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Abstract

This thesis describes a new interface for an existing

Poisson-solver, and enhancements to the displaying of the

results. The new interface is menu-driven, and uses a

graphics editor to greatly simplify the task of entering
problems of interest via a computer keyboard.
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Chapter 1

Introduction

1.1 Introduction.

Poisson's equation is used in the study of -static

electric fields. In electrostatic (ES) problems, we are

only concerned with the electric field, E. The two Maxwell

equations which govern the behavior of ES electric fields

ar —-

Gauss' electric law:

Faraday's law:

V-e.E=¢ (1-1)

IxE=0O (1-2)

Any vector function whose curl is zero can be

expressed as the gradient of a scalar function. Therefore

Faraday's law implies that the electric field strength

vector, E, can be expressed as the gradient of a scalar

function. By convention, the scalar function $ (which is

called the
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electric potential) is defined such that:

2 - 7 (1 2

Substituting -V® in for E in Gauss' law, we obtain

Poisson's equation:

v
re

--5
pe

an

(1 a)

We have just replaced the vector functioninthe two

vector differential Egs. (1-1) and (1-2) with a scalar

function that contains the same information. And because

Eq. (1-4) is a combination of Egs. (1-1) and (1-2), it

contains all of the information that they do; thus

Poisson's equation is (in electrostatic situations)

"shorthand" for the two Maxwell equations which deal with

the electric field. This 1s nice, but it's not the reason

why Poisson's equation is so useful. Poisson's equation

is useful because it replaces a vector function with a

scalar function, which is much easier to work with.

By convention, electric field lines point from higher
electric potential to lower electric potential. The

gradient of the electric potential,V? , points in the
direction of the greatest increase in § , thus it points

in the opposite direction of the electric field lines.
The purpose of the minus sign in Eq. (1-3) is to indicate
this fact.

de
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1.2 How to state an ES problem.

An electrostatic problem is stated by specifying

(1)the distribution of electric charge density, ¢(x,y,2),

within a volume of interest and (2)the boundary

~onditions, e.g., the distribution of electric potential,

P(x,y,2) on the boundaries of the volume of interest.

l].3 How to solve an ES problem.

The solution to an ES problem is found by finding an

electric potential function, ®(x,y,z), which satisfies

BOTH Poisson's equation and the boundary conditions. From

this electric potential. function, the electric field

strength vector, E, for the particular ES problem can be

found via4Eq.(1-3).To visualize the solution to an

ES problem it is useful to graph the equipotential

contours (i.e., the lines where d(x,y,2) = constant), and

the associated E field lines.

1.4 What 1s a Poisson-solver?

Poisson-solver is a computer program that

numerically solves Poisson's equation inside of a given

region of two-dimensional (x,y) space. It lets the user

specify the distribution of charge and/or potentials

inside the region of interest, and the boundary conditions

on the region. It then solves for the potential
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everywhere inside the region. The resulting equipotential

contours and the electric field lines are then displayed

on the user's terminal.

In general, Poisson-solvers are useful because most

problems cannot be solved analytically, and must be solved

via numerical methods. A FAST Poisson-solver is useful

because it allows a student to examine quickly a large

variety of ES problems in a few minutes instead of several

hours (which is how long it would take if the student

solved all of the problems by hand). By doing the hard

work for the student, a Poisson-solver encourages the

student to explore all sorts of ES problems that he may

have been curious about. This is useful, because the

student can thus develop his sense of intuition for what

the solutions to different ES problems might be like.

1.5 Description of "Poisson
Ie

1.5.1 General description.

The Poisson-solver I worked on is called "Poisson"

[see Appendix A]. It solves Poisson's equation in two

dimensions, namely, (x,y) space, via the finite-difference

relaxation method. This system was implemented by Denise

Barnett in collaboration with Greg Francis and and Prof.

Abraham Bers [see Appendix A].

"Poisson" is restricted to ES
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problems! Everything (i.e., the boundaries and the

charges) is infinitely extended, uniform in the

z-direction. Nothing varies in the z-direction [see

Figure 1-1]. Therefore, we are solving the restricted

2-dimensional version of Poisson's equation:

 By XP = — S(x,y)

— P (xy) +33 P(xy) = —gr [ ¢ —-hKB

+=—33 discrete points

0

/ z

we

— 33 discrete points

Figure 1-1: "Poisson"'s coordinate system.

The user enters the problem in a square region,

called the "problem box", which is of unit length in the

x-direction and in the y-direction. There are an infinite

number of points between 0.0 and 1.0, however computers

must deal with continuous distributions by approximating

them as a series of discrete values: "Poisson"

approximates the infinite number of points in the range

0.0 &lt;= x &lt;= 1.0, 0.0 &lt;= y &lt;= 1.0 by a grid of 33x33

points. The top and bottom rows and the left and right
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columns of this grid are occupied by the boundaries of the

problem box, which means that there are 31x31 internal

grid points. The bold-faced lines in Figure 1-1 are the

four boundaries (top, bottom, left, and right) of the

problem box.

The user can specify a potential, P(x,y) = f(x,y),

or a line charge density, A(x,y) = constant, at any of

the 31x31 internal grid points. The charge density at a

point (x,y) is given by g(x,y) = AS(x-x) y-y). In order

for the solution to be unique, the potential, xor the

normal derivative of the potential, must be specified on

each of the problem box's four boundaries. Such

specification of the problem is known to lead to a unique

solution.
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1.5.2 Specifying the boundary conditions of an ES problem.

1.5 2.1 Defining the boundaric:s.

The boundaries are the four sets of 33 grid points

which make up the "walls" of the "problem box" [see Figure

1-1]. It is along these four boundaries that the boundary

conditions must be established. For each boundary, one of

the ‘following must be specified: either (l)the potential

at each point, =xor (2)the normal derivative of the

potential at each point.

1.5.2.2 Types of boundary conditions "Poisson" can handle.

If all four boundaries have their potentials

specified, then the problem box is said to have "Dirichlet

boundary conditions". If all four boundaries have the

normal derivatives of their potentials specified, then the

problem box is said to have "Neumann boundary conditions".

However, if the potential is specified on some of the

boundaries, but the normal derivative of the potential is

specified on the others, then the problem is said to have

"mixed Dirichlet and Neumann boundary conditions".

"poisson" can handle all three cases (i.e., Dirichlet,

Neumann, and mixed Dirichlet and Neumann boundary

conditions).
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1.5.2.3 Functions available for specifying the boundary

conditions.

For each of the four boundaries, the user can specify

one of five functions for the potential along that

boundary (xor for the normal derivative of the potential

along that boundary). The five functions ar=:

(1)constant ---- the user must specify the constant.

(2) linear a ramp up from a given beginning

value to a given ending value.

The user must specify both values.

(3).  Ee  9) half the boundary is value #1; the
other half is value #2. The user

must specify both values.

(4)sia= a*sin(b*pi*x), where the user must

specify a and b.

(5)cosine a*cos(b*pi*x), where the user must

specify a and b.

The suggested range of boundary
lvl &lt;= 10.0 volts.

potentials 1s

1.5.2.4 Specifying the position and value of

equipotentials (sheets and/or rods) in the

interior of the problem region.

The user can specify the value of an equipotential

rod or the value of an equipotential sheet at any of the

31x31 internal grid points. The valid range of voltages
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is |vl &lt;= 10.0 volts [see Appendix A]. The voltage is

limited to this range to speed up the Poisson-solver. If,

for the same boundary potentials, a wider range of values

is allowed for the equipotential rods or sheets, say

-100.0 to +100.0 volts, the gradients in the problem are

increased and it will take the Poisson-solver many more

iterations (i.e., a much longer time) to converge to the

correct. solution.

Since the problem box is two-dimensional, all of the

regions of constant potential are either rods or sheets.

1.5.3. Specifying the distribution of the sources (i.e.,

line charges) in the interior of the problem region.

The only sources available in "Poisson" are line

charges. The valid range of values for lambda is l.e-12

&lt;= |lambdal &lt;= 1l.e-10 [see Appendix A]. Once again, the

reason for limiting the range of lambda is to speed up the

Poisson-solver.

All of the sources must be in the interior of the

problem region, i.e., at one of the 31x31 grid points. A

source cannot appear on or outside any of the four walls

which bound the square problem region.
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Chapter 2

The new interface.

The new interface is much more friendly than the old

interface was. Refer to Appendix B for a description of

the old interface. The very first thing that the new

"Poisson" interface does 1s to greet the user with the

following:

Solution to Poisson’s Equation within a Square Region
with Dirichlet and/or Neumann Boundary Conditions

Version 1.0 October 1986

This program was intended to provide means for quickly (in 5-10 seconds)

solving relatively simple problems in electrostatics and/or magnetostatics.
On the boundaries of the region a variety of functions of potentials

(Dirichlet) or normal derivatives of potential (Neumann) may be specified.

Inside the region, potential rods and/or sheets, as weil as charged rods, can

be specified. The sciution is displayed as contour plots of the potentials.
The field linec are then displayed as contours of the conjugate potential.

Problems are solved on a 33x33 point grid (32x32 spaces). For a

“smoother” plot with more waiting time (factor of four), the grid size can

be changed to 65x65 points (b4xb+ spaces).
In the interest of achieving the desired speed, some suggested ranges

for the values io be entered in any problem are listed below. It is possible
to enter values outside of these ranges but computation time will increasa.

{1 &lt;= | potentials | &lt;= 10 Valis
fe-2 &lt;= | normal derivatives of potential i &lt;= ie-1 Volis/unit iength

Ze-11 &lt;= | line charge densities {i &lt;= Ze—-10 Coulomb/unii length

For further details on this program, ac well as a demo, refer to the

writeup: "Project Athena Poisson Program” for course 6.013.
Press RETURN for main menu to specify a particular problen.

Figure 2-1: "Poisson"'s introductory message.

Many of the shortcomings of + he old interface were
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resolved in a fairly straightforward manner. These

improvements will be discussed first; the big leap in

user-friendliness (i.e., the graphics editor) will be

discussed last.

2.1 Miscellaneous improvements.

There is now a help facility. If the user is on the

main screen and selects the "Help" menu item, the main

screen will be erased and he will see:

To execute a command, toggle an option, or change a numerical value, move

the high-lighted region to the command/option/number and hit the SPACE BAR.

lo enter the probiem:
{)for each of the 4 boundaries:

on the main screen,

a)specifu either the POTENTIAL or the NORMAL

DERIVATIVE of the potential

b)specify the function, i.e., STEP, SINE,
COSINE, LINEAR, or CONSTANT

2)inside the 4 boundaries:
on the "Add Charges or Potentials" screen,

add line charges, rods of constant potentiai,
and/or sheets of constant potential.

MOTE: If the display looks screwy, you should: idquit this prograr, 2)turn
the VT240 off, then back on, 3)sei ihe XOFF option {in the Set-Up

~ommunications screen) to ‘XOFF at 10227, Sltype 'ts=t’, and then

~estart this program, by typing ‘poisson’.

= &amp;=

 unaraSEEomar hg Se td.

Figure 2-2: "Help" message for main screen.
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If the user is on the graphics editor screen, there is

also a help screen available.

This ‘is the zraphics editor. It will allow you io specify the
olacement and values of the foilowing (inside the square probianm

~eeion}
i)line charges
Z2irode of constant aotentiai
Tymhmmts of constant potential

emma

AUANTITY

{ine charse

agquipotential rod

aquipotantial sheet

Magi. YE

| SYMBOL ON SCREEN

a wriangle

3a sSauare

a line

~~ i%3 Fy -

at
18's

VALID RANGE OF VALUES

|. 0e-12 &lt;= | Coulomb/z | &lt;= {.0e-10

-10.0 &lt;= voitage &lt;= 10.0

-10.0 &lt;= voltage &lt;= 10.8

aEo-

Figure 2-3: "Help" message for graphics editor.

The problem region and its boundary conditions are

nuch more self-explanatory, and are less ambigious than

before. Contrast Figures (2-4), (2-5), (2-6), (2-7),and

(2-8) which their old counterparts [see Appendix BJ].
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A Solution to Poisson’s Equation within 2 Square Region
with Dirichlet or Mixed Neumann-Dirichiet Boundary Conditions

 ee ee ee eee eeeee fee eee+Version 1.0 October 198
BOUNDARY CONDITIONS: o | m————

Lop: TIER = constant = 4.00

left: potential = constant = 0.00

right: potential = constant = 0.00

bettom: potential = constant = 9.00

(lat?

4
w=0 {bottom} =i

(right?

ARROWKEYS HOVE POSER IN ESEENEa
EE —————————— — pr—— EE —

Add charges or potentials Solve for poteniizle | Quit Frosram
———————ee ————————_—————————— a ——————— ET. a—————

 Hels ! Recall Solved Probiem| Change arid size 32x32

Fiqure 2-4: The new ‘display: constant boundaries.

4 Sclution io Poisson’s Cauation within 2 Sauare Region
with Dirichlet or Mixed Neumann-Dirighlst doundary Conditicns

 ALY mmm —————=————————————+ Verzicn 1.9 October 1986
SCUNDARY CONDITIONS: i———

Lows
motential - THEWER at (0,8) = 1.00

at {1,4} = 2.00
Y=

(Loe)
Jr—

ay. N mmdhmde ow} - 12 - - oda A A - 4 AM
eft. poLeniial = ines, at (8,0) = 1.08

at (0,4: = 2.50

= minds mde mm tw -— tl mw amen - 7 ,

miENL. pueeniviar = iineéar, at (1,0) = 1.00

at (1,1) = 2.00

{1aft lright)

potential = linear, at (0,0) = 1.00

at (1,0) = 2.00

 PE SASERa
Add charges or potentials | Solve for votentials

el

Y=. Rul 4

x=0 (bottom) x=1

BND EXE CUTES-COMMANDS

Olney

Ruit Program

Chanre =rid size 32x32+ Recall Solved Prohlae

Figure 2-5: The new display: linear boundaries.



-)1

4 Solution ig Poisson's tauation within a Sauars Feg:on
with Dirichlet or Mixed Neumann-Dirichiat Boundary Conditions

 ee ee ee ems=—=—+Yaprzion.{.0 October 1936

JOUNDARY CONDITIONS: J

Lop: motential = Soa x = 0 to .5:

Xx = .5 to i:

' xy
‘afd: ootential = step, 4 = 0 to 5! {.00

y= ,5 to {1 2.00

-3ight! sotential = step, y = 0 to 5:

y = .,5 to {:

1.00

2.50

{1aft) {right}

Joticm: potential = stem, x = § to .5: 1.90

x = ,8 fo 4: 2.00

——————— 1

+ quit Frogesmob dF 1 nd $ Ed

Change 3rid size 32x32

= 1w=} nmooti={ i9)H=

d=

Figure 2-6: The new display: step boundaries.

4 Sosution ic Poisson's EZauation within a Sauara Region

with IZirichiet or Mixed Meumann-dirichlet Boundary Concitions
rmm————————————— mem 2 ew mm mm——————————+ fepsion 4.3 Ociober 1986

3OUNDARY CONDITIONS: ———————————

es mpd med loi = SEPSEDEENSTSRCEerERTY

TD. GOLENLIaL = Sha3RdiTaggio=gspzi
- - i an

 3d = LaVV

b= 1.30 i
Pr

LEE

ath: sotential = 3%sin(2%pixb*y) a = 1,00

b = 4.30

right: patential = aksin(2¥pixb*y) a=1.00
h =1. 00

{1afL) rignt)

mNottom: Dotential = ansin{(2%pixbix) 3 = 4,50

 Nn = 4 AH

$= — -

x= {bottom} x=1

will aes I RR

Add charges or potentials

Help

 AT EeESA a A ATR Ae yg aS ey
oilfe Iee

| Solve for notentials | Quit Program

Recall Solved Problen Change arid size 32x32 |

Figure 2-7: The new display: sine boundaries.
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A Solution to Poisson’s Equation within 3 Square Region
with Dirichlet or Mixed Neumann-Dirichlet Boundary Conditions

 ee rmem|eer m= — —mmem——e—t Yersion 1.0 October 1285

BOUNDARY CONDITIONS: ——

Lop: potential = Dariusian

1

a=1.00

b =1.00

left: potential = akcos(Z¥pixbry) a =1.00

h = 141.00

right: vootential = akcos(2%pisb#y) a =1.00

b =1.00

(laf) pright)

bottom: vcotential = awcos{(2¥pixb#x) a =41.00

h = 1.00

y=...  —

x=0 (bottom) x=4

MARE I Sea,

 Add charges or potentials Solve for votentials Quit Program |

Help Recall Solved Problem| Chanee arid size 32x32

Figure 2-8: The new display: cosine boundaries.

[t is now much easier to move the high-lighted

region. Instead of hunting around the keyboard for the

'u", "d", "1", and "r" keys, the user now uses the cluster

of 4 arrow keys on the right hand side of the keyboard.

]Te
[1]

Figure 2-9: Use arrow keys to move high-lighted region.



Le

2.2 The MAIN IMPROVEMENT of the new interface,

The most important improvement that the new interface

has is a graphics editor. [Refer to Appendix B for the

old method of entering data.]

ADD line charge :

DELETE line charge |

TEINTIER,
DELETE potential rod |

ADD potential sheet |

DELET E potential sheet!

WE

Current grid position:

(i, fj) = (16, 19)

ress space bar to enter potential rod; press delete key to abort

Figure 2-10: The new way to enter data.

In two dimensions, a line charge looks like a point

on the terminal screen. A rod of constant potential also

100ks like a point, and a sheet of constant potential

looks like a line. Therefore the user must pick one point

(in the interior of the problem region) to specify the

position of a line charge or a rod of constant potential,

A line is uniquely determined by its two endpoints, so the
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user must specify two points to position a sheet of

constant potential. To specify a point, the user doesn't

aven need to know its (x,y) coodinates; he merely moves a

cross-hair sight about the screen (using the 4 arrow

keys), and then hits the space bar when he reaches the

desired location. A prompt appears at the bottom of the

screen, and asks the user to type in the value of the line

charge or the potential.

The editor won't let the user get himself into

trouble. For example, if the user tries to put a line

charge on top of a potential rod, he will be told that

there is already a potential rod at that location, and

that he should pick another location for the line charge.

The editor also checks to be sure that all sheets of

constant potential are either horizontal, vertical, or at

a 45-degree angle, as required by "Poisson".

The editor always checks the size of the values that

the user enters for the potentials and the charges. If

the user attempts to enter a value that is outside the

allowable range, then the editor will say so. It will

also tell the user what the valid range of values is, and

will allow the user to re-enter the value.

Another extremely important feature is the abort key.

At any time, the user can abort adding or deleting

something from the problem region. All he has to do is

hit the delete key.
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Another feature of the new interface which makes

things a lot more clear is the fact that the problem which

is entered in the graphics editor screen is drawn (in

miniature) in the small problem box on the main screen

[see Figure 2-11].
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This is a really neat feature. With the old interface,

the interior of the problem box on the main screen

remained empty after the user entered line charges or

potentials inside it. This was quite disconcerting; it

made the user wonder if the stuff he entered in the

interior of the problem box got accepted by "Poisson" or

not.

Another nice thing about the new editor is that the

line charges, rods of constant potential, and sheets of

constant potential are drawn when the contours are

plotted. The old interface just drew the contours.

Note that the symbol for a line charge is a triangle,

and the symbol for a rod of constant potential is a

square. This scheme was chosen (instead of drawing two

different colored squares) so that "Poisson" would not be

restricted to color terminals.
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Chapter 3

Programming considerations.

3.1 Organization of major functional modules.

"Poisson" is written in both C and FORTRAN77. Three

major modules make up 99% of the source code. These files

are compiled separately, and are then linked together with

the other compiled files to form the executable code. The

three major modules are:

Module 1 The user-interface and the graphics editor.
-—-written in C, by Ted C. Johnson.
-—-this is what "talks" to the user, and

passes the data relevant to the ES

problem to Module 2.

Module 2 The "engine", i.e., the code which does all

of the mathematical computations necessary

vo solve Poisson's equation.

--—-written in FORTRAN77, by Denise Barnett.

Module 3 The contour plotter.
~—--this is written in C, by various people.

Robert Brawer is supporting it.

"Poisson" was implemented on a DEC (Digital Equipment

Corporation) VAX 11/750, which is one of the minicomputers

used by MIT's Project Athena. See Appendix C for the

hardware required to run "Poisson"
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3.2 Graphics introduction: how most computers deal with

graphics.

All video terminals support text display. Some video

terminals (graphics terminals) have additional hardware

inside of them which enables them to display graphics as

well as text. The set up for video terminals which

support graphics as well as text is shown below:

texc

processor
a program

or

text file

wt

Mei a
-

ml

1—— the computer

decoder

y

\
video display

graphics /
Drocessor

 —_

»

 &lt;9 -the graphics video terminal

Figure 3-1: How a terminal handles graphics and text.

The basic algorithm for displaying graphics and text

has 3 steps:

Step 1. Text characters and control characters (both

of which are represented via the 8-bit ASCII code, see

2

Appendix G) are sent from the computer to the graphics

There are 128 ASCII characters, numbered 0 to 127.

Numbers 33 to 126 are text characters; the others are

control characters [see Appendix G].

/



-30-

terminal. This is done either by having a program send

characters to the terminal, or by the user sending the

contents of a text file to the terminal (on a UNIX

operating system, this would be done with the "cat"

command, e.g., "cat graphicscmdfile").

Step 2. Inside the terminal, a decoder decides if

the character is a text character or a graphics control

character. The decoder then sends the character to the

proper place to be processed.

Step 3. Text and graphics show us on the user's

graphics terminal.

3.3 The graphics systems used in "Poisson"

"Poisson" uses two different graphics systems: ReGIS

[1] and Penplot [2]. ReGIS (Remote Graphics Instruction

Set) 1s a set of graphics commands which only work on DEC

VT240 terminals. It is extremely flexible and fairly

fast, BUT it only works on one particular type of

terminal. Penplot is a set of graphics commands which are

supposed to be terminal-independent; 1i.e., in theory,

Penplot will work on ANY video terminal which has graphics

capabities. It does this by consulting a huge database

which has a file of ALMOST every video terminal ever made,

and the proper control characters for the graphics

commands for that terminal. In reality, Penplot is not

terminal-independent; for example, it won't work on the

new DEC VAXstation 100 terminals.
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3.3.1 The ReGIS graphics system.

ReGIS is a DEC graphics system which only works with

certain hardware [see Appendix CJ. It allows the

programmer to write code to draw points, lines, and

circles on the screen, in four different colors (red,

green, blue, and black).

3.3.2 The Penplot graphics system.

Penplot 1s used only for the display of the

equipotential contour lines and the electric field lines.

ReGIS could have been used to do this, but the author of

the contour plotting module built Penplot into the contour

plotter. See Appendix E for more information on the

contour plotter.
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3.4 Major concepts in my code.

The following is an explanation of the rationale

behind a few of the major design decisions made while

developing and implementing the user-interface for the

Poisson-solver "Poisson".

The "Poisson" program uses three screens (not

counting the two help screens and the introductory text

screen). The first, the main screen, 1s the screen that

the user has the most interaction with. The second screen

is the graphics editor, which the user uses to enter line

charges, rods of constant potential, and sheets of

constant potential into the interior of the problem

region. The third screen is the one where the contours

are plotted.

The most fundamental decision was the choice of

making "Poisson" be menu-driven rather than command-line

driven. In other words, all commands are entered by

selecting one command from a displayed menu of commands,

rather than by the more conventional way of having the

user type in commands to a prompt. A command-line driven

interface would have been MUCH easier to design and to

implement, and it has the additional advantage that it's

extremely easy to add more commands to such an interface.

A menu-driven interface is much harder to design, takes up

more of the terminal's screen space, 1s harder to
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implement, and it can be difficult to add more commands

tO.

Then why pick a menu-driven interface? I picked a

menu-driven interface because the main users of the

"Poisson" program are going to be students, who have

neither the time nor the inclination to spend a lot of

time learning how to use a program. Thus, the primary

goal for this interface was that FOR THE FIRST-TIME USER

IT BE EXTREMELY EASY AND INTUITIVE TO USE. The user

interface had to be "intuitively obvious, to the most

casual user". A menu-driven interface 1s MUCH more

intuitive, 1s much easier to use, and is much less prone

to user-error than is a command-line driven interface.

First of all, there are no commands to memorize (or to

forget, or to mistype), because they're all right there on

the screen in front of the user. All the user has to do

is pick one of them. Second, there is no syntax to worry

about, because the user never types in any commands.

Third, users who can't type aren't inconvenienced by

having to hunt for the right letters to spell out long

commands. Fourth, commands which require parameters are

also more intuitive, because after the user selects one of

these commands from the menu, he 1s prompted for the

necessary parameter(s) at the bottom of the screen (e.q.,

"Enter the voltage--&gt;").
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Chapter 4

Implementation documentat ion.

4,1 INTRODUCTION.

"Poisson" was implemented using both FORTRAN77 and C

programming languages. All of the code associated with

the user interface is written in C. All of the code which

does the actual number crunching (i.e., the numerical

algorithms which find a solution to the electrostatic

problem) is written in FORTRAN77. The subroutine which

calculates and plots the contours is written in C.

1.2 ORGANIZATION OF F1uLiS

The user interface is implemented as a subroutine

that is called from the FORTRAN77 program [see the file

"poisson.f" in Appendix K].

Constants used by the user interface are in the file

called "defs" (which stands for "definitions”) [see

Appendix KJ].

Structures used by the user interface are defined in

the file "structures.c" [see Appendix K].

The ReGIS terminal-dependent graphics subroutines are

in the file "regis subrs.c" [see Appendix K].



_3%=

All of the structures and arrays used by the user

interface are initialized by a huge subroutine called

set_default_.values(), which is defined in the file

"db init.c" [see Appendix K].

4.3 OVERVIEW

The general flow of control between the three major

modules which make up "Poisson", 1i.e., (l)the user

interface (edit—(...)), (2)the Poisson-solver's number

cruncher, and (3)the contour plotter, is shown in the

following flow chart, Figure 4-1. This figure shows how

these three modules interact with each other."

What follows is an in-depth explanation of the

implementation of the user interface. The contour plotter

and the Poisson-solver module will be referred to where

appropriate. Source code for all three modules is located

in Appendices J and K.
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The implementation of the user interface is explained

below. It is divided into two major sections: the main

screen and the graphics editor.

Refer to section 4.6 for an explanation of the

various data structures, arrays, and arrays of data

structures which are used by the user interface.

4.3.1 How the user interface is called by the FORTRAN77

program.

The C subroutine which is called from the FORTRAN77

program is called edit_(...) [see Appendix K, file

"fneditor.c", page 2]. It is called for two quite

different functions. The first is to act as a user

interface, i.e., to let the user specify a problem. The

second is to draw the line charge symbols (triangles), the

potential rod symbols (squares), and the potential sheet

symbols (lines) right before the contour plotter plots the

contours. This is all accomplished by the subroutine

do teds stuff() [see Appendix K, file "fneditor.c", pages

72-731.

Which of these two functions edit_(...) does is

determined by the 1iflagl and iflag2 flags passed in to

edit _(...). If iflagl is 1, then edit_(...) is used to

plot the line charge, potential rod, and potential sheet

symbols. If iflagl is -1 and iflag2 is 1, then edit_(...)

1s used as the user interface.



4.4 MAIN SCREEN DOCUMENTATION.

4.4.1 Main screen: display management.

The display of text on the main screen 1s

accomplished by using two subroutines:

display(row num, column num, want inverse)

erase(row_num, column num)

There are two coordinate systems that we are

concerned about when we are displaying text. The first is

the text SCREEN coordinate system. The terminal screen is

24 ASCII characters tall by 80 ASCII characters wide. The

text screen coordinate system divides the screen up into

an 80 by 24 grid, where the upper left hand corner of the

screen is at position (1,1), and the lower right hand

corner of the screen is at position (24, 80).

The second coordinate system is one that is

artifically imposed on the main screen's display. It is

called the text GRID coordinate system. It is used to

keep track of the portions of the main screen where the

text is liable to change (e.g., the different types of

functions available for the boundaries of the problem

region). It divides the active portions of the screen

into a grid that is six rows (labelled Rl to R6) tall by

three columns (labelled Cl to C3) wide. See Figure 4-3.
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4.4.1.1 Explanation of display(...).

The display(...) subroutine [see Appendix K, file

"fneditor.c", pages 30-33] is actually a database. It

contains ALL of the text that is displayed on the main

screen, with the exception of the title that appears at

the top of the screen. The display(...) subroutine

contains the text for all the different options (e.g., it

contains the text strings: "potential", "normal

derivative", "linear", "step", "constant", etc.). It also

contains the text for all of the menu items (e.g., it

contains the text strings: "Add charges or potentials”,

"Solve for potentials", "Help", "Quit Program", etc.).

display(...) is called with the text grid coordinates

of the location where text is to be displayed; it then

looks in the options[][] database to see which of several

text strings are meant to be displayed at this text grid

position. For instance, in column two (text grid

positions (R1,C2), (R2,C2), (R3,C2), and (R4,C2)), the

text can be one of two things, either "potential =" or

"normal derivative =". The way display(...) knows which

of these to use is by consulting the options[][] array,

and seeing what option was selected for that text grid

location.

The next step is to see what text screen coordinates

correspond to these text grid coordinates. This is done
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by consulting the db[] database, which contains the text

screen coordinates for all of the text that 1is displayed

on the main screen.

There are two modes in which the text can be

displayed: normal video, and inverse video. In normal

video mode, the text appears as white characters on a

black background. In inverse video mode, the text is

black and the background is white. Inverse video 1s used

to draw the user's attention to a certain area of the

screen. "Poisson" uses this method, instead of a cursor,

to indicate to the user where the next action will take

place. If the want-inverse argument to display(...) is

YES, then the text will be typed in inverse video mode.

Otherwise the flag is NO, and the text is typed in normal

3

video mode.

3

YES and NO are constants which are defined in the

"defs" file [see Appendix K]. The value of YES is 1; the
value of NO is 0.
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4.4.1.2 Explanation of erase(...).

The counterpart to the display(...) subroutine is

called erase(...) [see Appendix K, file "fneditor.c",

pages 28-29]. It is also a database: it knows how many

blank spaces to type out to erase any of the text grid

locations, no matter what option is being displayed.

Why is the erase(...) subroutine needed? Let's look

at a typical scenario. The user has just toggled the

"linear" option to the "step" option, for the top boundary

of the problem box (i.e., text grid location (R1,C3)). If

we just use display(...) to type "step" where "linear"

used to be shown, then what will actually appear on the

screen is "stepar", i.e., only the first four characters

of "linear" will be overwritten by the text string "step".

The way to fix this problem is to erase the text string

"linear" first. Erasing text is done by writing over it

with blank spaces. Different numbers of blank spaces are

needed, depending on how much text is to be erased.

The way the erase(...) subroutine works is that you

pass it the text grid coordinates, 1i.e., the (row num,

column num), of the text grid location that you want

erased. erase(...) then consults the options[][]

database, to see what option is being displayed at this

text grid location. Then the db[] database is consulted,

to see what text screen coordinates correspond to the text
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grid location (row num, column num). Finally, erase(...)

has all the information it needs, so it types out the

correct number of blank spaces to erase the text that is

currently being displayed at text grid location (row num,

column num).

4.4,1,3 Usage of display(...) and erase(...).

display(...) and erase(...) are used in two separate

situations. The first is when the user toggles from one

option to another. The program then uses erase(...) to

erase the current option, and uses display(...) to type

out the text for next option.

The second time these subroutines are used is when

the user moves the high-lighted region from one ‘place to

another. The program uses erase(...) to erase the

current high-lighted text grid location, and uses

display(...) to re-type it, this time in normal video

mode. The program then uses erase(...) to erase the text

of the text grid location that the user wants to move to,

and re-types that text (in inverse video mode) using

display(...).
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4.4.2 Main screen: handling user interaction.

"Poisson" lets the user move the high-lighted region

to any of the 18 text grid coordinate locations (6 columns

Xx 3 rows = 18 locations) [see Figure 4-3], via the four

arrow keys on the right hand side of the keyboard. This

is done via the monitor_keyboard(...) subroutine [see

Appendix K, file "fneditor.c", page 12].

Wrap-around is permitted; i.e., if the high-lighted

region is at the leftmost side of the screen and the user

hits the left arrow key, then the high-lighted region will

appear at the right side of the screen. Wrap-around to

the left, to the right, over the top, and under the bottom

of the screen are all permitted.

The program ignores all keys except for the four

arrow keys and the space bar. No action is taken until

the user hits the space bar.

4.4.2.1 Menu item selection.

When the user hits the space bar, the program checks

the current text grid row number (which is kept track of

by the variable cur_row) to see if the high-lighted region

is in the menu. It is in the menu if the current row

number is R5 or R6 [see Figure 4-3]. If it is, then the

menu-handler(...) subroutine [see Appendix K, file

"fneditor.c", page 14] is called.
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The menu_handler(...) determines (via the variables

cur_col and cur_row, which hold the current text grid row

and column numbers) which menu item the user selected.

Menu item: "Add charges or potentials"

If the user selected the "Add charges or potentials" menu

item, (row,col) = (R5,Cl), then the menu_handler(...)

calls the invoke_screen2() subroutine [see Appendix K,

file "fneditor.c", page 17]. This subroutine erases the

screen, and conjures up the graphics editor screen. See

section 4.5 for information on the implementation of the

graphics editor

Menu item: "Solve for potentials"

If the user selected the "Solve for potentials" menu item,

(row,col) = (R5,C2), then the menu_handler(...) calls the

crunch() subroutine [see Appendix K, file "fneditor.c",

page 18]. This subroutine makes the global variable quit

equal YES, and the main loop [see Appendix K, file

"fneditor.c", page 4]

while (quit == NO) {

monitor keyboard();

is exited. Then the arrays passed in to edit_(...) [see
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Appendix K, file "fneditor.c", page 2] from the FORTRAN77

main program [see Appendix J, file "poisson.f"] are filled

with the voltages and the line charges which describe the

problem that the user entered. The edit_(...) subroutine

is then exited, and control is returned to the FORTRAN77

program which called it [see Appendix J, file

"poisson.f"].

Next, the FORTRAN77 modules solve Poisson's equation,

with the sources and boundary conditions specified by the

user. The FORTRAN77 main program then calls edit_(...),

with the variable iflagl equal to 1. This tells

edit_(...) to plot the symbols for the line charges, the

potential rods, and the potential sheets. The edit_(...)

subroutine is then exited, and control returns to the

FORTRAN77 main program. The main program then calls the

contour plotter [see Appendix J, file "poisson.f"], and

passes it the solution to the ES problem. The contour

plotter [see Appendix E] plots the contours, and returns

control to the FORTRAN77 main program. If the user wants

to return to the main screen (to do another problem), then

edit (...) is called again, this time with iflagl equal to

-1 and iflag2 equal to 1 (which tells edit_(...) to act as

user interface).a

Menu 1tem: "Quit Program"
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If the user selected the "Quit Program" menu item,

(row,col) = (R5,C3), then the menu_handler(...) calls the

break_out() subroutine [see Appendix K, file "fneditor.c",

pages 18-19]. This subroutine asks the user, "Do you

really want to quit (y/n)?" If the user types "n" or "N",

then break_out() clears the screen, and terminates the

"Poisson" program. Since we want to terminate the entire

program from inside a subroutine, and not from inside the

main program (which is the usual way of doing it), we have

to terminate the program in an inelegant fashion; this is

done by using the C exit() function [see Appendix K, file

"fneditor.c", page 19].

Menu item: "Help "

If the user selected the "Help" menu item, (row,col) =

(R6,C1), then the menu_handler(...) calls the help()

subroutine [see Appendix K, file "fneditor.c", pages

17-18]. This subroutine clears the entire screen, and

then types a few paragraphs of helpful text. help() tells

the user to indicate when he is done reading the help

screen and is ready to return to the main screen by

hitting the space bar. When the user hits the space bar,

the screen 1s erased and the main screen is redrawn.

Menu item: "Recall Solved Problem"
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If the user selected the "Recall Solved Problem" menu

item, (row,col) = (R6,C2), then. the menu_handler(...)

calls the get_problem(...) subroutine [see Appendix XK,

file "fneditor.c", pages 14-15]. This subroutine prompts

the user for a file name, and then reads all the data

contained in that file into the following arrays:

prgridl][], lc_grid[1[], ps_grid[I[], ps_dbl1[], potl[][],

options[][], and db[].

It may seem odd that saving a problem is NOT one of

the options on the menu, yet recalling a problem is. How

can you recall a problem if you can't save it in the first

place? The answer to this is that "Poisson" doesn't ask

the user if he wants to save a problem until AFTER the

problem has been solved, and the contours have been

plotted. The FORTRAN77 main program [see Appendix J, file

"poisson.f"] takes care of asking the user if he wants to

save this problem, and if so, what file should the problem

be saved in. The saving of a problem is extremely

straightforward. The arrays pr_grid[]J[], lc_grid[][],

ps_grid[1[], ps_dbl[1[], pot[][], options[][], and db[] are

simply written into the file that the user specifies.

Menu item: "Change grid size"

If the user selected the "Change grid size" menu item,

(row,col) = R6,C3), then the menu_handler(...) calls the
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grid_size() subroutine [see Appendix K, file "fneditor.c",

page 16]. There are two grid sizes available, 64x64 and

32x32. The larger grid size causes the FORTRAN77 program

to compute the solution to Poisson's equation to a higher

degree of accuracy than with a 32x32 grid size. This

results in smoother contours when the contours are

plotted. The trade-off is that doubling the grid size

causes the Poisson-solver to take four times as long to

solve the problem. Aside from the smoother contours and

the longer wait, the larger grid size looks exactly the

same to the user. It does NOT enable the user to fit more

line charges in the inside of the problem region, or of

that nature.

The grid._size() subroutine is very siaple. It

determines what the current grid size is (by checking the

size global variable), and toggles it to the other size.

It toggles size between 32 and 64. The subroutine then

updates the main screen to indicate the current grid size.

4.4.2.2 Toggling the boundary condition options, and

changing the numerical parameters of the boundary

condition options.

If the high-lighted region ISN'T in the menu area

(which consists of rows R5 and R6), then the user wants to

either: (1)toggle between specifying the "normal

derivative" of the potential and the "potential", or
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(2)toggle between having the normal derivative/potential

be constant, a step function, linear, a sine, or a cosine,

or (3)change the numerical parameters of one of the five

normal derivative/potential functions.

Whenever the space bar is hit and the high-lighted

region isn't in the menu, monitor_keyboard(...) calls the

subroutine space_bar() [see Appendix K, file "fneditor.c",

page 23].

The space-bar() subroutine checks the cur_cul

variable to see which of the three text grid columns [see

figure 4-3] the high-lighted region is in. What next

occurs depends on which column the high-lighted region is

in

If the high-lighted region is in column one:

If space_bar() finds that the high-lighted region is in

column one, then it uses the «cur_col, cur_row and

erase(...) to erase the text for the current high-lighted

option (which 1s either "potential" or "normal

derivative"). It then displays the text for the other

option (which is either "normal derivative" or

"potential") via the display(...) subroutine.

If the high-lighted region is in column two:

[f space-bar() finds that the high-lighted region is in
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column two, then it erases the current option, and draws

the next option. The order in which the options are

toggled through is: "constant" --&gt; "linear" --&gt; "step"

"sine" --&gt; "cosine". When it gets to "cosine", it

starts over again at "constant"

If the high-lighted region is in column three:

If space_bar() finds that the high-lighted region is in

column three, then that means that the user wants to

change the numerical parameter(s) associated with that

boundary's potential/normal derivative function. This is

a bit tricky.

In order to prompt the user for a new value, ‘we must

know what option is being used on this boundary. If all

the boundaries are linear [see Figure 2-5], then we want

to ask the user for the values at the coordinates (0,0),

(0,1), (1,0), and (1,1). We need to know what text to put

in our prompt, e.g, "Enter new value at (0,1) --&gt;". This

is done with the better_get_num() subroutine [see Appendix

K, file "fneditor.c", pages 23-281].

Explanation of better_get.num()

better_get_num() checks cur_col and cur_row to see what

the current text grid location is. It then checks the

options[][] database to see what option is being used at
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(cur_row,cur_col). The subroutine then prompts the user

for the appropriate values. The arrays lnr_str[] ("LiNeaR

STRing") and stp_str[] ("STeP STRing") [see Appendix K,

file "init.c"] are used to help better_get_num() construct

the proper text strings to prompt the user for the

parameter values.

better_.get-num() checks to .make sure that the data

the user types in is numeric. If is isn't, it tells the

user "Non-numeric data. Rejected." and does not prompt

the user to try again. The user must hit the space bar

again if he wants to try again to change this numeric

parameter,

After the new numeric value(s) have been received

from the user, better_get_num() writes them ‘into the

database db[] [see section 4.6], tells the user that the

new value(s) have been accepted, and then updates the

parameter(s) on the main screen, to reflect the new

value(s).

4.5 THE GRAPHICS EDITOR: DISPLAY MANAGEMENT AND USER

INTERACTION.
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4.5.1 Introduction.

The graphics editor is used to enter line charges,

rods of constant potential, and sheets of constant

potential into the interior of the problem region. It is

invoked from the main screen, via the "Add charges of

potentials” menu item. As mentioned earlier,

menu_handler(...) then calls the subroutine

invoke_screen2() [see Appendix K, file "fneditoir.c", page

17], to set up and run the graphics editor.

The first thing that invoke_screen2() does is set the

variable want_secondary_screen to YES. It then erases the

screen, and draws the graphics editor screen (via the

subroutine draw_secondary_screen() [see Appendix K, file

"fneditor.c", page 35]. This subroutine draws the editor

menu and the graphics editor grid, as well as any line

charges, potential rods, or potential sheets that were

previously entered. The following loop is then entered:

while (want secondary screen == YES)

smonitor keyboard();
{

As soon as this loop is exited, the graphics editor

screen is erased and the main screen is redrawn. Any line

charges, potential rods, or potential sheets that were

entered are mapped into the problem box on the main screen

[see Figure 2-11].
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Note that all of the subroutines which are used

exclusively by the graphics editor are prefixed with the

letter "s". This is because the graphics editor was

originally called the "Secondary screen".

4.5.2 The graphics editor: user interaction

The user is allowed to move the high-lighted region

up and down the eight-item menu, using the and arrow

keys, which are located at the lower right hand side of

the VT240 keyboard. Wrap—-around over the top and under

the bottom of the menu are permitted. The and arrow

keys, and all other keys (with the exception of the space

bar and the delete key) are ignored.

As on the main screen, the space bar is ‘used to

select a menu item. The delete key is used if the user

wants to change his mind. For example, the user may

select the "ADD line charge" menu item, and then decide

that he doesn't really want to add a line charge. Instead

of forcing him to add a line charge and then delete it (by

selecting "DELETE line charge"), the smonitor_keyboard()

subroutine [see Appendix K, file "fneditor.c", pages

36-37] allows him to abort the "ADD line charge" command

by hitting the delete key. All of the commands can be

aborted, with the exception of the "RETURN to main screen”

and "HELP" commands. Aborting a command has no ill

effects whatsoever.
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Adding a line charge.

Adding a line charge is done via the sadd_lcharge()

subroutine [see Appendix K, file "fneditor.c", pages

38-40]. The algorithm for this subroutine is given below

[see Algorithm 4-1].. All the user has to do is specify

the position of the line charge, and its value (lambda).

This process 1s as user-proof as possible.

sadd_lcharge() checks to make sure that the user doesn't

try to put a line charge outside of the problem region, or

on a boundary. It doesn't let him put a line charge on

top of a potential rod, on top of a potential sheet, or on

top of another line charge. When the user is prompied for

the line charge's lambda, he is told to re-enter the data

if he types in something non-numeric. If the user tries

to specify a lambda that is outside the allowable range,

he is told what the allowable range is, and is told to

re-enter the value of lambda.
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ALGORITHM 4-1: ADDING A LINE CHARGE.

[1] User selects the "ADD line charge" menu item.

-Draw cross-hair in center of problem region.
Tell user "Position line charge."

Tell user "Press space bar to enter line charges; press delete

key to abort."

[2] Did user hit the delete key?

-if YES, Erase cross-hair.

Tell user "Aborted -- add line charge.

Return to menu.

Continue.

[3] Did user hit the *, L,—&gt;, or &amp; key?

—-if YES, Check to see if this would move the cursor out of the

problem region.

-if YES, Do nothing.

-if NO, Move the cross-hair one grid unit in the

indicated direction.

-if NO, Continue.

[4] Did user hit the space bar?

-if NO, Go to [2].

-if YES, [4a] Check the potential rod array: does a potential

rod exist at this (x,y) grid point?

-i1f YES, Tell user "Rod of constant potential is

here. Try again.”
Go to [2].

-if NO, Continue.

[4D] Check the potential sheet array: does a potential

sheet pass through this (x,y) grid point?

-if YES, Tell user "Sheet of constant potential is

here. Try again."
Go to [2].

-i1f NO, Continue.

[4c] Check the line charge array: does a line charge

already exist at this (x,y) grid point?

-if YES, Tell user "Line charge is already here.

Try again."
Go to [2].

nF NO, Continue.



Dec 10 20:18 1986- -add.lc Page 2  —- LQ—

.4d] Tell user "Enter lamda for line charge, in

Coulombs/unit length--&gt;"
Read in user's -input. ..
Check: did user enter non-numeric data?

-if YES, Tell user "Non-numeric data. Try again.
Go to [4d].

-if NO, Continue.

[4f] Check: is the number that the user entered in the

range of 1.0e-12 &lt;= abs value(lambda) &lt;= 1,0e-107?

—1f YES, Tell user "Line charge has lambda = X",

where X is the value the user entered.

Make line charge array "chosen" flag for

this grid point equal YES.
Make line charge array "value" parameter

for this grid point equal X.
Return to menu.

Tell user "Valid range: 1.0e-12 &lt;=

abs_value(lambda) &lt;= 1.0e-10. Try again.”
Go to [4d].
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Deleting a line charge.

Deleting a line charge is done via the sdelete_lcharge()

subroutine [see Appendix K, file "fneditor.c", pages

40-41]. The algorithm for this subroutine is given below

[see Algorithm 4-2]. All the user has to do is specify

the position of the line charge.

This process is also as user-proof as possible. The

subroutine first checks to see if any line charges exist.

If not, then it tells the user that there aren't any line

charges, and then it returns to the menu. The subroutine

makes sure that what the user deletes is indeed a line

charge, and not a potential rod or a potential sheet.
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ALGORITHM 4-2: DELETING A LINE CHARGE.

[1] User selects the "DELETE line charge" menu item.

[2] Check the line charge array: do any line charges exist?

-if YES, Draw cross-hair in center of problem region.

Tell user "Move to line charge."

Tell user "Press space bar to delete line charge;

delete key to abort."

Tell user "No line charges exist."
Return to menu.

[3] Did the user hit the delete key?

-if YES, Erase cross-hair.

Tell user "Aborted -- delete line charge.”

Return to menu.

-if NO, Continue.

[4] Did user hit the +4 , €, or ¥ key?

—-if YES, Check to see if this would move the cursor out of the

problem region.

-if YES, Do nothing.

-if NO, Move the cross-hair one grid unit in the

indicated region.

-if NO, Continue.

[5] Did user hit the space bar?

-if YES, Check the line charge array: does a line charge exist at

this (x,y) grid point?

-if YES, Make line charge array "chosen" flag for this

grid point equal NO.
Erase line charge from the screen.

Tell user "Line charge has been deleted."
Return to menu.

-if

-if NO,

NO, Go to  {1 3]

Tell user "No line charge exists

Try again,"
Go to [3].

ere *
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Adding a potential rod.

Adding a potential rod is done via the sadd_prod()

subroutine [see Appendix K, file "fneditor.c", pages

42-4417. The algorithm for this subroutine is given below

[see Algorithm 4-3]. All the user has to do is specify

the position of the potential rod, and its voltage.

This process is identical to that of adding a line

charge, so I won't explain the algorithm. See the above

explanation for adding a line charge for an explanation.
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ALGORITHM 4-3: ADDING A POTENTIAL ROD.

[1] User selects the "ADD potential rod" menu item.

-Draw cross-hair in center of problem region.
Tell user "Position potential rod.”

Tell user "Press space bar to enter line charges; press delete

key to abort."

[2] Did user hit the delete key?

-if YES, Erase cross-hair.

Tell user "Aborted -- add potential rod." -

Return to menu.

Continue.

[3] Did user hit the T,{ ,¢, or=&gt;key?
-if YES, Check to see if this would move the cursor out of the

problem region.

-if YES, Do nothing.

-if NO, Move the cross-hair one grid unit in the

indicated direction.

-if NO, Continue.

[4] Did user hit the space bar?

-if NO, Go to [2].

-if YES, [4a] Check the potential rod array: does a potential

rod exist at this (x,y) grid point?

-if YES, Tell user "Rod of constant potential is

already here. Try again.”
Go to [2].

-if NO, Continue.

[4b] Check the potential sheet array: does a potential

sheet pass through this (x,y) grid point?

—-if YES, Tell user "Sheet of constant potential is

here. Try again."
Go to [2].

-if NO, Continue.

[4c] Check the line charge array: does a line charge

already exist at this (x,y) grid point?

-if YES, Tell user "Line charge is here. Try

again."
Go to [2].

1Ff NO, Continue.
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[4d] Tell user "Enter voltage for potential rod--&gt;"

Read in user's input.
Check: did user enter non-numeric data?

-if YES, Tell user "Non-numeric data. Try again."
Go to [4d]. -

-if NO, Continue.

(4f] Check: is the number that the user entered in the

range of -10.0 &lt;= voltage &lt;= 10.07?

-if YES, Tell user "Potential rod has voltage = X",

where X is the value the user entered.

Make potential rod array "chosen" flag for
this grid point equal YES.
Make potential rod array "value" parameter

for this grid point equal X.
Return to menu.

Tell user "Valid range: -10.0

&lt;= 10.0 Try again."
Go to [4d].
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Deleting a potential rod.

Deleting a potential rod is done via the sdelete_prod()

subroutine [see Appendix K, file "fneditor.c", pages

44-45], The algorithm for this subroutine is given below

[see Algorithm 4-4]. All the user has to do is specify

the position of the potential rod.

This process is identical to that of deleting a line

charge, so I won't explain the algorithm. See the above

explanation for deleting a line charge for an explanation.
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ALGORITHM 4-4: DELETING A ROD OF CONSTANT POTENTIAL.

[1] User selects the "DELETE potential rod" menu item.

[2] Check the potential rod array: do any potential rods exist?

-if YES, Draw cross-hair in center of problem region.
Tell user "Move to potential rod."

Tell user "Press space bar to delete potential rod;

delete key to abort."

Tell user "No potential rods exist."
Return to menu.

[3] Did the user hit the delete key?

-if YES, Erase cross-hair.

Tell user "Aborted -- delete potential rod."

Return to menu.

-if NO, Continue.

[4] Did user hit the t.4,«, or ~¥ key?

-if YES, Check to see if this would move the cursor out of the

problem region.

-if YES, Do nothing.

-if

~if NO, Move the cross-hair one grid unit in the

indicated region.

-if NO, Continue.

[5] Did user hit the space bar?

-if YES, Check the potential rod array: does a potential rod exist

at this (x,y) grid point?

-if YES, Make potential rod array "chosen" flag for this

grid point equal NO.
Erase potential rod from the screen.

Tell user "Potential rod has been deleted."

Return to menu.

-1f NO,

-i1f NO, Go to [3]

Tell user "No potential rod exiscs

Try again."
Go to [3].

iere.,
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Adding a potential sheet.

Adding a potential sheet is done via the sadd_psheet()

subroutine [see Appendix K, file "fneditor.c", pages

45-47] and the spart2_add_psheet(...) subroutine [see

Appendix K, file "fneditor.c", pages 47-511]. The

algorithms for both of these subroutines are given below

[see Algorithms 4-5 and 4-6]. All the user has to do is

specify the positions of the two edges of the potential

sheet, and the voltage of the potential sheet.

This process is very user-proof, The sadd_psheet()

subroutine makes sure that the user doesn't try to put the

first edge of the potential sheet outside of the. problem

region, or on a boundary. It doesn't let the user put it

on top of a potential rod, or on top of a line charge. It

does let him connect it to another potential sheet though.

However, sadd_psheet() is careful to ensure that this new

potential sheet will have the same voltage as the

potential sheet that it's touching.

The subroutine spart2_add_psheet() does a lot more

user-proofing. It makes sure that, if the first edge of

the potential sheet touches an existing potential sheet,

that the second endpoint does not touch a potential sheet

of a different voltage, and that the new potential sheet

does not intersect a potential sheet of a different

voltaqge.
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spart2_add_psheet() also checks to make sure that the

second edge isn't at the same (x,y) point as the first

edge. "Poisson's" number-crunching algorithm must have

the potential sheets be horizontal, vertical, or at a

45-degree angle. spart2_add_psheet() makes sure that this

is the case. It also makes sure that the user enters a

numeric value for the voltage of the potential sheet, and

that this value is within the allowable range. If either

edge of the new potential sheet touches another potential

sheet, or if the new potential sheet intersects another

potential sheet, then spart2_add_psheet() does NOT ask the

user for the voltage of the new potential sheet, because

the new potential sheet must take on the same voltage as

any potential sheet that it is touching.

If any of these tests fail, then either sadd_psheet()

or spart2_add_psheet(...) tell the user what the problem

is, and give the user the opportunity to correct the

problem.
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ALGORITHM 4-6: ADDING A POTENTIAL SHEET: PARTI.

[1] User selects the "ADD potential rod" menu item.

-Set the "connection made" variable equal to NO.
Set the "existing voltage” variable equal to 0.0.
Draw cross-hair in center of problem region.

Tell user "Position edge of potential sheet.”

Tell user "NOTE: Potential sheets can only be horizontal,

vertical, and at a 45-degree angle."

Tell user "Press space bar to enter potential sheet; press

delete key to abort."

[2] Did user hit the delete key?

-if YES, Erase cross-hair.

Tell user "Aborted -- add potential sheet.”

Return to menu.

-if NO, Continue.

[3] Did user hit thef®, | ,€¢, or key?
-if YES, Check to see if this would move the cursor out of the

problem region.

-if YES, Do nothing.

-if NO, Move the cross-hair one grid unit in the

indicated direction.

-if NO, Continue.

[4] Did user hit the space bar?

-if NO, Go to [2].

-if YES, [4a] Check the potential rod array: does a potential

rod exist at this (x,y) grid point?

-if YES, Tell user "Rod of constant potential is

here. Try again."
Go to [2].

~-i1f NO, Continue.

[4b] Check the line charge array: does a line charge

already exist at this (x,y) grid point?

-if YES, Tell user "Line charge is here. Try

again,"
Go to [2].

-1f NO, Continue.

[4d] Turn on one pixel, to mark this edge of the sheet.

Save the (x,y) coordinates of this point.
Check potential sheet array: is there already a

potential sheet at this point?
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I L {ES , Make the "connection made" variable
equal YES.

Make the "existing voltage" variable be the
voltage of the potential sheet that was
here first.

Tell user "This new sheet of constant

potential will also have voltage
= X", where X is the voltage of

the first potential sheet.
Tell user "Position other edge."

Go to PART2, and pass it the values of

the following: 1)the coordinates of the

first edge of the sheet.
2)the "connection made"

variable. -

3)the "existing voltage”
variable.

Tell user "Position other edge.”

Go to PART2, and pass it the values of

the following: 1)the coordinates of the

first edge of the sheet.

2)the "connection made"
variable. .

3)the "existing voltage"
variable.

-if NO,
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ALGORITHM 4-6: ADDING A POTENTIAL SHEET: PART2.

[5] Did user hit the delete key?

-if YES, Erase cross-hair.

Tell user "Aborted -- add potential

Return to menu.

Sheet.
'¥

-if NO, Continue.

[6] Did user hit the I,¥,€,or=key?
-1if YES, Check to see if this would move the cursor out of the

problem region.

-if YES, Do nothing.

-if NO, Move the cross-hair one grid unit in the

indicated direction.

-if NO, Continue,

(7] Did user hit the space bar?

-if NO, Go to [5].

-1fYES, [7al 1f the first endpoint of the new potential sheet

touches a potential sheet, check: (1)does second

endpoint of new potential sheet touch a potential

sheet of a different voltage, or does (2)the new

potential sheet intersect a potential sheet of a
different value?

-if YES, Tell user "Potential sheets of 2 diff.

values can't touch. Try again.”
Go to [5].

-if NO, Continue.

[7b] Check the potential rod array: does a potential

rod exist at this (x,y) grid point?

-if YES, Tell user "Rod of constant potential is

here. Try again."
Go to [5].

-if NO, Continue.

[7c] Check the line charge array: does a line charge

already exist at this (x,y) grid point?

-if YES, Tell user "Line charge is here. Try

again."
Go to [5].

-1f NO, Continue.

.7d] Check: are the (x,y) coordinates of this point the
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same as the (x,y) coordinatesofthefirst endpoint
of the potential sheet?

-if YES, Tell user "Second edge of sheet can't be

same as first edge. Try again.”
Go to [5].

-if NO, Continue.

L7e]

[7f]

Check, using the coordinates of the two endpoints

of the sheet: is the sheet horizontal, vertical,
or at a 45-degree angle?

-if YES, Continue.

-if NO, Tell user "Potential sheet must horiz.,

vert., or at an angle of 45

degrees. Try again.”
Go to [5].

Draw a line from the first endpoint to the second

endpoint.
Check: 1s "voltage already assigned" equal to YES?

YES, Tell user "Sheet of constant potential has

voltage = X", where X is the

value of the variable

"existing voltage".
Return to menu.

-if NO, Continue.

[7g] Tell user "Enter the voltage for sheet of constant

potential--&gt;",
Read in user's input.
Check: did user enter non-numeric data?

-if YES, Tell user "Non-numeric data entered. Try

again,"
Go to [74g].

-if NO, Continue.

[7h] Check: is the number that the user entered in the

range of -10.0 &lt;= voltage &lt;= 10.0?

-31f YES. Tell user "Potential rod has voltage = X",

where X is the value the user entered.

For all the potential sheet array elements

between the endpoints of the potential

sheet, inclusive, make the "chosen" flag
equal YES, and make the "value" variable

equal X.

Make the "an endpt" flag in the potential
sheet array be YES for the endpoints of
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the potential sheet.-

Put the coordinates of the endpoints of the

potential sheet and the voltage X into the

potential sheet database, and make the

"valid" flag equal YES.
Return to menu.

Tell user "Valid range:

&lt;= 10.0 Try again.”

Go to [7g].

-if NO, a
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Deleting a potential sheet.

Deleting a potential sheet is done via the

sdelete_psheet() subroutine [see Appendix K, file

"fneditor.c", pages 51-53] and the

spart2_delete_psheet(...) subroutine [see Appendix K, file

"fneditor.c", pages 53-54]. The algorithms for both of

these subroutines are given below [see Algorithm 4-7 and

4-8]. All the user has to do is specify the where the two

edges of the potential sheet are.

As with everything else about the graphics editor,

this process is very user-proof. The first thing that the

sdelete_psheet() subroutine does is make sure that there

are any potential sheets to delete. It then makes sure

that the user doesn't try to delete a line charge or a

potential rod instead. It also makes sure that the user

specifies one of the two edges of the potential sheet;

deleting PART of a potential sheet is not allowed!!

spart2_.delete_psheet(...) makes sure that the user

doesn't pick a line charge or a potential rod instead of

the second edge of the sheet. It also makes sure that

this is the edge of the potential sheet, not somewhere in

the middle of it. It also checks to make sure that this

is the second edge of the same potential sheet!
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ALGORITHM 4-7: DELETING A POTENTIAL SHEET: PARTI1.

[1] User selects the "DELETE potential sheet" menu item.

[2] Check potential sheet array: do any potential sheets exist?

-if YES, Draw cross-hair in center of problem region.

Tell user "Move to edge of sheet."

Tell user "Press space bar to delete potential sheet:

press delete key to abort."

-if NO,

[3] Did user hit

-if YES,

Tell user "No potential sheets exist."
Return to menu.

the delete key?
Erase cross-hair.

Tell user "Aborted -- delete potential sheet.”

Return to menu.

-if NO, Continue.

[4] Did user hit the T,V ,€, or = key?

-if YES, Check to see if this would move the cursor out of the

problem region.

-if YES, Do nothing.

-if NO, Move the cross-hair one grid unit

indicated direction.

in the

-1if NO, Continue

[5] Did user hit the space bar?

-if NO, Go to [3].

-if YES, [5a] Check the potential rod array: does a potential

rod exist at this (x,y) grid point?

-if YES, Tell user "Rod of constant potential is

here. Try again."
Go to [3].

-if NO, Continue.

[5b] Check the line charge array: does a line charge

already exist at this (x,y) grid point?

-if YES, Tell user "Line charge is here. Try

again."
Go to [3].

-if NO, Continue.

5c] Check the potential sheet array: is this point part
of a potential sheet?
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-1f YES, Continue.

-if NO, Tell user "No sheet of constant potential

exists here. Try again."

[54] Check potential sheet database: is this

endpoint of a potential sheet?

t he

-if YES, Note the (x,y) coordinates of this point.

Tell user "Move to other edge."

Go to PART2 and pass it the (x,y)

coordinates of the first endpoint.

-1f NO, Tell user "This isn't the endpoint of a

a potential sheet. Try again."
Go to [3].
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ALGORITHM 4-6: DELETING A POTENTIAL SHEET: PART2.

[6] Did user hit the delete key?

-if YES, Erase cross-hair.

Tell user "Aborted -- delete potential sheet.”

Return to menu.

-if NO, Continue.

[7] Did user hit the MV ,¢, or = key?

—-if YES, Check to see if this would move the cursor out of the

problem region.

~-if YES, Do nothing.

-if NO, Move the cross-hair one grid unit in the

indicated direction.

-if NO, Continue.

[8] Did user hit the space bar?

-if NO, Go to [6].

-1f YES, [8a] Check the potential rod array: does a potential

rod exist at this (x,y) grid point?

-if YES, Tell user "Rod of constant potential is

here. Try again."
Go to [6].

-if NO, Continue.

[8b] Check the line charge array: does a line charge

already exist at this (x,y) grid point?

-if YES, Tell user "Line charge is here. Try

again."
Go to [6].

-if NO, Continue.

[8c] Check the potential sheet array: is this point
part of a potential sheet?

-if YES, Continue.

-if NO, Go to [6].

[8d] Check: are the (x,y) coordinates of this endpoint
the same as the (x,y) coordinates of the first

endpoint?

-if YES, Tell user "Second edge of sheet can't be

same as first edge. Try again.”
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Go to [6].

1f NO, Continue.

"8e] Check the potential sheet database: are these two

potential sheet endpoints the endpoints of the SAME
potential sheet?

-if YES, Continue.

-if NO, Go to [6].

[8] Erase line.

Invalidate all the points which made up this

potential sheet, in the potential sheet array, by
making the "chosen" flag equal NO.

Invalidate this potential sheet in the potential

sheet database, by making the "valid" flag equal NO,
Tell user "Sheet of constant potential has been

deleted.”

Return to menu.



4.6 EXPLANATION OF DATA STRUCTURES USED BY USER INTERFACE.

The following in an explanation of the organization

of the various structures and arrays used by the

user-interface. Their use is explained in the preceeding

sections of this chapter. These data structures are

defined in Appendix K, files "structures.c"and"defs".
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EXPLANATION OF THE "options[][]" DATABASE

Declaration.

Ind. 2X10qg:

staclc 10C opLiounsi4 JL 3] .

y

options[R1][C1]
[R2][C1]
[R3][C1]
[Ra][cC1]

[R1][C2]
[R2][C2]
[R3][C2]
[R4][C2]

[R1][C3]
[R2][C3]
[R3][C3]
[R&amp;]1[cC3]

---This is a two-dimensional array of integers. It ia used by the main

screen, to keep track of what options are selected for each of the

four boundaries of the problem box. The integers are used as flags
(whose values may be OPT1, OPT2, OPT3, OPT4, or OPT5) to indicate

which of the options is being displayed [see Figure 4-1].

---R1l, R2, R3, R4, Cl, C2, and C3 are constants, and are defined in the

"defs" file [see Appendix H]. Rl implies "row 1", and Cl implies
"column 1".

-——The following in a table showing which options are allowed in which

columns [see Figure 4-1], and what the option number is that is

associated with each option. OPT1l, OPT2, OPT3, OPT4 and OPT5 are

constants, and are defined in the "defs" file [see Appendix HJ.

For column Cl: option number | what option is displayed
 —_—— ee rr er mm,

OPT1 | potential
———re — — — — —— —_—  — ———

OPT2 | normal derivative

For columns C2 and C3 (these two columns must

the same option):
always be displaying

option number what option is displayed

OPT1 | constant
ee ee ee ee

OPT2 | linear
fm er ee ee

OPT3 | step
—_— mem em em ee ee a

OPT4 | sine
meme et  — —— —_ — — — —_— — —— —_——_

TTS | cosine~
TT
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EXPLANATION OF THE "LINE CHARGE ARRAY"

It is a grid array, called lc _grid[][].

Declaration: static struct grid point lc grid[33]1[33];

---This is a two-dimensional array of structures. It is used by the

graphics editor to keep track of the line charges. There are 33x33

points in the problem region, therefore the line charge array is
33x33. It is defined in Appendix H, in the file "structures.c".

-——Each element of the array has the following information:

1c, Jle X, VY:

double value:

int chosen:

int ume:

--—--—the VT240 terminal coordinates (range:
x is 0 to 799, y is 0 to 470) of the

pixel at this grid point.

----~-the lambda associated with the line charge
at this grid point.

-a flag (YES or NO), to indicate if there is

a line charge at this grid point or not.

-an index; the first line charge is given an
index of 1, the next is called 2, etc.
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EXPLANATION OF THE "POTENTIAL ROD ARRAY"

It is a grid array, called pr grid[][].

Declaration: static struct grid point pr grid[33][331;

---This is a two-dimensional array of structures. It is used by the

graphics editor to keep track of the potential rods. There are

33x33 points in the problem region, therefore the potential rod
array is 33x33. It is defined in Appendix H, in the file
"structures.c".

--—-Each element of the array has the following information:

do unl &amp; X, Va

double value:

int chosen:

int AU¢

--———-—the VT240 terminal coordinates (range:
x is 0 to 799, y is 0 to 470) of the

pixel at this grid point.

—-———--the voltage associated with the potential
rod at this grid point.

--~—-—-—-a flag (YES or NO), to indicate if there

a potential rod at this grid point or not.

samen}

an

index; the first potential rod is given
index of 1, the next is called 2, etc.
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EXPLANATION OF THE "POTENTIAL SHEET ARRAY"

[t is a g-id array, called ps gridl][]

Declaration: static struct psheet grid point ps grid[33][33];

---This is a two-dimensional array of structures. It is used by the

graphics editor, to keep track of all the points in each potential
sheet. Even though a potential sheet is nothing but a series of

potential rods, it is necessary to keep a separate array, so that

"Poisson" can tell the difference between a potential sheet and two

(or more) potential rods in a row. There are 33x33 points in the

problem region, therefore the potential sheet array is 33x33.

-—-—Each element of the array has the following information:

double xX, vr

double value;

int chosen:

nt num:

int an endpt

-—-----the VT240 terminal coordinates (range:
x is 0 to 799, y is 0 to 470) of the

pixel at this grid point.

--the voltage associated with the potential

sheet which goes through this grid point.

--—-----a flag (YES or NO), to indicate if a

potential sheet passes through this grid
point or not.

-—an index; the first potential sheet is

given an index of 1, the next is called

2, etc.

-------a flag (YES or NO), to indicate if this

is an endpoint of a potential sheet (as

contrasted to a point somewhere between

the two endpoints of the line marking

the position of the potential sheet).
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SXPLANATION OF THE DATABASE "ps db[]"

Declaration: static struct psheet point ps db[MAX SHEETS];

---This is a one-dimensional array of structures. It is used by the

graphics editor to keep track of the endpoints of each potential
sheet. It is defined in Appendix H, in the file "structures.c".

-——-Each element of the array has the following information:

int pO0.xci, p0.yci

int ol.xci, pl.yci

double value

int num

int valid

--the x and y "current index" for

the position of the first edge
of the potential sheet.

--——the x and y "current index" for

the position of the second edge

of the potential sheet.

-the voltage of this potential sheet.

-—an index; the first potential sheet

is given an index of 1, the second
is called 2, etc. .

-a flag (YES or NO), to indicate

whether or not this potential sheet

has been deleted, or if it's still

valid.
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Chapter 5

Future improvements to enhance "Poisson".

5.1 Terminal independence.

Because ReGIS is terminal-dependent, and because

Penplot is NOT truly terminal-independent, "Poisson" will

only run on certain terminals [see Appendix CJ]. In the

future, there is supposed to be an industry-wide

terminal-independent UNIX graphics system: the Graphics

Kernal System (GKS). If and when such a system comes into

being, it would be worth the effort to modify "Poisson" to

use GKS, because this would exponentially increase the

number of users who could have access to "Poisson"
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5.2 Use of a mouse.

Presently line charges, rods of constant potential

(both of which look like dots, when mapped from three

dimensions into two dimensions), and sheets of constant

potential (which look like lines, when mapped from three

dimensions into two dimensions) are positioned inside the

problem region with the use of four arrow keys (up, down,

left, and right) [see Figure 2-9]. The terminal that

"Poisson" works on now (a DEC VT240) does not have a

mouse; that's why the arrow keys are used. If "Poisson"

ever gets ported onto a terminal which DOES have a mouse,

then the person doing the porting should modify "Poisson"

so that the user can use the mouse instead of (or as an

option to) the arrow keys. A mouse would be a faster and

easier way for the user to enter line charges, rods of

constant potential, and sheets of constant potential.
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5.3 A neat way to add more menu items: a "paged" menu.

Right now the two menus used in "Poisson" are of the

form below:

commandl

' command?

I

command3

commandé4 |
fer————

commands

commandl

EE ——— ——Gm—-

command4

command?

commands

command?3

commande
|

 commandé

 _—

|
command?

j—ee

commands
|

_

er

|
£5

3 \
 oa

iL2)

Figure 5-1: The menus currently used in "Poisson"

For the main screen, menu (a) is used;

editor screen, menu (b) is used.

When further work is done on this program, or if it

becomes desireable to expand the command set for some

other reason, it is NOT necessary to enlarge the size of

the menus! You wouldn't want to expand the size of the

menu (to fit more text into each menu slot) because that

would take away more screen space, and necessitate MAJOR
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amounts of code re-writing (because everything else on the

screen would have to be somehow condensed).

There are two ways to add more commands without

making the menu larger. The first way is a brute force

approach; the second way is much more desireable. The

brute force method for adding more commands would be to

change a menu which looks like this:

mal

cmd4

cma’

cmds I

cmd3

cmd6

Figure 5-2: The current menu.

to one like this:

we al

cmdl cmd? cmd3

cmd5 | cmdé | cmd? |

cmd4

cmd8 |

i.e., reduce the space for each command in order to add in

more commands.

Figure 5-3: A bad way to expand the command selection.

This has the drawback that iL forces Fhe command
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names (i.e., the text in the menu slots) to become more

concise, which makes the commands more cryptic, less

intuitive, more ambiguous, and more confusing!

Fortunately there is a very elegant and simple

solution: have more than one page to the menu! Turning

the pages is simply a matter of selecting the "next page"

menu item. When the user selects the next page, the old

menu's commands will be erased, and the new menu's

commands will be written in their place. This way it is

possible to have an infinite number of commands, and never

have to increase the size of the menu! See Figure 5-4
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——..

“mal

cmd4
cmd5 |

cmd? cmd3

NEXT
menu

——

A

NY

cmdb | | PREVIOUScmd? Menu

7 NEXT

cmd8 | cmd 9 | NEXT

4

ee

cmd1001

cmd1003

© cmd1002 | PREVIOUS
menu

cmdl004 | cmdl1005

Figure 5-4: A paged menu scheme.
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5.4 Labeling things.

It would be nice if, in the future, things on the

graphics screen were labelled. For example, now the

graphics editor screen looks like:

DELETE line charge

"all potential rod

DELETE potential rod

ADD potential shest

DELETE potential sheet]

RETURN to main screen

 WwEL”P

-

'Y

Figure 5-5: The present graphics editor screen.
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It would be nice if it were instead:

DELETE line charge

AoD potential rod

 DELETE potential rod

ADD potential sheet

DELETE potential shest

RETURN to main screen
7]

~

| V:=3o

- . -

- 3

NY 4
y

y 1 =  1. DE-12

Figure 5-6: The new and improved graphics editor screen.



This SEEMS like a fairly straightforward matter, but

it is actually a very difficult problem to solve. The

main difficulty is that when there are a lot of things

(i.e., line charges, rods of constant potential, and

sheets of constant potential) on the screen, the labels

may overlap and become confusing or unreadable.

A first step towards solving this problem is to write

the labels in as small a font as the terminal will

support.

A further improvement would be to put just an index

number by each object, and then provide a table somewhere

else on the screen, with a listing of all the index

numbers and the values associated with them.
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5.5 Anti-aliasing, i.e., making the contours smoother.

Anti-aliasing, i.e., making the contour lines less

jagged, is another desirable feature which ought to be

investigated in the future.

The following excerpt from a well-known book on

computer graphics[3] explains the concept of anti-aliasing

very well.

To make use of these anti-aliasing techniques

requires a graphics video terminal which has a "grey

scale". A grey scale means that a pixel is not merely

either on (white) or off (black); rather, it can have

several different levels of brightness (different shades

of grey). For instance, with a 2-bit grey scale, each

pixel can have 2 different values: 1/4 on (1/4 bright),

1/2 on (half bright), 3/4 on (3/4 bright) and full

brightness. The DEC VAXstation 100 workstations do NOT

have a grey scale.
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Fig. 11.3 Line from point (5, 8) to point (9, 11) drawn with Bresenham’s algorithm.

The line appears jagged, in part because of the enlarged scale of the drawing and in

part due to the approximations involved in attempting to draw a line on a discrete

grid of points.

11.2.3 Antialiasing Lines

A more pleasing line can be drawn by applying what have come to be known as

antialiasing and dejagging techniques. These techniques, which have their roots in

sampling theory, were first applied to graphics by Catmull [CATM74, CATM78a],

Crow [CROW77b], and Shoup [SHOU73]. The essential idea is that a pixel, which

has a nonzero area on the screen, should be used to represent the nonzero area of the

world which is mapped onto the pixel, as depicted in Fig. 11.4. A necessary corollary

is that visible lines and characters in the real world have nonzero width; they are no

longer mathematical entities made up of line segments of zero width.

Window “x -

\

- oP

\
——_—G———«4

World coordinates

de

One

pixel

Viewport

Device coordinates

Fig. 11.4 Rectangular area in world coordinates maps

into the area covered by one pixel on the screen.

How can we apply this notion? Figure 11.5 shows a line of nonzero width super-

posed on a raster. The raster grid has been shifted in x and y by half a unit, because

we want to focus on the area covered by the pixels which are now positioned in the

center of each grid box, not on the grid intersections. Thus, a pixel is represented by

a square area within the grid. (This is, in itself, an idealization: the intensity distribu-

tion of an intensified pixel is approximately normal, and the tails of the distribution

overlap into adjacent pixels.)
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Fig. 11.5 Line of nonzero width from point (1, 2) to point (8, 6).

Each pixel overlapped by the line must have an intensity proportional to the

area of the pixel covered by the line. Thus for a white line on a black background,

pixel (2,2) would be about 50% white while pixel (3,2) would be about 10% white.

Pixels such as (2,4) would be completely black. (For lines of less than maximum in-

lensity, these percentages would be scaled down accordingly.) Figure 11.6 shows

lines drawn with and without this type of antialiasing. Note that the smoothing of

the lines is achieved at the expense of a slight blurring of the line edges.

Computing the fraction of each pixel overlapped by the rectangular area of the

line can be quite time-consuming. Crow [CROW?78b], and Barres ‘and Fuchs

[BARR79] have developed relatively efficient ways to organize the computations,

but the latter’s algorithm requires that all line segments be specified before any

pixels are generated. Speed will increase in the future (Piller [PILL80] and Gupta

et al [GUPT81b] have developed hardware-implemented parallel processing ap-

proaches) but, if speed is most important, alternatives are either to live with jagged
lines or to.use a larger refresh buffer with a high-resolution CRT. Doubling the re-

fresh buffer in both x and y from the typical 512 to 1024 quadruples the number of

pixels, doubles the time to scan-convert a line into the buffer, and does not com-

pletely remove jagged edges. However, scan-converting a line at doubled resolution

is typically faster than antialiasing the line at the original resolution.

[a}
(b)

F 11 6 . . ° t i t - | . . - B S
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11.2.4 Constant-Intensity Lines

Antialiasing solves another problem encountered with the more straightforward

approaches. Consider the two scan-converted lines shown in Fig. 11.7. The diagonal

line has a slope of 1, and hence is V2 times longer than the horizontal line. Yet each

line has the same number of pixels (10) set on. If the intensity of each pixel is I, then

the intensity per unit length of line A4 is Z, while for line B, it is only 7/v/2, which can

be easily detected by a viewer. A simple way to correct this particular problem is to

compensate the intensity used to display a line to account for the line’s slope. Anti-

aliasing, however, achieves this same objective because the area covered by the line

determines how much intensity is distributed along its length. If we consider the lines

in Fig. 11.7 as rectangles of height w, then line 4 would cover 10w units of area and

line B would cover 10v2w units, and intensity per unit length will be constant.

. Line 8

—

SBP Lea

Fig. 11.7 The unequal-intensity problem.
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Appendix A

An introduction to the "Poisson" program.
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

8.013—ElectromagneticFields and Energy
October 1986

Project ATHENA

POISSON PROGRAM

Version 1.0

Introduction

The program Poisson calculates and gives a contour plot of the potential and plots

the electric field lines® on a square grid of 33 x 33 points (32 x 32 spaces) or 65 x 65 points

(64 x 64 spaces) with the following possible specifications:

1. Boundary conditions:

a) Dirichlet (i.e., potential)

b) Neumann (i.e., normal derivative of potential)

c) Mixed Dirichlet and Neumann.

The potential or normal derivative specified on any boundary may have any one of

the following functional dependencies: 1. constant, 2. linear, 3. step, 4. sine, 5. cosine.

2. Potentials at any of 31 x 31 internal grid points.

3. Line charge density at any of 31 x 31 internal grid points.

The above specifications are entered via a menu. (The following section “Running the

POISSON Program for the First Time,” explains the use of the menu.)

Specified potentials should be in the range +1 Volt to £10 Volts. (See attached “Ex-

planation of Error Criteria for the Poisson Program.”)

Specified normal derivatives of potential (Neumann boundary conditions) should be

in the range 1072 to 101 (1e-2 to le-1) Volts/unit length. (See attached “What is a Rea-

sonable Size for dV/dn?”)

Specified line charge densities should be in the range 2 x 10711 to 2 x 10710 (2e-11 to

2e-10) Coulomb/unit length. (See attached “What is a ‘Good Choice’ for A?)

The computational technique used is: finite-difference relaxation with SOR, including

a few extra features to make the computation faster on.the Athena VAX 750. (See attached

“A Solution of Poisson’s Equation by the Relaxation Method.”)

* Note: At present we can only plot field lines if there are no internal charges or potentials

specified.
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Running the POISSON Program for the First Time

Note: At this time, the program can only be run on a terminal which has a VI240

graphics box connected to it. In the Set-Up you should set the XOFF option (on the

Communications Screen) to “XOFF at 1024”.

To run the program, log onto ATHENA. If your account is on the machines “hactar” or

“aphrodite”, then type “~bers/poisson” in response to the system prompt. If your account

is on a different machine, type “rcp hactar: ~bers/poisson poisson”. Then when you get

the system prompt again, type: “poisson”. The screen will display a brief description of

the program. When you have finished reading, press “return”. The main menu is then

displayed and shows a bax with the default values of potentials (in Volts) on its four

boundaries (namely: 1, 0, 0, and 0). All possible commands are also located in the menu,

which is at the bottom of the screen.

To move the cursor, for either changing the default boundary values or to invoke the

commands, use the 4 arrow keys:

move up

move down

move right

move left

You can change any or all of the assigned default boundary values. To change the

boundary conditions on a side from a specified “POTENTIAL” (Dirichlet condition) to

specified “NORMAL DERIVATIVE” (Neumann condition), or vice-vetsa, simply toggle

back and forth by pressing the “space bar”. The functional dependency of the potential or

normal derivative on a given boundary is selected by moving the cursor to the field whose

default value is “constant” and pressing the space bar until the desired function appears

on the screen. Once the type of function is selected, the user is prompted to supply the

necessary parameters as follows:

1. Constant: user specifies value of potential or normal derivative.

2. Linear: user specifies the values at the endpoints of the boundary.

3. Step: user specifies two values, one for each half of the boundary.

4. Sine: a*sin (2+ pi*b xx), with 0 &lt;z&lt;1, on “op” (y=1) or “bottom”

(y= 0) boundaries;
axgsin (2+pi*xb xy), with0&lt;y&lt;1,on“left”(x=0)or“right”

(x= 1) boundaries.
User specifies the values a and b.

axcos(2»pi*b=*x),with0&lt;z&lt;1, on “op” (y=1) or “bottom”

(y= 0) boundaries;
a*cos(2%pi*bx*xy) with0 &lt;y &lt;1, on “left” (x=0) or “right”

{x= 1) boundaries.
User specifies the values a and b.

)
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These parameters are specified by moving the cursor to the location of the default values,

hitting the “space bar”, then entering the desired value, and pressing “return”.

The commands shown at the bottom of the main menu screen are:

s» ADD CHARGES OR POTENTIALS: to enter equipotential rods and/or line

charges within the region

o SOLVE FOR POTENTIALS: to calculate the potential

os QUIT PROGRAM: to exit the program

» HELP: to get help

+ RECALL SOLVED PROBLEM: to recall a problem previously solved and saved

» CHANGE GRID SIZE 32x32 or 64x64: to change grid size in which the program

is calculated

To invoke any one of the commands, move the cursor to the location of the desired com-

mand (the command will then be highlighted) and press the “space bar” (&lt; sp &gt;).

To see how all of this is used it is best to go through an example or two. The rest of

this writeup leads you through each step in setting up, solving and displaying the results

of a problem, and saving and recalling it if you wish.

2
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Let’s do a sample problem. Suppose we want to calculate the potential and field lines

between two parallel planes on which the potential is imposed to vary sinusoidally with z.

Let the planes be located at y = 0 and y = 1, and let the potential on the planes vary as

sin 27rz. Let the grid size be the default value 32 x 32.

Enter Computer Response on Screen

The highlighted region moves one position right.

The functional dependency on the top boundary changes to

a linear function.

The functional dependency changes to a step function.

Sine function on the top boundary is chosen.

The highlighted region moves one position down.

The highlighted region moves one position down.

The highlighted region moves one position down.

The functional dependency on the bottom boundary changes to

a linear function.

The functional dependency changes to a step function.

Sine function on the bottom boundary is chosen.

The highlighted region moves one position down.

Selects the “SOLVE FOR POTENTIAL” menu item. Main screen is erased.

The program asks you to wait while it initializes array values. Then it asks if

you want the array values displayed after each iteration. We don’t, hence:

The program asks you to wait while it solves the problem. When it’s done

the boundaries of the region appear on the screen, and we are asked how

many contours we want to see plotted in the existing range of potentials

(in this case from —1 Volt to +1 Volt). Suppose we want 8 contours:

Plots 8 contours (see Fig. 1 attached). To find the spacing between successive

potentials simply divide the range of potentials (listed beneath plot) by

n + 1, where n is the number of contours requested (in this case 8).

The program now asks if we would like to replot the potential contours, plot

fields lines®, return to the main menu, save the solved problem in memory,

or exit the program. If we wanted fewer or more contours: e.g., if you

would like to see what happens when one of the contours includes the side

boundary potential, i.e. zero Volts, type p &lt; cr &gt; followed by e.g. 9 &lt; cr &gt;.

On the other hand, suppose we would like electric field lines plotted over the

contour plot of potential, then type:

a.

&lt; &amp;p &gt;

&lt; 8p &gt;

&lt; 8p

~

&lt; 8p&gt;

&lt; 8p &gt;

&lt; 8p &gt;

L

&lt; 8p

n E ler &gt;

3 or -

* Note: At present we can only plot field lines if there are no internal charges or potentials

specified.
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Enter

f&lt;cr&gt;

3
- ~

REov

Computer Response on Screen

We are asked how many field lines we would like to see plotted. The

electric field at any point is a vector tangent to the field through that point

and its magnitude is proportional to the density of field lines perpendicular

to the field’s direction. Suppose we want six field lines:

Plots 6 field lines on top of the existing potential contours** (see Fig. 2).

The program asks again if we want to replot potentials, plot field lines, return

to the main screen or exit the program.

Now suppose we would like to see how the potential in this problem is modified by the

addition of a rod placed at the center and held at 1 Volt. Hence we would like to modify

the program; so type:

r&lt;cer&gt; We return to the main screen. We would like to add a potential rod within

the region. Type:

Highlighted region moves left.

The “ADD charges or potentials” ‘menu item is selected. Main screen dis-

appears, and is replaced with the graphics editor screen.

Highlighted region moves one position down.

Highlighted region moves one position down.

The “ADD potential rod” menu item is selected. A tiny graphics cursor will

appear in the center of the graphics region of the screen, at (2,5) = (16, 16).

The (2,7) grid position of the cursor is displayed in the lower

left-hand corner of the screen, beneath the menu.

An equipotential rod is drawn at (2,7) = (16, 16) (its symbol is a square).

A prompt asks for a voltage value for this rod (rod #1).

The rod is assigned a value of 1.0 Volts. The graphics cursor disappears,

and you are returned to the graphics editor’s menu.

&lt; 8p &gt;

—

Highlighted region moves one position down.

Highlighted region moves one position down.

Highlighted region moves one position down.

Highlighted region moves one position down.

The “RETURN to main screen” menu item is selected. The main

screen replaces the graphics editor screen. An equipotential rod can

be seen in the problem region (it looks like a tiny dot).

The highlighted region moves right.

** Note that at the corners the accurate calculation of derivatives is difficult and the field

lines many not be correct. To improve this try either choosing fewer field lines or a 64 x 64

orid with the same number of field lines.
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&lt; 8p &gt;

 a|  .

 0 &lt;er&gt;

Ing &lt;Ccr&gt;

Computer Response on Screen

Selects the “SOLVE FOR POTENTIAL” menu item. Main screen is erased.

The program asks you to wait while it initializes array values. Then it asks if

you want the array values displayed after each iteration. We don’t, hence:

The program asks you to wait while it solves the problem. When it’s done

the boundaries of the region appear on the screen, and we are asked how

many contours we want to see plotted in the existing range of potentials

(in this case from —1 Volt to +1 Volt). Suppose we want ten contours:

Plots 10 contours (see Fig. 3).

The program now asks if we would like to replot the potential contours,

plot field lines, return to the main menu, save the solved program in

memory,” or exit the program. Since there is a potential rod within the

region we cannot (at this time) plot field lines. To start experimenting on

your own type:

Try changing the potentials on the boundaries, or changing the equipotential rods

within the boundaries, or adding charged rods within the boundaries, and see what happens

on the contour plot.

Once you have quit the program, type “logout &lt; cr .

"NOTE:

1. To save a solved program and its display type:

s&lt;ecr&gt; The program asks you to give a name to the problem. For example, to

give it the name, “one” you type:

The program then returns to ask you to choose between p, f, r, and e,

as before.

2. To retrieve a saved problem, return to the main menu, use arrow keys to highlight

RECALL SOLVED PROBLEM, and press the “space bar”. The program will then

ask for the name of the solved problem; then, for example, type:

one &lt; cr &gt; The program will then redisplay the main menu with the parameters of

the saved problem. In order to see it displayed use the arrow key:

This will highlight SOLVE FOR POTENTIALS, after which press

The program will then directly display the solved problem.

R
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3. To delete a saved problem, you must first exit the program (or invoke QUIT PRO-

GRAM if you are in the main menu):

e&lt;cr&gt; The system will display the system prompt, e.g., “hactar%”, after which

you type “rm”followed by the name of the problem to be erased, e.g.:

The system will then again display the system prompt (“hactar%”).

To reenter the program, type:

rm one&lt;Cr&gt;»

poisson &lt; cr

This program was developed by:

Denise Barnett

Ted Johnson

G. Francis

A. Bers

home: 494-1077

denise@hactar

dorm line: 5-6432; outside line: 225-0628

tcj@prill
3-2539

3-4195

Feel free to call on any of us for help and/or with suggestions for improving the program.
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Attachment 1 to POISSON Program

A SOLUTION OF POISSON’S EQUATION

BY THE RELAXATION METHOD

Dirichlet Boundary Conditions

In rectangular coordinates Poisson’s equation in two dimensions is of the form

FV EV _ _r=y)
8z2 = Gy? €o

f

1)

We are given a square region where the potential is known on each boundary and we

want to solve Poisson’s equation on a grid of points within the region. There is also a line

charge density [A(z, y)] given for each of the grid points. If the line charge density at each

point is equal to 0 then the equation reduces to Laplace’s equation:

gv _&amp;v _,
922 Tg = :

The relaxation method is an approximate solution method but by iteration (repeated

application of the method) the solution can be as accurate as desired.

Thefirst term in (1) is the second derivative of V with respect to z, or the rate of

change of the rate of change of V in the z direction. And the second term is likewise the

rate of change of the rate of change of V in the y direction.

Consider the point P in the center of the given square region. Let the potential at P

be represented by Vp and the line charge at P be represented by Ap. Let the potential on

the top boundary of the region be represented by V;, on the right boundary by V;., on the

bottom by Vj, and on the left by V; (see Figure 1).

Va

!

m

peal

&gt;J

Figure 1

The distance from P to V; and from P to V. is Az, and the distance from P to V; and from

P to Vj is Ay. The slope of V between P and the right boundary is (V; — Vp)/Az. This

is approximately equal to 8V/8z. And the slope of V between P and the left boundary is
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(Vp — V2)/Az. The difference between these two slopes divided by Az is approximately

equal to 62V/9z2:

(Ve —Vp)/Az] —[(VP — Vi)/Az]  &amp;V
Az — 0x2

and

(Ve — Vp)/Ay] — (Ve —i)/Ay]  &amp;V

Az ~ Oy?

Therefore, substituting into equation (1) we obtain

snnilarly,

(Ve = Vp)/Az] - (Ve = Va)/Az] | [(Vi =Vp)/Ay]—(Ve—V5)/Ay]_pp2)
Az Ay Te

For a square region, Az = Ay, so equation (2) becomes

AP uv =0% +22Vi + =Ve+Vi +

where pp(Az)? = Ap is the line charge density (charge per unit length in z) at P. Solving

for Vp
i A

Vp =4 (ver ves vrvir 22)4 €o0

Once again, if there is no line charge at point P (i.e., Ap = 0),

1

Vo = 2(Vi+Vi+Vs+V2)

RY"a)

§

5)

Thus we can find the potential at any point given the potential at four surrounding points

and the line charge density at that point.

For the following discussion of this problem we will assume that the line charge density

within the entire region is equal to zero, and we will work out the solution to Laplace’s

equation.

Initialization

To begin the iteration procedure we need to get a “guess” at the potential value for

each point in the region. There are many different kinds of initialization schemes that

could be used. We could simply set each point equal to zero (on a large, fast computer,

e.g. Cray, this is usually done). Or we could average the values on the four boundaries and

set each point in the region equal to that value. In the interest of computational speed on

the Athena VAX 750, we have chosen an initialization scheme which gives a fairly accurate

guess. For a detailed description see Electromagnetics, 3rd edition, by John D. Krauss,

pp. 287-293.

3
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Iteration

Having assigned an initial guess we then proceed sequentially through the array, re-

calculating the potential at each point in the region. We start at the upper left grid point

and use the potential at each of the four surrounding points (in the z and y directions) in

equation (3b) to recalculate the potential for that point. For example, the potential at the

point (1,1) in Figure 2 would be recalculated using the following equation:

Via=W+Via+Vou+Ve

Then the potential at the point (1,2) would be

Vie=Ve+ Via+Vo+Vi

In this manner the potentials on the first column of points within the boundary are reas-

signed. Moving to the next column, we recalculate the potentials similarly, using the four

surrounding points, i.e.

Voai=Via+ Veo + V3: + Ws

Each point is recalculated in this manner (from bottom to top and left to right). This ends

the first iteration. In each successive iteration the value for each point is recalculated.

In iterative methods such as this relaxation method the values obtained converge on

the exact solution to the problem. Although these values are only approximate, continued

iterations can make the values as accurate as desired.

(0,0) - ~~ &gt; L (n,n)
-

=» q

r

a =“9

P

-

»

(x,y) = (0,0) - - »

{n.Q)

Figure 2

Neumann Boundary Conditions (Normal Derivative of Potential)

The potential within a region can also be determined for Neumann boundary con-

ditions when, instead of the potential (as in Dirichlet boundary conditions), the normal

derivative is specified on the boundary. The case we will look at is mixed Neumann-

Dirichlet boundary conditions; that is, we are given the potential on three sides and the
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normal derivative on the remaining side. For this discussion we will place the normal

derivative on the left side of the square.

Normal Derivative

All points in the region (boundary and interior points) must satisfy Poisson's equation.

The potentials at the left boundary will float until they converge on the unique solution.

But in order to converge to their final values, the left boundary points must have four

surrounding points so we can use the five-point averaging formula [equation (3)] to solve

Poisson’s equation. To accommodate this we add an extra column of points just outside

the left boundary. During the calculations we will consider this extra column to be the

left boundary (see Figure 3).

(Q n)

r

\ -] ay «=o
(n,n)

-

-

+

- 1

 uy

»

{=1 ,0)*
(0.0)

Bn. /
\ 0] 0)

Figure J

We find potential values for this extra column of points by using the given normal

derivatives and the potential values in the first column in the point-slope formula:

(V-1.x - Vie) = my(z—; — 21)

where

V_o1,k
i,k
my

z_1 and 24

represents the potential at the point on the extra column, kth row;

represents the potential at the point on the first column, kth row;

represents the normal derivative on original left boundary and kth TOW;

represent the z position of the extra left and first columns respectively

(in Figure 3, z_; = —1 and z; = 1).

We solve for V_j 4:

V=1k = Vix — 2m, [.+)

Iteration

Now that all the grid points have initial values we can begin iteration. We recalculate

the potential values for each grid point within the region using equation (3) just as we did
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with the Dirichlet problem. We then readjust the potentials on the extra left column to

match the given normal derivative as we did previously using equation (4).

We then sweep through the grid again recalculating all the potentials. These iterations

continue until the solution is attained to the desired accuracy. At this point the extra

column of potential values on the left is thrown away.

Successive Overrelaxation

In order to arrive at a solution with fewer iterations (i.e., faster) a method called

Successive Overrelaxation is used. It is similar to the Relaxation Method except that an

additional term is added in equation (3) to account for the error involved in this type of

approximation. The interested students can find a description of Successive Overrelaxation

(and other methods) in Computer Simulation UsingParticles by R. W. Hockney, McGraw-
Hill, 1981, p. 179.

Use of Integer Arithmetic

In the interest of gaining even more speed on the Athena VAX 750 machines, calcu-

lations are done in integer (rather than floating point) arithmetic. Thus by limiting our

accuracy to six decimal figures (which is plenty for a good, qualitative plot) all numbers

inside the program are multiplied by 10% and declared integer before computations are

done. Of course, before displaying the results the final numbers are divided by 108.

Electric Field Lines from Conjugate Potentials

If a complex function &amp;(=z,y) = ¢(z,y) + i¥(z,y) is a solution of Laplace’s equation

in two dimensions (where ¢ and 1 are real valued functions of positions z and y), then &amp;

is an analytic function and satisfies the Cauchy-Riemann relations:

do_4
dz dy

dp__d¢
dy dz

{ 3)

(6)

The functions ¢ and 4 are called conjugate potential functions, and the contours of con-

stant 1 are everywhere orthogonal to the contours of constant ¢. If @ is the electrostatic

potential, then the contours of constant 1 represent the electric field lines. Note that

the converse is also true: 1 may be taken as representing a potential (with appropriate

boundary conditions!) and then ¢ represents the field lines associated with this potential.

Assume now that the potential ¢ has been calculated on an n Xx n grid as described

above. Approximating the derivatives in Eq. (5) by the difference formula we get

o(t + 1,7) — (i — 1,7) = ¥(3,7 + 1) — ¥(z,§— 1) (7,

"
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All of the ¢ values are known and all of the 3 values are unknown. Since we can calculate

the conjugate potential only to within an additive constant, we choose any point [say point

(a, b)] and assign (a, b) a value of 0. Then we can find the conjugate potential of all other

points in the array relative to 9(a, b). Hence, using Eq. (7) and substituting in (a, b), we
have

wla+1,b—1)—p(a—1,b—1) = (a,b) —¥(a,b—2)

Both ¢ values are known and (a,b) = 0, so we have a linear equation in one unknown

and can find (a,b — 2). Similarly we can find ¥(a,b — 4) and so forth, finding all of the

t values on row a. Using Eq. (6) in difference form we obtain

w(3,5 + 1) = w(t, - 1) = —[(3 + 1,7) = (2 - 1,7)] (&amp;

Substituting (a, b) into Eq. (8),

o(a — 1,b+1) —p(a— 1,b— 1) = —[¥(a,b) — (a —2,b)]

Since all potential values are given, we can solve for ¥(a — 2,5). Using Eq. (7) repeatedly

we can find all of the conjugate potentials in row a — 2. Similarly the conjugate potential

at the points in every row and column can be determined. This array is plotted as the

field lines on top of the contour plot of potential.
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Attachment 2 to POISSON Program

WHAT IS A REASONABLE SIZE FOR |4¥|?

The Poisson program allows one to specify Neumann conditions on any or all of

the boundaries, that is, to specify the normal derivative of the potential dV’/dn. When

prompted to supply a numerical value for this normal derivative, we are tempted to use

(for lack of a better number) the all-purpose “unity”, only to find that the program slows

to a halt for |dV/dn| ~ 0(1). It is easy to understand this slow down if we realize that

the program normalizes all lengths to the distance between neighboring grid points on the

33 x 33 grid. Hence, [dV/dn| = 1 is a very large gradient (AV ~ 1 between neighboring

grid points).

To find an appropriate value for |dV/dn|, such that all gradients will be gradual and

the convergence will be quick, we require that the normal gradient scale length

1 _|14v
L., |Vdn

be of the same order of magnitude as the characteristic length of our bounded region

(£ = 32). For potentials of order unity, this gives

av 1
=| ~ == ~0.1%t00.01= 32 ©

Specified normal derivatives of this order are consistent with our choice of default error

bound criteria, and will result in very quick calculation of the potentials.

.
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Attachment 3 to POISSON Program

WHAT IS A “GOOD CHOICE” FOR. \?

If we “carelessly” toss an overly-large line-charge into our square region, then the

potential inside the region will be dominated by the influence of that line-charge, and the

specific values chosen for the boundary conditions on the region will have very little impact

on the final solution. This slows down the relaxation process. The reasoning is as follows:

In a 32 x 32 grid, the influence of the boundary conditions is leaked into the 30 x 30

interior points of the grid from the 120 (non-corner) boundary points. This is a fairly quick

process. On the other hand, the influence of the line-charge on the potentials is leaked out

slowly from a single source point. For example, after 4 relaxation iterations (assuming the

simplest relaxation scheme) the influence of the boundaries has made an impact at 416

internal grid points, while the influence of the line-charge has been felt by at most only 29

points.

What, then, is a reasonable range of values for the line-charge density A? Consider a

line-charge along the axis of a circular cylinder of radius r,.

’

7
r ,

A,
=YV 3

If we assume that the potential on the boundary is a constant, say V = Vo, then the

potential inside the cylinder at a field point P is:

2mreg To

where ¢ is the permitivity of free space, and r is the distance between P and the line-

charge. In order for the specified boundary conditions to have a significant influence, and

yet still be able to see the effects of the line-charge, we want the difference between the

potential close to the line-charge and the potential on the boundary to lie approximately

in the range:

L Volt SV —V, S10 Volts for V “near” the line charge.

How near is “near”? If one gets too near (r — 0) then V — co. The closest we can

get, however, is one grid point away, or » = 1. For our square 32 x 32 problem, a reasonable

estimate of ro is ro = 16. We may now give an order-of-magnitude estimate of \, such

that the line-charge will not dominate the calculation of the potential:

L
&lt; =A 1) &lt;

Volt Smee In (35) ~ 10 Volts
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or

2.0 x 10-1 SAIS~ || ~ 2.0 x 10710

Note: The units of A are Coulombs per unit length in the direction perpendicular to

the plane of the square region.

Note also: The above discussion is related to a suggested range of potentials. Should

you wish to scale up the potentials (by say two-orders of magnitude) the \’s should also

be scaled up similarly. In addition the abserr (see “Explanation of Error Criteria for the

Poisson Program”) should be scaled up likewise.

10
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Attachment 4 to POISSON Program

EXPLANATION OF ERROR CRITERIA FOR THE POISSON PROGRAM

The algorithm used to compute the potential values is called SOR, or Successive

Overrelaxation. It is an iterative algorithm so one must specify how accurate a solution

is desired to consider the problem solved. However, requiring a relatively stringent set

of error bounds may lead to an unreasonable amount of computation time. If a set of

error bounds is not chosen stringently enough, then the accuracy of the solution may be

degraded to an unacceptable level. The smoothness and regularity of the contours that

the contour-plotter produces is a good indicator of acceptable or unacceptable accuracy.

Because of this tradeoff between computation time and accuracy, Poisson has error bounds

as input variables.

The structure of the error criteria is as follows: if either an absolute tolerance or a

relative tolerance is met, then the problem is considered solved. Thus, there are two error

bound variables, the relative error (relerr) and the absolute error (abserr).

At a given point within the region, the difference between the current value at that

point and its previous value is divided by the previous value. This computes the percentage

change of the current value. The absolute value of this quantity is compared to the value

of the relative error bound. The absolute value of the difference between the current value

and the previous one is also compared to the value of the absolute error bound.

The default setting is relerr = 1e-02 and abserr = 1e-02. Note that the absolute error-

bound default is reasonable for potentials in the range +1 Volt to +10 Volts.

Note: If potentials and A’s are scaled up from the above suggested ranges, the abserr

should also be similarly scaled.

11
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Appendix B

Problems with the old user interface.

figure B-1 is what the main screen of the old

"Poisson" interface looked like.

A Solution to Poisson’s Equation within a Square Region
with Dirichlet or Mixed Neumann-Dirichiet Boundary Conditions

TATAEYEE constant = |

potential = constant
—

_-

potential = constant =

3

potential = constant = o

Movement Keys: U-Up, D-Doun, R-Right, L-lafi
Function Kays: Space bar-Change Boundaru Conditions; Return-Enter a Choice:

F-Enter Potentials within Boundary; C-Enter Charges within Boundary:
f-Quit Editor and Calculate Potential Yalues

Figure B-1l: This is the main screen of the old interface.

Shown are the default values for each of the four

boundaries. The default problem box has Dirichlet

boundary conditions. All of the boundaries except the top

one are tied to zero volts; the top boundary is tied to

1.0 volts.

There are several minor problems and one major
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problem with this old interface. Before getting to the

major problem, I'll discuss the minor ones.

= Lack of a help command

First, there is no "help" command. The only commands

available are: (l)enter potentials, (2)enter line

charges, (3)change boundary conditions, and (4)calculate

the answer. For the first-time user, it's comforting to

know that help is available on-line. A help command which

just prints a paragraph (giving an overview of the purpose

of the program, and how it works) is a lot better than no

help command at all.

B.2 The boundary conditions are confusing

The second problem with the main screen is that the

boundary conditions are confusing. Why are the numeric

values (see the zeros and the one in Figure B-1)

positioned so awkwardly? Do these values have to be

integers? [Answer: No!] If not, then why are they shown

as integers?

B.3 The problem box is confusing

The third problem with the old interface is with the

graphical representation of the problem box. Why are

there gaps in the walls of the box? Are they meaningful,

i.e., are they supposed to symbolize something? [Answer:
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No!] Why aren't they walls of the box drawn with solid

lines? The user is apt to think that the gaps DO mean

something, because as soon as he solves his first problem

(and sees the equipotential and E fields being plotted

with smooth, continous lines), he'll realize that high

resolution graphics ARE available on this computer

terminal, which implies that the problem box COULD have

been drawn with smooth lines.

B.4 Moving the high-lighted region is awkward.

The fourth problem deals with moving the high-lighted

region about the screen. The high-lighted region is sort

of 1like a pointer, in that it physically points to where

the next command will take place (this will become more

meaningful when I discuss changing the boundary

conditions). The problem is that in order to move the

high-lighted region,the user must type "u", "4d", "1", or

"r" to move up, down, left, and right, respectively. For

the user who isn't a touch typist, this can be a major

bottleneck because it forces him to hunt around the

keyboard for these keys; they're scattered all over the

keyboard! A better scheme would have been to pick four

keys which are right beside each other, and are clustered

in some logical fashion [see Figure B-2].

The scheme proposed in Figure B-2 has the advantage

that once the user locates the cluster of keys on the
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Figure B-2: An alternative to the u, 4, 1, and r keys.

keyboard, he doesn't need to look at the keyboard any more

to find the key he wants. However, this scheme has the

drawback that using "i", "j", "k", and "m" when you really

mean "up", "left", "right",and "down" is not intuitive.

The first-time user wouldn't look at the keyboard and

think "Oh, you probably use the i, j, k, and m keys to

move the high-lighted region." Rather, he would think

"Oh, you probably use. the arrow keys to move the

high-lighted region.". Of course, a mouse would be even

more intuitive, but the terminal that this program runs on

(a DEC VT240) doesn't have a mouse.

B.5 It's hard to figure out how to change the boundary

conditions.

The fifth problem is figuring out how to change the

boundary conditions on the problem box. The text at the

bottom of the screen [see Figure B-1] gives the user the

following cryptic advice: "Space bar-Change Boundary

Conditions: Return-Enter a Choice".



-i%3

B.5.1 Explanation of how to change the boundary

conditions, with the old interface.

are

Remember that for each of the four boundaries, there

three things that the user must do. He must:

(1)choose whether to specify the potential at

the boundary xor to specify the normal

derivative of the potential at that boundary.

(2)choose one of five functions (constant, linear,

step, sine, or cosine) for that boundary.

(3)specify the numerical parameters for that
function.

The default problem [see Figure B-1] has the

potential of each boundary specified. If the user wants

to specify the normal derivative of the potential instead,

then he would: (l)move the high-lighted region until the

word "potential" (by the desired boundary) is high-

lighted, and then (2)hit the space bar. This will cause

the word “potential” to disappear, and be replaced with

the high-lighted words "normal derivative". If the space

bar is hit AGAIN, then the potential/normal derivative

option will be toggled back to "potential", and the word

"potential" will again appear (in the place of "normal

derivative") [see Figure B-3].

For each boundary, the user must choose one of the

five functions. To do this, he moves the high-lighted

region to one of the boundaries, where the word "constant"
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A Solution to Poisson’s Equation within 2 Square Region
with Dirichlet or Mixed Neumann-Dirichlet Boundary Conditions

aca iRIS constant = |

normal

derivative= constant =

"

normal

derivative= constant =

0

normal

derivative= constant = 0

Movement Keys: U-Up, D-Down, R-Right, L-Laft
Function Keys: Space bar-Change Boundary Conditions; Return-Enter a Choice;

P-Enter Potentials within Boundary: C-Enter Charges within Boundary:
B-Quit Editor and Calculate Potential Yalues

Figure B-3: Top boundary toggled to "normal derivative".

is written. If he hits the space bar, then the line

"constant = 0" will be replaced with:

linear, at ( 0,32) =1
at (32,32) = 2

This means that the potential (xor it's normal derivative)

will start at a value of 1 (at the upper left corner of

the problem box, at (x,y) = ( 0,32)), and increase

linearly to a value of 2 (at the upper right corner of the

problem box, at (x, y) = (32,32)) [see Figure B-4].

Hitting the space bar four more times will toggle to

the step option, the sine option, the cosine option, and

then back to the constant option.
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A Solution tg Poisson’s Equation within a SAauzsrs Region
with Zirichiet or Mixed Heumann-Dirichiet Boundary Conditions

potential = IEW, at ( 0,32) = 1

at (32,32) = 2

potential = linear,

at ( 0, 0) = 1

at ( 0,32) = 2

potential = linear,

at (32,32) = {

at (32, 03) = 2

potential = linear, at (32, 0) = 4

at ( 0, 9 = 2

Movement Keys: U-Up, P-Down, R-Right, L-lzft
Function ¥aus! Smace bar-Change Roundary Conditions; Return-Entar 3 Chpice:

P-Lnter Potentials within Boundary; ©-Enter Charges within Boundary:
@-2uii Cditor and Calculata Potential Yalues

Figure B-4: All boundaries are "linear"

B.6 The MAIN PROBLEM with the old interface.

The main problem with the o0ld interface is the

barbaric way that data was entered, i.e., the information

which conveyed the position and the value of line charges,

sheets of constant potential, and rods of constant

potential. The user had to fill up a table [see Figure

B-5]. This was an incredible pain it the neck because it

was hard to use, and because it forced the user to enter

much more data than necessary. In particular, a line is

completely determined by its two endpoints -- the user

shouldn't have to specify all of it's interior points as

well! Also, for a problem of moderate complexity, the
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Function Keys:
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4
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potential =

potential =

potential =

potential =

potential =

potential =

potential-
potential -

potential-
potential =

potential -

potential =

potential =

potential =

potential =

potential =

potential =

potential =

potential =

’

iy =

i=

y =

y =

y =

y =

C-Clear Values: B-Buit Entering Values and Return io Editor

D-Delete Value at Specified Point; P-Move to Next “Page”

Figure B-5: Hard way of entering potentials.

user 1is forced to first plot the problem on graph paper.

He must then manually enter all of this data into the

table in Figure B-5.
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Appendix C

The hardware that the "Poisson" program runs on.

ln

The "Poisson" program requires the

order to run properly:

following hardware

l)a DEC VAX-11/750, running a UNIX operating system.

2)a DEC VT125 color monitor (model VR41-A). A

DEC VT125 monochrome monitor (model VR201) will

also work.

3)a DEC VT240 graphics unit (model VS-240A). This
is a rectangular box which sits beneath the

monitor. It is needed to interpret the ReGIS

graphics commands (that are sent to the terminal

by my program).
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Appendix D

Explanation of coordinate mapping.

It is often necessary to map a point from the

interior of a rectangle to a point in the interior of

another rectangle. One place where this is required is

when going from the graphics editor screen to the main

screen (see Figure D-1). Here, two sheets of constant

potential are entered on the graphics editor screen, and

then are redisplayed when the user returns to the main

Screen.

D.1 The problem.

The $64,000.00 question is: how does one map a line

(drawn in the problem box) on the graphics editor screen

to a line (drawn in the problem box) on the main screen?

This is not a trivial question; the mapping must be done

is such a way that the relative proportion and position of

the line is the same in both problem boxes.
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D.2 The solution.

A line,1,,is defined by its two endpoints, P(x,y) and

B{x,y). Thus, if we could figure out how to map a point,

P(x,y), from one rectangle, R, to an equivalent point

p1x,y) in another rectangle, R; then we could easily map a

line, or even a polygon (which is just a set of lines),

from one rectangle into another rectangle.

Consider Figure D-2. We want to preserve relative

proportions. This means that the distance of the point

from the y boundary to the length of the x boundary, and

the ratio of the distance of the point from the x boundary

to the length of the y boundary, must be the same in

screen A as screen B (see Figure D-2).

In terms of Figure D-2, this results in the following

constraints:

A ad

XA ast = FATXAwin —

Xa, Lomgth Xa max XA min
ARHpmin = Xg dit

XR, moo “XB min ARB length

TA, dist _

Na, lengTh
TA =N4,min = Ye=Mpmin= ip diet

TA, wax “YA, min NB,wax — Ys, _ 18, \ength

These equations can be reduced to the following mapping

equations:

A

~N

XR nin +

~

A, ir —

— X 3

 mer=Xbmin (yoy,
YA) max Xa, win

Vg vm AX — &gt;

DTThein (4g =p mi)
Ya, vox — MB min
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This results in the C subroutine shown in Figure D-3,

which takes the coordinates of two rectangles, and maps a

point in the interior of one of them to a point in the

interior of the other rectangle.

There are three screens that the ES problem has to be

mapped to: (1l)the graphics editor screen, (2)the main

screen, and (3)the contour plotting screen. See Figure

D—4
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 es em—==~VYerzion4.5 Dcoioper 1985
JGUNDARY COMDITIONS: frame mC

top! potential = cansiant = 0.00 (top}

y=;

lest: notentis! = constant = 0.00

right: potential = constant = 9.00
(1aft,} ut

(right)

bottom: potential = constant = 0.90
y=0___

#=Q (bottom) x=1

Hit AUT A

i charzes or sotentials

_

dint ake ednies

coive for ootentials | Suit Prpsram

~eoall Soivaed Problam Chan @ arid size 32x32 |

(o)

Joop|inecharge
DELETE line charge

| ADD potential rod

DELTTE notentiai rod

ADD potential sheet

DELETE potential sheet

RETURN io main screen

HELP

-

 gL

L7)

Figure p-1: Two sheets of constant potential and one line charge,

shown in (a)the main screen, and in (b)the graphics

editor screen.
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How do you find an expression for the coordinates of point
B, i.e., (Xg,Yg), when you are given: the coordinates of
point A, (Xa,¥,), and the max and min coordinates of the
two rectangles?
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'R Ax

T Ta, MAX =

A | &lt; ngth
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(Xa, Ya)

Ys, lenath

a

1g paw

&lt;= 2 (xg, Ys)

A, MN

, MIN Xu MIN R], MIN

J

7 MAS

»

§

‘A, [ena “8, Length

map_point(Xa_max, Xa_min, Ya max, Ya min,
Xb_max, Xb min, Yb max, Yb min,
Xa, Ya, Xb, Yb)

double Xa max, Xa min, Ya_max, Ya min;
double Xb max, Xb min, Yb max, Yb min;

Jouble Xa, Ya, Xb, Yb:

*X*b = Xb_min + (Xb max - Xb min)/(Xa_max - Xa_min)

*(Xa - Xa_max);

*¥b = Yb min + (Yb max - Yb min)/(Ya max -

*(Ya - Ya max);

Figure D-3: A general point-mapping subroutine (written in C). Given
the point (Xq,Ys), and the max and min coordinates of each

problem box, this subroutine returns the correct values

for (X,,Y,).
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Appendix E

The contour plotter used in "Poisson".
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Roberta Brawer

July 18, 1285

MEMO ON CALLING THE CONTOUR PLOTTING ROUTINE

1. Introduction

The contour plotting package accepts a two-dimensional array of double

precision numbers and draws a specified number of constant value

contours spaced by equal intervals. The plot will be centered in the

graphics region of the terminal display.

There are two routines that may be called - setup and contour plot.

Setup initializes the Penplot graphics package, sets the display the
selected -coordinate scales, and draws an outline box around the

plotting region. The routine contour_plot is used to actually find
and draw the contours.

The contour routines are written in 'C' and are designed to be «called

from 'C'. (For details about calling the routines from Fortran, please

refer to Section 6.4.) The actual plotting on the terminal display,

hough, is done by using the Penplot graphics library which is written
in Fortran.

Using Penplot, additional features, such as boundaries, can be drawr

directly on the same graph as the contours. Direct calls to Penplc:t

routines can be freely interspersed with calls to the contour plotter

(provided one follows the correct proctocol for calling Fortrar

subroutines from 'C'). For information on Penplot, consult the

"Penplot Graphi.s Control System Reference Manual," available in the
Athena clusters.

To insure that no scaling Jd.stortion occurs, the contour program

automatically sets eyguivale © scales on the horizontal and vertical

axes. By equivalent scales, 1° 1s meant that if one unit of leng“k

corresponds, on the x axis, to, say, one centimeter on the scresn,

then it will also correspond, on the y axis, to one certimeter on the

screen, (If the scales were not equivalent, then, for example,
circles would be drawn as ellipses.)

As a consequence of this coupled scaling, the length of the hor.zontal

or vertical side of the plot will be proportional to the difference

between the values of the maximum and minimum coordinates along the «x

or y axis, respectively. If this difference is unequal for the twc

axes, the plot will occupy a rectangular region.



2. Calling setup:

The setup routine provides graphics initialization for Penplot, sets
up the coordinate system, and draws a box outlining the plotting area.

It must be called before contour plot unless the initialization has

been handled by direct calls to the Penplot library.

After the outline 1s drawn in the selected «color, the pen will

automatically.besetto green for the contours. If a different color

for the contours is preferred, use a Penplot pen command between calls

to setup and contour plot.

If setup is not used, and initialization 1s done directly with

Penplot, it 1s preferable to use the routine, show(), rather than

area(), in establishing the coordinate scales. This insures that the

axes are scaled equivalently, not independently, thus avoiding

geometric distortion.

Routine: secupl lett, rignt, bottom, top, colcr

A guments:

left

right
bottom

top
color

[double]
[double]
[double]

double]
- long]

2 coordinate of left side of plotting area

x coordinate of right side of plotting area

y coordinate of bottom of plotting area

y coordinate of top of plotting area

pen color of the outline box:

blue = 1, red = 2, green = 3



3. Calling contour plot:

The routine contour plot accepts a two dimensional array of numbers

and plots a selected number of egquivalue contours. The array must

have a double precision data type and must be &lt;contigous 1n memory

since only the address of the first element 1s passed. The maximum

resolution for the array is [101] =x [101]. Both the number of

horizontal and vertical grid points, NX and NY, must be less than or

equal to 101.

The ordering of the indices in the array is in spatial analogy with

rhe matrix notation convention of listing the row index first and the

column index second. Thus, the first index identifies the vertical

location and the second 1ndex, the horizontal location. Please nore

rhat this 1s opposite to the Cartesian coordinate convention. In othe:

words, the value at the coordinate point (xindex, yindex) would re

represented by the array element, arraylyindex](xindex].

Routine: coacour plotlarray, NX, NY, left, right, top, bottom,
acontours, minvalue, maxvalue)

Arguments:

array
NX

NY

left

cight
oottom

top
acontours

minvalue

maxvalue

[array name]
[integer]
[integer]
[double]
[double]
(double]
[double]

integer]
Ldouble]
double]

address of first element of the array

number of horizontal grid points

number of vertical grid points
x coordinate of left side of plotting a:ea

t coordinate of right side of plotting area

y coordinate of bottom of plotting area

y coordinate of top of plotting area

aumber of contours to be plotted

ninimum contour value to be plotted

maximum contour value to be plotted
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4. Exampie

#define NX 51

#define NY 51

k#define BLUE 1

#define RED 2

#define GREEN 3

#define BIG 1.0e20C

main() example program for contour plotter */

double array[NY][NX], result;
double xmin, xmax, ymin, ymax, offset;

long color;
int ncontours;

double x, y, minvalue, maxvaiu.

int xindex, yindex:

J

r

xmin = -25.0;

xmax = 25.0;

ymin = -25.0;

ymax = 25.0;

offset = 25.0;

J * agtablish coordinate system */

minvalue = BIG; /* initialize to large number */

maxvalue = -BIG; /* initialize to small number */

/* Load array. Note: indices must be positive integers. *

for(yindex = 0; yindex &lt; NY; yindex++)

v = yindex - offset; /* origin at center of the

for(xindex = 0; xindex &lt; NX; xindex++'

x = xindex - offset;

result = x*x + 2.0*y*y;

lot

if (result &gt; maxvalue)

maxvalue = result;

(result &lt; minvalue)

minvalue = result:

/* find maximum value */

/* find minimum value */

arraylyindexi[xindex] resulc,

/* Call coiutour routines

color = RED;

ncontours = 11:

x,

x .

setup(xmin, xmax, ymin, ymax, color);

contour plot (array, NX, NY, xmin, xmax, ymin, ymax, ncontours,
minvalue, maxvalue);
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5. Linking Instructions

The object code for the contour routines is located 1n an arch:.ve,

/projects/6 _d0004/lib/contour.a, on aphrodite and hactar. In add f:on,

-he Penplot, Fortran, and math libraries are all needed. Thereiore,

include the following libraries in the linking command:
/projects/6_d0004/lib/contour.a -lpenplot -1F77 -1177 -1U77 -1X -1lr

For example:

cc -o program prog

-1{F,I1,U}77 -1X -1lm

ram. cc sprojects/6 d0004/contour.a -lpenpiot

6. Additional Notes

6.1. Blank Regions in Plot

If the absolute value of a number in the array is greater than 1.0el?2,

no contour will be drawn through that point or through a grid segment

with that point as one of its endpoints. If desired, this feature can

be used to blank out regions of the plotting area.

6.2. Handling Singularities

Singular points, or infinit.es, can be represented in the array as a

very large number. It is recommended that the absolute value of the

number representing such a point should be less than 1.0el2, bur

greater than 1.0eif. This will insure that the contours near thar

point will be closed (see above) and that the electric field plotting

program will know that the field lines end at such points. (The

electric field plotting program uses values greater than 1.0e.o t

identify charge singularities.)

6.3. Discontinuous Functions

The contour program can be used to wiot functions which are

discontinuous across interfaces. For exarp e, electric field lines

across dielectric boundaries can be plotted by finding, in each

region, the conjugate harmonic function to the potential whose
contours represent the electric field lines.

The plotting can be done by breaking the problem into separate

regions, blanking out all but the region to be plotted, and generating

multiple calls to the contour plotter. The value of -1 in the argument

ncontours indicates that this is a repeat call and that the interval

between adjacent cornito.rs should be the same as in the previous call.

(For an exampie, see the source code, dielectric-cylinder.c).
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6.4. Calling the Contour Routine from Fortran

Since the arguments in the routines are passed by value, not address,

the contour plotter cannot be called directly from Fortran. (Fortrar

automatically passes arguments by address.) To get around this

problem, I suggest the following.

Write a short middleman program in 'C' which simply translates the way

the arguments are passed. Have the Fortran program call the middleman

program, which is designed to receive its arguments as addresses, or

potnters. Then the middleman program calls the contour routines, now

passing the arguments by value. (Please note that this only concerns

the arguments other than the array itself. In both Fortran and 'C',

arrays are always passed as the address of the first element of the

array.)

6.5. Bugs to be Corrected

The program does not currently deal properly with the situation in
which contour lines of the same value cross each other. In such a

case, an artefact of a diamund or branch is produced. Hopefully, this

will be fixed shortly.
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Appendix F

Notes for future programmers.

F.1l How to call C Subroutines from FORTRAN77

As is noted in the source code documentation, if you

want to call a subroutine written in C from a FORTRAN77

program, then the C subroutine must have an underscore

appended to it's name

Rxample: [f the C subroutine call called "foo", then

in the C source file it would be defined as:

foo ()

printf ("\nFoo on 70U too.");

And it would be called from FORTRAN as:

call foo
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F.2 How to compile a program that is made up of C source

code and FORTRAN77 source code.

All of the files must either have FORTRAN77 source

code or C source code in them; you can't mix the two

languages within the same file. You start off by

compiling all of the separate source code files. Halt the

compilation at the object code level; DON'T compile all

the way to executable code!

Example: To compile a C file called "foo.c"

would type:

CC —0O {no. oO

Jou

This would produce the object code
file "foo.o"

To compile a FORTRAN77 file

you would type:

£77 -c qgoo.f

called "goo.f™

This would produce the object code

file "goo.o"

The next step is to link together all of the object

code files, along with the proper libraries. It doesn't

matter what compiler you do this with, both "cc" and "£77"

vill work.

NOTE: If the file "boo.c" is "include"d in the

file "moo.c", then you DON'T have to

separately compile "boo.c". Just compile
"moo.c".
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Appendix G

The ASCII character set.
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ASCI!l Character Set

Graphic

Decimal
Value

 nN

No

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Comments

Null |

Start of‘heading
Start of text

End of text

End of transmission

Enquiry
Acknowledge |

Bell

Backspace
Horizontal tabulation

Line feed

Vertical tabulation

Form feed

Carriage return

Shift out

Shift in

Data link escape

Device control 1

Device control 2

Device control 3

Device control 4

Negative acknowledge
Svnchronous idle

End of transmission block

Cancel

End of medium

Substitute

Escape

File separator

Group separator

Record separator

Unit separator

Space
Exclamation point

Quotation mark

AL



Graphic

&amp;

4
&gt;

‘r

’

~

a"

)

Decimal

Value

35

36

37

38

29

10

11

12

13

14

5

16

17

43

11

50

51

52

&lt;3

34

35

56

37

38

59

30

31

62

63

64

55

56

37

38

59

70

ii

i2

i «

5

1G

i"

73

79

30

31

392

qm TL -

Comments

Number sign

Dollar sign

Percent sign

Ampersand

Apostrophe

Opening parenthesis

Closing parenthesis
Asterisk

Plus

Comma

Hyphen (Minus)

Period (Decimal)
Slant -

Zero

One

Two

Three

Four

Five

Six

Seven

Eight
Nine

Colon

Semicolon

Less than

Equals
Greater than

Question mark

Commercial at

Uppercase A

Uppercase B

Uppercase C

Uppercase D

Uppercase E

Uppercase F

Uppercase G

Uppercase H

Uppercase 1

Uppercase J

Uppercase K

Uppercase L

Uppercase M

Uppercase N

Uppercase O

Uppercase P

Uppercase Q

Uppercase R

A-9
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Graphic

~

J

Ti

-

\/

’

\

A

3

]

n

1

bi

)

1

rr

&gt;»

Decimal

Value

83

34

35

R6

7

8

29

20

91

92

93

24

25

96

97

98

22

LOO

L01

102

103

104

105

L06

LO7

L08

L09

110

t11

L12

113

114

115

116

117

118

119

120

121

122

123

124

125

126

1927

Cy
k.

Comments

Uppercase S

Uppercase T

Uppercase U

Uppercase V

Uppercase W

Uppercase X

Uppercase Y

Uppercase Z

Opening bracket

Reverse slant

Closing bracket

Circumflex

Underscore

Grave accent

Lowercase a

Lowercase b

Lowercase c

Lowercase d

Lowercase e

Lowercase

Lowercase g

Lowercase h

Lowercase i

Lowercase j

Lowercase k

Lowercase 1

Lowercase m

Lowercase n

Lowercase o

Lowercase p

Lowercase q

Lowercase r

Lowercase s

Lowercase t

Lowercase u

Lowercase v

Lowercase w

Lowercase x

Lowercase y

Lowercase z

Opening (left) brace
Vertical line

Closing (right) brace

Tilde

Delete

A-3
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