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ABSTRACT

Quantum computation has long been dominated by a digital approach using the qubit,
which exists in a two-dimensional vector space, as its basic unit. More recently, there has
been increasing interest in an analog approach, which uses as its basic unit a qudit in an
infinite-dimensional vector space. Alongside these two approaches is a third less-studied
approach, that of combining digital and analog quantum computation. This approach is
perhaps best exemplified by, and most researched via, the system of a qubit coupled to a
quantum harmonic oscillator, which has been realized with many of the leading platforms
for quantum computation. In this thesis, we ask how machine learning and other high-level
computational techniques can be employed in the design of applications of a qubit-oscillator
system to implementing fundamental components of quantum technology. In order to begin
to answer this question and lay the groundwork for future investigation, both with this
system and with others, we demonstrate the application of such high-level computational
techniques toward addressing the problems of quantum compilation, quantum sensing, and
quantum error-correction with the qubit-oscillator system.

Thesis supervisor: Isaac L. Chuang
Title: Professor of Physics and Professor of EECS

2



Acknowledgments

I made a remark in my Fall 2020 undergraduate thesis about how strange a semester that was,
a sentiment with which I still agree; however, these past few years have somehow been even
more unusual than that one. Alongside the ramp-down in policies for COVID-19 mitigation,
there has also been the strangeness of returning to school and research after spending half of a
year in the hospital recovering from being run over by a truck in November 2021 and suffering
complications. Fortunately, I received incredible support from the MIT Office of Graduate
Education (OGE), and I would particularly like to thank Ms. Elizabeth Guttenberg from
this office, as well as Ms. Vera Sayzew and Dr. Katrina LaCurts from the Department of
Electrical Engineering and Computer Science, for their invaluable assistance as I navigated
this return to MIT after such an unusual period of medical leave. I am so incredibly grateful
to have had the chance to return to MIT to complete the research comprising my master’s
degree so soon after such a traumatic experience, and I know that I owe this victory in large
part to these wonderful administrators, my therapists at Spaulding Cambridge inpatient
care and the Shirley Ryan AbilityLab inpatient and outpatient care while I was in recovery,
and my supportive lab, whose members kept me in the loop throughout my entire recovery
process.

In particular, from my lab, I would like to thank Dr. John Chiaverini, a senior staff
member in the Quantum Information and Integrated Nanosystems Group at MIT Lincoln
Laboratory, for our invaluable discussions about the capabilities of the improved quantum
sensing scheme that we investigated, which is featured in this work; I am also very grateful
for Dr. Chiaverini’s constant support throughout my recovery process. Additionally, I also
owe many thanks to Dr. Susanna Todaro, a former postdoctoral researcher in our lab
now working at Oxford Ionics, for her contributions to such discussions, as well as for her
unwavering acquisitiveness regarding my health, both physical and mental, as I returned to
lab in Fall 2022. Additionally, I owe many thanks to Dr. Jules Stuart, who was my first
mentor in the lab, initiating me into both the cryogenic and room-temperature trapped-ion
experiments and fueling my interest in applications of microcontrollers in lab. More recently,
he completed a PhD in atomic physics at MIT and postdoctoral research with NIST at the
University of Colorado, Boulder, and is now working at IonQ; he has continued to be a great
help, supporting me with discussions of potential PhD programs.

My closest collaborators on the research constituting this thesis have been graduate
student Ms. Jasmine Sinanan-Singh and former postdoctoral researcher, now Assistant Pro-
fessor of Electrical & Computer Engineering and Computer Science at North Carolina State
University, Dr. Yuan Liu. Ms. Sinanan-Singh and I worked closely on the development of the
algorithm for achieving universal quantum control on a continuous-variable quantum system

3



in a work from spring of 2021, the beginning of my degree program, featured in Chapter 3,
and we also collaborated on two complementary aspects of the work on improved quantum
sensing via the use of quantum signal processing, her mostly on the theory and myself mostly
on the numerical optimization of the quantum signal processing phases with machine learn-
ing, as discussed in Chapter 4. Dr. Liu also assisted with theoretical aspects for both of these
projects, and he and I have since also collaborated on laying the foundation of and begin-
ning numerical optimization for bivariable control of a bosonic system with quantum signal
processing, as discussed in Chapter 5. These collaborations have proven incredibly valuable
as I have been developing my understanding of continuous-variable quantum computing and
the optimization of quantum signal processing algorithms with machine learning.

Additionally, on the topic of collaborations, I have spent the last year of my master’s
degree studies in Tokyo, Japan, engaging in quantum-computational research at the Nippon
Telegraph and Telephone Corporation (NTT). Although the work is not quite finished yet, I
have sketched the current state of the research project in Chapter 6, and I would be remiss
not to mention my meaningful collaborations at NTT. I owe many thanks to people with
whom I have worked here, including but not limited to my unit’s manager at NTT, Dr.
Junji Teramoto, for his gracious support of my needs as a researcher in the unit and his kind
encouragement; my manager in the Computer and Data Science Lab (C & D Lab) at NTT,
Dr. Yuuki Tokunaga, who has supported my more lab-specific research needs and made me
feel like a full member of the group; my colleague, Dr. Tomohiro Shitara, who has graciously
worked alongside and supported me; and my direct research supervisor, Dr. Suguru Endō,
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Chapter 1

Introduction

Tools for computation have existed for millennia, with the first one thought to be the Sume-
rian abacus of Babylon, invented circa 2700 – 2300 BCE [Ifr+00]. This tool, as well as the
long tradition of tools for computation that have followed, including ENIAC [Lev13] and
the computer, have paved the way for the modern field of computer science. However, be-
ginning in 1968 when Stephen Wiesner invented conjugate coding [Wie83] and continuing
in 1981 when Paul Benioff and Richard Feynman presented the first proposals for mod-
els of a quantum computer [Ben82; Fey82], a new system for computation was developed.
This “quantum” computing makes use of the laws of quantum mechanics to solve particular
problems asymptotically more efficiently than would be possible with the original “classical”
devices.

The original approach to quantum computation, and the one that still dominates today,
uses qubits, which are well-described as two-level systems. This variety of quantum compu-
tation draws inspiration directly from the classical approach to computation with bits. The
qubit approach can thus be termed a “digital” approach to computation, where the Hilbert
space corresponding to a system comprised of N qubits is 2N -dimensional. In contrast, a
newer approach to quantum computation called continuous-variable quantum computation
(CVQC) uses physical observables, such as the strength of an electromagnetic field or the
position of a particle in space, whose numerical values belong to continuous intervals. The
CVQC approach is thus termed an “analog” approach to computation, where the Hilbert
spaces corresponding to the units of computation, or qudits, of CVQC systems are infinite-
dimensional. These qudits can be implemented in many ways, but one of the most common
is via a system with a quadratic potential energy, known as a quantum harmonic oscillator.

CVQC has become a topic of particular interest in quantum computation and quan-
tum metrology research [LB99]. Some, such as McCormick et al. and Burd et al., use
special continuous-variable quantum states in metrology to achieve sensitivities below the
limits established by classically-behaving states [MKB+19; BSB+19]. Other motivations for
studying this subject include understanding what resources are necessary to make quantum
computers more powerful than classical ones [NCS18a], as well as more efficiently encoding
and processing certain types of information. One particularly fascinating application that
has emerged is to quantum error correction, as discussed in Gottesman et al., Flühmann et
al., and Gao et al. [GKP01; FNM+19; GLC+19]. Moreover, implementations of CVQC have
been considered and achieved on many of the major platforms for quantum computation, in-
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cluding trapped-ion qubits [Mas+19], neutral atoms [PAS23], superconducting qubits [Pfi19],
circuit QED [SQJ18], and photonic qubits [RA21].

With the strength of both the digital and analog approaches to quantum computation,
there has recently been significant interest in trying to combine them in an attempt to solve
certain kinds of problems more efficiently [Par+20; Mar24]. This area of study has been
termed by some as Digital-Analog Quantum Computation. One leading contender for re-
alizing this type of quantum computation is the system comprised of a qubit coupled to a
quantum harmonic oscillator [YN03; Wal+04; Joh+06]. This kind of system has been real-
ized with various platforms for quantum computation, including trapped-ion qubits [Lei+03;
Man+03], cavity QED [RBH01], and superconducting qubits [Chi+04], where it has been
used to probe yet unexplored areas in the field of quantum computation.

1.1 Thesis Question
In this thesis, we ask how machine learning and other high-level computational techniques
can be employed in the design of applications of a qubit-oscillator system to implementing
fundamental components of quantum technology.

Questions such as this one are increasingly important as we continue to search for the
best system with which to implement scalable quantum technology. Although there are a
number of candidate systems under consideration now, none perfectly address all of our
desired applications, and it is quite possible that no single system will perfectly address all
of these applications. As such, we need to consider carefully the strengths of each system
and how best to leverage these strengths in order to achieve our goals. Toward this goal, it
is imperative that we develop methods, such as those employing machine learning and high-
level computational techniques, for efficiently probing the space of applications achievable
with a given system. By better defining the possible applications for the systems, we will
be able to clarify which systems are best applied for each kind of problem in quantum
technology.

Although this research question is simple to define, it is challenging to answer. Performing
an in-depth investigation of the possible applications for a specific system of quantum tech-
nology requires specialized knowledge of both the quantum model of the particular system
and the methods for investigation, in this case machine learning and high-level computa-
tional techniques. This significantly limits the number of research groups that are able to
consider this question.

The research on applications of machine learning and other high-level computational tech-
niques to the design of fundamental components of quantum technology is broad but not yet
well-developed with respect to any particular system for quantum computation. With regard
to general applications of high-level computational techniques to quantum technology, there
have been efforts to address each of the subfields that we highlight in this thesis work. For
example, with regard to compilation of quantum circuits for quantum computation, Moro et
al. address the application of deep reinforcement learning to quantum compilation, enabling
a single precompilation procedure to learn a general strategy for approximating single-qubit
unitaries [Mor+21]. With regard to quantum sensing, Cimini et al. introduce a model-free
and deep-learning-based approach to optimize parameters for performing Bayesian quantum
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metrology tasks [Cim+23]. Finally, with regard to quantum error-correction, Zeng et al.
have proposed a bosonic code for approximate autonomous quantum error-correction that
was optimized with reinforcement learning [Zen+23].

As mentioned, these works all address strategies for applying machine learning or high-
level computational techniques to general methods in quantum technology (i.e., methods
that do not specify a particular system for their implementation). Although this approach
has its benefits, such as the possibility of generalization to many systems being used for
quantum technology, it cannot necessarily find the best way to use a particular system for a
particular task in quantum technology. To do this, it is necessary that we carefully consider
the specific systems and find strategies to explore the ways in which they can be used for
quantum technology. We do not explore in this manner for every system, but we do take
a step toward understanding the space of applications to quantum technology enabled by a
qubit-oscillator system by employing machine learning and other high-level computational
techniques to efficiently probe the space of possibilities.

In particular, we approach the question of designing applications of a qubit-oscillator sys-
tem by employing a combination of quantum-mechanical theory, numerical optimization, and
computer modeling to design and simulate protocols for several key directions in quantum
technology. Specifically, we show concretely how the qubit-oscillator system can be utilized
to perform universal quantum computation, providing an algorithm and code for the decom-
position of arbitrary gates into experimentally-realizable primitives; quantum sensing, both
of the magnitude of displacements on an oscillator and of arbitrary functions of the oscilla-
tor’s position and momentum quadratures, via machine learning of sensing parameters; and
quantum error-correction of bosonic codes implemented on the oscillator, employing both
quantum-mechanical theory and numerical simulations to develop and verify new methods.
As such, we provide significant progress toward answering the main question posed by this
thesis and demonstrating the power and versatility of the qubit-oscillator system.

1.2 Outline
In Chapter 2, this thesis first acknowledges its place as a thesis in electrical engineering
and computer science by introducing some of the mathematics and physics of quantum
computation used throughout the work, assuming only basic knowledge of mathematics and
classical computer science. In particular, this chapter introduces the digital and analog
approaches to quantum computation, as well as the tools for treating both of them together.

In the work detailed in Chapter 3, we show how a d-dimensional Hilbert space can be
analytically constructed by closing off the lowest-energy states of the qubit-oscillator system,
prove that first-order sideband pulses and carrier pulses comprise a universal gate set for
quantum operations on the qubit-oscillator qudit, and then provide an algorithm for the
decomposition of arbitrary qudit operations into this gate set.

Then in Chapter 4, we detail our work presenting a general algorithmic framework,
quantum signal processing interferometry (QSPI), for using a qubit-oscillator system like
that explored in Chapter 3 to perform quantum sensing at the fundamental limits of quan-
tum mechanics. We discuss how one can perform nonlinear polynomial transformations on
the oscillator’s quadrature operators by generalizing quantum signal processing (QSP) from
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qubits to hybrid qubit-oscillator systems and demonstrate, both theoretically and with re-
sults from numerical optimization, that we can use the QSPI sensing framework to make
binary decisions on a displacement channel in the single-shot limit.

In Chapter 5, we present the seeds of our research on bivariable quantum signal processing
(BiQSP), an extension to the QSPI research of Chapter 4.5.2 that would enable the design
of algorithms to achieve arbitrary qubit response functions over the entirety of phase space.
We show how a slight generalization of the operations available in QSPI can enable the
realization of qubit response functions that are Laurent polynomials of complex exponentials
of the position and momentum quadratures and present results from numerical optimization
demonstrating how this capability can be used to enable the realization of the XOR gate on
the position and momentum quadratures.

For our last project, we explain in Chapter 6 our most recent work on using a qubit cou-
pled to an oscillator for quantum error-correction via engineered dissipation. We propose an
experimentally-realizable scheme for error-correction of a bosonic quantum error-correcting
code implemented with an oscillator based upon this idea of coupling to a qubit and demon-
strate its efficacy via a number of numerical simulations performed using the QuTiP package
in Python.

We conclude in Chapter 7 with some comments about the promise of this kind of quantum
system and some remarks about future directions for the research presented here.
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Chapter 2

Quantum Computing Background

This is, at its core, an EECS thesis about the use of classical computing techniques toward
the innovation and realization of practical quantum computation. As such, it is useful to
provide some background on the field of quantum computation for an audience that might
be familiar with the computational but not physical aspects of this field.

Toward this goal, we will walk through the basics of some areas of quantum mechanics
relevant to our exploration of the qubit-oscillator system toward use in quantum technology.
First, we introduce the basics of digital quantum computation and the qubit, followed by
elaboration on topics of more general relevance to quantum computation, in Sec. 2.1. Then
we note the distinctions from the treatment of the other component of the system, namely the
oscillator, and discuss analog quantum computation and the oscillator qudit in Sec. 2.2. With
these two pieces, we are able to contextualize and understand the physics of the entire qubit-
oscillator system as we proceed to investigate its applications to realizing the fundamental
components of quantum technology.

2.1 Introduction to Digital Quantum Computation
To introduce the basics of quantum computation, we begin by providing the context of digital
quantum computation with qubits before transitioning into more general topics in quantum
computation. In Sec. 2.1.1, we introduce the basic unit of digital quantum computation, the
qubit, as well as its most common visualization with the Bloch sphere. Then in Sec. 2.1.2,
we introduce the idea of a quantum state in the context of qubits. Next, we introduce the
concept of a quantum operator on these quantum states in Sec. 2.1.3. Afterward, we extend
this theory for one qubit to that for many qubits with tensor products in Sec. 2.1.4. Finally,
we introduce the fundamental ideas of quantum measurements in Sec. 2.1.5.

2.1.1 Qubits and the Bloch Sphere
We will first explain the qubit. A qubit is a binary unit of quantum computation, essentially
the quantum equivalent of a bit.

What distinguishes a qubit from its classical, or non-quantum, counterpart is that while
a bit is fully binary, meaning that it can only be fully in the zero state or fully in the one
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state, the qubit, though also fundamentally binary, can additionally be in a superposition
of both states simultaneously. This is to say that qubit states exist in a continuum between
the two binary extremes of zero and one, often visualized as the surface of a sphere called
the Bloch sphere. The two poles of the sphere represent these two binary extremes, or the
|0i and |1i qubit states, which form the standard basis for the vector space of states, while
all of the points on the sphere between the two poles represent nontrivial superpositions of
these two basis states. This visualization is depicted in Figure 2.1.

Figure 2.1: A Bloch sphere with an example state | i = ↵|0i + �|1i (↵, � 2 C) that is a
complex superposition of the basis states |0i and |1i

A qubit can be physically implemented in many ways, much as a classical bit can be
implemented with any of several alternative methods, including by an electrical voltage or
by a current pulse. One such approach to implementing a qubit, and the one discussed most
in this work, is using an ion trapped electromagnetically by voltages applied to electrodes
in an ion trap. Essentially, for a single ion, we can form a digital, or binary, qubit with the
two long-lived electronic or spin states acting as its basis. In other words, the two long-lived
states act as the two basis states of the qubit that form the poles of the Bloch sphere, |0i
and |1i.

For more background on the Bloch sphere, please refer to Section 1.2 of Quantum Com-
putation and Quantum Information by Michael Nielsen and Isaac Chuang [NC10]. This text
also includes much more information about other implementations of qubits for those who
might be curious.

2.1.2 Quantum States
We have already defined a valid quantum state by the states on the Bloch sphere introduced
in Sec. 2.1.1. These can be thought of as vectors in the space in which the Bloch sphere
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exists, known as a Hilbert space. However, to distinguish this type of vector from other
types of vectors, it is common and useful in physics to denote these vectors  as “kets” | i.
Because these kets are vectors, they behave according to the same rules of linear algebra
as other vectors; they can be added, multiplied by scalars, etc. For example, in the vector
space shown in Fig. 2.1, we can decompose the ket | i into the basis kets of the space |0i
and |1i as | i = ↵|0i+ �|1i, as shown in the caption.

A ket is an element of a vector space, and a “bra” h | is an element of its dual space. It is
useful to think about kets and bras as being elements of different but related vector spaces.
Every ket can be transformed into its corresponding bra by conjugating the coefficients in its
decomposition into its basis decomposition and changing the basis kets to bras. For example,
for | i = ↵|0i+ �|1i, the corresponding bra is h | = ↵⇤h0|+ �⇤h1|.

We can take inner products of quantum states by taking the bra of one state and right-
multiplying it by the ket of the other state. For example, the inner product of | i and |�i is
the complex number h |�i. If the inner product of two kets  and � is zero (i.e., h |�i = 0),
then they are said to be orthogonal. One example of a pair of orthogonal kets is the pair |0i
and |1i in Fig. 2.1, as their inner product is 0. This can be expressed as h0|1i = h1|0i = 0.
Given this definition of the inner product, we can also define the norm of a ket | i by

k| ik ⌘
p
h | i. (2.1)

A unit vector is a vector | i such that k| ik = 1. If a vector | i satisfies k| ik = 1,
then we say that it is normalized. All valid quantum states are represented by unit vector
kets, and it is convenient to call dividing a ket by its norm to make it a unit vector ket
normalizing the ket; the result, | i/k| ik is then the normalized form of | i. For the state
| i = ↵|0i+ �|1i shown in Fig. 2.1, normalization implies that ↵ and � must satisfy

h | i = (↵⇤h0|+ �⇤h1|)(↵|0i+ �|1i) (2.2)
= ↵⇤↵h0|0i+ ↵⇤�h0|1i+ �⇤↵h1|0i+ �⇤�h1|1i (2.3)
= |↵|2 + |�|2 (2.4)
= 1. (2.5)

A set |ii of vectors with index i is orthonormal if every vector in this set is a unit vector
and each pair of distinct vectors in the set is orthogonal (i.e., hi|ji = �ij, where �ij denotes
the Kronecker delta function that is equal to 1 when i = j and 0 otherwise and i and j are
both chosen from the set of indices). We usually describe a Hilbert space in terms of an
“orthonormal basis” of vectors that spans the Hilbert space.

We can express kets for a qubit state in the more familiar column vector form by defining
an orthogonal basis and representing the basis vectors as the unit basis vectors for the vector

space R2. In particular, we can represent |0i by

1
0

�
and |1i by


0
1

�
so that the ket | i is
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given by

| i = ↵|0i+ �|1i (2.6)

= ↵


1
0

�
+ �


0
1

�
(2.7)

=


↵
�

�
. (2.8)

Note that using this convention, bras are written as row vectors, since h0| is represented
by

⇥
1 0

⇤
and h1| by

⇥
0 1

⇤
.

For more background on the linear algebra of quantum states, please refer to Sections
2.1.1, 2.1.4, and 2.1.6 of Quantum Computation and Quantum Information by Michael
Nielsen and Isaac Chuang [NC10].

2.1.3 Quantum Operators
In order to understand the use of qubits in our work, we must also discuss operators, the
quantum equivalents of classical logic gates that act on qubits rather than bits. These opera-
tors usually act on a small number of qubits, and the gates that they enact form the building
blocks for more complex quantum circuits, making their implementation fundamental to the
realization of quantum computation.

We refer the reader to Section 2.1 of Quantum Computation and Quantum Information
by Michael Nielsen and Isaac Chuang for information about quantum operators, but we will
summarize key details here. Additionally, some frequently used quantum gates and circuit
symbols are provided on page xxx of this text [NC10], and we would recommend referring
here.

Let Â be a linear quantum operator. Then we can describe the operator Â acting on
a state | i by writing Â| i. We often denote operators with this “hat” notation, although
the hat is sometimes dropped for ease of notation. It turns out that there is a unique linear
quantum operator Â† with the property that the inner product of |vi with Â|wi is identical
to the inner product of Â†|vi with |wi. This linear operator Â† is known as the adjoint,
or the Hermitian conjugate, of the operator Â. We note some interesting properties of this
adjoint. For one, we can easily observe that for any two operators Â and B̂, (ÂB̂)† = B̂†Â†.
Additionally, by convention, if |vi is a ket, then we define |vi† ⌘ hv| to be the corresponding
bra. Given this definition, it also clearly follows that, for any operator Â and vector v,
(Â|vi)† = hv|Â†.

If we represent the operator Â as a matrix A, then taking the Hermitian conjugate of A
is equivalent to taking the matrix A and mapping it to the conjugate-transpose matrix (i.e.,
A† ⌘ (A⇤)T ). An operator Â whose adjoint is itself is known as a Hermitian, or self-adjoint,
operator. All of the eigenvalues of Hermitian operators are real, and we will see in the next
section that Hermitian operators are an important class of operators.

One particularly notable collection of Hermitian operators is the collection of Pauli op-
erators. The Pauli operators in their matrix forms are given in Table 2.1.

One final class of quantum operators that are useful to note specially is the class of
unitary operators. In linear algebra, a matrix U is said to be unitary if U †U = I, where
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�̂0 ⌘ Î ⌘

1 0
0 1

�
�̂1 ⌘ �̂x ⌘ X̂ ⌘


0 1
1 0

�

�̂2 ⌘ �̂y ⌘ Ŷ ⌘

0 �i
i 0

�
�̂3 ⌘ �̂z ⌘ Ẑ ⌘


1 0
0 �1

�

Table 2.1: The Pauli operators in matrix form

I represents the identity matrix. Similarly, an operator Û is unitary if Û †Û = Î, where Î
here represents the identity operator. All unitary operators also satisfy Û Û † = I. Unitary
operators are important because they leave inner products between vectors unchanged. We
can check this by letting | i and |�i be any two kets and confirming that the inner product
of these two kets is identical to the inner product of Û | i and Û |�i for an arbitrary unitary
operator Û :

(Û | i)†(Û |�i) = h |Û †Û |�i (2.9)
= h |Î|�i (2.10)
= h |�i. (2.11)

These unitary operators are especially important because the reversibility of quantum
mechanics implies that all processes on closed systems must evolve according to unitary
dynamics (i.e., as if acted on by unitary operators).

2.1.4 Tensor Products
Given all of this mathematical background for quantum computation on a single qubit, one
might ask how we can apply the theory of quantum mechanics to more complex systems,
particularly those including many qubits. The key to approaching larger systems is to use
the tensor product.

The tensor product is a method for putting vector spaces together in order to form larger
vector spaces. In particular, suppose that V and W are vector spaces of dimension m and
n, respectively, and for convenience, we will also assume that they are both Hilbert spaces.
Then V ⌦W , which is read as ‘V tensor W ’, is an mn-dimensional vector space. Moreover,
the elements of V ⌦W are linear combinations of ‘tensor products’ |vi ⌦ |wi of elements
|vi 2 V and |wi 2 W , and in particular, if |ii and |ji are orthonormal bases for the spaces
V and W , then |ii ⌦ |ji is a basis for V ⌦W . We sometimes use the abbreviated notations
|vi|wi, |v, wi, or |vwi to denote the tensor product |vi ⌦ |wi.

The tensor product satisfies several important and fundamental properties:

1. For an arbitrary scalar z and arbitrary elements |vi 2 V and |wi 2 W , we have

z (|vi ⌦ |wi) = (z|vi)⌦ |wi = |vi ⌦ (z|wi) . (2.12)

2. For arbitrary |v1i, |v2i 2 V and |wi 2 W ,

(|v1i+ |v2i)⌦ |wi = |v1i ⌦ |wi+ |v2i ⌦ |wi. (2.13)
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3. For arbitrary |vi 2 V and |w1i, |w2i 2 W ,

|vi ⌦ (|w1i+ |w2i) = |vi ⌦ |w1i+ |vi ⌦ |w2i. (2.14)

Now, we might ask what kinds of operators act on this “tensor-product” space V ⌦W .
Suppose that we have elements |vi 2 V and |wi 2 W , as well as linear operators Â on space
V and B̂ on space W . Then we can define the action of a linear operator Â⌦ B̂ on the space
V ⌦W by ⇣

Â⌦ B̂
⌘
(|vi ⌦ |wi) = Â|vi ⌦ B̂|wi. (2.15)

Moreover, since Â⌦ B̂ is linear, we can extend this definition to all elements of V ⌦W
by decomposition into basis elements:

⇣
Â⌦ B̂

⌘ X

i

ai|vii ⌦ |wii
!
⌘
X

i

aiÂ|vii ⌦ B̂|wii. (2.16)

As with tensor product states, if the Hilbert spaces involved are well-understood, then
the tensor-product symbol is sometimes dropped for convenience of notation. In other words,
the tensor-product operator Â⌦ B̂ might also be denoted ÂB̂. This notation is often taken
in the remainder of this thesis after the subproblem and the involved Hilbert spaces have
been clearly presented.

There is also a convenient way to represent the tensor product of two matrices by the
Kronecker product, but to see more on this and other topics related to the tensor product,
please refer to Section 2.1.7 of Quantum Computation and Quantum Information by Michael
Nielsen and Isaac Chuang [NC10].

2.1.5 Quantum Measurements
Finally, for the last section of this overview of quantum computation with qubits, we will
discuss the topic of quantum measurements.

While we claimed that a closed quantum system evolves according to unitary evolution,
a quantum measurement entails interaction with the quantum system, and so a quantum
system need not undergo unitary evolution during measurement. In fact, we introduce a
postulate of quantum mechanics to describe how quantum systems behave under measure-
ment.

A quantum measurement is described by a collection {M̂m} of measurement operators,
operators acting on the state space of the system being measured. Here, the index m of
the measurement operators refers to the possible measurement outcomes that may occur.
Suppose that immediately before the measurement, the state of the system is | i. Then the
probability that measurement m occurs is given by

p(m) = h |M̂ †
mM̂m| i. (2.17)

Correspondingly, the state of the system following the measurement is given by

M̂m| iq
h |M̂ †

mM̂m| i
. (2.18)
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The measurement operators {M̂m} necessarily satisfy the completeness relation
X

m

M̂ †
mM̂m = I. (2.19)

This requirement is derived from the fact that the probabilities of all possible outcomes must
sum to 1:

1 =
X

m

p(m) =
X

m

h |M̂ †
mM̂m| i. (2.20)

Before we conclude, we will work through one example of measurement, a measurement
of a qubit in the computational basis. By this, we are referring to a measurement on a
single qubit with two outcomes defined by the two measurement operators M̂0 = |0ih0| and
M̂1 = |1ih1|. Note that we do indeed have M̂ †

0M̂0 = M̂0 = |0ih0| and M̂ †
1M̂1 = M̂1 = |1ih1|,

so X

m

M̂ †
mM̂m = |0ih0|+ |1ih1| = I (2.21)

by the completeness relation. Also, note that this is called measurement in the computational
basis because |0i and |1i are known as the computational basis states.

Now, suppose that the state that we are measuring is the state | i = ↵|0i + �|1i from
Fig. 2.1. Then the probability of obtaining measurement outcome 0 is given by

p(0) = h |M̂ †
0M̂0| i = h |M̂0| i = |↵|2. (2.22)

Analogously, we can go through and find that the probability of measuring 1 is |�|2.
If we measure 0, then the state after measurement is

M̂0| i
|↵| =

↵

|↵| |0i, (2.23)

and if we measure 1, then the state after measurement is

M̂1| i
|�| =

�

|�| |1i. (2.24)

Because the coefficients in front of the states have magnitude 1, they are only global
phases and can be effectively ignored. Thus, the post-measurement state is either |0i if we
measure 0 with probability |↵|2 or |1i if we measure 1 with probability |�|2.

For one final point about notation, assuming that the state being measured is under-
stood, then the notation for a measurement of operator M̂ with respect to state  is often
abbreviated to

hM̂i ⌘ h |M̂ | i. (2.25)

For more information on quantum measurements, please refer to Sections 2.2.3 – 2.2.7 of
Quantum Computation and Quantum Information by Michael Nielsen and Isaac Chuang [NC10].
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2.2 Introduction to Analog Quantum Computation
We have indicated that the topic of this thesis is answering whether the system of a qubit
coupled to an oscillator is a viable platform for implementing fundamental components of
quantum technology. The system of interest is comprised of both a qubit, the unit of digital
quantum computation discussed in Sec. 2.1, and an oscillator qudit, a unit of analog quan-
tum computation to be discussed in this section. Although the theory of digital quantum
computation does provide a basis for understanding quantum computation, there are some
notable differences encountered in analog quantum computation.

In this section, we walk through some of the basic theory of the quantum harmonic
oscillator and its place in analog quantum computation, pointing out these differences as we
encounter them. We begin by providing an overview of the nature of a quantum harmonic
oscillator and its eigenspectrum in Sec. 2.2.1. Then we proceed to discuss some fundamental
operators on this unit of analog quantum computation in Sec. 2.2.2. Next, we discuss some
other fundamental operators in CVQC, as well as how they can aid in understanding CVQC
and the hybrid qubit-oscillator system that we investigate, in Sec. 2.2.3. Afterward, we
introduce some more CVQC operators that are useful for constructing states and visualize
their action in Sec. 2.2.4. Finally, we conclude by presenting some useful states that we can
create using these operators and that we will employ throughout this thesis in Sec. 2.2.5.

2.2.1 The Quantum Harmonic Oscillator and its Eigenspectrum
In order to understand the quantum harmonic oscillator qudit, a unit of analog quantum
computation, it is beneficial to first discuss the classical analog, a simple harmonic oscillator.
An example of a simple harmonic oscillator is a particle in a quadratic potential well, as given
by V (x) = m!2x2

2 , where V (x) denotes the potential energy of the particle. With relation
to classical, or non-quantum systems, this “particle” could be a mass on a spring, which
oscillates back and forth as energy is transferred between the elastic potential energy of
the spring and the motional kinetic energy of the mass. This simple harmonic oscillator
could also be a resonant electrical circuit, where energy is converted back and forth between
the inductor and the capacitor in the circuit. Although these two systems differ, they can
both be described as simple harmonic oscillators, where the total energy of the system is a
continuous parameter.

These simple harmonic oscillators become quantum harmonic oscillators when the cou-
pling, or interaction, with the external world becomes very small. These quantum harmonic
oscillators are exemplified by electromagnetic radiation trapped in a cavity with low loss or
the motional modes of a single ion, of which there are three (one for each spatial dimension).

The energy eigenstates of a QHO have a special mathematical structure. In particular,
eigenstates can be labeled by |0i, |1i, |2i, . . ., and the eigenvalue of the state labeled |ni,
also called its eigenenergy En, is given by En = n~!, where ~ denotes the reduced Planck
constant and ! is the angular frequency of the oscillator. One noteworthy property of
these eigenenergies is that they come in discrete multiples of ~!. Due to this uniformly-
spaced hierarchy of eigenenergies, this collection is often referred to as the ladder of energy
eigenstates for the quantum harmonic oscillator motional mode.
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2.2.2 QHO Ladder Operators
Two useful operators for this ladder of energy eigenstates of the QHO are the operators â
and its Hermitian conjugate â†. These, often referred to together as ladder operators, can be
defined for each QHO motional mode such that â|ni =

p
n|n�1i and â†|ni =

p
n+ 1|n+1i

for each n 2 Z�0. The properties of increasing or decreasing the energy of the state lead to
their common names of annihilation and creation operator (or lowering and raising operator
if instead viewed from the perspective of decreasing and increasing n in the ladder). Using
these ladder operators, this collection of motional modes can be manipulated to perform
CVQC operations and hence quantum computation.

For more information on the quantum harmonic oscillator and its eigenspectrum, please
refer to Sections 7.3.1 and 7.3.2 of Quantum Computation and Quantum Information by
Michael Nielsen and Isaac Chuang [NC10]

2.2.3 Position and Momentum CVQC Operators
Beyond the ladder operators, there are a few additional operators that are very useful in the
study of CVQC. Two such operators with whose classical counterparts most physicists are
quite familiar are the position and momentum operators x̂ and p̂, which are named by their
traditional classical notations but with hats to indicate that these are quantum operators.

Interestingly, each of these two operators can be expressed quite simply in terms of the
ladder operators. Their definitions are as follows:

x̂ =

r
~

2m!

�
â+ â†

�
(2.26)

p̂ = �i
r

m~!
2

�
â� â†

�
, (2.27)

where ~ denotes the reduced Planck constant, m denotes the mass of the oscillator, and !
denotes the angular frequency of the oscillator.

These position and momentum quantum operators enable visualization of analog quan-
tum states in the phase-space representation, a representation to which we will refer when
exploring analog quantum states throughout this thesis. We introduce the phase-space rep-
resentation in Sec. 2.2.3.1. Then we discuss a distribution often used to visualize states in
this representation in Sec. 2.2.3.2.

2.2.3.1 Phase-space Representation

The position and momentum operators can also be used to define an alternate continuous-
variable representation of quantum states, known as the phase space representation. This
representation depicts quantum states by using the values of their position and momentum
operators, with position x̂ on the horizontal axis and momentum p̂ on the vertical axis, as
shown in Figure 2.2.
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Figure 2.2: A plot showing the standard axes for the phase-space representation of a quantum
state.
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2.2.3.2 Wigner Quasiprobability Distribution and Wigner Plots

With this new understanding of the phase-space representation as a tool for understanding
continuous-variable quantum states, one might ask what exactly can be plotted for this
phase-space representation of a quantum state.

One popular quantity plotted in phase-space plots is the Wigner quasiprobability distri-
bution. This distribution was introduced by Eugene Wigner in 1932 in order to connect the
wavefunction that appears in Schrödinger’s equation to a probability distribution in phase
space.

The intuition for the Wigner quasiprobability distribution is as follows. Because a clas-
sical particle has a definite position and momentum, it can be represented by a point in
the phase-space picture that we defined above. Moreover, given a collection of particles, the
probability of finding a particle at a certain position in phase space can be specified by a
probability distribution called the Liouville density. However, this reasoning fails for a quan-
tum particle, as the Heisenberg uncertainty principle does not allow one to precisely specify
both the position and the momentum of a particle simultaneously. Instead, the Wigner
quasiprobability distribution plays an analogous role for these quantum particles, although
in order to do so, it does not satisfy all the properties of a conventional probability distri-
bution, instead sometimes taking values not allowed to classical distributions. In particular,
regions in phase space where the Wigner quasiprobability distribution is negative indicate
that the state does not have a classical model and are hence readily observed indicators of
interference that is inherently quantum mechanical.

This distribution is defined over position and momentum as follows:

W (x, p)
def
=

1

⇡~

Z 1

�1
 ⇤(x+ y) (x� y)e2ipy/~ dy, (2.28)

The Wigner quasiprobability distribution is often used to visualize quantum mechanical
wavefunctions in phase space for continuous-variable quantum systems, and we make use of
it many times in this work. We will also show several examples of its utility in the next
couple of sections.

2.2.4 More Useful CVQC Operators
In this section, we will introduce a couple more useful CVQC operators and demonstrate
their action on states via the use of Wigner plots in order to illustrate the utility of both.
In particular, we will introduce the displacement operator D̂ and the squeezing operator Ŝ,
since we make use of a slight variant of the displacement operator in Chapters 4, 5, and 6
and the squeezing operator in Chapter 6.

We first introduce the displacement operator in Sec. 2.2.4.1. Then we introduce the
squeezing operator in Sec. 2.2.4.2.

2.2.4.1 Displacement Operator

The displacement operator D̂ is given by

D̂(↵) = exp
⇥
↵â† � ↵⇤â

⇤
(2.29)
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for ↵ an arbitrary complex number. The displacement operator does precisely what it sounds
like it would do; the operator D̂(↵) displaces a state by the complex value ↵

p
2 in phase

space, where the
p
2 factor emerges from the definitions of x̂ and p̂ in terms of â and â†.

We can see this action by plotting the Wigner function for the vacuum state, or the ground
state of the quantum harmonic oscillator, |0i, and this state after the actions of two different
displacement operators, or D̂(↵)|0i. These Wigner plots are shown in Fig. 2.3.

(a) Vacuum State |0i (b) Displaced State D̂(1)|0i (c) Displaced State D̂(i)|0i

Figure 2.3: The vacuum state |0i (Fig. 2.3a) and the same state state after undergoing the
actions of the displacement operator D̂(1), resulting in the state D̂(1)|0i (Fig. 2.3b, and
D̂(i), resulting in the state D̂(i)|0i (Fig. 2.3c).

The state D̂(↵)|0i is often denoted |↵i and is known as the “coherent state” with magni-
tude ↵. This state is also an eigenstate of the operator â with eigenvalue ↵ (i.e., â|↵i = ↵|↵i).

2.2.4.2 Squeezing Operator

The squeezing operator Ŝ is given by

Ŝ(⇣) = exp


1

2

⇣
⇣⇤â2 � ⇣â†2

⌘�
. (2.30)

for ⇣ an arbitrary complex number. The squeezing operator also does precisely what it
sounds like it would do; the operator Ŝ(⇣) “squeezes” a state according to the complex
value ⇣ in phase space, where the argument of ⇣ determines the axis of the squeezing and
the magnitude of ⇣ determines the magnitude of the squeezing along this axis. We can
see this action by plotting the Wigner function for the vacuum state, or the ground state
of the quantum harmonic oscillator, |0i, and this state after the actions of two different
displacement operators, or Ŝ(⇣)|0i. These Wigner plots are shown in Fig. 2.4.

2.2.5 More Useful CVQC States

With the displacement operator D̂ and the squeezing operator Ŝ, we can create many useful
kinds of states. We will illustrate a couple of them that we investigate further in this thesis
in this section. We begin by introducing the squeezed coherent state
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(a) Vacuum State |0i (b) Squeezed State Ŝ(1)|0i (c) Squeezed State Ŝ(i)|0i

Figure 2.4: The vacuum state |0i (Fig. 2.4a) and the same state state after undergoing the
actions of the squeezing operators Ŝ(1), resulting in Ŝ(1)|0i (Fig. 2.4b, and Ŝ(i), resulting
in the state Ŝ(i)|0i (Fig. 2.4c).

One example is the state known as a squeezed coherent state. This state is defined by a
displacement parameter ↵ and a squeezing parameter ⇣, where the displaced coherent state
|↵, ⇣i is given by

|↵, ⇣i = D̂(↵)Ŝ(⇣)|0i. (2.31)

We provide the Wigner plot for an example squeezed coherent state with magnitude ↵ = 1
and squeezing level ⇣ = 1 in Fig. 2.5.

Figure 2.5: Wigner plot for the squeezed coherent state |↵ = 1, ⇣ = 1i = D̂(1)Ŝ(1)|0i.

The statistics of these states have been studied carefully, and they have proven quite useful
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for quantum sensing in the Laser Interferometer Gravitational-Wave Observatory (LIGO)
experiment for increasing sensitivity of the sensing device to gravitational waves [Cav81;
Aas+13].

Another useful state for sensing that we can define, and to which we will refer in Chap-
ters 4 and 6, is the cat state. The cat state is defined by

| cat(↵cat)i =
1p

N (↵cat)
(|↵cati+ |�↵cati) , (2.32)

where ↵cat is the amplitude of the state and N (↵cat) is an appropriately-chosen normalization
factor. This state is illustrated in Fig. 2.6 for ↵cat = 1.

Figure 2.6: A plot of the Wigner quasiprobability distribution of a cat state 1p
N (|↵i+ |�↵i),

where N is the appropriately-chosen normalization constant and ↵ = 1 so that the coherent
lobes are located at (x, p) = (±

p
2, 0) in phase space. Note the red negative regions of inter-

ference in the Wigner quasiprobability distribution, which indicate the quantum-mechanical
nature of this state.

Cat states have standard use cases in the fields of quantum sensing and quantum error-
correction, and we will discuss these in more detail in Chapter 4 and Chapter 6, respectively.

Both of these kinds of CVQC states are quite useful for quantum technology that operates
using CVQC, and we use them in several research directions that we discuss in this thesis.
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Chapter 3

Constructing Qubits from Quantum
Harmonic Oscillator Qudits

Here, we take our first step toward the goal of using high-level computational techniques
in order to improve the application of CVQC to solving problems of practical utility. In
order to do so, we consider both theoretically and numerically the new realization of a qudit
by the coupling of a qubit to a quantum harmonic oscillator, as introduced in Sec. 1. We
term this unit of computation a quantum-oscillator qudit or “QO-qudit.” The fundamental
principles of such a qudit demonstrate how the ideas underlying the quantum harmonic
oscillator (QHO) and continuous-variable quantum computation (CVQC) can be applied in
order to construct more powerful units of quantum computation.

This section is based on a paper that I co-authored about this research project, which is
published in Physical Review A [Liu+21]. The parts of this manuscript to which I solely con-
tributed are approximately copied here with some additional background sections to which
I contributed with others. Small changes have been made to highlight the computational
aspects, and additional sections have been added to discuss relevant physical background.

In order to better appreciate our approach toward this goal, we first examine the physics
of each of the component of a QO-qudit that we have not discussed yet beyond the qubit
and the quantum harmonic oscillator, namely the manner in which the two are coupled,
or the Jaynes-Cummings model, in Sec. 3.1. Then in Sec. 3.3, we introduce the qubit-
oscillator coupling Hamiltonian in the context of our work and derive the available unitary
operations as a starting point for the rest of the discussion. Next, we describe a general
strategy for finding unitary operations that are closed for arbitrary d-QO-qudits in Sec. 3.4.
A constructive universality proof of the QO-qudit operations is then given in Sec. 3.5. In
order to make our construction practical for implementation, we give an explicit algorithm for
this construction and show an example for an 8-QO-qudit in Sec. 3.6, where the theoretical
bound on the number of pulses is also supported numerically up to a 46-QO-qudit. Finally, we
summarize all of our results for QO-qudits in Sec. 3.7 and discuss potential future directions
to explore.
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3.1 Introduction to the Jaynes-Cummings Model
Having lain the fundamental background for both the qubit and the quantum harmonic
oscillator in the preliminaries, we will now introduce the physical model that couples these
two components together and hence underlies the qudit, which we term a quantum-oscillator
qudit, or QO-qudit. This coupling arises via a model known in quantum physics as the
Jaynes-Cummings (JC) model.

We first introduce this JC model and provide some historical background in Sec. 3.1.1.
Then in Sec. 3.1.2, we present the Hamiltonian for the JC model and discuss some of the
relevant underlying physics in greater detail.

3.1.1 Background on the Jaynes-Cummings Model
The Jaynes–Cummings (JC) model is a theoretical model in the field of quantum optics with
broad applications in the fields of quantum computation and atomic physics. This model
describes a system comprised of a two-level atom and a mode of an optical cavity with a
discrete set of eigenvalues and eigenstates, one example of which is a quantum harmonic
oscillator.

The JC model was originally developed in 1963 by Edwin Jaynes and Fred Cummings as
a purely quantum mechanical model for these types of systems, which had previously only
been modeled semi-classically (i.e., with the two-level atom modeled quantum-mechanically
but the cavity mode modeled classically) [JC63].

3.1.2 Jaynes-Cummings Hamiltonian
An important part of understanding the JC model is understanding its energy, or its Hamil-
tonian.

For this discussion, as we derive the expression for the JC Hamiltonian and its impli-
cations for the qubit-oscillator system, we will take the two basis states of the qubit to be
the ground state |gi and the excited state |ei. The relevant operators to consider now are
the raising and lowering operators of the atom, �̂+ = |eihg| and �̂� = |gihe|, as well as the
atomic inversion operator �̂z = |eihe|� |gihg|.

With this discussion in mind, the Hamiltonian that models the energy of the full system
is given by

Ĥ = Ĥfield + Ĥatom + Ĥint, (3.1)
where Ĥfield represents the free-field Hamiltonian, Ĥatom represents the atomic excitation
Hamiltonian, and Ĥint represents the Jaynes–Cummings interaction Hamiltonian. If we take
the quantized radiation field to consist of a single bosonic mode and, for convenience, set
the vacuum field energy to zero, then we find the following:

Ĥfield = ~!câ
†â (3.2)

Ĥatom = ~!a
�̂z
2

(3.3)

Ĥint =
~⌦
2
ÊŜ, (3.4)
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where !c represents the angular frequency of the mode, !a represents the atomic transition
frequency, Ê represents the field operator of the radiation field Ê = Ê0(â + â†), and Ŝ
represents the polarization operator that couples the atom to the field Ŝ = �̂+ + �̂�.

Now, to solve for the interaction Hamiltonian Ĥint, we switch our considerations from
the Schrödinger picture to the interaction picture defined by the choice Ĥ0 = Ĥfield + Ĥatom.
By doing so, we find

Ĥint =
~⌦
2

�
â�̂�e

�i(!c+!a)t + â†�̂+e
i(!c+!a)t + â�̂+e

�i(�!c+!a)t + â†�̂�e
i(�!c+!a)t

�
. (3.5)

This Hamiltonian is tricky to solve analytically, and we note that there are both quickly-
oscillating components with (!c + !a) in the exponent and slowly-oscillating components
with (�!c+!a) in the exponent. In order to obtain a Hamiltonian that results in a solvable
model, we apply the rotating-wave approximation and ignore the quickly-oscillating so-called
“counter-rotating” terms with (!c + !a) in the exponent, as these terms couple states of
relatively large energy difference, meaning that the mixing of these states will be small.

Ignoring these terms and returning to the Schrödinger picture, we find a more tractable
Hamiltonian for the JC model:

ĤJC = ~!câ
†â+ ~!a

�̂z
2

+
~⌦
2
(â�̂+ + â†�̂�). (3.6)

We can denote the state of the system by |e/g, ii, where the first element describing the
state is the state of the qubit (e for excited or g for ground) and the second element is the
state of the oscillator (i.e., the label for its eigenstate in the QHO ladder).

Now, we find that under this model, there are oscillations induced between the states
|e, n � 1i and |g, ni with frequency

p
n⌦
2 . This discrete spectrum of frequencies is a purely

quantum effect not seen with the semi-classical treatment of the system, and we exploit it in
this work in order to demonstrate how universal computation can be achieved on QO-qudits.

3.2 Quantum Computing with Quantum-oscillator Qu-
dits (QO-Qudits)

Now that we have analyzed the key interaction underlying a QO-qudit, as well as a key
property, we will consider how we can use QO-qudits to perform CVQC.

Quantum harmonic oscillators are promising resources for quantum computation, owing
to the infinite number of available states and their ubiquitous presence in nature as molecu-
lar vibrations [TV02], solid-state phonons [AM76], and optical/microwave cavities [BGO20].
The high dimensionality of oscillators provides not only a starting point for various bosonic
quantum error-correcting codes [CLY97; GKP01; CMM99; Mic+16; NCS18b; Alb+18;
NGJ20] but also a natural physical platform for universal quantum computation [Got99;
Zho+03; NCS18a]. It is therefore desirable to achieve universal control over quantum har-
monic oscillators. However, direct transitions driven between Fock states of a single oscillator
will leak states outside of any finite computational space of an oscillator, due to its equally
spaced and open ended spectrum. This means controlling the entire infinite dimensional
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Hilbert space of an oscillator requires an infinite amount of energy and is thus highly un-
physical.

In contrast to the infinite dimensions of oscillators, quantum computation often relies on
a closed finite dimensional Hilbert space to represent quantum states and perform unitary
operations on these states such that they remain inside the computational space [NC10]. By
truncating the oscillator to a low energy subspace and performing computation inside this
finite dimensional subspace, the unphysical requirement to the amount of control resources
can be alleviated. It is both satisfying and somewhat surprising that the most elegant
way to truncate an oscillator is to couple it to a qubit (a two-level system), the simplest
primitive of quantum computation. The conversions between continuous-variable [BV05]
and discrete-variable states enabled by the qubit+oscillator systems have spurred many
important developments in the field. On the one hand, such qubit+oscillator systems have
been used to realize various quantum error-correcting codes by encoding finite dimensional
qubits into continuous-variable bosonic modes, including the GKP code [Pir+06; Mot+17;
Flü+19], the binomial code [Mic+16], and the cat code [Ofe+16]. On the other hand, it has
been shown that continuous-variable states can be transferred into multi-qubit states using
primitive operations common to trapped ion systems [Has+21].

There are different ways to couple a qubit to an oscillator, and one of the most common
couplings is described by the Jaynes-Cummings (JC) interaction [SK93] due to its broad
applicability. Based on the JC Hamiltonian, Law and Eberly [LE96] demonstrated how ar-
bitrary single-mode Fock states can be prepared by using sideband and carrier transitions
in an alternating fashion. This idea was further extended by Mischuck and Mølmer to syn-
thesize arbitrary unitary operations in a qubit-oscillator system by decomposing the unitary
into many state-preparation protocols [MM13]. A different approach was taken to achieve
universality for a resonantly coupled superconducting cavity to an artificial atom, despite the
requirement of a slow adiabatic crossover for cavity states from the coupled to the uncoupled
regime [Str12]. Moreover, universal control over an oscillator is also discussed beyond the
JC interaction. For example, a simple quantum circuit was proposed to realize universal
control by carefully engineering a partially resonant and partially dispersive coupling be-
tween an auxiliary three-level system and an oscillator [San05]. Universal control was also
demonstrated for an oscillator coupled to a qubit fully dispersively [Kra+15], by combining
a selective number-dependent arbitrary phase operation with a displacement operation on
the oscillator.

In the various protocols developed over the past two decades on universal control over os-
cillators, the question of how to close an arbitrary finite dimensional subspace of an oscillator
was investigated far less frequently. Childs and Chuang [CC00] showed that the lowest two
levels of the oscillator can be closed to form a four dimensional Hilbert space where arbitrary
unitary operations can be realized. This closed, truncated space has been used to experimen-
tally implement the Deutsch-Josza algorithm on a trapped ion quantum computer [Gul+03;
Sch+03]. One of the key ideas in their construction is to synchronize the rotations on the two
Bloch spheres associated with the two 2-dimensional subspaces, using dynamical decoupling
by a four-pulse sequence adapted from nuclear magnetic resonance [VC05].

The more recent work of Mischuck and Mølmer [MM13] constructed arbitrary unitary
operations in the lowest (n + 1)-dimensional subspace of an oscillator (for any n 2 Z) by
decomposing the unitary into a series of modified state preparation protocols. Each state
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preparation unitary is then synthesized without leaking states in the computational space
to the outside. They further proved arbitrary two-qudit gates are possible by coupling two
oscillators to the same qubit, enabling qudit-based quantum computation. By synthesizing
arbitrary independent sideband transitions in each sideband subspace using a truncated
Fourier series on the rotation angles [PK06], they demonstrated the ability to realize an
arbitrary unitary on the (n + 1)-dimensional subspace, using O(n18.5��3) pulses (together
with a large prefactor), where � is the error of the synthesized unitary with respect to the
target unitary. This employs a powerful technique from optimal control theory, with further
efficiencies gained through numerical optimization. On the other hand, the use of optimal
control theory and optimization renders the protocol approximate in nature. Similar ideas
for truncating the oscillators has been employed in the context of perfectly generating atomic
coherence from optical coherence in a recent work [GS20].

In the present work, we address the same challenge raised by [MM13], but we seek to
solve the problem of closing off the (n+1)-dimensional oscillator subspace using a formalism
which is fully analytical, sans results from optimal control theory or optimization. This
allows us to fully understand the algebraic structures present in the JC Hamiltonian and
how they may be exploited with explicit algorithms. Also, having protocols which are exact
opens the door to understanding trade-offs and potential impact of errors. In principle,
the powerful optimization techniques of [MM13] could also be deployed on top of a fully
analytical solution to improve its scaling. Moreover, from the viewpoint of control theory,
we would like our control set to be as simple as possible. Ideally, we want to use a finite
set of basic control operations (e.g., laser frequencies) regardless of the dimension of the
computational space, as opposed to the constructions such as those employing a dispersive
coupling Hamiltonian where the number of control frequencies increases linearly with the
dimension of the computational space [Kra+15].

We produce an analytical solution by building on the approach of Ref. [CC00] to sys-
tematically close off an arbitrary (n + 1)-dimensional low energy subspace of an infinite
dimensional oscillator via coupling to a single qubit; further, we construct universal unitary
operations within this subspace fully analytically using only first-order sideband and carrier
pulses. This analytical construction of a unitary relies on exploiting algebraic structures in
the problem. The key structures arise from the well-known fact that the full Hilbert space
of the qubit+oscillator is naturally partitioned into an infinite number of 2-dimensional sub-
spaces, and only the subspace at the boundary leaks states in the computational space to
the outside. We exploit these structures by constructing a set of elementary SU(2) rotations
on these arrays of 2-dimensional subspaces as the instruction set for constructing arbitrary
unitaries. We give a recursive protocol to construct such elementary SU(2) rotations by
cleaning each 2D subspace one by one without accumulating any errors. Due to this re-
cursive fashion, we refer to the construction process as recursive cleaning and designate the
qudits constructed as qubit-oscillator qudits (QO-qudits). It should be noted that our re-
cursive cleaning construction is applicable to a larger class of Hamiltonian beyond the JC
interaction, but we will use the JC interaction for the ease of discussion. Also, note that the
qubit doubles the Hilbert space of the truncated oscillator resulting in a larger d = 2(n+ 1)
dimensional space. We prove universal control on this enlarged space, and this naturally
implies universal control on the (n+1)-dimensional truncated oscillator, which is a subspace
of the enlarged d-dimensional space. We shall use the notation d-QO-qudit to represent a
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qubit coupled to a truncated oscillator with Fock levels {|0i , |1i , |2i , . . . , |ni}. This con-
vention is consistent with previous work in Ref. [CC00], despite doubling the dimension of
the computational space in Refs. [Kra+15; MM13].

3.3 Theoretical Model for the QO-Qudits
For completeness, we give a short review of the Hamiltonian used in our analysis. Note
that we do not use the hat notation for operators in this section (i.e., we do not denote the
operator A by Â) because we instead take the notation that operators with no hat operate on
the sideband qubit manifold that we will introduce in more detail, while the operators with
tildes operate on the carrier qubit manifold, also to be introduced in more detail. The total
Hamiltonian of the system is given by H = H0 +HI , where H0 = ~!0�z/2 + ~!za†a is the
non-interacting Hamiltonian of the qubit and oscillator. The interaction between the qubit
and the oscillator can be described by a spin-1/2 particle interacting with an electromagnetic
(EM) field,

HI = �~µ · ~B, (3.7)

where ~µ = µ~�/2 is the magnetic moment and ~B = Bx cos (kz � !t+ �) is the magnetic field
associated with the external drive. In the second quantized form, the position z = z0(a+a†),
where z0 is the characteristic length of the oscillator’s ground state motional wave function,
a and a† are the annihilation and creation operators of the oscillator.

Under the dipole approximation ⌘ ⌘ kz0 ⌧ 1 and abandoning the fast rotating terms,
we can expand Eq. (3.7) into power series of ⌘. Depending on the frequency of the external
drive !, the following unitary operations that couple different states of the QO-qudits may
be implemented. Denote the computational basis of the QO-qudit as {|↵, ni} where ↵ = 0, 1
labels the two qubit states, and n = 0, 1, 2, . . . labels the oscillator levels. When ! = !0,
the EM field couples the lower and upper levels of the qubit directly, leading to a carrier
pulse Vc that performs the same rotation P (✓, �) in each subspace {|0, ni , |1, ni}

Vc(✓, �) = exp
h
i
✓

2
(ei��+ + e�i���)

i
=

1M

n=0

P (✓, �), (3.8)

where P (✓, �) is a single qubit rotation around an axis with angle � in the xy-plane by an
amount ✓. We can likewise couple each pair of {|0, ni , |1, n� 1i} (n = 1, 2, . . .) states
using the first-order red sideband transition by setting ! = !0 � !z, leading to

Vs(✓, �) = exp
h
i
✓

2
(ei��+a+ e�i���a†)

i
=

1M

n=1

Qn(✓,�). (3.9)

In the above, �± = (�x ± i�y)/2 and �x, �y, �z are the Pauli operators of the qubit. The
rotation angle ✓ and rotation axis � are given by

✓ = �µBt⌘m

2~m!
, (3.10)

� = �+ (m mod 4)
⇡

2
, (3.11)
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with m = 0 for the carrier pulse and m = 1 for the first-order sideband pulse, where t is the
pulse duration. Note the red sideband performs a n-dependent rotation Qn along the same
axis defined by � but by a different rotation angle on each 2D subspace. The first-order blue
sideband as well as higher order sideband transitions can be similarly derived. Since the
blue sideband pulse can be obtained by conjugating the red sideband pulse using a carrier
⇡-pulse, we only need to consider the carrier and the red sideband pulses. In the following,
we will show that Vc and Vs as defined in Eqs. (3.8) and (3.9) are sufficient to generate
arbitrary unitary operations in QO-qudits.

An energy level diagram of the qubit-oscillator system as well as relevant transitions
are labeled in Fig. 3.1, with the definition of a d-QO-qudit explicitly shown. To simplify
the discussion, we partition the Hilbert space of a d-QO-qudit into sets of two-dimensional
subspaces in two different ways based on the action of the red sideband pulse and the
carrier pulse. Each two-dimensional subspace can be viewed as a single qubit. The sideband
qubit manifold (sQM) are spanned by states {|0, ji , |1, j � 1i}nj=1 where each subspace is
labeled by its corresponding value of j. We do not include states |0, 0i and |1, ni in sQM
because they remain intact during the sideband operation (up to a parity phase). The carrier
qubit manifold (cQM) are spanned by {|0, ji , |1, ji}nj=0, where j start from 0 instead of 1.
According to the above definition, there are n nontrivial 2D subspaces in the sQM and (n+1)
nontrivial 2D subspaces in the cQM. To differentiate the unitary operations on these two
qubit manifolds, we will use a tilde when referring to the cQM.

Figure 3.1: Energy level diagram in a d-QO-qudit. The first index in the state label represents
the qubit state and the second represents the oscillator Fock level. Red arrows indicate states
that are coupled through red sideband transitions (forming the sQM), while blue arrows
indicate states coupled through the carrier pulse (forming the cQM).
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3.4 Closing Off an Infinite-dimensional Harmonic Oscil-
lator

The first step toward constructing a QO-qudit is to close off a low energy subspace of the
oscillator, which serves as the computational space. The closedness of a computational space
means that any the states inside it will not leak to any states outside while performing any
quantum computations. This is an important step to accomplish since any leakage will result
in a non-unitary evolution of the computational space and ruin the computation immediately.
In general, this is difficult to achieve because there are infinitely many states outside of the
finite computational space for an oscillator, which suggests that we may need to eliminate
infinitely many coupling amplitudes between the computational space and its orthogonal
space. This general condition, nevertheless, is greatly simplified in our case due to the
partition of the full Hilbert space into many 2D subspaces. Moreover, since each unitary
operation may leak states outside, there is leakage possibly at every step in performing
quantum computation as is the case in Ref. [MM13]. We take a different approach here
by selecting a subset of unitary operations such that the closedness of the computational
space is always guaranteed. We will describe in detail how this can be accomplished in the
following.

In particular, in Sec. 3.4.1, we present a method by which we close off a transition in
order to realize a finite Hilbert space. Then in Sec. 3.4.2, we discuss conjugacy classes, a
related component that is fundamental to our recursive cleaning proof.

3.4.1 Close Off the Transition on the Boundary
From Fig. 3.1, we first note that all carrier transitions P (✓, �) do not leak states in the
d-QO-qudit outside for any d. As a result, we need only focus on the sideband pulses. The
only sideband transition that leaks states is the Qn+1(✓, �) transition on the boundary that
couples the |1, ni state inside to the state |0, n+ 1i outside of the QO-qudit. It is therefore
sufficient to shut off the coupling between these two states. We can calculate explicitly the
matrix elements of Qn+1 to be

Qn+1(✓, �) =


cos ✓n+1 ie�i� sin ✓n+1

iei� sin ✓n+1 cos ✓n+1

�
, (3.12)

where ✓n+1 =
p
n+1
2 ✓. When driving a multiple of 2⇡ pulse from |0, n+ 1i to |1, ni, i.e.,

✓n+1 = ⇡k where k is an integer, we can decouple these two states since sin ✓n+1 = 0. The
smallest ✓ (shortest pulse, k = 1) that can realize this decoupling is

✓ =
2⇡p
n+ 1

, (3.13)

which gives

Qn+1

✓
2⇡p
n+ 1

, �

◆
=


�1 0
0 �1

�
. (3.14)

This constraint also guarantees that the operation on |1, ni is trivial (up to a parity phase),
which is why we exclude it from the subspaces of the sQM.
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3.4.2 Conjugacy Class
It may be argued that the above requirement on ✓ to be discrete special values seems to
significantly constrain the number of possible unitaries we can apply, and thus hampers
the universality of the QO-qudit. However, this is not the case because conjugating a closed
sideband pulse using an arbitrary unitary operation leads to another closed unitary operation,
i.e., an operation F = U †GU will be closed for an arbitrary unitary U if the given unitary G
is closed. In the case of SU(2), F will be a rotation on the Bloch sphere by the same angle
✓ as the original rotation G, but along a different axis defined by U . This concept of the
conjugacy class of a given unitary operation provides us enough flexibility to construct new
unitaries and is the key idea behind our recursive cleaning proof, which we shall discuss in
detail in the next section.

3.5 Universality Proof

With a closed computational space (QO-qudit) established, we next construct arbitrary
unitary operations on this subspace using the operations given in Eqs. (3.8) and (3.9) subject
to the closedness condition, which we refer to as the universality of the QO-qudit. We prove
the QO-qudit universality in this section in two different pictures. We give some intuition
of the proof in the Hamiltonian picture in Sec. 3.5.1. We then move to the unitary picture
and give explicit constructions for arbitrary QO-qudit unitary operations in two steps, as is
described in Sec. 3.5.2 and Sec. 3.5.3. In particular, we first reduce the QO-qudit universality
to elementary SU(2) rotations in sQM in Sec. 3.5.2. Then we give explicitly constructions
for such elementary SU(2) rotations in the sQM in Sec. 3.5.3.

3.5.1 Intuition in the Hamiltonian Picture
One of the well-known criteria for the universality of qudit-based quantum computation
is the ability to perform arbitrary SU(2) rotations between any two levels in the qudit
space [Got99; BOB05]. In the Hamiltonian picture, this means we need to obtain the full
su(d) Lie algebra with (d2 � 1) elements that generates the SU(d) group of the d-QO-
qudit. Matrix representations of such generators are also known as the generalized Gell-
Mann matrices (GGMs) [BK08] which are all Hermitian (See Appendix A for a definition
of GGMs). In the special case of a qubit, d = 2, there are three generators, i.e., the Pauli
matrices. Similar to the qubit case, these GGMs can be classified into three categories
denoting the rotation of x, y, and z type, respectively. Moreover, the z type GGMs may be
obtained by multiplying the x and y types. We will give an argument on how to generate all
the GGMs of a single d-QO-qudit. The aim of this section is mainly to convey an intuition
of our proof. In the next several sections we will provide a rigorous proof in the unitary
picture.

As we noted before, the first observation from Fig. 3.1 is that the sideband pulse (or the
carrier pulse) naturally partitions the d-QO-qudit into n small 2D subspaces (again states
|0, 0i and |1, ni are discarded). In other words, the Hamiltonian that generates the sideband
pulse can be written as a direct sum of n GGMs. By controlling the phase in Eq. (3.11),
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the n GGMs can either be of x or y type. Therefore, one simple idea to generate a single
clean GGM is to cancel the other (n� 1) GGMs in the direct sum by dynamical decoupling.
The
p
n dependency of the Rabi frequency for each subspace in the sideband pulse provides

a possibility for such decoupling to be done. To see this more clearly, imagine that we have
the GGM Hn for the d-QO-qudit in the sideband manifold

Hn = 01 � · · ·� ⌃k � · · ·� 0n � hn+1 � · · · , (3.15)

where 0n is a null Hamiltonian in the nth subspace, ⌃k 2 {�x, �y}, hn+1 = r̂n+1 · � is some
arbitrary Hamiltonian in the (n + 1)th subspace defined by a unit vector r̂n+1. Our goal is
then to create the corresponding GGM Hn+1 for the (d+ 2)-QO-qudit

Hn+1 = 01 � · · ·� ⌃k � · · ·� 0n � 0n+1 � hn+2 � · · · (3.16)

Recall that we can always flip the sign of a single-qubit Hamiltonian by conjugating it using
an SU(2) rotation along an axis that is perpendicular to the Hamiltonian. One simple
example of such phase flip is X†ZX = �Z, where X = i�x. We may therefore use such
dynamical decoupling trick to flip the phase of hn+1 in Eq. (3.15) by conjugating it with a
set of red sideband pulse Vs such that

hn+1 + (V †
s )n+1hn+1(Vs)n+1 = hn+1 � hn+1 = 0n+1. (3.17)

This reproduces the 0n+1 term in Eq. (3.16). This conjugation of course also alters ⌃k in
Eq. (3.15) into a different Hamiltonian, but the deviation from ⌃k may be cleaned again by
conjugating using another set of red sideband pulses to fully recover Eq. (3.16). These step
can be repeated recursively to obtain GGMs for any n in the sQM manifold, and this is also
the main technique we will use in our proof in the next few sections.

The decoupling described above will enable us to generate GGMs that couple two adjacent
states {|0, ji , |1, j � 1i}, but it remains to generate other GGMs that couple states far from
each other. This leads to our second observation from Fig. 3.1: alternatively applying the
GGMs in the sQM and those in the cQM can couple states far apart together, provided that
we can access the cQM GGMs. We will show in the next section how rotations in the cQM
can be generated from those in the sQM. These GGMs then give us the universality for the
full SU(d) group of a d-QO-qudit.

3.5.2 From Clean Elementary SU(2) Rotations in sQM to QO-
Qudit Universality

In this section, we will start from the qudit criteria in Ref. [Got99; BOB05], and show that
arbitrary SU(2) rotations between any two levels in the QO-qudit can be obtained from a
set of clean elementary SU(2) rotations in sQM alone. This is accomplished in two steps as
follows. First, in Sec. 3.5.2.1, we reduce the QO-qudit universality to the ability to construct
arbitrary clean SU(2) rotations in both sQM and cQM. Secondly, by a basis transformation
from the sQM to the cQM, combining with dynamical decoupling [VC05], we show that
constructing arbitrary clean SU(2) rotations in both sQM and cQM can be further reduced
to the construction of elementary clean SU(2) rotations solely in the sQM in Sec. 3.5.2.2.
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3.5.2.1 Arbitrary clean SU(2) rotations in sQM and cQM implies QO-qudit
universality

We define an arbitrary clean SU(2) rotation in the kth subspace of sQM for a d-QO-qudit
(d = 2(n+ 1)) as

U (k)
n = I1 � I2 � · · ·�Wk � · · ·� In, (3.18)

which performs a nontrivial arbitrary SU(2) rotation Wk in the kth sideband subspace and
leaves the other sideband qubits unchanged, i.e., acted by an identity operation. Similarly,
an arbitrary clean SU(2) rotation in the kth subspace of the cQM is likewise denoted as

Ũ (k)
n = Ĩ0 � Ĩ1 � · · ·� W̃k � · · ·� Ĩn, (3.19)

where tilde is used to distinguish it from the case of sQM above. Also, note that Ũ (k)
n is a

direct sum of (n + 1) carrier qubits, while U (k)
n is composed of n sideband qubits, which is

evident from Fig. 3.1.
For the QO-qudit universality, we require arbitrary unitary operations Vt between any

two levels, say |↵, pi and |�, qi, where p  q without loss of generality and ↵, � = 0 or 1.
In the following, we give explicit constructions in the case of ↵ = 0, � = 1; the other three
cases (↵ = � = 0, ↵ = � = 1, ↵ = 1 and � = 0) may be constructed in a similar way.

If p = q, Vt simply corresponds to a clean SU(2) rotation Ũ (p)
n in the cQM given by

Eq. (3.19). In the case of p < q, there is no single rotation in Eq. (3.18) or (3.19) that can
produce the coupling between |0, pi and |1, qi. However, we may first realize a unitary Ũ (p)

n

such that the SU(2) rotation in its pth subspace W̃p satisfies W̃p = Vt. We may then perform
a sequence of Pauli X gates to swap the state |1, pi with |0, p+ 1i, and then |0, p+ 1i with
|1, p+ 1i and so on, until finally |1, qi is reached. Such a sequence of swap operations can
be easily realized by chaining multiple clean SU(2) rotations in Eq. (3.18) and Eq. (3.19)
together. The overall pulse sequence to realize Vt between |0, pi and |1, qi (with the rest
state unaltered) is then

[U (p+1)
n Ũ (p+2)

n · · ·U (q�1)
n Ũ (q)

n ]† · Ũ (p)
n · [U (p+1)

n Ũ (p+2)
n · · ·U (q�1)

n Ũ (q)
n ], (3.20)

where Wk = W̃k = X in all U (k)
n and Ũ (k)

n for k = p+ 1, p+ 2, . . . , q � 1, q. X = i�x is the
usual Pauli X gate.

3.5.2.2 Elementary clean SU(2) rotations in sQM implies arbitrary clean SU(2)
rotations in sQM and cQM

In the above, we have shown that QO-qudit universality can be constructed from a set of
clean arbitrary SU(2) rotations in sQM and cQM given by Eq. (3.18) and Eq. (3.19). Now
we will show that such clean arbitrary SU(2) rotations may be constructed solely from a set
of elementary clean SU(2) rotations in sQM alone.

We first define an elementary clean SU(2) rotation V (k)
n in sQM (for the kth subspace)

for a d-QO-qudit (d = 2(n+ 1))

V (k)
n = I1 � I2 � · · ·� ⌃k � · · ·� In, (3.21)
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where ⌃k = {X, Y, I, �I}. It is now straightforward to see how an arbitrary clean SU(2)

rotation U (k)
n in Eq. (3.18) may be obtained from Eq. (3.21) and sideband transitions using

refocusing.
The basic idea of refocusing has been presented in the Hamiltonian picture in Sec. 3.5.1,

we shall state it here again in the unitary picture here. For an arbitrary single qubit rotation
U(✓, �) in the xy-plane, we first note that by conjugating with Z gate, we can reverse the
rotation direction ZU(✓, �)Z = U(�✓, �). Therefore, the following pulse sequence would
effectively cancel the effect of U(✓, �) and produce an identity operation

U(✓, �) · Z · U(✓, �) · Z = I. (3.22)

Now, note that an arbitrary rotation Wk on the kth subspace of sQM in Eq. (3.18) can be
decomposed as two rotations with rotation axis lying in the xy-plane (see Appendix B).
Therefore, it suffices to assume W (k)

n is a rotation with an axis in the xy-plane. Imagine we
start from a sideband transition in Eq. (3.9), where (✓, �) are properly chosen such that the
sideband rotation in the kth subspace satisfies Qk(2✓, �) = W (k)

n . And this also means for
all other subspaces, there are nontrivial rotations that are not the identity operation. We
will use refocusing to eliminate those unwanted rotations in the other subspaces as follows.
From Eq. (3.21), we may construct the following unitary Z(k)

n

Z(k)
n = Z1 � Z2 � · · ·� Zk�1 � Ik � Zk+1 � · · ·� Zn, (3.23)

which applies a Pauli Z gate to each sideband qubit except the kth one (trivially acted upon
by identity). The following construction achieves Eq. (3.18)

U (k)
n = Vs(✓, �)Z

(k)†
n Vs(✓, �)Z

(k)
n , (3.24)

since Qj(✓, �) · Zj ·Qj(✓, �) · Zj = I for all j 6= k. While for the kth subspace,

Qk(✓, �) · Ik ·Qk(✓, �) · Ik = Qk(2✓, �) = Wk. (3.25)

This completes our construction of Eq. (3.18) from Eq. (3.21).
We now turn to construct arbitrary clean rotations in the cQM. This is facilitated by

the fact that alternations of ±I in the sQM is equivalent to I and Z gates in the cQM up
to a difference in the local parity. As an example, this is illustrated in Fig. 3.2 for the first
four sideband qubits being �I1 � I2 � �I3 � I4. They are equivalent to a gate sequence of
Z̃0 ��Z̃1 � Z̃2 ��Z̃3 for the first four carrier qubits.

In general, this conversion from the sQM to the cQM is described by

W̃i�1 Wi Wi�1

Z̃ �I +I
-Z̃ +I �I
Ĩ +I +I
-Ĩ �I �I
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Figure 3.2: Translating between operations on sideband subspaces and carrier subspaces.
The top energy diagram represents the unitary �I1 � I2 ��I3 � I4 � · · ·� In � · · · acting
on sideband subspaces which translates to the bottom energy diagram of Z̃0 ��Z̃1 � Z̃2 �
�Z̃3 � Ĩ4 � · · ·� Ĩn � · · · .

The above conversion also means that the {I, �I} in each subspace from 1 to (n+ 1) in
sQM is equivalent to {Ĩ , Z̃} in subspaces from 0 to n in the case of cQM. Therefore, it is
guaranteed that we can obtain the following unitary Z̃(k)

n in cQM

Z̃(k)
n = Z̃0 � Z̃1 � · · ·� Z̃k�1 � Ĩk � Z̃k+1 � · · ·� Z̃n, (3.26)

which performs a Pauli Z gate on all carrier qubits of a d-QO-qudit, except the kth qubit
where it performs the identity. It follows that for a clean arbitrary unitary in Eq. (3.19)
where the kth subspace has a nontrivial rotation W̃k (assuming it is in xy-plane without
loss of generality), we may choose a carrier pulse in Eq. (3.8) with (✓, �) properly such
that the carrier transition on each carrier qubit P (2✓, �) = W̃k. The following construction
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reproduces Ũ (k)
n

Ũ (k)
n = Vc(✓, �)Z̃

(k)†
n Vc(✓, �)Z̃

(k)
n , (3.27)

due to Eq. (3.22) for all carrier subspaces except the kth one, and for the kth subspace,

P (✓, �) · Ĩk · P (✓, �) · Ĩk = P (2✓, �) = W̃k. (3.28)

This completes our construction of Eq. (3.19) from Eq. (3.21). Specifically, by choosing W̃k

to be a rotation on the kth carrier qubit with a closed trajectory on its Bloch sphere, we can
accumulate an arbitrary Berry phase on the |0, ki state. Combining many such Berry phase
rotations together for different k, we immediately realize the SNAP gate in Ref. [Kra+15].

3.5.3 Construction for the Clean Elementary SU(2) Rotations in
sQM

In this section, we begin by giving a recursive proof in Sec. 3.5.3.1 for how to construct
the elementary clean SU(2) rotations in the sQM, as in Eq. (3.21). Our proof utilizes the
repeated pattern of the oscillator’s spectrum. In doing so, we first give the base case of a
two-level oscillator coupled to a qubit, and then show how to clean up each subspace into
the elementary operations for an (n+1)-level oscillator recursively. We then provide bounds
on the number of sideband pulses required in our construction in Sec. 3.5.3.2.

3.5.3.1 Recursive proof

Our claim is that we can construct arbitrary clean rotations upon any 2D subspace in the
sQM manifold of a d-QO-qudit (again d = 2(n+1)), V (k)

n = I1� I2� · · ·�⌃k� · · ·� In� · · ·
with ⌃k 2 {X, Y, �I}, k  n. When n  2, we provide a direct construction. For n = 1, we
can easily select (✓, �) such that V (1)

1 = Vs(✓, �) = ⌃1. For n = 2, we will directly construct
I1 � X2 and X1 � I2. Obtaining Y instead of X simply corresponds to mapping every red
sideband pulse Vs(✓, �) 7! Vs(✓, �+

⇡
2 ), and obtaining �I instead of X is done by repeating

the sequence as X2 = �I (note we define X = i�̂x throughout the paper). The following
pulse sequences use conjugation to orchestrate clean rotations on the first two subspaces in
4 pulses:

Vs

⇣p
2⇡, �1

⌘
Vs

⇣⇡
2
, 0
⌘
Vs

⇣p
2⇡, �1

⌘
Vs

⇣
�⇡
2
, 0
⌘

= X1 � I2 � · · · (3.29)

Vs (2⇡, �2)Vs

✓
⇡

2
p
2
, 0

◆
Vs (2⇡, �2)Vs

✓
� ⇡

2
p
2
, 0

◆

= I1 �X2 � · · · (3.30)

where �1 = cos�1
⇣
cot ⇡p

2

⌘
and �2 = cos�1

�
cot
p
2⇡
�
.

An example pulse sequence for n = 2 is shown in Fig. 3.3. For n > 2, we provide a
recursive construction that also makes use of conjugation sequences to manipulate particular
subspaces without disturbing others.
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Figure 3.3: A pulse sequence for n = 2 to realize I1�X2 in the first two sQM subspaces. Each
Bloch sphere represents an sQM subspace spanned by the states at the North and South
pole. The initial Bloch vector in dashed green (pointing towards North pole) is rotated to
the final Bloch vector in solid red with the four pulse sequence from Eq. (3.30).

Base Case We begin by cleaning (taking to the identity) two subspaces µ1, µ2 2 M =
{1, . . . , n} \ k with the constraint:

s
k

µ1
,

s
k

µ2
/2 Z. (3.31)

Using red sideband pulses Vs(✓, �), we can construct

U2 = Vs

✓
2⇡
p
µ1

, 0

◆
Vs

✓
⇡
p
µ2

,
⇡

2

◆
Vs

✓
2⇡
p
µ1

, 0

◆
Vs

✓
�⇡
p
µ2

,
⇡

2

◆

= ⌦(2)
1 � · · ·� Iµ1 � · · ·� Iµ2 � · · ·� ⌦(2)

k � · · ·� ⌦(2)
n � · · ·

(3.32)

where the order of µ1, µ2, k is arbitrary. Note that U2’s subscript and ⌦(2)’s superscript
denote how many subspaces have been cleaned to the identity. With the constraint on
µ1, µ2 in Eq. (3.31), it is guaranteed that ⌦(2)

k 6= ±Ik. This is important since ±I each are
the only element in their conjugacy class; if ⌦k = ±Ik, then we can never change ⌦k via
conjugation. Our construction relies on using conjugated pulse sequences, so we must avoid
⌦k = ±Ik at this step if we want it to be any other rotation.

Recursive step Assume we have cleaned j (j < n) subspaces indicated by the set
Mj = {µ1, µ2, . . . , µj}. Then, ignoring order in the direct sum, we have

Uj =
M

µi2Mj

Iµi � ⌦
(j)
k �

M

m2M\Mj

⌦(j)
m (3.33)
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We then choose a µ 2 M \ Mj and clean ⌦(j)
µ next. To do this we will move from SU(2)

into SO(3) using the group homomorphism R : SU(2) �! SO(3) by identifying ~s 2 R3 with
s 2 su(2) via ~s $ s = ~s · ~�, with Pauli matrices ~�. Then, any Q(✓, �) 2 SU(2) is mapped
to a rotation about an axis ~r through angle ✓, R~r(✓) 2 SO(3) corresponding to s 7! Q†sQ.

In order to clean R
⇣
⌦(j)

µ

⌘
= R~µ(✓µ), we choose an axis ~µ? ? ~µ and note the following

dynamical decoupling sequence

R~µ(✓µ) [R~µ?(⇡)R~µ(✓µ)R~µ?(�⇡)] = R~µ(✓µ)R~µ(�✓µ) = I, (3.34)

which cleans the µth subspace. To find the red sideband pulses that perform R~µ?(⇡) on
the µth subspace, we must decompose R~µ?(⇡) into rotations about axes in the xy-plane.
Red sideband pulses Vs(✓, �) =

L1
n=1 Qn(✓, �) can be decomposed into SU(2) rotations,

Qn(✓, �) which are mapped to a SO(3) rotation R~�(
p
n✓) where ~� = (cos�, sin�, 0) lies in

the xy-plane. We decompose R~µ?(⇡) into R~a(✓a)R~b(✓b) where ~a, ~b lie in the xy-plane (see
Appendix B). Then, the inverse mapping R�1 : R~a(✓a)R~b(✓b) 7! Qµ

⇣
✓ap
µ , �a

⌘
Qµ

⇣
✓bp
µ , �b

⌘

specifies the necessary red sideband pulses. Thus, setting C = Vs

⇣
✓ap
µ , �a

⌘
Vs

⇣
✓bp
µ , �b

⌘
, we

find
Uj+1 = UjCUjC

† =
M

µi2Mj+1

Iµi � ⌦
(j+1)
k

M

m2M\Mj+1

⌦(j+1)
m , (3.35)

where Iµi are unaffected by the action of C and µ = µj+1 is added to set of cleaned subspaces
Mj in Eq. (3.33) to give Mj+1 in Eq. (3.35). By repeating this procedure (n� 3) times built
on the base case, we can clean all the subspaces of the d-QO-qudit except the kth which we
shall deal with in the final step below.

Final step When j = n�1, we have cleaned all but the kth subspaces in the d-QO-qudit.
To transform ⌦(n�1)

k into ⌃k, we examine the problem in SO(3) taking R(⌦(n�1)
k ) = R~k(✓k)

and R(X) = Rx(⇡). WLOG, we only consider ⌃k = X since Y belongs to the same conjugacy
class and X2 = �I so we can simply perform our construction for X twice to achieve �I.
We once again use conjugation to maintain the cleaned subspaces while taking advantage of
the fact that the conjugacy classes of SO(3) each consist of all rotations by the same angle,
C(✓) = {R~r(✓)|8~r 2 R3}, demonstrated in Fig. 3.4b. Using a pair of conjugations

⇥
R~r1(✓1)R

l
~k
(✓k)R~r1(�✓1)

⇤⇥
R~r2(✓2)R~k(✓k)R~r2(�✓2)

⇤

=R~k1
(l✓k)R~k2

(✓k) (3.36)

we can rephrase the problem as finding ~k1, ~k2 such that R~k1
(l✓k)R~k2

(✓k) = Rx(⇡), given
l =

l
⇡
✓k

m
� 1 to guarantee rotation by an angle close to ⇡. We can always find satisfactory

~k1, ~k2 because the triangle inequality on the sphere states that a composition of two rotations
R~a(↵)R~b(�) = R~c(�) results in a rotation by an angle less than the sum of angles, |�| 
|↵ + �| as shown in Fig. 3.4a. So, by choosing l we guarantee that we can achieve an
angle of at least ⇡, and with judicious choice of ~k1, ~k2 we can achieve a rotation by ⇡
about any axis. To find the necessary red sideband pulses, we decompose R~r1(✓1) and
R~r2(✓2) as before and use the inverse mapping, R~r1(✓1) 7! Qk

⇣
✓a, 1p

k
, �a, 1

⌘
Qk

⇣
✓b, 1p

k
, �b, 1

⌘
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and R~r2 (✓2) 7! Qk

⇣
✓a, 2p

k
, �a, 2

⌘
Qk

⇣
✓b, 2p

k
, �b, 2

⌘
. Setting Cp = Vs

⇣
✓a, pp

µ , �a, p

⌘
Vs

⇣
✓b, pp

µ , �b, p

⌘
,

p 2 {1, 2} we find

V (k)
n = C1U

l
n�1C

†
1C2Un�1C

†
2 = I1 � I2 � · · ·�Xk � · · ·� In � · · · (3.37)

Thus, we can construct elementary sQM rotations in a d-QO-qudit where d = 2(n + 1) for
any n.

(a) (b)

Figure 3.4: (a) Composition of rotations R~a(↵)R~b(�) = R~c(�) and (b) conjugation of a
rotation B by A produces B0 which has the same angle as B due to the congruent triangles
formed by ABC and A†B0C.

3.5.3.2 Bounds on the number of pulses required

Now that we have shown we can create the elementary sQM rotations, we would like to
bound the number of red sideband pulses needed to create V (k)

n in this section. One intuition
is that the number of pulses required will increase at least exponentially as n increases,
since each step in the recursion will cost at least a constant number of pulses due to the
conjugation procedure. We shall analyze this more precisely in the following.

To create the identity on any set of (n � 1) subspaces in the sQM of a d-QO-qudit, we
only need ⇠ 2n pulses. At the jth recursive step we use |Uj+1| = 4+ 2|Uj| pulses, where |Uj|
denotes the number of pulses in the sequence. We can see this by examining Eq. (3.35) which
uses |Uj| twice and both C, C† are made up of two red sideband pulses by definition. We
begin with 22 pulses at the base step U2, and at each step j we have |Uj| =

Pj
d=2 2

d = 2j+1�4.
Thus, to clean j = n� 1 subspaces to identity, we need (2n � 4) pulses. In the final step, a
total of 8 + (l + 1)|Un�1| = (l + 1)(2n � 4) + 8 is required to construct V (k)

n in Eq. (3.37).
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In order to bound l, we must understand how the base step and each recursive step j
transforms ⌦(j)

k into ⌦(j+1)
k . For notation clarity, (Uj)m = ⌦(j)

m indicates the SU(2) rotation
upon the mth subspace in Uj (as defined in Eq. (3.32) and Eq. (3.33)). ⌦(j)

m maps to the
SO(3) rotation R~mj

⇣
✓(j)m

⌘
. We take the C, µ, Uj, Uj+1 as defined in the recursive step above.

In the following we will show the conditions such that ✓(j)k � ⇡
t for all j < n for some t > 2

and t 2 Z.
In the base step, we can easily calculate the rotation angle of ⌦(2)

k = R~k2

⇣
✓(2)k

⌘
from

Eq. (3.32):

✓(2)k =2 cos�1

(
1

2

"
1 + cos

 
2⇡

s
k

µ1

!

�2 cos
 
⇡

s
k

µ2

!
sin2

 
⇡

s
k

µ1

!#)
. (3.38)

We can always choose µ1, µ2 < k such that ✓(2)k � ⇡
2 . For k ⇠ 1, this can be easily calculated

explicitly. For general k, if we simply take µ1 as the number closest to k
2 that abides by the

base case constraint, then Eq. (3.38) is approximately

✓(2)k = 2 cos�1

"
1

2

 
1 + cos

⇣
2
p
2⇡
⌘
� 2 cos

 
⇡

s
k

µ2

!
sin2

⇣p
2⇡
⌘!#

. (3.39)

Thus, for ✓(2)k � ⇡
2 , we obtain a periodic condition 0.18 <

q
k
µ2
� 2z < 0.74, z 2 Z, which

can be easily fulfilled for a range of µ2 < k.
We will show the conditions such that ✓(j+1)

k � ⇡
t if we have ✓(j)k � ⇡

t at each recursive
step.

Recall, at the jth step we perform Uj+1 = UjCUjC† where C = Vs

⇣
✓ap
µ , �a

⌘
Vs

⇣
✓bp
µ , �b

⌘
.

Restricting our attention to the kth subspace, we examine C and its action upon ⌦(j)
k =

R~kj

⇣
✓(j)k

⌘
in the SO(3) picture:

(C)k 7! R~a

 
✓a

s
k

µ

!
R~b

 
✓b

s
k

µ

!

:= R~rab (✓ab) , (3.40)
�
CUjC

†�
k
7! R~rab (✓ab)R~kj

⇣
✓(j)k

⌘
R~rab (�✓ab)

:= R~kab

⇣
✓(j)k

⌘
, (3.41)
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where

~kj · ~kab =
⇣
~kj · ~rab

⌘2

+


1�

⇣
~kj · ~rab

⌘2
�
cos ✓ab (3.42)

✓ab =2 cos�1

(
1

2

"
cos

 
✓a
2

s
k

µ

!
cos

 
✓b
2

s
k

µ

!

�
⇣
~a ·~b

⌘
sin

 
✓a
2

s
k

µ

!
sin

 
✓b
2

s
k

µ

!#)
(3.43)

Recall, ~a, ~b, ✓a, ✓b are found by decomposing R~µ?(⇡) = R~a (✓a)R~b (✓b) into two rotations
about axes in the xy-plane. Using these definitions we can write the outcome of ⌦(j+1)

k 7!
R~kj+1

⇣
✓(j+1)
k

⌘
= R~kj

⇣
✓(j)k

⌘
R~kab

⇣
✓(j)k

⌘
in SO(3). We write explicitly our condition for ✓(j+1)

k :

✓(j+1)
k =2 cos�1


1

2

⇣
1� ~kj · ~kab +

⇣
1 + ~kj · ~kab

⌘
cos ✓(j)k

⌘�

�⇡
t

(3.44)

Substituting ~kj · ~kab with Eq. (3.42) into Eq. (3.44), we can rewrite the condition as a
constraint on ✓ab or on ~rab:

|~kj · ~rab| �
s

cos ⇡
2t � 1

cos ✓(j)k � 1

cos ✓ab �
1� 2 cos ⇡

2t � cos ✓k

1� cos ✓(j)k

(3.45)

This indicates that we need R~rab (✓ab) to not be close to R~kj,?
(⇡) where ~kj,? ? ~kj. When

t ⇠ 24 and |✓(j)k | � 2⇡
t , this condition is quite flexible and restricts cos ✓ab > �0.873 or

|~kj · ~rab| > 0.26. And when |✓(j)k | � 4⇡
t , cos ✓ab > �0.967 or |~kj · ~rab| > 0.128. At worst, when

|✓(j)k | = ⇡
t , the restriction is that cos ✓ab > �1

2 or |~kj · ~rab| > 1
2 . When µ ⌧ k or µ � k, the

conjugation rotations C affect the kth and µth subspaces very differently due to the rotation
(C)µ and (C)k being composed of rotations about the same axes, but by very different angles,
indicated by the ratio of k

µ . Thus, by changing how we decompose C into rotations in the

xy-plane, we can ensure the flexibility of R~rab(✓ab). When µ ⇠ k, specifically, when
q

k
µ ⇠ 1,

✓ab will be close to ⇡ because (C)µ is a rotation by ⇡. Thus, the only way to ensure ✓(j)k

is maintained, is to clean such µ when ~µ · ~kj . 1
2 , i.e. (Uj)µ and (Uj)k are rotations about

different enough axes. Also, note that 1
2 is a worst case scenario, when (Uj)k is a rotation by

precisely ⇡
t , and from our discussion of Eq. (3.45) this constraint becomes relaxed quickly.

We also note that when µ� k, the effect of the conjugation sequence upon the kth subspace
is negligible and so ~kab ⇠ ~kj =) ✓(j+1)

k ⇠ 2✓(j)k .
In order to roughly bound l for asymptotically large n, we consider two different cases:

k ⌧ n or k ⇠ n. When k is much less than n� 1, l is bounded by 4 by choosing t = 4. This
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is because the majority of recursive steps involve µ � k, thus we have many choices in the
order of the cleaning to almost double the angle on the kth subspace at a given step. Thus,
whenever ✓(j)k ⇠ ⇡

t , we can clean a subspace such that ✓(j)k ⇠ 2⇡
t , which provides an ideal

constraint from Eq. (3.45) for the next recursive step. And so we can improve the angle on
the kth space to ensure cleaning subspaces near k can be done optimally. When k � 1, we
have the opposite situation because for large k, �k =

p
k + 1 �

p
k ⇡ 1

2
p
k
. Thus, on the

order of
p
k pulses are needed to separate the rotations on the kth and (k + 1)st subspaces.

However, by cleaning the subspaces outside the range k ±
p
k, we are in effect separating

the subspaces near k from each other, albeit slower than directly applied pulses. This is
because (C)k, (C)k+1 perform almost the same rotation and differ slightly in the angle by on
the order 1p

k
. Thus, at every recursive step, we build up a difference in the axis of rotation

between the k and k + 1 subspace of about 1
k . So after ⇠ k

2 recursive steps, we build up a
difference of ⇠ 1

2 , the necessary difference for the worst case scenario in maintaining ✓(j+1)
k

when ✓(j)k = ⇡
t . Of course, we cannot guarantee that all subspaces within k ±

p
k can be

optimally separated from k at the same time, and so k  t  k2
p
k to capture the worst

case scenarios of cleaning between one and 2
p
k subspaces while their axes of rotation are

parallel to the kth subspace’s axis of rotation at each recursive step. Therefore, as it is highly
unlikely that the 2

p
k subspaces will all be exactly parallel to k and given our freedom to

clean subspaces, the majority of which are not near the kth, in any order, we generally bound
l by k2.

In summary, a total of (l + 2)(2n � 4) + 8 sideband pulses are needed to construct any
clean elementary SU(2) rotation in sQM in Eq. (3.37), where l is roughly O(k2) and k is
the subspace index (1  k  n). We know the decomposition of an arbitrary d⇥ d unitary
operation needs at most d(d�1)/2 two-level unitaries [NC10], and each two-level unitary can
be further constructed from roughly d clean elementary SU(2) rotations in sQM as described
in Sec. 3.5.2 (Eqs. (3.21), (3.23), (3.24), (3.26), and (3.27)). Thus, the total number of control
pulses needed for an arbitrary d⇥ d unitary operation is O(d52d/2), or equivalently O(n52n)
in terms of n since d = 2(n+ 1). Note that this scaling comes from a worst case estimation,
and for typical unitaries one might expect a better scaling.

3.6 Algorithms and Examples
We have also implemented an algorithm according to the above constructive proof to pro-
duce composite pulse sequences that can realize arbitrary elementary clean SU(2) unitary
operations. We describe our algorithm in detail in Sec. 3.6.1, where an example construction
of clean elementary Pauli X gate for an 8-QO-qudit (3 subspaces in sQM and 4 subspaces
in cQM) is given. We then present in Sec. 3.6.2 more extensive numerical results on the
construction of clean elementary Pauli X gates in d-QO-qudits (d = 2(n+1)) for all n  22
and demonstrate the agreement between numerical and theoretical bounds on the number
of sideband pulses.
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3.6.1 An Algorithm for Constructing Gates on QO-Qudits
Following is an algorithm for constructing a gate with identity operations I on all of the
subspaces apart from subspace k, which has an X or Y gate (i.e., I1�· · ·�⌃k�· · ·�In, where
⌃k 2 {X, Y }). This algorithm parallels the recursive procedure described in Sec. 3.5.3.1;
however, we do not implement the strategies described in Sec. 3.5.3.2 but rather rely on
empirical optimization over the four degrees of freedom described at the end of Sec. 3.6.1 to
achieve efficient pulse sequences.

Note that we adopt the convention of using the SO(3) representation in which a rotation
about unit vector r̂ by angle ✓ is represented by Rr̂(✓) throughout the description of the
algorithm. Once our sequence involves only rotations about unit vectors in the xy-plane, we
can convert each rotation into the SU(2) representation Vs(✓, �) for red sideband pulses.

1. Construct an ordered pulse sequence SI (order goes from left to right) that results in
the operation I1 � · · ·� ⌦k � · · ·� In.

(a) Select distinct µ1, µ2 2 Z with 1  µ1, µ2  n such that
q

k
µ1
,
q

k
µ2
62 Z.

(b) Initialize SI to be the four-pulse sequence

SI  
⇢
Rŷ

✓
⇡
p
µ1

◆
, Rx̂

✓
2⇡
p
µ2

◆
, Rŷ

✓
⇡
p
µ1

◆
, Rx̂

✓
� 2⇡
p
µ2

◆�
(3.46)

that leaves Iµ1 and Iµ2 on subspaces µ1 and µ2 unchanged while rotating subspace
k.

(c) For each subspace m apart from k, µ1, and µ2 (i.e., for each m 2 Z with 1  m 
n, excluding k, µ1, and µ2), suppose that the operation on this subspace is ⌦m

after the application of pulse sequence SI . If ⌦m = Im, continue to the next such
m. Otherwise, let r̂m and ✓m be the axis and angle of the rotation induced by
⌦m, respectively, and then set

SI  
⇢
SI , Rr̂?m

✓
� ⇡p

m

◆
, SI , Rr̂?m

✓
⇡p
m

◆�
, (3.47)

where r̂?m is any unit vector perpendicular to r̂m.
Continue to the next such m and repeat, using the operation ⌦m on subspace m
following the application of the updated sequence SI .

2. Use pulse sequence SI to place an X or Y gate on subspace k.

(a) Letting ✓k be the angle corresponding to rotation ⌦k and r̂k the corresponding
axis, calculate l = d ⇡

✓k
e � 1, and define the components of unit vectors ↵̂ and �̂
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as follows. If the desired gate ⌃k is X, then we have

↵1 = cos
l✓k
2

csc
✓k
2

(3.48)

↵2 = csc
✓k
2

r
� cos2

✓k
2

+ (1� �2
2) sin

2 l✓k
2

(3.49)

↵3 = ��2 csc
✓k
2
sin

l✓k
2

(3.50)

�1 = cos
✓k
2
csc

l✓k
2

(3.51)

�3 = csc
l✓k
2

r
� cos2

✓k
2

+ (1� �2
2) sin

2 l✓k
2
, (3.52)

where �2 is a free real parameter with

|�2| 

s

1�
cos2 ✓k

2

sin2 l✓k
2

(3.53)

such that all of the components of ↵̂ and �̂ are real. Note that this range is
guaranteed to be nonempty because it follows from the definition of l by l =
d ⇡
✓k
e � 1 that

sin2 l✓k
2
� cos2

✓k
2
. (3.54)

Similarly, if the desired gate ⌃k is Y , then we have

↵1 = � csc
✓k
2

r
� cos2

✓k
2

+ (1� �2
1) sin

2 l✓k
2

(3.55)

↵2 = cos
l✓k
2

csc
✓k
2

(3.56)

↵3 = �1 csc
✓k
2
sin

l✓k
2

(3.57)

�2 = cos
✓k
2
csc

l✓k
2

(3.58)

�3 = csc
l✓k
2

r
� cos2

✓k
2

+ (1� �2
1) sin

2 l✓k
2
, (3.59)

where �1 is a free real parameter with

|�1| 

s

1�
cos2 ✓k

2

sin2 l✓k
2

(3.60)

such that all of the components of ↵̂ and �̂ are real, where this range is nonempty
for the same reason as that provided above.
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(b) For �̂, calculate

r̂� =
r̂k ⇥ �̂���r̂k ⇥ �̂

���
, (3.61)

✓� = cos�1
⇣
r̂k · �̂

⌘
, (3.62)

and calculate r̂↵ and ✓↵ similarly for ↵̂. Finally, the desired sequence is now

SI  
⇢
Rr̂�

✓
� ✓�p

k

◆
, Sl

I , Rr̂�

✓
✓�p
k

◆
,

Rr̂↵

✓
� ✓↵p

k

◆
, SI , Rr̂↵

✓
✓↵p
k

◆�
, (3.63)

where Sl
I denotes the l-fold repetition of the sequence SI .

To obtain a sequence with ⌃k = �I, the algorithm can be carried out for ⌃k = X and the
resulting sequence repeated, since throughout this work we define X = i�x, and (i�x)2 = �I.

Note that the rotation unit vectors r̂?m, r̂�, and r̂↵ need not be in the xy-plane, and so
the rotations about these vectors might not be achievable by a single rotation with axis
in the xy-plane. However, these rotations—and, more generally, any rotation Rr̂(✓)—can
also be algorithmically decomposed into an equivalent pair of xy-plane rotations according
to the subroutine in Appendix C. With this subroutine, any rotations about axes not in
the xy-plane are converted into sequences of two rotations about axes in the xy-plane, thus
ensuring that all rotations in our final sequence are about axes in the xy-plane. Finally, these
rotations about axes in the xy-plane in SO(3) notation of the form Rr̂(✓) with r̂ = hr1, r2, 0i
can be converted into the form of red sideband pulses Vs(✓, �) by the equivalence

Rr̂(✓)$ Vs(✓, atan2 (r2, r1)), (3.64)

where atan2 denotes the standard 2-argument arctangent function.
Finally, it is worth noting that there are four primary degrees of freedom in this algorithm—

namely,
i. the choice of µ1, µ2 for the initial four-pulse SI sequence;

ii. the order in which the operators on the remaining subspaces are converted to the identity;

iii. the axis r̂?m of the rotation used to conjugate SI when converting the operator on subspace
m to the identity; and

iv. the angle � in each decomposition of a rotation about an axis r̂ not in the xy-plane into
a sequence of two rotations about axes r̂1 and r̂2 in the xy-plane.

These degrees of freedom can be chosen accordingly to empirically minimize the number of
pulses in the sequence by ensuring that ✓k is near ⇡ after Step 1 of the algorithm, which in
turn minimizes l and thus minimizes repetition of the SI sequence.

This algorithm has been written in Python, and the code [Min21] has been used to
generate sequences of red sideband pulses of the the form Vs(✓,�) that produce the gates
I1 � I2 � X3 and I1 � I2 � Y3. The resulting parameters for the sequences are provided in
Table 3.1.
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I1 � I2 �X3 I1 � I2 � Y3

✓ � ✓ �

�1.0956 �2.8651 �1.3098 �2.7835
�⇡/
p
3 0.4867 �⇡/

p
3 0.4210p

2⇡ ⇡/2
p
2⇡ ⇡/2

⇡ 0 ⇡ 0p
2⇡ ⇡/2

p
2⇡ ⇡/2

�⇡ 0 �⇡ 0
⇡/
p
3 0.4867 ⇡/

p
3 0.4210

1.0956 �2.8651 1.3098 �2.7835
�1.8073 �0.3267 �1.4071 �2.6391
�2.0499 �⇡ �1.2674 0p

2⇡ ⇡/2
p
2⇡ ⇡/2

⇡ 0 ⇡ 0p
2⇡ ⇡/2

p
2⇡ ⇡/2

�⇡ 0 �⇡ 0
2.0499 �⇡ 1.2674 0
1.8073 �0.3267 1.4071 �2.6391

Table 3.1: Pulse sequences for I1 � I2 �X3 and I1 � I2 � Y3

3.6.2 Numerical Scaling of the Number of Pulses
To support the theoretical bound we derived on the construction in Sec. 3.5.3.2, we also use
our code to generate pulse sequences to construct gates of the form I1 � I2 � · · · � In�1 �
Xn up to the lowest 23 Fock levels of the oscillator, i.e., 22 subspaces in sQM (excluding
states |0, 0i and |1, ni from the sQM because they undergo trivial transformations in red
sideband pulses). We plot the total number of sideband pulses used in each case as a
function of n, as is shown in Fig. 3.5. The approximate linear dependence in log-scale
empirically demonstrates the exponential scaling of the number of pulses with the QO-qudit
dimension (or the truncated oscillator dimension), which is consistent with the bound proven
in Sec. 3.5.3.2. Note the small deviation of the numerical results from exact exponential
scaling in Fig. 3.5 is a manifestation of the several degrees of freedom mentioned in Sec. 3.6.1
that we can tune, which yields a slightly different number of pulses for each n. Also note the
gates I1 � I2 � · · · � In�1 � Xn synthesized here are all elementary SU(2) rotations in the
sQM, so the polynomial prefactor n5 (as described in Sec. 3.5 for an arbitrary n⇥n unitary)
does not apply.

3.7 Conclusions
We have shown that an infinite dimensional harmonic oscillator can be truncated to a finite
dimensional subspace (n + 1) for any n 2 Z by coupling to a single qubit, to form a d-
dimensional QO-qudit for d = 2(n + 1). A recursive construction is given to synthesize
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Figure 3.5: Lengths of pulse sequences for constructions of gates of the form I1 � I2 � · · ·�
In�1 �Xn up to 22 subspaces, where the solid line indicates the theoretical scaling of 2n for
n subspaces. The small deviation of the numerical points from the theoretical bound is due
to the degrees of freedom for tuning our algorithm, as detailed in Sec. 3.6.1.

arbitrary unitary operations in the QO-qudit using only the red sideband and the carrier
pulses fully analytically. These control pulses used in our construction are routinely available
in a Jaynes-Cummings type interaction as is easily realized in many physical platforms
including trapped ions. The ability to synthesize arbitrary unitary operations in a d-QO-
qudit immediately implies universal control on the corresponding truncated oscillator. At the
heart of our construction is the utilization of the naturally repeated pattern in the spectrum
of an oscillator. This repeated pattern allows us to recursively clean each two-dimensional
subspace by the dynamical decoupling technique. To analyze the scaling of our construction,
a bound on the number of sideband pulses required to accomplish the construction is derived.
It is shown that the number of sideband pulses scales exponentially as the dimension d of a
QO-qudit with a low degree polynomial prefactor depending on d.

We believe the exponential scaling derived is optimal and cannot be reduced to a poly-
nomial scaling, if the synthesized unitary is completely arbitrary and is constructed fully
analytically as in our work. From the viewpoint of complexity theory, it also indicates the
task of closing a low energy subspace in an oscillator and construct an arbitrary unitary op-
eration to arbitrary precision is exponentially hard. The exponential scaling of the number of
pulse also translates to an exponential scaling of total energy required. Therefore, closing a
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finite dimensional low energy subspace of the oscillator does not surmount the unphysically
infinite amount of energy requirement on the universal control of an oscillator. However,
following [MM13], numerical optimizations may be used to reduce pulse requirements, and it
is likely that significant simplifications can be realized for specific unitaries, especially those
with additional structure.

It should be noted that our construction should work for a larger class of Hamiltonians
beyond the JC Hamiltonian. One example is for trapped ions beyond the deep Lamb-Dicke
regime where the Rabi frequency of the subspaces are proportional to the Legendre poly-
nomial, instead of a simple

p
n dependence as discussed above. It would be interesting

to generalize this to other Hamiltonians where unbounded bosonic systems are utilized for
quantum computation, such as transmon+microwave cavity in the superconducting architec-
ture. Moreover, by hybridizing the unitaries constructed under the Fock basis in this work
with various continuous-variable type operations, more efficient and powerful operations are
likely to arise.

Our discussions presented above assume perfectly isolated qubit-oscillator systems. In
practical applications, the qubit-oscillator system may be coupled to an external noisy envi-
ronment, leading to the presence of quantum noise in QOQ. In such noisy cases, the scheme
proposed above cannot be directly applied. However, this can be circumvented by combining
our protocol with proper quantum error-correcting codes. For example, depending on the
nature of the quantum noise (system-bath coupling), a subspace of our qubit-oscillator sys-
tem may be identified that is immune to the noise produced by the environment. Therefore,
our protocol can be applied to the decoherence-free subspace [LCW98] of the qubit-oscillator
system. More generally, we may use our protocol to implement arbitrary unitary operations
directly on the logical qubits/qudits (instead of the Fock levels) defined by a given quantum
error-correcting code to get rid of the possible errors induced by coupling to external envi-
ronment. Any unitary operations on these logical states can be implemented by our protocol,
as is guaranteed by the universality proven in Sec. 3.5.

As a final note on this project, our work suggests that the combination qubit+bosonic
system may serve as a hardware-efficient quantum resource for both computational and
information storage. Going beyond a single QO-qudit, our constructions may be generalized
to include interactions between two QO-qudits, such that we could realize QO-qudit-based
universal quantum computation, as was pioneered in Ref. [MM13]. We hope that analytic
approaches, such as those demonstrated here, will lead to further understanding of the
algebraic structure of the tensor product of QO-qudits.
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Chapter 4

Quantum Sensing with Quantum Signal
Processing

Now that we have demonstrated the utility of such hybrid quantum systems as the one
used for constructing the quantum-oscillator qudits, or QO qudits, as well as how we can
use high-level computational techniques to decompose gates on these qudits into primitives
for the achievement of universal quantum computation, we will proceed to explain another
application of such hybrid quantum systems to a different field of quantum technology,
namely that of quantum sensing.

This section is based on a paper that I co-first-authored about this research project,
which is currently prepublished on arXiv and under review for publishing in Quantum Jour-
nal [Sin+23]. The parts of this manuscript to which I solely contributed are copied here with
some additional background sections to which I contributed with others. Small changes have
been made to highlight the computational aspects, and additional sections have been added
to discuss relevant physical background.

In this chapter, we first provide background on the field of quantum sensing in Sec. 4.1.
Then we introduce quantum signal processing (QSP) in Sec. 4.2. With the foundation of
QSP lain, we proceed to introduce the goals of our own work in Sec. 4.3. Next, we lay out
the problem that we aim to solve in Sec. 4.4. In Sec. 4.5, we introduce our new approach
of applying quantum signal processing to the qubit oscillator for interferometry. Then we
explain how this QSP approach to interferometry can be applied to answering decision prob-
lems in quantum sensing in Sec. 4.6. To support the theory presented here, we next present
numerical results for making binary decisions about the magnitude of displacements on an
oscillator in Sec. 4.7. Finally, we summarize our results and discuss future directions for
the work on applying this qubit-oscillator system to address other kinds of quantum-sensing
problems in Sec. 4.8.

4.1 Background
Sensing and metrology are fundamental pursuits of science and technology, and quantum
systems have been used to advance metrological precision to new bounds [CC16; Bot+22;
Rou+23; GLM04]. Typical quantum sensing protocols involve manipulation of quantum
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coherence and entanglement followed by measurement to extract useful classical information
from quantum systems.

The efficiency of different quantum sensing protocols varies by construction. At a high
level, any sensing protocol can be assessed by the space and time resource requirements (e.g.,
the size of the quantum sensor, the length of the sensing protocol, any required repetition of
the experiments) that it needs in order to achieve a given sensitivity in the sensing task, for
example estimating a given parameter to a certain precision. The intrinsically probabilistic
nature of quantum systems necessarily introduces uncertainty into the measurement result
of any sensing protocol, leading to the so-called standard quantum limit (SQL). In the SQL,
the standard deviation of the estimated parameter scales inversely as the square-root of the
space and time resources employed, as is familiar in processes involving shot noise.

By leveraging non-classical properties of quantum states like entanglement [Boi+08;
Til+10] and general quantum correlations [Bra+18] or using coherent sampling of the signal
and adaptive feedback [BW00; Gór+20; Mar+22], sensitivity in parameter estimation can
be improved beyond the SQL to approach a more fundamental physical limit, the Heisenberg
limit (HL). The HL dictates that the scaling of precision with total sensing time t can be no
better than 1/t; equivalently, with N probes used in an experiment, the precision scales no
better than 1/N .

In fact, this fundamental physical limit has been achieved by a number of sensing pro-
tocols. One of the oldest and best-known is the interferometric protocol known as cat-state
sensing, named after Schrödinger’s cat for its use of superpositions of two distinct macro-
scopic states, such as the all-spin-up and all-spin-down states in a multi-atom system. This
protocol, first realized for spin-states in 1996 by Bollinger et al., achieves the optimal bound
for frequency uncertainty of an N -particle system [Bol+96]. This optimal HL bound, equal to
(NT )�1, where T is the time for a single repetition of the protocol, is achieved by modifying
the Ramsey technique [Ram50] to use a maximally correlated GHZ state and a different final
measurement operator. As it achieves the HL limit, this variety of cat-state sensing for spin
systems has found broad application in precision phase sensing for atomic clocks [Mar+22;
Kau+21], where variational quantum algorithms are incorporated into multi-qubit Ramsey
interferometry to iteratively optimize the sensing precision.

However, many other parameters of interest, such as electric fields [Des+23], can be bet-
ter sensed by bosonic modes (e.g., photonic and phononic oscillators) than by spin systems.
Bosonic sensors have been employed to perform precision sensing of small displacements
to bosonic oscillators, and there have been many advances investigating the advantages of
utilizing bosonic resource states [Pen+16; DTW17]. Gilmore et al. have found that cou-
pling the spins of a trapped-ion crystal to their collective motional mode offers sub-SQL
sensing performance, with the quantum enhancement achieved through interferometry of
highly-entangled spin-motion cat states [Gil+21]. Using the interference between squeezed
light, the Advanced LIGO [Tse+19] experiment can detect the space-time curvature changes
induced by gravitational waves. Interferometric phase estimation using entanglement, coher-
ent sampling, and adaptive feedback approaches the exact Heisenberg limit [Dar+18], and
similar results have been experimentally found using just a single bosonic mode [Wan+19].

Additionally, coupling bosonic modes to other degrees of freedom can transfer information
from one subsystem to another in order to facilitate more convenient measurement than the
direct measurement of the bosonic modes themselves [Gie22]. In spectroscopy, entangled cat-
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state laser sources have also been used to enhance signals by an order of magnitude [Kir+11].
Beyond the single-mode case, it has been demonstrated that the entanglement of many
modes can provide HL-sensing enhancement for parameter estimation [ZZS18; Kwo+22].
Furthermore, various efficient HL-scaling Hamiltonian learning protocols have been proposed,
including some on bosonic systems, that can be rephrased as multi-parameter estimation
problems [Li+23; Hua+23].

Beyond parameter estimation, there are many other sensing applications that have been
left largely unexplored, for example, single-shot decision making. For such decision-making
problems, the underlying signal can happen rarely, such as the case of gravitational wave
detection [CC16], and it is therefore crucial to obtain useful information in the single-shot
limit. When events are rare, many iterative protocols for parameter estimation and learn-
ing [DGN22; Hua+23; Zho+18; Sug+23; RC21; Ros+22; Gór+20] are challenged. Protocols
for discrete decision problems (such as classification) on multiple bosonic modes have been
developed in Ref. [ZZ19; Xia+21] by using variational algorithms for state preparation and
signal decoding with notable performance gain enabled by multi-mode entanglement. De-
spite the success of bosonic systems and cat-state sensing for parameter estimation, a unified
protocol for general sensing tasks with provable speedup is unknown, particularly in scenarios
where decisions must be made in the single-shot limit. Though there are many broad results
concerning the optimal bounds on precision in quantum channel discrimination problems,
there are few analyses of resource scaling in the single sample regime [Mey+23; Tan+08;
Pir+19].

Protocols for realizing such general sensing tasks should generally build on the ability
to perform transformations of the underlying signal. Not surprisingly, transformation of
classical signals has been extensively studied in the context of signal processing in electrical
engineering [OS10], where state-of-the-art classical algorithms have been developed to design
a variety of filters that transform the underlying classical signals tailored to the desired
purposes [PM72; Ant18]. Inspired by classical signal processing, quantum signal processing
(QSP) algorithms [LYC16; LC19; Kik+23; RC22; Don+22; Ros+23; MW23; Lan23; RCC23;
Mar+23; WDL22; Mar+21; Yu+22] can achieve arbitrary polynomial transformations on
one or more quantum amplitudes, as will be explained further in the introduction to QSP
provided in the following section.

4.2 Quantum Signal Processing (QSP)

Quantum signal processing (QSP) is an algorithmic framework in the field of quantum com-
putation that generalizes results related to composite pulse sequences. In particular, the
fundamental idea of QSP is to interleave two distinct kinds of single-qubit rotations, namely
a signal rotation operator W , and a signal processing rotation operator S. There are two
common conventions for the choice of these two operators, and the one taken in this work is
known as the Wx convention. In this convention, the W operator is taken to be

W (a) =


a i

p
1� a2

i
p
1� a2 a

�
, (4.1)
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which represents an x-rotation by angle ✓ = �2 cos�1 a, and the S matrix is taken to be

S(�) = ei�Ẑ , (4.2)

which represents a z-rotation by angle �2�.
For a tuple of phases ~� = {�0, �1, . . . , �d} 2 Rd+1, and using the Wx convention, the

QSP operation sequence U~� is defined as

U~� = ei�0Ẑ
dY

k=1

W (a)ei�kẐ . (4.3)

Although perhaps not immediately evident, the utility of QSP lies in how it can be used
to transform the input a to the signal operator W . For example, if we take ~� = {0, 0}, we
obtain a trivial transformation of a with no processing (i.e., U~� = W (a). If we examine the
probability of a |0i qubit staying unchanged (i.e., p = h0|U~�|0i) under such a QSP operation
as a function of ✓ = �2 cos�1 a, we find a sinusoid, namely p = cos2 ( ✓2).

This is fairly simple, but let us now examine what happens if we take a more complex
QSP sequence for constructing U~�. Suppose that we take ~� =

�
⇡
2 , �⌘, 2⌘, 0, �2⌘, ⌘

 
, where

⌘ = 1
2 cos

�1 (�1
4). In this case, we find a different, and perhaps more useful, probability of

the |0i state remaining unchanged as a function of ✓:

p = |h0|U~�|0i|
2

=
1

8
cos2

✓
✓

2

◆✓
3 cos8

✓
✓

2

◆
� 15 cos6

✓
✓

2

◆
+ 35 cos4

✓
✓

2

◆
� 45 cos2

✓
✓

2

◆
+ 30

◆
. (4.4)

This probability is plotted with the probability resulting from the trivial QSP sequence
in Fig. 4.1. Note that this function has the useful property that the qubit measures 0 for
a wide range of signal values before a sharp transition to measuring 1 for ✓ greater than
approximately 2

3⇡. As such, we are able to use such a QSP sequence as a filter sensitive
to specific values of ✓, a property that has many potential applications, such as improving
image contrast in MRI, and this particular sequence is well-known in the field of nuclear
magnetic resonance as the “BB1” pulse sequence.

This property of being able to obtain useful functions of a, and hence ✓, in the proba-
bility of the operator U~� leaving the state |0i unchanged is not a coincidence. In fact, it is
perhaps one of the most important results in quantum signal processing that with an appro-
priate choice of the phases ~�, P (a) = h0|U~�|0i can achieve most polynomials. This result is
summarized in the following theorem.

Theorem 1 (Quantum Signal Processing). The QSP sequence U~� produces a matrix that
can be expressed as a polynomial function of a:

ei�0Ẑ
dY

k=1

W (a)ei�kẐ =


P (a) iQ(a)

p
1� a2

iQ⇤(a)
p
1� a2 P ⇤(a)

�
(4.5)

for a 2 [�1, 1], and a ~� exists for any polynomials P , Q of a such that
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Figure 4.1: The transition probabilities for the initial state |0i to itself after the application
of the trivial QSP sequence, e

i✓X̂
2 , (dotted) and the QSP sequence for the BB1 protocol

(dotted dashed). Note that the probability of remaining in the |0i state remains near 1
for a significantly wider range around 0 for the BB1 protocol as compared with the trivial
protocol.
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1. deg(P )  d, deg(Q)  d� 1,

2. P has parity d mod 2 and Q has parity (d� 1) mod 2,

3. |P |2 + (1� a2)|Q|2 = 1.

This QSP theorem demonstrates the power of the QSP framework for designing useful
functions for signal processing in quantum computation. Given the triumphs of classical and
quantum signal processing, we wonder if it might it be possible to adopt the philosophy of
filter design to bosonic systems such that quantum signals on oscillators can be transformed
for general sensing tasks.

4.3 Contributions
In the present work, we develop a novel algorithmic protocol for general quantum sensing
tasks beyond parameter estimation using interferometric bosonic modes in a manner that
enables systematic and analytically predictive improvement of single-shot decision error be-
yond what is possible with traditional sensing protocols. This QSP interferometry (QSPI)
protocol builds on a theory of bosonic QSP that can perform polynomial transformation on
the block-encoded quadrature operators of bosonic modes using qubit rotations and qubit-
oscillator entangling gates [Hal+05; Eic+22]. The core of our QSPI protocol lies in these
polynomial transformations generating nonclassical resource states for interferometery. Just
as in typical Ramsey experiments [Ram50], the signal being sensed in a QSPI experiment is
queried only once, and the power of quantum enhancement comes from generating a non-
classical resource state by increasing the QSP circuit length. The feature of only querying
the signal only once distinguishes our work from much prior art [DGN22; Hua+23; Li+23;
BW00]. The single sample feature (only one measurement is needed) of our protocol further
distinguishes our work from [Mey+23; Pir+19].

We demonstrate the performance of the QSPI protocol with a theoretical analysis demon-
strating its optimal extraction of binary decision information about a quantum displacement
channel, which allows for the achievement of HL-like scaling (see Def. 1). As a concrete ped-
agogical example, we focus on the task of distinguishing whether a displacement channel has
a displacement amount above or below a given threshold. Thus we are deciding between two
sets of channels, i.e. the set of displacement channels above and below the threshold amount.
This framework for quantum channel discrimination (QCD) problems opens the avenue to
asking more complicated QCD questions that can decide between multiple hypotheses at the
same time.

Note that such decision problems are ideal for qubit-oscillator systems because we desire
a single-shot measurement that answers a question about the channel acting on a bosonic
quantum state with high probability. Given that the qubit is naturally binary under classical
projection measurement, extracting a yes/no answer from the qubit should be much faster
than extracting a continuous-valued answer by measuring the oscillator. This intuition is
satisfied by our construction.
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4.4 A Binary Bosonic Decision Problem
In this section, we first set up some notation and define quantum decision-making problems in
displacement sensing, as well as what HL-like behavior is for decision problems, in Sec. 4.4.1.
In Sec. 4.4.2, we review the basics of a typical displacement-sensing protocol based on cat-
state interferometry, highlighting its advantages and limitations in order to motivate why a
more general sensing scheme is required.

4.4.1 Quantum Decision-Making for a Displacement Channel
We consider a quantum sensing problem in a joint qubit-oscillator system subjected to a
unitary displacement channel S�

S� :=


ei�p̂ 0
0 ei�p̂

�
, (4.6)

where we have written S� under the joint qubit-oscillator tensor product form such that S� =
I⌦ei�p̂ and � is the amount of the position kick acting on the oscillator; ei�p̂ |xiosc = |x� �iosc
for a position eigenstate |xiosc (the subscript “osc” refers to “oscillator” to distinguish it from
the qubit register). The symbol := used here represents the definition of a quantity, and
x̂, p̂ are the oscillator’s canonical position and momentum operators, respectively.

On the joint system, we assume the resource gates are arbitrary single-qubit rotations
RX(2✓) := ei✓�̂x and a fixed qubit-oscillator entangling gate

Dc(i/
p
2) = eix̂�̂z (4.7)

parameterized by , where Dc(i/
p
2) is a conditional displacement gate that imparts a

momentum kick ± to the oscillator depending on the qubit state being |0i or |1i. �̂x, �̂z
are the single-qubit Pauli matrices. This entangling gate is derived from the usual definition
of a more general conditional displacement gate in phase space Dc(↵) := e(↵â

†�↵⇤â)�̂z (the
conditional version of the displacement gate introduced in Eq. 2.29) by setting ↵ = i/

p
2.

Moreover, the gate in Eq. (4.7) is an operator with support on the infinite-dimensional qubit-
oscillator joint Hilbert space. When acting on a position eigenstate of the oscillator |xiosc,
the gate given in Eq. (4.7) reduces to eix�̂z , which is simply a 2 ⇥ 2 operator acting on
the qubit. Throughout the paper, we take ~ = 1,m = 1,! = 1 for m the mass of the
oscillator and ! its angular frequency, in order to simplify our expressions. This means the
fundamental length of the oscillator

p
~/m! = 1; as a result, , which should be in units of

inverse �, is unitless. Additionally, we will use x̂, p̂ and x, p to distinguish the two different
ways of using position and momentum as operators or real numbers. The product of x̂
on the right-hand side of Eq. (4.7) means the gate itself will be periodic in the oscillator
position x with a period of Tx = 2⇡

 .
With these notations established, we are ready to define the quantum decision-making

problem on the displacement channel:

Main Problem (Quantum Binary Decision-Making for a Displacement Channel). Given
�th > 0, construct a quantum circuit by using the resource gates RX and Dc(i/

p
2) a
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maximum of d times for some  to determine whether |�| > �th or |�| < �th with only a
single query to S�, such that the probability of making an erroneous decision, perr, is small.

Clearly, the probability perr of erroneous decision will depend on , �th, and d. Due
to the periodicity of Eq. (4.7) in x, any unitary constructed from repeated applications of
Dc(i/

p
2) and RX will be periodic in x with the same period Tx. As will be discussed in

Sec. 4.5.3 (also see Fig. 4.4), the periodicity in x for the Dc(·) gate results in a period of
Tx/2 for perr in terms of the sensing parameter �. This allows us to define a restricted region�
� ⇡

2 ,
⇡
2

�
where the sensing problem will be discussed. This notion of periodicity is similar

to the concept of a “unit cell” in solid state physics [AM76]. Therefore, it is necessary to
choose  to be small enough such that � 2

�
� ⇡

2 ,
⇡
2

�
(in particular, �th as well). However,

 cannot be too small, or else Dc(i/
p
2) will become too close to the identity operator, and

its action on the qubit-oscillator system will not be effective. In the rest of the paper, we
assume that  has been fixed with these conditions satisfied. Furthermore, (as detailed in
Appendix E) perr is an even function of �; therefore, we only consider the case of �th > 0, as
given in Main Problem.

Once we are given �th and have fixed  as described above, it is instructive to consider
how perr scales as the number of resource gates d in the sensing protocol. In the single-
shot limit, since we are only allowed to query the signal S� once, it is not difficult to see
that the most general single-shot decision-making protocol is as given in Fig. 4.2a, where a
state preparation routine is first used to prepare the joint qubit-oscillator system at some
entangled quantum state, after which the signal of interest occurs to the oscillator. In the
end, a signal decoding operation is applied to create some interference followed by a single-
qubit measurement to extract the answer to the decision problem. Inspired by the definition
of HL scaling in parameter estimation tasks, as discussed in Sec. 4.1, we define HL-like
scaling for the Main Problem:

Definition 1 (HL-like Scaling for Binary Decision error in the Main Problem.). A sensing
protocol achieves Heisenberg-limit-like (HL-like) scaling for binary decision-making with a
displacement channel in the Main Problem if the resulting perr ⇠ O(1/d) up to a factor of
polylog(1/d).

Note that Ref. [ZZS18] provides a different definition of Heisenberg scaling on multiple
bosonic modes for parameter estimation problems based on total photon numbers. In our
case, there is not a one-to-one correspondence between d and the average photon number,
because the latter will depend on how the resource gates RX ,Dc(i/2) are used for a fixed
d. Thus, our primary resource is sensing time. Literature for quantum state and channel
discrimination has placed broad bounds on the optimal error probability [Hel69; Pir+19;
Mey+23], but these works are often lacking analysis of the resource requirements to achieve
a given error. Just as for parameter estimation, the Heisenberg-limit is defined as comparing
to using classical states for the estimation task; for single-shot decision making, the classical
analogue is akin to binary amplitude shift keying where the signal-to-noise ratio increases
as
p
t for t the signal integration time and thus limits the bit error rate to scale with

1/
p
t [Yan21].

In the following section, we will consider a concrete realization of the general single-shot
decision-making protocol (Fig. 4.2b), the cat state sensing protocol, to gain some intuition.

67



4.4.2 Intuition from Cat-State Sensing
The intuition for building a QSP interferometer comes from the cat-state protocol for sensing
small displacements. A typical sensing scheme is shown in Fig. 4.2b where a Hadamard gate
and a controlled displacement Dc(i/

p
2) = eix̂�̂z are first used to prepare an entangled state

of the qubit-oscillator joint system from an initial qubit state |#i and oscillator state |0iosc
(first dashed blue box). The subscript c in Dc(·) means the displacement is controlled by the
qubit. Then the underlying signal (a displacement S� = ei�p̂) is applied to the oscillator and
followed by another controlled displacement and a Hadamard gate (inverse of the previous
dashed blue box). Finally, a qubit Z-basis measurement is performed.

Figure 4.2: The most general single-shot decision-making protocol (a), and two realizations
comparing the traditional cat-state sensing protocol (b) with the novel bosonic QSP inter-
ferometric protocol (c). In (c), the QSP operator creates an optimal sensing state, which
then probes the signal S� and is finally un-created to produce desired interference, which is
followed by a measurement on the qubit.

Using the commutation relationship between x̂ and p̂ we have the following relation

eix̂ei�p̂ = ei�p̂eix̂e�i�, (4.8)

which simplifies the final state of the joint qubit-oscillator system before the measurement
to

| outi = (cos(�) |#i+ i sin(�) |"i)⌦ e�i�p̂ |0iosc , (4.9)
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provided that the initial state is |#i⌦ |0iosc. Therefore, the displacement � is encoded in the
amplitude of the ancilla qubit, where the measurement probability p of the qubit in |#i is

p = Prob[M =#] = cos2(�). (4.10)

Since  is known, we can repeat this sensing protocol multiple times in order to obtain an
estimate of this probability, which will then tell us the value of �.

More concretely, by repeating the protocol N times, the standard deviation for estimating
� is given by ��:

�� =
�p��� dpd�
���
=

1

2
p
N

(4.11)

where �p =
q

p(1�p)
N is the standard deviation on p, estimated by performing N experiments

with a Bernoulli distribution, and the total time t for repeating the sensing protocol N times
will be t / N . An interesting observation immediately follows from Eq. (4.11): for fixed N ,
�� improves roughly as 1/, where  is the displacement amount of the Dc(·) gate. The
physical intuition is that the cat state’s small interference features in phase space have a
characteristic length of 1/. As a result, the sensitivity on estimating a spatial variation
in � improves as 1/. It follows that taking  large would be beneficial to making high-
sensitivity measurements. Such large  can be realized in several ways, depending on the
physical platform. For example, in trapped ions, a large  may be realized by increasing the
laser pulse intensity or by increasing the pulse duration [Hal+05].

Despite its favorable sensing scaling in  for displacement sensing, the cat-state sensing
protocol has some limitations. First, for fixed , �� decreases as 1p

N
(or 1p

t
) as the number

of classical repetitions N increases. This is the typical shot noise statistical convergence rate
corresponding to the SQL and is sub-optimal as compared with HL scaling. Second, aside
from parameter estimation on �, the cat-state sensing protocol is not particularly useful if
we are only interested in learning partial information about the properties of �, for example
determining if � is above or below a given threshold value �th. Since only partial information
is needed in such scenarios, it is expected that more efficient sensing protocols exist.

As alluded to earlier in the Introduction, filter designs in classical signal processing and
advancement in quantum algorithms provide possibilities for overcoming the two aforemen-
tioned limitations such that: 1) Heisenberg-limited scaling can be achieved for parameter
estimation, where �� / 1/N ; and 2) the resulting sensing protocol works for other sensing
tasks that only extract partial information about �. The intuition is as follows: recall that
the key feature of bosonic cat-state sensing is producing a fine-grained interference pattern in
phase space that is sensitive to the displacement signal. If the N incoherent repetitions of the
cat-state sensing protocol can be concatenated together into a single-shot coherent protocol
which coherently manipulates the phase space interference pattern beyond that produced by
the simple cat-state interferometer, then the coherent sensing state can be made sensitive to
the partial information that we seek from the signal. In the next section, we give a construc-
tion of a novel QSP interferometer that circumvents the above two limitations and achieves
HL-like behavior for decision problems.
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4.5 Quantum Signal Processing Interferometry
Before presenting the QSPI construction, we first formulate a theory of bosonic QSP by
alternating single-qubit rotations with controlled-displacement operations in Sec. 4.5.1 and
show how to utilize this bosonic QSP approach as the basic building block to produce general
sensing algorithms. Building upon the bosonic QSP theory for polynomial transformations of
quadrature operators as well as the cat state sensing protocol above, we define and construct
a novel QSP interferometer on hybrid qubit-oscillator platforms and present a new QSPI
Theorem in Sec. 4.5.2. Detailed analysis of the behavior of the QSP interferometer for a
displacement operator is discussed in Sec. 4.5.3.

4.5.1 Bosonic QSP Formalism
Coupling a bosonic oscillator to a qubit is a useful approach for achieving universal control
of the oscillator [Kra+15]. It has been shown that simple Jaynes-Cummings type interac-
tions can achieve universal control on an arbitrary low-energy d-dimensional subspaces of
an oscillator [MM13; Liu+21]. By using an alternative dispersive coupling, universal control
on oscillators has also been demonstrated using the echoed-controlled displacement opera-
tor [Eic+22]. Here, we draw a connection between these control protocols with quantum
signal processing to develop a bosonic QSP formalism as a basic building block for the rest
of the paper.

Quantum signal processing relies on two components: 1) a block-encoding of the signal
operator; and 2) the ability to impart an arbitrary phase shift to the block-encoded operator.
Block-encoding simply means embedding the target operator inside a known and accessible
subspace of a unitary matrix. Methods for block-encoding on qubit devices are mostly
limited to linear combination of unitaries [CW12; Ber+15], and block-encoding of a general
Hamiltonian seems to be difficult. It might thus seem that such block-encoding will be
especially challenging in our case, as we need to block-encode an entire oscillator (with infinite
dimension) into a unitary matrix in order to perform QSP on the oscillator. Surprisingly,
some physical interactions between quantum systems can provide natural block-encodings
of one system in the basis of the other for qubit-oscillator systems, as is stated formally in
Lemma 2.

Lemma 2 (Qubitization of a Bosonic Mode via Qubit-oscillator Physical Interaction). Cou-
pling between a qubit Pauli operator �̂z and a bosonic mode’s quadrature operators, h(x̂, p̂),
naturally block-encodes the bosonic mode’s unitary evolution operator !(x̂, p̂) = e�ih(x̂, p̂)t.

The above statement immediately follows if we write the resulting unitary under the
representation of the qubit’s SU(2) matrix,

Wz := e�ih(x̂, p̂)�̂zt =


!(x̂, p̂) 0

0 !�1(x̂, p̂)

�
. (4.12)

Note that the choice of �̂z here is only a convention, and any coupling can always be rotated
into the �̂z representation. Also, note that !(x̂, p̂) is an operator on the oscillator rather
than a complex number.
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Now, given the qubitization of a bosonic mode, we are ready to state a bosonic quantum
signal processing theorem that summarizes the achievable polynomial transformations on
the quadrature operator !(x̂, p̂), as defined in Lemma 2.

Theorem 3 (Bosonic Quantum Signal Processing). The following quantum circuit param-
eterized by ~✓ = {✓0, . . . , ✓d} achieves a block-encoding of a degree-d Laurent polynomial
transformation on !(x̂, p̂) as F (!)

Q~✓(!) = ei✓d�̂x

d�1Y

j=0

Wze
i✓j �̂x =


F (!) iG(!)

iG(1/!) F (1/!)

�
, (4.13)

where (setting t = 1 for simplicity)

F (!) =
dX

n=�d

fn!
n =

dX

n=�d

fne
�ih(x̂, p̂)n := f(x̂, p̂), (4.14a)

G(!) =
dX

n=�d

gn!
n =

dX

n=�d

gne
�ih(x̂, p̂)n := g(x̂, p̂). (4.14b)

for n = {�d, �d + 2, �d + 4, . . . , d}, fn, gn 2 R, F (!)F (1/!) + G(!)G(1/!) = 1, and
h(x̂, p̂) is an analytical function of the bosonic mode’s quadrature operators. Inversely, given
F (!) in Eq. (4.14a) and F (!)F (1/!) < 1, there exists ~✓ = {✓0, . . . , ✓d} such that the
construction in Eq. (4.13) block-encodes F (!).

The proof of Theorem 3 follows from the normal QSP proof on single qubit [LC19] or
the periodic function formulation [Haa19] once Q~✓(!) is expanded under the infinite sets
of eigenstates of h(x̂, p̂). A detailed proof can be found in App. D. Note that a recursive
relationship for computing the coefficients fn and gn from the phase sequence ~✓ is given in
App. F. We also note that despite the similarity to single-qubit QSP, bosonic QSP is formally
an infinite-dimensional theorem.

In general, h(x̂, p̂) can be any physically realizable Hamiltonian of the oscillator (i.e.,
not only finite degree polynomials but also analytic functions). To the lowest order, h(x̂, p̂)
can be a linear function of x̂ and p̂, which generates a displacement in the phase space:
h(x̂, p̂) = ↵â† � ↵⇤â. Coupling h to a qubit Pauli operator generates a qubit-controlled
displacement. Consider the special case where a simple qubit-oscillator coupling naturally
arises on cQED hardware [Bla+04] or in trapped ions [Mon+96]; we have h(x̂, p̂)t = �x̂,
where t denotes the duration of the qubit-oscillator interaction or coupling, which generates a
displacement operator to boost the oscillator momentum by an amount of . From Lemma 2,
it is readily realized that the physical dynamics generated from this coupling Hamiltonian
form a block-encoding of the oscillator operator ! := eix̂. Combined with Theorem 3, we
have

F (!) =
dX

n=�d

fne
ix̂n := f(x̂), (4.15a)

G(!) =
dX

n=�d

gne
ix̂n := g(x̂), (4.15b)
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where n = {�d, �d + 2, �d + 4, . . . , d}, and d is the degree of QSP, as specified in Theo-
rem 3. The achievable functions and parity constraints upon Q~✓(!) for ! 2 C are described
in [Haa19]. Note that in this case ! is a unitary operator that maps oscillator position
x 2 (�1,1) to the complex unit circle, so f(x̂) and g(x̂) are periodic functions with a
period Tx = 2⇡

 . For an integer m:

f(x̂+mTx) = f(x̂), (4.16a)
g(x̂+mTx) = g(x̂). (4.16b)

The overall construction of the bosonic QSP circuit from Theorem 3 is shown in Fig. 4.3,
where the conditional displacement operator and single qubit rotations are performed re-
peatedly. Since this construction performs an arbitrary degree-d real Laurent polynomial on
! with definite parity, it follows that the resulting functions f(x̂) and g(x̂) have flexibility to
achieve a wide class of functions on x̂ in the interval

⇥
�⇡

 ,
⇡


⇤
that admit at most a degree-d

Fourier expansion, as in Eq. (4.14a) and Eq. (4.14b). Note that the numerical and experi-
mental realization of such conditional displacements in Ref. [Eic+22] for universal control of
oscillators provides an example of the expressivity of such a bosonic QSP construction. The
ability to obtain such nonlinear transformations on oscillator quadrature operators forms the
basis of the QSP interferometry, as we will discuss next.

|#i

QSP

ei✓0�̂x

Dc(i/
p
2)

ei✓j �̂x

=

|0iosc

8
>>>><

>>>>:

9
>>>>=

>>>>;

Figure 4.3: A bosonic QSP circuit composed of single-qubit rotations and controlled dis-
placement operations, where the form of Dc(i/

p
2) is given in Eq. (4.7). The gates inside

the bracket are repeated d times for different ✓j (j = 1, 2, . . . , d) in order to obtain a degree-
d Laurent polynomial.

4.5.2 QSP Interferometry
Building on the ability to perform polynomial transformations on a bosonic oscillator’s
quadrature operators using QSP in Sec. 4.5.1 and Theorem 3, we construct a QSP interfer-
ometry (QSPI) protocol in this section by combining two bosonic QSP sequences.

A QSP interferometry protocol is defined as follows:

Definition 2 (Degree-d Quantum Signal Processing Interferometry (d-QSPI)). Given an
underlying bosonic signal unitary S� = eih�(x̂, p̂), where h�(x̂, p̂) is a finite-degree Hermitian
polynomial of the quadrature operators x̂, p̂ parameterized by � 2 R, a degree-d quantum sig-
nal processing interferometry (d-QSPI) protocol for S� is defined as the protocol in Fig. 4.2c,
or Q�1

~✓
(!)S�Q~✓(!), where Q~✓(!) is given by Eq. (4.13). Furthermore, we define the joint

qubit-oscillator state created by Q~✓(!) as the QSPI sensing state |Q̃i = Q~✓(!) |#i ⌦ |0iosc.
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It is readily recognized that the QSPI protocol described in Definition 2 is a simple gen-
eralization of the usual cat-state interferometry protocol, where the cat-state preparation is
replaced by an arbitrary bosonic QSP transformation. The QSPI protocol may also be viewed
as a parameterized version of typical quantum parameter estimation and discrimination pro-
tocols, which involve optimization of a cost function over probe states and measurement
operators [Hel69]. Each d-QSPI protocol is entirely characterized by the angle sequence ~✓,
where the first QSP sequence QSP in Fig. 4.2c prepares the optimal sensing state while
the second QSP sequence QSP�1

 transforms over the measurement probes. Thus, we will
minimize our cost function, the probability of decision error, over the QSP angle sequence.
In this perspective, our protocol is restricted to be symmetric in the state preparation and
measurement procedures (because QSP and QSP�1

 in Fig. 4.2c are parameterized by the
same set of phase angles), but given the symmetry of the response function we seek this re-
striction simply makes the optimization more feasible. This choice is also motivated by the
success of Ramsey-type protocols, which treat the state preparation and measurement steps
symmetrically, but our bosonic QSP framework is able to handle more general approaches
taken in other quantum estimation/discrimination schemes by using a different set of QSP
angles for the signal decoding operator.

As an interferometer, the unitary operation realized by a d-QSPI must be a linear com-
bination of many elementary unitaries, where the interference among them performs some
desired quantum sensing task. To make the interferometry aspect of QSPI more vivid and
to reveal how individual unitaries (or “paths”) interfere, it is useful to identify what such
elementary unitaries look like in QSPI. Because each matrix element of the bosonic QSP
constructed in Eq. (4.13) is a linear combination of !n for different n 2 [�d, d], we define a
QSPI elementary transformation on the signal S� under the basis !n:

Definition 3 (QSPI Elementary Transformation). An elementary QSPI transformation
S�, nm(x̂, p̂) on S� is defined as follows:

S�, nm(x̂, p̂) := !�nS�!
m, (4.17)

for some ! = e�ih(x̂, p̂) acting on a bosonic mode and for integers n,m.

From a basis-set-expansion point of view, Eq. (4.17) is equivalent to expanding the un-
known operator S� under the basis set {!n}, where S�, nm(x̂, p̂) is simply the resulting matrix
element (despite its infinite-dimensional nature). In the special case of ! = eix̂, Eq. (4.17)
can be viewed as a plane-wave expansion of S� for a set of discrete reduced momenta nk for
integer n, which is similar to the k-point sampling technique in the numerical study of peri-
odic solid-state systems [AM76], where k determines the low-energy cutoff, while the upper
limit of n dictates the high-energy cutoff. We will see in the following that this high-energy
cutoff is directly related to the QSP degree d that is being used in our construction.

With the elementary transformation defined, we are now ready to present the QSPI
transformation theory that describes how QSPI acts as an interferometer:

Theorem 4 (QSP Interferometry Theorem). A d-QSPI protocol for a bosonic signal unitary
S� performs a transformation to S� such that the resulting unitary is a linear combination
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of (d+ 1)2 elementary transformations S�,nm(x̂, p̂) as defined in Def. 3

Q�1
~✓
(!)S�Q~✓(!) =

dX

n,m=�d

CnmS�, nm(x̂, p̂), (4.18)

where Cnm is a complex coefficient matrix defined from the original QSP coefficients by

Cnm =


fnfm + g�ng�m i(fngm � g�nf�m)

i(f�ng�m � gnfm) gngmf�nf�m

�
, (4.19)

which serves as a complex weight to its associated elementary transformation S�,nm in order
to produce the desired interference.

The proof of the theorem follows by direct multiplication of the left-hand side of Eq. (4.18).

The right-hand side of Eq. (4.18) is a sum of (d+1)2 terms, each weighted by a complex
coefficient matrix Cnm, as defined in Eq. (4.19); this readily reveals that the resulting unitary
of a d-QSPI protocol is essentially a giant interferometer of (d+1)2 elementary components.
Note that each element of Cnm is always quadratic in terms of f and g (either a product of two
f or two g with different subscripts); this is simply a consequence of the fact that the QSP
sensing state |Q̃i prepared in Fig. 4.2c is perturbed by S� before interfering with itself. In this
fashion, the original QSP coefficients fn, gn can be tuned such that the desired interference
pattern is produced by the protocol for any quantum sensing purpose. Note that there is no
approximation, such as truncating the dimension of the infinite dimensional oscillators, in our
formalism, since we explicitly work with the oscillator quadrature operators, and the physical
regularization of the infinite dimensional transformation is provided by a finite-energy initial
state (for example, a vacuum state).

Theorem 4 characterizes at the operator level how QSPI works, but it is not clear what
or how much information can be extracted from the entire protocol via measurement. We
discuss the measurement aspect in the following.

Just as in any interferometry protocol, we are interested in extracting information about
S� by performing some measurement after the protocol, where the measurement outcome
contains information about the parameter �. It is possible to measure oscillators directly
using homodyne/heterodyne detection or by performing a photon-number-resolved measure-
ment. Such measurements will often provide local information on the phase-space distribu-
tion of the oscillator wave function. Alternatively, it is much easier (and typically faster) to
measure the ancilla qubit directly. Such a qubit measurement implies a partial trace over
the bosonic quadrature operator and therefore will provide useful global information about
the oscillator. Extracting such global information is crucial to performing decision-making
regarding the underlying signal parameter �, as we will see in Sec. 4.6.1. For the ease of
discussion, we define the QSPI response function as follows:

Definition 4 (QSPI Response Function). A QSPI response function is defined as the prob-
ability distribution over the signal parameter � after a projective measurement on the ancilla
qubit as P(�) = kh�1|Q�1

~✓
(!)S�Q~✓(!) |�0i |0iosck2, where |�0i and |�1i are the initial and

final state of the ancilla qubit and the oscillator is assumed to start from vacuum |0iosc.
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QSPI response functions, or simply the response functions, as defined in Definition 4,
characterize the complicated interference pattern between two oscillator states that are per-
turbed by S�. The signature of such interference is cast onto the qubit measurement proba-
bility. In our case, the unitary channel that we wish to distinguish is a displacement of the
oscillator perpendicular to Wz’s displacement direction. The effect of the displacing signal
S� can be understood as convolving the QSP sensing state |Q̃i with a shifted version of itself.
Thus, for an optimal choice of the QSP polynomial, we expect to be sensitive to a certain
range of displacements. This protocol takes Ramsey interferometry protocols as in [Gil+21;
Mar+22] as inspiration. In fact, Eq. (4.10) in Sec. 4.4.2 can be viewed as a simple response
function for cat-state sensing, since it can be realized by a degree-1 QSPI protocol, as we
will see in the next section.

4.5.3 QSPI Protocols for Displacement Sensing
We examine the outcome for the qubit state in our generalized QSP sensing protocol for
displacement sensing in Sec. 4.5.3.1. Then we use the degree-1 case as an example to connect
to the cat-state sensing protocol in Sec. 4.5.3.2.

4.5.3.1 General Theory of QSPI Displacement Sensing

We shall drop ~✓ subscripts from Q from here on for simplicity. The sensing sequence, also
from Fig. 4.2c, is given by:

U(�, !) = Q�1(!)S�Q(!), (4.20)

where Q�1(!) = Q†(1/!). Using Eq. (4.8), we may rewrite Eq. (4.20) as

U(�, !) = Q�1(!)S�Q(!) = S�Q†(1/!0)Q(!), (4.21)

where

!0 = !e�i� = ei(x̂��). (4.22)

The right-hand side of Eq. (4.21) reveals a key insight: the total QSPI protocol reduces to
a product of Q†(1/!0)Q(!) (up to an irrelevant global phase S�), which is a QSP sequence
interfering with a shifted version of itself ! ! !0 by a constant phase e�i�, as defined in
Eq. (4.22). It is this �-dependent shift that allows the extraction of useful information on �
from the interferometry.

In order to find the response function for the probability of measuring the qubit in the
ground state after the sensing protocol, we must integrate over the probability distribution
in phase space. Let us denote the upper left matrix element of U as U00 = ei�p̂

⇥
f(�x̂ +

�)f(x̂) + g(x̂� �)g(�x̂)
⇤
, then the measurement probability of the qubit being at state |#i

is
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P(M =# |�)
= || h#|Q�1SQ |#i |0iosc ||

2

= h0|osc(U00)
†U00 |0iosc

=

Z 1

�1
dx |[f(�x+ �)f(x) + g(x� �)g(�x)] 0(x)|2 . (4.23)

where  0(x) = ⇡�1/4e�x2/2 is the vacuum state of the oscillator, and we have used real
numbers x as the argument of f(·) and g(·) since everything has been written under the
position representation. Thus, P(M =# |�) is a function of our signal parameter � and the
original QSP phase angles. We may now tailor the shape of the QSP Laurent polynomial
such that the qubit response P(M =# |�) scales optimally versus �.

Using the Laurent polynomial expressions from Eq. (4.14a) and Eq. (4.14b) and explicitly
evaluating the integration with respect to x, we can alternatively write Eq. (4.23) as a series
sum

P(M =# |�) =
dX

s=�d

csv(�)
s (4.24)

for v(�) = ei(2)� and cs 2 R being a function of 

cs =
dX

n, n0, r=�d

(fnfn0 + gngn0)

⇥ (fn+2sfn0+2r + gn+2sgn0+2r)e
�2(r�s)2 (4.25)

where n, n0 are either all odd or all even depending on the parity of d. It follows that the
response function of the qubit P(M =# |�) is a degree-d Laurent polynomial with respect to
the new “signal” operator v(�,) = ei(2)�. See Appendix E for a proof.

Figure 4.4: Pictorial illustration of how in the bosonic QSP interferometric protocol, the
qubit measurement enacts a duality between a polynomial transformation on the bosonic
quadrature operators and a polynomial transformation on the sensing parameter � via QSPI.

Therefore, apart from parity and normalization constraints, we may design the qubit
response P(M =# |�) by choosing fn and gn such that we approach the desired Fourier series
of a function of �. This relationship also reveals an interesting duality between the QSP
polynomial transformation on phase space quadrature and the polynomial transformation
on the signal parameter � in the response function, which is highlighted in Fig. 4.4 and
summarized as Theorem 5.
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Theorem 5 (QSPI for Displacement Sensing). Given a degree-d QSPI protocol with the
block-encoded quadrature operator !̂ = eix̂ (periodic with a period of

⇥
�⇡

 ,
⇡


⇤
with respect

to x), a degree-d response function P(v) :=
P

s csv
s, with v = ei(2)� as its argument, is

well-defined where � 2 [� ⇡
2 ,

⇡
2 ]. Conversely, given a degree-d real Laurent polynomial

transformation (defined in Eq. (4.24) with cs as its coefficients) on v = ei(2)� where � 2⇥
� ⇡

2 ,
⇡
2

⇤
as the desired response function that satisfies the following necessary conditions,

dX

s=�d

cs = 1, cs = c�s, (4.26a)

0 
X

s

csv(�)
s  1, (4.26b)

there exists a d-QSPI protocol as in Fig. 4.2c that realizes the desired response function.

We will now sketch a proof of the above theorem. From [Haa19], we know for a given
QSPI protocol characterized by ~✓ that f(x) and g(x) are well-defined, and thus the forward
direction of Theorem 5 is trivial.

On the other hand, it is in general challenging to provide sufficient conditions for response
functions such that they can be realized by the QSPI protocol using a set of phase angles ~✓.
Here for the reverse direction of Theorem 5, we resort to only necessary conditions on the
response function.

Because the response function is necessarily a probability on the qubit and involves
a integral over the bosonic coordinates, there are additional constraints on the response
function. First, from the response function’s relevant parity and normalization constraints
on cs as defined in Eq. (4.24), Eq. (4.26a) can be derived. Secondly, beyond the parity and
normalization constraints, we must also impose an additional constraint on possible sets of
cs due to the response function being a probability, which requires Eq. (4.26b) to be satisfied
for all � 2 R.

Let us make additional remarks on the reverse direction of Theorem 5. The reason that
it is challenging to ascertain a set of sufficient conditions on the response function is due
to the nonlinear transformation of F,G in Eq. (4.23). Inverting the system of polynomial
equations in Eq. (4.25), even in the large  limit where decay coefficients vanish, appears
analytically intractable. From our construction in Eq. (4.14), it can be inductively shown
that f�d = gd = 0, and from [Haa19], F (!) determines G(!) up to ! 7! 1/!. Thus, for
fixed , we may reduce Eq. (4.25) to a system of d independent equations with d unknowns,
but searching for solution sets of such polynomial equations is difficult and often infeasible
analytically.

4.5.3.2 Example: Cat State Sensing

For the degree d = 1 case, and {✓0, ✓1} as the QSP phase angles, the QSPI response function
is

P(M = 0|�) = c0 + c1v + c�1v
�1 (4.27)
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where

c0 = cos4(✓0) + sin4(✓0) (4.28)
c1 = c�1 = cos2(✓0) sin

2(✓0). (4.29)

Evidently, this is a degree-1 Laurent polynomial of the argument v = ei(2)�, where all
of the polynomial coefficients are real. Also, we note that the measurement probability
is independent of ✓1 (or, in general, ✓d for a d-QSPI protocol) per the construction. Fur-
thermore, by choosing ✓0 = ⇡/4, we recover exactly the cat state sensing protocol with
P(M = 0|�) = cos2(�). Thus, the cat state sensing protocol is indeed a special case of a
1-QSPI protocol!

We can also view the cat-state sensing protocol for a displacement of d as the trivial
case of choosing all zero rotation angles for RX in a d-QSPI protocol. In this case, the
average photon number in the prepared state after state prepatation unitary in Fig. 4.2a will
be nphoton / 2d2. Therefore, Def. 1 reduces to perr ⇠ O(1/

p
nphoton). This agrees with the

results in Sec. 4.4.2 and Fig. 4.6 (vide infra) that cat states are not efficient resource states
for the Main Problem.

4.6 Binary Decision-Making Using QSPI
Now, we have established the QSPI protocol and its response function as a polynomial
transformation of the signal. To demonstrate its potential for general sensing tasks, we
derive an explicit expression for the response function for a binary decision problem on
the displacement parameter in Sec. 4.6.1. Following this analysis, we delve deeper into
the limitations of cat-state sensing for decision-making in Sec. 4.6.1.1. Lastly, we analyze
analytically the decision quality and sensing complexity in Sec. 4.6.2.

4.6.1 Binary decision for displacement sensing
For a classical binary decision using measurement of a single qubit, we want the QSPI
response function to be either 1 or 0 depending on the value of the signal displacement
relative to �th. In particular, one such target qubit response function is the step function

Pideal(�) =

(
1, 0  |�| < �th
0, �th < |�|  ⇡

2 .
(4.30)

If such an ideal qubit response function is realized, then the binary decision sensing protocol
has no error. However, in practice, only a finite-degree polynomial approximation to this
function is available and lead to decision errors. In the following, we give basic definitions
to quantify the decision errors.

For ease of discussion, Fig. 4.5 plots the ideal response function (red) in contrast to a
typical polynomial approximation generated by the QSPI protocol (black) as a function of
the underlying displacement �. The approximated response function features a steep yet
finite slope centered about �th. There are usually some small oscillatory patterns for small
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� and for �th < |�| < ⇡
2 . Deviations of Papprox(�) from Pideal(�) across the entire range

of
⇥
� ⇡

2 ,
⇡
2

⇤
quantify the overall probability of making the wrong decision. We define the

following quantity as decision error density :

perr(�th, ) =


⇡

Z ⇡
2

� ⇡
2

|Papprox(�)� Pideal(�)| d�

= perr,FN(�th) + perr,FP(�th). (4.31)

This quantity can be split into two contributions according to �th as follows:

perr,FN(�th) =
2

⇡

Z �th

0

(1� Papprox(�)) d�, (4.32a)

perr,FP(�th) =
2

⇡

Z ⇡/2

�th

Papprox(�)d�. (4.32b)

The former, perr,FN(�th), defined in Eq. (4.32a), is the false-negative (FN) error (also called
Type-II error in hypothesis testing) and is indicated by the grey region in Fig. 4.5, while the
latter, perr,FP(�th), defined in Eq. (4.32b), is the false-positive (FP) error (Type-I error) and
is highlighted in orange in Fig. 4.5 [Hel69]. Our goal in designing the response function is to
find QSP phase angles that minimize the total decision error in Eq. (4.31).

Substituting Eq. (4.24) into Eq. (4.31), the error probability can be written explicitly as

perr(�th, ) =
dX

s=�d

csHs(�th, ), (4.33)

where we have defined

Hs(�th, ) =
2�th
⇡

+ sinc (⇡s)� 4�th
⇡

sinc (2s�th) (4.34)

as a function of (�th, ), and the definition of cs is given in Eq. (4.25). Eq. (4.33) is the
central metric for the binary decision problem in displacement sensing.

Additionally, note that  and �th always appear together in Eq. (4.34) as a product, which
suggests there is a scale-invariance in the definition of Hs in the sense that the displacement
length scale can be measured in units of 1/ and only this relative length scale with respect
to 1/ is meaningful. Toward this end, we introduce a dimensionless parameter ⌘ to quantify
�th = ⌘ ⇡

 . It is evident that the dynamic range for the signal � will be ⌘ 2 [�0.5, 0.5], as is
suggested by the horizontal axis of Fig. 4.5. However, the dependence of the coefficients cs
on  in Eq. (E.8) means perr is still -dependent, which in turn suggests the optimal sensing
QSPI phase angles depend on .

Lastly, note that some information is inevitably lost when in the final step of the sensing
protocol we trace out the oscillator part of the system with the qubit measurement, leaving
only the qubit part of the system. However, by selecting the QSPI phases so as to engineer
the polynomials F and G in ! (Eq. 4.14a and Eq. 4.14b) prior to measurement, we are able to
maximize the proximity of the response-function polynomial in � after measurement to the
ideal step-function response with transition at �th (and hence minimize perr). In this way, we
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Figure 4.5: Schematic of erroneous decision making probability (from the response function)
as the difference between the ideal response function (solid red) and a polynomial approx-
imated response function (solid black). For an event defined as “the displacement is below
threshold �th”, the integrated erroneous probability is composed of two parts: i) missing the
event while it actually happened (false-negative, FN, Type-II error, grey-shaded area), ii)
reporting the event when it did not happen (false-positive, FP, Type-I error, orange-shaded
area). Note that the effective detection signal range is

⇥
� ⇡

2 ,
⇡
2

⇤
.
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ensure that the relevant global displacement information is transferred from the oscillator to
the qubit, allowing for the efficient extraction of a decision about the displacement magnitude
without the need to directly read out the oscillator’s state (which would require many samples
and measurements).

4.6.1.1 Limitations of Cat State for Decision Making

As we have seen in Sec. 4.5.3.2 and in Fig. 4.2b, the cat-state sensing protocol corresponds
to a degree d = 1 QSPI. It has also been shown in Eq. (4.11) in Sec. 4.4.2 that the cat state
sensing protocol achieves the celebrated Heisenberg-limited sensing for parameter estimation.
In this section, we will characterize the performance of cat-state sensing protocol for decision-
making and reveal its limitations in this regard.

For degree d = 1 QSPI, the integrated probability of making the wrong decision per unit
signal can be calculated as

perr =
1

4⇡

⇥
sin(2�th� 4✓0) + sin(2�th+ 4✓0) (4.35)

+ (⇡ � 4�th) cos(4✓0)� 4�th� 2 sin(2�th) + 3⇡
⇤
. (4.36)

We would like to minimize perr overall by choosing ✓0 appropriately. The global minimum is
found to be the following when ✓0 = ⇡/4 (regardless of �th and ):

perr|✓0=⇡
4
=

1

2
� sin(2�th)

⇡
. (4.37)

On the other hand, supposing that we perform no rotation on the qubit, or ✓0 = 0, we
obtain P(M =# |�) = 1, which gives

perr|✓0=0 = 1� 2�th
⇡

. (4.38)

This makes sense because this scenario is equivalent to making a decision that the dis-
placement is always below �th, and therefore there is only false positive error and the error
probability should decrease as �th is increased. Moreover, when �th = ⇡

2 , which is on the
boundary of the sensing range, perr drops to zero.

A comparison of the scaling of perr versus �th between the best decision ✓0 = ⇡/4 and
the ignorant decision ✓0 = 0 is shown in Fig. 4.6. It can be seen that the optimal sensing
strategy significantly reduces perr when �th < �⇤

th, while it performs worse than the naïve
guess for �th > �⇤

th where �⇤
th = �

2 for � being the solution to the transcendental equation
⇡
2 � x + sin(x) = 0. The optimal sensing protocol works best for �th = ⇡

4 , where it gives
perr =

1
2 �

1
⇡ . This simple example also demonstrates the non-trivial complexity of decision

problems, even for the simplest such problems.
The above analysis also reveals that the minimum perr achieved by the cat-state sensing

protocol is always a constant regardless of the value of the displacement  or the size of
the cat state for a threshold �th = ⇡

4 . This behavior is in drastic contrast with parameter
estimation tasks, where a larger cat state will have finer interference fringes in phase space
and therefore achieve Heisenberg-limited estimation accuracy for very small displacements
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Figure 4.6: The probability of making wrong decision versus the decision threshold �th. Data
shown for a binary decision of displacement sensing using degree-1 bosonic QSP with  = 1,
comparing the best (✓0 = ⇡/4, red circle) and the naïve (✓0 = 0, black star) sensing protocol.
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(Eq. (4.11) of Sec. 4.4.2). An intuitive reason why decision-making with a larger cat-state
does not help is that the integration in Eq. (4.31) smears out the local information in the
oscillator wave function (e.g., the fine interference fringes), meaning that globally, a larger
cat-state behaves the same as a smaller cat-state for the binary decision.

4.6.2 Algorithmic Complexity for Binary Decision
Given the definition of the decision error density perr(�th, ), in this section, we would like
to understand some fundamental limits on how perr(�th) scales with the degree of the QSP.
This determines the algorithmic complexity of making a high-quality binary decision using
a QSPI protocol.

To do this, we first construct a composite function that exactly reproduces Pideal(�) (red
trace in Fig. 4.5) in the relevant sensing range of

⇥
� ⇡

2 ,
⇡
2

⇤
. In particular, consider

P sign, sin
ideal (�) =

sign [sin((�th � �))] + sign [sin((�th + �))]

2
, (4.39)

where sign(·) is the sign function. We use the superscript sign, sin to distinguish the current
construction from other possible constructions for Pideal(�).

With this, it can be shown (Appendix G) that to achieve a target faulty-decision proba-
bility perr, the required QSP polynomial degree d to approximate P sign,sin

ideal (�) must have

d / 1

perr
log

✓
1

perr

◆
. (4.40)

For small perr, log
⇣

1
perr

⌘
⌧ 1

perr
. Therefore, the total faulty-decision probability can be solved

from Eq. (4.40)

perr /
1

d
log(d). (4.41)

Recall that in a standard parameter estimation task, Heisenberg-limited scaling is defined
when the standard deviation for estimating the underlying parameter scales as 1/t where t
is the total time for the sensing protocol (also see discussions in Sec. 4.4.2). Here for our
case of binary decision making, analogous to parameter estimation, Eq. (4.41) suggests that
our QSPI protocol can achieve a similar Heisenberg-limited scaling where the probability of
making the wrong decision decreases as 1/d (up to a logarithmic factor of log(d)), where d is
proportional to the runtime of the sensing protocol. More strictly speaking, the appearance of
the log(d) factor in Eq. (4.41) will make the actual scaling slightly worse than the Heisenberg
limit, as is corroborated by numerical evidence in Sec. 4.7.

4.7 Numerical Results and Discussions
Building on the fundamental theory and analytical analysis of the quantum signal processing
interferometry, in this section we provide numerical evidence to support our analytical find-
ings for binary decision-making on displacement channels and to demonstrate the advantage
of the QSPI protocol for quantum sensing tasks.
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A key task to construct the desired QSPI protocol is to find the corresponding QSPI phase
angles ~✓ as in Definition 2. For a given decision problem, the existing analytic angle-finding
algorithms for QSP [GW04; Cha+20] cannot be directly applied in QSPI to realize the
optimal response function due to reasons mentioned in Sec. 4.5.3.1. In this section, we resort
to numerical optimization algorithms, which are capable of carrying out such multi-variable
approximate optimization tasks on a reasonable timescale to find the QSPI angles. See
Ref. [MLS23] for the source code and related data accompanying this work. The rest of this
section is organized as follows. Sec. 4.7.1 presents the response function from our numerical
optimization, while Sec. 4.7.2 further exhibits the favorable Heisenberg-limited scaling for the
error decision probability from these numerical solutions. In Sec. 4.7.3, we discuss features
of the Wigner function of the optimal sensing states |Q̃i as defined in Definition 2.

4.7.1 QSPI Phases for Binary Decisions
As discussed, we seek a QSPI protocol that generates a response function approximating a
step function with sharp transitions at ±�th, as given in Eq. (4.30). We approximate the
ideal response function via machine optimization of the phases ✓j in Eq. (4.13) to minimize
the objective function perr in Eq. (4.31) and Eq. (4.33) for different degrees d. We use
the standard Nelder-Mead optimization algorithm as implemented in Python in the scipy
optimization package with convergence defined to take place whenever either perr or every
QSPI rotation angle in ~✓ changes by at most 10�5 radians in a single step of optimization.

Using this learned QSPI phase sequence, we can now define an explicit experimental
protocol for sensing a displacement as follows
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Protocol 1 QSPI Sensing

1. Parameter selection: Given �th and a range of the signal � 2 (0, �max), pick  =
⇡

2�max
such that �th and � fall in the first period of the effective sensing range

⇥
0, ⇡

2

�

(Fig. 4.5). In our discussion, we have picked  = ⇡
4�th

, assuming that �max = 2�th.

2. Numerical optimization/phase learning on classical computers: Perform clas-
sical optimization for the desired QSPI phases given this �th and  using the code in
the QSPI repository [MLS23]. Denote the output phase angles of the code by ~✓.

3. Experimental realization on quantum systems: Using the experimental imple-
mentations of qubit rotations and controlled displacements by , implement the exper-
imental sensing protocol corresponding to the learned QSPI phases ~✓:

(a) QSPI State Preparation: Prepare the QSPI sensing state according to
Eq. (4.13) and Fig. 4.3.

i. Perform a qubit rotation by ✓0.
ii. For 1  j  d:

A. Perform a controlled displacement by .
B. Perform a qubit rotation by ✓j.

(b) Signal: Apply the unknown displacement signal for sensing to the oscillator in
the qubit-oscillator system.

(c) QSPI Signal Decoding: Undo the preparation of the QSPI sensing state for
readout.

i. For d � j � 1:
A. Perform a qubit rotation by �✓j.
B. Perform a controlled displacement by �.

ii. Perform a qubit rotation by �✓0.
(d) QSPI Readout: Measure the ancilla qubit under the Pauli-Z basis once.

Given the QSPI sensing protocol Protocol 1, we compute the corresponding response
function based on converged optimization results for  = 1

2048 , �th = ⇡
4 and plot this as a

function of � in Subfig. 4.7(a) for degrees d = 1, 5, 9, and 13, with Subfigs. 4.7(b) and 4.7(c)
zoomed in for the small and large � regions, respectively. As shown in the figure, when d = 1,
the response function simply takes the shape of a cos(·) function. As the degree of the QSPI
protocol increases, not only does the slope of the falling edge become steeper, but also, more
ripples are observed in the wings, as highlighted in panels (b) and (c) of Fig. 4.7. These
ripples are a common feature for finite-degree polynomial approximations to discontinuous
functions.

Furthermore, a closer observation of the response function reveals that a d-QSPI protocol
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has precisely (d � 1) local minima or maxima of its corresponding response function in the
interval

⇥
0, ⇡

2

�
. This is expected because a degree-d polynomial on � has at most (d � 1)

turning points. From a signal processing perspective, such qubit response functions serve as
low-pass filters on the signal parameter � [OS10]. We note that filters have been widely used
in classical decision-making [KV16], where filter functions (or impulse response) of the desired
shape can be implemented as infinitely smooth analytical functions (such as the Butterworth
or Chebyshev filters) or as finite-degree polynomials. The former class of filters are often
called infinite impulse response because an exact realization of the response would require
an infinite order polynomial, while the latter are named finite impulse response. Our QSPI
protocol can therefore be viewed as a quantum circuit realization of a finite impulse response
(finite-degree filter) on a classical parameter � which parameterizes a quantum process (the
underlying displacement signal). There is efficient classical algorithm, the Parks-McClellan
algorithm, that designs optimal finite-order polynomial filters [PM72]. It is interesting to
ask whether there might exist a quantum version of the Parks-McClellan algorithm for filter
design. Another question is to what extent our QSPI protocol can realize classical filters of
a given degree. Sufficient conditions provided in Theorem 5 will shed more light on these
questions.

4.7.2 Heisenberg-limited Scaling in Decision Quality
To analyze our results and compare with the traditional displacement-sensing approaches, we
plot the decision error of the QSPI protocol against its degree d on a log-log plot, as shown in
Fig. 4.8. This plot illuminates an interesting relationship between the QSPI protocol degree
and the associated response function. From the figure, we can see that the numerical data
points can be fitted by a linear black dashed line, demonstrating a power-law trend for perr
vs. degree d. The fitting reveals a slope of roughly ↵ = �0.82 ± 0.02 which is close to the
HL-like scaling as defined in Definition 1. This power-law fit does not precisely fit all of the
points, and it exhibits a parity-dependence with respect to the probability of error. The
slope is slightly worse than the exact Heisenberg limit (green dotted line), while still clearly
outperforming the standard quantum limit, a deficiency that is consistent with the additional
logarithmic factor log(d), as explained in Eq. (4.41) of Sec. 4.6.2. To make a more direct
comparison, we also fit all data points for d � 5 using the analytical scaling in Eq. (4.41)
(blue dashed line). The discrepancy between the analytical expectation and numerical data
occurs because our analytical scaling is derived in the large d limit, where we assume the
major source of error perr is from the falling edge, as seen in Fig. 4.7 (also see discussion in
Appendix G).

One final point is that although we were able to obtain numerical results and verify
them, this brute-force optimization method does have several clear challenges. For example,
to numerically optimize the sequence of phases minimizing the loss function (perr), one must
select an initial value for each of the phases as a starting point. It is possible that a sequence
of initial values in the vicinity of a local minimum is selected and then the optimization
procedure never escapes from the neighborhood around the local minimum. This problem
becomes especially challenging for longer QSP sequences, where the search space is likely to
contain more local minima. We attempt to address this difficulty by seeding with multiple
distinct random initial phase sequences and iterating on only a subset with the least perr.
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Figure 4.7: (a) Example response functions for various degrees d for distinguishing a dis-
placement with �th = 0.25 · ⇡

 , where  = 1/2048, using QSPI phases from numerical opti-
mization. (b, c) Magnified plots of the response function shown in (a) around P(M =#) = 0
and P(M =#) = 1, demonstrating that the response function for a d-QSPI protocol has
(d� 1) turning points in the interval

⇥
0, ⇡

2

�
.

87



Figure 4.8: Log-log scale plot of perr versus the QSPI protocol degree d (red circles). The
best-fit power-law scaling (black dashed line) has a slope of ↵ = �0.82 ± 0.02, indicating
perr / d�0.82±0.02. Best-fit theoretical scaling from Eq. (4.41) using data for d � 5 is shown
with a blue dashed line. The / 1/d HL scaling is shown with a green dotted line for
comparison.
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Thus, we are able to increase the likelihood that we find a phase sequence that has not been
trapped in a local minimum, allowing us to discern the optimal scaling of the decision error
with QSPI degree.

4.7.3 Wigner Function of Optimal QSPI Sensing States
Given the numerically optimized phases for optimal QSPI sensing states, we may now visual-
ize the resulting states to gain intuition about why their properties allow them to outperform
cat states for our decision problems, as we describe in this section.

Although we learned the QSPI phases for the small  = 1/2048 in order to best decouple
the cs coefficients and hence facilitate the optimization of the phases, bear in mind the
discussion of the coupling of  and � in Eq. (E.8) and realize that we can adjust our choice
of  and the corresponding � with only minimal fine-tuning of the phases learned for the
original value of . As such, for clearer visualization of low-degree states on the Wigner plots,
we increase the scale of our problem by setting  = 0.15

p
2 and setting �th = ⇡

4 = 5⇡
3
p
2
. For

each degree d, we use the phase sequence learned for  = 1
2048 as our initial phase sequence

and resume optimization until convergence for the new value of . This change to  results
in minimal change to the QSPI phases during the optimization, with the majority of them
differing by less than 1% relative to their original values. The Wigner plots for F and
G (Eq. (4.14)) for the newly optimized states resulting from these d-QSPI protocols with
 = 0.15

p
2 are shown for d = 5, 9, and 13 in Subfigs. 4.9(d) – 4.9(i) in the lower half of

Fig. 4.9.
To compare these QSPI states with cat states, we plot F (Eq. (4.14a)) for cat states

constructed with the same number d � 1 of displacements by  in Subfigs. 4.9(a) – 4.9(c)
in the upper panel of Fig. 4.9. We see immediately that the interference patterns (regions
with large contrast and Wigner negativity) for the cat state and QSPI state of same degree
d differ significantly. The cat states display interference fringes from their two displaced
coherent states that oscillate with a frequency of

p
2d/⇡ along the x-axis. Thus, cat states

corresponding to higher degree d have higher-frequency fringes; this is what makes cat states
effective sensors of very small displacements perpendicular to the coherent-state displacement
in parameter-estimation protocols [Gil+21] but not optimal for making global decisions. In
fact, cat states have a constant probability of error perr across all d for a given �th and , as
explained in Sec. 4.6.1.1.

This trade-off between high and low frequency features appears in Bayesian approaches
to estimation problems as well since without prior information, one must consider a flat
prior over some fixed region and resolve ambiguities at the cost of devoting resources to low
frequency features [Gór+20; BW00]. Often, probe states achieving Heisenberg scaling are
optimal for local estimation, but only in a small neighborhood around the true value as we
see for the cat state interferometry. If there is no prior information about which small neigh-
borhood of the response function is being examined, then there is fringe ambiguity. Thus,
the decision problem we address is akin to resolving fringe ambiguity issues in parameter
estimation, and our QSPI response function provides a way of interpolating between local
and global estimation regimes. For example, in interferometric phase estimation one must
restrict their prior to an interval 2⇡/(�+ � ��), where �±’s are extreme eigenvalues of gen-
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erator related to signal oracle, as phases differing by a multiple of 2⇡/(�+ � ��) cannot be
distinguished without additional resources [Gór+20]. This trade off between local and global
estimation is also pointed out in [Mey+23; Mar+22] where the short period of probe state
dynamics in n-qubit GHZ states offer optimal local estimation in a range 2⇡/n but cannot
distinguish parameter values differing by a multiple of 2⇡/n. Since the spacing between
ambiguous fringes is known for such problems, one could design efficient low-degree quan-
tum filters that discriminate only as precisely as necessary by choosing the optimal response
function for the given spacing.

Figure 4.9: Wigner plots of F for the cat state (Figs. 4.9(a), 4.9(b), and 4.9(c)), F and
G for the optimal QSPI sensing state (Figs. 4.9(d), 4.9(e), and 4.9(f)), and the oscillator
state resulting after the entire protocol is applied with displacements of � = 1

2�th and
� = 3

2�th conditioned on the qubit being in the |#i state (Figs. 4.9(g), 4.9(h), and 4.9(i))
with  = 0.15

p
2 and �th = ⇡

4 = 5⇡
3
p
2

constructed for d = 13, 9, and 5. Note the significant
differences between the Wigner plots for the cat states and those for the QSPI sensing states,
which do not closely resemble any known classes of quantum states. While the cat states
all appear very similar but with more distance between their two coherent state parts and
more interference fringes at the center as the degree d increases, the optimal sensing states
have a more complex interference pattern for improved decision-making. As expected, the
final oscillator state after the sensing protocol conditioned on the qubit being in the |#i state
represents a probability close to 1 for a displacement by � = 1

2�th but a small probability for a
displacement by � = 3

2�th, matching the behavior of the calculated response functions, shown
for  = 1

2048 in Fig. 4.7. A symmetrical logarithmic scale, where the scaling is logarithmic
in both the positive and negative directions from a small linearly-scaling range around zero,
is used as the color scheme in order to increase the contrast of finer features of the Wigner
quasiprobability distribution.
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The physical intuition for this improved decision-making of the QSPI states stems from
the lower-frequency features shown in the Wigner contrast plot. The spacing between
sharp-Wigner-contrast features which appear consistently in the upper half of plots in Sub-
figs. 4.9(d) and 4.9(f) around (x ⇡ ±1, p ⇡ 1) indicates the placement of sharp thresholds
in the response function. This is why the cat-state response function places sharp thresh-
olds with frequency d/⇡. In comparison, for general QSPI states, the interplay between
asymmetric F and G is more complicated to analyze than for the F and G of cat states, but
as we see in Fig. 4.9, the spacings between sharp Wigner features shown in Subfigs. 4.9(d)
and 4.9(e) remain larger than those of the cat states shown in Subfigs. 4.9(a) and 4.9(b),
respectively. Notice that the Wigner extent is also smaller for QSPI states as compared with
that of cat states. This is because cat states are maximally extended in phase space for the
given energy of the protocol by naïvely shifting the wave packet along one direction, while
the QSPI state devotes some of the energy to creating a more complicated and optimized
interference pattern phase space as compared to the simple sinusoid with Gaussian envelope
that the cat state creates.

Subfigs. 4.9(g) – 4.9(i) then depict the final oscillator state after performing the en-
tire QSPI displacement-sensing protocol with displacements by � = 1

2�th and � = 3
2�th,

conditioned on the qubit being in the |#i state. We note from these subfigures that the
quasiprobability distribution exhibits primarily constructive interference to give a total |#i-
measurement probability of nearly 1 when the QSPI sensing protocol is applied for a dis-
placement by � = 1

2�th, while the Wigner quasiprobability distribution exhibits primarily
destructive interference to give a total |#i-measurement probability of nearly 0 when the
QSPI sensing protocol is applied for a displacement by � = 3

2�th (hence the nearly empty
Wigner plots). These behaviors agree with our theoretical analysis and solve the Main
Problem stated in Sec. 4.4.1.

In particular, we also show in Table 4.1 the probabilities of measuring |#i for the qubit
state after performing the entire protocol with both the d-QSPI sensing states for d = 5,
9, and 13 and the corresponding cat states for reference. Note that according to simulation
results (and as predicted in Sec. 4.6.1.1), the probability of detection does not change with
degree d for the cat state, so we provide only one probability. Note also from the results
shown in the table that although the cat state performs well for sensing a displacement by
�th (with  = 0.15

p
2 and �th = ⇡

4 = 5⇡
3
p
2
), its performance is already matched with only

a 5-QSPI state. Moreover, while the cat state’s displacement-sensing performance remains
constant with increasing degree d, the d-QSPI state’s performance improves, so the 9- and
13-QSPI states outperform the cat state; moreover, performance of d-QSPI states for this
displacement-sensing task will continue to improve as d increases further.

4.8 Conclusion
In this work, we present a general framework for single-shot quantum sensing using continuous-
variable systems by establishing a theory of quantum signal processing interferometry. The
basics of this construction are a generalization of QSP to systems with a qubit coupled to a
quantum harmonic oscillator. The controlled displacement operation between the qubit and
the oscillator forms a natural block-encoding of the displacement operator on the oscillators,
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Sensing State P(M =# |� = 1
2�th) P(M =# |� = 3

2�th)
Cat State 0.957 0.035
QSPI 5 0.956 0.035
QSPI 9 0.976 0.021
QSPI 13 0.982 0.016

Table 4.1: The probability of measuring the qubit in the |#i state after applying the entire
sensing protocol with displacements by 1

2�th (below threshold) and 3
2�th (above threshold)

using the cat state (independent of degree d) and the d-QSPI states for d = 5, 9, and 13,
where  = 0.15

p
2 and �th = ⇡

4 = 5⇡
3
p
2
. These values are calculated from a numerical

simulation of the QSPI protocol with a Fock-level truncation of N = 500 and using a grid
with a unit cell size of 0.2⇥ 0.2. The numbers in the table are confirmed to converge to the
given significant figures with respect to both Fock-level truncation N and grid spacing by
performing the same calculations with larger N and finer grids.

via which arbitrary polynomial transformations on the oscillator’s quadrature operator can
be efficiently implemented. The flexibility of QSP provides the basis for our algorithmic
QSPI sensing protocol. A measurement on the qubit induces a qubit response function that
is a polynomial transformation of the signal parameters that we would like to sense. By
tuning the QSPI phase angles to design appropriate response functions, useful information
about the signal parameters can be extracted efficiently.

The QSPI sensing protocol is analyzed in detail for a binary decision problem on a dis-
placement channel with theoretical bounds on the sensing-circuit and sampling complexity.
These binary decision oracles are then used to construct a composite protocol for parameter
estimation via classical binary search and majority vote. Our sensing scheme is applied to
determine if a displacement on the oscillator is greater or smaller than a certain threshold,
and Heisenberg-limited behavior is derived analytically and observed numerically for this
application.

While we have demonstrated Heisenberg-limited scaling for a binary decision on a dis-
placement channel, the sensing protocol can be further improved. One immediate task is
to determine if there exist non-optimization-based algorithms for finding QSPI phase an-
gles that achieve a general QSPI response function. This goal implies the need to find not
only necessary but also sufficient conditions on QSPI for the backward direction of Theo-
rem 5. Moreover, the sensing protocol for a single canonical variable of the oscillator can
be generalized to two conjugate canonical variables of position and momentum simultane-
ously, allowing for the realization of quantum sensing in the entirety of phase space for the
oscillator. Due to the Heisenberg uncertainty principle, tradeoffs between sensitivity in the
position and momentum quadratures may be imposed using squeezing operations depend-
ing on the particular sensing task. In addition, the sensing power can be further enhanced
by coherently manipulating multiple bosonic modes [ZZS18; Kwo+22], which can likely be
coupled together with beamsplitters. In this context, tradeoffs between available quantum
resources, such as space (number of oscillators) and time (sensing circuit depth), would be
interesting to investigate.

The algorithmic QSPI-based quantum sensing protocol presented in this work opens many
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possibilities for useful applications. For example, bosonic modes appear in many physical
systems, such as in molecular vibrations and light-matter interactions under confined con-
ditions. The displacement-sensing scheme presented here can be used to sense any chemical
environment change in molecules, as long as the change leads to an effective displacement
operation on molecular vibrations, as in the case of ro-vibrational coupling [Pek34], or a dis-
placement on photonic modes, as in polariton chemistry [Rib+18; Xio23]. The flexibility of
designing response functions can be used to deal with situations where the underlying signal
has some prior distribution. Our framework also can be used to study the few-shot regime
and connect local and global estimation strategies as in [Mey+23]; we show a new perspec-
tive for solving such metrology problems by focusing on response function filter design (as
opposed to optimization over more abstract POVMs).

We note that the decomposition of composite sensing tasks, such as parameter estima-
tion, into a series of decision problems provides ample room for the incorporation of hybrid
quantum-classical algorithms into the sensing framework. For example, sophisticated adap-
tive strategies can be built in to gradually change the precision and shape of the decision
filter and hence reduce the sensing cost. Lastly, Heisenberg-limited sensing is prone to quan-
tum noise. It would be useful to analyze the stability of our QSPI-based continuous-variable
sensing protocol in the presence of quantum noise [DGN22; Xu+23a]. Realistic noise models
on hardware containing bosonic degrees of freedom could be incorporated into numerical
simulations as well [Bra+23]. Both photon loss and heating (common to superconduct-
ing and trapped-ion hardware, respectively) will cause the behavior of the filter to change
if quantum error-correction is not incorporated into the QSP sequences [DJK15; EMD11;
DKG12]. A potential future direction of interest would be to study the behavior of QSPI
under noisy conditions or to extend the QSPI protocol so that it is compatible with error-
correction [Zho+19].
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Chapter 5

Constructing Arbitrary Polynomials in
Phase Space With Bivariable Quantum
Signal Processing

The work in Chapter 4 suggests that we can design standard QSP sequences that alternate
echo-controlled displacement gates acting on a qudit with rotations on a qubit to which the
qudit is coupled in order to achieve universal control of the quantum system wave function in
position. In other words, we can use an optimization algorithm in order to learn a sequence
of phases for the qubit rotations such that we can realize any polynomial in position for the
qubit response function.

This might lead one to wonder if there is a generalization of this approach that provides
more complete control, not only over the qubit response function in position but also in
momentum. This would imply complete control of the qubit response function over all of
phase space, which might have yet broader applications. In order to investigate this topic,
we introduce a new model for quantum computation interleaving qubit rotations with echo-
controlled displacements by both real and purely imaginary quantities on a coupled qudit.

This research has not yet been completed or previously published and is still under
investigation, but we demonstrate its potential by employing machine optimization to learn
sequences of qubit rotations to interleave with the echo-controlled displacements in order to
implement an XOR gate on the position and momentum quadratures in phase space. The
idea for this bivariable QSP was proposed by Dr. Yuan Liu, and a few more details are
provided in the a work currently in preparation [Liu+24].

In Sec. 5.1, we reframe the problem from Chapter 4 in the context of all of phase space
in order to motivate this research direction. Then in Sec. 5.2, we lay out some fundamental
definitions in this bivariable QSP. In Sec. 5.3, we use these definitions to prove constructively
that bivariable QSP performs a Laurent polynomial transformation on its inputs. In Sec. 5.4,
we introduce an example problem that makes use of the bivariable nature of bivariable QSP
to address a different kind of sensing problem, and we share the numerical results for this
problem in Sec. 5.5. Finally, in Sec. 5.6, we share some conclusions about the possibilities
for bivariable QSP, as well as ideas for future directions.
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5.1 Reframing the Sensing Problem of Chapter 4
We have remarked that the idea of being able to realize arbitrary qubit response functions
over all of phase space could have wide-ranging applications in quantum sensing. In order
to demonstrate one example, we first consider how the sensing problem that we solved with
our displacement-sensing scheme as presented in Chapter 4 can be reframed as a problem of
realizing a particular qubit response function over the coupled oscillator’s entire phase space.

Recall that in Chapter 4, we aimed to decide using a coupled qubit whether or not
an oscillator had been displaced by at least some threshold value �th. In this chapter, we
addressed the displacement-sensing problem by considering the ideal response function over
the displacement coordinate, or the position, alone. We provided this response function as

Pideal(x) =

(
1, 0  |x| < �th
0, �th < |x|  ⇡

2 .
(5.1)

in Eq. (4.30).
The key here to reframing this displacement-sensing problem as one of realizing a par-

ticular qubit response function over the coupled oscillator’s phase space is to introduce a
momentum coordinate to the desired qubit response function so that rather than reading as
in Eq. (5.1), it reads as

Pideal(x, p) =

(
1, 0  |x| < �th
0, �th < |x|  ⇡

2 .
(5.2)

In this new framing, if we can realize arbitrary qubit response functions over the en-
tirety of phase space, then we should be able to provide a working protocol for solving the
displacement-sensing protocol proposed in Chapter 4, as desired.

5.2 Bivariable Quantum Signal Processing (BiQSP)
Having demonstrated how the sensing problem introduced in Chapter 4 can be reframed as
a problem of producing a target response function over all of phase space, we now formalize
an approach to quantum signal processing over all of phase space rather than over position
alone.

The first step is to define the form of the bivariable QSP, or BiQSP, protocol being
considered. In order to achieve control in both dimensions, we need to be able to perform
some kind of QSP operation like that introduced for the QSPI sensing work in Chapter 4
but on the momentum quadrature rather than position quadrature. We achieve this by
allowing controlled displacement operations in both position and momentum interleaved in
a particular manner that we will explain.

In analogy with the controlled-displacement gate for the position quadrature given in
Eq. (4.7), we also define a controlled-displacement gate for the momentum operator, as
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follows:

W ()
z (x̂) := Dc

⇣
�i

2

⌘
= e�i2 x̂⌦�̂z =


e�i2 x̂ 0
0 ei


2 x̂

�
=


w(x̂) 0
0 w�1(x̂)

�
, (5.3a)

W (�)
z (p̂) := Dc

✓
��
2

◆
= e�i�2 p̂⌦�̂z =

"
e�i�2 p̂ 0

0 ei
�
2 p̂

#
=


v(p̂) 0
0 v�1(p̂)

�
, (5.3b)

where w := w(x̂) = e�i2 x̂ and v := v(p̂) = e�i�2 p̂.
Note that each of these two “signal operators” can be viewed as a block-encoding of a

momentum displacement (W ()
z (x̂)) or a position displacement (W (�)

z (p̂)).
Now, for the general form, consider the following unitary constructed from both unitary

operators defined above alternated with x rotations on the qubit:

Ud = ei�0�̂x

dY

j=1

W ()
z ei�

()
j �̂xW (�)

z ei�
(�)
j �̂x (5.4)

=


Fd(w, v) iGd(w, v)

iGd(w�1, v�1) Fd(w�1, v�1)

�
. (5.5)

Given this construction of the bosonic bivariable QSP protocol in Eq. (5.4), we would
first like to prove constructively that Ud implements a bivariable Laurent polynomial trans-
formation on w and v in the following form:

Fd(w, v) :=
dX

r, s=�d

fr, sw
rvs, (5.6a)

Gd(w, v) :=
dX

r, s=�d

gr, sw
rvs, (5.6b)

where fr, s and gr, s are complex coefficients determined by the phase angles {�()
j ,�(�)

j }. Note
that because w and v do not commute (due to the noncommutativity of x̂ and p̂), the order
of the terms in Eq. (5.6) matters. In the rest of this document, we illustrate the main
results of this constructive proof, taking the above way of writing out the bivariable Laurent
polynomial to be canonical.

5.3 Constructive Proof of BiQSP Laurent Polynomial Trans-
formation

In order to demonstrate constructively that Ud implements a bivariable Laurent polynomial
transformation on w and v, and in order to facilitate the design of protocols using this
framework for control over phase space, we derive a set of recursive formulae for computing
the coefficients of the F and G polynomials in this bivariable setting given an initial phase
�0 and two sequences of phases {�()

j } and {�(�)
j }.
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To do so, we expand the expression given in Eq. (5.4) and match terms. Doing so yields
the following recursive formulae for the coefficients. The formulae fall into different cases
depending on the values of r and s relative to d because the degrees with nonzero coefficients
at each step are limited, and these different cases are illustrated in Figure 5.1.

Working through the algebra, the formulae in these different cases are then given by the
following in Eqs. 5.7 – 5.9:

1. If r = �d or r = �d� 1, then

f 0
rs =

8
>>>>><

>>>>>:

� gr+1, s+1e
�i(s+1)�4 cos�()

d+1 sin�
(�)
d+1, s = �d, �(d+ 1)

� gr+1, s�1e
�i(s�1)�4 sin�()

d+1 cos�
(�)
d+1

� gr+1, s+1e
�i(s+1)�4 cos�()

d+1 sin�
(�)
d+1,

|s|  d� 1

gr+1, s�1e
�i(s�1)�4 sin�()

d+1 cos�
(�)
d+1, s = d, d+ 1.

(5.7a)

(5.7b)

(5.7c)

2. If |r|  d� 1, then

f 0
rs =

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

� fr�1, s+1e
i(s+1)�4 sin�()

d+1 sin�
(�)
d+1

� gr+1, s+1e
�i(s+1)�4 cos�()

d+1 sin�
(�)
d+1,

s = �d, �(d+ 1)

fr�1, s�1e
i(s�1)�4 cos�()

d+1 cos�
(�)
d+1

� fr�1, s+1e
i(s+1)�4 sin�()

d+1 sin�
(�)
d+1

� gr+1, s�1e
�i(s�1)�4 sin�()

d+1 cos�
(�)
d+1

� gr+1, s+1e
�i(s+1)�4 cos�()

d+1 sin�
(�)
d+1,

|s|  d� 1

fr�1, s�1e
i(s�1)�4 cos�()

d+1 cos�
(�)
d+1

� gr+1, s�1e
�i(s�1)�4 sin�()

d+1 cos�
(�)
d+1,

s = d, d+ 1.

(5.8a)

(5.8b)

(5.8c)

3. If r = d or r = d+ 1, then

f 0
rs =

8
>>>>><

>>>>>:

� fr�1, s+1e
i(s+1)�4 sin�()

d+1 sin�
(�)
d+1, s = �d, �(d+ 1)

fr�1, s�1e
i(s�1)�4 cos�()

d+1 cos�
(�)
d+1

� fr�1, s+1e
i(s+1)�4 sin�()

d+1 sin�
(�)
d+1,

|s|  d� 1

fr�1, s�1e
i(s�1)�4 cos�()

d+1 cos�
(�)
d+1, s = d, d+ 1.

(5.9a)

(5.9b)

(5.9c)

With these analytic formulae for computing the coefficients of F and G resulting from
a given initial phase �0 and pair of phase sequences {�()

j } and {�(�)
j } recursively in this

bivariable setting, we have now proven constructively that Ud implements a bivariable Lau-
rent polynomial transformation on w and v. Although we are currently in the process of
proving that the above construction is general enough to realize arbitrary polynomial trans-
formations in the oscillator’s phase space efficiently, these formulae already provide us with
an analytic basis for performing numerical optimization of the phases for realizing a given
target qubit response function.
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Figure 5.1: Illustrating the nine different cases for r and s in the recursion for computing
the f and g coefficients of Eq. (5.6) in BiQSP. The colors exist only to distinguish the nine
different cases and have no more specific relevance.
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Figure 5.2: A visualization of the XOR function defined in Eq. (5.10) over all of phase space.

5.4 Example Test Problem
As mentioned, we would now like to use these analytic formulae in order to perform numerical
optimization for realizing a target qubit response function. In Chapter 4, we numerically op-
timize a sequence of phases for realizing a qubit response function for solving a displacement
sensing problem. Though this direction is fruitful and suggests a broader field of designing
QSP response functions to solve sensing problems on its own, a wider range of sensing prob-
lems can be addressed if we make use of BiQSP and the analytic formulae for the Laurent
polynomial coefficients.

One simple test problem that challenges the ability of BiQSP to implement a nontrivial
function in phase space is the idea of implementing an XOR qubit response function on the
position and momentum quadratures. To be more specific, suppose that we would like to
implement the following qubit response function in Eq. (5.10):

XOR(x, p) =

(
1
2 , x · p > 0

�1
2 , x · p < 0.

(5.10)

For visual reference, this qubit response function is also shown in Fig. 5.2.
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Figure 5.3: A visualization of the new more symmetric XOR function defined in Eq. (5.11)
over all of phase space.

We first took this to be the target qubit response function. However, we eventually
realized from the plots of the learned phasesthat it might be difficult to learn coefficients
such that we could obtain such a sudden change from �0.5 to +0.5 at x · p = 0, especially
because the target function output was slightly asymmetric here, so we added an intermediate
region at x · p = 0 where the function would take an intermediate value of 0. This is given
by the revised XOR function definition in Eq. (5.11):

XOR(x, p) =

8
><

>:

1
2 , x · p > 0

0, x · p = 0

�1
2 , x · p < 0.

(5.11)

Moreover, this new qubit response function is shown in Fig. 5.3.
Note that both XOR qubit response functions are indeed dependent on both the x and

p quadratures nontrivially, since there does not exist a way to decouple these qubit response
functions into independent functions of x and p. As such, if we can implement a good
approximation to these XOR qubit response functions with BiQSP, then we will already have
shown the ability to solve a new kind of problem using this QSP-based method for designing
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qubit response functions. Although being able to sense whether an oscillator’s position and
momentum have the same sign may not, in itself, be a useful sensing ability, success on this
example would indicate the ability to learn BiQSP phases to implement nontrivial bivariable
qubit response functions, some of which certainly have useful applications.

The last piece necessary to perform the learning of the phase sequences for best approx-
imating this qubit response function with BiQSP is the loss function to minimize. Because
we are aiming for a particular target value for every grid point, we choose to take the mean
of some distance metric between the current function value of F and the target value over
all grid points. Two reasonable choices are the squared error and the absolute value of the
difference.

We denote the target qubit response function T . In the first case, our loss function is
just the usual mean squared error (MSE), in which case for a grid of N gridpoints (xi, yi),
we have

MSE(�0, {�()
j }, {�(�)

j }) = 1

N

N�1X

i=0

(F (xi, yi)� T (xi, yi))
2

=
1

N

N�1X

i=0

dX

r, s=�d

(fr, se
�i

rxi
2 e�i

s�yi
2 � T (xi, yi))

2. (5.12)

However, we choose to take the latter, so our loss function is

L(�0, {�()
j }, {�(�)

j }) = 1

N

N�1X

i=0

|F (xi, yi)� T (xi, yi)|

=
1

N

N�1X

i=0

dX

r, s=�d

���fr, se�i
rxi
2 e�i

s�yi
2 � T (xi, yi)

���. (5.13)

Finally, as mentioned earlier, we choose to set the length scale by  = � = 2 for our
learning.

5.5 Preliminary Results
In order to go about this numerical optimization procedure, we make use of the recursive
formulae that we derived for the constructive proof that BiQSP, as we have defined it,
implements a bivariable Laurent polynomial transformation on w and v.

In particular, we implement with the Python package PyTorch a recursive algorithm
using tensors to calculate the Fourier coefficients f and g of polynomials F and G from
the initial phase �0 and the two sequences of phases {�()

j } and {�(�)
j } in a manner that is

autodifferentiable. We then define a grid of points in phase space, and using these f and g
coefficients, we evaluate the polynomials F and G on these grid points. Finally, we define
an appropriate loss function according to Eq. (5.13) in order to evaluate the proximity of
the function evaluations to those for the desired qubit response function, and we perform
gradient descent on the initial phase �0 and the phases in the phase sequences {�()

j } and
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{�(�)
j } using PyTorch autodifferentiation in order to find phase sequences that result in a

better approximation to the desired qubit response function.
Before we begin to discuss the results of training BiQSP polynomials in this manner in

order to approximate the XOR qubit response function of position and momentum defined
earlier, we must first make some notes about some details of the training procedure.

The first note is that because the BiQSP qubit response function is a polynomial of
v = e�i2 x̂ and w = e�i�2 p̂, it is necessarily periodic with periods of 4⇡

 in the position
quadrature and 4⇡

� in the momentum quadrature. As such, in order to avoid redundant
evaluation and impose minimal necessary constraints on the learned function, we limit our
grid of points for evaluation and training to range from �⇡

2 to ⇡
2 while taking  = � = 2.

The second note is also in relation to the choice of grid points for evaluating and opti-
mizing the qubit response function. In particular, it is not reasonable to consider grid points
for evaluation with spacing smaller than 2⇡

dmax
, where dmax is the maximum degree of v or w

in the Laurent polynomial, or equivalently, the depth d to which we perform the recursive
calculation of coefficients. For example, if we take BiQSP according to the definition given
in Eq. (5.4) with d = 3 (i.e., seven phases with one initial phase �0 and three phases in each
of the phase sequences {�()

j } and {�(�)
j }), then dmax should be 3. Note that because we are

taking the grid points to span the range from �⇡
2 to ⇡

2 , this means that we cannot have grid
spacing closer than 2⇡

d , or that we cannot divide the range into more than d
2 parts, or that

we cannot set the number of grid points in this range, including the endpoints, to be more
than d

2 + 1.
With these preliminaries in mind, we begin to present the qubit response functions for

the phase sequences learned by gradient descent.
As outlined in the statement of the problem, we began by learning phases corresponding

to the slightly asymmetric XOR function defined in Eq. (5.10). As per the requirements
laid out in Sec. 5.4, we set out to learn 31 phases to best replicate this XOR function on
a 7 ⇥ 7 grid of points spaced evenly from �⇡

2 to ⇡
2 in both x and p. We then evaluate the

function and plot both the real and imaginary parts. We find phases that produce a qubit
response function achieving a loss value of 0.1756, and the real and imaginary parts of this
qubit response function are shown in Fig. 5.4a and Fig. 5.4b of Fig. 5.4, respectively.

Overall, these plots look very promising. The quadrants where x and p have the same
sign indeed have F evaluating to complex numbers with real part close to +0.5, and the
quadrants where x and p have opposite signs indeed have F evaluating to complex numbers
with real part close to �0.5. Moreover, most of the imaginary parts of the evaluations of F
on the grid points are close to 0, which is desired, since ideally, F would be a real function.

However, we note that most of the largest deviations from the imaginary part being zero
fall on the two axes of phase space where x ·p = 0. This, combined with the observation that
the definition of the XOR function in Eq. (5.10) is not quite symmetric about 0, leads us
to consider the hypothesis that the asymmetry of the target qubit response function could
be difficult for the BiQSP model to fit. As such, we slightly redefine the target XOR qubit
response function to make it more symmetric, as given by Eq. (5.11), and we attempt to
learn phases for this case in order to test our hypothesis.

With the new definition of the XOR function from Eq. (5.11) used as the target function,
we train again and find slightly different phases that result in a slightly different qubit
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(a) Real Part (b) Imaginary Part

Figure 5.4: Real (Fig. 5.4a) imaginary (Fig. 5.4b) parts of the learned XOR qubit response
function from Eq. (5.10) with 31 phases.

(a) Real Part (b) Imaginary Part

Figure 5.5: Real (Fig. 5.5a) and imaginary (Fig. 5.5b) parts of the learned XOR qubit
response function from Eq. (5.11) with 31 phases.

response function that achieves a slightly reduced loss of 0.1601, a first indication that this
target might be easier to fit. This new qubit response function’s real and imaginary parts
are shown in Fig. 5.5a and Fig. 5.5b of Fig. 5.5, respectively.

We see that indeed, there are some improvements in the fit to the desired XOR qubit
response function. In particular, the same behavior of having the real part of F evaluate to
near 0.5 in the quadrants where x and p have the same sign is mostly retained. Moreover,
we do see significant improvement in the imaginary part of F approaching 0 on the grid
points, with the maximum magnitude of the imaginary part of F being significantly reduced
from 0.533 to 0.194 with this slightly refined XOR qubit response function target. However,
there are also some new problems, the most evident being that at the most extreme values
of both position and momentum, the function has real part relatively close to zero, meaning
that the qubit response function in these regions distant from the origin is not reliable.
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(a) Real Part (b) Imaginary Part

Figure 5.6: The real and imaginary parts of the optimized approximation of the XOR qubit
response function F using 31 phases and evaluated on a 101⇥ 101 grid.

Note that the phases learned using each XOR function are given in Table 5.1.

Description Phases

Asymmetric XOR 5.10

[4.2019, 4.7977, 4.7894, 0.3479, 2.0239, 5.0255, 0.5019,
6.2364, 4.6936, 3.4036, 6.3521, 1.2807, 0.1656, 4.6411,
2.2243, 6.3811, 1.6247, 5.9110, 4.1491, 2.2454, 5.3564,
1.3311, 7.2322, 3.0642, 0.3707, 5.7935, 4.5443, 1.8386,

2.1276, 0.5653, 3.0908]

Symmetric XOR 5.11

[1.9920, 6.2481, 3.2494, 5.8234, 4.4495, 1.3569, 4.8765,
-0.1311, 1.6432, 4.9559, 1.4580, 2.8103, 1.4615, 4.8713,
4.9725, 4.2071, 4.6967, 0.0284, 3.4227, 5.6285, 2.7981,
3.5775, 5.9856, 1.4454, 6.2989, 2.1114, 3.1377, 3.9845,

3.0854, 5.3177, 5.3347]

Table 5.1: 31-phase BiQSP phases learned for each kind of target XOR function, both the
slightly asymmetric one and the symmetric one.

One final question of interest is how F behaves at points between these grid points. In
order to investigate this question, we take the same function F as defined by the coefficients
that we had learned, and rather than evaluating the function only on the grid points that
were used to train it, we instead evaluate it on a 101⇥ 101 grid in the same range from �⇡

2
to ⇡

2 . The results for the real and imaginary parts are shown in Fig. 5.6a and Fig. 5.6b of
Fig. 5.6, respectively.

We see in these figures that although we only trained the qubit response functions on
the 7 ⇥ 7 grid of points from �⇡

2 to ⇡
2 , the function retains approximately the values that

one would expect from interpolation in the interstitial space, and hence achieves many of
the desired goals. The regions distant from the origin remain a concern, as F evaluates to
nearly zero there, but otherwise, the function behaves approximately as expected, with real
parts near +0.5 where x and p have the same sign and real parts near �0.5 where they do
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not. Moreover, the imaginary parts are still near 0, albeit a bit greater than on the original
7⇥ 7 grid points alone.

We repeat much of this analysis for a 41-phase BiQSP solution evaluated on a 9⇥ 9 grid
of points, and the results are given in Appendix H.

The loss for this 41-phase BiQSP is slightly greater than for the 31-phase BiQSP despite
it having more phases and hence a greater range of qubit response functions that it can
express. This highlights a couple of potential shortcomings of our analysis and this numerical
optimization approach for learning BiQSP sequences. Specifically, because there are so
many phases involved, the optimization is quite complex with many local minima in which
the gradient descent method can become trapped. In order to minimize the effects of this
difficulty, we initialized the gradient-descent optimization with many distinct random initial
phase sequences so that, with greater probability, one of these initial sequences would be in
the vicinity of the global minimum and would be able to find it without becoming trapped
in one of the many local minima that exist in the rugged optimization landscape. We then
retained the best of these phase sequences after 250 rounds of gradient descent and continued
to optimize them. This being said, we still might not have found true global minima, and
this problem is exacerbated with an increased number of phases, which could explain why
the 41-phase BiQSP has a slightly greater loss than the 31-phase BiQSP despite having more
expressivity. This numerical optimization problem could benefit from increased computing
resources and time, and we hope to continue exploring it in the future.

5.6 Conclusions
In conclusion, we have demonstrated that bivariable quantum signal processing produces
Laurent polynomials of the position and momentum quadratures. Although we have not
yet proven that all Laurent polynomials are achievable with the form of BiQSP that we
presented, and this remains to be shown in future work, we have demonstrated with numerical
simulations that BiQSP can achieve good approximations to the XOR function, a nontrivial
qubit response function in phase space. The best methods for numerical optimization of the
BiQSP phases toward achieving general qubit response functions of position and momentum
beyond baseline gradient descent also remains a question for investigation.

Even with these open questions, we conclude that BiQSP is a promising framework
for learning how to experimentally realize new varieties of qubit response functions not
achievable with quantum signal processing on a single variable alone. These new bivariable
qubit response functions could be used to realize yet unrealized quantum algorithms or to
sense different properties of quantum states, and these prospects make it a promising research
direction.

105



Chapter 6

Using Qubit-oscillator Systems to
Construct Quantum Error-Correction
Codes

Quantum computation is subject to significant environmental noise, resulting in errors on
the quantum states used for computation. This noise can thus significantly degrade the
ability to perform complex computational tasks on quantum devices, especially as more
complex computations often require longer operation time and consequently offer increased
potential for accumulation of physical errors. As research advances toward applying quantum
computation techniques to problems of interest, addressing the problem of carrying them out
in the presence of errors becomes increasingly imperative.

We first discuss approaches currently being taken to address the problem of quantum
noise in Sec. 6.1. Next, we discuss the burgeoning field of dissipation engineering and its
applications to quantum error-correction in Sec. 6.2. After laying this groundwork for under-
standing the application of dissipation engineering to quantum error-correction, we describe
our proposed scheme for using dissipation engineering to stabilize a relatively new kind of
quantum error-correcting code in Sec. 6.3. We next describe the methodology that we employ
to analyze the performance of our quantum error-correcting protocol in Sec. 6.4. In Sec. 6.5,
we present the results of our simulations analyzing the performance of the error-correcting
protocol. Finally, in Sec. 6.6, we present the conclusions of our analysis and future directions
for this quantum error-correcting codes research.

This research was performed with the Nippon Telegraph and Telephone Corporation
(NTT) under the supervision of Dr. Suguru Endō and in collaboration with Dr. Tomohiro
Shitara. It will likely be expanded slightly and submitted for publication within the next
several months.

6.1 Introduction
In an effort to address the challenge of noise corrupting information stored in quantum
states, and inspired by an idea developed in the field of classical computation, researchers
in the field began to explore methods for quantum error correction (QEC). The classical
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inspiration in error correction is exemplified by the repetition code, which produces error-
protected logical units by the replication of bits, as an error on one bit can be corrected by a
simple majority vote on the set. Naïvely, this result does not seem translatable to quantum
computation, since the no-cloning theorem for qubits precludes the possibility of replicating
a qubit’s state [Die82; Par70; WZ82].

However, it has been shown that quantum entanglement can enable the quantum equiva-
lent of a repetition code, and the theoretical three-qubit bit-flip code and three-qubit phase-
flip codes provide models for this [NC10]. We will not provide a complete explanation and
refer anyone interested in additional details to Quantum Computation and Quantum Infor-
mation by Michael Nielsen and Isaac Chuang [NC10]. However, we will provide an overview
of these codes. The general idea is that we perform the encoding given in Eq. (6.1), replacing
each of the two basis qubits with three entangled basis qubits of the same kind to form a
single logical unit that is better protected against noise:

|0i ! |0Li ⌘ |000i (6.1a)

|1i ! |1Li ⌘ |111i. (6.1b)

Here, we use the notation of subscript L to denote a logical qubit, as opposed to the standard
physical qubit denoted without the subscript. Note that a logical qubit can be, and often is,
comprised of multiple physical qubits.

These substitutions imply that the state ↵|0i+�|1i would be encoded as ↵|000i+�|111i.
This transformation can be accomplished by passing the state to be encoded into a circuit
with two additional ancilla qubits, each initialized to |0i, and performing a controlled-NOT
gate on each qubit controlled on the first qubit, effectively copying its |0i or |1i basis state
over to the other two qubits. Then, by performing an appropriate projective measurement
on the resulting state at some point in the future, we can determine whether there has been
a bit-flip, or Pauli-X, error on one of the three qubits and correct it as necessary. The
three-qubit phase-flip code is achieved in essentially the same way, except that we use |+i
and |�i in place of |0i and |1i. This suffices because a phase flip transforms |+i to |�i
and vice-versa, making a phase-flip error treatable as a bit-flip error in the {|+i, |�i} basis.
Moreover, the conversion from the three-qubit bit-flip code is simple; we only need to prepare
the three-qubit bit-flip code and then perform a Hadamard gate on each of the three qubits.

Combining these two codes, Peter Shor proposed in 1995 a 9-qubit quantum error-
correcting code (QECC) that could correct an arbitrary error on any single qubit [Sho95].
Instead of copying the qubit state, Shor’s encoding employs the three-qubit-code idea of
distributing the quantum state nonlocally via entanglement over the nine qubits of the code
state. His code does so in such a way that a single error of any kind on any one qubit
cannot irreversibly destroy the information stored in the entire state. Several other quan-
tum codes were subsequently devised using a similar approach, including Andrew Steane’s
7-qubit code [Ste96] and a 5-qubit code that was proven to be the shortest possible code
that can correct a general single-qubit quantum error [Ben+96; Laf+96].

As should be evident from the fact that each of these codes requires many qubits to correct
an arbitrary error on any single qubit, one disadvantage of codes based only on qubits is that
they necessarily leverage entanglement of many physical qubits to robustly encode a single
logical qubit. With concatenation of quantum codes to allow correction of more general
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errors, the number of physical qubits necessary for realizing a single logical qubit becomes
even more daunting [KL96]. This has motivated the development of an alternative type of
QECC known as a bosonic QECC, so named because it makes use of a continuous-variable
bosonic mode. Bosonic QECCs generally utilize only a very small number of continuous-
variable modes.

These bosonic QECCs are generally classified according to their symmetries, either ro-
tational or translational. Rotation-symmetric codes are exemplified by cat codes [GCB20].
The two-legged cat code [Leg+13] has basis states defined as in Eq. (6.2):

|0L, cati / |↵cati+ |�↵cati (6.2a)
|1L, cati / |↵cati � |�↵cati, (6.2b)

where ↵cat is the amplitude of the cat state. Note that the state |0L, cati is just the same as
the cat state that we defined in Eq. (2.32). Two-legged cat codes have an error-biased code
property; in particular, they are very robust to phase errors but susceptible to photon-loss
errors. However, higher-order rotation codes, such as four-legged cat codes, do allow for
detecting and correcting photon-loss errors. We note that the logical zero and one states in
cat codes are perfectly orthogonal to each other, which means that they can be perfectly
distinguished. However, as we mentioned, the standard two-legged cat code is susceptible to
photon-loss noise, which causes bit-flip errors on this code.

On the other hand, translation-symmetric bosonic QECCs are exemplified by one of the
oldest bosonic QECCs, the 2001 Gottesman-Kitaev-Preskill (GKP) code [GKP01]. The zero
and one basis states of the ideal GKP code are defined as in Eq. (6.3):

|0L, gkpi /
1X

k, l=�1

e�i⇡kl|2k↵gkp + l�gkpi (6.3a)

|1L, gkpi /
1X

k, l=�1

e�i⇡(kl+l/2)|(2k + 1)↵gkp + l�gkpi, (6.3b)

where for the square GKP code we set ↵gkp =
p

⇡
2 and �gkp = i

p
⇡
2 . Although this

ideal GKP code is not physically practical because it would require infinite energy to re-
alize, finite-energy variants using finitely-squeezed coherent states have been proposed and
are used in practice [NCB22; GP21; RSG20]; in particular, one of these applies an en-
velope decaying exponentially in n̂ to the ideal GKP code basis states [RSG20]. The
Knill-Laflamme error-correction matrix of the GKP code indicates that this finite-energy
variant has excellent performance against photon-loss noise in a broad range of parame-
ter regimes [Alb+18]. In addition, the associated dissipation-engineering error-correction
strategy offers an experimentally-friendly protocol for error suppression with only a single
additional ancilla qubit, which results in the extension of the lifetime of GKP-encoded logi-
cal qubits in comparison with the lifetime of physical qubits [RSG20; Siv+23]. However, a
deficiency of the finite-energy approximate GKP code is that its zero and one code states
are not orthogonal, a fact that inevitably incurs computation errors.

Another newer code that is both rotationally and translationally symmetric and shares
benefits of both the cat code and the GKP code is the squeezed-cat code [SMS22]. A
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squeezed-cat code is defined by its amplitude ↵sc and its squeezing parameter ⇣sc. We
assume that squeezing always takes place orthogonal to the direction of displacement by
taking ⇣sc = |⇣sc|ei✓/2 and ↵sc = |↵sc|ei✓. Without loss of generality, we set ✓ = 0 in the
analysis that follows so that ↵sc is always real. The basis states of a squeezed-cat code with
amplitude ↵sc and squeezing parameter ⇣sc are then defined as in Eq. (6.4).

|0L, sci / |↵sc, ⇣sci+ |�↵sc, ⇣sci (6.4a)
|1L, sci / |↵sc, ⇣sci � |�↵sc, ⇣sci, (6.4b)

where |↵sc, ⇣sci denotes a squeezed coherent state with displacement parameter ↵sc and
squeezing parameter ⇣sc, as defined in Eq. (2.31). The squeezed-cat code shares with the
standard cat code the desirable property of having perfectly orthogonal basis states, and it
shares with the GKP code the property of robustness to photon-loss noise. Note that the
bias for the phase error is retained, while the squeezing effect increases the distinguishability
of encoded logical states like {|+L, sci, |�L, sci} without worsening the robustness of the code
to photon-loss noise.

However, the existing methods for correcting errors on the squeezed-cat code are dissi-
pative stabilization schemes necessitating strong nonlinearity and complex couplings, which
are challenging requirements for current systems for practical quantum computation [HQ23;
Xu+23b]. Motivated by the experimentally simple scheme for the realization of dissipa-
tive error-correction on the finite-energy GKP code that we describe in this work [RSG20],
we propose an extension to the dissipation-engineering error-correction approach for the
squeezed-cat code.

6.1.1 Outline
This section is organized as follows. First, we introduce and explain the field of dissipation
engineering for error-correction, then review an illustrative example of dissipation engineering
for stabilization to the finite-energy GKP code subspace, in Section 6.2. Then we present
our original contribution to the field of dissipation engineering, a unitary and corresponding
sharpen-trim protocol Trotterization for stabilization to the squeezed-cat code subspace in
Sec. 6.3. Next, we present our methodology for evaluating the efficacy of the error-correction
protocols in Sec. 6.4. Using this methodology, we review the results obtained by utilizing
these dissipation-engineering protocols to correct for photon-loss noise in both the GKP code
and the squeezed-cat code in Section 6.5. Finally, we provide conclusions, discussion, and
outlook on future work in Section 6.6.

6.2 Dissipation Engineering
As was already mentioned, one of the biggest obstacles to quantum information science is
decoherence, which arises due to a system’s interactions with its environment [AGP08]. The
resulting dissipation from these interactions tends to destroy interesting quantum effects that
underlie advantages in quantum computation, cryptography, and simulation [NC10; Fey82].
However, about fifteen years ago, proposals began to emerge using dissipation as a quantum
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resource rather than regarding it as a stumbling block that quantum innovation would need
to hurdle [VWI09]. More recently yet, dissipation engineering has been proposed as a tool for
addressing many other areas of interest in quantum computation, such as quantum sensing,
quantum simulation, and the focus of our work, quantum error-correction [HMM22].

In this section, we first address the sharpen-trim protocol in Sec. 6.2.1 and then review
how this protocol emerges naturally from the Trotterization of a unitary operator for the
engineered dissipation of an oscillator coupled with an ancillary qubit to the GKP code
subspace in Sec. 6.2.2.

6.2.1 Sharpen-Trim
The sharpen-trim protocol is a dissipation-engineering technique designed for stabilizing grid
states. It was first introduced in a 2020 work authored by Campagne-Ibarcq, Eickbusch, and
Touzard et al. regarding stabilization of such states in a superconducting cavity [Cam+20]
and is comprised of alternating sharpening steps, which sharpen the peaks of the grid state,
and trimming steps, which trim extent and hence prevent spreading of the grid state peaks
and envelope in phase-space. Although the original idea was proposed in the context of
stabilizing grid states in a superconducting cavity, this framework has further natural exten-
sions and has been applied to the stabilization of grid states in other platforms for quantum
computation.

Some of these extensions have been explored in the more recent 2020 work authored
by Royer et al. regarding the stabilization of GKP states using dissipation-engineering
techniques [RSG20]. In particular, this work derives a unitary operator for the stabilization
of the finite-energy GKP manifold using a bath comprised of a single qubit that is periodically
reset and shows how different Trotterizations of this unitary operator can be implemented
with simple quantum circuits using only controlled-displacement operations and qubit resets.
The simplest such Trotterization, a first-order Trotterization, produces the same sharpen-
trim protocol outlined in Campagne-Ibarcq, Eickbusch, and Touzard et al. [Cam+20], and
we review the derivation of this result here.

6.2.2 Sharpen-Trim for the Finite-energy GKP Manifold
In their work, Royer et al. derive a unitary for stabilizing the finite-energy GKP man-
ifold using engineered dissipation given a system comprised of an oscillator coupled to a
single ancillary qubit, then Trotterize this unitary in order to obtain the sharpen-trim pro-
tocol [RSG20]. We now review their derivation in order to provide a blueprint for analyzing
dissipation engineering schemes.

Because we are analyzing a scheme for the engineered dissipation of the finite-energy
GKP code, we begin by considering the stabilizers of the ideal GKP code, T̂x, 0 = eilgkpx̂ and
T̂p, 0 = e�ilgkpp̂, where lgkp is the lattice constant of the GKP code. For now, we will focus on
the T̂x, 0 stabilizer, but T̂p, 0 can be treated similarly.

In order to treat finite-energy GKP states analytically, we use the envelope operator in
the number operator Ê� � exp{��2â†â} so that we have

|µ�i = N�Ê�|µ0i, (6.5)
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where µ 2 {0, 1}, � parametrizes the size of the GKP state, and N� is a normalization
factor.

In order to stabilize these finite-energy GKP states, we need to transform the stabilizers
for the ideal GKP code. In particular, we can easily check that the finite-energy stabilizers
can be obtained via a transformation induced by the envelope operator:

T̂x,� = Ê�T̂x, 0Ê
�1
� = eilgkp(c�x̂+is�p̂), (6.6)

where we take the convention from Royer et al. of defining c� = cosh�2, s� = sinh�2, and
t� = tanh�2. As one would hope, the finite-energy states are exact +1 eigenstates of these
finite-energy stabilizers (i.e., T̂x,�|µ�i = |µ�i).

Now, toward engineering dissipation to the finite-energy GKP manifold, we find the
annihilation operator for the x-quadrature of the finite-energy GKP manifold d̂x,�. We do
so by transforming this stabilizer for which the finite-energy GKP states are +1 eigenstates
with the natural logarithm to produce a different operator for which the finite-energy GKP
states are eigenstates with eigenvalue 0:

d̂x,� = � i

lgkp
p
2s�c�

ln T̂x,�

=
1p
2

 
x̂[2⇡/(lgkpc�)]p

t�
+ ip̂
p
t�

!
. (6.7)

Here, the subscript [2⇡/(lgkpc�)] on x̂ indicates modularity of the x̂ operator, since the
complex logarithm is multivalued.

We can then couple the system to a bath in order to dissipate according to this annihi-
lation operator in order to drive the state toward the ground state manifold, which is the
finite-energy GKP manifold:

Ĥx,� = �x

h
d̂x,�b̂⌧ + d̂†x,�b̂⌧

i
, (6.8)

where b̂⌧ is a annihilation operator for the bath that satisfies
h
b̂⌧ , b̂⌧ 0

i
= �(⌧ � ⌧ 0). Now,

because we repeatedly reset the environment in this dissipative error-correction scheme so
that the bath can be implemented by a single qubit, and because the excitation in the
environment is low, we can replace the annihilation operator by b̂⌧ ! 1p

2
(�̂x + i�̂y).

Substituting this explicit form for b̂⌧ and expanding, we find

Û = exp
n
�iĤx,��t

o
= exp

(
�i
r
�x�t

t�

⇣
x̂[lgkp/(2c�)]�̂x + p̂�̂yt�

⌘)
. (6.9)

Note that we need to eliminate the modularity of the modular position operator x̂[2⇡/(lgkpc�)]
for hardware-efficient implementation. We can eliminate this modularity if we choose �t in
such a way that

e
�i

q
�x�t
t�

x̂�̂x = e
�i

q
�x�t
t�

✓
x̂+ 2⇡

lgkpc�
Î

◆
�̂x (6.10)

up to a global phase.
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The smallest value of
q

�x�t
t�

for which this equation is satisfied is
r
�x�t

t�
=

1

2
lgkpc�, (6.11)

so we impose this as a condition on
q

�x�t
t�

to eliminate the modularity of the position operator
x̂.

Substituting this value into the unitary obtained earlier, we find

Û = exp

⇢
�1

2
ilgkpc�(x̂�̂x + p̂�̂yt�)

�

= exp

⇢
� ilgkpc�x̂�̂x

2
� ilgkps�p̂�̂y

2

�
(6.12)

By then Trotterizing this unitary with two different orderings, we obtain the eponymous
sharpen and trim steps of the position x-quadrature part of the sharpen-trim protocol:

Û (ST )
x =

(
e

�ilgkps�p̂�̂y
2 e

�ilgkpc�x̂�̂x
2 (6.13a)

e
�ilgkpc�x̂�̂x

2 e
�ilgkps�p̂�̂y

2 . (6.13b)

We can then repeat this process for the momentum p-quadrature in order to obtain the
complete sharpen-trim protocol in both quadratures:

Û (ST )
p =

(
e

ilgkpc�p̂�̂x
2 e

�ilgkps�x̂�̂y
2 (6.14a)

e
�ilgkps�x̂�̂y

2 e
ilgkpc�p̂�̂x

2 . (6.14b)

The circuits implementing the GKP code sharpen and trim operators for both the x- and
p-quadratures are shown in Fig. 6.1.

6.3 Sharpen-Trim for the Squeezed-cat Manifold
Although its proximity to the origin in phase space limits its vulnerability to photon-loss
error, the squeezed-cat code introduced in Sec. 6.1, like other bosonic QECCs, can incur
photon-loss error. However, the existing methods for correcting errors on the squeezed-
cat code are dissipative stabilization schemes necessitating strong nonlinearity and complex
couplings, both challenging requirements for contemporary systems that make its realization
more difficult [HQ23; Xu+23b]. As such, we ask whether there might be a simpler approach
to error-correction on the squeezed-cat code.

We propose error-correction on the squeezed-cat code using a variant of the sharpen-trim
protocol. In Sec. 6.3.1, we walk through the derivation of the sharpen-trim protocol for the
squeezed-cat manifold, drawing on insights from and making references to the derivation
for the sharpen-trim protocol of the finite-energy GKP code. Then in Sec. 6.3.2, we briefly
discuss limitations of the sharpen-trim protocol, both for the finite-energy GKP code and
also for the squeezed-cat code.
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Figure 6.1: Circuits showing the sharpen and trim components of the sharpen-trim protocol
for the GKP code in both quadratures, where we abbreviate lgkp by l for brevity. Here,
time flows from left to right, and the top wire represents the continuous-variable bosonic
state on which the GKP code is being realized, while the bottom wire represents the ancilla
qubit. The first column, denoted “Sharpen, (a),” depicts the sharpen circuit component for
each quadrature, while the second column, denoted “Trim, (b),” depicts the trim component.
The top row, denoted “x,” depicts the sharpen and trim circuit components for the position
quadrature x, while the bottom row, denoted “p,” depicts those for the momentum quadra-
ture p. The gate denoted R̂⇡/2 represents a rotation of the ancilla qubit about the x-axis by
a phase of ⇡/2 (i.e., R̂⇡/2 = exp {�i�̂x⇡/4}).
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6.3.1 Derivation of Sharpen-Trim for the Squeezed-cat Manifold
Having illustrated the derivation for the stabilization of the finite-energy GKP code, we
proceed to consider stabilization of the squeezed-cat code with finite squeezing. As in the
case of the finite-energy GKP code, to approach determining the stabilizers for the finite
energy squeezed-cat code, we begin by considering the stabilizers for the ideal squeezed-
cat code whose code states we denote |µsc, 0i for µ 2 {0, 1}. The logical X̂sc, 0 operator
for the squeezed-cat code of amplitude ↵sc (i.e., the operator that maps |0sci to |1sci and
vice versa) is given by X̂sc, 0 = �iD̂

⇣
i ⇡
4↵sc

⌘
[End+24]. Because X̂2

sc, 0 = Îsc, 0, we have that

(X̂2
sc, 0)

2 = D̂
⇣
i ⇡
↵sc

⌘
is a stabilizer for this ideal squeezed-cat code. Substituting the definition

of the displacement operator from Eq. (2.29) and taking the notation T̂sc, x, 0 for this ideal
x-quadrature stabilizer of the squeezed-cat subspace, we find

T̂sc, x, 0 = ei
⇡
p
2

↵sc
x̂. (6.15)

However, our finite-energy squeezed-cat code has a finite squeezing parameter of� ln
p
tanh�2

rather than an infinite squeezing parameter. This corresponds to adding an envelope Ê� =
exp{��2â†â}, as in the finite-energy GKP case. Thus, we find the corresponding finite-
energy stabilizer

T̂sc, x,� = Ê�T̂sc, x, 0Ê
�1
� = ei

⇡
p
2

↵sc
(c�x̂+is�p̂). (6.16)

From here, we note that this expression is identical to that of Eq. (6.6) but with ⇡
p
2

↵sc
in

place of lgkp, so we can immediately write the unitary for dissipation in this quadrature:

Û = exp

(
�i⇡
p
2

2↵sc
c�(x̂�̂x + p̂�̂yt�)

)

= exp

(
� i⇡
p
2c�x̂�̂x
2↵sc

� i⇡
p
2s�p̂�̂y
2↵sc

)
. (6.17)

Now, Trotterizing this unitary, we can additionally obtain the sharpen-trim operators for
the stabilization of the squeezed-cat subspace in this quadrature:

Û (ST )
x =

8
<

:
e

�i⇡
p
2s�p̂�̂y

2↵sc e
�i⇡

p
2c�x̂�̂x

2↵sc (6.18a)

e
�i⇡

p
2c�x̂�̂x

2↵sc e
�i⇡

p
2s�p̂�̂y

2↵sc . (6.18b)

Note that because for the for the squeezed-cat code, the other quadrature does not
have the same translational symmetry that exists with displacements in the momentum p
quadrature, these are the only operators that we can obtain from translational symmetry.
The circuit for realizing this new sharpen-trim protocol for the squeezed-cat code is shown
in Fig. 6.2.

6.3.2 Limitations
Note that both this squeezed-cat code sharpen-trim protocol and that for the finite-energy
GKP code do have limits to their applicability. In particular, as the squeezing parameter of
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Figure 6.2: Circuits showing the sharpen and trim components of the sharpen-trim protocol
for the squeezed-cat code in the x quadrature. Here, time flows from left to right, and the
top wire represents the continuous-variable bosonic state on which the GKP code is being
realized, while the bottom wire represents the ancilla qubit. The first column, denoted
“Sharpen, (a),” depicts the sharpen circuit component, while the second column, denoted
“Trim, (b),” depicts the trim component. Note that because the squeezed-cat code only has
translational symmetry with displacements in the p quadrature, we only have a sharpen-trim
protocol for the x quadrature. The gate denoted R̂⇡/2 represents a rotation of the ancilla
qubit about the x-axis by a phase of ⇡/2, as in Fig. 6.1.

the code to be corrected becomes larger (i.e., as it approaches the ideal squeezed-cat or GKP
code with infinite-energy code states), the number of iterations of the sharpen-trim protocol
required to dissipate back to the code manifold increases significantly. This, in turn, degrades
the quality of the error-correction, since physical errors on both the oscillator and the ancilla
qubit accumulate over the many necessary iterations of the sharpen-trim protocol, which
has the effect of increasing the potential for incurring additional logical errors. Thus, even
when using the sharpen-trim protocol, one must consider the trade-off between the benefits
of using a code with greater squeezing parameter (e.g., increased robustness to photon-loss
noise for the squeezed-cat code and decreased readout error for the GKP code) and the costs
of decreasing the efficacy of error-correction by requiring a greater number of sharpen-trim
iterations.

6.4 Methodology
Now that we have presented both the dissipation-engineering approach for error correction
on the finite-energy GKP code from Royer et al. [RSG20], as well as our new dissipation-
engineering approach for error correction on the finite-energy squeezed-cat code, we present
how we will evaluate both of these codes with their respective dissipation-engineering ap-
proaches to error correction.

First, we will discuss our choices for code parameters in Sec. 6.4.1. Then we will discuss
our choices for the quantum noise for which we will simulate the performance of these two
codes in Sec. 6.4.2.
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6.4.1 Code Parameter Choices
In order to make the finite-energy squeezed-cat code that we consider as comparable with
the finite-energy GKP code as possible, we assume identical parameters for the two codes
wherever possible.

For example, both finite-energy codes are parametrized by a parameter � that maximal
occupancy, and hence the size, of the code states. As �! 0, the codes approach the ideal,
though unphysical due to having infinite energy, codes. In order to work with nearly ideal
codes, we choose �2 = 0.05.

Moreover, we choose the amplitude of the finite-energy squeezed-cat code to be such that
it uses the same sharpen-trim operators in the one quadrature that the finite-energy GKP
code uses in that same quadrature. As we saw in the derivation of the sharpen-trim operators
for the finite-energy squeezed-cat code, this occurs for lgkp = ⇡

p
2

↵sc
, or ↵sc =

⇡
p
2

lgkp
. We choose

to use the square GKP code described in Sec. 6.1, which has ↵gkp =
p

⇡
2 , �gkp = i

p
⇡
2 , and

lgkp = 2
p
⇡. This then implies that we must have ↵sc =

p
⇡
2 .

6.4.2 Noise Choices
Common errors on bosonic codes like the QECC that we are considering in this work include
such errors as photon-loss error, dephasing error, and displacement error. In this work, we
choose to focus on photon-loss error, as it is more often incurred on bosonic codes. We probe
a variety of photon-loss error magnitudes t, simulating them by evolving the states under
the null Hamiltonian and taking the collapse operator to be the annihilation operator on
the oscillator â for different time durations. Here,  denotes the photon-loss noise rate of
the cavity in units of s�1, and t denotes the duration of the exposure to this noise in s, such
that t is a unitless measure of the amount of photon-loss noise to which the encoded state
is exposed.

Additionally, in a discussion of the sharpen-trim protocol by Grimsmo and Puri [GP21],
they remark that while the sharpen-trim protocol is relatively robust to phase flips on the
ancilla qubit, it is potentially sensitive to bit flips on the qubit, such as those caused by
thermal relaxation. In order to account for the effects of this potential source of error in
the sharpen-trim protocol, we first consider the expected extent of thermal relaxation on the
ancilla qubit. As is done in the research by Royer et al. [RSG20], we consider only ancilla
errors occurring during the controlled-displacement gates of the sharpen-trim protocol. In an
experimental work from Sivak et al. [Siv+23] regarding stabilization of a finite-energy GKP
code, it is given that the duration of a controlled-displacement gate in their experiment is
448 ns, while the thermal relaxation time T̄ t

1 of the transmon qubits that they use as ancilla
qubits is 280 µs. Given this information and the fact that our controlled displacements
are of magnitudes ⇡

p
2

↵sc
⇡ 3.545 and ⇡s�

p
2

↵sc
⇡ 0.1773, we estimate that the coefficient �

of the collapse operator Îsc�̂� (representing thermal relaxation of the ancilla qubit) in the
Lindblad master equation is in the range 2.836 ⇥ 10�3 – 5.669 ⇥ 10�2. We simulate the
sharpen-trim protocol with ancilla errors by employing the QuTiP package of Python and,
in particular, its mesolve function. Specifically, we simulate the qubit rotations and qubit
reset steps noiselessly, but for the controlled-displacement steps, we use mesolve to simulate
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the Lindbladian for the controlled-displacement operator with collapse operator
p
�Îsc�̂�.

We perform these simulations of the sharpen-trim protocol for values of � spanning the
range that we estimated and an order of magnitude greater but observe deviations in logical
purity and logical fidelity of at most 0.1% from those values obtained with entirely noiseless
simulations, also carried out using the QuTiP package. As such, we perform all of our
subsequent simulations without ancilla noise in order to save simulation time.

6.4.3 Evaluation Metrics
With all of the preliminaries settled about parameters of the finite-energy squeezed-cat and
GKP codes to be compared, as well as the noise from which to simulate recovery, we proceed
to discuss the metrics that we will use to investigate how the performance of our new finite-
energy squeezed-cat code error-correction method compares with that for the existing method
with the finite-energy GKP code.

The key idea of our approach is using measurements of the ideal logical Pauli operations
that an experimentalist would use to reconstruct the logical state that the code is encoding,
so we provide details about the exact logical Pauli operations that we measure, as well as
how we use them to reconstruct the logical states and evaluate the recovery procedures.

6.4.3.1 Logical Pauli Operations

With regard to the measurements that we choose to make in order to reconstruct the logical
qubit state, we opt to measure the logical Pauli operators for the ideal codes. We make this
decision because it best aligns with the methodology that would be undertaken in practice
for this process.

We recognize that noise can distort the encoded states significantly and hence result in
some of an encoded state’s support leaving the code subspace, as well as that this can result
in complex measurements with significant imaginary parts that result in the reconstruction
of unphysical qubits. As such, we measure the real part of the logical Pauli operators and
use these values to reconstruct the logical qubit state. Note that measuring the real part of
the logical Pauli operator is readily achievable by employing the Hadamard test.

To be precise, we specify the logical Pauli operators that we measure for each code. We
use the subscript “L” to indicate that these Pauli operators are for the logical qubit, as well
as the subscripts “gkp” and “sc” to distinguish the operators for the finite-energy GKP code
and the finite-energy squeezed-cat code, respectively.

The logical Pauli operators for the finite-energy GKP state are as follows [GP21]:

ẐL, gkp = D̂(�gkp) (6.19a)
X̂L, gkp = D̂(↵gkp) (6.19b)
ŶL, gkp = �iẐL, gkpX̂L, gkp. (6.19c)

The logical Pauli operators for the finite-energy squeezed-cat state used in this work are
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those given in the research of Endo et al. [End+24]:

ẐL, sc = ei⇡â
†â (6.20a)

X̂L, sc = �iD̂
✓
i
⇡

4↵sc

◆
(6.20b)

ŶL, sc = �iẐL, scX̂L, sc. (6.20c)

Note, however, that as Endo et al. remark, these logical Pauli operators are only exact
logical Pauli operators for the ideal squeezed-cat code with infinite squeezing parameter,
which is why they have no dependence on a squeezing parameter ⇣sc. This means that they
are only approximations of the logical Pauli operators for the squeezed-cat code with finite
squeezing parameter and, moreover, that these approximations best approximate the actual
logical Pauli operators when considering squeezed-cat codes of greater amplitude ↵sc and
squeezing parameter ⇣sc. Recall that we do use the ideal logical Pauli X operator given
above in our derivation of the dissipator to the finite-energy squeezed-cat code manifold. We
are able to do so because we conjugate this ideal logical Pauli X operator with the envelope
operator Ê�, which has the effect of inducing the finite squeezing parameter � ln

p
tanh�2

on the state.

6.4.3.2 Logical Qubits

Given the measurements of these logical operators, we can proceed to reconstruct the logical
qubit states that are encoded with each code and evaluate them for purity and for fidelity
to the original encoded logical qubit.

We first reconstruct the logical qubit density matrix from the logical Pauli measurements
using the following formula:

⇢̂L =
1

2

n
Î + Re

⇣
hX̂Li

⌘
X̂ + Re

⇣
hŶLi

⌘
Ŷ + Re

⇣
hẐLi

⌘
Ẑ
o
, (6.21)

where here, Î, X̂, Ŷ , and Ẑ refer to the general Pauli matrices and not to logical Pauli
matrices, while X̂L, ŶL, and ẐL refer to the logical Pauli operators for the respective code,
hÂi denotes the measurement of operator Â, and the measurements of these operators are
taken with respect to the state for which the logical density matrix is being constructed.

For reference, we now briefly explain the ideas of purity and fidelity, then define the
formulae that we use for computing them using the logical qubits in our evaluation.

Purity The purity � of a state provides information about how mixed a state is (i.e., the
extent to which we have exact information about the quantum system). The purity of a
normalized quantum state satisfies

1

d
 �  1, (6.22)

where d denotes the dimension of the Hilbert space in which the state is defined.
We compute the purity �L of the reconstructed logical qubit ⇢̂L by

�L = tr
�
⇢̂2L
�
, (6.23)

where tr denotes the trace of the density matrix.
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Fidelity The fidelity F is a metric between two quantum states that quantifies their “close-
ness”. For any two density matrices ⇢̂ and �̂, their fidelity satisfies 0  F (⇢̂, �̂)  1, as well
as F (⇢̂, �̂) = F (�̂, ⇢̂).

Suppose that we denote the initial encoded state prior to noise or error-correction by ⇢̂0L.
Then the desired fidelity is computed as

F (⇢̂L, ⇢̂
0
L) =

✓
tr
qp

⇢̂L⇢̂0L
p
⇢̂L

◆2

. (6.24)

6.5 Results
Having lain all of the groundwork with respect to specifying the codes under consideration
and detailing the methods being used to evaluate the performance of the error-correction
protocols, we now proceed to present the results from the numerical simulations that we
performed to compare the performance of the squeezed-cat code with our new error-correction
protocol to that of the GKP code with error correction.

We organize our results as follows. First, we present the results of our simulations of
the sharpen-trim protocol used for quantum error-correction on both codes, with all of
the sharpen-trim iterations performed at the conclusion of the noise process, in Sec. 6.5.1.
Then we consider an alternative approach to application of the sharpen-trim error-correction
protocol in which the protocol is applied periodically, and we present the results of our
simulations for this variant of error-correction protocol for both codes in Sec. 6.5.2. Finally,
we discuss intended future directions in Sec. 6.5.3.

6.5.1 Post-noise Sharpen-Trim
We begin by presenting the results of our simulations for implementing the sharpen-trim
protocols for error-correction on both the finite-energy squeezed-cat code and the finite-
energy GKP code. We perform all of our simulations with Fock number N = 400, as this N
exceeds the number of photons expected in both the squeezed-cat and GKP code basis states
that we simulate, and we have observed convergence of the quantities of interest for this Fock
number. As described in Sec. 6.4, we first simulate photon-loss noise of various amounts t
incident on a logical qubit encoded with each of the two codes and evaluate the quality of
the logical encoding relative to the original logical state. We then simulate performing an
appropriate number of sharpen-trim iterations (five for the GKP encoding and ten for the
squeezed-cat encoding) on the resulting physical states and again evaluate the quality of the
logical encoding with respect to that of the original logical state after error-correction.

Because the performance on a single random encoded logical state is not necessarily
representative of the performance for all possible encoded logical states, we perform this
same procedure for ten random logical states encoded with each of the two quantum error-
correcting codes in order to obtain a better sample and build up statistics. We choose the
number of logical states sampled to be ten primarily due to computational constraints, as
the resources available for simulation are limited to my local machine. In order to obtain
results frequently enough so that we can feed back on them as we plan research directions,
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(a) Purity vs. Noise (b) Fidelity vs. Noise

Figure 6.3: Logical purity (Fig. 6.3a) and logical fidelity (Fig. 6.3b) of ten random logical
states encoded with both the squeezed-cat code and the GKP code against cavity photon-loss
noise t for 0.001  t  1. For the squeezed-cat code, ten iterations of the sharpen-trim
protocol are performed, and for the GKP code, five iterations of the sharpen-trim protocol
are performed. This discrepancy in the number of iterations exists because the GKP-code
sharpen-trim includes twice as many gates as that for the squeezed-cat code. The error bands
are of width equal to one standard deviation of the measured values for the ten random states.
Here, “ST” followed by a number denotes the application of sharpen-trim with that number
of iterations of sharpen-trim performed, and “No ST” indicates no application of the sharpen-
trim error-correction protocol.

we choose to simulate with ten random logical states, in which case the simulation for
obtaining the data used to produce a single plot of this work requires approximately ten
hours of computation time at full computational resource utilization. In order to generate
these ten random logical states, we utilize the function rand_ket_haar in the QuTiP package
of Python to obtain a Haar random pure state of dimension 2. Repeating this process ten
times, we find ten random logical states. Once we have completed the generation of the ten
random states, we compute the performance (logical purity and logical fidelity relative to
the encoded logical states) across these ten logical states encoded with both the squeezed-cat
and the GKP code, both after the photon-loss noise and then following the application of
the appropriate number of iterations of the sharpen-trim protocol. Finally, we plot these
average values of these two performance metrics with error bars of one standard deviation
against the photon-loss noise t in Fig. 6.3.

Here, we see that the respective sharpen-trim protocols do indeed improve the quality of
the encoded logical states for their respective encodings after photon-loss noise has occurred.
Moreover, we see that the squeezed-cat code with its sharpen-trim protocol does perform
better than the GKP code with its sharpen-trim protocol as proposed in the work of Royer
et al. [RSG20] in both logical purity and logical fidelity restoration for small photon-loss
noise t / 0.02.

However, for larger photon-loss noise t, we observe that the sharpen-trim error-correction
protocol for the squeezed-cat encoding actually worsens the restoration of the logical state
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following the photon-loss noise. This effect perhaps seems a bit counterintuitive, since the
squeezed-cat sharpen-trim protocol is designed to restore the encoded state to the squeezed-
cat code manifold; as such, we would naïvely expect that the restoration of the logical state
should only improve following the application of the sharpen-trim protocol. However, this
is not necessarily the case. As the photon-loss noise incurs physical error on the state, there
is a point at which this physical error becomes a logical error (i.e., it fundamentally changes
the logical state encoded by the physical state). Once this transition occurs, even if the
sharpen-trim error-correction protocol is performed, the physical state is not restored to en-
code its original logical state but instead the new logical state encoded following the physical
error. Because this transition is more likely to occur with larger photon-loss noise t, we see
a degradation in the quality of the logical-state restoration in this large t regime.

6.5.2 Periodic Sharpen-Trim
Motivated by this explanation, we consider how we can prevent the physical state from
reaching this transition so that the sharpen-trim protocol can remain effective for error-
correction even for large photon-loss noise t. Toward this goal, we propose an approach
inspired by the quantum Zeno effect. In order to slow the transition of the physical state
under the effect of the photon-loss noise, we perform the same number of iterations of the
sharpen-trim protocol on each encoding that we performed in Sec. 6.5.1 but now distribute
these iterations of the sharpen-trim error-correction protocol throughout the period during
which this noise is incident on the encoded states, terming this the “periodic” sharpen-trim
error-correction protocol. In this manner, we hope to slow the evolution of the encoded
logical states under the error such that they never reach the critical point at which an
unrecoverable logical error occurs. As discussed earlier, we expect the greatest impact for
the largest photon-loss noise t, since for these larger values of t, the states more quickly
accrue logical errors that are unrecoverable with the sharpen-trim error-correction protocol,
meaning that more frequent application of the sharpen-trim error-correction protocol to slow
this process should be most beneficial in this case.

In order to test this hypothesis and the overall efficacy of the periodic sharpen-trim
approach, we simulate photon-loss noise at various photon-loss noise values t as before
but now perform the periodic error-correction protocol, distributing the same number of
sharpen-trim error-correction iterations over five applications. As in Sec. 6.5.1, we account
for a variety of encoded logical states by performing our error-correction analysis for ten
random logical states encoded using both the squeezed-cat and GKP codes, plotting their
average logical purity and logical fidelity to the original logical state with error bands of
single-standard-deviation width, as before. The results are shown in Fig. 6.4.

We indeed see with ten random states encoded using the squeezed-cat and GKP codes
that the squeezed-cat code with our new sharpen-trim error-correction protocol does out-
perform the GKP code with the error-correction protocol proposed in the work of Royer et
al. [RSG20] for both small photon-loss noise (t / 0.02), as observed in Sec. 6.5.1, and now
also large photon-loss noise (t ' 0.8), although the latter is only true for some random
states, as indicated by the error bands. Moreover, we do observe that the improvement
in logical state restoration with periodic sharpen-trim is present across the whole photon-
loss noise regime, but we also see that the most significant improvement over the single
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(a) Purity vs. Noise (b) Fidelity vs. Noise

Figure 6.4: Logical purity (Fig. 6.4a) and logical fidelity (Fig. 6.4b) of ten random logical
states encoded with both the squeezed-cat code and the GKP code against cavity photon-loss
noise t for 0.001  t  1. For the squeezed-cat code, ten iterations of the sharpen-trim
protocol are performed, and for the GKP code, five iterations of the sharpen-trim protocol
are performed. Here, “PST” followed by a number denotes that number of iterations of
sharpen-trim distributed periodically to form the periodic sharpen-trim protocol.

application occurs for larger noise t, as we predicted.

6.5.3 Future Directions
In this work, we introduced one application of dissipation engineering to quantum error-
correction of the squeezed-cat code based on the sharpen-trim protocol. The way in which
we derived the sharpen-trim protocol for the squeezed-cat code was by Trotterization of
a unitary operator for dissipating to the squeezed-cat code manifold. Besides the first-
order Trotterization that results in the sharpen-trim protocol, there are other second-order
Trotterizations, such as the so-called big-small-big and small-big-small Trotterizations, with
similarly simple experimental implementations that have been proposed for error-correction
of the finite-energy GKP encoding in the work by Royer et al. [RSG20]. As such, in the
future, we would like to explore the efficacy of the error-correction protocols corresponding
to these second-order Trotterizations and analyze how they compare with the sharpen-trim
protocol.

Additionally, we are interested in exploring the performance of the finite-energy squeezed-
cat code in comparison with the finite-energy GKP code when their respective sharpen-trim
error-correction protocols are employed for codes using different values of the amplitude
and squeezing parameter. This is a direction of particular interest because the squeezed-cat
code is known to become more robust to photon-loss noise as its amplitude decreases and
its squeezing parameter increases [Pan+23], so we hypothesize that squeezed-cat codes with
lesser amplitude and greater squeezing parameter might be more desirable and hence utilized
more frequently in practical applications.

We also understand that purity and fidelity are not the only metrics by which we can

122



evaluate the performance of our sharpen-trim protocol for correcting the effects of photon-
loss noise on the encoding of a logical state. In particular, we have considered the possibility
that the entanglement fidelity could be a better metric for evaluation, since the noise on the
physical state might leave the logical state pure while dephasing its entanglement with some
other reference system. As such, we would also like to explore how well the entanglement
fidelity of the logical state is restored by our sharpen-trim protocol for the squeezed-cat code
in much the same way that we have investigated the restoration of the logical purity and
logical fidelity.

Regarding the readout of the logical state from the finite-energy GKP and squeezed-
cat codes, there has also been some recent research suggesting higher-fidelity methods that
make use of measurement operators better tailored to the finite-energy nature of the physical
code states [HA21]. As such, we are interested in extending the method for higher-fidelity
readout presented in this work for the finite-energy GKP code to the squeezed-cat code.
Subsequently, we would like to explore whether we see similarly strong performance of our
approach to correcting errors on logical states encoded with the squeezed-cat code when
these higher-fidelity readout methods are employed.

6.6 Conclusion
Among QECCs, the squeezed-cat code is a strong choice for encoding quantum data, as
it combines the strengths of the translationally-symmmetric GKP code with the strengths
of the rotationally-symmetric standard cat code; it has orthogonal code states while also
being inherently robust to photon-loss noise because of its compactness and proximity to
the origin in phase space. Moreover, in this work, we have demonstrated via simulations
that even when photon-loss error does occur, our new experimentally-realizable dissipation
engineering approach can correct this error and restore the logical state being encoded. This
method for quantum error-correction of the squeezed-cat qubit is significantly simpler than
other existing approaches, as it uses only oscillator displacements controlled on a single
ancilla qubit, and is thus quite practical for implementation on near-term quantum devices.
Specifically, we demonstrate that the performance of the squeezed-cat code for logical-state
restoration using our dissipation-engineering error-correction protocol even exceeds that for
the finite-energy GKP code corrected using the analogous protocol introduced in Royer et
al. [RSG20] under experimentally-realistic conditions in a few key regimes of the photon-loss
noise t, especially when the error-correction protocol is applied several times throughout
the computation.
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Chapter 7

Conclusion

In summary, we have employed machine learning and other high-level computational tech-
niques for the design of applications of a system consisting of a qubit coupled to an oscillator
to implementing fundamental components of quantum technology. Although we do not ad-
dress nearly all of the potential applications of this system to quantum technology, we have
presented a number of research projects spanning quantum computation, quantum sensing,
and quantum error-correction for which we have performed optimization and simulations
using classical computation and have thus demonstrated the potential of the qubit-oscillator
system for employment toward all of these applications. In this manner, we have successfully
used high-level computational techniques to efficiently design applications of the system to
quantum technology, and in doing so, we have made significant steps toward answering the
main question of this thesis. Further research can build on this work by exploring potential
applications for other systems to quantum technology in a similar manner.

We have not yet completed the work outlined in Chapter 5 regarding bivariable quantum
signal processing (BiQSP), as we still aim to prove that given Laurent polynomial coefficients
for a qubit response function, there exist BiQSP phases that realize a qubit response function
with these coefficients. Moreover, there still remains the question of whether or not learning
the BiQSP phases that produce a qubit response function most closely matching the values
of the the desired qubit response function on a set of grid points is the most effective way
of learning the phases for that qubit response function or if there might be a more effective
alternative approach. We would like to further explore these questions in the future.

The same is true of the work outlined in Chapter 6. Although we did extensively test the
performance of our squeezed-cat sharpen-trim protocol against that of the GKP sharpen-
trim protocol for a variety of encoded logical states, we have not yet tested the performance
of other Trotterizations of the dissipation unitary for the error-correction of the squeezed-cat
code, and so this is another direction that we would like to further explore in the future.
Additionally, we believe that the squeezed-cat code has additional benefits for error correction
when the amplitude of the code states is smaller, and so we intend to further investigate in
this direction as well in the near future.
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Appendix A

Definition of the Generalized Gell-Mann
Matrices

In general, for a d ⇥ d Hermitian matrix H, we can find a set of basis matrices, such that
H can be written as a linear combination of the basis matrices. Denote Eij as the d ⇥ d
matrix with the (i, j)-th element being 1 and the rest are zeros. Recall that for the 2 ⇥ 2
dimensional case where there are four Pauli matrices, i.e., I, �z, �x, �y. In analogy to �z,
we can define (d� 1) diagonal matrices MZ

j in the following way

MZ
j =

s
2

j(j � 1)

✓ j�1X

k=1

Ekk � (j � 1)Ejj

◆
, (A.1)

where 2  j  d. Similarly, there are d(d� 1)/2 real matrices MX
jk

MX
jk = Ejk + Ekj (2  j < k  d) (A.2)

in analogy to �x, and another d(d� 1)/2 imaginary matrices MY
jk

MY
jk = �iEjk + iEkj (2  j < k  d) (A.3)

analogous to �y. Simple counting suggests that there are a total of d2 � 1 such basis matrix
(without the identity matrix). It can be verified that they are traceless and orthonormalized
to each other. Moreover, they are closed under the commutation

[MZ
j , M

Z
k ] =0, (A.4)
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X
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, (A.5)
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◆
, (A.6)
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Appendix B

Decomposing an Arbitrary Rotation into
Two Rotations in the xy-plane

We will demonstrate here that it is possible to decompose any arbitrary SO(3) rotation into
two rotations in the xy-plane.

We begin with the well-known fact that any SO(3) rotation R~r(✓) can be decomposed
into two reflections, denoted with the letter S, about planes p1 and p2 intersecting at an
angle ✓

2 , where ~r = p1 \ p2. This can be expressed as follows:

R~r(✓) = S(p1) � S(p2). (B.1)

Composing a reflection with itself produces the identity, and thus, we can insert two reflec-
tions about plane p into Eq. (B.1) and rewrite it as

R~r(✓) = S(p1) � S(p) � S(p) � S(p2). (B.2)

We would like to decompose arbitrary rotations into pairs of red sideband pulses, each of
which is restricted to rotation about an axis in the xy-plane, so we choose p to be the
xy-plane. With this choice, we find

R~r(✓) = R~r1(✓1)R~r2(✓2), (B.3)

where ~r1 = p1 \ p and ~r2 = p\ p2, and ✓i
2 = |\(pi, p)|, the angle between the planes p and pi

for i = 1, 2. We can always choose the planes p1 and p2 to be different from the xy-plane,
so we are guaranteed to find a decomposition of the arbitrary SO(3) rotation R~r(✓) into two
red sideband pulses using this method.
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Appendix C

Subroutine on Decomposition of
Rotations in to the xy-plane

With Appendix B in mind, following is a detailed subroutine to decompose any rotation
Rr̂(✓) into rotations with rotation axes lying in the xy-plane:

1. If r̂ is already in the xy-plane (i.e., its z-component is equal to zero), then there is no
need for decomposition, and the rotation can be made directly.

2. If r̂ is not in the xy-plane, then find a unit vector r̂?1 that is perpendicular to r̂ =
hr1, r2, r3i. Because the z-component r3 is nonzero, such a vector is given by

r̂?1 =
1p

r21 + r23
h�r3, 0, r1i. (C.1)

3. Find a second unit vector r̂?2 that is perpendicular to both r̂ and r̂?1 by taking

~r?2 =
r̂ ⇥ r̂?1
kr̂ ⇥ r̂?1 k

. (C.2)

4. For any value of � 2 R, 0  � < 2⇡, take the unit normal vectors

n̂1 = r̂?1 cos (�) + r̂?2 sin (�) (C.3)

n̂2 = r̂?1 cos

✓
�+

✓

2

◆
+ r̂?2 sin

✓
�+

✓

2

◆
, (C.4)

where a reflection through the plane with normal vector n̂1 followed by a reflection
through the plane with normal vector n̂2 is equivalent to a rotation about r̂ by an
angle of ✓.

5. Next, as per the discussion in Appendix B, two reflections about the xy-plane (which
together are equivalent to the identity transformation) are inserted, and this sequence
is recomposed into a sequence of two rotations about unit vectors r̂1 and r̂2 in the
xy-plane.
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In particular, define ẑ = h0, 0, 1i to be the unit normal vector to the xy-plane, and
take

r̂1 =
n̂1 ⇥ ẑ

kn̂1 ⇥ ẑk (C.5)

✓1 = 2 cos�1 (n̂1 · ẑ) (C.6)

r̂2 =
ẑ ⇥ n̂2

kẑ ⇥ n̂2k
(C.7)

✓2 = 2 cos�1 (ẑ · n̂2). (C.8)

It is guaranteed that r̂1 and r̂2 lie in the xy-plane because they must, by definition, be
perpendicular to ẑ. Moreover, these choices give the equivalence

Rr̂(✓)$ {Rr̂1(✓1), Rr̂2(✓2)} (C.9)

of the sequence of rotations {Rr̂1(✓1), Rr̂2(✓2)} about axes in the xy-plane with the
original rotation Rr̂(✓), as desired.
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Appendix D

Proof of bosonic QSP Theorem 3

Denote the set of eigenvalues and eigenvectors of the generator h(x̂, p̂) in Lemma 2 to be �
and |�i such that

h(x̂, p̂) |�i = � |�i . (D.1)

Since h(x̂, p̂) is Hermitian, we have � 2 R. Moreover, for an infinite-dimensional oscillator,
{�} can be inherently continuous. Furthermore, we assume that {|�i} forms a (over)complete
basis for the oscillator (for example, in the case of a continuous displacement operator whose
eigenstates are coherent states) for achieving universal control of the oscillator. However,
the bosonic QSP formalism still works in the subspace expanded by {|�i}.

Now, consider the action of Wz on an arbitrary qubit-oscillator entangled state, where
the oscillator state is given by 1p

2
(|0i | 0iosc+ |1i | 1iosc). Expand the oscillator state under

the {|�i} basis to find

Wz
1p
2
(|0i | 0iosc + |1i | 1iosc)

=e�ih(x̂, p̂)�z
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2
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Therefore, Wz acts individually on each 2⇥2 subspace labeled by the eigenvalue � of h(x̂, p̂) in
a similar spirit to that of qubitization of a finite-dimensional block-encoding. From Eq. (D.2),
repeatedly applying Wz and a single-qubit rotation ei✓j�x will result in the application of QSP
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to each individual 2⇥ 2 subspace:

ei✓d�x

d�1Y

j=0

Wze
i✓j�x

1p
2
(|0i | 0iosc + |1i | 1iosc)

=

Z
d� |�i ⌦ ei✓d�x

d�1Y

j=0

e�i��zei✓j�x


c0,� |0i+ c1,� |1ip

2

�
. (D.3)

In the 2⇥ 2 subspace for each �, we identify the following sequence of SU(2) rotations

U�, ~✓ = ei✓d�x

d�1Y

j=0

e�i��zei✓j�x . (D.4)

This is nothing but the usual single-qubit QSP sequence under the Wz-convention [Mar+21],
where the signal being transform is a Pauli-Z rotation parameterized by the eigenvalue �.
To be more concrete, applying the single-qubit QSP theorem to U�, ~✓, we have

U�, ~✓ =


F (!�) iG(!�)
iG(!�1

� ) F (!�1
� )

�
, (D.5)

where !� = e�i�, F (!�) =
Pd

j=�d fj!
j
�, G(!�) =

Pd
j=�d gj!

j
� are Laurent polynomials of

degree-d with real coefficients fj, gj 2 R. The unitarity condition on U�, ~✓ also requires that
for all �,

F (!�)F (!�1
� ) +G(!�)G(!�1

� ) = 1. (D.6)

The reverse direction of the QSP theorem also means that given arbitrary degree-d real
Laurent polynomial F (·), G(·) satisfying Eq. (D.6), there exists a sequence of phase angles
~✓ such that a circuit constructed from U�, ~✓ can implement the given F (·), G(·).

The above single-qubit QSP result applies for each individual eigenspace of the oscilla-
tor labeled by �. Performing the integral over all �, it follows that the overall sequence in
Eq. (4.13) performs a Laurent polynomial transformation on e�ih(x̂, p̂), hence proving Theo-
rem 3. The last step of elevating from qubit QSP to the hybrid qubit-oscillator continuous-
variable case resembles the spirit of deriving quantum eigenvalue transform [Mar+21], with
the difference that in our case the spectra of the oscillator is continuous while in the usual
multi-qubit case the eigenspectra being discrete.
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Appendix E

Proof that the response function is a
polynomial of the sensed signal

We prove in this section that the QSPI response function, as defined in Eq. (4.23), is a
degree-d polynomial transformation of the new signal v = ei(2)� within a restricted range
[� ⇡

2 ,
⇡
2 ] and the polynomial is real.

Using the Laurent polynomial expressions in Eq. (4.14) and explicitly evaluating the
integration with respect to x, we can write Eq. (4.23) as a series sum

P(M =# |�) =
dX

n, n0,m,m0=�d

An, n0,m,m0 , (E.1)

where

An, n0,m,m0 = (fnfn0 + gngn0)(fmfm0 + gmgm0)⇤

⇥ e�
1
4

2(n�n0�m+m0)2e�i(n�m)�. (E.2)

The following property can be verified:

An, n0,m,m0 = A⇤
m,m0, n, n0 . (E.3)

Therefore, we can rearrange the sum for the QSPI response function to be
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where we have renamed variables m$ n and m0 $ n0 from the second line to the third line,
and <· denotes the real part.

Next, we prove that P(M =# |�) is a degree-d Laurent polynomial of v = ei(2)� in the
range [� ⇡

2 ,
⇡
2 ].

Because fn, gn are each coefficients of Laurent polynomials from QSP, it follows that
fn, gn 6= 0 only for even n if d is even, or fn, gn 6= 0 only for odd n if d is odd. This means
An, n0,m,m0 6= 0 only when m, n have the same parity and m0, n0 have the same parity, which
further suggests the variable substitution

m = n+ 2s, m0 = n0 + 2r, (E.5)

where �d  s, r  d. Substituting this back into Eq. (E.2), we have

An, n0, n+2s, n0+2r = (fnfn0 + gngn0)

(fn+2sfn0+2r + gn+2sgn0+2r)

e�2(r�s)2ei(2)s�. (E.6)

Further, substituting this back into Eq. (E.1), we obtain

P(M =# |�)

=
dX

n, n0, s, r=�d

(fnfn0 + gngn0)(fn+2sfn0+2r + gn+2sgn0+2r)
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=
dX

s=�d

cs()v
s, (E.7)

where v = ei(2)� and

cs() =
dX

n, n0, r=�d

(fnfn0 + gngn0)

(fn+2sfn0+2r + gn+2sgn0+2r)e
�2(r�s)2 , (E.8)

with fn, gn 2 R, cs 2 R.
Because the new signal operator v has an effective momentum of 2, this means that

P(M =# |�) will be periodic with a reduced period of [� ⇡
2 ,

⇡
2 ]. It follows that the QSPI

response function P(M =# |�) is a degree-d Laurent polynomial in the operator v = ei(2)�.
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Appendix F

Recursive relationship between the QSP
coefficients

The probability of making the wrong decision can be efficiently computed classically from the
original QSP phase angles. First, by using the following recursive relationship, all the QSP
coefficients fn, gn as stated in Theorem 3 can be computed from the phase angles. Second,
the series sum in Eq. (4.33) can be evaluated explicitly using the computed fn, gn, without
loss of numerical precision.

f (d+1)
r =

8
><

>:

cos ✓d+1f
(d)
r�1, r = d, d+ 1

� sin ✓d+1g
(d)
r+1, r = �d,�d� 1
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r�1 � sin ✓d+1g

(d)
r+1, |r|  (d� 1)

(F.1)

g(d+1)
r =

8
><
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sin ✓d+1f
(d)
r�1, r = d, d+ 1

cos ✓d+1g
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r+1, r = �d,�d� 1

sin ✓d+1f
(d)
r�1 + cos ✓d+1g
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r+1, |r|  (d� 1)

(F.2)
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Appendix G

Proof of Heisenberg scaling for QSPI
binary decisions

From Fig. 4.5, the decision error probability can be approximately written as a sum of two
contributions in the following way

perr ⇡ ✏
⇣⇡

� 2�

⌘
+
�

2
, (G.1)

where ✏ is the approximation error to an ideal step function from a polynomial function.
The first term in Eq. (G.1) is obtained from such an imperfect polynomial approximation
in the region of [� ⇡

2 ,
⇡
2 ], excluding the rising and falling edges [�th � �/2, �th + �/2] [

[��th��/2, ��th+�/2]; the second term in Eq. (G.1) is from erroneous decisions when the
displacement � lies within the rising or falling edge.

Rearranging Eq. (G.1), this means that the error in the polynomial approximation to
P sign, sin
ideal is

✏ ⇡
perr � �

2
⇡
 � 2�

. (G.2)

From Ref. [Mar+23], to achieve an ✏-approximation to the sign function in regions excluding
[��/2, �/2] requires a polynomial of degree d = �(✏, �) for
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(G.3)

where W (·) is the Lambert W function. Assuming � = O(perr) and for small perr, substitute
Eq. (G.2) into Eq. (G.3) and use a Taylor expansion on the Lambert W function in order to
obtain Eq. (4.40) in the main text.
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Appendix H

Results for 41 Phases Trained on a 9⇥ 9
Grid

As mentioned in Chapter 5, we repeated much of the analysis presented there for 31-phase
BiQSP with 41 phases trained on a 9 ⇥ 9 target grid. We present the results of this sup-
plementary analysis here. We did not repeat the analysis for the slightly asymmetric XOR
function given in Eq. 5.10, as we had already shifted to using the symmetric XOR function
given in Eq. 5.11 by this point.

For the asymmetric XOR function given in Eq. 5.11, we achieve a loss of 0.2155 and find
the following qubit response function plots Fig. H.1a and Fig. H.1b of Fig. H.1 for the real
and imaginary parts, respectively.

The real and imaginary parts of the finer-grid evaluation of the qubit response function
are shown in Fig. H.2a and Fig. H.2b of Fig. H.2, respectively.

Note that, as mentioned in Chapter 5, the loss function for this qubit response function
is a bit greater than for the 31-phase BiQSP for the reasons that we give in Chapter 5.2.

The BiQSP phases achieving this qubit response function are given in Table H.1.

Description Phases

Symmetric XOR 5.11

[5.0870, 3.8817, 5.0512, 1.5792, 5.1918, 3.6297, 5.4102,
5.3284, 1.3099, 5.5671, 4.7964, 1.2086, 4.3467, 6.3379,
5.5033, 1.6697, 0.9855, 1.6711, 4.9414, 3.9580, 4.3727,
3.3942, 1.2229, 2.9802, 0.1725, 4.3998, 4.5407, 0.9028,
0.3202, 5.4757, 6.2410, 2.0768, 4.8046, 2.6349, 0.3457,

-0.0230, 2.8366, 5.1122, 2.4947, 0.9951, 5.1257]

Table H.1: 41-phase BiQSP phases learned for the symmetric target XOR function given in
Eq. 5.11
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(a) Real Part (b) Imaginary Part

Figure H.1: Real (Fig. H.1a) and imaginary (H.1b) parts of the learned symmetric XOR
qubit response function from Eq. 5.11 with 41 phases.

(a) Real Part (b) Imaginary Part

Figure H.2: The real (Fig. H.2a) and imaginary (Fig. H.2b) parts of the optimized approxi-
mation of the XOR qubit response function F using 41 phases and evaluated on a 101⇥101
grid.
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