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ABSTRACT

The evolution of advanced computing, driven by breakthroughs in artificial intelligence
and large language models, presents significant opportunities for various industries. In this
study, we analyze the trade-off between model performance and computational cost to un-
derstand industry-specific preferences and technology adoption dynamics. We construct a
dataset of 150 published research papers that compare traditional machine learning, deep
learning, and scientific computing models. Using both binary and relative comparison met-
rics, we assess improvements in performance and computational cost. We find that the
healthcare industry prioritizes model accuracy over computational cost, with 40% of papers
showing performance improvements but only 34.29% indicating cost efficiency. In contrast,
the architecture industry demonstrates a significant focus on reducing computational costs,
with 94.29% of papers reporting cost improvements but only 8.57% showing performance
gains. The finance industry balances both aspects, with a preference for minimizing com-
putational complexity, with 31.43% of papers showing performance improvements and 80%
reporting cost reductions. We also find an exponential increase in publications relevant to
this study over time, suggesting a rapidly evolving landscape in advanced computing.
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Chapter 1

Introduction

The objective of this work is to bridge the gap between industry-specific applications and the
advanced computing frontier by investigating where different industries believe the trade-off
between performance and compute lies. Specifically, we aim to provide a comprehensive
review of how the healthcare, architecture, and finance industries value model performance
compared to flexibility. To do this, we analyze 150 published research papers across a wide
variety of domains to extract data on the performance and computational cost of advanced
computing models in practice. By understanding how different industries value performance
and flexibility, we can make important predictions about the future of such industries in the
age of artificial intelligence.

The remainder of this paper is organized as follows: Chapter 1 provides an introduction
and reviews related works, Chapter 2 describes the methodology that was used for data
extraction and presents the structure of the dataset we built. Chapter 3 explains how
metrics were calculated using our dataset. Chapter 4 presents results and analysis. Finally,
Chapter 5 summarizes our findings and discusses limitations of the current study as well as
future research directions.

1.1 Trade-off Between Model Performance and Compu-

tational Cost

As the landscape of advanced computing evolves at a breakneck rate, firms across all in-
dustries are confronted with a pivotal question: how can they effectively incorporate new
technologies into their business models? Recent breakthroughs in artificial intelligence and
the widespread adoption of large language models highlight the potential that advanced
computing has to impact a diverse set of industries. However, with great promise comes
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great challenges, as there are substantial computational, economic, and environmental costs
associated with implementing and deploying such technologies [17]. When thinking about
decisions that must be made relating to technology adoption, we face a conundrum: having
more computing power tends to improve performance, and vice versa [2]. Discovering the
optimal balance between computational cost and performance is an important step towards
more widespread adoption. However, the real-world impact of these technologies varies sig-
nificantly across different domains, making the situation more complex.

Understanding the trade-off between computational cost and performance is critical to
understanding the implications for how industries strategize and compete. Many industries
that have traditionally relied on high-performance computing models are now at a crossroads.
The adoption of more computationally efficient models can lead to significant cost savings,
faster decision-making processes, and improved scalability. However, these benefits must be
weighed against the potential risks of reduced model accuracy and reliability. We hypothesize
that each industry has a different optimal point of indifference between the two performance
and computational cost and we seek to understand how the healthcare, architecture, and
finance industries specifically view this trade-off.

For decades, scientific computing simulations have been the preferred method of mod-
eling phenomena across a wide range of applications [19] Simulations rely on models built
by experts in a field to predict probabilities and incorporate nuanced knowledge of physical
systems to reach conclusions with a high degree of accuracy. These complex models perform
extremely well but oftentimes the computational power required to initialize and run each
simulation step can make applications impractical [18]. In terms of performance, simulations
are commonly thought of as the gold standard of prediction models, a title that comes at
the expense of computational cost. In more recent years, traditional machine learning has
emerged as a leading technology in the pursuit towards predictions that are less computa-
tionally expensive traditional large-scale simulations. Rather than using a model carefully
constructed by experts, machine learning models rely on the patterns found in historical
data to make predictions rather than the physical laws that explain complex systems. In the
early 2010s, deep learning, a subset of machine learning that uses artificial neural network
architecture, emerged with the potential to strike a middle ground between performance and
compute.

We are posed with a multi-objective optimization problem: how can we build models that
maximize performance metrics and minimize computational costs? We utilize the idea of a
Pareto frontier to describe the trade-off between performance and compute. When thinking
about the performance and computational cost of different models, we can imagine each
model corresponding to a coordinate on a 2-dimensional grid, with the x-axis representing
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the amount of computation used and the y-axis representing the performance of the model.
When examining the data, we can then identify points that are Pareto optimal, meaning
that there are no alternative points that make one metric (e.g. performance) better without
making another metric (e.g. computational cost) worse. The set of all Pareto optimal points
can then be plotted to create what is known as the Pareto frontier. Using our knowledge
of the performance and computational cost of traditional machine learning, deep learning,
and scientific computing techniques, the shape of a Pareto frontier that explains the trade-off
between performance and compute can be hypothesized. Figure 1.1 describes our hypothesis.

Figure 1.1: Hypothesized Pareto frontier of the advanced computing landscape (example of
the predicted shape of the frontier, does not use real data to plot).

1.2 Related Work

Previous works provide overviews of the adoption of advanced computing technologies across
a variety of industries and emphasize the importance of minimizing computational cost.
Through the analysis of both the reports of individual models and surveys of adoption
across a broader range of the landscape, we can understand what has been done and identify
important extensions on the existing work in this field.

1.2.1 Adoption Across Firms

Many studies have found that advancements in technology are key drivers of economic growth
[4]. Therefore, understanding how advanced technology adoption can be measured and en-
couraged is imperative for sustaining growth and planning for the future. Using evidence
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from the U.S. Census Bureau’s 2018 Annual Business Survey, a 2020 paper from the National
Bureau of Economic Research was able to categorize adoption at the firm level. Key take-
aways from the study include the idea that the adoption of advanced computing exhibits a
hierarchical pattern, with most firms that adopt AI or other advanced business technologies
also using more widely diffused technologies and that very few firms are at the technology
frontier [12].

1.2.2 Industry-Level Analysis

Previous works that focus on the industry-level analysis of the impact of advanced com-
puting identify industries that have the potential to benefit most from advances in artificial
intelligence. With data sources widely available, studies have found promising applications
of machine learning and deep learning in smart cities, healthcare, and supply chain manage-
ment [11]. However, past works do not investigate how different industries weigh the two
objectives of maximizing performance and minimizing computational cost, with most studies
only mentioning one or the other.

1.2.3 The Growing Importance of Computational Cost

Along with the clear time saving and money saving properties of computationally inexpensive
models, recent works highlight additional motivations for minimizing the amount of com-
putation that models require for satisfactory performance. In their 2022 paper, Thompson
et al. study the importance of computing power from the lens of economically important
applications. Despite economic theory assuming a power law relationship between inputs
and outputs, they find that exponential increases in computing power are needed to get lin-
ear improvements in the domains of weather prediction, protein folding, and oil exploration
[2]. In 2019, Strubell et al. quantified the environmental damage associated with running
computationally expensive models, finding that the estimated carbon dioxide emissions from
training one large Transformer model is nearly five times that of the estimated carbon dioxide
emissions that a car emits over its lifetime [1].
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Chapter 2

Data

2.1 Data Collection

While theoretical advances in computing are well documented, information about applica-
tions of such technologies are far less centralized. To investigate how various industries value
the performance and flexibility of advanced computing models, we review published papers
that compare traditional machine learning, deep learning, and scientific computing models.
We use each paper as data point that represents a specific instance of model performance and
computational cost within each industry. Of the papers reviewed in each domain, we chose
to only include those that provided both performance and computational cost comparison
metrics for both models.

Three different types of comparisons were made across the 150 papers used in this study.
They are structured in the format Base → New, representing the switch from the original
baseline model to a novel model. Papers are labeled as having compared traditional machine
learning to deep learning (ML → DL), scientific computing to deep learning (SC → DL),
or scientific computing to traditional machine learning (SC → ML). The distribution of
papers between these three categories is satisfactory for performing further analysis, with a
minimum of 29 papers in each Base → New category. The full count of papers is shown in
Table 2.1.

2.2 Industry Identification

When considering different industries to prioritize collecting papers for, it was critical to
pick industries that had the potential for enough data to be collected. Another major
consideration was finding industries that historically have varying degrees of preference for
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Industry Number of Papers ML → DL SC → DL SC → ML

Healthcare 35 28 5 2
Architecture 35 5 13 17

Finance 35 10 18 7
Other 45 8 34 3
Total 150 51 70 29

Table 2.1: Count of total papers and paper with each type of comparison broken down by
industry.

the trade off between model performance and computational cost. For example, one industry
may be willing to take more time to let models run in order for the most accurate result to
be produced, while other industries may need real time results for the models to have any
tangible impact on their work. With these considerations in mind, we chose to prioritize
data collection for the healthcare, architecture, and finance industries. Below, we discuss
further the decision to choose the healthcare, architecture, and finance industries.

2.2.1 Healthcare Industry

Strides in artificial intelligence have proven to be invaluable for the healthcare industry.
Despite the limitations in data quality and high regulatory standards that slow the broad
adoption of advanced computing in this industry, life-saving technologies have emerged for
a wide-range of conditions [7]. Additionally, the healthcare industry has the second highest
sectoral diffusion rate for all business technologies, with 14% of firms indicating the use of
at least one business technology, behind only the manufacturing industry at 15% [12].

Accuracy, reliability, and privacy are all critical metrics to prioritize in the healthcare
industry due to the direct impact that models have on patient outcomes and regulatory
requirements. Given the nature of the industry, we hypothesize the healthcare industry may
favor higher computational costs if model accuracy and reliability is improved, even if only
slightly. An incorrect prediction in this industry can have a very high cost to both the pa-
tient and the healthcare provider, justifying an investment in more advanced computational
resources. For example, it is critical for healthcare providers to minimize false negatives
when using a disease prediction algorithm and it is usually reasonable for patients to wait
hours or even days for results so long as they are accurate.

Within the healthcare industry, 35 total papers with relevant data for this work were
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found. Table 2.2 shows a breakdown of the subdomains of which the papers belong.

Healthcare Subdomains Paper Count

Disease prediction 23
Clinical Data 9

Medical Imaging 3
Total 35

Table 2.2: Breakdown of the number of papers in the dataset from the healthcare industry
by subdomain.

The most frequent subdomain is disease prediction, representing some of the most promis-
ing applications of advanced computing in healthcare. Studies have found that the use of
machine learning-based computational models for disease prediction can reduce the time and
resources required for analysis significantly [45]. .

While some studies have found that artificial intelligence models can outperform medical
professionals [21], these conclusions are not universally accepted. Other research suggests
that most models have lower accuracy metrics and should support serve as support for
medical professionals rather than as substitutes [3].

2.2.2 Architecture Industry

Despite its title as one of the oldest industries in the world and its origins tracing back to the
Neolithic period (10000 BC), the architecture industry has benefited significantly from recent
advancements in computing. The use of scientific computing and simulations is well docu-
mented within architecture, with large simulations for structural integrity, energy efficiency
modeling, and generative design algorithms commonplace across firms in the industry [22].
However, the rise of machine learning has proven to be particularly beneficial in architecture
for understanding interactions between systems, environments, and inhabitants, and across
different disciplines by observing recurring events in a more precise, efficient, and innovative
way [14].

We hypothesize that researchers in the architecture industry value model performance
and computational complexity to a similar degree. It is crucial for models to operate quickly
and accurately, enabling timely and effective decision-making in design and construction
processes. While minor errors can occasionally be tolerated, the overarching goal is to ensure
that the benefits and cost savings realized over the lifespan of a building outweigh the initial
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computational investments. This balance is vital for driving innovation while maintaining
economic feasibility in architectural practices.

Within the architecture industry, 35 total papers with relevant data for this work were
found. Table 2.3 shows a breakdown of the subdomains of which the papers belong.

Architecture Subdomains Paper Count

Building Design 31
Landscape Architecture 4

Total 35

Table 2.3: Breakdown of the number of papers in the dataset from the architecture industry
by subdomain.

The most frequent subdomain is building design, a category that encompasses building
energy assessments, the design and construction of building structures, and project planning.
Of the 31 building design papers represented in our dataset, 17 (54.8%) are SC → ML
comparisons, and 11 (35.5%) are SC → DL comparisons, suggesting that machine learning
models may be well on their way to replacing traditional simulations in an industry that has
historically relied very heavily on them.

2.2.3 Finance Industry

Advanced computing has a rich history in the finance industry, dating back to the 1960s
when mainframe computers were used to automate banking operations and manage large
datasets. The 1980s and 1990s saw the development of algorithmic trading and quantita-
tive finance, where complex mathematical models were used to predict market trends and
optimize investment strategies [20]. From the early 2000s to current date, computing in the
industry has been characterized by the integration of big data analytics and artificial intel-
ligence, which have further improved the ability to accurately and cost-effectively analyze
market behaviors and manage financial risks [16].

In areas of the finance industry such as algorithmic trading, fraud detection, and as-
set pricing, both the speed and accuracy metrics of models are critical. Financial models
require rapid processing of large volumes of data and often run continuously, demanding sub-
stantial computational resources. Despite the desire for high accuracy, we hypothesize that
researchers in the finance industry value computational complexity more than the healthcare
or architecture industries, since milliseconds can equate to significant financial differences in
many model applications.
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Within the finance industry, 35 total papers with relevant data for this work were found.
Table 2.4 shows a breakdown of the subdomains of which the papers belong.

Finance Subdomains Paper Count

Markets 25
Insurance 6

Econometrics 4
Total 35

Table 2.4: Breakdown of the number papers in the dataset from the finance industry by
subdomain.

The most frequent subdomain is markets, which encompasses studies related to predict-
ing various characteristics of financial markets. Of the papers in this subdomain, 25 (64%)
relate to derivatives pricing and volatility modeling, an area financial engineering that has
historically relied heavily on computationally expensive models to solve stochastic partial
differential equations and costly simulations to mimic the results of such models. The po-
tential for faster derivatives pricing via relatively accurate machine learning models has led
to an influx of buzz around potential applications within this space.

2.3 Other Domains

In order to leverage more available data and create a benchmark to which we can compare
industry-specific results, an additional 45 papers were gathered that do not fall under the
healthcare, architecture, or finance domains.

The choice to include papers from other domains is essential for establishing a compre-
hensive baseline for comparison, allowing us to understand the performance and applicability
of advanced computing models across a broader spectrum of industries. By incorporating
data from diverse fields, we can better assess the generalizability of our findings and better
understand industry-specific nuances. This holistic approach ensures that our analysis is
robust and reflective of the wide-ranging impact of advanced computing technologies.

Table 2.5 provides a summary of the additional 45 papers, breaking down the count of
papers in our database by domain and specifying the subdomains.
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Domain Subdomains Represented Paper Count

Sustainability Climate Models, Weather Forecasting, Water Supply 15
Natural Sciences Particle Physics, Chemistry, Cosmology 16
Computer Science Large-scale Simulations, Computer Vision, NLP 11

Miscellaneous Agriculture, Safety, Material Design 3
Total 45

Table 2.5: Breakdown of the number of papers from other domains represented in the dataset.
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Chapter 3

Methods

3.1 Data Classification

Throughout the data collection and paper review phases of this project, we noticed that
the data we needed was reported in various forms across different studies. Some studies
made direct comparisons, for example comparing a singular traditional machine learning
model to a singular deep learning model, while others used more complex methods involving
full simulations versus surrogate models or several models compared within each of the
scientific computing, machine learning, and deep learning fields. The goal of our classification
strategy was to extract useful metrics from as many papers as possible, without sacrificing
the accuracy of our analysis. In order to have data that is comparable across papers, we
needed to design a framework for standardizing and comparing data.

Overall, we focused on determining how each study as a whole aligned or diverged in the
context of computational cost versus model performance trade-offs. This approach enabled
us to systematically categorize the papers, streamline our analysis, and generate insights into
how different models are evaluated and chosen based on industry-specific criteria. Below we
review how metrics were standardized to be compared across studies, how model compar-
ison metrics were calculated, and our methodology for extracting relevant data for papers
that made a singular model comparison. For further details on the special cases of model
comparisons that we encountered and how such papers were classified, refer to Appendix A.

3.1.1 Binary Comparisons

For each of the 150 papers in our dataset, we were able to identify which model performed
better and which model used more computational cost, even if specific cost and performance
metrics were not provided. Using a binary comparison metric allowed us to mark more papers
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as relevant in our analysis than if we had only focused on making relative comparisons. Many
of the papers that we reviewed only reported one of the metrics that we were looking for
as a numerical comparison, but still touched on the models relative performance for the
other metric. Binary comparisons allow us to include such models in our analysis. Table
3.1 describes how papers were labeled, with each paper getting one label to describe model
performance and one label to describe cost.1

In Comparison to the Base Model, the New Model Label

Has Better Performance +1
Has Equal Performance 0
Has Worse Performance -1

Uses More Computational Power +1
Uses Equal Computational Power 0
Uses Less Computational Power -1

Table 3.1: Description of Binary Classification Labels.

3.1.2 Relative Comparisons

After determining the model that had better performance the model that used less compu-
tational power in each paper, we sought out quantitative metrics to analyze the magnitude
of model improvements. Of the papers in our dataset, 71 provided quantitative comparison
metrics for both model performance and computational cost. We refer to these papers as
having relative comparisons. Table 3.2 summarizes the number of papers within each domain
that we were able to extract the metrics necessary for a relative comparison.

After determining which model performed better and which model used less computa-
tional power in each paper, we then sought out quantitative metrics to analyze the magnitude
of model improvements. Across the papers that we reviewed, several quantitative metrics
were used to measure performance and computational cost.

For each of the papers with relative comparisons in our dataset, we were able to classify
the performance and cost metrics and label the papers as belonging to one of two sets:
larger numbers indicating better performance (PL) or smaller numbers indicating better
performance (PS). Similarly, all cost metrics that were reported could be partitioned into two

1It is important to note that favorable models will have a +1 label for performance and a -1 label for
compute.
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Industry Binary Comparisons Relative Comparisons

Healthcare 35 15
Architecture 35 13

Finance 35 17
Other 45 26
Total 150 71

Table 3.2: Count of papers broken down by level of data extracted (binary vs relative).

categories: larger numbers indicating a higher computational cost (CL) or smaller numbers
higher computational cost (CS). In Table 3.3, we present the most commonly reported
metrics that belong in each set.

Paper Classification Metrics

PL Accuracy, AUC, F1-score, R2

PS MSE, RMSE, MAE, MAPE
CL Training Time, Execution Time, Simulation Runs
CS Computation Speedups

Table 3.3: Commonly reported model performance and computational cost metrics in each
paper classification set.

Using the performance and cost, we were able to calculate relative performance and rel-
ative cost metrics. When comparing cost metrics, specifically when comparing traditional
machine learning or deep learning to scientific computing, it is not uncommon to see improve-
ments of several orders of magnitude. To allow us to make a more meaningful comparison
between the trade-offs between performance and cost, we chose to calculate our metrics by
taking the logarithm of the ratio of the models improvement. This calculation varied slightly
depending on which relative metric was being computed and the paper classification of the
source. Equations 3.1, 3.2, 3.3, and 3.4 explain how calculations were made for each paper
classification.

Paperi ∈ PL : RelPrefi = log10(
PerformanceMetricNewi

PerformanceMetricBasei

) (3.1)

Paperi ∈ PS : RelPrefi = log10(
PerformanceMetricBasei

PerformanceMetricNewi

) (3.2)
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Paperi ∈ CL : RelCosti = log10(
CostMetricBasei

CostMetricNewi

) (3.3)

Paperi ∈ CS : RelCosti = log10(
CostMetricNewi

CostMetricBasei

) (3.4)
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Chapter 4

Results

4.1 Performance vs Compute Frontiers

Using both the binary and relative comparison data, we perform several analyses to examine
the relationship between model performance and computational cost across our three selected
industries.

4.1.1 Binary Data

To compare binary data points, we calculated the percentage of total papers within each
domain and Base → New model comparison category that reported a performance improve-
ment. We performed the same calculation for computational cost improvements. Tables 4.1
and 4.2 summarize our findings.

Industry ML → DL SC → DL SC → ML All Base → New

Healthcare 46.43% 20.00% 0.00% 40.00%
Architecture 40.00% 0.00% 5.88% 8.57%

Finance 80.00% 5.56% 28.57% 31.43%
Other 87.50% 14.71% 0.00% 26.67%

All Domains 58.52% 10.00% 10.34% 26.67%

Table 4.1: Percent of papers that showed performance improvements after switching from
the Base model to the New model.

We see that papers in our dataset that compared traditional machine learning to scientific
computing reported an improvement in computational cost. However, when looking at other
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Industry ML → DL SC → DL SC → ML All Base → New

Healthcare 25.00% 60.00% 100.00% 34.29%
Architecture 60.00% 100.00% 100.00% 94.29%

Finance 40.00% 94.44% 100.00% 80.00%
Other 37.50% 100.00% 100.00% 88.89%

All Domains 33.33% 95.71% 100.00% 75.33%

Table 4.2: Percent of papers that showed computational cost improvements after switching
from the Base to the New model.

base model and new model pairs, we see distinct trends across industries. For example, the
healthcare industry had significantly fewer new models with improved computational cost
metrics across both ML → DL comparisons and SC → DL comparisons. This suggests that
the healthcare industry may prioritize reducing computational cost less than the other in-
dustries that we studied. For example, the finance industry showed significantly better rates
of computational cost improvement than the healthcare industry. In terms of performance
improvements, the healthcare industry has the highest improvement rate across all Base →
New models at 40%. The finance industry also showed a significant percentage of papers re-
porting performance improvements (31.43%), though not as high as the healthcare industry.
The architecture industry, heavily reliant on machine learning-based surrogate models, saw
low performance improvements compared to the rest of the industries.

These results corroborate our hypothesis that researchers in the healthcare industry tend
to favor computationally complex models with extremely high accuracy over models that are
significantly less expensive but slightly less accurate while the opposite is true in the finance
industry.

Figure 4.1 shows the percentage of papers that demonstrated performance improvements
after switching from the Base model to the New model while Figure 4.2 illustrates the
percentage of papers that observed computational cost improvements when switching models.
These graphs helps visualize how often new alternative computational models outperform
the baseline across different comparisons (ML → DL, SC → DL, ML → SC) across different
industries.

Figure 4.3 captures both the performance and cost dimensions at the same time by
plotting the percent improvements for both performance and cost metrics on the same graph.
This helps us visualize where the performance-compute trade-off point may lie for each
industry.
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Figure 4.1: Percent of papers that showed performance improvements after switching from
the Base model to the New model.

Figure 4.2: Percent of papers that showed computational cost improvements after switching
from the Base model to the New model.
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Figure 4.3: Performance and Computational Cost Percent Improvements by Industry.
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4.1.2 Relative Data

Using the idea illustrated in Figure 1.1, we generate model performance vs computational cost
frontiers for each of our industries of interest. Each graph plots the relative performance and
relative compute metrics for the specified Base → New categories. Metrics were calculated
using Equations 3.1, 3.2, 3.3, and 3.4.

When plotting the data-points, we use arrows from the Base model metric to the New
model metric to represent the magnitude and direction of performance and cost improve-
ments. For example, a paper i with a DL → SC relative comparison in which the scientific
computing model was preferred in terms of performance (log10(RelPrefi) ≥ 0) and had a
higher computational cost (log10(RelCompi) ≥ 0) would be represented by an arrow pointing
to the first quadrant of the graph.

Plots were generated for all three of the potential base models, with the base model rep-
resenting coordinate (0,0) on their respective graphs. For example, the charts labeled "ML
Origin" have data points of the form ML → DL and ML → SC plotted. The relative accura-
cy/computational cost of either a scientific computing or a deep learning model is compared
to that of machine learning, and each arrow pointing away from the origin represents both
the magnitude and the direction of the improvement metrics. The performance of models
from individual papers are represented by the thin, semitransparent arrows. The thicker,
opaque arrows represent the arithmetic mean of all Base → New performance and cost values
within the specified domain(s). In the plots, arrows (→) are replaced with slashes (/).
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(a) All domains (n=25) (b) Healthcare (n=11)

(c) Architecture (n=4) (d) Finance (n=5)

Figure 4.4: Relative performance vs relative compute plot for different domains with machine
learning as the base model.

Figure 4.4 shows relationships that support our hypothesis that compared to traditional
machine learning, both deep learning and scientific computing have better performance and
use more computational cost. The one exception to this is shown in the architecture industry.
Figure 4.4c shows that the papers that compared deep learning to machine learning in the
within this domain have an unexpected relationship, with deep learning models being, on
average, less computationally expensive than traditional machine learning. After taking a
closer look at the data, we see that there are only two papers with relative comparisons
between ML and DL in the architecture domain. A small sample size may explain why we
see this unexpected relationship.
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(a) All domains (n=54) (b) Healthcare (n=12)

(c) Architecture (n=10) (d) Finance (n=11)

Figure 4.5: Relative performance vs relative compute plot for different domains with deep
learning as the base model.

The relationships shown in Figure 4.5 support our hypothesis that compared to deep
learning, machine learning has worse performance but is less computationally demanding
and scientific computing has better performance but has higher computational cost. Again,
the only counterexample to this claim is comparing machine learning to deep learning in the
architecture industry. Since ML → DL and DL → ML comparisons are equal in magnitude
and opposite in direction, it makes sense that we see the same relationship as in Figure 4.4.
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(a) All domains (n=41) (b) Healthcare (n=5)

(c) Architecture (n=10) (d) Finance (n=10)

Figure 4.6: Relative performance vs relative compute plot for different domains with scientific
computing as the base model.

Figure 4.6 supports our hypothesis that traditional machine learning models and deep
learning models both significantly reduce computational cost when compared to scientific
computing. All eight of the thicker, opaque arrows shown in the figure lie in the third
quadrant of the performance vs compute graphs. This suggests that the trend is both
observable and consistent across all industries.
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4.2 Progression of Model Improvements Over Time

To better understand model improvements and the rate at which advanced computing tech-
niques are adopted across industries, we perform analysis our data segmented by the year
of publication of each other papers in our dataset. When looking for a way to effectively
split our dataset into two time buckets, we prioritized choosing a year that would partition
the data into two buckets that were relatively equal in size. We also wanted the year we
chose to mark a significant milestone in the landscape of advanced computing. Keeping
this in mind, we chose to split our data into two categories: papers published in 2018 and
before and papers published in 2019 and after. Table 4.3 shows that this offers not only an
approximately even split between the number of papers across all domains, but within each
industry there are enough papers within each time bucket for meaning for analysis.

Industry 2000-2018 2019-2024

Healthcare 19 16
Architecture 26 9

Finance 10 25
Other 45 26
Total 70 80

Table 4.3: Data split between two time buckets.

4.2.1 Exponentially Increasing Publications

As new computing techniques, specifically traditional machine learning and deep learning
models, perform better and become more widespread, more and more publications that are
relevant to this study are released each year. In an analysis of the landscape of machine
learning in architectural design, Papasotiriou finds that there has been an exponential in-
crease in the number of publications in the field since the early 2000s [14]. We reach the same
conclusion when analyzing the papers in our dataset. Figure 4.7 presents the distribution of
papers in the dataset published during each three-year period, providing insights into trends
over time regarding the publication and possibly the evolution of computational models in
research.
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Figure 4.7: Number of papers in the dataset published during each three year period.

4.2.2 Model Improvements

Figures 4.8 and 4.9 show the percentage of papers that reported improvements in performance
and computational cost, respectively, from the Base to the New model across different model
comparisons over time. These graphs help in understanding how advancements computing
have contributed to better performance and efficiency across years and which industries are
benefiting the most.

Figure 4.8: Percent of papers that showed performance improvements from the Base model
to the New model across all Base → New combinations.

We see that the healthcare industry has shown significant improvements since 2019 in
both model performance and computational cost while the architecture and finance industries
are lagging behind in both metrics. This suggests that researchers in the healthcare industry
may be prioritizing both performance and cost metrics in recent works and the architecture
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Figure 4.9: Percent of papers that showed computational cost improvements from the Base
model to the New model across all Base → New combinations.

and finance industries may have a clearer focus on one metric over the other.
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Chapter 5

Conclusion

The findings of the study reveal distinct trends in how different industries prioritize model
performance versus computational cost. We hypothesize what the performance vs compu-
tational cost trade-off curve looks like when comparing traditional machine learning, deep
learning, and scientific computing and find results that are consistent with our postulate.

We find that the healthcare industry favors computationally complex models with ex-
tremely high accuracy over models that demand significantly less computational power but
are slightly less accurate. 40% of the papers reviewed in the finance industry showed per-
formance improvements when switching from the Base model to the New model but only
34.29% of the papers showing improvements in computational cost. In the architecture in-
dustry, we saw significant strides in reducing computational cost, with 94.29% of the papers
reviewed showing improvements, while performance metrics lagged behind with only 8.57%
of the papers reviewed showing improvements. We note that, compared to the other in-
dustries reviewed, architecture relies significantly more on scientific computing, which can
explain the focus on reducing cost at the expense of performance. In the finance industry,
we find that speed is often prioritized over marginal gains in model performance, with only
31.43% of the papers reviewed showed performance improvements while an impressive 80%
of the papers showed improvements in computational cost.

Finally, we saw that the number of publications relevant to this study has increased
exponentially with time, suggesting that the landscape of advanced computing is constantly
evolving, as is the performance vs computational cost trade-off curve.
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5.1 Future Work

The methodology that we present in this project gives rise to several directions for future
work. One promising direction is applying the framework of our analysis to additional
industries beyond those analyzed in this study. While this research focused on healthcare,
architecture, and finance, other sectors such as manufacturing, transportation, and energy
could benefit from a similar analysis. The end goal for this work is to have a comprehensive
description of the entire landscape of machine learning, which will require the analysis of
papers across all domains.

Another important direction for future work is to perform a similar analysis on additional
models and computation techniques. For example, quantum computing and other emerging
technologies have the potential to significantly change the trade-offs between performance
and computational cost that we have found in this study. Additionally, performing longi-
tudinal studies to examine the evolution of these trade-offs over time, can provide valuable
insights as to the extent of the impact that each advancement in computing has on individual
domains and the landscape as a whole.
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Appendix A

Special Cases of Model Comparisons

A.1 Machine Learning-Based Surrogate Models

A machine learning surrogate model is a type of model used across several domains to
approximate complex, computationally expensive simulations or functions. The goal of a
surrogate model is to provide an efficient alternative that closely mimics the behavior of the
original model but at a significantly reduced computational cost [15]. Figure 3.1 provides a
visual representation of a surrogate model embedded into a simulation.

Data
X1

X2
...

XN

Simulations
y = f(X)

Surrogate model
y ≈ f̂(X)

Prediction
y1

y2
...
yN

Figure A.1: Pipeline for enhancing simulations with machine learning and deep learning-
based surrogate models. Computationally expensive steps of the full simulation (f) are
replaced with approximate predictions generated by the surrogate (f̂).

Surrogate models are often used when the relationship between input and output data is
unknown or not observable in the real world. As a result, it is common practice for surrogate
models to be trained on and tested against data that is generated from the original full
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simulation model. This results in performance metrics for the new model that are reported
relative to the baseline model, not absolute comparisons to actual labels.

Having knowledge of surrogate models significantly aided our search for relevant papers
for this study. Because the primary goal of a surrogate model is to find a better balance
between computational cost and model performance, many of the papers reviewed that
implemented surrogate models included all of the data points that we were looking to extract.
When analyzing surrogate model papers, we chose to think of them as papers that show
"DL enhancing SC" rather than "DL outperforming SC". However, for the purposes of our
dataset, we classified papers that compared the performance of a surrogate model to a full
simulation as SC → "Surrogate model type". For example, a paper that investigates using
a SVM-based surrogate model for down-scaling the computational resources needed to run
part of a climate simulation would be classified as SC → ML.

A.2 Papers with Multiple Comparisons

Oftentimes, papers that are specifically focused on improving one of the two metrics will
hold the less relevant metric constant and report the size of the improvement for the other
metric. For example, a paper may set an accuracy threshold that it requires each model
to meet and reports the amount of computing power necessary for each model to reach the
threshold. This is particularly common in SC → DL and SC → ML papers that compare
a machine learning enhanced surrogate model to a full simulation. For papers with metrics
reported in this fashion, the binary value of the metric that was held constant was recorded
as 0 and the main metric for improvement comparison was recorded as normal.

Many of the papers we reviewed compared more than two different models. For example
rather than comparing a support vector machine (SVM) machine learning model to a Long
Short Term Memory (LSTM) deep learning model, a paper may compare SVM, logistic
regression, LSTM, and CNN models, resulting in several different ML → DL comparisons
for one paper. To weigh each paper evenly in our analysis regardless of the number of models
compared, we chose to pick one model from each of the base and new techniques. We chose
to use the model with the highest accuracy within each, breaking ties by choosing the model
that is less computationally expensive as necessary.
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