A USER-FRIENDLY INTERFACE FOR A POISSON-SOLVER

e

Ted C. Johnson

SUBMITTED TO THE DEPARTMENT OF
ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
BACHELOR QF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1987

Copyright (¢) 1987 Ted C. Johnson

Signature of Author Slgnature redaCted

Department of Electrical Engineering angd Computer Science
‘ June 1, 1987

Certified by

Professor Abraham Bers
Thesis Supervisor

£

Professor David Adler
Cﬁ@@&ﬁg@mﬁggﬁggraduate Thesis Committee

5L 15 B ,Signature redacted,

S
LIBRARIES Mc,k\.*@%

Accepted by

A USER-FRIENDLY INTERFACE FOR A POISSON-SOLVER
by

Ted C. Johnson

Submitted to the Department of Electrical
Engineering and Computer Science on June 1, 1987
in partial fulfillment of the requirements for
the degree of Bachelor of Science.

Abstract

This thesis describes a new interface for an existing
Poisson-solver, and enhancements to the displaying of the
results. The new interface is menu-driven, and uses a
graphics editor to greatly simplify the task of entering
problems of interest via a computer keyboard.

Dedication

I would like to thank my parents, Eva Vanderbilt and Essex
Johnson, for their love. and support over the years... I'm

almost done now!

I would also like to thank Prof. Bers, for his help and
guidance, and my girlfriend Clndy Roberts, for putting up

with my obnoxiousness.

Table of Contents

Abstract .
Dedication

Table of Contents
List of Figures

1.

Introduction

1.1 Introduction.

How to state an ES problem.
How to solve an ES problem.
What is a Poisson-solver?
Description of "Poisson".
1.5.1 General description.

e
Ul W N

1.5.2 Specifying the boundary conditions of an

ES problem. -
1.5.2.1 Defining the boundaries.

1.5.24.2 Types of boundary conditions

"Poisson"™ can handle.

1.5.2.3 Functions available for specifying

the boundary conditions.

1.5.2.4 Specifying the position and wvalue
of equipotentials (sheets
rods) in the interior

problem region.
1.5.3 Specifying the distribution
sources (i.e., 1line charges)
interior of the problem region.

The new interface.
2.1 Miscellaneous improvements.

2.2 The MAIN IMPROVEMENT of the new interface.

Programming considerations.

i

3.2 Graphics introduction: how most
deal with graphics.

3.3 The graphics systems used in "Poisson".

3.3.1 The ReGIS graphics system.
3.3.2 The Penplot graphics system.
3.4 Major concepts in my code.

Implementation documentation,
4,1 INTRODUCTION.
4.2 ORGANIZATION OF FILES.

of the

Organization of major functional modules.
computers

16

17
18
23

28
28
29

3¢ .
3t

32
34

34
34

-5~

4.3 OVERVIEW.
4.3.1 How the user interface is called by the
FORTRAN77 program.
4.4 MAIN SCREEN DOCUMENTATION.
4.4.1 Main screen: display management.
4.,4,1.1 Explanation of display(...).
4.4.1.2 Explanation of erase(...).

4.4.1,.3 Usage of display(...) and
erase(...).
4,4,2 Main screen: handling user interaction.
4,4.2.1 Menu item selection.
4.4.2.2 Toggling the boundary condition
options, and changing the
numerical parameters. of the

boundary condition options.
4,5 THE GRAPHICS EDITOR: DISPLAY MANAGEMENT AND
USER INTERACTION.
4.5.1 Introduction.
4.5.2 The graphics editor: user interaction.
4.6 EXPLANATION OF DATA STRUCTURES USED BY USER
INTERFACE.

uture improvements to enhance "Poisson”.

1 Terminal independence.

2 Use of a mouse.

3 A neat way to add more menu items: a "paged”
menu.

4 Labeling things.

5 Anti-aliasing, i.e., making the contours
smoother.

Appendix A. An introduction to the "Poisson" program.

Appendix B. Problems with the old user interface.
B.l Lack of a help command.
2 The boundary conditions are confusing.
3 The problem box is confusing.
4 Moving the high-lighted region is awkward.
5 It's hard to figure out how to change the
boundary conditions.

B.5.1 Explanation of how to change the
boundary conditions, with the old
interface.

B.6 The MAIN PROBLEM with the old interface.

Appendix C. The hardware that the "Poisson" program
runs on.

Appendix D. Explanation of coordinate mapping.
D.1 The problem.
D.2 The solution.

35
3%

39
39
4\
H2
HY

us
us
Se

53

54
55

F3

99

19
2]

ixo
1242

10
{22

23

15
11t
i3

(%}
29

i

Appendix E. The contour plotter used in "Poisson".
Appendix F. Notes for future programmers.

F.1l How to call C Subroutines from FORTRAN77.

F.2 How to compile a program that is made up of C

source code and FORTRAN77 source code.

Appendix G. The ASCII character set.
Appendix H. Organization of-files used in "Poisson".

Appendix I. Makefile for files used in "Poisson".

Appendix J. Source code for the FORTRAN77 subroutines
of "Poisson",

Appendix K. Source code for the C subroutines of
"Poisson".

134
14

4]
(T

143
(R ES
150

182

(98

i List of Figures

Figure 1l-1: "Poisson"'s coordinate system.

Figure 2-1: "Poisson"'s introductory message.

Figure 2-2: "Help" message for main screen.

Figure 2-3: "Help" message for graphics editor.

Figure 2-4:'! The new display: constant
boundaries. -

Figure 2-5: The new display: linear boundaries.

Figure 2-6: + The new display: step boundaries.

Figure 2-7: The new display: sine boundaries.

Figure 2-8: The new display: cosine boundaries.

Figure 2-9: Use arrow keys to move high-lighted
region.

Figure 2-10: The new way to enter data.

Figure 2-11: Entering data.

Figure 3-1; How a terminal handles graphics and
text.

Figure 4-1: Flow of control in "Poisson”.

Figure 4-2: . Flow of control in "Poisson".

Figure 4-3: Text grid coordinate system.

Figure 5-1: The menus currently used in
"Poisson".

Figure 5-2: The current menu.

Fiqure 5-3: A bad way to expand the command
selection.

Figure 5-4: A paged menu scheme.

Figure 5-5: The present graphics editor screen.

Figure 5-6: The new and improved graphics editor
screen.

Figure B-1: This 1is the main screen of the old
interface.

Figure B-2: An alternative to the u, d, 1, and r
keys.

Figure B-3: Top boundary toggled to "normal
derivative”.

Figure B-4: All boundaries are "linear".

Figure B-5: Hard way of entering potentials.

I

12
17
13
9

20,

20
A
z1

1L
2L

23
26

29
3¢
3T
qo
<+

33
33

g0

i

2
119
|22

iy

123
iz6

Chapter 1

Introduction

1.1 Introduction.

Poisson's equation is used in the study of static
ele-ctric fields. In electrostatic (ES) probléms, we are
only concerned with the electric field, E. fhe -two Maxwell
eguations which govern the behavior of ES electric fields

are:

Gauss' electric law: V €o ng (1-1)

Faraday's law: IxE=0O (1-2)

Any vector funqtion whose curl 1is zero can be
expressed as the 'gradient of a scalar function. Therefore
Faraday's law implies that the electric field strength
vector, E, can be expressed as the gradient of a scalar
function. By convention, the scalar function ¢ (which is

called the

-9-

: ; . y 4,
electric potential) is defined such that:

-

E=-v3 (1-3)

Substituting -Y® in for E in Gauss' law, we obtain

Poisson's equation:
Jvh=-—-5 (1-4)
f=—z

We have just replaced the vector function in the two

vector differential Egs. (1-1) and (1-2) with é scalar
function that contains the same information. And because
Eq. (1-4) 1is a combination of Egs. (1-1) and (1-2), it
contains all of the information that they do; thus
Poisson's equation is (in electrostatic situations)
"shorthand" for the two Maxwell equations which deal with
the electric field. This is nice, but it's not the reason
why Poisson's equation is so useful. Poisson's equation
is wuseful because it replaces a veétor function with a

scalar function, which is much easier to work with.

1
By convention, electric field lines point from higher
electric potential to lower electric potential. The
radient of the electric potential,V® , points in the
direction of the greatest increase in § , thus it points
in the opposite direction of the electric field lines.
The purpose of the minus sign in Eq. (1-3) is to indicate
this fact.

-10-

1.2 How to state an ES problem.

An electrostatic problem 1is stated by specifying
(1)the distribution of electric charge density,‘?(x,y,z),
within a volume of interest and (2)the boundary
conditions, e.g., the distribution of electric potential,

?(x,y,z) on the boundaries of the volume of interest.
1.3 How to solve an ES problem.

The solution‘to an ES problem is found by finding an
electric potential function,"ﬁtx,y,z), which_satisfies
BOTH Poisson's equation and the boundary conditions. From
this electric potential . function, the -electric field
strength vector, E, for the particular ES problem can be
found via 44 Egq. (1-3). To visualize the solution to an
ES problem it is wuseful to graph the equipotential
contours (i.e., the lines where $(x,y,z) = constant), and

the associated E field lines.
1.4 What is a Poisson-solver?

'A Poisson-solver is a computer program that
numerically solves Poisson's equation inside of a given
region of two-dimensional (x,y) space. It lets the user
specify - the distribution of charge and/or potentials
inside the region of interest, and the boundary conditions

on the region. It then solves for the potential

-.ll_
everywhere inside the region. The resulting equipotential
cﬁﬁtours and the electric field lines are then displayed
on the user's terminal.

In general, Poisson-solvers are useful because most
problems cannot be solved analytically, and must be solved
via numerical methods. A FAST Poisson-solver 1is useful
because it allows a student to examine quickly a large
variety of ES problems in a few minutes instead of several
hours (which 1is how long it would take if-the student
solved all of the problems by hand). By doing the hard
work for the student, a Poisson-solver encourages the
student to explore all sorts of ES problems that he may
have been curious about. This is useful, because the
student can thus develop his sense of intuition for what

the solutions to different ES problems might be like.
1.5 Description of "Poisson”.
1.5.1 General description.

The Poisson-solver I worked on is called "Poisson"
[see Appendix A]. It solves Poisson's equation in two
dimensions, namely, (x,y) space, via the finite-difference
relaxation method. This system was implemented by Denise
Barnett 1in collaboration with Greg Francis and and Prof.
Abraham Bers [see Appendix A].

"Poisson" is restricted to two-dimensional ES

-12-

problems! Everything (i.e., the boundaries and the
charges) 1is infinitely @extended, uniform in the
z-direction. Nothing varies in the 2z-direction [see

Figure 1-1]. Therefore, we are solving the restricted

2-dimensional version of Poisson's equation:

. Fix = Py = 519

2

(1-5)
y

1 . St TN

“*—33 discrete points

AT o

= ﬂL""“-33 discrete points

Figure 1l-1: "Poisson"'s coordinate system.

The wuser enters the problem in a square region,
called the "problem box", which is of unit length in the
x—-direction and in the y-direction. There are an infinite
number of points between 0.0 and 1.0, however computers
must deal with continuous distributions by approximating
them as a series of discrete values; "Poisson"
approximates the infinite number of points in the range
0.0 <= x <= 1,0, 0.0 <=y <= 1.0 by a grid of 33x33

points. The top and bottom rows and the left and right

~13~
columns of this grid are occupied by the boundaries of the
problem box, which means that there are 31x31 internal
grid points. The bold-faced lines in Figure 1-1 are the
four boundaries (top, bottom, left, and right) of the
problem box.

The user can specify a potential, @}x,y) = f(x,y),
or a line charge density, A(x,y) = constant, at any of
the 31x31 internal grid points. The charge density at a
point (x,y) is given by f(x,y) =;lS1x—g)5(y-g). In order
for the solution to be unique, the potentiai, xor the
normal derivative of the potential, must be specified on
each of the problem box's four boundaries. Such
specification of the problem is known to lead to a unique

solution.

-14-

1.5.2 Specifying the boundary conditions of an ES problem.
1.5.2.1 Defining the boundaries.

The boundaries are the four sets of 33 grid points
which make up the "walls"™ of the "problem box" [see Figufe
1-1]. It is along these four boundaries that the boundary
conditions must be estab;ished. For each boundary, one of
the:following mus£ be specified: either (l)the potential
at each point, =xor (2)the normal derivative of the

potential at each point. -
1.5.2.2 Types of boundary conditions "Poisson" can handle.

If all four boundaries have their potentials
specified, then the problem box is said to have "Dirichlet
boundary conditions”. If all four boundaries have the
normal derivatives of their potentials specified, then the
problem box is said to have "Neumann boundary conditions".
However, if the potential 1is specified on some of the
boundaries, but the normal derivative of the potential is
specified on the others, then the problem is said to have
"mixed Dirichlet and Neumann boundary conditions".
"Poisson" can handle all three cases (i.e., Dirichlet,
Neumann, and mixed Dirichlet and Neumann boundary

conditions).

..15._
1.5.2.3 Functions available for specifying the boundary

conditions.

For each of the four boundaries, the user can specify
one of five functions for the potential along that
boundary (xor for the normal derivative of the potential

along that boundary). The five functions are:
(1)constant ---- the user must specify the constant.

(2)linear ------ a ramp up from a given beginning
value to a given ending value.
The user must specify both values.
(3)step ————==—- half the boundary is value #1; the
other half is value #2. The user
must specify both values.

(4)sine ——-—-————- a*sin(b*pi*x), where the user must
specify a and b.

(5)cosine —-————- a*cos(b*pi*x), where the user must
specify a and b.

The suggested range of boundary potentials is
vl <= 10.0 volts.

1.5.2.4 Specifying the position and value of
equipotentials (sheets and/or rods) in the

interior of the problem region.

The user can specify the value of an equipotential
rod or the value of an equipotential sheet at any of the

31x31 internal grid points. The valid range of voltages

-16-

is |v] <= 10.0 volts [see Appendix A]. The voltage is
limited to this range to speed up the Poisson-solver. If,
for the same boundary potentials, a wider range of values
is allowed for the equipotential rods or sheets, say
-100.0 to +100.0 volts, the gradients in the problem are
increased and it will take the Poisson-solver many more
iterations (i.e., a much longer time) to converge to the
correct. solution. 7 |

Since the problem box is two-dimensional, all of the

regions of constant potential are either rods or sheets.

1.5.3 Specifying the distribution of the sources (i.e.,

line charges) in the interior of the problem region.

The only sources available in "Poisson" are line
charges. The valid range of values for lambda is 1l.e-12
<= |lambda| <= l.e-10 [see Appendix A]. Once again, the
reason for limiting the range of lambda is to speed up the
Poisson-solver.

All of the sources must be in the interior of the
problem region, i.e., at one of the 31x31 grid points. A
source cannot appear on or outside any of the four walls

which bound the square problem region.

. [

Chapter 2

The new interface.

The new interface is much more friendly than the old

interface was. Refer to Appendix B for a description of

the old interface. The very first thing that the new

"Poisson" interface does 1is to greet the user with the

following:

A Solution to Poisson’s Equation within a Square Region
with Dirichiet and/or Neumann Boundary Conditions
Version 1.0 October 1986

This program was intended to provide means for quickly (in 5-10 seconds)
solving relatively simpie problems in electrostatics and/or magnetostatics.

On the boundaries of the region a variety of functions of potentials
{(Dirichlet} or normal derivatives of potential (Neumann) may be specified.
Inside the region, potential rods and/or sheets, as well as charged rods, can
be specified. The sciution is displayed as contour plots of the potentials.
The field lines are then displayed as contours of the conjugate potential.

Probiems are solved on a 33x33 point grid (32x32 spaces). For a
“smogother” plot with more waiting time (factor of four), the grid size san
be changed to 6Bx65 points (64xb4 spaces).

In the interest of achieving the desired speed, some suggested ranges
for the values to be entered in any problem are listed below. It is possible
to enter values outside of these ranges but computation time will increaca.

4 <= | potentials | <= 10 Volts

je-2 <= | normal derivatives of potential | <= ie-1 Volis/unit length
Ze-11 <= | iine charge densities [<= Ze-10 Coulomb/unit length

For further details on this program, as well as a demo, refer to the
writeup: "Project Athena Poisson Program” for course 6.C013.
Press RETURN for main menu to specify a particular probles.

Figure 2-1: "Poisson"'s introductory message.

Many of the shortcomings of the o0ld interface were

18.
resolved in a fairly straightforward manner. These
improvements will be discussed first; the big leap 1in

user-friendliness (i.e., the graphics editor) will be

discussed last.
2.1 Miscellaneous improvements.

There is now a help facility. If the user is on the
main screen and selects the "Help" menu item, the main

screen will be erased and he will see:

To execute a command, toggie an option, or change s numerical value, move
the high-iighted region to the command/option/number and hit the SPACE BAR.

To enter the probienm:
{)for each of the 4 boundaries:

on the main screen,
a)specifu either the POTENTIAL or ithe NORMAL

DERIVATIVE of the potential

b)specify the function, i.e., STEP, SINE,
COSINE, LINEAR, or CONSTANT

2)inside the 4 boundaries:
on the "Add Charges or Potentials" screen,

add line charges, rods of constant potential,
and/or sheets of constant potential.

NOTE: If the display looks screwy, wou should: i)quit this program, 2)turn
the VT240 off, then back on, 3)sei ihe XOFF oplion {in ihe Set-Up
Communications screen) to ‘XOFF at 10227, Sitype ’"tset’, and then
restart this program, by tuping “poisson’.

Hit-tte SPACE -BAR to-eeturn-to whepe

Figure 2-2: "Help" message for main screen.

.‘q
If the user is on the graphics editor screen, there 1is

also a help screen available.

This ‘iz the graphics editor. It will allow you to specify the
placement and values of the foilowing (inside the square probism

resion?
i}line charges
Zirods of constant 20isntial
I)she=ts of constant pot=ntial
QUANTITY | SYMBOL OM SCREEN | YALID RANGE OF YALUES
I |
line charge | 3 iriangle i 1.0e-12 <= | Coulomb/z ! <= 1.0e-10
I |
agquipotential rod I a sgquare i -10.9 <= vaoitage <= 10.0
| I
aquipotential sheet | a line i -10.0 <= voltage <= 10.%

ib- Lhe CPACE DAR Lee vebwin Lo where

Figure 2-3: "Help" message for graphics editor.

The problem region and its boundary conditions are
much more self-explanatory, and are less ambigious than
before. Contrast Figures (2-4), (2-5), (2-6), (2-7),and

(2-8) which their old counterparts [see Appendix B].

20.

A Sclution to Poisson’s Equation within 2 Square Regicn
with Dirichliet or Mixed Neumann-Dirichiet Boundaruy Conditions
‘ —+ Versicn {.0 October 1988

BOUNDARY CONDITIONS: |
1.00 {top)

top: oot et = constant =
i y=1
left: potential = constant = .00
{1eft) (right}
right! potential = constant = 0.0¢
! y=0
bettom: poteniial = constant = 2.00 »=0 {bottom} x=1
ARROW -KEYS-HOVE-PDSITION; =SPACE BAR. TOGGLES “DRELIONS AND--EXECUTES-COMMANDS]
Add. charges or potentizls Soive for poteniizics l fuit Froszram
Hele Recali Eoived Prob}en\ Change arid size 22xI2 |

Figure 2-4: The new display: constant boundaries.

4 Seletion o Poisson’s Zauation within 3 Souare Region
w1t Dirichlet or Mixed Neumann-2irichist Joundary Congditicns
* ¥Yerzicn 1.9 Ociober 198§
SCUNDARY CONDITIDNS: ;
top: motential - THEERR ;. (0,4 = i.00 (tom)
- at {1,{) = 2,00 g=ﬂ 1
1efil potential = linear, 23t {($,0) = 1.00
at (Q,4i; = 2,50
: (lafi: {right)
- mbed ¥ S — -l .- | - ppep—" - | AL - 4 AN *
fl.gli'.-. fJUbE Ibiail = iiNnedar, au 1L,V = L.vv
at (4,14) = 2.00
L=
bottom! potential = linear, at (0,0 = 4.0 *x=0 <{(bottom) ®=1
at (1,0) = 2.00

ARROM- REXS. HOVE PﬂSITiUR;:-SPﬁCETBﬁEﬁTBGGLES‘QPT{DNS=RN31EXECUTESJCﬂﬁHﬁNﬂS

Add charges or potentials Solve for potentials | RQuit Program

Help Recall Solved Problem Change grid size 32x32

Figure 2-5: The new display: linear boundaries.

-2 =

4 Solution %o Poisson’s Zauation within a Sduars Zegion
With DJirichlet or Mixed Neumann—-Dirichiat Boundary Conditions
- Yersion L.0 OJctober 1986
30UNDARY COMDITIONS: t

Lopt potential = S5aa ®x = O to .5: L.00 {top}
x=.5 1o i: 2.00 3=H
lafs: potential = step, 4 = 0 to .50 L.00
y = .8 to L 2.00
_ (laft} {right}
right: potential = step, ¥y = 9 to .5 1,00
g = .5 to 4 2.00
4=
soticm: potential = ztem, x = § to .57 1.20 #=9 {(boiiom: x=1
x = .8 0 41 Z2.00

-

Add charges or aoisntials [ﬁaive for motentials Juit Prosrzm

Help l Recall Solved Problem| Chanse zrid size 32x32

Figure 2-6: The new display: step boundaries.

4 Sosution ic Poisson’sz EZauation within a Sauare Regicn
with Zirichiet or Mixed Meumann-Dirichlet Boundary Concitions
+ Yersien L.3 October iSB86

30UNDBARY CONDITIONS:

g mmdh amd = = eSS TesmEewessws | ; _—
TGP f-’UtJ:.'ﬁ'ui:I: S ChEiATegaEsdinagd 3 — L o0 Lo/
b = 1i.8C u=i
lafi; aotential = a¥sin(2%pisb*y) a = 1,020
b= 1.30
(left? (rizht;
right: potential = a#sin(2¥%pi*b¥y; a = 1.00
h=1.00
3=0

%x=0 f{bottom!} ®=1

bottom: potential ansin(2%pixb*x) a3 =

o

[}
[T
g%

REOW: KEYS-WIVE. POSITION: -~ SPAReE -B&E TOGGLESOETIONG-AND- EXECUTESCOMMANES

Add charzes or potentials Solve for notentials | Guit Program

Help Recall Salved Prcblem| Chanze arid size 3Z2x32

Figure 2-7: The new display: sine boundaries.

-

A Solution to Poisson’s Equation within 2 Square Region
with Dirichlet or Mixed Neumann-Dirichlet Boundary Conditions
+ Version 1.0 October 19288
BOUNDARY CONDITIONS: -

Lop: sotential = Ziges Eadtagd a - 1.90 e {Lop)
b =41.00 y=1
left: potential = akcos(2¥pixbry) a = 1.00
b =1.00 L
(left) right)
right: potential = akcos(2%pixb®y) 23 = 1.00
b =1.00
bottom: potential = arcos(2%pisb#x) a = 1.30 x=0 (bottom) x=t
b =1.00
RROW KEYS. MOVE FOSITION;, - SPACE BEAR TOGGLES- ORTIONG AND CXECUTLS: COMMANDS
Add charges or potentials Solve for potentials | Quit Program
Help Recall Solved Problem| Chanse zrid size 32x32

Fiqure 2-8: The new display: cosine boundaries.

It is now much easier to move the high-lighted
region. Instead of hunting around the keyboard for the
"u", "d", "1", and "r" keys, the user now uses the cluster

of 4 arrow keys on the right hand side of the keyboard.

Figure 2-9: Use arrow keys to move high-lighted region.

.23

2.2 The MAIN IMPROVEMENT of the new interface.

The most important improvement that the new interface
~has is a graphics editor. [Refer to Appendix B for the

0ld method of entering data.]

ADD line chagge

DELETE line charge

DELETE potential rod

ADD potential sheet 5 ~ o~

DELETE potential sheet

RETURN to main screen

HELP

Current grid position:

Press space bar to enter potential rod; press delete key to abort

Figure 2-10: The new way to enter data.

In two dimensions, a line charge loocks like a point
on the terminal screen. A rod of constant potential also
looks like a point, and a sheet of constant potential
looks like a line. Therefore the user must pick one point
(in the interior of the problem region) to specify the
position of a line charge or a rod of constant potential.

A line is uniquely determined by its two endpoints, so the

-2 -

user must specify two points to position a sheet of
constant potential. To specify a point, the user doesn't
even need to know its (x,y) coodinates; he merely moves a
cross-hair sight about the screen (using the 4 arrow
keys), and then hits the space bar when he reaches the
desired location. A prompt appears at the bottom of the
screen, and asks the user to type in the value of the line
charge or the potential.

The editor won't let the user get himself iﬁto
trouble. For example, if the user tries to put a line
charge on top of a potential rod, he will be told that
there is already a potential rod at that 1location, and
that he should pick another location for the line charge.

The editor also checks to be sure that all sheets of
constant potential are either horizontal, vertical, or at
a 45-degree angle, as required by "Poisson".

The editor always checks the size of the values that
the user enters for the potentials and the charges. I'E
the wuser attempts to enter a value that is outside the
allowable range, then the editor will say so. It will
also tell the user what the valid range of values is, and
will allow the user to re-enter the value.

Another extremely imporﬁant feature is the abort key.
At any time, the user can abort adding or deleting
something from the problem region. All he has to do is

hit the delete key.

_25..
Another feature of the new interface which makes
_things a lot more clear is the fact that the problem which
is entered in the graphics editor screen is drawn (in
miniature) in the small problem box on the main screen

[see Figure 2-11].

b=

BDE= | ine- charse

L]

ELZTE line charge

ADD rmotential rod o

DELEZTE notential rod ' -

ADD potentisl sheet ~ o

DELETE potential sheet| -~

RETURN %o =ain screen || s

HELP w

Problem isS enfered (v the 3;/-4\1014;(_& editor

A Solution to Poisson’s Equation within 3 Sauare Region
with Dirichiet or Mixed Neumann-Jirichiet 3oundary Conditions.
+ Yersian {.0 October 129886

BOUNDARY CONDITIONS: +
top: motential = constant = 9.00 {top)
y=1 R
left: potential = constant = 0.00 _,./"’
left) 7 kright)
right: potential = constant = 0.00 J;ff
bottom: potential = constant = 0.00 x=0 (bottom) x=1

FRROW KEYS MOVE POSITION;

SPACE. BAR-TOGGEES OPTLONS- AND EXECUTES- COMHANDS

Add charges or potentiais Solve for potentials | Quit Program
e p| Recall Solved Problem| Change grid size 32x32

Problem thewn Appears n Problcm bax ow the main Screen,

Figure 2-11: Entering data.

=2 1

This is a really neat feature. With the old interface,
the interior of the problem box on the main screen
remained empty after the wuser entered line charges or
potentials inside it. This was quite disconcerting; it
made the user wonder if the stuff he entered in the
interior of the pfoblem box got accepted by "Poisson" or
not.

Another nice thing about the new editor is that the
line charges, rods of constant potential, and sheets of
constant potential are drawn when the contours are
plotted. The old interface just drew the contours.

Note that the symbol for a line charge is a triangle,
and the symbol for a rod of constant potential is a
square., This scheme was chosen (instead of~ drawing two
different colored squares) so that "Poisson"” would not be

restricted to color terminals.

— PR =

Chapter 3

Programming considerations.

3.1 Organization of major functional modules.

"Poisson" is written in both C and FORTRAN77. Three
major modules make up 99% of the source code. These files
are compiled separately, and are then linked together with
the other compiled files to form the executable code. The
three major modules are:

Module 1 The user-interface and the graphics editor.
-—--written in C, by Ted C. Johnson.
-—-this is what "talks" to the user, and
passes the data relevant to the ES
problem to Module 2.
Module 2 The "engine", i.e., the code which does all
of the mathematical computations necessary
to solve Poisson's equation.
---written in FORTRAN77, by Denise Barnett.
Module 3 The contour plotter.
---this is written in C, by various people.
Robert Brawer is supporting it.
"Poisson" was implemented on a DEC (Digital Equipment
Corporation) VAX 11/750, which is one of the minicomputers

used by MIT's Project Athena. See Appendix C for the

hardware required to run "Poisson".

'Lﬂ
3.2 Graphics introduction: how most computers deal with

graphics.

All video terminals support text display. Some video
terminals (graphics terminals) have additional hardware
inside of them which enables them to display graphics as
well as text. The set up for video terminals which

support graphics as well as text is shown below:

text
processor
a program A N,
Orf‘l decoder video display
text file 9 . /ﬂ
graphics

A o processor
g/—'—\’ /
qi— the computer -

tz—-——th.s.' graphics video terminal

Figure 3-1: How a terminal handles graphics and text.

The basic algorithm for displaying graphics and text

has 3 steps:
Step 1. Text characters and control characters (both

of which are represented via the 8-bit ASCII code, see

2
Appendix G) are sent from the computer to the graphics

2
There are 128 ASCII characters, numbered 0 to 127.
Numbers 33 to 126 are text characters; the others are

control characters [see Appendix G].

-390~
terminal. This 1is done either by having a program send
characters to the terminal, or by the user sending the
contents of ~a text file to the terminal (on a UNIX

operating system, this would be done with the "cat"

command, e.g., "cat graphics cmd file").
Step 2. Inside the terminal, a decoder decides if

the character is a text character or a graphics control
character. The decoder then sends the character to the
proper place to be processed.

Step 3. Text and grﬁphics show up on the wuser's

graphics terminal.
3.3 The graphics systems used in "Poisson”,

"Poisson" uses two different graphics systems: ReGIS
[1] and Penplot [2]. ReGIS (Remote Graphics Instruction
Set) 1s a set of graphics commands which only work on DEC
VT240 terminals. It 1s extremely flexible and fairly
fast, BUT it only works on one particular type of
terminal. Penplot is a set of graphics commands which are
supposed to be terminal-independent; 1i.e., in theory,
Penplot will work on ANY video terminal which has graphics
capabities. It does this by consulting a huge database
which has a file of ALMOST every video terminal ever made,
and the proper control characters for the graphics
commands for that terminal. 1In reality, Penplot 1is not
terminal-independent; for example, it won't work on the

new DEC VAXstation 100 terminals.

...3! -

3.3.1 The ReGIS graphics system.

ReGIS is a DEC graphics system which only works with
certain hardware [see Appendix C]. It allows the
programmer to write code to draw points, lines, and
circles on the screen, 1in four different colors (red,

green, blue, and black).
3.3.2 The Penplot graphics system.

Penplot is used only for the display of the
equipotential contour lines and the elec£ric field lines.
ReGIS could have been used to do this, but the author of
the contour plotting module built Penplot into the contour
plotter. See Appendix E for more information on the

contour plotter.

32

3.4 Major concepts in my code.

The following 1is an explénation of the rationale
behind a few of the major design decisions made while
developing and implementing the wuser-interface for the
Poisson-solver "Poisson". —

The "Poisson" program uses three screens (not
counting the two help screens and the introductory text
screen). The first, the main screen, is the screen that
the user has the most interaction with. The second screen
is the graphics editor, which the user uses to enter line
charges, rods of constant potential, and sheets of
constant potential into the interior of the problem
region. The third screen is the one where the contours
are plotted. _

The most fundamental decision was the choice of
making "Poisson" Dbe menu-driven rather than command-line
driven. In other words, all commands are entered by
selecting one command from a displayed menu of commands,
rather than by the more conventional way of having the
user type in commands to a prompt. A command-line driven
interface would have been MUCH easier to design and to
implement, and it has the additional advantage that it's
extremely easy to add more commands to such an interface.
A menu-driven interface is much harder to design, takes up

more of the terminal's screen space, 1is harder to

._33_
implement, and it can be difficult to add more commands
to.

Then why pick a menu-driven interface? I picked a
menu-driven interface because the main wusers of the
"Poisson" program are going to be students, who have
neither the time nor the inclination to spend a lot of
time learning how to use a program. Thus, the primary
goal for this interface was that FOR THE FIRST-TIME USER
IT BE EXTREMELY EASY AND INTUITIVE TO USE. The wuser
interface had to be "intuitively obvious, to the most
casual user". A menu-driven interface 1is MUCH more
intuitive, 1is much easier to use, and is much less prone
to user-error than is a command-line driven interface.
First of all, there are no commands to memorize (or to
forget, or to mistype), because they're all right there on
the screen in front of the user. All the user has to do
is pick one of them. Second, there is no syntax to worry
about, because the wuser never types in any commands.
Third, users who can't type aren't inconvenienced by
having to hunt for the right letters to spell out long
commands. Fourth, commands which require parameters are
also more intuitive, because after the user selects one of
these commands from the menu, he 1is prompted for the
necessary parameter(s) at the bottom of the screen (e.gq.,

"Enter the voltage-->").

_3:1...

Chapter 4

Implementation documentation.

4.1 INTRODUCTION.

"Poisson" was implemented using both FORTRAN77 and C
programming languages. All of the code associated with
the user interface is written in C. All of the code which
does the actual number crunching (i.e., the numerical
"algorithms which find a solution to the -electrostatic
problem) is written in FORTRAN77. The subroutine which

calculates and plots the contours is written in C,
4.2 ORGANIZATION OF FILES.

The user interface is‘ implemented as a subroutine
that 1is called from the FORTRAN77 program [see the file
"poisson.f" in Appendix K].

Constants used by the user interface are in the file
called "defs" (which stands for "definitions") [see
Appendix K].

Structures used by the user interface are defined in
the file "structures.c" [see Appendix K].

The ReGIS terminal-dependent graphics subroutines are

in the file "regis subrs.c" [see Appendix K].

Y
All of the structures and arrays used by the user
interface are initialized by a huge subroutine called

set_default_values(), which is defined in the file

"db_init.c" [see Appendix K].
4.3 OVERVIEW.

The general flow of control between the three major
modules which make wup "Poisson", 1i.e., (l)the user

interface (edit—-(...)), (2)the Poisson-solver's number

cruncher, and (3)the contour plotter, 1is shown 1in the
following flow chart, Figure 4-1. This figure shows how
these three modules interact with each other.’

What follows 1is an 1in-depth explanation of the
implementation of the user interface. The contour plotter
and the Poisson-solver module will be referred to where
appropriate. Source code for all three modules is located

in Appendices J and K.

-36 -

C:

. R 5
User jntectace FoRTRANTY

(edid_(.Y)

Paisss'rq -solver }

Contour plather

Flow of control in "Poisson".

| s>
|
|

Figure

...3;_

\tJSQr '{"1‘925 “PO{SSon"

FORTRANTT?
Maia program calls ecl."i',..(_..)J.‘.a

sact as the user jwterface.

J

Q&H‘.—(--‘) c‘m\,\nwi viegr 1o enter

then vetvms to main progrém

Prnb\ﬁm (o~ Qw’"‘)}

A

FORTRAN e
,’"\ain Prab\mm calls

Moiw Pr"lt)raw— cwlls
potentisl vod) and poteatisl sheet Sy beld.

PQTSS'J"“'SQI‘M"{ Soive.i Préblhm.
EL‘“\——-C”') +‘-" AT‘-W live C’;‘q'ﬁtj

c: edit_(-.) dvaws \ine Cia«rjzj POTCvft‘ff»‘ vod, ond pp“}en‘i‘i‘a»{

cheet .Sximkoisf‘i‘lne.., veturms 19 waain program

\
EorTRANTY.

Main Pragvam

calls contover p\aﬂ'tr P V4 Plaf conovvs,

15 contovrs, e vefurns 42 wnain Prodv-nm,

Contovwr plﬂﬂ'ef Pl9

v
?a{Lme}i
Main Proﬁvaw\. \.E.TS
Save ']’kv. ES Pro\niem

‘fg en*h’.r- e

vser ref|9+ conTovrI (jo Yo [_—513)

awd b So{u‘hﬁv‘\) retvm Ao
+o C’—jl

hew Problem (59
Yaain Scyrein

o QuH‘l

Figure 4-2: Flow of control in "Poisson".

38

The implementation of the user interface is explained
below. It is divided into two major sections: the main
screen and the graphics editor.

Refer to section 4.6 for an explanation of the
various data structures, arrays, and arrays of data

structures which are used by the user interface.

4.3.1 How the user interface is called by the FORTRAN77

program.

The C subroutine which is called from the FORTRAN77

program is called edit_(...) [see Appendix K, file

"fneditor.c", page 2]. It 1is called for two quite
different functions. The first 1is to act as a user
interface, i.e., to let the user specify a probleﬁ. The

second is to draw the line charge symbols (triangles), the
potential rod symbols (squares), and the potential sheet
symbols (lines) right before the contour plotter plots the
contours. This is all accomplished by the subroutine

do teds stuff() [see Appendix K, file "fneditor.c", pages

Which of these two functions edit_(...) does is

determined by the 1iflagl and iflag2 flags passed in to
edit_(...). If iflagl is 1, then edit_(...) is wused to

plot the 1line charge, potential rod, and potential sheet

symbols. If iflagl is -1 and iflag2 is 1, then edit_(...)

is used as the user interface.

4.4 MAIN SCREEN DOCUMENTATION.
4.,4.1 Main screen: display management.

The display of text on the main screen is

accomplished by using two subroutines:

display(row_num, column_num, want_inverse)

erase(row_num, column_num)

There are two coordinate systems that we are
concerned about when we are displaying text. The first is

the text SCREEN coordinate system. The terminal screen is

24 ASCII characters tall by 80 ASCII characters wide. The
text screen coordinate system divides the screen up into
an 80 by 24 grid, where the upper left hand corner of the
screen is at position (1,1), and the lower right hand
corner of the screen is at position (24, 80).

The second coordinate system 1is one that |is
artifically imposed on the main screen's display. It is

called the text GRID coordinate system. It is used to

keep track of the portions of the main screen where the
text is 1liable to change (e.g., the different types of
functions available for the boundaries of the problem

region). It divides the active portions of the screen

into a grid that is six rows (labelled Rl to R6) tall by

three columns (labelled Cl to C3) wide. See Figure 4-3.

& Sglution to Poisson’c Eauation within a Square Region
with Dirichlet or Mixed Neumann-Dirichlet Boundary Conditions
—— + Version 1.0 October 1986
BOUNDARY CONDITIONS: +
normal
top: Rl Ider‘ivative= constant ={1.00 (top)
y=1
left:R:'Ipotential H linear, at (0,0) 5 1.00
at (0,1) 5 2.00
(left) (right)
4 step, y = 0 to .5 1.00
y = .5 to 1] 2.00
y=0
derivatives] a*#sin(2%pixb%x) a = 1.88 x=0 (bottom) x=1
b ={.

2l U U U “A HAR 1 U AN L anNb

Solve for potentials § @Guit Program

Recall Solved Problem§ Change grid size 32x32

C2 <3

| =
|
|

Text grid coordinate system.

Figure

....41_

4,4.1.1 Explanation of display(...).

The display(...) subroutine [see Appendix K, file

"fneditor.c", pages 30-33] is actually a database. It
contains ALL of the text that is displayed on the main
screen, with the exception of the title that appears at

the top of the screen. The display(...) subroutine

contains the text for all the different options (e.g., it
contains the text strings: "potential”, M"normal
derivative", "linear", "step", "constant", etc.). It also
contains the text for all of the menu items (e.g., it
contains the text strings: "Add charges or potentials”,
"Solve for potentials", "Help", "Quit Program", etc.).

display(...) is called with the text grid coordinates

of the location where text is to be displayed; it then

looks 1in the options[][] database to see which of several

text strings are meant to be displayed at this text grid
position. For instance, 1in column two (text grid
positions (R1,C2), (R2,Cc2), (R3,C2), and (R4,C2)), the
text can be one of two things, either "potential =" or

"normal derivative =", The way display(...) knows which

of these to use is by consulting the options[][] array,

and seeing what option was selected for that text grid

location.

The next step is to see what text screen coordinates

correspond to these text grid coordinates. This 1is done

_42..
by consulting the db[] database, which contains the text
screen coordinates for all of the text that 1is displayed
on the main screen.

There are two modes in which the text can be
displayed: normal video, and inverse video. In normal
video mode, the text appears as white characters on a
black background. 1In inverse video mode, the text Iis
black and the background is white. Inverse video is used
to draw the user's attention to a certain area of the
screen. "Poisson" uses this method, instead of a cursor,

to indicate to the user where the next action will take

place. If the want-inverse argument to display(...) is
YES, then the text will be typed in inverse video mode.
Otherwise the flag is NO, and the text is typed in normal

3
video mode.

3
YES and NO are constants which are defined in the

"defs" file [see Appendix K]. The value of YES is 1; the
value of NO is 0.

-43

4.4.1.2 Explanation of erase(...).

The counterpart to the display(...) subroutine 1is

called erase(.;.) [see Appendix K, file "fneditor.c",

pages 28-29]. It is also a database: it knows how many
blank spaces to type out to erase any of the text grid
locations, no matter what option is being displayed.

Why is the erase(...) subroutine needed? Let's look

at a typical scenario. The user has just toggled the
"linear" option to the "step" option, for the top boundary
of the problem box (i.e., text grid location (R1,C3)). If

we just use display(...) to type "step" where "linear"

used to be shown, then what will actually appear on the
screen is "stepar", i.e., only the first four characters
of "linear" will be overwritten by the text string "step".
The way to fix this problem is to erase the text string
"linear" first. Erasing text is done by writing over it
with blank spaces. Different numbers of blank spaces are
needed, depending on how much text is to be erased.

The way the erase(...) subroutine works is that you

pass it the text grid coordinates, 1i.e., the (row num,
column num), of the text grid location that you want

erased. erase(...) then consults the options[][]

database, to see what option is being displayed at this
text grid location. Then the db[] database is consulted,

to see what text screen coordinates correspond to the text

.41.‘..

grid location (row num, column num). Finally, erase(...)

has all the information it needs, so it types out the
correct numbér of blank spaces to erase the text that 1is
currently being displayed at text grid location (row_num,

column_num).

4.4.1.3 Usage of display(...) and erase(...).

display(...) and erase(...) are used in two separate

situations. The first is when the user toggles from one

option to another. The program then uses erase(...) to

erase the current option, and uses display(...) to type

out the text for next option.
The second time these subroutines are used 1is when
the user moves the high-lighted region from one ‘place to

another. The program uses erase(...) to erase the

current high-lighted text grid 1location, and uses

display(...) to re-type it, this time in normal video

mode. The program then uses erase(...) to erase the text
of the text grid location that the user wants to move to,

and re-types that text (in inverse video mode) using

display(...).

-45—

4.4.2 Main screen: handling user interaction.

"Poisson" lets the user move the high-lighted region
to any of the 18 text grid coordinate locations (6 columns
x 3 rows = 18 locations) [see Figure 4-3], via the four
arrow keys on the right hand side of the keyboard. This

is done via the monitor_keyboard(...) subroutine [see

Appendix K, file "fneditor.c", page 12].

Wrap-around 1is permitted; i.e., if the high-lighted
region is at the leftmost side of the screen and the user
hits the left arrow key, then the high-lighted region will
appear at the right side of the screen. Wrap-around to
the left, to the right, over the top, and under the bottom
of the screen are all permitted.

The program ignores all keys except for the four
arrow keys and the space bar. No action is taken until

the user hits the‘space bar,

4,4,2.1 Menu item selection.

When the user hits the space bar, the program checks
the current text grid row number (which is kept track of
by the variable cur_row) to see if the high-lighted region
is in the menu. It is in the menu if the current row
number is R5 or R6 [see Figure 4-3]. If it is, then the

menu-handler(...) subroutine [see Appendix K, file

"fneditor.c", page 14] is called.

46

The menu_-handler(...) determines (via the variables

cur_col and cur_row, which hold the current text grid row

and column numbers) which menu item the user selected.

Menu item: "Add charges or potentials"

If the user selected the "Add charges or potentials”™ menu

item, (row,col) = (R5,Cl), then the menu_handler(...)

calls the invoke_screen2() subroutine [see Appendix K,

file "fneditor.c", page 17]. This subroutine erases the
screen, and conjures up the graphics editor screen. See
section 4.5 for information on the implementation of the

graphics editor.

Menu item: "Solve for potentials"

If the user selected the "Solve for potentials" menu item,

(row,col) = (R5,C2), then the menu_handler(...) calls the

crunch() subroutine [see Appendix K, file "fneditor.c",
page 18]. This subroutine makes the global variable quit
equal YES, and the main loop [see Appendix K, file
"fneditor.c", page 4]

while {(quit == NO) {
} monitor keyboard();

is exited. Then the arrays passed in to edit_(...) [see

—43-
Appendix K, file "fneditor.c", page 2] from the FORTRAN77
main program [see Appendix J, file "poisson.f"] are filled
with the voltages and the line charges which describe the

problem that the user entered. The edit_(...) subroutine

is then exited, and control is returned to the FORTRAN77
program which called it [see Appendix J, file
"poisson.f"],

Next, the FORTRAN77 modules solve Poisson's equation,
with the sources and boundary conditions specified by the

user. The FORTRAN77 main program then calls edit_(...),

with the wvariable iflagl equal to 1. This tells

edit_(...) to plot the symbols for the line charges, the

potential rods, and the potential sheets. The edit_(...)

subroutine is then exited, and control returns to the
FORTRAN77 main program. The main program then calls the
contour plotter [see Appendix J, file "poisson.f"], and
passes it the solution to the ES problem. The contour
plotter [see Appendix E] plots the contours, and returns
control to the FORTRAN77 main program. If the user wants
to return to the main screen (to do another problem), then

edit (...) is called again, this time with iflagl equal to

-1 and iflag2 equal to 1 (which tells edit_(...) to act as

a user interface).

Menu item: "Quit Program"

4{;
If the wuser selected the "Quit Program" menu item,

(row,col) = (R5,C3), then the menu_handler(...) calls the

break_out() subroutine [see Appendix K, file "fneditor.c",

pages 18-19]. This subroutine asks the wuser, "Do you
really want to quit (y/n)?" If the user types "n" or "N",

then break_out() clears the screen, and terminates the

"Poisson" program. Since we want to terminate the entire
program from inside a subroutine, and not from inside the
main program (which is the usual way of doing it), we have
to terminate the program in an inelegant fashion; this 1is
done by using the C exit() function [see Appendix K, file

"fneditor.c", page 19].

Menu item: "Help"

If the user selected the "Help" menu item, (row,col) =

(R6,C1), then the menu_handler(...) calls the help()

subroutine [see Appendix K, file "fneditor.c", pages
17-181. This subroutine clears the entire screen, and
then types a few paragraphs of helpful text. help() tells
the user to 1indicate when he is done reading the help
screen and is ready to return to the main screen by
hitting the space bar. When the user hits the space bar,

the screen is erased and the main screen is redrawn.

Menu item: "Recall Solved Problem"

-u9-
If the user selected the "Recall Solved Problem" menu

item, (row,col) = (R6,C2), then . the menu_handler(...)

calls the get_problem(...) subroutine [see Appendix K,

file "fneditor.c", pages 14-15]. This subroutine prompts
the user for a file name, and then reads all the data
contained in that file 1into the following arrays:

pr_gridl[1[], lc.gridl[][], ps_gridl1[], Qs,db[][l, pot[][],

options[][], and dbl[].

It may seem odd that saving a problem is NOT one of
the options on the menu, yet recalling a problem is, How
can you recall a problem if you can't save it in the first
place? The answer to this is that "Poisson" doesn't ask
the wuser if he wants to save a problem until AFTER the
problem has been solved, and the contours héve been
plotted. The FORTRAN77 main program [see Appendix J, file
"poisson.f"] takes care of asking the user if he wants to
save this problem, and if so, what file should the problem
be saved in. The saving of a problem is extremely

straightforward. The arrays pr_gridl(][], lc_qgrid[][],

ps_grid[1[], ps_dbl]1[], pot[1[], options[][], and dbl[] are

simply written into the file that the user specifies.

Menu item: "Change grid size"

If the wuser selected the "Change grid size" menu item,

(row,col) = R6,C3), then the menu_handler(...) calls the

50

grid_size() subroutine [see Appendix K, file "fneditor.c",

page 16]. There are two grid sizes available, 64x64 and
32x32, The larger grid size causes the FORTRAN77 program
to compute the solution to Poisson's equation to a higher
degree of accuracy than with a 32x32 grid size. This
results in smooéher contours when the contours are
plotted. The trade-off 1is that doubling the grid size
causes the Poisson-solver to take four times as 1long to
solve the problem. Aside from the smoother contours and
the longer wait, the larger grid size looks exactly the
same to the user. It does NOT enable the user to fit more
line charges in the inside of the problem region, or of
that nature.

The grid._size() subroutine 1is very simple. It

determines what the current grid size is (by checking the
size global wvariable), and toggles it to the other size.
It toggles size between 32 and 64. The subroutine then

updates the main screen to indicate the current grid size.

4.4,.2.2 Toggling the boundary condition options, and

changing the numerical parameters of the boundary

condition options.

If the high—-lighted region ISN'T in the menu area
(which consists of rows R5 and R6), then the user wants to
either: (1)toggle between specifying the "normal

derivative" of the potential and the "potential”, or

5l.
(2)toggle between having the normal derivative/potential
be constant, a step function, linear, a sine, or a cosine,
or (3)change the numerical parameters of one of the five
normal derivative/potential functions.
Whenever the space bar is hit and the high-lighted

region isn't in the menu, monitor_keyboard(...) calls the

subroutine space_bar() [see Appendix K, file "fneditor.c",

page 23].

The space.bar() subroutine checks the cur_cul

variable to see which of the three text grid columns [see
figure 4-3] the high-lighted region 1is in. What next
occurs depends on which column the high-lighted region is

in.

If the high-lighted region is in column one:

If space_bar() finds that the high-lighted region is in

column one, then it uses the cur_col, cur_row and

erase(...) to erase the text for the current high-lighted

option (which is either "potential” or "normal
derivative"). It then displays the text for the other
option (which is either "normal derivative" or

"potential™) via the display(...) subroutine.

If the high-lighted region is in column two:

If space-bar() finds that the high-lighted region is in

51

column two, then it erases the current option, and draws

the next option. The order in which the options are
toggled through is: "constant™ --> "linear" --> "step"
--> "gine" --> T"cosine". When it gets to "cosine", it

starts over again at "constant".

If the high-lighted region is in column three:

I1f space_bar() finds that the high-lighted region 1is in

column three, then that means that the user wants to
change the numerical parameter(s) associated with that
boundary's potential/normal derivative function. This is
a bit tricky.

In order to prompt the user for a new value, -we must
know what option is being used on this boundary. 1If all
the boundaries are linear [see Figure 2-5], then we want
to ask the user for the values at the coordinates (0,0),
(0,1), (1,0), and (1,1). We need to know what text to put
in our prompt, e.g, "Enter new value at (0,1) —-->". This

is done with the better_get_num() subroutine [see Appendix

K, file "fneditor.c", pages 23-28].

Explanation of better_get_num()

better_get_num() checks cur_col and cur_row to see what

the current text grid location is. It then checks the

options[][] database to see what option is being used at

-53-

(cur_row,cur_col). The subroutine then prompts the user

for the appropriate values. The arrays lnr_str[] ("LiNeaR

STRing") and stp_str[] ("STeP STRing") [see Appendix K,

file "init.c"] are used to help better_get_num() construct

the proper text strings to prompt the user for the

parameter values.

better_get-num() checks to .make sure that the data

the user types in is numeric. If is isn't, it tells the
user "Non-numeric data. Rejected." and does not prompt
the user to try again. The user must hit the space bar
again if he wants to +try again to change this numeric
parameter,

After the new numeric value(s) have been received

from the wuser, better_get.num() writes them into the

database db[] [see section 4.6], tells the user that the
new value(s) have been accepted, and then updates the
parameter(s) on the main screen, to reflect the new

value(s).

4.5 THE GRAPHICS EDITOR: DISPLAY MANAGEMENT AND USER

INTERACTION.

..5!1_

4.5.1 Introduction.

The graphics editor 1is used to enter line charges,
rods of constant potential, and sheets of constant
potential into the interior of the problem region. It is
invoked from the main screen, via the "Add charges of
potentials™ menu item. As mentioned earlier,

menu_handler(...) then calls the subroutine

invoke_screen2() [see Appendix K, file "fneditoir.c", page

17], to set up and run the graphics editor.

The first thing that invoke_screen2() does is set the

variable want_secondary_screen to YES. It then erases the

screen, and draws the graphics editor screen (via the

subroutine draw_secondary_screen() [see Appendix K, file

"fneditor.c", page 35]. This subroutine draws the editor
menu and the graphics editor grid, as well as any line
charges, potential rods, or potential sheets that were
previously entered. The following loop is then entered:

while (want_secondary screen == YES) {
smonitor keyboard();
} a

As soon as this loop is exited, the graphics editor
screen is erased and the main screen is redrawn. Any line
charges, potential rods, or potential sheets that were
entered are mapped into the problem box on the main screen

[see Figure 2-11].

Sg
Note that all of the subroutines which are used
exclusively by the graphics editor are prefixed with the
letter "s", This 1is because the graphics editor was

originally called the "Secondary screen”.
4,5.2 The graphics editor: wuser interaction.

The user is allowed to move the high-lighted region
up and down the eight-item menu, using the and arrow
keys, which are located at the lower right hand side of
the VT240 keyboard. Wrap-around over the top and under
the bottom of the menu are permitted. The and arrow
keys, and all other keys (with the exception of the space
bar and the delete key) are ignored.

As on the main screen, the space bar 1is ‘used to
select a menu item. The delete key is used if the user
wants to change his mind. For example, the user may
select the "ADD 1line charge" menu item, and then decide
that he doesn't really want to add a line charge. Instead
of forcing him to add a line charge and then delete it (by

selecting "DELETE line charge"), the smonitor_keyboard()

subroutine [see Appendix K, file "fneditor.c", pages
36-37] allows him to abort the "ADD line charge" command
by hitting the delete key. All of the commands can be
aborted, with the exéeption of the "RETURN to main screen”
and "HELP" commands. Aborting a command has no ill

effects whatsoever,

-55 -

Adding a line charge.

Adding a 1line charge 1is done via the sadd_lcharge()

subroutine [see Appendix K, file "fneditor.c", pages
38-40]. The algorithm for this subroutine is given below
[see Algorithm 4-1].. All the user has to do is specify
the position of the line charge, and its value (lambda).
This process is as user-proof as possible.

sadd_lcharge() checks to make sure that the user doesn't

try to put a line charge outside of the problem region, or
on a boundary. It doesn't let him put a line charge on
top of a potential rod, on top of a potential sheet, or on
top of another line charge. When the user is proﬁpted for
the line charge's lambda, he is told to re-enter the data
if he types in something non-numeric. If the user tries
to specify a lambda that is outside the allowable range,
he 1is told what the allowable range is, and is told to

re-enter the value of lambda.

Dec 10 20:18 1986 add.lc Page 1

-3

ALGORITHM 4-1: ADDING A LINE CHARGE.

[1] User selects the "ADD line charge" menu item.
-Draw cross-hair in center of problem region,
Tell user "Position line charge.”
Tell user "Press space bar to enter line charges; press delete
key to abort."

[2] Did user hit the delete key?
-if YES, Erase cross-hair.
Tell user "Aborted -- add line charge."
Return to menu.

--1if NO, Continue.

- [3] Did user hit the *, L,~>, or & key?‘
-if YES, Check to see if this would move the cursor out of the
problem region.

-if YES, Do nothing.

-if NO, Move the cross-hair one grid unit in the

indicated direction.

-if NO, Continue.

[4] Did user hit the space bar?
-if NO, Go to [2].

-if YES, [4a]

[4b]

[4c]

Check the potential rod array: does a potential
rod exist at this (x,y) grid point?

-if YES, Tell user "Rod of constant potential is
here. Try again.”
Go to [2].
-if NO, Continue.

Check the potential sheet array: does a potential
sheet pass through this (x,y) grid point?

-if YES, Tell user "Sheet of constant potential is
here. Try again."
! Go to [2].
-if NO, Continue.

Check the line charge array: doés a line charge
already exist at this (x,y) grid point?

-if YES, Tell user "Line charge is already here.
Try again."
Go to [2].

-if NO, Continue.

dec 10 -20:18 1986 -add.lc Page 2 TSy

[4d] Tell user "Enter lamda for line charge, in
Coulombs/unit length-->"
= =-- - - Read in user's -input. . .
Check: did user enter .non-numeric data?

-if YES, Tell user "Non-numeric data. Try again."
Go to [4d].

-=if NO, Continue,

”_{4£luCheck: is the number that the user entered in the
range of 1.0e-12 <= abs_value(lambda) <= 1.0e-107?

.-=if YES, Tell user "Line charge has lambda = X",
where X is the value the user entered.
Make line charge array "chosen" flag for
this grid point equal YES.
Make line charge array "value" parameter
for this grid point equal X.
Return to menu.

-if NO, Tell user "valid range: 1.0e-12 <=
abs_value(lambda) <= 1.0e-10. Try again."”
Go to [4d].

...5@?...

Deleting a line charge.

Deleting a line charge is done via the sdelete_lcharge()

subroutine [see Appendix K, file "fneditor.c", pages
40-41]. The algorithm for this subroutine is given below
[see Algorithm 4-2]. All the user has to do is specify
the position of the line charge.

This process is also as user-proof as possible. The
subroutine first checks to see if any line charges exist.
If not, then it tells the user that there aren't any line
charges, and then it returns to the menu. The subroutine
makes sure that what the user deletes 1is 1indeed a line

charge, and not a potential rod or a potential sheet,

dec 10 20:19 1986 delete.lc Page 1 ~ ¢Y~

ALGORITHM 4-2: DELETING A LINE CHARGE.

[1] User selects the "DELETE line charge" menu item.

[2] Check the line charge array: do any line charges exist?
—-if YES, Draw cross-hair in center of problem region.
Tell user "Move to line charge."
Tell user "Press space bar to delete line charge;
delete key to abort."

-if NO, Tell user "No line charges exist."
Return to menu.

[3] Did the user hit the delete key?
- -if YES, Erase cross-hair.
Tell user "Aborted -- delete line charge."
Return to menu.

-if NO, Continue.

[4] Did user hit the T,\!‘r , €, or ¥ key? '
-if YES, Check to see if this would move the cursor out of the
problem region.

-if YES, Do nothing.

—-if NO, Move the cross-hair one grid unit in the
indicated region.

-if NO, Continue.

[5] Did user hit the space bar?
-if YES, Check the line charge array: does a line charge exist
this (x,y) grid point?

-if YES, Make line charge array "chosen" flag for this
grid point equal NO,
Erase line charge from the screen.
Tell user "Line charge has been deleted."
Return to menu.

—-if NO, Tell user "No line charge exists here.
Try again."
Go to [3].

at

Adding a potential rod.

Adding a potential rod is done via the sadd_prod()

subroutine [see Appendix K, file "fneditor.c", pages
42-447], The algorithm for this subroutine is given below
[see Algorithm 4-3]. All the user has to do 1is specify
the position of the potential rod, and its voltage.

This process 1is identical to that of adding a line
charge, so I won't explain the algorithm. See the above

explanation for adding a line charge for an explanation.

—2~

Jec 10 20:18 1986 add.pr Page 1 -

ALGORITHM 4-3: ADDING A POTENTIAL ROD.

[1] User selects the "ADD potential rod" menu item,
-Draw cross-hair in center of problem region.
Tell user "Position potential rod."
‘Tell user "Press space bar to enter line charges: press delete
key to abort."

[2] Did user hit the delete key?
-if YES, Erase cross-hair.
Tell user "Aborted -- add.potentlal rod."™ - —-
Return to menu. -

-if NO, Continue.

[3] Did user hit the T,{ ,¢, or =» key?
-if YES, Check to see if this would move the cursor out of the
problem region.

-if YES, Do nothing.

-if NO, Move the cross-hair one grid unit in the

indicated direction.

-if NO, Continue.

[4] Did user hit the space bar?
-if NO, Go to [2].

-if YES, [4al

[4b]

[4c]

Check the potential rod array: does a potential
rod exist at this (x,y) grid point? :

-if YES, Tell user "Rod of constant potential is
already here. Try again.”
Go to [2].
-if NO, Continue.

Check the potential sheet array: does a potential
sheet pass through this (x,y) grid point?

-if YES, Tell user "Sheet of constant potential is
here. Try again."
Go to [2].
-if NO, Continue.

Check the line charge array: does a line charge
already exist at this (x,y) grid point?

-if YES, Tell user "Line charge is here. Try
again."
Go to [2],

-if NO, Continue.

lec 10 20:18 1986

add.pr Page 2 —63—

[44]

[4f]

Tell user “Enter voltage for potential rod-->"
Read in user's input.
Check: did user enter non-numeric data?

-if YES, Tell user "Non-numeric data. Try again."
Go to [4d]. = :

-if NO, Continue.

Check: is the number that the user entered in the
range of -10.0 <= voltage <= 10.07?

-if YES, Tell user "Potential rod has voltage = x",
where X is the value the user entered.
Make potentlal rod array "chosen" flag for
this grid point equal YES.
Make potential rod array "value" parameter
for this grid point equal X.
Return to menu.

-if Nd;_ Tell user "Valid range: -10.0 <= voltage
<= 10.0 Try again."
Go to [4d].

6Li

Deleting a potential rod.

Deleting a potential rod is done via the sdelete_prod()

subroutine [see Appendix K, file "fneditor.c", pages
44-45]. The algorithm for this subroutine is given below
- [see Algorithm 4-4]. All the user has to do 1is specify
the position of the potential rod.

This process is identical to that of deleting a line
charge, so I won't explain the algorithm. See the above

explanation for deleting a line charge for an explanation.

dec 10 20:19 1986 delete.pr Page 1 85—

ALGORITHM 4-4: DELETING A ROD OF CONSTANT POTENTIAL,

[1] User selects the "DELETE potential rod" menu item.

[2] Check the potential rod array: do any potential rods exist?

=if YES,

-if NO,

Draw cross—hair in center of problem region.

Tell user "Move to potential rod.”

Tell user "Press space bar to delete potential rod;
delete key to abort.”

Tell user "No potential rods exist."
Return to menu.

[3] Did the user hit the delete key?

-if YES,

-if NO,

Erase cross-hair.
Tell user "Aborted -- delete potential rod."
Return to menu.

Continue.

[4] Did user hit the T,% , ¢, or = key?

-if YES,

-if NO,

Check to see if this would move the cursor out of the
problem region.

-if YES, Do nothing.

-if NO, Move the cross-hair one grid unit in the
indicated region.

Continue.

[5] Did user hit the space bar?

-if YES,

-if NO,

Check the potential rod array: does a potential rod exist
at this (x,y) grid point?

-if YES, Make potential rod array "chosen" flag for this
grid point equal NO.
Erase potential rod from the screen.
Tell user "Potential rod has been deleted."
Return to menu.

-if NO, Tell user "No potential rod exists here.
Try again.”
Go to [3].

Go to [3].

66

Adding a potential sheet.

Adding a potential sheet 1is done via the sadd_psheet()

subroutine [see Appendix K, file "fneditor.c", pages

45-47] and the spart2_add_psheet(...) subroutine [see

Appendix K, file "fneditor.c", pages 47-51]. The
algorithms for both of these subroutines are given below
[see Algorithms 4-5 and 4-6]. All the user has to do is
specify the positions of the two edges of the potential
sheet, and the voltage of the potential sheet.

This process is very user-proof. The sadd_psheet()

subroutine makes sure that the user doesn't try to put the
first edge of the potential sheet outside of the:. problem
region, or on a boundary. It doesn't let the user put it
on top of a potential rod, or on top of a line charge. It
does let him connect it to another potential sheet though.

However, sadd_psheet() is careful to ensure that this new

potential sheet will have the same voltage as the
potential sheet that it's touching.

The subroutine spart2_add-psheet() does a lot more

user-proofing. It makes sure that, if the first edge of
the potential sheet touches an existing potential sheet,
that the second endpoint does not touch a potential sheet
of a different voltage, and that the new potential sheet
does not intersect a potential sheet of a different

voltage.

_6"}, -

spart2_add_psheet() also checks to make sure that the

second edge 1isn't at the same (x,y) point as the first
edge. "Poisson's" number-crunching algorithm must have
the potential sheets be horizontal, vertical, or at a

45-degree angle. spart2_add_psheet() makes sure that this

is the case. It also makes sure that the user enters a
numeric value for the voltage of the potential sheet, and
that this value is within the allowable range. If either
edge of the new potential sheet touches another potential
sheet, or 1if the new potential sheet intersects another

potential sheet, then spart2_add_psheet() does NOT ask the

user for the voltage of the new potential sheet, because
the new potential sheet must take on the same voltage as
any potential sheet that it is touching.

If any of these tests fail, then either sadd_psheet()

or spart2_add_psheet(...) tell the user what the problem

is, and give the wuser the opportunity to correct the

problem.

Dec 10 20:18 1986 add.ps.partl Page 1

ALGORITHM 4-6: ADDING A POTENTIAL SHEET: PARTI1,

[1] User selects the "ADD potential rod” menu item.

-Set the "connection made" variable equal to NO.

Set the "existing voltage" variable equal to 0.0.

Draw cross-hair in center of problem region.

Tell user "Position edge of potential sheet.”

Tell user "NOTE: Potential sheets can only be horizontal,
vertical, and at a 45-degree angle."

Tell user "Press space bar to enter potential sheet; press
delete key to abort."

[2] Did user hit the delete key?
~-if YES, Erase cross-hair.
Tell user "Aborted -- add potential sheet.".
Return to menu. o

-if NO, Continue.

[3] Dpid user hit the p,

¥ ,€, or ™ key?

—-if YES, Check to see if this would move the cursor out of the
problem region.

-if YES, Do nothing.

—-if NO, Move the cross-hair one grid unit in the

indicated direction.

-if NO, Continue.

[4] Did user hit the space bar?
-if NO, Go to [2].

-if YES, [4a]

[4b]

[4d]

Check the potential rod array: does a potential
rod exist at this (x,y) grid point?

-if YES, Tell user "Rod of constant potential is
here. Try again."
Go to [2].

-if NO, Continue.

Check the line charge array: does a line charge
already exist at this (x,y) grid point?

—-if YES, Tell user "Line charge is here. Try
again."
Go to [2].

-if NO, Continue.

Turn on one pixel, to mark this edge of the sheet.
Save the (x,y) coordinates of this point.

Check potential sheet array: is there already a
potential sheet at this point?

Jec 10 20:18 1986

— 67—

add.ps.partl Page 2

-if YES, Make the "connection made" variable

-if NO,

equal YES.

Make the "existing voltage" variable be the

voltage of the potential sheet that was

here first.

Tell user "This new sheet of constant
potential will also have voltage
= X", where X is the voltage of
the first potential sheet.

Tell user "Position other edge."

Go to PART2, and pass it the values of

the following: 1)the coordinates of the

first edge of the sheet.
2)the "connection made"
variable. N
3)the "existing voltage"
variable.

Tell user "Position other edge."
Go to PART2, and pass it the values of
the following: 1l)the coordinates of the
first edge of the sheet,.
2)the "connection_made"
variable.
3)the "existing voltage"
variable.

Dec 10 20:19 1986

[5] Did user
-if

<35

[6] Did user
-if

=i f

[7] Did user
-if

=if

add.ps.part2 Page 1 — 19—

ALGORITHM 4-6: ADDING A POTENTIAL SHEET: DPART2.

hit the delete key?

YES,

NO,

Erase cross-hair.
Tell user "Aborted -- add potential sheet."

Return to menu.

Continue.

hit the T, 4 ,€, or = key?

YES,

NO,

Check to see if this would move the cursor out of the
problem region.

-if YES, Do nothing.

-if NO, Move the cross-hair one grid unit in the
indicated direction.

Continue.

hit the space bar? S

NO,

YES,

Go to [5].

[7a] If the first endpoint of the new potential sheet
touches a potential sheet, check: (1)does second
endpoint of new potential sheet touch a potential
sheet of a different voltage, or does (2)the new
potential sheet intersect a potential sheet of a
different value?

~-if YES, Tell user "Potential sheets of 2 diff.
values can't touch. Try again."
Go to [5].

-if NO, Continue.

[7b] Check the potential rod array: does a potential
rod exist at this (x,y) grid point?

—-if YES, Tell user "Rod of constant potential is
here. Try again."
Go to [5].
-if NO, Continue.

[7c] Check the line charge array: does a line charge
already exist at this (x,y) grid point?

-if YES, Tell user "Line charge is here. Try
again."
Go to [5].
-if NO, Continue.

[7d] Check: are the (x,y) coordinates of this point the

Jec 10 20:19 1986

add.ps.part2 Page 2

-~ same as the (x,y) coordinates of the first endpoint

[7e]

[7f]

[7g]

[7h]

~of the potential sheet?

-if YES, Tell user "Second edge of sheet can't be
same as first edge. Try again."
Go to [5].

-if NO, Continue.

Check, using the coordinates of the two endpoints
of the sheet: 1is the sheet horizontal, vertical,
or at a 45-degree angle?

-if YES, Continue.

-if NO, Tell user "Potential sheet must horiz.,
vert., or at an angle of 45
degrees. Try again.”

Go to [5].

Draw a line from the first endpoint to the second
endpoint.
Check: 1is "voltage already assigned" equal to YES?

-if YES, Tell user "Sheet of constant potential has
voltage = X", where X is the
value of the wvariable
"existing voltage".

Return to menu. ¥

-if NO, Continue.

Tell user "Enter the voltage for sheet of constant
potential-->",

Read in user's input.

Check: did user enter non-numeric data?

-if YES, Tell user "Non-numeric data entered. Try
again."
Go to [74g].

-if NO, Continue.

Check: 1is the number that the user entered in the
range of -10.0 <= voltage <= 10.07?

-if YES, Tell user "Potential rod has voltage = X",
where X is the value the user entered.
For all the potential sheet array elements
between the endpoints of the potential
sheet, inclusive, make the "chosen" flag
equal YES, and make the "value" variable
equal X.
Make the "an _endpt" flag in the potential
sheet array be YES for the endpoints of

lec 10 20:19 1986

—F-

add.ps.part2 Page 3

-if NO,

the potential sheet.

Put the coordinates of the endpoints of the
potential sheet and the voltage X into the
potential sheet database, and make the
"valid" flag equal YES.

Return to menu.

Tell user "Valid range: -10.0 <= voltage
<= 10.0 Try again."
Go to [7qg].

-13-

Deleting a potential sheet.

Deleting a potential sheet is done via the

sdelete_psheet() subroutine [see Appendix K, file

"fneditor.c", pages 51-53] and the

spart2_delete_psheet(...) subroutine [see Appendix K, file

"fneditor.c", pages 53-54]. The algorithms for both of
these subroutines are given below [see Algorithm 4-7 and
4-8]. All the user has to do is specify the where the two
edges of the potential sheet are.

As with everything else about the graphics editor,
this process is very user-proof. The first thing that the

sdelete_psheet() subroutine does is make sure that there

are any potential sheets to delete. It then makes sure
that the wuser doesn't try to delete a line charge or a
potential rod instead. It also makes sure that the wuser
specifies one of the two edges of the potential sheet;

deleting PART of a potential sheet is not allowed!!

spart2.delete_psheet(...) makes sure that the user

doesn't pick a line charge or a potential rod instead of
the second edge of the sheet. It also makes sure that
this 1is the edge of the potential sheet, not somewhere in
the middle of it. It also checks to make sure that this

is the second edge of the same potential sheet!

Dec 10 20:19 1986 delete.ps.partl Page 1 &

ALGORITHM 4-7: DELETING A POTENTIAL SHEET: PARTI.

[1] User selects the "DELETE potential sheet" menu item.

[2] Check potential sheet array: do any potential sheets exist?
~-if YES, Draw cross-hair in center of problem region.
Tell user "Move to edge of sheet."
Tell user "Press space bar to delete potential sheet;
press delete key to abort."

-if NO, Tell user "No potential sheets exist."
Return to menu.

[3] Did user hit the delete key?
-if YES, Erase cross-hair.
Tell user "Aborted -- delete potential sheet."
Return to menu,

-if NO, Continue.
[4] Did user hit the T,¢ , €, or = key?
-if YES, Check to see if this would move the cursor out of the
problem region.

-if YES, Do nothing.

-if NO, Move the cross-hair one grid unit in the
indicated direction.

-if NO, Continue.

[5] Did user hit the space bar?
-if NO, Go to [3].

-if YES, [5al] Check the potential rod array: does a potential
rod exist at this (x,y) grid point?

-if YES, Tell user "Rod of constant potential is
here. Try again."
Go to [3].
-if NO, Continue.

[5b] Check the line charge array: does a line charge
already exist at this (x,y) grid point?

-if YES, Tell user "Line charge is here. Try
again.,"
Go to [3].
-if NO, Continue.

[5c] Check the potential sheet array: 1is this point part
of a potential sheet?

lec 10 20:19 1986 delete.ps.partl Page 2

[5d]

—F5-

-if YES, Continue.

-if NO, Tell user "No sheet of constant potential
exists here. Try again."

Check potential sheet database: 1is this the
endpoint of a potential sheet?

—1f YES, Note the (x,y) coordinates of this point.
Tell user “Move to other edge."
Go to PART2 and pass it the (x,y)
coordinates of the first endpoint.

-if NO, Tell user "This isn't the endpoint of a
a potential sheet. Try again."
Go to [3].

Dec 10 20:19 1986 delete.ps.part2 Page 1

[6] Did user
-if

=1F

[7] Did user
-if

~1E

[8] Did user
-if

~1f

s R

ALGORITHM 4-6: DELETING A POTENTIAL SHEET: PART2,.

hit the delete key?

YES,

NO,

Erase cross-hair.
Tell user "Aborted -- delete potential sheet.”

Return to menu.

Continue.

hit the M { , <, or - key?

YES,

NO,

Check to see if this wdﬁld move the cursor out of the
problem region.

-if YES, Do nothing.

-if NO, Move the cross-hair one grid unit in the
indicated direction.

Continue,

hit the space bar?

NO,

YES,

Go to [6].

[8a] Check the potential rod array: does a potential
rod exist at this (x,y) grid point?

-if YES, Tell user "Rod of constant potential is
here. Try again."
Go to [6].
-if NO, Continue.

[8b] Check the line charge array: does a line charge
already exist at this (x,y) grid point?

—-if YES, Tell user "Line charge is here. Try
again."
Go to [6].
-if NO, Continue.

[8c] Check the potential sheet array: is this point
part of a potential sheet?

-if YES, Continue,.
-if NO, Go to [6].

[84] Check: are the (x,y) coordinates of this endpoint
the same as the (x,y) coordinates of the first

endpoint?

-if YES, Tell user "Second edge of sheet can't be
same as first edge. Try again."”

Dec 10 20:19 1986 delete.ps.part2 Page 2 —

[8e]

[8f]

Go to [6].
-if NO, Continue.

Check the potential sheet database: are these two
potential sheet endpoints the endpoints of the SAME
potential sheet?

-if YES, Continue.
-if NO, Go to [6].

Erase line.

Invalidate all the points which made up this

potential sheet, in the potential sheet array, by

making the "chosen" flag equal NO.

Invalidate this potential sheet in the potential

sheet database, by making the "valid" flag equal NO.

Tell user "Sheet of constant potential has been
deleted.”

Return to menu.

~}8-

4.6 EXPLANATION OF DATA STRUCTURES USED BY USER INTERFACE.

The following in an explanation of the organization
of the wvarious structures and arrays used by the
user—interface. Their use is explained in the preceeding
sections of this chapter. These data structures are

defined in Appendix K, files "structures.c" and "defs".

T\ne S+V”C+Ur‘c O‘F ‘H‘IQ 4ext scveen Coordivate

da‘bt l.m.u

c:b[raw_hw-a

ooy
Sy N
U

(xM) () (94) (xy)

Th! -Func+ion 0{ d‘:)[]

holds all of the valves

pml:\tvv-. box 3 wralls,

N Y —

l—— $in ——|

f——3c0 8 —

t ——"5[";‘_-])

b —3>{¥y)

s ¢ g —L—>Valve

tts —>(%,Y)

+ —> valve

— s — (v y)
L5 b—valve

tts—(x,y)
-j—:-t —>valve
—— stp

—> bts—>(x,y

L s5h—3value

=% t{.s‘—a()ﬁ‘))
|— t —= valvt

s Lts—(x,y)

by — valve

r___v,'H:S —>(xy)

5 £ —>valve

___;;L-.‘]’S-—-Bf“:b}

> b_______avg‘v&

k?j to variable wowmenclatuvre:

Vaviable

YMeawni g

Yow_nuvwm

Twis indicates ove ol the wells
ot Ave problem box) O,)2, 4.4 3
i"‘d‘l"‘f“‘a h\e +"P) (e“"“f Vsﬁ\'\‘l’ﬂ\qd
botiom wﬁ“S) respcchwel\i,

db database
C"I Cl,C} Column s ‘1., 2,and 3 ot Fhe dext
3rnl coardinate S\,H‘em f.see
Fijvrt "f"l]o
CS{' Can5+ﬁﬂ+'
lwne linear
stp sh.p
Sin Sine
co% CoSine
E) l ""’P) lE‘H‘
b, v battom, vight
kis lop text S'['r{n5
bts boltom text S'|r;’~\5
C"b) & pair of iu"‘kjf.ri,—}g Mmdrate a
Pojil‘i’"-‘\ on T Scvedn, [n Herans
o’f’ rours and Colvanr, Strecn i
2LH vows !"b o colvmur,
valve

is 4= hold -t’\»\e,ﬂ (x,j) Scveem coovdinatts fon olrawinﬁ Fest

3 Colvmns of the wmain Scveewm [_sec F.':}w—c "1—31, no _matler what +1pe_ of bowndary conditron

associated woith tue hvwmerical parameters Yor di

A double Precision flod‘iv\j print;
L‘old._["‘Ht valye O'(' "h‘\(Nvmericel

Parﬂw'}'&f of o ':mw\claw('{-Uwf.-Hnn

in Cach of e H rowsand
is Lv&t\\ﬁ df&ﬁfqyegk. dlﬁ![] alls

i’ﬂ"hcl‘-ﬂ; Conditions —rav‘ all fovr of the

.....50/
Dec 10 20:44 1986 options.array Page 1

EXPLANATION OF THE "options[][]" DATABASE

Declaration: static int options[4][3]:

Indexing: options[R1][c1] [R1][c2] [R1][C3]
[R2][c1] [R2]1[c2] [R2][c3]
[R3][c1] [R31[c2] [R3]1[cC3]
[rRa][c1] [R4]l{cC2] [R4][cC3]

---This is a two-dimensional array of integers. It ia used by the main
screen, to keep track of what options are selected for each of the
four boundaries of the problem box. The integers are used as flags
(whose wvalues may be OPT1, OPT2, OPT3, OPT4, or OPT5) to indicate
which of the options is being displayed [see Figure 4-1].

---Rl, R2, R3, R4, Cl, C2, and C3 are constants, and are defined in the
"defs" file [see Appendix H]. Rl implies "row 1", and Cl implies
"column 1".

---The following in a table showing which options are allowed in which
columns [see Figqure 4-1], and what the option number is that is
associated with each option. OPT1l, OPT2, OPT3, OPT4 and OPT5 are
constants, and are defined in the "defs" file [see Appendix H].

For column Cl: option number | what option is displayed
——————————————————————————— +-—---—~——--————-—--—-————————.-———--.-__—
OPT1 | potential
—————————————— +————————-—-————--.---—--—_————-.—.-—
OPT2 | normal derivative

For columns C2 and C3 (these two columns must always be displaying
the same option):

|

______________ o e s e
OPT1 | constant

______________ +———-—-—_—-..._--—-_.___—.__.—-..-_—.—_
OPT2 | linear

—————————————— +———.—.__.—-.._——.—_—--.-.-_.—-__.————-—..—
OPT3 | step

—————————————— +—--.._.-—__—————-.—-—--_._——-—————-—-—--—
OPT4 | sine

—————————————— +-.-_._——_.._._.___-._____._._..._..____-___
OPT5S | cosine

Dec

3 18:49 1986 1lc.grid Page 1

~gi—

EXPLANATION OF THE "LINE CHARGE ARRAY"
It is a grid array, called lc grid[]1[].
Declaration: static struct grid_point lc_grid[331[33];

---This is a two-dimensional array of structures. It is used by the
graphics editor to keep track of the line charges. There are 33x33
points in the problem region, therefore the line charge array is
33x33. It is defined in Appendix H, in the file "structures.c".

—-—--Each element of the array has the following information:

double x, y; -——-—- the VT240 terminal coordinates (range:
X is 0 to 799, y is 0 to 470) of the
pixel at this grid point.

double value; ----- the lambda associated with the line charge
at this grid point.

int chosen; ------- a flag (YES or NO), to indicate if there is
a line charge at this grid point or not.

int num; -—---—----- an index; the first line charge is given an
index of 1, the next is called 2, etc.

—_ KL=
Jec 10 20:43 1986 pr.grid Page 1 %

EXPLANATION OF THE "POTENTIAL ROD ARRAY"
It is a grid array, called pr grid[][].
Declaration: static struct grid point pr grid[33][33];

---This is a two-dimensional array of structures. It is used by the
graphics editor to keep track of the potential rods. There are
33x33 points in the problem region, therefore the potential rod
array is 33x33. It is defined in Appendix H, in the file
"structures.cv.

---Each element of the array has the following information:

double x, y; ----———- the VT240 terminal coordinates (range:
X is 0 to 799, y is 0 to 470) of the
‘ pixel at this grid point.

double value; -—-———-- the voltage associated with the potential
rod at this grid point.

int chosen; ----————- a flag (YES or NO), to indicate if there
a potential rod at this grid point or not.

int num; -—---—---—-- an index; the first potential rod is given
an index of 1, the next is called 2, etc.

Dec 10 20:44 1986 ps.grid Page 1 — %

EXPLANATION OF THE "POTENTIAL SHEET ARRAY"
It is a grid array, called ps_gridll[].
Declaration: static struct psheet grid point ps grid[33][331];

---This is a two-dimensional array of structures. It is used by the
graphics editor, to keep track of all the points in each potential
sheet. Even though a potential sheet is nothing but a series of
potential rods, it is necessary to keep a separate array, so that
"Poisson" can tell the difference between a potential sheet and two
(or more) potential rods in a row. There are 33x33 points in the
problem region, therefore the potential sheet array is 33x33.

--—-Each element of the array has the following information:

double x, y; ------ the VT240 terminal coordinates (range:
x is 0 to 799, y is 0 to 470) of the
pixel at this grid point.

double value; ----- the voltage associated with the potential
sheet which goes through this grid point.

int chosen; ------- a flag (YES or NO), to indicate if a
potential sheet passes through this grid
point or not.

int num; -----—--— an index; the first potential sheet is
given an index of 1, the next is called
2, etc.

int an endpt ———ww a flag (YES or NO), to indicate if this

is an endpoint of a potential sheet (as
contrasted to a point somewhere between
the two endpoints of the line marking
the position of the potential sheet).

Dec 10 20:43 1986 ps.db Page 1 —&1-

EXPLANATION OF THE DATABASE "ps db[]"

Declaration: static struct psheet_point ps db[MAX SHEETS];

---This is a one-dimensional array of structures. It is used by the
graphics editor to keep track of the endpoints of each potential
sheet. It is defined in Appendix H, in the file "structures.c".

--—-Each element of the array has the following information:

int pO.xei, pl.ycl ——=—==== the x and y "current index" for
the position of the first edge
of the potential sheet.

int pl.xci, pl.ycl ==—--= ---the x and y "current index" for
the position of the second edge
of the potential sheet,

double value ————=——===—--- the voltage of this potential sheet.

INE FU e i an index; the first potential sheet
is given an index of 1, the second
is called 2, etc.

int valid --———————————————- a flag (YES or NO), to indicate
whether or not this potential sheet
has been deleted, or if it's still
valid.

85

Chapter 5

Future improvements to enhance "Poisson".

5.1 Terminal independence.

Because ReGIS 1is terminal-dependent, and because
Penplot is NOT truly terminal-independent, "Poisson" will
only run on certain terminals [see Appendix C]. 1In the
future, there 1is supposed to be an industry-wide
terminal-independent UNIX graphics system: the Graphics
Kernal System (GKS). If and when such a system comes into
being, it would be worth the effort to modify "Poisson" to
use GKS, because this would exponentially increase the

number of users who could have access to "Poisson".

...36...

5.2 Use of a mouse,

Presently line charges, rods of constant potential
(both of which look like dots, when mapped from three
dimensions into two dimensions), and sheets of constant
potential (which look like lines, when mapped £from three
dimensions into two dimensions) are positioned inside the
problem region with the use of four arrow keys (up, down,
left, and right) [see Figure 2-9]. The terminal that
"Poisson" works on now (a DEC VT240) does not have a
mouse; that's why the arrow keys are used. If "Poisson"
ever gets ported onto a terminal which DOES have a mouse,
then the person doing the porting should modify "Poisson"
so that the user can use the mouse instead of (or as an
option to) the arrow keys. A mouse would be a faster and
easier way for the user to enter 1line charges, rods of

constant potential, and sheets of constant potential.

87

5.3 A neat way to add more menu items: a "paged" menu.

Right now the two menus used in "Poisson” are of the

form below:

commandl

command?2

command3

commandé

commands

commandé

commandl | command2 | command3 command?

command4 | command5 | commandé command8

(=) (b)

Figure 5-1: The menus currently used in "Poisson".

For the main screen, menu (a) is used; for the graphics
editor screen, menu (b) is used.

When further work is done on this program, or if it
becomes desireable to expand the command set for some
other reason, it is NOT necessary to enlarge the size of
the menus! You wouldn't want to expand the size of the
menu (to fit more text into each menu slot) because that

would take away more screen space, and necessitate MAJOR

-8~
amounts of code re-writing (because everything else on the
screen would have to be somehow condensed).

There are two ways to add more commands without
making the menu larger. The first way is a brute force
approach; the second way is much more desireable. The
brute force method for adding more commands would be to

change a menu which looks like this:

cmdl cmd? cmd3

cmd4 cmd5 cmd6

Figure 5-2: The current menu.

to one like this:

cmdl cmd2 cmd3 cmd4

cmdb cmdé cmd?7 cmdB

i.e., reduce the space for each command in order to add in

more commands.
Figure 5-3: A bad way to expand the command selection.

This has the drawback that it forces the command

..gg
names (i.e., the text in the menu slots) to become more
concise, which makes the commands more cryptic, less
intuitive, more ambiguous, and more confusing!

Fortunately there 1is a very elegant and simple
solution: have more than one page to the menu! Turning
the pages is simply a matter of selecting the "next page"
menu item. When the user selects the next page, the old
menu's commands will be erased, and the new menu's
commands will be written in their place. This way it is
possible to have an infinite number of commands, and never

have to increase the size of the menu! See Figure 5-4,

ﬂo..

cmdl cmd2 cmd3
NEXT
cmd4 cmd5b menu
PREVIQUS
cmd b cmd? menu
NEXT
cmd8 cmd 9 menu
;
I
i
02 PREVIOQOUS
cmdl1001 cmdl0 menu
cmdl1003 cmdl1004 cmdl00s5

Figure 5-4:

A paged menu scheme.

...ql_.

5.4 Labeling things.

It would be nice if, in the future, things on
graphics screen were labelled. For example, now

graphics editor screen looks like:

the

the

G
DELETE potentlal rod
ADD potential shest
DELETE potential sheet
RETURM toc main screen
HELP — - "

Figure 5-5: The present graphics editor screen.

-S2-

It would be nice if it were instead:

]
|
f
a VS:?).D
DELETE potentlal rod
ADD potential shest !
DELETE potential shest ! Vi.=t.5
RETURN to main screen ‘
M:\O
| HELP ; ;
' A A TLOENR

Figure 5-6: The new and improved graphics editor

screen.

-93-

This SEEMS like a fairly straightforward matter, but
it 1is actually a very difficult problem to solve. The
main difficulty is that when there are a 1lot 'of things
(i.e., 1line charges, rods of constant potential, and
sheets of constant potential) on the screen, the Llabels
may overlap and become confusing or unreadable.

A first step towards solving this problem is to write
the labels in as small a font as the terminal will
support.

A further improvement would be to put just an index
number by each object, and then provide a table somewhere
else on the screen, with a 1listing of all the index

numbers and the values associated with them.

34

5.5 Anti-aliasing, i.e., making the contours smoother.

Anti-aliasing, i.e., making the contour 1lines less
jagged, 1is another desirable geature which ought to be
investigated in the future.

The following excerpt from a well-known book on
computer graphics[3] explains the concept of anti-aliasing
very well,.

To make use of these anti-aliasing techniques
requires a graphics wvideo terminal which has a "grey
scale”. A grey scale means that a pixel is not merely
either on (white) or off (black); rather, it can have
several different levels of brightness (different shades
of grey). For instance, with a 2-bit grey scale, each
pixel can have 2 different values: 1/4 on (1/4 bright),
1/2 on (half bright), 3/4 on (3/4 bright) and full
brightness. The DEC VAXstation 100 workstations do NOT

have a grey scale.

~95—

436 Raster Algorithms and Software

10 @
9 .
8—1_7@

Fig. 11.3 Line from point (5, 8} to point (9, 11) drawn with Bresenham's algorithm.

The line appears jagged, in part because of the enlarged scale of the drawing and in
part due to the approximations involved in attempting to draw a line on a discrete
grid of points.

11.2.3 Antialiasing Lines

A more pleasing line can be drawn by applying what have come to be known as
antialiasing and dejagging techniques. These techniques, which have their roots in
sampling theory, were first applied to graphics by Catmull [CATM74, CATM78a],
Crow [CROW?77b], and Shoup [SHOU73]. The essential idea is that a pixel, which
has a nonzero area on the screen, should be used to represent the nonzero area of the
world which is mapped onto the pixel, as depicted in Fig. 11.4. A necessary corollary
is that visible lines and characters in the real world have nonzero width; they are no
longer mathematical entities made up of line segmerits of zero width.

A 4
—_——
Window — ‘\
One
ﬁ// pixel
Viewport
> »
» —
World coordinates Device coordinates

Fig. 11.4 Rectangular area in world coordinates maps
into the area covered by one pixel on the screen.

How can we apply this notion? Figure 11.5 shows a line of nonzero width super-
posed on a raster. The raster grid has been shifted in x and y by half a unit, because
we want to focus on the area covered by the pixels which are now positioned in the
center of each grid box, not on the grid intersections. Thus, a pixel is represented by
a square area within the grid. (This is, in itself, an idealization: the intensity distri?u-
tion of an intensified pixel is approximately normal, and the tails of the distribution
overlap into adjacent pixels.)

....qu,

1.3 Scan-Converting Lines 437
7_I7
56— L1}
gl =
4 A | A
3 //
2~ 1\:_/
14
0 —

T T T T 71T
1 4 56 789

w —

I
0 2

Fig. 11.5 Line of nonzero width from point (1, 2) to point (8, 6).

Each pixel overlapped by the line must have an intensity proportional to the
area of the pixel covered by the line. Thus for a white line on a black background,
pixel (2,2) would be about 50% white while pixel (3,2) would be about 10% white.
Pixels such as (2,4) would be completely black. (For lines of less than maximum in-
tensity, these percentages would be scaled down accordingly.) Figure 11.6 shows
lines drawn with and without this type of antialiasing. Note that the smoothing of
the lines is achieved at the expense of a slight blurring of the line edges.

Computing the fraction of each pixel overlapped by the rectangular area of the
line can be quite time-consuming. Crow [CROW?78b], and Barres 'and Fuchs
[BARR79] have developed relatively efficient ways to organize the computations,
but the latter’s algorithm requires that all line segments be specified before any
pixels are generated. Speed will increase in the future (Piller [PILL80] and Gupta
et al [GUPTS81b] have developed hardware-implemented parallel processing ap-'
proaches) but if speed is most important, alternatives are either to live with jagged
lines or to. use a larger refresh buffer with a high-resolution CRT. Doubling the re-
fresh buffer in both x and y from the typical 512 to 1024 quadruples the number of
pixels, doubles the time to scan-convert a line mto the buffer, and does not com-
pletely remove jagged edges. However, scan-converting a line at doubled resolution
is typically faster than antialiasing the line at the original resolution.

Ll

fa) (b)

Fig. 11.6 Lines displayed (a) with and (b) without antialiasing (courtesy Jose Barros
&nd Henry Fuchs).

-9

438 Raster Algorithms and Software

11.2.4 Constant-Intensity Lines

Antialiasing solves another problem encountered with the more straightforward
approaches. Consider the two scan-converted lines shown in Fig. 11.7. The diagonal
line has a slope of 1, and hence is V2 times longer than the horizontal line. Yet each
line has the same number of pixels (10) set on. If the intensity of each pixel is I, then
the intensity per unit length of line A is 7, while for line B, it is only I/+/2, which can
be easily detected by a viewer. A simple way to correct this particular problem is to
compensate the intensity used to display a line to account for the line’s slope. Anti-
aliasing, however, achieves this same objective because the area covered by the line
determines how much intensity is distributed along its length. If we consider the lines
in Fig. 11.7 as rectangles of height w, then line A would cover 10w units of area and
line B would cover 10v2w units, and intensity per unit length will be constant.

.. Line 8

:?hpﬂﬁﬂ&:mn
||

Fig. 11.7 The unequal-intensity problem.

qg

REFERENCES

[1] DEC VT125 Graphics Terminal User Guide,
number EK-VT125-U6-002

[2] Penplot Graphics Control System Reference Manual,
MIT Joint Computer Facility, 1981

[3] James D. Foley and Andries Van Dam,
Fundamentals of Interactive Computer Graphics,
pp436-438, Addison-Wesley Publishing Company,
Menlo Park, CA, 1982

_Grf-‘) e

Appendix A

An introduction to the "Poisson" program.

pe lU!J“"

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.013 — Electromagnetic Fields and Energy
October 1986

Project ATHENA
POISSON PROGRAM

Version 1.0

Introduction

The program Poisson calculates and gives a contour plot of the potential and plots
the electric field lines*® on a square grid of 33 x 33 points (32 x 32 spaces) or 65 x 65 points
(64 x 64 spaces) with the following possible specifications:

1. Boundary conditions:
a) Dirichlet (i.e., potential)
b) Neumann (i.e., normal derivative of potential)
c) Mixed Dirichlet and Neumann.

The potential or normal derivative specified on any boundary may have any one of
the following functional dependencies: 1. constant, 2. linear, 3. step, 4. sine, 5. cosine.

2. Potentials at any of 31 x 31 internal grid points.
- 3. Line charge density at any of 31 x 31 internal grid points.

The above specifications are entered via a menu. (The following section “Running the
POISSON Program for the First Time,” explains the use of the menu.)

Specified potentials should be in the range +1 Volt to 10 Volts. (See attached “Ex-
planation of Error Criteria for the Poisson Program.”)

Specified normal derivatives of potential (Neumann boundary conditions) should be
in the range 10~2 to 10~! (1le-2 to le-1) Volts/unit length. (See attached “What is a Rea-
sonable Size for dV/dn?")

Specified line charge densities should be in the range 2 X 10~ to 2 x 1071° (2e-11 to
2e-10) Coulomb/unit length. (See attached “What is a ‘Good Choice’ for A?”)

The computational technique used is: finite-difference relaxation with SOR, including
a few extra features to make the computation faster on.the Athena VAX 750. (See attached
“A Solution of Poisson’s Equation by the Relaxation Method.”)

* Note: At present we can only plot field lines if there are no internal charges or potentials
specified. :

—lol—
Running the POISSON Program for the First Time

Note: At this time, the program can only be run on a terminal which has a VT240
graphics boz connected to it. In the Set-Up you should set the XOFF option (on the
Communications Screen) to “XOFF at 1024”.

To run the program, log onto ATHENA. If your account is on the machines “hactar” or
“aphrodite”, then type “~bers/poisson” in response to the system prompt. If your account
is on a different machine, type “rcp hactar: ~bers/poisson poisson”. Then when you get |
the system prompt again, type: “poisson”. The screen will display a brief description of
the program. When you have finished reading, press “return”. The main menu is then
displayed and shows a box with the default values of potentials (in Volts) on its four
boundaries (namely: 1, 0, 0, and 0). All possible commands are also located in the menn,
which is at the bottom of the screen.

To move the cursor, for either changing the default boundary values or to invoke the
commands, use the 4 arrow keys:

T move up

l move down
— move right

— move left

You can change any or all of the assigned default boundary values. To change the
boundary conditions on a side from a specified “POTENTIAL” (Dirichlet condition) to
specified “NORMAL DERIVATIVE” (Neumann condition), or vice-vetsa, simply toggle
back and forth by pressing the “space bar”. The functional dependency of the potential or
normal derivative on a given boundary is selected by moving the cursor to the field whose
default value is “constant” and pressing the space bar until the desired function appears
on the screen. Once the type of function is selected, the user is prompted to supply the
necessary parameters as follows:

1. Constant: user specifies value of potential or normal derivative.

2. Linear: user specifies the values at the endpoints of the boundary.

3. Step: user specifies two values, one for each half of the boundary.

4. Sine: a*sin(2+pi*b=*x), with0<z<1,on “op” (y=1) or “bottom”

(y= 0) boundaries;

a*sin (2+pi*b=*y), with0 <y <1, on “left” (x= 0) or “right”
(x=1) boundaries.

User specifies the values a and b.

5. Cosine: axcos(2=pi*b=*x),with0<z<1,on “op” (y=1) or “bottom”

(y= 0) boundaries;

a*xcos(2*xpi*b*y), with 0 <y <1, on “lefi” (x=0) or “right”
(x= 1) boundaries.

User specifies the values a and b.

=il

These parameters are specified by moving the cursor to the location of the default values,
hitting the “space bar”, then entering the desired value, and pressing “return”.

The commands shown at the bottom of the main menu screen are:

« ADD CHARGES OR POTENTIALS: to enter equipotential rods and/or line
charges within the region '
e SOLVE FOR POTENTIALS: to calculate the potential
e QUIT PROGRAM: to exit the program
e HELP: to get help
e RECALL SOLVED PROBLEM: to recall a problem previously solved and saved
o CHANGE GRID SIZE 32x32 or 64X 64: to change grid size in which the program
is calculated
To invoke any one of the commands, move the cursor to the location of the desired com-
mand (the command will then be highlighted) and press the “space bar” (< sp >).

To see how all of this is used it is best to go through an example or two. The rest of
this writeup leads you through each step in setting up, solving and displaying the results
of a problem, and saving and recalling it if you wish.

—1o3~

Let’s do a sample problem. Suppose we want to calculate the potential and field lines
between two parallel planes on which the potential is imposed to vary sinuscidally with z.
Let the planes be located at y = 0 and y = 1, and let the potential on the planes vary as
sin 27rz. Let the grid size be the default value 32 x 32.

Enter

-

<sp>

<sp>
< sp>

l
l
!

< sp>

< sp>
< sp >

< sp>

n<cr>

8<er>

Computer Response on Screen

' The highlighted region moves one position right.

The functional dependency on the top boundary changes to
a linear function.

The functional dependency changes to a step function.
Sine function on the top boundary is chosen.

The highlighted region moves one position down.
The highlighted region moves one position down.
The highlighted region moves one position down.

The functional dependency on the bottom boundary changes to
a linear function.

The functional dependency changes to a step function.
Sine function on the bottom boundary is chosen.
The highlighted region moves one position down.

Selects the “SOLVE FOR POTENTIAL” menu item. Main screen is erased.
The program asks you to wait while it initializes array values. Then it asks if
you want the array values displayed after each iteration. We don’t, hence:

The program asks you to wait while it solves the problem. When it’s done
the boundaries of the region appear on the screen, and we are asked how
many contours we want to see plotted in the existing range of potentials
(in this case from —1 Volt to +1 Volt). Suppose we want 8 contours:

Plots 8 contours (see Fig. 1 attached). To find the spacing between successive
potentials simply divide the range of potentials (listed beneath plot) by
n+ 1, where n is the number of contours requested (in this case 8).

The program now asks if we would like to replot the potential contours, plot
fields lines®, return to the main menu, save the solved problem in memory,
or exit the program. If we wanted fewer or more contours: e.g., if you

would like to see what happens when one of the contours includes the side
boundary potential, i.e. zero Volts, type p < ¢r > followed by e.g. 9 < cr >.
On the other hand, suppose we would like electric field lmes plotted over the
contour plot of potential, then type:

* Note: At present we can only plot field lines if there are no internal charges or potentials

specified.

Enter
f<er>

6 <cr>

—\oy—

Computer Response on Screen

We are asked how many field lines we would like to see plotted. The
electric field at any point is a vector tangent to the field through that point
and its magnitude is proportional to the density of field lines perpendicular
to the field’s direction. Suppose we want six field lines:

Plots 6 field lines on top of the existing potential contours** (see Fig. 2).
The program asks again if we want to replot potentials, plot field lines, return

to the main screen or exit the program.

Now suppose we would like to see how the potential in this problem is modified by the
addition of a rod placed at the center and held at 1 Volt. Hence we would like to modify

the program; so type:

r<cr>

< sp>

< sp>

<sp>

l<er>

\
A e

sp >

—

We return to the main screen. We would like to add a potential rod within
the region. Type:
Highlighted region moves left.

The “ADD charges or potentials” ‘menu item is selected. Main screen dis-
appears, and is replaced with the graphics editor screen.

Highlighted region moves one position down.

Highlighted region moves one position down.

The “ADD potential rod” menu item is selected. A tiny graphics cursor will
appear in the center of the graphics region of the screen, at (7,) = (16, 16).
The (2, 7) grid position of the cursor is displayed in the lower

left-hand corner of the screen, beneath the menu.

An equipotential rod is drawn at (2, 7) = (16, 16) (its symbol is a square).

A prompt asks for a voltage value for this rod (rod #1).

The rod is assigned a value of 1.0 Volts. The graphics cursor disappears,
and you are returned to the graphics editor’s menu.

Highlighted region moves one position down.

Highlighted region moves one position down.

Highlighted region moves one position down.

Highlighted region moves one position down.

The “RETURN to main screen” menu item is selected. The main
screen replaces the graphics editor screen. An equipotential rod can
be seen in the problem region (it looks like a tiny dot).

The highlighted region moves right.

** Note that at the corners the accurate calculation of derivatives is difficult and the field
lines many not be correct. To improve this try either choosing fewer field lines or a 64 x 64
grid with the same number of field lines.

Enter
< sp>

n<er>

10<er>

r<er>

—\0S5—

Computer Response on Screen

Selects the “SOLVE FOR POTENTIAL” menu item. Main screen is erased.
The program asks you to wait while it initializes array values. Then it asks if
you want the array values displayed after each iteration. We don’t, hence:

The program asks you to wait while it solves the problem. When it’s done
the boundaries of the region appear on the screen, and we are asked how
many contours we want to see plotted in the existing range of potentials
(in this case from —1 Volt to +1 Volt). Suppose we want ten contours:

Plots 10 contours (see Fig. 3).

The program now asks if we would like to replot the potential contours,
plot field lines, return to the main menu, save the solved program in
memory,* or exit the program. Since there is a potential rod within the
region we cannot (at this time) plot field lines. To start experimenting on
your own type:

Try changing the potentials on the boundaries, or changing the equipotential rods
within the boundaries, or adding charged rods within the boundaries, and see what happens
on the contour plot.

Once you have quit the program, type “logout < cr >” to leave the system.

*NOTE:

1. To save a solved program and its display type:

s<cr>

one < cr >

The program asks you to give a name to the problem. For example, to
give it the name, “one” you type:

The program then returns to ask you to choose between p, f, r, and e,
as before.

2. To retrieve a saved problem, return to the main menu, use arrow keys to highlight

RECALL SOLVED PROBLEM, and press the “space bar”. The program will then
ask for the name of the solved problem; then, for example, type:

one < ¢cr >

T
<sp>

The program will then redisplay the main menu with the parameters of
the saved problem. In order to see it displayed use the arrow key:

This will highlight SOLVE FOR POTENTIALS, after which press
The program will then directly display the solved problem.

—\o¢-

3. To delete a saved problem, you must first exit the program (or invoke QUIT PRO-
GRAM if you are in the main menu):
e<cr> The system will display the system prompt, e.g., “hactar%”, after which
you type “rm”followed by the name of the problem to be erased, e.g.:

rm one < cr > The system will then again display the system prompt (“hactar%”).
To reenter the program, type:

poisson < cr >

This program was developed by:

Denise Barnett home: 494-1077
denise@hactar

Ted Johnson dorm line: 5-6432; outside line: 225-0628
tcj@prill

G. Francis 3-2539

A. Bers 3-4195

Feel free to call on any of us for help and/or with suggestions for improving the program.

Figure 1 i

é ‘ -'\ T m—— K4 f]
v . ~ '
i A \-"-_-F.- - !
1 :
% 7
B8 i
At of
L -
o -
o, -

|
1
N
i
|
!
i
!

S 5

i
F e N Y]

How many contours to be plotted between
entisl contours), f (plot field lines),

-1.000 ana

1.0007 En

ter p (remlot pat

r (return to main screen), s (save prchiem) or e (exit program):

Figure 2

\:-; T " _.____,(&. 1 . \."L.
1 N, S __,,..4/ i \ ~':(f""ﬂ-.. £
[~y . N ~ "‘*-----'-'-1 N
\\ “;-..,__ ‘ 'l /7-\-.
; i
\ i 4 /
-l
il L \

AN
s
P
fjrn;ﬁifi\ ‘/ ~ ..ﬁH\\
A AT

How many field contours to be piotted? [
Enter p (repiot potent¢a1 contours),

f (plot field linesi,
r (retura to main scrzen!, s (save problem) or e (exit progra

Li® mmmanm mmn e g s -1.» iy

N NSNS ==, T1 SLERII=T ;i
L4 L
T U S & T i W P |
Edoo, K ! R S R SN - i
(AR LR T, ——r i] A "s_ - A
LN i S i S ¢ I
i \‘ KN { A . I3
‘ ; .,] \ ~ s
H Y L . S -
i 1 e \ L - m—
i “ *w N 1
l v \ -~ K I
b 1 -~ %, |
. : i ‘ '\\ %
* e ~
Figure 3 Pl P T \
‘ ! I . S N | i
1 1 | [N i i
P ! [) !
: | i - ;." K
1’ }l f -~ JJ‘J
1 i ‘..' 4 i
!] 7 -~ s
i t Py - P
1 ? : o et
: @ * ' 3 - s
i : r - .
[~ H ¢ ~ [P)
i ; " L —_— N ~. |
I 3 " -~ S ‘] 'l I." P o, BN . ."
i N Il 3
} ! 2 ..-"“._-"'1._ A N L ———— L |
b2 _‘.f“ o ———— _‘.‘\.‘ . '.\ :Lr; ~..‘ 3 [_f"______:_ \ \] l
How manu enntours to he ointtea betwean =1.000 ana anf i)

tnter p (repioi potential contours:, f (plot field iinea:.

m fmmdimmem dm mmism mmaama=l = lmmecmn memsalal

_——d m- -

R

P

1
=i

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.013 — Electromagnetic Fields and Energy
August 1986

Project ATHENA
POISSON PROGRAM

D. Barnett, G. Francis, and A. Bers

ATTACHMENTS

1. A SOLUTION OF POISSON’S EQUATION BY THE RELAXATION METHOD
2. WHAT IS A REASONABLE SIZE FOR %?
3. WHAT IS A “GOOD CHOICE” FOR A? . . . + v v v v v v e e e e e v n

4. EXPLANATION OF ERROR CRITERIA FOR THE POISSON PROGRAM

—{ 07

Attachment 1 to POISSON Program

A SOLUTION OF POISSON’S EQUATION
BY THE RELAXATION METHOD

Dirichlet Boundary Conditions

In rectangular coordinates Poisson’s equation in two dimensions is of the form

gv _&V _ _p=y)

—_ 1
33:2 5‘y3 €g ()
We are given a square region where the potential is known on each boundary and we
want to solve Poisson’s equation on a grid of points within the region. There is also a line
charge density [A(z, y)] given for each of the grid points. If the line charge density at each
point is equal to 0 then the equation reduces to Laplace’s equation:

v _&V o
333+3y3—)

The relaxation method is an approximate solution method but by iteration (repeated
application of the method) the solution can be as accurate as desired.

The first term in (1) is the second derivative of V' with respect to z, or the rate of
change of the rate of change of V in the z direction. And the second term is likewise the
rate of change of the rate of change of V' in the y direction.

Consider the point P in the center of the given square region. Let the potential at P
be represented by Vp and the line charge at P be represented by Ap. Let the potential on
the top boundary of the region be represented by V;, on the right boundary by V;, on the
bottom by V4, and on the left by V; (see Figure 1).

Ve

Figure 1

The distance from P to V; and from P to V; is Az, and the distance from P to V; and from
P to V} is Ay. The slope of V between P and the right boundary is (Vi. — Vp)/Az. This
is approximately equal to §V/8z. And the slope of V between P and the left boundary is

2

e 40

(VP — V2)/Az. The difference between these two slopes divided by Az is approximately
equal to 82V /8z2:
(Ve —Vp)/Az] - (Ve —Vi)/Az] &V

Az oz2

and similarly,
(V= Ve)/ Ayl ~ (Ve ~Vi)/By] _ &V

Az 8y?

Therefore, substituting into equation (1) we obtain

(Ve — VB)/Az] - [(Vp — V2)/Az] 4 (V= Ve)/Ay) - [(Ve — Vi)/Ay] _ _pe
Az Ay €

)

For a square region, Az = Ay, so equation (2) becomes
Ap
VQ+T’§-+VI,+VE+:—4VP =0

where pp(Az)? = Ap is the line charge density (charge per unit length in z) at P. Solving
for Vp

1 A
Vp=;(v;+n+m+w+e—“’) , (32)
0

Once again, if there is no line charge at point P (i.e., Ap = 0),
1
VP=Z(V¢+W+V5+VE) (3b)

Thus we can find the potential at any point given the potential at four surrounding points
and the line charge density at that point.

For the following discussion of this problem we will assume that the line charge density
within the entire region is equal to zero, and we will work out the solution to Laplace’s
equation.

Initialization -

To begin the iteration procedure we need to get a “guess” at the potential value for
each point in the region. There are many different kinds of initialization schemes that
could be used. We could simply set each point equal to zero (on a large, fast computer,
e.g. Cray, this is usually done). Or we could average the values on the four boundaries and
set each point in the region equal to that value. In the interest of computational speed on
the Athena VAX 750, we have chosen an initialization scheme which gives a fairly accurate
guess. For a detailed description see Electromagnetics, 3rd edition, by John D. Krauss,
pp. 287-293.

Iteration

Having assigned an initial guess we then proceed sequentially through the array, re-
calculating the potential at each point in the region. We start at the upper left grid point
and use the potential at each of the four surrounding points (in the z and y directions) in
equation (3b) to recalculate the potential for that point. For example, the potential at the
point (1,1) in Figure 2 would be recalculated using the following equation:

Vig=Vi+Via+ Vo + Vi
Then the potential at the point (1,2) would be
Vip=Ve+Via+Va2+ V11

In this manner the potentials on the first column of points within the boundary are reas-
signed. Moving to the next column, we recalculate the potentials similarly, using the four
surrounding points, i.e.

‘ Vauy=Via+ V2 +Vau+V

Each point is recalculated in this manner (from bottom to top and left to right). This ends
the first iteration. In each successive iteration the value for each point is recalculated.

. In iterative methods such as this relaxation method the values obtained converge on
the exact solution to the problem. Although these values are only appraximate, continued
iterations can make the values as accurate as desired.

(0,n)

e L] L] [] . . . (] L]
. @ [B] &« o s @ .
e @& & 8 8 s 8 @ @
« 8 8 @& e ‘s o ® @
¢ ® 4 8 s ® ® & @
s & ® ® @& & & o @
e & & & & & & * @
« 8 & 8 8 & & @ @

(x,y) =(0,0)

Figure 2

Neumann Boundary Conditions (Normal Derivative of Potential)

The potential within a region can also be determined for Neumann boundary con-
ditions when, instead of the potential (as in Dirichlet boundary conditions), the normal
derivative is specified on the boundary. The case we will look at is mixed Neumann-
Dirichlet boundary conditions; that is, we are given the potential on three sides and the

4

~4 L

normal derivative on the remaining side. For this discussion we will place the normal
derivative on the left side of the square.

Normal Derivative

All points in the region (boundary and interior points) must satisfy Poisson’s equation.
The potentials at the left boundary will float until they converge on the unique solution.
But in order to converge to their final values, the left boundary points must have four
surrounding points so we can use the five-point averaging formula [equation (3)] to solve
Poisson’s equation. To accommodate this we add an extra column of points just outside
the left boundary. During the calculations we will consider this extra column to be the
left boundary (see Figure 3).

—
o
a3

)

?
-
.
-
-
- L
-
-

(-"] ’0)‘)
(0,0)

Mo s s & & 8 s 8 sw
& & 8 & &
® 8 & & & s s 8 »
« 8 B 8 & & s @ a
e & 8 & & e * s @
'
¢ & 8 8 & 8 e & @
* ¢ & 8 & s 8 »
.
I T T

* * (n,0)

Figure 3

We find potential values for this extra column of points by using the given normal
derivatives and the potential values in the first column in the point-slope formula:

(V—-I,h - Vi,h) = m;.(z..; - $1)

where :

Vois represents the potential at the point on the extra column, kth row;
Vik represents the potential at the point on the first column, kth row:;

my represents the normal derivative on original left boundary and kth row;
z_; and z; represent the z position of the extra left and first columns respectively

(in Figure 3, z_; = —1 and z; = 1).
We solve for V_1:
Voie =Vie —2m, (4)
Iteration

Now that all the grid points have initial values we can begin iteration. We recalculate
the potential values for each grid point within the region using equation (3) just as we did

5

—y 5

with the Dirichlet problem. We then readjust the potentials on the extra left column to
match the given normal derivative as we did previously using equation (4).

We then sweep through the grid again recalculating all the potentials. These iterations
continue until the solution is attained to the desired accuracy. At this point the extra
column of potential values on the left is thrown away.

Successive Overrelaxation

In order to arrive at a solution with fewer iterations (i.e., faster) a method called
Successive Overrelaxation is used. It is similar to the Relaxation Method except that an
additional term is added in equation (3) to account for the error involved in this type of
appraximation. The interested students can find a description of Successive Overrelaxation
(and other methods) in Computer Simulation Using Particles by R. W. Hockney, McGraw-
Hill, 1981, p. 179.

Use of Integer Arithmetic

In the interest of gaining even more speed on the Athena VAX 750 machines, calcu-
lations are domne in integer (rather than floating point) arithmetic. Thus by limiting our
accuracy to six decimal figures (which is plenty for a good, qualitative plot) all numbers
inside the program are multiplied by 10 and declared integer before computations are
done. Of course, before displaying the results the final numbers are divided by 108.

Electric Field Lines from Conjugate Potentials

If a complex function &(z,y) = ¢(z,y) + (2, y) is a solution of Laplace’s equation
in two dimensions (where ¢ and 1 are real valued functions of positions z and y), then &
is an analytic function and satisfies the Cauchy-Riemann relations:

dp _ 4y

ol - (5)
do -

o~ & . ©)

The functions ¢ and 4 are called conjugate potential functions, and the contours of con-
stant % are everywhere orthogonal to the contours of constant ¢. If ¢ is the electrostatic
potential, then the contours of constant % represent the electric field lines. Note that
the converse is also true: % may be taken as representing a potential (with appropriate
boundary conditions!) and then ¢ represents the field lines associated with this potential.

Assume now that the potential ¢ has been calculated on an n x n grid as described
above. Approximating the derivatives in Eq. (5) by the difference formula we get

5°(£+1:J.)‘“‘1°(i—1:j)=¢(i’j+1)""¢(i$j"1) (7)

6

—\Y—

All of the ¢ values are known and all of the % values are unknown. Since we can calculate
the conjugate potential only to within an additive constant, we choose any point [say point
(a,b)] and assign %(a, b) a value of 0. Then we can find the conjugate potential of all other
points in the array relative to ¥(a,). Hence, using Eq. (7) and substituting in v(a, b), we
have

gp(a-l-l,b—l)—go(a.-—-l,b—l)=¢(a,b)-¢(a,b—2)

Both ¢ values are known and 1(a,) = 0, so we have a linear equation in one unknown
and can find ¥%(a, b — 2). Similarly we can find 1(a,b — 4) and so forth, finding all of the
% values on row a. Using Eq. (6) in difference form we obtain

e(67+1) —9(,5 —1) = —[(E +1,7) — (i — 1,5)])
Substituting 1(a, b) into Eq. (8), _
p(a—1,0+1) —p(a—1,b—1) = —[¢(a,) — ¢(a —-2, b)] .
Since all potential values are given, we can solve for %(a — 2,). Using Eq. (7) repeatedly
we can find all of the conjugate potentials in row a — 2. Similarly the conjugate potential

at the points in every row and column can be determined. This array is plotted as the
field lines on top of the contour plot of potential.

ol 1%

Attachment 2 to POISSON Program

WHAT IS A REASONABLE SIZE FOR [¢£|?

The Poisson program allows one to specify Neumann conditions on any or all of
the boundaries, that is, to specify the normal derivative of the potential dV’ /dn. When
prompted to supply a numerical value for this normal derivative, we are tempted to use
(for lack of a better number) the all-purpose “unity”, only to find that the program slows
to a halt for |[dV/dn| ~ 0(1). It is easy to understand this slow down if we realize that
the program normalizes all lengths to the distance between neighboring grid points on the
33 x 33 grid. Hence, |dV/dn| = 1 is a very large gradient (AV ~ 1 between neighboring
grid points).

To find an appropriate value for |[dV/dn|, such that all gradients will be gradual and
the convergence will be quick, we require that the normal gradient scale length

1 av
V dn

Ll

Ln
be of the same order of magnitude as the characteristic length of our bounded region
(€ = 32). For potentials of order unity, this gives

v| 1
—N_NOC -0 -
ldnl 35 ~ 0-1 t0 0.01

Specified normal derivatives of this order are consistent with our choice of default error
bound criteria, and will result in very quick calculation of the potentials.

— 6~

Attachment 3 to POISSON Program

WHAT IS A “GOOD CHOICE” FOR.)\?

If we “carelessly” toss an overly-large line-charge into our square region, then the
potential inside the region will be dominated by the influence of that line-charge, and the
specific values chosen for the boundary conditions on the region will have very little impact
on the final solution. This slows down the relaxation process. The reasoning is as follows:

In a 32 x 32 grid, the influence of the boundary conditions is leaked into the 30 x 30
interior points of the grid from the 120 (non-corner) boundary points. This is a fairly quick
process. On the other hand, the influence of the line-charge on the potentials is leaked out
slowly from a single source point. For example, after 4 relaxation iterations (assuming the
simplest relaxation scheme) the influence of the boundaries has made an impact at 416
internal grid points, while the influence of the line-charge has been felt by at most only 29
points.

What, then, is a reasonable range of values for the line-charge density A? Consider a
line-charge along the axis of a circular cylinder of radius rq.

If we assume that the potential on the boundary is a constant, say V = Vo, then the
potential inside the cylinder at a field point P is:

V=V- A lu(i)
2mey 0

where ¢ is the permitivity of free space, and r is the distance between P and the line-
charge. In order for the specified boundary conditions to have a significant influence, and
yet still be able to see the effects of the line-charge, we want the difference between the
potential close to the line-charge and the potential on the boundary to lie a.ppronmately
in the range:

1Volt SV — Vo < 10 Volts for V “near” the line charge.

How near is “near”? If one gets too near (r — 0) then V — co. The closest we can
get, however, is one grid point away, or r = 1. For our square 32 x 32 problem, a reasonable
estimate of 7o is 7 = 16. We may now give an order-of-magnitude estimate of)\, such
that the line-charge will not dominate the calculation of the potential:

; < =A 1\ <
1 Volt e In (16) ~ 10 Volts

e

or
20x 1071 S|\ S20x 10710,

Note: The units of A are Coulombs per unit length in the direction perpendicular to
the plane of the square region.

Note also: The above discussion is related to a suggested range of potentials. Should
you wish to scale up the potentials (by say two-orders of magnitude) the A’s should: also
be scaled up similarly. In addition the abserr (see “Explanation of Error Criteria for the
Poisson Program”) should be scaled up likewise.

10

—\ig-

Attachment 4 to POISSON Program
EXPLANATION OF ERROR CRITERIA FOR THE POISSON PROGRAM

The algorithm used to compute the potential values is called SOR, or Successive
Overrelaxation. It is an iterative algorithm so one must specify how accurate a solution
is desired to comsider the problem solved. However, requiring a relatively stringent set
of error bounds may lead to an unreasonable amount of computation time. If a set of
error bounds is not chosen stringently enough, then the accuracy of the solution may be
degraded to an unacceptable level. The smoothness and regularity of the contours that
the contour-plotter produces is a good indicator of acceptable or unacceptable accuracy.
Because of this tradeoff between computation time and accuracy, Poisson has error bounds
as input variables.

The structure of the error criteria is as follows: if either an absolute tolerance or a
relative tolerance is met, then the problem is considered solved. Thus, there are two error
bound variables, the relative error (relerr) and the absolute error (abserr).

At a given point within the region, the difference between the current value at that
point and its previous value is divided by the previous value. This computes the percentage
change of the current value. The absolute value of this quantity is compared to the value
of the relative error bound. The absolute value of the difference between the current value
and the previous one is also compared to the value of the absolute error bound.

The default setting is relerr = 1e-02 and abserr = 1e-02. Note that the absolute error-
bound default is reasonable for potentials in the range +1 Volt to +10 Volts.

Note: If potentials and A’s are scaled up from the above suggested ranges, the abserr
should also be similarly scaled.

11

-1i9-

Appendix B

Problems with the old user interface.

Figure B-1 1is what the main screen of the old

"Poisson" interface looked like.

_ A Solution to Poisson’s Equation within a Square Region
with Dirichlet or Mixed Neumann-Dirichlet Boundary Conditions

constant = 1
potential = constant = i |
0 | |
I |
| 1 potential = constant =
| I 0
potential = constant = 0

Movement Keys: U-Up, D-Down, R-Right, L-Lefti

Function Keys: Space bar-Change Boundary Conditions: Return—Enter a Choice:
P-Enter Potentials within Boundary; C-Enter Charges within Boundary;
B8-Buit Editor and Calculate Poiential Values

Figure B-1l: This is the main screen of the old interface.

Shown are the default wvalues for each of the four
boundaries. The default problem box has Dirichlet
boundary conditions. All of the boundaries except the top
one are tied to zero volts; the top boundary is tied to
1.0 volts.

There are several minor problems and one major

— (2B~
problem with this o0ld interface. Before getting to the

major problem, I'll discuss the minor ones.
B.1l Lack of a help command.

First, there is no "help" command. The only commands
available are: (l)enter potentials, (2)enter line
charges, (3)change boundary conditions, and (4)calculate
the answer. For the first-time user, it's comforting to
know that help is available on-line. A help command which
just prints a paragraph (giving an overview of the purpose
of the program, and how it works) is a lot better than no

help command at all.
B.2 The boundary conditions are confusing.

The second problem with the main screen is that the
boundary conditions are confusing. Why are the numeric
values (see the =zeros and the one in Figure B-1)
positioned so awkwardly? Do these values have to be
integers? [Answer: No!] If not, then why are they shown

as integers?
B.3 The problem box is confusing.

The third problem with the old interface is with the
graphical representation of the problem box. Why are
there gaps in the walls of the box? Are they meaningful,

i.e., are they supposed to symbolize something? [Answer:

—fL -
No!] Why aren't they walls of the box drawn with solid
lines? The wuser is apt to think that the gaps DO mean
something, because as soon as he solves his first problem
(and sees the equipotential and E fields being plotted
with smooth, continous lines), he'll realize that high
resolution graphics ARE available on this computer
terminal, which implies that the problem box COULD have

been drawn with smooth lines.
B.4 Moving the high-lighted region is awkward.

The fourth problem deals with moving the high-lighted
region about the screen. The high-lighted region is sort
of 1like a pointer, in that it physically points to where
the next command will take place (this will become more
meaningful when I discuss changing the boundary
conditions). The problem is that in order to move the
high-lighted region,the user must type "u", "d", "1", or
"r" to move up, down, left, and right, respectively. For
the wuser who isn't a touch typist, this can be a major
béttleneck because it forces him to hunt around the
keyboard for these keys; they're scattered all over the
keyboard! A better scheme would have been to pick four
keys which are right beside each other, and are clustered
in some logical fashion [see Figure B-21].

The scheme proposed in Figure B-2 has the advantage

that once the wuser locates the cluster of keys on the

=~ VR

Figure B-2: An alternative to the u, d, 1, and r keys.

keyboard, he doesn't need to loock at the keyboard any more
to find the key he wants. However, this scheme has the
drawback that using "i", "j", "k", and "m" when you really
mean "up", "left", "right",and "down" is not intuitive.
The first-time user wouldn't look at the keyboard and
think "Oh, you probably use the i, j, k, and m keys to
move the high-lighted region.” Rather, he would think
"Oh, you probably use . the arrow keys to move the
high-lighted region.". Of course, a mouse would be even
more intuitive, but the terminal that this program runs on

(a DEC VT240) doesn't have a mouse.

B.5 It's hard to figure out how to change the boundary

conditions.

The fifth problem is figuring out how to change the
boundary conditions on the problem box. The text at the
bottom of the screen [see Figure B-1] gives the wuser the
following cryptic advice: "Space bar-Change Boundary

Conditions; Return-Enter a Choice".

-\13-
B.5.1 Explanation of how to change the boundary

conditions, with the old interface.

Remember that for each of the four boundaries, there
are three things that the user must do. He must:
(1)choose whether to specify the potential at
the boundary xor to specify the normal

derivative of the potential at that boundary.

(2)choose one of five functions (constant, linear,
step, sine, or cosine) for that boundary.

(3)specify the numerical parameters for that
function.

The default problem [see Figure B-1] has the
potential of each boundary specified. If the user wants
to specify the normal derivative of the potential instead,
then he would: (1l)move the high-lighted region until the
word "potential" (by the desired boundary) 1is high-
lighted, and then (2)hit the space bar. This will cause
the word "potential" to disappear, and be replaced with
the high-lighted words "normal derivative". If the space
bar is hit AGAIN, then the potential/normal derivative
option will be toggled back to "potential", and the word
~ "potential"”™ will again appear (in the place of "normal
derivative”) [see Figure B-3].

For each boundary, the user must choose one of the
five functions. To do this, he moves the high-lighted

region to one of the boundaries, where the word "constant"

— =

A Solution te Poisson’s Eauation within a3 Squars Region
with Dirichlet or Hixed Neumann-Dirichlet Boundary Zonditions

crma
seiga e constant =

=1
normal
derivative= constant = i i
¢ |]
| | normal
| i derivative= constant =
i | o
‘normal
derivative= constant = ¢

Movement Keys: U-Up, D-Down, R-Right, L-Left

Function Keys: Space bar-Change Boundary Conditions; Return-Enter a Choice;
P-Enter Potentials within Boundary: C-Enter Charges within Boundary:
8-Quit Editor and Calculate Potential Yalues

Figure B-3: Top boundary toggled to "normal derivative".

is written. If he hits the space bar, then the line

"constant = 0" will be replaced with:

linear, at (0,32)
at (32,32)

Inn
%]

This means that the potential (xor it's normal derivative)
will start at a value of 1 (at the upper left corner of
the problem box, at (x,y) = (0,32)), and increase
linearly to a value of 2 (at the upper right corner of the
problem box, at (x, y) = (32,32)) [see Figure B-4].
Hitting the space bar four more times will toggle to
the step option, the sine option, the cosine option, and

then back to the constant option.

—\16~

A Solution 4o Poisson’s Equation within a Snquzrs Region
with Zirichiet or Hixed Heumann-Ririchiei Boundary Conditions

potential = IPEEW, at (0,32
at (32,32}

o

potential = linear,
at (0, 0) =1
at (0,32) =2
potential = linear,

at (32,32 = 4

at (32,) = 2

linear, at (32, 0)

potential
at (0,

nu

M e

Movement {eys: U-Up, D-Down, R-Right, L-Lzft

Function Kaus: Snace bar-Change Roundary Conditions; Return-Enter 3 Chpice!
P-fnter Potentials within Boundary; C-Enter Charges wiihin Boundarwy;
@-8uit Cditor and Calculate Potential Yalues

Figure B-4: All boundaries are "linear",.
B.6 The MAIN PROBLEM with the old interface.

The main problem with the old interface 1is the

barbaric way that data was entered, i.e., the information
which conveyed the position and the value of line charges,
sheets of constant potential, and rods of constant
potential. The user had to fill up a table [see Figure
B-5]. This was an incredible pain it the neck because it
~was hard to use, and because it forced the user to enter
much more data than necessary. 1In particular, a line is

completely determined by its two endpoints -- the wuser

shouldn't have to specify all of it's interior points as

well! Also, for a problem of moderate complexity, the

—\26-

Ay
[4]
Ma

P

o nunnu e

xS

<x{32
= potential
potential
potential
potential
potential
potential
potential
potential
potential
potential
potential
potential
potential
potential
potential
potential
potential
potential
potential

nauwnmun

W M XXX XXX XXX xx

[T T N T | | {13 [
oI L S LS ol L UD O S O R AT O O R S
oW 0 nnwnn

T T 1 L [| IO 1

Function Keys: C-Clear Values; B-Guit Entering Values and Return to Editor
P-Delete Value at Specified Point; P-Move to Next "Page”

Figure B-5: Hard way of entering potentials.

user 1is forced to first plot the problem on graph paper.
He must then manually enter all of this data 1into the

table in Figure B-5.

-

Appendix C

The hardware that the "Poisson" program runs on.

The "Poisson" program requires the following hardware
in order to run properly:

l)a DEC VAX-11/750, running a UNIX operating system.

2)a DEC VT125 color monitor (model VR41-A). A
DEC VT125 monochrome monitor (model VR201) will

also work.
3)a DEC VT240 graphics unit (model VS-240A). This
is a rectangular box which sits beneath the
monitor. It is needed to interpret the ReGIS

graphics commands (that are sent to the terminal
by my program).)

Appendix D

Explanation of coordinate mapping.

It is often necessary to map a point from the
interior of a rectangle to a point in the interior of
another rectangle. One place where this is required is
when going from the graphics editor screen to the main
screen (see Figure D-1). Here, two sheets of constant
potential are entered on the graphics editor screen, and
then are redisplayed when the user returns to the main

screen.
D.1 The problem.

The $64,000.00 question is: how does one map a line
(drawn in the problem box) on the graphics editor screen
to a line (drawn in the problem box) on the main screen?
This is not a trivial question; the mapping must be done
is such a way that the relative proportion and position of

the line is the same in both problem boxes.

—\9—

D.2 The solution.

A line,ll,is defined by its two endpoints, ﬁ(x,y) and
R{x,y). Thus, if we could figure out how to map a point,
P(x,y), from one rectangle, R, to an equivalent point
P?x,y) in another rectangle, Rf then we could easily map a
line, or even a polygon (which is just a set of 1lines),
from one rectangle into another rectangle.

Consider Figure D-2. We want to preserve relative
proportions. This means that the distance of the point
from the y boundary to the length of the x boundary, and
the ratio of the distance of the point from the x boundary
to the length of the y boundary, must be the same in
screen A as screen B (sée Figure D-2).

In terms of Figure D-2, this results in the following

constraints:
)f/}.l._d.is—*—._ - XA- XA'W‘M = Xg —’\‘{BJ"“;“ = Xg‘ dist
XA' length XA} nax —X,A,m;n ¥ 8, mex -XB_,M;*‘ % B, ltln_r,ﬂ'\
And \
;ﬁiEL.: YA_HAﬁﬁn - Yg“ﬂaﬂﬁn — w&dﬂ+
YA, len
Ajle jl"""\ \IAJW\u\K n—'\!,&"mp'b'\ \iB‘,w\a‘d -—\13,\'\43"\ YB,\EM?TL\

These equations can be reduced to the following mapping

equations:

V%

max = KB i

XB:‘ \I‘B,W\Fh + (X‘A—‘,(A,V\\ib‘\)

XA wmax = XAy ot

8% M b Tome M gy,

\fB’ e T \18] VHI“"I

—13%0—

This results in the C subroutine shown 1in Figure D-3,
which takes the coordinates of two rectangles, and maps a
point in the interior of one of them to a point 1in the
interior of the other rectangle.

There are three screens that the ES problem has to be
mapped to: (1)the graphics editor screen, (2)the main
Screen, and (3)the contour plotting screen. See Figure

D-4o

4 Zolution T2 Poiscon’s Eavztion within 3 Sausrs Rezion
41703 Diricnlet or Hixed deumann-Jirichizt Baundarg Caﬁéltians
- - i - I ~ < gac
P T Jerzion 1.5 Dciooer 1985
top: potential = consiant = 0.0C (top)
g=1 .
11 4 = 4
last: potentisl = constant = 9,00 e
o :
_ . (laft) A firt
right: potential = constant = 0.00 e =
o
=
bottom: potential = constant = .00 #=) (bottom} w=i

Solye for notentials

guii Prozram

naoall Soived Problam

Cﬁangn grid size I32x3Z

QELETE line charse -'

HELP J

ADD potential rod J;f”{

DELETE notential rod fofffi

ADD potential sheet -~ -

DELETE potential shee j,f’#/j
s : ” A

RETURN %o main screen /fx’f

Figure p-1l:

Two sheets of constant potential and one line chgrge,
shown in (a)the main screen, and in (b)the graphics

editor screen. ’

—\31-

A9 oo
js:m B
B
e -~ == —= e = - ——p (XB,VB)
- YA, MAR T == == "BJ length :

A 1

G === 3 Coa, W) NI R A
7,1) lengih ‘ \'S, My) : :

: ' !
. | ! !
: [}] {

. 1
—L-—_.—---—————. l:] : :
nﬂﬂw ¢ d i ; ¥]
; ; rl | x '
AX
x:\ nn xflmw XSJ St o

’ A 3 <

X

xﬂ,ldhg'ﬂa B) l‘h,ﬁ
Screen A Screen B

Figure DP-2: How do you find an expression for the coordinates of point
B, i.e., (Xp,Yg), when you are given: the coordinates of
point A, (X5,Y,), and the max and min coordinates of the
two rectangles? =

a9 ~d
Jommx | __ ______ -
Y PER I A
7 I AR T = - ; Y5, ength A
-]
< <= 1= - 32 (en,) VR I :
Yﬂ; | thg'ﬂl : \15’ PN X :, A
: " ! .
:] } :
2 : : : I
‘ {
—— = - ._.......' : . ' ‘
| ¢ i - S
v v ?X] 1
. k&
XA,I“IIN . xﬂmw x'!:.mw B, max
= 3 — =
x‘ﬂ&qﬂﬂ B, ltngth

map_point(Xa_max, Xa_min, Ya max, Ya_min,
Xb max, Xb min, Yb max, Yb min,
Xa, Ya, Xb, Yb) -
double Xa_max, Xa_min, Ya max, Ya min;
double Xb max, Xb_min, Yb max, Yb min;
?ouble Xa, Ya, Xb, Yb; .

*Xb = Xb_min + (Xb max - Xb min)/(Xa_max - Xa_min)
*(Xa - Xa_max];

*Yb = Yb min + (Yb max - Yb min)/(Ya_max - Ya min)
*(Ya - Ya_max]; '

i i i e i i Given
Figure D-3: A general point-mapping subroutine (written in €).
8 thg point (Xqa,Ys), and the max and min coordinates of each
problem box, this subroutine returns the correct values

for (x,,v,).

i A |

Appendix E

The contour plotter used in "Poisson".

it

Roberta Brawer
July 18, 1985

1. Introduction

The contour plotting package accepts a two-dimensional array of double
precision numbers and draws a specified number of constant value
contours spaced by equal intervals. The plot will be centered in the
graphics region of the terminal display.

There are two routines that may be called - setup and contour plot.
Setup initializes the Penplot graphics package, sets the display the.
selected -coordinate scales, and draws an outline box around the
plotting region. The routine contour_plot is used to actually find
and draw the contours.

The contour routines are written in 'C' and are designed to be called
from 'C'. (For details about calling the routines from Fortran, plaase
refer to Section 6.4.) The actual plotting on the terminal display,
though, is done by using the Penplot graphics library which is written
iln Fortran.

Using Penplot, additional features, such as boundaries, can be drawn
directly on the same graph as the contours. Direct calls to Penplo:
routines can be freely interspersed with calls to the contour plotter
(provided one follows the correct proctocol for <calling Fortrar
subroutines from 'C'). For information on Penplot, consult the
"Penplot Graph:.s Cortrol System Reference Manual," available in the
Athena clusters.

To insure that no scaling J.stortion occurs, the contour program
automatically sets eguivale r scales on the horizontal and vertical
axes. By equivalent scales, 1° 1s meant that if one unit of leng*h
corresponds, on the x axlis, to, say, one centimeter on the scresn,
then it will also correspnd, on the y axis, to one certimeter on the
screen. (If the scales were not equivalent, then, for example,
circles would be drawn as ellipses.)

As a consequence of this coupled scaling, the length of the hor.zontal
or vertical side of the plot will be proportional to the difference
between the values of the maximum and minimum coordinates along the x
or y axis, respectively. If this difference is unequal for the twec
axes, the plot will occupy a rectangular region.

=, Sl

2. Calling setup:

The setup routine provides graphics initialization for Penplot, sets
up the coordinate system, and draws a box outlining the plotting area.
It must be called before contour_plot unless the 1initialization has
been handled by direct calls to the Penplot library.

After the outline 1is drawn 1in the selected <color, the pen will
automatically be set to green for the contours. If a different color
for the contours is preferred, use a Penplot pen command between calls
to setup and contour plot.

If setup is not wused, and initialization 1is done directly with
Penplot, 1t 1is preferable to use the routine, show(), rather than
area(), in establishing the coordinate scales. This insures that the
axes are scaled equivalently, not 1independently, thus avoiding
geometric distortion.

Routiﬁe: setup(left, right, bottom, tocp, color)

A guments:

left [double] x coordinate of left side of plotting area
right [double] x coordinate of right side of plotting area
bottom [double] y coordinate of bottom of plotting area
top (double] y coordinate of top of plotting area
color [long] pen color of the outline box:

blue = 1, red = 2, green = 3

3. Calling coptour plots

The routine contour plot accepts a two dimensional array of numbers
and plots a selected number of equivalue contours. The array must
have a double precision data type and must be contigous in memory
since only the address of the first element is passed. The maximum
resolution for the array is {101] x [1l01]. Both the number of
horizontal and vertical grid points, NX and NY, must be less than or
equal to 101.

The ordering of the indices in the array is in spatial analogy with
the matrix notation convention of listing the row index first and the
column index second. Thus, the first index 1identifies the wvertical
location and the second i1ndex, the horizontal location. Please nore
that this is opposite to the Cartesian coordinate convention. In othe:
words, the wvalue at the ccordinate point (xindex, yindex) would he
represented by the array element, arraylyindex][xindex].

Routine: contour plntlarray, NX, NY, left, right, top, bottom,
ncontours, minvalue, maxvalue)
Arguments:
array [array name] address of first element of the array
NX [integer] number of horizontal grid points
NY [integer] number of wvertical grid points
left [double] x coordinate of left side of plotting a:tea
right [double] x coordinate of right side of plotting area
bottom [double] y coordinate of bottom of plotting area
top [double] y coordinate of top of plotting area
ncontours [integer] number of contours to be plotted
minvalue [double] minimum contour value to be plotted
maxvalue (double] maximum contour value to be plotted

4. Examgle

#define NX 51
#define NY 51
#define BLUE 1
#define RED 2
#define GREEN 3
#define BIG 1.0e20

?ain() /* example program for contour plotter */
double array[NY][NX], result;
double xmin, xmax, ymin, ymax, offset;
long color;
int ncontours; _
double x, y, minvalue, maxvalue;
int xindex, yindex;

xmin = —25.07% /* establish coordinate system */
xmax = 25.0;

ymin = <25.07

ymax = 25.,0;

offset = 25.0;

minvalue
maxvalue

BIG; /* initialize to large number */
-BIG; /* initialize to small number */

non

/* Load array. Note: indices must be positive integers. */
for(yindex = 0; yindex < NY; yindex++)
{

y = yindex - offset; /* origin at center of the plot */
for(xindex = 0; xindex < NX; xindex++)

{

x = xindex - offset;:

result = x*x + 2.0*y*y;

if (result > maxvalue) /* find maximum value */
maxvalue = result;

itf (result < minvalue) /* find minimum value */
minvalue = result;

array(yindexi[xindex] = result;

}

/* Call coutour routines */
color = RED;
ncontours = 11;

setup(xmin, xmax, ymin, ymax, color);
contour_plot(array, NX, NY, xmin, xmax, ymin, ymax, ncontours,
minvalue, maxvalue);

~139-

5. Linking Instructions

The object code for the contour routines is located 1in an arch:ve,
/projects/6_d0004/lib/contour.a, on aphrodite and hactar. In add t:ion,
the Penplot, Fortran, and math libraries are all needed. Thereiore,
include the following libraries in the linking command:
/projects/6_d0004/lib/contour.a -lpenplot -1F77 -1177 -1U77 -1X -lr

For example:

éc -0 program program.c /projects/6_d0004/contour.a -lpenpict
=1§F; L0177 =1X <Im

6. Additional Notes

.

- 6.1, Blank Regions in Plot

If the absolute value of a number in the array is greater than 1.0el2,
no contour will be drawn through that point or through a grid segment
with that point as one of its endpoints. If desired, this feature can
be used to blank out regions of the plotting area,

6.2. Handling Singaiarities

Singular points, or infinit.es, can be represented in the array as a
very large number. It is recommended that the absolute value of the
number representing such a point should be less than 1.0el2, bur
greater than 1.0eif. This will 1insure that the contours near thar
point will be closed (see above) and that the electric field plotting
program will know that the field lines end at such points. (The
electric field plotting program uses values greater than 1.0eio t
identify charge singularities.)

6.3. Discontinuous Functions

The contour program can be wused to ©upiot functions which are
discontinuous across interfaces. For exarp e, electric field lines
across dielectric boundaries can be pl.utted by finding, in each
region, the conjugate harmonic function to the potential whose
contours represent the electric field lines.

The plotting can be done by breaking the problem into separate
regions, blanking out all but the region to be plotted, and generating
multiple calls to tnhe contour plotter. The value of -1 in the argument
ncontours indicates that this 1s a repeat call and that the interval
between adjacent conto.rs should be the same as in the previous call.
(For an examp.e, see the source code, dielectric-cylinder.c).

— Yo

6.4. Calling the Contour Routine from Fortran
Since the arguments in the routines are passed by value, not address,
the contour plotter cannot be called directly from Fortran. (Fortrar
automatically passes arguments by address.) To get around this
problem, I suggest the following.

Write a short middleman program in 'C' which simply translates the way
the arguments are passed. Have the Fortran program call the middleman
program, which is designed to receive its arguments as addresses, or
potnters. Then the middleman program calls the contour routines, now
passing the arguments by value. (Please note that this only concerns
the arguments other than the array itself. 1In both Fortran and 'C',
arrays are always passed as the address of the first element of the
array.)

6.5. Bugs to be Corrected

The program does not currently deal properly with the situation 1in
which contour 1lines of the same value cross each other. In such a
case, an artefact of a diamund or branch is produced. Hopefully, this
will be fixed shortly. -

...-.\\-Ul’

Appendix F

Notes for future programmers.

F.l How to call C Subroutines from FORTRAN77.

As is noted in the source code documentation, if- you
want to call a subroutine written in C from a FORTRAN77
program, then the C subroutine must have an underscore
appended to it's name.

Example: If the C subroutine call called "foo", then
in the C source file it would be defined as:

foo_{()
{

}

And it would be called from FORTRAN as:

printf{"\nFoo on you too.");

call foo

—14 2=

F.2 How to compile a program that is made up of C source

code and FORTRAN77 source code.

All of the files must either have FORTRAN77 source
code or C source code in them; you can't mix the two
languages within the same file. You start off by
compiling all of the separate source code files. Halt the
compilation at the objéct code level; DON'T compile all
the way to executable code!

Example: To compile a C file called "foo.c" you
would type:
cc -o foo.c
This would produce the object code
file "foo.o".
To compile a FORTRAN77 file called "goo.f"
you would type:
£f77 —¢ goo,f
This would produce the object code
file "goo.o".

The next step is to link together all of the object
code files, along with the proper libraries. It doesn't
matter what compiler you do this with, both "cc" and "£77"
will work.

NOTE: If the file "boo.c" is "include"d in the
file "moo.c", then you DON'T have to

separately compile "boo.c". Just compile
"moo.c".

—143 =

Appendix G
The ASCII character set.

Graphic

Decimal
Value

da D 1D H O

cy

= O Ww o -

[O I W
=1 O O e LS

OGO 00 I MNMNDNIDMNDNNNDDN - -
B WO H OO0 U & Wio+-H QO W om

44—

-~ ASCII Character

Al

Comments

Null

Start of*heading
Start of text

End of text

End of transmission
Enaquiry
Acknowledge

Bell

Backspace
Horizontal tabulation
Line feed

. Verucal tabulation

Form feed
Carriage return
Shift out

Shift in

Data link escape
Device control 1
Device control 2
Device control 3
Device control 4
Negative acknowledge
Svnchronous idle
End of transmission block
Cancel

End of medium
Substitute

Escape

File separator
Group separator
Record separator
Unit separator
Space
Exclamation point
Quotation mark

Set

Graphic

St

+ H -~

QW1 U W O™

TOTPOZ2OR-"ODQHREBOOEE®E YV I A -

Decimal
Value

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
638
69
70
71
72
73
74
75
76
77
78
79
80
81
82

—l45-

Comments

Number sign
Dollar sign
Percent sign
Ampersand
Apostrophe
Opening parenthesis
Closing parenthesis
Asterisk

Plus

Comma
Hyphen (Minus)
Period (Decimal)
Slant

Zero

One

Two

Three

Four

Five

Six

Seven

Eight

Nine

Colon
Semicolon
Less than
Equals
Greater than
Question mark
Commercial at
Uppercase A
Uppercase B
Uppercase C
Uppercase D
Uppercase E
Uppercase F
Uppercase G
Uppercase H
Uppercase I
Uppercase J
Uppercase K
Uppercase L
Uppercase M
Uppercase N
Uppercase O
Uppercase P
Uppercase @
Uppercase R

46

Decimal
Graphic Value Comments
S 83 Uppercase S
T 84 Uppercase T
8) 85 Uppercase U
v 86 Uppercase V
\' 87 Uppercase W
X 38 Uppercase X
Y 89~ Uppercase Y
Z 90 Uppercase Z
[91 Opening bracket
\ 92 Reverse slant
] 93 Closing bracket
A 94 Circumflex
— 95 Underscore
¥ 926 Grave accent
a 97 Lowercase a
b 98 Lowercase b
c 99 Lowercase c
d 100 Lowercase d
e 101 Lowercase e
f 102 Lowercase
g 103 Lowercase g
h 104 Lowercase h
i 105 Lowercase i
j 106 . Lowercase j
k 107 Lowercase k
1 108 Lowercase 1
m 109 Lowercase m
n 110 Lowercase n
o 111 Lowercase o
P 112 Lowercase p
q 113 Lowercase q
r 114 Lowercase r
s 115 Lowercase s
t 116 Lowercase t
u 117 Lowercase u
v 118 Lowercase v
w 119 Lowercase w
x 120 Lowercase x
v 121 Lowercase y
z 122 Lowercase z
{ 123 Opening (left) brace
| 124 Vertical line
} 125 Closing (right) brace
B 126 Tilde
127 Delete

A\
— — 77 Massachusetts Avenue

Cambridge, MA 02139

M ITI_ibrari eS http:/libraries.mit.edu/ask

DISCLAIMER NOTICE

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available.

Thank you.

The following pages were not included in the
original document submitted to the MIT Libraries.

This is the most complete copy available.

Pages 147-end

	A user-friendly interface for a poisson-solver /
	TitlePage
	Abstract
	Dedication
	TableOfContents
	List of Figures
	Chapter 1
	Figure 1-1

	Chapter 2
	Figure 2-1
	Figure 2-2
	Figure 2-3
	Figure 2-4
	Figure 2-5
	Figure 2-6
	Figure 2-7
	Figure 2-8
	Figure 2-9
	Figure 2-10
	Figure 2-11

	Chapter 3
	Figure 3-1

	Chapter 4
	Figure 4-1
	Figure 4-2
	Figure 4-3

	Chapter 5
	Figure 5-1
	Figure 5-2
	Figure 5-3
	Figure 5-4
	Figure 5-5
	Figure 5-6
	Figure 11.3
	Figure 11.4
	Figure 11.5
	Figure 11.6
	Figure 11.7
	References

	Appendix A
	Figure 1
	Figure 2
	Figure 3
	Figure 1
	Figure 2
	Figure 3

	Appendix B
	Figure B-1
	Figure B-2
	Figure B-3
	Figure B-4
	Figure B-5

	Appendix C
	Appendix D
	Figure D-1
	Figure D-2
	Figure D-3

	Appendix E
	Appendix F
	Appendix G

