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ABSTRACT

We report a series of deep learning models to solve complex forward and inverse design problems in molecular modeling and design. Using
both diffusion models inspired by nonequilibrium thermodynamics and attention-based transformer architectures, we demonstrate a flexible
framework to capture complex chemical structures. First trained on the Quantum Machines 9 (QM9) dataset and a series of quantum
mechanical properties (e.g., homo, lumo, free energy, and heat capacity), we then generalize the model to study and design key properties of
deep eutectic solvents (DESs). In addition to separate forward and inverse models, we also report an integrated fully prompt-based multi-
task generative pretrained transformer model that solves multiple forward, inverse design, and prediction tasks, flexibly and within one
model. We show that the multi-task generative model has the overall best performance and allows for flexible integration of multiple objec-
tives, within one model, and for distinct chemistries, suggesting that synergies emerge during training of this large language model. Trained
jointly in tasks related to the QM9 dataset and DESs, the model can predict various quantum mechanical properties and critical properties to
achieve deep eutectic solvent behavior. Several combinations of DESs are proposed based on this framework.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0155890

Generative chemistry is an emerging frontier in materials discov-
ery and has been applied to proteins,1–4 organic molecules, inorganics,
drug design,5 bioactive materials,6 solid-state materials,7 and archi-
tected materials,8,9 among others. Figure 1(a) shows an overview of the
approach implemented, generating molecular structures from chemi-
cal building blocks, atoms. Three distinct neural network architectures
are used here, a diffusion model with self-/cross-attention [Fig. 1(b)]
and two transformer architectures [Fig. 1(c)]. A variety of tasks are
implemented, broadly grouped into forward predictions, Fig. 1(d)
[take a chemical structure written in simplified molecular-input line-

entry system (SMILES; a form of textual representation that uses
grammatical rules to encode information about the bonds and atoms
of a molecule and allows for complex structural chemistry to be
described in simple 1D text encodings)10,11 and predict its properties]
and inverse design tasks, Fig. 1(e) (take design conditions and predict
candidate SMILES molecular structures). While the diffusion models
and the transformer models are each trained separately for each task,
the generative pretrained transformer model is fully prompt-based
and capable of solving multiple tasks in one model (see Table S1 for
an overview and Fig. S1 for sample results from the design processes).
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Details on the models, training and inference process, and other key
information are included in the supplementary material “S1. Materials
and Methods.” Here, we summarize the key components of the three
architectures.

The diffusion model [Fig. 1(b)] implements a thermodynamics-
inspired denoising process by which a noisy starting signal is transformed
into the solution via a deep neural network U-net architecture.12–14

The U-net architecture used in the diffusion model features 1D convo-
lutional layers mixed with self-/cross-attention layers. The convolu-
tional layers capture hierarchical patterns, and self-attention captures
long-range relationships in the signal. The denoising process is condi-
tioned using cross-attention mechanisms on a set of parameters. This
results in an iterative procedure, zi�1 ¼ zi � e0i, where denoising hap-
pens by calculating the noise to be removed, e0i, using the deep neural
network p (which defines a reverse Markov chain operator), where

e0i ¼ pðzi; Ci; tiÞ; (1)

where zi is the noisy signal at step i, Ci is the conditioning used, and ti
is the time step. The diffusion model predicts tokens as one-hot encod-
ing, from which we then sample the token with the highest probability
after denoising is complete.

The attention-based transformer model [Fig. 1(c), left] is imple-
mented in several variants.15,16 Model T1 is an autoregressive decoder-
only architecture that produces solutions iteratively from a start token
during inference and using cross-attention with the conditioning fea-
tures. The key mathematical operation is the masked attention mecha-
nism,15,16 defined as

Attention Q;K;V ;Mð Þ ¼ softmax
QKT þMffiffiffiffiffi

dk
p

 !
V : (2)

Here, Q, K, and V are inputs to the attention layer (all the same in
self-attention and Q¼input, and K¼V¼conditioning in cross-atten-
tion). The softmax function is used here so that the attention

FIG. 1. Approach for generating molecular structures using generative deep learning. (a) Overview of the approach used, including sample design objectives. (b) diffusion
model, (c) the autoregressive transformer model, realized in several versions [T1, autoregressive transformer model where the design objectives are implemented via cross-
attention, T10 (see Fig. S7), and T2, an autoregressive transformer model where tasks are implemented via various input prompts]. Panels (d) and (e) show the tasks solved
using the models.
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mechanism can focus on different parts of the input sequence while
considering the masking of irrelevant elements, and to ensure causal-
ity. As such, the function computes the attention scores, similar to cal-
culating the probability or distribution of different energy states of a
system. Moreover, it can be viewed as a generator function to produce
edge weights of a directed graph defined by the attention mechanism,
describing how strongly different elements in the input sequence inter-
act with each other. In the inverse model, causal masking using a trian-
gular masking matrix M is used in the self-attention step so that the
model can only attend to tokens to previous tokens. We use gumbel
softmax sampling during inference, which allows us to tune the crea-
tivity of the model (a certain level of noise, defined by the sampling
temperature T, is added to the predicted logit distributions, from
which we then sample the predicted token).17,18 In the forward trans-
former model, an encoder-only strategy is used to relate the input
(tokenized and embedded molecular structure) to the output, with
self-attention, realizing model T10 (Fig. S7).

In the multi-task transformer model T2 [Fig. 1(c), right], no
cross-attention is necessary. All conditioning and distinction of vari-
ous tasks is provided directly by the input prompt (which is first fed
into the model and the model then continues the sequence to provide
the answer). All code is developed in PyTorch,19 and training is per-
formed using an Adam optimizer.20

We use two datasets (for details on tokenization, etc., see supple-
mentary material S1.1 Tokenizer and Datasets). The first is Quantum
Machines 9 (QM9), a dataset21 of 133 885 molecules, including their
SMILES text encodings and their quantum chemical properties (QM9
is a quantum chemistry dataset consisting of 133 885 molecules; com-
posed of the molecules’ SMILES codes and its 12 associated quantum
mechanical properties: dipole moment, polarizability, highest occupied
molecular orbital, lowest unoccupied molecular orbital, energy gap,
expectation value hR2i, zero point energy, internal energy, internal
energy at 298.15K, enthalpy at 298.15K, v at 298.15K, and heat capac-
ity at 298.15K). Second, a smaller dataset curated for this study is used
to capture properties of deep eutectic solvents (DESs). DESs are inno-
vative mixtures comprising at least two components that can sponta-
neously associate to generate an eutectic phase. DESs are characterized
by their significantly lower melting points in comparison with those of
their individual constituents22–24 and in comparison with the theoreti-
cal eutectic point.25 These mixtures conserve the properties of their

components, and the eutectic behavior arises from the delicate balance
between the molecular dipole moments, temperature, and hydrogen
bonding interactions between the constituent species. These solvents
provide a clean and sustainable medium for the processing and syn-
thesis of advanced materials22 and are considered as impactful solvent
strategies.26,27

Among QM9 properties that have critical impact on the genera-
tion of DESs, we list:

(i) polarizability (essential to capture the subtle balance between
multiple hydrogen bonds as well as the dynamic properties28),

(ii) difference in energy between these frontier molecular orbitals
(HOMO–LUMO gap),29

(iii) dipole moment,30 and
(iv) enthalpy.31

In the following, we present results produced by these models.
While the diffusion model and transformer model T1 take a certain
type of input (tokenized SMILES strings or numerical values of target
properties), the multi-task transformer model T2 is entirely based on
text input and computes solutions by providing prompts (overview of
some of the prompts trained for, see Table I). The purpose of utilizing
these three distinct architectures and a total of five trained models is to
assess the overall best strategy to dealing with the problem at hand.
We specifically hypothesize that using a multi-task integrated model
T2 that can be trained simultaneously on diverse datasets, and multi-
ple tasks, can yield certain synergies and perform better overall.

This formulation of the multi-task integrated transformer model
T2 offers a much more flexible approach to various kinds of design and
analysis problems. The input in the transformer model T2 is purely text,
for both numerical input and output as well as SMILES codes. In this
framework, we use an input

�Calculate<CC1¼CC2CC2CC1O>,
which is then transformed by T2 into

�Calculate<CC1¼CC2CC2CC1O> /-0.889,-0.176,
0.230,0.020,-0.278,-0.342,0.300, 0.370,
-0.028,-0.028,-0.028,-0.028j$,

where the output of the model is highlighted in bold. The resulting
numbers of this calculation task to obtain the 12 QM9 properties can

TABLE I. Sample prompts trained for in the multi-task transformer model T2. Additional sets of tokens are used to encapsulate various tasks and input/output boundaries
(�: start token, h�i encapsulate task, as well as /.j to encapsulate prediction, and $ as end token).

Prompt Prediction

�Calculate<CC1¼CC2CC2CC1O> Calculate QM9 properties from SMILES input
�Generate<-0.767,-0.274,0.284,-0.020,
-0.332,-0.386,0.128,0.235,-0.124,
-0.124,-0.124,-0.124>

Design a molecule, expressed as a SMILES output,
to meet the target QM9 properties

�GenerateDES<-0.551,-0.570> Generate a pair of DES molecules that meet the mole ratio and TDESmelt target
�GenerateDES_withratio<-0.487> Generate a pair of DES molecules and associated

mole ratio that meet the TDESmelt target
�CalculateTmelt<C[Pþ]
(C1¼CC¼CC¼C1)(C2¼CC¼CC¼C2)
C3¼CC¼CC¼C3.[Br-]>

Calculate Tmelt for a DES component
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then be converted from string format into floating point numbers for
further analysis.

Figure 2 shows a comparison of design objectives labeled as
ground truth (GT) vs predicted values (prediction), for the mechanical
properties captured in the QM9 dataset. In this analysis, we use the
workflow shown in Fig. 2(a), where this analysis tests both the forward
and inverse tasks simultaneously. Results are shown for the three
architectures used, the diffusion model [Fig. 2(b), R2¼ 0.92], the
transformer models T1/T10 [Fig. 2(c), R2¼ 0.94], and the prompt-
based transformer model T2 [Fig. 2(d), R2¼ 0.97]. To complement
these results, Fig. S2 shows the forward model performance alone,
predicted values over GT. Figure S2(a) shows the results for the diffu-
sion model (R2¼ 0.97), and Fig. S2(b) shows the results for the trans-
former model T1 (R2¼ 0.96). Figure S2(c) depicts results for the
transformer model T2 (R2¼ 0.99), for the QM9 dataset.

We now analyze a few sample structures generated by each of the
three approaches (Fig. 3) and provide an in-depth discussion of the
results and performance [as shown in Fig. 3(a), the results examine
conditional generation of molecules and subsequent independent test-
ing of whether or not the desired properties were achieved]. In the fol-
lowing analysis, only chemical designs are considered that do not exist
in the training or validation set. Figure 3(b) shows results based on the
diffusion model, Fig. 3(c) for the transformer model T1, and Figs. 3(c)
and 3(d) for the multi-task integrated transformer model T2, each for
different conditioning parameters plotting GT vs prediction using the
regression model. All three models have a strong capacity to discover
structures (included in neither training or test set). We find that the
multi-task integrated transformer model T2 produces generally a
higher fraction of non-existing molecular designs than the other two
models. This, combined with the better overall performance with
respect to forward and inverse tasks, and the overall greater flexibility,
indicates broader advantages of this architecture over the other two.

The multi-task integrated transformer model T2 is text based
and can carry out multiple tasks. For example, in the generative task,
an input,

�Generate<-0.767,-0.274,0.284,-0.020,
-0.332,-0.386,0.128,0.235,-0.124,-0.124,
-0.124,-0.124>,

leads to the output (highlighted in bold),

�Generate<-0.767,-0.274,0.284,-0.020,
-0.332,-0.386,0.128,0.235,-0.124,-0.124,
-0.124,-0.124> /CC1NCC2C1NC25Oj$.

The previous examples considered de novo design tasks. However, in
some cases, we wish to either start with an existing chemical design or
solve a partial design task where we only want to redesign part of a
molecule. Such tasks can be addressed quite well using generative
models, especially the diffusion approach. Figures 4(a)–4(c) show
structural discovery experiments using inpainting strategy, using the
inverse diffusion model. Figures 4(a) and 4(b) show results, where the
first three SMILES characters are given as a fixed constraint and
the rest as initial solution that can change. Figure 4(c) shows the gener-
ation results for an unconstrained design, but with an initial guess
[same as in panel, Fig. 4(a)]. The highest R2 score between the desired
properties and the predicted properties is obtained for the case in
panel (c) (R2¼ 0.86), the second highest for the case in panel a
(R2¼ 0.85), and the worst for the results in Fig. 4(b) (R2¼ 0.82).
Overall, the generative method discovers molecules that are close to
the target, but the best result is obtained for the unconstrained case
shown in Fig. 4(c), which makes intuitive sense. The structures in Figs.
4(a) and 4(b) are generated de novo by the model, whereas the struc-
ture in Fig. 4(c) is seen in the dataset. This experiment shows how by
using inpainting and masking we can direct the model toward discov-
ery of new molecules that meet a specific target and interpolate
between different levels of novelty.

Figures 4(d)–4(f) show similar structural discovery experiments
using the autoregressive transformer model. A distinction to the diffu-
sion model is that due to the autoregressive nature, it does not allow
for inpainting experiments; and hence, we use only three initial sym-
bols in the SMILES string to initiate generation. (These are provided
to the model after the start token.) The model completes these initial
design ideas and produces molecules that meet the design demand
well. The R2 values for the results in Figs. 4(d)–4(f) are R2¼ 0.86,
R2¼ 0.82, and R2¼ 0.82, respectively.

We now focus on the most complex set of tasks, making forward
and inverse predictions for deep eutectic solvents (DESs). As an
emerging class of mixtures, discovery of new combinations of hydro-
gen bond acceptors (HBAs) and donors (HBDs) that achieve DESs
behavior is rather expensive and time consuming in the laboratory

FIG. 2. Comparing design objectives, ground
truth vs prediction, in the workflow as shown in
panel (a) (this analysis tests both forward/
inverse tasks). Results are shown for three
architectures used, the diffusion model [(b)
R2¼ 0.92], the transformer model T1/T10 [(c)
R2¼ 0.94], and the multi-task prompt-based
transformer model T2 [(d) R2¼ 0.97].
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setting. Therefore, there is a growing emphasis in using computational
design and machine learning algorithms as tools to support DESs dis-
covery and predict their features,32 including density,33 viscosity,34,35

and surface tension.36 Melting temperature plays an essential role in

the design of new deep eutectic solvents.25,37 Therefore, we introduce a
new dataset of DESs that contains 402 different DES compositions,
where HBAs and HBDs are represented by SMILES. The dataset con-
sists of the melting temperature of individual HBAs and HBDs, as well

FIG. 3. Systematic analysis workflow (a) that shows that our models are generating molecular structures, nonexistent in the datasets, and exhibiting high accuracy in predicting
its chemical properties when re-inserted into solving the forward problem to show consistency. Sample structures generated by the diffusion model (b), transformer model T1
(c), and transformer model T2 (d), for different conditioning parameters, plotting Ground Truth vs prediction using the regression model.
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as melting points of DESs mixtures in relation to their HBAs:HBDs
mole ratio (see the supplementary material). The new dataset for this
class of materials is much smaller than QM9 dataset (402 data points
vs 130 000þ). When training the models solely on the small DES data-
set, we expectedly find lower performance potentially due to influential
outliers and overfitting. [Figure S3 depicts performance for the for-
ward task, Fig. S3(a) for the diffusion model (R2¼ 0.59), and Fig.
S3(b) for the transformer model T10 (R2¼ 0.55)]. Since the forward

model does not perform well, we do not consider models trained for
the inverse design task.

We propose a training strategy that can deal with such complex
tasks while still providing an avenue to integrate the two datasets, both
DES and QM9, for learned synergies between the various problems.
Using the multi-task integrated transformer model T2, we train it
against a variety of tasks (see Table I). Figure 5 shows the results
obtained using the integrated multi-task transformer model T2 applied

FIG. 4. Structural discovery experiments
using inpainting strategy with inverse diffu-
sion model (a)–(c). All samples are gener-
ated using 25 sampling steps, 2 resampling
steps, and conditioning scale¼ 2.0 to
increase “creativity” of the model. Panels (a)
and (b) show results based on an initial
structural guess, where the first three
SMILES characters printed in bold blue are
given as a fixed constraint (the other
SMILES characters, all “C,” in gray color are
also provided to the model as initial guess
but are changeable as the model discovers
the solution). (c) Generation results for a
completely unconstrained design, but with
an initial guess [same as in (a)]. Panels
(d)–(f) show similar experiments using the
autoregressive transformer model.

Applied Physics Letters ARTICLE pubs.aip.org/aip/apl

Appl. Phys. Lett. 122, 234103 (2023); doi: 10.1063/5.0155890 122, 234103-6

VC Author(s) 2023

 18 Septem
ber 2024 16:18:53

pubs.aip.org/aip/apl


to design DES molecular pairs with associated properties, trained
against a combined QM9-based set of tasks (predict properties and
design molecules) and DES tasks (calculate Tmelt of individual DES
components, TDESmelt for pairs of DES components, as well as the ratio
to achieve desired TDESmelt).

Figures 5(a) and 5(b) depict the model performance regarding
DES specific prediction tasks, respectively, TDESmelt and ratio
(R2¼ 0.93) from a pair of molecules, and Tmelt, the melting tempera-
ture of individual components (R2¼ 0.86). While the predictions do
not reach the same level as for the QM9 tasks shown in Fig. 2(d), the
results are encouraging for machine-learning assisted DESs develop-
ment. Next, we test model performance for the generative design task.
Figures 5(c) and 5(d) show two example results for the design task,

revealing two not-before-seen DES designs. In Fig. 5(c), TDESmelt and
the desired mole ratio are provided, and a pair of molecules is pre-
dicted (resulting in monoethylcholine chloride and 4-methylcatechol).
In Fig. 5(d), TDESmelt is provided, and both the pair of molecules and
the mole ratio are predicted (resulting in benzyltrimethylammonium
chloride and 2-aminopropane-1,2,3-tricarboxylic acid). A sample
input is

� GenerateDES_withratio<-0.314>,

which leads to

�GenerateDES_withratio<-0.314>

/C[N1](C)(C)CC15CC5CC5C1.[Cl-],
C(C(5O)O)C(CC(5O)O)(C(5O)O)N,0.013j$.

The prediction is a combination of two SMILES strings and a floating-
point number that describes the mole ratio.

The model was able to identify the functional groups responsible
for accepting and donating the hydrogen bond and proposed new
DESs composed of, for instance, monoethylcholine chloride (hydrogen
bond donor count of 2) and 4-methylcatechol (hydrogen bond donor
count¼ 2). The investigation of choline-based compounds and diols,
along with aromatic alcohols,38,39 has been extensively documented in
the scientific literature. The model proposed a combination of benzyl-
trimethylammonium chloride (Tmelt 239 �C) with 2-aminopropane-
1,2,3-tricarboxylic acid (Tmelt 156 �C) in molar ratio 1:1 that will result
in deep depression of melting point to 33.3 �C (supplementary mate-
rial Table S2). A combination of quaternary ammonium salts and car-
boxylic acids has been also explored in the literature.40 For
completeness, we show that the model can also rediscover already-
known designs and accurately calculate DES properties for known
DESs composed of tetrabutylammonium bromide and aspartic acid
[Fig. 5(e)] and N,N-diethylethanolammonium chloride and glycerol
[Fig. 5(f)]. It is encouraging that the model can rediscover known DES
compositions. Since the dataset is extremely small, further validation
of these results is needed.

The model has shown to make similar decisions as human
experts in the field of DES. The results generated by the model can
inspire researchers during the design phase of DES, motivating them
to experimentally prepare suggested combinations of molecules and
assess their Tmelt at varying mole ratios. Subsequently, the additional
experimental data could be leveraged to enhance the model’s perfor-
mance by adding new data to the training set.

We presented a flexible platform for materials discovery using
frameworks of diffusion models and transformer architectures [Figs.
1(b) and 1(c)]. We can easily incorporate these models into a range
of applications, and the use of distinct architectures offers flexible
avenues. The diffusion model can easily solve inpainting problems
(Fig. 4). All generative models can solve degenerate design tasks and
suggest multiple candidate solutions for a given objective. The trans-
former models generally perform well, and the use of autoregressive
approaches with multi-task training in the style of generative pre-
trained transformer models41 provides the overall best performance
and the highest level of flexibility [Fig. 2(c)]. The multi-task model
works exceptionally well for the QM9 dataset for both forward and

FIG. 5. Integrated multi-task transformer model T2 applied to design DESs molecu-
lar pairs and associated properties. Panels (a) and (b) show the model perfor-
mance, ground truth vs prediction, trained on two different prediction tasks: (a)
TDESmelt and mole ratio (R2¼ 0.93) and (b) Tmelt, of the individual components
(R2¼ 0.86). Panels (c) and (d) show two examples for results from design tasks
(additional results, see supplementary material Table S2). Panels (e) and (f) docu-
ment the discovery of existing designs.
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inverse design tasks (Figs. 2–4) and can also be applied to a new class
of chemistry and associated new set of tasks (Fig. 5).

DESs are an emerging class of designer solvents in modern and
sustainable chemistry for which relatively little data exist. By utilizing
our newly developed dataset and applying it to our multi-task trans-
former model T2, we have demonstrated the impressive abilities in
expediting the exploration and examination of DES properties and
design. Despite using a small dataset, the model can predict diverse
properties and generate new DESs compositions, like monoethylcho-
line halide and 4-methylcatechol. Considering the importance of DESs
in toxic gas absorption, energy storage, and metal extraction, future
avenues of study include the design of the DESs with multiple tailored
properties like conductivity, absorption capacity, viscosity, and surface
tension.

The generative models show high potential in being applied to a
large variety of tasks to accelerate discovery and materials design.
Another key insight is that the superb performance of the multi-task
transformer model T2 has not only the best performance overall but
also can be integrated efficiently with the smaller DES dataset to still
yield reasonable performance. It outperforms the separately trained
forward and inverse models, suggesting emergent capabilities in the
language models, in general language contexts and including modeling
physical phenomena.16,42–45 This is an exciting development and offers
promising future research opportunities for other systems.

See the supplementary material that includes additional details
on the methods, supplementary figures, data analysis, and the DES
dataset.
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