
Overcoming the Expressivity-Efficiency Tradeoff in
Program Induction

by

Sam Acquaviva

Submitted to the Department of Brain and Cognitive Sciences
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN COMPUTATION AND COGNITION

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2024

© 2024 Sam Acquaviva. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Sam Acquaviva
Department of Electrical Engineering and Computer Science
May 10, 2024

Certified by: Yewen Pu
Senior Research Scientist, Autodesk, Thesis Supervisor

Certified by: Joshua B. Tenenbaum
Professor of Brain and Cognitive Sciences, Thesis Supervisor

Accepted by: Professor Mehrdad Jazayeri
BCS Director of Education

https://creativecommons.org/licenses/by-nc-nd/4.0/

2

Overcoming the Expressivity-Efficiency Tradeoff in Program
Induction

by

Sam Acquaviva

Submitted to the Department of Brain and Cognitive Sciences
on May 10, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN COMPUTATION AND COGNITION

ABSTRACT

People are incredibly flexible and efficient inductive reasoners. On the other hand, current
approaches in program synthesis show strong domain-specific performance, but are both less
sample-efficient and less flexible. Large language models improve upon this sample-efficiency
and domain-generality, but lack robustness and still fall far short of people and traditional
approaches on difficult induction tasks. In this thesis, we propose two hypotheses for how
people seemingly overcome this trade-off between flexibility and efficiency. In the first, we
propose that people may operate over an incredibly vast language which is made tractable via
a strong, bottom-up proposal model. In the second, we propose that, alternatively, people
may relax the necessity of such a strong proposal model by learning task-specific reasoning
languages through experience. We build models operationalizing both hypotheses and show
that they can improve the generality and efficiency of previous models.

Thesis supervisor: Yewen Pu
Title: Senior Research Scientist, Autodesk

Thesis supervisor: Joshua B. Tenenbaum
Title: Professor of Brain and Cognitive Sciences

3

4

Acknowledgments

Thank you to my family. Mom, Dad, Caroline, Nick, Will – I love you all. I’m so grateful
to have such an incredible family, and I hope this thesis is readable.

Thank you to my friends, from MIT and home and elsewhere. Lowell, Henry, Ryan,
Meagan, Samir, Jack, Jebiathan, Eamon, Chris, Snehal, Insoo – I can’t wait to spend this
post-graduation time with you all.

Thank you to my teammates. Running taught me how fun it can be to have big goals
and go after them wholeheartedly, and you all taught me how much better it is to do it with
friends. I can’t imagine being at MIT without all of you. Thank you also to Mr. Hennigar
and Riley for instilling in me the importance of doing something for the love of it.

Thank you to my advisors, Evan and Josh. You both have inspired me to focus on what
is interesting rather than what is easy, and have always given me room to explore my ideas
– regardless of feasibility or tangible progress.

Thank you to my collaborators. To all of Cocosci, but specifically to Gabe, Maddy, and
Tracey for being incredibly welcoming into the lab.

And thank you, anonymous reader.

5

6

Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 11

List of Tables 13

1 Introduction 15
1.1 A Bayesian answer to improbable inductions 16
1.2 Program induction in artificial intelligence 16
1.3 The trade-off between expressivity and tractability 17
1.4 Two approaches to domain-general induction 18

2 Background 19
2.1 Models of human program induction . 19
2.2 Program synthesis with strong proposal models 20
2.3 Library learning . 20

2.3.1 Library learning with language models 20
2.3.2 DreamCoder, LAPS, and LILO . 20

3 A Rational Process Model for Program Induction 23
3.1 Related work . 23

3.1.1 Large language models . 23
3.1.2 A Bayesian model of natural language concept learning 24
3.1.3 Sequential Monte Carlo . 25

3.2 Model . 25
3.2.1 Domain . 25

7

3.2.2 Overview . 26
3.2.3 Likelihoods, priors, and proposals . 26

3.3 Results . 26
3.3.1 Fit to human accuracy . 27
3.3.2 Fit to human errors . 29

3.4 Discussion . 30

4 Bootstrapping a DSL from Scratch 33
4.1 Methods . 33

4.1.1 Typed enumeration . 33
4.1.2 DreamCoder and LILO . 33
4.1.3 Domains . 34

4.2 Model . 34
4.2.1 Overview . 34

4.3 Results . 37
4.3.1 Synthesis performance . 37
4.3.2 Qualitative library analysis . 38
4.3.3 Bootstrapping . 38

4.4 Discussion . 39

5 Conclusion 41

A Program Induction Rational Process Model Supplement 43
A.1 Prompts . 43

A.1.1 Hypothesis proposal prompt . 43
A.1.2 Hypothesis translation prompt . 43
A.1.3 Hypothesis mutation prompt . 44

A.2 Full model prediction . 44
A.3 Choice of representative subset of tasks . 47

B Bootstrapping a DSL Supplement 51
B.1 Prompts . 51

B.1.1 Solving individual tasks with a LLM 51
B.1.2 Translating Python to DSL primitives 51

B.2 Induced Libraries . 53
B.2.1 List Functions . 53
B.2.2 Regular Expressions . 57

8

B.2.3 CLEVR . 61

References 65

9

10

List of Figures

2.1 Overview of the DreamCoder architecture. 21

3.1 Model accuracy and human accuracy for a random subset of 40 tasks, by
example. (𝑠 = 5) . 27

3.2 Model mean accuracy across examples versus mean human accuracy across
participants and examples (𝑠 = 5 except for HL 500k, where 𝑠 = 500, 000). . 28

3.3 Fit to human judgements 𝑟2 across different sample budgets. 28
3.4 Fraction of human errors reproduced by the model. 29

4.1 Example CLEVR scene. 34
4.2 Online synthesis performance for baseline models. 37
4.3 Online synthesis performance for ablations. 38
4.4 Search performance as a function of LLM samples. 39

A.1 Model accuracy and human accuracy for all 100 tasks, by example. 48

11

12

List of Tables

4.1 Mean fraction of solved tasks each primitive appears in. 38
4.2 Most useful primitives by domain. 39

A.1 MSE per task for each model. 44

13

14

Chapter 1

Introduction

The process of induction is the process of assuming the simplest law that can be
made to harmonize with our experience. (Ludwig Wittgenstein)

The world is full of complexity. Somehow, we manage to deal with this reality. We start
life experiencing it all as a “blooming, buzzing confusion” [1], and can make enough sense of
the world to predict things with a great deal of certainty: I know the sun will rise tomorrow,
I know if I drop my pen then it will fall, I know that if I continue writing this thesis without
plugging in my laptop then the laptop will soon turn off. At the same time, I know what I
cannot predict: I don’t know if the sun will rise in 10 billion years, I don’t know if the pen
will bounce to the left or to the right, I don’t know the exact time when my laptop will die.

How do we make these predictions?
Given a set of logical statements, one can deduce other statements with certainty. As

the classic example goes, if I accept the premises that “all men are mortal” and “Socrates
is a man”, then I can deduce with logical certainty that “Socrates is mortal.” However,
many of our daily inferences are not deductions where we apply general truths to specific
instances, but rather inductions, where we induce general truths from specific instances [2].
In the Socrates example, one could induce that “All men are mortal” from the specific facts:
“Socrates is a man” and “Socrates is mortal.”

The difficulty in modeling induction is that, in contrast to deduction, true premises can
lead to false conclusions [3]. For example, the inductive hypothesis “The sun always rises
in the east, except for on May 11, 2024 when it will rise in the west” is consistent with the
experiences of all people prior to that date; however, this inductive hypothesis will be false,
or at least consistently deemed unlikely by people (future readers will be able to validate
that this is indeed the case).

Additionally, for any finite amount of evidence, there is an infinite number of inductive

15

hypotheses that are consistent with the evidence [4]. We can induce the hypothesis that the
sun will rise in the east every day except for a single date in the future, for any possible
future date (for which there are infinite). All of these hypotheses are fully consistent with
the evidence, yet somehow we have confidence that the sun will continue to rise in the east.
People can consistently make useful inductions, dealing with these infinities, every day.

1.1 A Bayesian answer to improbable inductions

We can model the probability of an inductive hypothesis 𝐻, given some evidence 𝐸, under
a Bayesian framework:

𝑃(𝐻 ∣ 𝐸) = 𝑃(𝐸 ∣ 𝐻)𝑃(𝐻)
∑𝑖 𝑃(𝐸 ∣ 𝐻𝑖)𝑃 (𝐻𝑖)

(1.1)

The likelihood 𝑃(𝐸 ∣ 𝐻) measures how well our hypothesis explains the evidence, the
prior on the hypothesis 𝑃(𝐻) measures how likely our hypothesis is absent of any particular
evidence, and the marginalization ∑𝑖 𝑃(𝐸 ∣ 𝐻𝑖)𝑃 (𝐻𝑖) is a normalizing sum over all possible
hypotheses. Modeling the prior 𝑃(𝐻) corresponds to addressing the problem that inductive
arguments with true premises (a high likelihood) can have an incorrect conclusion (low
posterior). Figuring out how to model the marginal corresponds to addressing Hume’s
paradox: it is impossible to consider all possible hypotheses.

So, what priors do people have that allow them to make reasonable inductive inferences,
and how do we calculate the infinite sum? Many cognitive scientists have attempted to elicit
people’s priors in different domains [5], and recent work in resource rational analysis studies
how people’s decisions are rational when accounting for their limited cognitive resources [6],
[7]. In the case of induction, where one can only consider a small handful of possible hy-
potheses, these resource rational accounts try to explain strategies to efficiently approximate
𝑃(𝐻 ∣ 𝐸).

1.2 Program induction in artificial intelligence

Modeling induction is not just useful for explaining how people make these inferences; study-
ing induction gives insight into how we can design machines to help us solve real problems in
the world. Just as people making inductive inferences is an interesting mystery for cognitive
science, designing algorithms which can make reasonable inductive inferences is an essential
question for artificial intelligence.

16

In this thesis, we are interested in modeling a specific type of induction – program in-
duction. In program induction, the “general truth” that we are trying to induce takes the
form of a program. Importantly, program induction inherits the difficulties of induction
more generally – there are an infinite number of programs that are consistent with a finite
amount of evidence, and a program that is consistent with the evidence may not be the
actual underlying program.

For example, consider the following:

[1, 2, 3] →[2, 3, 4]
[8, 2] →?

Following the pattern from the first input-ouput example, what is the output for the
second? It could be [9, 3] if the program is Add 1 to each number. It could be [2, 3, 4] if the
program is Output [2, 3, 4], regardless of the input. It could even be [] if the program is
Output [] if the input is [8, 2], otherwise output [2, 3, 4]. No matter the amount of finite
evidence, there will always be an infinite number of consistent programs.

The field of program synthesis deals with trying to induce programs from a specifica-
tion (in the previous example, the specification is an input-output example). Classically,
approaches defines a formal language with explicit semantics which is searched over to find
programs which satisfy the specification. Work in program synthesis typically attempts to
either improve the search strategy (see Section 2.2) or the underlying language (see Section
2.3).

Recently, advances in Large Language Models (LLMs) have given rise to the study of
in-context learning, where the LLM is given an example of a pattern in the input and must
induce the correct program and apply it to a new input [8].

1.3 The trade-off between expressivity and tractability

We can further factorize Equation (1.1) to consider the language 𝐿 which we are operating
over:

𝑃(𝐻 ∣ 𝐸,𝐿) = 𝑃(𝐸 ∣ 𝐻,𝐿)𝑃(𝐻 ∣ 𝐿)𝑃(𝐿)
∑𝑖 𝑃(𝐸 ∣ 𝐻𝑖, 𝐿)𝑃 (𝐻𝑖 ∣ 𝐿)𝑃 (𝐿)

(1.2)

If we are operating over natural language with each word as the basic unit, as we are
(very roughly) in in-context learning, then 𝑃(𝐻∗ ∣ 𝐿) becomes vanishingly small (where
𝐻∗ is the correct inductive hypothesis). For example, the prior probability of the natural

17

language hypothesis “all men are mortal” with a uniformly-weighted probabilistic context-
free grammar (PCFG) over the 25,000 most common words is 1/2500004 < 1𝑒−17.

If the PCFG is instead uniformly weighted over the words “all”, “men”, “are”, and
“mortal”, then the prior probability is 1/44 = 1/256. Similarly, if the PCFG considers the
25,000 most common words but only assigns 1% of the prior distribution to the words not
in the hypothesis, then the prior probability is (4/99)4 > 1/267.

This simple example reveals a fundamental trade-off in program synthesis: the more
expressive a language is, the more difficult induction is over that language. If a language
has a large hypothesis space, then it must have an efficient inference mechanism to allow
finding high posterior hypotheses: sampling without effectively conditioning on the evidence
leads to very little covering of the posterior. On the other hand, a language with a smaller
hypothesis space does not need rely on such a strong inference engine, but it is restricted in
the space of solutions it can represent.

1.4 Two approaches to domain-general induction

This trade-off yields two distinct but complementary approaches to making tractable induc-
tions, which will comprise the rest of this thesis.

In the first (Chapter 3), we will investigate the limits of using an expressive language
(natural language 1) with a strong proposal network (a LLM). We will provide a rational
process model of how people induce programs, improving reported state-of-the-art on fit
to human data, all while considering orders of magnitudes less hypotheses than competing
approaches.

In the second (Chapter 4), we introduce a novel system for generating domain-specific
languages (DSLs). These languages are significantly less expressive than natural language,
but are more tractable for existing inference mechanisms. We show that this domain-general
approach can outperform LLMs and existing program synthesis methods in multiple domains.

1We effectively consider a subset of natural language: natural language with unambiguous and explicit
semantics. This is a limitation that is discussed further in Section 3.4.

18

Chapter 2

Background

There is plenty of work on induction, both in computational modeling and in studying
how people make these inductions. Here, we review works broken up into three categories:
studying and modeling human-like induction, algorithms for improved program induction by
improving the inference for a given language, and algorithms for improving a language for a
given inference engine.

2.1 Models of human program induction

Previous work has modeled human program induction at all three of Marr’s levels of analysis
[9]. At the computational level, there is an emerging literature on induction as top-down
Bayesian inference over an infinite hypothesis space. These methods largely assume that
this latent hypothesis space is compositional and potentially probabilistic, operating under
the probabilistic Language-of-Thought hypothesis [10]–[12]. There are many other compu-
tational models for induction, such as rule-based systems [2].

Algorithmic level accounts show that people’s judgements and decisions depart from these
normative models, and show that sample-based approximations to the normative models can
account for human errors like anchoring and ordering effects [13], [14]. These works account
for how people update their hypotheses in light of new evidence, and how people update
their hypotheses when given more time to think.

Recently, there has been work to provide a rational process model for human program
induction using LLMs to provide natural language hypotheses [15], [16]. These works tackle
concept-learning domains, where the induced program should determine if a new instance
belongs to the same concept as previous instances.

Additionally, there is work finding neural correlates of these proposed sampling proce-
dures, providing a potential implementational level account of the bases of program induction

19

[17], [18].

2.2 Program synthesis with strong proposal models

In the field of program synthesis, there is plenty of work improving inference within a given
hypothesis space. We will define a proposal model as the process which generates candi-
date programs, potentially conditioned on the input. A proposal model aims to generate
high-posterior programs. Recent work has shown incredible progress in program synthesis
over general programming languages, such as Python or C, using LLMs as the proposal
model [19]–[21]. When operating over smaller hypothesis spaces that are more amenable to
search, other search-based methods outperform LLMs [22]. Some techniques to improve the
proposals within a DSL are re-weighting a PCFG over program primitives [11], fine-tuning
LLMs on DSL programs [23], re-weighting partial samples [24], using symbolic properties to
re-weight the grammar [25], [26], or defining a type-system and only considering programs
with valid types [27].

2.3 Library learning

Another way to improve synthesis performance is to not just learn an efficient strategy to
sample or enumerate programs in the hypothesis space, but to improve the hypothesis space
itself.

2.3.1 Library learning with language models

There is an emergent literature on learning libraries of reusable functions using language
models. Using a simple approach of memorizing past solutions and retrieving the closest
examples at test time shows improved performance [28]. More recent work focuses on not
just memorizing past programs, but specifically curating libraries of reusable programs [29],
[30].

2.3.2 DreamCoder, LAPS, and LILO

DreamCoder [11] is a wake-sleep algorithm that iteratively improves a DSL. DreamCoder im-
plemented neurally-guided search (called the “Wake phase”), compression over version-spaces
to find new abstractions (“Sleep: Abstraction phase”), and sampling imagined programs from
the (ever-improving) DSL to train the neural-network for search (“Sleep: Dreaming phase”).

20

Objective: For each task x in X, find best program ρx solving x under current library L

Neurally guided search
Propose programs ρ in
decreasing order under Q(·|x)
until timeout

Library L
f1(x) =(+ x 1)

f2(z) =(fold cons

(cons z nil))

· · · · · · · · ·

Task x
[7 2 3]→[4 3 8]

[3 8]→[9 4]

[4 3 2]→[3 4 5]

Recognition

Model Q(·|x)

Best program ρx for task x
(map f1 (fold f2 nil x))

Choose ρx that maximizes:
P [ρ|x, L] ∝ P [x|ρ]P [ρ|L]

Wake

Objective: Grow library L to compress
programs found during waking

program for task 1
(cons (+ 1 1))

program for task 2
(+ (car z) 1)

+ 11

cons
+ 1

car z

Refactoring
Propose new library routines from
subtrees of refactorings of programs

New library L
w/ routine

(+ x 1)

+ 1

Expand L w/
the routine that
maximizes:

P[L]
∏
x∈X max

ρ: refactorings of ρx
P [x|ρ]P [ρ|L]

Sleep: Abstraction

Objective: Train recognition model Q(ρ|x)
to predict best programs ρx for typical
tasks x and current library L

Fantasies

2. set task x
to output of
executing ρ

1. draw
programs
ρ from

library L

sam
p
le

Replays

2. set program
ρ to retrieved
solution ρx

1. recall
tasks x
solved in
waking

sam
p
le

Train network on x,ρ pairs

Task
x

Program
ρ

Gradient step in parameters of Q
to maximize logQ(ρ|x)

Sleep: Dreaming

Repeat
until no
increase
in score

Train
until

converged

Library

prog

task

prog

task

prog

task

is

Figure 2.1: Overview of the DreamCoder architecture.

LAPS (Leveraging Language to Learn Program Abstractions and Search Heuristics) [31]
extends DreamCoder to not just invert the generative process of programs, but to jointly
model both language and programs. LAPS showed that incorporating language into the
generative model (not just the neural search) improves the quality of the learned library,
even without the presence of language at test time.

LILO (Learning Interpretable Libraries by Compressing and Documenting Code) [32]
extends this spirit of using language to guide the library learning. LILO relaxes some as-
sumptions made by the implementation of LAPS (namely, fitting translation models from
scratch that rely on token-token match assumptions). Concretely, LILO uses LLMs as part
of the wake phase (prompting to output solution programs directly in the DSL conditioned
on examples) and the Sleep: Abstraction phase (renaming and documenting learned ab-
stractions to help subsequent LLM inference). LILO also improves the Sleep: Abstraction
phase by replacing the slow and memory-intensive version-space compression with Stitch
(Top-Down Synthesis for Library Learning) [33] which is orders of magnitude more efficient.

21

22

Chapter 3

A Rational Process Model for
Program Induction

How are people so efficient and flexible in their reasoning ability? Here, we present a rational
process model for one hypothesis: people operate over an incredibly vast language which is
made tractable via a strong, bottom-up proposal model. This approach continues a long
line of work using sample-based Bayesian models to account for human resource rationality
[13], [34]–[36]. We show that our model, which explicitly models the sequential updating of
hypotheses in light of new evidence, better accounts for human accuracy and specific human
errors than a sample-matched model without the sequential component.

3.1 Related work

3.1.1 Large language models

Large language models (LLMs) are inconsistent inductive reasoners. On some tasks, the
ability to make inductions seems to emerge with scale [37], [38]. However, they still fall
short of human performance on many abstract reasoning tasks, especially when the tasks
are constructed adversarially [39]–[41].

Additionally, prior work suggests that LLMs are much better at proposing inductive
hypotheses than actually applying these hypotheses. As such, using an LLM to propose
inductive hypotheses in executable code and offloading execution of the rule to a code-
interpreter, rather than using the LLM itself to apply the rule, often improves performance
[42]. Some work shows that iteratively providing execution feedback of these induced rules
to the LLM can increase performance [42], [43], while other work suggests that this may not
actually help more when controlling for the number of samples [44].

23

3.1.2 A Bayesian model of natural language concept learning

Recent work proposes a model of human-like concept learning using natural language hy-
potheses generated from a LLM [15]. Modeling concept learning is very similar to modeling
program induction; we can view concept learning as a special case of program induction
where the input 𝑋𝑖 is the object to be classified, and the output 𝑋𝑜 is a binary label of
whether or not the object belongs to the concept. In this setup, a hypothesis 𝐻 is a rule
that determines if a given input belongs to the concept in question.

Here, we reproduce the main points of the model for completeness but refer readers to
[15] for a full explanation. Given a set of 𝐾 input-output examples 𝑋1∶𝐾 (where each 𝑋𝑘 is
the input-output pair (𝑋𝑖

𝑘, 𝑋𝑜
𝑘)), assuming the latent concept rule 𝐻 generates the examples

IID, we can model the posterior over possible concept rules as

𝑝(𝐻 ∣ 𝑋1∶𝐾) ∝ 𝑝(𝐻)
𝐾
∏
𝑘=1

𝑝(𝑋𝑜
𝑘 ∣ 𝑋𝑖

𝑘,𝐻) (3.1)

Given this posterior, we can produce the probability of a given output 𝑋𝑜
𝑘+1 for a given

input 𝑋𝑖
𝑘+1 by calculating

𝑝(𝑋𝑜
𝑘+1 ∣ 𝑋1∶𝐾, 𝑋𝑖

𝑘+1) = ∑
𝐻

𝑝(𝐻 ∣ 𝑋1∶𝐾)1[𝐻(𝑋𝑖
𝑘+1) = 𝑋𝑜

𝑘+1] (3.2)

where 𝐻(𝑋𝑖
𝑘+1) is the result of applying the rule 𝐻 to 𝑋𝑖

𝑘+1. As the above sum is
intractable, we construct an importance sampler 𝑞 to approximate the intractable sum over
𝐻,

𝑝(𝑋𝑜
𝑘+1 ∣ 𝑋1∶𝐾) ≈ ∑

1≤𝑠≤𝑆
𝑤𝑠 where 𝑤𝑠 = ̃𝑤𝑠

∑𝑠′ �̃�𝑠′
and �̃�𝑠 = 𝑝(𝐻𝑠)𝑝(𝑋𝑜

1∶𝐾 ∣ 𝑋𝑖
1∶𝐾,𝐻𝑠)

𝑞(𝐻𝑠 ∣ 𝑋1∶𝑘)
(3.3)

In the model from [15], they draw 𝑆 samples from an LLM and approximate the impor-
tance weighting by de-duplicating hypotheses, so 𝑞(𝐻𝑠 ∣ 𝑋1∶𝑘) is approximated as a uniform
distribution over unique hypotheses. The likelihood 𝑝(𝑋𝑜

1∶𝐾 ∣ 𝑋𝑖
1∶𝐾,𝐻𝑠) is task-dependent,

but always translates each natural language hypothesis 𝐻𝑠 to a code hypothesis (using an-
other LLM call) which is then executed. The prior 𝑝(𝐻𝑠) comes from training a linear model
on text features extracted from 𝐻𝑠 to fit human data, which leads to notable improvement
in fit to human data over a fixed prior.

24

3.1.3 Sequential Monte Carlo

When the data is presented sequentially, as it is in our setup, it is natural to use Sequential
Monte Carlo (SMC) to approximate the posterior [45]. In SMC, a finite set of particles
are continually adjusted to approximate the posterior. Importantly, SMC does not require
global information about the posterior over these particles, but only local information.

One implementation of SMC is to iteratively rejuvenate and filter particles. When new
evidence comes in, local mutations to the particles with the highest importance weights 𝑤
are sampled (rejuvenation). Then, the pool of sampled mutations and original particles are
re-sampled with probability proportional to their importance weights, to the set number of
particles (filtering).

Across domains, people demonstrate anchoring and bias effects that are well captured
by SMC [14]. However, these accounts usually consider orders of magnitudes more particles
than is likely possible for a person to consider. In contrast, concurrent work shows that
it is possible to model active inference in concept learning as SMC over natural language
hypotheses with a plausible number of hypotheses [16].

3.2 Model

3.2.1 Domain

We focus on the List Functions domain, where the task is to, given a set of input-output
examples, induce a program which maps each input list to its corresponding output list.
Then, the learner must apply this induced program to a new input for which the output is
hidden. One such task from the domain is:

[3, 1, 9, 0, 7] →[1, 9, 0]
[2, 1, 3, 4, 6, 9] →[1, 3]

[1, 5, 4, 2, 8, 3, 0, 6] →[5]
[4, 1, 2, 3, 5, 0, 7, 6, 9, 8] →?

In the example above, the program is Take the first N items after the first item, where
N is the value of the first item. We use data from [12] which collected human performance
from 389 participants on a corpus of 250 such tasks. In this domain, the tasks are presented
iteratively: a participant is shown each example one at a time and asked to predict the
output for a new list. So, we have learning curves for participants across the number of
examples shown for each task. For simplicity and to align with previous work, we restrict
our analysis to the first 100 tasks of the corpus.

25

3.2.2 Overview

In contrast to [15], and in line with concurrent work [16], we don’t just use an importance
sampler to approximate the posterior for each example separately. Instead, we approximate
the sum in 3.2 using Sequential Monte Carlo, with rounds of rejuvenation and filtering.

In the first iteration (when shown the first input-output example), we sample 𝑆 hy-
potheses 𝐻1,𝐻2, ...𝐻𝑆 from the proposal distribution 𝑞 and calculate the importance weight
𝑤1

𝐻 = 𝑝(𝐻)𝑝(𝑋𝑜
1 ∣𝑋𝑖

1,𝐻)
𝑞(𝐻∣𝑋1) for each. In subsequent iterations (when shown more input-output

examples), we incorporate the new example’s likelihood by re-weighting each hypothesis:
𝑤𝑘+1

𝐻 = 𝑤𝑘
𝐻𝑝(𝑋𝑜

𝐾+1 ∣ 𝐻,𝑋𝑖
𝐾+1). Then, during the rejuvenation step, we sample 𝑁 mu-

tations for each of the top 𝑀 particles from 𝑞(𝐻𝐾+1 ∣ 𝐻𝐾, 𝑋1∶𝐾). Then, we re-sample 𝑆
hypotheses from this pool of 𝑆 +𝑀 ⋅ 𝑁 hypotheses with their sampling probability propor-
tional to their importance weights.

3.2.3 Likelihoods, priors, and proposals

In our experiments, we use gpt-4-0613 [21] as our proposal distribution 𝑞 over natural
language language hypotheses 𝐻. Preliminary experiments showed that other publicly-
accessible LLMs are much worse at induction tasks. For our prior, we find that a simple
length-prior 𝑝(𝐻) ∝ 1

|𝐻| works just as well as a linear prior model fitted to human data, in
contrast to previous work in concept learning.

For our likelihood function, we use a simple likelihood function

𝑃(𝑋1∶𝐾 ∣ 𝐻) = ∏
1≤𝑘≤𝐾

(1 − 𝜃)
1[𝑋𝑜

𝑘 = 𝐻(𝑋𝑖
𝑘)]

𝐾
+ 𝜃

1[𝑋𝑜
𝑘 ≠ 𝐻(𝑋𝑖

𝑘)]
𝐾

(3.4)

where 𝜃 is the probability that an example is mislabeled. Note that the likelihood is
monotonically increasing with the number of correct examples; a hypothesis will always
have a higher likelihood if it can directly explain more of the data than another hypothesis.
Initially, we set 𝜃 = 1

100 , and after proposing all hypotheses, we fit 𝜃 to human data using
𝑘-fold cross validation, with 𝑘 = 10. Fitting the likelihood parameters, in this case just 𝜃,
while running the model is interesting future work that may improve performance.

3.3 Results

We compare our model – Full model – to two baselines. The Hacker-like (HL) model [12]
is a search algorithm over meta-programs which uses term-rewriting systems to drastically
improve search efficiency over alternative symbolic search algorithms like Fleet [46] and

26

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Task 8

0.0

0.2

0.4

0.6

0.8

1.0
Task 9

0.0

0.2

0.4

0.6

0.8

1.0
Task 13

0.0

0.2

0.4

0.6

0.8

1.0
Task 15

0.0

0.2

0.4

0.6

0.8

1.0
Task 18

0.0

0.2

0.4

0.6

0.8

1.0
Task 20

0.0

0.2

0.4

0.6

0.8

1.0
Task 29

0.0

0.2

0.4

0.6

0.8

1.0
Task 30

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Task 33

0.0

0.2

0.4

0.6

0.8

1.0
Task 34

0.0

0.2

0.4

0.6

0.8

1.0
Task 35

0.0

0.2

0.4

0.6

0.8

1.0
Task 36

0.0

0.2

0.4

0.6

0.8

1.0
Task 37

0.0

0.2

0.4

0.6

0.8

1.0
Task 38

0.0

0.2

0.4

0.6

0.8

1.0
Task 39

0.0

0.2

0.4

0.6

0.8

1.0
Task 43

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Task 44

0.0

0.2

0.4

0.6

0.8

1.0
Task 48

0.0

0.2

0.4

0.6

0.8

1.0
Task 49

0.0

0.2

0.4

0.6

0.8

1.0
Task 51

0.0

0.2

0.4

0.6

0.8

1.0
Task 54

0.0

0.2

0.4

0.6

0.8

1.0
Task 56

0.0

0.2

0.4

0.6

0.8

1.0
Task 58

0.0

0.2

0.4

0.6

0.8

1.0
Task 62

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Task 66

0.0

0.2

0.4

0.6

0.8

1.0
Task 69

0.0

0.2

0.4

0.6

0.8

1.0
Task 71

0.0

0.2

0.4

0.6

0.8

1.0
Task 72

0.0

0.2

0.4

0.6

0.8

1.0
Task 73

0.0

0.2

0.4

0.6

0.8

1.0
Task 74

0.0

0.2

0.4

0.6

0.8

1.0
Task 75

0.0

0.2

0.4

0.6

0.8

1.0
Task 78

1 2 3 4 5 6 7 8 9 10

Examples shown

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Task 81

1 2 3 4 5 6 7 8 9 10

Examples shown

0.0

0.2

0.4

0.6

0.8

1.0
Task 82

1 2 3 4 5 6 7 8 9 10

Examples shown

0.0

0.2

0.4

0.6

0.8

1.0
Task 84

1 2 3 4 5 6 7 8 9 10

Examples shown

0.0

0.2

0.4

0.6

0.8

1.0
Task 88

1 2 3 4 5 6 7 8 9 10

Examples shown

0.0

0.2

0.4

0.6

0.8

1.0
Task 89

1 2 3 4 5 6 7 8 9 10

Examples shown

0.0

0.2

0.4

0.6

0.8

1.0
Task 92

1 2 3 4 5 6 7 8 9 10

Examples shown

0.0

0.2

0.4

0.6

0.8

1.0
Task 96

1 2 3 4 5 6 7 8 9 10

Examples shown

0.0

0.2

0.4

0.6

0.8

1.0
Task 99

Sample+Weight
Full model
HL
human

Figure 3.1: Model accuracy and human accuracy for a random subset of 40 tasks, by example.
(𝑠 = 5)

Metagol [47]. The Sample+Weight baseline removes the sequential aspect of our model,
treating each example 𝑘 as a separate task. This is essentially Equation 3.3, and can be
viewed as a sample-matched ensemble baseline. For each baseline, we will also specify the
sample budget (in the case of Sample+Weight and the full model) or the search budget (in
the case of HL).

3.3.1 Fit to human accuracy

In Figure 3.1, we plot sample-matched model accuracy versus human accuracy for the Full
model, HL, and Sample+Weight for a random subset of 40 tasks. Each model uses 5
samples / search steps per example. Across the 100 tasks, the Full model has the closest
fit to human data (as measured by mean-squared error (MSE) across the 10 examples), for
70 of 100 tasks, Sample+Weight for 17 of 100 tasks, and HL for the remaining 13. In
Appendix A.2, we plot all 100 tasks with these models and HL with 500k search steps, as
well as provide the MSE for each model for each task.

27

0.0 0.2 0.4 0.6 0.8 1.0
Human accuracy

0.0

0.2

0.4

0.6

0.8

1.0
M

od
el

 a
cc

ur
ac

y

Sample + Weight (r = 0.674)

0.0 0.2 0.4 0.6 0.8 1.0
Human accuracy

0.0

0.2

0.4

0.6

0.8

1.0
Full model (r = 0.727)

0.0 0.2 0.4 0.6 0.8 1.0
Human accuracy

0.0

0.2

0.4

0.6

0.8

1.0
HL (r = 0.089)

0.0 0.2 0.4 0.6 0.8 1.0
Human accuracy

0.0

0.2

0.4

0.6

0.8

1.0
HL 500k (r = 0.326)

Figure 3.2: Model mean accuracy across examples versus mean human accuracy across
participants and examples (𝑠 = 5 except for HL 500k, where 𝑠 = 500, 000).

1 2 6 12
LLM samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
2

Full Model
Sample+Weight
HL 500K

Figure 3.3: Fit to human judgements 𝑟2 across different sample budgets.

In Figure 3.2, we plot model average accuracy against the human average accuracy across
all 100 tasks. In this plot, the accuracy is averaged across examples. For each model, the
accuracy is weighted by the posterior: if the model has one correct hypothesis with a posterior
of 0.8, the accuracy for that example would be 0.8.

In Figure 3.3, we show the fit to human data (as measured by 𝑟2) as a function of the
number of hypotheses considered (shaded regions represents standard deviation across 3
runs). Due to computational restrictions, we limit the experiments in this plot to a difficult
subset of 20 tasks and to the first 6 examples, where most of the learning happens (see
Appendix A.3 for information on selecting this subset). Note that HL, with 500k search
steps, has near-zero correlation on this difficult subset. We show that, across sample budgets,
our model’s performance better captures the average human performance across tasks better
than sample-matched HL and Sample+Weight.

28

2 4 6 8 10 12
LLM samples

0.10

0.15

0.20

0.25

0.30

Fr
ac

tio
n

fa
ilu

re
s

re
pr

od
uc

ed

Full Model
Sample+Weight
HL 500K

Figure 3.4: Fraction of human errors reproduced by the model.

3.3.2 Fit to human errors

When modelling human program induction, we are also interested in comparing the errors
of the model and to human errors. On many induction tasks, both program synthesis models
and LLMs err in qualitatively different ways than people [41].

Analyzing the errors in the List Functions domain is difficult in two ways: we do not
explicitly elicit rules from participants so we cannot directly compare induced rules, and we
do not give an option for “I don’t know”, leading to many participants outputting random
lists that are not representative of good-faith attempts, but rather just to move on to another
example. We leave collecting more data that addresses these limitations as future work.

With these limitations in mind, we restrict our error analysis to explaining errors after
a successful response. Concretely, we measure, for each example, the overlap between the
model’s responses and the set of human incorrect responses after a correct response. These
errors are shown in Figure 3.4 (shaded regions represents standard deviation across 3 runs).
As HL does not maintain a fixed set of 𝑠 hypotheses during search, we only plot the error
analysis for 1 sample.

We find that explicitly modeling the sequential nature of hypothesis formation, as we do
in the Full model, improves coverage of human errors.

29

3.4 Discussion

We present a rational process model for how people update their hypotheses in light of
new evidence with a realistic number of hypotheses considered, integrating classic models of
hypothesis adaptation with LLMs to improve fit to human data. However, there are clear
limitations of the model, which we will outline here and leave for future work.

Adapting hypothesis in time

There is plenty of work modeling how people update their hypotheses when given more
time to think, whereas we only model how people update their hypotheses when given new
evidence.

Specifically, at time 𝑡, the 𝑛 samples our model generates are IID. On the other hand,
people’s hypothesis generation process is much richer: people notice properties of the input,
maintain partial hypotheses, and let their current hypotheses guide their next hypothesis.
However, our experiments revealed that, contrary to prior work, it is difficult to improve
induction performance beyond just sampling more IID hypotheses.

Concretely, we tried three main techniques to model how people might update their
hypotheses in time. In the first, and most straight-forward, we tried two standard prompting
techniques purported to “improve reasoning” – Chain-of-Thought [48] and Tree-of-thoughts
[49]. However, we found that neither of these improve performance when controlling for total
number of samples.

We also tried using post-hoc attention steering [50], where we can up-weight attention to
specific parts of the input in specific attention heads. We searched over manually-specified
different parts of the input to attend to (e.g., the first input-output examples, the first
element of each input list, odd-numbered indices, etc...). In preliminary experiments, we
found that attention steering was ineffective to usefully guide the rule inductions in Llama
2-13b [51] – the largest open source model we had the computational resources to test.
However, there are two reasons to believe that this approach may work if scaled up to larger
models: program induction is a difficult task that does not seem to emerge until larger scales
[38], and the specific attention heads that are used to steer the attention were identified on
non-induction tasks and may be task-specific.

Finally, we tried using execution feedback, where we include the results of the execution of
incorrect hypotheses in the LLM prompt. Contrary to prior work on using LLMs for program
induction [42], and in line with recent work analyzing the use of LLMs for program synthesis
[44], we find that providing execution feedback provides no benefit over IID sampling the
same number of hypotheses.

30

Human studies

As noted in Section 3.3.2, one limitation of our error analysis is that it is unclear whether
people’s incorrect answers are reflective of a good-faith attempted answer, or a random
response because they could not determine the pattern. Additionally, we do not have people’s
explicit hypotheses for what they believe the program is. One could alleviate these issues
by running a study which includes an “I don’t know” option, asks for confidence scores after
each response, and asks participants to describe what they think the program is in natural
language after each example.

Additionally, because most program induction domains do not collect human data, we
can only test our model’s accuracy on these domains rather than its ability to explain human
behavior. Collecting more human data in more program induction domains would provide
a rich problem set for future modeling work.

Moving beyond procedural, deterministic rules

Our method, as is, relies on translating natural language hypotheses into deterministic,
executable code. However, this severely limits the expressibility of the reachable hypothesis
class. For instance, if the program is to identify objects in a list that “are more pointy than
round” or “tree-like”, it will be very difficult to write a Python program that can solve this
task. On the other hand, LLMs are imbued with enough training data to accurately make
these kinds of judgements [52].

One benefit of the Bayesian approach is that it is very natural to introduce these non-
procedural, non-deterministic rules. Similarly, one can incorporate our model with other
perceptual models to move beyond textual inputs.

31

32

Chapter 4

Bootstrapping a DSL from Scratch

An alternative hypothesis to the idea that people operate over a single expressive language
(as modeled in Chapter 3) is that people learn constrained, task-specific languages. In this
section, we present a library learning system inspired by this alternative hypothesis: instead
of using a general and expressive language with a very strong proposal model, we induce a
rich, domain-specific language that can perform induction within a domain with the simplest
possible proposal model.

4.1 Methods

4.1.1 Typed enumeration

We assume each task has a given type. For example, every task in the list-functions domain
has type int → int. In contrast to Chapter 3, where we sampled programs from the language
model in the form of natural-language hypotheses, we enumerate over validly-typed programs
[27] in order of prior probability until a given timeout.

4.1.2 DreamCoder and LILO

Our approach builds on DreamCoder (see 2.3.2). This chapter is interested in the limits
of inducing programs by improving the underlying language alone as opposed to improving
performance by using a strong proposal model. As such, for all models across experiments, we
will not use neurally-guided search (as in DreamCoder) or sample programs in the DSL from
the LLM (as in LILO). Introducing these task-specific inference methods would undoubtedly
improve performance for all baselines and the proposed model, and we leave this area for
future work.

33

Figure 4.1: Example CLEVR scene.

4.1.3 Domains

We conduct experiments in three domains: List Functions, Regular Expressions, and Compo-
sitional Language and Elementary Visual Reasoning (CLEVR). The List Functions domain
is described in 3.2.1. The Regular Expressions domain [53] consists of string transformations.
One such task from the domain is:

abstinent → ubbstubnubnt
bucklers → bubcklubrs

melodiousness → mublubdubububsnubss

In the example above, the program is Replace each vowel with “ub”. The CLEVR domain
[54] consists of questions about scenes of objects, designed originally to test visual question-
answering models. One example task from CLEVR is to answer the question: “Are there
an equal number of large things and metal spheres?” for a particular set of objects, such as
those in Figure 4.1.

For all experiments, we strip the question from the input, creating the difficult induction
problem of inducing the question from only input-output examples. Additionally, since we
are interested in program induction rather than visual scene understanding per se, we codify
each image as a list of object properties and their relative positions, as in [11].

4.2 Model

4.2.1 Overview

We view our method as a natural combination of DreamCoder / LILO (see Section 2.3.2)
and the inductive ability of LLMs (see 3.1.1). In each iteration of DreamCoder, new solu-

34

tions are found in the underlying DSL via search which bootstraps compression (because
there are more solutions to compress) which in turn bootstraps the next iteration of search
because the library is better tuned to the domain. Importantly, DreamCoder relies on an
initial DSL which is expressive enough to represent all relevant problems in the domain and
compact enough so that search is tractable (although this limitation is somewhat mitigated
by neurally-guided search and, in later iterations, compression). On the other hand, LLMs
can demonstrate strong inductive reasoning abilities, but are brittle, especially in adversarial
domains.

We propose a method to incorporate LLMs into the virtuous cycle of bootstrapping as
demonstrated in DreamCoder. Specifically, we

1. Sample programs from a LLM to solve tasks in a general programming language.

2. Translate the solution programs into declarations of primitive functions.

3. Combine primitives from all solutions into a single library and compress the library.

4. Explicitly search over the library.

In this way, we maintain the benefit of explicit, enumerative search without requiring
manual design of a domain-specific language. Note that every step of the process can be
parallelized across tasks.

Solving individual tasks

Initially, we begin with a set of unsolved, related tasks {𝑇1, 𝑇2, ..., 𝑇𝑛}. In the first iteration,
we prompt the LLM to solve each task 𝑇𝑖 in Python. Importantly, we can check whether or
not a sample from an LLM can solve a given task by executing the Python code on a set of
hidden examples. As such, we then have a subset of solved tasks. We find that, in the three
domains we test, the LLM can solve a non-zero amount of tasks with a moderate number of
samples, beginning the bootstrapping process without any human labelling. However, in the
case where an LLM cannot solve any tasks in a domain, the process could be bootstrapped
by providing either solution programs directly or descriptions of the solution.

In subsequent iterations, we can improve LLM induction performance using the set of
already-solved tasks and the current library. In our experiments, we try a straightforward
technique: selectively choosing few-shot examples from the set of solutions.

For all the experiments in this thesis, we use gpt-3.5-turbo-0125 to solve tasks.

35

Translate solutions

In order to search over a language, we need to generate a language to search over. Since our
search strategy is defined over typed, functional programs (see Section 4.1.1), we need to
convert our Python programs into a set of typed primitives that can be composed to form a
functional solution to the original problem.

This is a difficult problem, as it requires not just translating an imperative program into a
functional program, but also finding a reasonable granularity of decomposition. For example,
any imperative function could be translated into a functional program by defining the entire
program as a single primitive; however, this is too specific a primitive to be generally useful.
On the other hand, we can decompose the program into byte-code instructions, but this
decomposition would yield far too many primitives to be useful for search.

In lieu of a principled, effective technique for automatic decomposition into primitives,
we find that LLMs are quite strong at finding decent decompositions of functions. So, we use
another LLM call to translate solution programs into lists of typed primitives. Importantly,
once again, we can check if these primitives can solve the original task. In contrast to
the previous step, where we can just execute the sampled code, we must search over these
primitives to determine if some composition of the primitives can indeed solve the task.

For all the experiments in this thesis, we use gpt-4-turbo-2024-05-13 to translate tasks
into lists of primitives.

Compress primitive sets

From the last step, we have a set of primitives for each task. However, in order to search,
we need a single library of primitives. As we are attempting to build a DSL from separate,
imperfect sets of primitive – in contrast to DreamCoder which operates over a minimal,
hand-designed DSL – we have a unique problem of primitive redundancy which necessitates
an additional step to effectively compress our task-specific primitives into a single library.

In the simplest case, we can re-use observationally-equivalent primitives in different tasks.
For example, if two different tasks use the primitive map, then we should only define one map
primitive. In another case, we may have a primitive that can be constructed by a composition
of other primitives. For example, the primitive add_1(x) = x + 1 can be constructed by the
primitives add(x, y) = x + y and 1 (add(x, 1)).

We address both of these cases with a simple procedure: search for replacements to each
primitive. Once this is complete, we then use the compression technique Stitch [33] to add
compositions of primitives to our library.

36

1 2 3 4 5
Iteration

30

40

50

60

70

80

%
 T

as
ks

 s
ol

ve
d

List Functions

1 2 3 4 5
Iteration

10

15

20

25

30

35

40
Regular Expressions

1 2 3 4 5
Iteration

20

40

60

80

CLEVR
Full model
Full model + DSL
LLM
DreamCoder
Base DSL

Figure 4.2: Online synthesis performance for baseline models.

Search for solutions

Finally, we use this library – with each primitive weighted via the inside-outside algorithm
over previously-found solution programs – to search for new solutions in the domain using
the type-constrained search outlined in Section 4.1.1. As noted earlier, this search is not
conditioned on the input.

4.3 Results

We compare our model – Full model – to three baselines. LLM, which adds each LLM
solution to the library as a single primitive; this can be viewed as an upper bound on the
performance of the LLM. Base DSL is the DSL used to start the DreamCoder loop in
the original DreamCoder paper, and DreamCoder is the DreamCoder model referenced
throughout the thesis (but without neural search). Additionally, we plot Full model +
DSL, which uses our method to add primitives to the library, but starts the library with
all of the primitives used by the DreamCoder baseline. Each model uses 8 LLM sampler
per task per iteration and 100k search steps in the DSL, and we use a random subset of 100
tasks per domain.

4.3.1 Synthesis performance

In Figure 4.2, we plot the performance of each model across 5 iterations (shaded regions rep-
resent standard deviation across 3 runs). Note that, in all three domains, the bootstrapped
DSL can solve tasks not originally solved by the LLM. Additionally, initializing the DSL with
the base DreamCoder primitives further improves performance, and shows that the induced
library can improve upon existing libraries. As mentioned in Section 4.1.2, it will also be
a useful comparison in future work to compare against DreamCoder with neurally-guided

37

1 2 3 4 5
Iteration

0

20

40

60

%
 T

as
ks

 s
ol

ve
d

List Functions

1 2 3 4 5
Iteration

5

10

15

20

25

%
 T

as
ks

 s
ol

ve
d

Regular Expressions

1 2 3 4 5
Iteration

20

40

60

%
 T

as
ks

 s
ol

ve
d

CLEVR
Full model
No Compression
No LLM Bootstrapping
No Type Constraints

Figure 4.3: Online synthesis performance for ablations.

search and LILO with LLM search.
In Figure 4.3, we plot the performance of ablations to the model across 5 iterations. The

No Compression ablation removes the primitive replacement and Stitch compression step.
The No LLM Bootstrapping baseline removes bootstrapping the LLM with few-shot
solutions from previous iterations. The No Type Constraints baseline performs search
over the DSL, but removes the type-constraints from the search.

4.3.2 Qualitative library analysis

We also analyze the generality of the primitives in the induced library. In Table 4.1, we
show the empirical mean for the number of solved tasks each primitive appears in, for the
Full model, DreamCoder, and No Compression ablation. Note that reusable, generally
useful primitives should appear in many tasks.

Model List Functions Regular Expressions CLEVR
Full Model 0.285 0.299 0.604
DreamCoder 0.305 0.600 0.253
No Compression 0.071 0.078 0.091

Table 4.1: Mean fraction of solved tasks each primitive appears in.

In Table 4.2, we highlight the most useful primitives (as measured by number of tasks
they appear in) from the induced library in each domain. We put the full induced libraries
(including primitive types and function declarations) for each domain in Appendix B.2.

4.3.3 Bootstrapping

In all of the above experiments, we bootstrapped the LLM with few-shot examples from the
previous solutions. However, is it the search solutions that are bootstrapping the LLM or

38

List Functions Regular Expressions CLEVR
length length ==

- slice if
tail concat get

int → list subtract any
< if filter

Table 4.2: Most useful primitives by domain.

1 2 4 8 16
LLM samples

62.5

65.0

67.5

70.0

72.5

75.0

77.5

%
 T

as
ks

 s
ol

ve
d

List Functions

1 2 4 8 16
LLM samples

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

Regular Expressions

1 2 4 8 16
LLM samples

0

10

20

30

40

50

60

70

CLEVR

Figure 4.4: Search performance as a function of LLM samples.

the solutions that the LLM solved in previous examples?
We find that while bootstrapping the LLM with in-context examples does improve

sample-efficiency, increasing the size of this pool of candidate examples with solutions found
via search does not further increase performance. We try three example selection strate-
gies: random, embedding distance of input-output examples, and string-edit distance of the
in-context example function applied to the same function. We find that performance is com-
parable for all three strategies, and is not improved when adding search solutions to the
candidates. Improving example selection, and trying different ways of bootstrapping the
LLM (such as including the library of functions, for example) are future work.

On the other hand, we do find that increasing the number of samples of the language
model does improve search performance, as shown in Figure 4.4.

4.4 Discussion

We present a model of bootstrapping a DSL from scratch and demonstrate the quality of
the learned library across domains. This method combines the domain-generality of LLMs
with search to improve program induction performance within a domain. There are many
clear extensions to this work, some of which we will outline here.

39

Scaling up experiments

In this thesis, which is concerned with modeling how people can do program induction with
modest computational budgets, we purposely restricted the search budgets of our method
and baselines. However, much of the performance of models like DreamCoder and LILO only
come with very large search budgets (> 100x the budget used in our experiments). Scaling
up our experiments and comparing would perhaps allow for “fairer” comparisons with these
methods, in addition to potentially unlocking improved performance.

We restricted our analyses to a 100-task subset in each domain. Including more tasks
per domain would provide a higher density of relevant functions in the domain, and could
yield further improvements to the induced libraries.

Additionally, we did not consider strong proposal models. One benefit of maintaining
a constrained, formal language as we do in this paper (and as is done in DreamCoder and
LILO) is that you can sample programs from the DSL to train a recognition model to re-
weight the library (conditioned on a task) to make search more efficient. Additionally, LILO
showed that using the LLM to sample programs directly in the DSL improves synthesis
performance and library quality. We leave integrating recognition models and LLMs for
DSL-inference as future work.

Moving beyond functional programs

The lambda-calculus we are searching over only represents functional programs. On the
other hand, programmers typically operate in imperative-style languages. This difference
may limit the utility of the learned libraries as tools for people or language models.

Moving beyond deterministic input-output examples

Throughout the thesis, we only consider program induction in domains with deterministic
input-output examples. However, within the Bayesian framework we present, it is straight-
forward to frame probabilistic tasks and other formats. However, this presents interesting
challenges for both inference and compression, which we leave as future work.

Task-specific libraries

In this work, we ignore incorrect programs sampled from the LLM. However, these programs
may have some utility: capturing some aspect of the correct program even if they are in-
correct. Future work could try using primitives derived from partially-correct programs in
addition to the base DSL to solve solutions in a “task-specific library”.

40

Chapter 5

Conclusion

We highlight a fundamental trade-off in program induction between the generality of a lan-
guage and the tractability of inference in that language. Somehow, people overcome this
tension with demonstrated flexibility and efficiency in problem solving. We propose two
hypotheses to explain people’s performance and present two models inspired by these hy-
potheses. In the first, the model operates over an incredibly general language, and uses a
strong proposal model to make inference tractable. In the second, the model operates over a
tractable and domain-specific language that is tractable even with the simplest of proposal
models.

Looking forward, in addition to the straight-forward extensions mentioned in the con-
clusions of the previous chapters, we want to combine the strengths of these models and
validate them with human experiments. We believe that the emphases of both models –
the proposal model and the underlying language – are important aspects of the recipe that
comprises human inductive ability.

We hope that we can build a model that can, in fact, induce that the sun will rise
tomorrow.

41

42

Appendix A

Program Induction Rational Process
Model Supplement

A.1 Prompts

Here, we list all of the prompt templates used to generate, mutate, and translate natural
language hypotheses. Note that these prompts are incredibly minimal, as the motivation
of the project was not to maximize performance or perfectly tune prompts, but rather to
provide a framework for modeling human-like program induction. Future work here would
likely yield further improvements.

A.1.1 Hypothesis proposal prompt

1 Generate a rule that maps the following inputs to their corresponding

outputs.

2

3 {examples , in the format [a, b, c] -> [x, y, z]}

4

5 Please format your rule as follows:

6

7 Rule: <Your rule>

A.1.2 Hypothesis translation prompt

43

1 You are an expert Python programmer. Write a Python function `fn`

for the following rule. The input is a list of integers. The

output is also a list of integers.

2

3 Rule: {rule}

A.1.3 Hypothesis mutation prompt

1 Your rule: {rule}

2

3 This rule does not work for the following examples.

4

5 {list of examples where the executed rule is incorrect , with the input,

predicted output, and correct output shown}

6

7 Generate a new rule that maps the given inputs to their corresponding

outputs. Respond in the following format EXACTLY:

8

9 Rule: <Your new rule>

A.2 Full model prediction

In Figure A.1, we plot human accuracy and model accuracy for the models Sample+Weight
with 𝑠 = 5, Full model with 𝑠 = 5, and HL with 𝑠 = 5 and 𝑠 = 500𝑘.

In Table A.1, we show the difference between the model prediction and human error (as
measured by mean-squared error) for the same models as above. The best fit is in bold and
the second-best fit is italicized.

Table A.1: MSE per task for each model.

Task Sample+Weight (𝑠 = 5) Full model (𝑠 = 5) HL (𝑠 = 5) HL (𝑠 = 500𝐾)
c001 0.127 0.054 0.558 0.06
c002 0.259 0.252 0.376 0.223
c003 0.154 0.007 0.424 0.019
c004 0.336 0.176 0.216 0.194
c005 0.061 0.045 0.052 0.051
c006 0.065 0.119 0.404 0.056

44

Task Sample+Weight (𝑠 = 5) Full model (𝑠 = 5) HL (𝑠 = 5) HL (𝑠 = 500𝐾)
c007 0.174 0.044 0.125 0.209
c008 0.196 0.069 0.227 0.118
c009 0.206 0.137 0.179 0.12
c010 0.194 0.094 0.111 0.133
c011 0.063 0.075 0.453 0.024
c012 0.186 0.069 0.038 0.079
c013 0.145 0.118 0.328 0.072
c014 0.221 0.119 0.032 0.126
c015 0.01 0.01 0.01 0.009
c016 0.226 0.021 0.409 0.032
c017 0.152 0.083 0.278 0.071
c018 0.245 0.071 0.169 0.071
c019 0.213 0.169 0.121 0.076
c020 0.123 0.063 0.39 0.185
c021 0.046 0.043 0.471 0.007
c022 0.016 0.036 0.402 0.063
c023 0.209 0.119 0.053 0.14
c024 0.189 0.052 0.138 0.176
c025 0.215 0.097 0.206 0.117
c026 0.325 0.09 0.087 0.263
c027 0.122 0.017 0.179 0.086
c028 0.317 0.046 0.274 0.152
c029 0.204 0.099 0.071 0.192
c030 0.07 0.051 0.567 0.205
c031 0.154 0.058 0.1 0.17
c032 0.251 0.042 0.072 0.111
c033 0.277 0.152 0.135 0.078
c034 0.065 0.114 0.691 0.011
c035 0.327 0.212 0.011 0.357
c036 0.175 0.115 0.067 0.045
c037 0.036 0.041 0.631 0.21
c038 0.035 0.041 0.847 0.262
c039 0.176 0.064 0.307 0.198
c040 0.15 0.055 0.146 0.119

45

Task Sample+Weight (𝑠 = 5) Full model (𝑠 = 5) HL (𝑠 = 5) HL (𝑠 = 500𝐾)
c041 0.041 0.044 0.446 0.071
c042 0.008 0.076 0.453 0.063
c043 0.003 0.001 0.605 0.042
c044 0.015 0.014 0.463 0.033
c045 0.003 0.022 0.003 0.002
c046 0.05 0.026 0.381 0.048
c047 0.086 0.06 0.36 0.091
c048 0.015 0.009 0.778 0.011
c049 0.019 0.031 0.067 0.073
c050 0.018 0.029 0.651 0.012
c051 0.064 0.059 0.298 0.077
c052 0.089 0.011 0.357 0.012
c053 0.295 0.052 0.371 0.041
c054 0.237 0.018 0.095 0.212
c055 0.32 0.088 0.302 0.062
c056 0.127 0.044 0.14 0.118
c057 0.238 0.056 0.112 0.097
c058 0.06 0.081 0.063 0.242
c059 0.475 0.247 0.037 0.197
c060 0.197 0.136 0.064 0.1
c061 0.002 0.143 0.847 0.155
c062 0.087 0.065 0.554 0.141
c063 0.081 0.03 0.039 0.087
c064 0.329 0.062 0.536 0.536
c065 0.181 0.113 0.372 0.339
c066 0.106 0.085 0.453 0.453
c067 0.077 0.037 0.491 0.491
c068 0.095 0.067 0.774 0.037
c069 0.132 0.105 0.392 0.258
c070 0.044 0.036 0.668 0.668
c071 0.068 0.06 0.596 0.255
c072 0.007 0.011 0.776 0.099
c073 0.318 0.294 0.174 0.174
c074 0.33 0.098 0.115 0.116

46

Task Sample+Weight (𝑠 = 5) Full model (𝑠 = 5) HL (𝑠 = 5) HL (𝑠 = 500𝐾)
c075 0.077 0.027 0.373 0.028
c076 0.286 0.124 0.019 0.019
c077 0.284 0.232 0.451 0.202
c078 0.134 0.061 0.409 0.319
c079 0.712 0.319 0.817 0.419
c080 0.003 0.014 0.887 0.887
c081 0.131 0.116 0.548 0.109
c082 0.139 0.104 0.229 0.188
c083 0.256 0.122 0.2 0.064
c084 0.081 0.058 0.052 0.031
c085 0.259 0.063 0.205 0.196
c086 0.303 0.046 0.193 0.127
c087 0.149 0.086 0.23 0.056
c088 0.218 0.092 0.155 0.19
c089 0.141 0.184 0.047 0.011
c090 0.028 0.017 0.304 0.056
c091 0.037 0.047 0.29 0.022
c092 0.176 0.176 0.187 0.103
c093 0.039 0.037 0.54 0.011
c094 0.243 0.173 0.145 0.116
c095 0.396 0.058 0.59 0.604
c096 0.061 0.044 0.537 0.416
c097 0.132 0.092 0.598 0.486
c098 0.108 0.111 0.508 0.508
c099 0.189 0.056 0.336 0.336
c100 0.026 0.02 0.744 0.695

A.3 Choice of representative subset of tasks

For development of the modeling work, we constructed a difficult subset of the 100 original
List Function tasks. Due to high API costs of LLMs, for (TODO: cite), we limited analysis
to this subset in order to limit the expenses of the project. Our 20-task subset consists of 5
tasks sampled from the “representative subset” in (TODO: cite appendix of JR thesis)
(c045, c090, c025, c029, c033), the 3 hardest tasks based on average human accuracy (c015,

47

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Task 1

0.0

0.2

0.4

0.6

0.8

1.0
Task 2

0.0

0.2

0.4

0.6

0.8

1.0
Task 3

0.0

0.2

0.4

0.6

0.8

1.0
Task 4

0.0

0.2

0.4

0.6

0.8

1.0
Task 5

0.0

0.2

0.4

0.6

0.8

1.0
Task 6

0.0

0.2

0.4

0.6

0.8

1.0
Task 7

0.0

0.2

0.4

0.6

0.8

1.0
Task 8

0.0

0.2

0.4

0.6

0.8

1.0
Task 9

0.0

0.2

0.4

0.6

0.8

1.0
Task 10

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Task 11

0.0

0.2

0.4

0.6

0.8

1.0
Task 12

0.0

0.2

0.4

0.6

0.8

1.0
Task 13

0.0

0.2

0.4

0.6

0.8

1.0
Task 14

0.0

0.2

0.4

0.6

0.8

1.0
Task 15

0.0

0.2

0.4

0.6

0.8

1.0
Task 16

0.0

0.2

0.4

0.6

0.8

1.0
Task 17

0.0

0.2

0.4

0.6

0.8

1.0
Task 18

0.0

0.2

0.4

0.6

0.8

1.0
Task 19

0.0

0.2

0.4

0.6

0.8

1.0
Task 20

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Task 21

0.0

0.2

0.4

0.6

0.8

1.0
Task 22

0.0

0.2

0.4

0.6

0.8

1.0
Task 23

0.0

0.2

0.4

0.6

0.8

1.0
Task 24

0.0

0.2

0.4

0.6

0.8

1.0
Task 25

0.0

0.2

0.4

0.6

0.8

1.0
Task 26

0.0

0.2

0.4

0.6

0.8

1.0
Task 27

0.0

0.2

0.4

0.6

0.8

1.0
Task 28

0.0

0.2

0.4

0.6

0.8

1.0
Task 29

0.0

0.2

0.4

0.6

0.8

1.0
Task 30

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Task 31

0.0

0.2

0.4

0.6

0.8

1.0
Task 32

0.0

0.2

0.4

0.6

0.8

1.0
Task 33

0.0

0.2

0.4

0.6

0.8

1.0
Task 34

0.0

0.2

0.4

0.6

0.8

1.0
Task 35

0.0

0.2

0.4

0.6

0.8

1.0
Task 36

0.0

0.2

0.4

0.6

0.8

1.0
Task 37

0.0

0.2

0.4

0.6

0.8

1.0
Task 38

0.0

0.2

0.4

0.6

0.8

1.0
Task 39

0.0

0.2

0.4

0.6

0.8

1.0
Task 40

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Task 41

0.0

0.2

0.4

0.6

0.8

1.0
Task 42

0.0

0.2

0.4

0.6

0.8

1.0
Task 43

0.0

0.2

0.4

0.6

0.8

1.0
Task 44

0.0

0.2

0.4

0.6

0.8

1.0
Task 45

0.0

0.2

0.4

0.6

0.8

1.0
Task 46

0.0

0.2

0.4

0.6

0.8

1.0
Task 47

0.0

0.2

0.4

0.6

0.8

1.0
Task 48

0.0

0.2

0.4

0.6

0.8

1.0
Task 49

0.0

0.2

0.4

0.6

0.8

1.0
Task 50

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Task 51

0.0

0.2

0.4

0.6

0.8

1.0
Task 52

0.0

0.2

0.4

0.6

0.8

1.0
Task 53

0.0

0.2

0.4

0.6

0.8

1.0
Task 54

0.0

0.2

0.4

0.6

0.8

1.0
Task 55

0.0

0.2

0.4

0.6

0.8

1.0
Task 56

0.0

0.2

0.4

0.6

0.8

1.0
Task 57

0.0

0.2

0.4

0.6

0.8

1.0
Task 58

0.0

0.2

0.4

0.6

0.8

1.0
Task 59

0.0

0.2

0.4

0.6

0.8

1.0
Task 60

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Task 61

0.0

0.2

0.4

0.6

0.8

1.0
Task 62

0.0

0.2

0.4

0.6

0.8

1.0
Task 63

0.0

0.2

0.4

0.6

0.8

1.0
Task 64

0.0

0.2

0.4

0.6

0.8

1.0
Task 65

0.0

0.2

0.4

0.6

0.8

1.0
Task 66

0.0

0.2

0.4

0.6

0.8

1.0
Task 67

0.0

0.2

0.4

0.6

0.8

1.0
Task 68

0.0

0.2

0.4

0.6

0.8

1.0
Task 69

0.0

0.2

0.4

0.6

0.8

1.0
Task 70

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Task 71

0.0

0.2

0.4

0.6

0.8

1.0
Task 72

0.0

0.2

0.4

0.6

0.8

1.0
Task 73

0.0

0.2

0.4

0.6

0.8

1.0
Task 74

0.0

0.2

0.4

0.6

0.8

1.0
Task 75

0.0

0.2

0.4

0.6

0.8

1.0
Task 76

0.0

0.2

0.4

0.6

0.8

1.0
Task 77

0.0

0.2

0.4

0.6

0.8

1.0
Task 78

0.0

0.2

0.4

0.6

0.8

1.0
Task 79

0.0

0.2

0.4

0.6

0.8

1.0
Task 80

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Task 81

0.0

0.2

0.4

0.6

0.8

1.0
Task 82

0.0

0.2

0.4

0.6

0.8

1.0
Task 83

0.0

0.2

0.4

0.6

0.8

1.0
Task 84

0.0

0.2

0.4

0.6

0.8

1.0
Task 85

0.0

0.2

0.4

0.6

0.8

1.0
Task 86

0.0

0.2

0.4

0.6

0.8

1.0
Task 87

0.0

0.2

0.4

0.6

0.8

1.0
Task 88

0.0

0.2

0.4

0.6

0.8

1.0
Task 89

0.0

0.2

0.4

0.6

0.8

1.0
Task 90

1 2 3 4 5 6 7 8 9 10

Examples shown

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Task 91

1 2 3 4 5 6 7 8 9 10

Examples shown

0.0

0.2

0.4

0.6

0.8

1.0
Task 92

1 2 3 4 5 6 7 8 9 10

Examples shown

0.0

0.2

0.4

0.6

0.8

1.0
Task 93

1 2 3 4 5 6 7 8 9 10

Examples shown

0.0

0.2

0.4

0.6

0.8

1.0
Task 94

1 2 3 4 5 6 7 8 9 10

Examples shown

0.0

0.2

0.4

0.6

0.8

1.0
Task 95

1 2 3 4 5 6 7 8 9 10

Examples shown

0.0

0.2

0.4

0.6

0.8

1.0
Task 96

1 2 3 4 5 6 7 8 9 10

Examples shown

0.0

0.2

0.4

0.6

0.8

1.0
Task 97

1 2 3 4 5 6 7 8 9 10

Examples shown

0.0

0.2

0.4

0.6

0.8

1.0
Task 98

1 2 3 4 5 6 7 8 9 10

Examples shown

0.0

0.2

0.4

0.6

0.8

1.0
Task 99

1 2 3 4 5 6 7 8 9 10

Examples shown

0.0

0.2

0.4

0.6

0.8

1.0
Task 100

Sample+Weight
Full model
HL
HL 500k
human

Figure A.1: Model accuracy and human accuracy for all 100 tasks, by example.

48

c076, c035), the 3 tasks with the highest variance in mean human accuracy between examples
(c085, c027, c004), the 3 tasks where HL 500k was furthest from mean human accuracy (c080,
c100, c070), the 3 tasks where GPT-4 with 5 samples was the furthest from mean human
accuracy (c002, c079, c061), and the 3 tasks where GPT-3.5 with 10 samples was the furthest
from mean human accuracy (c002, c079, c060).

49

50

Appendix B

Bootstrapping a DSL Supplement

B.1 Prompts

For these prompts, there was very little “prompt engineering”, and we suspect further opti-
mization (whether automatic or by hand) could yield further performance improvements.

B.1.1 Solving individual tasks with a LLM

1 Write a Python function `fn` that implements the underlying rule

mapping each input to its output.

2

3 Here are examples of the transformation:

4 {input-output examples}

5

6 Here are examples of other transformations and the code for the

underlying rule:

7 {few shot examples}

8

9 Now, determine the underlying rule for the earlier examples and

write a Python function `fn` that implements this rule.

10

11 Do not import any libraries.

B.1.2 Translating Python to DSL primitives

1 # Domain description

51

2

3 {domain_description}

4

5 # Problem description

6

7 Here are examples of the transformation:

8 {examples}

9

10 Here is the python code that solves the task.

11 ```

12 {python_code}

13 ```

14

15 # DSL description

16

17 These are the types in your DSL:

18 {existing_types}

19

20 # Task description

21 Define all the new primitives (functions and/or constants) that you

will need in order to translate the task specified above. Each

primitive declaration should have the following format:

22 `Primitive(<primitive name>, <primitive type>, <curried

primitive_function >)`. Then, write a program in De-Brujin indexed

lambda calculus using these primitives.

23

24 # Final instructions

25 Remember, *anything* you use in the solution will have to be defined,

even basic control flow functions (like "if") and constants (like "s

").

26

27 Do not put quotes around primitives in the final program. Follow the

exact format of previous examples. The program should be a purely

function De-Brujin indexed lambda calculus (do not use `let`).

52

B.2 Induced Libraries

Here, we list the entirety of the libraries induced by the model. For each domain, we list
the primitive procedures, then the primitive constants, then the primitives learned via com-
pression. We show the primitive name (e.g. concat), then the primitive declaration, which
shows the name (e.g. "concat"), type (e.g. arrow(tlist(t0), tlist(t0), tlist(t0))),
and definition (e.g. lambda x: lambda y: lambda x + y).

Note that, in the type definitions, t0 and t1 represent type variables and arrow represents
a function. So, the type arrow(tlist(t0), tlist(t0), tlist(t0)) represents a function
that takes in two arguments, both generic list-types, and returns a list of the same type. The
function definitions are curried, so the function add(x, y) is represented as add(x)(y).

For some of the compressed primitives (starting with #), we also include a note for
what it evaluates to to improve readability. Note that this can be done (as in LILO [32])
automatically.

B.2.1 List Functions

1 Primitive procedures:

2

3 -

4 Primitive("-", arrow(tint, tint, tint), lambda x: lambda y: x - y)

5

6 <

7 Primitive("<", arrow(tint, tint, tbool), lambda x: lambda y: x < y)

8

9 >=

10 Primitive(">=", arrow(tint, tint, tbool), lambda x: lambda y: x >= y)

11

12 concat

13 Primitive("concat", arrow(tlist(t0), tlist(t0), tlist(t0)), lambda x:

lambda y: x + y)

14

15 filter

16 Primitive("filter", arrow(arrow(tint, tbool), tlist(tint), tlist(tint))

, lambda f: lambda lst: [x for x in lst if f(x)])

17

18 get_item

53

19 Primitive("get_item", arrow(tlist(tint), tint, tint), lambda l: lambda

i: l[i])

20

21 if

22 Primitive("if", arrow(tbool, t0, t0, t0), lambda c: lambda x: lambda y:

x if c else y)

23

24 insert

25 Primitive("insert", arrow(tlist(tint), tint, tint, tlist(tint)), lambda

lst: lambda idx: lambda val: lst[:idx] + [val] + lst[idx:])

26

27 int->list

28 Primitive("int->list", arrow(tint, tlist(tint)), lambda x: [x])

29

30 is_even_index

31 Primitive("is_even_index", arrow(tint, tbool), lambda i: i % 2 == 0)

32

33 length

34 Primitive("length", arrow(tlist(tint), tint), lambda l: len(l))

35

36 list

37 Primitive("list", arrow(t0, arrow(t0, arrow(t0, tlist(t0)))), lambda x:

lambda y: lambda z: [x, y, z])

38

39 map_acc

40 Primitive("map_acc", arrow(tint, arrow(tint, tint, tint), tlist(tint),

tlist(tint)), lambda acc: lambda f: lambda lst: [f(acc + i)(x) for i

, x in enumerate(lst)])

41

42 map

43 Primitive("map", arrow(arrow(t0, tlist(t0)), tlist(t0), tlist(t0)),

lambda f: lambda lst: [item for x in lst for item in f(x)])

44

45 max

46 Primitive("max", arrow(tlist(tint), tint), lambda lst: max(lst))

47

48 replicate

49 Primitive("replicate", arrow(tint, tint, tlist(tint)), lambda n: lambda

54

x: [x] * n)

50

51 reverse

52 Primitive("reverse", arrow(tlist(t0), tlist(t0)), lambda lst: lst[::

-1])

53

54 set_item

55 Primitive("set_item", arrow(tlist(tint), tint, tint, tlist(tint)),

lambda l: lambda i: lambda v: l[:i] + [v] + l[i+1:])

56

57 sum

58 Primitive("sum", arrow(tlist(tint), tint), lambda lst: sum(lst))

59

60 swap

61 Primitive("swap", arrow(tlist(tint), tlist(tint)), lambda lst: lst[:1]

+ [lst[2], lst[1]] + lst[3:] if len(lst) >= 3 else lst)

62

63 tail

64 Primitive("tail", arrow(tlist(tint), tlist(tint)), lambda l: l[1:])

65

66 Primitive constants:

67

68 37

69 Primitive("37", tint, 37)

70

71 77

72 Primitive("77", tint, 77)

73

74 const_list_1943258049

75 Primitive("const_list_1943258049", tlist(tint), [1, 9, 4, 3, 2, 5, 8,

0, 4, 9])

76

77 const_list_81_99_41_23_22_75_68_30_24_69

78 Primitive("const_list_81_99_41_23_22_75_68_30_24_69", tlist(tint), [81,

99, 41, 23, 22, 75, 68, 30, 24, 69])

79

80 fixed_list

81 Primitive("fixed_list", tlist(tint), [9, 6, 3, 8, 5])

55

82

83 list11_21_43_19

84 Primitive("list11_21_43_19", tlist(tint), [11, 21, 43, 19])

85

86 list7_89_0_57

87 Primitive("list7_89_0_57", tlist(tint), [7, 89, 0, 57])

88

89 list_7291

90 Primitive("list_7291", tlist(tint), [7, 2, 9, 1])

91

92 list_9340

93 Primitive("list_9340", tlist(tint), [9, 3, 4, 0])

94

95 rule

96 Primitive("rule", tlist(tint), [7, 3, 8, 4, 3])

97

98 rule_list

99 Primitive("rule_list", tlist(tint), [92, 63, 34, 18, 55])

100

101 Compressed primitives

102

103 #(- #(length (tail list_7291)) (length (int->list #(length (tail

list_7291)))))

104 Note: Evaluates to the integer 3.

105

106 #(lambda (filter (lambda (< $0 #(- #(length (tail list_7291)) (length (

int->list #(length (tail list_7291))))))) $0))

107 Note: Gets all elements in the input with value less than 3.

108

109 #(lambda (filter (lambda (< (- $0 #(length (tail list_7291))) #(length

(tail list_7291)))) $0))

110 Note: Gets all elements in the input with value less than 5.

111

112 #(lambda (get_item $0 (- 77 77)))

113 Note: Gets the first element of the input.

114

115 #(lambda (int->list (#(lambda (get_item $0 (- 77 77))) $0)))

116 Note: Evaluates to the list containing the first element of the input.

56

117

118 #(lambda (int->list (get_item (filter (lambda (is_even_index $0)) $0)

#(length (tail list_7291)))))

119 Note: Evaluates to the list containing the tenth element of the input.

120

121 #(lambda (lambda (filter (lambda (< $0 $1)) (tail $1))))

122 Note: Gets all the elements in the second list that are bigger than the

given integer, skipping the first element.

123

124 #(lambda (lambda (lambda (concat (int->list $0) (concat (int->list $1)

(concat (int->list $2) (replicate (- 77 77) #(length (tail list_7291

)))))))))

125 Note: Makes a list out of three integers, padded with four zeros.

126

127 #(length (int->list 77))

128 Note: Evaluates to the integer 1.

129

130 #(length (tail list_7291))

131 Note: Evaluates to the integer 4.

B.2.2 Regular Expressions

1 Primitive procedures:

2

3 concat

4 Primitive("concat", arrow(tstr, tstr, tstr), lambda x: lambda y: x + y)

5

6 if

7 Primitive("if", arrow(tbool, t0, t0, t0), lambda c: lambda x: lambda y:

x if c else y)

8

9 in

10 Primitive("in", arrow(tstr, tstr, tbool), lambda x: lambda y: x in y)

11

12 length

13 Primitive("length", arrow(tstr, tint), lambda s: len(s))

14

15 map

57

16 Primitive("map", arrow(tstr, arrow(tstr, tstr), tstr), lambda s: lambda

f: ''.join(f(c) for c in s))

17

18 not_in

19 Primitive("not_in", arrow(tstr, tstr, tbool), lambda x: lambda y: x not

in y)

20

21 repeat

22 Primitive("repeat", arrow(tstr, tint, tstr), lambda s: lambda n: s * n)

23

24 replace

25 Primitive("replace", arrow(tstr, tstr, tstr, tstr), lambda s: lambda

old: lambda new: s.replace(old, new))

26

27 slice

28 Primitive("slice", arrow(tstr, tint, tint, tstr), lambda s: lambda

start: lambda end: s[start:end])

29

30 subtract

31 Primitive("subtract", arrow(tint, tint, tint), lambda x: lambda y: x -

y)

32

33 Primitive constants:

34

35 char_b

36 Primitive("char_b", tchar, 'b')

37

38 cv

39 Primitive("cv", tstr, "cv")

40

41 d

42 Primitive("d", tstr, "d")

43

44 ee

45 Primitive("ee", tstr, "ee")

46

47 f

48 Primitive("f", tstr, "f")

58

49

50 g

51 Primitive("g", tstr, "g")

52

53 j

54 Primitive("j", tstr, "j")

55

56 k

57 Primitive("k", tstr, "k")

58

59 lq

60 Primitive("lq", tstr, "lq")

61

62 na

63 Primitive("na", tstr, "na")

64

65 ou

66 Primitive("ou", tstr, "ou")

67

68 p

69 Primitive("p", tstr, "p")

70

71 ql

72 Primitive("ql", tstr, "ql")

73

74 r

75 Primitive("r", tstr, "r")

76

77 tm

78 Primitive("tm", tstr, "tm")

79

80 vowels

81 Primitive("vowels", tstr, "aeiou")

82

83 wi

84 Primitive("wi", tstr, "wi")

85

86 x

59

87 Primitive("x", tstr, "x")

88

89 Compress primitives:

90

91 #(lambda (#(lambda (lambda (lambda (slice $0 (length $1) (length $2))))

) cv d $0))

92 Note: Gets the second element of the string.

93

94 #(lambda (lambda (#(lambda (lambda (lambda (concat (slice $0 #(subtract

(length d) (length d)) (subtract #(subtract (length d) (length d))

(length $1))) $2)))) $0 d $1)))

95 Note: Takes 2 arguments x and y. Gets the first (len(x)-1) elements of

x, and concatenates y to it.

96

97 #(lambda (lambda (#(lambda (lambda (lambda (concat (slice $0 0 (

subtract 0 (length $1))) $2)))) $0 d $1)))

98

99 #(lambda (lambda (concat $0 (#(lambda (slice $0 (length d) (length $0))

) $1))))

100 Note: Concats the first letter of a string and a different string.

101

102 #(lambda (lambda (if (in (slice $1 (length d) (length cv)) vowels) (

concat (slice $0 #(subtract (length d) (length d)) (length d)) $1)

$1)))

103 Note: Takes 2 arguments x and y. If the second element of x is a vowel,

concatenate the first letter of x to y. Otherwise , return y.

104

105 #(lambda (lambda (lambda (concat (slice $0 #(subtract (length d) (

length d)) (subtract #(subtract (length d) (length d)) (length $1)))

$2))))

106 Note: Takes 3 arguments x, y, and z. Gets the first (len(x)-len(y))

elements of x, and concatenates z to it.

107

108 #(lambda (lambda (lambda (if (in $0 vowels) (concat $1 $2) $2))))

109 Note: Concatenates string 1 with string2 if the given character is a

vowel, otherwise returns string2.

110

111 #(lambda (lambda (lambda (slice $0 (length $1) (length $2)))))

60

112 Note: Gets the slice of the string between the length of list 1 and the

length of list 2.

113

114 #(lambda (slice $0 #(subtract (length d) (length d)) (length d)))

115 Note: Identity function.

116

117 #(lambda (slice $0 (length d) (length $0)))

118 Note: Gets the tail of a string (e.g. string[1:]).

119

120 #(subtract (length d) (length d))

121 Note: Evaluates to the integer 0.

B.2.3 CLEVR

1 Primitive procedures:

2

3 ==

4 Primitive("==", arrow(t0, t0, tbool), lambda x: lambda y: x == y)

5

6 >

7 Primitive(">", arrow(tint, tint, tbool), lambda x: lambda y: x > y)

8

9 any

10 Primitive("any", arrow(tlist(t0), arrow(t0, tbool), tbool), lambda lst:

lambda pred: any(pred(x) for x in lst))

11

12 filter

13 Primitive("filter", arrow(tlist(t0), arrow(t0, tbool), tlist(t0)),

lambda lst: lambda cond: [x for x in lst if cond(x)])

14

15 get

16 Primitive("get", arrow(tclevrobject , tstring, t0), lambda obj: lambda

key: obj[key])

17

18 get_color

19 Primitive("get_color", arrow(tclevrobject , tclevrcolor), lambda obj:

obj['color'])

20

61

21 get_shape

22 Primitive("get_shape", arrow(tclevrobject , tclevrshape), lambda obj:

obj['shape'])

23

24 if

25 Primitive("if", arrow(tbool, t0, t0, t0), lambda c: lambda x: lambda y:

x if c else y)

26

27 length

28 Primitive("length", arrow(tlist(t0), tint), lambda x: len(x))

29

30 map

31 Primitive("map", arrow(arrow(tclevrobject , t0), tlist(tclevrobject),

tlist(t0)), lambda f: lambda lst: [f(x) for x in lst])

32

33 Primitive constants:

34

35 brown

36 Primitive("brown", tclevrcolor , "brown")

37

38 cube

39 Primitive("cube", tclevrshape , "cube")

40

41 gray_green_brown_brown_green_cyan_gray_red_gray_gray

42 Primitive("gray_green_brown_brown_green_cyan_gray_red_gray_gray", tlist

(tclevrcolor), ['gray', 'green', 'brown', 'brown', 'green', 'cyan',

'gray', 'red', 'gray', 'gray'])

43

44 gray_red_blue_brown

45 Primitive("gray_red_blue_brown", tlist(tclevrcolor), ['gray', 'red', '

blue', 'brown'])

46

47 green

48 Primitive("green", tclevrcolor , "green")

49

50 large

51 Primitive("large", tclevrsize , "large")

52

62

53 material

54 Primitive("material", tstring, "material")

55

56 metal

57 Primitive("metal", tclevrmaterial , "metal")

58

59 red

60 Primitive("red", tclevrcolor , "red")

61

62 rubber

63 Primitive("rubber", tclevrmaterial , "rubber")

64

65 size

66 Primitive("size", tstring, "size")

67

68 small

69 Primitive("small", tclevrsize , "small")

70

71 sphere

72 Primitive("sphere", tclevrshape , "sphere")

73

74 Compressed primitives:

75

76 #(lambda (== (filter

gray_green_brown_brown_green_cyan_gray_red_gray_gray (lambda (#(

lambda (lambda (any (filter $0 (lambda (== $2 (get_color $0)))) (

lambda (#(lambda (lambda (lambda (if (== $1 $2) $0 (== $1 $2)))))

small small (#(lambda (lambda (lambda (if (== $1 $2) $0 (== $1 $2)))

)) sphere (get_shape $0) (== metal metal))))))) $0 $1))) (filter

gray_red_blue_brown (lambda (> #(length (filter gray_red_blue_brown

(lambda (== $0 red)))) #(length (filter gray_red_blue_brown (lambda

(== $0 red)))))))))

77

78 #(lambda (if (any $0 (lambda (#(lambda (lambda (lambda (if (== $1 $2)

$0 (== $1 $2))))) (get_color $0) (get_color $0) (#(lambda (lambda (

lambda (if (== $1 $2) $0 (== $1 $2))))) large (get $0 size) (#(

lambda (lambda (lambda (if (== $1 $2) $0 (== $1 $2))))) cube (

get_shape $0) (== (get $0 material) metal)))))) large small))

63

79

80 #(lambda (lambda (any (filter $0 (lambda (== $2 (get_color $0)))) (

lambda (#(lambda (lambda (lambda (if (== $1 $2) $0 (== $1 $2)))))

small small (#(lambda (lambda (lambda (if (== $1 $2) $0 (== $1 $2)))

)) sphere (get_shape $0) (== metal metal)))))))

81

82 #(lambda (lambda (lambda (#(lambda (lambda (lambda (if (== $1 $2) $0

(== $1 $2))))) small (get $1 size) (#(lambda (lambda (lambda (if (==

$1 $2) $0 (== $1 $2))))) $0 (get_shape $1) (== $2 metal))))))

83

84 #(lambda (lambda (lambda (if (== $1 $2) $0 (== $1 $2)))))

85 Note: Takes arguments x, y, and z. If x == y, returns z. Otherwise

returns False.

86

87 #(lambda (lambda (lambda (if (any $0 (lambda (#(lambda (lambda (lambda

(#(lambda (lambda (lambda (if (== $1 $2) $0 (== $1 $2))))) small (

get $1 size) (#(lambda (lambda (lambda (if (== $1 $2) $0 (== $1 $2))

))) $0 (get_shape $1) (== $2 metal)))))) (get $0 material) $0 (

get_shape $0)))) $1 $2))))

88

89 #(lambda (lambda (lambda (if (any $0 (lambda (#(lambda (lambda (lambda

(#(lambda (lambda (lambda (if (== $1 $2) $0 (== $1 $2))))) small (

get $1 size) (#(lambda (lambda (lambda (if (== $1 $2) $0 (== $1 $2))

))) $0 (get_shape $1) (== $2 metal)))))) metal $0 cube))) $1 $2))))

90

91 #(lambda (lambda (lambda (length (filter $0 (lambda (== (get $0 $2) $3)

))))))

92

93 #(lambda (lambda (length (filter $0 (lambda (#(lambda (lambda (lambda (

if (== $1 $2) $0 (== $1 $2))))) (get_color $0) red (#(lambda (lambda

(lambda (if (== $1 $2) $0 (== $1 $2))))) $2 (get_shape $0) (== (get

$0 material) metal))))))))

94

95 #(length (filter gray_red_blue_brown (lambda (== $0 red))))

64

References

[1] W. James, The Principles of Psychology (Dover Books v. 1-2). Dover Publications,
1950, isbn: 9780486203829. url: https://books.google.com/books?id=5q1kDQAAQBAJ.

[2] J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. Thagard, Induction: Processes Of
Inference. The MIT Press, Mar. 1989, isbn: 9780262275576. doi: 10.7551/mitpress/
3729.001.0001. url: https://doi.org/10.7551/mitpress/3729.001.0001.

[3] A. F. Chalmers, What is This Thing Called Science?: An Assessment of the Nature
and Status of Science and its Methods. Indianapolis: Univ. Of Queensland Press, 1976.

[4] D. Hume, “An enquiry concerning human understanding.,” in (Essays and treatises on
several subjects, Vol 2: Containing An enquiry concerning human understanding, A dis-
sertation on the passions, An enquiry concerning the principles of morals, and The nat-
ural history of religion.), Essays and treatises on several subjects, Vol 2: Containing An
enquiry concerning human understanding, A dissertation on the passions, An enquiry
concerning the principles of morals, and The natural history of religion. Unknown Pub-
lisher, 1779, pp. 3–212. doi: 10.1037/11713-001. url: https://doi.org/10.1037/11713-
001.

[5] T. L. Griffiths and J. B. Tenenbaum, “Optimal predictions in everyday cognition,” en,
Psychol Sci, vol. 17, no. 9, pp. 767–773, Sep. 2006.

[6] F. Lieder and T. L. Griffiths, “Resource-rational analysis: Understanding human cog-
nition as the optimal use of limited computational resources,” en, Behav Brain Sci,
vol. 43, e1, Feb. 2019.

[7] C. G. Correa, M. K. Ho, F. Callaway, and T. L. Griffiths, Resource-rational task de-
composition to minimize planning costs, 2020. arXiv: 2007.13862 [cs.AI].

[8] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun, J. Xu, L. Li, and Z. Sui,
A survey on in-context learning, 2023. arXiv: 2301.00234 [cs.CL].

65

https://books.google.com/books?id=5q1kDQAAQBAJ
https://doi.org/10.7551/mitpress/3729.001.0001
https://doi.org/10.7551/mitpress/3729.001.0001
https://doi.org/10.7551/mitpress/3729.001.0001
https://doi.org/10.1037/11713-001
https://doi.org/10.1037/11713-001
https://doi.org/10.1037/11713-001
https://arxiv.org/abs/2007.13862
https://arxiv.org/abs/2301.00234

[9] D. Marr, Vision: A Computational Investigation into the Human Representation and
Processing of Visual Information. The MIT Press, Jul. 2010, isbn: 9780262514620.
doi: 10 .7551/mitpress/9780262514620 .001 .0001. url: https ://doi .org/10 .7551/
mitpress/9780262514620.001.0001.

[10] L. Wong, G. Grand, A. K. Lew, N. D. Goodman, V. K. Mansinghka, J. Andreas,
and J. B. Tenenbaum, From word models to world models: Translating from natural
language to the probabilistic language of thought, 2023. arXiv: 2306.12672 [cs.CL].

[11] K. Ellis, C. Wong, M. Nye, M. Sable-Meyer, L. Cary, L. Morales, L. Hewitt, A.
Solar-Lezama, and J. B. Tenenbaum, Dreamcoder: Growing generalizable, interpretable
knowledge with wake-sleep bayesian program learning, 2020. arXiv: 2006.08381 [cs.AI].

[12] J. S. Rule, S. T. Piantadosi, and J. B. Tenenbaum, “Efficient learning of symbolic
concepts via metaprogram search,”

[13] I. Dasgupta, E. Schulz, and S. J. Gershman, “Where do hypotheses come from?”
Cognitive Psychology, vol. 96, pp. 1–25, 2017, issn: 0010-0285. doi: https : / / doi .
org/10.1016/j.cogpsych.2017.05.001. url: https://www.sciencedirect.com/science/
article/pii/S0010028516302766.

[14] J.-P. Fränken, N. C. Theodoropoulos, and N. R. Bramley, “Algorithms of adaptation
in inductive inference,” Cognitive Psychology, vol. 137, p. 101 506, 2022, issn: 0010-
0285. doi: https://doi.org/10.1016/j.cogpsych.2022.101506. url: https://www.
sciencedirect.com/science/article/pii/S0010028522000421.

[15] K. Ellis, Human-like few-shot learning via bayesian reasoning over natural language,
2023. arXiv: 2306.02797 [cs.CL].

[16] W. T. Piriyakulkij and K. Ellis, Doing experiments and revising rules with natural
language and probabilistic reasoning, 2024. arXiv: 2402.06025 [cs.AI].

[17] R. M. Haefner, P. Berkes, and J. Fiser, “Perceptual decision-making as probabilistic
inference by neural sampling,” Neuron, vol. 90, no. 3, pp. 649–660, May 2016, issn:
0896-6273. doi: 10.1016/j.neuron.2016.03.020. url: https://doi.org/10.1016/j.neuron.
2016.03.020.

[18] J. Fiser, P. Berkes, G. Orbán, and M. Lengyel, “Statistically optimal perception and
learning: From behavior to neural representations,” Trends in Cognitive Sciences,
vol. 14, no. 3, pp. 119–130, Mar. 2010, issn: 1364-6613. doi: 10.1016/j.tics.2010.01.003.
url: https://doi.org/10.1016/j.tics.2010.01.003.

[19] J. Austin, A. Odena, M. Nye, et al., Program synthesis with large language models,
2021. arXiv: 2108.07732 [cs.PL].

66

https://doi.org/10.7551/mitpress/9780262514620.001.0001
https://doi.org/10.7551/mitpress/9780262514620.001.0001
https://doi.org/10.7551/mitpress/9780262514620.001.0001
https://arxiv.org/abs/2306.12672
https://arxiv.org/abs/2006.08381
https://doi.org/https://doi.org/10.1016/j.cogpsych.2017.05.001
https://doi.org/https://doi.org/10.1016/j.cogpsych.2017.05.001
https://www.sciencedirect.com/science/article/pii/S0010028516302766
https://www.sciencedirect.com/science/article/pii/S0010028516302766
https://doi.org/https://doi.org/10.1016/j.cogpsych.2022.101506
https://www.sciencedirect.com/science/article/pii/S0010028522000421
https://www.sciencedirect.com/science/article/pii/S0010028522000421
https://arxiv.org/abs/2306.02797
https://arxiv.org/abs/2402.06025
https://doi.org/10.1016/j.neuron.2016.03.020
https://doi.org/10.1016/j.neuron.2016.03.020
https://doi.org/10.1016/j.neuron.2016.03.020
https://doi.org/10.1016/j.tics.2010.01.003
https://doi.org/10.1016/j.tics.2010.01.003
https://arxiv.org/abs/2108.07732

[20] Y. Li, D. Choi, J. Chung, et al., “Competition-level code generation with alphacode,”
Science, vol. 378, no. 6624, pp. 1092–1097, Dec. 2022, issn: 1095-9203. doi: 10.1126/
science.abq1158. url: http://dx.doi.org/10.1126/science.abq1158.

[21] OpenAI, J. Achiam, S. Adler, et al., Gpt-4 technical report, 2024. arXiv: 2303.08774
[cs.CL].

[22] Y. Li, J. Parsert, and E. Polgreen, Guiding enumerative program synthesis with large
language models, 2024. arXiv: 2403.03997 [cs.AI].

[23] N. Butt, B. Manczak, A. Wiggers, C. Rainone, D. Zhang, M. Defferrard, and T. Cohen,
Codeit: Self-improving language models with prioritized hindsight replay, 2024. arXiv:
2402.04858 [cs.AI].

[24] D. Brandfonbrener, S. Raja, T. Prasad, C. Loughridge, J. Yang, S. Henniger, W. E.
Byrd, R. Zinkov, and N. Amin, Verified multi-step synthesis using large language models
and monte carlo tree search, 2024. arXiv: 2402.08147 [cs.SE].

[25] T. Sechopoulos, “Program synthesis with symbolic properties,” M.S. thesis, Massachusetts
Institute of Technology, 2022.

[26] A. Odena and C. Sutton, Learning to represent programs with property signatures,
2020. arXiv: 2002.09030 [cs.PL].

[27] J. K. Feser, S. Chaudhuri, and I. Dillig, “Synthesizing data structure transformations
from input-output examples,” SIGPLAN Not., vol. 50, no. 6, pp. 229–239, Jun. 2015,
issn: 0362-1340. doi: 10 . 1145/2813885 .2737977. url: https : //doi . org/10 .1145/
2813885.2737977.

[28] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and A. Anandku-
mar, Voyager: An open-ended embodied agent with large language models, 2023. arXiv:
2305.16291 [cs.AI].

[29] Z. Wang, D. Fried, and G. Neubig, Trove: Inducing verifiable and efficient toolboxes
for solving programmatic tasks, 2024. arXiv: 2401.12869 [cs.AI].

[30] E. Stengel-Eskin, A. Prasad, and M. Bansal, Regal: Refactoring programs to discover
generalizable abstractions, 2024. arXiv: 2401.16467 [cs.SE].

[31] C. Wong, K. Ellis, J. B. Tenenbaum, and J. Andreas, Leveraging language to learn
program abstractions and search heuristics, 2022. arXiv: 2106.11053 [cs.LG].

[32] G. Grand, L. Wong, M. Bowers, T. X. Olausson, M. Liu, J. B. Tenenbaum, and J.
Andreas, Lilo: Learning interpretable libraries by compressing and documenting code,
2024. arXiv: 2310.19791 [cs.CL].

67

https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2403.03997
https://arxiv.org/abs/2402.04858
https://arxiv.org/abs/2402.08147
https://arxiv.org/abs/2002.09030
https://doi.org/10.1145/2813885.2737977
https://doi.org/10.1145/2813885.2737977
https://doi.org/10.1145/2813885.2737977
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2401.12869
https://arxiv.org/abs/2401.16467
https://arxiv.org/abs/2106.11053
https://arxiv.org/abs/2310.19791

[33] M. Bowers, T. X. Olausson, L. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, and A.
Solar-Lezama, “Top-down synthesis for library learning,” Proceedings of the ACM on
Programming Languages, vol. 7, no. POPL, pp. 1182–1213, Jan. 2023, issn: 2475-1421.
doi: 10.1145/3571234. url: http://dx.doi.org/10.1145/3571234.

[34] N. R. Bramley and F. Xu, “Active inductive inference in children and adults: A con-
structivist perspective,” Cognition, vol. 238, p. 105 471, 2023, issn: 0010-0277. doi:
https://doi.org/10.1016/j.cognition.2023.105471. url: https://www.sciencedirect.
com/science/article/pii/S0010027723001051.

[35] J.-Q. Zhu, J. Sundh, J. Spicer, N. Chater, and A. N. Sanborn, “The autocorrelated
bayesian sampler: A rational process for probability judgments, estimates, confidence
intervals, choices, confidence judgments, and response times.,” Psychological Review,
vol. 131, no. 2, pp. 456–493, 2024. doi: 10.1037/rev0000427. url: https://doi.org/10.
1037/rev0000427.

[36] J. B. Tenenbaum, “A bayesian framework for concept learning,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1999.

[37] T. Webb, K. J. Holyoak, and H. Lu, Emergent analogical reasoning in large language
models, 2023. arXiv: 2212.09196 [cs.AI].

[38] T. Webb, K. J. Holyoak, and H. Lu, Evidence from counterfactual tasks supports emer-
gent analogical reasoning in large language models, 2024. arXiv: 2404.13070 [cs.CL].

[39] G. Gendron, Q. Bao, M. Witbrock, and G. Dobbie, Large language models are not
strong abstract reasoners, 2024. arXiv: 2305.19555 [cs.CL].

[40] M. Lewis and M. Mitchell, Using counterfactual tasks to evaluate the generality of
analogical reasoning in large language models, 2024. arXiv: 2402.08955 [cs.AI].

[41] A. Moskvichev, V. V. Odouard, and M. Mitchell, The conceptarc benchmark: Evalu-
ating understanding and generalization in the arc domain, 2023. arXiv: 2305.07141
[cs.LG].

[42] L. Qiu, L. Jiang, X. Lu, et al., Phenomenal yet puzzling: Testing inductive reasoning
capabilities of language models with hypothesis refinement, 2024. arXiv: 2310.08559
[cs.CL].

[43] R. Wang, E. Zelikman, G. Poesia, Y. Pu, N. Haber, and N. D. Goodman, Hypothesis
search: Inductive reasoning with language models, 2023. arXiv: 2309.05660 [cs.LG].

[44] T. X. Olausson, J. P. Inala, C. Wang, J. Gao, and A. Solar-Lezama, Is self-repair a
silver bullet for code generation? 2024. arXiv: 2306.09896 [cs.CL].

68

https://doi.org/10.1145/3571234
http://dx.doi.org/10.1145/3571234
https://doi.org/https://doi.org/10.1016/j.cognition.2023.105471
https://www.sciencedirect.com/science/article/pii/S0010027723001051
https://www.sciencedirect.com/science/article/pii/S0010027723001051
https://doi.org/10.1037/rev0000427
https://doi.org/10.1037/rev0000427
https://doi.org/10.1037/rev0000427
https://arxiv.org/abs/2212.09196
https://arxiv.org/abs/2404.13070
https://arxiv.org/abs/2305.19555
https://arxiv.org/abs/2402.08955
https://arxiv.org/abs/2305.07141
https://arxiv.org/abs/2305.07141
https://arxiv.org/abs/2310.08559
https://arxiv.org/abs/2310.08559
https://arxiv.org/abs/2309.05660
https://arxiv.org/abs/2306.09896

[45] A. N. Sanborn, T. L. Griffiths, and D. J. Navarro, “Rational approximations to rational
models: Alternative algorithms for category learning,” en, Psychol. Rev., vol. 117, no. 4,
pp. 1144–1167, Oct. 2010.

[46] Y. Yang and S. T. Piantadosi, “One model for the learning of language,” Proceedings
of the National Academy of Sciences, vol. 119, no. 5, e2021865119, 2022. doi: 10.1073/
pnas.2021865119. eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.2021865119.
url: https://www.pnas.org/doi/abs/10.1073/pnas.2021865119.

[47] A. Cropper and S. H. Muggleton, Metagol system, https://github.com/metagol/metagol,
2016. url: https://github.com/metagol/metagol.

[48] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and
D. Zhou, Chain-of-thought prompting elicits reasoning in large language models, 2023.
arXiv: 2201.11903 [cs.CL].

[49] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan, Tree
of thoughts: Deliberate problem solving with large language models, 2023. arXiv: 2305.
10601 [cs.CL].

[50] Q. Zhang, C. Singh, L. Liu, X. Liu, B. Yu, J. Gao, and T. Zhao, Tell your model where
to attend: Post-hoc attention steering for llms, 2023. arXiv: 2311.02262 [cs.CL].

[51] H. Touvron, L. Martin, K. Stone, et al., Llama 2: Open foundation and fine-tuned chat
models, 2023. arXiv: 2307.09288 [cs.CL].

[52] S. J. Han, K. Ransom, A. Perfors, and C. Kemp, Inductive reasoning in humans and
large language models, 2023. arXiv: 2306.06548 [cs.CL].

[53] J. Andreas, D. Klein, and S. Levine, “Learning with latent language,” in Proceedings
of the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long Papers), M.
Walker, H. Ji, and A. Stent, Eds., New Orleans, Louisiana: Association for Compu-
tational Linguistics, Jun. 2018, pp. 2166–2179. doi: 10 .18653/v1/N18-1197. url:
https://aclanthology.org/N18-1197.

[54] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick, and R. Gir-
shick, “Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 1988–1997. doi: 10.1109/CVPR.2017.215.

69

https://doi.org/10.1073/pnas.2021865119
https://doi.org/10.1073/pnas.2021865119
https://www.pnas.org/doi/pdf/10.1073/pnas.2021865119
https://www.pnas.org/doi/abs/10.1073/pnas.2021865119
https://github.com/metagol/metagol
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2311.02262
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2306.06548
https://doi.org/10.18653/v1/N18-1197
https://aclanthology.org/N18-1197
https://doi.org/10.1109/CVPR.2017.215

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 A Bayesian answer to improbable inductions
	1.2 Program induction in artificial intelligence
	1.3 The trade-off between expressivity and tractability
	1.4 Two approaches to domain-general induction

	2 Background
	2.1 Models of human program induction
	2.2 Program synthesis with strong proposal models
	2.3 Library learning
	2.3.1 Library learning with language models
	2.3.2 DreamCoder, LAPS, and LILO

	3 A Rational Process Model for Program Induction
	3.1 Related work
	3.1.1 Large language models
	3.1.2 A Bayesian model of natural language concept learning
	3.1.3 Sequential Monte Carlo

	3.2 Model
	3.2.1 Domain
	3.2.2 Overview
	3.2.3 Likelihoods, priors, and proposals

	3.3 Results
	3.3.1 Fit to human accuracy
	3.3.2 Fit to human errors

	3.4 Discussion

	4 Bootstrapping a DSL from Scratch
	4.1 Methods
	4.1.1 Typed enumeration
	4.1.2 DreamCoder and LILO
	4.1.3 Domains

	4.2 Model
	4.2.1 Overview

	4.3 Results
	4.3.1 Synthesis performance
	4.3.2 Qualitative library analysis
	4.3.3 Bootstrapping

	4.4 Discussion

	5 Conclusion
	A Program Induction Rational Process Model Supplement
	A.1 Prompts
	A.1.1 Hypothesis proposal prompt
	A.1.2 Hypothesis translation prompt
	A.1.3 Hypothesis mutation prompt

	A.2 Full model prediction
	A.3 Choice of representative subset of tasks

	B Bootstrapping a DSL Supplement
	B.1 Prompts
	B.1.1 Solving individual tasks with a LLM
	B.1.2 Translating Python to DSL primitives

	B.2 Induced Libraries
	B.2.1 List Functions
	B.2.2 Regular Expressions
	B.2.3 CLEVR

	References

