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by

MARK ANTHONY SCHUETZ

Submitted to the Department of Mechanical Engineering
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requirements for the Degree of Master of Science.

ABSTRACT

A combined experimental, theoretical study has been performed on
the heat transfer through foam insulation. A model is presented for
conduction through the gas/solid structure with simultaneous radiation
heat transfer. The model is easy to apply and requires a minimum number

of experimentally determined properties. Some data is compared to the
model's predictions.

Conduction through the solid is found tc be a strong function of
the percentage of the solid in struts versus membranes. Published
conduction models do not take this factor into consideration and are
therefore found seriously inaccurate for real foam. Upper and lower
limits are placed on the conduction through real foam.

Published radiation models based on opaque cell walls are
experimentally proven inaccurate. Polyurethane foam cell walls are

found to be 80% transparent or higher, on average, over the infrared
portion of the spectrum.

The extinction coefficient is analytically shown ¢to be both
necessary and sufficient for predicting radiation in most practical foam

applications. A simple technique is presented for measurement of this
property.

The absorption coefficient, scattering coefficient and phase
function were measured for a polyurethane foam sample and for a glass
fiber insulation sample. From these results the simple technigque is
shown to overestimate the extinction coefficient by approximately 11%
for foams, and by 60% for glass fiber insulations. Radiation 1is shown
to account for approximately 25% of the total heat transfer in foams.
The error introduced by the simple technique results in an error of 2.5%
for the overall heat transfer in foam. RrRecommendations are provided for
improvement of the simple technique measurement accuracy without
excessively increasing the complexitye. The improved technique 1is
expected to be applicable to glass fiber insulations as well as foams.

Addition of strongly absorbing particles is experimentally shown to
decrease the overall heat transfer through foams by 6%.

Thesis Supervisor : Dr. Leon Glicksman
Title : Senior Research Scientist
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1. BACKGROUND AND INTRODUCTION

Foam insulations have come to represent a large industry in the
United States as well as in other countries. Foams have grown in
popularity due to their superior thermal and mechanical properties
compared to other insulations. The use of foam insulation is expected
to expand in the future as energy saving becomes more importaant in
people's thinking and as new and better foams are developed for new

applications.

When a closed cell foam is blown with a low conductivity gas such
as R=11 or R=12 (Ereo; gas), the overall thermal conductivity of the
foam is approximately two-thirds the conductivity of stagnant air with
no radiation. In contrast, open celled foams and glass €fiber
insulaéions have overall conductivities from 1.3 to 2.0 times the
conductivity of stagnant air. Unfortunately, when closed cell foam is
left exposed to the atmosphere, the blowing agent (often R-11) diffuses
out while oxygen, nitrogen and water vapor diffuse in. The gas in the
cells is thus a mixture of oxygen, nitrogen, water and R-11. Over a
period of a few vyears the foam conductivity rises to a level

approximately equal to the conductivity cf stagnant air. This process

is called "aging™ and <clearly represents a substantial insulation

per formance degradation.

[



At the Massachusetts Institute of Technology, research on foam
insulation is ongoing in the areas of aging and heat transfer modeling.
This study is concerned with the heat transfer modeling question. One
motivation for attempting to model the heat transfer through foam is to
relate the gas diffusion results of the other researchers (Doug Reitz,
Leon Glicksman) <o data on overall thermal conductivity changes with
time. Chapter G presents a model for predicting overall foam
conductivity during aging. Given gas concentration profiles for each of
the gases and given the thermal conductivity measured at a time when the

gas composition is known, the model predicts overall foam conductivity

within 0.5%.

One further motivation for under standing the heat transfer -problem
is to develop foams with lower thermal conductivities at the time of
foaming. Once the heat transfer mechanism 1is properly understood,
development work to produce better foams may be pursued in a more
mechanistically directed way than has been possible in the past. Some

early successes from this new approach are presented in Chapter 7.

1.1 Problem Statement

The motivation of this study is to develop lower conductivity foams
and to provide the heat transfer model which is required fcr the aging
studies ongoing at MIT. In a broad sense, the problem is therefore to
predict the overalil thermal conductivity under a wide range of
conditions. Empirical correlations are not useful because they cannot

provide the insight which is desired.



In order to achieve these goals, the authors have undertaken the
pcoblem of developing a physically realistic model for heat transfer
through foamed materials. This development requires thecretical and
experimental research to correctly understand the three important
contributors to heat flow: conduction through the gas, conduction
through the solid, and radiation. It is also necessary to be able to
estimate the effects of interactions of these three contributors. It
was anticipated that a simple model requiring a minimum number of
measured properties could be developed, ba sed on the proper

under standing of the basic heat transfer mechanisms.

while it would be possible to solve the integro-differential
equation of radiative transfer simultaneously with the conduction
equation, this would require knowledge of certain material properties
(absorption and scattering coefficients, phase function) which are not
repcerted in the literature. Techniques for the exper imental
determination of these properties are not found in the literature
either. No one has developed an experimental technique which fully

characterizes the material's radiation properties.

The problem therefore entails experimental determination of the
material's radiation properties as well as development of a model in
which to use the experimental results. As will be seen in succeeding
chapters, the experimental results themselves provided the physical
insight required to determine which Simplifications to the general

radiation theory are accurate and thus applicable.



A pure conduction model is also required for the foamed structure-
The solid has a much higher conductivity than the gas, but only occupies
a small percentage of the volume. We will show in Chapter 2 that the

previously published models for this conduction problem are inaccurate

for the real foam geometry.

1.2 Review of the Literature

—— o ——— — c————

A recent review of the foam heat transfer literature was published
by Valenzuela and Glicksman (1). They show that convection within the
cells is negligible. An expression developed by Doherty (3) is used for
the effective ccnductivity of the medium in the absence of radiation
along with an expression for the effective "radiation contribution”
which aszumes that cell walls are opaque in the infrared. This combined
model is shown to underestimate the data for overall foam conductivity
by approximately 25%. They identify the major source of the discrepancy

to be poor modeling of the radiation heat transfer.

Conduction Literature

The majority of the foam heat transfer literature use the models
which Valenzuela and Glicksman (1) showed to be inaccurate, or other
models in a similar vein. ror example, Baxter and Jones (15) correctly
point out that the conduction problem is analogous to electrical
conduction in a composite medium and that the theoretical results of
Kerner (34), and others apply. The conduction model which Baxter and

Jones adopt may be shown to predict essentially the same results at low



densities as the equation proposed by Russell (2). Also, when the
equation proposed by Doherty,et al. (3) is modified for three
dimensional bubbles (rather than the two dimensional case he presents),
his equation also produces the same result at low densities.
Unfortunately, none of these equations are accurate for real foam.
These expressions would be correct if the foam consisted of bubbles with
uniform wall thickness throughout. 1In real foam, a considerable portion
of the solid material builds up in the corners of bubbles. This results
in rigid, stick-shaped elements called struts. We will show in Chapter
2 that the presence of struts significantly decreases the calculated

conduction heat transfer.

Radiation Literature

The treatment of radiation by previous authors in the foam
literature must be re-examined. Norton (17) dismisses radiation
entirely without giving an explanation as to why it may be dismissed.
Papers by Skochdopole (18), and Doherty, et al. (3) both state that the
radiant heat flux in foams may be estimated by treating the cell walls
as opaque. As will be seen in Chapter 4, cell walls in foams are at

least 80% transparent over the wavelength range of interest.

The heat transfer literature dealing with the general problem of
simul taneous radiation and conduction in a homogeneous medium is more
applicable to the problem of heat ¢transfer in foam than are many
references specifically addressed to radiation in foam. Viskanta (11)

formulated and numerically solved the case of simultaneous c¢onduction



and radiation in absorbing and isotropically scattering gray materials.
Fine, et al. (12) also numerically solved this case and furthermore
showed for sufficiently optically thick media that this problem may be
solved within 0.5% with a greatly simplified model based on the
Rosseland diffusion approximation. See Hottel (20) for a clear
derivation of the Rosseland diffusion approximation. We will show
experimentally that the conditions for this simplified model are met in
polyurethane foam, except for the requirement of isotropic scattering.
Glass fiber insulation will be shcwn to be sufficiently optically thick
also, but nonisotropic scattering and highly non-gray behavior makes the

simplified model less accurate for glass fiber insulation.

The most general case - a nongray medium which conducts, absorbs,
emits and nonisotropically scatters - has been numerically solved by
Houston (14) and by Koram (33). Their research was directed toward the
problem for glass fiber insulation and therefore the solutions are for

values of the radiation parameters found in that insulation.

The nonisotropic scattering case is the most difficult problem to
solve. Accordingly, various approximations may be found in the
literature including the two flux approximation by Larkin and Churchill
(21) and the linear anisotropic scattering approximation by Dayan and
Tien (22). Probably the best available solution ¢to the nonisotropic
scattering problem is the P-1 approximation presented most clearly by
Lee and Buckius (23). This approximation provides a simple way to

modify the scattering coefficient so the nonisotropic scattering problem



may be simulated with an equivalent isotropic scattering problem.

Aging Literature

The other literature relevant to this work is the foam literature
concerning aging. The approach of Norton (17), and of Brandreth (24)
has been to measure an effective diffusion coefficient for each of the
gases diffusing through the foam. Experiments have shown that tle
effective diffusion coefficient changes considerably from foam to foam.
However, once an effective diffusion coefficient is found, the mass
transfer - heat transfer analogy_ may be applied to the diffusion
problem. Newman (25), (19) gives the series solution to the problem of
transient diffusion in a slab. Alternatively, the same results could be
read from graphs prepared from this series solution for the analogous
heat transfer problem. Rohsenow (26) explains the heat/mass transfer
analogy and presents some charts. Arpaci (27) gives more detailed
charts and furthermore explains how multidimensional problems (i.e.
edge diffusion in slabs) may be solved by using the product of results
read from the one-dimensional charts. Arpaci also gives solution charts
for cylindrical and spherical geometry problems. Gas concentration in
foams may thus be determined from the charts for the most common
geometries once the diffusion coefficient is known for each gas in the
foam. The key element in this process of predicting gas composition
with age is the prediction of the effective diffusion coefficient. The

remainder of the work is well documented mathematics.



Once the gas composition is known throcughout the foam, this
information is used to calculate an effective foam thermal conductivity.
Norton (17) calculates the mole fraction of the average gas composition
and uses this to predict the overall coanductivity of the foam. This
approach may not be accurate for all cases. This approach will be
accurate whenever the gas composition is nearly uniform (initially, and
during the "plateau" when the oxygen and nitrogen diffusion are nearly
complete) but will not be accurate whenever significant oxygen and
nitrogen concentration gradients cause a large variation of gas
composition from the foam core to_the surface. An accurate alternative

which is as easy to apply as Norton's approach is presented in Chapter

6.

Concerning the thermal conductivity of gas mixtures, some authors
have used a linear combination of mole fraction times pure component
thermal condgctivity in order to estimate cell gas mixture thermal
conductivity. Bretsznajder (8) shows that the linear model for the
conductivity of a gas mixture only applies when the gases in the mixture
are nonpolar and have approximately equal molecular weights. Because
the freons have much higher molecular weights than oxygen and naitrogen,
other models are required. Reid (6) and Tsederberg (7) both present a
correlation by Lindsay and Bromley which would be expected to hold for
freon - oxygen - nitrogen - water vapor mixtures. Peters, et al. (5)
give data for freon - nitrogen mixtures which agrees well with the
Lindsay - Bromley correlation. The linear model for mixture

conductivity deviates from the data by 35%.



In succeeding chapters, it will be shown that the prevailing models

presented throughout the foam literature overestimate solid conduction,
overestimate gas conduction during aging, and drastically underestimate
radiation. As will bYbe seen in Chapter 7, the improved under standing
gained in this study has helped identify promising development work as
well as provide immediate fruit in the quest for lower conductivity

insulations.

1.3 Approach

The general approach in this work has been to examine the most
general problem staiement, perform limit analyses and experiments which
examine the basic processes involved, and simplify the problem, based on

the experiments.

The specific approach to the c¢onduction problem was to make
simplifications, but keep track of whether the simplifications will be
increasing or decreasing the heat transfer. In this way upper and lower
limit models for gas plus solid conduction were developed which
illuminate the physical process, as well as provide a sufficiently
accurate conduction model. Since low conductivity foams are typically
produced at densities on the order of 2.0 pcf (32 kq/ms), the conduction
analyses ignore the results at densities over 5.0 pcf (80 kg/ma). This

restriction allows some simplifying approximatioas to be used.
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For radiation heat transfer the approach has been more experimental
than theoreticai. While several authors noted in the previous section
have solved complex conduction-radiation heat transfer equations, very
few have perfcrmed experiments designed to measure the appropriate
radiation barameters. Accordingly, three experiments were performed in
this work. The first proves the oraque cell wall radiation models to be
incorrect. The second shows that the medium is optically thick and
nearly gray. It also provides a convenient technique for measurement of
the extinction coefficient, the one property which must be measured for
the simplified radiation model _developed 1in Chapter 3. The third
experiment is unique in the literature because it directly measures the
absorption coefficient, scattering coefficient, and phase function.
The se mea surements may be compared to scattering theory results, or may
be used directly in the general nonisotropic scattering radiation
analysis. The results are also used to estimate the error inherent in

the simple technique for extinction coefficient measurement.

Finally, we used the knowledge gained over the course of our
reseach to reduce heat transfer in a low density foam. The approach
entails adding ﬁtrongly absorbing particles to reduce the radiation
contribution. Since this simultaneously increases conduction, an
estimate of the best trade-off was made. As seen in Chapter 7, the
result was a 6% reduction in thermal conductivity compared to a control

foam with no particles.



2. CONDUCTION HEAT TRANSFER IN FOAMS

The conduction chapter is divided into four sections. The first
section, Intrcduction %o Conduction, provides the motivation and the
technical basis for the approach taken. Section 2.2, Two Dimensional
Limit Models, develops the concepts in upper and lower limit modeling
which are extended in section 2.3, Three Dimensional Limit Models. The
recommended conduction model is presented in section 2.3, followed by

the Conduction Conclusions, section 2.4.

2.1 Introduction to Conduction

This section presents the conduction problem as the authors faced
it. The second part, Basis for Limit Models, explains the basic limit

modeling techniques used in this work.

2.1.1 Background

In the absense of radiation, conduction through the foam structure
would acecount for 100% of the heat transfer. Valenzuela and Glicksman
(1) have shown conclusively that convection is negligible in freon blown
£oams for cell sizes below approximately 1.5 mm (0.059 in). With other
gaszs such as air, the cutoff diameter is even larger. Even with
radiation, conduction through the solid/gas structure accounts for
approximately 75% of the total heat transfer in low density freon blown
foams, and approximately 90% of the total in high density foams, and in
open celled foams. Therefore, an accurate conduction model is required

if we are to predict foam thermal conductivity.
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Aging of freon blown closed cell foams is characterized by dilution
of the low conductivity freon gas with oxygen, nitrogen, and water vapor
from the atmosphere. The thermal conductivity of the gas mixture is
raised, thus increasing the overall foam thermal conductivity. In order
to quantify the changes in overall foam conductivity given a mass

transfer model for the gases, it is important to correctly understand

the conduction problem.

Various published aging studies implicitly or explicitly make the
following assumptions: 1.) The change in foam conductivity is equal to
the change in space mean _gas conauctivity, 2.) The change in foam
conductivity is equal to the change in conductivity of the average gas
composition, 3.) The conductivity of the gas mixture may be expressed as
the summation of the mole fractions of each componert times the pure

component conductivity. In succeeding chapters we will show that none

of these assumptions are correct.

In the actual foam structure, there is conduction heat transfer
interaction between the solid and gas. The temperature profile is
complex in detail, especially since the bubble geometry is complex. The
approach taken in succeeding sections is to provide upper and lower
bounds to the conduction in foam by examining idealized geometries which
would have higher or lower conductivities than the actual foam
structure. Questions concerning the effects of assumed bubble shape, of
struts, and of variable gas conductivity are addressed. We have not

assumed in our analyses that the overall conductivity may %e expressed



13

as the sum of gas, solid, plus radiation contributions. However we will
show in later chapters that the magnitude of the effects of heat
transfer interaction by these three mechanisms is small for typical foam
insulations. We will speak of "solid contribution® as the effective

conductivity without radiation, minus the gas conductivity.

2.1.2 Basis for Limit Models

The temperature field in real foam is a complex three dimensional
function. There is nec "exact" soluticn to conduction heat transfer in
foamed materials since the bubble geometry cannot be described by any
one repeating elemental cell. In real foam, cells of different szizes,
shapes, and with different numbers of faces are packed together. A
finite difference solution could be performed for some "representative"
element, but even then a certain amount of judgement is required in
order to determine what is "representative". The approach taken in this
work has been to idealize the geometry to make it analytically
manageable, and relate the idealized results to conduction heat transfer
in real foam. In order to estimate the error in these idealizations,
upper and lower bounds have been placed on the actual heat transfer.
The closer together these bounds, the 1less uncertainty in the final

result.

In order tc understand the ilimit analyses which follow, one must
understand what makes one model an "upper limit" and another model a
"lower limit". Although the real conduction problem is formidable, it

is possible to make idealizations defining new problems which can be
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solved exactly. In order to determine whether the solution to the new
problem represents an upper or lower 1limit to the original {(real)
problem, one must determine whether the idealizations will enhance or

reduce heat transfer compared to the original case.

For example, one idealized way to enhance heat transfer in foam
would be to take all of the solid polymer and place it in a single
column stretching from one side of the sample to the other. This new
problem can then be solved exactly and the solution will be an upper
limit for heat transfer in foam. Unfortunately this idealization will
so drastically increase the conauction that the model's usefulness is
quite limited. Fortunately, other less drastic idealizations can be
shown to increase the heat transfer and thus provide better (more

accurate) upper limit models.

The above example points out that changes in geometry provide one
way to idealize a problem. If the high conductivity material is
reoriented parallel to the heat flow direction, the conduction will be
increased. Conversely, if the high conductivity material is reoriented
perpendicular to the heat flow direction, the conduction will be

decreased.

Another class of idealizations which are important in this work are
idealizations involving properties of materials. For example, the
conductivity of a material could be assumed to be zero or infinity in
one coordinate direction, and be the real value in an orthogonal

direction. For any given problem geometry, if the conductivity of a
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material is assumed infinite in any direction, the calculated conduction
heat flux will always be equal to or greater than the actual.
Conversely, if the conductivity of a material is assumed to be zero in
any direction, then the calculated conduction heat flux will always be
equal to or less than the actual. The reason is that paths of infinite
conductivity provide local short circuits, thus reducing the overall
effective resistance. Points of zero conductivity are local open

circuits (infinite resistance), thus increasing the overall resistance.

One other technique for lower limit analysis depends on the
physical fact that in conduction h;at transfer the heat will always flow
via the path of least resistance. This is analogous to an electrical
resistor network where electric current will find the path of least
resistance. If one arbitrarily assumes the heat flow path through a
given geometry, the calculated effective resistance will always be
greater than or equal to the actual resistance. In other words, for a
given overall temperature difference, the calculated conduction heat
flux will always be less than or equal to the actual heat flux.
Therefore, another technique for lower 1limit analysis is to specify
lines of flux through the geometry and calcuiate the effective

resistance to heat flow.

Many idealizations could be made simultanecusly for a given
coduction problem. If all idealizations increase heat transfer, then
the resulting solution still represents an upper limit. If all

idealizations reduce heat transfer, then the solution is a lower limit.
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However, if some increase and cthers decrease heat transfer, then we

have neither an upper nor a lower l1imit to the original probiem.

2.1.3 Analytical Approach

From the previous discussion it is clear that approximate models
are used for estimation of conduction in foam. In foll;wing sections,
the actual foam geometry is idealized as stacked cubes, arranged in-line
or staggered. It is also idealized as a large number of sticks with
equal probability for any stick to be oriented in any direction.
Finally it is idealized as a large number of small planes with equal
probability of any plane being oriented in any direction. Upper and
lower limits are placed on these idealized geametries and the
relationship of these models to the conduction heat transfer in real
foam is detailed. Fran the upper and lower limit analyses of these
idealized geometries, an approximation is assembled for upper and lower

limits to the conduction heat transfer in real foam.

Section 2.2 presents conduction analyses in two dimensions for the
purpose of developing the analytical concepts used in the
three-dimensional cases, presented in section 2.3. A conduction model
for foam is presented, followed by same typical results, interpretation

of these results, and a summary of conduction conclusions.
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2.2 T™wo Dimensional Limit Models

While the two dimensional 1limit models are not wuseful for
predicting foam thermal conductivity, they are instructive because of
their simplicity. If the reader understands the two dimensional models,
the ¢three dimensional models will be extensions of the same basic
concepts to more complex geometry, with only a few new concepts

introduced.

This chapter begins with upper and lower limit conduction analysis
for two-dimensional bubbles. The bubbles are square in cross section
and may be arranged in-line with the heat flow direction, staggered in
the heat flow dircction, or arranged in-line with the heat flow at a 45
degree angle to the walls of the bubbles. Section 2.2.5 details an
analysis for the in-line square bubble geometry where the heat flow is
at an arbitrary angle to the sides of the squares. Finally, an upper
limit analysis 1is presented for a large number of sticks where each

stick has an equal probability of orientation in any direction.

2.2.1 Two Dimensional Geometries

Three of the two dimensional geometries are shown in Figure 2-1.
In all three, the solid polymer is assumed to be uniformly distributed
throughout. There are no 1large clumps nor nodules in the two
dimensional cases. (These prcblems will be addressed in the three

dimensional cases.) In all three cases, the cell "diameter" (d) is taken
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to be the length of the gas space. The wall thickness (t) is shown in

Figure 2-1.

For all three square bubble geometries, the porosity (6§), the
volume of gas divided by the total volume, may be calculated from
equation 2-1.

2
§ = —42 (2-1)
(d+t) 2

From a simple analysis of the force of gravity and the foam
bouyancy in air, the porosity is expressed in equation 2-2 as a function
of solid, gas, and air densities, Qs, oq » 9 respectively, and

"apparent" foam density (pf ) e

s a f (2-2)

o
]

The "apparent" foam density is the density calculated by dividing the
weight of a foam sample by the volume of the sample. Given the
densities and a representative cell diameter, 4, it is easy to calculate

the cell wall-thickness (&) from equations 2-1 and 2-2.

2.2.2 Limit Models for 2-D In-Line Geometry

For conduction analysis of the 2-D in-line geometry, it is helpful
to make full use of symmetry. See the top drawing in Figure 2-1. 1In
the heat flow direction, lines of symmetry may be drawn through the

centerlines of walls as well as through the’ centerlines of cells. By
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symmetry, these are adiabatic surfaces. Perpendicular to the heat flow
direction, lines of symmetry may also be drawn through the centerlines
of cells and through the centerlines of walls. In the case of steady
state heat transfer with prescribed temperature at the edges of the
foam, these lines are isotherms. The problem is therefore reduced to

analysis of the repeating element shown in Figure 2-2.

The conduction upper limit is easily attained by changing the
thermal conductivity of the solid and gas from ks and kg to infinity,
for the y-direction only (perpendicular to the heat flow direction). If
the y-direction conduciivites ;;e infinity, then all isotherms are
horizontal lines and the resistor network shown in the left hand side of
Figure 2-2 1is exact. Since the lateral conductivites are actually

finite, this resistor network represents an upper limit for the in-line

geometry.

By reducing the y-direction thermal conductivity from ks and kg toc
zero, a lower limit is achieved. This lower limit is exactly modeled by
the resistance network shown in the right hand side of Figure 2-2. This
network can be understood once cne recognizes that if the conductivity

is zero in the y-direction, all lines in the x-direction are adiabatic.
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The resistances shown in Figure 2-2 may be calculated for the upper

limit model from equation 2-3:

Rsl N =
k_ (d+t)
>
- U
ugpér s2 = (2-3)
limit kst
L
R = =
1 k
d g

and £for the lower limit model from equation 2-4:

R, = d+t
k t
S
t
Lower Rsa = x a (2-4)
limit S

R R
g2 = g1 = g
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The overall resistances for the upper and lower limit models are given

in 2quations 2-5 and 2-6 respectively.

1
= R + —————
RUL sl 1 1 (2-5)
s+g -— + =
R R
s2 g
-1
1 L
R | + ' = (2-6)
LL Ras3 Ro4 g
s+g

Given the overall resistances, upper and lower limits to conduction

through the solid plus gas may be calculated from equation 2-7.

x - (d+t) /2 _ 1
s+g d+t - (2-7)
R - 1 R
s+g 2 s+g

As might be expected for this geometry, the wupper and lower limit

results differ by only 1.5% for foam densities up to 5.0 pcf (80 kg/ma).

2.2.3 Limit Models for 2-D Staggered Geometry

While the in-line square bubbles are convenient from the point of
view of analysis, they are not representative of actual foam. In real

foam, membranes are oriented at oblique angles and bubbles of different
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sizes are packed together. By idealizing the foam as in-line squares we
are overestimating the actual heat transfer. The reason is that the
in-line geometry provides a direct solid conduction link from membrarnes
in one level to membranes in the next level. In real foam the solid
conduction path is far more tortuous. Membranes in real foam do join
other membranes at a strut, however these membranes can be at any angle
to the heat flow direction. This forces much of the heat to be
conducted from solid to gas and back again. In the worst case all
membranes oriented in the heat flow direction would terminate at
membranes oriented perpendicular to the heat flow. This would force
much of the heat to flow from the solid to the gas, rather than short-
circuiting the gas as with the in-line model. This worst case 1is

represented by the staggered bubble model.

In two dimensions this is represented by staggered squares. In
three dimensions the cubes may be staggered in one or in two directions.

For now we will concentrate on staggered squares. Later we will deal

with cubical bubbles staggered in two dimensions.

It is apparent from the lower left drawing in Figure 2-1 that the
same x-direction adiabatic 1lines of symmetry may be drawn for the
staggered geometry as for the in-line. In this case, an adiabatic 1line
of symmetry alternately passes through the centerline of a cell, then
the centerline of a wall, etc. Y-direction 1lines of symmetry
(isotherms) may be drawn through the centers of the cells, but not

through the centers of the walls. The repeating element £or the
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staggered squares geometry is shown in Figure 2-3.

For the upper limit, we change the conductivity of the solid and
gas from ks and kg to infinity in the y-direction. Once again all
isotherms are horizontal lines and it becomes apparent that the upper

limit staggered case is identical to the upper limit in-line case.

In order to understand the rationale behind a realistic lower limit
for this geometry, it is important to recognize that if we use the same
lower limit technique as we did for in-line squares (that is to make kg,
ks equal to zero laterally) then the conduction heat flow would be so
small as to be only a few percent greater than the heat flow through
stagnant gas alone. For 5.0 pcf foam, this model would only be 6%
higher than for pure gas. For comparison, the upper limit is 113%
higher. This lower limit would indeed be valid, but unfortunately not
close enough to the real case to be useful. A different approach is
needed in order to find another lower limit, closer to the actual case.
Note that our purpose in establishing lower and upper limits 1is to
bracket the real situation. The closer the bracket, the more accurate

the estimate of the real case.

In order to understand the lower limit staggered model, it 1is
important to recall that the differential equation governing conduction
heat transfer 1is linear. Therefore one may use superposition of
solutions. The superposition technique is most familiar to readers who
have had occasion to solve multi~-dimensional heat transfer problems with

heat generation. This 1is most easily done by superposition of a one
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dimensional problem including heat generation with the multi-dimensional
problem without heat generation. The temperature field T is expressed
as the sum of two parts, A and B. The differential equation and
boundary conditions are re-written in terms of these two components so
that the sum A+B satisfies the differential equation and boundary
conditions for T. A set of boundary conditions in A, with a
differential ecuation in A, is thus derived. A set of boundary
conditions for B with a differential equation in B are also thus
derived. Problems A and B are solved independently, the solutions are
added, and the sum is of course found to satisfy the differential
equation and boundary conditions for T. The sum A plus B is thus an
exact solution for T. Note that at any point, the gradient of T is the
vector sum of the gradients of A and B. Thus, the flux at a bcundary in

T is just the flux at the boundary in A plus the flux at the boundary in

Be.

This is how the lower bound staggered model is derived, except with
one twist. In this case problems A and B are not solved exactly.
Instead, lower limit heat transfer solutions for A and B are derived,

and their sum is therefore a lower limit soclution for T.

The repeating element shown in Figure 2-3 1is broken into two
problems, A and B in Figure 2-4. The differential equation and boundary
conditions for A and B add up to those for T in Figure 2-3, except for
the addition of some adiabatic surfaces in A and B which result in the

solution representing a lower limit. If the reader is uncomfortable
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with adding adiabatic surfaces at will, simply think in terms of making

the thermal conductivity zero along the interface.

From Figure 2-4, it is clear that each problem may now be solved
with one-dimensional resistor networks. The heat flux in T (the sum A
plus B) is just the sum of the heat flux in A with the heat flux in B.

Equations 2-8 through 2-12 express this model mathematically.

_ d+t d/2 - 2.5d + 2t (2-8)
By T 2 (k t.) Tkt k_t
s S s
d £ 2 t
Rg = 2 (k d) Y Xd k "%xa (2-9)
g S g S
T.- T T, - T T, - T
qT = g + = l 2 + 'L 2 = l 2 (_2“101
A B R R R
A B s+g
= -1. 2=-11)
Rs+q (1];:—' + ]1;—) 1 ( )
A B
_  ___d+t _ 2 _ 1 1
ks+g - R T R . = 2 (RA * RB) (2-12)
s+g 2 s*g B

Figure 2-5 gives the results of this model as applied to new
(unaged) polyurethane foam. As seen in the figure, the staggered lower
limit model results are approximately 6% below the upper limit at 2.0
pcf (32 kg/ma) density. A better way to express this difference is to

subtract the gas conductivity from the conductivity of the medium and
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call this difference the "solid contribution"™. The calculated lower
limit "solid contribution" is about 22% below the upper 1limit "“solid
contribution”. This difference is due to the tortuosity of the

staggered geometry conduction path.

2.2.4 Heat Flow Along 45 Degree Diagonal

While the cubical (sgquare in 2-D) bubble analyses provide insight
as to the magnitude of conduction. The membranes in real foam are
oriented in every possible angular direction. In foams with elongated
cells one would expect a greater proportion of the solid to be oriented
in the direction of cell elongation, while in isotropic foams one would
expect membranes would have equal probability of being oriented in any
direction. The cubical cell models are representative of isotiopic
foams in the sense that equal numbers of membranes are oriented in the
three coordinate axes. The question is: will placing membranes at
angles oblique to the coordinate axes have an effect on the conduction?
If yes, how much? If we can answer these questions then we can draw

stronger conclusions about how the square bubble models relate to

conduction in real foam.

In order to address this issue the diagonal geometry shown in
Figure 2-1 was analysed, first for the case where equals 45 degrees.
This is the same geometry as the in-line geometry except rotated 45
degrees to the heat flow direction. Lines of symmetry may be drawn

through the corners of adjacent diamonds. These lines are adiabatic.
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Lines of symmetry may be drawn perpendicular to the heat flow direction

also through the corners of adjacent diamonds. These lines are

isotherms.

The repeating element is thus a square with adiabatic sides,
isothermal top and bottom, and with a solid membrane extending
diagonally, as shown in Figure 2-6. The lower diagram in Figure 2-6,
idealized repeating element, is the geometry we analyse. The difference
is that two of the corners have been eliminated. An alternate
per spective, totally equivalent, is to say the conductivity of tha solid
is infinite in the corner trianglesS. We are therefore ignoring a small
resistance. This is negligible for low density foams where the wall
thickness t is very small compared the the cell "diameter” d. For the
two-dimensional square bubbles geometry, the ratio of 4 to t is
approximately 88.0 at a foam density of 2.0 pcf (32 kg/ms)- We might
expect the error due to this idealization to be less than but of the

order of 1.0% of the "solid contribution".

2.2.4.1 Upper Limit-Diagonal In order to establish an upper

limit for this geometry we make the assumption that the conductivity of
the solid is infinite in the y-direction. _We also assume that the
conductivity of the gas is infinite in the directicn perpendicular to
heat flow (qi). Isotherms may then be drawn on either side of the

volume element shown in the top drawing of Figure 2-7. An energy
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balance may be written for this element which equates the heat entering
with the heat leaving. This balance is given in equations 2-13 through

2-150

G- R AT

e ) (7

&5

2 .
) + k t (QZ L 4T dx) + k /x+dx)(/2 92)
S dx

Equating heat entering with heat leaving and combining like terms we

find that:

d?r

= 0 (2-15)
dx2

integrating we get:

1 2 (2-16)

applying the boundary conditions:

-

(2-17)

]
]
[oN

, T =T

(18]
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we find:

T -T X
Lo - (2-18)
T2 - Tl d
Clearly the gradient is a constant and is given by:
dT (T, - T,)
=™ - =21 (2-19)

The hear flow at any pasition x Ls given oy aquaticn 2-13, which may now

be simplified to yield:

2 1
- = 1 (2-20)
q (kgL + kst)

If the effective conductivity of the medium is ks+g_and is defined by

equation 2-21:

(. - T.) Area
2
g = x 2 1 (2-21)
Distance

where:

Area = [(d+t)/V2 1 - 1. (2-22)

Distance = (d+t)/v2 (2-23)



37

then:

t
k = kg vk g (2-24)

Note from equation 2-24, ks+g approaches kg as the density
approaches that of pure gas (t/d approaches zero). In the limit where
the density approaches that of pure solid, equation 2~24 loses meaning
because t/1 becomes infinity. This is due to neglecting the resistance
of the triangular corners. In-the limit of pure solid, these corners
become the entire volume. Thu§_ the medium conductivity approaches
infinity. As pointed out earlier, this is not a problem as long as the
der.sity is low. For 2.0 pcf foam, this error is estimated to be on the
order of 1% of the "solid contribution", or approximately 0.33% of the
total conduction heat flow. At higher densities the error is of course

higher.

Table 2-1 gives the results of this model in comparison to the
upper limit for staggered and in-line cubes. For a foam.density of 5
pcf (80 kg/ma), the difference between the diagonal upper 1limit and
in-line upper 1limit is less than 0.2% overall or 0.3% of the "solid
contribution". Such a small difference could be entirely due to
neglecting the corner resistances in the diagonal model. The next
question is: what effect does 45 degree orientation have on the lower

limit model?



Table 2-1: Comparison of Heat Flow at 45 Degrees

to Upper Limit for 2-D Square Bubbles

Foam In-line 45 Degrees* Difference
Density Upper Limit Upper Limit (%)
(pct)
1.0 0.0638 0.0638 —_—
2.0 0.0777 0.0777 _
3.0 0.091%9 ~0.0920 0.1
4.0 0.1063 0.1065 0.2
5.0 0.1211 0.1213 0.2
Notes:
units - Btu—in/hr-ftZ-F
k = 2.1
]
k = 0.05388
g
ps = 77.5 pct
o] = 0.351 pct
°g P

* Based on equation 2-24
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2.2.4.2 Lower Limit - Diagonal The bottom picture in Figure 2-7

gives a clear indication of what follows. We now analyse the diagomnal
geometry with the gas conductivity equal ¢to zero in the direction
perpendicular to the heat flow (qﬁj. The corners will be neglected as
will the y-direction heat flow resistance in the solid. Due to these
two approximations the model which follows is not a true lower limit,
but instead only serves to show the effect of lateral gas conductivity.
We showed that neglecting the resistance in the corners might cost 0.33%
accuracy. One would expect the error due to neglecting the y-direction
resistance in the solid to be og the same order of magnitude or less.
Any heat which flows through the solid in the y-direction must also pass
through a 1long length of gas. This gas resistance will be large
compared to the solid resistance, and therefore the solid resistance may
be neglected. Note that the solid conductivity in the x-direction may
not be treated similarly since such treatment would allow short

circuiting of the gas conduction path.

Given these assumptions, Figure 2-8 shows the control volume for
which an energy balance was written. The control volume consists of
s0lid material, dx long by t wide at position x. The heat fluxes into
and out of this control volume are noted in Figure 2-8 as g1,q92,93, and

g4.

The heat flows g1 and g2 may be found by recognizing that a simple
resistance to heat flow exists between the control volume and the

isothermal edges of the repeating element. This is due to tne
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assumption that kg is zero in the direction perpendicular to heat flow.

Equations 2-25 and 2-26 express this mathematically:

T, - T(x) k (T, - T) dx
- X - 8 1 -
q,x) = " = " (2-25)
(k dx)
g B
) - 0 " Ty KT TTAx (2-26)
2 ((d-x)) d-x
kgdx

Note that the conductivity of the solid is infinite in the y-direction,
hence the temperature in the solid is only a function of x. Therefore

the heat flows g3 and g4 may be expressed as:

B ar -
93 T Rkt & (2-27)
_ d_ ar
9y = _kst ax T+ ax ) (2-28)

The energv balance for this control volume is given by:

q; vt a3 = q taq (2-29)



Substituting equations 2-25 through 2-28 into equation 2-29 and

combining like terms:

g
X \ k t
S

2 - -
T . (kq \) TJ. T +( k__ rI‘2 T - (2-30)
dx?2 d-x

The boundary conditions for this equation are:

1
(2-31)
x=d, T=T
2
The solution to equation 2-30 is simply:
T-T X
Loo_ (2-32)
T, - Tl d

which may be verified by substitution into equation 2-30, and checked
against the boundary conditions, equation 2-31. But this is the exact
same solution (given in equation 2-18) as for the upper limit case.
Therefore, except for the two simplifications noted earlier (ks in
corners and ks in y-direction equal to infirity), the solution (equation

2=-32 or equation 2-18) is an exact solution for this geometry.

We have proven that the lateral direction (qdl gas conductivity
plays essentially no role for the case of two dimensional 45 degree

diagonal heat flow. We have also shown that the ¢two 1idealizations
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represent an uncertainty of approximately 1% for low densities.
Therefore the actual conductivity for this idealizad geometry is less

than, but within approximately 1% of the conductivity as calculated by

equation 2-24.

2.2.5 Heat Flow at Arbitrary Angle to 2-D Squares

A more general upper limit analysis is presented here for the two
dimensional in-line square bubble geometry. The heat flow direction is
at an arbitrary angle § to the sides of the square, as shown in Figure

2-9. As will shortly be seen, the solution is independent of 9,

For purposes of visualization, consider a foam sample of thickness
L with isothermal surfaces at T1 and T2, as seen in Figure 2-9. The gas
conductivity is assumed infinite in the y-coordinate direction. The
solid conductivity is assumed infinite across the thickness of the
membrane. These idealizations result in the isotherms shown in the

bottom of Figure 2-9.

From the blow-up in Figure 2-9, it is c¢lear that each isotherm
passes through the same total cross section of solid and through the
same total cross section of gas, per unit heat flow area. By
conservation of energy under steady state conditions, the heat flow
normal to each and every isotherm is constant from one side of the
sample to the other. From these two statements it may be inferred that

the magnitude of the temperature gradient is a constant throughout the

foam.
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Figure 2-9 : Heat Flow for In-line Squares_at Arbitrary Angle
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This inference may be more easily understood by applying the same
argument to the geometry of Figure 2-10. Two geometries are shown, case
1 and case 2. If the y-direction conductivities are infinite, then
cases 1 and 2 would have identical effective conductivities. Every
isotherm passes through the same cross section of sclid and gase. In
steady state, the heat flow across each isotherm is a constant and the

temperature gradient is constant throughout the material.

Going back to the geometry of Figure 2-9, the constant gradient
(linear temperature profile) implies that the heat flow in the s0lid is
constant and may be treated as a s;mple resistance. The total heat flow
is also constant and thus the gas heat flow must also be constant. This

allows us ito treat the solid and gas conduction as two resistances in

parallel. Equations 2-33 through 2-40 express this exactly.
-1 -1
- r .1 = [—L
R+g (R TR ) - (kﬂ A) (2-33)

For the gas resistance we neglect the fact that the solid occupies a
small fraction of the volume. The gas resistance would therefore be

slightly higher than that given by equation 2-34 below.

k A . (2-34)
g g

R, - L 2 (2-35)
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The heat flow in a single path "1" is:

q = 2 (2-30)
1 -
e
cosf
and for path "2":
a - kst(Tl - Tz)
"2 (2-37)
(515
sind

If n, is the total number of paths "1" per unit area then:

n, = Sos 8 (2-38)

and n, . the number of paths "2" is just:

sin 6 , (2-39)
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The total heat transfer in the solid is just the sum of the heat

transfer in all paths "1" and "2":

k t

S T2)<—Z’—>(c0529 + sin2@) (2-40)

Combining 2-33, 2-34, 2-35, and 2-40 results in:

t
k = kgt k_ 3 (2-41)

which is identical to equation 2-24, the solution for the 45 degree

upwer limit. Noting that for low densities:

Lo = fe+xd?2-492 _ e2+2de _ Lt (2-42)
(€ + a)?2 (6 + @2 d
equation 2-41 may be approximated by:
k = k_, +k (l - 6) (2-43)
s+g g S 2

2.2.6 Random Sticks Upper Limit, 2-D

The previous analyses have shown that the square bubble assumption
results in approximately the same upper limit solution regardless of the
heat flow direction and regardless of stacking geometry. This section

begins to explore what happens when the square bubble assumption is
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relaxed. We will consider the case where the solid is in the form of
sticks oriented at every angle. The total length of sticks oriented in
any direction within a small angle d8 is constant; this is our

definition of “random sticks".

In order to place an upper limit on this geometry, isotherms are
assumed horizontal. That is, the conductivity of the solid and gas is
assumed infinite in the direction perpendicular to heat flow. See
Tigure 2-11. Because the isotherms are horizonAtal lines, the
temperature gradient must be constant under steady state conditions.
All sticks at the same angle 9 maybe lined up end to end with no effect
on the heat transfer so as to form continuwus "bridges" crossing the
thickness of the sample. Because there is an equal length of sticks at
any 9, there aras more bridges at small angles than at large angles. The

heat flow across a single bridge at angle 8 is given by:

q_(e) = Xk _..l_._Z_ (2"44)

If n(€) is the number of bridges at 32 per unit angle per unit
volume, and if 1(8) is ¢the length of a bridge at 3, we may define a

constant, A, such that:

A = a(8) - 1l(8) = constaat (2-45)
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We also know from geometry:

L
1(e) —3 (2-46)
thererore:
a(® = boos? J (2-47)

Physically, A is the total length of all sticks at 6 per unit volume,
per unit angle, and is therefoie a constant for random sticks, as
defined here. The total solid conduction is the integral of the heat

flow per bridge, times the number of bridges per unit volume per unit

angle, times the volume, over all angles 6.

2 (k € (T, - T,) cos @ ) e s
Yo1ia (A-L) L (K T ) d8 (2-48)
8 =0
integrating we find:
I S U
50114 L TR (2-49)

But A is related to the foam porosity.

l—<5=t-/\fde=t-)\.-2'n‘ (2-50)



[V}
(18]

Solving for A and substituting into equation 2-49:

A -
. e Ui LN U (2-51)
solid L S ( 2
For the gas (ignoring the volume of the solid):
A(T, - T,)
1 2 .
I9as L g (2-52)

From equations 2-51 and 2-52 we may find the effective conductivity of

the medium, given by:

(2-53)

which is identical to equation 2-43.

2.2.7 Conclusions for 2-D Analysis

The primary purpose of the two dimensional analyses was development
of the anaiytical concepts and techniques which are used to solve the
more difficult three dimensional preblem. Superposition, symmetry,
geometric modifications and material property modifications were all
emplcyed in this section, and will be further exploited in the next

section. Nonetheless, the 2-D analyses also provide some insight into

foam conduction.



The upper limit for diverse two dimensional geometric problems has
been shown to be given by a simple expression, equation 2-53.
Staggering the squares, tilting them at any angle, or having random
sticks all give approximately the same result. The lower limit for the
in-line geometry oriented normal to the heat flow is within 1.5% of the
upper limit. The solution to the 45 degree bubble orientation case
illustrates that the lower limit for the in-line squares geometry is
quite close to the upper limit, even at orientations other than 90
degrees to the heat flow. This would lead one to suspect that equation
2-53 is not only an upper limit, but is also nearly exact for low
densities for the in-line square bubble geometry at any orientation to
the heat flow direction. At higher densities the resistance model
expressed by equations 2-3 thfohgh 2=7 could be expected to be nearly
exact for the sgquare bubble geometry, even for oblique Dbubble
orientation. The lower 1limit for the 2-D stagaered square bubble
geometry illustrates that the stacking arrangement could only effect a
change in the "solid contribution" of about 22% for the most extreme
cases. Finally, ¢the random sticks result indicates that the choice of

bubble shape is probably not important.
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2.3 Three Dimensional Limit Models

This section presents the upper and lower limit models which are
later used to predict thermal conductivity of foams. Upper and lower
limit models for in-line and staggered cubical bubble geometry aligned
normal to the heat flow direction are presented first. This is followed
by upper limit analysis of the cubi?al bubble in-=line gecmetry with the
heat flow at an arbitrary (oblique) angle to the bubble walls. Random
sticks and random planes are then analysed in three dimensions. We
conclude with a model to calculate conduction in foams, along with some

graphs presenting typical results.”

2.3.1 Three Dimensional Geometries

Both the in-line an& the staggered cubical bubble gecmetries are
shown isometrically in Figure 2-12. For these geometries there are no
struts, thus all solid material is assumed to ke uniformly _distributed
in membranes. The cell "diameter" (d) is taken to be the length of the
gas space. The "diameter" and the wall thickness (t) are shown in

Figure 2-12.

For these two geometries the porosity (§), the volume of gas
divided by the total volume, may be calculated from Equation 2-34.
d3

s = — (2-54)
(d+t) 3

The porosity was also given as a function of foam, gas, air and solid

densities (of, T 4 3 and ; respectively) under discussion of two
g a =
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dimensional bubble geometry. Equation 2=-2 1is repeated here for

convenience:

= (2-2)

The exact same relation applies to 2-D and 3-D cells because it was
derived by a force balance of gravity, bouyancy in air, and the measured
weight of foam. Given the density information and a representative cell
diameter, it 1is ¢trivial to calculate the wall thickness (t) from

equations 2-2 and 2-54.

As shown in Figure 2-13, the géometry is somewhat more complex with
struts. Struts are stick-shaped elements which reside along the twelve
edges of each cube where membranes intersect. To a good .approximation
for low foam densities, the overall heat transfer would not be affected
by the shapes of the struts cross section. Struts with square
cross-sections would give essentially the same heat transfer as would
cylindrical struts, so long as the percentage of matérial in struts
ver sus membranes was the same, and so long as the foam density was low.
Microscopic examination of real foams indicate that a considerable
portion of the solid (perhaps 85%) resides in the struts. Figure 2-14
gives some typical photographs of real foam under magnification. The se
particular samples contain a uniform dispersion of small coal particles
in the solid. This helps provide better photographic contrast as well

as qualitatively suggest a large concentration of solid in struts.



( Strut
Membrane

Figure 2-13 : Cubical Bubble Geometry with Struts
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Choosing a Bubble Diameter

For the upper and lower limit cubical bubble conduction models, we
will see that the choice of bubble diameter is totally arbitrary. Any
choice of bubble diameter will give the same calculated conductivity as
any other choice, so long as the percentage of solid in struﬁs and the
percentage in membranes remains constant. As the cell size changes in
real foam, ¢this mass distribution may well change. As will later be
shown, this would strongly affect the solid conduction ccntribution. In
radiation heat transfer, the material distribution may also be relevant
since the size of the object relative to the wavelength of radiation

affects its performance as an absorber/scatterer.

When estimating the percentage of total solid in .struts versus
membranes from microscope measurements of the sizes of the objects, one
must recognize the differences between the cubical bubble geometry and
the actual foam bubble geometry. The in-line cubical bubble geometry
results in exactly three whole struts per bubble. (There are twelve
forths of a strut per bubble.) In real foam, one would expect to have
more struts per bubble sirice the real bubble geometry is similar to a
pentagonal dodecahedron (twelve faced solid, each face is pentagonal).
A dodecahedron has thirty edges. Since a regular dodecahedron does not
£ill space, the proportion of each strut or nodule occupied by one
bubble cannot be calculated from the regular dodecahed;on shape.
Rather, one must rely on observations of foam which show that there are

always three membranes intersecting at a strut. On average each bubble
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would therefore contain one-third of each strut. This also gives rise
to a concave sided triangular cross section in struts, as seen in Figure
2-15. This would be expected from the pentagonal dodecahedron geometry
since the angles between faces are close to but not equal to 120
degrees. The dodecahedron geometry would also lead one to expect four
struts intersecting at any corner. Observations on large celled foams
confirm this suggestion. In summary for foam, one would expect each

bubble to contain *hirty thirds, or ten whole struts per bubble.

If one wished to estimate the mass distribution from microscopic
measurements of strut cross section and/or membrane thickness, (also
knowing foam density and bubble size), it 1is important to properly
estimate the total membrane surface area per unit volume and the total
length of struts per unit volume of foam. While a cubical bubble
analysis provides one estimate, the dodecahedron model would suggest

that the cubical bubble estimate would be inaccurate.

For purposes of estimating the fraction of solid in struts and
membranes, Figure 2=15 could be used to estimate the cross sectional
area of a "typical" strut. Using a cell geometry model such as the
dodecahedron, it is possible to estimate the total length of struts per
unit volume of foam. These two pieces of information allow estimation
of the volume of solid in struts per unit volume of foam. This may be
compared to 1 - §, (volume of solid per unit volume of foam) in order to
estimate the percentage of solid in struts. At the time of this writing

Reitz (38) has begun to develop this technique. He uses a superior
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technique for obtaining strut cross section photographs than the
technique used to obtain Figure 2-15. Reitz's preliminary estimates
tend to fall close ¢to 85% of the solid in struts for a typical

polyurethane foam.

2.3.2 Limit Models for 3-D In-Line Geometry - 100% Membranes

Only the upper limit model was developed for the 3-D in-line
cubical bubble geometry. There is no reason to calculate the lower
limit for this geometry since the 2-D calculations proved our intuition
correct: i.e., for the in-line geometry there 1is essentially no
difference between the upper and lower limit results, and thus either

model may be regarded as exact (within approximately 2%).

It is important to develop the upper limit for the 3=D in-line
geometry and the lower limit for the staggered geometry. Recall that
the in-line upper limit is alsc an upper limit for the staggered
geometry. With <¢the 3-D cubical bubble geometry and with 100% of the
solid assumed to be in membranes, a greater percentage of the solid
material is oriented in the direction of heat flow than in 2-D square
bubbles. Thus one would expect the 23-D geometry to give higher

conductivities. As will be seen later. this is in fact what hacpens.
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Upper Limit

As in the two dimensional case it is helpful to make use of
symmetry. Referring back to the upper half of Figure 2-12, planes of
symmetry may be drawn through the centers of membranes in all three
coordinate directions. Plarnes of symmetry may also be drawn through the
centers of any cell, in all three coordinate directions. Planes of
symmetry parallel to the heat flow (parallel to the xz and Xy planes)

are adiabatic. Planes of symmetry perpendicular to the heat Fflow

(parallel to the yz plane) are isotherms.

The problem is reduced to analysis of the repeating element shown
in Figure 2-16. Using the assumption that conductivity is infinite in
the plane perpendicular to heat flow (yz plane), all yZ planes become
i sotherms. This may now be modeled exactly with the resistance netwsrk
shown in Figure 2-16. Since the conductivity was increased in order to
arrive at this model, the model provides an upper limit to conduction

for the in-line geometry.

Equations 2-55 through 2-57 mathematically express the resistances
_shown in Figure 2-16.
2d

R = (2-55)
k_(2dt + £2)

2t
R, = —=——0 (2-56)
k_(a+t) 2
S
R = —2 (2-57)
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The effective resistance for this upper limit network is:

1
R = = el -
: R + ( +R ) (2-58)

s+g

2.3.3 Limit Models for 3-D Staggared Geometry =

100% Membranes

By analogy to the two dimensional case, the upper limit for the
staggered geometry is given by the same expression as the upper limit
for the in-line geometry. By assuming the conductivity infinite in the
yz plane, all yz planes become isotherms. Regardless of whether the
cubes are staggered or not, the resistor network given in Figure 2-16
for the in-line geometry also applies to the staggered geometry. Thus,
the upper limit conductivity for staggered cubes is given by equation

2-59.
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Lower Limit

In order to develop an accurate lower limit model, an analysis was
developed which 1is conceptually similar to the two dimensional lower
limit staggered analysis. Referring to the lower drawing in Figure 2-12
for the staggered bubble geometry, planes of symmetry may be drawn
parallel to the xy and xz planes through the centers of cells. The
planes alternate.y cut through the centers of cells and the centers of
membranes. These planes are adiabatic surfaces. Planes of symmetry
parallel to the yz plane may be drawn through the centers of cells, but
may not be drawn through the cente;s of membranes. These planes are
isotherms. The resulting repeating element is shown in the top left

corner of Figure 2-17.

Even with this idealized geometry, the temperature field is a
complex three dimensional function. In order to place a lower limit on
the conduction, the problem is broken into the sum of two parts, A and
B. (See the two dimensional staggered lower 1limit analysis for
justification.) By adding adiabatic surfaces appropriately, the split
problem may become relatively simple to solve, yet without compromising

too much accuracy.

If the reader will recall, in the two dimensional problem the
temperature field was expressed as the sum A plus B. Problems A and B
were solved separately, that is, lower limits were placed on A and B.
The sum represents a heat transfer lower limit for T. In 3-D, problem A

is (just as in the 2-D case) the conduction through the solid without
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interaction with the gas. Problem B 1is (as in 2-D) the conduction
through the gas, across the midsection membrane, and through the lower
volume of gas. Were it not for some adiabatic surfaces (see Figure 2-4
for the 2-D case) which must be added to keep the analysis simple, the
differential equation and boundary conditions for A and B would add up
to those for T, and thus the solution (A+B) would be exact.

Solution gE_Problem.E

The only conceptual difference between the 3-D and the 2-D
staggered models is that Problem A for 3-D cannot be solved with a
simple resistance network. Proble& B for 3-D can be solved with a
simple resistance network consisting of two gas resistances plus one
solid resistance in series. The effective resistance in problem B3 1is
just the sum of the three resistances. These relations are given in

equations 2-60 through 2-62.

R = 2R + R (2-60)
B g s
where:
2
Rg = —— (2-61)
k d
g
R, = 4t
kst (2-62)

Since Rs<<Rg, for low densities it is possible to neglect the >solid
resistance. thereby leaving Rb as just twice Rg. However, o as not to
introduce small errors at higher densities, the solid resistance is

included.
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Solution of Problem A

In order to solve problem A, the solid portion of the repeating
element is flatrened from three to two dimensions as shown in the right
hand side of Figure 2-17. Adiabatic and isothermal lines of symmetry
become readily apparent, reducing the problem to the element shown in
the lower left hand side of Figure 2-17. A lower limit for this element

may be calculated by integration, as follows.

An arbitrary section is taken at y,dy wide, as shown dashed in
Figure 2-17. The conductivity is assumed to be zero normal to the
dashed lines. This allows calculation of the heat flow (dgq) through the

infinitesimal element using a simple resistance.

(2-63)

where:

a/2 /
R, = 4 + ¥v2 = 4ty (2-64)
ks(t/Z)dy k t(dy/v2) k tdy
S S
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The total heat flow is obtained from integration:

d/2 T,-T

q = j&q = /. 2 2 k t dy (2-65)
0 2(d+vy)
and-
T. - T .
g = —5—5——3 k_t 1n(1.5) (2-66)

Equation 2-66 gives the total heat flow through the element shown
in the lower lef: hand side of Figure 2-17. In problem A there are two
parallel paths (we ignored the other half by symmetry) , Therefore, for

problem A:

= - (2"67)
qp (‘I‘l T2) kst 1ln(l.5)
but by definition:
X = T) =Ty 2.1663
A q - k t (2-68)
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Combined Solution for Lower Limit

The reader may recall that in the two dimensional staggered lower
limit problem, the heat flows in problems A and B were added, oroviding
a lower limit conduction estimate in T. This is mathematically the same

as two resistors in parallel, so that-

1 1
R = = T I 2-
LL (RA Ry ) (2-69)

Finally:

= —— (2-70)

Equation 2-70 gives the overall lower limit conductivity of the
medium. including solid and gas contribution. The various terms in the

equation may be calculated with equations 2-69, 2-68 and 2-60.

ﬁesults are presented in Figure 2-18 for the case of cubical
bubbles, no struts, no radiation, and no cell elongation. It is
somewhat surprising to see the 3-D lower limit model predicting higher
conductivities than the 2-D upper limit model. Also note the difference
between the 3-D upper and lower limits. At 2.0 pcf (32 kg/m3) the
difference is approximately 7% overall, or approximately 20% of the
"solid contribution”. At 5.0 pcf (80 kq/m3) the Adifference 1is 12%

overall, or 20% of the "solid contribution". These results use a value
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for solid conductivity of 2.1 Btu-in/hr-ftz-F, and a value of 0.0539
Btu—in/hr-EtZ-F for gas conductivity. In section 2.3.8 we will see that
the solid polymer conductivity may be disputed. Some references give
values for solid polymer conductivity approximately one-half of the
value used here. Lower solid conductivity also means 1less uncertainty

in the overall conductivity due to the upver-lower limit differences.

Comparison to Published Conduction Models

The 3-D upper limit cubical bubble conduction model gives
numerically identical rgsults to the model proposed by Russell (2) for
cubical bubbles in porous media. This indicates that Russell's model is
an upper limit model. Therefore if one wishes to avoid calculating the
resistances presented here, then Russell's equation may be used with
equal accuracy. The equation proposed by Russell (2) is repeated here

for convenience.

62/3 kg 2/3
+ — -
k_, Ky -5 ) (2-71)
k B 2/3 k 2/3
S S -8 + ;i (L - 6 + 3)
g

where:
s+g = eaeffective conductivity in the absence of radiation
ks = conductivity of solid material
kg = conductivity of gas in pores

) = porosity, volume of gas divided by total volume



74

If one is careful to correctly apply a formula proposed by Doherty
(3), his equation will also give the same results. The only minor
difficulty is that Doherty modeled foam with 2-D (square) bubbles, and
o the terms in his equation must be modified to those for 3-D if the

correct answers are to be obtained.

It is unfortunate that neither Russell nor Doherty identified their
models as representing upper limits. To the best of this author's
knowledge, no previous published references give a lower limit estimate

for conduction in porous media, hence the error in these models has been

heretofore unestimated.

The equation proposed by Russell is simple to apply and yet because

of the form of the expression the physical significance is lost. For

52/3

low density foams the porosity is close to 1.0, thus S and are

quite close. This, plus the fact that k_ << L allows us to simplify

g
the expression. If one multiplies the numerator and denominator of the
right hand side of equation 2-71 by kg, the denominator becomes the sum
of two terms. The k  term is much larger than the kg term, which allows

the simplification cf dropping the gas conductivity term. The modified

Russell equation which results is rewritten in equation 2-72.

52/3 52/3

0 -

vz kg T vy kg (2-72)
1-6%2/3 +35 1 -82/3 +5

A
n



75

A simple numerical experiment shows that for porosities over 0.95
(corresponds to polyurethane foam density less than 4.1 pcf) the
coefficient in front of Eg in equation 2-72 is within 2% of 1.0. The
coefficient in front of the k_ temm is within 2.5% of 0.667(1-§).
Therefore, for purposes of physical intuition the Russell equation can

be approximated by equation 2-73 for porosities greater than 0.95.

(2=73)

The intuitive explanation is ‘that for cubical bubbles oriented
normal to heat flow. two-thirds of the solid material (four of six cube
faces) is aligned in the direction of heat flow and thus contributes to
the overall conductivity. The errcr associated with equation 2-73 is
approximately 1.0% for 5.0 pcf foam density, and 0.1% for 2.0 pcf foam
density. (The errors in the two terms partially cancel resulting in

lower arror in the sum than in each term.)

This intuitive reasoning can explain ancther facet of the cubical
bubble geometry. If all of the solid material is placed in sticks along
the edges of the cube so that the geometry resembles scaffolding, then
equation 2-73 will be found to apply except the coefficient 2/3 is
replaced by 1/3. This is because only four of the twelve edges of the
cube are aligned in the heat flow direction. If the solution were
indeed carried out. the error in this ultra-simplified approach would be

comparable to the error in equation 2-73. For this reason, one might
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suspect that struts in foam contribute to lower overall conductivity.

In succeeding sections this will be shown to be a correct conclusion.

2.3.4 Upper Limit to Heat Flow in an Arbitrary

Direction for In-Line Cubes

In this subsection we will examine the three dimensional analogy to
the problem presented in section 2.2.5, Heat Flow at Arbitrary Angle to
2=-D Squares. We examine the case where all of the solid material is in
the membranes as well as the case when all of the solid material is in

the struts.

2.3.4.1 Heat Flow at Arbitary Angle to Cubical Bubbles = 100%

Membranes The geometry Ffor this analysis is the in-line cubical
bubble geometry of Figure 2-12, except that the bubble walls are at an
arbitrary angle to the direction of heat flow. Isotherms are assumed to
be lateral planes parallel to the foam faces at Ty and Ty Hence the
temperature gradient is everywhere normal to the faces. We define the
angles between the temperature gradient vector and the x, y, 2

directions ¢, £, and Y respectively.

In order to understand the model, consider first the case of ¢two
i sothermal planes at Tl and T2' separated by a distance L, with another
plane at an angle ¢ to the planes. See Figure 2-19 for this geometry.
From geometry it is clear that the normal vector to the diagonal plane

makes the same angle ¢ to the temperature gradient vector. The heat
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Figure 2-19 : Portion of Geometrv for Heat Flow

at Arbitrary Angle to In-Line Cubes
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flow through this plane is given by equation 2-74, where D is the depth

of the plane into the paper and t is the plane thickness.

Ssin a

q(@) = k D -t - =/— (T, - T, (2-74)

Many planes at the same angle 2 (parallel to the first diagonal
plane) are spaced apart by a distance b. The number of planes at & per

unit area of surface 1 is given by equation 2=75.

n (a) =—£r}_°‘ (2-75)

Consider two more sets of parallel planes, crossing from surface 1
to 2. Each set is normal to the other as well as normal to the original
diagonal plane at a. Since all these planes are normal to each other,
the in-line cubical bubble geometry has been assembled. If isotherms
are once again assumed to be planes parallel to the surfaces of the foam
at Tl and T2, then the normal vectors from the three coordinate planes
make angles of &2, 8, and Y to the tempeFature gradient vector. The
planes themselves thus make angles ¢, 3 and Y to the isotherms.

Equation 2-74 and 2-75 may be re-written with 3 and ¥ for the other two

olanes. The total solid cenduction is given by equation 2-76:

9so1id ‘
— g(a) - n() + g(8) - n(B) + a(y) - n(y) (2-76)
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This may be simplified to yield:

A (T, -T) .
Iso01id L kg g‘(sinza + sin28 + sin2y) (2-77)

Schwartz (4) agives tha fnllowina geometric theorem:

2-78
cos?a + coszB + coszY = 1 ( )

when @, B and Y are defined as they are in this case. But sine squared

plus cosine squared equals one. so that:

sin2a + sin2B + sin?y = 2 (2-79)

Combining this result with a simple resistance for gas conduction gives:

2t
= + 2t (2-80
s+g kg ks b )
But:
- 13
s = &=-©% _ bd- it o3, St (2-81)
b3 b3 °
which leads to:
X = x +2(1-8) %k (2-82)
s+g g 3 S

This of course agrees with equation 2-73, as it must since the solution

is independent of angle.
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2.3.4.2 Heat Flow at Arbitrary Angle to Cubical Bubbles = 100%

Struts Consider a unit cube with 100% of the solid in the corners.
The temperature gradient vector passes through one corner at an
arbitrary angle. See Figure 2-20. In a similar fashion as.the previous
section, define ¢, B8 and ¥ as the angles between the gradient vector and
the x, y, z axes, respectively. It the isotherms are planes normal to
the gradient vector, then the solid conduction heat flow can be

expressed as:

solid + N
=o.1ia _ n
A qx < qyny q,n, (2-83}

where q_, qy and q, are the heat flows through the x, y, and =z

directions, respectively. n., n, and n, are the numbers of sticks in

y

the %, v, and z directions per unit heat flow area. The q's and n's are

given for any stick at arbitrary angle.

aE) = ks? 3"?—5 (7, - 1) (2-84)
n(g) = °°z—g (2-85)
b

where b, L, Tl-and T2 are defined exactly as in the previous section.
(See Figure 2-19) .Equations 2-84 and 2-85 may be written fora ,3 and v
(x, vy and z sticks), and substituted into equation 2-83. Using the

identity given in equation 2-78, along with a simple resistance for gas

conduction yields:

. S
S

s+g g (2-86)
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which may be shown to be approximated by:

1
~ + = - 2-87

Equation 2-87 agrees with the intuitive result discussed at the end of

section 2.3.3, Limit Models for 3-D Staggered Geometry.

These results indicate that the upper limit for the cubical bubble
geometry is independent of heat flow direction. For the in-line
geometry, sections 2.2.2 and 2.2.4 suggest that the lower 1limit is
within one or two percent of ‘the upper limit even for heat flow in
oblique directions. For the staggered geometry however, the difference

may be as high as 20% of the solid contribution.

The cubical bubble geometry also suggests that the heat flow would
be significantly different for foam with large struts. The next two

sections show that this is indeed true.

2.3.5 Random Sticks Upper Limit, 3-D

All previous three dimensional analyses have used cubical bubbles
in various orientations and packing arrangements. In order to determine
what effect the cubical shape assumption has on the results, this
section and the next section examine the heat flow through gecmetries
which are more representative of real foam geometry. In this section we
present an upper limit analysis of heat flow through a medium containing

randomly oriented sticks. This would be representative of the geometry
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for isotropic foam in the limit where 100% of the solid is in struts.
The analysis is different from published analyses for glass fiber
insulations. This is because the sticks would be joined end to end in

foam. whereas in glass fiber insulation this is not the case.

This analysis is analogous to the one in section 2.2.6, Random
Sticks Upper Limit , 2-D. The solid is assumed to be in the form of
stick shaped elements which may be oriented in any direction relative to

the heat flow. Since foams are often isotropic, the total length of all

[

sticks per unit vclume which are oriented in some direction (3,9)
relative to +the temperature gradient vector within an infinitesimal

s0lid angle dw, is assumed a constant (\). This is the definition of

"random sticks". _From'this definition:

1 -6 = s? fxdw = 4mwS2\ (2-88)
aq
where s2 is the cross sectional area of a stick.

Isotherms are again assumed to be planes parallel to the faces of
the foam at Tl and Tz. As in the 2-D analysis, all sticks in the (8,9
direction are lined up end to end forming bridges from one side of the
foam to the other. The foam thickness is L. See Figure 2-11 for the
2-D picture. 1In 3-D, the angle § has no effect on thé heat ¢transfer

through any particular bridge. The heat flow across one bridge at (6,9

given by:

2 S
a(e,$) = k S7COS . A (2-89)

s L
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if n(8,4) is the number of bridges at 6, ¢ per unit volume per unit solid
angle, and if 1(9,¢) is the 1length of a bridge at® , ¢, then their
product represents the total length of sticks at 9, ¢ per unit volume per
unit so0lid angle. This product is constant by the definition of random

sticks.

A = n(6,¢) - 1(9,¢) = constant (2-90)
But from geometry:
= L (2-91)
1(8,¢) cos 9
thus:
n(d,¢) = )‘—czs—e— (2-92)

The total heat conduction through all solid material is given by the
integral over all solid angles of the product of the number of sticks at
8, ¢ per unit volume per unit solid angle, times the heat flow of a

single stick at 8,9 times the volume. Mathematically this is given by:
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which may be integratad to yield:

- RAT 4m , 52
so01id ~ L 3 XS A (2-94)

Including a simple resistance for the gas:
q = — k (2-95)

and substituting into equation 2-94 for A from equation 2-88, the

effective conductivity of the medium is given by:

- <.,
k - kg + 3(1 6) kS (2-96)

s+g

which agrees with equation 2-87 for cubical bubbles, 100% struts, at

arbitrary 9, 9.

This analysis could be modified to give an upper 1limit for the
conduction in glass fiber insulation, or to giﬁe an upper limit when
there is considerable cell elongation in foams. Instead of assuming
that A is constant (random sticks), one would use the actual material
distribution as produced in the insulation. This information would then
allow integration of equations 2-88 and 2-93. In insulation where there
is preferential lateral orientation of the fibers, the conduction
calculated by performing these integrations would be even lower than
that given by equation 2-96. In foam insulation where there is
elongation of cells in the heat flow direction, the conduction would be

greater than that calculated by equation 2-96.
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One must not forget that this is an upper limit based on infinite
conductivity in the direction perpendicular to heat flow. This is an
accurate limit model for foams, where struts join end to end. In glass
fiber insulation the fibers are not joined at the ends. This limit
model would be expected to overestimate the actual heat transfe- in

glass fiber insulation by a greater amount than it does in foams.

2.3.6 Random Planes - Opper Limit

The analysis for random planes 1is analogous to the previous
analysis for random sticks.  The random planes geometry is
representative of the real geometry for isotropic foam in the limit
where 100% of the sclid is in the membranes. Consider the geometry of
Figure 2-21. By similar reasoning as in the random stick analysis, all
planes originally oriented at 9, ¢ are stacked end to end into bridges
spanning L. The width of the plane, W, is assumed equal to the depth
into the paper. The heat flow through any bridge at 5 ¢ is independent

of 9 ¢and is given by equation 2-97.

q6,¢) = k ‘—;‘—‘ AT (2-97)

If n( 6 ¢ is defined as the number of bridges per unit volume per unit
solid angle whose normal vector is at © ,¢ and if A(8,9) is the area of
a bridge whose normal vector is at €,¢ , then their product represents

the total area of all planes whose normal vectors pass through 9,9 per
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unit volume per unit solid angle. This product is defined as

constant by the definition of random planes.

A = n(6,0) ° A(8,9)
By geometry:
A(eld)) = WZ =
hence:
n®,¢) =

The total number of bridges times the heat flow per

total solid conduction.

qsolid = (kst AT) A "L 27w

which yields:

9501id L

" constant

A sinze

sin © Ade
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A, and is

(2-98)

(2-99)

(2-100)

gives the

(2-101)

(2-102)

We may determine A from the foam density via the foam porosity:

1 -3 = 4%[A t dw

(2-103)
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Solving for A\, substituting into equation 2-102, and using a simple
resistance for gas conduction yields:
k = k_+ 2-(l - 8) k (2-104)
¢ s+g g 3 S

which is identical %to equation 2-82, the result for cubical bubbles with

100% of the solid in membranes and heat flow at arbitrary angle.

Note that by analogy to the random struts case, this model could be
adapted to the case where there is considerable cell elongation.
Instead of assuming constant A, the actual distribution is used and

equations 2-101 and 2-103 are integrated.

2.3.7. Conduction Model for Real Foam

We have shown that equation 2-59 gives the effective conductivity
for in-line cubical bubbles with 100% of the solid in membranes. This
result is independent of heat flow direction relative to the bubble
walls. Russell's eguation (2=71) gives numerically identical results
and is more convenient to use than equation 2-=59. Equation 2-73 1is

approximately correct for low foam densities.

When any of the solid material 1is in the form of struts, the
effective conductivity is 1lower than that predicted by Pussell's
equation. For low densities with 100% of the solid in struts, equation
2-96 gives the effective conductivity of the medium. This result is

also independent of the direction of heat flow relative to the cells.
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Note that equation 2-96 predicts a "solid contribution” equal to one
half of the solid contribution predicted by Russell's equation. (This

is evident from the simplified Russell equation, equation 2-73.)

We have also shown that random sticks and random planes give
approximately the same upper limit results as the cubical bubble
geometry. This indicates that there is no effect due to the assumed
cubical cell shape on the conduction heat transfer, within the
uncertainty of the limit models. The cubical bubble limit models give
"solid contribution" fesults within a 20% spread between the extreme

cases where the bubbles were arran&ed in-line and staggered.

The random sticks and planes analyses can be modified to account
for non-isotropic shapes, such as wou}d be found in foams with cell
elongation or in glass fiber insulation. A less accurate modification
would be to use rectangular prisms rather than cubes, and use the

resistance network solution of sections 2.3.2 and 2.3.3.

In summary, we have solved cases where all of the material is in
the struts, or all of the material is in the membranes. Real foam has
signficant amounts of solid in both areas. Considering the accuracy of
the horizontal isotherm approximation, (2% error in solid contrib;tion
at best: 20% error in solid contribution at worst) it is reasonable for
the combined struts and membranes case to simply use a weighted average
of the solution for struts with the solution for membranes. If the

isotherms were actually planes perpendicular to the gradient vector,

then this weighted average would be exact. One can either weight the
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average by volume, or, since the solid density is constant, one can

weight the average by mass.

For the upper limit model for real foam, one should use a weighted
average of the results of equation 2-104 and 2-96, where the weighting
is determined by the amount of solid in membranes versus struts. This

is expressed in equation 2-105, where P, is the percentage of the total

solid in struts.

A slightly more :ccurate formulation would use a weighted average
of the result from Russell's equation (eq. 2-71) with equation 2-96.
This would include the gas-solid conduction interaction, whereas

equation 2-105 clearly does not.

Unfortunately it is not as simple to devise a realistic lower limit
for real foam geometry. Based on the fact that the s;lid contribution
for the staggered cube geometry is 20% below the solid contribution for
the in-linre geometry, it is reasonable to expect that the actual Ffoam
"solid contribution" would be less than but within 20% of the solid
contribution calculated via the upper 1limit model. Equation.2-106

expresses this "lower limit".

av]

s .
- 300) (L - 9) K (2-106)

Wl

= + .81
ks+g kg 0 8(

LL
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Using equations 2-105 and 2-106 the conduction heat transfer was
calculated for fresh foam (assuming a constant gas conductivity equal to
the conductivity of pure R-11). The results are presented in Figure
2=-22 and 2=-23. The solid conductivity was taken to be 2.1
Btu—in/hr-ftz—F for Figure 2-22 and 1.0 Btu-in/hr-ftz-F for Figure 2-23.
The uncertainty band ranges from zero to 12% of the overall conductivity
depending on the foam density, solid poclymer ceonductivity, and

percentage of solid in struts.

Using the most accurate upper 1limit conduction model (weighted
average of equations 2-71 and 2-96) we will now show that the change in
conduction heat transfer during aging is due entirely (within 1%) to the
change 1in gas conductivity. (Assuming the polymer conductivity k  does
not change.) Table 2=-2 gives the effective conductivity as calculated
for a fixed polymer conductivity, fixed foam porosity, and with
different gas conductivities. Clearly, the "solid contribution" is
approximately constant, and is therefore independent of aging. The
variation is approximately 2.5% of the solid contribution, or 0.6% of
the effective conductivity in the absence of radiation. This result
could have been anticipated given the separation of solid and gas
contributions in equation 2-105, which 4is within 1% of the weighted

average of equations 2-71 and 2-96 for all cases.
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Table 2-2 : The Change in Solid Contribution During Aging
* * %
Cell Gas Initial Foam k as ks+ Solid
Density 9 9 Contribution
R-11 1.5 .0539 .0705 .0le66
5.0 .0539 .1189 .0650
50% R-11 1.5 . 0900 .1065 .0165
50% N2
5.0 .0900 .1546 .0646
100% N2 1.5 .1762 .1924 .0162
5.0 .1762 .2397 .0635

Units : Btu-in / hr-ft2-F

*Uses Lindsay - Bromley model for mixtures (6)
**Agsumptions
1) 50% solid in struts, 50% in membranes
2) Constant foam porosity during aging

3) Constant polymer conductivity during aging

4) k = 2.1
S
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2.3.8 Published Values of Polymer Conductivity

The uncertainty band of the conduction model 1is rather small
compared to the uncertainty in the properties of the materials involved.
The gases involved are oxygen, nitrogen, water, carbon dioxide, and
freon. Their individual conductivities are well documented and
reliable. Data for thermal conductivity of mixtures of these gases 1is
far less readily available, yet some data exists (5) and there is
theoretical reason to believe that it is accurate and reliable. The

solid polymer conductivity however, is an entirely different matter.

Data extracted from the literature and from some industrial sources
is listed in Table 2-3 for polyurethane, phenolic and polystyrene. With
such a large spread of data there is no possibility of concensus. From
Deanin (9) the thermal conductivity is proportional to the square root
of the weight average molecular weight for molecular weights below
100,000. Over 100,000 Deanin claims that this effect diminishes. From
Miller (10) , crystalline polymers can have twice the thermal
conductivity of their non-crystalline counterparts. Furthermore, Miller
states that the conductivity of a polymer can increase in the direction
of orientation if there is a great deal of molecular orientation. One
might expect the membranes to have some degree of molecular orientation,
while this might not be the case in the struts. All this leads the

author to conclude that the question of polymer conductivity requires

further in-depth study.



Table 2-3 Reported Values of Polymer Conductivity
Polymer Temperature Conductivity Reference
°F (°c) Btu-in W
hr-ft2-F  mK

Polyurethane —_ 1.16 0.167 Norton (17)
Polyurethane 64. (18) 1.27 0.183 Vdovin (28)
Polyurethane 64. (18) 1.27 0.183 Vdovin (28)
Polyurethane 64. (18) 1.19 0.172 Vdovin (28)
Polyurethane — 2.10 0.302 Sommerfeld (29)
Polyurethane é8. (20) 2.42 0.349 Schmidt (30)

(32)
Phenolic 98.7 (37.1) 2.04 0.294 TPRC (31)
Phenolic 99. (37.2) 2.24 0.323 TPRC (31)
Phenolic 68.6 {20.3) 2.27 0.328 TPRC (31)
Phenolic 74.2 (23.4) 3.16 0.455 TPRC (31)
Polystyrene 100 (37.8) *0.67 0.097 TPRC (31)
Polystyrene 100 (37.8) *0.73 0.105 TPRC (31)
Polystyrene 100 (37.8) *0.85 0.123 TPRC (31)
Polystyrene 100 (37.8) *0.88 0.127 TPRC (31)
Polystyrene 100 (37.8) *1.03 0.148 TPRC (31)
Polystyrene 100 (37.8) *1.09 0.157 TPRC (31)

* interpolated for value at 100°F

97
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2.4 Conduction Conclusions

A conduction model has been developed for foam insulation. With
accurate knowledge of foam density, percentage of solid in struts versus
membranes, and solid polymer conductivity this model allows estimation
of solid conduction- An upper limit is calculated and the actual solid
contribution to heat transfer is within 20% of this wupper limit. For
fresh low density foam this results in 0% - 12% uncertainty in the
overall conductivity, depending on the foam density, polymer
conductivity, and percentage of solid in struts. For aged foams, the

uncertainty is even less.

Unfortunately the solid polymer conductivity is extremely variable
and therefore might have to be measured for each foam formulation.
Furthermore, no published method exists for measuring the percentage of
solid in struts, other than microscopic examinaticn. It is anticipated
that the ongoing work of FReitz at M.I.T. will result in an accurate
method For these reasons the uncertainty in the theoretical model is

sufficiently small.

The model has been used to show that the change in solid
contribution during aging is less than 2.5% assuming that the polymer

conductivity remains constant with age.
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Finally, conduction models widely used throughout the foam
literature give essentially the same results as Russell's equation and
therefore do not take into account the effect of struts. This £factor

causes the published models to seriously overestimate the solid

conduction contribution to overall heat transfer.
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3. RADIATION THEORY

This chapter develops the theory which is shown to be valid by the
experiments in the next chapter. Accordingly, this is not intended to
be an exhaustive review of published radiation literature. Rather, this
focuses on the approximate technique which the author advocates, as well
as on the exact, general theory which forms a part of the justification

for the approximate technique.

3.1 Introduction

The theory of radiation heat transfer can be approached on two
distinct planes. On a macroscopic level the insulation may be treated
as an isotropic continuum which attenuates radiation both by absorption
and nonisotropic scattering. The direction of scattering relative to an
incident beam is characterized by a normalized function called the phase
function. The radiation properties are considered constant throughout
the foam. On a microscopic 1level the insulation is geometrically
irregular and has discontinously changing optical properties. The
characteristic dimensions of objects such as the thickness of membranes
and the cross section of struts are comparable to the wavelength of the
radiation. Neither the small object nor the large object limiting case

simplifications to the general scattering theory are applicable.

Houston (14) and Koram (33) have addressed the radiation problem
for glass fiber insulation on both planes. They each used the general

scattering theory on a microscopic level to predict the macroscopic
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radiation properties. These properties are used in an exact numerical
solution to the general conduction-radiation transport problem. While
this is an admirable feat for any insulation, the glass fiber geometry
is well characterized in comparison to the foam cell geometry. This
approach would therefore be even more difficult for foams. This
approach also requires measurement of the complex index of refraction

for all wavelengths, a property which changes for different materials.

The approach of this work has been to develop an easy to wuse
approximate model for the macroscopic radiation problem in foams, and to
develop a simple experimental technique for measurement of the required
radiation parameter. Therefore, we do not address the theoretical
problem on the microscopic level but instead perform relatively simple
experiments to determine the macroscopic radiation properties. We also
devised a scattering experiment, which, in conjunction with the exact
macroscopic theory of Koram (33) may be used to estimate the error in
the simple model and the simple experimental technique. The se
experimental results are also suitable for comparison to the theoretical
scattering results of Houston or Koram, but this is not the main

purpose.

In summary, our goal is to develop a simple experimental technique
and a corresponding model which may be used to predict radiation in
foams. The exact theory and the experimental scattering results are

used to estimate the error in the simple technique. As will be noted



102

throughout the text, the radiation theories which are applied have all

been developed by authors from other fields of application.

Terminology

Before proceeding into the theory it is necessary to establish the
terminology which will be used throughout this work. For the reader
totally unfamiliar with the terms which follow, it may be wise to read a
more general text on the subject matter. (Hottel {(20) pp. 199-202. pp.
378-380, pp. 408-413). The reader already familiar with scattering
coefficients, absorption coeff%gients, phase functions, isotropic

scattering and the meaning of gray may skip directly to section 3.2.

The most important radiation properties for our purposes are the
absorption coefficient (a), scattering coefficient (Gs) and phase
function (?). 1In order to understand these terms, consider a beam of
radiation of intensity I, (energy per unit time per unit area per unit
solid angle) within a small cone of solid angle Awo , incident on an
infinitesimal thickness (dx) of material with properties a, Gs, ¢, some
of the energy will be absorbed, some will be directly transmitted, and
some will be scattered in all directions, including backwards. If we
define the extinction coefficient (K) as the sum a + 9, then the
transmitted intensity will be less than the incident intensity, (Io), by

an infinitesimal amount, AIO, given by:

AT = I Kdx (3-1)
o o
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which for a finite specimen thickness (t) could be integrated to yield:

I(t) -Kt (3-2)

Note that K has units of inverse length. The dimensionless product Kt

is called the "optical thickness"} and is denoted by T.

The "albedo" is defined as the ratio of the scattering coefficient
to the extinction coefficient. It is denoted by ms' and represents the
relative importance of scattering to total extinction. It assumes

values from 0. (corresponds to pure absorption) to 1.0 (pure

scattering).

The infinitesimal decrease AT, in equation 3-1 is due to both
absorption and scattering. The total scattered intensity is given by
Iocsdx while the remainder of energy which was not transmitted (AIO -

I csdx) is given by Ioadx. The total scattered intensity is also given
o)

by equation 3-3:

I gdx = —_— dG (3-3)
Qo s

where-

e}
]

solid angle

§ = polar angle

<
]

azimuth
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AI(8,Y) = intensity scattered into (8 ,Y¥) direction
by element dx thick
Amo = so0lid angle of incident beam

If the scattering is "isotropic", then AI(6.,¥) will have a constant
value for all angles §6,¥. If the scattering is "nonisotropic" then
AI(8.¥) will not be a constant. In most materials (including foam and
glass fiber insulation) the scattering is nonisotropic, but the value of

AI(8.¥) is independent of Y.

For a nonisotropically scattering medium which has the same
scattering coefficient as an isotropically scattering medium, the total
scattered intensity (equation 3-3) will be the same. The difference
between these cases is in the directional distribution of scattered
energy. This will have an effect on the radiant heat transfer. We
define the phase function, ®%(8), to be the ratio of the scattered
intensity at 6 to the scattered intensity if the medium were

isotropically scattering. For isotropic scattering the scattered

intensity at all angles 0 is just:

I 0 dx Aw
o S o

Hence-

- AI(B) 41 AI (6)
6 (9) z —_— = —— (3-5)
AIISO Iocsdx Amo
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and from equation 3-3 we find:

47 AI (O

5 (6) _4m AI(8) (3-6)
j.AI(S) an
4T

Hence for isotropic scattering the phase function has a value of
1.0 for all 8. For nonisotropic scattering the phase function can
assume any positive finite value at an angle 8. Note that the
denominator of equation 3-6 is not a function of 8 or Y. 1If both sides
of equation 3-6 are integrated over all solid angles (4m), ¢then the
integral of the phase function |is found to be 4T, regardless of how
nonisotropic the scattering might be. Therefore, the phase function 1is

a normalized function describing the directionality of scattering.

In equation 3-6 we may express an as simply 27T sin 8 46 or

27 d(-cos 8) or even 27 d(1' - cos 6). Hottel (20) shows that:

ATI(9)

9 (8) =
1
].AI(G) d(l - cos 6) (3-7)
0]

2

Figure 3-1 gives an isotropic and a typical nonisotropic scattering
phase function taken from experimental results reported in chapter 4.
It is apparent from equation 3-7 that the area under the curve over some
range of 0, divided by the total area under the curve, is the fraction

of total scattered energy within that range of 8. Figure 3-1 therefore
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shows graphically for a typical insulation phase function that much of

the total scattered energy is strongly forward scattered.

One other term used throughout this work is "gray". We define gray
to mean that the material's radiation properties (a,cg ,®) do not change
with wavelength. When we use the terms "non-gray", we mean that the
properties do change with wavelength. Often a nongray problem may be
approximated through solution of a gray problem where appropriate mean
values are chosen for the radiation properties. We use "spectral"
values of properties with regard to the value of the property at a
particular wavelength. We use "mean" values of properties with regard
to approximating nongravy behavior with an equivalent gray problem

solution.

3.2 Exact Solution Theory for the Cocmbined Conduction=-

Radiation Problem

This section provides a short summary of the macroscopic radiation
problem which was solved by Houstcn (14) and by Koram (33) for glass

fiber insulation. Accordingly, the reader is referred to reference 14

for more details.

The problem involves simultaneous conduction and radiation in a
nongray medium which emits, absorbs, and anisotropically scatters. The
medium is planar and is bounded by two gray isothermal walls. The se
conditions are representative of the conditions during insulation

thermal conductivity measurement.
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Heat transfer by radiation in this type of medium is described by

the general equation of radiative transport, given by Siegel and Howell

(13) as:
f?ih&il = -(a, +97 .,) I (s) + a,I, (s)
ds A SA A A" Ab (3-8)
+ iii _/-I (s,w') ¢, (ww)dd
4w AT A
w' =4t
where -
Ik = gpectral radiative intensity
be = spectral black body intensity
s = distance in the (8,Y¥ ) direction
(specified by the solid angle w)
w = solid angle
w' = solid angle of incident intensity
al = gspectral absorption coefficient
osl = spectral scattering coefficient
®R = gspectral phase function
A = wavelength

While equation 3-8 appears formidable, taken term by term it |is
readily under standable. The left hand side is the rate of change of the

intensity of radiation at wavelength X along s, which means in the (8.,Y)
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direction. This change is given by the sum of the three right hand side
terms. The first term is the decrease in intensity along the s
direction due to absorption (al) or scattering (USX). The second term
is the increase due to emission. Any medium which absorbs energy must
also emit radiant energy. The absorption coefficient is used instead of
an "emissivity" because of Kirchoff's Law. The last term (the integral)
represents the increase due to energy scattered into the s direction
from other directions. One must integrate the contribution from each

direction (osk QA IA) over all incident solid angles (W' = 4 ),

Equation 3-8 is for monochromatic radiation at wavelength A. In
order to solve for the total radiant flux at a point, one must integrate
the monochromatic intensity over all wavelengths and solid angles. The

radiative flux is given by:

o = jﬂ Jf Ixcosedkdw (3-9)
A=0 =41

where @ is the polar angle.

The conduction heat flux is characterized by an effective thermal

conductivity for the medium in the absence of radiation (ks+g3' ks+gis

given for foam by the conduction model of chapter 2.

a - = -.k d_T
“c s+g dx (3-10)
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In the most general case ks could be a function of both position and

+g
temperature. For example the material properties could be a function of

temperature and the gas conductivity could vary across the thickness of

the test specimen.

By conservation of energy in steady state, the total heat flow must

be constant from one side of the insulation to the other. Therefore:

%x (g_+qg) = 0 (3-11)

The problem is now fully stated and may be solved numerically.
Koram (33) and Houston (14) each developed a computer program to do
that. Dr. Koram has run his program using the experimental data
presented in the next chapter. The results of these computations

confirm the approximate theory presented later in this chapter and are

presented after the data in Chapter 4.

Viskanta (11) solved a special case of this general problem. That
is, for a gray medium which conducts, absorbs, emits and isotropically
scatters. The medium has a constant effective conductivity in the
absence of radiation. His results are presented in dimensionless form

and will be useful for the validation of the approximate model solution.

It should be noted that there is one assumption implicit 1in this

mathematical formulation which neither Viskanta nor Houstcn mention.
I

That is, ks+g is locally uncoupled from the radiation. If the medium



111

were truly a homogeneous continuum, then there would be no doubt.
However, since both foam and fibrous glass insulation are actually

nonhomogeneous, ks+g may be affected slightly.

In both insulation systems the solid material accounts for all of
the radiant absorption and only a small fraction of the volume. The
solid has a much higher thermal conductivity than the surrounding gas.
From a conduction point of view, radiation absorption is equivalent to
heat generation in the solid while radiant emission 1is equivalent to
negative heat generation. If these two terms are not equal and opposite
at every point, the conduction modél developed in Chapter 2 is, strictly

speaking, not valid.

The total heat flux is constant from one side of the sample to the
other. Due to the temperature difference, the radiant flux varies with
position. The conduction flux therefore varies in an equal but opposite
way so as to keep the total flux constant. This may only be achieved by
having the absorption and the emission not locally equal. Hence, the
conduction model is not valid in the strictest sense. Nevertheless,

these local effects should be negligible in the macroscopic model of the

processe.

3.3 Simplified Radiation Models

In the previous section we presented the equation of transfer for
the nongray, anisotropic scattering, combined conduction-radiaion

problem. In this section we present a method whereby the general
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nonisotropic scattering problem may be approximated by an equivalent
isotropic scattering problem. Using this approximation along with the
experimental knowledge (presented in Chapter 4) that the medium is
optically thick, we present the method whereby the integro~-differential
equation may be reduced to a simple differential equation. The nongray
behavior is approximated with an equivalent gray medium case. Finally,
the simple differential equation is integrated and an approximate model
is used to account for the effects near solid boundaries where the
simple differential equation is not valid. The problem reduces to three

simultaneous algebraic equations in three unknowns.

3.3.1 Approximation of Nonisotropic Scattering

As mentioned in Chapter 1, wvarious approximations to the
anisotropic scattering problem may be found in the literature. It was
determined that neither the two flux approximation nor the 1linear
anisotropic scattering models were useful for our purposes. The reason
is not that these models are faulty, but rather that two Dbetter
approximations are available. One is the P-1 approximation presented
clearly by Lee and Buckius (23). This approximation is very accurate
but requires experimental or theoretical knowledge of the phase function
(presented in Chapter 4). The second is the Rosseland diffusion
approximation for isotropic scattering. It will be shown that this is
very simple ¢to use and predicts radiation heat transfer within
approximately 10% for low density foam when the extinction coefficient

is measured by a simple technigue described in section 4-2. Since this



113

corresponds to an error in the overall conductivity prediction of
approximately 2.5%, it will probably be sufficiently accurate for most
purposes; An improvement to this simple technique described in section
4.3.6., or sophisticated experiments (or analysis) are required for

improvements over this accuracy.

The two-flux approximation requires an experimental apparatus
comparable in complexity to the apparatus required for the direct
measurement of the phase function, but does not provide the accuracy of
the P=1 approximation. The linear anisotropic scattering approximation
is only slightly more accurate— than the isotropic scattering
approximation, but requires knowledge of the relative importance of
scattering and absorption. Thus, more complex experiments are required
relative to the simple isotropic scattering model, and only a marginal
increase in accuracy is obtained. For these reasons, only the isotropic

scattering case and the P-1 approximation will be used in this work.

3.3.1.1 Isotropic Scattering Approximation: In section 3.1 we defined

the absorption coefficient, scattering coefficient, and phase function.
The reader unfamiliar with these terms is referred ¢to any general
radiation text for further explanation. Siegel and Howell (13) or

Hottel and Sarofim (20) would be suitable.

phase function has a value of 1.0 over the entire sphere, and thus all
scattering is isotropic. Given this assumption, we will show in later

sections how the general problem may be accurately solved. For now we
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note that the problem will eventually be reduced to a simple algebraic

system of three equations in three unknowns.

It is important to understand the cause and magnitude of the error
in the isotropic scattering approximation. It will be shown in Chapter
4 that scattering in real foam is strongly forward oriented. This means
that for an incident beam, of the energy which is scattered a large
portion continues to propagate in a direction only slightly altered from
the incident direction. This was previously illustrated in Figure 3-1
for an experimentally determined phase function. If more of the energy
were scattered at large angles, th; radiant flux would be decreased. By
assuming that the scattering is isotropic we are overestimating the
attenuation, and are therefore underestimating the radiation heat
transfer. Since we know experimentally that the scattering is forward
oriented, we may assume that the isotropic scattering model will always

underestimate the actual radiation heat transfer.

The magnitude of the error in this approximation depends on both
the degree to which the scattering is forward oriented, and on the
relative importance of scattering compared to absorption (i.e. on the
albedo}. In other words, if the scattering coefficient were small in
comparison to the absorption coefficient, (ms=0) then the error 1in the
calculated radiation heat transfer due to the isotropic scattering
assumption would be small. Of course, if the scattering were nearly
isotropic, then the error would be small even if the process were not

absorption dominated. As will be seen in Chapter 4, the attenuation of
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radiation in foams is dominated by absorption but the scattering is
highly forward oriented. For low density foams, the error in the
calculated radiation heat transfer will be approximately 10%. For low
density foams where radiation accou;ts for approximately 25% of the
total heat transfer (this will be shown in succeeding chapters), the
isotropic scattering approximation will result in an overall heat
transfer underestimate of approximately 2.,.5%. This of course is

sufficiently accurate for most purposes.

3.3.1.2 P=-1 Approximation When experimental or theoretical knowledge of

the phase function 1is available, greater accuracy may be achieved
through the P-1 approximation than is obtainable with the isotropic
scattering assumption. This approximation 1is derived in Siegel and
Howell (13), but is more clearly applied by Lee and Buckius (23). An
earlier reference (Hottel, 20) makes note of the exact same
approximation found in the paper by Lee, but no mention is made of the
magnitude of the error. Hottel (20) <credits Chu (40) with this
development for the optically thick case. The approximation will be
found to be quite accurate, but unfortunately the apparatus required to
measure the phase function is quite expensive and requires specialized
expertise. Nonetheless, some experimental phase functions are presented
in Chapter 4, and this approximation may be used ¢to determine the

radiation heat transfer given the measured phase function.
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The technique presented by Lee and Buckius (23) involves using the
phase function to determine a correction factor which is then applied to
the isotropic scattering approximation. They do not state the exact
magnitude of +the error in this approach, however from the graphs
presented one may estimate that the error in predicted heat flux is less
than 1.0% for most cases. In the Qorst case presented, the error is
approximately 3% of the radiative heat flux. The phase function used in
this worst case is comparable to the measured phase functions presented
in chapter 4. Therefore, we may expect approximately 3% error for real
foams. In chapter 4 we will sh?w that the error is in fact even less

than 3%.

To apply the approximation, one simply integrates the phase
function times the cosine of the polar angle over the sphere. This
integral divided by 4T is called the asymmetry factor, <cosf >. For the
case of azimuthally independent phase function, this factor is given by

equation 3-12.

+1
1
<cos 6> = = j- ¢(8) * cos 68 * d(cos 8) (3-12)
-1

Lee and Buckius (23) show how to modify the extinction coefficient and
albedo wusing this asymmetry factor. It is more intuitively meaningful
and completely equivalent to define a new, modified scattering

b3
coefficient Os as:

osk = GSK (1L - <cecs 8>) (3-13)



The absorption coefficient is of course unaffected. The new

function is simply 1.0 everywhere; that is we assume isot
scattering. Using the modified scattering coefficient in any sol
for isotropic scattering now yields the same radiation heat f]
would the nonisotropic scattering case with the original scatf
coefficient and phase function. The intuitive explanation as °
this works so well is that the scattering coefficient is modifi«
accordance with the =2xtent that the phase function differs
isotropic scattering. The more strongly forward scattering the

function, the more the scattering coefficient is decreased.

3.3.2 Rosseland Diffusion Approximation

Regardless of whether the isotropic scattering or the
approximation is used, we are given an absorption coefficient
scattering coefficient (their sum is the extinction coefficient) a
need to solve the nongray combined conduction-radiation proble
absorption, emission and isotropic scattering. This problem ¢

handled with the Rosseland diffusion approximation.

The Rosseland diffusion approximation is essentially a solutij
the eguation of transfer (eq. 3-8) when the optical mean fre
(mean free path of a phcoton, inverse of extinction coefficient) i:
compared to the distance over which significant temperature diffe
occur. Hottel (20) gives probably the most clear mather
derivation of this approximation. One of the more intuitive deri:

he presents uses analogy to the diffusion process in a gas. The )
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are analogous to gas molecules, the average velocity of the photons
being c/n (speed of light divi&ed by refractive index). The mean free
path of the photons is just the inverse of the extinction coefficient.
From this he derives equation 3-14, which by analogy to the kinetic
theory of gases is only applicable when the physical size of the medium

is several mean free paths or larger.

= - ——— -14
q . 3K ax (3-14)

where:

K = extinction coefficient “

e = blackbody emissive power
But:

e, = n?oT? (3-15)

where:

0 = stefan-Boltzmann constant = 0.1713 x 10—8 Btu/ftz-hr-Rq

T = temperature

n = refractive index =1.0 for insulations
therefore:

_ _ 160 3t
qr = 3K dx (3-16)

We will refer to equation 3-16 as the Rosseland equation. The analogy

to the Fourier conduction equation is evident, i.e. 161T3/3K may be
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thought of as the "radiation conductivity". For large enough optical
thicknesses we will show that this "radiation conductivity" could simply
be added to the solid plus gas conductivity to obtain the overall
insulation conductivity. The Rosseland equation will be applied to the
combined conduction-radiation problem in the next section. Note that

the Rosseland equation is not valid for nonisotropic scattering and is

not valid near solid boundaries.

Accuracy of Diffusion Approximation

Viskanta (11) numerically solved the gray, combined
conduction-radiation problem with isotropic scattering from the equation
of transfer and the conduction equation. Fine, et al. (12) repeated
the solution and showed that the same results (within 2.0%) could be
obtained with the Rosseland diffusion approximation for the pure
absorption case (ws = 0) so long as the medium has an optical thicknéss
greater that 2, an extinction coefficient greater that 25 ft:"1 ( 0.82
cml), and so long as a different model is wused to describe the
radiation within an optical thickness of approximately 0.7 from the
wall. For optical thicknesses greater than 10, the error is less than
0.1% in the pure absorption case (ws =0) if the approximate model

described by Fine, et al. 1is used.

From the results of Fine for isotropically scattering media, the
effect of the albedo may be seen to diminish rapidly with optical
thickness. At low optical thickness (1.) and low surface emissivity

(0.1), the radiant flux varies by a factor of four between the pure
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scattering and the pure absorption case. At an optical thickness of 2,
ard a surface emissivity of 1.0, the variation is reduced to 12% of the
radiant flux. At an optical thickness of 17, the difference between the
pure scattering and the pure absorption case is reduced to 3.5% of the
radiant flux. At an optical thickness of 50, the difference may not be
read off the graph. In chapter 4 it will be shown that one inch thick
focam specimens typically range in optical thickness from 40 +to 100,
Hence for all cases of practical importance to foams, absorption and

isotropic scatter may be considered to have an equal effect on heat

transfer (i.e. the albedo has no effect).

Approximation of Nongray Behavior

The nongray case may be handled with the Rosseland diffusion
approximation through proper definition of the mean extinction
coefficient. Ozisik (36) shows that the proper mean

extinction

coefficient is given by:

ax (3-17)

~

1 j‘ L aIkb (T)
0

A BIb (T)

where:
Fs = Rosseland mean extinction coefficient
Kl = spectral extinction coefficient
T = temperature

A = wavelength
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intensity at A emitted by blackbody

I, = total black body radiation intensity

In order to evaluate this integral, the spectrum is broken into
bands over which K, is constant. Ozisik shows how tabulated fractional
functions of the second kind may be used to perform the integration. He

also provides the table which is required for this averaging technique.

3.3.3 Combined Conductinon=-Radiation Models

Because the Rosseland equation is not valid near solid boundaries,
it becomes necessary to model the radiation process near the insulation
boundaries. However, let us temporarily ignore the inaccuracy of the
Rosseland egquation near the boundaries. Consider one dimensional heat
flow at steady state through an infinite slab of finite thickness, L.

The conduction heat flux is given by equation 3-10, repeated here:

q = -k £ 3-10;
c s+g dx (3-10;
therefore:
160T3, 4T
= = - + —) -
I q. +q , (ks+q K ) Ix (3-18)
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From the energy equation (3-11) we know that qT does not vary with x.
Therefore equation 3-18 may be integrated; x goes from zero to L

(insulation thickness) and T goes from T2 to Tl.

Ao L 4
Gl = ks+g(Tl - T, + EE(Tl - T2) (3-19)
But:
4 3 (3-20)
Tl - T = 4Tm (Tl - T2)
where:
T, + T
¢ oz L 2 (3-21)
m 2
therefore:
g L 160T 3
k. = = = x + —0 (3-22)
£ Tl-T2 s+g 3K -

where kF is the overall thermal conductivity of the foam. Equation 3=-22
is only strictly wvalid for an infinitely thick medium, however for
optical thicknesses over 100 the error 1is negligible. An optical
thickness of 100 corresponds to a 3 inch (7.6 cm) thick slab if the
extinction coefficient is 400 ft—l. For optically thinner samples one

must either resort to modeling the radiation heat transfer near the
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boundary, or accept the small error in equation 3-22. The error in

equation 3=-22 is approximately 5% of radiation contribution at an
optical thickness of 8.3 with bounding surface emissivities of 1.0 and

an albedo of 0.0.

Note that equation 3=-22 predicts the foam thermal conductivity ¢to
be independent of thickness. Hence, the "thickness effect" referred to
in the heat transfer literature is completely due to altered radiation
heat transfer near solid boundaries. The conductivity calculated by
equation 3-22 would thus be the "full thickness conductivity” if the

"full thickness" has an optical~th1ckness greater than 100.

Three boundary models are discussed below. While these all give
results close to the exact solution of Viskanta (11) the author
advocates the first model because it is the most accurate and yet is
simple to |use. However, one must not expect that these models will
completely model the surface effects in real foam. In real foam, there
may be changes in density, cell size, etc near the surface of the foam
which will affect the radiation and conduction in ways not accounted for
here. Also, in new fresh cut foams the surface bubbles are often
broken, resulting in large differences in gas conductivity between the
first few layers of bubbles. This too will affect the radiation near

the boundaries, but is not included in the models.
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3.3.3.1 Optically Thin Limit Boundary Radiation Model : In reference

12, Fine, et al. propose an approximate model for intermediate optical
thicknesses based on the use of an optically thin region near each
boundary with the Rosseland diffusion equation applying to the much
larger central region. The optically thin limit means that the radiant
interchange between the solid surface and the outer bound of the central
region 1is wundiminished by the material 1in between. Using the

nomenclature defined in Figure 3-2, the rate equation for boundary A is:

b .oy
+ g o(T, - T ) (3-23)
1 1 a

q = k ——b— + EzO'(Tb - T2 ) (3-24)

g = k + (T, - Ty ) (3-25)

We have three equations (3-23, 3-24, 3-25) and three unknowns (T ,

Tb. q) which must be solved simultaneously. The only problem is that we

have not specified L , Lb and Lc beyond the obvious fact that they must
a

add up to the sample thickness. Fine, et al. (12) show that if a

boundary optical thickness of 0.69315 1is chosen (which in reality
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results in approximately 67% of the flux leaving the boundary to be
attenuated before reaching the central region), then the predicted
effective thermal conductivity agrees closely with the values obtained
in the exact numerical analysis reported in the same reference, for the
case of surface emissivities of 1.0 and albedo of 0.0. Under these
conditions the error is only 2.% at an optical thickness of 2, and

negligible at optical thickness greater than 10.

Unfortunately it is pure coincidence that the errors in this model
cancel for a , boundary optical thickness of 0.69315. If some other
optical thickness is chosen, then the agreement with the exact case 1is
not as close. The errors which cancel are: 1) That radiation between
the surface and core is not attenuated, and 2) The core acts as a
blackbody radiator at the surface temperature. While Fine, et al. do
not include the emissivities, €, and €, in equations 3-23 and 3-24, the
author has inserted them. This is because the model agrees well with
the results of Viskanta and Grosh (35) for large optical thickness and
for conduction=radiation numbers of 1.0 and 10. The

conduction=-radiation number (Ncr) is defined by:

k K

cr (3-26)

where T, is an arbitrary temperature. A comparison of the results of
Viskanta and Grosh (35) with the results from this model is given in

Table 3=-1. In practice the optical thickness will be greater than 10
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Table 3-1 Comparison of Results of Boundary Emissivity Effects

Note: 1/ =1.0 OPTICAL THICKNESS = 10
2/ = 0.5 ws = 0 (PURE ABSORPTION)
EE N Eg. _ keff
oT, A kf
Surface N - Viskanta Optically Viskanta Optically
Emissivity © (35)  Thin Limit (35)  Thin Limit
€17 %
1. 1 0.315 .315 0.635 .635
L. 10 2.114 2.115 0.9461 .9454
0.9 1 0.314 .314 0.637 .638
0.9 10 2.113 2.114 0.9465 .9460
0.5 1 0.307 . 307 0.651 .651
0.5 10 2.110 2.110 0.9479 .9480
0.1 1 0.297 .298 0.673 .670
0.1 10 2.107 2.105 0.9492 -9500
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and the conduction-radiation number between 1 and 10, thus the

emissivity effect error in the approximate model will be minimal.

3.3.3.2 Emissive Power Jump Model : Siegel and Howell (13) develop an

equation for energy transfer which uses a discontinuous emissive power
jump in passing from the medium to the solid boundary. Applying this
boundary condition to the case of infinite gray parallel plates
separated by a non-conducting, gray, absorbing, emitting, isotropically

scattering medium, theyv obtain the following rate equation:

_ ) U(Tl - T2)
S R S P (3-27)
4 * € * € 1
1 2

where Tl and T2 are the wall temperatures, 51 and 52 are the wall
emissivities, and L is the thickness of the sample. Note the similarity

to the radiation term in equation 3-12.

Siegel and Howell (13) also give a similar analysis with a suitable
correction factor to be applied when the medium is simultaneously

conducting.

3.3.3.3 Integral Solution to Boundary Problem : It is possible to solve

the radiation problem near the wall using an integral technigque. This
technique is analogous to the one used to solve heat or mass or momentum
boundary layer equations in fluid flow. Basically one uses a three 2zone
approach, in exactly the same way as for the optically thin limit model.

See Figure 3-2. In order to solve for the heat transfer across the
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boundaries, a temperature profile from T; to T, and Ty, to T; is assumed.
An arbitrary point is chosen at which one totals the various
contributions to heat transfer. Figure 3-3 shows five contributions tc
the radiation heat flow at the imaginary plane which divides the core
from the boundary region. In the figure, QE is obtained from the
Rosseland one way flux (see Siegel and Howell (13) ), while the other
contributions are obtained from integration, using the assumed

temperature profile. The conduction is obtained from the temperature

gradient at the point.

This analysis was performed for the most convenient, but still
somewhat realistic temperature profile, linear in the fourth power of
temperature. The process is lengthy and will not be reported in detail
here. The key equations required for this analysis are given in
Appendix B. If one wished to assume a more realistic profile then the

analysis could be repeated with the improved profile.

The accuracy achieved with this technique was not as good as the
accuracy of the optically thin limit model. However, this model is not
as sensitive to the choice of boundary optical thickness as 1is the
optically thin 1limit model. This fact may make the integral solution
more accurate than the optically thin limit model for highly nongray
materialse. This technique is also cumbersome to use, requiring

computations of exponential integrals and lengthy algebra. Therefore,

it is not recommended.
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3.4 Summary - Radiation Theory

The general equation of radiative transfer was presented for a
nongray, absorbing, emitting, nonisotropically scattering medium. The
simultaneous conduction-radiation problem may be accurately solved using
the P-1 approximation of Lee and Buckius (23) in conjunction with the
Rosseland diffusion approximation in a three zone model proposed by
Fine, et al. (12). In chapter 4 we will present the error of this
approximation when applied to experimentally dJdetermined radiation
properties. For foams, the isotropic scattering approximation requires
much less experimental information than the other models, and
underestimates radiation by approximately 10%, as will also be shown in
chapter 4. For a sufficiently large optical thickness (t>50.) the
albedo has essentially no effect on the conductivity for the gray,
combined conduction=-radiation, absorbing, emitting, isotropically
scattering case. The effect of surface emissivity may be handled with
the three zone model for sufficiently optically thick media (t>10.). In
the next chapter it will be shown that typical foam optical thicknesses
range from 40 to 100 for one inch thick samples. Hence, the three =zone
model will be found to be sufficiently accurate for most practical

purposes.
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4. RADIATION EXPERIMENTS

This chapter presents the experimental basis for the radiation
model. Spectral transmissivity measurements for polyurethane films are
presented first, proving that opaque wall radiation models have no
physical basis. The simple technique for extinction coefficient
measurement is presented next along with typical results showing that
foams are optically  thick. Finally, results of the scattering
experiment are presented to provide a more complete physical
understanding of the radiation transfer process in insulation. These
results enable quantification of the error in the simple extinction
coefficient measurement technique. Recommendations are provided for an
improved experimental technique if one wishes to achieve greater

accuracy than obtainable with the simple technigue.

4.1 Transmission Through Cell Walls

The transmissivity of cell walls were measured to determine if the
opaque cell wall radiation models are valid. Polyurethane films were
obtained from two sources. Large surface bubbles (up to 2 cm diameter)
form on the tops of foam buns if the bun is allowed to rise
unconstrained on the top surface. Cell walls extracted from these "free
rise bun" surface bubbles were nearly as thin as membranes in the bulk
foam. Because they are a byproduct of the fecaming process, their
chemical composition was the same as the composition of typical foam.
Although the precise chemical structure may differ from the bulk foam

due to differences in thermal histery, the infrared absorption behavior
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of these films should be gqualitatively similar to that of cell membranes

in the bulk foam.

The second source of films was foam designed to have large cells.
By creating fcams with a mean cell size of approximately 0.5 cm, it was
possible to locate and remove films up to 1.0 cm in diameter. These
foams were produced by using essentially no surfactant in the mix.
Therefore the chemical composition is not identical to that of typical

foams. These films were also found to be much thicker than the films

obtained from free rise buns.

Figures 4-1 and 4-2 éresent typi.cal spectrographs of films obtained
from free rise buns and from large celled foam, respectively. The
measurements were taken on a Perkin~Elmer 283B Infrared
Spectrophotometer. Note +that a black body radiating at 75 F (24 C)
emits 89% of its energy between S and 30 microns wavelength. This is
therefore the wavelength range of concern for radiation heat transfer
purposes. The free rise bun films (Figure 4-1) are typically much
thinner and have much higher transmissivities than the films from large
cell foam (Figure 4-2). The sample in Figure 4-1 has an average
thickness of approximately 6 x 10"° inches (1.5 microns) while the
sample in Figure 4-2 is 1.4 x 16°3 jinches (36 microns) thick. Note that
if one assumes dodecahedron shaped bubbles with 85% struts and 0.010
inch (.25 mm) cell diameter, +the calculated wall thickness is
approximately 1l.2x 10 ° inches (0.3 micron). Therefore, cell membranes

would have even higher transmissivities than the sample in Figure 4-1.
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On this basis, the opaque cell wall radiation model may be dismissed.

4.2 Simple Technique for Extinction Coefficient Measurement

The approximate radiation model developed in Chapter 3 requires
only one radiation parameter - the extinction coefficient. The model
contains the assumption that scattering 1is isotropic, and that
scattering and absorption contribute in a similar fashion to the
extinction coefficient. In this section a straightforward technique to

measure the extinction coefficient is presented.

The test foam is sliced into ;pproximately 6 to 8 slices, ranging
from a maximum thickness of 0.100 inches (2.54 mm) to the thinnest slice
which will not crumble. Foam slices as thin as 0.025 inch (0.64 mm)
thick were easily obtained using only a Hobart meat slicer. Thinner
slices were obtained using a surgeon's scalpal. The scalpal technique
is more time consuming than using a meat slicer and is unneccessary for
most foams. It has been found that foams slice cleanly when the blade
slices rather than chops. The rotating blade of the Hobart meat slicer

is adequate for most purposes.

Once the foam has been sliced, single samples are placed into a
conventional infrared spectrometer. A Perkin-Elmer 283B Infrared
Spectrophotometer was used for all measurements reported in this work.
A standard cell mount 1is slid into place, allowing the beam to pass
through the hole onto the detector. The gain and baseline settings on

the spectrometer are adjusted at this time. A foam slice is taped flat
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to the standard cell mount. The spectrometer records the percentage of
energy transmitted at each wavelength from 2.5 microns to 40 microns.
To save time one can skip from 2.5 to 5 microns and scan from 5 to 40
microns. This produces a spectrograph, generally similar to the one

shown in Figure 4-3. A spectrograph is taken for each of the foam

slices.

Finally, the thickness of each foam slice is measured. The
thickness is measured after the infrared transmission measurements since
the thickness measurement could affect the transmission by disturbking
some of the partially broken surface bubbles. Two different techniques

were used to measure the thickness; good agreement Dbetween the ¢two

techniques was found.

The fastest and easiest technique to measure the thickness was to
use a Lufkin Rule Company Model Number 3610 paper micrometer. The
advantage of the paper micrometer is that two flat measuring surfaces
are attached to the ends of the spindle and caliper. See Figure 4-4.
These surfaces are much larger in diameter than the spindle on a
conventional micrometer. The edges are also rounded and smooth so that
the micrometer does not snag or grab the material being measured as the
spindle rotates. The measuring surfaces are positioned directly on the
spot where the transmission measurement was taken and the micrometer is
closed until the sample offers resistance to side to side motion. This
is called the "touch"™ measurement. The side to side motion is stopped

and the micrometer is closed further until a small but unmistakeable
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Figure 4-4 : Illustration of the Use of

the Lufkin Paper Micrometer
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resistance is felt which opposes further turning of the thimble. This
is the "firm" measurement. The difference between the touch and firm
measurements was usually approximately one half of a foam bubble
diameter. The average of the two measurements is taken as the sample
thickness. This process is illustrated in Figure 4-4. This averaging

technique accounts for surface irregularity.

The other technique used for determination of the thickness was to
weigh a known area of the sample on an analytical balance. The sample
thickness can be calculated from the area, weight and density of the
sample. This process has the disadvantage of being more time consuming,
requiring two measurements, and requiring knowledge of density, which
may vary somewhat throughout the foam. This technique was used as a
check against the micrometer measurement. It was also used to measure
the thickness of thin glass fiber insulation samples which were not

amenable to the micrometer technique.

The extinction coefficient may be calculated from the measurements
described above. The most accurate method of determining the extinction
coefficient is to break the spectrum into wavelength bands over which
the transmission is approximately constant. The bands are selected from
observations of the spectrographs. For each band, the average
transmission is plotted against the measured sample thickness on
semi-log paper. The slope of the resulting straight 1line is the
spectral extinction coefficient £for that band. If there is little

spectral variation in the spectrographs, as in Figure 4-3, then the
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average transmission from 5 to 30 microns wavelength can be used to
represent the whole spectrum. Figure 4-5 was prepared for a 2.0 pcf

polyurethane foam using the single band approximation.

Figure 4-6 shows a typical spectrograph for glass fiber insulation.
The large "window" at 8 microns wavelength should not be lumped into a

single band approximation, but rather should be divided into several

bands.

Once the spectral extinction coefficient has been determined for
the infrared wavelengths, the Rosseland mean extinction coefficient must

be calculated. The calculation procedure is discussed in section 3.3.2

and in reference 36.

The line drawn in Figure 4-5 has the following equation:

L. Ke ‘ (4-1)
100 N
where K equals 483 ft-1 and t is the thickness in feet. There fore the

extinction coefficient for the 2.0 pcf polyurethane foam was found to be

! (15.8 em ).

483 ft
Stern (37) measured the extinction coefficients of four foam

samples; two polyurethanes, one polyisocyanurate, and one polystyrene

foam. The results ranged from 623 ft | (20.4 cm ') for a 1.77 pcf

polyuretnane foam to 1294 ft_l (42.5 cm-l) for a 2.68 pcf polyurethane

foam. Clearly for all foams tested to date, the extinction coefficient
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is much larger than the value of 25 £e7 1 (0.82 cm—l) required for the
three zone model of section 3.3.3.1. An optical thickness of 10 is
achieved in the foam of Figure 4-5 at a sample thickness of only 0.25
inch (6.4 mm). Therefore, in the pure absorption case (% =0), the
theoretical error due to the optically thin assumption and the three
zone model is less than 0.1% for foam samples greater than 0.25 inch
(6.4 mm). At 0.25 inch, the error in using the Rosseland equation with
no boundary correction (equation 3-22) will be approximately 5% of the

radiation contribution for surface emissivities of 1.0 and for an albedo

of 0.0.

The erxor involved in this simple technique for extinction
coefficient determination is primarily dependent on the scattering
nature of the insulation. Where there is considerable nonisotropic
scattering, this technique will be in error. For low density foams, we
will show in the next section that the.error in this simple technique is
approximately 10.7% of the measured extinction coefficient. For glass
fiber insulation the error will be approximately 60%. In both cases,

the extinction coefficient is overestimated.

Note that this technique has been found to work consistently well
when the foam is homogeneous. However, if the cell size distribution is
wide or if filler materials are added to the foam and are not uniformly
dispersed, then there will be scatter in the results of percent
transmission versus thickness. This is of course because each data

point represents the 1local c¢onditions in the foam. If the local
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conditions vary widely, then the data will vary widely. 1In such a case

a larger number of data points (40-50) are required to achieve an

accurate average value.

Figure 4-7 gives some of the spectral results for a 1.97 pcf
phenolic foam. The manufacturer (39) stated that the foam has a bimodal
cell size distribution. The probable cause of the scatter in the data
is the nonuniform distribution of different sized cells. Nonetheless it
is interesting to note that the phenolic appears to have a much higher
mean extinction coefficient than the polyurethane foams of equal
density. Using the calculation té;hnique described in section 3.3.2 the
Rosseland mean extinction coefficient was estimated at 1700 £e~! ( se.

cm'l) for this phenclic sample.
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4.3 Scattering Experiment

A technique is presented for direct measurement of the insulation's
spectral radiation properties (absorption coefficient, scattering
coefficient, phase function). Measurements are reported for
polyurethane foam and glass fiber insulation at 9.64 microns wavelength.
The results are used to quantify the error in the simple technique for
the extinction coefficient. The P=1 approximation is compared against
the exact solution for both the foam and glass fiber data. Finally,

recommendations are provided for improvement of the simple technique.

4.3.1 Purpose

The experiment was carried out to determine whether or not
nonisotropic scattering plays a significant role in the radiation heat
transfer through foam insulatione. The experiments permitted
quantification of the error in the simple extinction coefficient
measurement technique. In addition, a more fundamental understanding of

the heat transfer through foam has been reached.

4.3.2 Method and Apparatus

A technique was developed to measure the absorption coefficient,
scattering coefficient and phase function in a direct manner.
Measurements of total hemispherical transmissivity or reflectivity were
inadequate because they could not provide direct measurements of these
important radiation parameters. Instead they rely on assumed phase

functions and scattering coefficients and thus only provide overall



148

checks. The approach taken was to attempt to measure the scattering
from a sufficiently thin sample so that the test could be treated as a
single scattering event. As will be seen, it was not possible to obtain
samples optically thin enough for this approximation while maintaining
the integrity of the foam. Hence, the scattering coefficient,
absorption coefficient, and the phase function were measured on the
thinnest sample cbtainable. The measurements were repeat;d with thicker
samples of the same foam. An analytical solution to a simplified form
of the equation of transfer (equation 3-8) was used to analyse the test
results. The radiation parameters measured at different sample

thicknesses were found to agree within the experimental uncertainty.

Optical Layout

The apparatus was simple in concept, but the aide of the people at
the MIT Regional Laser Center was required for the set-up. A schematic
diagram of the apparatus is shown in Figure 4-8. The beam was generated
by a 002 laser. The laser is normally used for ultra high resolution
infrared spectroscopy and therefore was monochromatic to within

+

= 1. MHz., The laser was grating tuned from line to line.

The laser beam was aimed at the first swing mounted mirror. When
the mirror was up (away), the beam either hit a carbon block where it
was absorbed, (this was a safety feature to pravent stray laser
radiation from reflecting throughout the room) or the beam went to an

Optical Engineering Company COZ.Spectrum Analyser which determined the

wavelength of the beam.
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When the swing mounted mirror was in place, the beam was reflected
and passed ¢through the chopper. The chopper was a Newpcrt Research
Corporation Model 380 Frequency Programmable Light Chopper, Mk II. Line
voltage powered a constant voltage transformer which fed a Variac
transformer, the output of which powered the chopper control. By
adjusting the Variac transformer, different chopping frequencies could
be attained. The constant voltage transformer helped stabilize the
chopping frequency even as the line voltage varied. The beam entered
the chopper as a continuous source, and left the chopper as a square
wave; one half of the time the beam was blocked and one half of the
time it was transmitted. For all tests, the chopping fregquency was

maintained at 395 =10 Hz.

Since the chopper produced some scatter from the beam, an aperture
was placed after the chopper to absorb this stray energy. This aperture
opening was set at 0.141 inch (0.36 cm) with a plug guage. After this
first aperture the beam was aimed at a zinc-selenide window. Most of
the energy striking this window was transmitted into a block of
absorbing material. Approximately 10% of the incident energy was
reflected toward the sample. Since the laser power was approximately
1-2 W, and since 50 ¢to 200 mW were needed in the tests, this window
provided the proper beam attenuation. Prior to the use of this
zinc-selenide window, an ordinary mirror was used and a methyl alcohol
vapor attenuation cell was placed between the first mirror and the
chopper. Small vacuum leaks in the system caused excessive power drift.

The zinc-selenide window was perfectly stable and therefore solved the
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attenuation drift problem. Unfortunately the zinc-selenide window
provided two reflections, one off the front face and one off the back.
Another aperture was used to absorb the back face reflection while
transmitting the other. Alignment of this aperture was critical to
obtaining an axially symmetric source beam at the sample. Unfortunately
the goal of a perfectly symmetric source beam was never attained. Some
asymmetry in the beam was therefore traded-off for better power level
stability. This aperture was set at 0.070 inch (0.18 cm) with a

plug

guage.

A swing mounted mirror was pi;ced in front of the sample. With
this mirror in place, the beam was reflected to a thermopile calibration
detector, Laser Power Meter Model No. 360001 made by Scientech Inc.
Measured power output from this detector was read directly in milliwatts

on a digital readout device by Analogic. The readout accompanies the

thermopile detector.

When this swing mounted mirror was up, the beam struck the test
specimen directly above the pivot point of the test detector bracket.
By attaching a small aperture to the front of the test detector, it was
possible to assure that most of the stray room radiation was blocked
from the sensing element. The detector aperture was set small enough
(0.0625 inch, 1.59 mm) so that all of the energy scattered from the
sample which passed through the detector aperture was incident on the
sensing element. By leaving the aperture opening fixed, the detected

solid angle remained constant as the detector was moved around the
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circle. Note that the radius of rotation was fixed by the bracket. The

geometry of this system is given in Figure 4-9.

The bracket consisted of an aluminum plate 17 x 1.5 x 0.38 inches
(43.2 x 3.8 x 0.97 cm) to which the detector was rigidly attached. The
plate had a hole in one end through which passed a brass post. The post
was screwed into the table so as to provide a secure pivot. The sample
holder was mounted on top of this post, assuring that the samples were
mounted at the pivot point of the detector. The other end of the plate

had a scratch mark which was used to indicate the detector angle.

The detector aperture was connected directly to the body of the
detector. This assured that the aperture alignment would not be
affected as the bracket was moved about for the various tests. The

detector aperture was set to 0.0625 inch (1.59 mm) with a plug gage.

Any components which could possibly receive direct laser energy
were coated with Scotch tape number 5050 16P#410 4DSL. This tape is
strongly absorbing in the infrared. The aperture frame, the aperture
brackets, and the sample holder were all shielded with this tape, as a

safety measure, and to reduce stray radiation which might affect the

readings.

The entire apparatus was bolted to a rigid steel bench mounted
three feet off the Ffloor on Newport Research Corporaticn Pneumatic
Isolation Mounts, Type XL-A. The room temperature was maintained at

65 F for improved laser power stability.
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Detection System

The detection system consisted of the test detector, the circuit,
and the 1lock-in amplifier. The detector was a photoconducting type
detector. The sensing element was gold doped germanium, and thus had a
rapid enough response to produce a clean square wave output to the 40C
Hz chopped laser input. The sensing element was approximately 0.1 x 0.1
inches (2.5 mm square) located 0.75 inches (1.9 cm) behind an NaCl
window within a stainless steel container. The stainless steel
container also acted as a storage flask for liguid nitrogen coolant.
The flask liner was evacuated withra conventional vacuum roughing pump.
Unfortunately the detector body was void of any markings indicating the
manufacturer or model number. The detector output was read on the
lock=in amplifier wvia the circuit shown in Figure 4=-10. An Eveready
battery was used for the 45 V d.c. source. The output voltage was
input to a Princeton Applied Research Model 121 Lock=-in Amplifier/ Phase
Detector. The output voltage was also displayed on an oscilloscope for
the purpose of verifying the rapid response of the detector. The
chopper synchronization output signal was also input to the lock=-in

amplifier.

The lock=in amplifier compared the output voltage signal ¢to the
chopper signal and integrated out all signal components out of phase or
not within 5% of the chopping frequency. The remaining signal was
integrated and amplified to give an output voltage between zero and 10 V

dec. The maximum gain on the amplifier was 10°. Thus a 10UV sguare
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wave input produced a 10 V d.c. output at maximum gain. The amplifier
output voltage was measured within 1% at any amplification on a mirrored
meter, built in to the amplifier. Alternatively one could use an

oscilloscope or any other device to measure the lock=-in amplifier output

voltage.

The apparatus enabled accurate measurement of scattered energy from
foam samples at any angle from 0 to 85 degrees and 95 to 160 degrees
from the incident beam direction. Angles from 85 to 95 degrees were
blocked by the sample holder. At angles greater than 160 degrees the

detector body blocked the source beam.

4.3.3 Experimental Procedure

The overall experimental procedure follows. Details on various
aspects of the procedure follow the general explanation. At the
beginning of the day, the CO2 laser was turned on and tuned ¢to the
operating line (wavelength). The chopper was set and the power level
monitored until the laser stabilized. A sample was inserted 1in the
holder and the detector bracket moved to the zero degree position.
Laser power was recorded on the calibration detector. The mirror was
flipped up so that ¢the energy transmitted at zero degrees could be
measured. The mirror was flipped down, the laser pcwer was recorded,
and the mirror was flipped up so that scattered energy could be measured
at the next angle. This was repeated until the detector was moved from

0 to 85 degrees with measurements taken at small increments (0.5

degrees) near zero degrees, gradually increasing to five degree
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increments from 25 to B85 degrees. Unfortunately, space limitations
prohibited taking measurements all the way ¢to 160 degrees in one
continuous swing. Some measurements were taken from =20 to zero degrees
to assure that the scattering was symmetrical. Where assymetry was
significant, the measured value was taken as the average of positive and

negative angle measurements (as defined in Figure 4-8).

In order to measure backscattering, the sample post was unscrewed
from the table and moved to a position which allowed swinging from 90 to
160 degrees. Since the optical alignment process was tedious, all

backscatter data was taken with one setup. Subsequently the apparatus

was returned to the forward scattering setup for some final tests.

Despite all precautions, the 1laser power slowly drifted during
testing. In order to relate scattered energy measurements to a
consistent power level, laser power was measured on the thermopile
calibration detector between scattering readings. After a scattering
measurement was taken at a particular angle, the swing mounted mirror
was dropped so as to reflect the beam to the calibration detector.
Laser power was measured on the thermopile detector, and the mirror
swung back up. The scattered energy was measured at the next angle, and
so on. While the test detector had a rapid enough response to give a
clean square wave output at 400 Hz, the calibration detector was a
thermopile and therefore had a very slow response. The step response of
this detector was tested and found +to have a characteristic time

constant of approximately ten seconds. For each measurement with this
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detector, 45 seconds (4.5 time constants) were allowed between the time
that the mirror was dropped and the time of the reading. This ensured a
full response without causing such excessive delays as to exacerbate the

laser power drifting problem.

Calibration of Test Detector

In all cases the test detector was calibrated against the same
thermopile detector. The room temperature was maintained at 65 F (18 C)
at all times so as to ensure consistency in the thermopile detector
readings. During preliminary tests prior to completion of the apparatus
shown in Figure 4-8, it was determined that the test detector
calibration drifted considerably from one day to the next. It was also
determined that at power levels higher than 25-30 mW, the test detector
response begins to deviate from linearity. This corresponds to an
output voltage measured with the lock~in amplifier of approximately
130-150 mv. At test detector output levels greater than 200 mV the
deviation from linearity was 20%, as seen in Figure 4-11. This figure
shows a typical detector response curve, measured prior to the
installation of the small aperture in front of the test dJdetector. The
sensing . .ement was therefore receiving all of the incident laser power.

(The beam was aimed directly at the sensing element.)

later in the testing it was discovered that the calibration drifted
by as much as 30% over a time period of two hours. Hence, the

calibration had to be checked for each data point whenever possible.
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The calibrations were performed by one of two methods. In the
first method, no sample was placed in the sample holder. The test
detector was moved from -7 to +7 degrees with output wvoltage readings
taken every degree from +5 to +7 and -5 to -7 degrees, and every half
degree from =5 to +5 degrees. The laser power was measured on the
calibration detector between readings on the test detector. The laser
beam width was fully traversed by the test detector. The power level
was assumed axially symmetric so the resulting voltages could be
integrated over the appropriate portion of the sphere and compared to
the power read on the calibration_detector. Table 4=1 illustrates this
computational exercise for some typical calibration data. In this
table, all test detector voltage readings have been normalized to a

constant laser power of 62.12 mW, (the average of all 1laser power

readings on the thermopile calibration detector). The calibration
constant (Cc) is determined from equation 4-2 for 91 =0 92 = 7.5
degrees, =8.4 c¢m, PL = 62.12 mW. The readings at +8 and =0 are

averaged to determine V

. i i 0, .
avgi This value is assumed constant from 1

1

to 621 so that the integral in equation 4-2 may be evaluated.

13 )
21
P = C_ * 2mr? z f v . sin € 4e (4-2)
L c ~ 5 avg i
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All energy passing through the aperture is assumed incident on the
sensing element. (See Figure 4-9.) Hence the radius (r) is the distance
from the sample holder centerline to the detector aperture. The limits
of integration are zero to 7.5 degrees. This causes the test detector

to traverse the same area as the sensing area of the thermopile

detector.

The second calibration procedure is similar to the first. The
primary difference is that the calibration is performed with a sample in
the sample holder. After the measurements of scattered energy are taken
from =90 to +90 degrees, the thermopile detector is placed behind the
sample and the transmitted power is measured. This transmitted power
measurement is compared to the integrated test detector readings using
equation 4-2. When placed behind the sample, the calibration detector
measures all energy within an 8.3 degree angle from incident. Hence the
limits of integration in equation 4-2 must be changed ¢to zero to 8.3

degrees so as to match detected solid angle with the new geometry.

This second calibration method has two advantages. A calibration
may be taken with this method for every sample tested. Since the test
detector calibration has been found to drift by 30% over a period of a
few hours, and since a scan from =90 to +290 degrees normally required
two hours, the frequency of calibration check was important. Second,
since the peak test detector output voltage is lower (typically from 1
to 60 mV), one may see from Figure 4-8 that the measured readings will

always be on the linear portion of the detector response curve. The



primary advantage of the first calibration method is due to the higher
laser power level. At higher power levels, the thermopile detector
measurement is more accurate. The finest subdivision on the thermopile
display was 1.0 mW. One must therefore expect readings to be accurate

to only 1=2 mW.

Table 4-2 presents a summary of several test calibrations. The
date taken and the test method and power level are provided. The
variation in detector calibration was the limiting factor in

experimental accuracy of radiation properties measurement.

Before proceeding into the data analysis, consider the implications
of the calibration procedure, and of equation 4-2. One may use equation
4=2 to calculate the detected scattered energy over any range of 0. If
the sample were infinitesimally thin, then equation 4-2 could be used to

determine the total scattered power, i.e.:

™
= c - 2nr2_f Vv  (9) sin 6 &6 (4-3)
c arg
0

Q
“scat

If IM(G) is the scattered intensity measured at 9, based cn the laser

beam cross sectional area (Ab), we can also write:

™
0., = 2r j'(IM(e) © A) sin 8 do (4-4)
0

Hence:



Table 4-2 Summary of Detector Calibrations
Date Test Mean" Calibration
Method Laser Constant
Power mW / cm?mv
{(mw)
7/21/82 1 80.5 6.43
7/21/82 2 24.7 5.68
7/22/82 1 74.5 5.44
7/22/82 2 18.9 4.91
7/24/82 2 19.8 5.83
8/17/82 1 62.1 4.95
8/17/82 2 7.7 4.06
8/18/82 1 79.9 5.39
8/18/82 2 22.0 4.90
8/18/82 2 11.1 3.00

*

Measured with thermopile calibration detector.
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If the laser beam intensity is approximated as a constant over the beam

area, we may write:

PL = Lo . Ab . qu (4-6)
where:
PL = incident laser power
Io = incident intensity (average)
Ab = laser beam cross sectional area
AmL = so0lid angle of laser ?eam (4-7)
From equations 4=5 and 4-6 we find:
2
IM(G) _ Cc r Vavg (8)
IOAwL PL

The usefulness of equation 4-7 will become apparent in the next section.
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4.3.4 Data Analysis

Using the apparatus described in section 4.3.2 and the procedure
described in section 4.3.3, several tables of numbers were generated.
Measured output voltages at detector angles from zero to 160 degrees
were recorded four different thicknesses of various foam and glass fiber
samples. This section presents the theoretical framework with which the
phase function, absorption coefficient, and scattering coefficiené are

extracted from the data.

Measurement of scattered intensity around the sphere provides ths
information reguired to calculate the scattering coefficient and phase
function. However,- the calculations regquired ¢to determine these
properties from the data are not straightforward. Figure 4-12 presents
the measured voltages normalized to a consistent laser power level as a
function of detector angle with no sample 1in place, with a thin

polyurethane foam sample, and with a thicker sample of the same foam.

One difficulty arises in the treatment of the data for angles close
to zero degrees. The laser has a significant beam width and a small
beam divergence. At angles between zero and ten degrees, the dJdetector
measures the sum of transmitted energy plus forward scattered energy.
Forward scattering within the first ten degrees 1is therefore totally

indistinguishable from transmission.
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The second problem is the guantitative determination of the
scattering and absorption coefficients. Initially, the problem was
treated as a single scatter/absorption event. Therefore the scattering
coefficient could be defined as the ratio of total scattered energy to
total incident energy. The absorption coefficient could be defined as
the ratio of total absorbed energy to incident energy. Unfortunately it
was found that the values for scattering and absorption coefficients
calculated in this way varied widely depending on the test sample
thickness. The thicker the sample, the lower the calculated values of

these properties.

The sum of the scattering and absorption coefficients (the
extinction coefficient) c¢ould alternatively be determined from the
percentage of incident enrergy which was transmitted. See equation 4-1.
The extinction coefficient calculated wvia equation 4-1 did not agree
with the sum of the scattering plus absorption coefficients previously
determined via the single event model. Hence, the simple analysis

inadequately represents the physical process taking place in the test.
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Improved Model for Data Reduction

For the conditions present during the tests, it 1is possible to
analytically solve a simplified form of the radiation equation of

transfer. Equation 3-1 is repeated here for convenience:

dI, (s)
- = -(ay + csl) I,(s) + akllb(s) (3-1)

G
S}; f ' ] ]
+ an ' Ik(s,w ) @A(w,m ) dw
w'= 4T

We may omit the aAIAb(S) term completely for the following reasons:
Since the 1laser beam has a much higher intensity than the radiation
emitted by the sample at room temperature, the emission will be
negligible. Furthermore, since the the laser beam is chopped at 400 Hz,

and the lock=in amplifier ignores D.C. signals, emission does not

contribute to the measured signal.

The laser is monochromatic and therefore all radiation intensities
are monochromatic. Since the test is performed at a single wavelength
we drop the A subscripts and use this notation change for the balance of
this chapter. This simplifies the eguation of transfer to equation 4-8.

5 .
: EQS) = ~lax Us) Iis) + Z%' j I(s,w') d(w,w') dw' (4-8)

41
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One more simplification will be made to reduce equation 4-8 to a
simple differential egquation. First we must discuss the scattering
coefficient and phase function and@ make an approximation which will
streamline the derivation. Consider the phase functions plotted in
Figure 4-13. The curve labeled ® represents a hypothetical actual
phase function while the curve labeled ¢* is a modified phase function.
The difference between these two functions is that up to a cutoff angle
of ef, the modified phase function has a value of zero. Over the rest

*
of the curve ® was increased over ? by a constant factor so as to

*
keep the function @ properly normalized. If we define F by equation

4=9:
0.
£
s
F = 3 $(89) sin 8 4e (4-9)
0=0
Then:
* _ %)
¢ (6) = T for 89>8, l
* (4-10)
$(8) = 0o  for osesef]

Furthermore ifc% is the scattering coefficient corresponding to the
*
phase function ¢ , we define 05 as Ogtimes the same constant factor
*
which increased ? to ¢ for angles greater than9;. Thus the product
x %
0,° equals Gsﬁfor all angles greater than %¢.

x

a = 3 (1L -F) (4-11)
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For an beam of intensity I incident on an infinitesimal thickness
of material, the scattered intensity at angles greater than ef would be
the same regardless of whether the foam had % and ¢ or had 0: and ¢*
as radiation properties. Hence the modifications described above will

not affect the physics for angles greater than ef.

In this example, if the absorption coefficients were the same in
both cases then the case with 6; and @* would have a higher
transmissivity than the cs, ¢ case. The difference in transmitted
intensity would be exactly equal to the total scattered intensity from
zero degrees to 9. in the g, 9 ~ case. This illustrates that the
scattering coefficient and phase function modifications cause some
energy which was previously considered forward scattered at a small

angle to be treated as transmitted energy.

Houston (14) has shown that this type of approximation results 1in
no significant change in the calculated heat transfer results for

strongly forward scattering phase functions, so long as SF is not too

large. For his theoretically predicted phase functions the error was
less than 5% at cutoff angles of 25 degrees and was negligible at cutoff
angles under 10 degrees. Therefore, strongly forward scattered
radiation can be equivalently considered as transmitted radiation. The
inability to distinguish between the two in this experiment will have no
bearing on radiant heat flux predictions based on experimentally
measured properties. Indeed, the inability to experimentally

distinguish between the two suggests that they are equivalent.
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Assuming a phase function of the form of ¢* in Figure 4-13, and
assuming a cutoff angle, ef , of 10 degrees, we may now simplify
equation 4-8. Consider first the case where s 1is the 1laser beam
incident direction (call this the x direction). We write IL as the
"laser" intensity in this direction. For this case, éhe integral on the
right hand side of equation 4=8 will be negligible in comparison to the
first term. Physically this means that the beam 1is attenuated by
absorption and scattering as it passes through the sample. The
intensity will also be increased if some of the energy which had
previously been scattered away from the beam is re-scattered into the
beam. For materials where o decreases rapidly with 8 , this
re=-scattering from angles greater than 10 degrees will be small.
Furthermore, for thin samples where a limited number of scattering
events occur, this effect will be so small that it may be neglected.

Therefore we may write:
(4-12)

Note that by using Gs in equation 4-12, we are including the assumption
that energy which is forward scattered within 9. is not attenuated (i.e.
it is transmitted). At x=0, IL equals the incident intensity Io.

Integrating equation 4-12 from x=0 to x, I £from ;o to I, we find:

IP
o >
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or:
L a + g -14

Therefore the transmitted intensity will follow the familiar exponential

form, previously given by equation 4-1.

Consider now the case where the s-direction is at an angle e
(ef<e<9o ) to the x-direction, as shown in Figure 4-14. For this case
we assume that the only appreciable contribution of scattering into the
s-direction is scattering directly from the laser beam. Hence we may
simplify equation 4-8 to:

*
g

d I(S) _ * s s
4s = ~(a+o)) I(s) + Ir (T2 (8) dwp) (4-15)
where ﬁwL is the solid angle of the laser beam. Substituting equation

4-14 into equation 4-15 for IL yields:

*@*
g () AwL

*
* -
g I(s) Ca+ o) T(s) +=— L Jl@aFI)x (4-16)
ds S . 4w o
From geometry:
X = s cos 3 (4-17)
And hence:
Io 0 (8)
d I(s) * g_? (8) Aw . * ~
=~ = ~a+o)) I(s) + =22 L @&+ 0,) s cos 8

)

(4-18)
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The boundary condition reguired for this first order differential

equation is just:

at s =0 ; I(s) =20 (4-19)

And the solution is found to be:

* *
* *
_ Io os@ (8) AmL "-K s cos 8 -K s
I(s) = Ce

*
am(a + cs) (L - cos 9)

(4-20)

where K* is the modified extinction coefficient, a+cs*. The solution
may be verified by substituting into equation 4-18, and by checking
equation 4-20 at the boundary condition. Note that there 1is a
singularity at 6 = 90 degrees where cos 8§ equals zero. This came about
from equation 4-17 which makes no physical sense at 20 degrees.

Fortunately this does not affect the scattering test results. We may

now apply equation 4-20 to our problem. At:

s = t / cos 8§ (4-21)

the intensity I(s) is just the intensity observed at the detector.

Hence, if Iw(e) is the measured intensity at 8, then:

%*
* (a + os)t
¢ (9)

* —————eeee.
-(a + o)t cos 9 (4-22)
e s e

IM(B) <

I Aw, -
oL

dr(a + 0 ) (1L - cos 9)

n »|00 *
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The left hand side of equation 4-22 may be related directly to the
detector output voltage and the incident laser power by equation 4-7.
The right hand side is the product of the modified scattering

* *
coefficient (os ) times the modified phase function (¢ ) times a complex

function of angle (6) and modified extinction coefficient (a+0: )
Equation 4-22 is extremely convenient for data reduction. We proceed as
follows. Since the modified phase function is zero from 8 of zero to 10
degrees, we can integrate the energy detected in the first 10 degrees

(using equation 4-2) to determine the percent transmission. Equation

4-14 yields the extinction coefficient. Given the extinction

- * X
coefficient, equation 4-22 can be used to determine the value of cs¢

*
from the measured intensity at each & . But O is a constant.

Therefore we may integrate the product over all solid angles and divide

x *
by 4m to obtain<% . (Recall that the integral of ¢ over the sphere
is 4r.)
T
S S S L .
s = a7 A (Gs %) 2m sin 6 46 (4-23)

*

Knowimgog we can determine the phase function from the product
LI

%
% . Finally, the absorption coefficient is determined by

subtracting the scattering coefficient from the extinction coefficient.

Thus, the computational routine requires no iterations.
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Note that equation 4-22 is only valid for ef< 9 ¢ 90 degrees. It
is simple to repeat the analysis which led to equation 4-22 for the
backscattering case. For brevity the analysis is omitted but the result

is given. For 90 < B < 180 degrees we find:

* * l
¢ (8) -(a + gs)t(l " cos e)
1l - e . (4-24)

I (®) o

*
S
*

L dm(a + g ) (L - cos 3) \
>

The data reduction procedure is summarized below. The percent
transmission is first determined by integrating the measured voltages
over the first 10 degrees. Equation 4-2 1is used to determine the
transmitted power, except the 1limits of integration are zero and ten
degrees. Equation 4-14 is wused to find the modified extinction

coefficient. Knowing the modified extinction coefficient, equations
* %
4-7, 4-22, and 4-24 are used to determine the productJg ® at each

angle 9 from the measured voltage at 6. Integrating this product over

*
all solid angles and dividing by 4T provides GS (equation 4-=23). The

*
absorption coefficient is 3just the extinction coefficient minus T4 .

* %k
The phase function at 8 is just the product OJg $ at © divided by
x

a
s -
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4.3.5 Experimental Results

In order to test the validity of the data analysis discussed in the
previous section, the scattered energy was measured at 42 points around
the circle for four different thicknesses of a single polyurethane foam.
The slices were taken from a slab supplied by the Society of Plastics
Industry via Dynatech R/D Co. They were cut so that the laser beam
direction corresponded to the heat flow direction in the Dynatech
measurement. The same slab was previously tested by Stern (37). He

measured a mean extinction coefficient of 623 fé-l using the simple

technique of section 4.2.

The phase function, scattering coefficient and absorption
coefficient 1is given for each of the four samples in Table 4-3, along
with an average of the four results. It is clear from the data that
there 1is no trend with sample thickness, a fact which testifies to the
validity of the data analysis model of section 4.3.4. The magnitude of
the scatter in the data is considerable and is probably from two
sources. The first éource of scatter is simply duve to local variations
in density, cell size, etc. which may give rise to local variation in
radiation properties. The second and probably larger source 1is the
experimental uncertainty itself, particularly in the <calibration
constant. Note that calibration checks were not performed on samples 1
and 4; on 1 by error of omission and on 4 because the transmitted power
was too low to accurately measure on the thermopile detector. For these

2
two samples a value of 4.8 (mW/cm -mV) was assumed for the calibration



Table 4-3 : Measured Radiation Properties at 9.54 microns for

Four Thicknesses of a 1.76 pcf Polyurethane Foam

sample

thickness (in)

absorptio

coefficient (ft—

n

scattering -
coefficient (ft )

angle
0 - 9.5
9.5 = 10.5
105 = 13.75
13.75 - 16.25
16.25 - 18.75
18.75 = 21.25
21.25 = 23.75
23.75 - 27.5
27.5 = 32.5
32.5 - 37.5
37.5 = 42.5
42.5 - 47.5
47.5 = 52.5
52.5 - 57.5
57.5 = 62.5
62.5 = 67.5
67.5 = 72.5
72.5 = 107.5
107.5 = 112.5
112.5 = 117.5
117.5 = 122.5
122.5 = 127.5
127.5 = 132.5
132.5 - 137.5
137.5 = 142.5
142.5 - 147.5
147.5 = 152.5
152.5 - 157.5
157.5 - 180.0
asymmetry
factor

<cos 2>

1

)

0.0215

389.

148.
pha se

0
31.09
15.99
10.90
10.07

5.07
3.08
3.63
1.46
1.13
1.72
1.26
1.23
0.80
0.54
0.45
0.41
0.38
0.36
0.46
0.46
0.63
0.56
0.57
0.84
0.94
0.95
1.26
0.72

0.3877

0.0265

461.

191.

pha se

28.24
21.22
12.67
8.08
4.05
3.65
2.39
2.45
1.16
0.89
0.79
0.51
0.47
0.41
0.30
0.29
0.37
0.45
0.67
0.55
0.58
1.27
1.26
0.80
0.59
0.79
1.09
1.36

0.3094

3

0.0403

492,

156.

pha se

24.03
13.43
7.34
7.72
4.81
3.40
2.28
1.43
1.35
0.98
0.70
0.83
0.76
0.58
0.37
0.41
0.41
0.41
0.97
0.52
0.63
0.54
1.09
1.24
1.76
1.79
1.31
1.51

0.1850

0.083

368 L]

208.

pha se

37.41
21.17
11.52
10.79
7.02
5.71
4.35
2.29
1.50
1.34
1.26
0.85
0.49
0.38
0.43
0.25
0.27
0.30
0.25
0.38
0.53
0.46
0.57
0.59
0.59
0.77
1.14
0.76

0.4991

average

427.

175.

pha se

29.95
17.81
10.52
10.32
5.20
3.93
3.14
1.89
1.28
1.22
1.00
0.85
0.62
0.47
0.38
0.34
0.36
0.38
0.58
0.47
0.59
0.70
0.87
0.86
0.96
1.07
1.19
1.08

0.3501

180
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constant (g:), based on an average of several other calibrations. This
could easily be in error by 20%, based on the data in Table 4-2. Note
also that due to difficulties with optical alignment it was not possible
to perform a detector calibration check during the backscatter

measurements. Again a value of 4.8 was assumed for q:.

A similar set of results is presented in Table 4~-4 for two glass
fiber insulation samples supplied by Dr. KXoram of the Owens Corning
Fiberglas Co. (33). For sample number 2 the transmission was too small
to permit accurate measurement on the thermopile detector. Hence, a
calibration constant of 4.8 was assumed for this case, as for the two

foam samples without direct calibration checks.

Comparison to Simple Test Results

In order to quantify the error in the simple test procedure
described in section 4.2, one must know exactly what is being measured
via the simple procedure. From the beam and sample geometry in the
Perkin-Elmer 283B, it 1is not clear exactly how close to zero degrees
energy must be scattered in order to be included as transmission. We
can answer this question by comparing the transmission value as measured
on the Perkin-Elmer 283B to the forward scattering data. The measured
voltages were integrated from zero degrees to a collection angle (ec)
for four different samples. The total transmitted plus forward
scattered energy from 0 to ec equals the measured value from the

Perkin-Elmer 283B. These particular cases were chosen because a

calibration check was performed for the test detector against the



Table 4-4 : Measured Radiation Properties at 3.64 microns

for Two Thicknesses of a 0.63 pcf Glass Fiber Insulation

Sample 1
Thickness (in) 0.1258
Absorption
Coefficient (f£t~l) 105
Scattering
Coefficient (ft~1) 93
Angle Pha se
0 - 9.5 0
9.5 = 10.5 24.33
10.5 - 13.75 18.57
13.75 = 16.25 16.55
16.25 - 18.75 6.73
18.75 = 21.25 10.66
21,25 = 23.75 7.48
23.75 - 27.5 4.54
27.5 = 32.5 2.93
32,5 = 37.5 2.48
37.5 = 42.5 1.49
42.5 - 47.5 1.15
47.5 = 52.5 0.85
52.5 = 57.5 0.75
57.5 = 62.5 0.53
62.5 = 67.5 0.32
67.5 = 72.5 0.36
72.5 = 107.5 0.25
107.5 = 112.5 0.14
112.5 - 117.5 0.22
117.5 = 122.5 0.18
122.5 = 127.5 0.29
127.5 = 132.5 0.38
132.5 = 137.5 0.41
137.5 = 142.5 0.48
142.5 = 147.5 0.55
147.5 = 152.5 0.53
152.5 = 157.5 0.56
157.5 = 180.0 0.56
Asymmetry 0.5920
Factor

<cos 8>

2

0.1544

90

120

Pha se

0
21.82
17.66

7.98
9.23
9.28
6.23
571
3.33
3.96
2.20
1.52
0.61
0.82
0.63
0.59
0.33
0.20
0.08
0.14
0.22
0.22
0.31
0.37
0.36
0.47
0.53
0.48
0.37

0.6267

Averaged

98

106

Pha se

0
23.07
18.11
12.27

7.98
9.97
6.85
5.18
3.13
3.22
1.84
1.33
0.73
0.78
0.58
0.46
0.34
0.23
0.11
0.18
0.20
0.25
0.34
0.39
0.42
0.51
0.53
0.52
0.47

0.8094
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thermopile detector in all four cases. The results are given in Table
4-5. From the table it appears that the Perkin-Elmer 283B cannot
distinguish between transmission and forward scattering out to
approximately 5 degrees. In fact, the collection angle may be less than
5 degrees. Recall that a small amount of incident energy would be
detected beyond 5 degrees with no sample. Hence some of the energy

beyond 5 degrees with a sample is actually transmitted energy.

As another check between the two technigues, the same samples used
in the scattering test (plus one more from the same foam slab) were
tested in the Perkin-Slmer 283B for transmission at 9.644 wavelength.
The results are plotted in Figure 4-15. The spectral extinction
coefficient computed via this simple technique is found to be 638 ft-l
(20.9 cm-l), from Figure 4-15. Using the asymmetry factor for the
averaged phase function from Table 4-3, the scattering coefficient
(determined by the scattering experiment) was modified according to
equation 3-13 and found to be 114 ft ! (3.74 cm b). Since the
absorption coefficient was 427 ft~1(14.0 cm !), the modified spectral
extinction coefficient at 9.64 microns was found to be 541 ft 1 (17.8
em ™), as compared to 638 ft ~!determined by the simple technique, as
noted above. Thus, the simple technique for extinction coefficient
determination is found to overestimate the appropriate extinction
coefficient at 9.64 microns by approximately 18%. In other words, the
appropriate extinction coefficient is 15% below the approximate method

value. However, this may be somewhat misleading because we are not

taking into consideration the uncertainty in the scattering experiment
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Table 4-5 : Comparison of Perkin-Elmer 283B Transmission

to Scattering Experiment Test Results

Sample Transmission Collection Angle (8.)
from Which Causes Scattering
Perkin-Elmer 283B Data to Agree with
Perkin-Elmer 283B Result

polyurethane 23. 3.3
polyurethane 10.; 8.1
polyisocyvanurate 25.6 7.8
glass fibers 5.7 1.0

Average : 5.0
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measurement. This will be discussed further in the next section.

Results for Other Foams

The forward scattering was measured for several other foam samples.
Because of the lack of backscattering data it is not possible to compute
the phase function, scattering and absorption coefficient for these
foams. Considering the sample to sample variation in Table 4-3, it is
not clear that tests from one sample alone would be sufficient to
determine these parameters. Some of the raw data for various foams is
presented in Appendix A, where the measured voltages have all been
normalized to a consistent incident power level and may thus be directly
compared to the same data for the foam whose radiation properties are

given in Table 4=3. Qualitative similarities in the forward scattering

behavior are apparent.

Scattering By Films

In an attempt to understand the scattering phenomenon on a more
basic level, a thin film of polyurethane obtained from a "free rise bun"
was tested for forward scattering. While it is difficult to describe
the results in a quantitative way, it was qualitatively found that the
membranes do not cause significant scatter. The measured voltages at
each angle are presented in Table 4=-6 for the laser with no sample and
for the free rise bun film. The voltages have Dbeen normalized ¢to a
consistent laser power of 74.51 mW and a detector calibration constant

o)
of 4.81 mW/ cm” - mV. At angles less than 8 degrees with the sample in



Table 4-6 : Scatter Data for Thin Film of Polyurethane

Angle Mea sured Output Voltages (mV)
(deg)
No sample Thin Film
0 229 99
0.5 235 106
186 85.6
1.5 83.8 42.0
2 12.9 6.75
2.5 1.53 - 0.778
3 1.52 6.634
3.5 0.434 0.149
4 0.114 0.0643
4.5 0.080 0.0407
5 0.0308 0.0203
6 0.0576 0.0077
7 0.0322 0.0047
8 0.0069 0.0035
9 0.0019 0.0022
10 0.0011 0.0026
12.5 0.0005 0.0014
15 0 0.0010
17.5 0 0.0008
20 0 0,0005
22.5 0 0.00035
25 0 0.0002
30 0 0.0002
35 0 0.0002
40 0 0.0001
45 0 0.0002
50 0 0.0001
S5 0 0.0001
60 0 0.0001
65 0 0
detector radius = 5.8 cm
la ser power = 74.5 mW

calibration constant

4.81 mW/cmz'- mV

Ratio

2.31
2.22
2.17
2.00
1.91
1.97
2.40
2.91
1.77
1.97
1.52
7.48
6.85
1.97
0.86
0.38
0.36

o

OO0 0O 000000 oo o
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place, the voltage is approximately one half the corresponding value
when the sample is removed. At angles greater than 8 degrees the
incident power 1is zero. Some scattering due to the film becomes
apparent. If the scattered energy from angles of 9.5 to 90 degrees are
integrated (equation 4-2), the total forward scattered energy is found
to be 0.25 mW. This is just 0.3% of the 4incident power level. For
comparison, a foam sample approximately 1.5 bubble diameters thick
(sample 1 in Table 4-3) scatters approximately 20% of the incident

energy over these same angles.

The data of Table 4-6 is for the sample mounted normal to the beam.
In order ¢to determine whether sample angles other than normal to the
beam would behave differently, the sample was angled at 30, 75, 60 and
45 degrees to the incident beam. The detector voltage was checked at
detector angles of 0, 1.5, 3, and 5 degrees. The measured values all
agreed to within the measurement wuncertainty regardless of sample

orientation.
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4.3.6 Application to Radiation Theory

In order to use these results to check the approximate radiation
models, arrangements were made Wwith Dr. Koram (33) of the Owens Corning
Fiberglas Co. to run his finite difference program which solves the
exact equations, described in section 3.2. The experimentally
determined phase function, absorption coefficient and scattering
coefficient were used in the program, assuming that the medium is gray.
This allowed us to compare the exact results tc those calculated via the

simpler methods of section 3.3.

The phase function had to be expressed as the sum of a series of
Legendre polynomials in order to perform the exact computation. In
order to facilitate the Legendre polynomial expansion, the phase
functions of Tables 4-3 and 4-4 were modified so as to eliminate the
sudden drop to zero at 10 degrees. This is easily accomplished by
reversing the modification process depicted in Figure 4-13 and discussed
in depth by Houston (14). For our purposes the phase functions were
assumed to have a constant value from zero to 16.25 degrees, where this
constant value is determined by the value of the unmodified phase
functions at 15 degrees (from Tables 4-3 and 4-4). The new phase
function is integrated over the sphere and divided by 4m to define a
normalization factor (§1)' as given by egquation 4-25.

m

%*
2?_4.® (6) sin 8 &8

= (4-25
Fn am !
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A new modified phase function is defined by equation 4-26:

Qmod (&) = F (4-26)

and a new scattering coefficient is defined by eguation 4-27:

Gs mod s ' n (4-27)

* %
Hence the product o is equal to the product Us ] for

smodﬁmod
all angles greater than 15 - degrees. The physics are therefore
unchanged. At angles under 15 degrees, energy which had previously been
considered transmitted would now be considered scattered at a small

angle. As noted in section 4.3.4, (and documented by Houston), this

type of modification will have a negligible effect of the calculated

heat flux.

The new modified phase function may be accurately expressed by a 20
term Legendre polynomial expansion. Dr. Koram supplied the author with
the coefficients required for the expansion, where the expansion is

given by equation 4-28:

19

Qmod = ZZ Anpn(“) (4-28)
n=0
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where:
Azu = coefficients
th
B = n Legendre Polynomial of H
K = cos 8

The coefficients and the values of the phase function calculated wusing
those coefficients in equation 4-28 are given in Tables 4-7 and 4-8
respectively, for both the foam and glass fiber data. The asymmetry
factors given on the bottom of Table 4-8 were calculated by breaking the
sphere into increments of 5 degrees and using the values in Table 4-8 as

an average over each increment, thus evaluating the integral of equation

3-12‘

The results of the exact calculations were compared to the results
using the P-1 approximation in the three zone model. This comparison is
presented in Table 4-9. As can be seen in the table, the P-1
approximation agrees closely with the exact results, so closely in fact

that we could in the future use the P-1 approximation as an "exact"

model.

Comparison to Isotropic Scattering Model

We would also like to draw some conclusions regarding the accuracy
of the simple technique for the extinction coefficient measurement
described in section 4.2. So far we have shown that the three zone
model is essentially exact for sufficiently optically thick media if the

extinction coefficient is determined via the P-1 approximation. If the



Table 4-7 : Coefficients Used in Legendre Polynomial

OWON0OUBd WN =20

[N S G S
WONdODULAHEWN =20

Expansion of Modified Phase Function

Foam

1.71955
1.33609
1.15337
0.776737
0.415310
-0.0316162
-0.364278
-0.553221
-0.643506
-0.673393
-0.646322
-0.478317
-0.496727
-0.288212
-0.106336

Glass Fibers

1.0002
1.8908
2.6316
2.3493
2.0354
1.5964
1.02168
0.75243
0.386027
0.061876

-0.051829

-0.132697

-0.27966

-0.453012

~0.504900

-0.533731

-0.411578

-0.178707
0.0023427
0.137843

192
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Table 4-8 : Modified Phase Functions Used in Exact Solution

Angle Pha se
Foam Glass Fibers
0 9.09 11.32
5 10.10 11.70
10 11.33 12.02
15 10.04 10.88
20 6.44 8.15
25 3.15 5.23
30 171 3.44
35 1.43 2.70
40 1.23 2.07
45 70,97 1.28
So 0.82 0.77
55 0.68 0.69
60 0.47 0.67
65 0.35 0.47
70 0.36 0.29
75 0.37 0.26
80 0.34 0.25
85 0.35 0.20
90 0.38 0.21
95 0.36 0.25
100 0.33 0.24
105 0.36 0.17
110 0.44 0.15
115 0.49 0.16
120 0.52 0.17
125 0.59 0.22
130 0.71 0.31
135 0.83 0.36
140 0.90 0.38
145 0.97 0.44
150 1.06 0.50
155 1.15 0.46
160 1.14 0.41
165 1.06 0.43
170 1.04 0.46
175 1.12 0.40
180 1.18 0.34
{cos 9>
Asymmetry 0.35140 0.63122

Factor
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Table 4-9 : Comparison of Exact

Computations to the P-1 Approximation

Conditions: k__=10.186 Btu-in/hr=-£t %-F
s+g
T = 555.9 °R
1
T = 513.4 °R
2
el = 0.86
€2 = 0.86
L = 1.5 inch
Foam Glass Fibers
Absorption Coefficient (ft~!l) 427.44 87.72
Scattering Coefficient (£t~ 1) 175.44 134.16
Heat Flux - Exact (Btu/hr-ft2) 6.15 8.55
Heat Flux - P-1 Approximation 6.14 8.54

and 3 Zone Model
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extinction coefficient 1is determined via the simple experimental

technique of section 4.2, we wish to know the error.

The absorption coefficient, scattering coefficient, and phase
function were measured and reported in section 4.3.5. The P-1
approximation was applied to the results, and an appropriate extinction

1

coefficient of 3541 £t~ (17.8 cm-l) was calculated. At the same

wavelength, the extinction coefficient was measured using the simple

1 1

technique and found to be 638 ft - (20.9 cm ~). This is 18% higher than
the appropriate value for exact heat flow calculations. However this is

a direct comparison of the two experimental techniques and thus, all of

the uncertainty should not be assigned to only one or the other

technique.

A better way to estimate the error in the simple technique would be
to compare the calculated result via the P-1 approximation against what
would hypothetically by measured via the Perkin-Elmer 283B if all the
energy scattered within the first 5 degrees is considered transmitted.
Using the modified phase functions in Table 4-8 one may calculate that
1.9% and 2.2% of the total scattered energy is within the first 5
degrees for foam and glass fibers respectively. Using the absorption
and scattering coefficients of Table 4-9 one may show that the simple
1

technique would yield extinction coefficients of 599 ft—1 and 219 ft-

for foam and glass fibers respectively. The appropriate extinction

coefficient using the data in Tables 4-9 and 4-8 are 541 ft-l and 137

ft t for foam and glass fibers, respectively. Comparing 541 to 599, and
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137 to 219, the simple technique overestimates the appropriate
extinction coefficient by only 10.7% for foams while for glass fibers
the error is 50%. This corresponds to an underestimate of the radiation
contribution (equation 3=22) for foams of 9.7% while for glass fibers
the underestimate is 37.4%. Hence, one may conclude that the simple
technique will be quite useful in foams but will probably not be

extremely useful for glass £fibers unless the accuracy can be improved.

Improvement of Simple Technique

The previous computational exercise suggests a possible improvement
in the simple technique. If the detector optics of the Perkin-Elmer
283B could be changed to include a greater percentage of the forward
scattered energy as transmission, then the technique would be even more
accurate than the figures previously guoted. This improvement may even
allow the technique to be used for measurement of extinction

coefficients in glass fiber insulation.

Consider an infinitesimal thickness of insulation with an incident
beam of intensity Io striking the insulation. The fraction of energy
absorbed will be a;ﬁ, the fraction scattered will be JSIO and the
fraction transmitted will be (1 - a = GS)IO. Consider first the case
where the phase function is of the form of ¢ in Figure 4-13, and the
asymmetry factor is <cos §>. The appropriate scattering coefficient for
heat transfer purposes is c%(1 - <cos 8>). If a spectrometer measured

only the energy strictly transmitted, then the "error" in the extinction
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coefficient measurement would be given by egquation 4-29:

a+0 -{a+ 0 (1L - <cos 6>)]
s S
% error =

100 (4~-29)
a + o (L - <cos €>)

which may be simplified to:

g <cos 0>
S

. 100
% error =

(4-30)
a + GS (L - <cos €>)

If instead of only detecting transmitted energy, the optics were
arranged so that the detector measured the transmitted energy plus all
scattered enery between zero degrees and a collection angle of ec, then
the calculated scattering coefficient would be decreased. The decrease
in the calculated scattering coefficient will correspond directly to the

fraction of the total scattered energy which is scattered at angles less

than %ﬂ Hence the "improved" scattering coefficient (GS') would be:

1 fe
g = g (1 - —--f ®(8) sin 8 48) (4-31)
s ] 2 0
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The error in the improved extinction coefficient measurement technique

would be:

(S

a.ﬁ
Us bl - j-Q sin 8 d8) - (1 - <cos 8>)
error = 0 ‘ (4-32)
a - cs (L - <cos 8>)

oe

And the error goes to zero when:

6
L (¢
<cos 6> - E-.{ ¢ sin 8 d6 > 9 (4-33)
0
Now that we have both experimental and theoretical estimates of the
phase function, it is possible to determine the collection angle

which would give zero error in extinction coefficient measurement.

For the experimentally determined foam phase function (given in
modified form in Table 4-8), the collection angle ec for zero error is
23.74 degrees. For the measured glass fiber phase <function (given
modified in Table 4-8), the zero error collection angle is 38.11
degrees. The value in this approach is that the error introduced is not

large, even at large deviations from the zero error collection angle.

For the foam data of Tables 4-8 and 4-9, the error is +7.2% and
-3.8% at collection angles of 7.5 degrees and 37.5 degrees respectively.
For the glass fibers data of Tables 4-8 and 4-9, the error 1in the
measurad extinction coefficient would be +24% and -8.9% at collection

angles of 22.5 degrees and 47.5 degrees, respectively.
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What is more, as the phase function changes the optimum collection
angle changes only slowly. This is evident when one considers the three
phase functions presented by Houston (14). The phase functions are said
to be representative of the phase function for glass fibers in the near,
mid and far infrared. The asymmetry factors may be found to be 0.8242,
0.7323 and 0.4166, respectively. The optimum collection angles may be
found from equation 4=33 to be 42.17, 38.27, and 37.83 degrees
respectively. In all cases if the «collection angle is set at 40
degrees, the error is less than 2.2% if the values of 134.16 and 87.72

-1 :
ft are used for the scattering and absorption coefficients,

respectively.

Hence one may conclude from this argument that if the collection
angle was set at 24 degrees for foamed materials and 40 degrees for
fibrous materials, the measured extinction coefficient would be within

approximately 5% for the complete spectrum.

However, this analysis is only strictly valid for an infinitesimal
sample thickness. For finite sample thickness, energy which 1is
scattered must pass through a portion of the sample before reaching the
detector. The scattered energy would of course be attenuated along the
way. Hence the simple analysis would tend to underestimate the. optimum
collection angle. Furthermore, if collection angles of 24 and 40
degrees were used for foams and glass fiber insulations, respectively,
the error might be more than 5% due to the attenuation of scattered

energy. Therefore a more accurate analysis is regquired.
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The analysis described earlier for data reduction (see section
4.3.4) 1is suitable for this problem. In order to determine the optimum
collection angle one would have to integrate equation 4-22 and determine
the 1limit of integration which would cause equation 4=14 to predict the
correct extinction coefficient. This exercise has not yet been

per formed.
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5. OVERALL HEAT TRANSFER MODEL

While the information for the combined conduction-radiation model
has all been presented in Chapters 2 and 3, it was felt that a short
summary which repeats the conclusions would be useful for most readers.
This chapter does that, reiterating the assumptions, approximations and
error estimates which go along with the model. We also present some

thermal conductivity data for comparison to the model's predictions.

5.1 Model

The following model is proposed for heat transfer through planar
foam insulation bounded by gray isothermal walls, where the gas
composition is constant throughout the foam. The effects of variable

gas conductivity are discussed in the next chapter, Aging Model.

The first step is to compute the effective conductivity of the
medium in the absence of radiation. Equation 5-1 is used when 100% of

the solid is in the form of membranes.

2
ks+gl = k_+t 3{1 - §) ks

g (5-1)

Equation S5=2 is used when 100% of the solid is in the form of struts.

g s (5-2)
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In real foams there is some material in struts and some in

membranes. The distribution must be experimentally determined. If P

is the percentage of solid material in struts, and 100 =~ Ps is the

percentage of solid in membranes, then the effective conductivity of the

medium is given by:

(100 - P ) k + P k
N (5-3)
stg = 100
which after some algebra reduces to:
p
2 S | .
= -+ _—— —— - -
Koy = Kg (2-535) a- 8 K (5-4)

Equation 5-4 represents an upper limit to conduction. The actual
conduction will be 1less than that predicted by equation 5-4. The
difference between the actual and the predicted conductivities will be
less than 20% of the second term on the right hand side of equation 5-4,

i.e., the lower limit is given by:

1]

(5-5)
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While the actual conductivity could be as low as that given by
equation 5-5, it 1is believed that the actual value will be closer to
that of equation 5-4 than that of equation 5-5. Hence, equation 5=4 1is
recommended for predictive purposes. In the absence of experimental
data on g; for a particular foam, a value of 75% is recommended. Recall
from chapter 2 that Reitz's preliminary measurements indicate 85% of the
solid in struts. We will see later in this chapter that a value of 75%

tends to help correlate the data better than do lower values.

In order to predict the radiation heat transfer, ¢the extinction
coefficient must be experimentally determined. A simple method is
described in section 4.2. A more accurate but also more complex
technigque is described 1in section 4.3. 1If the sample thickness times
the extinction coefficient (dimensionléss optical thickness) is greater
than 100, equation 5-6 may be used with good accuracy.

k ~ k + _16_0'111__ (5_6)

The second term on the right hand side may be called the "radiation
conductivity" (k,). At lower optical thickness (30), the error in
equation 5-6 will beé aproximately 7% of the radiation conductivity for

typical values of material properties found in foam insulations.
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If the optical thickness is less than 100, it therefore becomes
necessary to solve the following three simultaneous algebraic equations

for T , T and q:
a b

T, - T, G 4
q = ks+g (__E;___) + slc(Tl - Ta ) (5-7)
R (TaL; Tb) + 3§;c (T_ - T ) (5-8)
where the nomenclature was previously defined in Figure 3=-1. Using g,

calculated from the solution to these equations, the foam conductivity

is given by:

+ +
q(La Lb Lc)
T, - T

1 2

(5-10)

th

Using this calculated foam conductivity one may calculate the

"radiation conductivity" (kr) from equation 5-11:

k, = k. -k (5-11)
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The error in this radiation model is less than 1% for optical
thicknesses greater than 15, for typical insulation properties. If the
simple technique of section 4.2 is used to determine the extinction
coefficient, the total radiation induced error in equation 5-10 will be
approximately 10% of the radiation conductivity or approximately 2.5% of
the overall conductivity for low density foams. This simple technique
always underestimates the actual radiation heat transfer because it
always overestimates the extinction coefficient. For higher density

1
foams, i.e. for foams with high extinction coefficients (K>1000 ft )

the radiation induced error will be considerably less than 2.5% overall.

Summary of Uncertainties in the Model

For purposes of summary we group the uncertainties into the
following two categories: uncertainties due to approximations in the
model, and uncertainties in experimental determination of properties of

materials. Both uncertainties affect the overall model predictions.

In the first category we have two uncertainties. The first is the
spread between the upper and lower limits to solid conduction. As noted
in equations 5-4 and 5-5, the uncertain range of possible results is 20%
of the solid contribution. The second uncertainty lies in the
prediction of the radiation heat flux. For optical thicknesses greater
than 15, the theoretical maximum uncertainty is approximately 6.5% (3%

in P-1 approximation, 3.5% due to neglecting effect of albedo). 1In
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practice the error between the approximate solution and the exact

solution is less than 1% for typical values of material properties.

The heat transfer model requires experimental knowledge of the

following material properties: &, ks, k, P ,E €

L] I i
g s’ S K t is easy to

determine the effect on the overall conductivity due to uncertainty 1in
any of these properties. The extreme values of the property in question
are used in equations 5-4 through 5-10 to determine the range of
pcssible values for overall conductivity. Three of these properties
deserve note. The solid polymer conductivity (%5) appears to vary by
approximately a Zfactor of ¢two " from foam to foam. The extinction
coefficient may be determined within approximately 11% via the simple
technique of section 4.2. The percentage of solid in struts is
currently unknown. Reitz (38) is developing an accurate technique for

measurement of this property. A value of 75% is tentatively suggested.

5.2 Comparison of Model to Data

The compérison of this model to measurements of thermal
conductivity of real foams is hindered by three factors. First, all the
available data is for foams where some air is introduced into the foam
during mixing of the polyol and isocyanate. Without a gas chromatagraph
measurement of actual cell gas composition, there 1is no way to
accurately predict the conductivity of the c¢ell gas. Second, the
technique for accurat-s determination of the percentage of solid in
struts versus membranes is still under developmernt by Mr. Reitz at MIT

at the time of this writing. Thus, no measurements of this parameter
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were performed on the foam samples tested. Finally, the thermal
conductivity of the pure polvmer is highly uncertain. If a middle value

is chosen from the available data for polyurethane, the uncertainty is

35%.

In an attempt to overcome these difficulties, a series of foams
with identical chemistry but varying density were prepared by Dr.
Brotzman of the Owens Corning Fiberglas Corporation. The density was
changed by simply adding more or less blowing agent to the mix. The
hope was that if all three of these problem areas remained constant,
then we should be able to use the model to predict the trend in overall
conductivity. The foam density, measured conductivity (for one inch
thick samples), measured extinction coefficient, and calculated
conductivity are presented in Table 5=1 for each of the five samples.
As seen in the table, the difference between the highest and lowest
conductivity foam is only 6%, a small difference considering the three
uncertainties noted earlier. While it is possible to juggle the various
constants in any number of ways within the realm of possible wvalues so
that the «calculated value fits the measured value within the 3%
uncertainty band, it is not possible to obtain the sudden drop and rise

on each side of the 1.98 pcf sample while predicting reasonable values

for the higher densities.

One should note that the measured overall conductivity changes by
only 2% from the lowest density to the highest density material. The

radiation term decreases by 42% while the conduction term increases by
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10%. In order to match both the magnitude and the change in conduction
with density, it was necessary to assume a high value for the gas
conductivity (implying that air is mixed in during foaming). If the
conductivity of pure R-11 were assumed (0.059), then the solid
conduction would have to assume a higher polymer conductivity or lower
percentage in struts in order to bring the total back up to the measured
value. Either of these changes would lead to a much stronger change in
conduction with density, causing the predicted overall conductivity to

vary more strongly with density than the measured overall conductivity.

The author recommends that the test be repeated in approximately
six months time. This will allow time for Reitz to complete development
of his technique for accurate determination of the percentage of solid
in struts. This should also allow sufficient time for Sinofsky (16) to
complete development of a technigue for measurement of solid polymer
conductivity in foams. At the time of the thermal conductivity
measurement, the cell gas composition should be determined by gas
chromatography. The extinction coefficient should be measured by the
simple technique of section 4-2. The foam will thus be fully

characterized and the accuracy of the theory may be experimentally

determined.

Some extinction coefficients were measured and reported by Stern
37). He also used the simple technique for extinction coefficient
measurement. The thermal conductivity of the test foams was measured on

samples as 0ld as three weeks at the time of measurement. The reported



conductivity therefore represents a value with considerable aging
already taken place. Nonetheless, as may be seen in Table 5-2, the
conductivities are substantially lower than those noted in Table 5-1
while the extinction coefficients are generally much higher for equal
density. However, the difference in conductivity between the foams in
Table 5~1 from those in Table 5-2 may not be explained by the difference

in extinction coefficients alone, but rather, other factors are also at

worke.

One encouraging aspect of the foam data in Table 5-1 1is that the
measured extinction coefficient " follows +the density very closely.
Figure 5-1 through 5-5 present the plots of percent transmission versus
sample thickness which were used to obtain the extinction coefficients.
Figure 5-6 gives a typical spectrograph of a foam slice. Due to the
small wvariation in transmission versus wavelength, it was felt that the
more accurate technique for obtaining the true Rosseland mean extinction
coefficient described in section 3.3.2 was unnecessary. It was quicker
to use the mean transmission from 5 to 25 microns wavelength and assume
that the medium is gray. The error is not significant due to the nearly
gray behavior of the foam. Figure 5-7 presents the measured extinction
coefficient plotted against density. Since the extinction is absorption
dominated, it 1is not surprising <that the plot for constant foam

chemistry varies linearly with density.
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Table 5-2 : Data of Stern (37)
- . *
Material Dinszfy K kf kr ks+g = kf - kr
pe (Measured) (Measured) (Calculated) (Calculated)
(£e7h
polyurethane 1.77 623. 0.124 0.027 0.097
polyisocyanurate 1.89 658. 0.127 0.026 0.101
polyurethane 2.68 . 1294. - 0.105 0.013 0.092

Thermal conductivity units: Btu-in / nr-ft2-F

16 ch3
* ~ ——— . =
k. K PoT 535 R
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Figure 5-7 : Measured Extinction Coefficient versus Density
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6. AGING MODEL

The previous chapter developed the heat transfer model for foam
insulation for the case where the gas composition is constant throughout
the foam. This chapter extends the model to include the case where the
gas conductivity varies across the foam thickness. This variation
occurs in aging foams which may have a high conductivity mixture near
the surface and a low conductivity mixture in the core. This chapter is
also relevant to predicting conductivities for cryogenic applications

where over some regions of the foam the gas conductivity may be zero.

6.1 Background

As noted in Chapter 1, the approach taken by most authors in the
foam literature has been to f£ind an effactive diffusion coefficient for
each of the diffusing gases, and to apply the mathematical =results of
Newman (25), (19) to predict gas concentration profiles during aging for
each of the diffusing gases. In this work, we have assumed that by this
approach (or any other), the gas compcsition may be determined at all
points in the foam. This chapter is concerned with calculation of the

effective conductivity given this information.

It is tempting to simply jump to the conclusion that the space mean
gas conductivity may be treated as a constant in the heat transfer
model. This is easily shown to be incorrect by considering the limiting
case of no radiation, no solid conduction, where the gas conductivity is

a constant value everywhere except zero over a thin section. Under
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these conditions the heat flow would be zero, thus the effective
conductivity would be zero. This is significantly different £from the
conductivity which would be calculated wvia the space mean gas

conductivity.

This example illustrates that we must be careful about the method
of determining the "gas conduction”". Considering the same example but
allowing solid conduction plus radiation to occur, the effective
conductivity would no longer be zero. Furthermore, the gas would play
some role over the bulk of the foam and so it would also be incorrect to
say that the effective conducti;ity of the medium is simply the solid

plus radiation contributions (the gas contribution being zero).

A better model is required to handle these 1limiting cases. The
question arises whether or not these affects are important in aging of
foams. If they are important, what is the error associated with the
simple-minded view that the gas, solid and radiation act separately?
What is the error under typical aging conditions if one simply computes
the space mean gas conductivity for the gas contributicn? This chapter

will address these questions.

6.2 Thermal Conductivity of Gas Mixtures

Before proceeding with the aging model, it is important to
establish some facts concerning the thermal conductivity of the gas.
This section is restricted to computation of the thermal conductivity of

s mixtures of carbon dioxide, freon, oxygen, nitrogen and
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water vapor. In the case of aging foams where the composition varies
with position, the results of this section apply only on a local basis,

i.e. within a single bubble where the gas mixture is homogeneous.

Under most conditions the carbon dioxide rapidly diffuses out of
the foam (approximately one day) leaving only freon, oxygen, nitrogen
and water vapor. For most practical purposes we need not be overly
concerned if the gas mixture conductivity model is less accurate when
CO, is present in the mixture. Water vapor also has a high diffusion
coefficient and therefore rapidly reaches atmospheric concentration in
the cells. While the freon, oxygé; and nitrogen are not highly polar,
water vapor 1is highly polar, and as will be seen shortly, this causes
some concern as to the validity of the gas mixture conductivity model.
Fortunately the atmospheric concentration of water is small relative to

that of oxygen and nitrogen. Errors in model predictions for most aging

conditions would therefore be small.

In this heat transfer study we ignore the effects of water
condensation within the foams as well as any possible changes in the
solid polymer conductivity during aging. Separately quantified, these

effects could be included within the framework used in this work.

For lack of a better model, a summation of component mole fraction
times pure component conductivity is sometimes used to estimate the
conductivity of gas mixtures. Bretsznajder (8) points out that this
model is valid when the gases have similar molecular weights and are

nonpolar. The molecular weight of R-11 gas is 137.4 while <that of Q
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and N, are approximately 32 and 28 respectively. None of these gases
are highly polar, but clearly the ratio of molecular weights is greater

than 4:1.

One correlation which is valid in this case was developed by
Lindsay and Bromley, and is presented by both Reid (6) and Tsederberg
(7). The general form of the relation is called the Wassiljewa
equation. It is an empirical relation which also applies to viscosity

of gas mixtures. Equation 6-1 applies to an n component mixture.

n _—
_ igi
Knix = :z (6-1)

th
where Yy is the mole fraction of the i component, and Kk i is the
[}

th
thermal conductivity of the pure i component. The constants Ai' are

determined from the following relation originally proposed by Lindsay

and Bromley:

) .5 )2
0. M. 0.75 T + S. 0.5 T + S, .
= 0.25 {1 + -i(—l) — 1 —iJ (6-2)
i5 ny \My T + S T+ S



where:
n = pure component viscosity
T = absolute temperature
M = molecular weight

The remaining constants, S,, S: and S

5 5 i5 are called Sutherland constants.

For a pure component, if Ty is the normal boiling point of component i,

then:

i bi (6-3)

The remaining constant is determined from:

= s.. = c (s.8)°7?
S 13

Si4 i (6-4)

where si and Sj are determined from equation 6-3, and cs is assumed
unity for nonpolar gases. Reid (6) reports the use of a value for cs of
0.73 for the case where one gas is highly polar. For our case we use
1.0 when both i and j are oxygen, nitrogen or freon. We use 0.73 when
only one of two (i or j) is water. When performing the summation in

equation 6-1, Aij is always equal to 1.0 when i=j.

No data is available in the literature on thermal conductivity of
freon, oxygen, nitrogen and water vapor mixtures. However, data is
available for freon nitrogen mixtures. Peters, et al. (5) measured the
thermal conductivity of nitrogen freon mixtures at freon mole fractions
of 0.0, 0.25, 0.5, 0.75, and 1.0. The Lindsay - Bromley correlation

overestimated the mixture conductivity by approximately 5.0% in the
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worst case, while the summation of mole fraction times pure component
conductivity overestimates the data by 35% in the worst case. Fcr both
correlations, the largest percentage error occurs at 50% freon, 50%
nitrogen. Based on this data, it is imperative to use the Lindsay -

Bromley correlation rather than the simple linear model.

By a simple numerical exercise , it was found that the Lindsay -
Bromley correlation predicts essentially the same effects for oxygen
freon mixtures as for nitrogen freon mixtures. Thus, the lack of data
with oxygen is not a cause for alarm since the effects of oxygen should
theoretically be similar to the ef%ects of nitrogen. The same cannot be
said for water vapor. It is highly polar and therefore behaves very
differently from nitrogen. Fortunately however, the water vapor
concentrations are normally low, and thus the magnitude of any errors in

gas mixture conductivity would normally be small.

6.3 Separation of Gas, Solid, Radiation Contributions During Aging

As noted in section 6.1, the heat transfer contributions of solid,
gas and radiation during aging may not be separated a priori. In this
section we will develop a more exact model, show where this model

deviates from the simple model, and thereby show where the simple model

is applicable.
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6.3.1 General Model

The most accurate approach to this problem would be to determine
the local thermal conductivity at every point in the foam. With this
information the effective resistance to heat flow would be determined at
each point. For the one-dimensional case (no edge diffusion), the local
resistance would be integrated from one side of the foam to the other
for the total resistance. In the general case, the variation of
material properties and radiation contribution with temperature would be
accounted for. For three dimensional diffusion cases, one would perform
the one dimensional integration fd; an infinitesimal area element, then
integrate the heat flow through each area element over the surface of
the insulation. Note that resistance would be integrated across the

thickness, but heat flow would be integrated over the area.

The one dimensional integration process may be approximated by
breaking the foam into several thin layers over which the overall
conductivity is assumed constant. For the purpose of illustration, only
the one-dimensional diffusion case is considered (no edge diffusion).
Consider the case where there is a small enough temperature difference
across the foam (relative to the absolute value of temperature) so that
changes in material properties and changes in the local “radiation
conductivity" may be neglected. (See equation 5-6.) Under these
conditions the heat flow through the foam can be calculated with the
resistance network given in Figure 6-1. The overall foam conductivity

(kf) for each layer 1is calculated using the heat transfer model
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summarized in Chapter 5; i.e. using equations 5-6 and 5-4. Summing
all resistances we may derive the following formula for the overall

conductivity of the aging foam sample:
. N i
aged L k_. (6-5)

For the case where all sections are of the same thickness Li, n times Lj

is equal to the sample thickness and equation 6-5 reduces to:

- n

-1
« - (2 > L)
a - ‘ (6-6)
age n =1 kfi

Note that this expression is valid even for the case where the gas
conductivity is zero at some location. Since ks; includes gas, solid,
and radiation contributions, kfi is never zero for real foam. In the

limiting cases mentioned at the beginning of this chapter, this

expression gives the correct answer.

In section 6.3.2 a simpler aging model is presented and compared to
this accurate model. These two models are compared to models based cn
calculaticn of a mean "gas conductivity". The error in these models is

given for some typical aging conditions as well as some extreme cases.
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6.3.2 Simple Aging Model for Foams

While the aging model described in the previous section certainly
may not be described as excessively complex, it does require knowledge
of the parameters which determine the conductivity of the foam prior to
aging. The parameters required include the extinction coefficient,
percentage of solid in struts, and so on. It would be desireable for
many purposes to be able to predict aging without having to measure
these parameters. The simple model allows us to do this with only a

negligible sacrifice in accuracy.

Recall that the "solid contribution" was defined as the effective
conductivity in the absence of radiation minus the gas conductivity. In
section 2.3.7 it was shown that the "solid contribution” changed by less
than 2.5% even as the gas conductivity varied from that of pure freon 11
to that of pure nitrogen. (See Table 2~2 for reference.) Also, for the
case of foams with optical thicknesses greater than 100, equation 3-22
shows that the radiation conductivity is independent of the conduction
terms. From these two observations it may be inferred that the foam

conductivity may be expressed by equation 6-7 for the case of uniform

gas conductivity:

k = k_+k (6-7)

where kr*s equals the radiation plus solid contribution (which 1is

independent of k ). This approximation results in a loss of accuracy
g
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during aging of 2.5% of the solid conduction contribution. This amounts
to an error of less than 0.5% of the overall conductivity of an aging
foam. Unfortunately equation 6-7 applies only to the case of uniform
gas conductivity and thus may only be applied on a local basis for foams

with varying gas composition.

At this point any number of approaches are possible. The most
common approach in the literature, is to find a mean gas conductivity to
be used in equation 6-7. Norton (17) apparently uses the conductivity
of the mean gas composition. The space mean value of the local gas
conductivity is a more intuitively appealing model to use. Both of

these models will be shown to be incorrect.

If the initial gas composition and initial £foam conductivity are
known, the best approcach would be to use equation 6-7 for the local heat
transfer model during aging, and use the exact formulation of section
6.3.1 for the purposes of determining the overall foam conductivity.
This eliminates the need for knowledge of the various material
properties (extinction coefficients, etc.). The overall thermal
conductivity at the time of foaming, and the initial gas composition
provide all the required information. The initial gas composition is
also required to predict the gas composition over time. Hence, other
than the initial conductivity no measure