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ABSTRACT

In recent years, the increasing complexity of hardware designs has given rise to a growing
array of vulnerabilities and security threats, as exemplified by instances such as Spectre,
Microarchitectural Data Sampling, and Zenbleed. The inherent permanence of hardware
vulnerabilities poses a significant threat, making early identification crucial for preventing
security compromises once a device is manufactured. However, identifying hardware vulner-
abilities is challenging due to the large and complex design of current CPUs, resulting in a
substantial search space and numerous unknowns.

This thesis proposes leveraging software fuzzing methods for hardware testing, focusing
on the automated generation of instruction sequences that reveal hardware vulnerabilities.
Unlike software fuzzing, hardware fuzzing faces challenges such as a lack of visibility into
the microarchitectural processor states and difficulty in directing the search for test case
generation.

To address these challenges, this research draws inspiration from software fuzzers that
use insights into the internal workings of the software for effective test case generation. We
propose PCBleed, a coverage-guided mutational hardware fuzzer that enhances CPU fuzzing
by using hardware performance counters as insight into the CPU’s behavior to improve test
case generation. Since performance counters measure architectural events relevant to CPU
performance, they provide insights that we use to estimate coverage, marking instruction
sequences as novel. This approach aims to maximize the functionality exercised during
hardware fuzzing, ultimately identifying interesting, bug-triggering behavior.

Our methodology is distinctive, utilizing performance counters for hardware fuzzing en-
hancement, and aligns with recent research findings that highlight the versatility of perfor-
mance counters in debugging, dynamic software profiling, CPU power modeling, malware
detection, and cache side-channel attack detection.

By incorporating performance counters into the hardware testing paradigm, this research
seeks to contribute to the proactive fortification of hardware security through insightful
analyses.

Thesis supervisor: Mengjia Yan
Title: Assistant Professor of Electrical Engineering and Computer Science

3



4



Acknowledgments

First and foremost, I would like to express my sincerest gratitude and appreciation to my
research supervisor, Mengjia Yan, for her invaluable guidance, support, and mentorship
throughout this research endeavor. It was thanks to her course on Secure Hardware Design
that I got interested in this field, and I am thankful for the opportunity to work with her
and her group, the MATCHA group (Microarchitecture ATtacks and CHAllenges). I am
truly grateful for her dedication and for fostering an environment that facilitates growth and
learning.

Second, I would like to extend my deepest gratitude to my research mentors, Peter
Deutsch and Vincent Ulitzsch. Their invaluable contributions to this work cannot be over-
stated. From engaging in thought-provoking discussions on ideas and concepts to provid-
ing patient guidance during debugging sessions, their unwavering support has been crucial
throughout this journey. I am grateful for their willingness to share their expertise, offer
insightful advice, and help in shaping and refining this thesis. I appreciate their dedication
and commitment to my growth as a researcher, and this accomplishment would not have
been possible without their mentorship.

Additionally, I would like to express my sincere gratitude to my friends, colleagues, and
past mentors from internships, research experiences, and high school clubs. My friends have
been a constant source of encouragement, offering invaluable advice and a listening ear,
especially during times when I felt stuck or faced challenges. My past mentors have played a
pivotal role in my personal and professional growth with their guidance and wisdom. Their
mentorship has not only imparted valuable knowledge but has also taught me the importance
of staying organized, overcoming obstacles, and believing in my abilities.

I am also deeply grateful to the Armenian community, especially those who generously
contributed donations to support my studies and my move to the United States at a young
age, making it possible for me to pursue my dreams.

Last but not least, I would like to express my heartfelt gratitude to my family – my
parents, my brother, and my extended family – for their unwavering love, support, and
encouragement throughout this journey. I am forever thankful for their support when I
embarked on the seemingly impossible idea of moving to the United States from Armenia
at the young age of 17 to study at MIT. Their encouragement and understanding have been
a constant source of strength, enabling me to stay true to myself. Their unconditional love
and faith in my abilities have been the driving force behind this accomplishment, and I am
eternally grateful for their sacrifices and unwavering support.

5



6



Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 9

List of Tables 11

1 Introduction 13

2 Background 17
2.1 Hardware Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Software Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Hardware Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Performance Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 High-Level Overview 21

4 Design and Implementation 25
4.1 Test Case Execution Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Test Case Generation and Mutation Engine . . . . . . . . . . . . . . . . . . 26
4.3 Novelty Measure Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Bug Detection Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Evaluation 31
5.1 Recreating Zenbleed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Novelty Measure Function Analysis . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Bug Detection Engine Performance Analysis . . . . . . . . . . . . . . . . . . 35

6 Limitations 39
6.1 Bug Detection Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 No cycles in program control flow . . . . . . . . . . . . . . . . . . . . . . . . 39

7



7 Related Work 41
7.1 White-Box Hardware Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Black-Box Hardware Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.3 Performance Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8 Conclusion 43

A Zenbleed’s zen2_leak_train_mm0 implementation 45

B Recreating Zenbleed 47

C Novelty Measure Evaluation 49
C.1 Test Program 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
C.2 Test Program 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
C.3 Test Program 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
C.4 Test Program 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
C.5 Test Program 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

References 51

8



List of Figures

2.1 Flowchart demonstrating a coverage-guided mutational software fuzzer’s work-
flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Flowchart demonstrating PCBleed’s hardware fuzzing workflow . . . . . . . 21

4.1 Flowchart demonstrating PCBleed’s Mutate function’s workflow, when mu-
tating a basic block within an instruction sequence, inspired from SurgeFuzz
[26] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Diagram showing a few performance event measurements for 6 different pro-
grams. The first 5 programs are Programs 1-5 in Listing C and the sixth
program is Listing B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9



10



List of Tables

5.1 Evaluation results of running the Bug Detection Engine across different regis-
ter value samples collected, presence of a concurrent process, and CPU cores.
The reported metrics include execution time, number of bugs triggered, and
bug occurrence rate. The bug occurrence rate measures the percentage of
collected register value samples differing from the expected register values in
a serialized (non-speculative) execution. . . . . . . . . . . . . . . . . . . . . 37

11



12



1. Introduction

Over recent years, hardware designs have undergone a surge in complexity, driven by the
pursuit of elevated performance and the accommodation of intricate software demands. How-
ever, this heightened complexity is not without consequences; it gives rise to a growing array
of vulnerabilities and potential threats. Instances such as Spectre [1], Microarchitectural
Data Sampling [2], Zenbleed [3], among others, underscore the heightened security risks as-
sociated with these intricate designs. The inherent permanence of hardware vulnerabilities
presents a significant threat, as rectification becomes impractical once a device is manu-
factured, potentially compromising the security of accompanying software. Therefore, it’s
crucial to identify hardware vulnerabilities early, before attackers do.

Unfortunately, identifying hardware vulnerabilities turns out to be rather difficult, and
the current efforts prove inefficient, as suggested by the recently found vulnerabilities like
Spectre [1], Zenbleed [3], etc. This is mainly because of the large and complex design
of current CPUs, which leaves researchers and designers with a large search space, many
complications, and unknowns. Therefore, automating the process of testing is an effort worth
investigating, to help speed up hardware verification and find vulnerabilities early. To achieve
this, we turn to well-established software testing methods as inspiration for approaching
hardware testing.

Software fuzzing, for one, is a common tool used in software testing and has proven ex-
tremely useful in revealing software defects and vulnerabilities [4]. Fuzzing is an automated
testing method that injects random (but often guided) inputs into a system to reveal some
vulnerabilities. Since software fuzzing successfully identifies vulnerabilities in software in a
short span, similarly, we envision applying fuzzing to hardware to help generate instruction
sequences that reveal hardware vulnerabilities. However, hardware fuzzing is not as com-
monly used, and even though the seeds have been planted, there’s still a lot to explore in this
area, as it turns out that delving into the realm of hardware fuzzing proves to be challenging.
There are a few reasons for this:

• Testing the hardware design on all possible test cases would require exponential time as
the search space is too large. For example, a particular vulnerability may be triggered
with a specific register state or a specific order of instructions, with Zenbleed [3] an
instance of this, so finding all possible configurations is time-consuming. Similarly,
the search space is large for software fuzzing. However, in software fuzzing, there exist
tools that help direct the search of test cases, like branch coverage, and catching corner
cases becomes easier, while in hardware fuzzing, estimating coverage is difficult, making
efficient test case generation a challenging task.
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• It’s hard to direct the search for test case generation due to a lack of visibility into
the microarchitectural processor state and detailed documentation. This is because,
unlike software fuzzing, where coverage can be measured through different tools, in
hardware fuzzing, we miss crucial information to understand how to improve the test
case generation to cover more diverse instruction sequences.

• Race conditions add an extra layer of complexity to spotting vulnerabilities. This
is because, in situations where vulnerabilities rely on multithreading, the processor
might only reveal the vulnerability under specific interleaving conditions. Without
precise control over how the threads interleave, running the application multiple times
may be necessary to catch the vulnerability.

Thus, to make our hardware designs more secure, we need to carefully figure out these
complexities. Thinking back to software fuzzers, we can get inspiration on how to deal
with these issues. For example, many software fuzzers depend on insights into the internal
workings of the software: a test case can be considered novel, meaning we want to continue
fuzzing it, if it covers new program behavior, like branch coverage of the program [5]. This
allows the use of coverage to guide the test case generation process, thus leading to the
discovery of code instances that are bug-triggering in a shorter time span. Similarly, when it
comes to testing black-box hardware, we need to understand what can be used as a coverage
tool, and what can help us mark an instruction sequence as novel.

To answer this question, we turn to performance counters. Performance counters measure
interesting architectural events relevant to the performance of the CPU, like the number of
branch mispredictions, the number of L2 cache misses, the number of prefetcher hits, etc.
Essentially, performance counters provide insights into the behavior of the CPU, which, we
believe, can be used to estimate coverage and help us mark instruction sequences as novel.

The idea of using performance counters as insight into the CPU’s behavior has already
appeared in recent research findings. For instance, according to [6], performance counters
have been used for debugging purposes, dynamic software profiling, CPU power modeling,
malware detection, and malware defenses. Additionally, according to Kosasih et al. [7],
performance counters have recently been used for cache side-channel attack detection.

Our approach differs in that we suggest using performance counters as insight into the
CPU’s behavior to enhance hardware fuzzing by using them to generate better test cases.
Similar to maximizing code coverage in software fuzzing, for example with maximizing branch
coverage [5], we want to exercise as much of the CPU’s functionality as possible when hard-
ware fuzzing. However, for a given black-box CPU, we do not have a metric similar to code
coverage indicating how much of the CPU’s functionality we have exercised. Performance
counter profiles (PCPs) can help us to this end by giving some insights into the CPU’s inner
workings. We can then try to generate test cases (through mutation-based strategies) that
exercise as much of the chip’s functionality as possible.

The intuition behind this idea can be further explained with an example. In the search
for bug-triggering instruction sequences, assume we generated a test that heavily utilizes the
Arithmetic Logic Unit (ALU), a well-tested component. Spending too much time running
test cases that mainly use the ALU may not lead to interesting behavior or yield results.
Therefore, we’d like to test other components of the chip, hoping to find vulnerabilities.
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However, it’s hard to tell what the test case is exercising, and which part of the chip is
being used. We propose to identify a test case that exercises new behavior by observing
the performance counter values. If the values differ from the previously seen performance
counter values, we can use this as a signal that the test case is using a new part of the chip
and can give us another opportunity to find a bug.
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2. Background

2.1 Hardware Attacks

Attacks like Spectre [1], Microarchitectural Data Sampling (MDS) [2], Zenbleed [3], among
others, exploit information leaks, each targeting different behavior of the CPU. Zenbleed
and similar vulnerabilities highlight the constant challenge of securing computing systems
against a myriad of potential threats, necessitating innovative approaches for detection and
mitigation. In response to this ever-evolving landscape of security concerns, fuzzing has
emerged as a powerful technique to detect vulnerabilities.

Fuzzing can help detect various types of bugs. For instance, functional bugs like Zenbleed,
Reptar [8], etc. were detected through fuzzing. Functional bugs violate the specification of
the core, which can lead to incorrect results and open routes for using the incorrect results
to leak sensitive data. Zenbleed, for one, impacts AMD’s line of Zen 2 processors and can
leak sensitive data by executing a short sequence of instructions, without any special system
calls or privileges, due to incorrectly recovering from a mispredicted vzeroupper instruction.

Additionally, fuzzing can detect other security concerns, such as speculative side-channel
leakage. For instance, Revizor [9] uses fuzzing techniques to detect vulnerabilities such as
Spectre and MDS. Other fuzzers like SpecDoctor [10], IntroSpectre [11], and Transynther
[12] use different fuzzing techniques to detect vulnerabilities.

2.2 Software Fuzzing

Fuzzing helps detect vulnerabilities by exhaustively running a wide range of test cases.
Software fuzzing, in particular, has gained popularity among security and quality assurance
experts and has become one of the most powerful test automation tools that discovers security
vulnerabilities in software [4], with American Fuzzy Lop (AFL) [13] and LibFuzzer [14] as
some of the most widely-used coverage-based fuzzers.

Fig. 2.1 demonstrates the general workflow of a coverage-guided mutation-based fuzzer.
First, we feed some test cases to the fuzzer’s test case queue that are either hand-picked or
generated based on some templates or using other techniques. A test case in this case refers to
a detailed description of inputs, execution conditions, testing methodology, and anticipated
outcomes. Then a test case is picked from the queue and mutated by introducing small
changes that may still keep the input valid, yet exercise new behavior [15]. Afterward, the
fuzzer runs the test case and verifies whether the results are as anticipated, and if not, the
test case is considered to have a bug and can be added to a set of buggy test cases. As the
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fuzzer runs the test case, it also observes coverage. In software fuzzing, coverage is a measure
of how much of the software’s source code is exercised when running a test case. Coverage-
guided fuzzing aims to find test cases that exercise new parts of the software’s source code.
When the fuzzer observes that the test case has new coverage (i.e. has novel behavior), it
adds the test case to the test case queue for further fuzzing. Usually, the process is repeated
until coverage is exhausted.

Figure 2.1: Flowchart demonstrating a coverage-guided mutational software fuzzer’s work-
flow

American Fuzzy Lop (AFL) [13] is one of the most successful coverage-guided, mutational
fuzzers. There have been a lot of publications on fuzzers using AFL as the baseline [16] [17],
and AFL is attributed for finding many bugs in software like OpenSSH [18], Mozilla Firefox
[19], etc., proving its success. AFL’s coverage metric tries to capture branch (edge) coverage
in the form of a tuple, (branch_src, branch_dst), which denotes the branches the edge
started and ended at. AFL keeps a count of how many times within one run of the program
the edge was taken and then buckets the count to a power of two. This execution trace is
then compared to all the previous execution traces. If novel behavior is detected, such as
an edge falling into a novel bucket or hitting a previously unexplored edge, AFL considers
the test case as exhibiting new behavior and adds it to the test case queue. This approach
ensures ignoring changes within a single bucket (for example, a loop going from 47 cycles
to 48) while marking transitions from one bucket to another (for example, if a code block is
executed twice instead of the regular one hit) an interesting change in program control flow.

2.3 Hardware Fuzzing

Fuzzing, although more successfully implemented in software, has been used as a technique in
hardware too. The efforts to bring fuzzing to hardware draw a lot of inspiration from software
fuzzing, with some hardware fuzzers using popular software fuzzers in their implementations
[12] [20]. However, since hardware fuzzing has not been researched as thoroughly as software
fuzzing, exploring various approaches and techniques in the domain of hardware fuzzing
is still evolving. Examples of hardware fuzzers illustrate the diversity in strategies, with
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some adopting white-box approaches, like leveraging SystemVerilog assertion (SVA) [20],
and others employing black-box methodologies, like template-based detection [12]. Black-
box fuzzers monitor program inputs, outputs, and other measures they can gather without
having access to a source code, while white-box fuzzers do fine-grained program analysis
given a source code.

One interesting approach to black-box hardware fuzzing is Revizor [9]. Revizor uses
Model-based Relational Testing (MRT) to detect microarchitectural information leakage in
black-box CPUs. Oleksenko et al. use speculation contracts to identify what side effects
of the program execution are allowed. Speculation contracts identify ISA operations as
those that are observable by an attacker via a side channel or operations that can alter
control or data flow speculatively. Thus, contracts provide a specification of the permitted
microarchitectural side effects. Oleksenko et al.’s approach, MRT, is to search for violations
by creating random instruction sequences and random inputs and check if the hardware
traces violate the speculation contract traces. This approach allows for creating test cases
that can lead to discovering new kinds of vulnerabilities. Oleksenko et al.’s approach to
checking for violations is to compare the information exposed by the hardware traces with
the information exposed by the contract. They gain insight into the microarchitectural
changes of the hardware via some side-channel, producing the hardware trace. For example,
they get insight into whether a specific cache set was accessed by the test case or not by
using a side channel of priming the cache lines.

However, at the end of the fuzzing round, if Revizor doesn’t identify any violations, it
triggers a test case diversity analysis, which uses pattern combination coverage. Pattern
coverage is a measure that quantifies the number of data and control dependencies likely to
lead to pipeline hazards. Pattern coverage is then used as feedback to the test generator
and if the coverage is not improved, Revizor reconfigures the test generator by increasing
the number of instructions and basic blocks to enable the generation of more diverse tests.

Oleksenko et al. soon realized a performance limitation in the existing tools: ineffective
test case generation due to the majority of generated test cases lacking the ability to reveal
a speculative leak. Understanding the limitations of this approach of test generation, Olek-
senko et al. came up with a follow-up paper [21] that built on top of Revizor to find more
effective test cases, thus speeding up the testing campaign. They suggest a few tools for
improving test case generation, such as speculation filtering, observation filtering, etc.

To achieve speculation filtering, they use speculation-related performance counters, only
three or four performance counters from the dozens available. If during at least one of the
test executions the speculation-related performance counter increases, the test case is passed
to the next filter, the observation filter.

The observation filter first serializes the program by injecting a serialization fence, lfence,
after every instruction. Then for all inputs in the test case, the filter executes both the serial-
ized and the non-serialized programs and observes their hardware traces. If the traces differ
for any of the inputs, the test case continues to the next steps, otherwise, it’s discarded.

Although the proposed algorithm for better test case generation in the Revizor follow-up
paper uses two filtering algorithms and contract-driven input generation (which ensures the
effectiveness of the inputs), the generated test cases are always random and not mutations
of previous test cases. More specifically, the test case generation process involves generating
random basic blocks and adding terminators, such as jump instructions, that ensure the
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control flow forms a Directed Acyclic Graph (DAG), meaning the generated programs have
no loops. The basic blocks are filled with random instructions from a provided ISA subset.

2.4 Performance Counters

Performance counters monitor and measure interesting events that occur at the CPU level.
Modern processors measure various performance events, such as cycles, cache hits, retired
instructions, etc. Performance counters are generally used to understand the behavior or
performance of a program on a given processor and depending on the machine, the available
performance counters can vary. For instance, Intel provides a list of available performance
monitor events that can be observed that vary from processor to processor [22].

Looking back at software fuzzers like AFL [13], we can draw parallels between AFL’s
coverage metric of hit counts that count how many times each edge was taken and perfor-
mance counters that count how many times an event occurred. This parallel led us to look
for research that used performance counters as a coverage metric in fuzzing. We soon found
Zenbleed’s [3] discovery quite interesting. Zenbleed uses a functional bug, an incorrect recov-
ery from a mispredicted vzeroupper, to leak sensitive data. We found that T. Ormandy, the
researcher who discovered Zenbleed, used performance counters as a tool for CPU coverage
and fed the data to a fuzzer, which slowly discovered interesting test cases that would oth-
erwise not be discovered. Although the discovery process was not documented thoroughly,
the code for triggering Zenbleed is open-source [23] and later proved very helpful, as we used
it to evaluate our fuzzer.
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3. High-Level Overview

Due to evolving software demands, hardware designs are becoming increasingly sophisticated,
introducing a multitude of vulnerabilities that, if left undetected, could lead to malicious
attacks [1]. Therefore, it is crucial to identify hardware vulnerabilities early, before attackers
do. In light of this, our proposed approach focuses on expediting the hardware verification
process by harnessing the power of fuzzing—an automated testing method renowned for its
effectiveness in uncovering vulnerabilities [4]. In particular, we propose fuzzing black-box
CPUs using performance counters as a means to gain insight into the hardware’s behavior.

Figure 3.1: Flowchart demonstrating PCBleed’s hardware fuzzing workflow

As such, our main objective is to enhance CPU fuzzing through performance counter

21



insights by using them to improve upon test case generation, drawing inspiration from
coverage-guided software fuzzing techniques.

To achieve this objective, we introduce a comprehensive CPU fuzzing workflow, as de-
picted in Fig. 3.1, which serves as a roadmap for our methodology. This workflow encap-
sulates a series of steps, each carefully designed to address the challenges inherent in the
fuzzing process.

The high-level idea of the design flow is to either start with or generate a queue of test
programs at the Test Case Generation and Mutation Engine (GenMut Engine), pop one test
from the queue, and mutate it (step a). Next, we pass the mutated program to the Test Case
Execution Engine (Execution Engine), where we run it on the target CPU while observing
its behavior by collecting its Performance Counter Profile (step b). Then, we use a novelty
measure function to check if the test case exercises so-far unseen behavior, meaning the test
case exercises a new CPU functionality (i.e. is novel) and if it’s novel, add it to the test
queue and pass it to the Bug Detection Engine for further analysis (step c). At the Bug
Detection Engine, we check if the test case triggers a bug, and if it does, we add it to a
queue of buggy test cases, which we later view manually to check for false positives or to
understand how the bug was triggered (step d).

However, progressing through these stages presents its set of challenges, as each introduces
complexities that require careful consideration. To provide a comprehensive understanding,
let’s explore a detailed explanation of each step in the proposed workflow.

Step a: At the core of our design, we initiate the process with a queue of test programs
we’d like to fuzz-test. To generate the queue, we either handpick a few test cases we believe
are good starting points for the mutator, for example, a known bug-triggering test case, or
use a generation function to randomly generate programs given an ISA subset. These test
programs should be semantically valid instruction sequences we believe are novel to look
at, where a novel program is one that we suspect can be bug-triggering due to its novel
Performance Counter Profile (PCP). The intuition is that a test case with a different PCP
is a test case that exhibits different behavior since performance counters measure the CPU’s
internal events while executing a program. Therefore, a change in the performance counter’s
measurement may indicate a change in the CPU’s behavior during execution, and make it a
novel test case that could be bug-triggering or lead to a bug-triggering test case after a few
mutations.

We then pop a test case from the queue and mutate it using a mutation function. The
mutation function should be fine-tuned so as to mutate the instruction sequence in a way
that is more likely to have a different PCP while keeping the program semantically valid.

Step b: After mutation, we pass the mutated program to the Execution Engine, where
we run the test case on the target CPU. The execution of the program should be completely
isolated, crashes should be handled properly, without affecting the workflow, and the engine
should allow running a test case multiple times, every repetition starting with the given
microarchitectural state, indicating register and memory values. Additionally, for every run
of the instruction sequence, the Execution Engine should observe the behavior of running the
program by collecting its PCP. The PCP is a vector of performance counter measurements
for every performance event. Specifically, for every event, we get the difference between
the performance counter value before and after executing the test case, thus observing the
increase in the performance counter value during program execution (more details about
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PCP collection are found in Section 4.1).
Step c: Following this, we use a novelty measure function to assess whether we want to

continue fuzzing the test case by adding it to the test queue and also pass the program to the
Bug Detection Engine for further analysis, or discard it. Our approach suggests assessing
the novelty of the test case based on its PCP and marking it as novel if it has a PCP with
different coverage than the other programs in the queue (more detailed discussion in Section
4.3). The idea is to find programs that are potentially bug-triggering or not bug-triggering
but with a novel profile, which could later lead to bug-triggering programs after a few more
fuzzing rounds.

Step d: Following execution, if the test case is marked novel, we pass it to the Bug
Detection Engine, where we conduct an analysis, categorizing the test case as either bug-
triggering or not. This helps us determine whether or not we want to mark the instruction
sequence for further manual analysis, where we’ll take a closer look to verify if it was a true
positive and understand what triggered the bug.

Our outlined CPU fuzzing workflow introduces a systematic approach to identifying in-
struction sequences that are either bug-triggering or can lead to bug-triggering test cases.
Our framework leverages a curated test program queue and a finely tuned mutation func-
tion inspired by established fuzzers. The execution process ensures a smooth workflow even
in the presence of crashes, ensuring uninterrupted fuzzing while observing the hardware’s
behavior through collecting PCPs. The classification of buggy test cases and assessment
of novelty contribute to a focused exploration of potential vulnerabilities. This cohesive
methodology aims to fortify hardware security through proactive and insightful performance
counter analyses.
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4. Design and Implementation

This section presents the PCBleed framework that implements a black-box hardware fuzzer
that uses performance counter data to improve test case generation. We present the design of
all the components as demonstrated by Fig. 3.1 - the Test Case Execution Engine, the Test
Case Generation and Mutation Engine (GenMut Engine), the Novelty Measure Function,
and the Bug Detection Engine.

4.1 Test Case Execution Engine

We designed the Test Case Execution Engine to run on our black-box CPU, and for a given
instruction sequence, execute it and observe the behavior by collecting performance counter
data for all events - performance counter profile (PCP). The PCP we collect per instruction
sequence measures for every performance event, by how much the performance counter value
has increased during the program’s execution. We built upon the open-source architecture
of Revizor [9], used it as the starting block for our framework, made some adjustments, and
added the PCP collection feature on top of it to build our Execution Engine.

The choice of using Revizor as the foundation of PCBleed was informed by various fac-
tors, including the accessibility of its source code [24], the inclusion of a code generation
algorithm, support for multiple repetitions and crash recovery, and the provision of funda-
mental functionality for PCP collection, such as a function that adds necessary instructions
to the test case before and after execution to collect a performance counter value.

Using Revizor as the baseline for PCBleed, we added PCP collection per repetition to
complete the Execution Engine. Revizor only collects a few performance counter events per
execution [24], while we wanted a more thorough profile. To bridge this gap, we first focused
on understanding the intricacies of collecting performance counters.

To collect the performance counter for an event, we write and read from model-specific
registers, MSRs, which are control registers commonly used for performance monitoring and
other purposes. Specifically, we write to the MSRs that are designated for performance
events. To get the performance counter value for a specific event, we write the event per-
formance monitor select value and the unit mask, which details what event exactly to look
for. For example, on our AMD Zen 2 CPU, to count the number of instruction fetches that
hit in the L1 Instruction TLB (Translation Lookaside Buffer), we can write the performance
monitor select value of 0x094 and unit mask value of 0x04 to specify that we want to count
L1 Instruction TLB hits for 1-Gigabyte page sizes. On the other hand, the unit mask value
of 0x02 would count the L1 Instruction TLB hits for 2-Megabyte page sizes.

The available performance events and the specific unit mask values may vary depending
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on the CPU architecture and the available performance monitoring features. On our AMD
Ryzen 7 4700G with Radeon Graphic machine, we collect a list of performance monitor
counters with their available unit masks and descriptions using AMD uProf’s AMDuProfPcm
tool [25].

Revizor provides some basic functions that allow reading a performance counter value
given its performance monitor counter (PMC) and unit mask. Revizor achieves this by
writing the PMC and unit mask to the correct MSR that is designated for performance
events and then reading from it. Although the function is there, Revizor only uses this when
filtering for speculation leakage [21] (more in Section 2.3) and so the PMC and unit mask
values are hardcoded at the beginning of the execution based on the CPU and Revizor keeps
reading the same performance counter’s value per test case to decide if it should be filtered
or not.

To collect the performance counter values for all events, we modified Revizor’s code to
accommodate this. To instruct the framework on which performance event counter to get, we
updated Revizor’s Executor, the kernel module. We created a new sysfs file in the kernel that
stored the PMC and unit mask information. This allows us to perform low-level instructions
from the user level by reading or writing from the sysfs file. With this addition, we updated
Revizor’s code [24] to iterate over all performance events and unit masks that we collected
using AMD uProf’s AMDuProfPcm tool [25], execute the program, get the counter increase
measure, and do this for every repetition. Since there are a few MSRs we can write to at a
time, it’s impossible to collect the whole performance counter profile in one execution of the
program and thus, we execute the program multiple times.

4.2 Test Case Generation and Mutation Engine

The purpose of the Test Case Generation and Mutation Engine is to support a generation
function that generates semantically valid programs given an Instruction Set Architecture
(ISA) subset and a mutation function that mutates a given program by introducing small
changes to the instruction sequence while keeping it a valid program. Our GenMut En-
gine’s generation function uses Revizor’s Test Case Generator [9] that ensures the control
flow forms a Directed Acyclic Graph (DAG), which ensures that there are no loops in the
program and that the program execution halts naturally without timing out. The GenMut
Engine’s mutation function is inspired by Surgefuzz’s mutator [26] and mutates an instruc-
tion sequence by using random number generation and conditional statements to decide what
type of mutation to perform and ensures that the DAG format is maintained.

Since we built our framework on top of Revizor, we referred to its open-source code to
build PCBleed’s generation function. Revizor, rooted in generating instruction sequences
within a specified Instruction Set Architecture (ISA) subset, allowed us to tailor our genera-
tion function to consider various types of instructions, ranging from arithmetic to advanced
vector operations. Hence, with little modification, we incorporated Revizor’s generation
routine in PCBleed.

PCBleed’s mutation function, on the other hand, is inspired by SurgeFuzz’s open-source
code, specifically, the mutate function [27]. The mutator ensures that the control flow stays
a DAG in order to avoid getting stuck in an infinite loop by iteratively mutating every basic
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block in the instruction sequence, without introducing any new terminators and without
mutating the existing terminators.

Fig. 4.1 gives a summary of the main idea behind how the mutation function mutates a
basic block in an instruction sequence. There are five types of mutations that our mutator
supports: swapping instructions, mutating an instruction, mutating operands of an instruc-
tion, inserting an instruction, and removing an instruction. When swapping instructions,
we pick two random instructions in the basic block and swap them, ensuring that there are
no dangling pointers. The second type of mutation, instruction mutation, randomly picks
an instruction and replaces it with an instruction from the original ISA subset that is not a
terminator. The third type, operand mutation, randomly picks an instruction and mutates
its operands, but keeps the opcode the same. Lastly, inserting and removing instructions
mutate the basic block by picking a random instruction to insert or remove, respectively.

Given the definitions provided above, we adopted the following approach for mutating a
basic block (inspired by SurgeFuzz): we randomly decide whether to choose a mutation type
and apply it to the basic block in a loop, or, in a loop, choose a mutation type and apply it
to the basic block (Fig. 4.1).

Figure 4.1: Flowchart demonstrating PCBleed’s Mutate function’s workflow, when mutating
a basic block within an instruction sequence, inspired from SurgeFuzz [26]
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4.3 Novelty Measure Function

With no metric of coverage when fuzzing CPUs in a black-box setting, we turn to performance
counters to gain insight into the internal workings of the CPU while executing a program.
Thus, our novelty measure function marks instruction sequences as novel based on their
Performance Counter Profiles (PCPs), which we collect using our Execution Engine. In
Section 4.1, we described that the PCP is a collection of measurements for every performance
event, denoting the increase in performance counter value while executing the program.
Given a PCP for a program that PCBleed is considering at the moment, the novelty measure
function, inspired by AFL [13], buckets all the performance counter measurements to a power
of two, as demonstrated in Eq. 4.1. Finally, the novelty measure function marks the program
as novel if the bucketed PCP (BPCP) is different from all previously seen programs’ BPCPs.

BPCP =
[
2⌊log2(performance_counter)⌋ for performance_counter in PCP

]
(4.1)

PCBleed’s novelty measure function was inspired by AFL’s metric for detecting interesting
behavior [13], which is described in more detail in Section 2.2. The main idea is that changes
within a bucket should be ignored, while transitioning from one bucket to another should be
marked as new behavior, as it’s trying to ignore empirically less notable changes.

PCBleed marks a test case as novel based on its PCP. When considering a PCP, for every
performance counter measurement in the vector, we bucket the value to a power of two to
get the bucketed performance counter profile, BPCP - a vector of bucketed measurement
values. We then mark a test case as novel if its BPCP is different from all previously seen
test case BPCPs. If the test case is marked novel, we add it to the Test Case Queue to be
further mutated in the future fuzzing rounds and we pass the test case to the Bug Detection
Engine to test it for any bugs.

4.4 Bug Detection Engine

The last step in PCBleed before fuzzing the next program is passing the test case that was
classified as novel to the Bug Detection Engine. This engine aims to detect various types of
bugs, including functional bugs and other security issues like speculative side-channel leaks,
marking the test case as bug-triggering if any such bugs are found. PCBleed’s Bug Detection
Engine is inspired by T. Ormandy’s Oracle Serialization that’s mentioned in Zenbleed’s
discovery [3]. Similar to Ormandy’s Oracle Serialization, our Bug Detection Engine compares
the register values at the end of program execution to the register values collected at the end
of executing the serialized version of the program, where a serialized program is the original
instruction sequence injected with a serialization fence, lfence, after every instruction. Our
Bug Detection Engine collects register values for the non-serialized program multiple times
and compares all the results to the serialized version’s register values. If a difference is
found, we add the test case to the Buggy Test Cases, which we later assess manually for
false positives or to understand where the bug stems from.

To collect register values, we initiate a new PCBleed executor instance without PCP col-
lection but instead enter Revizor’s General Purpose Register (GPR) mode [24], and collect
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the register values for the RAX, RBX, RCX, RDX, RSI, and RDI registers. We collect the register
values for the regular program multiple times, where the number of samplings can be deter-
mined by the user, while we collect the serialized program’s register values only once. This
is because the serialized program runs without speculation, while the regular program may
trigger a functional bug or open a side channel depending on the branch predictor or other
optimizations, so we run it multiple times to catch such behavior.

After every round of collecting register values for the regular test case, we compare the
results with the serialized program’s register values. If any difference is found, we mark the
test case as bug-triggering and add it to the queue of Buggy Test Cases that we later analyze
manually.
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5. Evaluation

This section evaluates the PCBleed framework by recreating Zenbleed [3], a vulnerability
affecting AMD’s line of Zen 2 processors that is borne from a functional bug. We analyze
PCBleed’s Novelty Measure Function and Bug Detection Engine for performance and discuss
the tradeoffs between execution time and effectiveness. We conducted our evaluation on an
AMD Ryzen 7 4700G with Radeon Graphics (CPU family: 23, Model: 96), which is known
to be affected by Zenbleed.

5.1 Recreating Zenbleed

Zenbleed [3], as discovered by T. Ormandy, is a vulnerability that affects the AMD Zen
2 processors and can leak sensitive data. Zenbleed takes advantage of a functional bug,
the vzeroupper instruction’s incorrect recovery from a mispredicted branch execution. The
vzeroupper instruction zeroes the upper bits (position 128 and higher) of vector registers by
setting the z-bit flag instead of writing bits. As Ormandy explains in the Zenbleed blog post
[3], when vzeroupper is executed speculatively but needs to be reverted, the setting and
unsetting of the z-bit flag can lead to something similar to a use-after-free vulnerability. One
way to execute vzeroupper speculatively is through branch predictions, and if the branch
mispredicts, the vzeroupper instruction needs to be reverted. This is the approach that
Ormandy took when designing Zenbleed.

Zenbleed’s open-source code [23] provides four implementations that trigger the vulnera-
bility, with all four relying on the same base idea: a process may recover from a mispredicted
vzeroupper incorrectly and leak some data. To trigger an incorrect recovery from a mispre-
dicted vzeroupper, a series of events have to happen within a precise window. According to
Ormandy, first, an XMM Register Merge Optimization has to happen, followed by a register
rename, and, finally, a branch misprediction that executes the vzeroupper instruction.

To understand how Zenbleed is triggered, we can consider one of its implementations.
For example, Listing A shows a somewhat simplified version of the zen2_leak_train_mm0
implementation of Zenbleed. In this implementation, the instruction cvtpi2pd triggers the
merge optimization, while vmovdqa triggers a register rename, and finally, vzeroupper is
mispredicted. It’s interesting to understand how the misprediction is triggered. The instruc-
tion js .overzero (line 16) checks for the sign flag (SF), and if it’s set, meaning that the
result of the previous arithmetic or logical operation was negative, then it jumps to the label
.overzero. Since the previous arithmetic operation is dec rcx (line 9), the js instruction
is essentially checking for the rcx register value to become negative. Therefore, for around
90 cycles (since rcx is initialized to be 90 on line 7) the branch predictor learns not to jump
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to label .overzero and instead executes the instruction vzeroupper on line 17. However,
once the rcx register value becomes negative and the sign flag is set, the instruction js
.overzero succeeds. However, at that point, the branch predictor is trained not to jump to
the label, so it mispredicts and runs the vzeroupper instruction by habit.

Afterward, the code jumps to the .restart label (line 6) as long as the instruction jz
.restart (line 21) determines that the zero flag is set. This means that as long as the zero-
flag is set (indicating that the vptest instruction didn’t find any non-zero bits in ymm0), the
loop will continue indefinitely and no information will leak. The line above, vptest ymm0,
ymm0 (line 20), sets the zero flag based on the contents of ymm0. If ymm0 contains all zero bits,
the zero flag will be set; otherwise, it will be cleared. The Zenbleed vulnerability is triggered
when the zero flag is not set, which is incorrect because all the operations above make sure
ymm0 contains all zero bits. But if vzeroupper is mispredicted, then the z-bit flag will be set
for ymm0, and any resources assigned to the register will be released. Then, another process
can set ymm0 to a non-zero value and so the loop (jz .restart) won’t continue, and, instead,
the next lines will be processed and the leaked data will be printed.

To trigger a Zenbleed-type bug in PCBleed, we adapted the open-source code for the
implementation discussed above, zen2_leak_train_mm0, by keeping its main components.
Listing B shows PCBleed’s implementation of Zenbleed. The first and last few lines (lines
1-3 and 36-37) are necessary parts of every program in Revizor [9] and therefore in PCBleed.
In the entry basic block (lines 5-9), we reset the AVX vector registers to zero, set the RAX
register to zero, and move the value of RAX to the MM0 register. The next basic block, lines
10-11, initialize the value of the register RCX to be 90, which is the number of times the code
loops basic blocks 1 and 2 (lines 12-23) to train the branch predictor to think it needs to
execute line 22, the VZEROUPPER instruction.

To see how the branch predictor gets trained, let’s consider the contents of basic blocks 1
and 2. Line 13 decreases the RCX value by 1, lines 14-18 convert the packed integer value in
MM0 to double-precision floating-point values and stores them in XMM4, XMM3, XMM2, XMM1, and
XMM0, with all these operations using the merge optimization. Then line 19 does a register
rename (moves the data from YMM0 to YMM0), and line 20 conditionally jumps to the third
basic clock. This jump is only successful when the RCX register value becomes negative;
otherwise, the code runs line 23, the VZEROUPPER instruction, and then line 23 jumps back to
basic block 1 to continue looping. This loop ensures that for as long as the RCX register value
is non-negative, the VZEROUPPER instruction on line 22 is executed after a merge optimization
and a register rename. Once RCX is negative, line 20 should successfully jump to basic block
3. However, since for 90 times, the branch predictor has observed that the branch is not
taken, it speculatively executes line 22, the VZEROUPPER instruction. Then, as described
above, it may recover incorrectly, and the next basic blocks try to capture this case.

Once the code is at basic block 3 after recovering from a mispredicted branch and following
the true label, we check if all data elements in YMM0 are zero and set the zero flag (ZF)
accordingly. Since in the beginning, in line 6, we zeroed all AVX vector registers, including
YMM0, and we didn’t touch the contents of YMM0 again, then we’d expect that all data elements
in YMM0 are zero, and that the conditional branch in line 27 jumps to basic block 4, where
we set the RDI register value to 1 (the choice of 1 is arbitrary). However, if something
went wrong, and the VZEROUPPER instruction didn’t recover correctly, giving another process
access to register YMM0, the contents of the register may not all be zero. In this case, the
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code jumps to basic block 5, where we set the RDI register value to 2 (the choice of 2 is
arbitrary). At the end of executing the code, we check if the bug was triggered by observing
the register values. We expect the RDI register to have a value of 1. But if the register value
is instead 2, that is only possible if VZEROUPPER didn’t recover correctly and another process
had time to get access to YMM0, thus modifying some of its data elements to be non-zero.

PCBleed detects this bug when we pass the abovementioned test case (Listing B) to our
Test Case Queue. When the test case reaches the Bug Detection Engine, we collect register
values from the serialized version of the code. The serialized program consists of the original
instruction sequence injected with an lfence after every instruction. Since the serialized
code executes instructions sequentially, line 20 (Listing B) does not mispredict and skips
executing VZEROUPPER speculatively, instead jumping to the correct label, basic block 3. As
a result, the register value for RDI is deterministically set to 1.

However, the Bug Detection Engine also collects register values after running the non-
serialized original program multiple times. During at least one of these runs, if VZEROUPPER
recovers incorrectly and another process gains access to YMM0, the RDI register value becomes
2. In such cases, the Bug Detection Engine marks the test case as bug-triggering.

5.2 Novelty Measure Function Analysis

PCBleed’s novelty measure function marks test cases as novel based on their Performance
Counter Profiles (PCPs) since the performance counters give insight into the internal work-
ings of the CPU as the test case is executed. The PCP of a program is a vector of measure-
ments indicating the increase in performance counter value for every performance event. The
novelty measure function buckets all the performance counter measurements of the PCP to
a power of two and creates the Bucketed PCP (BPCP) according to Eq. 4.1. It then marks
a test case novel if its BPCP is different from all previously seen BPCPs.

To evaluate PCBleed’s novelty measure function, we look at the PCPs of six programs.
The first program is Program 1 of Listing C and it does a few basic data transfer instructions
using the instruction MOV. The second program, Program 2 of Listing C, does basic arith-
metics with the ADD instruction. The third program, Program 3 of Listing C, consists of a few
VZEROUPPER instructions, where VZEROUPPER is related to the AVX (Advanced Vector Ex-
tensions) instruction set. The fourth program, Program 4 of Listing C, has a few CVTPI2PD
instructions and a VMOVDQA instruction, where CVTPI2PD prompts the XMM register merge
optimization while VMOVDQA does a register rename. Program 5 (Listing C) is the same as
Program 4 but without the VMOVDQA, register rename instruction. Finally, the sixth program
we consider is Listing B, the instruction sequence that triggers Zenbleed, which includes a
merge optimization, a register rename, and a mispredicted branch.

Fig. 5.1 plots a small part of the PCPs we collected for the abovementioned six programs.
The figure only shows the performance counter values for select performance events that
best demonstrate the differences between the programs. From Fig. 5.1, we see that Program
1 and Program 2 have very similar PCPs. Program 3’s PCP (red bars) stands out for
the performance event OCB.04 that counts the number of retired SSE (Streaming SIMD
Extensions) instructions. Since Program 3 includes VZEROUPPER a few times, while the other
programs either don’t have the instruction or have it appear in a different frequency, it’s
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Figure 5.1: Diagram showing a few performance event measurements for 6 different programs.
The first 5 programs are Programs 1-5 in Listing C and the sixth program is Listing B

considered novel among this distribution. The same performance event OCB.04 has a high
counter value for Program 6, since it runs various SSE instructions, such as VZEROUPPER
and VMOVDQA. Additionally, there’s a small counter value for Program 4, which includes the
VMOVDQA instruction once.

Program 4 includes instructions that trigger XMM Register Merge Optimizations - CVTPI2PD,
followed by a register rename operation - VMOVDQA. This makes the program’s PCP a bit more
diverse, as not only performance event OCB.04 counts the VMOVDQA instruction but we also
see performance event OCB.02 with a green bar, which counts the number of retired MMX
(MultiMedia Extensions) instructions. Because performance counter values can get more
specific with the help of unit masks, the events OCB.04 (unit mask of 0x04) and OCB.02(unit
mask of 0x02) can keep track of different architectural events.

Program 5, although similar to Program 4, doesn’t have the register rename instruction.
PCBleed marks this program novel because the yellow bar in Fig. 5.1 only appears for the
performance event OCB.02 unlike Program 4, which has non-zero counter increases showing
for both OCB.02 and OCB.04.

Program 6, the instruction sequence that triggers Zenbleed, has the most diverse and
interesting PCP. First, note that for performance event 076.00, which counts the number
of cycles not in halt, Program 6 has a slightly different counter than the other 5 programs.
However, since the counters are both in the same power-of-two bucket when we look at the
BPCPs, this difference is ignored, since the difference between the 10 and 11 cycles in halt
is not as significant. Second, Program 6’s PCP has many non-zero performance counter
increase measures that indicate that there was a branch misprediction. For example, the
performance events 08A.00 and 08B.00 count the number of times the speculative branch
prediction is overridden by L1 Branch Prediction and L2 Branch Prediction, respectively.
Both of these events have non-zero values in Fig. 5.1, which is not the case for the other 5
programs. Additionally, the performance event 0C3.00 counts the number of retired branch
instructions of any type that were not correctly predicted, and this performance event has
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a non-zero value for Program 6, demonstrating that the JS branch instruction on line 20 of
Listing B is mispredicted.

These results demonstrate that PCBleed can notice differences in behavior. For instance,
to trigger Zenbleed, we need to trigger an XMM Register Merge Optimization, a register
rename, and a branch misprediction in order to execute VZEROUPPER speculatively and po-
tentially recover incorrectly. Program 4 has the first two components, Program 5 has only
the first component, Program 6 has all three components, and PCBleed marks all three
programs as having novel behavior. Therefore, if during the fuzzing round, PCBleed took
Program 5, mutated, and got Program 4, it would add this program to its Test Case Queue
instead of discarding it. Then in future rounds, if PCBleed picked Program 4 and mutated
it many times and got a program that met all three criteria for triggering Zenbleed, it would
mark the test case as novel and send it to the Bug Detection Engine to be evaluated, where
the bug could be detected.

5.3 Bug Detection Engine Performance Analysis

PCBleed’s Bug Detection Engine compares the register values collected at the end of execut-
ing the original program to the register values collected at the end of executing the serialized
version of the program (more details in Section 4.4). We evaluate the performance of the
tool using the Listing B program that triggers Zenbleed. We base our evaluation on various
factors, such as the number of register value samples collected, the impact of running a
concurrent process, and the core on which we execute the program.

The first factor in our evaluation is to consider the number of register value samples. Our
Bug Detection Engine collects register values for the non-serialized program multiple times
and compares each register value sample to the serialized version’s collected register values
(more details in Section 4.4). Therefore, we consider how the number of collected register
value samples improves the effectiveness of our tool in identifying a buggy program and how
it affects the runtime of detecting a bug.

The second factor we consider in our evaluation is the impact of running a concurrent
process. Zenbleed’s open-source code [23] recommends running the program on a server
that’s not quiet. The idea is to run a concurrent process that potentially overwrites the
YMM0 register before the VZEROUPPER can recover (more details in Section 5.1). Lastly, we
consider the core we execute the program on to evaluate whether the bug is triggered on a
specific core or on all cores.

We evaluate the effectiveness of our Bug Detection Engine, depending on the factors, by
looking at the number of samples that have a difference in the register values compared to
the serialized program. This difference denotes the number of times a bug is triggered.

Table 5.1 shows some of the results we gathered by running the Listing B program with
different factors. The table includes information such as the number of register value samples
collected, whether we run a concurrent process, and the core we execute the program on.
The results we collect and show in the table are the time to execute (in seconds), the number
of bugs triggered (the number of samples that differ from the serialized program’s sample),
and the bug occurrence rate, which demonstrates what percentage of the collected register
values differ from the serialized program’s register values. For instance, Test 2 executes the
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program on core 0, without running a concurrent process, and by getting 14000 register value
samples. The results of this test show that the Bug Detection Engine ran for 75.4 seconds
and triggered a bug 9 times out of the 14000, with a 0.064% bug occurrence rate.

The results show the tradeoff between guaranteeing to mark a program as bug-triggering
and execution time. For instance, Test 1 runs the Listing B program on core 0, without
running a concurrent process, and by collecting 7000 register value samples and does not
mark the test case as bug-triggering. However, when in Test 2 we increase the number of
register value samples to 14000, 9 of the samples turn out to be different from the serialized
program’s register value sample, marking the test case bug-triggering. Additionally, the
execution time for Test 1, Test 2, and Test 3 demonstrate that increasing the number of
collected register value samples affects the program execution time linearly. This is further
demonstrated by Test 7 and Test 8.

Table 5.1 also demonstrates that running a concurrent process while executing the pro-
gram can help improve the Bug Detection Engine mark programs more accurately. For
example, Test 4 runs the Listing B program on core 0 while running a concurrent process,
and by collecting 7000 register value samples and marks the test case as bug-triggering. If
we compare this to Test 1, which differs from Test 4 only in that it does not run a concurrent
process, Test 4 marks the test case bug-triggering correctly while Test 1 does not.

Additionally, we learned that depending on what core we execute the program on, we
may need more register value samples to detect a bug, as demonstrated by Test 1 and Test
2, where we see that on core 0, we cannot catch a bug with 7000 register value samples
but can detect 9 bugs with 14000 register value samples. It is also possible that some cores
are not good for detecting the program bug, as is the case in Test 7 and Test 8, where we
demonstrate that even increasing the number of register value samples from 7000 to 21000
does not help in detecting a bug on core 2.
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Table 5.1: Evaluation results of running the Bug Detection Engine across different register
value samples collected, presence of a concurrent process, and CPU cores. The reported
metrics include execution time, number of bugs triggered, and bug occurrence rate. The bug
occurrence rate measures the percentage of collected register value samples differing from
the expected register values in a serialized (non-speculative) execution.

#
# of Register
Value Samples

Concurrent
Process Core

Time
(sec)

# of Bugs
Triggered

Bug Occurrence
Rate

1 7000 Not
Running 0 37.7 0 0%

2 14000 Not
Running 0 75.4 9 0.064%

3 21000 Not
Running 0 110.8 16 0.076%

4 7000 Running 0 35.4 8 0.114%

5 7000 Not
Running 1 38 3 0.042%

6 7000 Running 1 35.7 5 0.071%

7 7000 Running 2 33.5 0 0%

8 21000 Running 2 98.8 0 0%

9 7000 Running 3 34.9 7 0.1%

10 7000 Running 4 31.2 7 0.1%

11 7000 Running 5 31.7 19 0.271%

12 7000 Running 6 31.6 15 0.214%

13 7000 Running 7 31.9 7 0.1%

14 7000 Running 8 35.5 11 0.157%

15 7000 Running 9 35.8 3 0.042%

16 7000 Running 10 33.5 0 0%

17 7000 Running 11 35 4 0.057%

18 7000 Running 12 31.5 16 0.228%

19 7000 Running 13 31.7 11 0.157%

20 7000 Running 14 31.5 12 0.171%

21 7000 Running 15 31.4 13 0.185%
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6. Limitations

6.1 Bug Detection Guarantees

As discussed in Section 5.3, the Bug Detection Engine’s performance is affected by various
factors, such as the number of register value samples collected, running concurrent processes,
and the core on which the program is executed. Our results demonstrate that increasing the
number of collected register value samples can help mark a program correctly (for example,
Test 2 of Table 5.1) or may not help at all (for instance, Test 8 of Table 5.1). We also learned
that increasing the number of collected register value samples affects program execution
time linearly. Therefore, there’s a tradeoff between accurately identifying a program as bug-
triggering by increasing the number of register value samples and the program execution
time. Moreover, increasing the number of samples does not guarantee to mark a program as
bug-triggering.

Table 5.1 demonstrates that the number of register value samples we need to collect to
correctly identify a bug-triggering program varies from core to core. Therefore, to mark a
test case as bug-triggering with more accuracy, one approach is to run the Bug Detection
Engine on all the cores. However, this is very time-consuming, since testing the program on
16 cores costs 16 times the cost of a regular check, which costs approximately the time to
check the program after increasing the number of collected register value samples 16 times.

Lastly, our analysis in Section 5.3 also mentions that running a process in the background
while executing the Zenbleed program (Listing B) improves the bug-detection mechanism
since we see an increase in the number of samples that are different from the register values
of the serialized program. For the Zenbleed program, our aim with the background process
was to choose a process that could potentially overwrite the YMM0 register value before the
VZEROUPPER instruction could be rolled back from speculative execution. However, when
testing a program, if we don’t know what type of bug we’re looking for (which is usually the
case), it’s difficult to pick a background process that is most helpful for the Bug Detection
Engine. This is another limitation that does not guarantee the Bug Detection Engine’s
accuracy in correctly marking test cases as bug-free or bug-triggering.

6.2 No cycles in program control flow

As described in Section 4.2, PCBleed’s Test Case Generation and Mutation engine ensures
that the instruction sequence’s control flow forms a Directed Acyclic Graph (DAG), meaning
the instruction sequence has no loops. Revizor inspires the reason for taking such an approach
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[9] and the idea is to avoid infinite loops, since such loops lead to timeouts and disrupt the
fuzzing procedure. Additionally, even if an instruction sequence doesn’t contain an infinite
loop, but contains a loop of a certain number of rounds, if we don’t add constraints to GenMut
Engine’s mutation function, the future mutations of the program may contain infinite loops.

In Section 5.1, we use Listing B as a program that triggers Zenbleed, and we provide
a thorough explanation of how the bug is triggered and what components are at play. We
discuss that Zenbleed can be triggered with an XMM Register Merge Optimization, followed
by a register rename, and a branch misprediction that executes VZEROUPPER speculatively,
which, in order, may recover incorrectly and leak information. The last component for
triggering Zenbleed is to execute VZEROUPPER speculatively and roll it back. It turns out
quite difficult to control the execution process and force this. T. Ormandy achieved this
by forcing a branch misprediction [3], which executes VZEROUPPER speculatively and then
rolls it back since the branch was mispredicted. Forcing a branch misprediction is not so
simple, and the way Ormandy achieves this is by training the branch predictor. Ormandy
suggests running a conditional branch instruction in a loop multiple times, training the
branch predictor not to take the branch. On the last round of the loop, when the branch
should be taken, the branch predictor mispredicts.

Listing B adapts Zenbleed’s open-source implementation, zen2_leak_train_mm0, by
keeping its main components. To execute VZEROUPPER speculatively, basic block .bb_main.1
runs in a loop and trains the conditional branch on line 20 that the branch should not be
taken since the register value RCX is non-negative. However, once the RCX register becomes
negative and the loop ends, the branch predictor predicts that the branch .bb_main.3 is not
taken, since it predicted so for the many past loops, and line 22, the VZEROUPPER instruction,
executes speculatively.

Since many bugs surface in the presence of speculation [3][1], forcing some instructions
to execute speculatively may help detect bugs. The above case study demonstrates that
training the branch predictor is one approach for forcing speculative execution. Specifically,
training the branch predictor by running the conditional branch that we intend to mispredict
in a loop can force the speculative execution of an instruction. However, including a loop
in the instruction sequence means disrupting the control flow being a DAG, which is a
requirement we maintain throughout the fuzzing rounds in our Test Case Generation and
Mutation Engine. This requirement limits the set of test cases PCBleed considers in the Bug
Detection Engine, thus making it difficult to arrive at a test case that the Bug Detection
Engine can mark as bug-triggering.

One approach to mitigate this limitation is to add an additional step in the Bug Detection
Engine that modifies the instruction sequence that’s being considered by adding loops that
can help train the branch predictor. Since the Bug Detection Engine’s job is only to mark
test cases as bug-triggering, we can disrupt the acyclic control flow without worrying about
future mutations of the GenMut Engine getting affected (the test case is never passed to the
GenMut Engine from the Bug Detection Engine), as long as the introduced loops are not
infinite loops.
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7. Related Work

7.1 White-Box Hardware Fuzzing

Trippel et al. [20] approach white-box fuzzing by translating RTL hardware to a software
model and fuzzing that model directly. The researchers employ SystemVerilog assertion
(SVA) to detect bugs in the hardware design. Nevertheless, SVA requires manual pre-
instrumentation by the developer, and Trippel et al. were able to identify known bugs
rather than exploring novel test cases that can lead to unknown bugs.

Another white-box fuzzer, Introspectre [11] tackles the issue of limited visibility into
the microarchitectural processor state by integrating Introspectre into the register transfer
level (RTL) design flow. However, Introspectre focuses on finding Meltdown-type leaks and
therefore not exhausting the vast space of potential test cases.

7.2 Black-Box Hardware Fuzzing

Turning to black-box fuzzers, there are examples like Transynther [12] which takes a fuzzing-
based approach to perform an in-depth analysis of Meltdown-style attacks and generate new
subvariants. One limitation of Transynther is that it does random mutations without having
fine-grained feedback such as code coverage. Therefore, the starting test case has to be
chosen carefully, otherwise, the fuzzer won’t converge to test cases that trigger vulnerabilities.
Additionally, this is a template-based approach that looks for vulnerabilities of the same
nature as some known code triggering speculation leading to leaks and therefore does not
allow for identifying new kinds of vulnerabilities.

7.3 Performance Counters

Some recent works build on the idea of using performance counters as a means to get insight
into the hardware’s behavior. These works have found performance counters helpful in
identifying cache side-channel attacks [7], [28], and in developing malware detection and
defense mechanisms [6]. For instance, a popular approach involves using machine learning
models that leverage the performance counter profile to identify vulnerabilities [29][28].
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8. Conclusion

In this thesis, we propose PCBleed, a coverage-guided mutational hardware fuzzer that
enhances CPU fuzzing by using hardware performance counters as insight into the CPU’s
behavior to improve test case generation. Our approach leverages the power of fuzzing, an
automated testing method proven effective in uncovering vulnerabilities, by incorporating
performance counter insights to guide the fuzzing process.

PCBleed introduces a comprehensive CPU fuzzing workflow that encompasses test case
generation, mutation, execution, novelty assessment, and bug detection. The workflow begins
with a queue of initial test programs, which are iteratively mutated and executed on the
target CPU while collecting performance counter profiles (PCPs). These PCPs provide
valuable insights into the CPU’s behavior during execution, enabling the assessment of test
case novelty based on their coverage of unique CPU functionalities.

By prioritizing test cases with novel PCPs, PCBleed focuses its efforts on exploring
potentially bug-triggering instruction sequences or those that could lead to such sequences
through further mutations. This targeted approach increases the likelihood of uncovering
vulnerabilities while optimizing the fuzzing process’s efficiency.

The integration of performance counter analysis into the fuzzing process represents a
novel contribution to the field of hardware security, enabling a more informed and directed
exploration of the CPU’s behavior. Through this thesis, we have demonstrated the feasibility
and potential of PCBleed in enhancing CPU fuzzing by leveraging hardware performance
counters. The proposed approach holds promise for improving the effectiveness of hard-
ware verification, ultimately contributing to the development of more secure and reliable
computing systems.
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A. Zenbleed’s zen2_leak_train_mm0
implementation

1 zen2_leak_train_mm0:
2 vzeroall
3 xor rax , rax
4 movd mm0 , rax
5 align 64
6 .restart:
7 mov rcx , 90
8 .again:
9 dec rcx

10 cvtpi2pd xmm4 , mm0
11 cvtpi2pd xmm3 , mm0
12 cvtpi2pd xmm2 , mm0
13 cvtpi2pd xmm1 , mm0
14 cvtpi2pd xmm0 , mm0
15 vmovdqa ymm0 , ymm0
16 js .overzero
17 vzeroupper
18 .overzero:
19 jns .again
20 vptest ymm0 , ymm0
21 jz .restart
22 vmovdqu [rdi], ymm0
23 ret
24 hlt
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B. Recreating Zenbleed

1 .intel_syntax noprefix
2 MFENCE # instrumentation
3 .test_case_enter:
4 .function_main:
5 .bb_main.entry:
6 VZEROALL
7 XOR RAX , RAX
8 MOVD MM0 , RAX
9 JMP .bb_main.0

10 .bb_main.0:
11 MOV RCX , 90
12 .bb_main.1:
13 DEC RCX
14 CVTPI2PD XMM4 , MM0
15 CVTPI2PD XMM3 , MM0
16 CVTPI2PD XMM2 , MM0
17 CVTPI2PD XMM1 , MM0
18 CVTPI2PD XMM0 , MM0
19 VMOVDQA YMM0 , YMM0
20 JS .bb_main.3
21 .bb_main.2:
22 VZEROUPPER
23 JNS .bb_main.1
24 .bb_main.3:
25 VPTEST YMM0 , YMM0
26 VPTEST YMM0 , YMM0
27 JZ .bb_main.4
28 JMP .bb_main.5
29 .bb_main.4:
30 MOV RDI , 1
31 JMP .bb_main.exit
32 .bb_main.5:
33 MOV RDI , 2
34 JMP .bb_main.exit
35 .bb_main.exit:
36 .test_case_exit:
37 MFENCE # instrumentation
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C. Novelty Measure Evaluation

C.1 Test Program 1

1 .intel_syntax noprefix
2 MFENCE # instrumentation
3 .test_case_enter:
4 MOV RAX , 1
5 MOV RBX , 2
6 MOV RCX , 3
7 MOV RDX , 4
8 MOV RSI , 5
9 MOV RDI , 6

10 .test_case_exit:
11 MFENCE # instrumentation

C.2 Test Program 2

1 .intel_syntax noprefix
2 MFENCE # instrumentation
3 .test_case_enter:
4 ADD RAX , 1
5 ADD RBX , 2
6 ADD RCX , 3
7 ADD RDX , 4
8 ADD RSI , 5
9 ADD RDI , 6

10 .test_case_exit:
11 MFENCE # instrumentation

C.3 Test Program 3

1 .intel_syntax noprefix
2 MFENCE # instrumentation
3 .test_case_enter:
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4 VZEROUPPER
5 VZEROUPPER
6 VZEROUPPER
7 VZEROUPPER
8 VZEROUPPER
9 VZEROUPPER

10 .test_case_exit:
11 MFENCE # instrumentation

C.4 Test Program 4

1 .intel_syntax noprefix
2 MFENCE # instrumentation
3 .test_case_enter:
4 CVTPI2PD XMM4 , MM0
5 CVTPI2PD XMM3 , MM0
6 CVTPI2PD XMM2 , MM0
7 CVTPI2PD XMM1 , MM0
8 CVTPI2PD XMM0 , MM0
9 VMOVDQA YMM0 , YMM0

10 .test_case_exit:
11 MFENCE # instrumentation

C.5 Test Program 5

1 .intel_syntax noprefix
2 MFENCE # instrumentation
3 .test_case_enter:
4 CVTPI2PD XMM4 , MM0
5 CVTPI2PD XMM3 , MM0
6 CVTPI2PD XMM2 , MM0
7 CVTPI2PD XMM1 , MM0
8 CVTPI2PD XMM0 , MM0
9 .test_case_exit:

10 MFENCE # instrumentation
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