of spin states?”?S. By
suppressing dipolar relaxation, one can take advantage of the ground
state orbital angular momentum of lanthanides to avoid the sub-
stantial photon scattering rates of the Raman beams for alkali atoms®.

Methods

Sample preparation

The samples are obtained after evaporative cooling in a crossed
optical-dipole trap (ODT) which is loaded from the narrow-line mag-
neto-optical trap described in reference®. The ODT consists of three
1064 nm laser beams: two beams with 40 gm beam waists crossed at 8°
in the horizontal plane, and a beam with a 64 ym waist propagating
along the (vertical) z direction. We prepare spin-polarized samples
of ~8 x10* ’Dy atoms in the |/=8,m, = — 8) state in an optical dipole
trap just above the transition temperature. Working with a thermal gas
makes it easier to determine dipolar relaxation rate coefficients with-
out accounting for a varying condensate fraction.

The highest spin state |m, = +8) is populated via adiabatic rapid
passage using an RF sweep in a magnetic field of 3.5 G along the
z direction. A stack of quasi-2D layers, which we refer to as crépes
due to their extreme aspect ratio, is created using a 1D optical lattice
formed by retroreflecting a 741 nm laser beam along the z axis. We use
a Ti:Sapph laser focused down to a waist of 50 um to the atoms. It can
deliver about 300 mW of light after fiber coupling and intensity sta-
bilization. It is typically detuned by 14.25 to 2.25 GHz to the blue side of
the narrow 1.8 kHz transition®, thus providing frequency-controllable
tight axial confinement. During the dipolar relaxation experiment, the
horizontal beams are switched off, and the vertical 8 W ODT beam
serves to compensate for the deconfinement of the blue-detuned lat-
tice. We verified with in-situ images (obtained with detuned imaging
light due to the high optical densities) that the blue-detuned lattice is
correctly compensated without displacement of the cloud. The lattice
and the vertical dipole trap are turned on using exponential ramps
with a 50ms time constant to adiabatically load the atoms into the
lowest vibrational level of the 2D layers. During the first 40 ms of the
lattice ramp, the magnetic field is rapidly reduced to 40mG to mini-
mize the dipolar relaxation losses. The magnetic field is then ramped

up to its final value during the last 10ms of the lattice loading ramp,
after which the decay of the sample due to inelastic collisions is
measured.

The RMS extension of the cloud along the lattice direction before
loading is gopt ~ 4.7 um. Given the layer separation of A/2~371 nm,
around 4./7oqp1 /A =45 crépes are loaded with initially 3 x 10* atoms
and a central density of no=2.9 x10° cm™ The density distribution in
the i pancake is described by (see Fig. 5)

n(t.p.2)=no(t) exp(~z; /(205p7)) exp(—p* /(20%)) ®)
with z;=i4 and o, = 5%‘5]1?— OODT=,/§I%%§-. The parameters

Wopt =2m94 Hz and Topr =150 nK describe the cloud before the lat-
tice is ramped up whereas w, =2m200 Hz and Tiygice ~1uK char-
acterize the conditions after lattice ramp up. The central crépe
contains about 900 atoms. The RMS width of the crépes is typically
0,~10 nm while the radial one is ¢, =5.7 um.

Zeroing the magnetic field
Achieving control of low magnetic fields is critical for minimizing
dipolar suppression by preventing higher outgoing vibrational chan-
nels from opening. We have devised a method to zero the magnetic
field that relies on the large disparity of Clebsch-Gordan coefficients
for dysprosium. When an atom’s magnetic moment is aligned along
the propagation of a circularly polarized imaging beam, the amount of
scattered light strongly differs whether the magnetic dipole moment is
oriented parallel or anti-parallel to the propagation of the imaging
beam. By using absorption imaging for various external magnetic
fields, as shown in Fig. 4, one can observe when the dipole moment has
flipped, which determines the zero of the external magnetic field.
More specifically, in a spin-polarized (m,=-8) sample of bosonic
dysprosium, the Clebsch-Gordan coefficients for o_, m and o, transi-
tions are 1, 1/9 and 1/153 respectively. We perform absorption imaging
of a spin-polarized sample with left-circularly polarized (g;) light along
the magnetic field quantization axis z. We work with low enough light
intensity and imaging time to prevent optical pumping. At large
positive magnetic field bias, the atoms see o_ light with a corre-
sponding Clebsch-Gordan coefficient of 1, resulting in a large atom
count. At large negative magnetic field bias, the atoms see o, light with
a corresponding Clebsch-Gordan coefficient of 1/153 leading to a low
atom count. The lower the transverse magnetic field, the sharper is the
transition when the longitudinal field is varied. In this way, the zero
settings for all components of the magnetic field are determined.

Lattice light choice

The need for deep optical lattices requires a tightly focused lattice beam,
which causes undesirably strong radial confinement if one uses a red-
detuned beam. By choosing a blue-detuned lattice we avoid adiabatic
compression of the cloud in the transverse direction and the substantial
corresponding increase in temperature when ramping up the optical
lattice. The choice of a blue-detuned lattice also exposes the atoms to
lower light intensities and reduces the unwanted Raman transitions due
to imperfect circular polarization. However, the radial deconfinement
created by the lattice needs to be compensated, which we achieve with a
red-detuned optical dipole trap that enables independent control of the
axial and transverse trap frequencies (see Fig. 5 left).

Lifetime analysis
The decay of the cloud can be described via equation (1) for the 3D
densities

dn
d;D = —.33[)"%0- ©
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or by using a 2D equation

dn
dlZ‘D = B 10)
The densities in each pancake are related by
Hap = Moy —ms exp(—2%/(20%)) (1)
3D 2D moz z

with o, = =a,/2 ~ 10 nm. Our 2D density of nyp=2.9x10° cm™
corresponds to a 3D density of n3p=1.1x10" cm™. When integrating
equation (9) and equating it to (10), we obtain

Bsp =230, op. 12)

In the main paper, we are using f55p to characterize the decay.

We will omit the 2D subscript for the densities in the rest of the
manuscript. Equation (10)- in a local-density approximation - needs to
be integrated over the cloud volume to relate to the observed quantity

1064 741
red beam blue lattice

0,3 OopT
z

Fig. 5| Trap geometry and relevant length scales. Left: Reproduction of Fig. 2a of
the main text. Right: The spatial density of the cloud in the longitudinal direction is
characterized by the axial RMS width o, = a./2, the lattice spacing A/2 and the initial
width of the loaded thermal cloud oopr.

x104

Atom count

0 10 20 30 40 50
Hold time (ms)

Fig. 6 | Typical dipolar relaxation decay curve. The atom number decay is shown
in panel a and the temperature increase is shown in b. Two different decay fit are
shown. Either the pure two-body decay (blue) or the one incorporating a linear
increase in the temperature, which modifies the density (in red). The difference in
the extracted S coefficient is here about 50% as incorporating the temperature

N, the number of atoms:

2

dN _ 24 _ — N
v _BZD/sn dr= —Byp(n) = —Pyp Vr 1)

The effective volume V¢ is determined as follows. After integra-
tion of equation (8), one gets
N=SN;=>"; [ n;dt=ny2m0? v2moqpr/(A/2) and

2

dN dn; 32
GG B X [ mampdp= — Boninol S Fr
i i
JTo
= — Bpmymot A/§DT~
(14)
Identifying Vg in equation (13) gives
Ve =410° N;/GZODT. (15)

We note that (n) = 23/2 , where each +/2 factor comes from the
Gaussian averaging along orié axis. To take into account the moderate
heating during the experiment, we perform a linear fit of the tem-
perature T(t) = To + vst for each measurement of the decay rate, which
is used to scale the effective volume V.(t). The solution of the dif-

ferential equation (13) that we fit is N(¢)= W from which we

determine SB,p. A comparaison of this fit wnth one |gnoring the tem-
perature increase is shown in Fig. 6. The atom number N(¢) is measured
as a function of hold time (typically tens of ms) using time of flight
imaging.

Here we have assumed that every dipolar relaxation event leads to
the loss of both atoms. This is justified since the effective trap depth of
afew micro-kelvins is negligible compared to the kinetic energy gained
by the spin-flip for magnetic fields larger than a few tens of milligauss.
Note that the trap depth is much lower than the axial excitation energy
fiw,. This is due to the compensated blue lattice which provides a very
weak trap in the transverse direction compared to the tight axial
confinement. The experiment is sufficiently fast (tens of ms) such that
photon scattering in the lattice, background collisions and residual
evaporation are not important.

2000 -

1000 -

Temperature (nK)

0 I 1 I 1 I 1 I

0 10 20 30 40 50 60
Hold time (ms)

increase prevents under-fitting the initial fast decay. The loss rate coefficient f3 is
systematically 20 to 50% larger with this method. Only the initial part of the tem-
perature increase is used in the fit, as temperature measurements at later times
were not reliable. The uncertainty is the statistical standard deviation of the mean
of three measurements.
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Error bars

The uncertainties represented by the errorbars in the plots are one
standard deviation coming from the statistical error due to the curve
fitting, as well as our best estimate in the uncertainties of wopt, TopT,
W, ®,and Tj,ice added in quadrature. wopt is measured in the ODT by
observing the oscillation of the cloud after suddenly applying a mag-
netic force. w, is measured by modulating the intensity of the vertical
trapping beam and observing the parametric heating resonance. Axial
trap frequencies w, (which go up to several hundreds of kHz) are also
measured via parametric heating. Due to the bandwidth of the drive
electronics, this was done only in shallow lattices and extrapolated to
deeper lattices. Temperatures are observed in time of flight.

Theoretical decay rate
We summarize here the main equations to produce the theoretical
predictions in Figs. 1-3. Detailed derivations are given in Supplemen-
tary Information Note 2 and ref. 32.

We recall equation (4)

=2
3rs

o HoUgmp) v 32F,
Vddl/0>= antedorLai I:(1_3ZZ)IIO> _ﬁTU1> - 2_/

4mr3

Uz>} 16)

which is used to compute the potential used in equation (6):

(&  m-1/4 Wk}
{ﬂ (‘d—pz + T) + <n|vdd,0|n>}¢= W{D-

This is the equation that we solve numerically for both the incoming
(m=0, n=0) and outgoing (m=2, n even or m=1, n odd) wave func-
tions. The code we developed combines grids of multiple step-sizes to
account for the need to appropriately average the potential along z,
describe the short-range shielding at small p and normalize correctly
the wave functions at large distances. Given the temperature, magnetic
fields, z trapping frequencies and desired precision, the code
determines an appropriate grid, and computes the incoming wave
function and the harmonic oscillator states on this specific grid. It then
distributes those results on multiple cores, computing the outgoing
wave function for each of the different decay channels and the
respective integral of Fermi’s golden rule. This method enables the
code to produce the plots presented in this paper on a simple laptop in
a reasonable time.

The normalization condition reads: fé dp tp,,r,,,(p)2 =1 for a cylin-
der of radius L. Our model accounts for the modification of both
incoming and outgoing wave functions by the dipolar interaction. The
free radial _wave function solution with momentum &k is
(]J}{ﬂfﬁ’(p) = ”—’[Bjm(kp), which does not depend on n.

The 2D loss rate coefficient for the channel | o) — j¢),|0) — |ns)
reads

17)

2

i 8 +0o0 L
=l [ dz [ oty 00, @V 0.2K0@0(0)
klkfh —o0 0
(18)
with x,, being the n*" harmonic oscillator’s state wave function:
1 1\ -2 0
= | — Zaz
Xn(2) e <n a§> Hu(z/a,)e *:. 19)
The total rate is then the sum over all channels:
£l
Bw=> B’ (20)
Jrny

and relates to the 3D rate as S5, = /7@, Syp-

The rate is eventually averaged over the thermal distribution of
incoming momenta (see Supplementary Information Note 2) for the
Fig. 2b, ¢, and computed at the mean momentum for all of the other
figures.

Pure-2D limit

In pure-2D the double spin-flip potential is V44 ,(p) o 1/p>. If we ignore
the shielding, in the low-temperature limit, we find that the 2D decay
rate is

_ 1E
B2 = 42 i k. @
pure—2D . . .
SO Biree o B. If we incorporate shielding we find that
Baeised o« (1/log(ky)® 2

which goes to zero at zero temperature. Under certains assumptions
detailed in Supplementary Information Note 4 and noting x, the first
zero of the Bessel function /,(x), one can find that the decay rate in a
certain field range behaves as

(23)

8ayqk
~2D | pl/4 adkr
'Bs#i:ded O‘kf exp (—2 T)

which vanishes at high magnetic fields.

Discussion of various approximations

Unitarity limit. The perturbative results will get modified when the
decay rate approaches the unitary limit. However, in our range of
parameters, the decay rates are much smaller than the unitary limit. A
Bap of high 10" cm?®/s corresponds to a Bp=o0hk/u in the low
10"°cm?/s. This gives a ok ~ 0.1« 4 which puts us safely in the non-
unitary regime. Note that the total cross sectionin 2D is o = %stinzﬁ,
and is dominated by the s-wave contribution given our magnetic fields.

Wave function substitution approximation. The system is perturbed
by two parts of the dipolar potential: one which is diagonal in the spin
states basis and therefore elastic, the other part is non-diagonal and
causes transitions. Usually, the weakest part of the Hamiltonian should

. . . ~ inelastic - elastic 2
be treated perturbatively. It is the case here since |V:;1de = VZ;S ‘|~

1//=1/8 as shown in equation (16). This is why we evaluate the decay
rate on the shielded wave function. Following previous treatments>*%,
we have not checked the importance of higher-order terms in the
perturbation theory.

Effective potential approximation. To compute the wave functions
we assumed an effective potential obtained by averaging V44 in the n™
state of the harmonic oscillator. This is the diabatic limit of a coupled
channels calculation. There exists a fully adiabatic method to compute
the molecular potential of two interacting dipoles in a quasi-2D
geometry’. It would mix the harmonic oscillator states but we found it
would only affect the wave function at short distances, which is
important only at high magnetic fields. In our experiment, krayq
remains on the order of 1, and restricting the z-motion to the pre-
existing harmonic oscillator states is acceptable.

Fermi’s golden rule approximation. The use of Fermi’s golden rule
with the original density distribution is valid only if the decay rate is
smaller than the other time constants of the system. The relaxation
rate I = B3pn ~10% s' is indeed smaller than the collision rate which is
around 10° s™, or the trap frequencies of 200 Hz. This assumption is
therefore fulfilled. The system will stay in (quasi-) equilibrium when the
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loss rates are smaller than the trapping frequencies and smaller than
the rate of elastic collisions which provides thermalization.

Neglecting short-range interactions. The background s-wave scat-
tering length of dysprosium a=5.9 nm* can modify the wave func-
tions. A previous paper’ studied extensively its influence on chromium.
However, the decay rate we observed in a large volume 3D trap (red
curve in Fig. 2) agrees better with the theory which does not take the
scattering length into account. Another dysprosium experiment”
found a similar result in an even wider range of fields. However, it is
possible that the short-range molecular potential plays a role in the 2D
results, and could possibly explain why we obtain rates a few times
smaller than the theory predicts (see shaded areas in Fig. 2). Indeed, a
sizeable contribution to the loss comes from interatomic distances
smaller than the van der Waals length a,qw = 4.3 nm and the scattering
length a=5.9 nm. Since the real wave function rapidly oscillates at
short-range, the contribution to the overlap matrix element should
vanish. To get a sense of the sensitivity of our model to contact
interactions we also used simulated wave functions with a hard-core
potential at a; = 5.9 nm, while keeping the dipolar potential elsewhere.
We put a node in the incoming and outgoing radial wave functions ¢ at
this position, and integrated from this distance outward. This pro-
duced the lower bound of the shaded areas in Fig. 2. It would be
interesting to use a more realistic interaction potential to study
the impact of short-range interactions, however this goes beyond the
scope of this paper.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request.

Code availability
The code that supports the findings of this study is available from the
corresponding author upon request.
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