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ABSTRACT

Recent advancements in visual language models (VLMs) have transformed the way we
interpret and interact with digital imagery, bridging the gap between visual and textual
data. However, these models, like Bard, GPT4-v, and LLava, often struggle with specialized
fields, particularly when processing scientific imagery such as plots and graphs in scientific
literature.

In this thesis, we discuss the development of a pioneering reconstruction pipeline to ex-
tract metadata, regenerate plot data, and filter out extraneous noise like legends from plot
images. Ultimately, the collected information is presented to the VLM in structured, tex-
tual manner to assist in answering domain specific queries. The efficacy of this pipeline is
evaluated using a novel dataset comprised of scientific plots extracted from battery domain
literature, alongside the existing benchmark datasets including PlotQA and ChartQA. Re-
sults about the component accuracy, task accuracy, and question-answering with augmented
inputs to a VLM show promise in the future capabilities of this work.

By assisting VLMs with scientific imagery, we aim to not only enhance the capabilities of
VLMs in specialized scientific areas but also to transform the performance of VLMs in domain
specific areas as a whole. This thesis provides a detailed overview of the work, encompassing
a literature review, methodology, results, and recommendations for future work.

Thesis supervisor: Michael Cafarella
Title: Principal Research Scientist, CSAIL

3



4



Contents

Title page 1

Abstract 3

List of Figures 7

List of Tables 9

1 Introduction 11

2 Related Works 13
2.1 Visual Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Datasets of Scientific Figures and Questions . . . . . . . . . . . . . . . . . . 14
2.3 Scientific Figure Analysis Tools . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Problem Statement 16

4 Methodology 20
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Scientific Figure Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.2 Scientific Figure Visual Question Answering Dataset . . . . . . . . . 21

4.2 Scientific Figure Reconstruction Pipeline . . . . . . . . . . . . . . . . . . . . 21
4.2.1 Bounding Box Mask Extraction . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 Metadata Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.3 Axis Recalculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.4 Image Augmentation and Color Mask Extractor . . . . . . . . . . . . 26
4.2.5 Annotation Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.6 Data Point Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.7 Dual Axis Partition of Data . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.8 Assignment of Data to Axes . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Experimentation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Evaluation Metrics 34
5.1 Pipeline Development Decisions . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Complete Reconstruction Method . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Components of the Pipeline . . . . . . . . . . . . . . . . . . . . . . . 34

5



5.2.2 Task Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.3 Overall Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Visual Question Answering Performance . . . . . . . . . . . . . . . . . . . . 36

6 Results 37
6.1 Dataset Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.1 Scientific Figure Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.2 Visual Question Answering Dataset . . . . . . . . . . . . . . . . . . . 37

6.2 Pipeline Development Decisions . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2.1 Image Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2.2 OCR Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2.3 Color Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3 Complete Reconstruction Pipeline . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3.1 Components of the Pipeline . . . . . . . . . . . . . . . . . . . . . . . 40
6.3.2 Task Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.4 Visual Question Answering Performance . . . . . . . . . . . . . . . . . . . . 47
6.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Conclusion 53

Acknowledgments 54

A Metadata Prompt to GPT 55

B Mapping of Webcolors to Simple Colors 57

C Simple Color Centroids 61

D Sample CSV Format for ChatGPT 62

E Assignment Prompt to GPT 63

F Baseline Prompt to GPT 64

G Reconstruction Prompt to GPT 65

References 66

6



List of Figures

3.1 Architecture for Reconstruction of a Scientific Diagram . . . . . . . . . . . . 16
3.2 Example Input Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Assignment of Data Clusters to Axes for Image I0 Where Circle Correspond

to the Left Axis and Triangle Corresponds to the Right Axis . . . . . . . . . 18

4.1 Scientific Figure Dataset Creation Pipeline . . . . . . . . . . . . . . . . . . . 20
4.2 Pipeline for Reconstruction for a Scatter Plot using Color Analysis . . . . . . 22
4.3 Segment Anything Chart Area Mask on Input Image I0 . . . . . . . . . . . . 23
4.4 OCR Results on Example Input Image I0 . . . . . . . . . . . . . . . . . . . . 25
4.5 Color Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 Fine-tuning Procedure for the Annotation Detection Model . . . . . . . . . . 28
4.7 Annotations on Image I0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.8 Single Axis Reconstruction on Image I0 . . . . . . . . . . . . . . . . . . . . . 30
4.9 Partition of Data into Clusters for Image I0 Using KMeans Clustering . . . . 31
4.10 Dual Axis Partition of Data into Clusters for Image I0 . . . . . . . . . . . . 31
4.11 Clustering Output for Image I0 . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1 Image Reconstructions with Input Image Augmentations . . . . . . . . . . . 40
6.2 Output of Various OCR Tools on a Sample Image . . . . . . . . . . . . . . . 41
6.3 Image Reconstructions with Various Color Analysis Tools . . . . . . . . . . . 42
6.4 Training Results for the Annotation Detection Model . . . . . . . . . . . . . 46
6.5 Confusion Matrix for the Legend Detection Model . . . . . . . . . . . . . . . 47
6.6 Annotation Detection on a Few Images of the Validation Set . . . . . . . . . 48
6.7 Illustration of Axis Recalculation Error on a Sample Image . . . . . . . . . . 48
6.8 Successful Reconstructions of the Input Images . . . . . . . . . . . . . . . . 51
6.9 Failed Reconstructions of the Input Images . . . . . . . . . . . . . . . . . . . 52

7



8



List of Tables

6.1 Scientific Figure Test Data Distribution . . . . . . . . . . . . . . . . . . . . . 38
6.2 Visual Question Answering Dataset Overview . . . . . . . . . . . . . . . . . 39
6.3 Color Decision - Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.4 Error Analysis of Metadata Extraction from GPT4 . . . . . . . . . . . . . . 43
6.5 Accuracy of Axis Recalculation Pipeline . . . . . . . . . . . . . . . . . . . . 44
6.6 Error Analysis of Axis Recalculation Pipeline . . . . . . . . . . . . . . . . . 45
6.7 Reconstruction Pipeline Task Accuracy . . . . . . . . . . . . . . . . . . . . . 49
6.8 Comparison of Results Without and With CSV . . . . . . . . . . . . . . . . 50

9



10



Chapter 1

Introduction

In recent years, there has been remarkable advancement in visual language models (VLMs),
revolutionizing the way we interpret and interact with images. Beginning with OpenAI’s
CLIP model, VLMs bridge the gap between visual and textual information. By tokenizing
and understanding visual data, the models open a realm of multi-modal inputs to enhance
the performance of machine learning models.

While the recent developments with Bard, GPT4-v, LLava, and many others have pro-
gressed the visual language model domain, their effectiveness is often contingent on the
nature of the images they process. Predominantly trained on everyday objects for common
tasks, these models excel in routine contexts but falter in specialized fields.

A notable shortcoming arises in the realm of scientific imagery, particularly in the in-
terpretation of plots and graphs within scientific literature. Images from these domains
can be challenging for the model, as they require common background knowledge, domain
knowledge, and interpretation of the diagram.

As such, we developed a sophisticated scientific diagram extraction process, designed
to augment VLMs’ understanding of scientific plots. The core of our project lies in the
development of a reconstruction pipeline that extracts the metadata, generates the plot
data, and removes the noise to provide to the VLM in a structured format. Initially, a
novel dataset with plots extracted from literature about lithium batteries is created; lithium
battery literature has diverse plots that convey similar information, providing a clear area
for comparison. With the utilization of diverse scientific plot datasets, this pipeline was
evaluated using various metrics to analyze the performance of fine-tuned extraction model,
the reconstructed image, and the VLM’s ability to answer domain-specific questions.

By addressing the current limitations in processing scientific imagery, this project repre-
sents a significant step forward in the realm of VLMs, not only in scientific domains but also
to open new avenues for knowledge dissemination and understanding for large multi-modal
models.

In chapter 2, there is a review of previous literature regarding scientific diagram extraction
and visual question answering. To introduce the problem and goals of the thesis, Chapter 3
describes the larger vision of the project, describing the parameters for success. Chapter 4
provides an overview of the work with a focus on the datasets used (4.1), the reconstruction
pipeline (4.2), and the experimentation procedure (4.3). Chapter 5 outlines the metrics used
to evaluate the pipeline’s performance, specifically the task accuracy and the visual question
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answering accuracy. Providing a glimpse of the project, Chapter 6 highlights the results for
various parts of the pipeline. Finally, Chapter 7 provides a conclusion for the thesis.

The code for the project can be found at https://github.com/mitdbg/meng_code/. The
data can be found at https://github.com/sejalgupta/scientific_figure_dataset. The anno-
tation model can be accessed here https://tinyurl.com/annotation-detection.
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Chapter 2

Related Works

This chapter presents an overview of the significant advancements and tools in the fields of
visual language models, datasets of scientific figures, and scientific figure analysis tools.

2.1 Visual Language Models

Visual Language Models (VLMs) are multimodal models that combine computer vision and
natural language processing into a single task. These models are trained on large datasets
of images and text annotation pairs, allowing the model to learn to associate visual features
with textual expressions. Through different training techniques, these models can learn to
perform tasks such as Visual Question Answering (VQA), image captioning, and text-to-
image search.

In recent years, there has been a significant surge in the popularity of VLMs due to
their remarkable ability to forge connections between images and text. Notable among these
models is CLIP [1], which has been influential in interpreting the connections between visual
and textual data. CLIP is trained using a contrastive learning objective, where it learns
to match images with their corresponding captions and distinguish them from mismatched
pairs, enhancing its capability to understand and relate images and text.

While CLIP can provide captions to images and understand their content, more advanced
VLMs like Flamingo [2] and ChatGPTv [3] bring new capabilities to the realm of visual
language models. These models allow users to provide a prompt and image input, and the
VLM will output a response by leveraging information from both the text and the image.

Flamingo, characterized by its unique architecture, processes images through a series
of steps. First, the visual features are extracted using visual encoders, and the text is
tokenized and processed through a pre-trained language model to create visual and textual
embeddings. These visual and textual embeddings are then combined using gated cross-
attention layers, which ensure that relevant information is highlighted and the modalities
can interact effectively. Finally, the combined information is passed to a decoder, which
generates an output sequence of tokens, forming a coherent response to the user.

These models perform exceedingly well on everyday objects, as they were trained on
a plethora of everyday images. However, questions about domain-specific images, such as
scientific diagrams, present more challenges for these models. Addressing these challenges
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involves improving the model’s ability to understand and interpret specialized visual infor-
mation, which is critical for enhancing VLM performance in scientific and technical domains.

In the following sections, we will delve deeper into the different components of improving
a VLM’s performance on scientific diagrams, focusing on both the existing datasets and tools
available for the task.

2.2 Datasets of Scientific Figures and Questions

The development of models that can analyze and interpret scientific figures has been bolstered
by the availability of specialized datasets. ChartQA, PlotQA, and FigureQA are prime
examples of such datasets. They provide a rich source of data for training and evaluating
models designed to understand and interact with scientific charts and figures. These datasets
have been pivotal in advancing research in the field of scientific figure analysis.

Researchers created ChartQA [4], a dataset of chart images paired with questions and
answers about the data represented in these charts. Their hope was to assist models in
understanding and interacting with various types of charts: bar charts, line graphs, and pie
charts. Although ChartQA played a crucial role in establishing a range of questions from
inquiries about individual data points to identifying trends, the charts in the dataset are
uniform and basic, which does not accurately reflect the diverse imagery found in scientific
publications.

Similar to ChartQA, PlotQA [5] focuses on plots typically found in scientific contexts,
including more complex graph types, and FigureQA [6] focuses on broader range of scientific
figures, beyond just charts and plots. However, all the figures are similar in color schemes,
fonts, and overall design decisions to the rest of the figures in the dataset. Since these charts
were mass generated, they have similar characteristics which should not be learned by a
model. Therefore, we will develop a dataset that incorporates actual figures from scientific
papers and bases the questions on those figures.

A recent paper introduces a new benchmark dataset [7] with realistic plot images from the
Reticular Chemistry domain. Their small dataset of approximately 6,000 images categories
the plots in five categories: Nitrogen Isotherm, Power X-Ray Diffraction, Thermogravimetric
Analysis, Crystal Structure or Topology 98.1, and Other Gas Sorption Isotherm. As such, the
solution is contained to this domain and is not representative of other domains, specifically
the battery domain. In the battery domain, most figures have annotations that are important
for understanding the plot, but they do not contribute to the datasets. Existing solutions
do not have a focus on the removal of these annotations. Thus, we plan to create a labelled
dataset of scientific figures in the battery domain, specifically focusing on the annotations
that are present in the chart area.

2.3 Scientific Figure Analysis Tools

Scientific plot analysis has evolved through the contributions of various models and tools,
each addressing different aspects of chart and plot interpretation. Parsing Line Charts [8],
ChartOCR [9], ChartReader [10], FigureSeer [11], and Classification-Regression for Chart
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Comprehension [12] represent a diverse range of approaches and methodologies for analyzing
scientific plots. Some emphasizing the parsing of the charts, while others are more oriented
towards OCR capabilities or holistic chart analysis. Unfortunately, most of these tools only
work on a specific dataset, have limited abilities, or cannot accurately answer questions.
Thus, the proposed method focuses primarily on extraction, so current-state-of-the-art VLMs
can best interpret the data to make accurate claims on complex scientific figures.

Like the proposed method, tools, like MaTcha [13], focus on the pre-training of models for
data extraction and figure creation through code. MaTcha beat all the existing competitors
on the PlotQA and ChartQA datasets, but they attribute over 43% of their errors to data
extraction. Whenever they could not extract the correct data series, the question-answering
regarding the plots was quite inaccurate. Therefore, our project will focus its efforts on
improving the data extraction pipeline to improve the question answering accuracy.

Furthermore, DeepMind’s Deplot [14] claims to be able to extract charts into datasets
in CSV form to assist the LLM. While they attempt to decompose the plot into text, De-
plot struggles to perform well on complex plots, specifically multiple line plots. This may
be due to the fact that all layout information such as orientation and color of the visual
elements/objects is not captured within the model. Similar to Deplot, this project will focus
on the conversion of plot images to text to pass into a VLM, but the layout information and
color will play a large role in the data extraction pipeline.

Recently, researchers at Berkeley [7] released a new tool to convert scientific diagrams in
the Reticular Chemistry domain to CSV files. Their innovative approach involves labelling
the contents of the diagrams with GPT4v and utilizing a semiautomatic tool called Web-
PlotDigitizer [15] to obtain the dataset. However, since WebPlotDigitizer requires manual
entry of a few points and the axes, their solution cannot extract the data and differentiate
between data series without human intervention. Therefore, our solution will similarly lever-
age GPT4v to extract metadata components in the figures but will focus on an automated
data extraction solution to retrieve the data series without human intervention.

This chapter has provided an overview of the key developments in visual language mod-
els, datasets of scientific figures, and scientific figure analysis tools. As seen through this
comprehensive review of previous literature, an automated conversion tool from diagram to
CSV tool is missing for realistic scientific figures. Existing works are analyzed on synthetic
datasets that are uniform and simplistic in design, inaccurately describing the true perfor-
mance of tools. Even though a new paper provides some realistic diagrams, most of the plots
are structured in a similar way, making a general solution challenging. Therefore, our work
bridges the gap by introducing a realistic dataset with figures from published work with
annotations. Additionally, most of the plot-to-csv tools try to improve both the extraction
and LLM component, or the tools involve manual extraction. Our work will leverage the
advancements in VLMs and enhance the data extraction procedure to obtain the best results
possible, a solution that has not been explored previously.
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Chapter 3

Problem Statement

Visual Language Models (VLMs) have demonstrated difficulty in answering specific questions
about scientific figures. To enhance their performance, data needs to be accurately extracted
from these figures. Previous plot-to-CSV solutions often fall short, especially when dealing
with complex figures, such as those found in battery literature. Among existing solutions,
WebPlotDigitizer [15] stands out as the best, but its semi-automated nature requires a
human-in-the-loop, which makes high-throughput extractions challenging. This thesis will
focus on the automatic extraction of data from scientific figures to improve the accuracy of
question answering by VLMs.

The input to our system is an image of a scientific figure, and the output is a CSV file
containing the extracted data points. The system operates in two main stages: classification
and decomposition, as shown in Figure 3.1.

Figure 3.1: Architecture for Reconstruction of a Scientific Diagram

In the first stage, the system classifies the figure into a specific category based on its
visual characteristics. This classification is crucial because different types of figures (e.g.,
bar graphs, scatter plots, line plots) require different extraction techniques. The classifier
analyzes the figure and assigns it to a generic (non-domain specific) categorical label. For
instance, bar graphs will be grouped in cluster 1, and scatter/line plots will be placed in
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cluster 2. This process is essential for ensuring that the appropriate extraction pipeline is
triggered for each figure type, as depicted in Figure 3.1.

Once the classifier assigns a label to an image, the figure undergoes a figure-to-text
conversion process specific to its category. This stage involves decomposing the image into
a structured data format, specifically a CSV file. The CSV file will contain all relevant data
points extracted from the figure, organized in a tabular format. For the scope of this thesis,
we focus on scatter plots and line plots, converting them into CSV format.

Figure 3.2: Example Input Image

Consider the image in Figure 3.2. The classifier assigns it the label "Scatter Plot."
Based on this classification, the image is processed through a scatter/line plot reconstruction
pipeline. This pipeline involves several steps:

• Detection: Identifying the axes (location, titles, and ranges), any legends or other
annotations present in the plot, and the data series.

• Extraction: Extracting the coordinates of each data point and converting them into
numerical values.

• Clustering: Group the data points by the legend item (if applicable).

• Structuring: Organizing the extracted data points into a CSV format, with each row
representing a data point and each column representing a specific attribute (x-value,
y-value, second y-value, legend item / data series title).

The output of this process is a CSV file containing the data points from the scatter plot.
An example of such a CSV file is illustrated in Appendix D. This CSV file, along with the
related question, is then used to prompt the VLM.
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Figure 3.3: Assignment of Data Clusters to Axes for Image I0 Where Circle Correspond to
the Left Axis and Triangle Corresponds to the Right Axis

The successful implementation of this reconstruction pipeline involves taking an input
image of a scatter or line plot and outputting a CSV file of the points. To measure the
accuracy of this system, we will use various metrics:

• Completeness: The extent to which all data points in the figure are accurately extracted
and included in the CSV file. For Figure 3.2, the pipeline should extract all the data
points in EL2 closed circle, EL2 open circle, EL4 closed circle, EL4 open circle, EL5
closed circle, and EL5 open circle. The pipeline should not extract and points outside
of those data series.

• Assignment: Correctly assigning extracted data points to the appropriate legend items
(if applicable). For Figure 3.2, each of the data series (EL2 closed circle, EL2 open
circle, EL4 closed circle, EL4 open circle, EL5 closed circle, and EL5 open circle) should
be clustered in independently. All the closed circle data series should be assigned to
the y-axis (on the left), but all the open circle data series should assigned to the second
y-axis (on the right).

• Correctness: The accuracy of the extracted data points, ensuring that their values
match the original figure. Each of the data points in Figure 3.2 should be in terms of
axis ranges defined in the plot. For Figure 3.2, the data points should scaled to the
x-axis range of approximately [-10, 100], the y-axis range of approximately [0, 165],
and the second y-axis range of approximately [0.4, 2.5].

18



For Figure 3.2, a successful reconstruction will look like Figure 3.3 if the output CSV file
was replotted.

Ultimately, the effectiveness of the system will be evaluated based on the percentage of
questions answered correctly by the VLM when using the extracted data. This metric will
demonstrate the practical impact of our system on improving the VLM’s performance in
interpreting and answering questions about scientific figures.
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Chapter 4

Methodology

Given the limitations of previous work in scientific plot question answering, we propose a
novel extraction process to assist visual language models (VLMs). Initially, two datasets will
be hand created for the tasks of reconstruction and visual question answering. From there,
the reconstruction pipeline is constructed. Finally, various experiments will be carried out
to test the accuracy of the reconstruction pipeline on the data extraction and visual question
answering tasks.

4.1 Dataset

The development of our pipeline necessitates the use of various datasets, both existing and
newly generated. Our focus is currently on the creation of datasets for scatter and line plots.

4.1.1 Scientific Figure Dataset

While previous datasets of charts are quite large, the plots are all relatively similar and do
not reflect the complexity of true scientific plots. Therefore, we will create a new benchmark
dataset to represent the figures in the battery literature domain.

Figure 4.1: Scientific Figure Dataset Creation Pipeline

To create the dataset, we compile a large corpus of papers in the battery domain that
have similar figures, as seen in Figure 4.1. From these papers, we extract several scatter and
line plots to create a collection of plot images representative of those the tool will process
during runtime. Each image in the dataset will be manually annotated using Roboflow’s
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tool, focusing on elements such as legends and arrows. After all the images are annotated,
the images will be split into train, validation, and test datasets.

The train and validation datasets will be crucial in the creation of the annotation detec-
tion model. However, the evaluation will be solely done on the test dataset. In the complete
dataset, each image will be paired with a list of the bounding boxes of the annotations in
the image.

4.1.2 Scientific Figure Visual Question Answering Dataset

Using the images from the test dataset of the Scientific Figure Dataset, we randomly sample
10 of the images. These images are all from the battery papers and require similar domain
knowledge. While they can be interpreted using background knowledge about batteries,
many questions regarding the graphical structure are still applicable.

For each of the images, there will be 3 question-answer pairs generated by hand about
the plot information provided.

4.2 Scientific Figure Reconstruction Pipeline

The reconstruction pipeline consists of several modules, including Image Augmentation,
Annotation Mask Extraction, Bounding Box Mask Extraction, Metadata Extraction, Color
Mask Extraction, Axis Recalculation, Data Point Extraction, Dual Axis Partition of Data,
and Assignment of Data Clusters to Axes.

In the following subsections, each of the aforementioned modules are described in detail
with an example image input, Figure 3.2. The original image will be referred as I0.

4.2.1 Bounding Box Mask Extraction

The image, I0, is first passed through the bounding box extractor module. To isolate the
chart elements such as titles and data series, a bounding box around the chart area must be
identified. A bounding box is defined as

[(xmin, ymin), (xmax, ymax)]

where (xmin, ymin) is the top left corner of the bounding box and (xmax, ymax) is the bottom
right corner.

As a majority of images of scientific plots have a border around the chart area, a tradi-
tional, computer vision approach will be utilized as an initial attempt, to obtain the bounding
box corners. The input image, I0, will be converted to grayscale and passed through Canny
Edge Detection to define all the edges in the image. These procedures are done in prepa-
ration for the Hough Line Transform which detects all the straight lines in a given image.
After the transform is applied, the following procedure is used to identify the bounding box:
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Figure 4.2: Pipeline for Reconstruction for a Scatter Plot using Color Analysis

1. Identify all the horizontal lines that are within 5◦ of a perfectly horizontal line.

2. Combine horizontal lines that are at the same y to get the longest continuous line at
a specific y.

3. Sort the resulting combined lines and get the two longest lines.

4. Extend those lines to span the entire image in the y direction.

5. Repeat steps 1 - 4 for vertical lines.

6. Mark all the intersection points between the lines.
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The procedure forms a bounding box, as seen in Figure ??. If the area of the bounding
box is greater than 50% of the area of the image, the bounding box is accepted. However, in
the case where the bounding box is not determined or the area is less than 50% of the image,
the input image, I0, is passed through an alternate approach. Even though the bounding
box in Figure ?? would be accepted, for the purposes of explanation, the alternate approach
will be shown with I0.

The input points are defined as(
w

2
− 50,

h

2
− 50

)
(
w

2
+ 50,

h

2
− 50

)
(
w

2
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where w is the width of the image and h is the height of the image. We assume that

the chart area overlaps with the center of the image as such these input points form a 100
x 100-pixel centered box on I0. The input points and I0 are passed to Meta’s Segment
Anything Model [16] to mask the chart area, as seen in Figure 4.3. Once the binary mask
around the chart area is retrieved from the model, the mask is applied and a bounding box
is constructed from the outline of the mask.

Figure 4.3: Segment Anything Chart Area Mask on Input Image I0

As a result of either method, a bounding box of the chart area will be extracted. For I0,
we expect a bounding box of [(78, 14), (574, 266)].

23



4.2.2 Metadata Extraction

Simultaneously to the Bounding Box Mask Extraction, the input image and a prompt are
sent to ChatGPT’s vision model [3]. The specific prompt sent to ChatGPT is available in
Appendix A.

ChatGPT extracts metadata from the input image, including titles and ranges for each
axis, as well as legend items with corresponding marker colors. Due to the lack of accuracy
with ChatGPT’s color recognition, the marker colors are restricted to be one of the following:
black, white, red, purple, green, yellow, blue, pink, orange, and grey.

For example, if ChatGPT was provided the prompt and I0, the following information
should be extraction in the expected JSON format outlined in the prompt:

• X-axis Title: Cycle

• X-axis Range: [0, 100]

• Y-axis Title: Capacity (mAh)

• Y-axis Range: [0, 150]

• Second Y-axis Title: Polarization (V)

• Second Y-axis Range: [0.5, 2.5]

• List of Legend Items with the Marker Color and Legend Item Title: [(EL2, Gray),
(EL4, Blue), (EL5, Red)]

4.2.3 Axis Recalculation

The metadata extraction provides a baseline for the axis ranges. However, ChatGPT is only
able to extract the values from the image provided. This can pose issues when the entire
axis is not properly defined from the beginning to the end. For instance, in image I0, the 0
tick mark on the x-axis is not directly aligned with the y-axis. As such, the extracted x-axis
from ChatGPT is not accurate.

To rectify the issues with the ranges, the true ranges for each of the axes must be
recalculated. First, Optical Character Recognition (OCR) must be performed to get the
bounding boxes of the text in the image. A variety of tools exist for OCR such as Keras,
Pytesseract, and Amazon Textract. The methods will be tested to find the optimal tool.
The results from Amazon Textract on image I0 are provided in Figure 4.4.

The custom algorithm iterates through OCR results to find OCR detected text that is
numerical, the shortest distance from the axis endpoints, and positioned in the correct spot
for the particular axis. For the x-axis, the correct position is below the axis. For the y-axis,
the correct position is left of the axis. For the second y-axis, the correct position is right of
the axis. The recalculation requires two bounding boxes on the axis.

Using a similar method to the authors in ChartOCR, the axes are recalculated using the
pixel locations and the bounding boxes. The formulas for the first y-axis are provided, but
the axis recalculation formulas for the second y-axis and x-axis are similar.
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Figure 4.4: OCR Results on Example Input Image I0

First, the pixels per unit is calculated by taking the ratio between the pixel difference
between the middle of the two bounding boxes and the difference between the numerical
values of the detected text.

ratiopixelsPerUnit =
Ypmax − Ypmin

Yvmax − Yvmin

To rescale the axis, the pixel length of the axis needs to be determined from the bounding
box extracted earlier.

lengthOfY Axis = ymax˘ymin

Therefore, the difference in the range of the axis is the ratio between the length of the
axis in pixels and the pixels per unit calculated previously.

differenceTrueRange =
lengthOfY Axis

pixelsPerUnit

Finally, the minimum and maximum of the range are calculated using the calculated
values.

trueymin
= Yvmin

− (Ypmin
− ymin)

ratiopixelsPerUnit

trueymax = trueymin
+ differenceTrueRange

By default, all the ranges are from 0 to 100 in case the tick marks are not specified in
the plot or the recalculation is not possible.

For image I0,

• ratiopixelsPerUnit = −1.466
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• lengthOfY Axis = 249

• differenceTrueRange = 169.849

Ultimately, for image I0, the true y range is [0.937, 170.798]. Similarly, the x range is
[2.393, 99.865], and the second y range is [0.398, 2.506]. While these values are not perfectly
accurate, the range is closer to complete accuracy.

4.2.4 Image Augmentation and Color Mask Extractor

Each of the legend items corresponds to a marker color. With the marker colors from the
metadata extraction and the input image, masks for each of the colors can be created.
Unfortunately, the marker shape and hue will not be differentiated through this method.

The input image is passed through an Image Augmentation module. In the module,
image is altered through a series of transformations like sharpen, contrast, and filter. To
determine the best set of transformations, experiments on the test dataset will reveal the
ideal transformation.

Using the legend information and the transformed image, a color analysis tool will gen-
erate a mask of the existence of the colors in a plot. Various color analysis methods will be
explored to determine the best color extraction method.

Color Analysis Methods

Each pixel in the image has numerical value for each of the red, green, and blue channels.
In the metadata extraction, each item in the legend is paired with a specific color like "red,"
"green," or "blue". Originally, we attempted to request ChatGPT [3] to provide the colors in
RGB format or HEX format. However, this method was unsuccessful because ChatGPT [3]
struggles to map specific pixels to the larger objects, resulting in inaccurate color schemes.
Additionally, ChatGPT can only accurately provide the names of simple colors. For instance,
it will identify the color firebrick as red. Therefore, a color analysis method must be utilized
to convert the RGB pixel values to ChatGPT colors.

Looking at Figure 4.5 from GeeksforGeeks [17], to convert the RGB values to a simple
color, we must employ a clustering mechanism, since the color scheme can be visualized as
a cube and the vertices are all different "simple" colors. Three potential methods for color
conversion are proposed: linear search using Euclidean distance, nearest neighbor clustering
using cosine similarity, and KDtree search for nearest color.

Linear search using Euclidean distance finds the distance between the pixel value and a
predefined set of colors with their respective RGB values. To determine the closest neighbor,
for each predefined color, the distance is calculated using the following equation:

d =
√

(rc − rp)2 + (gc − gp)2 + (bc − bp)2

where (rc, gc, bc) are the RGB values for the centroid and (rp, gp, bp) are the RGB values
for the pixel. The color with the minimum distance is returned. Since colors in grayscale
(black, white, and gray) are harder to defined without disrupting the other colors, we expect
challenges with picking the specific centroids (predefined RGB values of the colors).
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Figure 4.5: Color Space

Linear Search using cosine similarity finds the cosine of the angle between the RGB vector
of the pixel and the predefined colors. To determine the closest neighbor, for each predefined
color, the similarity is calculated using the following equation:

similarity =
A⃗ ∗ B⃗

||A⃗|| ∗ ||B⃗||

where A⃗ and B⃗ are the RGB vectors of the predefined color and the pixel, respectively.
Rather than the importance of magnitude for Euclidean distance, cosine similarity focuses
more on the direction, an indication of hue, of the colors. The color with the highest similarity
(closest to 1) is the most similar color. We expect that this method may be more effective in
distinguishing colors with similar intensities but different hues rather than different colors.

A KDtree (k-dimensional tree) uses a space-partitioning data structure for organizing the
predefined set of colors in the RGB space. Once the tree is built, KDtree Search for Nearest
Color can be used to efficiently find the nearest neighbor to a given pixel’s RGB value by
searching for the closest point (color) in the tree, using Euclidean distance. This method
is computationally more efficient than a linear search, especially for large sets of predefined
colors, and allows for more precision with colors. Using the KDtree, we can utilize the larger
dictionary of CSS3 [18] and hand map the large set of colors to a smaller set of simple colors.

While there are advantages and disadvantages to each of the methods, the experiments
will show which method is the most effective for reconstruction.

4.2.5 Annotation Extraction

Most of the images of the plots have quite a bit of noise due to the presence of annotations.
Annotations are any markings on the image that lie within the chart area. The most com-
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mon examples of these annotations are legends, arrows, and free text. The color extractor
mentioned earlier will pick up all the pixels that have color. To filter out the pixels that are
annotations, an annotation extractor must be employed on the input image.

Figure 4.6: Fine-tuning Procedure for the Annotation Detection Model

Since existing object detection models cannot accurately find all the annotations in an
image of a plot, a small object detection model will be fine-tuned to detect the annotations
in the image. We will fine-tune a YOLOv5 object detection model using the training dataset
from the Scientific Figure Dataset4.1.1, deploying it via Roboflow for inference. The fine
tuning process is depicted in Figure 4.6.

The input image will be passed into the Annotation Detection Model, resulting in a
mask of all the bounding boxes of the annotations that are detection. Figure 4.7 depicts the
expected mask for input image I0 from the Annotation Detection Model.

4.2.6 Data Point Extraction

The final step for a single y-axis plot image is to convert points from the masks into the
true axes. First, the colors masks from the Color Mask Extractor are pruned to only contain
pixels within the bounding box extracted by the Bounding Box Mask Extraction process
and exclude the pixels inside of the annotations found by the Annotation Detector Model.
Next, the true axis ranges for the x and y axis are passed in from the Axis Recalculation
step through a graph reconstruction tool that converts the pixel coordinates into Cartesian
points of the original graph. This conversion tool uses the following formulas to convert the
x and y values:

lengthOfY Axis = ymax − ymin

lengthOfXAxis = xmax − xmin

plotx =
(px − xmin) ∗ (truexmax − truexmin

)

lengthOfXAxis
+ truexmin

ploty =
(ymax − py) ∗ (trueymax − trueymin

)

lengthOfY Axis
+ trueymin
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Figure 4.7: Annotations on Image I0

where px is the x value of the pixel, py is the y value of the pixel, xmin is the x coordinate
of the chart area’s top left point, ymax is the y coordinate of the chart area’s bottom most
point, truexmin

is the start of the range on the x axis, truexmax is the end of the range on
the x axis, trueymin

is the start of the range on the y axis, trueymax is the end of the range
on the y axis, plotx is the x coordinate of the pixel on the actual plot, and ploty is the y
coordinate of the pixel on the actual plot.

With the metadata retrieved from the Metadata Extraction module, the data series and
chart elements are labelled to match the original image. For image I0, the final single axis
reconstruction is illustrated in Figure 4.8. If the image has a single axis, this is the final step
of the pipeline. In this case, image I0 has a second y-axis, so the image will continue down
the pipeline.

4.2.7 Dual Axis Partition of Data

As seen in Figure 4.8, the two data series for each color are assigned automatically to the left
axis. To correctly assign the data to an axis, the data series need to be partitioned between
the left and right axis. Since the data is already partitioned into the legend items, the data
for each legend item can be clustered independently.

Many unsupervised clustering algorithms exist like KMeans and density-based clustering
non-parametric algorithm, DBSCAN. Since (1) the data is prone to outliers, (2) the exact
shape is not known before, and (3) the data will most likely not be in a spherical format,
KMeans is not the ideal algorithm for this use case, even though the number of clusters can
be defined to two. To show the issues, Figure 4.9 provides the clusters created on image
I0. The gray clusters are incorrect due to the location of the centroids, so the outliers really
impact the formation.
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Figure 4.8: Single Axis Reconstruction on Image I0
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(a) EL2 (gray) Clusters (b) EL4 (blue) Clusters (c) EL5 (red) Clusters

Figure 4.9: Partition of Data into Clusters for Image I0 Using KMeans Clustering

Accordingly, the clustering method of choice will be DBSCAN clustering, where each
point of a cluster has a neighborhood of at least a minimum number of points that are
defined by the user. DBSCAN requires two parameters: epsilon and minimum number of
points. Epsilon is the maximum distance between two points required to be considered
neighbors. Minimum number of neighbors (data points) is the required number of points for
a cluster to be created.

(a) EL2 (gray) Optimal Eps (b) EL4 (blue) Optimal Eps (c) EL5 (red) Optimal Eps

(d) EL2 (gray) Clusters (e) EL4 (blue) Clusters (f) EL5 (red) Clusters

Figure 4.10: Dual Axis Partition of Data into Clusters for Image I0

The minimum number of points was selected to be 200 based on similar literature. How-
ever, to determine the optimal values of epsilon, the Nearest Neighbors Algorithm is used to
calculate the average distance between each point and its nearest neighbors (the same value
used for minimum number of points). These values are sorted to produce a k-distance elbow
plot to determine the ideal epsilon value [19]. Figure 4.10 provides the k-distance elbow plots

31



Figure 4.11: Clustering Output for Image I0

for each of the legend items and the corresponding clusters using that epsilon value.
Ultimately, the clustering algorithm should yield two clusters for each legend item. Figure

4.11 provides the final image of the clusters generated through the DBSCAN clustering for
Image I0. Clusters labelled with "-1" are the outliers.

4.2.8 Assignment of Data to Axes

With the clusters of the data series, the clusters need to be assigned to the left and right y
axes. The specific prompt sent to ChatGPT is available in Appendix E.

Using ChatGPT, the clusters in the reconstruction are assignment based on the input
image. For each cluster, ChatGPT must assign the cluster to either the left or right axis. In
the case that ChatGPT doesn’t assign the cluster to the left or right, the default is left.

For example, if ChatGPT was provided the prompt and I0, the following information
should be extraction in the expected JSON format outlined in the prompt:

• EL2 Cluster #0: left

• EL2 Cluster #1: right

• EL4 Cluster #0: left

• EL4 Cluster #1: right
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• EL5 Cluster #0: left

• EL5 Cluster #0: right

Since all of the data is currently in terms of the left y axis, all the clusters that are
assigned to the right axis will be converted to the second axis through the methods described
in Section 4.2.6. To decrease the number of points generated, each cluster will be randomly
downsampled to 40% of the original size.

When plotting, all the points for the left axis will be denoted with a circle, and all the
points for the right axis will be denoted with an inverted triangle. The final reconstruction
for Image I0 is shown in Figure 3.3. A subset of the sample CSV file for Image I0 can be
found in Appendix D.

4.3 Experimentation Process

To test the validity of the reconstruction pipeline, a variety of experiments will be carried
out.

During the pipeline construction, smaller experiments outlined in Section 4.2 will be
conducted to refine module decisions. For comparison, 28 images from the test set will be
randomly sampled to establish a baseline. Specifically, the Image Augmentations, Color
Analysis methods, and OCR tools will be evaluated on the sampled dataset.

Upon completing the pipeline, it will be tested on the entire test set. Each plot im-
age’s bounding box coordinates, annotations, metadata, single-axis reconstruction, clustering
metadata, and dual-axis reconstruction will be saved and manually evaluated for accuracy.

From there, to test the impact on VLM performance, 10 of the plots will be randomly
sampled from the test data set. Each plot will be provided to the pipeline to retrieve the CSV
data file. Questions (from the VQA dataset), the original images, and the corresponding plot
data from the reconstruction will be provided to ChatGPT with a prompt like in Appendix
G. To provide a baseline, the question and the original image will be provided to ChatGPT
with a prompt like in Appendix F. The ground truth answer will be hand annotated and
compared to the results from the baseline and the experimental group.
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Chapter 5

Evaluation Metrics

5.1 Pipeline Development Decisions

The development of the pipeline involves making several decisions based on both qualitative
and quantitative evaluations from experiments. Specifically, the Image Augmentation and
OCR tools will be chosen based on the quality of the visual results.

Due to the complexity of visually assessing color analysis methods, three established
metrics will be used for quantitative assessment: Peak Signal-to-Noise Ratio (PSNR), Mean
Squared Error (MSE), and Structural Similarity Index (SSIM). PSNR measures the quality
of reconstructed images by comparing the original and reconstructed images, indicating
how closely the reconstruction maintains the integrity of the original plot’s data points and
background. MSE calculates the average squared difference between pixel values of the
original and reconstructed images, with lower values indicating minimal deviation in data
point location and value representation. SSIM evaluates the perceived structural change in
images, ensuring that key features such as axes, data labels, and markers are accurately
preserved during reconstruction.

5.2 Complete Reconstruction Method

In the domain of scientific plot reconstruction, where the goal is to transform an image of
a plot into a reconstructed digital version, accurately evaluating the quality of the recon-
struction is crucial. The reconstruction process should ideally result in an output image
that closely matches the original in terms of data representation and visual fidelity. The
evaluation will focus on individual pipeline components, overall task quality, and complete
reconstruction accuracy.

5.2.1 Components of the Pipeline

Since total accuracy does not reveal the contributions of each independent component of the
pipeline, the accuracy of the individual components needs to be evaluated.

Each of the metadata, ground truth bounding boxes, and true axis ranges will be anno-
tated by hand. For the metadata extraction, the percentage of correct values from GPT4
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in comparison to the hand labelled dataset will be evaluated. Bounding box extraction will
be evaluated using average precision at 75% Intersection over Union (AP75) to determine
the accuracy of predicted bounding boxes overlapping with ground truth bounding box.
Lastly, for the axis recalculation, accuracy will be measured using Root Mean Squared Error
(RMSE) for each axis independently.

The fine-tuned object detection model for annotation extraction will be evaluated us-
ing precision, recall, mean Average Precision at 50% Intersection over Union (mAP50), and
mAP50-95 across different IoU thresholds. First, the model’s precision, measuring the ac-
curacy of the model’s detection, will be calculated. With precision, the model’s recall will
be determined to measure how many of the actual objects in the images were correctly de-
tected by the model. Afterwards, the mean Average Precision at 50 percent Intersection over
Union (mAP50) will be calculated to determine the level of accuracy in terms of how well
the model’s predicted bounding boxes overlap with the ground truth boxes at this threshold.
Similarly, the model’s average of the mean Average Precision (mAP50-95) will be calculated
at different IoU thresholds, from 50 to 95 percent to evaluate the strictness in bounding
box overlap. These metrics will help to assess the annotation extraction process within the
pipeline.

Clustering performance of the data series with color analysis and DBSCAN will be evalu-
ated based on the percentage of fully correct clusters. For a cluster to be completely correct,
all the data points of a particular data series must be grouped under a single cluster. As
this is the strictest calculation of accuracy of the clusters, this will only reward complete
accuracy without any subjectivity. For the axis assignment of the clusters, the percentage of
correctly assigned clusters to the appropriate axis will be reported to depict the performance
of GPT4’s assignment of the clusters.

5.2.2 Task Accuracy

Performance of various tasks will be evaluated based on average accuracy, with each plot’s
accuracy hand-annotated and the final reporting as the mean accuracy across the dataset.

For each of the axes, the accuracy will be the average of the correctness of the title,
minimum of the range, maximum of the range, and the scale of the axis, as these are the
main facets of the axis. The accuracy of the features of the axis will be reported with a
Bernoulli random variable, a 0 or 1, to emphasize complete accuracy.

For the legend, the reported accuracy will be the average percentage of fully correct items
for the number of legend items, the titles of the legend items, the colors of the legend items,
and the pairs of legend items. We decompose the legend extraction task to understand which
aspects of the legend are most challenging for the pipeline.

To evaluate the data series, the accuracy of the clustering of data series, axis assignment
of data series, and complete correctness of the data series will be reported. Again, the
decomposed task splits the clustering and axis assignment tasks to evaluate the performance
on subtasks.
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5.2.3 Overall Accuracy

Overall accuracy will be determined by an annotator, with each reconstruction assigned a
Bernoulli variable (0 or 1) to represent correctness, where the percentage of fully correct
charts are reported.

5.3 Visual Question Answering Performance

This section outlines the evaluation criteria and metrics for assessing the reconstruction
pipeline’s performance in assisting VLMs in answering questions about scientific plots. Ac-
curacy will be used as the primary metric, calculated by comparing the model-generated
answers to ground truth answers, with the percentage of correct answers reported.

36



Chapter 6

Results

This chapter presents the outcomes of our study, detailing the performance and insights
gained from our experiments. The results are organized into several sections to provide a
comprehensive view of our dataset distribution, pipeline development decisions, individual
component evaluations, and overall pipeline accuracy.

6.1 Dataset Distribution

6.1.1 Scientific Figure Dataset

The scientific figure dataset consists of 500 images split into training, validation, and testing
data sets. All of the images are sourced from scientific journals in the battery domain
literature. Every image is classified as a scatter or line plot.

In total, there are 260 images in the training dataset, 140 images in the validation dataset,
and 100 images in the testing dataset.

The 260 images in the training dataset are transformed using crop up to 20%, rotation
between −10◦ and +10◦, grayscale on 25% of images, and blur up to 2.5px to create 3 images
per training image. In the end, there are 780 training images.

The data distribution of the testing dataset is depicted in Table 6.1. All the evaluations
of the pipeline are done using the testing dataset, as the annotation extraction dataset was
trained using the training and validation datasets.

6.1.2 Visual Question Answering Dataset

To evaluate the ability of our model to answer questions from scientific figures, we constructed
a dataset comprising of 10 randomly sampled images from the test set of the Scientific Figure
Dataset, specifically focusing on figures from battery-related papers. For each figure, three
question-answer pairs were manually generated, focusing on extracting plot information and
requiring domain-specific knowledge about batteries. These questions were categorized into
five types: Specific Data Points, Minimum/Maximum, Range, Comparison, and Average.
The distribution of these questions is summarized in Table 6.2.
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Table 6.1: Scientific Figure Test Data Distribution

Category Specific Task Type Percentage of Images (%)

Axis Number of Y Axes One 87
Axis Number of Y Axes Two 13
Axis Range Break 2
Axis Range Not Provided 7
Axis Range Continuous 91
Axis Scale Logarithm 95
Axis Scale Ratio 1
Axis Scale Linear 4
Legend Colors Different 97
Legend Colors Variations of Same Color 3
Legend Legend Items Explicit 76
Legend Legend Items Implicit 24
Legend Location In the Chart Area 75
Annotations Arrows In the Chart Area 12
Annotations Free Text In the Chart Area 55
Annotations Small Chart In the Chart Area 7
Annotations Other Annotations In the Chart Area 10

6.2 Pipeline Development Decisions

6.2.1 Image Augmentation

To determine the best image augmentation, the reconstruction pipeline was tested using
various augmentations. For example, the input image, Figure 6.3a, depicts a relatively faded
plot from a battery paper that involves various colors. If we just reconstruct the plot using
the original image, we get an incomplete plot, as seen in Figure 6.1b.

To ensure that all the data is reconstructed, we must augment the original image to
enhance the contours in the image. Testing a 50% level and 200% level, the original image
is augmented using brightness, contrast, and sharpness. By just a quick glance, we can rule
out more brightness (Figure 6.1f), less contrast (Figure 6.1d), and less sharpness (Figure
6.1e) because of the inability to reconstruct the basic features in the image. We notice that
the more contrast (Figure 6.1g) performs the best out of the image augmentations, as it can
recreate all the major plot lines. Figure 6.1 depicts all the reconstruction outputs.

Similar results were seen across the sample of 28 images. Therefore, more contrast will
be the choice of image augmentation. Combinations of the transformations were not tested
due to the poor quality of the independent transformations.
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Table 6.2: Visual Question Answering Dataset Overview

Question Number of Questions

Specific Data Points 14
Minimum / Maximum 5
Range 4
Comparison 6
Average 1

Total 30

6.2.2 OCR Tools

In the pipeline, OCR is used to determine the available values on the axis that can be used
to perform the axis recalculation. A variety of OCR Tools has been released to extract text
from images. To determine the best OCR Tool to detect the numerical data, a sample of 28
images from the test set were used to decide the best OCR Tool for the pipeline.

Figure 6.2 showcases the differences in extraction between Keras, Pytesseract, and Ama-
zon Textract on a sample input image. Similar results were seen across the sample of 28
images.

Keras was able to extract a great amount of text; however, the OCR results were really
poor on numerical values with commas, decimals, and negative signs. On the other hand,
Pytesseract allowed for the inclusion and exclusion of certain characters, but the tool did
not have many extractions, making recalculation really challenging. Thus, Amazon Textract
was the OCR Tool of choice, as it was able to extract most numerical values accurately.

6.2.3 Color Analysis Method

To determine the best color analysis method, a sample of 28 images from the test set were
tested with each of the color clustering methods: linear search with euclidean distance, linear
search with cosine similarity, and kdtree search. As stated in the methods section, since the
run time for linear search is much larger, the centroids for each of the simple colors must be
defined. The colors and the RGB values for their centroids are listed in Appendix C. Also,
the mapping of the webcolors to simple colors can be found in Appendix B.

In Figure 6.3, a sample input image and the reconstructions using various color analysis
tools is provided. While there is still noise present at the top of the reconstructed image, the
KDtree search method outperforms the other two by reconstructing the pink plot line, as
seen in Figure 6.3d. Since the centroids are empirically found, in most of the input images,
the plot lines colored with a color other than blue, green, or red were usually not found.
Therefore, either the centroids are not be representative of the entire color or the centroid
clustering method does not work in this three-dimensional space due to the irregularity of
the colors.

To aggregate the results, Table 6.3 provides the PSNR, MSE, and SSIM scores between
the input image and the reconstructed image for the various color analysis methods. While
the euclidean performs marginally better than the KDtree Search, the reconstructions are
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(a) Input Image (b) No Augmentation Output

(c) Less Brightness Output (d) Less Contrast Output (e) Less Sharpness Output

(f) More Brightness Output (g) More Contrast Output (h) More Sharpness Output

Figure 6.1: Image Reconstructions with Input Image Augmentations

more accurate in the KDtree Search because of the color scheme. Therefore, the KDtree
Search will be the method used for reconstructing the images.

6.3 Complete Reconstruction Pipeline

6.3.1 Components of the Pipeline

The accuracy of the individual components of the pipeline was evaluated on the testing
dataset.

Metadata Extraction

Metadata extraction is completed using ChatGPT’s vision model. Unfortunately, the model
is just a black box for customers, so the evaluation is primarily completed using the empirical
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(a) Input Image (b) Amazon Textract

(c) Keras (d) Pytesseract

Figure 6.2: Output of Various OCR Tools on a Sample Image

Table 6.3: Color Decision - Results

Color Clustering Method PSNR MSE SSIM

Euclidean Distance 34.884 11298.300 0.565
Cosine Similarity 35.097 25825.421 0.546
KDtree Search 34.678 12677.668 0.550

results for the task.
On the testing dataset, the prompt and input image was sent to GPT4. To achieve

accuracy, the model had to output the exact information written in the plot. For example,
in Figure 3.2, we would expect GPT4 to output a range of 0 to 100 for the x-axis because
0 is the minimum value of the tick marks and 100 is the maximum values of the tick marks
even though the actual range is approximately [-10, 100]. This is to maintain accuracy across
the inferences such that GPT4 was only using the information provided. As such, the axis
recalculation will adjust the values of the range later to get the true range.

All the results are presented in Table 6.4. From the results, GPT4 performs well with the
exception of the Legend Colors and Legend Pairs. Specifically, the extraction of the colors
is a challenging task for GPT4. Adding in the task of matching colors to text, the vision
model struggles to accurately pair the two together, leading to an accuracy of only 0.791.
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(a) Input Image
(b) Linear Search with Euclidean

(c) Linear Search with Cosine (d) KDtree Search

Figure 6.3: Image Reconstructions with Various Color Analysis Tools

Bounding Box Extraction

The evaluation of the bounding box extraction method using the average precision at a
75% IoU threshold yielded notable results. Detections with IoU values equal to or greater
than this threshold were considered true positives, while those below were classified as false
positives.

The analysis revealed a precision rate of 95%, indicating that 95% of the predicted bound-
ing boxes that met or exceeded the IoU threshold were accurate when compared to the ground
truth annotations. Furthermore, the recall rate was found to be 100%, suggesting that all
ground truth bounding boxes were correctly identified by the model at the specified IoU
threshold. This perfect recall score highlights the effectiveness of the model in detecting
all relevant objects within the test dataset without missing any true positives. The overall
accuracy of the bounding box predictions, measured as the mean IoU across all predictions,
was approximately 96.05%. This accuracy metric reflects the average extent to which the
predicted bounding boxes overlapped with the ground truth across all samples.

Overall, the bounding box extraction method has high precision, recall, and accuracy at
identifying chart areas in images.
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Table 6.4: Error Analysis of Metadata Extraction from GPT4

Category Sub Category Sub Category Accuracy Overall Accuracy

X Axis 0.882
Title 0.9

Minimum Range 0.888
Maximum Range 0.857

Y Axis 0.865
Title 0.9

Minimum Range 0.832
Maximum Range 0.863

Second Y Axis 0.917
Title 1

Minimum Range 0.75
Maximum Range 1

Legend 0.848
Number of Legend Titles 0.882

Legend Titles 0.89
Legend Colors 0.831
Legend Pairs 0.791

Axis Recalculation

The axis recalculation process was rigorously implemented through three critical steps: (1)
employing Optical Character Recognition (OCR) to extract text from images, (2) selecting
two specific interval marks on each axis, and (3) recalculating the axis scales using the
extracted data.

The accuracy of the axis recalculation pipeline is provided in Table 6.5. The perfect OCR
accuracy (1.00) observed on the Second Y Axis, which highlights the robustness of the text
extraction component in ideal conditions. However, the consistent drop in accuracy during
the ’Choose two correct values’ and ’Correct range calculation’ steps across all axes suggests a
potential area for improvement, particularly in the algorithms that select the interval marks.
The overall accuracy also reflects this trend, with the Second Y Axis achieving the highest
overall performance at 0.897, suggesting better isolation or clearer marking in these types of
graphs.

Table 6.6 presents an error analysis. "Other Axis Values are Interfering" refers to the
values incorrectly detected in an axis range that are actually present in another axis. For
instance, if the recovery is for the x-axis, there might be nearby y-axis values that are
mistakenly recovered to be part of the x-axis range. "No Range" refers to plots without
a defined range. Currently, the system will assign and display a default minimum and
maximum range which is not correct in this situation.

The table helps identify the most frequent challenges encountered during the recalculation
process. Particularly concerning is the high prevalence of ’Bounding Box is Too Large’ and
’Other Axis Values are Interfering’ errors on the X Axis, each occurring in 32.2% and 25.8% of
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Table 6.5: Accuracy of Axis Recalculation Pipeline

Axis Pipeline Part Pipeline Accuracy Overall Accuracy

X Axis 0.76
OCR has at least two values 0.86
Choose two correct values 0.73
Correct range calculation 0.69

Y Axis 0.83
OCR has at least two values 0.86
Choose two correct values 0.82
Correct range calculation 0.82

Second Y Axis 0.897
OCR has at least two values 1
Choose two correct values 0.85
Correct range calculation 0.85

cases. This indicates significant issues in spatial recognition and differentiation, particularly
when dealing with complex graph layouts or closely positioned axes. In contrast, errors like
’No Range’ and ’Scientific Notation’ show varied prevalence, indicating that these errors are
highly context-dependent and could be linked to the specific characteristics of the data or
the graph’s design.

Overall, the results underscore the complexity and variability inherent in the task of
automated axis recalculation. While the OCR component shows high reliability, the sub-
sequent steps reveal sensitivity to graph layout and markings. Continuous improvement in
these areas is essential for enhancing the robustness and accuracy of the axis recalculation
pipeline.

Annotation Extraction

After successfully fine-tuning for 125 epochs (Figure 6.4), YOLOv5 was fine-tuned to detect
the annotations in an image of a plot. The model’s precision was 0.812 on the test set,
indicating a decent accuracy of the model’s detection. The model’s recall was 0.715, demon-
strating that a great percentage of the annotations in the images were correctly detected by
the model. The model’s mAP50 was 0.803, indicating a high level of accuracy in terms of
how well the model’s predicted bounding boxes overlap with the ground truth boxes at this
threshold.

A common visualization utilized for object detection models is the confusion matrix. In
Figure 6.5, the matrix indicates that the model accurately predicts the annotations 71% of
the time. While this percentage is not perfect, the performance is quite good for a broad
task. Figure 6.6 illustrates the performance of the annotation detector on a few images from
the validation set; the high confidence on the bounding boxes indicates that the model is
well suited for the task at hand.
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Table 6.6: Error Analysis of Axis Recalculation Pipeline

Axis Reason for Error Prevalence of Error

X Axis
Bounding Box is Too Large 0.322

Other Axis Values are Interfering 0.258
X Range is Extracted Together 0.129

No Range 0.129
Nonlinear Scale 0.097

Wrong Text is Extracted 0.032
Scientific Notation 0.032

Y Axis
No Range 0.4

Bounding Box is Too Large 0.35
Break in Axis 0.1

Scientific Notation 0.1
Wrong Detection 0.05

Second Y Axis
Other Axis Values are Interfering 0.5

Bounding Box is Too Large 0.5

Clustering of the Data Series with Color Analysis and DBSCAN

Utilizing the test data set, the pipeline achieved a clustering accuracy of 77.2%. This met-
ric indicates the effectiveness of our clustering algorithm in grouping similar data points
correctly. The percentage reflects the proportion of data series that were 100% correct.
Specifically, for the plots with a second axis, DBSCAN performed with 67.3% accuracy.

Assignment of the Clusters

For the assignment of clusters, the method achieved an accuracy of 39.74%. This perfor-
mance measure was obtained by comparing the manually annotated expected results with
the actual assignments produced by the pipeline. Unfortunately, GPT4 really struggled
with the assignment of clusters. This may be due to the colors of the clusters and the stark
difference in color from the original image.

6.3.2 Task Accuracy

The task accuracy for various components of our graphical reconstruction pipeline was rigor-
ously evaluated using a comprehensive test set. The performance results are detailed in Table
6.7, and a visual demonstration of these outcomes is provided through annotated images in
Figure 6.7.

High task accuracy was observed in the retrieval of axis and legend information, with all
categories achieving greater than 85% accuracy. This high level of performance demonstrates
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Figure 6.4: Training Results for the Annotation Detection Model

the robustness of Amazon Textract and the axis recalculation algorithm. However, it is
important to note the limitations of the current pipeline, which is optimized for numerical
and linear ranges. Accuracy decreases for graphs with non-present or exponential ranges. An
example of a common error is shown in Figure 6.7, where the ’0’ in the bottom right-hand
corner of the image interfered with the correct range retrieval, causing the x-axis range to
default to [0, 100].

In contrast, the extraction and clustering of specific data points showed variable perfor-
mance. The clustering accuracy stands at 0.772, indicating a high level of precision in data
grouping. However, the overall accuracy for complete data series, integrating axes, legends,
and data points, was lower at 0.562. This decrease can be attributed to the complexity of
coordinating multiple elements, especially in dual-axis configurations, which only achieved a
0.423 accuracy rate.

The overall percentage of charts reconstructed correctly from the test dataset stands
at only 34%, underscoring the challenges inherent in automated graphical data reconstruc-
tion and highlighting areas for potential improvement. While the accuracy of the complete
pipeline is quite low, the current state of the art, WebPlotDigitizer [15], is a semi-automated
solution that would not be able to do this task without a human. Therefore, the accuracy
of 34% is an improvement from the existing systems for plot extraction.

Figure 6.8 provides a few successful examples of input images and their reconstructions.
On the other hand, Figure 6.9 provides a few examples of failed reconstructions with the
corresponding input images. Most of these are due to failed axis assignments of the clusters
or lack of annotation extraction.
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Figure 6.5: Confusion Matrix for the Legend Detection Model

6.4 Visual Question Answering Performance

We assessed the performance of our vision-language model (VLM) using a standard metric
of accuracy, which measures the proportion of correct answers provided by the model against
the ground truth. The experiment was conducted under two conditions: without the use of
Comma-Separated Values (CSV) files and with the integration of CSV files containing exact
data from the plots. This aimed to analyze the improvement in model performance when
augmented with direct data access.

The results, presented in Table 6.8, show significant improvement across all question types
when the model is augmented with CSV data. Specifically, the accuracy for ’Specific Data
Points’ increased from 45.2% to 85.1%, and for ’Minimum/Maximum’ from 33.3% to 93.3%.
Notably, the most challenging category without CSV, ’Range’, saw an increase from 21.9%
to 65.6%. The categories ’Comparison’ and ’Average’, which benefit from direct numerical
comparisons, reached perfect accuracy with CSV augmentation.

Overall, the total accuracy improved from 44.6% to 87.4%, demonstrating the effective-
ness of incorporating structured data into the VLM’s processing pipeline for answering visual
questions about scientific plots. This is really interesting because even though the extrac-
tions were not perfect, the VLM is able to utilize some of the data to get to a fine grained
answer, resulting in better performance overall.
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(a) Image 1 (b) Image 2 (c) Image 3

Figure 6.6: Annotation Detection on a Few Images of the Validation Set

(a) Amazon Textract Results on Sample Image (b) Reconstruction of Sample Image

Figure 6.7: Illustration of Axis Recalculation Error on a Sample Image

6.5 Limitations

This research developed a comprehensive approach to reconstructing scientific plots for as-
sisting visual language models (VLMs) in interpreting and responding to queries about vi-
sual data. Despite its innovations, the study encountered several limitations. The pipeline
demonstrated specific challenges in generalizing to different types of plots and scientific do-
mains beyond battery research, indicating a need for additional features for broader plots
and figures. Complex chart structures, such as those with dual axes or non-standard rep-
resentations, also posed significant challenges, impacting the accuracy of data extraction
and interpretation. Additionally, the annotation detection process, while advanced, did not
achieve perfect precision and recall, leading to potential inaccuracies in the final data used by
VLMs. The color analysis component, reliant on predefined color sets, sometimes struggled
to accurately identify and match colors, particularly when faced with subtle variations not
represented in the training set. Currently, the system cannot handle plots with variations of
the same color marker and plots with nonlinear scales.

The limitations observed primarily relate to handling non-linear and non-numerical data
ranges, as well as integrating multiple data components (axes, legends, and data points)
in complex chart layouts. The performance disparity between single and dual-axis configu-
rations further indicates difficulties in accurate axis assignment and the synchronization of
multiple elements within the same chart. Future improvements should focus on enhancing
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Table 6.7: Reconstruction Pipeline Task Accuracy

Category Sub Category Sub Category Accuracy Overall Accuracy

X Axis 0.86
Title 0.91

Minimum Range 0.82
Maximum Range 0.84

Scale 0.87
Y Axis 0.895

Title 0.92
Minimum Range 0.90
Maximum Range 0.89

Scale 0.87
Second Y Axis 0.9375

Title 1
Minimum Range 0.917
Maximum Range 0.917

Scale 0.917
Legend 0.871

Number of Legend Titles 0.87
Legend Titles 0.887
Legend Colors 0.912
Legend Pairs 0.815

Data Series 0.639
Clustering of Data Series 0.772

Axis Assignment 0.583
Single Axis Data Series 0.587
Dual Axis Data Series 0.423

Data Series Correctness 0.562
Total Accuracy 0.34

the algorithm’s ability to assign datasets to axes and improve the integration process of dif-
ferent chart components to boost overall accuracy. Developing more sophisticated techniques
for handling special cases, such as non-linear scales and overlapping data elements, will be
crucial in advancing the capabilities of our reconstruction pipeline.
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Table 6.8: Comparison of Results Without and With CSV

Question Without CSV With CSV

Specific Data Points 0.452 0.851
Minimum / Maximum 0.333 0.933
Range 0.219 0.656
Comparison 0.667 1.000
Average 0.500 1.000

Total 0.446 0.874
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(a) Original Image #1 (b) Reconstruction of Image #1

(c) Original Image #2 (d) Reconstruction of Image #2

(e) Original Image #3 (f) Reconstruction of Image #3

(g) Original Image #4 (h) Reconstruction of Image #4

Figure 6.8: Successful Reconstructions of the Input Images
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(a) Original Image #1 (b) Reconstruction of Image #1

(c) Original Image #2 (d) Reconstruction of Image #2

(e) Original Image #3 (f) Reconstruction of Image #3

(g) Original Image #4 (h) Reconstruction of Image #4

Figure 6.9: Failed Reconstructions of the Input Images
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Chapter 7

Conclusion

In conclusion, this thesis has introduced a groundbreaking approach to enhance the capa-
bilities of visual language models (VLMs) by developing a pipeline for the reconstruction
of scientific plots. Focused primarily on scatter and line plots within the battery research
domain, the pipeline leverages advanced data processing techniques to transform complex vi-
sual information into structured, machine-readable formats that are more easily interpreted
by VLMs.

The core components of the pipeline include optical character recognition (OCR) for
text extraction, color analysis to differentiate plot elements, and machine learning models
for precise annotation detection. These modules work to convert images of scientific plots
into detailed CSV files. Preliminary testing has shown that this structured approach not only
improves the accuracy of the responses provided by VLMs but also enhances their ability to
engage with complex scientific inquiries based on visual data.

Key results from the deployment of this pipeline have demonstrated its efficacy, par-
ticularly in extracting accurate metadata and plot data from a variety of scatter and line
plots. The OCR component exhibited robust performance in text detection, achieving high
accuracy rates in extracting axis values. Color analysis, while facing challenges with subtle
color variations, successfully identified different plot elements in the majority of test cases.
Annotation detection also showed promising results, with the fine-tuned YOLOv5 model
achieving substantial precision and recall rates, though it also highlighted areas for potential
improvement.

However, the pipeline’s performance also illuminated several limitations. Challenges
were particularly noted in handling plots with complex structures or dual axes, where the
standard processing techniques struggled to maintain accuracy. Additionally, its current lack
of generalization to other types of plots is a limitation for greater use.

Further testing and validation across diverse datasets will be crucial for optimizing the
pipeline’s capabilities. This will involve enhancing the color processing techniques to handle
a wider spectrum of markers found in scientific plots and refining the annotation detection
algorithms to improve their accuracy and reliability. Future work will focus on expanding
the pipeline’s applicability by incorporating a broader range of plot types.
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Appendix A

Metadata Prompt to GPT

Based on the plot:

• Describe the title of the x-axis.

• Describe the range of the x-axis.

• Describe the title of the first y-axis.

• Describe the range of the first y-axis.

• Describe the title of the second y-axis if there is one.

• Describe the range of the second y-axis if there is one.

• Describe the different types.

Please provide the answers to the aforementioned questions only in the following string
format:

1 ’{
2 \"x-axis \":
3 {
4 \"title \": [INSERT TITLE HERE IN STRING FORMAT],
5 \"range \": [ INSERT RANGE HERE IN [start , end] FORMAT ],
6 },
7 \"y-axis \":
8 {
9 \"title \": [INSERT TITLE HERE IN STRING FORMAT],

10 \"range \": INSERT RANGE HERE IN [start , end] FORMAT ,
11 },
12 \"second -y-axis \":
13 {
14 \"title \": [INSERT TITLE HERE IN STRING FORMAT ELSE null],
15 \"range \": INSERT RANGE HERE IN [start , end] FORMAT ELSE

null ,
16 },
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17 \"types \": [INSERT THE TYPES IN LIST OF LISTS OF LENGTH = 2 WHERE
EACH LIST LOOKS LIKE

18 [TYPE NAME , MARKER COLOR in ONLY THE FOLLOWING CHOICES \"
black\", \"white\", \"red\",\" purple \",\" green\", \" yellow
\", \"blue\", \"pink\", \" orange\", \"grey \"]

19 ]
20 }’
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Appendix B

Mapping of Webcolors to Simple Colors

1 complex_to_simple_color = {
2 ’aliceblue ’: ’white’,
3 ’antiquewhite ’: ’white’,
4 ’cyan’: ’blue’,
5 ’aquamarine ’: ’green’,
6 ’azure’: ’white’,
7 ’beige’: ’white’,
8 ’bisque ’: ’white’,
9 ’black’: ’black’,

10 ’blanchedalmond ’: ’white’,
11 ’blue’: ’blue’,
12 ’blueviolet ’: ’purple ’,
13 ’brown’: ’red’,
14 ’burlywood ’: ’orange ’,
15 ’cadetblue ’: ’blue’,
16 ’chartreuse ’: ’green’,
17 ’chocolate ’: ’orange ’,
18 ’coral’: ’orange ’,
19 ’cornflowerblue ’: ’blue’,
20 ’cornsilk ’: ’white’,
21 ’crimson ’: ’red’,
22 ’darkblue ’: ’blue’,
23 ’darkcyan ’: ’blue’,
24 ’darkgoldenrod ’: ’yellow ’,
25 ’darkgray ’: ’grey’,
26 ’darkgreen ’: ’green’,
27 ’darkkhaki ’: ’yellow ’,
28 ’darkmagenta ’: ’purple ’,
29 ’darkolivegreen ’: ’green’,
30 ’darkorange ’: ’orange ’,
31 ’darkorchid ’: ’purple ’,
32 ’darkred ’: ’red’,
33 ’darksalmon ’: ’orange ’,
34 ’darkseagreen ’: ’green’,
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35 ’darkslateblue ’: ’purple ’,
36 ’darkslategray ’: ’blue’,
37 ’darkturquoise ’: ’blue’,
38 ’darkviolet ’: ’purple ’,
39 ’deeppink ’: ’pink’,
40 ’deepskyblue ’: ’blue’,
41 ’dimgray ’: ’grey’,
42 ’dodgerblue ’: ’blue’,
43 ’firebrick ’: ’red’,
44 ’floralwhite ’: ’white’,
45 ’forestgreen ’: ’green’,
46 ’magenta ’: ’pink’,
47 ’gainsboro ’: ’white’,
48 ’ghostwhite ’: ’white’,
49 ’gold’: ’yellow ’,
50 ’goldenrod ’: ’yellow ’,
51 ’gray’: ’grey’,
52 ’green’: ’green’,
53 ’greenyellow ’: ’green’,
54 ’honeydew ’: ’white’,
55 ’hotpink ’: ’pink’,
56 ’indianred ’: ’pink’,
57 ’indigo ’: ’purple ’,
58 ’ivory’: ’white’,
59 ’khaki’: ’yellow ’,
60 ’lavender ’: ’white’,
61 ’lavenderblush ’: ’white’,
62 ’lawngreen ’: ’green’,
63 ’lemonchiffon ’: ’white’,
64 ’lightblue ’: ’blue’,
65 ’lightcoral ’: ’pink’,
66 ’lightcyan ’: ’white’,
67 ’lightgoldenrodyellow ’: ’white’,
68 ’lightgray ’: ’grey’,
69 ’lightgreen ’: ’green’,
70 ’lightpink ’: ’pink’,
71 ’lightsalmon ’: ’orange ’,
72 ’lightseagreen ’: ’blue’,
73 ’lightskyblue ’: ’blue’,
74 ’lightslategray ’: ’grey’,
75 ’lightsteelblue ’: ’blue’,
76 ’lightyellow ’: ’white’,
77 ’lime’: ’green’,
78 ’limegreen ’: ’green’,
79 ’linen’: ’white’,
80 ’maroon ’: ’red’,
81 ’mediumaquamarine ’: ’green’,
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82 ’mediumblue ’: ’blue’,
83 ’mediumorchid ’: ’purple ’,
84 ’mediumpurple ’: ’purple ’,
85 ’mediumseagreen ’: ’green’,
86 ’mediumslateblue ’: ’purple ’,
87 ’mediumspringgreen ’: ’green’,
88 ’mediumturquoise ’: ’blue’,
89 ’mediumvioletred ’: ’pink’,
90 ’midnightblue ’: ’blue’,
91 ’mintcream ’: ’white’,
92 ’mistyrose ’: ’white’,
93 ’moccasin ’: ’yellow ’,
94 ’navajowhite ’: ’yellow ’,
95 ’navy’: ’blue’,
96 ’oldlace ’: ’white’,
97 ’olive’: ’green’,
98 ’olivedrab ’: ’green’,
99 ’orange ’: ’orange ’,

100 ’orangered ’: ’red’,
101 ’orchid ’: ’purple ’,
102 ’palegoldenrod ’: ’yellow ’,
103 ’palegreen ’: ’green’,
104 ’paleturquoise ’: ’blue’,
105 ’palevioletred ’: ’pink’,
106 ’papayawhip ’: ’white’,
107 ’peachpuff ’:’orange ’,
108 ’peru’: ’orange ’,
109 ’pink’: ’pink’,
110 ’plum’: ’purple ’,
111 ’powderblue ’: ’blue’,
112 ’purple ’: ’purple ’,
113 ’red’: ’red’,
114 ’rosybrown ’: ’pink’,
115 ’royalblue ’: ’blue’,
116 ’saddlebrown ’: ’orange ’,
117 ’salmon ’: ’pink’,
118 ’sandybrown ’: ’orange ’,
119 ’seagreen ’: ’green’,
120 ’seashell ’: ’white’,
121 ’sienna ’: ’orange ’,
122 ’silver ’: ’grey’,
123 ’skyblue ’: ’blue’,
124 ’slateblue ’: ’purple ’,
125 ’slategray ’: ’gray’,
126 ’snow’: ’white’,
127 ’springgreen ’: ’green’,
128 ’steelblue ’: ’blue’,
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129 ’tan’: ’orange ’,
130 ’teal’: ’blue’,
131 ’thistle ’: ’pink’,
132 ’tomato ’: ’orange ’,
133 ’turquoise ’: ’blue’,
134 ’violet ’: ’pink’,
135 ’wheat’: ’yellow ’,
136 ’white’: ’white’,
137 ’whitesmoke ’: ’white’,
138 ’yellow ’: ’yellow ’,
139 ’yellowgreen ’: ’green’
140 }
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Appendix C

Simple Color Centroids

Color Red Blue Green

Black 0 0 0
Grey 128 128 128
White 255 255 255
Red 255 0 0
Purple 255 0 255
Green 0 255 0
Yellow 255 255 0
Blue 0 0 255
Pink 255 20 147
Orange 255 165 0
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Appendix D

Sample CSV Format for ChatGPT

1 Cycle ,Capacity (mAh),Polarization (V),Type
2 23 .727161389997743 ,81 .43332152995133 ,,EL2
3 34 .68794142632996 ,74 .6115764114762 ,,EL2
4 26 .858812828949805 ,80 .0689725062563 ,,EL2
5 42 .1256135938411 ,52 .78199203235573 ,,EL2
6 37 .232408220478504 ,72 .56505287593365 ,,EL2
7 19 .22541244650416 ,84 .16201957734138 ,,EL2
8 16 .485217437421102 ,78 .70462348256127 ,,EL2
9 32 .33920284711591 ,,0.8803891280405052 ,EL2

10 30 .773377127639883 ,,0.8888562024113731 ,EL2
11 18 .638227801700644 ,,0.9735269461200518 ,EL2
12 18 .83395601663515 ,,0.965059871749184 ,EL2
13 30 .773377127639883 ,,0.8803891280405052 ,EL2
14 39 .581146799692554 ,,0.8888562024113731 ,EL2
15 13 .549294213403547 ,,0.9904610948617876 ,EL2
16 16 .2894892224866 ,,0.9396586486365802 ,EL2
17 73 .8335844132307 ,125 .09249028819225 ,,EL5
18 36 .05803893087148 ,118 .27074516971712 ,,EL4
19 25 .880171754277285 ,147 .6042491791602 ,,EL5
20 67 .17882510545758 ,133 .96075894220994 ,,EL5
21 33 .12211570685392 ,142 .8290275962276 ,,EL5
22 50 .73765505095926 ,142 .8290275962276 ,,EL5
23 61 .50270687235697 ,136 .6894569896 ,,EL5
24 37 .428136435413 ,142 .1468530843801 ,,EL5
25 37 .232408220478504 ,144 .19337661992265 ,,EL5
26 68 .7446508249336 ,128 .50336284742983 ,,EL5
27 79 .70543086126581 ,,0.5332390788349226 ,EL5
28 36 .25376714580599 ,,0.6009756738018657 ,EL5
29 87 .73028767358046 ,,0.6263768969144692 ,EL5
30 49 .56328576135224 ,,0.5671073763183941 ,EL5
31 44 .67008038798965 ,,0.6009756738018657 ,EL5
32 17 .072402082224617 ,,0.5925085994309978 ,EL5
33 14 .527935288076065 ,,0.6517781200270728 ,EL5
34 58 .37105543340491 ,,0.516304930093187 ,EL5
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Appendix E

Assignment Prompt to GPT

One of the images is the figure from the paper. The other one is a reconstruction of the
image.

Based on the similarities:

• Provide the title of the cluster including the legend name and number.

• Provide which y-axis the cluster belongs to.

• Provide the title of the desired y-axis.

Please provide the answers to the aforementioned questions only in the following string
format:

1 ’{
2 \" clusters \": [
3 {
4 \"title \": [ CLUSTER NAME AND NUMBER IN STRING FORMAT ],
5 \"axis \": \"left\" OR \"right\",
6 \" axis_title \": [ NAME OF THE RELEVANT AXIS ]
7 },
8 {
9 # ADD MORE CLUSTERS HERE

10 }
11 ]
12 }’
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Appendix F

Baseline Prompt to GPT

Using the image provided, answer the following questions:

• What is the current at 3 V for each of the types?

• What is the current at 6 V for each of the types?

• At what voltage, is the current highest for each of the types?

Please provide the answers to the aforementioned questions in a list of tuples with the
type and the answer.
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Appendix G

Reconstruction Prompt to GPT

Using the points from the CSV file and the image provided, answer the following questions:

• What is the current at 3 V for each of the types?

• What is the current at 6 V for each of the types?

• At what voltage, is the current highest for each of the types?

Please provide the answers to the aforementioned questions in a list of tuples with the
type and the answer.
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