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ABSTRACT

Low-carbon hydrogen (H2) could contribute to achieving long-term climate goals by sup-
porting the decarbonization of several hard-to-abate industries. The U.S. Inflation Reduction
Act includes a tiered hydrogen production tax credit (PTC) awarded for producing H2 below
certain emissions thresholds. One pathway for producing PTC-eligible H2 is water electroly-
sis supplied with low-carbon electricity. But assessing the systems-level emissions associated
with electrolytic H2 is challenging, not only because instantaneous power flows from a par-
ticular producer cannot be directly associated with a particular user, but also because of the
risk that electrolyzers might divert clean electricity away from the grid. Following the pas-
sage of the IRA, there has been a vigorous debate focusing primarily on the time-matching
requirements — that is, the period over which electricity use must match production from
contracted generators — for grid-connected H2 production to receive the PTC.

Applying a macro-energy systems model to case studies of Texas and Florida, we show
that divergent results in the literature, which presented a conundrum for regulators trying
to pick between policy options, are explained by different interpretations of the proposed
“additionality” requirement. Specifically, the emissions associated with H2 production under
different “time-matching” requirements are conditional on how additionality is modeled. We
further show that the interaction of these qualifying time-matching requirements with other
energy system policies could reduce the merits of more stringent time-matching requirements.
For instance, if a region has a relatively high renewable portfolio standards (RPSs) to enable
grid decarbonization, we show that less stringent (and therefore less costly) time-matching
requirements are sufficient to avoid any increases in system-level emissions.

Building on this analysis, we explore how uncertainty in inter-annual variable renewable
energy (VRE) generation complicates the implementation of stringent PTC requirements.
We confirm that a system design that accounts for inter-annual VRE uncertainty comes at
a cost premium — a reality ignored by the existing literature. In addition, we show that
inter-annual VRE uncertainty will necessitate the formation of markets for hourly electricity
attribution certificates (EACs) to make up for inevitable shortfalls in supply of contracted
VRE electricity supply under an hourly time-matching requirement.

We recommend that the Treasury adopt a phased and regionally differentiated approach
to implementing the PTC — regions without RPS policies could transition to an hourly
time-matching requirement in the mid-term (e.g., by 2030), whereas regions with sufficient
RPS policies could continue with looser requirements. In addition to PTC implementation,
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these results are relevant to the broader field of Scope 2 emissions accounting for voluntary
(e.g. corporate net-zero goals) and regulatory purposes. As more private enterprises, such as
data centers owners, pursue voluntary measures to reduce their electricity-related emissions,
our work provides a foundation for further research into clean energy procurement standards
(voluntary or mandated) that support power sector decarbonization.

Thesis supervisor: Dharik Mallapragada
Title: Visiting Scientist, MIT Energy Initiative

Thesis supervisor: Ruaridh Macdonald
Title: Research Scientist, MIT Energy Initiative
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Chapter 1: Introduction 
 

Ultimately, the success of industrial policy depends on its implementation, and that is something 

that remains to be determined... If these initiatives are not implemented well, the United States 

will waste resources and time—and it does not have the luxury of wasting either... But done right, 

these new measures could make the United States a more competitive and greener country, 

helping it lead the world for decades to come. 

— John M. Deutch and Ernest J. Moniz (2022) 

 

Following the passage of the Inflation Reduction Act (IRA) in September 2022, Ernest Moniz, 

former Secretary of Energy, and John Deutch, former CIA Director, argued in Foreign Affairs [1] 

that the success of the U.S.’s efforts to combat climate change and revamp American industry 

hinge on effective implementation. The alternative is “wasting time and resources” as humanity 

marches towards catastrophic levels of climate change. 

Their article foreshadowed a fierce debate over one of the IRA’s key provisions — an uncapped 

subsidy for producing low-carbon hydrogen that is estimated to cost $385-756 billion [2]. 

Congress wrote the hydrogen production tax credit (PTC), also known as the 45V tax credit, into 

law in August 2022, but left key details related to implementation up to the Department of Treasury, 

which was tasked with finalizing the rules by August 2023 [3]. It wasn’t until December 22, 2023, 

that the Treasury announced their proposed rules, delayed by fierce disagreement between industry, 

civil society, and academia over how strictly to implement the credit.   

Proponents of strict requirements argued that lax standards would fund emissions intensive 

hydrogen projects, deviating from the legal intent of the IRA and undermining the U.S.’s climate 

commitments. Opponents of strict requirement argued that they would increase the technical and 

economic barriers to developing low-carbon hydrogen projects, which will slow the growth of 

low-carbon hydrogen industry and in turn hamper the decarbonization of other critical industries. 
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My lab and I entered this debate curious how macro-energy systems modeling could help identify 

the tradeoffs between strict and loose regulation. We observed that high-profile papers on the topic, 

which rely on macro-energy systems optimization models, were reaching conflicting conclusions 

about the emissions levels associated with different qualifying standards. This disagreement made 

it difficult for regulators to assess the policy options they were presented with. 

This thesis describes my efforts to resolve this debate and the resulting insights into how the PTC 

should be implemented. Chapter 2 introduces the policy itself and salient questions related to its 

implementation. Chapter 3 describes how my lab and I resolved conflicting results between two 

high-profile papers regarding the emissions risks of different policy options by interrogating their 

different modeling approaches. In an article published in Nature Energy (Giovanniello et al., 2024), 

we called on the Treasury to adopt a phased approach to implementing the PTC — start with lax 

requirements in the near term, followed by a phase-in of strict requirements as electrolyzer demand 

grows and subsequent phase-out of strict requirement as the grid is deeply decarbonized. We also 

identified how policies that mandate the deployment of renewables minimize the emissions risks 

associated with looser requirements, which is a result with implications for the broader topic of 

low-carbon electricity accounting for specific loads (e.g., data centers). Chapter 4 describes my 

ongoing research into how the uncertainty of inter-annual renewables generation complicates the 

implementation of stringent PTC requirements.  

This research is fundamentally at the intersection of technology and policy. I ask: how can the 

Treasury best implement the hydrogen PTC to scale the electrolyzer industry in service of the 

U.S.’s climate commitments? Throughout the research process, I also grappled with another issue 

of technology policy — the policy insights that we derive from macro-energy systems models are 

limited by our understanding of the complex technical, social, and policy context that these models 

aim to distill. Building a good model requires deeply investigating a complex system in order to 

identify its key features. The results, at best, map loosely to reality.  Only by interrogating where 

the model does and does not reflect reality can we gain useful insights. This thesis serves as a 

reflection on the notion that effective modeling is as much about understanding the systems and 

contexts we want to model as it is a technical exercise. 
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Chapter 2: The Hydrogen Production Tax Credit 
 

2.1 Background 

Low-carbon hydrogen (H2) is a promising pathway for decarbonizing a number of high-emitting 

and hard-to-abate industries, such as fertilizer and steel. Today, 98% of H2 is produced using fossil 

fuels, which accounts for roughly 3% of global greenhouse gas emissions [4]. Low-carbon H2 can 

be made using clean electricity via electrolysis, a process where electricity is used to split water 

(H2O) into hydrogen (H2) and oxygen (O). Policies aimed at economy-wide decarbonization, such 

as the Inflation Reduction Act (IRA) in the United States, emphasize electrifying end uses while 

decarbonizing the growing electric power supply [3]. In this context, electrolytic H2 can play an 

important role in accomplishing economy-wide decarbonization, because it serves as a link 

between the growing clean electricity sector and industries that cannot be decarbonized via direct 

electrification.  

The hydrogen production tax credit (PTC) was designed to kickstart the U.S.’s clean H2 industry. 

It is an uncapped subsidy that is awarded per unit of H2 that is produced below certain emissions 

thresholds. The maximum award is $3 per kilogram for projects that begin construction before 

January 1, 2033 for a period of 10 years. This per kg subsidy is roughly three times the cost of 

producing H2 using traditional fossil-fuel methods. The statute is technology neutral, but the 

electrolyzer industry is expected to be a major beneficiary.  

Table 1: PTC subsidy tiers. Subsidy is awarded per kilogram of H2 that is produced within specific emissions intensity ranges. 

Lifecycle GHG Emissions 
(kg CO2eq/kgH2) 

PTC  
($/kgH2) [3] 

2.5 - 4.0 0.6 

1.5 - 2.5 0.75 

0.45 - 1.5 1.0 

0.0 - 0.45 3.0 
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Simply using grid-connected electricity to power electrolyzers, even in relatively high variable 

renewable energy (VRE) grids in the United States in 2021, such as California’s, would result in 

greater emissions than H2 produced from natural gas (NG) steam methane reforming (SMR) 

without carbon capture and storage (CCS) [5]. Thus, for an electrolytic H2 producer to qualify for 

the PTC, they must demonstrate that their electricity is sourced from low-carbon generators. The 

simplest way to do so would be to connect the electrolyzer directly to a VRE resource. However, 

H2 is expensive to transport, and the best land for siting VREs may not be not be where the H2 

would be consumed [6]. As a result, the most likely business model for producing electrolytic H2 

involves connecting the electrolyzer to the grid, then contracting with a low-carbon generator 

elsewhere to “match” the electrolyzer’s electricity consumption. But this connection with the grid 

introduces several complex questions that makes implementing the PTC challenging. 

1. What does it mean to “match” the electricity consumption of the electrolyzer to the generation 
of a contracted resource?  

One approach, known as annual time matching, requires that the low-carbon electricity that is 

generated is at least equal to the electricity used over the course of a full year. Figure 1A illustrates 

how this would entail the contracted VRE resource overproducing relative to demand in some 

hours, and underproducing in others. When the contracted VRE is underproducing, the gap is made 

up by the grid, which means that the H2 that is produces is as dirty as the marginal generator on 

the grid. Another approach, known as hourly time matching, requires that the electricity supplied 

by contracted generators is at least equal to the electricity consumption of the electrolyzer for all 

hours (Figure 1B). This guarantees low emissions, but it requires significantly more investment in 

VREs and other technologies like batteries and H2 storage.  
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Figure 1: Simplified illustration of annual vs. hourly time matching. Electricity demand and contracted VRE 
resource output under an annual (a) and hourly (b) time-matching requirement simplified such that the requirements 
are only enforced over eight hours. In the annual plot, aggregate electrolyzer demand is equal to aggregate output 
from the contracted VRE over the eight hours, which corresponds with over generation in some hours and under 
generation in other hours. In the hourly plot, contracted VRE output is greater than or equal to electrolyzer demand 
in each hour. To accomplish this, the VRE resources has to be sized at a higher capacity. Both subplots use the same 
VRE generation profile, but the capacity is sized to the minimum required to meet the relevant requirement. In practice, 
to meet the H2 PTC hourly requirement a mix of VRE, batteries, and H2 storage with flexible electrolyzer operation 
can be deployed. 

 

2. What kind of electricity generators should be allowed to count towards the time-matching 
requirement?  

Low- or zero-carbon electricity must be used for electrolytic H2 to qualify for the PTC. Many 

papers and reports have argued that an additionality standard should be applied to decide which 

generators are eligible [7], [8], [9], [10], which means that a generator would not have been built 

if not for the electrolyzer project. Using electricity from low-carbon generators that existed before 

the electrolyzer is problematic; the end result is more electricity demand without more low-carbon 

electricity generation, and therefore higher emissions at the system level. At a minimum, only 

generators built around the same time or after the electrolyzer begins operation should be eligible. 

But even the use of newly built generators can be problematic. In the context of a power sector 

that is rapidly adding VRE capacity, it is easy to imagine generators that were going to be built to 

serve the grid contracting with an electrolyzer project to get in on the lucrative tax credit. The 

result is, once again, more demand without more clean electricity generation. This risk of 

“diverting” clean electricity resources away from the grid is difficult to measure and manage, 
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because we can only guess how much clean energy capacity would have been deployed in a world 

without the PTC.   

3. How close should the contracted low-carbon generator be to the electrolyzer?  

Just because a generator is placed on the same grid system as an electrolyzer does not mean the 

electrolyzer can access its electricity. The deliverability of electricity is constrained by the 

capacity of the electricity transmission system. For example, in Texas, clean electricity generated 

in the Northwestern part of the state cannot always be delivered to the state’s major load centers 

because of transmission bottlenecks [11]. If the low-carbon generator contracted by an electrolyzer 

is on the other side of a transmission bottleneck, then the electricity demand of the electrolyzer 

will have to be met by the marginal generator in its area, while the electricity from the contracted 

resource is either curtailed or used in an area that is potentially saturated with VRE resources. 

Table 2 provides an overview of approaches to implementing PTC qualifying requirements related 

to electricity time matching, additionality, and deliverability. 

Table 2: Overview of the approaches for implementing PTC qualifying requirements. Qualifying requirements are 
defined across three dimensions (electricity time matching, additionality, and deliverability) and are ranked from least 
strict to strictest. 

 Least strict requirement Intermediate 
requirement 

Strictest requirement 

Electricity time 
matching 

Annual time matching  
(in effect in the U.S. until 
2028 [3]) 

Monthly time matching 
(in effect in the EU until 
2030 [12]) 

Hourly time matching 
(required in the EU by 
2030 and in the U.S. by 
2028) 

Additionality Electrolyzer can contract 
for electricity with 
existing generators 

Only generators built 
after or at the same time 
as the electrolyzer begins 
operation are eligible 

Generator would not 
have been built without 
electrolyzer project 

Deliverability No geographic constraints 
on electrolyzer and 
generator placement 

Electrolyzer and 
generator must be 
located on same grid 

Deliverability of clean 
electricity from generator 
to electrolyzer not 
affected by transmissions 
constraints 
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2.2 The Debate Over Implementation 
The debate over PTC implementation intensified in February of 2023 when a coalition of 

environmental organizations and private companies released a joint letter to the White House, 

Treasury, and Department of Energy urging them to adopt the “Three Pillars” — a set of stringent 

PTC requirements relating to additionality, deliverability, and time matching [13]. Led by the 

Natural Resources Defense Council, the coalition called for: 1) use of only additional (i.e., newly 

built) clean electricity resources, 2) deliverability of electricity from those resources to the 

electrolyzers, and 3) an hourly electricity time-matching requirement. They cautioned regulators 

that “weak guidelines for grid-connected systems risk driving up emissions, in direct conflict with 

the IRA’s requirements,” and noted that the text of the 45V tax credit afforded “broad regulatory 

authority” for the Treasury to adopt the three pillars standard. 

The three pillars elicited swift pushback from numerous companies and industry associations. In 

April of 2023, The Clean Hydrogen Future Coalition (CHFC), a hydrogen trade association 

comprised of fossil fuel companies, utilities, and clean energy companies — including Shell, BP, 

Exxon, Chevron, Duke Energy, NextEra, APEX Clean Energy, American Clean Power, etc. — 

publicly called for 1) no additionality requirement, 2) and “reasonable regional restrictions” for 

deliverability, and 2) annual time matching followed by monthly time matching [14]. They were 

joined in May of 2023 by the Fuel Cell and Hydrogen Energy Association (FCHEA) and 54 

companies and organizations in the H2 space arguing that additionality and hourly time matching 

would “significantly stifle the clean hydrogen market by adding unreasonable costs and delays for 

clean hydrogen producers, running counter to the IRA and undermining its economic, jobs, and 

environmental benefits” [15]. 

Amid a maelstrom of competing claims, the Treasury faced the difficult task of deciding which 

qualifying requirements for the PTC would fulfil the IRA’s statutory mandate to scale the low-

carbon H2 industry. In this context, academics can play an important role in equipping regulators 

with evidence to cut through the noise. But the two high profile academic studies on the 

emissions impact of H2 produced under different qualifying requirements were similarly in 

disagreement. Zeyen et al. [16] found that annual matching generally leads to limited associated 

emissions, whereas hourly matching typically raises the cost of H2 production compared to annual 

matching. In contrast, Ricks et al. [9] found that under annual matching, the emissions associated 
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with H2 production are significantly higher than acceptable thresholds, and therefore hourly 

matching is needed. These two conflicting results presented a conundrum for policy makers tasked 

with making imminent decisions about how to implement H2 PTC policies.   

Both Zeyen et al. and Ricks et al. apply power sector optimization models to assess the systems-

level emissions impact induced by a specific grid-connected load that contracts with a specific 

grid-connected generation resource. This is a complex exercise because instantaneous power flows 

from a particular producer cannot be directly associated with a particular user. But characterizing 

the emissions impacts of individual loads is critical for informing the policy-making process. It is 

the basis for regulators to draft qualifying requirements that third parties (e.g., a H2-producer or a 

corporation) need to fulfill for their activities or products to be “certified” as low-carbon and to 

reap financial and/or reputational benefits.  

In the following section, I describe our efforts to understand and resolve this conflict in the 

literature. We start with the observation that the modeling assumptions adopted by Zeyen et al and 

Ricks et al. imply different understandings of what constitutes additionality. We use an open-source 

energy system model [17] to quantify the interaction between alternative interpretations of 

additionality (which we label “compete” and “non-compete”) and time-matching requirements 

(annual and hourly) in terms of consequential emissions and the levelized cost of electrolytic H2 

production (LCOH). We find that the emissions impact of a time-matching requirement is 

conditional upon the applied additionality modeling framework and this observation partly 

explains the divergent findings of the above-mentioned papers. Furthermore, through modeling of 

different contextual policies, we demonstrate that the standard “compete” additionality framework 

in many contexts is likely to overestimate of the emissions impact of annual matching and/or 

underestimate those for hourly matching. We identify the critical role that policies that drive the 

deployment of VRE resources — such as state-level renewable portfolio standards (RPSs) or 

corporate power purchasing agreements (PPAs) — can play in minimizing the risk that H2 

production will lead to emissions increases under less strict time-matching requirements. In 

general, this study highlights that one cannot generalize emissions impacts of a selected time-

matching requirement in isolation from how other qualification requirements are defined and other 

existing energy system-related policies that are in place.   
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Chapter 3: The Influence of Additionality and Time-
Matching Requirements on the Emissions from Grid-
Connected Hydrogen Production 
This chapter investigates the modeling frameworks used by Zeyen et al and Ricks et al. to 

understand why they reach conflicting recommendations for PTC implementation. We identify key 

differences and ask: “how do these different modeling approaches map to reality?” We further 

consider four policy scenarios that give the Treasury insights into how PTC implementation may 

vary based on context. Through this analysis, we offer concrete policy proposal for the Treasury 

to consider regarding how strict to make the time-matching requirement. 

3.1 Different Approaches to Modeling Additionality 
At one extreme, any generation resource that is not operating in the system prior to installation of 

the electrolyzer can be considered “additional.” This additionality definition, used by Ricks et al., 

can be modeled via two parallel runs with cost-optimal brownfield grid expansion under the same 

set of assumptions, including “initial grid” conditions (Figure 2A). The only difference between 

both runs is that one run excludes H2 load (“baseline grid”) while the other includes H2 load that 

is constrained to meet certain temporal and/or spatial matching requirements (“counterfactual 

grid”). The consequential emissions from electrolytic H2 production can be calculated as the 

difference in emissions between both grids. Under this modeling framework, in the counterfactual 

grid, the more low-carbon resources that are built out to satisfy H2 demand, the fewer low-carbon 

resources might be built out merely because of their cost-effectiveness (due to the self-

cannibalization effect of VRE resources). In that sense, H2 demand “competes” with the 

decarbonization of other electrifying sectors without strict matching requirements (e.g., transport 

or heating).  
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Figure 2: Modeling the emissions and cost impacts of additionality. Approaches for evaluating the cost and 
consequential emissions impact of electrolytic H2 production based on the two alternative definitions of additionality. 
a, The ‘compete’ definition (purple dotted box) mirrors the approach of Ricks et al. [9] and allows for competition 
among investment in resources contracted for H2 production and other grid resource investments. b, The ‘non-compete’ 
definition of additionality (yellow dotted box) follows the approach of Zeyen et al. [16] where contracted H2 resources 
are optimized after investments in non-H2 related grid resources. Here contracted H2 resources refer to battery storage, 
wind, solar generation, electrolyzers and H2 storage resources to meet H2 demand and satisfy the specified time-
matching requirement. Note that the baseline grid in both additionality frameworks is the same, whereas the optimized 
grid with H2 resources is different (as indicated by the different colors of the circles). 

At the other extreme, only generation resources that would not have been deployed in the absence 

of electricity demand for H2 production can be considered additional. This additionality definition, 

applied by Zeyen et al, involves evaluating model outcomes in series rather than in parallel (Figure 

2B). First, we solve the cost-optimal grid brownfield expansion excluding H2 load to yield the 

“baseline grid”. Subsequently, the counterfactual grid is obtained by running the cost-effective grid 

expansion to satisfy H2 demand with the expanded baseline grid as a starting point. As H2 demand 

for low-carbon resources is only satisfied after low-carbon resource needs for non-H2 demand or 

any other decarbonization policy is fulfilled, H2 load does not compete with other drivers for 



 
18 

investment in low-carbon electricity. This so-called “non-compete” framework implies a stricter 

definition for additionality, while the additionality definition according to the “compete” 

framework is easier to enforce in practice. 

 

3.2 Four Critical Policy Scenarios 
Besides analyzing alternative additionality frameworks, we also evaluate the impact of four 

policies on the system impacts of time-matching requirements under the “compete” additionality 

framework, where such policy interactions are relevant ( 

Third, we constrain the maximum annual capacity factor of the electrolyzer, so as to incentivize a 

producer meeting a fixed H2 demand under annual time-matching to forgo production during 

periods of high electricity prices. This policy would also reduce the emissions impact of H2 

production in a fossil-fuel dominant power system, where periods of high electricity prices are 

correlated with periods of high marginal grid emissions intensity.  

Table 3). First, to analyze the impact of the initial grid on the emissions and LCOH of alternative 

qualifying requirements, we evaluate scenarios where we impose minimum annual VRE 

generation requirements (60% and 80% of the non-H2 electricity demand). Such an annual VRE 

generation requirement can be realized by two approaches in isolation or in combination: via 

renewable portfolio standard (RPS) policies [18], as is in place in 29 U.S. states as of June 2023 

[19], or via decentralized procurement of VRE supply by several end-use customers, e.g., by the 

numerous pledges of corporates to become climate neutral [20]. When including a minimum VRE 

requirement under the “compete” framework, VRE for non-H2 load is prioritized. This 

prioritization, by definition, is inherent in the “non-compete” framework.   

Second, many grids are facing significant delays in connecting new generation to the transmission 

grid [21], [22], which was not considered in prior studies. We model this policy failure by adding 

a constraint that limits the capacity of VRE and battery storage that can be built out (see Methods).  

Third, we constrain the maximum annual capacity factor of the electrolyzer, so as to incentivize a 

producer meeting a fixed H2 demand under annual time-matching to forgo production during 

periods of high electricity prices. This policy would also reduce the emissions impact of H2 
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production in a fossil-fuel dominant power system, where periods of high electricity prices are 

correlated with periods of high marginal grid emissions intensity.  

Table 3: Summary of the four relevant energy policy scenarios. Scenarios are selected based on their potential 
relevance for the emissions and cost associated with H2 production under alternative time-matching and additionality 
requirements.  

   Standard case   Policy scenario   

Minimum annual VRE 

generation requirement 

(“RPS”)   

None   60 and 80% VRE target for non- H2 
electricity demand (Eq. 5)   

VRE + battery storage 

capacity buildout limit   
Unconstrained    15 GW (Eq. 6)   

Limiting the 

electrolyzer’s annual 

capacity factor   

Baseload and unconstrained 
flexible operation    

Range of max. annual capacity 
factors (20%-80%) (Eq. 7) 

Use of NG-based H2 to 
meet H2 demand   

Only electrolytic H2    Competition for H2 production 
between electrolysis and NG-based 
H2 with CCS   

 

Fourth, while most studies on qualifying requirements focus exclusively on electrolytic H2, other 

H2 pathways like NG-based H2 production with CCS (so-called blue H2) are also receiving policy 

support. To understand how qualifying requirements impact competition between green and blue 

H2, we evaluate scenarios with the option to also invest in blue H2.   
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3.3 Methods  

3.3.1 Model Formulation and Assumptions 

Model overview 

This study uses the Decision Optimization of Low-carbon Power and Hydrogen Networks model 

[17], an open-source energy systems capacity expansion model that co-optimizes investment and 

operation of electrical power and H2 sectors while considering their spatially and temporally 

resolved interactions. The model minimizes the total system cost associated with the infrastructure 

of both commodities (electricity and H2). This includes annualized capital costs for new capacity 

and fixed and variable operating costs for both existing and new generation, storage and 

transmission capacity and any costs for load shedding. The cost minimization is carried out subject 

to many system and technology-level constraints, including: ramping limits and temporally 

dependent resource availability limits for VRE generation and system-level constraints, which 

includes hourly energy supply–demand balance for H2 and electricity at each location, and case-

specific or hourly/annual time matching and energy share requirements. Further details of the 

model formulation and set-up can be found in [17]. Key modifications and additions to the model 

that were implemented for this analysis are reported in subsequent sections. 

Region and time horizon of interest 

Our analysis is based on two regional U.S. grids that are representative of low and high end of 

VRE generation share in U.S. as of 2021: grids managed by the Electric Reliability Council of 

Texas (ERCOT) and the Florida Reliability Coordinating Council (FRCC). The contributions of 

grid-connected VRE generation in ERCOT and FRCC grids as of 2021 were 26.5% (3.1% solar, 

23.4% wind) and 3.0% (3.0% solar, 0% wind), respectively. Low VRE penetration grids are a 

common occurrence in the U.S. as of 2021—for example, Mid-Atlantic (2.4%), New England 

(6.1%) and East South Central (0.4%) [23]. Full results for FRCC are reported in Supplementary 

Figs. 19–27. 

Power sector modelling assumptions 

The data inputs and sources used to define the 2021 system for both ERCOT and FRCC studies 

are provided in the Supplementary Information. Unless otherwise stated, all costs have been 
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converted to 2021 U.S. dollars. Relevant technology cost and performance assumptions are 

reported in Supplementary Tables 1 and 2. Across all scenarios, we allow the model to alter the 

power capacity mix via investment in solar, wind and Li-ion battery storage, both for non-H2 and 

H2 electricity demand and retirement of existing fossil fuel generation resources. In our analysis, 

we do not allow for retirements of existing nuclear plants, based on the assumption that it would 

be economically viable to continue running these plants based on the available credits for nuclear 

in the IRA. The parametrization of battery storage also considers a self-discharge rate of 0.002% 

per hour [24]. The model can independently vary the installed energy capacity and power capacity 

for Li-ion storage so long as the ratio of energy capacity to power capacity (that is, duration) is 

between 0.15 and 12 h. 

Aggregated power generation capacity for all resources for ERCOT and FRCC are reported in 

Supplementary Table 5. Annual demand and generation information is reported in Supplementary 

Table 6. The electricity demand data was obtained from PowerGenome [25] and corresponds to 

demand for 2021 for the two regions. 

Hourly resource availability data for onshore wind and solar photovoltaics for each region was 

generated by averaging hourly resource availability profiles for weather year 2012 from multiple 

sites, available from a previous study [26]. The site-level data for photovoltaics were simulated 

using site-level irradiation data from the National Solar Radiation Database in conjunction with 

the open-source model PVLIB. In the case of wind, the site-level resource data were simulated 

using site-level wind speed data from the National Renewable Energy Laboratory Wind Integration 

National Dataset Toolkit and power curve data based on the Gamesa G26/2500 wind turbine. 

Further details about the site-level data calculation are provided in the supporting information of 

a previous publication [26]. Supplementary Figure 3 shows the geographic areas used to compute 

average capacity factors for wind and solar generation in FRCC and ERCOT. The regional-level 

wind and solar availability profiles for FRCC were generated by averaging resource availability 

profiles over the entire FRCC service territory. In the case of ERCOT, we considered only sites in 

West Texas and the Panhandle, to account for the fact that this region has the highest quality VRE 

resources and, thus, is likely to dominate new resource deployment (and already dominates 

existing resource deployment). As a simplification, we do not impose additional constraints or 
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costs on VRE deployment and thus do not capture the increasing marginal cost of adding wind and 

solar resources into the system used by other grid studies [9]. 

Supplementary Figure 1 visualizes the hourly demand profile and VRE resource profile for FRCC, 

which highlights how wind availability tends to be low during summer months when electricity 

demand is relatively high. Supplementary Figure 2 visualizes the VRE resource and demand data 

for ERCOT, with wind exhibiting less seasonal variation than in FRCC. 

Fuel cost assumptions 

The model runs were based on fuel price assumptions based on 2019 rather than 2021, as 

summarized in Supplementary Table 4, so as to not consider the short-term distortion in fuel prices 

resulting from exceptional events (COVID-19 pandemic, EU energy crisis and so on). Whereas 

the spot prices of natural gas through 2021 were much higher than 2019 values (as high as 

US$6 per one million British thermal units (MMBtu−1)), prices in 2023 have come down to levels 

seen in 2019. For example, according to the data from the U.S. Energy Information Administration 

[27], the average Henry hub spot price in January and February 2023 were US$3.27 MMBtu−1 

and US$2.38 MMBtu−1, respectively. 

We use modified fuel costs for natural gas technologies using CCS for H2 production to implicitly 

account for the cost of CO2 transportation and storage. The incremental CCS cost adder to the fuel 

cost is computed by multiplying the captured CO2 per MMBtu of NG (Supplementary Table 3) 

with the assumed CO2 transportation and storage cost), equal to US$11.6 tonne−1 per the 

assumption used by the National Energy Technology Laboratory in their techno-economic analysis 

of natural gas H2 production technologies [28]. 

 

3.3.2 H2 System Characterization and PTC Constraint Formulation 

H2 demand characterization and electrolyzer capacity modeling 

Under both baseload and flexible electrolyzer operation in our analysis, electrolyzer capacity is 

sized to meet exogeneous H2 demand, such that at any hour, only 95% of the installed capacity is 

available for generation. This is to account for planned outages related to maintenance. We 

evaluated the system outcomes for varying levels of hourly H2 demand of 18.4 to 92.1 tonnes of 
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H2 per hour (0.16 to 0.81 MT per year), which for typical electrolyzer specific power consumption 

(54.3 MWh tonne−1) ranges from 1 to 5 GW of hourly electric power consumption. For simplicity, 

when discussing results, we use labels such as ‘1 GW’ to indicate an hourly H2 demand level of 

18.4 tonnes of H2 per hour. Because the total amount of H2 produced is fixed, the available PTC 

does not impact the operational behavior of the electrolyzer and therefore we do not consider it in 

the model but rather include it when estimating the levelized cost of H2. Eq. 1 enforces that sum 

of electrolytic H2 production (!"#!
"#$)	plus production from natural gas reforming technologies, 

if available (∑ !"#%,!
'(

%	∈	( )  plus net discharge of H2 storage ('()*ℎ!!+, −	*ℎ!!+,), if available, 

must equal the exogeneous hourly H2 demand (-!+,) for all hours of the year.  

!"#!
"#$ + ∑ !"#-,!

'(
-	∈	+!" 	+ 	'()*ℎ!!

+, −	*ℎ!!
+, =	-!

+,											∀1 ∈ 3                    (1) 

Supplementary Table 2 summarizes cost assumptions for electrolyzers and H2 storage and natural 

gas H2 production with CCS. The latter is only considered in the policy scenario evaluating 

competition between green and blue H2 pathways. 

Time-matching requirements modeling 

As in [9] and [16], we model two time-matching requirements—hourly and annual. We compare 

the results for these time-matching requirements under two alternative frameworks for 

additionality, as defined earlier. 

Annual time matching is implemented via a constraint that requires that the annual generation 

output from contracted wind and solar resources must equal the annual electricity consumption of 

the electrolyzer (Eq. 2). This constraint states that sum of annual VRE generation (!"#%,!./") from 

the set of eligible VRE resources (TMRg) throughout the year must be equal to annual electrolyzer 

electricity consumption, while accounting for energy storage losses. The latter is calculated as a 

product of the annual H2 demand and power consumption per unit of H2 produced (4"#$).  

∑ ∑ !"#%,!
./"

!∈0%∈01/# +∑ ∑ 6'()*ℎ!2,!
34! −	*ℎ!2,!

34!7	2∈01/$ 	= 4"#$ ∑ !"#!
"#$

!	∈	0!∈0              (2) 

Hourly time-matching requirement implemented via a constraint that requires the net hourly output 

of contracted resources (VRE generation and battery storage net discharge) to be at least equal to 

the hourly electricity consumption of the electrolyzer (Eq. 3). For every hour of the year, the 

electrolyzer power consumption, equal to product of its generation times the specific power 
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consumption (4"#$), must be less than or equal to generation from the set of contracted VRE 

generation resources (TMRg) + net injection from set of eligible battery storage (TMRb). This 

ensures that new electrolyzer demand is accounted for by these additional resources at each hour.  

If there is no storage or natural gas reforming technologies, then the electrolyzer will be operating 

in baseload conditions resulting in !"#!
"#$ 	= 	 -!

+, by Eq. 1. 

∑ !"#%,!
./" + ∑ 6'()*ℎ!2,!

34! −	*ℎ!2,!
34!7	2∈01/$ 	%∈01/# ≥ !"#!

"#$4"#$	:;<	=>>	1 ∈ 3	         (3) 

To ensure battery storage charges using only eligible VRE generation resources, we only allow the 

contracted battery, if deployed, to charge in each hour up to the available generation from 

contracted VRE resources (Eq. 4). At each time step, the amount charged by the new battery 

resource (part of set TMRb) cannot exceed maximum available generation from the set of 

contracted VRE resources (TMRg), defined as the sum of the hourly capacity factor (?%,!./") times 

the installed capacity (@=A%./"). This ensures that the battery is charging only when procured VRE 

electricity is available.  

*ℎ!2,!
34! ≤	∑ ?%,!

./" × @=A%./"%∈01/# 	∀	1 ∈ 3	, D ∈ 3EF3                                  (4) 

The hourly time-matching requirement allows for the contracted resources to sell any excess 

electricity in a given hour (for example, an hour with high solar or wind availability) to the grid 

and earn revenues. These revenues can partly offset the capital cost associated with the contracted 

resources, and thereby reduce the cost of H2 production. The option to sell electricity to the grid 

when economical is also available in the annual time-matching requirement case, so long as the 

sum of annual generation matches that of the electricity consumption of the electrolyzer. 

Calculation of the 45V and 45Q tax credit impacts on annualized LCOH 

The 45V production tax credit for producing low-carbon H2 using electrolyzers is only available 

for the first ten years of project operation, and the 45Q tax credit for sequestrating CO2 captured 

from SMR with CCS pathway is available only for the first 12 years of operation. H2 production 

plants will probably be in operation longer than the window for receiving their respective tax 

credit—we assume 20 years for electrolyzers and 25 years for SMR facilities (Supplementary 

Table 2). The annualized impact of the tax credit on LCOH must account for the fact that the credit 

is available only for a portion of the project’s full lifetime, that is, the full US$3 kg−1 PTC will 
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not reduce LCOH by US$3 kg−1. We conducted an annualized cost calculation in which the 

respective credit is awarded for the eligible number of years then not awarded in the remaining 

years of operation. We assume a 4% discount rate and 2% inflation rate for these calculations. The 

net result is a PTC credit, and resulting reduction in LCOH, of US$1.95 kg−1 and 45Q credit of 

US$56.5 tonne−1 CO2 sequestered. 

3.3.3 Methods for Assessing Relevant Policy Scenarios  

The four policy scenarios outlined previously are modeled by adding or altering constraints to the 

baseline model. 

Minimum annual VRE generation requirement 

The minimum annual VRE generation requirement, enforced via Eq. 5, ensures that annual 

generation from non-PPA resources must be at least equal to a specified fraction (G) of annual sum 

of hourly electricity demand (-!5#56). Note that electricity demand does not include electricity 

consumed for H2 production. In addition, generation from PPA VRE resources (i.e., belonging to 

set TMRg) are not counted towards meeting this constraint.  Allowing excess electricity sales from 

PPA VRE resources to be counted towards meeting the annual VRE generation requirement results 

in PPA VRE capacity deployment that is much in excess of H2 production needs. This means that 

electricity rather than H2 is the primary product of these contracted VRE resources. Since our focus 

was on H2 production, we chose to disallow contracted VRE resources to participate in meeting 

the system-wide annual VRE generation requirement constraint. As the relative magnitude of 

“excess sales” (PPA VRE resources not used for H2 production – “excess sales”) is small relative 

to the total amount of VRE production in the system, we argue that this simplification does not 

have a substantial impact on the results. 

∑ ∑ "!"#%./"!	∈0%∈./"	\	01/# ≥ 	G × ∑ -!
5#56

!∈	0 	                        (5) 

Maximum VRE+storage deployment limit 

In cases where the VRE capacity deployment constraint is modelled, we set this limit at 15 GW 

for illustrative reasons. Average VRE additions in ERCOT for the ten-year period 2012–2021 was 

2.7 GW per year [29]. Thus, 15 GW is roughly what might be expected to be installed in ERCOT 

over five years. Note that ERCOT has been one of the power systems where the interconnection 
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queue issue has so far been relatively modest compared with other U.S. power systems (due to a 

proactive buildout of transmission). 

The maximum VRE+ storage deployment is enforced by Eq. 6, which states that the total power 

capacity of new VRE and battery storage resources, both to meet contractual requirements for H2 

production and to serve non-H2 demand, must be less than or equal to an exogenously specified 

value (E=H849 ). 3EF%  and 3EF3  refer to VRE and battery resources for H2 production, 

respectively, and I<('% and I<('3 refer to VRE and battery resources for non-H2 demand. 

∑ @=A%./"%∈01/# +	∑ @=A%./"%∈(:;< +	∑ @=A2
34!

2∈01/$ +	∑ @=A2
34!

2∈(:;<$ ≤ E=H849	        (6) 

Electrolyzer maximum annual capacity factor 

The maximum annual capacity factor limit (?"=>,14?) is implemented by adding Eq. 7 to the model. 

The constraint effectively translates into a minimum electrolyzer capacity deployment constraint 

for an exogeneous annual H2 demand. J"@A refers to the availability factor for the electrolyzer, 

which denotes the fraction of installed capacity (@=A"#$) that is available for production in any 

hour. 

B

CDEF
∑ -!

+,
!	;G	0 ≤	?"#$,14? × J"@A × @=A"#$	              (7) 

 

3.3.4 Metrics of Interest 

The emissions impact of H2 production is evaluated using consequential emissions intensity, 

defined as the difference in power system emissions with and without H2 demand divided by the 

annual quantity of H2 produced. As noted by others [3], [4] this is an appropriate metric for 

assessing emissions intensity in modeling exercises; however, alternative metrics are needed for 

real world accounting, since the “counterfactual grid” used to calculate consequential emissions 

cannot be observed. Although the PTC focuses on lifecycle GHG emissions, as a simplification, 

our analysis only considers CO2 emissions related to fossil fuel combustion for electricity 

generation since these will dominate overall emissions.  

Aside from consequential emissions intensity, we evaluate the levelized cost of H2 (LCOH), which 

approximates the cost to the H2 producer who invests in the electrolyzer and H2 storage, as well as 
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the additional low-carbon electricity generation that is required for the H2 to be eligible for the 

PTC under alternative time-matching and additionality requirements. The LCOH can also be 

thought of as a proxy for the minimum H2 selling price that would lead to a zero profit for the H2 

producer over the lifetime of the investment in the electrolyzer. In practice, the H2 producer may 

not directly invest in the VRE plus battery storage assets, but could instead choose to sign a power 

purchase agreement (PPA) that pays another developer who has invested in these assets.  Here, we 

are trying to approximate the cost of the PPA by accounting for the difference between the cost of 

electricity grid consumption incurred by the H2 producer and the revenues from sales of electricity 

from the VRE plus battery storage assets.  

The LCOH includes: the capital cost of added VRE and battery storage (after the 30% ITC under 

the IRAs), the cost of electricity purchases from the grid for H2 production, revenue from 

electricity sales to the grid from the procured VRE resources (accounting for battery 

charging/discharging), and electrolyzer and H2 storage fixed costs. Revenues and costs for 

electricity purchases and sales to the grid are accounted for based on the shadow price of electricity 

supply-demand balance constraint enforced for each hour of the year in the model. In each case, 

we report the LCOH with and without including the applicable H2 PTC. 

 

3.3.5 Comparison with Other Studies 

 

Table 4 provides a high-level overview of the key assumptions in this study and two other recent 

papers with significant overlap on the research questions of interest.  We do not consider 

transmission constraints and spatial matching requirements. In a nutshell, the major reason behind 

the different results presented in the aforementioned two papers is that in the Ricks et al.’s 

modeling, low-carbon generation built in the baseline grid (orange circle in Figure 2A) to serve 

the non-H2 load can be “shifted” in the counterfactual grid (purple circle in Figure 2A) to serve 

the H2 power demand. Also, under this modeling approach, we allow higher-carbon generators 

that are present in the initial grid (white circle in Figure 2A) to be retired in the baseline grid but 

retained in the counterfactual grid to serve the non-H2 load. Such dynamics, play a much larger 

role under annual time-matching than under hourly matching. In Zeyen et al. this shifting is 
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proscribed, so that the annual time matching largely succeeds in driving the desired additionality 

vis-à-vis the baseline grid, and thus does not lead to high levels of consequential emissions.  
 

Table 4: Comparison of key assumptions and context between this thesis and two other recent papers with a 
significant overlap on the research questions of interest. aThe authors in [16] assume a fixed H2 demand of 28 TWh 
of H2 per annum. bOur model starts with an initial grid resembling generation mix in 2021 and uses 2022 technology 
cost and performance assumptions to evaluate near-term evolution of the grid mix in both regions (Supplementary 
Table 1).  

  Ricks et al. [9] Zeyen et al. [10]  This thesis 

Additionality definition 
evaluated?  

“Compete”   “Non-compete”  
“Compete” and   
“Non-compete’  

Inter-regional transmission 
constraints?  

Yes  Yes  No  

Region and time horizon of 
interest  Western U.S. — 2030  

Germany, Netherlands, — 
2025/2030  

Texas (ERCOT), Florida 
(FRCC) — 2025-2030b  

Exogeneous H2 demand 
characterization  

No demand enforced, both in 
quantity and profile  

Constant hourly H2 demand 
(3.2 GWa)  

Constant hourly H2 demand 
1 and 5 GW  

Energy storage options 
evaluated  Li-ion  

Li-ion, tank-based gaseous 
H2 storage and other lower 
cost forms of H2 storage  

Li-ion, tank-based gaseous 
H2 storage  

Operation of the 
electrolyzer  Flexible  Flexible  Baseload and flexible  

Time-matching 
requirements analyzed  

• Annual matching  
• Hourly matching 

without excess sales  
• Hourly matching with 

excess sales   
• Weekly matching  

• Annual matching  
• Hourly matching 

without excess sales  
• Hourly matching with 

20% excess sales  
• Monthly matching  

• Annual matching  
• Hourly matching with 

excess sales  

  

Note that our assumptions for exogeneous H2 demand and energy storage options are aligned with 

Zeyen et al. but differ from the assumptions of Ricks et al. For instance, we assume a constant 

hourly H2 demand, which is what would be expected from typical industrial applications that are 

likely to be major consumers of electrolysis-based H2 [30]. This implies that irrespective of 

electrolyzer operating mode, the combination of electrolyzer output plus net discharge of H2 

storage, where available, must meet a constant H2 load for each hour of the year. We model cases 

with and without H2 storage investments, corresponding to scenarios with baseload and flexible 

electrolyzer operation, respectively. Baseload operation may be appealing to maximize capital 

utilization and minimize degradation. Under flexible operation, exogenous, time-invariant H2 

demand must be met, as in the baseload case, but electrolyzer size and operation, along with the 
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size of H2 storage, are decision variables (see Eq. 1). In contrast, Ricks et al. do not enforce an 

exogeneous H2 demand, nor in quantity or in profile and also do not model investment in H2 storage. 

As the H2 demand is not fixed exogenously in their model, the electrolyzer can operate flexibly 

depending on relative difference between marginal cost and exogeneous H2 revenue. Finally, even 

though Ricks et al. and Zeyen et al. model additional time-matching requirement options, for 

clarity, we model only the two most debated options– hourly and annual time-matching 

requirements.   

 

3.4 Results 
The results are reported in two subsections. First, we describe how different additionality 

assumptions impact 1) the resource mix of the grid and H2 project, 2) system-level consequential 

emissions, and 3) the levelized cost of hydrogen (LCOH). Then, we describe how the cost and 

emissions outlooks from the additionality framework analysis are impacted by the four relevant 

policy scenarios.  

3.4.1 Impact of Different Interpretations of Additionality 

Figure 3 shows that the contracted resource mix for H2 production under annual time-matching 

requirements is more sensitive to the additionality definition than under hourly requirements. In 

general, wind plays a greater role under an hourly time-matching requirement than under an annual 

requirement for both additionality frameworks in the ERCOT case study. Under the “compete” 

framework, solar generation is preferred to meet annual time-matching requirements, while under 

the “non-compete” framework, wind generation plays a greater role to meet the contractual 

requirement. This is a consequence of which generation resources are built out in the baseline grid 

expansion. Since baseline grid expansion in the ERCOT case study solely results in solar additions 

(Supplementary Figure 4), use of solar to serve H2 load under the “non-compete” framework has 

diminished economic value as compared to the “compete” framework.   
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Figure 3: Power sector resource changes due to H2 production. a–d, Change in power generation and storage 
capacity (a,b) and annual power generation (c,d) resulting from electrolytic H2 production under alternative H2 
demand scenarios, time-matching requirements and additionality frameworks. Results correspond to the case study 
based on the grid managed by ERCOT and are reported relative to the baseline scenario involving grid resource 
expansion without any H2 demand. Power purchase agreement (PPA) refers to resources added specifically to meet 
time-matching requirements for H2 production. 

Compared to annual time-matching, hourly time-matching leads to higher capacities of contracted 

resources for H2 production under both additionality modeling frameworks. Consequently, hourly 

matching generally leads to reductions in carbon-based generation, especially NG, compared 

to the baseline grid scenario for both ERCOT (Figure 3C/D) and FRCC (Supplementary Figure 

19). The increased capacity deployment is necessary to ensure that the VRE generation plus net-

discharge of battery storage from contracted resources is at least equal to hourly electrolyzer power 

consumption (Eq. 3).  
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Figure 4. Difference in average hourly dispatch between grid with and without H2 production. Difference in average 
hourly dispatch in ERCOT between counterfactual and baseline grid under the ‘compete’ (1st column) and ‘non-
compete’ definitions (2nd column) of additionality and annual (top row) and hourly time-matching requirements 
(bottom row): A and B: 5 GW of H2 production with baseload electrolyzer operation and annual time-matching 
requirements. C and D: 5 GW of H2 production with baseload electrolyzer operation and hourly time-matching 
requirements. Resources with suffix ‘_PPA’ refer to resources added specifically to meet time-matching requirements 
for H2 production. 

Extensive deployment also implies that these contracted resources will generate in excess of 

electrolyzer power demand at certain times. As such, more expensive generation on the margin is 

displaced (Figure 4A/B). The displaced generation includes VRE resources that would have been 

deployed in the baseline grid as well as NG and, to a limited extent, coal generation. Hourly time-

matching generally leads to low or negative emissions under both additionality modeling 

frameworks. In the “compete” framework, competition with non-contracted grid resources results 

in less negative, or even positive, consequential emissions (Figure 5).  
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Figure 5: Emissions impacts under alternative additionality frameworks. Consequential emissions intensity of H2 
production for alternative H2 demand scenarios, electrolyzer operation modes and time-matching requirements under 
the ‘Compete’ (a) and ‘Non-compete’ (b) frameworks of additionality. Results correspond to the ERCOT case study 
and are reported relative to the baseline grid. Also shown are threshold emissions intensity values for the H2 PTC in 
the IRA. H2 that meets the Tier 1 limit is eligible for a credit of US$3 kg−1, whereas H2 that meets the Tier 2 or Tier 4 
limits are eligible for credits of US$1.0 kg−1 and US$0.6 kg−1, respectively. 

In the annual time-matching cases and the “compete” framework, additional gas generation is 

needed to meet electricity demand for H2 production during times of low solar availability (Figure 

4C). In contrast, under the “non-compete” framework, increases in gas generation during low VRE 

availability hours are largely offset by decreases in gas and coal generation during hours with high 

solar availability (Figure 4D). This is explained by more VRE investment for non-H2 electricity 

demand under the “non-compete” framework, which is the main driver of the diverging 

consequential emissions under annual matching when comparing both additionality frameworks 

(Figure 5). In the “compete” framework with annual time-matching, the emissions under 

baseload operation are greater than the emissions of H2 produced using NG without CCS 

[11]. Flexible operation slightly mitigates this effect by limiting NG generation versus the baseline 

grid.  

Flexible electrolyzer operation results in lower capacity deployment for both annual and hourly 

time-matching requirements under both additionality modeling frameworks (Figure 5). This is 

because flexible operation enables the shifting of electricity consumption for H2 production to 

better match the availability of contracted VRE resources, while relying on relatively low-cost H2 

storage (Supplementary Table 2) to meet H2 demand. It also avoids the need for expensive battery 
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storage deployment to meet hourly time-matching requirements, instead deploying H2 storage 

capacity (Supplementary Figure 7 and 8). As a consequence, under flexible operation, the volume 

of excess electricity sales is lower (Supplementary Figure 5 and 6), and less negative consequential 

emissions are observed with hourly time-matching (Figure 5). Interestingly, in the 1 GW H2 

demand scenario with hourly time-matching under the “compete” framework, the combined effect 

of flexible operation and competition with other grid resources results in positive consequential 

emissions in both ERCOT (Figure 5) and FRCC (Supplementary Figure 24). This is due to a greater 

reliance on solar compared to the corresponding baseload operation scenario and the lack of any 

contracted battery storage that results in greater reliance on NG to meet net load requirements 

(Supplementary Figures 5 and 6). Higher H2 demand levels result in wind accounting for a greater 

share of contracted VRE capacity towards H2 production, which decreases consequential 

emissions intensity.   

In nearly all cases for ERCOT (Figure 6 and FRCC, Supplementary Figure 25), the LCOH is 

greater under hourly versus annual time-matching requirements when disregarding the 

attribution of a PTC (Figure 6). Under the hourly time-matching requirement with baseload 

electrolyzer operation, the LCOH after including the PTC remains greater than $1/kg in all cases 

and thus not competitive with NG H2 without CCS [11]. Flexible electrolyzer operation reduces 

the LCOH compared to the corresponding baseload operation scenario when disregarding 

the PTC (Figure 6), most notably under an hourly time-matching requirement. This is because the 

reduction in contracted power sector resources more than offsets increases in the fixed cost of the 

electrolyzer and H2 storage. This result reaffirms other studies that note the importance of 

electrolyzer flexibility to minimize the cost of H2 production and support grid decarbonization 

efforts [12].  
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Figure 6: LCOH impacts under alternative additionality frameworks. Levelized cost of H2 (LCOH) for the ERCOT 
case study under scenarios with different H2 demands, time-matching requirements, and electrolyzer operation modes 
under the ‘Compete’ (a) and ‘Non-compete’ (b) additionality frameworks. Levelized cost calculated per description 
provided in 3.3.4. Elec–sales, revenues earned from selling excess electricity to the grid using contracted power sector 
resources; elec–purchases, cost of grid electricity purchased to operate the electrolyzer; electrolyzer–fixed cost, 
annualized capital and fixed operating and maintenance (FOM) cost of the electrolyzer; elec–fixed cost, annualized 
capital and FOM cost of contracted power sector resources, after accounting for investment tax credit (30%); H2 
storage, capital and FOM cost of gaseous H2 storage system, which includes the capital cost of the compressor and 
tank. The total cost with PTC shows the LCOH after accounting for PTC based on consequential emissions for each 
case. 

LCOH without PTC attribution is generally greater under the “non-compete” framework than the 

“compete” framework. This is because the value of excess electricity sales, defined as the 

difference between absolute value of elec-sales and elec-purchases in Figure 6, is generally smaller 

in the “non-compete” vs “compete” framework (Supplementary Tables 7 and 8). This is due to two 

effects. First, in the “compete” framework, H2 is inherently prioritized and contracts the most 

valuable VRE portfolio relative to resources built out for non-H2 load. Second, wholesale 

electricity prices under the “non-compete” framework are more depressed due to greater amounts 

of VRE generation in the baseline grid. However, when attributing the PTC that corresponds to 

the consequential emissions found in our modeling, the “non-compete” cases generally have much 

lower LCOH than the “compete” cases, especially under annual time-matching.  
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3.4.2 Impact of Relevant Energy Policies 

In this subsection we describe the results of our four policy scenarios. We report the most relevant 

modeling runs, rather than discussing all results under alternative H2 demand scenarios, time-

matching requirements, and additionality frameworks.  

The first two policy scenarios — a minimum annual VRE requirement (e.g., an RPS) and a lack 

of an adequate interconnection policy for VRE deployment — test the robustness of the previously 

described additionality modeling results. Their results provide insights into how the emissions 

associated with different time-matching requirements may vary based on regional conditions. The 

final two policy scenarios —an operating constraint on electrolyzers and competition with blue H2 

— assess additional policy levers and technology tradeoffs.  

Imposing an annual VRE generation requirement for non-H2 electricity demand 

Here we introduce a minimum annual VRE requirement in serving non-H2 load that is above the 

level that is optimal with regards to the objective function. Such a requirement can be interpreted 

as an RPS policy or an aggregation of voluntary VRE procurement commitments of grid users. 

This policy scenario is most relevant under annual time matching and the “compete” additionality 

framework due t the high emissions associated with H2 production in the base case (Figure 5).  

 

Figure 7. Emissions and cost under binding renewable electricity targets. a,b, Consequential emissions intensity of H2 production 
(a) and levelized cost of H2 with and without the PTC (b) under VRE requirements (no RPS, 60% RPS and 80% RPS) for scenarios 
with different H2 demand levels, time-matching requirements and electrolyzer operation modes under the ‘compete’ additionality 
framework. Results correspond to the ERCOT case study. For the levelized cost of H2, the awarded PTC subsidy is based on the 
consequential emissions intensity of H2 for each scenario. Additional results for the annual VRE requirement scenarios are reported 
in Supplementary Figs. 12–14. 
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The key finding (Figure 7A) is that enforcing a minimum VRE requirement of 60% under the 

‘compete’ framework is sufficient to reduce the consequential emissions associated with both 

annual and hourly time matching below the most stringent PTC threshold, when flexible 

operation is considered. In short, the consequential emissions under the ‘compete’ framework with 

the RPS mirror those under the ‘non-compete’ framework without RPS (Figure 5). This is because 

the RPS effectively reduces competition between the VREs built for non-H2 load and those 

contracted for H2 production, thereby making the latter ‘strictly additional’. 

Under an hourly time-matching requirement, a RPS of 80% results in less negative consequential 

emissions than the 60% RPS due to the declining value of excess electricity sales from the VRE 

resources available for H2 production. Moreover, under an 80% RPS, the emissions intensity 

associated with H2 production under hourly or annual time-matching requirements becomes 

relatively similar. This finding suggests that in very high VRE grids, at least with regards to 

consequential emissions, the choice of an hourly or annual time-matching requirement has limited 

impact.  

Figure 7B shows that a RPS increases LCOH, not accounting for PTC attribution, similarly to the 

trend seen under the ‘non-compete’ framework as compared with the ‘compete’ framework in 

Figure 6. The competition between VRE deployments for H2 production and the RPS results in a 

lower value of electricity sales to the grid and thus a higher LCOH. The impact is smaller for 

hourly matching, which may be due to the increased availability of energy storage (Supplementary 

Fig. 14) that enables electrolyzers to reduce their electricity purchase costs. Nevertheless, the 

relatively larger LCOH increases for annual time matching with a RPS policy are more than offset 

by the eligible PTC under this scenario. 

 

Introducing a constraint on the VRE + battery storage buildout  

In this policy scenario, we introduce a constraint on the maximum buildout of VRE + battery 

storage. This policy scenario is most relevant under hourly time-matching under which larger VRE 

capacities are deployed to serve H2 load compared to annual time matching. Figure 8 shows the 

results for the “compete” framework and relatively high H2 demand (5 GW) that can be served by 
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operating the electrolyzer flexibly. Under a 1 GW H2 demand and flexible electrolyzer operation, 

the VRE capacity constraint is not binding and hence not shown.  

 

Figure 8. Impact of limits on the capacity of renewables plus storage deployment. a-d, Consequential emissions 
intensity of H2 production (a), levelized cost of H2 (b), power system capacity change (c) and power system generation 
change (d) under an hourly time-matching requirement with 5 GW of hydrogen demand and flexible electrolyzer 
operation with unconstrained VRE plus storage capacity deployment and a 15 GW limit under the ‘compete’ modelling 
framework. Note that 15 GW VRE plus storage deployment limit is not binding for the 1 GW electrolyzer demand. 
Results correspond to the ERCOT case study and are reported relative to the baseline grid involving grid resource 
expansion without any H2 demand. See the caption of Figure 5 for details on the consequential emissions subplot (a) 
and the caption of Figure 6 for details on the LCOH subplot (b). Additional results for the VRE deployment scenarios 
are reported in Supplementary Figs. 17 and 18. An explanation for the 15 GW VRE and storage limit is provided in 
3.3.4. 

A limit on the buildout of VRE and battery storage, which represents interconnection or supply 

chain challenges, leads to equal or lower-than-cost-optimal VRE capacity levels. Figure 8 

highlights that this effect is most impactful under hourly time matching under which higher VRE 

capacity is deployed to serve H2 load. Such a buildout limit results in substantially greater 

consequential emissions associated with hourly matching under the ‘compete’ additionality 

framework (Figure 8A). For 5 GW of H2 demand, a 15 GW deployment limit causes emissions to 

rise from being negative to being greater than 6 tonnes CO2-equivalent per tonne of H2, exceeding 

the least-stringent PTC threshold. This occurs because overbuilding VRE capacity relative to 

electrolyzer demand is not feasible under the buildout limit, which increases fossil fuel generation 

as compared with the baseline grid case (Figure 8D).  
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Surprisingly, Figure 8B shows that the introduced constraint has limited impact on LCOH when 

not considering attribution of the PTC, even though the objective function (system cost) increases 

by approximately 1.5%. When VRE + storage capacity additions are limited, the VRE mix 

deployed to contract with H2 demand favors wind over solar (Figure 8C) to improve capacity 

utilization, which results in lower electricity-related fixed costs than seen in Figure 6. In addition, 

to further improve capacity utilization and minimize VRE curtailment, the capacity of electrolyzer 

and H2 storage are increased (duration increases from 33 to 61 hours of H2 demand), which 

increases their fixed costs and offsets the reduction in electricity-related fixed costs. However, 

because consequential emissions intensity increases with a VRE + storage capacity limit in place, 

substantially higher LCOH is seen when considering the PTC attribution.   

Finally, it is worth noting that modeling the above VRE + storage deployment constraint with the 

same H2 demand is not feasible under the “non-compete” framework. The H2 demand cannot be 

fulfilled anymore, as insufficient VRE capacity is available to be built out. A large share of the 

grid-connected capacity has been utilized by VRE built out in the baseline run to cost-optimally 

serve non-H2 load. A possible implication of this result is that under VRE + storage deployment 

constraints, an hourly time-matching requirement might lead to fewer electrolyzer projects in favor 

of other low-carbon H2 production technologies like NG-based routes with CCS (see Competition 

with NG-based H2 production).  

 

Limiting the electrolyzer’s annual capacity factor  

In this policy scenario, the maximum annual capacity factor of the electrolyzer is incrementally 

reduced below levels that are optimal with regards to the objective function (i.e., overall system 

cost minimization). Setting such limits has been proposed as a lever for reducing emissions under 

an annual time-matching requirement [16] because they may discourage operation during hours 

with expensive electricity, which correlates with dirtier electricity. We focus on the case with 

annual time-matching and the “compete” additionality framework, which saw high electrolyzer 

capacity factors of 95-96% when assuming baseload operation (see Figure S7 and Figure S8).  
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Figure 9. Cost vs. emissions tradeoff of limiting annual electrolyzer capacity factors. Consequential emissions 
intensity vs the levelized cost of H2 (LCOH) under baseload operation, flexible operation, and scenarios with different 
upper limits on annual electrolyzer capacity factor (20%, 30%, 40%, 50%, 60%, 70%, and 80%) under the “compete” 
framework and annual time-matching requirement. Capacity factor refers to the number of hours in a year that the 
electrolyzer is in operation. The color of each marker indicates the capacity factor at which the electrolyzer operates. 
The “Flexible” label indicates the scenarios with flexible electrolyzer operation and no capacity factor limit. The 
“Baseload” indicates the scenarios with baseload electrolyzer operation. Additional results for the electrolyzer 
capacity factor limit analysis are reported in Figure S9- Figure S11.  

Figure 9 illustrates that limiting the electrolyzer capacity factor results in a trade-off between 

emissions and cost. Constraining the electrolyzer capacity factor results in lower emissions under 

an annual time-matching requirement in the “compete” additionality framework, however, this 

reduction comes at the expense of increasing LCOH. As discussed in the previous section, none 

of the scenarios with annual time-matching under the “compete” modeling framework achieve 

even the least stringent PTC emissions threshold. This remains true even at the lowest capacity 

factor limits modeled here (20%). Imposing modest capacity factor limits, for instance 80% or 

70%, lead to relevant reductions in emissions at only a modest increase in the LCOH 

(compared to the scenario where no capacity factor limit is in place — labeled “Flexible”). 

Reducing the capacity factor limit further conversely leads to very low reductions in emissions at 

significant increases in the LCOH.  
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Competition with NG-based H2 production  

In this policy scenario, we introduce competition between electrolytic and NG-based H2 

production to satisfy the exogenous H2 demand under different scenarios using the “compete” 

additionality framework.  

  

Figure 10. Impact of competition with NG-based H2 production on H2 production mix and emissions. H2 production 
capacity by resources type (available resources are electrolyzer, SMR, SMR with CCS, and ATR with CCS) (A) and 
consequential emissions (B) under different scenarios of time-matching requirements, exogeneous H2 demand and 
electrolyzer operation modes. Results correspond to “compete” additionality framework runs for the ERCOT system 
SMR = Steam Methane Reforming. CCS = Carbon Capture and Storage. ATR = Autothermal 
Reforming.  Consequential emissions results correspond to the ERCOT case study and are reported relative to the 
baseline grid involving grid resource expansion without any H2 demand, as defined in Figure 2. Additional results for 
changes in power capacity and generation, absolute power and generation capacity, and electrolyzer capacity factors, 
and battery and H2 storage are reported in Figure S15-Figure S16.  

Figure 10A shows that substitution of electrolyzers with SMR with CCS (blue H2) only occurs in 

scenarios with an hourly time-matching requirement and when baseload electrolyzer operation is 

enforced. This reflects the LCOH results reported in Section 3.1.3, which shows that compared to 

the other scenarios, hourly time-matching with baseload electrolyzer operations leads to 

significantly higher LCOH (Figure 6). An important implication of these results is that, with the 

PTC, electrolytic H2 is competitive with NG-based H2 production with CCS, even under the 

more stringent hourly time-matching requirement, assuming that flexible electrolyzer 

operation is feasible. However, in a range of scenarios, green H2 can be substituted by blue H2, and 

this is most likely under hourly time-matching. Such scenarios include the cases when flexible 

operation is not optimal or feasible (e.g., more expensive H2 storage, or higher than anticipated 

investment cost of electrolyzers) or when contracting VRE is more expensive than anticipated. 
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The latter could also include the scenario when VRE + battery storage deployment is constrained 

due to supply chain or interconnection issues, as highlighted earlier in Figure 8. Future analysis is 

required to better understand under what conditions overall higher energy system-wide emissions 

would result when green (i.e., electrolytic) H2 would be substituted by blue H2 due to the additional 

financing and/or grid connection capacity needs that hourly matching introduces.   

 

3.5 Policy Interpretation 

Two key results summarize our findings from the standard cases (Figures 3-6) across the two 

considered regions (ERCOT and FRCC). First, the consequential emissions of electrolytic H2 are 

conditional upon how the additionality requirement is modeled. Under the “compete” framework, 

an hourly time-matching requirement is the only way to reach consequential emissions that are 

under the threshold needed to receive the highest PTC. In contrast, under the “non-compete” 

framework, an annual time-matching requirement is sufficient in all cases to meet the threshold 

needed to receive the highest PTC ($3/kg). The second key result is that independent of the 

additionality modeling framework, hourly time-matching requirements lead to a higher LCOH 

relative to annual requirements, excluding the attribution of a PTC, but this disparity can be largely 

reduced via flexible electrolyzer operation. Considering both electrolyzer operation modes, we 

find that the increase in LCOH from annual to hourly is $0.25- $2.49/kg, which is a greater range 

than the $0-1/kg increase between hourly time-matching and no time-matching requirements 

reported by Ricks et al. 

Further, we investigated how four policy scenarios impact our results, with a focus on the results 

in the “compete” additionality framework where the impacts of time-matching requirements are 

the most striking.  
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Table 5. Summary of results of the four policy scenarios relative to the results under the “compete” additionality 
framework (Figures 3-6).   

  Time-matching 
requirement  Consequential emissions  LCOH  

Limiting annual 
electrolyzer capacity 
factor  

annual matching   

decrease  increase  

Minimum annual VRE 
generation requirement 
(“RPS”)  

significant decrease across 
all cases  

increase under annual 
requirements  

VRE +battery storage 
capacity buildout limit  

hourly matching  

significant increase when 
limit is binding  

negligible impact  

Use of SMR-CCS to meet 
H2 demand  

increase under hourly 
requirements with baseload 
operation; flexible 
operation cases unchanged  

decrease under hourly 
requirements with baseload 
operation; flexible 
operation cases unchanged   

 

In the first two policy scenarios in Table 5, the consequential emissions under annual matching are 

reduced relative to the standard case. Significantly, state RPS policies reduce the emissions 

associated with H2 production under an annual requirement to below the PTC’s most stringent 

threshold. In the other two policy scenarios, the consequential emissions under hourly time 

matching increase relative to the standard case in some implementations. In summary, these results 

show that the existing literature, which does not consider these relevant policy scenarios, in many 

contexts may overestimate emissions for annual matching and underestimate emissions for hourly 

matching. These results also suggest that the difference in the LCOH under annual and hourly 

matching will likely be smaller relative to the standard case.  

Our results provide robust evidence for our original thesis: one cannot generalize emission impacts 

of a specific time-matching requirement in isolation from how other qualification requirements are 

defined and other existing policies. However, it leaves open an important question for policy 

makers: which time-matching requirement is the most appropriate to consider when determining 

eligibility for the PTC in the U.S.?   
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We call for a regionally differentiated and temporally phased approach. Regarding regional 

differentiation, we argue that hourly matching, which carries the additional costs and 

implementation challenges (described below), is not necessary for states with sufficient RPS 

policies. Our results show that in these states, an annual requirement is sufficient to avoid any 

increases in emissions associated with H2 production. However, further analysis is required to 

determine what constitutes a “sufficient” RPS, which will likely relate not only to the final clean 

energy target itself, but also the timeline of incremental targets for reaching it. 

For states without an RPS, we show that an annual requirement could lead significant emissions 

impacts. Therefore, we propose a phased approach. It can be argued that the near-term context, in 

which the relative demand for renewable electricity for electrolytic H2 is small compared to the 

total additions of VREs, more closely resembles the “non-compete” additionality framework; we 

expect significant non- H2 load related VREs to enter before seeing significantly large volumes of 

electrolytic H2. As of May 2023, installed electrolyzer capacity in the United States amounted to 

67 MW (579 MW under construction) [31], implying that 1 GW and 5 GW electricity-equivalent 

H2 demand would represent roughly a 2X and 10X of installed and under-construction capacity. 

Moreover, in the near-term, demand for green H2 is likely to originate from sectors where H2 is 

already used today (e.g., ammonia production) and thus, be relatively small compared to the scale 

of electricity demand. For example, if 10% of U.S. H2 consumption in 2021 (around 1 MT/year) 

were to immediately shift to consume electrolytic H2, it would amount to around ~1% of U.S. 

electricity consumption as of 2021. At the same time, VRE deployments on the grid are likely to 

grow rapidly in the near term, as evident from their dominance in the existing interconnection 

queue in many U.S. regions [21], as well as due to dedicated VRE incentives, e.g., PTCs or 

investment tax credits (ITCs) in the IRA, state RPSs [19] and corporate procurements [20].   

The above interpretation would imply that less stringent annual time-matching requirements may 

be reasonable in the near term to ensure minimal consequential emissions (Figure 5) while leading 

to lower LCOH outcomes (Figure 6). Requiring hourly time-matching in this decade may work 

against the policy objectives of the PTC to scale green H2 production. While hourly time-matching 

with flexible operation can also achieve low consequential emissions and LCOH outcomes under 

the “non-compete” framework, its implementation would require much larger land area, onsite H2 

storage, and capital investments than under annual time matching that may serve as additional 
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barriers. In the case that electrolytic H2 would manage to secure the scarcely available connection 

capacity, we have shown that the consequential emissions of H2 production under hourly matching 

can significantly exceed the lowest PTC tier (Figure 8).  In addition, under hourly matching, the 

likelihood of substitution of green H2 with blue H2 is higher than under annual matching, again 

leading to potentially increased overall system-wide emissions (Supplementary Figure 28).   

In contrast, in the near-term, lower implementation barriers and electrolyzer H2 sales prices under 

annual matching would encourage the deployment of electrolyzers, allowing for technology scale 

up and associated reductions in capital costs. Realizing low prices for green H2 would support 

long-term economy-wide decarbonization goals by potentially displacing fossil fuel based H2 in 

industrial applications, as well as stimulating new demand for H2 in end uses that are currently 

dominated by fossil fuels (e.g., heavy-duty transport). In the case of the new H2 demand, additional 

investments will be needed to facilitate H2 use (e.g., refueling infrastructure, new equipment), and 

having cheap H2 in the short-term incentivizes its use. To mitigate risk of competition for VREs 

during peak periods, the introduction of an annual capacity factor limit for the electrolyzer can be 

a pragmatic policy to complement annual time-matching requirements. Slight decreases in the 

capacity factor (e.g., capacity factor ≤ 80%) lead to important decreases in emissions at the expense 

of only a limited increase in the LCOH (Supplementary Figure 29).  

However, as demand for green H2 grows, it is likely that the magnitude of VRE resources 

contracted for H2 production will grow and increasingly compete with VRE resources that would 

be deployed for other reasons. In this case, the “compete” framework for additionality is more 

suitable to evaluate the consequential emissions impact of H2 production. Therefore, in the 

medium-term (e.g., 2030 onwards), shifting to hourly time-matching requirements may be 

necessary to avoid the risk of high consequential emissions impacts. Moreover, a phased approach 

for implementing more stringent hourly time-matching may also benefit from capital cost declines 

for power sector resources (VRE, battery storage) and electrolyzers that would make the LCOH 

outcomes for hourly time-matching more compelling than values estimated here.   

Finally, in the longer run, when grids are highly decarbonized (e.g., over 60% of non- H2 load 

covered by low-carbon generation including VREs, nuclear, hydro), an hourly time-matching 

requirement may no longer be necessary. Annual matching under flexible operation can achieve 

negative consequential emissions and similar LCOH outcomes as hourly time matching, without 
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incurring additional VRE and storage investment (Figure 7A). Collectively, these factors indicate 

that a phased approach on defining the qualifying requirements for the H2 PTC may be the most 

pragmatic approach to minimize barriers to grid decarbonization while at the same time stimulating 

electrolytic H2 use in difficult-to-decarbonize applications through the availability of low cost H2 

supply. 
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Chapter 4: The Impact of VRE Uncertainty on PTC Modeling and 

Implementation 

4.1 Motivation: Treasury Proposes Strict Time-Matching Requirements 

On December 22, 2023, four months after the August deadline set by lawmakers, the Treasury 

released a draft of the final PTC rules [26], followed by a 60-day period for public comment. The 

proposal adopted relatively strict versions of additionality, deliverability, and time matching, with 

modest flexibilities that are consistent with the policy recommendations outlined in Chapter 3, 

specifically a phase-in period for hourly time-matching.  

Treasury’s proposed 45V rules [32] 

 

Treasury is currently reviewing over 30,000 public comments before finalizing the rules [32], and 

while there has been no indication that that the additionality or hourly time matching provisions 

will be abandoned, there has been reporting that DOE is actively considering where exemptions 

may be reasonable [33]. 

 

Addi$onality: Electrolyzers must procure electricity from “new clean power” resources 
(instead of “addi8onality, the dra; rules use the term “incrementality”). Eligible resources 
must have begun opera8on no earlier than 36 months before the electrolyzer. 

Deliverability: Electrolyzers and generators must be located within the same transmission 
zone, as defined by the DOE’s Na8onal Transmission Needs Study [27]. This reduces the 
risk that electricity generated by the contracted VRE resource will not be deliverable due 
to transmission boQlenecks.  

Time matching: Annual 8me matching un8l 2028, then hourly. Electrolyzers opera8ng 
before the beginning of 2028 will only have to meet an annual 8me-matching 
requirement. However, all electrolyzers, including exis8ng projects, must meet an hourly 
8me-matching requirement by 2028. Current interpreta8on of the guidance is that 
grandfathering will not be allowed [28]. Compliance with the 8me-matching requirement 
is tracked via the purchase of energy aQribute cer8ficates (EACs), which means that new 
markets for hourly EACs (currently only annual are available) must be created by 2028.  
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4.1.1 Implementing Time Matching: Challenges and Possible Exceptions 

Treasury’s proposed rules raise a number of questions related to the feasibility, cost, and emissions 

of low-carbon electricity-based H2 production in the U.S. Chief among them is the impact of VRE 

uncertainty in meeting a time-matching requirement. When relying on VRE resources for 

electricity supply to meet the time-matching requirement, H2 producers will need to contend with 

the uncertainty in VRE availability across multiple time-scales. A number of papers and reports 

have used optimization models to estimate the resource mix, cost, and emissions associated with 

meeting such requirements [9], [10], [16]. But to the best of our knowledge, none of these studies 

consider the impact of uncertainty in inter-annual VRE availability. This is an important dimension 

for developers who have to make decisions about how to size their electrolyzer and storage systems, 

as well as how to structure their contracts for procuring low-carbon electricity and supplying low-

carbon H2 to their customers. It is also relevant for regulators, who have to decide what reasonable 

flexibilities should be granted to electrolyzer operators. As discussed in 3.4, the intra-annual 

variability and intermittency of VRE resources make time matching more challenging under an 

hourly requirement — we investigate whether inter-annual variability further complicates 

implementation of hourly requirement. 

To understand the significance of inter-annual VRE uncertainty, recall from 3.3.5 that industrial 

applications that use H2 typically require a near constant flow of H2. Contracts between 

electrolyzer operators and their off-takers will likely call for a constant, dependable supply. Thus, 

electrolyzer operators face the challenge of taking a variable and intermittent supply of clean 

electricity and somehow delivering a steady supply of H2, which will likely involve pairing the 

electrolyzer with storage technologies, i.e., H2 storage and battery storage. Existing work focuses 

on finding the lowest cost combination of contracted VRE resources, electrolyzer, and storage 

technologies to meet H2 demand over a single weather year for VRE production (e.g., Chapter 3 

used 2012 VRE availability profiles). But this approach ignores uncertainty in VRE supply across 

years — the cheapest resource mix for one year might not be the best mix when planning a 

multi-year project that will have to provide a steady supply of H2 subject to uncertain VRE 

availability.  

Intuitively, an electrolyzer projected designed to be robust to handle VRE uncertainty will be more 

expensive, because more storage and/or VRE resources will be needed. This implies that the 
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existing literature, which does not consider VRE uncertainty, likely underestimates the cost of time 

matching. We ask what is the impact of inter-annual VRE uncertainty on an electrolyzer projects 

under hourly and annual time-matching requirement? This question has particular significance in 

light of the result from the previous chapter that the emissions associated with different time-

matching requirements are dependent on regional policies and grid contexts. Most significantly, 

binding policies for VRE deployment (e.g., state RPSs) can reduce the emissions under annual 

time matching to below the PTC emissions thresholds. In states where RPSs are driving VRE 

deployment for the grid, the more costly hourly requirement may not be necessary to avoid high 

emissions. If the literature is underestimating the cost of hourly time matching then regulators are 

less equipped to weigh the tradeoffs between the two time matching standards, which is relevant 

as they consider whether there are areas for reasonable exemptions to the hourly matching 

requirement.   

Another critical question is what happens in the event that an electrolyzer is unable to source low-

carbon electricity due to adverse VRE conditions but is contractually obligated to produce 

hydrogen for the off-taker? Recall that the time-matching requirement is tracked through EACs 

(energy attribute certificates). In practice, an electrolyzer operator would likely contract with a 

portfolio of VRE resource owners for the EACs associated with their generation. These contracts 

are not a guarantee that the sun will shine or that the wind will blow. In the event that the contracted 

resources cannot supply EACs — for example, because of a period of low VRE production or 

because the electrolyzer operator did contract with a sufficient mix of resource — the electrolyzer 

operator will need to procure them elsewhere. Currently, many regions have markets for what are 

called renewable energy credits (RECs), which are effectively annual EACs typically used to track 

compliance with the regional RPSs. But there are currently no markets for hourly RECs/EACs that 

electrolyzer operators could turn to in order to meet their hourly requirement if their contracted 

portfolio of additional VRE resources fails. This issue does not emerge in the existing literature, 

because VRE uncertainty is not accounted for in the modeling, and therefore we have little 

information on the extent to which electrolyzer operators might have to turn to real-time hourly 

REC/EAC markets. 

The rest of the chapter focuses on addressing the above questions using the ERCOT case study 

introduced in Chapter 3.  
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4.2 Deterministic vs. Stochastic Modeling: Approaches to Modeling VRE 

Availability 

Existing studies of the cost and emissions performance of time-matching requirements for H2 

production primarily use linear programming models, which optimize investment and dispatch 

decisions for the power and H2 sectors from the perspective of a central planner [9], [10], [16] . 

All such studies, including our own [34], rely on so-called “deterministic” models, which only 

consider VRE output associated with a single weather scenario and assumes perfect foresight of 

resource availability. We anticipate three limitations with this approach (and identify additional 

limitations in the Results and Policy Interpretation). First, the solution of deterministic models 

may be highly sensitive to the selected VRE scenario — in turn, the cost and emissions 

performance of possible policy avenues may not be fully understood by deterministic studies. 

Second, the solutions may not reflect real world decision making. In reality, H2 project developers 

do not have foresight into VRE availability and will instead prioritize a mix of resources that is 

robust across different scenarios, which may result in different decisions being made about the 

composition of H2 systems and the VREs contracted to meet the PTC requirements. Third, 

deterministic models inflate the value of storage assets, because batteries are optimally dispatched 

with perfect foresight of VRE availability across only one year. 

Alternatively, one can make design decisions regarding the power grid and electrolyzer project 

using a stochastic model, where the system design is co-optimized with operation over multiple 

VRE scenarios. In this way, the impact of inter-annual VRE uncertainty is accounted for in the 

design decisions. Mathematically, the stochastic model can be described as a two-stage stochastic 

program with investment decisions made in the first stage and operational decisions for each 

weather scenario made in the second stage [35].  

Here, we build on the deterministic modeling approach described in the previous chapter to 

develop a stochastic model that assesses the impact of VRE uncertainty on PTC implementation. 

We first test the deterministic approach under multiple VRE scenarios and illustrate how that 

system sizing, cost, and emissions are highly variable across these scenarios. We then solve the 

same problem using the stochastic model and compare the stochastic solution to the set of 

deterministic solutions. Finally, we conduct and out-of-sample analysis in which the design 

variables from the deterministic and stochastic runs (i.e., the capacities of grid resources and the 
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components of the and H2 project) are fixed and the system is operated subject to VRE outputs 

associated with different set of VRE scenarios not considered by the models used for determining 

the design. 

 

4.3 Methods 

4.3.1 The Deterministic Model 

The deterministic model introduced in Chapter 3 considers only VRE scenario when finding the 

optimal mix of grid and H2 project resources to meet electricity and H2 demand at the lowest cost. 

The deterministic formulation of the model in this analysis is exactly as the model described in the 

3.3.1., with some modifications outlined in this section. The objective function is composed of two 

parts: (1) the annualized investment cost of new capacity and (2) the annual fixed and variable 

operating costs for both existing and new resources as well as costs for load shedding. 

Eq. 8 provides a simplified writing of the objective function, where K is generators that have new 

capacity, 3 is the set of 8760 hours in a year, I is the set of all existing and new generators, and 

LMN is the cost associated with non-served energy for demand sources O, which are grid load and 

H2 demand.  Full details on the objective function and model formulation can be found at [17].  
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4.3.2 The Stochastic model 

The stochastic model considers multiple VRE availability scenarios and finds the optimal mix of 

grid and H2 project resource capacities that minimizes the sum of investment costs and operational 

costs across all VRE scenarios. The objective function of the stochastic model is comprised of the 

investment cost for grid and H2 resources and the expected value of operational costs for each VRE 

scenario, ), in the set of VRE scenarios, M, where the probability of a specific scenario is PH. We 

assume that all VRE scenarios have equal probability of occurring, although future analysis may 

want to explore a more sophisticated approach to VRE scenario probability. Eq. 9 is a simplified 

representation of the stochastic objective function, which illustrates how the model considers 
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multiple VRE scenarios by considering the expected value of the fixed and variable operation cost 

component across those scenarios.   
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4.3.3 Additional Model Modifications  

Unless otherwise specified, the stochastic model and deterministic model use the same 

assumptions as described in Chapter 3 — i.e., technology cost and performance, as well as power 

system characteristics (electricity demand, existing generators, value of lost load). Here, we report 

noteworthy changes made to the model for this study. 

Clustering low-utilization coal and steam turbine generators 
To increase the number of weather scenarios considered in the stochastic model while maintaining 

computational tractability with off-the-shelf LP solvers (e.g., Gurobi), we reduce the resolution of 

the characterization of the existing power generation fleet. Specifically, we combined all coal and 

steam turbines that either operated at <5% capacity factor in the baseline run from the previous 

analysis or had heat rates greater than 15 MMBTU/MWh into one cluster. This reduced the number 

of generators from 64 to 47, which enabled more scenarios to be considered in the stochastic model. 

Adjusting the value of non-nerved H2 demand 
The value of non-served H2 demand was changed from $1,000,000/kgH2 to $54,300/tonneH2. The 

original value resulted in H2 demand being prioritized over grid load. The new value, which 

translates to $1000/MWh of electrolyzer demand, means that grid load, which incurs a 

$9,000$/MWh cost of curtailment, is prioritized over H2 load, but is still well above the cost of the 

most expensive electricity generator, meaning that H2 demand will only be curtailed in the event 

of scarce electricity supply.  

Constraining on excess electricity sales from PPA resources 
A cap on the quantity of annual electricity sales from PPA resources to the grid is implemented 

under the hourly time-matching requirement to discourage resources that would have been built 

for the grid to be designated as PPA resources and thereby reduce model degeneracy. Eq. 10 

describes how this constraint is implemented in the stochastic model, where the excess electricity 



 
52 

sales limited is enforced for every individual VRE scenario. This constraint is adapted from a 

similar constraint included by Zeyen et al. [16].  Eq. 10 restricts the quantity of electricity sales 

from contracted VREs to the grid at 120% (J = 0.2) of annual electrolyzer demand, which 

translates into a 20% excess sales allowance.  Practically, this constraint introduces a stronger 

operational relationship between PPA resources and electrolyzer by ensuring that majority of 

electricity generated by the VRE resources is contracted by the electrolyzer. 

∑ S∑ "!"#%./"%	∈./" (1) + U=11<;H6-(1) − U=116-4:%5(1)V ≤ (1 + J)∑ !!"#"$!∈	'!∈0 						∀) ∈ M  

(10) 
 

4.3.4 Out-of-sample analysis 

The out-of-sample analysis takes the solutions generated by the stochastic and deterministic model 

results (the design model) and tests their performance using VRE outputs for other (out-of-sample 

model) weather scenarios. The purpose is to assess the robustness of solutions generated by the 

stochastic and deterministic model, as well as gain insights into possible contract designs for 

procurement of hourly renewable electricity and need for real-time hourly EAC markets. The cost-

optimal system design for the power grid and H2 production and storage obtained by the design 

model are fixed in the out-of-sample dispatch model where the operation of this system is 

optimized using an out-of-sample VRE scenario than was used to generate the design solution.  

Without some level of flexibility in the hourly-time matching constraint, the out-of-sample 

dispatch model may be infeasible. To quantify maintain model feasibility and quantify how much 

flexibility is required, a slack term, 3EFH#462 , is introduced into the hourly time-matching 

requirement constraint (see Eq. 11, which is a modification of Eq. 3) for the out-of-sample cases. 

This slack term enables the electrolyzer to operate without perfect matching from contracted 

resources. Without this slack term, the model would be infeasible whenever contracted VRE 

resources are unable to meet the time-matching requirement. Utilization of 3EFH#462 is penalized 

at $500/MWh in the objective function, which is lower than the cost of not serving the grid 

($9000/MWh) but well above the cost of the most expensive electricity generator. This ensures 

that the slack variable is only used when electricity from the PPA resources is scarce, but that the 

time matching constraint will not take priority over the grid during grid scarcity events.  
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4.3.5  Demand and PTC Time Matching Scenarios 

We assess the deterministic and stochastic models considering 1 GW of hourly H2 demand (18.418 

tons of H2 per hour) for all scenarios to be met solely via electrolyzer-based H2 production either 

directly or indirectly via H2 storage. Flexible electrolyzer operation is allowed in all scenarios (see 

3.3.2), which our previous analysis confirmed is the most economic operating mode and is likely 

to be the preferred approach in practice (Figure 6). An annual and hourly time-matching 

requirement is considered when comparing the stochastic solution to the set of deterministic 

solutions. For the out-of-sample analysis, we focus on the impact of the more stringent hourly-

time-matching requirement givens the Treasury’s proposal to enforce hourly matching by 2028.   

4.3.6 VRE Data and Scenario Selection  

Both the deterministic and stochastic model use hourly VRE availability profiles from ERCOT 

as inputs. The deterministic model considers one year of hourly VRE generation (8760 hours), 

whereas the stochastic model considers nine years of hourly data (9 * 8760 hours) for each 

technology (wind, solar). To construct these profiles, we use the ERCOT’s Hourly Wind and 

Solar Generation Profiles dataset [36] which provides solar and wind generation profiles for 

existing and planned plants from 1980 to 2021. Existing plants are defined as VRE plants that 

were operational as of 2020. Planned plants are VRE plants that had received approval for or 

were under construction as of 2020. The ERCOT dataset uses spatially granular historical 

weather data to estimate hourly generation from both types of resources for all years in the 

dataset — e.g., a planned resource will still have an hourly generation profile available for 1980 

that is based on the technical parameters of that plant and the weather conditions in 1980. To 

construct the VRE profiles input into our single-region model of ERCOT, we aggregate by 

existing or planned resources, sum the hourly generation within both groups, and divide the 

aggregated hourly generation by the total capacity of each group. The result is four time series 

(existing/planned x wind/solar) of hourly capacity factors for the years 1980-2021 (Figure 11).  
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Figure 11. Annual capacity factors of solar and wind resources in ERCOT (1980-2021). Capacity factors are reported for solar 
(A, B) and wind (C, D) resources that are either existing (A, C) or planned (B, C) as of 2021. Note that the y-axes do not extend to 
zero, which is done to make it easier to observe variation among years. 

Rather than solving the stochastic model over all 41 weather scenarios, which be computationally 

intractable using commercial solvers, we perform scenario reduction via k-means clustering to 

identify a set of representative scenarios from the data. The data is sorted into 10 clusters, and we 

take the closest timeseries to each centroid to constitute a set of 10 representative VRE scenarios. 

As seen in Chapter 3, wind is favored to meet an hourly time-matching requirement, so we select 

representative VRE years based on wind. Solar scenarios correspond to the 10 years selected from 

the k-means clustering for wind. Due to computational constraints, the stochastic model was only 

able to consider nine VRE scenarios, so the year with the median annual wind capacity factor was 

dropped from the set of 10 representative VRE scenarios identified by the k-means clustering. 

These nine representative VRE scenarios correspond to the years 1980, 1985, 1990, 1991, 2005, 

2008, 2015, 2017, and 2020, whose hourly capacity factor distribution for new wind and solar 

resources is highlighted in Figure 12A and B, respectively.  
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Figure 12. Distribution of hourly wind and solar capacity factors for the nine design cases. Data corresponds to 
planned wind resources (A) and planned solar resource (B) from the nine VRE years selected via k-means clustering 
from the 41 ERCOT VRE scenarios. Design scenarios are label “DX” followed by the year of ERCOT’s VRE data that 
they correspond to. Vertical lines indicate the average capacity factor. To make it easier to see the distribution of hours 
with non-zero capacity factors for solar, hours with capacity factors of less than 0.005 are not shown in the chart, but 
the number of such hours is reported as “Hours with no solar” in the top left of each subplot. 

The 10 out-of-sample VRE scenarios were selected by randomly sampling from the 32 VRE 

scenarios that are not used for the design cases. The selected years were 1982, 1989, 1993, 1998, 

1999, 2000, 2003, 2006, 2012, and 2018 whose hourly capacity factor distribution for new wind 

and solar resources is highlighted in Figure 13A and B, respectively. 
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Figure 13. Distribution of hourly wind and solar capacity factors for the 10 out-of-sample scenarios. Data 
corresponds to planned wind resources (A) and planned solar resource (B) from the 10 VRE years randomly selected 
from 41 ERCOT VRE scenarios, excluding the years used for the design cases. Out-of-sample scenarios are label 
“OX” followed by the year of ERCOT’s VRE data that they correspond to. See caption of Figure 12 for further details. 

 

4.3.7 Metrics of Interest 

The deterministic and stochastic models are compared in terms of the relevant metrics of interested 

used in the analysis in Chapter 3. These include: a) installed power generation capacity by 
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technology type, b) installed electrolyzer capacity, c) installed energy storage capacity by type, 

and d) total generation by resource type, and e) levelized cost of H2 (LCOH).   

For the out-of-sample analysis, we also consider several new metrics. First, the share of unmatched 

electrolyzer demand is the sum of the utilization of the 3EFH#462 variable throughout the year 

divided by annual electrolyzer power demand. This metric reveals the share of the total electrolyzer 

demand that was not matched with electricity injected into the grid by contracted VRE resources. 

Since the model is heavily penalized for using 3EFH#462, at $500/MWh, the share of unmatched 

electrolyzer demand represents the minimum possible utilization of non-contracted grid electricity. 

Second, we track the number of hours in a year for which the 3EFH#462 variable is used, which 

indicates how often electrolyzer operators might turn to an hourly EAC market to procure EACs 

in real-time meet the hourly time-matching requirement. Third, we assess non-served electricity 

(NSE) for the grid, which indicates the fraction of non-H2 power demand that is curtailed over the 

year. Fourth, we assess average annual electricity prices, which are influenced by NSE and 

directly impact the LCOH associated with electrolytic H2 production. This is calculated based on 

the hourly electricity price timeseries produced by the model (i.e., the dual variable or shadow 

price of the system-wide electricity supply-demand balance, see [17] for details). Finally, we 

calculate impact of lost PTC on LCOH. This metric is calculated by summing the total quantity of 

H2 produced during hours in which the hourly time-matching requirement is not fully met — i.e., 

3EFH#462  is utilized — dividing by the total quantity of H2 produced over the year, and then 

multiplying by the annualized PTC value ($1.95/kgH2, see 3.3.2). 
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4.4 Results 

Here, we report the results from the stochastic and deterministic design cases, followed by the 

results from the out-of-sample analysis. The stochastic case, labeled “Stochastic,” refers to solution 

of the stochastic model that simultaneously considers nine VRE scenarios. The deterministic cases, 

in which each of those nine VRE scenarios that comprise the stochastic model are modeled 

deterministically, are labeled “D1 – 9.” We also report the average of the nine deterministic cases, 

labeled “Deterministic Average.”  

4.4.1 Stochastic vs. Deterministic Model with H2 Demand: Design Outcomes 

 

Figure 14. System design of the stochastic and deterministic cases under an hourly time-matching requirement. 
New/retired generator capacity relative to the initial grid state (A), electrolyzer capacity (B) and energy storage 
capacity by storage technology (C) for the stochastic case, average of the nine deterministic cases, and individual 
deterministic design cases. Power purchase agreement (PPA) refers to resources added specifically to meet time-
matching requirements for H2 production. Stochastic model (labeled “Stochastic”) co-optimizes design over 9 VRE 
scenarios, while deterministic model is solved for each of the nine VRE scenarios (labeled “DX”). The average of the 
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nine deterministic cases is reported as “Deterministic Average.” For batteries, energy storage capacity in terms of 
hours of H2 demand is calculated by dividing the battery energy capacity (in GWh) by the electricity required for the 
electrolyzer to produce one hour of H2 demand (i.e., 1GWh / 18.412 tonnesH2) — e.g., a 2GWh battery is storage is 
equivalent to two hours of H2 demand. 

Figure 14 compares key components of the system design from the stochastic and deterministic 

models under an hourly time-matching requirement. Our first key observation is that the design 

of the power sector and H2 project under the deterministic model are highly sensitive to the 

underlying VRE scenario. In particular, the grid changes in solar, batteries, and coal capacity, as 

well as the capacity of H2 storage (Figure 14A/C), vary significantly across VRE scenarios, 

whereas electrolyzer capacity is relatively stable besides two outliers (Figure 14B). Generation by 

resource type is similarly variable across the design cases, with the largest absolute swings in 

natural gas, grid solar, and grid wind generation (Figure 15). 

Second, we note that the design obtained by simply averaging the design across all the 

deterministic cases is notably different than the optimal design obtained from the stochastic 

model (Figure 14). On average, the deterministic cases build more battery capacity and less grid 

solar (Figure 14A, highlighted by the stacked bar corresponding to the deterministic average), as 

well as much less H2 storage than the stochastic model  — 137 versus 72 hours of H2 demand 

(Figure 14C).   This suggests that H2 storage is preferred over battery storage for meeting the time-

matching requirement when accounting for VRE uncertainty. There is also retirement of coal 

capacity in several deterministic cases, averaging ~1 GW across all deterministic cases, whereas 

no coal is retired under the stochastic model.  
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Figure 15: Total annual power generation of stochastic and deterministic cases under an hourly time-matching 
requirement. Stochastic model (labeled “Stochastic”) co-optimizes design over 9 VRE scenarios, while deterministic 
model is solved for each of the nine VRE scenarios (labeled “DX”). The generation values for the stochastic case 
correspond to the average generation under the nine VRE scenarios, which are considered simultaneously by the 
model. The average of the nine deterministic cases is reported as “Deterministic Average.” Power purchase 
agreement (PPA) refers to resources added specifically to meet time-matching requirements for H2 production. 

 

Interestingly, these differences in capacity between the stochastic case and average of the 

deterministic cases do not correspond with notable differences in generation by type (Figure 15). 

This underscores how the stochastic model is sized with reliability in mind. Even though average 

generation by type is similar to the deterministic average, the underlying resource mix is different 

(e.g., more coal) to guarantee reliability across multiple VRE scenarios. Later in this section, we 

describe the relationship between grid reliability and LCOH in the out-of-sample analysis, which 

relates directly to the power sector capacity mix. Figure 14 also highlights that the electrolyzer 

installed capacity is similar across the stochastic and deterministic model outcomes, barring a few 

outliers. This finding is likely due to the relatively high capital cost of the electrolyzer compared 

to VRE resources that make it necessary to have relatively high capacity utilization (77.0 and 73.3% 

for the stochastic and average of the deterministic cases, respectively) irrespective of the VRE 

resource quality.  

 



 
61 

 
Figure 16. System design of stochastic and deterministic cases under an annual time-matching requirement. 
New/retired generator capacity relative to the initial grid state (A), electrolyzer capacity (B) and energy storage 
capacity by storage technology (C) for the stochastic case, average of the nine deterministic cases, and individual 
deterministic design cases. See caption of Figure 14 for further details.  

Figure 16 shows how the differences in system design between the stochastic and deterministic 

models — i.e., system design under the deterministic model is highly sensitive to the underlying 

VRE scenario and the stochastic solution differs from the average of the deterministic solutions 

— are similarly exhibited under an annual time-matching requirement. However, there is less 

variability in the mix of PPA VREs, since only solar is used to meet the annual time-matching 

requirement (see a discussion of this in 3.4.1). Furthermore, there is no variability in electrolyzer 

capacity and less variability in H2 storage capacity compared to the hourly requirement, which 

suggests that VRE uncertainty is more consequential when designing the electrolyzer project 

subject to the more stringent hourly time-matching requirement. 
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4.4.2 Performance of the Stochastic and Deterministic Solutions Under Out-
of-Sample VRE Scenarios 

 
Figure 17. LCOH breakdown for design and out-of-sample cases under the deterministic and stochastic models. 
Levelized cost of H2 (A), contribution of variable electricity costs (i.e., electricity sales by the contracted PPA resources 
and electricity purchases by the electrolyzer)to LCOH (B), and contribution of fixed costs (investment and fixed 
operation and maintenance costs of contracted electricity PPA resources, the electrolyzer, and H2 storage) to LCOH 
(C) for the stochastic model (“Stochastic”) and nine deterministic models (“D1-D9”) under an hourly time-matching 
requirement for the design cases (“X”) and out-of-sample cases (“—“).  
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Figure 17Figure 17A shows LCOH obtained from the stochastic model and nine deterministic model 

runs under hourly time matching for both the design case out-of-sample cases. Recall that LCOH 

considers the fixed cost of the electrolyzer, H2 storage, and contracted VRE resources, as well as 

the variable costs associated with operating those resources and from buying and selling grid 

electricity (3.3.4). We focus on the hourly time-matching requirement for the out-of-sample 

analysis given the greater variability in design outcomes for deterministic and stochastic models 

as compared to the annual time-matching requirement scenario. Furthermore, hourly time 

matching is currently the standard that the U.S. and E.U. have decided to implement by the end of 

the decade (2028 and 2030, respectively)  

For the design cases, LCOH under the stochastic model is (slightly) more expensive than all 

but one deterministic model case, which is to be expected because the optimization has to 

accommodate greater range of variability for VRE resources. The fixed cost of contracted 

electricity resources and the variable cost of electricity sales are the primary factors contributing 

to LCOH variation across the design cases (Figure 17B/C). However, these two LCOH 

components have countervailing impacts on overall LCOH — the more you spend on electricity 

resources the more revenue you earn from electricity sales. Consequently, although there is 

relatively high variation within these costs categories (e.g., 2.5-4 $/kg H2 for fixed electricity costs), 

overall LCOH does not vary dramatically across design cases (2.8-3.5 $/kg H2). Attribution of the 

full PTC, which reduces annualized LCOH by 1.95 $/kg H2, brings most deterministic cases below 

or within $0.25/kg H2 of the $1/kg H2 threshold [11] necessary to be cost competitive with fossil-

fuel based H2 production, whereas the LCOH with PTC of the stochastic solution is 1.39 $/kg H2. 

Regarding out-of-sample performance, LCOH is more variable for designs obtained from 

the deterministic model and exhibits less variability from the designs obtained via the 

stochastic model. Figure 17B illustrates how the LCOH variability under out-of-sample scenarios 

is driven by variability in the revenues earned by electricity sales from the contracted electricity 

resources. While lower LCOH sounds appealing, these instances of lower LCOH in the out-of-

sample deterministic cases are often accompanied with non-served energy on the power grid that 

leads to high electricity prices and thus high electricity sales revenue. In other words, the low 

LCOH outcomes in the out-of-sample cases are symptomatic of a myopic design of power grid 

that leads to non-served energy, rather than a well-functioning H2 project. When the grid fails to 
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meet demand, which occurs more often in the out-of-sample cases for designs using the 

deterministic model (see Figure 18), the price of electricity is set to the value of lost load, which 

has historically been set at $9,000/MWh in ERCOT [37]. VREs that are contracted by the 

electrolyzer can earn high revenues for selling electricity if they are available during these scarcity 

events. Since the electricity sales revenues of contracted VREs is part of the LCOH calculation, 

these high-price grid scarcity events result in lower LCOH. This phenomenon is well-illustrated 

by scenario D3, in which LCOH is typically lower for out-of-sample cases than the design case 

(Figure 17A). Figure 18 illustrates the relationship between non-served electricity demand for the 

grid and high electricity prices, as observed in the out-of-sample analysis of the designs from the 

stochastic and deterministic model. D3, for example, on average experiences nine times as non-

served grid electricity as the other cases (0.0081% vs 0.00087%), corresponding with average an 

electricity price that is nearly double that of the other cases (47.8 vs. 24.1 $/MWh). In this sense, 

the LCOH of out-of-sample deterministic cases “benefit” from a poorly designed, and 

consequently overburdened, power sector.  
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Figure 18. Average electricity price vs. share of non-served grid energy for out-of-sample cases. Each point 
represents an out-of-sample case corresponding to one of the nine design scenarios (differentiated by color) under an 
hourly time-matching requirement. 

Instances of non-served electricity demand not only impact electricity prices and LCOH; they are 

symptomatic of a grid that is struggling to maintain reliable operation when subject to different 

VRE scenarios. The out-of-sample deterministic cases experience more non-served grid 

energy than the out-of-sample stochastic cases. This calls into question how the cost and 

emissions estimates found from deterministic modeling exercises may be skewed by unrealistic 

grid choices made in the deterministic model. Recall, for example, how the deterministic design 

cases had more retirement of carbon-intensive coal generators than the stochastic design case 

(Figure 14) and lesser reliance on H2 storage.  
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Figure 19. Failure to meet perfect hourly time-matching under out-of-sample cases. Annual share of unmatched 
hourly electrolyzer demand vs. number of hours with partial hourly time-matching for out-of-sample cases. Each point 
represents an-out-of-sample case corresponding to one of the nine design scenarios (differentiated by color) under an 
hourly time-matching requirement. The method for computing these metrics is reported in 4.3. 

 

Figure 19 shows two indicators of how “robust” the H2 project design in terms of meeting the 

hourly time-matching requirement: 1) the share of unmatched electrolyzer demand on the x-axis 

and 2) the number of hours in which full hourly time matching is not achieved on the y-axis. The 

stochastic design solution is able to meet 100% of the hourly time-matching requirement 

across all out-of-sample scenarios. In contrast, the deterministic solutions often rely on the 

YZ[IJKLM	variable to relax the time matching constraint and source unmatched electricity 

from the grid. This phenomenon is most pronounced for deterministic design cases with good 

VRE scenarios (i.e., the system was sized according to a year with higher VRE availability year, 

so less VRE and energy storage capacity was installed) when tested using out-of-sample scenarios 

with lower VRE availability. For example, D3, D4, D5, and D7 comprise four of the five years 
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with the highest average wind capacity factors (Figure 12), and their out-of-sample cases routinely 

experience more hours that fail to meet perfect hourly matching than in other cases (Figure 19). 

Although the share of unmatched electrolyzer demand is higher across deterministic out-of-sample 

cases compared to stochastic out-of-sample cases, they never exceed 2.9% and are often nearly 0% 

(Figure 18). Intuitively, this is a low failure rate, and suggests that electrolyzer producer may be 

able to manage this by requiring that a H2 off-taker accommodate this level of flexibility in their 

H2 supply. However, we identify two dynamics related to the contracted battery that potentially 

lead to the model achieving higher levels of hourly matching than might be expected in practice. 

First, the PPA battery systems are oversized relative to the electrolyzer — average PPA battery 

power capacity across the nine deterministic cases is 2.18GW (see Figure 14A), which is greater 

than the average electrolyzer capacity of 1.51GW. In other words, the PPA battery is capable of 

supplying more power than the electrolyzer could possibly use, which suggests that it is being 

sized for some secondary function besides reliability/cost of the H2 project. Second, across the 

deterministic model run for design, only 29.9% of the PPA battery’s electricity throughput is used 

to meet the hourly time-matching requirement, which means the remaining 70.1% is used simply 

for bridge balancing1. These two dynamics — the oversizing of battery power capacity relative to 

electrolyzer capacity and the battery energy throughput primarily serving the grid— of the 

contracted battery in the deterministic design cases with hourly matching indicate that there is a 

“diversion effect” for battery resources. That is, under the current modeling framework battery 

capacity that is built primarily to service the grid is possibly being designated as a PPA 

resource. We discuss the implications of this, from a modeling and a policy perspective, in the 

following section. 

The number of hours in which the hourly requirement is relaxed (Figure 19, x-axis) is a useful 

metric for considering how often electrolyzer operators would either need to turn to a real-time 

hourly EAC market for purchasing EACs to meet their time-matching obligations or require H2 

consumers to reduce consumption. Unless the current formulation of the PTC is adjusted, any hour 

where full time matching is not achieved will result in the H2 produced during that hour not 

 
1 The share of PPA battery electricity that is counted towards the time-matching requirement is calculated by 
considering how much electricity the battery discharged at any given to fill the gap between electrolyzer demand 
and PPA VRE generation. This quantity is summed across all hours of the year then divided by the battery’s total 
energy throughput.  
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receiving the full $3/kgH2 tax credit, even if the volume of unmatched electricity is relatively low. 

Figure 20 shows the impact that not receiving the PTC for this volume of H2 would have on LCOH 

for the out-of-sample cases, with a maximum increase of $0.15/kg H2. To put this number in 

perspective, electrolytically produced H2 needs to achieve and LCOH of $1/kg H2 to be 

competitive with fossil-fuel based H2 production. Thus, even increases on the order of $0.1/kgH2 

may be consequential. 

 

Figure 20. Impact of lost PTC value on LCOH. Data corresponds to the out-of-sample scenarios (distinguished by 
color) for each deterministic design case (labeled “DX”). Markers represent the increase in LCOH resulting from not 
receiving the PTC for all H2 produced in hours without perfect time matching, relative if the full PTC was awarded 
for all H2 produced. 
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4.5 Policy Interpretation 
From the perspective of electrolyzer developers, we show the importance of designing a system 

with inter-annual VRE uncertainty in mind. We confirm that a more system design that accounts 

for VRE uncertainty across years comes at a modest cost premium — a reality ignored by the 

existing literature. Such a design may be necessary for electrolyzer operators to provide reliable 

H2 supply to an off-taker with limited flexibility in their H2 consumption pattern (e.g. an industrial 

facility for ammonia production).  Furthermore, a robust system design may shield electrolyzer 

operators from large year-to-year fluctuations in cost of H2 production that is driven by VRE 

availability and grid electricity prices.   

In the context of hourly time matching, we show that a robust project design — i.e., a design based 

on a stochastic model — is characterized by 1) significantly more H2 storage capacity and 2) a 

diversified mix of solar + wind VRE resources.  Furthermore, we show that the deterministic 

modeling approaches lead to widely varying mixes of contracted energy storage resources, 

generally under-sizing H2 storage and overemphasizing batteries.  

We also illustrate the need for a market for hourly electricity attribution certificates (EACs) once 

an hourly time-matching requirement is implemented. Specifically, we identify what a robust 

project design might look like, but in practice, actually building and contracting for all the 

resources that constitute a robust system design may be infeasible. For example, in our case study 

of ERCOT, we find for an electrolyzer project that supplies 18.418 tonnes of H2/hour (i.e., 1 GW 

electrolyzer) may require roughly 2,500 tonnes of H2 storage (equivalent to 137 hours of H2 

demand). For context, the maximum estimated H2 storage capacity of one of the 379 salt caverns 

in the U.S is 1,000 tonnes, and the largest liquefied above ground H2 storage project in the U.S. 

stores 230 tonnes of H2 [38]. Furthermore, electrolyzer developers, especially smaller enterprises, 

may not have the capacity to contract with the diverse mix of VRE resources needed for a robust 

system design. We find that electrolyzer projects that are not fully robust across multiple VRE 

scenarios may not be able to achieve full hourly matching with their contracted resources for 

hundreds of hours in a year. Unless there is a market for hourly EACs that electrolyzer operators 

can turn to in these instances, they will either have to forfeit the PTC for all H2 produced in those 

hours or curtail their production.  
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This raises an important question for regulators: what reasonable flexibilities can be incorporated 

into the PTC qualifying standards that make deployment feasible but safeguard against emission 

increases? In Chapter 3, we identify state RPS policies as a mechanism that makes the less stringent 

annual time-matching requirement sufficient for reducing the emissions risk. This chapter’s 

findings that inter-annual VRE uncertainty makes implementation more complicated and increases 

the costs of hourly time matching beyond what the literature estimated reinforces the case for 

relaxing the hourly requirement in regions with sufficient RPSs. This argument was echoed by the 

California Air Resources Board and California Clean Energy Commission in a letter to addressed 

the Treasury and the White House [39]. We argue that, at the very least, regulators should consider 

giving electrolyzer operators some leeway to relax the hourly requirement, especially if hourly 

EAC markets fail to materialize. 

Finally, we observe that batteries contracted by the electrolyzer to meet the time-matching 

requirement are, on average, sized to be larger than the peak electrolyzer power consumption and 

a majority of their energy throughput serves the power sector, not the electrolyzer. Recall from 0 

that a cap on the sale of excess electricity from contracted VRE resources is implemented to avoid 

a “diversion” effect, in which grid resources are nominally considered PPA resources but primarily 

serve grid demand. But this does not appear to preclude a similar “diversion” effect for batteries. 

In other words, batteries that would have been built for the grid may be getting designated as PPA 

resources. Mapping this to the real world, it may be the case that RPS policies, may not be 

sufficient to stop energy arbitrage resources (i.e., batteries) from being diverted towards H2 

projects. If such a phenomenon can similarly be expected for other loads, like data centers, that 

pursue time-matching to reduce scope 2 emissions, then the effect could be more VREs on the grid, 

but not additional energy arbitrage resources to accompany them. The answer may be RPS-like 

policies for battery capacity, but only 11 states currently have such targets, and only a subset are 

legally binding [40] [41]. This is a topic that requires further investigation. 
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Chapter 5: Conclusion 
 

The hydrogen production tax credit (PTC), introduced in the Inflation Reduction Act, is a generous 

subsidy for low-carbon H2 production technologies, including the nascent electrolyzer industry. 

Following the IRA’s passage in August 2022, Treasury was tasked with determining key details 

related to its implementation, including what requirements grid-connected electrolyzers should 

have to follow to receive the full credit. This thesis aims to equip stakeholders — including the 

Treasury, regional governments, and industry — with insights into the emissions, cost, and 

feasibility of different PTC requirements (introduced in Chapter 2), so that the electrolyzer industry 

may scale in service of the U.S.’s climate commitments. 

We begin by resolving a conflict in the literature over whether an annual or hourly time-matching 

requirement should be adopted (Chapter 3). We show that disparities in the emissions associated 

with a given time-matching requirement are driven by differences in the approach for modeling 

additionality. By interrogating how these different modeling approaches map to reality, and further 

modeling four relevant policy scenarios, we make the following policy-relevant conclusions: 

1) The stricter hourly time-matching requirement is necessary to avoid high emissions 

associated with grid-connected electrolytic H2 production, unless there are additional 

policies that force power sector decarbonization. 

2) The less strict annual time-matching requirement is sufficient to achieve low emissions if 

there are policies that force power sector grid decarbonization — namely, state renewable 

portfolio standards (RPSs) or a high enough volume of private power-purchasing 

agreements (PPAs).  

3) The Treasury should adopt a phased, regionally differentiated approach. In regions without 

policies that force power sector decarbonization, start with an annual requirement while 

the risk of high emissions associated with grid-connected H2 production is lower, then 

transition to an hourly requirement as the emissions risk increases. Otherwise, simply adopt 

an annual requirement.  

In December 2023, Treasury released its proposed guidelines, which reflect the phased approach 

we advocated for in an MIT Energy Initiative white paper [42] and article in Nature Energy [34]. 
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By 2028, all grid-connected electrolyzers will have to meet an hourly requirement using additional 

low-carbon electricity. But the proposed guidelines do not differentiate based on regional policies 

or grid conditions.  

The Treasury is currently reviewing public comments on its proposed guidelines. In this context, 

Chapter 4 explores a previously unanswered question: what is the impact of inter-annual VRE 

uncertainty on implementing an hourly requirement? This analysis quantifies how inter-annual 

VRE uncertainty presents additional cost and implementation challenges under hourly matching. 

These results equip the Treasury to better weigh the risks and benefits of including exemptions or 

flexibilities in how they implement an hourly requirement. We make the following policy-relevant 

conclusions: 

1) Designing an electrolyzer project to be robust against inter-annual VRE uncertainty carries 

a cost premium under hourly time-matching requirements, and as a result the existing 

literature underestimates the costs associated with an hourly requirement. 

2) Achieving hourly time matching will require the creation of a market for hourly energy 

attribute certificates (EACs) unless some degree of flexibility is included in the 

requirement itself or in the contracts that electrolyzer operators sign with off-takers.  

3) The Treasury should consider a flexible approach to hourly time matching in regions with 

policies that mandate power sector decarbonization. 

The findings are not only relevant for the PTC, but also for a host of similar policies being 

considered by other states/regional governments (e.g., Colorado [43], California [44], and Europe 

[12]) to incentivize H2 production. More generally, these findings are also directly applicable to 

the broader topic of assessing Scope 2 emissions — i.e., the emissions associated with electricity 

consumption by companies. Although we anchor our analysis of time matching in the ongoing 

debate around PTC implementation, our modeling is fundamentally an examination of the 

emissions impact when any grid-connected load follows different clean energy procurement 

standards. Indeed, our analysis of electrolyzers without the flexibility of H2 storage is equivalent 

to how we might model data centers. Recently, there has been a surge in voluntary efforts by 

corporate entities to manage Scope 2 emissions as part of achieving corporate sustainability goals 

[45] [46], as well as increasing interest among regulators and governments to mandate disclosures 

of Scope 2 emissions [47] [48]. Companies, such as Google and Meta, have begun to advocate for 
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different electricity procurement standards, such as annual or hourly time matching [49]. Our 

findings regarding the cost and emissions of alternative temporal matching requirements could 

inform these corporate efforts to meet Scope 2 emissions targets/mandates. In particular, while 

some studies have argued for hourly time matching as the standard for Scope 2 emissions 

accounting [50] [51], our results suggest that context matters. In many instances, less stringent 

standards may be sufficient to ensure system wide emissions benefits. 

The author of this thesis believes that, so far, the Treasury has done well. Transitioning from an 

annual to an hourly time-matching requirement presents challenges, but the alternative — a 

universal annual time-matching requirement — risks wasting hundreds of billions of public funds 

to scale a carbon-intensive electrolyzer industry. However, our results identify the opportunity for 

a regionally differentiated approach, in which regions with policies that drive power sector 

decarbonization can adopt looser requirements without increasing emissions. Further research is 

required to support the Treasury in implementing such an approach and to address limitations in 

our methodology. First, this work does not consider the spatial diversity of contracted VRE 

resources, which will likely be an important consideration for electrolyzer operators who may 

prefer to contract with a diverse portfolio of VREs to mitigate challenges associated with 

renewables variability and intermittency. In addition to enhanced modeling, this topic calls for an 

applied analysis into the extent to which challenges in contracting for such a portfolio, as well as 

sourcing sufficient H2 storage capacity, may favor capital rich enterprises and preclude innovative 

market entrants. Second, our model does not consider “trajectory effects” — i.e., the evolving 

interplay between the power sector, electrolyzers, and policies (such as incremental RPS targets) 

over an extended time horizon. Third, our model only considers a hypothetical RPS scenario for 

ERCOT, but the regionally differentiated approach we recommend will require applied analysis of 

state RPSs, and their aggregate effect in the deliverability regions defined by DOE, to determine 

where it is appropriate to adopt less strict requirements.  
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Chapter 6: Supplemental Information 
 

Supplementary Tables 
Supplementary Table 1. Generation technology cost and performance parameters. A discount rate of 4% is used to annualize 
investment costs. Reported annualized cost account for the investment tax credit (ITC) for wind, solar and battery storage 
deployments, which as per the IRA is set to be 30%. Data corresponds to 2022 costs reported by the NREL Annual Technology 
Baseline 2022 edition [52]. To avoid instances of battery charging and discharging simultaneously, which is possible in a capacity 
expansion model formulated as linear program (LP), we penalize battery charging and discharging with a small but non-zero 
variable operating cost. 

Technology 
Lifetime 
(years) 

Investment cost – 
power ($/MW) 

Annualized 
CAPEX w/ 

ITC – Power 
($/MW/year) 

Investment cost 
– energy 
($/MWh) 

Annualized 
CAPEX w/ 

ITC– Energy 
($/MWh/year) 

Fixed operation and 
maintenance cost 

Variable 
operating 

cost 
($/MWh) 

W/o 
ITC 

W ITC 
W/o 
ITC 

W/o 
ITC 

Power 
($/MW/year) 

Energy 
($/MWh/year) 

Solar PV 30 1176,000 823,200 52,105 - - 52,105 22,721 - 0 

Onshore 
wind 30 1428,000 999,600 56,185 - - 56,185 17,781 - 0 

Li-ion 
battery 
storage 

15 255,150 178,605 16,064 296,100 207,270 18,642 6379 7403 1 

 

Supplementary Table 2. H2 production and storage technology cost and performance parameters. A discount rate of 4% is used to 
annualize investment costs. Data sourced from NREL H2A analysis and other literature [53] [38]. Cost and performance 
assumptions for natural gas reforming technologies sourced from NETL techno-economic analysis study [28]. The cost of feedwater 
for electrolyzer is relatively small compared to the cost of energy and thus is ignored in the analysis. SMR = Steam Methane 
Reforming. CCS = Carbon Capture and Storage. ATR = Autothermal reforming. Cost units of $/MWH2 are based on converting 
per tonne capital costs using H2 lower heating value. 

Technology Lifetime 

Investment cost Annualized 
investment cost 

Fixed operation 
and 

maintenance 
(FOM) cost -H2 
production rate 
($/MWH2/year) 

Variable 
operating 

and 
maintenance 
cost (VOM) 

($/t H2) 

Electrical 
power use 
(MWh/t 

H2) 

Natural 
gas (NG) 

use 
(MMBtu/t 

H2) 

H2 
production 

rate 
($/MWH2) 

Energy 
($/t H2) 

H2 
Production 

rate 
($/MWH2/y) 

Energy 
($/t 

H2/y) 

Electrolyzer 20 1937,791 - 142,586 - 28,604 0 54.3 0 

H2 storage 
(tank) 30 - 587,000 - 33,929 - 0 - 0 

H2 storage 
compressor 15 2451,496 - 220,490 - - 0 0.71 0 

SMR-CCS 25 1324,505 - 84,784 - 36,872 241.99 - 185.9 

ATR-CCS 25 1046,855 - 67,011 - 28,599 357.6 - 174.7 
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Supplementary Table 3. Fuel price assumptions for FRCC and ERCOT case studies. Data sourced from EIA Annual Energy Outlook 
2022 [29] for 2021 prices.  Natural gas and coal modeled with combustion CO2 emissions factors of 0.05306 tCO2/MMBtu and 
0.09552 tCO2/MMBtu, respectively. The natural gas cost for CCS technologies applies to both SMR-CCS and ATR-CCS 
technologies summarized in Supplementary Table 2. 

Fuel FRCC ERCOT 
Natural gas 4.15 2.03 
Natural gas cost for CCS 
technologies 

- 2.62 

Coal 3.37 2.47 
Uranium (for nuclear) 0.71 0.70 

 

Supplementary Table 4. Existing power capacity in GW as of 2021 for ERCOT and FRCC. Generators clusters and technical 
characteristics (e.g., heat rate) were adapted from 2019 data sourced from PowerGenome [25] to match the 2021 capacity as 
reported by EIA [29]. Existing battery storage is assumed to have an energy capacity corresponding to a rated duration of 4 hours. 

 FRCC ERCOT 
Coal 5.4 14.4 
Natural gas combined cycle 31.1 35.1 
Natural gas combustion 
turbine 

10.2 7.0 

Nuclear 3.7 5.0 
NG steam turbine 4.1 10.8 
Biomass 0.3 0.1 
Hydro 0.04 0.5 
Solar 4.8 9.1 
Wind (onshore) 0.0 34.1 
Diurnal battery storage 0.45 0.7 

 

Supplementary Table 5. Characterization of electricity demand, variable renewable energy (VRE) resource availability and 
availability factors for other resources in the system. Availability factors refers to the fraction of nameplate capacity of the resource 
that can be utilized in each hour. For VRE resources, the availability factor, also known as capacity factor, varies from one hour to 
the next depending on weather conditions. In our modeling we assume constant availability factors for other resources, although 
these resources may also have unforced outages that could impact their hourly availability in practice. Power demand data was 
generated by multiplying each hour of a 2019 demand profile generated by PowerGenome [25] by a scalar, so that total annual 
power demand equaled the 2021 annual demand as reported in [29].  

 FRCC ERCOT 
Peak power demand (GW) 48.3 75.7 
Annual power demand (TWh) 245.9 388.9 
Annual average capacity 
factor: onshore wind: 

30.6% 46.3% 

Annual average capacity 
factor: solar PV 

26.6% 29.4% 

Hourly maximum availability factor for various resources 
Coal, natural gas, and 
biomass 90% 

Nuclear 95% 
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Battery  100% 
Electrolyzers 95% 

 

Supplementary Table 6. Component values for the levelized cost of H2 in $/kg H2 for the “compete” additionality framework for 
the ERCOT case study under scenario with different H2 demand (1, 5 GW equivalent power consumption), time-matching 
requirements (annual vs. hourly), and electrolyzer operation modes (Baseload vs. flexible).  Levelized cost calculated per the 
description provided in Section 6.5. elec_sales = revenues earned from selling excess electricity to the grid using contracted power 
sector resources ; elec_purchases = cost of grid electricity purchased to operate the electrolyzer; electrolyzer_fixed_cost = 
annualized capital and fixed operating and maintenance (FOM) cost of the electrolyzer; elec_fixed_cost = annualized capital and 
FOM cost of contracted power sector resources, after accounting for investment tax credit (30%); h2_storage= capital and FOM 
cost of gaseous H2 storage system, which includes the capital cost of the compressor and tank. Excess electricity sales, as described 
in Section 3.1.3, is calculated as elec_sales - elec_purchases. Net electricity cost for H2 production, as described in Section 3.1.3, 
is calculated as electicity_fixed_cost – excess_elec_sales. The values reported are plotted in the Figure 4A. 

  elec_sales elec_purch
ases 

elec_fixed_
cost 

electrolyze
r_fixed_co
st 

h2_storage Excess 
electricity 
sales 

Net 
electricity 
cost for H2 
production 

S1: 1GW 
Base - 
Annual 

-1.55 1.56 1.54 0.69 0 0 1.54 

S2: 1GW 
Flex - 
Annual 

-1.55 1.02 1.54 0.71 0.02 0.53 1.01 

S3: 5GW 
Base - 
Annual 

-1.08 1.58 1.43 0.69 0 -0.51 1.93 

S4: 5GW 
Flex - 
Annual 

-1.1 1.08 1.44 0.72 0.02 0.02 1.41 

S5: 1GW 
Base - 
Hourly 

-5.74 1.53 7.47 0.69 0 4.21 3.27 

S6: 1GW 
Flex - 
Hourly 

-4.2 0.97 4.52 0.8 0.11 3.23 1.29 

S7: 5GW 
Base - 
Hourly 

-3.76 1.32 6.39 0.69 0 2.44 3.95 

S8: 5GW 
Flex - 
Hourly 

-1.62 0.98 2.08 0.82 0.13 0.64 1.44 

 

Supplementary Table 7. Component values for the levelized cost of H2 in $/kg H2 for the “non-compete” additionality framework 
for the ERCOT case study under scenario with different H2 demand (1, 5 GW equivalent power consumption), time-matching 
requirements (annual vs. hourly), and electrolyzer operation modes (Baseload vs. flexible). See description of Supplementary Table 
7 for details. The values reported are plotted in the Figure 4B. 

  elec_sales elec_purch
ases 

elec_fixed_
cost 

electrolyze
r_fixed_co
st 

h2_storage Excess 
electricity 
sales 

Net 
electricity 
cost for H2 
production 

S1: 1GW 
Base - 
Annual 

-1.51 1.44 1.79 0.69 0 0.08 1.72 
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S2: 1GW 
Flex - 
Annual 

-0.99 0.99 1.42 0.71 0.01 0 1.42 

S3: 5GW 
Base - 
Annual 

-1.7 1.77 1.95 0.69 0 -0.07 2.02 

S4: 5GW 
Flex - 
Annual 

-0.96 1.02 1.39 0.72 0.02 -0.06 1.45 

S5: 1GW 
Base - 
Hourly 

-3.86 1.13 6.44 0.69 0 2.73 3.71 

S6: 1GW 
Flex - 
Hourly 

-1.3 0.93 1.89 0.82 0.15 0.37 1.52 

S7: 5GW 
Base - 
Hourly 

-2.61 0.93 6.18 0.69 0 1.68 4.51 

S8: 5GW 
Flex - 
Hourly 

-1.24 0.92 1.87 0.82 0.15 0.32 1.55 
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Supplementary Figures 

 
Supplementary Figure 1. Hourly resource availability profiles solar PV (top row) and onshore wind (middle row) as well as hourly 
electricity demand profile (bottom row) for FRCC case study. Details about the data inputs discussed in Methods – Power sector 
modeling assumptions. 
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Supplementary Figure 2. Hourly resource availability profiles for solar PV (top row) and onshore wind (middle row), as well as 
hourly electricity demand profile (bottom row) for ERCOT case study. Details about the data inputs discussed in Methods – Power 
sector modeling assumptions. 

 

 
Supplementary Figure 3. Sub-regions for computing hourly capacity factors for solar and wind resources in ERCOT and FRCC. 
This figure is an adaptation of Supplementary Figure 2 from [26], which shows average annual capacity factors computed 
according to 2012 weather data. To compute hourly capacity factors for this paper, we average hourly capacity factors for the 
coordinate blocks in the highlighted regions. 
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Supplementary Figure 4. Power generation and storage capacity (top row, A-B) and annual power generation (bottom row, C-D) 
resulting from electrolytic H2 production under alternative H2 demand scenarios, time-matching requirements, and additionality 
frameworks. Results correspond to ERCOT case study. Also shown are the results for the baseline grid scenario involving grid 
resource expansion without any H2 demand, as defined in Figure 1. 

 

 
Supplementary Figure 5. Average hourly change in power system dispatch between cases with H2 production vs. baseline grid in 
ERCOT for the scenarios with 1 GW H2 demand, hourly time-matching requirements, “compete” additionality framework, and 
baseload electrolyzer operation (A) or flexible electrolyzer operation (B).  
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Supplementary Figure 6. Average hourly change in power system dispatch between cases with H2 production vs. baseline in ERCOT 
for the scenarios with 5 GW H2 demand, annual time-matching requirements, “compete” additionality framework, and baseload 
electrolyzer operation (A) or flexible electrolyzer operation (B). 

 

 
Supplementary Figure 7. Electrolyzer capacity factor (A), H2 storage capacity (B) and battery energy capacity (C) for alternative 
H2 demand scenarios, time-matching requirements under the “compete” additionality framework. Results correspond to ERCOT 
case study. H2 and battery storage capacity reported in terms of hours of exogeneous H2 demand that can be met with the available 
storage capacity when full. Electrolyzer capacity factor calculated based on available capacity in each hour, which is 95% of the 
installed capacity. 

 

 
Supplementary Figure 8. Electrolyzer capacity factor (A), H2 storage capacity (B), and battery energy capacity (C) for alternative 
H2 demand scenarios, time-matching requirements under the “non-compete” additionality framework. Results correspond to 
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ERCOT case study. H2 and battery storage capacity reported in terms of hours of exogeneous H2 demand that can be met with the 
available storage capacity when full. Electrolyzer capacity factor calculated based on available capacity in each hour, which is 
95% of the installed capacity. 

 

 
Supplementary Figure 9. Power generation and storage capacity (top row, A-B) and annual power generation (bottom row, C-D) 
resulting from electrolytic H2 for scenarios with 1GW (1st column) and 5GW (2nd column) of electrolyzer demand under an annual 
time-matching requirement with baseload operation, flexible operation, and different upper limits on annual electrolyzer capacity 
factor (20%, 30%, 40%, 50%, 60%, 70%, and 80%). Results correspond to the ERCOT case study under the “compete” 
additionality framework. Also shown are the results for the baseline grid scenario involving grid resource expansion without any 
H2 demand, as defined in Figure 1. 
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Supplementary Figure 10. Change in power generation and storage capacity (A, B) and annual power generation (C, D) resulting 
from electrolytic H2 for scenarios with 1GW (1st column) and 5GW (2nd column) of electrolyzer demand under an annual time-
matching requirement with baseload operation, flexible operation, and different upper limits on annual electrolyzer capacity factor 
(20%, 30%, 40%, 50%, 60%, 70%, and 80%). Results correspond to the ERCOT case study under the “compete” additionality 
framework and are reported relative to the baseline grid scenario involving grid resource expansion without any H2 demand, as 
defined in Figure 1. 
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Supplementary Figure 11. Electrolyzer capacity factor (A, D), H2 storage capacity (B, E) and Battery energy capacity (C, F) under 
baseload operation, flexible operation, and scenarios with different upper limits on annual electrolyzer capacity factor (20%, 30%, 
40%, 50%, 60%, 70%, and 80%) with an annual time-matching requirement. Results correspond to the ERCOT case study under 
the “compete” additionality framework. H2 and battery storage capacity reported in terms of hours of exogeneous H2 demand that 
can be met with the available storage capacity when full.  Electrolyzer capacity factor calculated based on available capacity in 
each hour, which is 95% of the installed capacity. 

 

 
Supplementary Figure 12. Change in power generation and storage capacity (top row, A-B) and annual power generation (bottom 
row, C-D) resulting from electrolytic H2 production under alternative H2 demand scenarios, time-matching requirements, and 
electrolyzer operation modes under a 60% RPS (1st column) and an 80% RPS (2nd column). Results correspond to the ERCOT case 
study under “compete” additionality framework and are reported relative to the baseline grid scenario involving grid resource 
expansion with the relevant RPS and without any H2 demand. Resources with suffix “_PPA” refer to resources added specifically 
to meet time-matching requirements for H2 production. 
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Supplementary Figure 13. Power generation and storage capacity (top row, A-B) and annual power generation (bottom row, C-D) 
resulting from electrolytic H2 production under alternative H2 demand scenarios, time-matching requirements, electrolyzer 
operation modes with a 60% RPS (1st column) and 80% RPS (2nd column). Results correspond to the ERCOT case study under the 
“compete” additionality framework. Also shown are the results for the baseline grid scenario involving grid resource expansion 
without any H2 demand, as defined in Figure 1. 

 

 
Supplementary Figure 14. Electrolyzer capacity factor (A, D), H2 storage capacity (B, E) and battery energy capacity (C, F) for 
alternative H2 demand scenarios, time-matching requirements under the “compete” additionality framework with a 60% RPS (top 
row) or 80% RPS (bottom row). Results correspond to the ERCOT case study under the “compete” additionality framework. H2 
and battery storage capacity are reported in terms of hours of exogeneous H2 demand that can be met with the available storage 
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capacity when full. Electrolyzer capacity factor is calculated based on available capacity in each hour, which is 95% of the installed 
capacity. 

 

 
Supplementary Figure 15. Change in power generation and storage capacity (A) and annual power generation (B) resulting from 
electrolytic H2 production under alternative H2 demand scenarios, time-matching requirements, and electrolyzer operation modes 
under scenarios where NG-based H2 production can compete with electrolysis for serving the H2 demand. Results correspond to 
the ERCOT case study under the “compete” additionality framework and are reported relative to the baseline grid scenario 
involving grid resource expansion without any H2 demand, as defined in Figure 1. 

 

 
Supplementary Figure 16. Power generation and storage capacity (A) and annual power generation (B) resulting from electrolytic 
H2 production under alternative H2 demand scenarios, time-matching requirements, and electrolyzer operation modes under 
scenarios where NG-based H2 production can compete with electrolysis. Results correspond to the ERCOT case study under the 
“compete” additionality framework. Also shown are the results for the baseline grid scenario involving grid resource expansion 
without any H2 demand, as defined in Figure 1. 
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Supplementary Figure 17. Power generation and storage capacity (A) and annual power generation (B) resulting from electrolytic 
H2 production in scenarios with and without a cap of 15GW on VRE deployment capacity with 5GW of electrolyzer demand, hourly 
time matching, and flexible electrolyzer operation under the “compete” additionality framework. Results correspond to the ERCOT 
case study. Also shown are the results for the baseline grid scenario involving grid resource expansion without any H2 demand, as 
defined in Figure 1. 

 

 
Supplementary Figure 18. Electrolyzer capacity factor (A), H2 storage capacity (B), and battery energy capacity (C) for scenarios 
with and without a cap of 15GW on VRE deployment capacity with 5GW of electrolyzer demand, hourly time-matching, and flexible 
electrolyzer operation under the “compete” additionality framework. Results correspond to the ERCOT case study. H2 and battery 
storage capacity reported in terms of hours of exogeneous H2 demand that can be met with the available storage capacity when 
full. Electrolyzer capacity factor calculated based on available capacity in each hour, which is 95% of the installed capacity. 
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Supplementary Figure 19. Change in power generation and storage capacity (top row, A-B) and annual power generation (bottom 
row, C-D) resulting from electrolytic H2 production under alternative H2 demand scenarios, time-matching requirements, and 
additionality definitions. Results correspond to FRCC case study and are reported relative to the baseline grid scenario involving 
grid resource expansion without any H2 demand, as defined in Figure 1. 

 

 
Supplementary Figure 20. Average hourly change in dispatch in FRCC between cases with H2 production vs. baseline grid for the 
following scenarios under the “compete” (1st column) and “non-compete” definitions (2nd column) of additionality and hourly (top 
row) and annual time-matching requirements (bottom row): A and B: 5 GW of H2 production with baseload electrolyzer operation 
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and hourly time-matching requirements. C and D: 5 GW of H2 production with baseload electrolyzer operation and annual time-
matching requirements. 

 

 
Supplementary Figure 21. Power generation and storage capacity (top row, A-B) and annual power generation (bottom row, C-D) 
resulting from electrolytic H2 production under alternative H2 demand scenarios, time-matching requirements, and additionality 
definitions. Results correspond to FRCC case study. Also shown are the results for the baseline scenario involving grid resource 
expansion without any H2 demand, as defined in Figure 1. 

 

 
Supplementary Figure 22. Average hourly change in power system dispatch between cases with H2 production vs. baseline in FRCC 
for the scenarios with 1 GW H2 demand and hourly time-matching requirements, “compete” additionality framework and baseload 
electrolyzer operation (A) or flexible electrolyzer operation (B).  
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Supplementary Figure 23. Average hourly change in power system dispatch between cases with H2 production vs. baseline in FRCC 
for the scenarios with 5 GW H2 demand, annual time-matching requirements, “compete” additionality framework and baseload 
electrolyzer operation (A) or flexible electrolyzer operation (B). 

 

 
Supplementary Figure 24. Consequential emissions intensity of H2 production for alternative exogeneous H2 demand levels, 
electrolyzer operation modes, and time-matching requirement under the “compete” and “non-compete" frameworks of 
additionality described earlier and highlighted in Figure 1.  Results correspond to the FRCC case study and are reported relative 
to the baseline grid scenario involving grid resource expansion without any H2 demand, as defined in Figure 1. Also shown are 
threshold emissions intensity values for H2 PTC in the IRA, with the production meeting the Tier 1 limit eligible for up to $3/kg 
PTC while those meeting Tier 2 and Tier 4 limits are eligible for PTC in the amount of $1.0/kg and $0.6/kg, respectively.  
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Supplementary Figure 25. Levelized cost of H2 for the FRCC case study under scenario with different H2 demand (1, 5 GW 
equivalent power consumption), time-matching requirements (annual vs. hourly), additionality frameworks (“compete” vs “non-
compete”) and electrolyzer operation modes (Baseload vs. flexible).  Levelized cost calculated per description provided in Section 
6.5. elec_sales = revenues earned from selling excess electricity to the grid using contracted power sector resources ; 
elec_purchases = cost of grid electricity purchased to operate the electrolyzer; electrolyzer_fixed_cost = annualized capital and 
fixed operating and maintenance (FOM) cost of the electrolyzer; elec_fixed_cost = annualized capital and FOM cost of contracted 
power sector resources, after accounting for investment tax credit (30%); h2_storage= capital and FOM cost of gaseous H2 storage 
system, which includes the capital cost of the compressor and tank. The total cost with PTC (total cost w PTC) shows the LCOH 
after accounting for PTC based on consequential emissions for each case. 

 

 
Supplementary Figure 26. Electrolyzer capacity factor (A), H2 storage capacity (B) and battery energy capacity (C) for alternative 
H2 demand scenarios, time-matching requirements under the “compete” additionality framework. Results correspond to FRCC 
case study. H2 and battery storage capacity reported in terms of hours of exogeneous H2 demand that can be met with the available 
storage capacity when full.  Electrolyzer capacity factor calculated based on available capacity in each hour, which is 95% of the 
installed capacity. 
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Supplementary Figure 27. Electrolyzer capacity factor (A), H2 storage capacity (B) and battery energy capacity (C) for alternative 
H2 demand scenarios, time-matching requirements under the “non-compete” additionality framework. Results correspond to FRCC 
case study. H2 and battery storage capacity reported in terms of hours of exogeneous H2 demand that can be met with the available 
storage capacity when full.  Electrolyzer capacity factor calculated based on available capacity in each hour, which is 95% of the 
installed capacity. 
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