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SYSTEMS FOR HIGH SPEED TRAINS

by
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for the Degree of Master of Science in Mechanical Engineering

A coupled pantograph and catenary model is developed to investigate
the dynamic performance of a catenary and pantograph. The catenary
model represents a simple style or two wire catenary incorporating the
behavior of the towers and droppers, and the tension, mass and bending
stiffness of the wires. The catenary model can be coupled with any
pantograph model; a two mass model incorporating non-linear suspension
elements 1s used for these simulations.

The shape of the catenary wires is described by a Fourier sine
expansion, and the equations of motion and natural modes of vibration
are obtained using Lagrange's method. The dynamic interaction of the
pantograph and catenary are solved by decoupling the motions into the
natural modes of vibration and using modal analysis.

Per formance is evaluated using a computer simulation of the model.
The results show the performance of the catenary is strongly influenced
by a higher wave speed in the wires. Improvements to the pantograph are
also investigated. Lowering the mass, lowering the stiffness of the
suspension, and adding moderate damping all improve pantograph
per formance.
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CHAPTER 1

INTRODUCTION

High speed electric trains are very effective for passenger travel
in high density areas. They are widely used throughout Europe and
Japan, and in this country they are used in the heavily traveled routes
in the Northeast —- principally from Boston to Washington D.C. (the
Northeast Corridor). The two best known systems, the TGV in France and
the Shinkansen in Japan, often run at speeds as high as of 300 and 250
km/h (186 and 155 mph), respectivly. In the U.S., the northeast
corridor improvement project for track between Boston and New Haven is
directed at increasing the maximum speed to 240 km/h (150 mph). These
increased speeds pose a number of developmental problems needing both
technically and economically sound solutions. One of these is the
problem of electric power collectionmn.

Subway and urban transit applications can use both overhead,
'catenary,' and on the track, 'third rail,' systems for electric power.
Above ground trains must use catenaries because of the sdafety hazard of
an exposed third rail. Throughout the world the majority, if not all,
intercity trains use catenaries.

The overhead power carried in the catenary is transfered to the
train via a mechanical arm known as a pantograph. The pantograph must
provide continuous power to the engine, and therefore it must exert a
steady force to its collection shoe; a force large enough to ensure

continuous power collection, but light enough to prevent excessive wear
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of the catenary.

Modern pantograph designs apply a relatively constant uplift force
over a wide range of heights. Typically the uplift force 1s approxi-
mately 90 N (20 1bs) and the pantograph can provide this force over a
wide range of heights from 0.5 m to 2.5 m (20 - 100 inches); over the
majority of the track the catenary is about 2 m above the train. When
the train enters a tunnel, however, the catenary drops down and 1is quite
close to the train, and to accomodate the large excursions, almost all
pantograph designs are of the two stage type% The first stage, or the
frame, accommodates the gross motions while the second stage, often
called the head or shoe, tracks the small motions and vibrations of the
catenary wire.

The problem of continuous power collection depends on the
pantograph, the catenary, and their dynamic interaction. Ideally the
pantograph should trace the catenary just lightly enough to ensure
positive contact but not move the catenary appreciably. The catenary,
on the other hand, should be as stiff as possible, and with as uniform a
stiffness as possible to ensure minimal movement in the wire.

The motions of both the pantogragh and catenary are distinctly
coupled and the performance of the system is determined by their
interaction. Increasing the uplift force may increase the contact but
it also increases the catenary motions, especially between towers.

Large catenary moticns are a problem for the pantograph to follow and

1. The wide variation in catenary height is not universal. The French
SNCF high speed lines have a variation in catenary height of less than
40 cm (16 in) [Ref 1] and the variation of the Japanese Shinkansen lines
is even less than that.



the pantograph may lose contact totally interrupting the power. Making
the uplift force too small, on the other hand, also degrades the
performance because a small disturbance can cause the pantograph to lose
contact.

There are many styles of catenaries and the complexity of the
catenary depends upon the application. For low speed trolley or transit
trains a single tensioned wire is often used. This style catenary is
shown in Figure l.la. The power wire is supported by towers but the
wire sags in between. This is the most economical type of catenary but
the sag between towers becomes a problem for the pantograph to track at
speeds higher than 50 km/h (30mph).

A more advanced configuration is the simple catenary, and it is
shown in Figure 1.1b. It consists of two wires connected together by
droppers or hangers. The top wire, called the messenger, is connected
to the support towers and the lower wire, or contact wire, is hung from
the messenger wire via the droppers. The droppers are of different
lengths and are designed to remove the sag from the contact wire. The
simple catenary is common for uées up to 160 km/h (100 mph). Although
there is little sag in the contact wire there is a large variation in
the effective vertical stiffness of the catenary. Near the middle of a
span the catenary is compliant and soft. But near the support towers,
the catenary is stiff and firm. Even though the contact wire is not
connected to the tower it is much stiffer in this region as the presence
of the tower acts through the droppers. At speeds higher than 160 km/h
this variation in stiffness can become a problem and cause the

panotgraph to lose contact.
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One design to overcome this problem is the inclusion of a stitch
wire at every support tower; this is logically called a stitched
catenary and is shown in Figure l.lc. This catenary is similiar to the
simple catenary but it also includes an intermediate wire hung from the
messenger wire at the supports. The extra wire makes the catenary more
compliant near the towers and makes the stiffness of the entire catenary
more uniform. The French SNCF 25 kV lines use a stitched catenary
designed for speeds of 300 km/h (186 mph).2

A second approach for a uniform stiffness is the compound catenary,
shown in Figure 1.1d. 1In this configuration, a third cable known as the
auxiliary is hung between the messenger and the contact wire. There are
two sets of droppers, one connecting the contact wire to the auxiliary
and a second connecting the auxiliary to the messenger. The auxiliary
wire and the two sets of droppers help isolate the contact wire from the
towers and minimize the variation in stiffness. The Japanese use a
compound catenary on the Tokiado line and run tréins up to speeds of 250
km/h (they restrict train speeds to 160 km/h during high winds). The
Japanese's latest installation, the new Sanyo line, uses a combination

of the two designs: a compound catenary with stitching at the towers.

2. See Reference [2] p 216/12



CHAPTER 2

LITERATURE REVIEW

In the past two decades research on pantograph and catenary dyna-
mics has been actively pursued. A brief review of some of the more
significant works is given here, as well as a discussion of some of the
technical factors.

One widely accepted suggestion for improving the pantograph is to
reduce the mass of the pantograph head. In order to successfully track
the wire the head must be responsive to all motions of the wire ——- both
large and small. High frequency vibration in the catenary is the most
difficult motion to track and the force required to maintain contact is
proportional to the mass trying to track it. Therefore, reducing the
head mass avoids large inertial forces and the pantograph can trace the
catenary easier and without losing contact as often.

Many authors fully agree and mention it as the most important
factor in improving pantograph performance. See References [2,3,4,5,6].
Gostling and Hobbs [5] support this and further suggest that the head
suspension be kept soft. 1In a study conducted in the USSR by Belyaev,
et al. [7] two types of Soviet pantographs were tested. The lighter of
the two performed better at higher speeds, although the authors were
concerned with its sturdiness. Viscous head damping was added to the
pantographs and in both cases resulted in greater uniformity of the
contact force. Boissonade [2] tested the Faively high speed pantograph

at speeds up to 250 km/h on the French SNCF lines and he also reported



that minimizing the head mass is important. 1In addition, he advocated
the inclusion of extra damping in the pantograph head for all panto-
graphs (They used 36 Ns/m). As a further suggestion, he mentioned the
use of one-way damping, a non-linear damper which provides resistance
only to downward motion of the head. This was offered only as a
suggestion and was not tested.

The Faively pantograph has been evaluated by a number of authors.
In addition to those mentioned above, Grey [8] measured aerodynamic
lifting forces on the members and links of the pantograph, spring
constants for the shoe support, and the damping between the frame and
base.

Peters [9] evaluated the performance of both single and dual stage
Faiyely pantographs using loss of contact, rather than contact force

variation, as the measure of performance. He reported that during short

duration-contact losses, those of less than 5 ms, small electrical arcs
are drawn which cause no pantograph or contact wire damage and which
easily maintain the primary current. The most damaging to both wire and
collector shoe are medium duration contact losses (5 ms to 20 ms).
During separations of more than 20 ms, the forward velocity of the train
extinguishes the arc; this causes loss of power but no additional
damage. These tests were run with a contact force of 90 N and a
pantograph head mass of 15 kg (33 1bm). A significant improvement in
performance was acheived by increasing the contact force to 125 N (28
1bs) and reducing the head mass from 15 to 13 kg. Peters reported that
45%Z of the separartions were from 2 to 5 ms in duration. He concluded

that unacceptable contact behavior occurred when the standard deviation



of the contact force equaled 1/3 of the mean force.

Vesely at MIT [10] tested an August Stemman pantograph and
developed a general pantograpgh model which incorporates geometric
nonlinearities in the frame as well as nonlinearities in the head
suspension. The equations of motion for the general pantograph were
linearized for use in a two mass model and the effective values for the
masses, stiffnesses and damping were determined. This is a valuable
addition to the literature since the model can accommodate any panto-
graph. His model and experimental data matched very closely from O - 13
Hz. Above this frequency, structural effects of the links —~~ which were
not modeled -~ became important. It was concluded the two mass model
provides a very accurate description of the actual pantograph and a full
model incorporating the geometric motion of the links is not necessary
unless the excursions are greater than 20 cm. The nonlinear head
effects, however, are very important and cannot be ignored.

The other key element in the system is the catenary. Several
studies baQe discussed wave speed as an important parameter in the
catenary. The wave speed dictates the speed of propagation of a
displacement or a force through the catenary. The wave speed in a
tensioned wire is determined by a simple equation as the square root of

the tension divided by the lineal density.

c =yT/p (2.1)



The density of the wire is dictated by 1ts current carrying
capability but the tension is variable and can be as high as the
strength of the material will allow. The wave speed is a function of
the square root of the tension. Although the studies agree on its
importance and its influence on the critical speed (the maximum speed
before serious degredation in performance or loss of contact occurs),
there 1s wide discrepancy as to when the critical speed actually occurs.
Specialists from O.R.E. [6] state the maximum velocity is the full wave
speed. They recommend as high a tension as possible to increase the
wave speed to a maximum. Thomet [11] recommends the upper limit for
pantograph velocity is one-third the wave speed. He reached this
conclusion because at this speed a wave initiated at a tower will reach
the aext tower and reflect back reaching the the center of the span —-
the most compliant section of the catenary —- just as the pantograph
reaches the center of the span.

These are somewhat qualitative suggestions but in either case the
tension in the catenary should be maximized. This increases the
critical speed and also stiffens the catenary. Stiffening is more
important ior high voltage lines (25 - 50 kV) because the cables are
lighter (since they carry less current), displace more for a given
panotgraph force, and are more suceptable to wind loads. A maximum
tension keeps these motions to a minimum.

Cable tension should not only be high, it should also be maintained
at a constant level. Most high performance catenaries are kept at a
constant tension through the use of pulleys and counterweights at the

end of a spool length of cable (typically 1200 - 1500 meters). This
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arrangement eliminates many of the problems associated with fixed span
catenaries which are sensitive to temperature variations. Fixed span
catenaries sag with heat, “hog” with the cold, and can suffer fatigue
damage. The constant tension catenary is generally more expensive but
lasts longer. Thomet claims constant tension catenaries can also be
kept at a higher tension. He concluded that a cadmium copper catenary
can be kept at 70% of the yield stress for life if tension is never
relieved.

Other novel approaches for improving performance have been tried.
Sell, et al. [12], in an attempt to detune the system, substituted
springs for rigid droppers, varied dropped spacing, and supplied
droppers with both pneumatic and hydrulic dampers. Several config-
urations were tried, but the improvement did not justify the expense in
any of the cases.

In order to better understand the dynamics and interaction of a
catenary-pantograph system several combined models have been developed.
Most of the pantograph and catenary models have been developed together,
with the majority of the development work focused upon the catenary
model. The pantograph models have been for the most part two mass
linear models.

There have been several noteworthy attempts to develop a theoret-
ical solution to the catenary dynamics problem. Morris [13] in 1964
developed an analog computer simulation for a system composed of a
simple two mass pantograph and a catenary consisting of a series of
lumped masses each suspended from a spring and connected together with

massless tensioned strings. This simplification was necessary to reduce

- 10 -



the problem to a size easily handled by an analog computer. The
simplifications were severe enough to make this model of limited
usefulness.

A second analytic solution for catenary motion was presented by
Gilbert and Davies [l4]. They considered the catenary as a massless
tensioned string embedded in an elastic medium whose stiffness varied
periodically. This may be an unaccepable simplification, especially
considering the lack of any mass in the catenary model, but it was an
analytic solution and allowed preliminary prediction of the critical
speeds.

Abbot [15] modelled a trolley wire style catenary by replacing the
differential equations of motion with finite difference equations and
used numerical methods to solve the problem.

Levy, Bain and Leclerc [16] produced a model for a simple catenary
by representing it in terms of the undamped, normal mode generalized
coordinates. This decoupled the equations for solution of the dynamic
response. The reponse was simulated on a digital computer with the
accuracy controlled by the number of modes considered. The usual two
mass pantograph model was used.

Scott and Rothman [17] produced several computer programs to
evaluate various catenary systems. They were able to compare their
results of the simple catenary with earlier experimental work preformed
by Willets and Edwards [18]. Predictions of the critical speed agreed
well but predictions of the percentage of time in separtion did not

agree as well.
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Hobbs [19] developed a finite element model and conducted experi-
ments to verify it. He concluded the wire bending stiffness can be
ignored but the wire mass cannot be ignored. The test catenary was
shaken by a hydraulic ram and accelerometers mounted on the wire were
monitored. They describe a theoretical model which considers the first
fifteen modes of vibration, and compared favorably with the experimental
measurements.

Recently there has been a growing interest in aluminum catenaries.
This is primarily motivated by the increasing price of copper, but there
may be additional advantages to an aluminum catenary. For an equivalent
current carrying capability an aluminum catenary is approximately one-
half the weight and can hold the same tension as a copper one. The
decrease in weight yields a wave speed aproximately 1.41 times higher
than the wave speed in a copper catenary, and the decrease in weight
also permits longer distances between spans and/or lighter support
towers.

Wear has been a factor considered in aluminum catenaries. Thomas
[20] in 1966 examined a French composite catenary used in Bordeaux with
an aluminum cable and a steel core. He stated that after 500,000
passages of the panotgraph shoe (which is the limit 1life for a copper
catenary) the wire showed little wear and had the possibilty of an

additional 100,000 passages. More recently Carlson and Griggs [21]

3. Aluminum is not as good a conductor and has a resistivity 1.65 times
that of copper; therefore an aluminum wire must have a cross sectional
area 1.65 times a copper wire“s. However, aluminum has a density 0.302
times copper”s, resulting in an equivalent wire of about half the
weight. The yield stress of aluminum is 0.60 times copper”s, but with
the required increase in cross sectonal area, the two wires can handle
the same tension.
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reported that after an initial break-in period the wear rates between

copper and aluminum are not significantly different.
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CHAPTER 3

MODEL DEVELOPMENT AND SOLUTION TECHNIQUE

This chapter highlights the development of the model and solution
technique for the pantograph/catenary system. The models of the
catenary and pantograph are developed to investigate dynamic phenomenon
and to evaluate pantograph performance. The two models are developed
seperately here, but in the simulation the two are directly coupled to
form a complete system model. The solution technique is summarized here
outlining the methodology involved, while an in depth analysis is

covered in Appendices A and B.

3.1 Model Development

To simulate the dynamics of the catenary a model of the two wire,
simple style catenary was chosen. The simple catenary configuration
contains all the characteristic dynamic effects present in the advanced
designs without the excessive complexity required to model the stitched
or compound catenary. The single cable or trolley wire catenary, on the
other hand, 1s significantly different than the advanced designs and a
model based on this catenary would have only limited use in predicting
pantograph performance.

A schematic of the catenary model is shown in Figure 3.1. The
model represents a finite length of the simple catenary style, and

incorporates the following features:
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Tower Stiffness: S

Dropper Stiffness: K
Distance to the jth Tower:
Distance to the ith Dropper:

Stiffness of the Two Wires:

W,
]

X

i
I
E A EIB

Density of the Two Wires: pA, pB

Tension in the Two Wires: TA, TB

FIGURE 3.1:

CATENARY MODEL
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o Simple catenary with a contact wire and a messenger wire
o Variable spacing between the droppers and between the towers

o Contact and messenger wires are each modeled with a bending
stiffness, constant tension, and a uniform density

o Damping 1s distributed proportional to the mass of the wires
to ensure orthogonality of the natural modes

o The two wires are connected by droppers modeled as massless
elastic springs

o The messenger wire is connected to the towers modeled as
massless elastic springs
To represent the pantograph a two mass model incorporating

suspension nonlinearities was chosen. The two mass model, as shown by
Vesely [10], is accurate for pantograph displacements up to 20 cm (The
pantograph motions in the simulations never exceeded 10 cm). The
pantograph model, shown in Figure 3.2, incorporates the following
features:

o The motion of the pantograph is modeled by two masses: a
frame mass and a head mass

o The applied uplift force is modeled as a constant, Fy

o Stiffness of the contact strips is modeled by a linear spring,

Ks

o Stiffness between the head and the frame is modeled by a
linear spring, K,

o A mechanical stop is included limiting the relative motion
between the head and the frame

o Two types of damping elements between the head and the frame
are modeled: 1linear damping and one-way damping.

o Stiffness between the frame and the base is modeled by a
linear spring, K.f

o Two types of damping elements between the frame and the base
are modeled: linear damping and one-way damping

- 16 -
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The pantograph and catenary models are coupled due to contact
constraints. During contact, the force acting on the pantograph head is
equal and opposi-e to the force on the lower catenary wire. Further,
the vertical displacements of the pantograph head and the lower wire at
the contact point are identical. The pantograph and catenary are shown
in contact in Figure 3.3.

The pantograph traces the varying shape of the lower catenary wire
and develops a varying contact force. The force displaces the catenary
wire and produces the shape the pantograph must follow. If the comntact
force is less than the applied constant uplift force the pantograph ard
catenary wire rise together drflecting the catenary wire vertically; if
the contact force is greater than the applied uplift force the panto-
graph and catenary wire fall together. Except during brief losses of
contact when the two are considered independently, the pantograph and

catenary form a coupled system.

3.2 Solution Technique

The dynamic response problem of the catenary and pantograph is
solved using Fourier, Lagrange and modal analysis techniques. Simple
Fourier analysis is used to describe the dynamic diespliacements of the
catenary wires as a sine-series expansion and to describe the natural
mode shapes of the catenary. The equations of motion are derived using
a Lagrange formulation, and modal analysis is used to express the
equations of motion in a standard form and, most importantly, allows the
catenary model to be easily coupled with any pantograph model. The
solution technique is presented briefly here and is developed in detail

in Appendices A and B.
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FIGURE 3.3: COUPLING OF THE PANTOGRAPH AND CATENARY MODELS
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First, to describe the dynamic displacement of each wire from its
equilibrium position, the displacement shape of each catenary wire is
described by a sine-series expansion. A simple result of Fourier
analysis is any shape with fixed ends can be mathematically described by
superposing an infinite set of sine functions, each with an appropriate
amplitude. A close approximation of the shape can be made with a finite
number of sine terms. Considering a finite number of sine terms trans-
forms the shape of the catenary wires from an infinite number of degrees
of freedom into a finite number of degrees of freedom. Therefore the
displacements are described by a finite term sine-series expansion: omne
series representing the shape of the contact (lower) wire, a second

series representing the shape of the messenger (upper) wire.

y (x,t) = ZAm(t) sin(-l-n%—\) upper wire
(3.1)
y (x,t) = :E: B (t) sin(E%?ia) lower wire
m
where:

Yy = The displacement of the upper wire

m = The amplitude of'the mth sine term, upper wire

>
[

By = The amplitude of the mth sine term, lower wire

b
L]

The distance along the catenary

=
0

The total length of the catenary

m = An integer, designates the harmonic number

The shape of the wires and the displacement of any point on the

wires is expressed as a function of the amplitude terms Am and B
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Further, the shape of the wires as a function of time is expressed as a
function of the time varying amplitude terms Am(t) and Bm(t). Therefore
the amplitude terms A (t) and B, (t) provide a sufficent and convenient
set of generalized coordinates for deriving the equations of motion of
the catenary.

The amplitude terms are used to derive expressions for the kinetic
and potential energy. The kinetic energy results from the motion of the
mass of the wire, and the potential energy results from displacements of
the restoring elements: the tension in the wires, the bending stiffness
in the wires, the dropper springs and the tower springs.

Lagrange”s equation is applied to the expressions of kinetic and
potential energy to obtain the equations of motion of the catenary. The
equations of motion represent the unforced homogeneous case. The
homogeneous equations contain only A, K, B, and B terms (displacement
and acceleration terms) because all the elements of the catenary model
are linear elements and because the damping terms and forcing function
are neglected. The equations are arranged with the second derivative
terms on the left and the amplitude terms on the right.

Since the catenary model is a linear system the catenary will
always vibrate in a natural mode or a combination of its natural modes.
The system will, in general, have as many natural modes as degrees of
freedom, and when the system is excited in a natural mode the motion
must be harmonic and the acceleration terms are defined by:

2
Am = =) Am

3.2)

= =2
Bm u)Bm
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where:
®w = The frequency of vibration

To identify the natural modes the second derivative terms in the
equations of motion are replaced with equation (3.2). This substitution
expresses each equation of motion solely as a function of the amplitude
terms and the frequency of vibration.

The equations of motion for both the upper and lower wires are
then arranged in matrix-vector form, with the amplitude terms Am and
Bm written as a single vector I'. The left hand side of the matrix
equation is the frequency squared times the identity matrix, I,
multiplied by the vector of amplitude terms, I'. The right hand side of
the equation is a square matrix of coefficients, H, multiplied by the

vector of amplitude terms, I'.
w?Il =HT (3.3)

where:
w = the frequency of vibration

=~
n

the identity matrix

I' = vector of the amplitude terms

(Am s and B s8)

H = the dynamic matrix

The natural modes are easily evaluated from the matrix H. The
equations of the system are decoupled into the natural modes by an
eigenvalue analysis. The eigenvalues of the matrix H give the square of
the natural frequencies and the eigenvectors give the set of amplitude

terms describing the natural mode shapes. Each natural mode shape is
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determined by using equation (3.1) and inserting the amplitude terms
from each eigenvector.

The advantage of using modal analysis is two—fold: 1) it provides
a convenient method of expressing the dynamics of the catenary, and 2)
it allows the catenary model to be easily coupled with any pantograph
model.

Using modal analysis for the catenary model allows it to be matched
with any pantograph model (linear, nonlinear, or active controlled
pantograph). The equations of motion of the pantograph model can be
written with the natural modes of the catenary in standard modal form.
The natural modes of the catenary are orthogonal and can be considered
independently, and each modal equation is influenced by the pantograph.
The resulting equations are second order linear differential equations

of the form:

o ; 2 -
MZ f L Mz toeMz Q (3-4)

where:
zi(t) = The ith modal response function

Mi = The ith modal mass

w4 = The i1th natural frequency

Q; = The ith modal forcing function

The influence of the pantograph is represented in the modal forcing

function, Q4

Q5= f £lxee) o300t (3.5)
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where:
f(x,t) = The applied force distribution

¢i = The ith natural mode shape

There is a modal equation for each natural mode of the catenary,
each mode has an individual modal forcing function, Qi’ and each mode
has an individual response. The dynamics of the catenary are determined
by the set of modes and the shape is calculated by superposing the modes

by equation (3.6)

y(x,t) = ) a(e) ¢y (x) (3.6)

where:
z(t) = the ith modal forcing function

¢1(x) = the ith natural mode shape described by equation
(3.1) and the amplitudes from the ith eigenvector
The modal equations for the catenary and the equations of motion
for the pantograph model described above have been coded into a Fortran
program and their interaction simulated on a digital computer. The
pantograph and catenary are considered as a single coupled system in
simulation; the pantograph head and the lower catenary wire share the
same position and the coupling comes from the contact force between
them. Only during momentary losses of contact are the two considered
irdependently; in this case the contact force is zero until the panto-
graph regains contact with the catenary.
This chapter presents an overview of the model and solution
technique. Technical details have been omitted to avoid obscuring the

overall methodology. They are presented in Appendicies A and B for
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V”ﬁqp:hgr reference. The next chapter presents the natural modes and many

of the results obtained using this model.
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CHAPTER 4

RESULTS

The model developed in Chapter 3 has been implemented into a
computer simulation and used for a variety of investigations: (1)
Determining the natural modes of the catenary, (2) Dynamic simulations
of both pantograph and catenary, (3) Evaluation of different pantograph
designs, (4) Sensitivity studies of the parameters in the pantograph
model, and (5) Evaluation of different catenary designs. The results
are presented here and illustrate the behavior and dynamics of the

pantograph and catenary.

4.1 Catenary Description and Natural Mode Shapes

Determining the natural mode shapes and natural frequencies of a
specific catenary configuration is the first part of the simulation.
The majority of the simulations have been run with three spans of a
typical copper catenary and the parameters are given in Table 4.1.
Figures 4.1 through 4.4 show the first 20 natural mode shapes. Each
plot shows the modal displacements (dimensionless) versus the distance
along the catenary. The upper curve is the mode shape of the upper wire
(messenger wire); the lower curve is the mode shape of the lower wire
(contact wire).

The stiffness of the support towers and the stiffness of the

droppers has a strong influence on the natural modes. The towers are

stiff and move very little with catenary vibration. The small
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Mode 1 0.73 Hz Mode 2 0.74 Hz
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Mode 3 0.75 Hz Mode 4 1.47 Hz

Mode 5 1.48 Mode 6 1.50 Hz
FIGURE 4.1: NATURAL MODES SHAPES FOR MODE 1 THROUGH 6
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Mode 9 2.25 Hz

Mode 11 2.95 Hz

Mode 12 2.99 Hz

F1GURE 4.2: NATURAL MODE SHAPES FOR MODE 7 THROUGH 12



Mode 13 3.67 Hz Mode 14 3.70 Hz

Mode 17 4.17 Hz Mode 18 4.41 Hz

FIGURE 4.3: NATURAL MODE SHAPES FOR MODE 13 THROUGH 18

0



Mode 19 4.55 Hz Mode 20 4.74 Hz

FIGURE &4.4: NATURAL MODE SHAPES FOR MODE 19 THROUGH 20
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TABLE 4.1

BASELINE CATENARY PARAMETERS

Wire: Copper
Length: 228.6 m 750 £t
Tower Spacing: 3 Spans
76.2 m 250 ft
Dropper Spacing: 0 per span
12.8 m 42 ft
Tower Stiffness: 17,510 kN/m 100,000 1b/in

Dropper Stiffness:

43,775 kN/m

250,000 1b/in

Tension: Upper Wire 24 kN 5,400 1b
Lower Wire 28 kN 6,300 1b

Density: Upper Wire 1.786 kg/m 1.2 1bm/ft
Lower Wire 2.378 kg/m 1.6 1bm/ft

Stiffness: Upper Wire 861.2 N mg .125 1b in2

Lower Wire 2584. N m .375 1b in?

Catenary Damping Ratio: 0.02

Number of Modes Considered: 20

Average Wave Speed: 112 m/s 250 mph

* A 20 term sine expansion is used for each wire, giving 40 natural

mode shapes. Inspection of the results shows approximately half of the
modes from O to 5 Hz and the other half 100 to 500 Hz. The high freq-
uency modes do not represent the true natural modes of the catenary, but
result from the shape description using a finite number of sine terms.
Therefore, these modes do not represent the true natural modes of the
system and are ignored in the simulation.
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displacement at the towers distinguishes each of the three spans; and
this is especially noticeable in the first several modes. Even the
shape of the lower catenary wire is dominated by the the towers.
Although the wire is not directly connected to the towers, the presence
of the towers acts through the droppers, limiting the motion at these
points.

The droppers are even stiffer than the towers and also move very
little with catenary vibration. At low frequencies the behavior of the
upper and lower wires is almost indistinguishable and at higher freq-
uencies the shape of the two wires differs only between dropper
locations.

The bending stiffness of the catenary wires, however, has little
influence on the mode shapes, and this is best demonstrated in the first
several mode shapes. At the towers, the mode shapes have shape discont-
inuities in shape, indicative of compliant bending. Further, each span
can vibrate independent of the neighboring span, and the frequencies are
almost identical whether or not they vibrate together. If the bending
stiffness of the catenary wires were important the motion of each span
would strongly influence the others and the behavior would be more

closely coupled.

4.2 Typical System Response

The baseline catenary has been simulated with several pantograph
designs, and this section presents typical performance results using a
standard industrial pantograph. The prototype #1 pantograph is run at

200 km/h (124 mph) and the parameters appear in Table 4.2.
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Figures 4.5 through 4.10 represent the time history of the catenary
shape, with the shape of the lower catenary wire plotted at 0.1 gsecond
intervals. The shape plots are seperated five per figure for clarity,
and the six figures span a total of 3.0 seconds. A vertical line on
each plot shows the horizontal position of the pantograph at the time of
the plot.

In the early part of the simulation (0.0 - 0.9 sec) the lower wire
displaces upwards as the pantograph moves down the wire, and the dis-
placement grows monotonically and linearly. Between 0.9 and 1.0 sec,
the displacement of the catenary reaches a maximum, and then begins to
fall. The wire will not move much at the towers due to the towers”
stiffness, and the wire drops to meet this constraint.

From 1.0 to 1.4 sec, the pantograph approaches the first tower, and
the shape of the wire is very steep. The pantograph moves down to acco-
modate the catenary but the pantograph”s inertia and the rapid descent
of the wire briefly raises the contact force.

At 1.37 gec the pantograph passes the first tower and the catenary
begins rising again. The shape changes direction at the tower -- from a
steep descent to a moderate incline -- and the pantograph attempts to
trace this change. It is a difficult motion to follow and can often
cause loss of contact at higher speeds.

The motion of the pantograph displaces the catenary, and causes the
catenary wires to vibrate once the pantograph has passed. Between 1.7
and 2.4 sec the catenary makes a full excursion -- from full negative
displacement to full positive ( * 4 cm) -~ vibrating in the first

natural mode (0.7 Hz). This vibration is very lightly damped and may
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Displacement (cm)
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1 1 1

FIGURE 4.5: CATENARY SHAPE BETWEEN
0.0 AND 0.5 SECONDS

100 m 150 m 200 m

FIGURE 4.6: CATENARY SHAPE BETWEEN
0.6 AND 1.0 SECONDS
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Displacement (cm)

Displacement (cm)

o

59 m 1OP m 150 m

ZQO m

FIGURE 4.7: CATENARY SHAPF BETWEEN

1.1 AND 1.5 SECONDS

50 m 100 m 150 m
1 1 ]

200 m
1

FIGURE 4.8: CATENARY SHAPE BETWEEN

1.6 AND 2.0 SECONDS
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Displacement (cm)

50 m 100 m

150 m 200 m
1 !

FIGURE 4.9: CATENARY SHAPE BETWEEN
2.1 AND 2.5 SECONDS

150 m 200 m

| L

FIGURE 4.10: CATENARY SHAPE BETWEEN
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TABLE 4.2

PROTOTYPE #1 PANTOGRAPH PARAMETERS

Head Mass: 13.1 kg 28.8 1lbm
Frame Mass: 25.0 kg 55.1 1bm
Stiffness of the 82.3 kN/m 470 1b/in

Pantograph Shoe:

Stiffness Between the 9.58 kN/m 54.72 1b/in
Head and Frame:

Stiffness Between the 0.0 kN/m 0.0 1b/in
Frame and Base:

Damping Between the 300 Ns/m 1.714 1b sec/in
Head and Frame:

Damping Between the 1.0 Ns/m .006 1b sec/in
Frame and Base:

Uplift Force: 90 N 20.2 1b

o Data represents an August Stemman Pantograph, See Reference [10]
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cause tracking problems for trains using multiple pantographs.

The behavior described above reoccurs when the pantograph crosses
the second span. After the pantograph passes the first tower, the
displacement of the catenary wire increases linearly and monotonically;
once the pantograph exits the second span, free vibration is excited in
the citenary; and as before, it is dominated by the first mode. The
consistent behavior of the spans emphasizes the validity of the model
and the validity of considering a finite length of catenary.

The displacements of the catenary, pantograph head, and pantﬁgraph
frame for the above system are all shown in Figure 4.11. The plots are
the displacements from the datum at the moving point of contact, and are
superposed one above another.

The displacements of the catenary and pantograph grow almost
linearly until the peak is reached, and then decrease rapidly as the
support tower is approached. ™he maximum displacement occurs at 0.91
sec, significantly past the middle of the span. The shift of the peak
is due to the forward momentum of the pantograph and the displacement
wave of the catenary, and becomes dramatic at a higher train syeed or a
lower catenary wave speed. The shift and the constraint of the stiff
support towers cause the steep descent of the wire, and the further past
the center the peak displacement occurs the steeper the descent will be.

The change in catenary shape at the towers, from a descent to an
incline, effects pantograph performance. At 200 km/h the pantograph
head maintains contact but the pantograph frame, which is heavier and
slower to respond than the head, undershoots when the pantograph passes

the tower. The relative displacement between the head and frame is
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FIGURE 4.11: DISPLACEMENT OF THE CATENARY AND PANTOGRAPH
PROTOTYPE 1 PANTOGRAPH AT 200 km/h
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FIGURE 4.12: CONTACT FORCE HISTORY
PROTOTYPE 1 PANTOGRAPH AT 200 km/h
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accommodated by the suspension, but the slow response of the frame mass
results in a lower contact force.

The contact force is shown in Figure 4.12. The contact force is
highest just before the pantograph passes the tower. The peak in force
occurs when the pantograph is tracking the steep descent of the wire and
reaches a maximum of 152 N at 0.96 sec. The contact force reaches a
minimum of 44 N just after the pantograph passes each tower (t = 1.37,
2.72 sec), and occurs as the catenary wire begins rising.

Effects of Increasing Speed

At 225 km/h the pantograph cannot follow the catenary and loss of
contact occurs. The loss of contact occurs just after passage of the
towers (1.2 and 2.4 sec) and can be observed in either Figure 4.13 or
Figure 4.14. Figure 4.13 shows the displacement of the catenary wire
and pantograph, and the separation occurs when the trajectory of the
lower wire and pantograph head differ. Figure 4.14 shows the contact

force and the force vanishes when the pantograph loses contact.

4.3 Comparative Performance of Selected Pantographs

Two pantograph designs have been compared using the baseline
catenary. The two pantographs represent commercial designs: Prototype
#1 is discussed above (parameters given in Table 4.2) and Prototype #2

has the parameters given in Table 4.3. The two pantographs are run at
speeds from 150 km/h to 250 km/h (124 to 156 mph), and data similiar to

that shown above are obtained for each pantograph at each speed.
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FIGURE 4.13: DISPLACEMENT OF THE CATENARY AND PANTOGRAPH
PROTOTYPE 1 PANTOGRAPH AT 225 km/h
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FIGURE 4.14: CONTACT FORCE HISTORY
PROTOTYPE 1 PANTOGRAPH AT 225 km/h
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TABLE 4.3

PROTOTYPE #2 ANTOGRAPH PARAMETERS

Head Mass: 9.1 kg 20 1bm
Frame Mass: 17.2 kg 38 1bm
Stiffness of the 82.3 kN/m 470 1b/in

Pantograph Shoe:

Stiffness Between the 7.0 kN/m 40 1b/in
Head and Frame:

Stiffness Between the 0.0 kN/m 0.0 1b/in
Frame and Base:

Damping Between the 130 Ns/m .743 1b sec/in
Head and Frame:

Damping Between the 30 Ns/m .171 1b sec/in
Frame and Base:

Uplift Force: 90 N 20.2 1b

o Data represents a Faively Pantograph, See Reference [19]
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The variation in contact force is selected as the performance index
for the two designs and the force variation of both pantographs is
presented in Figure 4.15. The variation in contact force is of interest
for two reasons: a low variation means a lower uplift force can be
used, and the variation shows the safety margin before loss of contact
occurs.

Comparison of the two designs shows prototype #2 performs better
than prototype #1 at all the speeds tested. Prototype #1 starts to lose
contact with the catenary at 225 km/h (140 mph), while prototype #2
maintains contact at this speed and does not lose contact until above
250 km/h. The support tower is the critical area for both pantographs,
and the minimum contact force occurs just after passing a tower.

The superior performance of the prototype #2 pantograph is mainly
due to the reduced mass of the pantograph. The head and frame masses of
prototype #2 are, respectively, 9.1 kg and 17.2 kg (20.0 and 38.0 1lbm);
pcototype #1 has masses of 13.1 kg and 25.0 kg (28.8 and 55.1 1bm),
respectivery. A lighter mass, especlally in the head, has less inertial
resistance to motions of the catenary, and is desirable for tracking the
quick variations and high—-frequency vibrations in the wires. The proto-
type #1 pantograph represents a fairly rugged design, whereas prototype
#2 pantograph is a very lightweight design, and was created with the

goal of designing the lightest possible pantograph.4

4. See Reference 19 pp 341-342
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Pantograph and Contact Force Percent
Speed (km/h) High/Low (N) Variation
Prototype #1 150 122/58 35.6 %
Prototype #1 175 125/41 54.4
Prototype #1 200 152/16 82.2
Prototype #1 225 LoC LoC
Prototype #1 250 LOC LOC
Prototype #2 150 113/61 32.2
Prototype #2 175 114/60 33.3
Prototvpe #2 200 133/44 51.1
Prototype #2 225 143/28 68.9
Prototype #2 250 166/13 85.6

o All runs were made with a nominal uplift of 90 N
o} LOC = Loss of Contact

FIGURE 4.15: COMPARISON OF THE VARTATION IN CONTACT FORCE
FOR THE TWO PANTOGRAPHS
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4.4 Parameter Influence on Performance

The pantograph model has been used as a design tool to investigate
possible improvements to pantograph design. Variations in the damping
and stiffness elements are investigated. Minimizing the head and frame
mass to improve performance is not readressed here, but is discussed
briefly above and in depth in References [2,3,4,5,6]. The essential
result is the lower the mass the better -- limited only by the struc-
tural integrity and rigidity of the pantograph.

| The prototype #2 pantograph is typical of a well-designed
lightweight pantograph and is used as a baseline in this investigation.
The effect of varying only the stiffness of the head suspension is shown
in Figure 4.16. As before, variation in contact force is the perfomance
index and all the runs are at 200 km/h. The results show the head
stiffness should be as low as possible, the best performance is acheived
with zero stiffness. A plot of the contact force for the case of zero
head stiffness appears in Figure 4.17. The performance is clearly
superior to the standard configuration; the contact force is more
uniform, and occurs without the large maxima and minima near the towers.
With zero stiffness the variation in contact force is 28%, which 1is
significantly less than the 51% variation of the standard configuration.

The performance of the pantograph due to changes in damping 1is
investigated in Figures 4.18 through 4.21% The head and frame damping
ratios in the prototype #2 pantograph initially are 0.26 and 0.04,
respectively. Figure 4.18 illustrates the effect of varying the damping
of the head and frame together, i.e. with the same damping ratio for

each. The best performance in this case results from moderate damping,
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Head Stiffness (kN/m)
Head Stiffness Contact Force Percent
(Newtons/meter) High/Low (N) Variation
0 N/m 115/72 28 7
1,750 119/60 30
3,500 126/54 40
7,000 133/44 51
15,000 144/28 69

o All runs were made with the Prototype #2 pantograph at 200 km/h
with a nominal uplift of 90 M

FIGURE 4.16: INFLUENCE OF VARIATIONS IN HEAD STIFFNESS
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100

50

Contact Force (N)

0 1 1 ! ! 1

0 0.5 1.0 1.5 2.0 2.5
Time (sec)

FIGURE 4.17: ZERO HEAD STIFFNESS VS. STANDARD CONFIGURATION
PROTOTYPE 2 PANTOGRAPH AT 200 km/h

head and frame damping ratios equal 0.25, 0.25 respectively, giving a
contact force variation of 44%.

Varying the damping in each element seperately is also considered.
In Figure 4.19 the head damping alone is varied, and it shows that this
improves the performance only slightly. The variation in contact force
is 52% using a damping ratio of 0.5, 0.0, a small improvement over the

63% variation obtained with a damping ratio of 0.125, 0.0. Varying the

5. The damping is defined by the effective damping ratio, zeta. The
two damping ratios define 1) the ratio of critical damping of the head
mass vibrating on the head to frame spring and head to frame damper 2)
the ratio of critical damping of the frame mass vibrating on the head to
frame spring and frame to base damper. The damping ratio is not a
perfec: index. For a system with a very low stiffness using the same
damping ratios presented here would result in insufficient damping. The
ratio of damping to mass may be a better index.
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Damping Coefficient (Both Elements)

Head and Frame Damping Values Contact Force Percent
Damping Ratios B1 (Ns/m) B2 High/Low (N) Variation
L1250 .125 63 87 130/49 46 7

.25 .25 126 174 130/62 44

.5 .5 252 347 144/63 60

0 All runs were made with the Prototype #2 pantograph at 200km/h
with a nominal uplift of 90 N

FIGURE 4.18: INFLUENCE OF SIMULTANEOUS VARIATION IN HE
AND FRAME DAMPING
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Head Damping Coefficient
Head and Frame Damping Values Contact Force Percent
Damping Ratios B, (Ns/m) B, High/Low (W) Variation
.125 0.00 63 0 136/33 63 %
.25 0.00 126 0 135/38 58
.5 0.090 252 0 136/43 52

o All runs were made with the Prototype #2 pantograph at 200 km/h
with a nominal uplift force of 90 N

FIGURE 4.19: INFLUENCE OF VARIATIONS IN HEAD DAMPING
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Frame Damping Coefficient

Head and Frame Damping Values Contact Force Percent
Damping Ratios B1 (Ns/m) B2 High/Low (N) Variation
0.04 .125 20 87 131/42 53 %
0.04 .25 20 174 128/58 42
0.04 .5 20 347 142/64 58

o All runs were made with the Prototype #2 pantograph at 200 km/h
with a nominal uplift force of 90 N

o A small amount of head damping is required to stabilze the
head in the simulations

FIGURE 4.20: INFLUENCE OF VARTATIONS IN FRAME DAMPING
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frame damping has more dramatic influence, and is shown in Figure 4.20.
In this case the optimum damping occurs at zeta = 0.0, 0.25 with a
contact variation of 42%. Lower and higher frame damping éignificantly
increases the contact force variation.

Several configurations with different damping in both elements are
investigated and a list of the results appears in Table 4.4. The best
performance for this pantograph was obtained using a damping ratio of
0.26, 0.19, and a plot of the contact force for this configuration is

shown in Figure 4.21. The contact force variation for this case 1s 40%,

the least variation of any configuration.

1 I 1 1 1
= = #2 Pantograph: Standard
150 — — {#2 Pantograph: Damping Ratio = .26, .19 =
~
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3]
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0 0.5 1.0 1.5 2.0 2.5
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FIGURE 4.21: HEAD AND FRAME DAMPING = .26, .19 VS. STANDARD
PROTOTYPE 2 PANTOGRAPH AT 200 km/h



INFLUENCE OF INDEPENDENT VARIATIONS

TABLE 4.4

IN HEAD AND FRAME DAMPING

Head and Frame Damping Values Contact Force Percent
Damping Ratios Bl (Ns/m) B2 High/Low Variation
.13 .09 65 65 131/46 49 7

.25 .125 126 87 129/53 43

.26 .19 130 130 126/59 40

.50 .125 252 87 130/58 44

.51 .37 260 260 139/66 54
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Several simulations were run incorporating one-way damping. In
general, the use of this damping increases the lowest force but does not
reduce the highest force. These advantages reduce the risk of loss of
contact and allow lower uplift forces tc be used. Modeurata damping
ratios from 0.125 to 0.250 work well but a quantitative comparison has

not been established.

4.5 Alternate Catenary Configurations

The baseline catenary, used in the majority oi the simulations, has
been compared with alternate catenary configurations. One design is a
low wave speed copper catenary. This catenary has parameters identical
to the baseline except for lower tension in the wires (required to lower
the wave speed), and the parameters are given in Table 4.5. The low
wave speed catenary has a wave speed of 69 m/s or 250 km/h in comparison
to the base line catenary with a wave speed of 112 m/s or 403 km/h. The
performance of the catenary with the prototype #2 pantograph at 200 km/h
is shown in Figure 4.22.

The performance of this catenary is not acceptable. The small
oscillations in contact force at the start of the simulation do not
subside, but grow. The contact force exceeds 200 N and then reaches
zero with loss of contact at the tower (t = 1.37 sec). The pantograph
bounces off the catenary several times and doeé not maintain steady
contact. The performance is unsatisfactory and emphasizes the import- -

ance of wave speed as a parameter in catenary design.
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FIGURE 4.22: ©LOW WAVE SPEED CATENARY VS. BASELINE CATENARY
PROTOTYPE 2 PANTOGRAPH AT 200 km/h

~ = #2 Pantograph with Standard Copper Catenary

150 = —— 12 Pantograph with Aluminum Catenary -

100

w1
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Contact Force (N)
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FIGURE 4.23: ALUMINUM CATENARY VS. BASELINE COPPER CATENARY
PROTOTYPE 2 PANTOGRAPH AT 200 km/h
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LOW WAVE SPEED CATENARY PARAMETERS

Wire:

Length:

Tower Spacing:

Dropper Spacing:

Tower Stiffness:
Dropper Stiffness:

Tension: Upper Wire
Lower Wire

Density: Upper Wire
Lower Wire

Stiffness: Upper Wire
Lower Wire

Catenary Damping Ratio:
Number of Modes Considered:

Average Wave Speed:

TABLE 4.5

Copper
228.6 m

3 Spans
76.2 m

6 per span
12.8 m

17,510 kN/m
43,775 kN/m

9.83 kN
11.47 kN

1.786 kg/m
2.378 kg/m

861.2 N m?
2584. N m2

0.02

20

69 m/s

-~ 55 -

750 ft

250 ft

42 ft

100,000 1b/in

250,000 1b/in

2,210 1b
2,580 1b

1.2 1bm/ft
1.6 lbm/ft

.125 1b in?2
.375 1b in?

154 mph



An aluminum catenary has also been investigated. An equivalent
aluminum catenary has the same tension and approximately half the lineal

density. These two factors increase the wave speed significantly and
generally improve performance. The parameters of the aluminum catenary

are shown in Table 4.6, and the aluminum catenary is simulated with the
prototype #2 pantograph at 200 km/h in Figure 4.23. The equivalent
aluminum catenary is superior to the baseline copper catenary in dynamic
performance; the variation in contact force is lower (38% vs. 51%) and

the peaks in force appear earlier due to the faster dynamic response of

the aluminum catenary.

This chapter illustrates many of the possible performance evalua-

tions and the major results are highlighted in Chapter 5.
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ALUMINUM CATENARY PARAMETERS

Wire: -

Length:

Tower Spacing:

Dropper Spacing:

Tower Stiffness:
Dropper Stiffness:

Tension: Upper Wire
Lower Wire

Density: Upper Wire
Lower Wire

Stiffness: Upper Wire
Lower Wire

Catenary Damping Ratio:
Number of Sine Terms:
Number of Modes Considered:

Average Wave Speed:

TABLE 4.6

Aluminum
228.6 m

3 Spans
76.2 m

6 per span
12.8 m

17,510 kN/m
43,775 kN/m

24 kN
28 kN

0.90 kg/m
1.19 kg/m

1,604 N m?
4,743 N m2

0.02

20
20

158 m/s
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750 ft

250 ft

42 ft
100,000 1b/in
250,000 1b/in

5,400 1b
6,300 1b

0.6 1bm/ft
0.8 lbm/ft

.233 1b in?
.688 1b in?

350 mph



CHAPTER 5

DISCUSSION AND CONCLUSIONS

The major contributions of this thesis are the development of an
analytic model to describe the dynamics of a pantograph/catenary system,
and the application of this model to predict, compare and improve the
performance of different pantograph designs.

Simulation studies conducted with the model show that the mass and
tension in the wires are very important since they determine the wave
speed, while bending stiffness has a negligible effect. To improve the
per formance, the wave speed should be as high as possible (tension at a
maximum, lineal density at a minimum). Increasing the wave speed allows
displacements created by the pantograph to propagate faster and allows
the wire to adopt a more uniform shape, avoiding the steep descent of
the wires near the support towers. In addition, the dynamic performance
of an equivalent copper and aluminum catenary were compared. The
aluminum catenary showed a performance improvement with a 25% reduction
in contact force variation (38% variation for aluminum vs. 51% for
copper).

Pantograph design is also strongly influenced by mass; lighter
pantographs perform better. Pantograph performance can also be improved
by variations in the stiffness and damping elements. Using an
industrial pantograph as a baseline, a performance improvement of 45%

was obtained by incorporating zero stiffness in the pantograph head.
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The performance of the baseline also improved with variation. in the
damping. A 21% improvement was obtained by increasing the damping ratio
in the frame and head to 0.26 and 0.19, respectively.

This study provides several benefits to the field pantograph/cat-
enary dynamics. It provides an accurate representation of a catenary
and a good dynamic model which can be extended to analyze higher freq-
uency vibration, and/or extended to investigate actively controlled
pantographs. It provides an illustration and descriptive understanding
of catenary dynamics and their influence on pantograph performance.
Finally, it provides suggestions for future pantograph designs which

will improve performance.
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APPENDIX A

CATENARY MODEL DEVELOPMENT

This appendix develops the equations of motion and the natural

modes for a simple style, two wire catenary.

A.1 Modal Analysis Review

A system of n degrees of freedom has n natural modes. Associated
with each mode is a natural frequency, w, and a natural mode shape, ¢.
The mode shapes of a dynamic linear system are orthogonal and there-
fore system displacements can be expressed as a sum of the natural
modes multiplied by appropriate, time-varying modal amplitudes, or
modal response functions, a technqiue known as modal decomposition.

[Ref. 22, 23]

yx,t) =12 ¢, (x) z, () (A.1)
where
y(x,t) = the time varying displacement of the system
¢i(x) = the ith natural mode shape
zi(t) = the modal amplitude of the ith mode
i = the mode number

The mode shape, ¢, depends only upon position; and the modal amplitude,
z, depends only upon time. When a system is excited in a natural mode,
the system and all the system elements, maintain the same relative
displacements to each other, and the mode shape describes this re-
lation. Once the mode shapes are known, the dynamics of the system

are determined by the amplitudes, z(t).
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The benefit of separating the motion into modal components is the
modes may be considered independently and the equations reduce to

simple, linear, second order, differential equations of the form:

ME (L) + ciéi(t) *Rz,o= Q) (A.2)
where
z, = the ith modal amplitude
Mi = the modal mass of the ith mode
Ci = the modal damping of the ith mode
Ki = the modal stiffness of the ith mode
Qi = the forcing function of the ith mode

The modal mass, Mi’ is defined by

2
_ 2
M, —/pcbi dx (A.3)

[o}

where p is the the lineal density.

The modal damping is defined by equation (A.4) and must be distributed

proportional to the mass to ensure orthogonality of the modes.

%
c, =/ e(x) ¢,° ax (A.4)

[o}

where c(x) is the damping (distributed proportional to mass)

The modal stiffness, Ki’ is given by

)
K, =f k(x) "’12 ax (A.5)

o
where k(x) represents the spring constants and effective stiffnesses
along the length.

- 63 -



The forcing function, Qi is:

2
Qi(t) = f f(x,t) ¢i dx (A.6)

[o]

where f(x,t) is the applied force (time and position varying). The
natural frequency of the system when vibrating in the ith mode is
given by equation and follows from the natural frequency of a simple

system as:

w, = ¢ Ki7M (A.7)

An efficient way to express equation (A.2) is in terms of the natural

frequency, the damping ratio and the modal mass as:

ME () + M E 0, éi(c)+mimiz 2, ()=, (A.8)

Once the mode shapes and frequencies are known, the time response of
each mode is determined by equation (A.8) and the total system response
is determined by applying equation (A.l) and summing up the individual

responses.

A.2 Catenary Model Description

The response of the catenary is determined by writing the dis-
placement of each wire as a Fourier sine-series expansion. The
equations of motion are derived using the amplitudes of the sine
terms and Lagrange's method, and are used to obtain the natural
frequencies and natural mode shapes of the catenary. Using these
modes the equations for the catenary are written in modal form along

with the equation for a pantograph model. These equations are solved
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using a fourth-order Runge-Kutta numerical integration routine.

The model of the catenary is shown in Figure A.l, and incorporates

the following features:

e Simple Catena.y with a contact wire and a messenger wire.

e Variable spacing allowed between the towers and between
the droppers.

® Contact and support wires are each modeled with a bending
stiffness, constant tension, and a uniform density.

e Damping distributed proportional to the mass of the wires
to ensure orthogonality of the modes.

e The two wires are connected by droppers. These are modeled
as massless springs Kl through Kp.

e The mass of the droppers is not directly included buat is
modeled by distributing it evenly along, and equally be-
tween the two wires.

e The top wire is connected to flexible towers modeled as
springs Sl through SQ'

e The ends of both wires must have zero displacement but
are allowed to have any angle

A.3 Catenary Equation Development

Using Fourier analysis the shape of a finite length, L, can be
represented in terms of a sum of both sine and cosine terms, each
term with an appropriate amplitude. For the catenary, let y(x,t)
describe the displacement of the catenary wire, both as a function
of position, x, and of time, t. The boundary conditions require
zero displacements of the two enﬁs (x=0 and x=L); therefore no
cosine terms may exist. The two wires, the contact and the support

wire, are written separately and as functions of sine terms only as:
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-r .[.
=

Tower Stiffness: S

Dropper Stiffness: K
Distance to the jth Tower: Wj

Distance to the ith Dropper: X,

i
Stiffness of the Two Wires: EIA’ EIB
Density of the Two Wires: pA, pB
Tension in the Two Wires: TA, TB

FIGURE A.1: CATENARY MODEL
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yA(x,t) = L Am(t) sin(—E%?Lﬁ Upper Wire (A.9a)

mnx

yB(x,t) = X B (t) sin( ) Lower Wire (A.9Db)
m D L
where
yA = the displacement of the upper wire
yB = the displacement of the lower wire
Am = the amplitude of the mth sine term for the upper
wire
Bm = the amplitude of the mth sine term for the lower
wire
X = the distance along the catenary
L = the total length of the catenary
m = an integer. Designates the harmonic number.

The shape of these wires is time varying, therefore the amplitudes
Am and Bm are time varying and can be written Am(t) and Bm(t). Since
they describe the shape of the whole catenary at all times the ampli-
tudes can be used to write the equations of motion for the catenary,

and obtain the natural modes of the catenary.

The catenary equations are developed using a Lagrange formu-
lation. Each sine wave is an admissable motion, and the amplitudes

provide a sufficiert and convenient set of generalized coordinates.

To use Lagrange's method the expression for the kinetic coenergy+
and the potential enmergy are written in terms of the generalized

*
coordinates. The kinetic coenergy, T , for a lumped system is:

¥
For a linear system the kinetic coenergy equals the kinetic energy.
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*
T =1/2 Mv (A.10)
Or, for a continuous system

* L 2
T =1/2 py dx (A.11)

x=0

and for the two wires of the catenary:

5

A A B B :
o

Differentiating equation (A.9) with respect to time yields:

. s . mlx
Yp = g Am sin( L ) (A.13a)
. . mix

= i A.13b
Vp = LB, sin) (A.13b)

Inserting these equations into Equation (A.12):

2
2 2
* - ° . mnx o . mix
T 1/2 / DA[E.1 Aln s:.n(——L )] + pB[])]:] BIn sin( L )| dx (A.14)
o

Evaluating the integral gives the final result for the kinetic co-

energy:

B (A.15)

The potential energy of the system equals the sum of all the potential
energies. They are: the tension in the wires, the bending of the
wires, the displacement of the dropper springs, and the displacement
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of the tower springs:

V= Vogny * Veenp * Vpror * Vrow (A.16)
where
V = the total potential energy
VTEN= the potential energy due to the tension in wires
VBEND=the potential energy due to the bending stiffness
VDROP=the potential energy due to the dropper springs
VTow =the potential energy due to the tower springs

In general the potential energy is the integral of force, f, and dis-

vV = f f.dr (A.17)

For the potential energy due to tensionm, VTEN is the integral

placement, r.

along the length of the cable of the incremental potential energy,

GVTEN: 2
VTEN = J’P GVTEN (A.18)
[}
where
r
sV = f fedr (A.19)
o

with the force in the same direction as the displacement. This force
can be determined by investigating a free body diagram of an incre-
mental length of cable, 0x. Figure A.2 shows such a diagram. Looking

at the free body diagram the temnsion is the same throughout, but the
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direction of the vectors is different. The two vectors are:

-T ~ A
_ ~ o dy
Tl - ___E___E %1 + ix J} (A.20)
1+ dx )
T ~ d d2 ~
T. = i+ (2 S sy ] (A.21)
2 dx 2
S ox
1+ =L+ S£L 6x)
dx 2
dx

When the two vectors are summed the component in the y direction is:

2
f = T dy 8§x + higher order terms (A.22)
dx2

The force, f, is the component of T3 in the y direction

2
£f=T iy?_— 8x (A.23)
dx

Equating equation (A.19) becomes

y o2
vV = / T —d—g— 8x dy (A.24)
F dx

d and § are linear operators and commute, and

dy =—g§—dx

Therefore equation (A.24) can be written:
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y 2
SV = T 6x Ay _dy .
2 dx
dx
o
Letting
dy dzz
u = du = dx (A'zs)
dx 2
dx
And then integrating leads to:
d 2
&V = T 1/2 (—di— 8x (A.26)

Plugging into equation (A.18) gives the desired expression for temsion.

4 2
= _dy
Voen 1/2 T f (dx) 8x (A.27)

0

The potential energy may now be evaluated using equation (A.9) for the

displacement. Evaluating —%ﬁ— and substituting for the top wire

gives:

£ 2
_ m mx
VTEN,A =1/2 TA f [121:1 T Am cos(—-——-L )] Sx (A.28)

2
T w
_ A 2 2
VIEN, A AL Lom Ay (A.29)

Adding in the effect of the lower wire B, the final expression for the

potential energy due to tension effects is obtained:
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T,m T
_ A 2,2, B 2. 2
VrEN L om At ImEy (A.30)

An expression for the potential energy due to the bending stiffness of
the cable may be derived as:
© o
VBEND f 2ET 9% (A.31)

o

where

Mb is the bending moment

=

Young's Modular

I Area moment of inertia

From the mechanics of solids

Mo 9y pr (A.32)

Plugging into equation (A.31l) yields:

2

2
2
- _EL [y
VeEND / 5 (3x2) dx (A.33)
(o)

The second derivative of displacement is obtained from equation (A.9)

as.:

d2 mzﬂz mTx
_—g—-_- E} - A 3 sin(— ) (A.34)

Substituting equation (A.34) yields (for upper wire)
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2 2
_ _ m°T . mmx
VBEND,A / 1)51 Am 5 sin( I ) dx (A.35)

Evaluating the integral gives

4
EI T
_ A 4 2
VBEND, A i E, m Ay (A.36)

Adding in the effect of the other wire, the final expression for the
potential energy due to bending effects is obtained:

EIA‘IT4 4 2 EIBTT4
senp = —— 3 mAf 4 —2— 1 u'B (A.37)

40 m m gl m m

\'

The potential energy in the droppers and the towers must be
evaluated. These elements are both modeled ¢s linear springs. - The
potential energy for a linear spring is

_ 2
Vepp = /2K & (A.38)

For the dropper springs A represents the difference between the upper

and lower wires.
(A.39)

The potential energy for the droppers must be evaluated at each dropper

location x = Xl’ XZ’ s o = Xp

P
2
3

\ = 1/2

DROP i
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Using equation (A.9) for the displacement, the potential energy for the

dropper springs is

P m7X,
VDROP = 1/2 j§1 Kj [1% (Am - Bm)sn.n(———-]—L ) (A.41)

The potential energy for the support springs is now evaluated, and must

be done at each tower location x = wl, W2, e WQ
/21 2
\Y =1/2 S.y (A.42)
TOW j=1 j A x=Wj

where Sj = the stiffness of the jth tower

Substituting equation (A.9) for the displacement the potential energy

of the support tower springs may be derived

O

2

mTW,

VTow =1/2 .E Sj i Am31n(——irj-ﬂ (A.43)
j=1

Substituting equation (A.30), (A.37), (A.41), and (A.43) into equation

(A.16) yields an expression for the total potential energy:

2 2
T m T m
_ A 2. 2 B 2 2
VroTaL L LmA YL By
EIL, EL, T
A 2
+ —= I afa’+ —3 1 o'
4L m " 4. m n

Q -
+ 1/2 T s. |z i
j=1 4 |m AsinC—=E) (A.44)



With the expression for the kinetic coenergy and the potential
energy determined, written above in equation (A.1l5) and (A.44),
Lagrange's method can be used to develop the equations of motion
for the catenary. 1In order to determine the natural modes, it is
only necessary to investigate the unforced homogeneous case (no input,
no damping). For any admissable motion of the catenary Lagrange's

equation must be satisifed:

d oL oL
< \—)-——F = 0 (A.45)
a (ae) %
where
*
L = T -V
£ = generalized coordinate

The generalized coordinate are Am and Bm, the amplitude of the sine
terms. Each sine wave (or combination of waves) is an admissable

motion, therefore for each m Lagrange's equations must be satisfied.

< (. oL ) -=E -0 (A.46a)
\‘BA m

m
d /?L ____35335 -0 (A.46b)
de \BBm m

Using equation (A.15). The first part of equation (A.46) can be

evaluated
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oL .

" = 1/2 p,L A (A.47a)
3A A m

m

L = 1208, (A.4Tb)
9B _

Taking the time derivative gives

a ez
dt aA

m
L( 3L
dt aé

m

The second half of equation (A.46) is evaluated using equation (A.44):

1/2 p,L A_ (A.48a)

1/2 pylL ﬁm (A.48b)

2 4
TAN EI, 7

P mnX, rmX,

+ jzl Kj51n6——irl—0 E (Ar - Br) sin( I ) (A.49)
Q mmW, W,

+ % S.sin(——4-) I A_ sin(——)
=1 ] L r T L

where r sums over the same range as m, i.e., Ar = Am forr = m

Similarly:
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3L TB m EIB m

2 4
-— = —— 0B +———— m B
BBm 2L m 2L3 m
P nTX, X,
-z K.sin(TL) L (A_ - B )sin(———) (A.50)
j=1 J r r r L
Lagrange's equation, equation (A.46a),
d oL oL
% & " m = 0 (A.46a)
JA m
m
can be written for each m as:
L . T A’!r2m2 EIA1T4m4
( ) A+ ( + ) A
2 m 2L 2L3
P mnX, rmX,
+ I K,sin(——) I (A_ - B )sin(——
=1 ] L r r r L
3
Q mmW CrmW,
+ I S,sin(——1) I A_ sin(—1) =0
j=1 L r Y L
o (A.51)
With a similar expression for Bln
This equation is a function of the amplitudes and their second
derivative and is of the form:
aAm + BAm +Yy=0 (A.52)
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where Yy is a function of Am and Bm.

Because the catenary model is a linear system it is free to
vibrate in its natural mode(s). And, true for all linear systems,
it has as many modes as degrees of freedom. In a natural mode the
motion of the system will be harmonic (sinusoidal). Therefore, the

amplitudes term Am and Bm must also be harmonic, and:

A o= - A (A.53)
m m
B = —w2 B
m m
where
w = the natural frequency of the mode
m = the number of the sine term

Substitution equation (A.53) into equation (A.51) yields:

T ﬂzmz EI ﬁ4m4
2 _ A A
w Am - 2 + 4 Am
QAL DAL
2 P mnX, rnX,
+'B;f .E Kj91n(——i—1—) z (Ar - Br)31n(——i—1—0 (A.54)
j=1 r
2 Q mTW, TTW,
+ =~ I |s.sin(——1) Z A sin(——)
Pl yop | L LT L
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T 71 m EI. T m
szm = P 4 B
DBL DBL
9 P X, 4TX,
B;f jzl Kj81n(——irl—9 E (Ar - Br) sin(—-irj—ﬁ (A.55)

A double sum such as
X [Ri x X 8S.] (A.56)

can be rewritten as

J I
r [Ss.x I R.] (A.57)
j=t 3 i 1

Therefore we can rewrite equation (A.54) as:

€
g
]
—~
N
+
Eas
N
g

2]
=
:>l"

H
0
b
=~

d ) sin(——d| (A.58)

o
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which can be reduced further to:

2
= +
w Am o (m) Am E ArOAA(m,r) + E BrOAB(m,r)
where:
TA'nzm2 EIAm4
a(m) = +
L2 L4
Pa Pa
2 P mTTXj rﬂxi
o,,(myr) = —— I K,sin( Ysin ( )
AA pAL j=1 j L L
Q mTW, rmW
+ I S,.sin(——l)sin(——i)
. j L L
i=1
2 P mnX, X,
OBB(m,r) = EZZ-jEl 31n(——I—l—)31n(——£—1—0

Similarly equation (A.55) can be written as:

2
w Bm = B(m)Bm + i ArOBA(m,r) + E BrOBB(m,r)

where:
T’ EL_7n®
- B B
Bm) = ————
pBL pBL
2 P m7X, rmX
= -—%_ % K. sin(——4)sin
GBA(m,r) A n(——)sin(—7
B~ ]
2 P mTI‘Xj rTer
OBB(m,r) = p—BL- jzl stin( I )sin( I )

(A.59)

(A.60)

(A.61)



Equations (A.59) and (A.60) can be written in matrix form

- — - T P —
Al a(l) Al A1
. ‘. . o o :
AA AB :
w2 (1] Am o (m) AIn + Am
B B(1) B B
A . A Ipa 98B 1
L BM . L B (m)_ | Bm_ L B
o L m ]
N | N N s’
T Z T 0 T
(A.61)
Or as
2 -
w11 T = [E+ 0]T (A.62)
Letting
H = [E+0] (A.63)

The final form of the catenary equations is obtained:

w" Il = HI (A.64)

The eigenvalues of the matrix H give the natural frequencies squared.
The eigenvalues are the same as finding the roots of the character-
istic equation:

DET(AL - H) = 0 | (A.65)

The eigenvector for each eigenvalue gives the set of amplitudes for

each mode.
._8]_..



Denoting Ai as the ith eigenvalue of the matrix, and Pi' as the

jth element of the ith eigenvector we obtain

w, = /Ai (A.66)
The amplitudes are:
Am T Tin
(A.67)
Bim  — Tiqwm)

The natural mode shapes are:

M m1Tx'A M mmx
= 2 in(———) + in(———— .
¢i L Aim sin( I ) L Bim51n( T ) (A.68)
m=1 m=1
where
M = the maximum number of sine terms considered in
the sum

There are 2M natural modes resulting from this technique. Inspec-
tion of the modes shows approximately half in the lower frequency range
and the other half in a much higher frequency range. The half in the
high frequency range are not indicative of the true natural modes, but
are a consequence of the solution technique using a finite number of
sine terms. These higher modes should not be considered in the system

response.

The above method determines the natural mode shapes. With the
natural modes known, the response of the system is most effectively

calculated using modal analysis. The response of each mode can be
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found using equation (A.8)

M E (€) + 2ME 0, éi(t) + Miwiz z,(6) = q (A.8)

where
zi(t) = the ith modal response function or modal amplitude
Qi = the ith modal forcing function
wy = the ith natural frequency
Mi = the ith modal mass (a scalar)
Ei = the ith damping ratio

There will be N modal response equations, where N in the number of

modes considered.

The displacement of the catenary as a function of time is given

by the sum of the individual modal responses:

N
y(x,t) = izl ¢, () z () (A.1)

The coupling between the pantograph and the catenary comes from the
modal forcing fucntion, Qi' The forcing function depends only upon
the mode shape and the contact force. Any pantograph model can be

used to obtain the contact force as the equations are developed in-

dependently of the catenary equations.
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APPENDIX B
PANTOGRAPH/CATENARY INTERACTION
This appendix develops the equations of motion for the pantograph, shows
the coupling of the pantograph equations with the natural modes of the
catenary, and discusses the simulation technique for the response of the
total system.

B.1 Pantograph Model

The pantograph model is shown in Figure B.l. The model is a two mass
model with nonlinear suspension elements. It makes no attempt to model
geometric nonlinearities or vibration of the pantograph's links. The model
does, however, include the following features:

e Two mass pantograph model with a frame mass and a head mass.

e A constant force, FO, to model the applied uplift force

e Stiffness of the contact strip is modeled by a linear spring, KS

e Stiffness of the suspension between the head and frame is modeled
by a linear spring, Kh

® A mechanical stop limiting the relative motion between the head and
the frame is included

e Two types of damping elements between the head and the frame are
modeled: linear damping, and one-way damping

e Stiffness of the suspension between the frame and the base is
modeled by a linear spring, Kf

e Two types of damping elements between the frame and the base are
modeled: linear damping and one-way damping.

Before developing the full nonlinear equations, the equations for a simple

linear model are investigated first. The equations for the linear pantograph

may be easily derived, and using the displacement of the head mass and the

displacement of the frame mass as coordinates the equations are:
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| ycat

EE KS Contact
Stiffness

Jyh
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Linear and
Kh Head One-way Damping
Stiffness

Stop
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Kf Frame 4} .
Stiffness Linear and

‘Fo One-way Damping

Uplift Force

LSS T

FIGURE B.1: PANTOGRAPH MODEL
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¥ +B (y -y, + (y, ~y.) = F (B.1)
h h-’h f h £ c

MF + B g - V) ¥ By K G -y H Ky = 0 (B.2)
where
FC = the dynamic contact force
Yy = the displacement of the head mass
Ye < the displacement of the frame mass
Mh = the head mass
Mf = the frame mass
Bh = the damping between the head and frame
Bf = the damping between the frame and base
Kh = the stiffness between the head and frame
Kf = the stiffness between the frame and base

The contact force, Fc’ is determined from the interaction of the pantograph
and catenary. The interaction is modeled by a spring with a stiffness typical

of the flexure of the contact strips. Therefore the contact force is:

Fc = K (ycat - yh) + Fo (8.3)
where

Yeat = the displacement of the lower catenary wire

Yh = the displacement of the pantograph head

KS = the stiffness of the contact strip

Fo = the static applied uplift force
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When the pantograph loses contact with the catenary the contact force is
set to zero and the two systems are considered separately until the pantograph
regains contact.

The above provides the complete set of equations for the linear model;

a full model is developed by including the effects of several nonlinear
elements. To simulate these nonlinear elements the set of linear equations
are augmented with the nonlinearities.

To limit the motion between the head and the frame a mechanical stop is
included in the model. At each time step the distance between the head and
frame is checked to ensure the stops have not been hit. If they have been
the head and frame are constrained to move together until motion is reversed
and the stops are freed.

One-way or undirectional damping is also included in the full nonlinear
model. This is not an element of any current pantograph, but it is included
to assess its benefit for future pantograpsh. A one-way damper is a damper
which resists motion in only one direction. In the simulation extra damping
was added to the model whenever the velocity between the head and frame was
negative (the head moving away from the wire). If the velocity was positive
no extra damping was applied. The same relationship held for the one-way
damper attached between the frame and base.

B.2 Coupling Between the Models

The coupling between the pantograph and catenary comes exclusively
through the contact force. When the pantograph is in contact with the
catenary the motion of the pantograph head (more precisely, the top of the
spring KS) and the lower catenary wire are identical, and the contact force

has a non-zero value which is determined from their mutual interaction. When
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the pantograph loses contact, the contact force becomes zero and the position
of the pantograph and catenary are independent until the pantograph regains
contact. Only auring momentary losses of contact are the pantograph and
catenary two separate systems. At all other times they are directly coupled:
they share the same position and they share the same force.

The contact force enters the pantograph equations in equation B.1l as the
variable FC. It enters the catenary model equations as part of the modal
forcing function. The relationship for the modal forcing function is given

in Appendix A as equation A.6

2
oi(c) = / f(x,t) ¢1 dx (Eqn A.6)
o)
where
Qi(t) = the forcing function of the ith mode
¢i = the mode shape of the ith mode
f(x,t) = the applied force distribution (units of force/length)

There is a forcing function equation for each mode. Therefore at every time
step the forcing function is calculated for each mode, and then using this
forcing function each individual modal response is calculated from the second
order differential equation in equation A.8.

Since the contact force is applied to the lower wire only the B terms

of each mode need be considered. Equation A.6 therefore becomes:

L

0, = / £(x,t) L B, sin (—‘“—'{——"—) dx (B.4)

o
1f the force is applied at a single point and moves with a velocity V the

position of the applied force is Vt.
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= 5 in (— e
Qi Fc(t) x Bim sin ( T ) (B.5)
where
Fc(t) = the applied contact force (units of force)

This is easily generalized for multiple pantographs. ~for two pantographs

the forcing function is:

mT (Vt - X))

m T Vt
= T in (——————— - T in (——m— e mmmm P
Qi Fl L Bim sin ( T ) + F2 z Bim sin ( 3 ) (B.6)
where Fl = the contact force of the first pantograph
Fz = the contact force of the second pantograph
XP = the distance between the first and second pantograph

B.3 Simulation Technique

To simulate the dynamic response of the pantcgraph and catenary the
equations of motion for both were solved simultaneously using a fourth order
Runge Kutta integration technique. The catenary equations (N equations, where
N equals the number of modes), the two pantograph equations (equations B.l
and B.2) and the nonlinear elements were written into Fortran code. The
response of each modal amplitude, z, and the response of the pantograph is
calculated at each time step. The position of the catenary wire at each
instant is given by equation A.l and summing up the individual modes. The
time is then incremented and the process repeated until the final time of

the simulation is reached. Figure B.2 summarizes the technique used in the

dynamic simulation.
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READ IN THE EIGENVALUES AND
EIGENVECTORS: I.E. THE FREQUENCIES
AND SINE AMPLITUDES FOR
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INCREMENT THE TIME
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Yes

OUTPUT THE TIME
HISTORY OF THE
VARTIABLES OF
INTEREST

FIGURE B.2: FLOW CHART FOR THE DYNAMIC SIMULATIONS
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APPENDIX C

C.1 FORTRAN PROGRAM MODES.FOR
C.2 TFORTRAN PROGRAM PCAT.FOR
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