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Abstract

The global pandemic has fundamentally changed lifestyles, impacting how, when, and
where people travel within cities. In this post-pandemic world, urban mobility de-
mand patterns are experiencing significant shifts. To manage the growing uncertainty
in urban mobility, there is a growing need to develop a robust urban mobility system.
This system must be adaptable to evolving demand patterns while ensuring efficiency
and environmental sustainability in transporting large populations. Additionally, the
increasing popularity of shared mobility and rapid advancements in autonomous driv-
ing technologies are creating new opportunities for innovative approaches to urban
transportation systems.

This dissertation delves into the development of a robust and integrated urban
mobility system for the future, with a focus on the public transit and ride-sharing
systems. While the advent of shared mobility platforms such as Uber and Lyft, along
with Autonomous Mobility-on-Demand (AMoD) services like Waymo and Cruise,
have revolutionized urban travel, public transit systems remain the backbone of urban
mobility. This is attributed to their capacity to move large numbers of people over
long distances at a relatively low cost and an environmentally friendly way. Thus, this
study aims to enhance the robustness of both public transit and ride-sharing systems
and explore ways to seamlessly integrate these two components. The dissertation
presents five distinet studies to elaborate on these objectives.

The first three studies focus on the vehicle rebalancing problem, which is one of
the most critical strategies in ride-sharing operations. An effective rebalancing strat-
egy can significantly reduce empty miles traveled and reduce customer wait times by
better matching supply and demand. While the supply (vehicles) is usually known to
the system, future passenger demand is uncertain. The first study proposes a novel
approach to better immunize rebalancing decisions against demand uncertainty. This
approach, namely the matching-integrated vehicle rebalancing (MIVR) model, in-
corporates driver-customer matching into vehicle rebalancing problems to produce
better rebalancing strategies. For further protection against uncertainty, robust opti-
mization (RO) techniques are introduced to construct a robust version of the MIVR
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model. Problem-specific uncertainty sets are designed for the robust MIVR model.
The second study further explores different approaches for handling demand uncer-
tainty in the vehicle rebalancing problem. There are two ways to handle uncertainty.
First, the point-prediction-driven optimization framework involves predicting the fu-
ture demand and then producing rebalancing decisions based on the predicted de-
mand. Second, data-driven optimization approaches directly prescribe rebalancing
decisions from data. In this study, a predictive prescription framework is introduced
to this problem, where the benefits of predictive and data-driven optimization models
are combined.

Although vehicle rebalancing algorithms could improve system efficiency, there
exists a detrimental feedback loop where underserved communities with low demand
density are unintentionally discriminated. To resolve this fairness issue, the third
study develops algorithms for wvehicle rebalancing that aim to minimize disparity
within the system. Grasping the concept of disparity is a foundation for understand-
ing fairness in the ride-hailing system. The vehicle rebalancing encompasses two
critical aspects: upstream demand forecasting and downstream vehicle repositioning.
The issues of disparities within both these components are addressed. To reduce
disparity in demand prediction, we implement a strategy utilizing a Socio-Aware
Spatial-Temporal Graph Convolutional Network (SA-STGCN), aimed at improving
demand forecast accuracy while reducing discrepancies in prediction errors across di-
verse regions. For equitable repositioning of the supply side vehicles, we introduce
a disparity-reducing MIVR system. This system is designed to facilitate a balanced
vehicle distribution, ensuring that ride-hailing services are accessible equitably across
different areas.

The fourth study focuses on the robustness of public transit systems. Limited
studies have considered demand uncertainties when designing transit schedules. To
better address demand uncertainty issues inherent in public transit systems, this study
utilizes the RO framework to generate robust transit schedules against demand uncer-
tainty. A nominal (non-robust) optimization model for the transit frequency setting
problem (TFSP) under a single transit line setting is first proposed. The model is
then extended to the RO-based formulation to incorporate demand uncertainty. The
large-scale origin-destination (OD) matrices for real-world transit problems present
computational challenges to solve the optimization problem. To efficiently generate
robust transit schedules, a Transit Downsizing (TD) approach is proposed to reduce
the dimensionality of the problem.

The last study focuses on the integration of emerging AMoD systems with existing
public transit networks. We propose a novel optimization framework to generate the
system design of the Transit-Centric Multimodal Urban Mobility with Autonomous
Mobility-on-Demand (TCMUM-AMoD) at scale. The system operator (public transit
agency ) determines the network design and frequency settings of the PT network, fleet
sizing and allocations of the AMoD system, and the pricing for using the multimodal
system with the goal of minimizing passenger disutility. Passengers’ mode and route
choice behaviors are modeled explicitly using discrete choice models. A first-order
approximation algorithm is introduced to solve the problem at scale. Using a case
study in Chicago, we show the potential to generate integrated urban mobility systems
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in different demand scenarios.
The final chapter summarizes the whole dissertation and outlines potential avenues
for future research directions.

Thesis Supervisor: Jinhua Zhao
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Chapter 1

Introduction

1.1 Background and Motivation

In recent years, the demand for urban mobility has undergone significant changes,
largely due to the global pandemic. This COVID-19 has not only altered people’s
lifestyles, but has also increased the demand uncertainty surrounding urban trans-
portation. There are three perspectives of demand uncertainty in urban mobility: i)

demand changes, ii) uncertainty level, and iii) uncertainty changes.
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Figure 1-1: Weekly ride-hailing demand for city of Chicago (2019 to 2022).

First, demand changes indicate both spatial and temporal changes in travel de-
mand. Figure 1-1 shows the weekly ride-hailing demand for the city of Chicago from
2019 to 2022. Chicago’s ride-hailing demand only recovers to 50% of the pre-COVID
level at 2022, Figure 1-2 shows the daily average demand distributions for sub-regions
in Manhattan, New York City (NYC) from 2019 to 2022. Sub-regions are taxi zones
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defined by the NYC Taxi and Limousine Commission[ ' |. In 2022 compared to 2019,
a 36% demand increase is found. Different patterns for temporal demand changes are

found in two major US cities.
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Figure 1-2: Daily average demand distributions for sub-regions in Manhattan (2019
to 2022).

Figure 1-3 illustrates the spatial demand distributions for ride-hailing in Manhat-

tan for the years 2019 and 2022, as well as the differences between these two years.
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Figure 1-3: Spatial ride-hailing demand distributions for Manhattan in 2019 and
2022,



Although the overall demand for ride-hailing services increased by 36% from 2019 to
2022, the spatial patterns of demand changed significantly. Notably, demand in lower
Manhattan increased, whereas upper Manhattan experienced a decrease in demand.

Similar changes in the demand pattern have also been observed in transit systems.
Figure 1-4 shows the changes in ridership by modes in the public transportation
system from 2019 to 2022. Till the end of 2022, the transit ridership has only recovered
to 68% of the pre-pandemic level. As agencies struggle to maintain service level,

transit ridership might never return as people travel less to work.
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Figure 1-4: Public transportation ridership changes by modes (2019 to 2022).

Secondly, the level of demand uncertainty provides a direct measure of the fluc-
tuations in urban mobility demand. The term *uncertainty level” is defined in this
dissertation as the standard deviation of daily demand changes. Figures 1-5 and
1-6 depict the demand uncertainty levels for both ride-hailing and transit systems.
Throughout both the pre-COVID and post-COVID periods, these uncertainty levels
have been substantial and cannot be overlooked. Specifically, ride-hailing demand
uncertainty increased by 15% from 2019 to 2022, while transit demand uncertainty
saw a significant reduction of 70% between 2019 and 2020.

Thirdly, demand levels have changed over time, as illustrated in Figures 1-5 and 1-

6. These changes in demand emphasize the critical importance of integrating demand
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Figure 1-5: Ride-hailing demand uncertainty distributions for sub-regions in Man-
hattan (2019 to 2022).
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Figure 1-6: Transit demand uncertainty distributions for bus routes in Chicago (2019
to 2022).

uncertainty into the design and operation of transportation systems. However, both
transit agencies and ride-hailing platforms tend to focus solely on adapting to demand
changes, often neglecting the broader implications of demand uncertainty on system
performance. In this dissertation, we propose a strategic framework to address the
prevalent uncertainty issues in urban mobility systems.

The central focus of this dissertation is to address system-wise uncertainty through

two approaches: i) system integration and ii) robust operation. We propose an inte-
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grated and robust urban mobility system, with a particular emphasis on public transit
and ride-sharing systems. Robust operation includes strategies that mitigate various
sources of uncertainty. In terms of system integration, by integrating systems, such
as public transit and ride sharing, passengers gain access to a wider range of mobil-
ity options, enhancing the likelihood of their transportation needs being met. This
dissertation does not explore the exact dynamics on how the system integration ad-
dresses uncertainties. Instead, it focuses initially on the development of an integrated
urban mobility system, setting the stage for future discussions and explorations of

these concepts.

1.2 Uncertainty Definition

Uncertainty is formally defined as “epistemic situations involving imperfect or un-
known information.” It has been explored in various research fields, each adopting a
unique perspective. Lo and Mueller [ ' '] have contributed to the understanding of
uncertainty by proposing a taxonomy that includes five distinet levels: 1) complete
certainty, where everything is known; 2) risk without uncertainty, which involves
known probabilities; 3) fully reducible uncertainty, which can be entirely eliminated
through information gathering; 4) partially reducible uncertainty, where only some
aspects can be clarified; and 5) irreducible uncertainty, which cannot be reduced re-
gardless of the information gathered. In the context of transportation systems—a
large-scale dynamic entity—uncertainty most commonly aligns with level 4, indicat-
ing that while uncertainty can be managed, it cannot be completely eliminated, and
thus must be strategically addressed using modeling approaches.

Meanwhile, it is crucial to consider uncertainty within specific contexts. For exam-
ple, model uncertainty arises when multiple models are consistent with observations.
Data uncertainty refers to data compromised by noise, which causes deviations from
true values. This dissertation focus on system uncertainty, specifically within the
physical urban mobility system.

The urban mobility system is subject to three main sources of uncertainty, which
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are crucial to its operation and planning:

1. Supply Uncertainty: This involves variations in the availability of trans-

portation resources, such as the number of vehicles or operational status.

2. Demand Uncertainty: This pertains to the unpredictable fluctuations in user
demand for transportation services, which can vary widely due to numerous

factors including temporal patterns, economic conditions, and social events.

3. Environment Uncertainty: This encompasses external conditions that can

impact transportation systems, such as weather changes, road conditions, or

regulatory changes.

Addressing these types of uncertainties is crucial for creating more resilient and
efficient urban mobility systems. This dissertation specifically explores how uncer-
tainties can be integrated into the design and operations of two key urban mobility
systems: public transit and ride-sharing. Each system-level uncertainty—supply, de-
mand, and environment—presents unique challenges and opportunities for integration

into these systems.
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Figure 1-7: Uncertainty in transit systems.
Figures 1-7 and 1-8 illustrate how these uncertainties can be accounted for in the

design and operational strategies of the transit and ride-sharing systems, respectively.

By incorporating uncertainty directly into system planning and management, both
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Figure 1-8: Uncertainty in ride-sharing system.

systems can be optimized to better handle the dynamic and often unpredictable
conditions affecting urban mobility.

In this dissertation, the primary focus is on demand uncertainty, which poses
significant challenges to urban mobility systems. Specifically, Chapters 2 and 3 are
dedicated to addressing demand uncertainty within the context of the vehicle re-
balancing problem. This involves developing strategies to ensure that ride-sharing
vehicles are appropriately distributed across the city to meet fluctuating demands
efficiently.

Chapter 5 shifts the focus to the transit frequency setting problem, where de-
mand uncertainty can greatly impact the efficiency and effectiveness of public transit
services. The chapter explores methodologies for adjusting the frequencies of transit
services to better align with changing passenger volumes, thereby minimizing wait

and in-vehicle travel times.

1.3 Research Questions

This dissertation focuses on addressing system-wise uncertainty by building a robust
and integrated urban mobility system, with a focus on public transit and ride-sharing

systems. Specifically, the dissertation

1. Identify sources of uncertainty and propose robust operation strate-
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gies for both public transit and ride-sharing systems.

2. Design an integrated urban mobility system with both public transit

and ride-sharing systems.

For the second research question concerning the design of an integrated urban
mobility system that combines public transit and ride-sharing, previous studies have
highlighted the potential benefits and proposed various frameworks for the operations
and design of such systems. However, there is a lack of a comprehensive framework
that simultaneously addresses the design of transit networks, fleet sizing and alloca-
tion for ride-sharing vehicles, and pricing strategies for the integrated system.

This dissertation aims to bridge this research gap by proposing a methodological
framework that integrates these critical aspects. This comprehensive approach lays
the groundwork for future research on integrated urban mobility systems, enabling

consideration of diverse objectives and system design philosophies.

1.4 Data Sources

This dissertation draws on two types of datasets: ride-sharing and public transit
datasets. The ride-sharing dataset utilized is the New York City (NYC) high-volume
ride-hailing trip data collected by the NYC Taxi and Limousine Commission [ ].
This dataset contains information on pickup times, trip origins and destinations at
the level of the taxi zone, and group size. In addition, the historical average traffic
speed data provided by Uber Movement is used to estimate the travel time within
the city of New York.

For the public transit dataset, this dissertation utilizes transit data provided by the
Chicago Transit Authority (CTA). The running times between two stops for different
transit routes are estimated from the Automatic Vehicle Location (AVL) data. The
current transit schedule information is from an open-source Generalized Transit Feed
Specification (GTFS) dataset, which is published by CTA every month. The transit
demand data are obtained from CTA’s ODX database. The “ODX" stands for the
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“origin, destination, and transfer inference algorithm”, an algorithm developed by
Gabriel et al. [ '] and currently implemented within the CTA. The CTA transit
network is equipped with a “tap-on” only fare collection system, indicating that the
alighting information is not reported in the system. The ODX algorithm is utilized

to infer the alighting information and details can be found in [, *, 1],

1.5 Dissertation Outline

1.5.1 Chapter 2: Robust Matching-Integrated Vehicle Re-
balancing in Ride-Hailing System with Uncertain De-

mand

With the rapid growth of the mobility-on-demand (MoD) market in recent years,
ride-hailing companies have become an important element of the urban mohility sys-
tem. There are two critical components in the operations of ride-hailing companies:
driver-customer matching and wvehicle rebalancing. In most previous literature, each
component is considered separately, and performances of vehicle rebalancing models
rely on the accuracy of future demand predictions. To better immunize rebalanc-
ing decisions against demand uncertainty, a novel approach, the matching-integrated
vehicle rebalancing (MIVR) model, is proposed in this paper to incorporate driver-
customer matching into vehicle rebalancing problems to produce better rebalancing
strategies. The MIVR model treats the driver-customer matching component at an
aggregate level and minimizes a generalized cost including the total vehicle miles
traveled (VMT) and the number of unsatisfied requests.

For further protection against uncertainty, robust optimization (RO) techniques
are introduced to construct a robust version of the MIVR model. Problem-specific
uncertainty sets are designed for the robust MIVR model to reflect the demand un-
certainty in ride-hailing systems. The proposed MIVR model is tested against two
benchmark vehicle rebalancing models using real ride-hailing demand and travel time

data from New York City (NYC). The MIVR model is shown to have better per-
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formances by reducing customer wait times compared to benchmark models under
most scenarios. Sensitivity analyses have been conducted to better understand how
the proposed MIVR model performs under different demand-supply scenarios. In
addition, the robust MIVR model produces better solutions by planning for demand

uncertainty compared to the non-robust (nominal) MIVR model.

1.5.2 Chapter 3: Data-Driven Vehicle Rebalancing with Pre-

dictive Prescriptions in the Ride-Hailing System

Although the robust optimization techniques can effectively protect vehicle rebalanc-
ing decision against demand uncertainty, it suffers from the computation complexity
issue. In this chapter, we discuss additional approaches for handling uncertainty in
demand making under uncertainty. There are two ways to handle uncertainty. First,
the point-prediction-driven optimization framework involves predicting the future de-
mand and then producing rebalancing decisions based on the predicted demand. Sec-
ond, the data-driven optimization approaches directly prescribe rebalancing decisions

from data.

In this study, a predictive prescription framework is introduced to this problem,
where the benefits of predictive and data-driven optimization models are combined.
The predictive prescription framework utilizes unsupervised machine learning algo-
rithms to generate weights for each historical day with demand data according to
similarity from auxiliary information. The weights are then used in a stochastic
optimization framework to generate rebalancing decisions. Based on the matching-
integrated vehicle rebalancing (MIVR) model, predictive prescriptions are introduced

to handle demand uncertainty.

Model performances are evaluated using real-world simulations with New York
City (NYC) ride-hailing data under four demand scenarios. When demand can
be accurately predicted, a point-prediction-driven optimization framework should be
adapted. The proposed predictive prescription models achieve shorter customer wait

times over the point-prediction-driven optimization models when future demand pre-
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dictions are not so accurate, and achieve a competitive performance with respect to
the cutting-edge robust optimization models. The proposed approach has a compu-

tational edge over the robust models, while achieving similar performances.

1.5.3 Chapter 4:Disparity-Reducing Vehicle Rebalancing in
the Ride-Hailing System

The previous two chapters discuss the vehicle rebalancing problem and propose ap-
proaches for handling demand uncertainty. However, vehicle rebalancing models
might unintentionally lead to fairness issues. Vehicle rebalancing models redistribute
more vacant vehicles to areas with higher anticipated demand. As a result, low-
demand areas, which are typically underserved communities, will be discriminated
in the vehicle rebalancing algorithm. This chapter develops vehicle rebalancing algo-
rithms aimed at minimizing such disparities within the system. Grasping the concept
of disparity is a foundation for understanding fairness in the ride-hailing system.

The vehicle rebalancing encompasses two critical aspects: upstream demand fore-
casting and downstream vehicle repositioning. The issues of disparities within both
these components are tackled. To reduce disparity in demand prediction, we imple-
ment a strategy utilizing a Socio-Aware Spatial-Temporal Graph Convolutional Net-
work (SA-STGCN), aimed at improving demand forecasting accuracy while reducing
discrepancies in prediction errors across diverse regions. There are three components
added to the STGCN framework to reduce disparity: i) socio-demographic enriched
adjacency matrix, ii) Fairness-Enhanced Loss Regularization, and iii) decomposed
fairness weights from the enriched adjacency matrix for the downstream vehicle re-
balancing.

For equitable supply-side vehicle repositioning, we introduce a disparity-reducing
Matching-Integrated Vehicle Rebalancing (MIVR) system. This system is tailored to
facilitate balanced vehicle distribution, ensuring that ride-hailing services are accessi-
ble equitably across different areas. The proposed model utilizes the fairness weights

generated from the SA-STGCN framework. Our methodology, tested through simu-
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lations with the New York City (NYC) taxi dataset, enhances accuracy and reduces
disparity in demand forecasting, leading to fairer vehicle distribution. It also re-
duces perceived service disparity among customers. Specifically, it alleviates dispar-
ity—indicated by a more uniform distribution of wait times across regions—by 6.5%

while not diminishing system efficiency-measured by customer wait times.

1.5.4 Chapter 5: Robust Transit Frequency Setting Problem

with Demand Uncertainty

Public transit systems are the backbone of urban mobility systems in the era of urban-
ization. The design of transit schedules is important for the efficient and sustainable
operation of public transit. However, limited studies have considered demand un-
certainties when designing transit schedules. To better address demand uncertainty
issues inherent in public transit systems, this chapter utilizes the robust optimization
(RO) framework to generate robust transit schedules against demand uncertainty. A
nominal (non-robust) optimization model for the transit frequency setting problem
(TFSP) under a single transit line setting is first proposed. Different transit service
patterns are incorporated.

The model is then extended to the RO-based formulation to incorporate demand
uncertainty, which has not been considered in the literature. The large-scale origin-
destination (OD) matrices for real-world transit problems bring computational chal-
lenges in solving the optimization problem. To efficiently generate robust transit
schedules, a Transit Downsizing (TD) approach is proposed to reduce the dimension-
ality of the problem. The TD approach consists of an optimality-preserved component
and a heuristic-based component, targeting to shrink the size of possible OD pairs
when generating transit schedules.

The proposed models are tested with real-world transit lines and data from the
Chicago Transit Authority (CTA). Meanwhile, a stochastic programming (SP) frame-
work is used to construct a benchmark stochastic TFSP model. Compared to the

current transit schedule implemented by the CTA, the nominal TFS5P model with-
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out considering demand uncertainty reduces passengers’ wait times while increasing
in-vehicle travel times. After incorporating demand uncertainty, both stochastic and
robust TFSP models reduce passengers’ wait times and in-vehicle travel times si-
multaneously. The robust transit schedules outperform the benchmark stochastic
transit schedules by reducing both wait and in-vehicle travel times when demand is

significantly uncertain.

1.5.5 Chapter 6: Design of Transit-Centric Multimodal Ur-
ban Mobility System with Autonomous Mobility-on-

Demand

The last chapter focuses on the integration of public transit and ride-sharing systems.
It addresses the pressing challenge of urban mobility in the context of growing urban
populations, changing demand patterns for urban mobhility, and emerging technologies
like Mobility-on-Demand (MoD) platforms and Autonomous Vehicle (AV). As urban
areas swell and demand pattern changes, the integration of Autonomous Mobility-on-
Demand (AMoD) systems with existing public transit (PT) networks presents great
opportunities to enhancing urban mobility. We propose a novel optimization frame-
work for solving the Transit-Centric Multimodal Urban Mobility with Autonomous
Mobility-on-Demand (TCMUM-AMoD) at scale.

The system operator (public transit agency) determines the network design and
frequency settings of the PT network, fleet sizing and allocations of AMoD system,
and the pricing for using the multimodal system with the goal of minimizing passenger
disutility. Passengers’ mode and route choice behaviors are modeled explicitly using
discrete choice models. A mixed integer non-linear program (MINLP) is proposed to
solve this joint design problem. A first-order approximation algorithm is introduced
to solve the MINLP formulation at scale. Using a case study in Chicago, we showcase
the potential to optimize urban mobility across different demand scenarios. To our
knowledge, ours is the first paper to jointly optimize transit network design, fleet

sizing, and pricing for the multimodal mobility system while considering passengers’
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mode and route choices.

1.6 Related Publications

This dissertation has resulted in five journal publications.

Chapter 2 is published as the paper “Xiaotong Guo, Nicholas S. Caros, and Jin-
hua Zhao. Robust matching-integrated vehicle rebalancing in ride-hailing system with
uncertain demand. Transportation Research Part B: Methodological, 150:161-189,
2021” [7].

Chapter 3 is published as the paper “Xiaotong Guo, Qingyi Wang, and Jin-
hua Zhao. Data-driven vehicle rebalancing with predictive prescriptions in the ride-
hailing system. IEEE Open Journal of Intelligent Transportation Systems, 3:251-266,
2022” [11].

Chapter 4 is under review at Transportation Research Part A: Policy and Prac-
tice. The preprint is “Xiaotong Guo, Hanyong Xu, Dingyi Zhuang, Yunhan Zheng,
and Jinhua Zhao. Fairness-enhancing vehicle rebalancing in the ride-hailing system,
2023" [7].

Chapter 5 is under the final publication process at IEEE Transactions on Intelli-
gent Transportation Systems. The preprint is “Xiaotong Guo, Baichuan Mo, Haris N.
Koutsopoulos, Shenhao Wang, and Jinhua Zhao. Transit frequency setting problem
with demand uncertainty, 2022”7 [ ].

Chapter 6 is a working paper. The preprint is “Xiaotong Guo and Jinhua Zhao.
Design of transit-centric multimodal urban mobility system with autonomous mobility-

on-demand, 2024 [ ).



Chapter 2

Robust Matching-Integrated
Vehicle Rebalancing in
Ride-Hailing System with

Uncertain Demand

2.1 Introduction

Advanced wireless communication and cloud computing technologies coupled with
the growing popularity of shared mobility have led to a fast-growing Mobility-on-
Demand (MoD) market in recent years [ ]. Ride-hailing companies, also known
as Transportation Network Companies (TNCs), such as Uber and Lyft have become
ubiquitous forms of MoD in most cities over the past decade. The number of world-
wide active drivers for Uber grew from almost zero in 2010 to over 3 million in 2017,
while Lyft, a relative latecomer to the market, had 1.4 million active drivers in the
US and Toronto in 2017 [ ]. Two of the primary innovations that allowed them to
capture a significant market share from their established competitors, the taxi in-
dustry, were: 1) matching trip requests with drivers using a mobile app rather than

curbside hailing or an in-advance booking system, and 2) responding to changes in
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demand by incentivizing or actively dispatching drivers to high-demand areas. These
innovations have been identified as two important ride-hailing operations problems
in the literature: the driver-customer matching problem and the vehicle rebalancing

problem [ ].

One of the key technological competence requirements for efficient operation of
ride-hailing platforms is the algorithmic approaches for optimally matching drivers
and customers in real-time [']. Given a list of available vehicles and trips requested by
customers, the matching algorithm pairs drivers and customers according to specific
objectives and feasibility constraints. Moreover, matching decisions need to be made
quickly, typically within seconds. Researchers have been seeking solutions to improve
the operational and computational performance of the on-demand driver-customer

matching problem.

Because the spatial distributions of supply and demand in the ride-hailing system
are often unbalanced, platforms can improve the operational performance by actively
rebalancing idle vehicles to areas where the demand is expected to exceed supply
based on estimates of future demand. Algorithms for rebalancing idle vehicles have
been proposed for ride-hailing platforms to reduce wait times for customers [ =,

\ . |. However, the performance of vehicle rebalancing algorithms depends
on the accurate future demand estimations. Rebalancing decisions generated with
inaccurate demand forecasts could have negative impacts on the system performance.
Incorporating robustness into the vehicle rebalancing algorithm is one approach to
protect solutions against demand uncertainty that arise from inaccurate estimates of

future demand [ ' ].

While rebalancing and matching are often treated as separate operations in the
literature [ ], both problems relate to dispatching idle vehicles, either to pick up
customers or to increase supply in areas with high expected demand. A common
objective for the driver-customer matching problem is minimizing the vehicle miles
traveled (VMT) and unsatisfied requests [, | while the primary objective for the
vehicle rebalancing problem is minimizing the VMT and a functional term measuring

the system-wide service availability for future demand [/©, 17, 1]
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In the vehicle rebalancing problem, the overall goal for improving the system-wide
service availability for incoming customers is to minimize the number of unsatisfied
requests, which coincides with the objective of the driver-customer matching problem.
The functional term in the objective of the vehicle rebalancing problem can there-
fore be treated as an approximation to represent the number of unsatisfied requests.
However, the maximum system-wide service availability for incoming customers does
not necessarily lead to the minimum number of unsatisfied requests if there are inac-
curate future demand estimates. To immunize vehicle rebalancing decisions against
the inherent demand uncertainty, we introduce the driver-customer matching compo-
nent into the vehicle rebalancing problem in order to explicitly model the number of

unsatisfied requests.

Nonetheless, there is a methodological difference between driver-customer match-
ing problems and vehicle rebalancing problems. The driver-customer matching prob-
lem is typically solved by an agent-based model, where each driver and customer are
considered individually. For the vehicle rebalancing problem, most methods divide
the study area into several sub-regions and the vehicle rebalancing problem is solved

at an aggregate level, where vehicles are rebalanced between sub-regions.

To resolve this methodological difference, we propose the matching-integrated ve-
hicle rebalancing (MIVR) model where the area partitioning method is retained and
the matching component is modeled at an aggregate level. The objective of the MIVR
model is to minimize the total VMT and the number of unsatisfied requests. The
aggregate matching component of the MIVR model provides a satisfying approxima-
tion of the vehicle pickup distance and the number of unsatisfied requests when using

small regions.

Figure 2-1 provides a toy example to illustrate the benefits of the MIVR model
compared to an independent vehicle rebalancing (VR) model, where the service avail-
ability is represented by the absolute difference between estimated future demand and
supply. There are 16 unit squares (sub-regions) and a trip request is equally likely
to appear in any of the orange sub-regions in the next time interval. For the inde-

pendent rebalancing scenario, the rebalancing distance is 2 and the expected pick-up
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distance is 3 (four possible pick-up distances 0, 3, 4, 5 with } probability on each
case). For the matching-integrated rebalancing scenario, the rebalancing distance is
2 and the expected pick-up distance is 2.0 (four possible pick-up distances 1, 2, 2, 3
with % probability on each case). Compared to the independent rebalancing scenario,
the matching-integrated rebalancing scenario dispatches the idle vehicle to a location
near sub-regions with estimated future demand. This “smart” rebalancing decision
compensates for inaccurate future demand estimation by harmonizing vehicle pickup

distance across different demand profiles.
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Figure 2-1: Example scenarios comparing regular VR decisions and the MIVR deci-
sions.

To further protect the vehicle rebalancing decisions against demand uncertainty,
we introduce robust optimization (RO) techniques to construct a robust MIVR model.
Problem-specific uncertainty sets are established to better reflect the uncertainty
within ride-hailing demand.

In short, the ride-hailing matching process and RO techniques can be incorporated
into the rebalancing procedure to produce better vehicle rebalancing decisions for
platforms when facing demand uncertainty. The contributions of this chapter can be

summarized as follows:

¢ Proposing the MIVR model to incorporate driver-customer matching informa-
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tion to improve vehicle rebalancing problems with explicit modeling of unsatis-

fied requests for the first time, to the best of authors’ knowledge.

Proposing the robust MIVR model to consider demand uncertainty and de-
signing problem-specific uncertainty sets to better reflect the inherent demand

uncertainty in the ride-hailing system.

Using simulations to show performance improvements of the MIVR model com-
pared to an independent VR model and a state-of-the-art empty-car routing
policy with real demand data and travel times from New York City (NYC). In
high supply scenarios, a Pareto improvement can be found for the MIVR model
when compared to the VR model at aggregate level regarding the overall VMT,

the average customer wait time and the number of unsatisfied requests.

Comparing the nominal MIVR. and the robust MIVR under multiple uncertain
scenarios by solving a driver-customer matching problem with realized demand
and vehicle distributions after rebalancing. The robust MIVR model is shown
to perform better under demand uncertainty, especially in conditions of high

supply relative to demand.

The remainder of the chapter is organized as follows. Section 2.2 reviews the rel-

evant literature. Section 2.3 describes the nominal and robust MIVR models and the

robust counterpart. Section 2.4 includes the empirical study design and descriptions

for data used in this chapter. Benchmark comparisons, scenario testing results and

robust solution performances are described in Section 2.5. Finally, Section 2.6 recaps

the main contributions of this chapter, outlines the limitations and provides future

research directions.
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2.2 Existing Literature

2.2.1 Ride-hailing Matching and Rebalancing

Ride-hailing matching is a variant of the classical Dial a Ride Problem, where cus-
tomer trips are matched with vehicles such that generalized costs are minimized.
These costs can include VMT, customer wait time, and penalties for poor service
quality. Development of new algorithms for this problem is a very active field of
research and the methods have been used by platform operators in practice [ ].
Agatz et al. [] provided a comprehensive survey of literature related to optimiza-
tion of driver-to-passenger for dynamic ride sharing between travelers with similar
itineraries. In a more recent survey, Mourad et al. [| ] reviews research related to
optimization of shared mobility systems more broadly, which includes ride-hailing.
The authors identify demand uncertainty as a critical issue in modeling shared mo-
bility systems, and identify stochastic programming and multi-scenario optimization
as two possible modeling techniques. Finally, Ho et al. [ ] presents an overview of
recent research relating to the general Dial a Ride Problem. While this survey is
focused on applications such as paratransit and demand-responsive transit, the tax-
onomy and solution techniques are applicable to ride-hailing problems. Like Mourad
et al. [ ], the authors find that the development of models and solution methods
that include stochastic demand is an important research direction.

Ride-hailing is one type of on-demand service platform, which is characterized by
the waiting time sensitivity of customers and service providers without fixed work
schedules. Other on-demand service platforms include food and goods delivery ser-
vices such as DoorDash and Uber Eats, and ride-pooling platforms. Several recent
papers have examined the dynamics of on-demand service platforms. It has been
shown that customers’ sensitivity to delay has a significant impact on optimial pric-
ing and wage setting [ ']. Another paper determines optimal prices and wages under
different levels of demand, and calibrates parameters using actual ride-hailing data
[]. Cachon et al. [ ] develops a model for dynamic pricing in on-demand platforms,

demonstrating that such policies benefit stakeholders by expanding access to service
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during periods of peak demand. Theoretical relationships between pricing, demand
and detour policies within ride-pooling platforms, which are similar to ride-hailing

but with the possibility of shared trips, have also been investigated [ ].

Given the size and dynamic nature of the ride-hailing matching problem in large
cities, many approaches involve metaheuristic methods to generate sub-optimal so-
lutions [/ 7, " ]. Recently, researchers have investigated the role of matching radii
and matching time periods on the optimal solution [~ ']. Lyu et al. [ /] develops an
online matching algorithm that considers multiple objectives, and provides a theoret-
ical optimality guarantee for the online solution. Xu et al. [| ] proposed a dynamic
programming approach to matching that seeks to optimize matching decisions over
a long time horizon. Their method, which did not consider demand uncertainty, has

been adopted by a leading ride-hailing platform.

Optimal rebalancing of idle ride-hailing vehicles has shown to substantially im-
prove system performance. Typical considerations in designing a rebalancing algo-
rithm are the duration of the decision period and the costs included in the objective
function. Chen and Levin [ ] proposed a simple linear programming (LP) model
to select vehicle rebalancing flows that minimize travel cost for five minute periods.
Zhang et al. [ "] showed that a stable predictive control algorithm could be used for
dispatching and rebalancing an autonomous ride-hailing fleet in a discrete time sys-
tem. At each decision period, a mixed-integer linear programming (MILP) is solved
to minimize rebalancing travel time. Their method produced significant reductions in
peak wait times compared to the no rebalancing scenario. Similarly, Iglesias et al. [ ]
proposed a model predictive control algorithm for operating the ride-hailing system in
real-time by leveraging short-term demand forecasts. They utilized the Long Short-
Term Memory (LSTM) neural networks to forecast future customer demand for each
origin and destination pair and their proposed algorithm outperformed a state-of-the-
art rebalancing strategy by reducing up to 89.6% of the average customer wait time.
Wallar et al. [ ] developed an online vehicle rebalancing algorithm that discretized
an area into optimal rebalancing sub-regions, resulting in an average wait time reduc-

tion of 37% compared to the scenario without rebalancing idle vehicles. Braverman
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et al. [ ] formulates a fluid-based optimization model for idle vehicle rebalancing in
ride-hailing systems. The authors use a nine-region network and real-life ride-hailing
data to show how the fluid-based model results in a higher fraction of passengers
served compared to benchmark models. We include the Braverman et al. [ ] model
as a benchmark to test the results of our own model.

Al-Kanj et al. [] combined the matching and vehicle rebalancing into a single
dynamic programming method for autonomous electric vehicles. Their approach em-
ploys incentives rather than centralized control to rebalance vehicles, meaning that
rebalancing decisions made by the platform are subject to some amount of non-
responsiveness by the passenger or vehicle. Dandl et al. [ ] also solves for matching
and rebalancing decisions in a single optimization model to inform a simulation that
tests how demand forecasting accuracy affects the system performance. The authors
use an agent-based model, where the objective function is a combination of penalties
and rewards for matching and for reducing demand-supply imbalances. Their sim-
ulation assumes that all requests are served and customers will wait indefinitely for
pickup. In contrast, our method includes matching information and explicitly models
customer wait time and unsatisfied requests in order to make rebalancing decisions.

In addition to optimization methods, machine learning (ML) approaches have been
proposed to predict demand in rebalancing vehicles [, ©]. There has also been
considerable work on other practical methods, beyond explicit vehicle rebalancing, to

achieve greater balance between supply and demand in ride-hailing systems. These

methods include dynamic pricing [, ], providing more information to drivers
[ 1], reward schemes [/ -], alternative market structures [ -] and carpooling incen-
tives [1].

2.2.2 Robust Optimization

RO is a common approach to handle data uncertainty in optimization problems. The
general approach is to specify a range for an uncertain parameter (the “uncertainty
set”), and optimize over the worst-case realizations within the bounded uncertainty

set. The method is therefore well suited to applications where there is considerable
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uncertainty related to the model input parameters, and when data uncertainties can
lead to significant penalties or infeasibility in practice. The solution method for
robust optimization problems involves generating a deterministic equivalent, called
the robust counterpart. Computational tractability of the robust counterpart has
been a major practical difficulty [ ]. A variety of uncertainty sets have been identified
for which the robust counterpart to a robust optimization problem is reasonably
tractable [ 7].

The RO field has grown substantially over the past two decades. Seminal papers
in the late 1990s [, '] and early 2000s [ ] established the field. Comprehensive
surveys on the early literature were done by Ben-Tal et al. [ ] and Bertsimas et
al. [ ]. The development of the robust optimization technique has allowed researchers
to tackle problems with data uncertainty in a range of fields. Examples can be found
for renewable energy network design [~ ], supply chain operations [ | | and health

care logistics [ ]

2.2.3 Applications of RO in Ride-hailing Operations

In recent years, robust optimization applications in transportation, and ride-hailing
rebalancing more specifically, have attracted considerable research attention. Liu et
al. [ | '] considered uncertain local demand in their matching algorithm for ridesharing
operations. Miao et al. [ '] proposed an RO model for the taxi dispatching problem
and tested it using NYC taxi data. They also proposed a data-driven approach to
construct the uncertainty set based on historical demand data with a probability
guarantee, building on previous data-driven RO theory proposed by Bertsimas et
al. [/ *]. He et al. [ ] tackled the robust ride-hailing rebalancing problem using linear
decision rules (LDR) to create a multi-period adaptive RO (ARO) model. Their
ARO-based approach is heavily based upon theory developed by Bertsimas et al. [ ].
To the best of authors’ knowledge, no existing papers have incorporated matching
component and robust optimization techmiques into vehicle rebalancing problems.
This research gap is important to address given the prominent role of ride-hailing

in urban transportation. Demonstrating how robustness and matching-integrated
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rebalancing can be combined in ride-hailing operations, and evaluating whether this
combination of methods is advantageous, can help to improve future ride-hailing

operations.

2.3 Methodology

2.3.1 Problem Description

Given an operation period 7, we first divide it into {2 identical time intervals indexed
by k = 1,2, .... 2, where the length of each time interval is A!. Figure 2-2 displays the
framework of the MIVR model. Grey intervals indicate past time intervals that have
been optimized. The green interval represents the current decision time interval and
red intervals stand for look-ahead time within the MIVR model. The MIVR model is
solved in a rolling-horizon manner, where decision variables are determined repeatedly
at the beginning of each time interval. At the beginning of time interval k, k future
time intervals are incorporated in the MIVR model, and only the vehicle rebalancing
decisions of the current time interval k are implemented. When proceeding to the
next time interval, vehicle locations are observed and updated as the input for the
MIVR model. Let (k,k+1,..., k4K —1) represent time intervals considered at time £k,
to simplify the notation, these time intervals are indexed by k = 1, 2, ..., k. The study
region is partitioned into n sub-regions, each sub-region i has an estimated demand
r¥ > 0 at time k. We define the following two sets: N = {1,...,n} representing the
set of sub-regions and K = {1, ..., K} representing the set of time intervals considered
in the problem.

The MIVR model introduces the driver-customer matching component into the
vehicle rebalancing problem by considering interzonal matchings based on estimated
demand. Within a time interval k, the wvehicle rebalancing phase happens at the
beginning of the interval and the driver-customer matching phase is conducted at the

end of the interval. In the vehicle rebalancing phase, decision variables are represented

!The choice of A should depend on the size of sub-regions.
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Figure 2-2: MIVR model framework. Each time interval has length A.

by xﬁ}- € M denoting the number of idle vehicles rebalanced from sub-region i to sub-
region j at time k. Let S¥ € N indicate the number of available vehicles in sub-region
i at time k for the matching phase. Let dfj,wﬁg denote the travel distance and time
from sub-region i to sub-region j at time k, respectively, which can be approximated
by the distance and travel time between the centroids of two sub-regions. We define a
parameter af; € {0,1} denoting whether an idle vehicle can be rebalanced from sub-
region i to sub-region j at time k, where ai-“j- = 0 if rebalancing between sub-regions
i,j is feasible at time k. The wvehicle rebalancing from sub-region i to sub-region j
at time k is feasible if wfj. < A, stipulating that the vehicle can be rebalanced to
the destination sub-region j within time interval k. Then the feasibility constraint of

rebalancing between sub-regions is given by:

a;.‘.-:nszﬂ Vi,j € N, Vk € K. (2.1)

L)

This constraint does not prevent long-distance rebalancing decisions that oceur
over several time periods, but rather limits the movement of rebalancing vehicles
within a single time period to zones that are reachable within that time period.

In the driver-customer matching phase, matching is considered between sub-
regions without considering actual demand and detailed locations of customers and
vehicles. Let yﬁ, € M denote the number of customers in sub-region i matched with
vehicles in sub-region j at time k. It is worth mentioning that decision variables yf‘; of
the matching component only serve as auxiliary variables in the MIVR model, which
focuses on computing the rebalancing decisions. When vehicle are rebalanced and

requests are collected, the driver-customer matching problem can then be solved by
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a separate driver-customer matching problem given the realized demand. Let T* € M
denote the number of unsatisfied requests in sub-region i at time k. Then constraints

related to the matching phase are:

Ey;“i <SFf VieN,VkeK (2.2a)

i=1

Y ul<rt VieN, VkeK (2.2b)

i=1

TrF=rf-) uf VieN VkeK (2.2¢)
j=1

Constraints (2a) and (2b) restrict the interzonal matching decisions by the num-
ber of available vehicles S¥ and estimated demand r*. Constraints (2c) define the
number of unsatisfied requests, which is equivalent to the number of customers who
have not been assigned drivers within the current matching phase. When matching
customers and drivers, a maximum pickup time constraint is imposed to guarantee
that customers do not experience excessive wait times. Let @ denote customers’ max-
imum pickup time and parameter bfj € {0, 1} denote whether customers in sub-region
i can be matched with drivers in sub-region j at time k, where E:{‘jl = 0 indicates a
feasible interzonal matching. The matching between customers in sub-region i and
drivers in sub-region j at time k is feasible if wfi < w, which enforces the maximum

pickup time constraint. The matching feasibility constraint is then

b -yh =0 Vi,jeN, Vke K. (2.3)

ij

Next, we establish the connection between the two phases. Let V*, OF € N repre-
sent the number of vacant and occupied vehicles for sub-region i at the beginning of
time interval k, respectively. The initial vehicle locations, V;!, O},Vi € N, are inputs
for the MIVR model. Other inputs to the model are regional transition matrices

P*_ (%, which describe the dynamics of occupied vehicles. The entry (i, j) for PF,
pk

i, denotes the probability that an occupied vehicle located in sub-region i at time
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k will be in sub-region j and stay occupied at time k+ 1. The entry (i, j) for Q¥, u,
indicates the probability that an occupied vehicle starting in sub-region i at time k
will be in sub-region j and become vacant at time k + 1.

In reality, the regional transition matrices depend on the spatio-temporal demand
flows as well as the operator’s dispatching and rebalancing strategies. The matching
and rebalancing decisions in the MIVR model are defined at interzonal level, and
the regional transition matrices formulated with interzonal level decision variables
are approximations to the real matrices. To reduce the model complexity, we further
approximate the real regional transition matrices with static matrices estimated from

the historical data. The impact of utilizing static transition matrices will be elabo-

rated in the results section. These matrices must satisfy the following constraints:

Z{P;;+Q?j) =1, Vie N, Vke K.
i=

Then, we specify the following relationships between S¥, V¥, OF and decision vari-

ables z%,, yk:

-]

rh < V¥ Vie N,Vke K (2.4a)

j=1
=Vf+z qu, Vie N, Vke K (2.4b)

: gt
Vi = gk _ Zyj, + Z k0¥ Vie N, Vke K\ {x} (2.4¢)
j=1
OF+ = Z Z PEOY Vie N, ke K\ {x} (2.4d)
j=1

Where constraints (4a) ensure that the number of vehicles in sub-region i that
can be rebalanced to other sub-regions is bounded by the number of vacant vehicles.
Constraints (4b) show that the available vehicles in sub-region i at time k consist of
vacant and rebalanced vehicles. Similarly, constraints (4c) indicate that the set of

vacant vehicles in sub-region i at time k+1 is comprised of currently vacant vehicles at

49



time k and currently occupied vehicles that become vacant in the next time interval.
The number of unmatched vehicles at time k, denoted by S¥ — 3" , y%, is equal to
the difference between the number of available vehicles and the number of vehicles
dispatched for interzonal matching. The number of occupied vehicles at time k that
become vacant at time k+1 in sub-region i is represented by E;’:l inﬂf Constraints
(4d) state that occupied vehicles in sub-region i at time k41 are comprised of currently
vacant vehicles that become occupied in the next interval as well as currently occupied
vehicles at time k. The number of vacant vehicles that become occupied in sub-region
i at time k+ 1 because of interzonal matching at time k is indicated by }°7 , y%,. The
number of occupied vehicles at time k that stay occupied at time k 4+ 1 in sub-region
i is enforced by >°7_; PEO%.

The objective for the MIVR model is minimizing the number of unsatisfied re-
quests and the total vehicle travel distance, which consists of vehicle rebalancing
distance and vehicle pickup distance. To construct the objective function as the gen-
eralized VMT for ride-hailing operations, we assume -y to be a parameter indicating
the penalty VMT induced by each unsatisfied request. Let S represent a parame-
ter that defines the relative weighting of rebalancing distance and pickup distance.
The parameter [ controls the trade-off between the total non-occupied VMT (from
the system perspective) and the service quality (from the customer perspective). A
larger S indicates a higher priority on minimizing the vehicle pickup distance, which
leads to better service quality with a smaller customer wait time. When § = 1, the
MIVR model purely minimizes the total VMT and the number of unsatisfied requests

without explicitly putting any weight on the customer wait times?.

K b b K m b

(MIVR) min Z= ZZfojdfj+H yﬁ.j,+’f ZZ:{*

k=1 i=1 j=1 k=1 i=1 j= k=1 i=1
(2.5a)

s.t. Constraints (1), (2a) — (2¢), (3), (4a) — (4d)

?The MIVR model implicitly weights the customer wait times hecause of the correlation hetween
the vehicle pickup distance and wait times.



8, yk €N VijeN, Vke K (2.5b)
Sk VEOFTFeN VieN,VkeK (2.5¢)

The MIVR model is an integer linear programming (ILP) problem with integer
variables zF, v%, SF, VF, OF and Tf. ILP problems of this size and complexity
can be difficult to solve in a reasonable time frame. To improve the computational
performance of our model while producing satisfying results, we relax all integer
variables in the problem to positive real numbers B*. The rebalancing decisions used
for implementations can be generated by rounding down the solutions generated by
the relaxed model. The approximated rebalancing decisions are guaranteed to be
feasible regarding to constraints (4a), which impose an upper-bound on the number
of vehicles that can be rebalanced.

By incorporating matching decisions within vehicle rebalancing problem, the model
also considers future matching distances in addition to the rebalancing distance, lead-
ing to “smarter” rebalancing decisions. Essentially, the MIVR reduces the cost of
inaccurate demand estimation when rebalancing idle vehicles. Meanwhile, the MIVR
model is a forward-looking model by incorporating & future time intervals into the

model.

2.3.2 Robust Optimization Model Formulation

The estimation of the future demand r¥ is crucial for vehicle rebalancing problems in
ride-hailing systems. Previous studies have assumed the number of customers in any
sub-region followed a Poisson distribution [, |. However, in most applications
we have limited knowledge about the “true” distribution for the future demand. The
assumption that complex customer behaviour can be described by a simple probability
distribution might be too strong. Instead of imposing a probability distribution on the
future demand, we introduce the robust optimization technique where the uncertain
demand parameters are described by uncertainty sets rather than specific probability

distributions. The uncertainty sets specify a range for the uncertain demand where
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the demand can lie anywhere in the range.

First, we define the uncertainty set for the robust MIVR model. For the uncer-
tainty in the demand originating in sub-region ¢ within time interval k, we construct
an uncertainty set I{ from the intersection of two different sets: a box uncertainty set
UF and a polyhedral uncertainty set I* which constrains the total variation in de-
mand across all sub-regions. The uncertainty set I{ was selected to reflect the actual
range of demand variahbility across different sub-regions without producing solutions
that are too conservative in practice.

The box uncertainty set imposes upper and lower bounds of p standard deviations
between estimated regional demand and the mean regional demand at each time
interval k. The parameter p is set according to the operator’s level of risk tolerance,
with a higher p representing a lower tolerance for risk. The mean u* and standard
deviation ¢* of the demand in sub-region i during time k are estimated with the

historical data. The box uncertainty set for estimated demand rF is then

L k
Ty —
G-k

b = {rt:

gp} Vie N, Vk € K.

The polyhedral uncertainty set limits the total offset in the sum of the demand
during a time interval across all sub-regions. This second restriction is intuitive;
within a given time interval, demand may be above or below the mean in one region,
but the total demand across the entire service area could be expected to remain at
a similar level compared to previous days under most scenarios. Sub-regions with
unusually high demand should be offset by other nearby sub-regions of low demand.
The polyhedral uncertainty set for estimated demand r¥ is

U*(r) = {{rf,...,r,’:) : Zﬂ:{rf —uh)| < F} Vk € K,
i1

where I' is the parameter to control the level of uncertainty for the polyhedral

uncertainty set. It is worth noting that the construction of the uncertainty set in-
dicates how much uncertainty the operator would like to tolerate in the operation.

In reality, there exists scenarios where the total demand at certain time intervals
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exceed the historical mean by far, for instance ride-hailing demand after concerts or
large events. It is wise for the ride-hailing operator to not take such unusual demand

scenarios into consideration.

The combined uncertainty set U for the estimated demand r¥ is:

ﬂ ﬂ Us(p)| N

i=1 k=1

Lfil Uk(r)
=1

By defining an uncertain parameter ¢ € R™ and letting r* = p* + ¢¥o*, we can
write U as follows:
U={¢: Kl £ p; [e7(¢Fod*)| <TVke K}, (2.6)

where ¢*, o € R™ are vectors for a specific time interval k, e € R™ is a vector with
all entries equal to one, and ¢* o o* indicates the element-wise product for vectors ¢*
and o*. The parameters p and I control the size of the uncertainty set for estimated
demand, and can be adjusted based on the operators’ risk tolerance or desired proba-
bility guarantee for constraints involving uncertain parameters. Increasing the value

of p and I' leads to more conservative rebalancing decisions for the robust model.

Combining the MIVR model with the uncertainty set described above, we propose
a robust MIVR model:

(P) min Z=Y 3" afdi+8-> > > uhdi+7- ZZT* (2.7a)
ij Yij k=1 i=1 j=1 k=1 i=1 j=1 k=1 i=1
st. SF=vF +z:r_f; —~Y af; VieN, VkeK (2.7h)
Vi = vk + ZQ;o; Vie N, Vk € K\ {x} (2.7¢)
j=1
OF' = "yk + ) PEOF VieNVkeK\ {x} (2.7d)
j=1 i=1
Y o <VF VieN, VkeK (2.7¢e)

53



Zyjl <S* VieN,Vke K (2.71)

Z v <pk+ ok VieN, VkeK, Vel (2.7g)

Tf=pf+¢fof =)y VieN, VkeK, Vel (2.7h)
i=1

b -y =0 VieN,VkeK (2.7i)

af, -2k, =0 VieN,Vke K (2.75)

2y >0 Vi jeN, VkeK (2.7k)

SkvkEoFETF>0 VieN, vkeK (2.7)

The problem (P) becomes infeasible even with a small value of p if the coefficient
of variation® for uncertain demand is large for some sub-regions during certain time
intervals. Particularly, the prcrblem (P) is infeasible if 3i € N,dk € K and p > “f.
Because when inequality p > %% £ holds, the box uncertainty set UK (p) allows ¢ tcr
take values smaller than —;5_';, wh_ich leads to a negative uncertain demand, i.e., r¥ =

¥+ ¢Fok < 0. The cunstra.ilnt (7g) is infeasible when the right-hand side is negative
since the decision variable yf; is non-negative. To prevent infeasibility that can results

from demand uncertainty, we add restrictions on the uncertainty set in the problem

(P) to guarantee that estimated demand is non-negative:

FrtekF >0 VieN, Vke K, Vel (2.8)

When modeling robust optimization problems, equality constraints with uncertain
parameters should be avoided as much as possible since they dramatically shrink the
feasible region and often lead to infeasibility [ ']. For the problem (P) with uncertain
parameter ¢, we must therefore reformulate equality constraints (7h). Equality con-
straints (7h) can be avoided by eliminating variable T* through substitution. After

this variable elimination step, objective function of problem (7a) becomes:

IRatio of the standard deviation to the mean.
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min {ZZZE A+ B0 2 D vl v ) ) (i + G Zyw]}
'.'l 'J 1i=1 =1 =1 i=1 j=1 k=1 i=1
(2.9)

The objective function (9) with min-max formulation can be reformulated by

introducing an auxiliary variable w:

min £ =w (2.10a)

s kg b K kg

NN N akd 433N Bk -k Y)Y ek <w Weeu

k=1 i=1 j=1 k=1 i=1 j=1 k=1 i=1
(2.10b)

However, robust counterparts for equivalent formulations of the same problem
are not necessarily equivalent [ ]. To reformulate the problem while maintaining
an identical robust counterpart, we make variables T* adaptive, meaning that both
variables are “wait-and-see”? variables relating to uncertain parameters ¢, i.e., T =
T¥(¢). Introducing adaptive variables turns the initial RO problem into an Adaptive
Robust Optimization (ARO) problem. A commonly-used approximation method for
solving ARO problems is the application of Linear Decision Rules (LDRs), which
has been shown to perform well in practice [, /]. Also, if the coefficients for
the variables to be eliminated in the equality constraint do not include uncertain
parameters and the constraint is linear in the uncertain parameters, making such
variables adaptive and applying LDRs is equivalent to directly eliminating them [ '].
Substitutions with equality constraint (7h) satisties both conditions, therefore we
eliminate variables T¥ in the problem (P) to ensure no uncertain parameters appear
in equality constraints. The reformulation (P’) is equivalent to an approximation for
the original robust formulation (P) together with restriction (8) on the uncertainty

set by applying LDRs=:

AThe value of “wait-and-see” variables are determined only after the future demand is revealed.
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(P) min Z=w (2.11a)

k=1 i=1 j=1 k=1 i=1 j=1 k=1 i=1
(2.11b)

Constraints (7b) — (7g), (7i) — (71), (8)

After the reformulation, uncertain parameters only appear in the constraints. The
next step is to derive the robust counterpart for the robust MIVR model. Constraints
(7g), (11b) and Equation (8) with uncertain parameter { can be written as the fol-

lowing generic formulation:

L(-)+v'¢<e VCel, (2.12)

where L(-) indicates a function of decision variables in problem (P'), v is a vector
in dimension nk and ¢ is a scalar. The robust counterpart for the generic constraint

(2.12) is

.
L(-) +pllfolly + T Xk (nf +15) < e

(¥ — k)0 =6 Vie N, Vk=F e K

16F=0 VieN,Vk£kKeK (2.13)
k>0 VeeK

RE,.E;D b=

Where @, € R™* and Hf;,k represents (ik)-th entry of vector f, V&' € K. The full
derivation of the generic robust counterpart of (2.12) can be found in Appendix A.1.

Then we derive the robust counterpart for problem (P'):

(RC) min Z=w (2.14a)



s.t. Constraints (7b) — (7£), (7i) — (71)

2.2 2t 5 3) ) LR R ZZMH > &%

=1 i= k=1i=1 j=1 k=1 i=1 k=1 i=1
LT {ni’ +r5) <w (2.14b)

k=1

(i —m§)oF =6F VieN,Vk=FKcK (2.14c)
OF =0 VieN,Vk#kK eK (2.14d)
Zﬂk. =v-0f WieN,VkekK (2.14e)
k<O <B VieN,VkeK (2.14f)
mhik >0 Vke K (2.14g)

Zy%J+PZZ{T1:k T213}+FZ(T3=1:+T4=&J{M Vie N,Vke K
i1 F—1—1 1

(2.14h)

TR LB (h . —Th ) =0 ViLieN, VK ke K, (i'\,K) # (i, k)

(2.14i)
TT i 2;;: +‘3’=* '[T3=,k Tﬂ,k} =—cF Vi'=ieN,VK=keK (2.14j)
Tlr'lk!:’?-ﬂr:kk =0 1"?"1 ?i = N:u yk’? ke K |:214k}
i The =0 YieN, VK ke K (2.141)

Py z{plak+v21k}+rZ{p&ak‘l'pdzk}{ﬁ: VieN,Vke K

k'=1i'=1 Br=1
(2.14m)
vy ;k;: vih.k +af (vﬂak Vﬂ:,k} =0 Vi'lie N, Vi'.k e K, (i",k) # (i, k)
(2.14n)
% ;k;: vih.k +al {pﬂak Vd,-a:,k} =—of Vi'=ieN, VK =keK (2.140)
"’;f::ﬁ’%f; >0 ViieN, VK .keK (2.14p)
v Ve 20 YieN, VK ke K (2.14q)

The constraints (14b) - (14g) represent the robust counterpart of constraints (11b).
Constraints (14h) - (141) are the robust counterpart of constraints (7g) while con-
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straints (14m) - (14q) are the robust counterpart of Equation (8). Compared to
problem (P’), the robust counterpart (RC) introduces (4n’k?+5nk? + 2nk + 2k) new
auxiliary continuous variables. Although the number of decision variables increases
considerably in the robust counterpart, this LP problem can be solved efficiently even

for large-scale instances.

2.4 Empirical Study Design

In this section, we describe a real-time ride-hailing simulator used to compare the
MIVR model with an independent VR model. To justify the benefit of introducing
the robust optimization technique into the vehicle rebalancing problem, a separate
matching problem is solved over multiple demand scenarios to evaluate robust solu-
tions and compare the nominal MIVR model with the robust MIVR model. We also

describe the data used in the experiments.

2.4.1 Ride-hailing Simulator

The ride-hailing simulator is used to compare the nominal MIVR model with a bench-
mark VR model described in Appendix A.2. The results produced by this simulator
allow us to evaluate the impact of the MIVR model independent of the robust opti-
mization component. The simulation framework is shown in Figure 2-3.

Data Input. Data input for the ride-hailing simulator including the road network
for the studied region with a shortest path distance matrix and a predecessor ma-
trix, the set of n sub-regions N, a distance matrix d:;. and travel time matrix wfj-
between centroids of sub-regions, the set of {1 time intervals with length A, a mean
¥ of demand for each sub-region during each time interval, a full day of ride-hailing
demand, and regional probability transition matrices for occupied vehicles P, () and
vacant vehicles F,, (),. Details of the P, () matrix estimation methods are provided
in Appendix A.4. Data sources are described in detail in Section 2.4.3.

Simulation Parameters. Table 2.1 presents and explains the simulation parame-

ters. Rebalancing decisions are solved with a model considering & look-ahead time
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Figure 2-3: Ride-hailing simulation framework.

intervals.
Simulation Parameter | Explanation Base Case Value
o Cost parameter for regular rebalancing model 10?
g Weight parameter for pickup distance 1
5 Cost parameter for unsatisfied requests 102
Tatare Start time of simulation 00:00
Tend End time of simulation 24:00
A Decision time interval length 300 (seconds)
& Matching batch size 30 (seconds)
K Number of time intervals considered in model 6
{7 Maximum pickup time 300 (seconds)
i Maximum wait time 300 (seconds)
Ny Number of vehicles 3000
T Average vehicle speed 20 (mph)

Table 2.1: Simulation parameters and base case value.

Demand Generation. Due to privacy concerns, historical TNC trip datasets typi-

cally do not provide exact addresses or coordinates for trip origins and destinations.

Given the demand data at sub-regional level, we randomly assign road nodes within

sub-regions as origins and destinations.

Vehicle Initialization. At the start of the simulation period, the N, vehicles are
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equally likely to be in any sub-region i. The initial location for a vehicle within a
sub-region i is randomly assigned to a road node within i. All vehicles are considered
to be available at the beginning of the simulation.

Simulator. There are two main components contained in the simulator: the ve-
hicle rebalancing engine and driver-customer matching engine. Vehicle locations are
updated at the beginning of each simulation iteration. The simulator works as follows:
at the beginning of current simulation iteration, vacant and occupied vehicle locations
are updated and used as the input for vehicle rebalancing engine; vacant vehicles are
rebalanced based on rebalancing decision variables for the current iteration; within
each simulation iteration, the driver-customer matching engine can be run multiple
times depend on the matching batch size (e.g., 30 seconds); vehicles with assigned
customers become occupied and start to pick up customers and finish their trips.

Driver-customer Matching Engine. The optimal assignment problem for matching
drivers with customers in the simulator can be found in Appendix A.3. The objective
of the optimal assignment problem is minimizing the number of unsatisfied requests
while minimizing the pickup distance. The batch size of driver-customer matching
engine is 4 and customers will leave the ride-hailing system if they wait longer than
the maximum wait time 1.

Simulation Results. We evaluated the simulation with the following vehicle-related
indicators: number of served customers, non-occupied VMT and number of rebalanc-
ing trips. Customer wait time is used as the customer-related indicator to evaluate
the simulation. The customer wait time includes two components: the time for the
vehicle to be assigned to the customer, and the time for the assigned vehicle to travel

to the pickup location.

2.4.2 Robust Solution Evaluation

Evaluating the solutions from the robust model requires multiple different demand
scenarios due to the stochastic inputs. We compare the average performance of the
model across all demand scenarios in the study period for different uncertainty set

sizes.



To evaluate the model performance under each demand scenario, we solve a sepa-
rate driver-customer matching problem after the demand is realized and the (nominal
or robust) rebalancing decision zf; (generated with estimated demand) is executed.
The driver-customer matching problem solved here is identical to the one solved in
the simulator. The overall pickup time and the number of unsatisfied customers are

used as outputs to evaluate robust solutions.

2.4.3 Data Description

The study area used in the experiments is the island of Manhattan in NYC. We used
the high-volume ride-hailing trip data collected by the NYC Taxi and Limousine
Commission [ ] as the demand data. The sub-regions used in the experiments are
“taxi zones” defined within the high-volume ride-hailing trip dataset. There are 63
taxi zones on the island of Manhattan (N = 63).

For benchmark comparisons of the nominal MIVR model, weekdays in June 2019
were chosen as the analysis period. Only trips that began and ended on the island
of Manhattan were included. The mean and standard deviation of daily trip count
by zone are shown in Figure 4-4 to illustrate the overall demand pattern. Demand
is generally concentrated around dense residential areas on the eastern and western
sides of Manhattan. There was an average of 294 422 high-volume ride-hailing trips
per weekday during the sample period.

The full day of ride-hailing demand used in the simulation is from June 10, 2019.
We chose a non-holiday Wednesday as it represents a typical day of demand from
the study period. Figure 2-5 shows the comparison between the real demand and
estimated demand® aggregated into 5-minute time intervals. Based on the relationship
between total real demand and total estimated demand, we identify four discrete

demand scenarios over which the model can be tested:

I Low demand with accurate estimation (0 - 6): overall demand is relatively low

and consistent with the historical average for this period.

*Mean demand pf is used as estimated demand.
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Figure 2-4: Average daily demand by zone (trips).
II High demand with accurate estimation (6 - 10): overall demand is high and

consistent with the historical average for this period.

IIT Demand underestimation (11 - 17): the total demand exceeds the historical

average for this period.

IV Demand overestimation (20 - 24): the total demand is lower than the historical

average for this period.
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Figure 2-5: Estimated and real demand with four different types of demand scenarios.

It is worth mentioning that an accurate prediction of the total demand does not
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lead to accurate sub-regional demand predictions. Demand uncertainties exist in
every demand scenario and the overall level of uncertainty is higher in scenarios where
demand is underestimated or overestimated. Simulation results for each demand
scenario are shown in the next section in order to illustrate the difference in model
performance across two dimensions: demand level and prediction accuracy.

For evaluations of the robust MIVR model, we utilized the actual demand data
for the 65 week days from April to June 2019 to reflect the real demand uncertainty.
Mean p¥ and standard deviation o used in the robust MIVR model are generated
from the same period.

The interzonal travel times for each time interval, wf;?

were collected from real
travel speed data provided by the Uber Movement database for the study period of
June 2019 [~ ]. Hourly link-level travel speed is available for every link with at least
five unique trips during the hour. First, the average hourly speed across all days in
the study period was determined. The average hourly link travel speed was then used
as an input to find the shortest path travel time between each zone pair for each hour
in the day. Dijkstra’s algorithm [ '] was used to determine the shortest path between
zone centroids. The regional transition probability matrices for occupied and vacant

vehicles, P, (), P, and (),, are generated based on the real travel time and demand
data, and details are shown in Appendix A.4.

2.5 Results

All experiments in this chapter are conducted on a 3.0 GHz AMD Threadripper
2970WX Processor with 128 GB Memory. The integer linear program and linear
progra m in the experiments are solved with Gurobi 9.0 [ ].

Presentation and discussion of the results is organized into three subsections.
Section 2.5.1 compares the MIVR model to two benchmark models: the VR model
described earlier, and a recent state-of-the-art rebalancing model [ ]. Section 2.5.2
explores the sensitivity of the MIVR results to variation in the model inputs. Sec-

tion 2.5.3 discusses the impact of regional transition matrices to simulation results.
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Finally, Section 2.5.4 provides the results for the robust MIVR model.

2.5.1 Benchmark Comparison

First, we compare the MIVR model with the benchmark VR model described in A.2
and a fluid-based empty-car routing policy (FERP) proposed by Braverman et al. [ 1]
The performance of each model is assessed with the ride-hailing simulator described
in Section 2.4. To ensure a fair comparison, each vehicle rebalancing model uses the

same demand profile and initial vehicle locations for each scenario.

Benchmark VR Model Comparison

The base case scenario (full-day simulation) is tested with the simulation parameters

shown in Table 2.1. The base case considers a scenario with 3000 vehicles, i.e.,
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Figure 2-6: Vehicle- and customer-related metrics in the simulation for the base case.
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N, = 3000, and 6 future time intervals in the vehicle rebalancing model, i.e., Kk = 6.
The base case scenario purely minimizes the number of unsatisfied requests and the
total non-occupied VMT, ie., 3 = 1. Both vehicle- and customer-related metrics

are presented in Figure 2-6, where each figure shows the distributions for vehicles or

customers for both MIVR and VR model results.

As shown in Figure 2-6a, the MIVR model reduces the non-occupied travel dis-
tance on average when compared to the VR model. Also, the number of vehicles with
extremely long travel distance is reduced when utilizing the MIVR model. Figure
2-6b displays the rebalancing trip distributions, indicating that the MIVR dispatches
fewer vacant vehicles for rebalancing purposes. The distribution of the number of
served customers per vehicle is shown in Figure 2-6¢. Although the average number
of customers served by each vehicle is identical for two models, vehicles utilization is
more evenly distributed under the MIVR model compared to the VR model. Figure
2-6d compares the wait time between the MIVR and VR models. The average wait
times are 65.5 and 68.5 seconds for each model, respectively. This ocecurs because
the MIVR model reduces the number of customers with longer wait times. The frac-
tion of unsatisfied requests for both models is less than 0.1%. Under the base case
scenario, the MIVR model reduces customer wait time by 4.4% on average and total

non-occupied VMT by 8.5%.

To better understand the model performance relative to the magnitude of demand
and the level of prediction accuracy, we compared the MIVR model with the VR model
over the four demand scenarios described in Section 2.4.3. Figure 2-7 displays the
non-oceupied vehicle travel distance distributions and Figure 2-8 shows the customer
wait time distribution over the four demand scenarios. For the low demand with
accurate estimation (I) and demand underestimation (III) scenarios, the MIVR model
outperforms the VR model by significantly reducing customer wait time while also
reducing the average vehicle non-occupied travel distance. In the high demand with
accurate estimation scenario (II), the MIVR model reduces customer wait time by
proactively rebalancing vehicles more frequently than the VR model. In the demand
overestimation scenario (IV), the MIVR model is outperformed by the VR model as
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the VR model leads to lower average customer wait time and average vehicle non-
occupied travel distance. The detailed simulation results for each demand scenario

can be found in Appendix A.5.
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Figure 2-7: Vehicle non-occupied travel distance distributions for different demand
seenarios.

To summarize, the MIVR model dispatches more vacant vehicles than the VR
model when the level of estimated demand is high (given a specific fleet size N,).
On the other hand, fewer vehicles are dispatched by the MIVR model compared to
the VR model when the level of estimated demand is low. This conclusion is further
substantiated in Section 2.5.2, which discusses the results under different fleet sizes.
We observe that the MIVR model is less proactive on dispatching vacant vehicles
compared to the VR model when the fleet size is large relative to the level of demand.

In this section, we have shown that the performance of rebalancing models, as

measured by the average customer wait time, depends on the accuracy of demand
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Figure 2-8: Customer wait time distributions for different demand scenarios.

prediction and the level of demand. When the error in demand prediction is low, the
MIVR model reduces the average customer wait time compared to the VR model.
Model performance is penalized when the error in demand prediction is high (the to-
tal demand is underestimated or overestimated). Additionally, a rebalancing model
which dispatches more vacant vehicles suffers higher penalties due to inaccurate de-
mand estimation. In the demand scenario I11, the level of predicted demand is low and
the MIVR model dispatches fewer vacant vehicles than the VR model. Therefore, the
MIVR model performs better than the VR model by reacting less often to inaccurate
demand estimation. In the demand scenario IV, the level of predicted demand is high
and the MIVR model dispatches more vacant vehicles than the VR model. The MIVR
model experiences a higher penalty due to inaccurate demand estimations because of
a proactive rebalancing strategy; hence, it performs worse than the VR model under

these conditions. The demand scenario IV implies that the demand prediction serves
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a critical role in the performance MIVR model. These results therefore demonstrate

the value of a robust MIVR model that explicitly considers demand uncertainty.

Benchmark FERP Comparison
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Figure 2-9: Benchmark comparison results between MIVR and FERP models.

To further evaluate the performance of proposed MIVR model, we compared our
approach with a state-of-the-art method for solving the vehicle rebalancing prob-
lem []. Braverman et al. [ /] formulated a fluid-based optimization problem to
generate a static empty-car routing policy. To guarantee a fair comparison, we chose
a two-hour time period (TAM - 9AM) with historical demand and travel time data
from June 2019 and 3000 vehicles to compute a static empty-car routing policy. We
implemented the static routing policy in the simulator to dispatch vacant vehicles at

each time interval instead of solving an optimization problem. Comparison results
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are shown in Figure 2-9.

Figure 2-9a displays the distributions of non-occupied vehicle travel distance and
Figure 2-9b shows the vehicle rebalancing trip distributions. The MIVR model dis-
patches vacant vehicles more proactively than the FERP. The distributions of number
of customers served per vehicle are presented in Figure 2-9¢, where vehicles are uti-
lized slightly more evenly by the MIVR model than the FERP. Figure 2-9d displays
the customer wait time distributions. The MIVR model reduces the average customer
wait time by 18% while increasing total non-occupied VMT by 24%. The proportion
of unsatisfied requests for both approaches is less than 0.1%, which is a result of the
adequate supply of vehicles. The MIVR model optimizes rebalancing decisions dur-
ing each time interval and the FERP maintains the same vehicle rebalancing policy
throughout the simulation period. In general, the MIVR model provides better ser-
vice quality for customers by producing a more proactive rebalancing strategy, but it

also results in a somewhat higher non-occupied VMT.

2.5.2 Scenario Testing

Second, we test the sensitivity of the results when changing input parameters of the
MIVR model, including the fleet size, N,, the length of decision time interval, &, the
weight parameter for pickup distance, 3, and the size of the sub-regions. To avoid the
effect of inaccurate demand estimation when testing different scenarios®, we tested
different scenarios with N,,x and 5 over a four-hour time period (6 AM - 10 AM)
assuming perfect future demand predictions. Alternative scenarios are generated by

changing the simulation parameters for the base case.

Fleet size N,

Results for scenarios with varying fleet sizes, represented by N, in the simulation

parameters, are shown in Figure 6-10. When there is a limited number of vehicles

8The effect of input parameters on the simulation results can be overshadowed by the effect in-
duced by inaccurate demand estimations when two have contradictory effects on certain performance
metrics.
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(N, < 4000) in the system, the MIVR model generates more rebalancing trips per
vehicle compared to the VR model. When there are sufficient vehicles in the system
(N, = 5000 or 6000), the MIVR model dispatches fewer vacant vehicles and reduces
the total non-occupied VMT compared to the VR model. This is intuitive; for the
MIVR model, less rebalancing is needed when there is a higher concentration of idle
vehicles since more passengers can be picked up (within the maximum wait time
constraint) without significant rebalancing. Therefore, the MIVR model reduces the
total non-occupied VMT. The MIVR model decreases the average customer wait time
under all scenarios with different fleet sizes compared to the VR model. Customer
wait time decreases significantly for the MIVR model when a larger fleet is available.
Even though rebalancing is not as critical for a large fleet, the MIVR model continues
to minimize pickup distance and therefore customer wait time. The proportion of
unsatisfied requests is marginally decreased for the MIVR model compared to the
VR model, regardless of fleet size.

The scenario testing with different fleet sizes implies the existence of the Pareto
improvement at aggregate level for the MIVR model compared to the VR model.
When a sufficient number of vehicles is available, the MIVR model reduces the total
non-oceupied VMT, average vehicle rebalancing trips and average customer wait time
while satisfying more requests compared to the VR model. For instance, when there
are 6000 vehicles in the system (with x = 6), the MIVR model reduces the total
non-occupied VMT by 33%, average vehicle rebalancing trips by 22% and average
customer wait time by 36% when compared to the VR model. Under this scenario,
the MIVR model clearly outperforms the VR model, indicating that the Pareto im-

provement exists.

Decision time interval length &

Figure 2-11 shows the results under scenarios with varying decision time intervals k.
Both models dispatch more vehicles when considering additional future time intervals
(i.e. & becomes large), and similar amount of vacant vehicles are dispatched by both

models. Also, the total non-occupied VMT increases when considering more future
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Figure 2-10: Scenario testing results for different fleet size N,.

time intervals for both models, and the MIVR model leads to less non-occupied VMT
compared to the VR model for all scenarios. With respect to customer wait time, con-
sidering additional time intervals benefits both models and the MIVR model reduces
wait times for all scenarios compared to the VR model. The MIVR outperforms the

VR model on the proportion of unsatisfied requests for all scenarios.

Note that selecting number of time intervals presents a trade-off between system
performance and computation time. Increasing x linearly increases the size of the

problem, which may result in a solution time that is too long to use in practice. The
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Figure 2-11: Scenario testing results for different decision time interval length .

average computation time for solving the MIVR model with & = 6 is 3.8 seconds
and the average computation time for the MIVR model with & = 12 is 7.5 seconds.

Platform operators must therefore choose a look-ahead window that is suited to their

system size and computational capacity.

Weight parameter for pickup distance 3

The weight parameter 3 in the MIVR model controls the trade-off between the total
non-occupied VMT and the service quality. In previous experiments, § = 1 was
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Figure 2-12: Sensitivity testing results for the weight parameter 3 in the MIVR model.

used as a base case, leading to a MIVR model which purely minimized the total
non-oceupied VMT and the number of unsatisfied requests. In this section, different
values of 3 are tested based on the base case simulation setting assuming perfect future
demand predictions, and the total non-occupied VMT and the average customer wait
time are shown in Figure 2-12. Solid line indicates the average customer wait time

and dashed line represents the total non-occupied VMT.

When 3 becomes larger, the MIVR model puts more weight on the service quality
(customer wait times), and the total non-occupied VMT gets larger. The average
customer wait time monotonically decreases when § increases. By increasing the
value of 3 to 3, the average wait time is reduced by 3% while increasing the total
non-occupied VMT by 4%. However, the MIVR model becomes more vulnerable to
the demand uncertainty when the value of 3 is large. This is because more vacant
vehicles are rebalanced when [ is large, where a larger penalty is induced by the
inaccurate demand estimations. Therefore, the service quality can be diminished if 3

is too large.

On the other hand, a negative weight is put on the service quality when g < 1,
meaning that the service quality is sacrificed to reduce the total non-occupied VMT.
For the scenario with § = 0.5, the total non-occupied VMT is reduced by 0.5% and

the average wait time is increased by 4% compared to the base case. Since the vehicle
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rebalancing distance is highly correlated with customer wait time, reducing 3 does

not significantly decrease the total non-occupied VMT.

Sub-regional size
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Figure 2-13: Results comparison between simulations with 63 regular sub-regions and
13 large sub-regions.

The MIVR model performance relies on the size of sub-regions. Smaller sub-
regions leads to more rebalancing options (decision variables) and a better overall
model performance. However, the model complexity increases when considering
smaller sub-regions. To quantify the effect of changing the size of sub-regions, we
combined 63 taxi zones into 13 larger zones and ran simulations for the 13 large
sub-regions. Comparison results are shown in Figure 2-13.

Figure 2-13a and 2-13b show the distributions of non-occupied vehicle travel dis-
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tance and vehicle rebalancing trips. Fewer sub-regions with larger size reduces the
opportunities for rebalancing vacant vehicles between sub-regions. Therefore, both
the average vehicle non-occupied VMT and rebalancing trips are significantly de-
creased. The distribution of number of customers served per vehicle is shown in
Figure 2-13¢, where vehicles are more evenly utilized by the MIVR model under a
smaller sub-region size. Figure 2-13d displays the customer wait time distributions
for both scenarios. Compared to the scenario with larger sub-regions, the scenario
with 63 sub-regions leads to 20% and 23% reductions on the average customer wait
time for the VR and the MIVR, respectively. Differences between the MIVR and VR
models hold regardless of the size of the sub-regions.

As for the computation complexity, the average running time for producing rebal-
ancing decisions during each iteration by the MIVR model under a regular sub-region
size is 3.95 seconds. The average running time for the MIVR model under a larger
sub-region size is 0.18 seconds. Reducing the number of sub-regions from 63 to 13
saves approximately 95% of the computation time on generating rebalancing deci-
sions. In general, the size of sub-regions should be chosen to balance computation

complexity and model performance.

2.5.3 Impact of Regional Transition Matrices

In the MIVR model, we utilized static regional transition matrices P and (), which
are estimated from the historical data, to reflect the movement of occupied vehicles.
However, the true regional transition matrices depend spatio-temporal demand Hows
and operators’ dispatching and rebalancing strategies. In this section, we will quantify
the impact of approximating true regional transition matrices with the historical data.

To incorporate the true regional transition matrices in the model, we modified the
simulator by estimating regional transition matrices for occupied vehicles based on
preceding matching decisions at the beginning of each simulation period. By using
the previous matching decisions in the simulation, only regional transition matrices
between the current time period k and the next time period k 4+ 1 can be evaluated

accurately. Therefore, we implemented a MIVR model with £ = 2 in the simulation,
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indicating that two time intervals were considered when making rebalancing decisions.
Other simulation parameters are identical to the base case scenario. Such a modified
simulator is able to produce rebalancing decisions based on the true regional transition

matrices at each time interval.
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Figure 2-14: Comparison results between simulators with dynamic and static regional
transition matrices.

To quantify the impact of approximating regional transition matrices with the
historical data, we compared results from the modified simulator to results from a
standard simulator desecribed in section 2.4.1 with kK = 2, which pguarantees identical
look-ahead windows in the MIVR model. Results are compared within a four-hour
time period (8AM - 12PM) and detailed comparison results are shown in Figure 2-14.
Dynamic indicates that regional transition matrices are estimated at the beginning

of every simulation time interval. Static implies that regional transition matrices
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estimated by the historical data are utilized.

Figure 2-14a shows the distributions of vehicle non-occupied travel distance. Uti-
lizing true regional demand matrices reduces the total non-occupied VMT by 1.9%.
Distributions of vehicle rebalancing trips and number of customers served are dis-
played in Figure 2-14b and 2-14¢, where two simulators have identical performance
on average. Figure 2-14d presents the distributions of customer wait time. Using true
regional transition matrices reduces the average customer wait time by by 2.4%.

The comparison results imply that approximating the true regional transition
matrices with static matrices estimated from the historical data has a marginal impact
on model performance. This is intuitive; the regional transition matrices are used for
constructing a forward-looking vehicle rebalancing model. In the simulation, only
the rebalancing decisions for the first time interval will be implemented, although
rebalancing decisions for k time periods are generated. When moving to the next
time period, real-time information (e.g., vehicle locations) is updated and a separate
MIVR model considering & time intervals is solved. Therefore, regional transition
matrices have a limited impact on rebalancing decisions at the first time interval,

which subsequently has a marginal impact on model performance.

2.5.4 Robust Model Results

To evaluate the robust optimization model, we tested multiple scenarios with different
levels of uncertainty as defined by the uncertainty set size parameters p and I'. Each
robust solution was generated for the robust MIVR model considering 6 future time
intervals, i.e., &K = 6. The model parameters were set as § = 1, 7 = 10% and
it = 1w = 300. For the number of vehicles N,, we considered the scenario with 3000
vehicles, indicating a sufficient supply (almost all customers can be served) given
the demand profile, and 2000 vehicles, representing an insufficient supply. The initial
vehicle distributions V; and O are generated using the following process: each vehicle
in the fleet with size N, is either vacant or occupied with equal probability and is
randomly assigned to a sub-region. To test the performance for different solutions,

we utilized the real demand data from 9 AM - 9:30 AM for 65 work days from April
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to June 2019 and solved a driver-customer matching problem with realized demand
and wvehicle distributions after rebalancing. The performance of each solution was
evaluated based on the average values of the total pickup time and the number of
unsatisfied requests over the 65 demand scenarios. The solution generated by the
nominal MIVR model was used as the benchmark for evaluating robust solutions.
The performance of each robust solution is displayed as the percentage reduction in

performance measurements compared to the nominal solution.

p r 0 1 2 3 4 5 6 7 8 9 10
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 021 021 021 021 021 021 021 021 021 021 021
0.2 051 138 118 066 1.18 066 118 1.18 066 079 1.38
0.3 245 245 452 245 245 245 245 452 452 245 4.52
0.4 347 415 415 415 415 415 567 415 415 5.67 5.6
0.5 562 562 562 562 H62Z H62 HE2  HH62Z  THEE  T.BE 562
0.6 789 T8 T899 T8O T8O T8O T8HO THO TEO T8O T.89
0.7 8.78 10.32 1032 1032 10.32 1032 1032 1032 1032 1032 1032
08 | 1324 1324 1324 13.24 1324 1324 1324 1324 1324 1324 13.24
09 | 1717 1717 1717 1859 1717 1717 17.17 19.78 1850 1859 17.17
10 | 21.19 1992 21.23 21.23 2123 21.23 21.23 21.23 21.23 21.23 21.23

Table 2.2: Percentage reduction in the total pickup time compared to the nominal
MIVR solution with insufficient supply (N, = 2000), for different values of p and I'.

For the scenario with insufficient supply (N, = 2000 and a proportion of customers
can not be served), Table 2.2 shows the results about the total pickup time” and and
Table 2.3 displays the percentage reduction for the number of unsatisfied requests®
over the nominal MIVR model. Introducing uncertainty into the model generates
solutions that outperform the nominal solution for all values of p and I'. The uncertain
parameter p significantly affects the total pickup time and the number of unsatisfied
requests while the uncertain parameter I has limited impact on them. When a high
level of uncertainty is considered in development of the robust MIVR model, more

customers can be served with less total pickup time.

"Gray cells indicate uncertain scenarios with the largest reduction in pickup time.
#Gray cells indicate uncertain scenarios with the largest reduction in unsatisfied requests.
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5 r 0 1 2 3 4 5 6 T 8 9 10
0.0 0 o0 OO0 00O OO 00 OO 00 00 00 00
0.1 0z 02 02 02 02 02 02 02 02 02 02
0.2 02 041 021 02 021 02 021 021 02 02 041
0.3 (017 017 061 017 017 017 017 061 061 0.17 0.61
04 | 014 014 014 014 014 014 022 014 014 022 0.3
05 | 008 003 008 0085 008 008 008 008 03 03 0.08
06 | 015 015 015 015 015 015 015 015 015 015 0.15
0.7 02 022 022 022 022 022 022 022 022 022 0.22
08 | 046 046 046 046 046 046 046 046 046 046 0.46
09 | 056 056 056 056 056 056 056 056 056 056 0.56
1.0 | 054 054 054 054 054 054 054 054 054 054 0.54

Table 2.3: Percentage reduction in the nmumber of unsatisfied requests compared to
the nominal MIVR solution with insufficient supply (N, = 2000).

p F 0 2 3 4 5 6 8 9 10
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 5.23 4.19
0.2 6.4 6.4 6.4 T44 T.01 T27T 667 645 6.4 6.4 6.4
03 | 1251 1251 1251 120 1251 120 120 120 120 1251 1251
04 | 16.23 1533 1533 1533 1533 1533 1533 1533 1533 1533 1533
0.5 | 18.19 1832 18.32 17.57 18.32 1832 1832 1832 1832 1832 1832
06 | 2414 2296 2296 2298 2208 22096 22908 2296 2296 2296 2298
0.7 | 25.62 25.18 25.18 25.18 25.18 2518 25.18 25.18 25.18 25.18 25.18
0.8 | 3089 2039 2022 29.13 3144 2939 3098 2982 294 29.73 20.39
0.9 | 39.82 36.55 38.02 38.92 36.6 3644 37.16 3644 381 3644 36.44
1.0 | 3822 39.1 3949 39.01 39.01 4041 39.49 3941 41.03 4047 40.93

Table 2.4: Percentage reduction in the total pickup time compared to the nominal
MIVR solution with sufficient supply (N, = 3000), for different values of p and I'.

For the scenario with sufficient number of vehicles (N, = 3000 and almost all

customers can be served), the percentage reduction of the total pickup time is shown

in Table 2.4. The robust MIVR model benefits more when having a large fleet of

vehicles in the system. The largest total pickup time reduction for the robust MIVR

model with sufficient supply is 41.03% compared to 21.23% for the scenario with

insufficient supply. Under the scenario with sufficient supply, all customers can be

served and introducing uncertainty into the model generates solutions that outperform
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Figure 2-15: Rebalancing trips for the robust MIVR model under multiple uncertain
scenarios.



The robust MIVR model protects the rebalancing decisions against demand uncer-
tainty by restricting the number of rebalancing trips compared to the nominal MIVR
model, which is shown in Figure 2-15. Each cell represents the percentage of rebal-
ancing trips under a specific level of uncertainty compared to the number rebalancing
trips in the nominal MIVR model. When dispatching fewer vacant vehicles compared
to the nominal case, the penalty incurred due to inaccurate demand estimations is de-
creased and the system becomes more robust against the demand uncertainty, hence
has less total pickup time. The number of rebalancing trips is significantly restricted
(less than 50% compared to the nominal MIVR model) when introducing a high level

of uncertainty into the robust MIVR model under the sufficient supply scenario.

Figure 2-16 shows the daily performance of the robust MIVR model compared to
the nominal MIVR model. Each cell represents the percentage of the 65 input days
that the robust MIVR model performs strictly better than the nominal MIVR model
under a given level of uncertainty. Under the insufficient supply scenario, even consid-
ering a low level of uncertainty (p = 0.1) can significantly improve the performance of
the robust MIVR model (better performance than the nominal MIVR model for 83%
of the 65 days tested). When incorporating a moderate level of uncertainty (p = 0.5)
into the model, the robust MIVR model outperforms the nominal MIVR model for
every day of demand tested. When a sufficient supply of vehicles is available, the ro-
bust MIVR model performs better than the nominal MIVR model for every weekday

tested over most uncertain scenarios.

Overall, the robust MIVR model generates rebalancing decisions based on out-of-
sample demand uncertainty defined by parameters p and I', and solutions are evalu-
ated with real demand data reflecting in-sample demand uncertainty. The parameters
p and I" for uncertainty sets indicate the level of demand uncertainty that ride-hailing
operators are willing to protect rebalancing decisions against. Based on experiment
results, introducing robustness into the MIVR model and protecting rebalancing de-
cisions against demand uncertainty improve the system performance effectively under
insufficient and sufficient supply cases. The robust MIVR model performs even better

when having sufficient number of vehicles in the system.
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2.6 Conclusions and Future Work

In this chapter, we formulate the MIVR model, which incorporates the driver-customer
matching component into the consideration of vehicle rebalancing decisions made by
ride-hailing operators, to protect rebalancing decisions against future demand uncer-
tainty induced by inaccurate demand estimates. We evaluate the performance of our
model by comparing against a benchmark VR model and a state-of-the-art model,
named fluid-based empty-car routing policy (FERP), using actual ride-hailing trip
data. Comparing to the VR model, the MIVR model reduces the average customer
wait time and the total non-occupied VMT under most scenarios. When a large fleet
is available, a Pareto improvement can be found regarding the overall non-occupied
VMT, the average vehicle rebalancing trips, the average customer wait time and the
number of unsatisfied requests. Comparing to the FERP, the MIVR model reduces
the average customer wait time by generating a more proactive rebalancing strategy.
To further immunize solutions against demand uncertainty, we propose the robust
MIVR model by introducing RO techniques. The robust MIVR is especially effective
when the supply of ride-hailing vehicles is sufficient and most requests can be sat-
isfied. Under both sufficient-supply and insufficient-supply cases, the robust MIVR
model prevents rebalancing decisions from inaccurate demand estimation by rebal-
ancing fewer vehicles. Additionally, introducing robustness into the MIVR model
generates rebalancing decisions that performs better than decisions produced by the

nominal MIVR model under most demand scenarios.

The main limitations of this study are a result of approximations embedded in
the MIVR model. First, we are only able to model trips aggregated to the zonal level
given the data availability. While we simulate actual pickups and drop-off locations
within those zones, future work could incorporate disaggregate data to test rebalanc-
ing and matching at the individual address level. The model could be improved if
these data were made available. We also assume static regional transition matrices
estimated from the historical data. Though having limited impacts on model perfor-

mances, matching and rebalancing decisions-based regional transition matrices can
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be considered in the model to better reflect vehicle trajectories across multiple time
periods.

This chapter shows how internalization of matching costs can be used to protect
rebalancing decisions against demand uncertainty and improve the efficiency of ride-
hailing operations regarding customers (satisfy more customers with shorter wait
times), and under what conditions the proposed method is beneficial. Furthermore, it
illustrates how robust optimization complements the MIVR model by further limiting
the risk of increased cost due to incorrect demand estimations. Ride-hailing service
operators should consider adopting the robust MIVR model for improved customer
outcomes, such as wait time and unsatisfied requests, and reduced costs for operators.

There are several future research directions we identified in this chapter. First,
the uncertainty set E;“T“{F} has a limited impact on system performance. More effective
and interpretable uncertainty sets could be designed to model the uncertainty in the
ride-hailing system. Secondly, additional uncertainty variables could be considered
besides the demand uncertainty, such as travel time. Thirdly, we used the historical
average as the future demand estimates in this chapter. Advanced demand prediction
algorithms can be incorporated within the robust MIVR model to further improve
operational performances. Lastly, the MIVR model could be extended to solve the
vehicle rebalancing problem in the shared MoD system.



Chapter 3

Data-driven Vehicle Rebalancing
with Predictive Prescriptions in

the Ride-Hailing System

3.1 Introduction

Ride-hailing platforms are one of the most essential components of the emerging
Mobility-on-Demand (MoD) system, which provides passengers with improved mobil-
ity options through a traveler-centric multimodal urban transportation system [ ]
With the rapid growth of ride-hailing platforms, such as Uber, Lyft, and DiDi, ride-
hailing and ride-sharing services have become increasingly popular all over the world,
especially in highly-urbanized regions. In New York City (NYC), ride-hailing plat-
forms transported on average 15 million passengers per month in 2016, which was
approximately the same number of trips served by NYC'’s 43,000 yellow cabs [ ]. A
recent survey indicates that 36% of American adults have used a ride-hailing platform

(Uber or Lyft) in 2018, an increase from 15% in late 2015 [ ].

However, ride-hailing platforms face significant challenges with respect to opera-
tional efficiency. Despite having algorithmic pricing and matching strategies currently

in place, drivers from ride-hailing platforms spend an estimated 40% of the time cruis-
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ing without passengers in major cities[ ]. With technological advances in the field of
autonomous driving in the past decade, Autonomous Mobility-on-Demand (AMoD)
systems are becoming a reality. With a fleet of autonomous vehicles (AVs), centralized

control and planning of vehicles become more vital to efficient operations [~ ].

One of the major operational decisions critical to the efficient operations of ride-
hailing systems is vehicle rebalancing, where vacant vehicles are redistributed proac-
tively to areas with anticipated high demand to reduce the discrepancy between spa-
tial distributions of supply and demand during each time period, therefore reducing

customer wait times [, 0 0 170 O]

Since the future demand in ride-hailing systems is unknown, performances of re-
balancing decisions rely on both the prediction accuracy of future demand and the
uncertainty considerations in subsequent optimization. Various machine learning ap-
proaches have been developed to produce a point prediction of future demand with
high accuracy [ =, ©, 70, °, [=7]. Subsequently, the decisions are made accord-
ing to either the nominal predicted demand, which is named point-prediction-driven
optimization, or an uncertainty set around the prediction, which is termed robust
optimization. Robust optimization has been used widely for decision-making under
uncertainty and has been applied to the vehicle rebalancing problem in [ ]. However,
a good demand prediction does not necessarily lead to a good rebalancing decision. In
the demand prediction, all errors are considered the same, whereas in the rebalancing
problem sending additional vehicles to remote regions due to overestimated future
demand would incur a larger cost compared to if the additional vehicles were to be

sent to more connected and central regions.

On the other hand, data-driven optimization directly prescribes decisions from
data. For example, stochastic optimization has been commonly used for handling
problems that require making decisions under uncertainty in Operations Research
(OR) [ ]. However, standard data-driven optimization approaches, such as Sam-
ple Average Approximation (SAA), do not utilize auxiliary information, which leads
to an unacceptable waste of good data. To combine ideas from ML and OR while

making use of all available observations and information, a data-driven predictive pre-
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scriptions framework was proposed to prescribe optimal decisions in decision making
under uncertainty [ ].

In this chapter, a novel data-driven optimization approach, predictive prescrip-
tion, is introduced into vehicle rebalancing problems to generate better rebalanc-
ing decisions against demand uncertainty for ride-hailing platforms. The predictive
prescriptions are compared with the standard point-prediction-driven optimization
framework, stochastic optimization methods, and robust optimization methods. The

contributions of this chapter can be summarized as follows:

¢ Introducing the predictive prescription framework into solving the vehicle re-

balancing problem in ride-hailing operations.

e Applying the graph convolutional Long Short-Term Memory (LSTM) and the
station-based LSTM into predicting the future demand of ride-hailing systems.
Simulations results indicate that prediction errors caused by demand underes-

timation in predictive models can benefit system performances.

¢ Using real-world simulations to compare model performances of predictive pre-
scription models with point-prediction-driven optimization models under four
different demand scenarios. When demand prediction accuracy is low, predic-
tive prescriptions outperform point-prediction-driven optimization in terms of
reducing average customer wait times. The edge of data-driven optimization
over point-prediction-driven optimization increases when the supply to demand
ratio increases. When demand can be predicted accurately, point-prediction-

driven optimization is a better approach to adopt.

¢ Comparing predictive prescriptions with the robust matching-integrated vehicle
rebalancing (MIVR) model proposed in [ ]. Compared to the robust MIVR
model, predictive prescriptions achieve competitive performances without rely-

ing on any additional information about the future demand.

The remainder of the chapter is structured as follows. Section 3.2 reviews the rel-

evant literature in vehicle rebalancing operations, predictive models and data-driven
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optimization approaches. Section 3.3 describes the basic MIVR model and approaches
for improving model performances regarding demand uncertainty including predictive
methods and data-driven optimization approaches. Data used in this chapter is dis-
cussed in Section 3.4. Real-world simulation settings and empirical results are shown
in Section 3.5, including performance comparisons between point-prediction-driven
optimization models, predictive prescription models, and robust models. Finally,
Section 3.6 recaps the main contributions of this work and provides future research

directions.

3.2 Literature Review

3.2.1 Vehicle rebalancing

Rebalancing vacant vehicles is a critical operational strategy for ride-hailing platforms
in addition to matching customers with drivers [ ]. Due to the spatial imbalance
of demand and supply in ride-hailing systems, relocating idle vehicles to areas where
estimated future demand exceeds vehicle supply could reduce empty miles traveled
and customer wait times. An online vehicle rebalancing algorithm developed in [ ]
led to a 37% reduction in the average customer wait times compared to the scenario
where no rebalancing took place.

The vehicle rebalancing problem is first studied in [ |, where an adaptive dynamic
programming algorithm is proposed for dynamic fleet management with single-period
and multi-period travel times.

Since then, various approaches have been proposed to solve the vehicle rebalancing
problem in ride-hailing systems. Typical vehicle rebalancing problems discretize the
operating region into sub-regions and vacant vehicles are rebalanced between zones
by solving a mathematical programming problem. Wen et al. [ "] utilized a rein-
forcement learning approach to address the vehicle rebalancing problem in a shared
MoD system. Their proposed method reduced the fleet size by 14% in a real-world

simulation in London. Jiao et al. [ ] proposed a practical framework based on deep
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reinforcement learning and decision-time planning for rebalancing wvehicles in ride-
hailing systems. Braverman et al. [ ] designed a fluid-based optimization model to
model vehicles in ride-hailing systems. Their proposed method resulted in a higher
fraction of passengers served compared to benchmark models. Miao et al. [ '] intro-
duced a data-driven distributionally robust vehicle rebalancing model to minimize the
worst-case vehicle rebalancing cost, which consists of vehicle rebalancing distance and
a service quality function indicating the balanced-ness between supply and demand.
Their approach was evaluated with real-world taxi data in NYC and achieved a 30%

reduction in idle driving distance on average.

With the advent of autonomous vehicles, vehicle rebalancing problems have been
studied extensively for AMoD systems as well in recent years [ ]. A fluid model
was utilized to model passengers and vehicles, and an optimal rebalancing policy was
developed by solving a linear program [ = ']. A queueing-based theoretical model
was also proposed to model the vehicle rebalancing problem in the AMoD system.
The algorithm was designed to minimize the total number of rebalancing trips while
maintaining vehicle availability [/ ]. Iglesias et al. [ ] proposed a Model Predictive
Control (MPC) algorithm to compute rebalancing strategies by leveraging short-term
demand forecasts utilizing the LSTM neural networks. Their proposed algorithm
significantly reduced the average customer wait time compared to the rebalancing
strategy proposed in [ ]. In a shared AMoD setting, Tsao et al. [ "] proposed an

MPC algorithm to optimize routes for both vacant and occupied vehicles.

Besides, decentralized vehicle rebalancing systems were proposed as contingency
plans when AVs lost connections with central dispatch systems. Chen et al. [ ]
proposed a decentralized cooperative cruising method for offline operations of AMoD
fleets. Their proposed method shows significant performance improvements compared
to strategies with random-selected destinations for rebalancing AVs under different

fHeet sizes.

Most recently, Guo et al. [ ] proposed a MIVR model, introducing driver-customer
matching component into the vehicle rebalancing problem to produce better rebalanc-

ing decisions. Robust optimization was used to better protect rebalancing decisions
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against demand uncertainty. Their method could reduce the average customer wait
time by 18% compared to approaches proposed in [ '] under a real-world simulation
with the NYC ride-hailing data.

One common modeling framework to handle demand uncertainty is to predict
and optimize in separate steps, in which a prediction model is built first, followed by
an optimization model taking the outputs from the prediction model. Few studies
have considered combining prediction and optimization into one framework. Al-kanj
et al. ['] studied a sequence of decision problems in a ride-hailing system with au-
tonomous electric vehicles, including vehicle dispatching (matching, rebalancing, EV
charging), surge pricing, and fleet size problems. They utilized value functions to
represent the spatial and temporal patterns of demand in order to incorporate the
downstream impact of a decision made now on the future. The vehicle dispatching
problem was modeled as a Markov decision process and addressed with the approxi-
mate dynamic programming (ADP) approach. Ramezani and Nourinejad [/ ] pro-
posed a taxi dispatching model using the model predictive control approach. They
incorporated the interrelated impact of normal traffic flows and taxi dynamics when
generating dispatching decisions.

In summary, demand prediction and decision-making under uncertainty are two
flourishing topics being researched in parallel. In this chapter, we will first review
literature in demand prediction and decision making under uncertainty separately,

and then introduce a data-driven method that optimizes both in one model.

3.2.2 Demand Prediction

In recent years, a lot of studies apply deep learning to forecast ride-hailing demand.
The state-of-the-art method is the class of Convolutional LSTM (CNN-LSTM) models
because of their capacity in capturing the spatiotemporal travel demand patterns.
The appropriate variant of the CNN-LSTM model used in travel demand predictions
depends on the structure of the problem. Standard CNN is designed to analyze
quantities on urban grids, and convolutions are defined with respect to neighboring

cells on an imposed artificial grid [, ' ]. Due to the irregular shapes of taxi zones,
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graph neural networks were used and different types of correlations between spatial

entities are defined by adjacency matrices [, =7, "]

All machine learning methods are concerned with selecting the best estimators via
Empirical Risk Minimization (ERM), where weights of the network are obtained via
gradient-based algorithms such that the empirical average loss is minimized. The loss
functions are often standard, differentiable functions: log-likelihood for predicting
distributions, cross-entropy for classification, and mean squared error (MSE) for re-
gression. However, this implicitly assumes that the losses for each sample are equally
weighted. For example, with an MSE loss function, over(under)-predicting n people
yield the same error regardless of the actual demand. However, in downstream appli-
cations such as vehicle rebalancing, the actual decision loss of over(under)-predicting

a certain amount of demand is highly likely to be different.

3.2.3 Decision making under uncertainty in OR

The most widely-used method for decision-making under uncertainty in downstream
optimization tasks is stochastic optimization [ ]. One traditional method in stochas-
tic optimization is Sample Average Approximation (SAA), where empirical distribu-
tions are treated as the true distributions [ ']. Another notable approach for decision-
making under uncertainty is robust optimization [ '], and its data-driven variants [ -],
where the optimization task considers an uncertainty set around the predicted values
and optimizes the worst realization. However, none of the optimization approaches

mentioned here utilize auxiliary observations besides the uncertain quantities.

To narrow this gap and combine ML with OR approaches, Bertsimas et al. [ ]
proposed a predictive prescription framework for decision making under uncertainty
where auxiliary observations and data are leveraged to prescribe optimal decisions
directly from data in the optimization model. In this chapter, the predictive pre-
scription framework is introduced into the vehicle rebalancing problem and it is com-
pared with both point-prediction-driven optimization models with advanced LSTM

networks, sample average approximation, and robust optimization models.
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3.3 Methodology

3.3.1 Matching-integrated Vehicle Rebalancing Model

In this section, we briefly describe the matching-integrated vehicle rebalancing (MIVR)
model proposed by Guo et al. [ ], which constitutes the optimization component of

proposed data-driven approaches in this chapter.

The operational period is divided into 1 identical time intervals indexed by
k=1,2,..,1, where each time interval has length A. The MIVR model is solved
in a rolling-horizon manner illustrated in Figure 3-1, where decision variables are
determined repeatedly at the beginning of each time interval. The MIVR model
is solved considering four future time intervals (k = 4). Red intervals indicate the
look-ahead window while green intervals represent the current decision time intervals
whose rebalancing decisions will be implemented. It is worth mentioning that the
MIVR model is a forward-looking model incorporating k future time intervals. When
solving the MIVR model at the beginning of time interval k, including the demand
during time interval k, k future time intervals are considered. Only the vehicle rebal-
ancing decisions of the current time interval k will be implemented. Then the vehicle
locations are observed and submitted to the MIVR model as inputs for the next time

interval.

Additionally, the study area is divided into n sub-regions (zones), where each sub-
region i has an estimated demand rf > 0 at time k. We introduce two sets in this

model: i) set of sub-regions N = {1, ...,n}, and ii) set of time intervals K = {1,...,k}.

---------------------------------------------

Time Interval k [ k2 ][ k1 ][ k ]---[ +a ][ S ]
Time tervalk+1 [ k2 |[ k2 J[ &k [ k2 ]---
Time mtervat k-+2 (2 ) (e ) (k) (T ) () (D (DD D)

Figure 3-1: Example of rolling horizon manner for solving the MIVR model.
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For each time interval, the MIVR model performs two tasks: i) vehicle rebalanc-
ing, which happens at the beginning of each time interval, and ii) driver-customer

matching, which is conducted at the end of each time interval.

In the vehicle rebalancing phase, decision variables are represented by :.,“f;I e R,
denoting the number of idle vehicles rebalanced from sub-region i to sub-region j at
time k. The number of available vehicles in sub-region i at the end of time interval
k is indicated by Sf € Ry. Let df;, wk denote the travel distance and time from sub-
region i to sub-region j at time k, respectively, which can be approximated by the
distance and travel time between the centroids of two sub-regions. Let af; € {0,1}
denote whether an idle vehicle can be rebalanced from sub-region i to sub-region j
at time k, where ai-“j = 0 if rebalancing between sub-regions i, j is feasible at time
k. The wehicle rebalancing from sub-region i to sub-region j at time k is feasible if

the vehicle can be rebalanced to the destination within the current time interval, i.e.,

w{} < A. The feasibility constraint for vehicle rebalancing is given by:

af, -z =0 Vi,jeN, Vke K. (3.1)

L)

In the MIVR model, since the actual quantity and detailed locations of customers
and vehicles are not available, the matching component considers interzonal match-
ings based on estimated demand. In the matching phase, the decision variables are
yﬁ} € R, denoting the number of customers in sub-region ¢ matched with vehicles in
sub-region j at time k. A maximum pickup time is imposed to guarantee that cus-
tomers do not experience excessive wait times. Let @ denote customers’ maximum
pickup time and parameter b:;. € {0,1} denote whether customers in sub-region i can
be matched with drivers in sub-region j at time k, where bfj = 0 indicates a feasible

interzonal matching. The matching feasibility constraint is

b -yh =0 Vi,jeN, Vke K. (3.2)

ij

The number of unsatisfied requests in sub-region i at time k is represented as

T* € R.. Then constraints related to the matching phase are:
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Y Uk <SF VieN VkeK (3.3a)

j=1

Zy:; <rf VieN,VkeK (3.3b)

i=1

TrF=rf-) uf VieN VkeK (3.3¢)
j=1

Constraints (3.3a) and (3.3b) restrict the number of interzonal matchings by the
number of available vehicles S¥ and estimated demand r¥. The number of unsatisfied
requests is defined as T* € R, by constraints (3.3c), which is the number of customers
who have not been assigned drivers within the current matching phase.

To connect matching and rebalancing phases in the MIVR model, we introduce

the following decision variables and parameters:

e V* € R,: number of vacant vehicles for sub-region i at the beginning of time
interval k.
e OF € R, : number of occupied vehicles for sub-region i at the beginning of time

interval k.

V!, 0L, Vi € N: initial vehicle locations.

P‘“{Pi’;]: the probability that an occupied vehicle located in sub-region i at time

k will be in sub-region j and stay occupied at time k + 1.

Q* {ij-): the probability that an occupied vehicle starting in sub-region i at

time k will be in sub-region j and become vacant at time k + 1.

P¥_()F are regional transition matrices describing the movement of occupied vehi-
cles. We approximate them with static matrices estimated from historical data. The
approach to estimating these matrices and the limitations of such approximations are

discussed in [ ].



Then, we specify the following relationships between S*, V¥, OF and decision vari-

ables z%,, yk:

5, <VF VieN,Vke K (3.4a)
j=1
Sf=Vk+) 2k - 1k VieN VkeK (3.4b)
VR =SE-Y "k +> QL0F Vie N, Vke K\ {x} (3.4¢)
i=1 i=1
OF' =3"uk+) PO} VieN, Vke K\ {x} (3.4d)

Constraint (3.4a) ensures that the maximum number of vehicles in sub-region 1
that can be rebalanced to other sub-regions is the number of vacant vehicles at the
beginning of time intervals. Constraint (3.4b) states that available vehicles in sub-
region i at time k consist of vacant and rebalanced vehicles. Constraint (3.4¢) shows
that vacant vehicles in sub-region i at time k + 1 are comprised of currently vacant
vehicles at time k& and currently occupied vehicles that become vacant in the next
time interval. Constraint (3.4d) states that occupied vehicles in sub-region i at time
k + 1 are comprised of currently vacant vehicles that become occupied in the next

interval as well as currently occupied vehicles at time k.

The MIVR model minimizes the number of unsatisfied requests and the total
vehicle distance traveled, which consists of vehicle rebalancing distance and vehicle
pickup distance. Let <y indicate the penalty (in the unit of VMTI] induced by each
unsatisfied request, and 3 defines the relative weighting of rebalancing distance and
pickup distance. The MIVR model can be formulated as:

I'WMT stands for vehicle miles traveled.
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I;;leli_l e(x;r) = Z ZZ Ty + {g,rﬁgﬁt,—] {«f : Z Z TF 4+ 5- Z ZZ yﬁ,df,} :

k=1 i=1 j=1 k=1 i=1 k=1 i=1 j=1
(3.5)

Where

L@, r) = { (1, T) € RY™™ : Constraints(2), (3), (4)}

and X = {:1: € Rf" : Gunstrajnts{l)} :

To simplify the notation, we ignore auxiliary variables S, V', O in problem (3.5)
and only keep the rebalancing decision vector & and two auxiliary decision vectors
y,T. The demand vector is denoted as r € R%", which serves as the input parameter
of the MIVR model. The MIVR model is a linear programming (LP) problem and
can be solved efficiently by off-the-shelf LP solvers, even for large-scale instances (e.g.,
n = 500).

Solving the MIVR model (3.5) requires the prediction of demand r for future
k time periods. Suppose we are given historical data (z*,7%),i = 1,...,m, where
z' € R™**P denotes the independent variables with p features, »* € R™** is a de-
mand vector which depends upon z*, and m is the number of previous days whose
information is provided in the data.

For instance, if we are solving a MIVR model at 9:00 AM today and we would
like to predict the future demand r from 9:00 AM to 10:00 AM, we can utilize the
historical demand and features between 9:00 AM to 10:00 AM from previous m days,
ie, {(z%r") : Vi =1,...,m}, to predict the demand today. Meanwhile, we also have
access to a feature vector z with exogenous information such as temperature and
precipitation for the time period to be predicted.

There are two ways that demand information can be incorporated into the model:

point-predictions or data-driven optimization. The former method follows a two-step
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approach where a point prediction is first produced based on historical observations
and auxiliary data independent of the optimization model. Then rebalancing decisions
are made according to the point predictions. Data-driven optimization methods, on
the other hand, directly prescribe rebalancing decisions from historical observations

and auxiliary data.

3.3.2 Point-Prediction-Driven Optimization

In point-prediction-driven optimization, a predictive model is first developed. Let
f(-) represent such a predictive model to predict the unknown demand vector r,
ie., f(z) =*. f(-) can be established based on the data {(z;,r;),i = 1,...,m} with
machine learning methods. The predicted demand 7 is then fed into the MIVR model

as 7 to get the rebalancing decisions:

gromt—pred _ argéﬂ_mc{m;f'}. (3.6)

Recent developments on short-term travel demand prediction focus on capturing
the spatial-temporal patterns of travel demand using deep learning. The state-of-the-
art architecture is the class of Convolutional Long Short Term Memory (Conv-LSTM)
networks, where the standard LSTM is extended by having a convolutional structure
in both input-to-state and state-to-state transitions [ ]. Since sub-regions do not
conform to a grid structure, graph convolution proposed by Kipf and Welling [ ] is
adopted instead of grid convolutions.

Suppose we have L, graph convolutional layers and the output of the hidden layers
is denoted as HY, [ = 1, ..., L, we have the following layer-wise propagation rule:

way Ligy

H = g(D-1AD2HOW®) (3.7)

where ¢(-) is an activation function (most commonly ReLU); D;; = > A;; is the
degree matrix; A=A+ Iy is the adjacency matrix with added self-connections; and
W is the trainable weights of layer [.

Graph convolution layers require upfront access to the global structure of the

97



graph in the form of adjacency matrices (A). In this case, the Euclidean distance

between the centroids of the sub-regions is used to relate to neighboring sub-regions.

1

4els = 5 idean Distance(i, j)

(3.8)

where Euclidean distance is defined as the straight-line distance between the centroids
of sub-regions i and j.

In addition to Graph Convolutional LSTM (Graph Conv-LSTM), two LSTM net-
works without spatial convolution were also constructed as benchmarks. Time series
of past demand in each zone are treated as inputs to the model and no spatial cor-
relation between zones is considered. The difference is that in one model, named All
Zones LSTM in subsequent discussions, the temporal correlation between different
zones is assumed to be the same. Time series from all zones were used to estimate
the one-zone model. In the model named Single Zone LSTM, one LSTM is separately
trained for each zone. Since All Zones LSTM is a subset of Single Zone LSTM, it is
expected that the predictive performance of All Zones LSTM will be the worst among
the three models.

3.3.3 Data-driven Optimization

Instead of producing a point estimate, there exist data-driven optimization approaches
that can prescribe decisions directly from data. First, we consider a simple data-
driven approach, SAA, in this section, which is used as a baseline model. Given
a finite sample of data, the SAA approach assumes that the demand vector r* are
drawn uniformly at random from dataset {r*}™,. Therefore, the MIVR problem can

be written as:

1 — .
~ SAA . i
T = argmin — cle;r). 3.9

i D elair) (39)

Although SAA accounts for the data uncertainty, it does not utilize any auxiliary
information described in {z*}™,, which incurs an unacceptable waste of good data.

Therefore, we introduce the predictive prescription approach to this problem. Pro-
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posed in [ ], this framework combines ML and OR techniques and utilizes auxiliary

information.

Compared to the traditional SAA approach where only demand vectors {r*}™, are
considered for generating rebalancing decisions, the predictive prescription leverages

auxiliary observations {z*}™, and solve the following problem:

x(z) = arg:ri_in i wi(z)e(x; ), (3.10)
T i—1

where w;(z) stands for weight functions derived from historical data {(z*,r%),i =
1,...,m} and current observation z. The predictive prescription utilizes machine
learning algorithms to generate “smarter” weights compared to identical weights used

in the SAA approach.

In this chapter, we introduce two machine learning algorithms for generating
weights [w;(z)]™,. The first algorithm is one of the most commonly used unsu-
pervised learning algorithm, k-nearest-neighbors (KNN). The rebalancing decisions

can be generated by solving the following problem:

&K NN (2) = argmin Z c(x;r), (3.11)
zed N
ieNk(z)

where N.(z) represents the set of k data points that are closest to z, i.e., Ni(z) =
{fi=1,...m:37", 1[llz—2'|| = |lz — 27||] < k}.

The second algorithm considered in this chapter is the optimal regression tree
(ORT) proposed in [ '], which generates a regression tree with better prediction
accuracy than the standard classification and regression tree (CART) approach. The

predictive prescription with ORT is formulated as:

#9% (2) = argmin Z e(x;r?), (3.12)
E=F a -
i:R(z')=R(z)

where R(z) corresponds to the leaf of current observation z in the ORT trained

on the dataset.



3.4 Data Description

The study area is the island of Manhattan in New York City (NYC) and demand data
used in this chapter is the high-volume ride-hailing trip data [/ 0]. The data includes
pickup and drop-off times and locations for all trips made using “high-volume” ride-
hailing services, defined as any service that dispatches more than 10,000 trips per day
within New York City, including Uber, Lyft, Juno, and Via. We use the data from
20 workdays of June 2019 and the demand is aggregated to 5-minute time intervals.

The sub-regions used in the experiments are “taxi zones” defined within the high-
volume ride-hailing trip dataset. There are in total 63 taxi zones on the island of
Manhattan. Real travel speed data from June 2019 provided by the Uber Movement
database [/ "] is used for generating interzonal travel times wfj-. The regional transi-
tion probability matrices for occupied vehicles, P*, and Q* are generated based on the
real travel time and demand data, and details can be found in [ 7]. Figure 3-2 shows
the mean and standard deviation of daily regional demand in Manhattan. Regions
near lower Manhattan have large standard deviations, which imply that accurately

predicting demand is not a trivial task when making vehicle rebalancing decisions.

(a) Mean (b) Standard deviation

Figure 3-2: Daily demand by zone (trips) in Manhattan.
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The auxiliary information used in experiments for both predictive and prescriptive

models includes:

¢ Weather: hourly weather data, including air temperature, sensible tempera-

ture, precipitation, and snowfall.

¢ Point of Interests (POIs): number of residential, education, recreational,

commercial, and health POIs.
¢ Public transit accessibility: number of subway stations and bus stops.

¢ Historical demand: average demand from previous five-time intervals and

historical average demand from m previous days.

Since POI and transit stops/stations are time-independent, they are not used in

predictive prescription models.

3.5 Experimental Results

In this section, we compare model performances of the following approaches: i) point-
prediction-driven optimization, ii) SAA, iii) predictive prescriptions and iv) robust
MIVR model proposed in [ ], as well as two benchmark models: i) optimization with
historical average and ii) optimization with true demand under four different demand
scenarios. Linear programs in this chapter are modeled with open-source Julia [ ]
package JuMP [ ] and solved with Gurobi 9.0 [ /] on a 3.0 GHz AMD Threadripper
2970WX Processor with 128 GB Memory.

3.5.1 Model Evaluation and Demand Scenarios

To evaluate model performances, we set the last weekday (June 28th, 2019) in our
dataset as the test day during which vehicle rebalancing decisions need to be made
without knowing the true demand. Data for the previous 19 weekdays are used to

construct predictive models and serve as model inputs for data-driven optimization
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Figure 3-3: Demand levels for four different demand scenarios.

models. Vehicle rebalancing models are evaluated with four different 2-hour demand

scenarios which are shown in Figure 3-3%:

I Morning off-peak scenario (4 - 6): Total demand level is low while point predic-

tions are accurate.

IT Morning peak scenario (7 - 9): Total demand level is high while point predictions

are not accurate. Zone-based LSTM underestimates the total demand level.

?Green histogram: true demand. Orange line: predicted demand with Graph LSTM. Blue line:
predicted demand with Single Zone LSTM. Red line: predicted demand with All Zones LSTM.

Purple line: historical average demand.
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IIT Mid-day off-peak scenario (12 - 14): Total demand level is high while point

predictions are accurate.

IV Evening rush hour scenario (18 - 20): Total demand level is high while point
predictions are not accurate. Both zone-based LSTM and graph-based LSTM

underestimate the total demand level.
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Figure 3-4: Simulation framework for evaluating vehicle rebalancing models.

Model Parameter | Explanation Value

g Weight parameter for pickup distance 1

¥ Penalty for unsatisfied requests 10°

0 Total number of time intervalz in the simulation for each demand scenario 24

A Decizsion time interval length for vehicle rebalancing problem 300 (seconds)
] Batch size for driver-customer matching problem 30 (seconds)
i Maximum pickup time 300 (seconds)
i Maximum wait time 300 (seconds)
n Number of sub-regions 63

K MNumber of look-ahead time intervals when solving MIVE model fi

m MNumber of historical data pointa 19

Ng Number of vehicles 2000

Table 3.1: Model parameters and values.
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The simulation framework is shown in Figure 3-4. The input data includes road
network for the Manhattan area with shortest path distance and predecessor matrices,
distance and travel time matrices between taxi zones, regional transition matrices,
demand data, and weights for predictive prescriptions. Parameters used in the simu-
lation are shown in Table 3.1. Fleet size is set to be 2000 vehicles in the simulation.
With the setup described above, vehicle and demand locations are initialized. Vehicles
are all available and equally distributed to the taxi zones at the beginning of the sim-
ulation. Given that origins and destinations of demand are at the sub-regional level,
road nodes within the sub-regions are randomly assigned as origins and destinations
for customers in each sub-region.

After initializing vehicle and demand locations, a simulation consisting of a ve-
hicle rebalancing engine and a driver-customer matching engine is run with different
rebalancing models. In the simulator, a vehicle rebalancing problem is solved at the
start of each time period of length A and the vehicle locations are updated before
solving vehicle rebalancing problems. A separate driver-customer matching problem
iz solved at the end of each time period of length 4 with available vehicles and re-
alized demand. Details about the driver-customer matching problem can be found
in Appendix B.1. The simulation outputs average customer wait time, unsatisfied
customer rate, average non-occupied VMT, and an average number of rebalancing

trips for the evaluation of different rebalancing models.

3.5.2 Performance of Point Predictions

To ensure that there are enough training samples for neural networks, we utilized
additional workday demand data in April and May 2019 in the model training stage.
The hyperparameters used in the LSTMs are shown in Table 3.2.

Prediction accuracy for different LSTM models and the benchmark historical av-
erage model for the full day are shown in Table 3.3. All machine learning models
significantly outperform the historical average. Among the machine learning models,
Graph Conv-LSTM has the most representation power, therefore the training error

was the smallest. The test set performances for Graph Conv-LSTM and Single Zone
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Hyperparameter Value

# GCN layers 2

# Units in hidden layers 64

# LSTM layers 1
Weight decay 0.005
Learning rate 0.005

Table 3.2: LSTM model setup.

LSTM were similar. All Zones LSTM has the worst performance since it does not

differentiate demand from different zones.

Model Train MSE | Test MSE | Test MAE
Historical Average 23.18 20.73 3.64
Graph Conv-LSTM 15.63 16.64 2.93
Single Zone LSTM 16.84 16.52 2.93

All Zones LSTM 17.04 18.26 3.04

Table 3.3: Prediction performance.

For the prediction performance under each demand scenario, the MAE is shown
in Table 3.4. For both off-peak demand scenarios (I and III), predictive models have
higher prediction accuracy compared to peak demand scenarios (II and IV). Mean-
while, higcher demand leads to higher prediction errors. For peak demand scenarios,
zone-based LSTM underestimates the overall demand. Graph-based LSTM only un-
derestimates the overall demand in scenario IV. In the next subsection, we will show
that making inaccurate predictions (demand underestimation) could potentially ben-

efit the system’s performance.

3.5.3 Performance of Different Vehicle Rebalancing Models

In this subsection, we compare the model performances of point-prediction-driven
optimization and data-driven optimization, along with two benchmark models: opti-
mization with historical average and optimization with true demand. For predictive
models, we constructed a Graph Convolutional LSTM model, a Single Zone LSTM,
and an All Zones LSTM model for predicting future demand and generated optimal

vehicle rebalancing decisions with point estimations by solving the problem (3.6). For
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Model Scenario I (MAE) | Scenario II (MAE)
Historical Average 1.40 3.64
Graph Conv-LSTM 1.36 3.25
Single Zone LSTM 1.36 3.18
All Zones LSTM 1.40 3.28

Model Scenario III (MAE) | Scenario IV (MAE)
Historical Average 2.89 4.87
Graph Conv-LSTM 2.81 3.76
Single Zone LSTM 2.85 3.82
All Zones LSTM 297 4.20

Table 3.4: Prediction performances under four different demand scenarios.

optimization with the historical average, we used the average demand of m previous
workdays as point estimations and solved the problem (3.6). Similarly, the optimiza-
tion with true demand utilized the real demand as point estimations and solved the

problem (3.6).
Four data-driven models are considered. The SAA model is included as a bench-

mark and three predictive prescription models are tested: two KNN models (3.11)
with k = 5 and k£ = 10, and an ORT model (3.12). Weights for m historical days
used in predictive prescriptions were generated in the following way. First, a vec-
tor ¢ € B™ is initialized with m zero values. Then for each unique pair of zones
and time intervals, KNN or ORT algorithms were run with m historical data points
{z,i=1,...,m} and the current observation z, After that, i-th value in vector e was
increased by 1 if z; is within & nearest neighbors of z or z; and 2 belong to the same
branch in the constructed ORT. Finally, the weights were generated by normalizing
vector e.

Figure 3-5 shows customer wait times and unsatisfied requests, which are key
performance indicators of a ride-hailing system, under four demand scenarios. In each
sub-figure, colored bars represent the average customer wait time after matching to
vehicles while red dotted lines indicate the customer unsatisfaction rate. To better
understand how each vehicle rebalancing model works under each demand scenario,
the average non-occupied VMT and the average rebalancing trips for each vehicle are

shown in Figure 3-6 and 3-7. In all four demand scenarios, knowing the true demand
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Figure 3-5: Customer wait time and unsatisfied rate for different demand scenarios.

leads to the minimum average customer wait time compared to applying any data-
driven approaches. The performance comparisons between data-driven optimization

and point-prediction-driven optimization vary across different demand scenarios.

In the morning off-peak scenario, the overall demand level is low and all predic-
tive models are more accurate compared to other time periods. Under this demand
scenario, point-prediction-driven optimization outperforms data-driven optimization
since future demand predictions are very accurate. Figure 3-5a indicates that data-
driven optimization approaches perform even worse than only knowing the historical
average demand. On the other hand, data-driven optimization approaches conduct
much fewer vehicle rebalancing trips according to Figure 3-7a. When combining with
the average non-occupied VMT for each vehicle shown in Figure 3-6a, we know that
data-driven optimization approaches distribute fewer idle vehicles with longer dis-
tances. The poor performances of data-driven optimization models imply that several
days with low demand levels are deemed more relevant by the model. To summa-

rize, when demand can be accurately predicted, point-prediction-driven optimization
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Figure 3-6: Average non-occupied VMT for each vehicle under different demand
seenarios.

should be used.

For the morning peak scenario, the overall demand level is high and predictive
models have large prediction errors. Figure 3-5b shows the average customer wait
time and customer unsatisfied rate for each model. The customer unsatisfaction rate
iz fairly close across all different models. Under this demand scenario, data-driven
optimization models perform better overall compared to point-prediction-driven op-
timization models. All four data-driven optimization models achieve competitive
performances with respect to the optimal case in which true demand is known. For
predictive models, the graph-based LSTM has the worst performance while two zone-
based LSTMs have competitive performances compared to data-driven optimization

models.

It is worth mentioning that Graph LSTM has better prediction accuracy than
All Zones LSTM though it has a worse model performance. The main reason for

zone-based LSTMs to have satisfying performances is that they underestimate fu-
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Figure 3-7: Average number of rebalancing trips made for each vehicle under different
demand scenarios.

ture demand, which is shown in Figure 3-3. Also from Figure 3-6b and 3-7Th, less
rebalancing trips and lower non-occupied VMT imply the demand underestimation
by zone-based LSTMs. The “conservativeness” brought by the underestimation leads
to better system performances given high wvolatility in ride-hailing demand. Being
conservative is also the key reason for the robust MIVR model proposed in [ 7] to
have satisfying performances. The simulation results justify that a better demand
prediction does not necessarily lead to a better rebalancing decision. Meanwhile, un-
derestimation is a more desirable prediction error to make than overestimation when

predicting future demand for the purpose of distributing vacant vehicles.

As for the mid-day demand scenario, the overall demand is at a medium level while
predictive models are more accurate than the two peak demand scenarios. Under this
demand scenario, data-driven optimization models perform better overall compared
to point-prediction-driven optimization models based on Figure 3-5¢. Figure 3-6Ge
and 3-7c show that they conduct similar number of rebalancing trips with similar
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distance. All Zones LSTM performs worse than the model knowing the historical
average since it has a worse prediction accuracy. When the demand prediction is
not accurate enough, data-driven optimization has a close edge over point-prediction-
driven optimization.

Under the evening rush hour scenario, the overall demand level is high and pre-
dictive models have the worst performances compared to the other three demand
scenarios. In this demand scenario, data-driven optimization and point-prediction-
driven optimization have similar performances regarding the average customer wait
time and customer unsatisfaction rate according to Figure 3-5d. There are limited
idle wehicles that can be rebalanced due to a high demand level in the evening rush
hour scenario. Figure 3-7d indicates that the average mumber of rebalancing trips
performed for each vehicle is nearly 1, while the number is over 3 for scenarios II
and I1I with high demand levels. Although data-driven optimization performs better
when demand predictions are not accurate, the limited number of idle vehicles leaves
no space for data-driven optimization to improve system performances by proactively

balancing demand and supply.

Within four data-driven optimization models, predictive prescription with KNN
(k = 5) performs better than the other three methods by having lower average cus-
tomer wait times across four demand scenarios. Meanwhile, for scenarios where the
demand level is high (morning peak, mid-day off-peak, and evening rush hour), pre-
dictive prescription with KNN (k = 5) utilizes the minimum VMT over rebalancing
idle wehicles. This performance superiority implies that sparsity is an ideal property
when applying data-driven optimization. Compared to the predictive prescription
with KNN-5, the other three models incorporate more historical demand scenarios,
which could diminish the system performance if some demand scenarios are signifi-
cantly different from the future demand scenario over which rebalancing decisions are

made.

To summarize, there are two factors to consider when choosing vehicle rebalanc-
ing models: i) supply to demand ratio, and ii) demand prediction accuracy. When

the demand can be accurately predicted, point-prediction-driven optimization mod-
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els perform the best. When the demand is hard to predict (for example, during rush
hour), data-driven optimization models perform the best. System performances can
be further improved if the supply to demand ratio is higher, where more idle vehicles
are available to be rebalanced. Compared to the standard data-driven optimization
approach, SAA, predictive prescriptions perform better by leveraging auxiliary infor-
mation. On the other hand, when demand cannot be accurately predicted, system
performances can benefit from underestimation, so fewer unnecessary rebalancing
trips are made. However, predictive models tend to aim for “unbiasedness”, where

the amount of overestimation and underestimation is the same.

3.5.4 Comparison with the Robust MIVR Model

In this subsection, we compared the best performing data-driven optimization model,
prescriptive prescription with KNN-5, with the robust MIVR model proposed in [ ]
under the morning peak scenario. We evaluated performances of the robust MIVR
model under multiple uncertain scenarios defined by uncertain parameters p and I’
via the simulation described in section 3.5.1. Parameters p and I' are parameters
defining the size of uncertainty set in the robust MIVR model, and details can be
found in Appendix B.2.

Figure 3-8 shows the percentage reduction of average customer wait time for the
robust MIVR model compared to predictive prescription with KNN-5. Each cell
indicates an uncertain scenario (defined by parameters p and I') in the robust MIVR
model. Larger values of uncertain parameters p and I' lead to more conservative
rebalancing decisions (since higher demand uncertainty is considered in the model).
It is worth mentioning that the uncertain parameter p significantly influences the
downstream matching performances, while the effect of uncertain parameter I' is
marginal.

In general, the predictive prescription with KNN-5 outperforms the robust MIVR
model regarding the average customer wait time. The robust MIVR model could
achieve a similar average customer wait time when larger demand uncertainty is con-

sidered. On the other hand, the robust MIVR model can satisfy more customers

111



compared to the predictive preseription with KNN-5, which is shown in Figure 3-9.
More customers can be satisfied when considering lower levels of demand uncertainty.
The additional customers served by the robust MIVR model are “hard” customers
which require longer pickup distances, hence longer wait times. To summarize, predic-
tive prescriptions can reduce the average customer wait time compared to the robust
MIVR model. However, a small proportion of customers will not be satisfied, which

iz likely the reason behind reduced customer wait times.
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Figure 3-8: Relative percentage reduction of average customer wait time for the robust
MIVR model compared to predictive prescription with KNN-5.

Figure 3-10 displays the percentage decrease of average non-occupied VMT for
the robust MIVR model compared to predictive prescription with KNN-5. When
a certain level of demand uncertainty is considered in the robust MIVR model, it
reduces the average non-occupied VMT for each vehicle.

Figure 3-11 exhibits the percentage reduction of average vehicle rebalancing trips
for the robust MIVR model compared to predictive prescription with KNN-5. The
robust MIVR model significantly reduces the number of rebalancing trips dispatched
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Figure 3-9: Absolute reduction of customer unsatisfied rate for the robust MIVR
model compared to predictive prescription with KNN-5.

in the system. Given that robust optimization generates decisions optimal for the
worst-case scenario, the robust MIVR model is conservative and few rebalancing trips
are made to mitigate the impact of inaccurate demand estimations. On the other
hand, predictive prescriptions generate decisions that are optimal for an expected
scenario which indicates demand from previous m days. Therefore, they do not
maintain the same level of conservativeness as the robust MIVR model.

In conclusion, the robust MIVR model satisfies more customers while conduct-
ing fewer rebalancing trips and predictive prescriptions reduce the average customer
wait time. From a practical perspective, applying the robust MIVR model requires
decision-makers to choose an uncertainty level (p and I') incorporated in the model for
the future demand. While for predictive prescriptions, additional information about
the future demand is not required to make rebalancing decisions. Decision-makers
should choose the appropriate model based on data availability and confidence about
the level of uncertainty in the future demand.
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Figure 3-10: Relative percentage decrease of average non-occupied VMT for the ro-
bust MIVR model compared to predictive prescription with KNN-5.

3.6 Conclusions

In this chapter, we introduce a novel data-driven optimization approach, predictive
prescriptions, into the vehicle rebalancing problem to handle demand uncertainty in
the ride-hailing system. Building upon a state-of-the-art vehicle rebalancing model,
MIVR. proposed by Guo et al. [ '], point-prediction-driven optimization models and
data-driven optimization models are proposed to improve the model performance
against demand uncertainty.

Regarding point-prediction-driven optimization models, a graph convolutional
LSTM and two zone-based LSTM models are constructed in this chapter to pre-
dict future demand for each sub-region. As for data-driven optimization models,
SAA and predictive prescription with KNN and ORT are introduced in this chap-
ter. A real-world simulation with NYC data is used to evaluate performances for

point-prediction-driven optimization models, data-driven optimization models, and
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Figure 3-11: Relative percentage reduction of average rebalancing trips for the robust
MIVR model compared to predictive prescription with KNN-5.

two benchmark models, optimization with historical average and optimization with
true demand, under four different demand scenarios.

Between the data-driven optimization and point-prediction-driven optimization
models, one should make a decision based on supply to demand ratio and the predic-
tion accuracy. When the future demand can be predicted accurately, point-prediction-
driven optimization models should be adopted. When the demand is volatile and hard
to predict, data-driven optimization models perform better. The system performances
can be further improved for data-driven optimization models when the supply to de-
mand ratio is higher, indicating more idle vehicles are available to be redistributed.
Among all data-driven optimization methods, predictive prescriptions perform better
by leveraging auxiliary information.

Meanwhile, prediction errors over the future demand in the vehicle rebalancing
problem can be beneficial to system performances when errors come from demand

underestimation. The “conservativeness” brought by the demand underestimation
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improves the system performance due to highly uncertain demand in the future. The
strong performances of the robust MIVR model proposed in [ ] are also brought
by the “conservativeness” embedded in robust models. However, predictive mod-
els usually aim for “unbiasedness”, and weights overestimation and underestimation
equally. A possible future research direction is to develop predictive models for ride-
hailing systems which have an asymmetric loss function that favors underestimation
over overestimation. Meanwhile, extra benefits brought by conservativeness due to
demand underestimation should have a limit. Future research could identify such
underestimation level where the vehicle rebalancing benefits the most.

The best-performing data-driven optimization model, predictive prescription with
KNN-5, is also compared with the robust MIVR proposed in [ ], which utilizes robust
optimization techniques to protect rebalancing decisions against demand uncertainty.
The robust MIVR model reduces the customer unsatisfaction rate while conducting
fewer vehicle rebalancing trips. On the other hand, predictive prescriptions reduce
the average customer wait time but serve fewer customers. In practice, the robust
MIVR model should be utilized if knowing the demand uncertainty level in the fu-
ture. In general, predictive prescriptions can generate competitive rebalancing de-
cisions without knowing any additional future demand information. Another future
research direction can be introducing data-driven robust optimization techniques into
the MIVR model, which combines the benefits of both data-driven optimization and
robust optimization.

From a practical perspective, rebalancing models need to be selected ahead of
schedule. When considering a whole day’s demand, demand uncertainty and pre-
diction accuracy of predictive models change from time to time. Therefore, a pood
operation strategy is to separate the whole operation period into high and low uncer-
tainty periods based on historical demand data. For low uncertainty periods, point-
prediction-driven optimization models should be adopted. As for high uncertainty
periods, data-driven optimization models, including robust and predictive prescrip-

tion models, can be applied.
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Chapter 4

Disparity-Reducing Vehicle
Rebalancing in the Ride-hailing
System

4.1 Introduction

Since its introduction in 2009, the ride-hailing industry has witnessed significant
global growth. Fueled by technological advancements and the widespread adoption
of mobile phones, ride-hailing services offered by Transportation Network Compa-
nies (TNCs) like Uber, Lyft, and Didi have revolutionized commuting, creating new
economic opportunities. With a market size of approximately 30 billion USD and
projected to reach 100 billion USD by 2030 [ |, the industry continues to meet
the increasing demand for convenient and flexible transportation options in today’s
rapidly urbanizing world.

However, alongside the benefits, the ride-hailing industry has also raised significant
societal concerns. Research conducted by Diao et al. [] indicates that the prolif-
eration of TNCs has exacerbated urban mohility challenges, resulting in increased
road congestion and decreased usage of public transit. Underserved communities and

low-income neighborhoods have been disproportionately affected by the limited ac-
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cessibility and affordability of ride-hailing services. Additionally, the heavy reliance
on algorithms in TNC platforms for tasks such as passenger-driver matching, pricing,
and operational optimization poses the risk of perpetuating biases and discrimination
if not designed and implemented with equity in mind.

One of the major operational problems in the ride-hailing system is the vehicle
rebalancing problem, where vacant vehicles are redistributed proactively to under-
supplied areas to reduce the discrepancy between supply and demand [, \ \

, 7, ']. Nevertheless, if ride-hailing platforms focus solely on maximizing prof-
its or efficiency without considering equity concerns, their operational approach can
trigger a detrimental feedback loop within the system. Figure 4-1 demonstrates how
ride-hailing platforms’ vehicle rebalancing decisions tend to allocate more vehicles
to high-demand areas and fewer to low-demand ones. This disparity results in en-
hanced service levels in high-demand regions, potentially increasing future demand
there. Conversely, areas with less demand experience a secarcity of vehicles, leading to
diminished service quality and a loss of passengers over time. Such dynamics exacer-
bate the demand imbalance, creating a harmful feedback loop that influences future

vehicle distribution decisions.

More Vehicles

Better Service Ride-Hailing

I Platforms

More Requests

Figure 4-1: Illustration of detrimental feedback loop in vehicle rebalancing operations
by ride-hailing platforms.

Meanwhile, the underserved communities typically have low ride-hailing demand
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density, therefore, they are particularly disadvantaged by the detrimental feedback
loop generated by the vehicle rebalancing operations. Figure 4-2 displays the spatial
distribution of ride-hailing demand density and poverty levels in the city. Darker
shades represent areas with a higher population living below the poverty line and
lower ride-hailing demand density. Predictably, regions with a larger impoverished
population exhibit reduced ride-hailing demand, such as upper Manhattan, the Bronx,
and lower Brooklyn. If reducing service disparity isn’t incorporated into the design
of vehicle rebalancing algorithms, these communities will continue to be adversely

affected by the prevailing systems.
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(a) NYC Ride-Hailing Demand Density (b) NYC Poverty Map (by census tracts)
Map (by taxi zones)

Figure 4-2: Spatial distributions of ride-hailing demand and poverty in New York
City (NYC).

Rebalancing vehicles require the knowledge of future demand distributions. There
are two critical component in the ride-hailing vehicle rebalancing operation: upstream
demand forecasting and downstream vehicle repositioning. In this chapter, we reduce
disparity concerns in both components. While not directly addressing fairness issues
within the ride-hailing system, understanding disparity is a foundation for under-

standing fairness. We outline two levels of disparity aimed at mitigation:
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1. Error disparity in Demand Prediction Algorithms: we aim to minimize
disparity in prediction errors across regions, irrespective of spatial locations and

historical demand levels, involved in vehicle rebalancing operations.

2. Service disparity in Ride-Hailing Operations: our goal is to reduce dis-
parities in quality of services accessed by customers, indicated by waiting times,

regardless of the regions from which trips originate.

Disparity considerations are not prevailing in either component. For the upstream
demand forecasting, data-driven approaches, including traditional time series analy-
sis [, 11] and modern machine learning models [ 7, (07, 00, o0, 100, 100], have
been utilized in generating reliable predictions. However, many studies focus solely
on prediction accuracy, disregarding the social consequences of travel demand fore-
casting. Very few works have been addressed error disparity issues in the demand
prediction [, \ ]. For the downstream ride-hailing operations, researchers
have attempted to enhancing particular facets of disparity. For instance, disparity
concerning driver earnings [/, ', , 34, | and disparity regarding rider pric-
ing [177, , 0, o1, 127]. To the authors’ knowledge, no studies have yet tackled
disparity issues in vehicle rebalancing operations, particularly diminishing disparity
in both demand forecasting and vehicle distribution simultaneously.

This chapter introduces a disparity-reducing vehicle rebalancing framework, tak-
ing into account disparity issues in both demand prediction and vehicle repositioning.
The framework aims to tackle the two levels of disparity outlined previously. The key

contributions of this chapter are summarized as follows:

¢ This work represents a novel contribution to the realm of ride-hailing vehicle
rebalancing by aiming to mitigate disparity in both upstream demand prediction

and downstream vehicle rebalancing operations.

¢ To decrease error disparity in upstream demand prediction, a Socio-Aware
Spatial-Temporal Graph Convolutional Network (SA-STGCN) that builds upon
the STGCN model [ ] is proposed. This new framework incorporates a socio-
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enriched adjacency matrix and a bias-mitigation regularization method to min-

imize prediction discrepancies across regions.

e Building on the Matching-Integrated Vehicle Rebalancing (MIVR) algorithm [ ],
a disparity-included weighted objective function is proposed to reduce service
disparity in the process of vehicle rebalancing. The proposed function is in-
formed by the socio-enriched adjacency matrix from the SA-STGCN model and

is designed to grant more service accessibility to underserved communities.

¢ Several metrics are implemented to evaluate the prediction accuracy and error
disparity of the upstream demand prediction module. Real-world ride-hailing
data is utilized to evaluate the downstream wvehicle rebalancing outcomes. The
proposed framework diminishes service disparity—indicated by a more uniform
distribution of wait times across regions—by 6.5% while not diminishing the

system efficiency—measured by customer wait times.

The remainder of this chapter is organized as follows. Section 4.2 provides a
comprehensive review of the existing literature on ride-hailing vehicle rebalancing
problems, demand prediction approaches, and Equity issues within the ride-hailing
system. In Section 4.3, the disparity-reducing vehicle rebalancing framework is pro-
posed. Results of numerical experiments are presented in Section 4.4. Section 4.5
discussed the policy and practical implications from the results. Finally, Section 4.6

summarizes the chapter and outlines future research directions.

4.2 Literature Review

4.2.1 Ride-Hailing System and Vehicle Rebalancing Problem

The field of ride-hailing systems is extensively studied, as outlined in Wang and

Yang [/ ]. This body of research covers a range of topics including the structure of
the market [, |, |* 7], analyses of labor supply [ |, operations of matching drivers
with passengers [ ], strategies for vehicle rebalancing [, , , , 67, 71],
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designs of surge pricing [ ], among other areas. A key operational strategy in these
systems is the rebalancing of vacant vehicles. This process is vital in complementing

the primary function of matching customers with available drivers.

A major challenge in ride-hailing systems is the spatial mismatch between where
demand arises and where vehicles are available. To address this, there's a need for
relocating idle vehicles to areas where future demand is anticipated to exceed the
current supply of vehicles. By adopting this proactive rebalancing approach, ride-
hailing platforms can significantly reduce the distance traveled by empty vehicles, also
known as ‘empty miles’, and concurrently decrease the waiting times for customers.
This strategy is essential for optimizing operational efficiency and enhancing user

satisfaction in ride-hailing services.

The vehicle rebalancing problem is initially studied by Godfrey and Powell [, ]
under the context of dynamic fleet management. Over the past decade, with the rapid
growth of Mobility-on-Demand (MoD) and ride-hailing systems, more attention has
been devoted to solving this challenge [ "7, =, 7, ("/]. Wen et al. [ ] used rein-
forcement learning to tackle vehicle rebalancing in a shared MoD system, achieving
a 14% fleet size reduction in a London simulation. Braverman et al. [ ] designed
a fluid-based optimization model for ride-hailing vehicle management, resulting in
improved passenger service compared to benchmark models. Miao et al. [/ ] intro-
duced a data-driven vehicle rebalancing model, minimizing the worst-case rebalancing
cost using real-world NYC taxi data, achieving an average 30% reduction in idle driv-
ing distance. Guo et al. [ ] proposed the Matching-Integrated Vehicle Rebalancing
(MIVR) model for solving the vehicle rebalancing problem considering future itera-
tions and incorporated the demand uncertainty with the Robust Optimization (RO)
techniques. Guo et al. [ '] expanded on this concept by exploring multiple data-
driven strategies to handle demand uncertainty within the framework of the MIVR
model.

Meanwhile, various studies have been focused on the control of Autonomous MoD
system [/, , , =, 7], where vehicles are dispatched in the system by the

proposed control strategy. Pavone et al. [/ ] used a fluid-based model and linear
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program for generating optimal rebalancing policy. Zhang and Pavone [ ] proposed
a queueing-based algorithm for AMoD rebalancing. Iglesias et al. [ ] utilized LSTM
neural networks in a Model Predictive Contro (MPC) algorithm for rebalancing with
short-term demand forecasts. Tsao et al. [\ "] further introduced an MPC algorithm
in the shared AMoD setting.

Despite the extensive research on vehicle rebalancing, none of the existing studies
have explicitly tackled equity concerns in their proposed algorithms. This chapter
aims to fill this gap by presenting a disparity-reducing vehicle rebalancing framework
building upon the MIVR model [ '] that systematically addresses issues related to

the perceived services experienced by customers.

4.2.2 Demand Prediction in the Transportation System

Predicting the accurate travel demand of a given transportation system is crucial for
efficient system operations and regulations. A great volume of research has studied
diverse methods for travel demand forecasts. Traditional methods include the Histor-
ical Averages, Moving Averages, autoregressive integrated moving average (ARIMA)
and its variants, and some basic machine learning models such as support vector ma-
chines (SVM) [/, 7, \ |. However, these models focused more on temporal
links but failed to account for spatial and relational information in the transportation
network [/ -],

In recent years, with the rise of large machine learning models and the booming
computing power, there has been a shift from using traditional statistical time series
analysis to deep learning sequential networks [ ]. Many studies have leveraged
the convolutional neural networks (CNN) such as ResNet to capture spatial features
[, 1] and used the recurrent neural networks (RNN) such as the long-short
term memory (LSTM) and Attention mechanism to learn the time series function
[153, 92, 18],

On the other hand, graph neural networks (GNN) gained popularity because of
their ability to capture spatial dependency and the non-Euclidean structure of the

street network [ ]. There are many types of graph convolutions in GNNs, including
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the spectral-based graph convolutional networks (GCN) [, '] and spatial-based
convolutional GNNs [, =7, 7, ]. Many architectures are proposed to solve traffic
forecasting problems. For instance, Li et al. [/ | proposed the Diffusion Convolu-
tional Recurrent Neural Network (DCRNN), leveraging bidirectional graph random
walk and the recurrent neural network to capture both the spatial and temporal
dependencies. Yu et al. [ ] proposed the Spatial-Temporal Graph Convolutional
Network (STGCN), using graph and temporal convolution layers to build up the ba-
sic block of the architecture. Wu et al. [ 7] developed the Graph WaveNet, which
utilized a self-adaptive adjacency matrix to capture hidden relations in the graph and
leveraged dilated causal convolution to work with long-range sequences. Our research
adopted the STGCN model as the main structure for its state-of-art performance and

ease of implementation.

4.2.3 Equity in the Transportation System
Equity Definition

There is a wide range of debates regarding the definition of equity or fairness in
political philosophy, computer science, and transportation. Major theories of fairness
in political philosophy can be separated into four categories, which are 1) ensure
equal share or proportional share for each individual, 2) ensure market equilibrium,
3) maximize total welfare, and 4) ensure subgroup welfare [ ', *']. In computer
science, there are also various evaluation metrics to measure algorithmic fairness, the
first set is Disparate Impact Analysis versus Disparate Treatment Analysis, where
the former aims to achieve fair impact or results for the unit of comparison while the
latter aims to achieve fair treatment [, ]. Another set of evaluation notions
based on the unit of comparison includes group-based and individual-based fairness,
where the former focuses on the same outcome or treatment of different groups, while
the latter concentrates on the same outcome or treatment of individuals [, ' ]. In
transportation, horizontal equity and vertical equity are often alluded to. Horizontal

equity refers to the goal of similar people receiving similar treatment, while vertical
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equity refers to the goal of disadvantaged people being taken care of [, ' 77]. This
fairness notion aligns with the many existing concepts of fairness and equity from the

fields of political philosophy and computer science.

Equity Research in the Transportation System

Research in equity in the transportation system has been emerging in recent years,
especially in public transit planning, where the fair sharing of public resources is im-
portant. Previously, a lot of the focus was put on the equity analysis of the existing
or forthcoming systems. Bills and Walker [ ] measured and compared consumer sur-
plus distributions for different population segments across planning scenarios in the
Bay area. Cascetta et al. [ ]| estimated the horizontal equity of the travel time ac-
cessibility by calculating the Gini index for Italian high-speed railways. On the other
hand, Zheng et al. [ ] demonstrated the inequity in the Deep Neural Network and
the Discrete Choice Model, unlike preceding research, they also provided a disparity
mitigation solution through an absolute correlation regularization method.

In the realm of ride-hailing, researchers have been focused on improving algo-
rithmic fairness, driver equity, and rider equity. Yan and Howe [/ =] addressed the
challenge of socio-economic inequity perpetuated by new mobility services like car-
sharing, bike-sharing, and ride-hailing. Yan and Howe | =] discussed a novel un-
supervised learning architecture, named EquiTensors, for integrating heterogeneous
spatio-temporal urban data to counteract bias and produce fair and reusable repre-
sentations. Both Zheng et al. [\ /] and Zhang et al. [/ ] have looked at the demand
prediction fairness in ride-hailing, however, they only leveraged group fairness as a
fairness definition and focused on the prediction result without considering the down-
stream impact.

In exploring driver-side equity in ride-hailing systems, various studies have made
significant contributions. Bokdnyi and Hanndk [ ] employed a city simulation to
highlight critical issues of wage inequality. Siihr et al. [ '] analyzed drivers’ income
equity over time, suggesting a framework that enhances the utility for both customers

and drivers in a dual-sided market. Sun et al. [ '] tackled the dual challenge of
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efficiency and equity, introducing a multi-agent reinforcement learning framework
that assists drivers in making equitable income decisions through order selection and
repositioning. Raman et al. [ '] offered two strategies within a Markov decision
process to mitigate inequality in ride-pooling services, aiming to balance profitability
and equity for both passengers and drivers.

As for rider-side equity in transportation systems, Qian et al. [ ] developed a
novel route recommendation system that considers shared roads while maintaining
cost-effectiveness for each customer. Cao et al. [ '] aimed at enhancing both efficiency
and equity in ride-sharing by optimizing routes for ride-hailing services. Ke and
Qian [ ] introduced the concept of Fleet-Optimal Behavior with Service Constraint
(FOSC), focusing on striking a balance between reducing total fleet costs and ensuring
fair travel times for riders. Nanda et al. [ | proposed a driver-customer matching
algorithm that addresses the challenge of maximizing profit while maintaining equity
in rider matching rates. Lu et al. [ | ] suggested a decentralized smart price auditing
system using block-chain technology and smart contracts to ensure price equity and
prevent discrimination among riders in ride-hailing services.

The term equity has been misused in many existing transportation literature with-
out a proper definition. In this chapter, we are addressing the disparity issues, which
is one important component of equity issues. Meanwhile, understanding disparity
iz a foundation for understanding equity in the system. We present a new vehicle
rebalancing framework aimed at simultaneously reducing error disparity in the de-
mand prediction and mitigating service disparity in downstream vehicle rebalancing,
aspects not jointly considered in existing research. This innovative approach ensures
equitable and efficient operations, serving as foundations for studying equity in vehicle

rebalancing.

4.3 Methodology

In this section, we will introduce the disparity-reducing vehicle rebalancing frame-

work, consisting of a Socio-Aware STGCN (SA-STGCN) demand prediction compo-
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nent and an equity-enhanced MIVR component for downstream vehicle rebalancing
operations. The SA-STGCN method aims to diminish prediction error disparity
in upstream demand forecasting, while the equity-enhanced MIVR model seeks to
augment the number of rebalanced vehicles in underserved areas, thus lessening ser-
vice accessibility disparities across regions. Although these components appear to
pursue distinet disparity objectives, subsequent numerical experiments reveal that
minimizing the disparity in demand prediction errors directly contributes to reduced
service provision disparities in the vehicle rebalancing phase. Integrating both com-
ponents effectively addresses customer-side equity issues, leading to a synergy where
the combined effect is greater than the sum of their individual impacts, embodying a

"1 41 = 2" scenario.

4.3.1 Disparity-Reducing Demand Prediction Framework

The original STGCN (Spatio-Temporal Graph Convolutional Network) framework,
while effective in numerical prediction accuracy, primarily concentrated on leverag-
ing spatial locality information and temporal autocorrelations. This approach, though
beneficial in certain contexts, inadvertently leads to a regional imbalance in the model
outputs. Such imbalances can propagate inequity in downstream applications, partic-
ularly in tasks that are sensitive to regional disparities. Recognizing this limitation,
our research proposes the innovative SA-STGCN (Social Aware STGCN) framework,
complemented by a disparity-reducing methodology specifically tailored for vehicle
rebalancing optimization in ride-hailing operations. The conceptual architecture of
this approach is detailed in Figure 4-3:

As depicted in Figure 4-3, our modifications to the STGCN framework are mul-
tifaceted and designed to address the disparity issue at its core. These modifications

include:

1. Integrating a demographic matrix (e.g., representing the black and low-income
population) with the original adjacency matrix to infuse social context into the
data.
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Figure 4-3: Detailed illustrations of the SA-STGCN framework and its integration
with the vehicle rebalancing optimization task.

2. Implementing a disparity-reduced loss regularization approach to penalize de-

mand overestimations and reduce output disparities.

3. Employing matrix decomposition on the augmented adjacency matrix to derive
demographic weights, which serve as adjustment factors in the downstream

rebalancing task.

In the following sections, we delve deeper into each of these components, dis-
cussing their implementation and the specific methodologies employed. We aim to
provide a comprehensive understanding of how each aspect contributes to the overall

effectiveness and equity of the SA-STGCN framework.

Socio-Aware Spatial-Temporal Graph Convolutional Network

This module starts by formulating the demand prediction problem. Given the ride-
hailing system, we can regard it as a directed weighted graph G = (V, E, W), where
|V| = n is the set graph vertices representing sub-regions (zones), the E' represents
the set of road networks between each pair of vertices as edges, and W represents the

weights of each edge in the form of weighted adjacency matrix, calculated by:
dz,
Wiy = exp (——2), (4.1)
04
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where W;; is the edge weight between graph vertices v; and v;, cf;j- is the Euclidean
distance between the centroids of vertices v; and v;, o4 is the standard deviation of
the set of distances begins at each vertex v; [ ].

To capture the spatial demographic features that exist in the network, this study
establishes a socio-demographically enriched adjacency matrix by incorporating an
additional demographic matrix. In this study, we leverage census data and focus
on the ratio of the minority race population and the population in poverty as the
variables of interest. The first step is to construct a demographic matrix. Consider
the demographic variables in preceding N years in each graph vertice v; as a vector z;
where || = 2N since we only focused on two variables here. Then we can construct
the relationship between the demographic features of each pair of vertices z; and 2;

with a correlation matrix.

Corr.. — Z::tl{z:“ - fi]{z_? — ;)
VER o — 20 T2 (2 — 5)°

where 2" and 27" are the individual elements in 2; and 2;. When 2 = z; = 0, the

(4.2)

corresponding value in the matrix will be filled as zero.

We derived a new socio-demographically adjacency matrix that incorporates this
demographic matrix into the original adjacency matrix, specifically, we use the Hadamard
product of the original adjacency matrix and the demographic correlation matrix as
the new adjacency matrix to feed into the prediction model described below. To in-
troduce sparsity, the element value of the new matrix is only kept when it is greater

than or equal to 0.1, otherwise, it is converted to 0.

H{ij 0 E'wr,-_.,-, if PV,-_.,- s} CG}"T;j E D].,
Wr — (4.3)

ij
0, otherwise.

In terms of the representation of the ride-hailing demand, let r* € M be the

demand at each time period k that originates at vertex v; (or sub-region i). Given

the demand observations from previous M time periods at each vertex [r*=M . rk-1]

]

we want to forecast the upcoming demand #*.
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The study refers to the Spatial-Temporal Graph Convolutional Network (STGCN)
proposed by [ ] as the main model structure. STGCN has been widely used in traffic
forecasting for its excellent ability to capture temporal and spatial features compared
to traditional CNN and time-series models because it utilizes both graph and gated
temporal convolutions. The model we adopted consists of two Spatial Temporal
Convolutional (ST-Conv) blocks followed by a fully connected layer. Each ST-Conv
block comprises two temporal gated convolution layers and a spatial graph convolution
layer in between. To reduce the computing cost of graph convolution, we adopted the

Chebyshev Polynomials Approximation and the first-Order Approximation strategies

[49, 96, 157].

Disparity Reduction

In this study, we addressed the prediction error disparity issue with regularization
inspired by the work of [/ ] and [ ']. The set of demand predictions # and all the
trainable parameters in the model Wy gives the cost function. In general, the cost
function consists of two parts, each optimizes the accuracy and the disparity of the

model performance:
Jm - eruc-_[‘r + Fﬂ-ram * Jdiapﬂfity: {4'4}

where param is a hyperparameter that adjusts the relative weight of the disparity
optimization term. The detailed formulation of training objective can be formulated

as

n _ s .k 2 M kg
" (SAPEF — SAPE¥) £33 maz(0, i k)

k=1 i=1

n—1

J(#Wa) =3 (rF—#F)+A 2
t=1 i=1 k=1

(4.5)

where A and - are weight parameters for the case of limiting error distribution and

penalizing overestimation, respectively. &k is the number of time periods in each

training iteration.

130



Limit error distribution. To reduce disparity for the whole population and
regulate the error distribution variance, we add the variance of the symmetric absolute
percentage error (SAPE) to the cost function. The SAPE is a bounded error that
is more robust to regions with zero or near-zero demand compared to metrics like
Mean Absolute Percentage Error (MAPE). First, SAPE at each vertex in a given
time period is defined as:

ke -
i I+ IR £ 0,

SAPE* = (4.6)

0, otherwise,

where r* and #¥ are the original demand and the predicted demand in vertex v; at
time k. Measuring the percentage error in this way is useful in the case of ride-hailing
as the prediction and original demand are sometimes equal or close to zero, making
the traditional percentage error term fraction undefined. In the case where both the
prediction and original demand are zero, we set the error term as zero. Then, we
can calculate the variance of the SAPE for all vertices in a given time period as
regularization term to limit error distribution shown in Equation (4.5).

Penalize overestimation. As Guo et al. [ '] pointed out in their study of ride-
hailing vehicle rebalancing operations, when the model prediction is not accurate
enough, underestimation is preferred compared to overestimation because this avoids
unnecessary vehicle relocation, resulting in a better rebalancing result. Moreover, the
resultant smaller overestimation will help to reduce the total variance of the prediction
error, thus providing a fairer outcome. To reduce overestimation, we add a penalizing
term to the cost function Equation (4.5) with the parameter . In this way, whenever
the prediction overestimates the demand, that is, when #* > rF, the regularization

term will penalize it to be closer to zero.

Weighted Adjacency Matrix Decomposition

The first two components of the SA-STGCN framework focus on reducing error dis-

parity in demand prediction. This section introduces a matrix decomposition method
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to create equity weights for sub-regions, indicating the importance of repositioning
idle vehicles to each sub-region. This vector is then applied in the subsequent vehicle

rebalancing task, aiming to enhance equity in the delivery of ride-hailing services.

In order to obtain the equity weights of different regions to guide the downstream
rebalancing task, we decomposed our self-designed adjacency matrix to obtain a set
of equity weights that consider both the spatial dependencies as well as the dispar-
ity of socio-demographic features in the city. Therefore, two consecutive steps are
conducted through the process: (1) enrich the weighted adjacency matrix W with
sociodemographic information, which was explained by Equation 4.2 and 4.3; (2)
decompose the adjacency matrix to obtain the spectrum and use it as the output

weights, which will be explained in this section.

The decomposition of the adjacency matrix is usually applied in the graph spec-
trum analysis because it provides a powerful means to reveal and quantify the latent
structural properties of graphs, such as node centrality, community structure, and
connectivity patterns [, ©]. In our context, we use Canonical polyadic (CP) de-
composition in our experiment. The CP decomposition, also known as PARAFAC or
tensor factorization, is a multilinear algebraic framework that generalizes the matrix
singular value decomposition to higher-order tensors [, =, ]. For our adjacency
matrix W*, viewed as a two-dimensional tensor, CP decomposition factorizes W* into
a sum of component rank-one tensors, providing insights into multi-way interactions.
Mathematically, if W* is a tensor of order two, the CP decomposition is represented

as:

R
W* = Z Aa, @b, (4.7)

r=1

where @ denotes the outer product, R is the rank of the decomposition, A, are the
weights indicating the importance of each component, and a, and b, are the cor-
responding factor vectors representing the demographic modes and weights of the
decomposed W*. This decomposition facilitates the distillation of complex network

data into a form that accentuates inherent spatial and sociodemographic relation-
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ships, allowing for compressing W* to capture nuanced regional disparities in a com-
prehensible manner. In this study, we define B = 1 to produce a pair of vectors that
encapsiulate the maximum amount of information from the adjacency matrix W*.
The equity weights for the downstream optimization problem will be derived from
the vector b by following these procedures: i) Normalize b using a min-max scaling
method, ii) decrease the magnitude of each element by multiplying 0.1, and iii) obtain
the final equity weights for each sub-region by subtracting each scaled value from 1.

Specifically, for each sub-region i, the normalized value b, is computed as

5 _ _ bi—min(b)
' max(b) — min(b)

Subsequently, the equity weight for each sub-region i is determined as

w; =1—0.1xb,.

Our enriched adjacency equation (Equation 4.3) indicates that sub-regions nearer
to other sub-regions, with lesser poverty rates and smaller minority race populations,
are likely to have higher b; values. In contrast, city outskirts, typically marked by
higher poverty and more significant minority race populations, are distinct from urban
centers. The aim of the equity weights is to prioritize these underserved peripheral ar-
eas, which often face greater socio-economic challenges. These weights are calculated
following the earlier mentioned steps, ensuring that sub-regions with higher b; values
correspondingly have lower w; values, thus aligning with our objective of equitable

weights distribution.

4.3.2 Equity-Enhanced Vehicle Rebalancing Component

Tackling error disparity in the demand prediction module doesn't directly mitigate
disparity issues related to the services received by customers, who are the primary
indicators when evaluating ride-hailing operations. Therefore, this study provides a

equity-enhanced Matching-Integrated Vehicle Rebalancing (MIVR) model, building
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upon the MIVR model proposed by Guo et al. [ ].

The operational period is divided into £} identical time intervals, each denoted by
an index k = 1,2,....1), and lasting A time units. Furthermore, the study area is
partitioned into n sub-regions (zones), with each sub-region i exhibiting an estimated
demand #F > 0 at time k. To formulate the model, we introduce two sets: i) the set
of sub-regions denoted as V = 1,2, ..., n, and ii) the set of time intervals represented
by K =1,2,....K.

The MIVR model is solved in a rolling-horizon manner: when solving the MIVR
model at the start of time interval k, it considers the demand during time interval k as
well as the demand for k future time intervals; however, only the vehicle rebalancing
decisions for the current time interval k are put into action; following this, vehicle
locations are observed and updated as inputs to the MIVR model for the subsequent

time interval.

The MIVR model consists of two components: matching and rebalancing. The
matching component uses decision variables yf‘; € B to represent the number of cus-
tomers matched between sub-regions i and j at time k. The rebalancing component
uses decision variables zf; € R* to denote the number of idle vehicles rebalanced from
sub-region i to sub-region j at time k. Travel distance d:;. between sub-regions i and
j at time k is approximated by the distance between their centroids.

The equity considerations are incorporated by introducing the equity weights w €
(R*)™, consisting of a weight parameter w; for each region i. The equity weights w
are decomposed from the enriched adjacency matrix from the SA-STGCN framework.
The weighted objective function of the MIVR model can then be formulated as

K m b s b kg

121;1 c(x,y; 7) =ZZZmEdﬁ,—+a-zzzwiy;d§i+ﬁ-i:i:wi (ff —;y{;) :

k=1 i=1 j=1 k=1 i=1 j=1 k=1 i=1
(4.8)

where ¥ stands for the vector of estimated demand, & and f are weight parameters

indicating weights for matching distance and penalty for unsatisfied demand, respec-
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tively. The objective function c(x, y; ) defines a weighted generalized cost for the
vehicle rebalancing problem with the consideration of the matching component. The
equity weights w play a crucial role in rebalancing decisions by imposing extra costs
and penalties on specific regions, thereby guiding vehicles towards these areas. The
constraints used in this optimization problem can be found in Guo et al. [ 7].

With a given demand prediction #, problem 4.8 provides a vehicle rebalancing
strategy for the upcoming decision time interval. The demand prediction 7 is provided
by the upstream SA-STGCN framework, which balances the prediction accuracy and

disparity metrics.

4.4 Experimental Results

4.4.1 Data

This research utilizes For-Hire Vehicle trip records obtained from the NYC Taxi and
Limousine Commission [ ]. The experiments are conducted using “taxi zones”,
which are well-defined regions within the high-volume ride-hailing trip dataset, com-
prising a total of 63 zones on Manhattan Island.

To best emulate typical travel behaviors, five months of demand data from Febru-
ary to June 2019 are utilized, encompassing a total of 47,009,841 trips within the
study period. The demand data is aggregated into 5minute time intervals (A = 300
seconds) for analysis and evaluation. Figure 4-4 illustrates the average and stan-
dard deviation of daily regional demand in Manhattan, revealing significant demand
volatility in the lower Manhattan area.

In the demand prediction module, these taxi zones are employed as vertices in the
graph G. The dataset is divided into three subsets: the training set, validation set,
and test set, which account for 70%, 15%, and 15% of the overall dataset, respectively.
To get the demand prediction #* for a given taxi zone at time k, the module utilizes

k—11

k—12
. T R

the previous 12 observations of demand [r k=1,

To assess the performance of both the demand prediction and vehicle rebalanc-
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(a) Mean (b) Standard deviation

Figure 4-4: Daily demand by zone (trips) in Manhattan.

ing modules, real-world demand data from June 26, 2019, is used as the evaluation
set. This one-day demand data is excluded from the training stage to ensure a fair

assessment of the modules’ capabilities.

To incorporate the socio-demographic information into both the upstream pre-
diction and downstream operation, we used the American Community Survey (ACS)
census data. Specifically, we focused on two variables, the racial and poverty com-
positions of a given region to represent the population vulnerable to insufficient ride-
hailing service provision. The poverty level is pre-determined by the ACS dataset.
We also selected five years of data from 2015-2019 to capture a fuller picture of the
demographic patterns in the city. Figure 4-5 illustrates the spatial distributions of
the two variables in 2019. There is apparent spatial clustering concerning how the
marginalized population resides in the city. The original census data is at the cen-
sus tract level, and to aggregate it to the taxi zone level for future estimation, we
calculated the centroid of each census tract, assigned them to the corresponding taxi
zone, and summed up the population of each demographic variable in each taxi zone.

To calculate the ratio of each demographic, we divided the population of the target
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demographic population by the total population for each taxi zone.
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(a) Black Population Ratio  (b) Poverty Population Ratio

Figure 4-5: Demographic Variables Distribution in Manhattan in 2019.

4.4.2 Performance Evaluation
Upstream Prediction Evaluation

The study adopted two sets of metrics to evaluate the accuracy and disparity of the
models respectively. To measure accuracy, we measured the error magnitude, relative
error percentage, and error direction. Two commonly used metrics, Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE), are adopted to evaluate error
magnitude. They are defined as follows:

K kg

1
MAE = k_ ¢k 4.9
“nggln il (4.9)
1 [ T
— _ #ky2
RMSE = Mﬂzzw k)2, (4.10)



In addition, to measure the relative error percentage, we adopted the Mean Absolute

Percentage Error (MAPE):

1 S |k — 7|

ri — 7
mxnzz e’

k=1 i=1 B

MAPE =

, where r¥ = min(r¥,0.1). (4.11)

Note that the denominator rf' is adjusted to ensure the fraction is defined. Lastly, to

measure the overall prediction error direction compared to the original demand, we

adopted the Mean Error (ME):

K b

ME = . EiZ]ﬁ—ﬁL (4.12)

Roxn k=1 i=1

where a positive ME value denotes the model underestimating the demand in general,

and vice versa.

On the other hand, to evaluate the disparity of the model predictions, we utilized
two metrics. The first metric is the Mean-Variance of the Percentage Error (MVPE).
This metric originates from the goal to ensure equal error distribution for all predic-
tions. Given the percentage error in vertex i at time t, PEF = i:!,i, the MVPE is
defined as:

K n E Pk 2
MVPE:EZ Ei:l(PEi PE}
K
k=1

— (4.13)

where PEF is the mean of the percentage errors in a given period k.

The second disparity metric refers to the Generalized Entropy Index proposed by
[ ]. It is a metric originated from economics that measures inequality, or in the
point of information theory, it can be interpreted as the redundancy in data. In our
case, it measures the spread between individual prediction and the average prediction
error. A smaller value represents a more even distribution between errors and their
mean. We adjusted the metric to evaluate the distribution of the percentage errors

in our research setting:

f¥ = PEF + m, where m = max(0, max(—PEF)), (4.14)
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K

GEI =1 Z Z[( . (4.15)

K= m;r{n i=1

Specifically, a temporal GEI for each period is first calculated and then we take
the average of them across all periods. f* is the mean of fF in a given period k. 5
is a constant that regulates how much attention is put on the larger percentage of

errors, and here we set = 2.

Downstream Vehicle Rebalancing Evaluation

For the downstream performance evaluation of the vehicle rebalancing module, we
adopt the ride-hailing simulator utilized in Guo et al. [ ']. For the simulation and
evaluation of various approaches, demand data from June 26, 2019, is employed. The
simulator is configured with a fleet size of 2000 vehicles. With this setup, vehicle and
demand locations are initialized. At the start of the simulation, all vehicles are made
available and evenly distributed across the taxi zones.

Since demand origins and destinations are at the sub-regional level, random road
nodes within each sub-region are assigned as origins and destinations for customers
in that particular sub-region. The simulator comprises two components: a matching
engine, which is solved every 30 seconds, and a vehicle rebalancing engine, which is
solved every 300 seconds. In the vehicle rebalancing model (4.8), the parameters are
set as o = 1 and 3 = 10%. The vehicle rebalancing problem takes into account kK = 6
time intervals ahead for optimization.

The simulation yields several key metrics for evaluating different rebalancing mod-

els, including:
1. Average customer waiting time
2. Standard deviation of customer waiting time across zones
3. Customer unsatisfaction rate
4. Average non-occupied VMT
5. Average number of rebalancing trips
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These metrics are essential in assessing the performance and effectiveness of various
disparity-reducing rebalancing approaches. The variation in customer waiting times,
as measured by standard deviation, reflects the disparity of services provided to cus-

tomers. Meanwhile, other metrics are indicative of the system’s overall efficiency.

4.4.3 Upstream Demand Prediction Results

In this section, we discuss the effect of the SA-STGCN framework on the performance
of the upstream prediction of the ride-hailing demand.

Performance Summary

In this section, we demonstrate the demand prediction performance of the SA-STGCN
model and different combinations of regularization terms compared to the Historical
Average model and the pure STGCN model as the baseline models. Specifically, the
Historical Average model is defined by using the historical average of the demand on
the same date of the week and time interval of the day in the training set to predict the
testing data. The baseline SA-STGCN model without regularization (A = 0,y = 0)
is shortened as SA-STGCN in this section.

Table 4.1 shows the prediction performance comparison among the two bench-
mark models, the SA-STGCN model, and models with regularization terms imple-
mented in terms of accuracy and disparity. The first four metrics in the table (i.e.
MAE, RMSE, MAPE, and ME) demonstrate the accuracy performance of the mod-
els, while the last two metrics (i.e. MVPE and GEI) illustrate the error disparity
performance. The first section of the table 4.1 illustrates how SA-STGCN compare
with the baseline models, and the second, third, and fourth sections of table 4.1 refer
to the performance of the models with regularization terms penalizing overestima-
tion, limiting error distribution, and the models with both regularization terms with
different weight parameters.

As shown in the first section of the table 4.1, it is evident that using the socio-

demographically enriched matrix helps to improve the accuracy metrics and reduce
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MAE RMSE MAPE ME | MVPE GEI (109

Historical Average 3.609 5293 0.721 -0.885 | B.347 5.463
STGCN 3.130 4334 0.738 -0.046 | 9.054 5.048
SA-STGCN 3.128  4.352 0.693 0.204 | B.002 5.230
SA-STGCN (v = 0.01) 3.109 4318 0.713 0.118 | 8.624 5.657
SA-STGCN (v = 0.03) 3.113 4.350 0.659 0463 | T7.426 4.846
SA-STGCN (v = 0.05) 3.138 4396 0606 0.733 | 6.170 4.003
SA-STGCN (v = 0.07T) 3.173 4458 0577 0988 | 5.637 3.648
SA-STGCN (v = 0.09) 3.216 4.522 0.549  1.206 | 5.045 3.257
SA-STGCN (A =0.5) 3.152 4.360 0.744 -0.057 | 9.004 5.017
SA-STGCN (A=1) 3.159 4376 0.760 0.064 | 9.183 6.038
SA-STGCN (A =3) 3.197 4415 0.728 0.108 | 8.143 5.320
SA-STGCN (A =15) 3.255 4.481 0.739  0.240 | 7.973 5.198
SA-STGCN (A =0.5,7=0.09) | 3.136 4359 0.723 0.143 | 8.934 5.863
SA-STGCN (A =1,v = 0.07) 3.228 4480 0548 0974 | 4.751 3.060
SA-STGCN (A =3,~v = 0.03) 3.346 4575  0.568 0.786 | 4.540 2.929
SA-STGCN (A = 5,7 = 0.07) 3.548 4.850 0510 1.486 | 3.324 2.132

Table 4.1: Model cross-comparison.

the disparity metrics compared the benchmarks. Compared to the STGCN, the SA-
STGCN is able to reduce both the MVPE and GEI by 11.6% and 12.1% while not
harming the accuracy metrics. It even slightly improved the MAE and the MAPE
results.

By cross-comparing the evaluation metrics of the performance of different regu-
larization terms, the proposed regularization terms mitigate overall disparity signifi-
cantly while not sacrificing model accuracy too much. In fact, the accuracy metrics in
all three regularization models are improved in most cases compared to benchmarks.
With extremely large weight parameters such as when A = 5 and v = 0.07, the dispar-
ity metrics MVPE and GEI can be reduced by 63.3% and 64.2%, respectively, while
the accuracy metrics such as MAE only increased by 13.4% compared to the pure
STGCN. Moreover, the positive outcomes of the relative error metric ME show that
adding the regularization helps the prediction to shift from overestimation to under-
estimation. This transformation, as we will later illustrate, contributes significantly

to the enhancement of downstream vehicle rebalancing. The model penalizing overes-
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timation performs the best as it improves accuracy metrics and diminishes disparity
metrics at the same time.

The second and third sections of the table 4.1 also serve as the sensitivity anal-
ysis of the regularization weight’s effect on the model performances. In the case of
overestimation penalization, there is a consistent accuracy-disparity trade-off pattern,
as the weight of regularization () increases, the error magnitudes monotonically in-
crease, the percentage error decreases, and the disparity diminishes. On the other
hand, when restricting the error distribution, as we increase the magnitude of the
weight (A) of the regularization term, only the MAE, RMSE, and ME monotonically

increase, but the MAPE and the two disparity metrics first increase then decrease.

Fairer Prediction in Space

Figure 4-6 demonstrates the spatial distribution of the error metrics across the study
area of the pure STGCN, 5A-5TGCN, and the selected models with regularization
terms. In general, the prediction errors are larger in magnitude in the downtown
regions, while the percentage errors have more variation in the regions with low
demand, such as the northern tip of the island. When comparing various models, the
MAE plots reveal similar distributions, indicating that the prediction performances
are not highly sensitive to the proposed changes in the model. In contrast, the
MAPE plots demonstrate that models incorporating regularization terms exhibit a
more uniform error distribution across space, reflecting a fairer prediction. The ME
distributions suggested the general error direction shifted from negative to positive as
regularization terms are introduced, which means a transition from overestimation to
underestimation. We later demonstrate that this shift could be beneficial for reducing

service disparity in downstream vehicle rebalancing operations.

Fairer Prediction in Time

Figure 4-7 illustrates the temporal distribution of the error metrics across the time
of the day. In general, the error magnitude and percentage distribution pattern fol-
low the demand level, with smaller MAE values and larger MAPE and MVPE when
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Figure 4-6: Error spatial distribution in Manhattan.

demand is low and vice versa. In contrast, the error direction displays a less regu-
lar pattern. Compared to the benchmark performance of the pure STGCN model,
the proposed SA-STGCN model and the method of adding regularization terms can
reduce the peak errors in all scenarios. Specifically, SA-STGCN adding both reg-
ularization terms has the most direct impact on smoothing the MAE, MAPE, and
MVPE temporal distribution. The smoothing effect is most significant in the early

morning time when error values are more extreme. In addition, regularization terms
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Figure 4-7: Error temporal distribution across times of the day.

have various effects on the error directions across time. When we add both regular-
ization terms, the ME distribution shifts to positive the most as shown by the purple
line. On the other hand, adding the error restriction regularization term has the least
effect on day-time ME distribution. The temporal trend of RMSE is similar to MAE
and the GEI trend is similar to that of MVPE, so the figures didn’t include these two

metrics.

4.4.4 Downstream Vehicle Rebalancing Performances

In this section, we discuss the effectiveness of our models when applied to vehicle

rebalancing tasks, utilizing a simulator based on real-world ride-hailing data.
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Performance Summary

Table 4.2 presents a summary of how various demand models perform in addressing
the wvehicle rebalancing problem, specifically when employing the equity-enhanced
MIVR model. This evaluation includes scenarios where true demand is known and
those relying solely on average historical demand for future predictions, serving as
benchmark models. Additionally, a standard STGCN and a baseline SA-STGCN
model without additional regularization terms are also employed for benchmarking

purposes.

Moreover, the evaluation also encompasses three variations of the SA-STGCN
model: (i) SA-STGCN with a focus on penalizing overestimation, (ii) SA-STGCN
with limited error distribution, and (iii) SA-STGCN incorporating both regulariza-
tions. Crucial customer service metrics assessed include the rate of customer dis-
satisfaction, average waiting times, and the variability of these waiting times across
different sub-regions. To demonstrate the effectiveness of the wvehicle rebalancing
algorithms in enhancing operational efficiency, we examine metrics like the average

Vehicle Miles Traveled (VMT') without passengers per vehicle and the average number

Unsatisfaction Wait Time Wait Time  Non-occupied Rebalancing Trp
Rate (%) Avg (seconds)  Std (seconds)  VMT (miles) Number
True Demand 1.76 29,65 2207 .82 20,03
Historical Demand 1.75 90.55 22.76 6081 19.47
Baseline STGCN 1.79 29.83 22.52 .34 19.40
Baseline SA-STGCN 1.74 89.75 22.13 6020 19.25
SA-STGCN (v = 0.01) 1.77 29.88 2208 60.49 18.50
SA-STGCN (v = 0.03) 1.76 29.95 22.53 60.29 18.25
SA-STGCN (v = 0.05) 1.76 89.51 21.72 60.21 19,36
SA-STGCN (v = 0.07) 1.72 2967 157 60000 159.08
SA-STGCN (v = 0.09) 1.73 29.58 21.78 60000 19.15
SA-STGCN (A = 0.56) 1.73 00.16 2234 60.37 19.28
SA-STGCN (A =1) 1.77 00.03 2217 60.34 19.28
SA-STGCN (A =3) 1.78 2908 22.15 60.36 159,33
SA-STGCN (A =5) 1.82 2999 21.75 60.15 19.14
SA-STGCN (A = 0.5,y = 0.09) 1.75 89.39 21.06 50.87 19.09
SA-STGCN (A =1,y = 0.07) 1.77 29.70 21.72 60.04 19.17
SA-STGCN (A = 3,y = 0.03) 1.73 90.02 22.10 59.99 18.90
SA-STGCN (A = 5,7 = 0.07) 1.74 90.44 20.62 60.11 18.70

Table 4.2: Model performance summary.
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of rebalancing trips each vehicle undertakes.

Fair Prediction Leads to Fair Service

The first insight from the simulation results is the superior performance of models
with fair predictions, compared to benchmark models. These enhanced models excel
in two main aspects: reducing average customer waiting times and achieving a more
consistent waiting time across different regions. This improvement suggests that
factoring in disparity reduction in demand prediction can lead to more efficient and
equitable service outcomes.

Further analysis reveals that the SA-STGCN model, when compared to the base-
line STGCN, is more effective in satisfying a larger number of customers while simul-
taneously reducing the average waiting time. Notably, this model also succeeds in
minimizing the variance in service provision across different regions, addressing the
issue of regional disparities in service quality.

The benefits of the SA-STGCN model stem from two primary factors. Firstly,
it outperforms the traditional STGCN model in terms of both prediction accuracy
and disparity indicators. These enhanced performances translate into more effective
rebalancing operations, ensuring a fairer distribution of services with less disparity in
eITor rates across regions. Secondly, the integration of socio-demographic information
within the STGCN framework leads to a more conservative approach in demand esti-
mation. This conservatism, while acknowledging the inherent inaccuracies in demand
prediction, results in fewer non-occupied VMT and a reduced number of rebalancing
trips. Consequently, this conservative approach benefits the overall system operation.

Moreover, the incorporation of additional regularization terms in the SA-STGCN
models could potentially enhance model performance further. This improvement
would be due to the reasons discussed above, emphasizing that fairer predictions not
only improve service efficiency but also contribute to equitable service distribution.
Ultimately, the proposed disparity-reducing vehicle rebalancing approach fosters a
win-win scenario, enhancing the efficiency and mitigating the disparity of ride-hailing

services.

146



The Power of Demand Underestimation

The second insight from the simulation results highlights the significant role of de-
mand underestimation in ride-hailing rebalancing operations. This underestimation,
prompted by the addition of a penalization term (associated with the parameter )
to errors in demand overestimation, results in more equitable predictions. Despite a
decrease in prediction accuracy, this approach leads to improved service provision for
customers and reduces disparities in services across regions.

The advantage of demand underestimation lies in its inherent conservativeness.
As Guo et al. [ ] suggest, in scenarios where future demand is uncertain, adopting a
less aggressive approach often yields better outcomes. This conservatism allows for a
more efficient distribution of limited vehicle resources, particularly important given
the high costs associated with incorrect rebalancing decisions.

However, excessively penalizing demand overestimation in ride-hailing operations
is not ideal. The simulation indicates that the optimal balance is achieved when 7 is
set to 0.05. This parameter setting results in the best average customer wait times
and the fairest service distribution across different regions. It’s important to note that
while increasing «y does lead to fairer predictions, the impact on downstream services
is not monotonic. Excessive conservatism in vehicle rebalancing can be counterpro-
ductive. Therefore, identifying an appropriate level of conservativeness is crucial for

making optimal rebalancing decisions.

The Most Fair Model

In the comparative analysis of models presented in Table 4.2, the SA-STGCN model
with A =5 and v = 0.07 emerges as the most equitable in terms of service provision
to customers. This model significantly reduces the variability in customer wait times
by 8.43% compared to the baseline STGCN model, albeit at a slight increase in
average wait times of 0.68%. Notably, this model also reduces disparity regarding
demand prediction, achieving the lowest MVPE of 3.32 and GEI of 2.13. These

results underscore the correlation between fairer prediction models and more equitable
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service provision in the downstream.

Conversely, when considering a balance between efficiency and disparity in vehicle

rebalancing, the SA-STGCN model with A = 0.5 and y = 0.09 stands out. In compar-

ison to the baseline STGCN model, it sucecessfully lowers both the standard deviation

and average of customer wait times by 6.48% and 0.49%, respectively. Impressively,

this model even outperforms scenarios with perfect demand knowledge in terms of

average customer wait times. This can be attributed to the equity-enhancing MIVR

model, which approximates the matching component to account for future time in-

tervals. Such approximations, while not perfectly optimal for real-world ride-hailing

scenarios, demonstrate that sometimes, less accurate demand predictions can para-

doxically lead to more efficient system operation.

Trade-offs of Introducing Equity Weights

Unsatisfaction Wait Time Wait Time  Non-occupied Rebalancing Trp
Rate (%) Avg (seconds)  Std (seconds)  VMT (miles) Number
True Demand 1.81 89.49 22.55 6070 20.13
Historical Demand 1.78 90.51 22.62 6073 19.53
Baseline STGCN 1.79 8979 22.80 .36 19.50
Baseline SA-STGCN 1.75 289.74 22.69 .15 19.23
SA-STGCN (v = 0.01) 1.79 29.87 22.78 60.29 19,38
SA-STGCN (v = 0.03) 1.77 90.11 22.58 60.29 19.21
SA-STGCN (v = 0.05) 1.75 89.57 2228 60.04 18.25
SA-STGCN (v = 0.07) 1.73 29.50 22 50.82 19.02
SA-STGCN (v = 0.09) 1.76 8932 22.56 50.88 19.16
SA-STGCN (A = 0.56) 1.79 2 g 2237 60.17 19,30
SA-STGCN (A =1) 1.76 00.14 22.59 60.21 19.13
SA-STGCN (A =3) 1.78 90.02 23.m 60.07 19.10
SA-STGCN (A =5) 1.77 29.80 22.50 6003 19.14
SA-STGCN (A = 0.5,y = 0.09) 1.74 8921 21.84 509.89 19.24
SA-STGCN (A =1,y = 0.07) 1.80 29.70 21.96 50.83 189.05
SA-STGCN (A = 3,y = 0.03) 1.78 00.03 2235 6003 18.99
SA-STGCN (A = 5,7 = 0.07) 1.75 90.35 21.79 59.91 18.63

Table 4.3: Model performance summary without considering equity weights in the

MIVR model.

Finally, we explore the implications of incorporating equity weights into the MIVR

model. Table 4.3 presents the performance metrics of the MIVR model sans the

application of equity weights in determining vehicle rebalancing strategies.
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When analyzing the results from both tables, two significant insights are drawn.
First, incorporating equity weights into the MIVR model notably reduces service dis-
parity, especially by diminishing discrepancies in customer wait times. Additionally,
this approach results in serving a higher proportion of customers. This improvement
iz attributed to better servicing of customers in previously underserved areas, as more
vehicles are strategically repositioned there. Evidence of this is seen in the increased
average distance traveled by non-occupied vehicles (VMT) and the reduced number
of rebalancing trips, which supports our hypothesis. However, the second observation
reveals a compromise: while service disparity is reduced, there is an observable rise

in the average customer wait time across the system.

4.5 Discussion

4.5.1 Policy Discussion

On Oectober 30, 2023, President Joe Biden issued an executive order focusing on “safe,
secure, and trustworthy artificial intelligence” [/ ], emphasizing the critical need to
address the risks associated with artificial intelligence and establish new standards for
its safety and security. Disparity is an important component for understanding equity.
This study reveals disparity issues within ride-hailing service algorithms, prompting
consideration for regulatory interventions that would compel ride-hailing companies
to integrate equity considerations into their algorithmic design. For instance, govern-
ments can mandate that the variation in waiting times across neighborhoods should
not exceed a predefined threshold. Governments may also prescribe specific weights
w; for individual regions within the vehicle rebalancing objective function (Equation
4.8), thereby exerting control over the importance assigned to successful matching in
each distinet region 1.

Concerning ride-hailing companies, the disparity-reducing algorithm introduced in
this research offers an effective solution to reduce service disparity in ride-hailing. By

adopting the proposed disparity-reducing strategies in both demand prediction and
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service rebalancing, ride-hailing companies can greatly reduce variations in passenger
waiting times across the region. It's worth highlighting that with the proper selection
of hyperparameters A and - in the objective function of demand prediction (Equation
4.5), both the variation and average customer waiting time can be reduced. This
achievement positions ride-hailing service companies to attain a Pareto improvement,
concurrently enhancing efficiency and reducing service disparity in their operations

and achieving a “win-win” scenario.

To enhance equity in vehicle distribution, ride-hailing services can adopt strategies
like Lyft’s ‘Power Zones’. These zones, located in underserved areas, offer drivers
bonuses for accepting rides originating from these regions. This approach addresses
the income disparity caused by low-demand zones, where surge pricing is less frequent
and earning opportunities are diminished. By incentivizing drivers to operate in these
areas, companies can not only ensure better service coverage but also support drivers

in maintaining consistent earnings.

From the perspective of passengers, this approach, which aims for a more equi-
table distribution of wait times among communities, especially benefits individuals
facing challenges with transportation options. By fine-tuning both demand and re-
balancing models, it has the potential to simultaneously attain a lower and more
equitable waiting time distribution among people from different communities. This
improvement enhances mobility and connectivity across all communities, fostering
trust among passengers in the ride-hailing service, especially within disadvantaged

communities.

The ride-hailing service plays a pivotal role as a transportation solution for individ-
uals seeking employment and opportunities. The decrease in waiting times translates
to more efficient access to opportunities for residents in diverse communities, offering
significant relevance for areas with elevated unemployment rates or limited local job
options. Through the adoption of this disparity-reducing algorithm, ride-hailing com-
panies not only showease their commitment to social responsibility but also actively

contribute to the overall well-being and inclusivity of the communities they serve.
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4.5.2 Practical Discussion

One might question why the current ride-hailing system does not reach extreme de-
spite the negative feedback loop illustrated in Figure 4-1. We identify four factors
that help maintain the system’s equilibrium.

Firstly, the rebalancing algorithms for vehicles assume that drivers will strictly
adhere to the guidance provided by the platforms. This assumption holds true for
autonomous fleets like Waymo and Cruise but is unrealistic for traditional ride-hailing
services such as Uber and Lyft. These platforms incentivize drivers to relocate to
specific areas to fulfill requests, using incentives as a rough approximation for the
rebalancing decisions that contribute to the negative feedback loop.

Secondly, there is a heterogeneity in driver behavior within the system. Many
drivers prefer to work within specific areas, sometimes even those with fewer incen-
tives, due to proximity to their homes or greater familiarity, which enhances their
efficiency in handling local customer requests.

Thirdly, the platforms employ various strategies to serve customers even when no
vehicles are immediately available in the vicinity. It’s not uncommon for a request
in a remote area to be fulfilled by a driver 10 to 20 minutes away. The goal of these
ride-hailing platforms is to accommodate every customer request, striving to find a
match for each one.

Lastly, the demand in areas with low request rates never completely disappears.
Under certain conditions, customers are willing to endure longer wait times for a ride.
This patience is particularly noted among customers who have a safe place to wait or
when ride-hailing services present the only viable option, such as in inclement weather

conditions.

4.6 Conclusion

This chapter presents a pioneering framework aimed at reducing disparity in both
predicting ride-hailing demand and delivering equitable service to riders. The frame-

work introduces a Socio-Aware Spatio-Temporal Graph Convolutional Network (SA-
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STGCN), which integrates a socio-enriched adjacency matrix and bias-reduction reg-
ularization methods. Additionally, it features a wvehicle rebalancing engine that in-
corporates equity considerations into its objective function. This framework was
evaluated using a simulator with real-world ride-hailing data, demonstrating that
the SA-STGCN maodel not only outperforms standard demand prediction models in
increasing accuracy but also in reducing error disparity. Significantly, mitigation in
disparity at the demand prediction stage lead to more equitable service delivery in the
vehicle rebalancing process. The vehicle rebalancing module, enhanced with equity
weights, showed a notable reduction in the standard deviation of customer wait times

by 6.5%, while not diminishing the system efficiency for ride-hailing platforms.

The proposed framework offers a viable approach for ride-hailing companies to
reduce service disparity into their operations, and it provides a basis for government
regulations aimed at preventing service imbalances across different areas. However,
realizing the win-win scenario highlighted in the study involves addressing practical
challenges. A key solution lies in developing driver incentive mechanisms. These
mechanisms should ensure that drivers are motivated to serve in underserved com-
mumnities and that their earnings remain stable despite such commitments. As the role
of ride-hailing services becomes more central in our everyday activities, it’s erucial to
make certain that these platforms maintain a strong commitment to social respon-
sibility and proactively enhance the well-being and inclusiveness of the communities

they operate in.

This chapter does not make a formal judgement on what is a fair vehicle rebalanc-
ing operation. Instead, it tries to understand and reduce disparity within the system,
which serves as the foundation for understanding the fairness in the system. More
analyses can be done to better understand and achieve the fairness in the wvehicle
rebalancing.

For future research, it would be beneficial to include a focus on driver behaviors
and earnings, which this study has not addressed. A comprehensive framework could
be developed to reduce disparity across all aspects of the ride-hailing vehicle rebalanc-

ing operations: error disparity in demand prediction, pricing disparity for riders, and
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earning disparity for drivers. Such a framework should ensure that drivers who are
redirected to serve underserved communities are compensated equitably, comparable
to those serving in city centers. This approach would create a more balanced and fair

environment for all parties involved in the ride-hailing ecosystem.
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Chapter 5

Robust Transit Frequency Setting

Problem with Demand Uncertainty

5.1 Introduction

The past century has witnessed one of the most dramatic evolutions in human history,
urbanization. More than half of the world now lives in urban areas. By 2050, over
two-thirds of the world’s population is expected to live in urban areas [ ]. Urban
mobility, defined as moving people from one place to another within or between
urban areas, is critical to the functionality of people’s daily lives in urban areas.
It allows people to access housing, jobs, and recreational services. However, urban
mobility is also the largest contributor to greenhouse gas emissions in the United
States, accounting for over 27% of the total greenhouse gas emissions [ ]. Therefore,
an efficient and sustainable urban mobility system is necessary to support future
urban development.

Although emerging urban mobility services, e.g., ride-hailing and bike-sharing,
have provided people with various options for traveling, public transit systems keep
serving as the backbone of a sustainable urban mobility system, which allows more
efficient travel across cities for a mass number of people. Meanwhile, public transit
systems provide an affordable travel option for everyone regardless of travel distances

within cities. Hence, it is important to design a public transit system with a good
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level of service and operate it efficiently.

The COVID-19 pandemic has imposed an enormous impact on public transit
systems. The national public transportation ridership stays around 60% of the pre-
pandemic ridership level at the beginning of 2022 [ ]. One of the main driving forces
for the ridership drop is the flexible or remote working adopted by many emplovers
worldwide during the pandemic. However, remote working won't be a temporary
strategy for companies because the US is projected to have an average of 30% paid
full days working from home for people in the future compared to a 5% pre-pandemic
level [ ]. Remote working implies that a proportion of commute trips in transit
may be lost permanently, which motivates transit agencies to redesign their transit
networks and schedules with the new demand patterns. Also, transit demand has
become more volatile. Predicting future demand becomes more challenging.

While transit networks have been developed for years and are hard to change by
transit agencies within a short period of time, changing transit schedules is straight-
forward. In this chapter, we focus on the transit frequency setting problem (TFSP),
where transit schedules are optimized given a set of transit stops to serve. Though
TFSP has been explored in previous literature, there is a limited number of pa-
pers incorporating uncertainty (such as volatile demand) into consideration for the
TFSP [, , ~]. Ignoring demand uncertainty when setting up transit schedules
may diminish the level of service for transit systems.

To handle demand uncertainty for transit systems, especially during the post-
COVID and remote work era [, ', '], we first propose a baseline TFSP model for
a single transit line. Next, we introduce the Robust Optimization (RO) technique into
the TFSP to incorporate demand uncertainty. Furthermore, the Transit Downsizing
(TD) approach is proposed to reduce problem dimensionality and generate optimal
transit schedules efficiently. Also, the proposed TD approach can be utilized in other
transit-related problems. A benchmark TFSP model using the Stochastic Program-
ming (SP) technique is proposed and compared with the robust TFSP model. Overall,

the contribution of this chapter can be summarized as follows:
¢ Propose a nominal TFSP model under a single transit line setting and an ex-
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tended TFSP model considering crowding levels.

¢ Address demand uncertainty issues by introducing a robust TF5P model, which
generates transit schedules that are optimized for the worst-case demand sce-
nario. To the best of the authors’ knowledge, this is the first study to utilize
RO techniques to address demand uncertainty in TFSP.

¢ Design the TD approach to reduce problem sizes and make the model tractable
given large-scale demand matrices from real-world transit instances. Theoreti-
cally prove that the optimal objective function of the problem after TD is close
to that of the original problem (i.e., the difference is bounded from above).

¢ Compare the current transit schedule with the schedules solved by nominal,
stochastic, and robust optimization, respectively, under multiple demand sce-
narios over the same corridor with two real-world transit lines (Routes 49 and
X49) operated in Chicago. The robust TFSP model outperforms the bench-
mark stochastic TFSP model and existing transit schedules by simultaneously
reducing passenger wait times and in-vehicle travel times under scenarios with

significant demand uncertainty.

The remainder of the chapter is organized as follows. Section 5.2 reviews the rele-
vant literature. Section 5.3 describes the nominal, robust, and benchmark stochastic
TFSP models and proposed dimensionality reduction algorithms. Section 5.4 outlines
experimental setups, including utilized data and transit lines, and displays experiment
results and sensitivity analyses. Finally, Section 5.5 recaps the main contributions of

this work, outlines the limitations, and provides future research directions.

5.2 Literature Review

5.2.1 Transit Frequency Setting Problem

The design and planning of urban public transit systems consist of a series of de-

cisions before operating the system, which is known as Transit Network Planning
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(TNP) problem. In literature, TNP is commonly divided into sub-problems that
range across tactical, strategical, and operational decisions, including Transit Net-
work Design (TND), Frequency Setting (F'S), Transit Network Timetabling (TNT),
Vehicle Scheduling Problem (VSP), Driver Scheduling Problem (DSP), Driver Ros-
tering Problem (DRP). A thorough review of TNP and its sub-problems can be found
in [83, 54, 42].

The TFSP is defined as a problem to determine the number of trips for a given
set of lines that provide a high level of service in a planning period. The TFSP
is first studied by Newell et al.[ '] using analytic models. Given a fixed number
of vehicles and constant passenger arrival rate, Newell et al.[ '] produced vehicle
dispatching time in order to minimize the total waiting time of all passengers. The
study concluded that the optimal headway should be approximated as the square
root of the arrival rate of passengers. The proposed model assumes fixed passenger

demand and overlooks vehicle capacity constraints.

Furth and Wilson [ ] formulated the TFSP as a non-linear program that com-
puted the optimal headway for bus routes in order to maximize the net social benefits,
consisting of ridership benefits and wait-time savings. Sets of constraints incorporated
in their model were total subsidy, maximum fleet size, and acceptable level of loading.
A key assumption they made was considering responsive demand which was a func-
tion of headway in the model. Furthermore, a heuristic-based algorithm was designed

to solve non-linear programs.

More recently, Verbas and Mahmassani [ = '] extended the model proposed by
Furth and Wilson [ | by incorporating service patterns into transit routes. A service
pattern corresponds to a unique set of stops that need to be served by transit vehicles
along a transit route. They formulated two non-linear optimization problems with
different objectives: i) maximize the number of riders and wait time savings, and
ii) minimize the net cost. Non-linear optimization solvers were directly used to solve
non-linear programs. Additionally, Verbas et al. [ ] discussed the impact of demand
elasticity over solutions from the TFSP which is similar to models proposed by Furth
and Wilson [ | and Verbas and Mahmassani [ © |]. They introduced three method-
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ologies for estimating demand elasticity within transit networks and solved TFSPs
under multiple demand elasticity scenarios on a large-scale network. Although the
impact of demand uncertainty is discussed in this paper, their proposed methods
are not equipped with abilities to generate optimal schedules considering demand
uncertainty explicitly.

One could argue that one of the modeling contributions in formulations based on
Furth and Wilson’s [ ] model is the introduction of responsive demand. However,
the authors claim that it is more reasonable to consider a fixed demand matrix when
solving the TFSP. There are short-term and long-term objectives in the TFSP: i)
minimizing wait times for existing passengers, and ii) attracting more passengers
to use transit networks. Minimizing wait times for the existing passengers leads to
an increase in the level of service, which in turn attracts more passengers to take
transit. On the contrary, maximizing ridership when considering responsive demand
could lead to a waste of resources since it takes weeks for demand to respond to
service changes. Meanwhile, transit schedules are modified frequently in practice,
e.g., Chicago Transit Authority (CTA) publishes new transit schedules quarterly. An
updated demand matrix can be utilized when generating new transit schedules every
time. Therefore, minimizing wait times for existing passengers is a better objective

in the authors’ opinion.

Although limited papers take demand uncertainty into consideration when set-
ting transit frequencies, Li et al. [/ ] utilized stochastic programming techniques to
solve the headway optimization problem for a single bus route considering random
passenger arrivals, boarding, alighting, and vehicle travel time. A metaheuristic al-
gorithm consisting of a stochastic simulation and a genetic algorithm was designed
to solve the proposed model. Their proposed approach was compared with three tra-
ditional headway determination models and bringing both demand and travel time
uncertainty improved model performances. The main critique for Li et al. [ (/]'s
work is the lack of discussions on the optimality gap given a heuristic-based solution
algorithm. It is worth noting that incorporating travel time uncertainty when setting

transit frequency can lead to better transit schedules. One approach is to utilize ad-
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vanced techniques to better predict the traffic conditions [, , "] and use more
realistic travel time information in the model.

Gkiotsalitis et al. [ ]| considered the frequency setting problem for autonomous
minibuses with demand uncertainty. They utilized a traditional stochastic optimiza-
tion approach, Sample Average Approximation (SAA), to handle the demand un-
certainty. Moreover, no existing studies on the TFSP have incorporated the RO
technique to address data uncertainties (e.g., demand uncertainty and travel time
uncertainty). One major barrier to building the RO-based TFSP model is the dimen-
sionality issue, where the robust counterpart (a solvable formulation of the RO model)
significantly expands the problem size. In this paper, the TD approach is proposed
to make the robust TFSP model computationally tractable given large-scale tran-
sit instances. The proposed TD approach can be generalized to any transit-related

problems with large-scale demand matrices.

5.2.2 Robust Optimization and Applications in Urban Mo-
bility

Robust Optimization (RO) is one of the widely-used approaches for decision-making
under uncertainty in the Operations Research (OR) domain [ ']. RO and its data-
driven variants [ -] are effective options to handle uncertain parameters. The underly-
ing idea for RO is to specify a range for an uncertain parameter, namely an uncertainty
set, and optimize over the worst-case realizations given the bounded uncertainty set.
The solution method for RO problems involves generating a deterministic equivalent,

called the robust counterpart. A practical guide on RO can be found in [ '].

Urban mobility systems have various sources of uncertainty brought by human
behaviors and environmental impacts (e.g., weather). Considering uncertainty when
designing and operating urban mobility systems is crucial and necessary. There are
several applications for applying RO techniques to solve urban mobility problems.
For transit systems, Yan et al. [ -] proposed a robust framework for solving the bus

transit network design problem considering stochastic travel times. Mo et al. [ ]
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utilized the RO technique to solve the individual path recommendation problem under
rail disruptions considering demand uncertainty. For shared mobility systems, Guo et
al. [ ] formulated a robust matching-integrated vehicle rebalancing (MIVR) model
to balance vacant vehicles in the ride-hailing operations given demand uncertainty.
Guo et al. [ /] extended the MIVR model proposed by Guo et al. [ ] by introducing
predictive prescriptions approach [ ] to handle demand uncertainty, which is an
advanced approach for handling data uncertainty based on the stochastic optimization

framework.

5.3 Methodology

5.3.1 Basic Optimization Model

We consider the TFSP for a single urban transit line (either rail or bus services)
with a sequence of N stops. Let the set of stops be §. A single line is the basic
element of a transit network. Future studies can be extended to the network-level
design by considering potential interactions between different lines. Without loss of
generality, we assume each bi-directional transit line is considered as two separate
transit lines with distinet sets of stops in this chapter. For an urban transit line,
there exists a set of potential service patterns P, where each pattern p € P consists
of a subset of stops §, C &, indicating where the vehicles should stop if traveling
with this pattern. Common examples of patterns are short-turnings and limited-stop
lines in bus operations.

Let V represent the set of vehicle types that can be operated on the transit line.
For instance, V = {standard bus, articulated bus, minibus} includes three types of
buses, and V = {four-car train, six-car train, eight-car train} consists of three types
of rail cars with a different number of carriages. For each type of vehicle v € V, the
number of seats is €, and the maximum vehicle capacity is C,. Furthermore, we
discretize the full planning period [Tsart, Tend) into time periods t = 1, ..., T, where

each time interval ¢ has the same length A.
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Let passenger flow (o,d,t) stand for passengers with origin station (stop) 0 € &
and destination station (stop) d € & who arrives at the boarding station (stop) o
at the beginning of time interval t. The set of passenger flows is indicated by F.
For each transit line, we have a demand matrix uw = (u?), where u{ indicates
demand for the passengers flow (o,d,t). The decision variables for the TFSP are
x = ("), where 2" = 1 denotes a vehicle with type v € V operating on a pattern
p € P departures from the terminal station of pattern p at the beginning of time
interval t. Hence, unlike typical headway-based design, this chapter allows non-even
dispatching of vehicles according to the service needs, where transit schedules can be

better tailored to demand patterns.

In real-world transit line operations, transit agencies usually have a limited number
of operating patterns for each line due to practical constraints. Having too many
service patterns will confuse both transit operators and passengers. Therefore, we
impose a sparsity constraint on operating patterns. Define an auxiliary decision
variable y,, Vp € P, where y, = 1 indicates that the pattern p can be operated on the
transit line. Let P represent the maximum number of patterns operated on a single

transit line. The sparsity constraint can be formulated as

3’ <y, Vi=1,..T,WVpeP,Vvel, (5.1a)
Y <P (5.1b)
P

Let ¢ stand for the cost parameter associated with operating a vehicle of type

v on a pattern p. The budget for scheduling transit services over the transit line is

represented by B. The set of feasible schedules is denoted by

T
Xg = {m e {0, 1}/PI*VPT ZZ Z PPt < B,

peP vel t=1

Z:nf’” <1, ¥t =1,..,T,¥p € P; Constraints {5.1]} ) (5.2)

vel

The feasibility constraints in Equation (5.2) ensure that the total scheduled transit
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services do not exceed the budget B and only one type of vehicle can be operated on
each pattern during each time interval t!. Equation (5.2) imposes a general budget
constraint, which can be modified to incorporate more complicated cases. For in-
stance, the budget constraint can be adapted to ensure a limited number of vehicles

for each vehicle type:
T

Z Z:cf’” <B,, YveV, (5.3)

peP =1
where B, is the number of available vehicles for each wvehicle type v and the cost
parameter ¥ = 1,¥p € P,Vv € V. Meanwhile, additional constraints can be added
to incorporate agency-specific constraints. For example, ) ., z"" > 5 implies that
at least 5 buses need to be scheduled to operate with pattern p during time £.

It’s important to note that the set Xp defines viable schedules for bus lines. How-
ever, for rail lines, we need to consider a minimum departure interval constraint due
to the physical limitations of the rail system. We assume that this minimum depar-
ture interval is equal to the length A. When dealing with rail lines, we introduce the

following additional constraint:

Z fo’” <1, vt=1,..T. (5.4)
peP vel
To capture boarding for passenger flows, we define decision variables A = {}nf,‘f”””),
where Azf“""” € R, ? indicates the number of passengers in the passenger flow (o, d, t)
who board on a vehicle v that departs at the first station of pattern p at time 7.
The waiting time, in-vehicle travel time, and dwell time used in this chapter are

defined as

o Waiting time: let w:':,f’i"” represent the waiting time for the passenger flow

(o,d,t) to board the vehicle v which departs at the first station of the pattern

p at time 7.

It is worth mentioning that multiple patterns are allowed to be operated within the same time
period.

?We relax the integer variable A to continuous variable to increase tractability for solving the
problem while maintaining a satisfying model performance.
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e In-vehicle travel time®: let >*P represent he in-vehicle travel time for pas-
sengers with an origin-destination pair (o, d) to take a transit vehicle operating

on pattern p.

¢ Dwell time: dwell times are ignored in the model since they are generally

small compared to in-vehicle times.

To compute waiting and in-vehicle travel times within the model, it's possible to

derive pattern-specific travel times using vehicle location data from transit agencies.

o.d,pv
t.r

The waiting time, denoted as w , is calculated by knowing the passenger’s start

time ¢, alongside the departure time 7 and pattern p of the transit vehicle they are

boarding. This calculation leverages the fixed travel times specific to each pattern.
Let L?** stands for the vehicle load after visiting the station s € &, of vehicle v

which departures at the first station of the pattern p at time 7, i.e.,

Trp
[Pve — Z Z Zsz,p,u, VpeP,VveV,Vse &, Vr=1,...T, (5.5)

oeSbefore (g) deSatter(g) =1

where Sp<r(s), Sa*r(s) indicate sets of stations in S, which are before (include
station s) and after the station s, respectively. T,f’j indicates the latest time interval
such that a passenger with the origin-destination pair (o, d) can board a transit vehicle
that departs from the first station at the time 7 with pattern p.

To guarantee the feasibility of the model, we introduce an auxiliary decision vari-
able 77 = (77! > 0) indicating the number of unsatisfied passenger flow (o, d,t) (i.e.,
passengers who can not be served by the transit system). 1 serves as a slack variable
to guarantee the problem always has feasible solutions. Hence, the flow conservation

constraints can be represented as:

T
YD DD Pt =upt -t Vodt) e F, (5.6)

veV pePad o _ 0P

*We assume a pattern-specific fixed travel time to maintain the linearity of the optimization
model, which can be extended to time-dependent travel time.
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dp represents the earliest departure time for vehicles that are operated on a

where 7"
pattern p € P> and can be boarded by the passenger flow (o, d,t). The set P>¢ C P
denote the set of patterns that includes both stations o and d. Equation (5.6) means

that all passengers from a passenger flow will board vehicles or stay unsatisfied.

Then, we have the following Integer Linear Programming (ILP) formulation for

setting optimal frequencies for urban transit lines:

T
min 3 S ST ST (wpereqeedn) N e MY pd (5.7a)

(o,d,6)cF vEV pePod | _ odp (o.dt)eF
s.t. Constraints (5.5) and (5.6)
LPve < CoaP,
Vpe P,Yve V\Wse S, Vr=1,..T; (5.7b)
AP > 0,
Yio,d,t) e F,Wpe P,Vve V,Vr=1,...,T; (5.7¢)
>0, Vodt)eF. (5.7d)

The objective function (5.7a) minimizes the total generalized journey time for
passengers who take transit services and the penalty of unsatisfied passenger flows
given the set of feasible transit schedules A'z. < is a weight parameter controlling
the importance between wait times and in-vehicle travel times. v = 0 leads to a
problem that only minimizes passengers’ wait times and v = 1 generates a problem
that minimizes passengers’ journey times (i.e., wait plus in-vehicle times). M stands
for a large number that dominates the objective function (5.7a), indicating that all
passenger flows should be served in the transit system. Constraints (5.7b) guarantee
that passenger loads on vehicles do not exceed the vehicle capacity. Constraints (5.7c)

and (5.7d) ensure that decision variables A and 7 are non-negative.
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5.3.2 Optimization Model with Crowding Extension

Passengers may have different comfort levels depending on the degree of crowding in
a vehicle and whether they can have a seat or not. Also, the potential infection risks
of COVID-19 require transit agencies to control the vehicle load. To enhance the
model’s capability in managing crowding levels on transit vehicles, we've integrated a
binary auxiliary variable, z = (2""*). Here, 2;""° = 1 signifies that a vehicle of type
v, following route pattern p and setting off from the terminal at time t, is erowded
on the segment (s, s'), where &' is the next station following the station s. A transit
vehicle v is crowded if the passenger load on the vehicle is greater than the seated
capacity C,*.

Let w represent the penalty cost per unit of travel time of a crowded transit vehicle.
For a vehicle operating on a pattern p, let ¢7* denote the vehicle running time of the
segment after passing through station s. The ILP with crowding extension can be

formulated as follows:

T
DD ID VD IR C s e Lk D

(odt)eF veV pepod . odF (o d.E)eF

T
+w) NN N e (5.8a)

.PEP vl 3ESP =1

s.t. Constraints (5.5), (5.6), (5.7¢), (5.7d)

[P** < Coa?® + (C, — C,)22"°, Vpe P,V e V,Vse S, Vr=1,..,T;

(5.8b)
PSP Npe P NvelV Ve S, Vr=1,...,T; (5.8¢)
270 e 0,1}, YpePVvelV Vses, vVr=1,..T. (5.8d)

Besides the objective for the baseline TFSP problem (5.7), the crowding penalty
for transit vehicles is also added to the objective function as (5.8a), which leads to

a transit schedule and passenger boarding choices minimizing the crowding levels.

1When passenger loading exceeds seated capacity, the proportion of passengers must stand and
standees perceive up to 2.25 times actual travel time [~ ].
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When w = 0, the problem (5.8) is equivalent to the problem (5.7), leading to tran-
sit schedules that minimize the total generalized journey time for passengers given
passengers will board the first available transit vehicles. When w > 0, we assume
passengers can wait for the next transit vehicle in order to reduce the crowding lev-
els. It is worth noting that, in reality, passengers may or may not board a crowded
vehicle depending on their comfort level requirement [ ]. Our model simplifies the
modeling of passengers’ willingness to board and assumes that their boarding behawv-
ior minimizes the objective function. Hence, the objective function is a lower bound
of the actual system cost. In this way, our model is useful for providing a perspective
of system optimum and showing the trade-off between passengers’ total waiting time
and crowding levels in transit vehicles. Constraints (5.8b) are the modified capacity
constraints with crowding level. Constraints (5.8¢) restrict that a vehicle can only be
crowded if it is operated in the system. Constraints (5.8d) specify decision variable
z is binary.

In the following section, we introduce the robust TFSP model, developed through
a robust optimization methodology. Both the standard TFSP model (5.7) and its
crowding extension (5.8) can be extended to a robust version. However, for the sim-
plicity of the chapter, we only discuss the robust version of the baseline TFSP model
(5.7). The robust TFSP model with crowding extension can be derived following the

same steps.

5.3.3 Robust Optimization Model Formulation

RO [ ] is a widely-used approach in literature for decision-making under uncertainty.
Compared to SP where the generated transit schedules are optimal for an “average”
demand scenario, RO produces transit schedules that are optimized against the worst-
case demand scenario. The motivation for introducing RO into transit frequency
setting is that transit operators would prefer no passengers suffer from excessive wait
times given any demand scenarios.

To construct a robust TFSP model, we define an uncertainty set around the uncer-

tain demand parameter t.r.f‘d. The uncertainty set specifies a range for the uncertain
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demand u?’d where u.ﬁ"d can change to any level within the range. Transit schedules are
then generated using RO techniques with respect to the worst-case demand scenario

in the uncertainty set.

We adopted the budget uncertainty set introduced by Bertsimas et al. [ ], which
is widely used in literature, to quantify the demand uncertainty in the TFSP. Let
p?, g®* denote the mean and standard deviation of the demand of passenger flow

(0,d,t) derived from the historical data, respectively. The budget uncertainty set is

defined as
gr}, (5.9)

U(r) = {u

where [ is a parameter controlling the level of uncertainty for the budget uncertainty

o,d

a,d
L J”'g

a,d
<LVodt)eF; Y. e

oy
(edjer| Tt

set. The budget uncertainty set implies that the demand can deviate from its histor-
ical average by at most one standard deviation, and the total absolute deviations for
all passenger flows is upper-bounded by I'. Define an uncertain parameter ¢ € R¥I

and let uf® = pP? + o9%¢7*. We have the following reformulated uncertainty set:

UT) ={¢: il = LICl = T (5.10)

With the defined uncertainty set over demand vector w, we propose the robust

TFSP model:

T
05, D ID IS (“’?f‘ ““+’T¢"“’”’) AErr Moy mp? (5.11a)

(o.dt)eF vEV pePad _ odp (od.t)eF

T
st Y Y D N = ppt + ot — i, W(o,d,t) € F¥¢ € UD):;

vel pePod ‘T=‘?’:’d:P

(5.11b)

Z Z Zfd’”{{:':r‘” Vpe P.VveVVse &, Vr=1,..,

E,E‘S‘hcl'm (=) d’ESanEr (g) t=1

(5.11c)
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AP >0, Y(o,d,t) € FNpe P,Yo e VVT =1,...,T; (5.11d)

74 >0, VYo.dt)eF. (5.11e)

Constraints (5.11b) in the robust formulation are equality constraints with un-
certain parameters which often restrict the feasibility region drastically or even lead
to infeasibility [ ]. Therefore, we eliminate variables n*® via substitution. Equality

constraints (5.11b) can be reformulated as

T
et =t oG =3 N YT AR, V(o,d,t) € FVE €U). (5.12)

vel pePe.d 1-=7-f-"i"’

Substituting Constraints (5.12) into the objective function (5.11a) and introduc-
ing a dummy variable o transform the original robust formulation into a problem

formulation without equality constraints:

min = o (5.13a)
zeXp,A
T T
ot Z Z Z Z (w:':f,?,ﬂ I qba,d,p) A;f«'—“” M Z Z Z Z A:::»,P,u
(odt)eF vEV pePod r_odP (o.dt)eF vEV pePod ;0P
+M Y (p':** +0? ;”‘) <a, V¢eU(), (5.13b)

(odt)eF

5
Z Z Z Aodev < Cyx?®, VpeP,WweV,Vse S, Vr=1,..,T;
oSEefore 5) deSgher (s) t=1
(5.13¢)
T
pf ot =" N 3T AR >0, V(o.d,t) € FV¢ € UT);

vel pePod T=¢f’d”'

(5.13d)

A24PY >0, Y(o,d,t) € F,¥pe P,YveV,vr=1,..,T. (5.13¢)

However, equivalent formulations do not necessarily lead to equivalent robust

counterparts, which are solvable reformulations of robust optimization problems. To
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guarantee an identical robust counterpart, the substituted variable 1 needs to be
adaptive, meaning that 1({) becomes a function of uncertain parameter ¢. Linear
Decision Rules (LDHRs) are a commonly-used approximation method in literature to
handle adaptive robust optimization problems [, ], which achieve satisfying per-
formances in practice. Gorissen et al. [ /] suggests that making uncertain variables
adaptive and applying LDRs is equivalent to eliminating these variables, given coeffi-
cients of such variables do not include uncertain parameters and equality constraints
are linear in uncertain parameters. Therefore, our reformulated robust optimization
problem (5.13) is an approximated formulation of the original robust formulation

(5.11), which is more tractable to solve without equality constraints.

To solve the problem (5.13), we need to derive the robust counterpart, which is
a solvable formulation of the robust model. Details on the derivation of the robust
counterpart can be found in Appendix C.1. The robust counterpart of the problem
(5.13) is:

min o (5.14a)
X g, AL
T
=S 5 YD Db W (PO P DI DD IS IR T
(ﬂ dt:lE}_ vl peP qu_ ‘Tﬂ K. I:U.I'-'Lt}EJ: veV pE-Pn,dTﬂ‘n,d_.p
+M YT gt Y M+ I <o (5.14b)
(od t)eF (od f)eF
vo 4 Ty > Mo?®, V(o,d,t) € F; (5.14c)
vo 4 Ty > —Mo®, V(o,d,t) € F; (5.14d)
vt >0, VY(o,d,t) € F; (5.14e)
vy = 0; (5.14f)
Z yg'cjft’ﬂ—i_uzdt{pt Z Z Z Aad@ﬂ: H(D:dat]EI;
(d,d‘rJ'}EJ: vl PEPD d ‘T—'Tﬂ L,
(5.14g)
o,d,t ot a,d .
vodtﬂ + uri } Ut 3 H{G:d? t} = 'F: (5141'1}
Voges U > —a7?, V(o,d,1) € F; (5.14i)
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Vs T >0, V(d,d.¥) # (0,d,t) € F; (5.14j)

v;iif,ﬂ,ﬂ E G! ‘?’{d! {f, f]: {G? d: t) € f? {514_1{}
vt >0, VY(o.d,t) € F; (5.141)
s

Y Y Yo <Gart, VpePWoeVVseS,Vr=1,..

oeSEeTe(5) deSafter(s) t=1

(5.14m)

AP >0, Y(o,d,t) € F,VpeP,YoeV,¥r=1,..,T. (5.14n)

Constraints (5.14b) - (5.14f) are the robust counterpart corresponds to constraints
(5.13b) while constraints (5.14g) - (5.141) are the robust counterpart corresponds
to constraints (5.13d). Compared to problem (5.13), the robust counterpart (5.14)
introduces (|F|* + 2|.F| + 1) additional auxiliary non-negative continuous variables
and (|F|? + 4]F|) additional inequality constraints. When the number of distinct
passenger flows |F| is not large (e.g., below 1,000), the robust counterpart (5.14) can
be directly solved by off-the-shelf ILP solvers. However, the problem (5.14) can be
intractable when |JF| is large (e.g., above 10,000). In the later section, we will discuss
the scalability issues for the TFSP under a single-line context and propose methods
to handle large-scale TFSPs.

5.3.4 Benchmark Stochastic Programming Model Formula-
tion
In this section, we propose an SP-based TFSP model as a benchmark model used

in the experimental section. For the SP approach [ ], the most traditional method
is SAA, where the true distributions over uncertain parameters are approximated
by empirical distributions obtained from the data [']. The SAA is also utilized in
the recent transit frequency setting work with demand uncertainty by Gkiotsalitis et
al. [5].

Given a set of demand scenarios £, the corresponding demand matrix u. for a

demand scenario e € £ has probability p.. By introducing demand scenarios into the
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frequency setting problem, we adjust the boarding decision variables for passengers
to Ae = (APP") for each demand scenario e € £, where }nff’f’” € R, represents
the number of passengers in the passenger flow (o,d,t) who board on a vehicle v
which departures at the beginning of pattern p at time 7 under demand scenario e.
Similarly, auxiliary variables 7} are extended to 1, = (1,2 %) for each demand scenario

g € £. Then the stochastic TFSP model can be formulated as:

EEXBA!‘[ Z Z Z Z Z (w:’j‘w+7¢o,d,p) od,pu_i_ﬂ{f Z ?I::f

ecf | (odt)eF velV pePe: Ii.?._?.ﬂ d,p (odt)eF
(5.15a)

d
7

st LIRS = Z Z Zkzﬁf‘”, Vpe P,VveV,Vse &, Vr=1,...,

oESbefore (g) deSatter (g) ¢=1

(5.15b)

> 2 Z APt —ugd —qpd, V(o,d,t) € F Ve € &; (5.15¢)

vV pePe o =Tnd P
[P7° < Ca?®, WpeP,WoeVVseS,¥r=1,.,T,Vec&; (5.15d)
AP >0 Y(o,d,t) € F,¥pe P, WweV,¥r=1,..,T,Ve € & (5.15€¢)

£, T.e

wl>0, Yodt)eFVeek. (5.15f)

The problem (5.15) is a stochastic extension of the nominal optimization problem
(5.7), and we minimize the expected total generalized journey time and penalties
induced by unsatisfied demand across all demand scenarios. The number of variables

and constraints grows linearly regarding the number of demand scenarios |£].

The model (5.15) provides a stochastic version of the TFSP model, which utilizes
a different approach to handle the demand uncertainty compared to the robust TFSP
model (5.11). It uses the same approach as Gkiotsalitis et al. [ ] and it will be used
as the benchmark model to evaluate the performance of our proposed robust TFSP

model.
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5.3.5 Optimization with Large-Scale Demand Matrix

In this section, we propose the Transit Downsizing (TD) approach to reduce the
problem dimensionality and increase the tractability for proposed TFSP models given
a large-scale demand matrix. As complexity issues are inherent in real-world transit
problems, the proposed TD approach can be generalized to other design and operation
problems in transit systems.

Consider a bus line, such as Route 49, and a rail line, like the Blue Line, operated
by an organization like CTA, for instance. The inbound direction of the CTA Blue
line includes 33 stations in total, which leads to 528 distinet OD pairs for passengers.
When solving the transit frequency setting problem under a one-hour time interval
with 12 decision time periods of length A = 5 min, the number of passenger flows is
|F| = 6,336. Formulating the robust counterpart (5.14) introduces 40, 157, 569 new
continuous variables, which is a large-scale problem but might still be able to solve.

On the other hand, the northbound direction of the CTA route 49 bus contains
82 stops overall, which gives 1, 176 distinet OD pairs for passengers. Under the same
setting as the Blue line, there will be 14, 112 unique passenger flows and the robust
counterpart (5.14) introduces 199, 176, 768 new continuous variables. The problem
becomes intractable due to the excessive problem size. These two instances imply
that large-scale demand matrices commonly exist in practice. Methods need to be
designed to reduce the size of demand matrices in robust transit frequency setting
problems.

The TD approach consists of two components: i) an optimality-preserved di-
mensionality reduction component, and ii) a heuristic-based dimensionality reduction
component. The optimality-preserved component is proposed to reduce demand ma-
trices based on the following observation: transit demand matrices are sparse and
only a subset of passenger flows are chosen by passengers. Passengers using transit
services have clear spatial and temporal patterns, which lead to sparsity in demand

matrices.

Proposition 1. For the nominal TFSP model (5.7) with a demand matriz w, it is
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equivalent to solving the problem with a reduced set of passenger flow F, where F only

contains passenger flows with positive demand, i.e., F = {(o0,d,1) : u?’d = 0}.

Proof. For a passenger flow (o, d, t), when the demand is zero, i.e., u?’d = 0, constraints
(5.6) ensure that A:':f""” =0,%r=1,...,T,pe P,v €V, in the optimal solution given
a minimization problem. Therefore, we can reach the same optimal solution by only
considering passenger flows F with positive demand only, i.e., F = {(o.d,t) : uf‘d =

0}. O

Proposition 1 reduces the problem size of the nominal TFSP model (5.7) and (5.8).
It can also be applied to stochastic formulation (5.15) and robust formulation (5.11).
For the stochastic TFSP model (5P), each demand scenario e € £ with demand
matrix u, leads to a reduced passenger flow set F,, i.e., F, = {(0,d,t) : ufy > 0}.
For the robust TFSP model (RO), the reduced passenger flow set F is constructed
based on mean demand p, i.e., F = {(0,d,t) : pi® > 0}.

The optimality-preserved component of the TD approach is extremely effective
when solving nominal and stochastic models, where reduced passenger flow sets are
established based on daily demand. When applying it to the robust problem with
the average demand g, the approach becomes less effective because the number of
non-zero mean demand is still large. Considering the demand data from one month,
a passenger flow (o, d, t) has to be incorporated in F if it has demand for at least one
day. We utilize a probabilistic scenario to better explain this issue. If a passenger
flow (o,d,t) has a 90% probability to have zero demand in one day, the probability of
not having a positive mean demand for 30 days is 0.9%° = 4.24%. When considering a
month of demand data, the probability of excluding the passenger flow (o,d,t) from
the problem shrinks from 90% to 4.24%, indicating that the first component of the TD
approach is not effective for robust problems when considering demand data across
multiple days.

Therefore, a heuristic-based dimensionality reduction component of the TD ap-
proach is further proposed to reduce the problem size of the robust TFSP model

(5.11). It is constructed based on the following observation: if a passenger flow
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(o0,d,t) only appears once in a long period of time (e.g., one month), it is reasonable
to exclude it from setting transit schedules given the same passenger flow (o,d, t) will
most likely not be seen again in the future. The heuristic-based component introduces
an adjusted passenger flow set F = {(o,d,t) : p,:”d > €}, where passenger flows with
mean demand below or equal to € will be excluded from the optimization model.

The new problem after TD has a smaller scale and can be solved efficiently in
practice. Compared to the original problem, the new problem has less number of
constraints (i.e., a larger feasible space). Hence, its optimal objective function will be
better (i.e., smaller in the minimization context). In the following analysis, we show
that the difference between the objective functions of new and original problems is
bounded. The bound is a function of . A smaller value of € implies a tighter bound.

Define Z*(JF) as the optimal objective function of the robust TFSP model (5.11)
with passenger flow set F. Then the optimal objective function of the problem after
TD can be represented as Z*(F). We have the following lemma:

Lemma 1. For any given passenger flow set J;, define J5 as the passenger flow set

by eliminating one passenger flow tuple (o0, d, t) (i.e., |Fi| - |[F2| = 1). Then, we have:
I'NF)—ZY(FR)<2M- ¢ (5.16)

where £ = max(qper (e + o7?).

Proof. When changing the passenger flow set JF; to J; by excluding one passenger flow
tuple (o, d, t), the objective value of the problem (5.11) decreases. The reduction of the
objective value is induced by two reasons: i) less demand considered in the objective
function, hence less total journey time and unsatisfied penalty, and ii) reallocation of
passengers given more available vehicle capacity.

The robust TFSP model (5.11) minimizes the worst-case demand scenario. There-
fore, we consider the worst-case objective loss when excluding one passenger flow
(o,d,t). For the objective loss induced by demand reduction, it is upper-bounded
by M - (u2? + 9%, since M dominants passengers’ journey time and (uf? + o)

represents the largest demand for passenger flow (o,d,t) defined in the uncertainty
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set U(T). Let £ = max(qner(uf® + of) and £ is a finite value since demand val-
ues in TFSP are finite integers. Then the objective loss from demand reduction is
upper-bounded by M - £

For the objective loss induced by demand reallocation, excluding one passenger
flow (o0, d,t) equals having {p.f‘d+crf ’d) more vehicle capacity. The worst-case scenario
iz other unsatisfied passenger flows become satisfied when having more available ca-
pacity, which is upper-bounded by M - {pf‘d—l—c.r:"d]. Similar to the previous argument,
it is upper-bounded by a finite value M - £.

Combining two sources of the objective decrease, the maximum reduction of the
objective value in (5.11) is upper-bounded by 2M - £ when excluding one passenger
flow (o0,d,t) from F;. O

Definition 1 (Dimensionality Reduction Function). Given the value of € in the
heuristic-based component of the TD approach, the dimensionality reduction function
is defined as

0 = |{(o.d,1): 2 < &}, (5.17)

which is the size of passenger flows excluded from F. The dimensionality reduction
function f(e) has the following properties:

1. f(e = 0) = 0 (assuming all p7* > 0) and lim,_,, f(€) = |F].
2. f(e) monotonically increases when € increases.
3. 0< f(e) < |F| < +o0.

The first property holds because we do not exclude any passenger flows with when
£ = 0, and all passenger flows are excluded when € is a large enough value. The second
property holds since more passenger flows will be excluded when increasing €. The
last property is directly derived from the first two. Note that f(e) is finite because
the total number of passenger flows is finite considering a finite network and time
interval in practice. By defining the dimensionality reduction function, we have the

following proposition:
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Proposition 2. For the robust TFSP model (5.11) applying the TD approach, the
objective reduction is upper-bounded by a finite value A(e) = 2M -£- f(€). Mathemat-
ically:

ZHF)— Z*(F) < 2M - £ - f(e) (5.18)

A(e) has the following properties:
1. A(e=0)=0.
2. A(e) monotonically increases when € increases.

Proof. Lemma 1 implies that the objective reduction due to excluding one passenger
flow tuple (o,d,t) from F is upper-bounded by 2M¥{. The size of passenger flow
tuples excluding from JF given € is f(e). Therefore, the objective reduction is upper-
bounded by 2M{f(e), which is a finite value since f(e) is upper-bounded by |.F|.
Define A(e) = 2M¥f(e) and we have shown the objective loss A(e) is upper-bounded.

According to the definition of dimensionality reduction function, when £ = 0, we
have f(e = 0) = 0, thus A(e = 0) = 0. Moreover, since f(e) monotonically increases

when € increases, A(e) also monotonically increases when € increases. M

Proposition 2 indicates that the objective change due to the heuristic-based com-
ponent of the TD approach is upper-bounded by a finite value. Meanwhile, decreasing
the value of € leads to a tighter bound. This shows that our proposed TD method is
a valid approximation of the original problem with bounded errors. This proposition
iz validated with the experiments on the sensitivity analysis of € in Section 5.4.3.

Setting the value of € is critical in the proposed method. The value of £ should
be chosen to balance the trade-off between transit schedule performance and problem
complexity. Let m represent the number of days considered in the problem. The
proposed heuristic approach works well in practice when setting € = i? indicating

that passenger flows that appear only once over m days will be excluded from the

problem.
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Owerall, the proposed TD approach helps to solve TFSPs with large-scale demand
matrices. The first component maintains optimality and the second heuristic-based

component could lead to sub-optimal solutions.

5.4 Results

In this section, the numerical results of the proposed models will be covered. All
experimental results in this chapter were generated on a machine with a 3.0 GHz
AMD Threadripper 297T0WX Processor and 128 GB Memory. The linear programs
in the experiments for generating optimal transit schedules and evaluating solution
performances were solved with Gurobi 9.0.3 [ ].

The results section is organized as follows. Section 5.4.1 describes data, parameter
values, and experimental setups. Section 5.4.2 displays performance comparisons be-
tween the optimized schedule without considering demand uncertainty and the current
schedule. Sensitivity analyses, crowding extensions, and optimization with multiple
service patterns are also discussed in this section. Section 5.4.3 shows performance
comparisons between robust, stochastic, and current transit schedules. Lastly, the

computational performance of all proposed models is summarized in Section 5.4.4.

5.4.1 Data Description

Parameter values used in the experiments are shown in Table 5.1. The study transit
lines used in the experiments are Route 49 northbound and Route X49 northbound
operated by the CTA. Route 49 and Route X49 both serve Western Avenue in western
Chicago. Route X49 is an expressed version of Route 49 with limited stops. Route
49 has 82 bus stops and Route X49 has 35 bus stops. Both routes share the same
terminals and connect multiple rail line services: Orange, Pink, Green, Blue, and
Brown lines.

In practice, transit schedules for Route 49 and Route X49 are determined sep-
arately. In our proposed optimization model, we will consider two routes as two

patterns for a single transit line and generate both schedules simultaneously, i.e.,
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Table 5.1: Model parameters and base case value.

Model Parameter Explanation Base Case Value
Totare Start time of planning period 0700

Tena End time of planning period 09:00

A Decision time interval length 5 (minutes)

T Number of decision time periods 24

P Set of patterns for the transit line {49, X49}

v Set of bus types {standard, articulated}
(A Number of seats on buses {37, 58}

c, Maximum vehicle capacity {70, 107}

P ¥p e P,Wv € V | Cost parameter for bus with pattern p and vehicle type v 1

B Maximum bus supply during the planning period 20

M Penalty for an unsatisfied passenger 108

b Weight parameter for in-vehicle travel time 1

m Number of demand scenarios 22

£ Heuristic parameter for demand matrix size reduction 0.05

P = {49, X49}. The position of both patterns within the CTA transit network and

stop overviews are shown in Figure 5-1. In the later section, we will explore the

model’s performance when introducing additional generated patterns to the studied

transit line.
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Figure 5-1: Positions and stop overviews of Pattern 49 and Pattern X49 in the CTA

network.

The data utilized in the experiments are from 22 weekdays in October 2020. The

current transit schedule information is from an open-source Generalized Transit Feed
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Specification (GTFS) dataset, which is published by CTA every month. Regarding
the running times between any two stops for different patterns, they are calculated
based on the Automatic Vehicle Location (AVL) dataset of October 2020 provided
by CTA. The OD matrix is generated based on CTA’s ODX dataset from October
2020.

The *0ODX" stands for “origin, destination, and transfer inference algorithm”,
an algorithm developed by Gabriel et al. [ ] and currently implemented within
the CTA. The CTA transit network is equipped with a “tap-on” only fare collection
system, indicating that alighting information is not reported in the system. The ODX
algorithm is utilized to infer the alighting information and details can be found in
[145, 35, 198].

Besides the real-world data, the synthetic demand data is also generated to sim-
ulate the scenarios with heavy demand. The synthetic demand data is generated as
follows: for each passenger flow (o,d,t) with a non-zero average demand value ,u?’d
over 22 real-world demand scenarios, generate the new demand level according to a
Poisson distribution u?‘d ~ Pois(f - ,u?’d), where  indicates an expansion factor.

The study period is a two-hour time interval from 7:00 AM to 9:00 AM. The
length of each decision time interval is A = 5 minutes, therefore, there are 24 time
intervals considered in the transit frequency setting problem. For the existing transit
schedule, there are 20 buses operating in total. The current northbound schedules
for the study transit line are shown in Figure 5-2. Each colored dot represents a

departure with a specific operation pattern from the terminal stop.
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Figure 5-2: The current northbound transit schedule for Pattern 49, Pattern X49,
and the combined transit line.
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In the experiments, the budget constraint in Equation (5.2) ensures that the
total number of buses operating within the overall time interval does not exceed the
maximum bus supply, i.e., ™" =1,Ype P,Vv € V, and B = 20.

For buses used in the experiments, we consider two types of buses: regular buses
and articulated buses, i.e., V = {regular, articulated}. The regular bus has 37 seats
and a maximum capacity is 70, while the articulated bus has 58 seats with a maximum
capacity of 107. The current schedule only utilizes regular buses for Route 49 and

Route X49. Therefore, only regular buses are considered in the base case scenario.

5.4.2 Baseline Model Performances
Optimal Transit Schedules

To evaluate the performances of the nominal TFSP model (5.7), we randomly choose
a demand scenario from 22 weekdays to generate the optimal transit schedule, which
is then compared with the current schedule over the remaining 21 demand scenarios.
For the base case scenario, wait and travel times are equally important, ie., v = 1.
The TD approach without the heuristic-based component is applied when solving the

optimization model.
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Figure 5-3: The optimized transit schedule without considering demand uncertainty
based on a one-day demand scenario.

Figure 5-3 shows the optimized transit schedule without considering demand un-
certainty based on a randomly selected one-day demand scenario. Each colored dot
represents a departure with a specific operation pattern from the terminal stop. Com-

pared to the current schedule shown in Figure 5-2, more buses are dispatched during
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the first hour. The optimized transit schedule without considering demand uncer-
tainty becomes irregular due to serving a specific demand scenario. Meanwhile, it

shifts one bus from Route 49 to Route X49.
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Figure 5-4: Performance comparisons between the current and the optimized transit
schedules without considering demand uncertainty.

The performance comparison over 21 demand scenarios is shown in Figure 5-4.
Bars indicate wait and travel time decreases for the optimal schedule compared to the
current schedule. The wait time and travel time can be calculated for each passenger
with the boarding variable )n:,‘,f"?’“’ given the fixed pattern-specific travel times.

For the optimized transit schedule without considering demand uncertainty, pas-
sengers experience lower wait times in 15 out of 21 demand scenarios. However,
passengers have higher in-vehicle travel times for almost all demand scenarios given
the current transit schedule. In summary, a 2.43% wait time decrease and a 3.38%
travel time increase are brought to passengers on average when switching from the
current schedule to the optimized schedule without considering demand uncertainty.
It works best for the input demand scenario of the optimization model. For other
demand scenarios, it reduces passengers’ wait times by sacrificing in-vehicle travel
times.

The performance comparison indicates that demand uncertainty is crucial when

generating transit schedules. The optimized transit schedule without considering
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demand uncertainty does not have an edge over the existing transit schedule, which

maintains a regular headway.

Crowding Extensions

Next, we will discuss the crowding extension of the nominal TFSP model (5.8). Ex-
isting demand scenarios from October 2020 lead to very few crowded transit vehicles.
Therefore, model performances will be tested based on a synthetic demand scenario
with an expanded demand level. In the following discussion, we generate synthetic

demand scenarios with an expansion factor 5 = 4.
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Figure 5-5: Trade-offs between average passenger wait times and crowding levels given
different w values.

In the crowding-extended model (5.8), parameter w is utilized to control the level
of penalty for crowded transit vehicles in the objective function. Figure 5-5 shows
the average passenger wait time and percentage of crowded X49 given different values
of w. For the base case scenario (w = 107°) with the expanded demand scenario,
26.43% of operating time for transit vehicles on pattern X49 is crowded while 2.95%
of pattern 49 operating time is crowded. The operating time indicates the time
where a bus is on service. The average passenger wait time is 8.37 minutes, where the
average passenger wait time is the average wait times among all passengers. When

increasing the crowding penalty w, the crowding level on pattern X49 decreases while
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the average passenger wait time increases. When the value of w exceeds a certain
threshold, all passengers can have seats on buses and the average passenger wait time

increases to 9.61 minutes, which is increased by 14.81%.
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Figure 5-6: Crowding percentage of pattern X49 given different numbers of available
articulated buses.

It is worth noting that the crowding level is reduced by the purposely left-behind
behaviors of passengers. However, passengers will always board the first available
transit vehicle in reality. One way to resolve this conflict is by introducing articu-
lated buses with a larger seat capacity. Figure 5-6 displays the crowding percentage
of pattern X49 given different numbers of available articulated buses. Introducing 6
additional articulated buses reduces the percentage of running time on pattern X49
with crowded transit vehicles to 8.72%. The optimized transit schedule with artic-
ulated buses is shown in Figure 5-7. Each colored dot represents a departure with
a specific operation pattern from the terminal stop. Each pink dot indicates a de-
parture of an articulated bus from the terminal stop. To better reduce the crowding
on buses, articulated are dispatched within the first hour when more passengers are
taking transit services.

The marginal benefit of bringing extra articulated buses drops significantly after
having 6 articulated buses. For the scenario with 10 available articulated buses, the
crowding percentage on pattern X49 is 7.04%. In summary, having a small fleet of
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Figure 5-7: The optimal transit schedule with an expanded demand matrix and 6
available articulated buses.

articulated buses can reduce the crowding levels on buses significantly in bus opera-

tions.

Pattern Generation

In the initial phase, the optimization problem focused on two existing patterns within
the studied transit line. To demonstrate the feasibility of incorporating multiple
service patterns into the proposed TFSP model, we generated diverse patterns and
assessed their performance across 50 randomly generated demand scenarios.

These additional service patterns were created based on a specified number of
stops, denoted as k. For instance, when k = 12, the first and last stops were des-
ipnated as terminals, and the remaining 10 stops were randomly selected using a
weighted vector @. This vector, &, represented passenger counts at each bus stop,
amalgamating both boarding and alighting actions as one utilization by passengers.
Meanwhile, we assume a service pattern with fewer bus stops k has a shorter travel
time between stops. In addition to the existing service patterns 49 and X49, we
crafted 7 more patterns with varying stop numbers: [12,22, 32,42, 52, 62, 72].

Building upon the baseline optimization problem comprising two service patterns,
we sequentially introduced an additional pattern selected at random. This integration
produced a new optimized transit schedule every time. Subsequently, we evaluated
all these schedules across the spectrum of 50 randomly generated demand scenarios.

In real-world scenarios, transit lines usually do not operate multiple active service

patterns simultanecusly. To account for this practical constraint, we incorporate
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Equation (5.1) into the TFSP model, where P = 2, signifying a maximum selection

of two service patterns. The results of these evaluations are outlined in Table 5.2.

Table 5.2: Model Performances with Different Number of Patterns.

Pl | "o Neon | Tine | time | wait | travel | journey
2 11842 38150 98 099 7.70 8.93 16.63
3 | 17866 | 57206 | 147 | 222 | 7.78 | B.96 16.74
4 | 22930 | Th658 | 196 | 5.38 | 7.74 | B.92 16.66
b | 26074 | 93036 | 245 | 8.21 | 7.67 | 8.92 16.59
6 | 30178 | 110978 | 294 | 1943 | 7.74 | 8.92 16.66
T | 31402 | 127126 | 343 | 14.97 | 7.74 | 8.92 16.66
8 | 38386 | 146744 | 392 | 26.95 | 7.74 | B.92 16.66
9 | 40570 | 163508 | 441 | 31.52 | 7.74 | 8.92 16.66

In Table 5.2, |P| represents the number of service patterns integrated into the
TFSP model, n,., indicates the count of rows/constraints, and n.,, and n;, de-
note the mumber of continuous and integer variables in the model, respectively. The
variable time signifies the computational duration (in seconds) required to attain the
optimal solution using Gurobi. wait represents the average passenger waiting time (in
minutes), travel denotes the average in-vehicle travel time (in minutes) for passengers,
and journey stands for the average overall journey time (in minutes) experienced by
pAsSSengers.

Incorporating extra service patterns escalates the problem’s complexity, causing
a linear rise in both constraints and variables and consequently prolonging the op-
timization time. However, in terms of passenger service, introducing more patterns
does not significantly change service performance. This is because all demand data
is gathered from the existing two service patterns, and the distribution of demand
for generating scenarios is based upon this existing data. Thus, it is challenging to

generate better service patterns compared to the existing ones.

Sensitivity Analyses

Lastly, we test the sensitivity of the results when changing the weight parameter «

for in-vehicle travel times. In previous experiments, 7 = 1 was used as a base case,
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leading to a transit schedule that minimizes the total journey time. In this section,
different values of  ranging from 0 to 2 with a 0.1 step size are tested. Results are
shown in Figure 5-8 and Figure 5-9.
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Figure 5-8: Sensitivity analyses results for the weight parameter v with respect to
average passenger wait time and average passenger in-vehicle travel time changes.
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Figure 5-9: Sensitivity analyses results for the weight parameter v with respect to
the number of buses operated with pattern 49 and X49.

A smaller value of v indicates that wait times are more important than in-vehicle
travel times. For the scenario with 7 = 0, where transit schedules solely minimize

passengers’ wait times, the average wait time is 5.01 minutes and the average in-
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vehicle travel time is 15.07 minutes. The average wait time monotonically increases
and the average in-vehicle travel time monotonically decreases when the value of «
increases, which is shown in Figure 5-8. For the scenario with v = 2, where in-
vehicle travel times are twice as important as wait times, the average wait time is
6.12 minutes and the average in-vehicle travel time is 8.05 minutes.

The average total travel time decreases from 20.08 minutes to 14.17 minutes when
increasing v from 0 to 2. This is intuitive; more vehicles will be operated with pattern
X49 when increasing 7y, and pattern X49 has a larger vehicle speed than pattern 49
given fewer bus stops. Figure 5-9 shows the number of buses running on each pattern
given different values of . Only 2 bus with pattern X49 is operated when v = 0,

while 12 buses with pattern X49 are operated when  becomes larger.

5.4.3 Robust Model Performances

To incorporate demand uncertainty into the TFSP, the robust TFSP model (5.11)
and the benchmark stochastic TFSP model (5.15) are proposed. In this section, we
will first show the performance of the benchmark stochastic TFSP model. The robust
TFSP model is then compared with both the benchmark stochastic TFSP model and
the current transit schedule over multiple synthetic demand scenarios. Two types of

demand scenarios are generated following the method described in Section 5.4.1 to

Table 5.3: Performance evaluations for robust transit schedules under normal demand
scenarios.

' | Wait Time Compare Improve | Travel Time Compare Improve | GAP Time
0.0 T7.749 -0.98% 3.79% 5.456 0.13% 0.93% OPT 1910
1.0 T.706 -0.40%, 4.34% 8.534 -0.79% 0.02% | 851% Limit
2.0 T.858 -2.42%, 2.42% 5.443 0.29% 1.09% | 3.56% Limit
3.0 7.942 -3.50% 1.40% 5.425 0.49% 1.20% | 240% Limit
4.0 T.816 -1.87% 2.04% 5.435 0.38% 1.18% | 1.38% Limit
5.0 T.779 -1.39% 3.40% 5.425 0.50% 1.30% | 1.08% Limit
6.0 T.784 -1.46%, 3.34% 5.429 0.46% 1.26% | 0.75% Limit
7.0 T.784 -1.46%, 3.34% 5.429 0.46% 1.26% | 0.51% Limit
8.0 T.784 -1.46%, 3.34% 5.429 0.46% 1.26% OPT 7435
9.0 T.736 -0.84% 3.93% 5.443 0.29% 1.09% OPT 9935
10.0 7.783 -1.44% 3.36% 5.433 0.40% 1.20% OPT 3372

188



test the model performances: i) normal demand scenarios (without demand expansion

£ =1), and ii) surge demand scenarios (w/ demand expansion 5 = 4).
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Figure 5-10: Performance comparisons between the current and the stochastic transit
schedules over 50 randomly generated normal demand scenarios.

The benchmark stochastic transit schedule is generated by using the TD approach
without the heuristic-based component and assuming equal probability for each de-
mand scenario. Figure 5-10 shows the performance comparison between stochastic
and current transit schedules over 50 randomly-generated normal demand scenarios.
Blue bars represent wait time decrease for the stochastic transit schedule. Orange
bars indicate travel time decrease for the stochastic transit schedule. On average, the
stochastic schedule improves passengers’ wait time by 4.71% and in-vehicle travel time
by 0.80%. An optimized transit schedule over 22 demand scenarios is more robust
than an optimized transit schedule with only one demand scenario. The stochastic
transit schedule improves both wait and in-vehicle travel times in 41 out of 50 demand
SCenarios.

Figure 5-11 shows the stochastic transit schedule. Compared to the current transit
schedule shown in Figure 5-2, it has fewer time intervals where buses are dispatched
for both patterns. In the combined transit schedule, buses are spread more evenly
during the two-hour decision time period. Meanwhile, one additional bus is operated

with pattern X49. Compared to the optimal transit schedule with one-day demand
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displayed in Figure 5-3, the stochastic transit schedule maintains a stable headway
for both patterns, which is similar to the current schedule, where the headway-based

transit operation strategy is utilized.
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Figure 5-11: The stochastic transit schedule generated from 22 real-world demand
seenarios.

For the robust transit schedule, it is generated by the TD approach with £ = 0.05,
meaning that a passenger flow (o,d,t) will be incorporated in the model only if it
appears more than one time within 22 weekdays. The robust optimization model is
solved by the off-the-shelf MIP (Mixed Integer Programming) solver Gurobi with a
3-hour time limit and an optimality gap of 0.5%. Results under normal demand sce-
narios are shown in Table 5.3. T indicates a parameter for controlling the size of bud-
get uncertainty sets. Wait Time and Travel Time represent the average wait time
and travel time for passengers over 50 randomly generated normal demand scenarios.
Compare indicates the performance comparison with the stochastic transit schedule.
I'mprov stands for the performance comparison with the current transit schedule.
(AP is the optimality gap for the MIP solver and Time is the computational time
(in seconds), where Limit indicates that the solver reaches the computational time
budget 10800 seconds (3 hours).

Parameter I' controls the level of demand uncertainty incorporated in the model.
A higher value of I' indicates that more demand uncertainty is considered when
generating the robust transit schedule. When I' = 0, the robust optimization is
reduced to the nominal optimization model with the mean demand matrix (p$?) as
the model input. For all uncertain scenarios, robust transit schedules outperform

the current transit schedule by reducing both wait times and in-vehicle travel times.
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Compared to the benchmark stochastic transit schedule, robust transit schedules have

better in-vehicle travel times and worse wait times for passengers.

Table 5.4: Performance evaluations for robust transit schedules under surge demand
seenarios.

[' | Wait Time Compare Improve | Travel Time Compare Improve
0.0 85.219 -0.48% 3.68% 8.588 0.56% 1.49%
1.0 85.243 -0.75% 3.42% 85.691 -0.64% 0.31%
2.0 5.045 1.65% 5.712% 8.547 1.03% 1.95%
3.0 85.144 0.44% 4.56% 8.526 1.27% 2.19%
4.0 5.015 2.01% 6.07% 8.534 1.18% 2.11%
5.0 7.982 2.42% 6.46% 8.531 1.22% 2.14%
6.0 7.971 2.55% 6.58% 8.530 1.22% 2.15%
7.0 7.971 2.55% 6.58% 8.530 1.22% 2.15%
8.0 7.971 2.55% 6.58% 8.530 1.22% 2.15%
9.0 7.939 2.94% 6.96% 85.548 1.01% 1.94%
10.0 7.972 2.53% 6.57% 8.539 1.12% 2.05%

When increasing the value of I' in the model, the robust optimization model
becomes easier to be solved as the optimality gap becomes smaller. The model can
be solved optimally when I' is greater than 7. This can be explained as follows: a
larger value of I leads to a less-restricted optimization problem; heuristic approaches
implemented in Gurobi are more likely to produce feasible solutions; better heuristic
solutions reduce the time for branch-and-bound significantly. With respect to the
model performance, it does not have a pattern regarding the uncertain parameter
I'. The robust transit schedule with I' = 10 is shown in Figure 5-12. Other robust
transit schedules can be found in the Appendix C.2.
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Figure 5-12: The robust transit schedule with I' = 10.

191



Performance comparison results under surge demand scenarios are shown in Table
5.4. When considering more demand uncertainty (having a larger value of I'), robust
transit schedules reduce both passengers’ wait times and travel times compared to
the stochastic and the current transit schedules. The robust transit schedule has a
performance edge over the benchmark stochastic transit schedule under surge demand
scenarios. The largest improvement over the wait time is 2.94% when I' = 9, while
the largest improvement over the in-vehicle travel time is 1.27% when I' = 3. As
demand becomes more difficult to predict in transit systems given people’s working
arrangements become more flexible, using RO techniques to generate transit schedules

improves the level of service for transit networks.

Compared to the stochastic transit schedule shown in Figure 5-11, the robust
transit schedule utilizes one more bus over pattern X49. Meanwhile, more buses are
dispatched during the first hour from the terminal. In summary, the robust transit
schedule has a better performance than the benchmark stochastic transit schedule,
especially under surge demand scenarios. Under normal demand scenarios, robust
transit schedules can be adopted when vehicles are crowded and passengers prefer less
in-vehicle travel times. The uncertain parameter I' in the model needs to be selected
carefully to reflect the actual demand uncertainty. Advanced data-driven robust
optimization approach with the ability to automatically select uncertain parameter

I" can be further introduced [ ].

Sensitivity analyses of the heuristic parameter € are shown in Figure 5-13. Y-axis
on the left represents the number of distinct passenger flows in JF, i.e., |F|. Y-axis
on the right indicates the percentage of unsatisfied passengers. When the value of
¢ increases, the number of passenger flows has an exponential decrease. With fewer
passenger flows considered, the robust counterpart introduces fewer constraints and
variables, therefore, robust transit frequency setting problems are easier to solve. On
the other hand, fewer passenger flows lead to more unsatisfied passengers with the
optimized transit schedule. Regarding the percentage of unsatisfied passengers for the
optimized schedule, it indicates that some passengers are not able to board a transit

vehicle which is departed from the terminal station during the studied time period.
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Figure 5-13: Sensitivity analyses for parameter € in the heuristic-based dimensionality
reduction approach.

In practice, unsatisfied passengers suffer longer wait times as they can board vehicles
that depart from the terminal station later. In summary, robust transit schedules
generated with a higher value of ¢ lead to excessive wait times by passengers. This
sensitivity analysis echoes the Proposition 2 where the objective loss monotonically

increases when ¢ increases.

5.4.4 Model Summary

Lastly, we summarize the computational efficiency of the proposed models with transit
downsizing to illustrate the feasibility of using the TF5P in practice. The summary is
shown in Table 5.5. 7,4 indicates the number of rows (or constraints), n.., represents
the number of continuous variables, and n,,, denotes the number of integer variables.
Time represents the computational time for each model, where the time for robust

TSFP is the average computational time of all robust models.

Table 5.5: Model Summary for Computation Efficiency.

Model Tl Thpam T Time
Baseline TFSP 11745 38150 0.99
Baseline TFSP with Crowding | 17361 38150 | 5712 | 1.43
Stochastic TFSP (22 scenarios) | 352203 | 7303034 161.66
Robust TFSP 8222661 | 12462778 8932

)

96
96
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The proposed model demonstrates computational efficiency in scenarios where
demand uncertainty is not a factor. However, when accounting for demand uncer-
tainty, the problem’s complexity significantly rises, introducing numerous constraints
and continuous variables into the model. When comparing the Stochastic TFSP and
Robust TFSP models, the robust variant substantially amplifies the number of con-
straints, resulting in significantly extended computation times and more challenging
problem-solving tasks. Fortunately, both stochastic and robust models do not aug-
ment the number of integer variables. This characteristic preserves the feasibility of

solving the problem within a limited set of branching possibilities.

5.5 Conclusions and future work

In this chapter, two major issues are addressed when generating transit schedules:
i) inherent demand uncertainties, and ii) gigantic OD matrices. To protect transit
schedules against demand variations, a robust TFSP model is proposed. To the best
of the authors’ knowledge, this chapter is the first to apply RO technique for solving
TFSPs. A nominal optimization model is formulated to solve the TF5Ps under a
single transit line setting, and an extended model considering crowding levels on
transit vehicles is proposed. To solve optimization problems efficiently given real-
world transit instances, the TD approach is proposed based on the observation where
transit demand matrices are sparse. We theoretically prove that the optimal objective
function of the problem after TD is close to that of the original problem (i.e., the
difference is bounded from above). A benchmark stochastic TFSP model is formulated
as well to demonstrate the robust TFSP model performance. Real-world transit lines
operated by CTA are used to test the performances of transit schedules generated
with proposed models compared to the current transit schedule. Both stochastic and
robust transit schedules reduce wait times and in-vehicle travel times simultaneously
for passengers over multiple demand scenarios. Compared to benchmark stochastic
schedules, robust schedules further reduce passengers’ wait times and in-vehicle travel

times when the level of demand uncertainty is large.
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The main limitation of this study is using heuristics to solve the robust TFSP
model without proof of optimality. Meanwhile, the parameter controlling the size
of the uncertainty set needs to be selected manually. Future studies could develop
methodologies for decreasing problem sizes while maintaining a certain level of op-
timality loss. Data-driven approaches can be introduced to automatically select the
value of uncertain parameter ['. Also, our demand data only provides the time in-
formation when passengers actually board transit vehicles or enter subway stations,
knowing more time information (e.g., the deadline for passengers to arrive at their
destinations) could further introduce passengers’ time preferences into the model.

Another interesting research direction is pattern generation. Our model has the
ability to select an optimal set of patterns to operate on a single transit line. However,
how to generate a set of potential patterns for a single transit line can be a challeng-
ing task. Performances of different pattern generation algorithms can be evaluated
through our proposed TFSP model. Meanwhile, other sources of uncertainty in tran-
sit systems can be considered when generating robust transit schedules, e.g., supply
uncertainty (last-minute driver absence) and travel time uncertainty. Lastly, the
proposed TFSP model can be extended to solve a network-level frequency setting

problem with multiple transit lines.
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Chapter 6

Design of Transit-Centric
Multimodal Urban Mobility
System with Autonomous

Mobility-on-Demand

6.1 Introduction

The global population is increasingly urban-centric, with 51%, or 3.5 billion people,
currently residing in cities. The proportion is projected to rise to 70%, or 6.3 hillion
people, by the year 2050. It's anticipated that by 2050, the distances traveled within
urban areas will triple [/ /]. Meanwhile, urban mobility demand patterns are under-
going changes in the post-pandemic world, influenced by the increased prevalence of
remote working. One of the most significant challenges urban areas are confronting
is urban mobility. With urban areas witnessing both a rise and transformation in
travel demand, the necessity for an analytical framework capable of generating a
high-capacity urban mobility system becomes crucial. Such a system should not only

be efficient but also minimize environmental impact.

Emissions from urban mobility systems are one of the main sources of global
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warming as transportation currently accounts for 29% of U.S. Greenhouse Gas Emis-
sions [/ ]. Building a sustainable urban mobility system is an essential strategy
to address climate change-related issues. Emerging Mobility-on-Demand (MoD) ser-
vices, such as ride-hailing platforms like Uber and Lyft, have introduced responsive
and reliable travel options for individuals. However, public transit (PT) systems con-
tinue to serve as the foundation of sustainable urban mobility, facilitating efficient
city-wide travel for large populations. Both MoD and PT have their unique advan-
tages and challenges. MoD offers flexible and direct services to a few passengers at a
higher cost, while PT provides cost-effective transportation for large groups of peo-
ple. However, the fixed schedules of public transit and concerns about accessibility

are significant considerations for passengers.

Autonomous Vehicles (AV) signify a transformative future for urban mobility,
offering prospects to enhance the quality of public transportation. Autonomous
Mobility-on-Demand (AMoD) systems, such as Waymo and Cruise, have demon-
strated significant potential in providing reliable and efficient services to passengers
in major U.S. cities. While some researchers contend that AMoD and PT are in
competition [ ], there is a growing consensus that the two systems could actually
complement each other. This chapter introduces a novel framework for creating a
Transit-Centric Multimodal Urban Mobility (TCMUM) system, marking a first step
towards the complete integration of AMoD systems and PT networks. Within the
TCMUM system we envision, AMoD serves as the cornerstone for first-mile-last-mile
(FMLM) services, linking passengers to transit stations. This proposed TCMUM-
AMoD system merges the advantages of both transit and Mobility-on-Demand, en-

hancing accessibility while preserving high capacity and efficient passenger movement.

The TCMUM-AMoD system provides passengers with three transportation op-
tions: rail, bus, and AMoD. The design of the TCMUM-AMoD system involves sev-
eral key components: (i) setting the operational frequency for the rail network, (ii)
designing the bus network and determining its frequency, (iii) allocating vehicles for
the AMoD fleet, and (iv) determining pricing structures using the TCMUM-AMoD

system. Leveraging the existing transit infrastructure, the implementation of the
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TCMUM-AMoD system could offer numerous enhancements to urban mobility, in-
cluding: (i) the substitution of infrequent bus services with AMoD fleets, improving
accessibility, (ii) the enhancement of bus service frequencies along key transit corri-
dors, reducing passenger wait times and elevating service levels, (iii) improved coor-
dination among different modes of transportation, and (iv) a decrease in long-haul
MoD trips, potentially alleviating traffic congestion and lowering carbon emissions.
This chapter presents a tractable optimization framework that is designed to si-
multaneously confisure networks and set service prices, with the goal of minimizing
the total disutility experienced by passengers within the system. The contribution of

this chapter can be summarized as follows:

1. To the best of authors’ knowledge, this work is the first attempt to propose a
tractable optimization framework for solving the joint transit network design,
fleet sizing, and pricing in the multimodal mobility system while considering

passengers’ mode and route choices.

2. An optimization model for solving the design of Transit-Centric Multimodal
Urban Mobility with Autonomous Mobility-on-Demand (TCMUM-AMoD) is
proposed, where the sharing scenarios of AMoD services are modelled explicitly
and passengers’ mode and route choice behaviors are captured by discrete choice

models.

3. The proposed optimization model is challenging to solve due to the non-linearity
brought by discrete choice models and the growth of feasible combinations of
modes and routes. A first-order approximation algorithm is introduced to solve

the problem at scale.

4. The suggested optimization framework is assessed through a real-world case
study in Chicago. It evaluates two types of demand — local and downtown — to

demonstrate the optimal system design across various demand scenarios.

The remainder of the chapter is organized as follows. Section 6.2 reviews the

relevant literature. Section 6.3 describes the problem and the optimization model for
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TCMUM-AMoD, and proposes the first-order approximation algorithm for solving
the problem at scale. Section 6.4 outlines experimental setups, data preparation, and
displays experiment results and sensitivity analyses. Finally, Section 6.5 recaps the
main contributions of this work, outlines the limitations, and provides future research

directions.

6.2 Literature Review

6.2.1 Transit network design problem

The Transit Network Design Problem (TNDP) is first proposed by Ceder and Wil-
son [ ], which can be separated into sub-problems ranging across tactical, strategical,
and operational decisions, including Transit Network Design (TND), Frequency Set-
ting (F'S), Transit Network Timetabling (TNT), Vehicle Scheduling Problem (VSP),
and Driver Scheduling Problem (DSP). Thorough reviews of TNDP and its sub-
problems can be found in Ceder [ '] and Ibarra-Rojas et al. [ ].

This chapter addresses the challenge of transit network design by tackling the
frequency setting problem. This involves determining the optimal number of trips for
a specified set of transit lines to ensure a high level of service within a planning pe-
riod. The Transit Frequency Setting Problem (TFSP) is first studied by Newell [ ]
using analytical models, where total passenger waiting time is minimized under a
fixed passenger demand setting. Furth and Wilson [ | modelled the TFSP with a
non-linear program that maximized the overall social welfare considering responsive
demand. A heuristic-based algorithm was proposed to solve the non-linear program.
Verbas and Mahmassani [/ '] extended the model proposed by Furth and Wilson [ ]
by considering multiple service patterns when determining transit frequencies, where
a service pattern corresponds to a unique sequence of stops that are served by transit
vehicles.

Recently, demand uncertainty, which is intensified by the remote work [, ', 7],

has been considered when setting transit frequencies. Gkiotsalitis et al. [ ] studied
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the frequency setting problem for autonomous minibuses considering demand uncer-
tainty. They utilized a traditional Stochastic Optimization (SO) method, Sample
Average Approximation (SAA), to address the demand uncertainty. Guo et al. [ ]
utilized the Robust Optimization (RO) approach for solving the TFSP under a single
transit line setting with demand uncertainty. A heuristic-based approach, namely
Transit Downsizing (TD), was proposed to solve the large-scale real-world TFSP ef-
ficiently.

6.2.2 Mobility-on-Demand system

Ride-hailing platforms such as Uber and Lyft provide Mobility-on-Demand (MoD)
services to millions of users globally every day. For an extensive overview of the
ride-hailing system, one can refer to the review conducted by Wang and Yang [ ©].
Studies on the ride-hailing system consists of analyzing demand (customers) [/,

], examining supply (drivers) [/, ', ], developing market structures [ =, ,

, '], and designing operational strategies for platforms. The operational strategies
typically include dynamic pricing [, | /'], customer-driver matching [, ', '], and
vehicle rebalancing [ 70, 07, 71, ]

Moreover, advancements in autonomous driving technology have introduced a new
paradigm in transportation: Autonomous Mobility-on-Demand (AMoD) [~ ]. The
AMoD system has the potential to increase driver supply within the ride-hailing sys-
tem while reducing service costs. Furthermore, the complete compliance of AMoD
vehicles eliminates scenarios of driver rejections and leads to more efficient vehicle al-
locations. Iglesias et al. [ ] introduced a Model Predictive Control (MPC) algorithm
designed to optimizing rebalancing strategies, capitalizing on short-term demand fore-
casts through LSTM neural networks. Their proposed approach could significantly
reduce the average customer wait time. Tsao et al. [/ ] presented an MPC approach
to optimize vehicle routes in AMoD system for both vacant and occupied vehicles.
Their proposed algorithm has the potential to substantially decrease the distance
traveled by mobility providers, thereby diminishing the impact of AMoD platforms

on urban congestion.
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6.2.3 Multimodal mobility system

In recent years, a substantial body of research has illustrated the potential benefits
of integrating MoD with traditional transit services to enhance urban mobility sys-
tem. Shen et al. [ '] proposed an integrated AV-PT system where high-demand bus
routes are maintained, low-demand bus routes are repurposed, and shared AVs are
introduced as a complement for first-mile service during morning peak hours. An
agent-based simulation was utilized to evaluate the integrated system performance.
Their study revealed that the integrated system could potentially improve service
quality, utilize road resources more efficiently, and being financially sustainable. Wen
et al. [ ] proposed a systematic approach for the integration of AV-PT, concen-
trating on the development of AV solutions that complement and enhance existing
transit networks. An agent-based simulation platform was developed to evaluate ser-
vice performance, complemented by a discrete choice model of demand. Their results
showed that the integrated system can significantly enhance urban mohility systems
by improved service availability, reduced operational costs, and enhanced accessibility.
Salazar et al. [/ ] studied the integration and coordination of AMoD systems with
public transit to enhance urban mobility. They proposed a network flow model that
maximized social welfare by optimizing the allocation of autonomous vehicles and
their interaction with existing transportation infrastructure. Their results showed
that integrating AMoD fleets with PT can yield considerable advantages, including
improved mobility, reduced congestion, lower emissions, and enhanced system effi-

ciency.

Other studies have focus on the network design and system operation of such
an integrated system. Luo et al. [| | | proposed a framework for integrating micro-
mobility services into transit network in order to connect packed urban centers to
low-demand suburban areas, providing a low-cost, low-emission travel mode for short
trips. They utilized a two-stage stochastic program to design the intermodal network
considering demand uncertainty, with the first stage selecting transfer hub locations

and the second stage optimizing system operations.
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Steiner and Irnich [ ] developed a strategic network planning optimization
model that incorporates MoD offering first-and-last-mile services. Their model si-
multaneously optimized bus line confipurations, identifies zones for MoD service de-
ployment, establishes MoD interactions with fixed-route networks through transfer
points, and optimizes passenger routes based on specified service levels. However, the
proposed model did not generate detailed transit schedules, and passengers’ route
and mode choices are not fully modelled, where only route choice in the bus network

is considered.

Pinto et al. [/ ] proposed a bi-level mathematical programming model for a
joint system design problem with multimodal transit and shared AMoD. The upper
level optimized transit network configurations and shared AMoD fleet sizes, while the
lower level utilized an agent-based simulation to determine transit assignment and
shared AMoD fleet operations with mode choice modeling. However, pricing for the
integrated system is considered as an exogenous parameter.

Banerjee et al. [ | explored the development of efficient routing policies for smart
transit systems. These systems integrated high-capacity vehicles like buses with a fleet
of cars to optimize the routing of trip requests in real-time, aiming to maximize social
welfare within a specified time window. Nonetheless, passengers’ mode and route
choice behaviors were not considered and only a line configuration of bus networks

was generated.

Luoet al. [ '] addressed the joint optimization problem of transit network design
and pricing for multimodal mobility systems. They aimed to determine optimal
settings for mass transit frequencies, lows of MoD services, and pricing for each trip
to maximize social welfare. The solution method included a primal-dual approach, a
decomposition framework, and an approximation algorithm to solve optimization of
large-scale problem instances.

Wang et al. [ ] proposed an analytical framework for designing a transit-oriented
multi-modal transportation system with passengers’ route choices. They introduced a
system-state equilibrium model that accounts for travelers’ rational choice behaviors

across different transportation modes and the corresponding impact on service levels.
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However, their study simplified the design of transit systems without generating a

detailed network design and transit schedules.

Kumar and Khani [ | proposed a methodology framework for designing networks
for an integrated system with MoD and transit. However, they did not allow shared
rides, and transit lines are assumed to have unlimited capacity. Also, passengers’ route
and mode choice behavior is not considered. Their proposed method is demonstrated

on small-sized networks (Sioux Falls).

Table 6.1: Research studies that solve the design of integrated MoD and PT system.

Papear Transit decisions MoD) decisions  Pricing  Objectives Demand modeling  Solution method
Luo et al. [11] Location of transfer hubs  Movement Yes  Muoximize Discreta Two-stage stochas-
of Mol vehicles proft choice modal tic program with
heuristic algorithm
Steiner and Irnich [ 1] Transit line configuration  MoD zones and ~ No Minimize to- Route assignment MILF + branch-
transfer points tal in transit network  and-price alpo-
systam cost rithm
Pinto et al. [177] Transit network design  Fleet sizing No  Minimize Mode choice and Bilevel program-
and frequency setting travelers' route assignment ming + simulation
disutility
Banerjee at al. 7] Transit line conflguration  Movement No  Maximize No MILF + Approxi-
and frequency setting of Mol vehicles system wel- mation algorithm
Fare
Luo et al. [119] Transit network design Movement Yes  Maximize Route assignment  MILP 4+ primal-
and frequency setting of Mol vehicles system wel- dual approach +
fara decomposition
Wang at al. [177] Uniform stop distance Flest sizingand  Yes  Maximize No System-state equi-
and headway allpcation social welfare Lbrium mods +
search algorithm
Kumar and Khani |*°] Transit line configuration  Fleet sikingand ~ No  Minimize No MILF + Benders
and frequency setting allpcation travelers' cost decomposition
This study Transit network design Fleet siingand  Yes  Minimize Discrete MINLF + first-
and frequency setting allpcation travelers’ choice modal onder  approxima-
disutility tion

Table 6.1 provides a summary of previous studies on the development of integrated
MoD} and PT systems. To the authors’ knowledge, this work represents the first at-
tempt to jointly solve network design and frequency setting for the transit system,
fleet sizing and allocation for the MoD system, and pricing strategies for the com-
bined system, all while taking into account passengers’ mode and route choices. The
proposed framework is motivated by Bertsimas et al [ ], where a joint frequency-
setting and pricing optimization problem is solved on a multimodal transit networks
at scale. We further extend their methodology into the context of integrated PT and

MoD system.
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6.3 Methodology

6.3.1 Problem description

Integrating the AMoD system into the existing transit network introduces a range of
possible organizational structures. These structures can vary based on several factors,
including the ownership of the transit and AMoD services, how these operators inter-
act with each other, and the extent of regulation imposed by public authorities [ ].
In this chapter, we assume that the public transit agency is responsible for managing
both transit services and AMoD operations. This setup involves the transit agency
either owning the AMoD fleet outright or contracting with AMoD service providers.
The purpose of operating such a transit-centric multimodal system for agencies is to
leverage the AMoD fleet to enhance service delivery for passengers. This includes
substituting low-demand bus lines with AMoD services and providing connections for
passengers to and from rail stations.

With the existing transit network, our study focuses on the design of the TCMUM-
AMoD system under the morning commute setting. Within this framework, we iden-
tify two distinet categories of commuters: local commuters and downtown commuters.
Local commuters primarily rely on the transit system for short-distance trips within
their local area, generally utilizing bus services. On the other hand, downtown com-
muters require services for longer-distance travel from suburban areas to downtown,
typically facilitated through rail services or express bus services, to accommodate
their commute needs efficiently. In the TCMUM-AMoD system, local commuters

have two available mode options:
1. Bus: local commuters take bus services to their destinations.

2. AMoD: local commuters take AMoD services directly from their origins to

their destinations.
For downtown commuters, they have three available mode options:

1. Rail: downtown commuters take rail services to their destinations.
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2. Bus+Rail: downtown commuters utilize local bus services to reach rail sta-
tions, from which they then board rail services to travel to their final destina-

tions.

3. AMoD+Rail: downtown commuters utilize AMoD services to reach rail sta-
tions, from which they then board rail services to travel to their final destina-

tions.

The rail services can also be replaced by express bus services for downtown commuters.
Under this system setting, the AMoD only provides local trips to commuters and
commiters have better accessibility to the transit network.

In the design of the TCMUM-AMoD system, our approach involves the optimiza-
tion of the rail and bus networks, the sizing and distribution of the local AMoD fleet,
and the pricing structure for utilizing the AMoD system. The overarching goal of
this optimization is to minimize the total disutility experienced by commuters within

the system, which are quantified by waiting times and walking times.
W=\ M=\
Bus @& ®

AMoD

Figure 6-1: Two route options for a morning local commute from home to the com-
pany.

Let G = (V, E) denote the road network and a eommute in this problem is referred
to as an origin-destination pair (u,v), where u,v € V. Let I{ indicate the set of
commutes in the problem. A commute (u,v) € I{ could have multiple route choices,
denoted by the set R™", and each route corresponds to a distinet sequence of mode
and path choices. Each route r € R™" contains at least one leg, indicating a trip
stage along path r. Let J(r) indicate the set of legs in route r. Figure 6-1 and
Figure 6-2 show instances with route options for a local commuter and a downtown
commuter, respectively. Local commuters can: i) walk to the bus stop, take the

bus and walk to the company, ii) take an AMoD service directly from home to the
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company. Downtown commuters can: i) walk to the subway station, take the subway
and walk to the company, ii) take a bus service to the subway station, take the subway
and walk to the company, and iii) take an AMoD service to the subway station, take

the subway and walk to the company.

Rail

@
Bus + Rail @ @ __@

AMoD + Rail __mf‘\_ @

Figure 6-2: Three route options for a morning downtown commute from home to the
company.

The full study time period [Tutart, Tend] is divided into T identical time intervals
with length Ar. Let T = {1,2,...,T} stand for the set of time intervals. The commute
demand data is indicated by the OD-matrix d = (d,"") where commute (u,v) starts
from origin u go to destination v at time f. Given the commute demand at time
d;"", commuters make route choices 8 = (#;""") among a set of routes, where #,"""
represents the proportion of commuters for commute (u,v) at time ¢ who chooses
route r.

For the multimodal transit network design, let £% and £F denote the set of rail
and bus lines, where a line indicates a sequence of stops. Let £ represent the set of
transit lines, i.e., £ = £% U LB, For any transit line | € £, the decision variable is
x = (z!), where z! € Z indicates the number of departures from the start of the line [
at time t. A lower bound B and an upper bound Bp, are imposed on the number of
departures of rail lines to guarantee the minimum level of service and the minimum
headway between two consecutive trains. Similarly, an upper bound Bpg is enforced
to the number of departures of bus lines for the purpose of maintaining the minimum
headway condition. Setting decision variable ! equal to 0 is equivalent to removing

the bus line [ from the transit network at time ¢. Given the total budget B,y and
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By, for the transit network, which denotes the total number of rail and bus services

that can be offered, the set of feasible transit networks is denoted by

X = {{z'q?:ng} (= Ef_xlcl : Z Z cimi < Bg.m,z Z ci:ri < Bpi, Bp < < ER,.‘I:B < Bpg

teT LB teT leLR
(6.1)

where & and a? are vectors of decision variables for rail and bus lines, and ¢ stands
for the cost for line I, which varies across different transit lines. Instead of solving for
a detailed transit schedule, we relax the feasibility constraint (1) to generate a set of

departure rates of transit services during each time interval:

X = {;z:'q..,:ng} e R{Klq : Z Z c‘mi < Blm..,z Z c‘mi < Bna.B<zf<B zP<EB
teT jer® teT [eLh

(6.2)
The relaxed feasible schedules X are straightforward to interpret and more flexible
for transit operators to follow. For instance, ) = 1.5 indicates that line [ departs
twice every three time intervals. Also, the relaxed feasibility set only requires solving
a Linear Programming (LP) problem.

The AMoD system offers both local and first-mile-last-mile (FMLM) trips to com-
muters. The local AMoD trip indicates that local commuters take an AMoD trip
directly from their origins to their destinations. The FMLM trips connect downtown
commmiters’ with rail stations. In this chapter, we assume the existence of a fleet of
vehicles tasked with providing both direct and FMLM AMoD services. Our primary
focus is on optimizing the sizing and allocation of this vehicle fleet and determining
the pricing strategies for using these services.

Let & denote the set of rail stations in the transit system. The decision variable
for the fleet size of AMoD vehicles is N = (N;), where N7 € Z, indicates the
number of AMoD vehicles within the nearby region of rail station s € S at time £.
The nearby region of each rail station s is predefined and has area A,. Given the
maximum number of AMoD vehicles N, the set of feasible AMoD vehicle allocations
iz indicated by

M={Nez'f':ZN;gF,weT}. (6.3)

sES
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We further relax the feasible vehicle allocation set N to reduce the computation
complexity:

ﬁ?:{NeRE':ZN;EEWeT}. (6.4)

acs
The feasible allocation of vehicles around rail station s at time ¢ can be obtained by

rounding down N} € .

6.3.2 Optimization with known path choices and non-shared

local AMoD fleet

First, we formulate the optimization problem with known path choices 8 (satisfying
0<6"" <land ) _pu.b;™" =1,¥t € T) and an AMoD fleet which only offers
non-shared services to commuters. Both assumptions will be revisited and relaxed in
the following sections.

Let (u,v,r) denote a commute route for route r which serves commute (u, v), and
(u,v,r, i) indicate a commute-route leg corresponds to the i-th leg of the itinerary

L

of commute route (u,v,r). Let z = (2,"""") denote the boarding variables for the
commute-route leg (u,v,r,i), where 2™ € R, indicates the number of commuters
traveling from u to v, choosing route r, on the i-th leg of their itinerary, boarding a
transit (or AMoD) service that starts (or is available) at time £. For the simplicity of
the model formulation, we assume that the travel time on any trip leg is zero!. The

system design of the TCMUM-AMoD system can be formulated as

i N.8 6.5
Eﬁl}eﬁﬁé{% ,6), (6.5)

where
Q{x'.- N1- H] = ]niun "Irl‘ﬂﬂa‘it{z'.-ﬂ'.- :B] + JAMOD(Z:HJ N} (EE&}
st Ope(z) < K'zl, VieLVse§VteT; (6.6b)

Uncorporating the travel time for trip legs only requires adjusting time indices in the model,
which significantly complicates the model formulation. It is straightforward to incorporate trawvel
times in experiments.
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P(2) < 7 3] —L_ N, VseSVieT; (6.6¢)

Zz“”l < Zd”ﬂ“”"? Vu,v e U,Vre R"" V1 e T;

(6.6d)
Z 'u'r.lr:. Z 'uur'a l, ’i\"ﬂ,ﬂEH,‘ﬂ"rERu’u,W=2:---?|J(T]|:H’TET~

(6.6¢)

The functions Jr,anei:(z,8,®) and Jypop(z,8,N) in Equation (6.6a) indicate the
total waiting and walking time of the TCMUM-AMoD system. In our model, the
waiting time for commuters in transit systems consist of both the expected waiting
time given the line frequency and the excess waiting time. The expected waiting time

for a commute route (u,v,r) traveling at time ¢ can be calculated as

Z zu,'r.l,r,i '&T
t ) I(i) *
i€A(u.r) 2.3
where A(u, v, r) indicates the set of transit legs in the commute route (u, v, r) and I(7)
represents the transit line using by the transit leg ¢ € A(u,v,r). The total expected

waiting time for the transit system is

e C N S S DD DIt *’f‘i;} (67)

(uv)eld reRe £T icA(u,vr)

The Equation (6.7) is ill-defined as x IM could be zeros. However, Constraints (6.6b)

t.l.l..'!'%

guarantee that 2" will be zero if z\”) is zero. Therefore, we assume 2" thT} 0
whenever z,") = 0.

For the excess waiting time, the total number of commuters waiting at a station
(or stop) s on line [ at time 7 can be computed by

Wikt (z,0) = AD*'™(0) + XD* (z) — BD*¥ (=), (6.8)

Transit

where AD*'7(0) indicates “arrival demand”, X D*'7(z) represents “transferring de-
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mand”, and BD*'"(z) corresponds to “boarding demand”, all cumulative up until
time 7. WiiT _(z,0) represents the number of commuters who are at station s but
not able to board line [ at time 7. Then the total excess waiting time for the transit

system can be obtained by aggregating Equation (6.8) as

Jreniit(2,0)=>_> > [AD**"(8) + XD*'"(z) — BD*" (2)] - Ar,  (6.9)
leL seS;TeT
where &; represents the set of stations for line [

The arrival demand AD*'7(8) in Equations (6.8) and (6.9) indicates the total
arrival demand that has arrived at station s on line [ by time 7 and it is computed
by

AD*7(8) = Z ZT: e, (6.10)

(up,r)ekisl) t=1
where the set KC(s,[) denotes the set of commute routes that board on station s on

line [ first.

The transferring demand X D*'7 (z) represents the total number of passengers who
have arrived at station s on line ! by time 7, having transferred over from another

transit line. It can be formulated as

T

XD.E,E,T{Z} — Z er’uhi_l, (511}

(wuri)eH (s l) t=1

where the set H(s,l) denotes the set of commute-route legs that make a transfer
through station s on line I. For a commute-route leg (u,v,r,i) to be considered
in the set H(s, 1), it must satisfy the following criteria: i) ¢ = 2, ii) the transfer
station s connects the (i — 1)-th and i-th legs of the commute route (u, v, r), and iii)
commmite-route leg i utilizes the transit line [.

The boarding demand BD*'"(z) indicates the total number of passengers who
have managed to board a transit vehicle at station s on line [ by time 7, which can

be formulated as
BD*(z)= Y > a4 (6.12)

(upri)eli(sl) t=1
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where the set U{(s,[) represents all of the commute-route legs that require boarding
a transit vehicle at station s on line [. This includes commute routes that start from

station s on line [ or later transfer to line [ through station s.

For the walking time of commuters in transit systems, it can be formulated as

Tk ) = Y ST S e w(u, v, (6.13)

(u,v)eld reRuY teT

where w(u, v, r) denotes the walking time for a commute route (u, v,r). And the total

disutility of using the transit system is
Irransit (2,0, ®) = JEo w8 (2, @) + Jpre e (z, 0) + T (2)- (6.14)
The AMoD system provides commuters with local or FMLM services. The AMoD
system provides door-to-door services to commuters, therefore, commuters do not
experience walking time when using AMoD services. For the waiting time, it consists
of the expected waiting time given the mumber of AMoD wvehicles nearby and the

excess waiting time. The expected waiting time for a commute route (u, v, r) traveling

at time ¢ can be calculated as

P
(TR ¥ a
E 7 As/N¢,

icB{uv,r)

where B(u,v,r) indicates the set of AMoD legs in the commute route (u,v,r), and
2=,/ A,/N¢ is the expected wait time for AMoD services around station s [ ]. ©
indicates the average local AMoD vehicle speed and o, is a parameter depending on
the shape of nearby region and the location of station s. The total expected waiting

time for the AMoD system is

THas N =Y Y3 S A AN (6.15)

(up)eld rER® (2T icBu,v,r)

Similarly, Equation (6.15) is ill-defined as N; could be zero. Constraints (6.6c)
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guarantee that z;"*" will be zero if N7 is zero. Therefore, we assume the term

2t 2a JA [NF = 0 whenever N =0

For the excess waiting time of the AMoD system, the local AMoD trips originating
near station s, the number of local commuters waiting to get AMoD trips at time 7

can be formulated as

u u,,r 'u RIX N
Dtren‘,{z H) Z Z H — 4 ) 3 (515}
(wor)ed(s) t=
where the set )(s) denotes the set of local commutes that begin in close proximity
to station s and utilize AMoD vehicles to reach their destinations directly. Similarly,
for the first-mile trips, the number of downtown commuters waiting to get first-mile

AMoD services to a rail station s at time 7 can be computed by

) 1
Wina(z,8)= > Z[d‘“"ﬂ“”— P (6.17)

[up,rieM(s) t=1
where the set M(s) indicates the set of downtown commute routes that take AMoD
services from their origins to the rail station s. The number of downtown commuters
waiting at a rail station s at time 7 to get last-mile AMoD services to their destinations

can be formulated as

Windz)= Y. Z(“““‘ %), (6.18)

(wuw,ri)eN(s) t=1

where the set A'(s) denotes the set of commute-route legs that take AMoD services
from station s to their destinations. Owerall, the total excess waiting time for the

AMoD system is

TG (2,0) = S5 Wi (2.0) + Wi, (2,0) + Wil (2)] - Ar,  (6.19)
ses 7T
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and the total disutility for the AMoD system is

Jamon(2,0,N) = Ji.5" (2, N) + J55i.5™ (2, 0). (6.20)

Constraints (6.6b) guarantee that the number of commuters on board a transit
vehicle does not exceed the capacity K'. Oy 5 +(z) represents the occupancy of a transit
vehicle, which starts to operate at time ¢, as it passes the station (or stop) s on line

[. It is formulated as

Orae(z)= > 2z, (6.21)

(u,v,78) L (s,1)
where the set T(s,[) incorporates commute-route legs that pass through the station
s on line I. For a commute-route leg (u,v,r, %) to be considered in the set Z(s,1),
it must satisfy the following criteria: i) the i-th leg utilizes the transit line [, ii) the
transfer station connecting the (i — 1)-th and i-th legs is at or before station = on line
[, and iii) the transfer station connecting i-th and (¢ + 1)-th legs is after station s on

line I.

Constraints (6.6¢) ensure that the number of vehicles providing AMoD services
does not exceed the number of available AMoD vehicles E%Nf in the nearby region
of station s at time ¢t. Given that not every AMoD vehicle will be accessible to com-
muters at each time interval due to some vehicles being occupied with serving existing
demand, we employ the expression E% to approximate the average availability rate
of AMoD vehicles near the station s. The ratio is constructed as follows: i) let the
average local trip distance with both origins and destinations within the nearby re-
gion of station s be E[Df] = a.+/A., while the value of a, depends on the shape of
nearby region and the location of station s [ ]; ii) assume an average local AMoD
vehicle speed of 7; iii) the average local AMoD trip time is E[T7] = %ﬂ; iv) the

average availability rate of AMoD vehicles near the station s can then be formulated

A

F, i(z) denotes the number of AMoD trips near the rail station s at time ¢, and
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it can be computed by

Pyu(z)= > #omie Y g (6.22)

(war)eY(a) | M(a) (uori)eN (=)
Constraints (6.6d) make sure that the number of commuters boarding the first leg of
a commute route (u,v,r) up until time 7 should not exceed the total demand for the
commute route (u,v,r) up until time 7. Constraints (6.6e) impose that commuters
with a commute route (u, v, r) can board i-th trip leg only if they complete (i — 1)-th

trip leg in the itinerary.

Both functions Jrransit(2z, 8, ) and Japop(z, 8, N ) are nonlinear with respect to
decision variables & and N. Overall, the problem (6.5) is a nonlinear program that
is intractable for large-scale instances. We will introduce a heuristic to linearize and

solve the problem later.

6.3.3 Serving commuters with shared AMoD fleet

In this section, we consider scenarios with a shared AMoD fleet. After incorporating
shared AMoD services into the problem, the same commute route including AMoD
trips should be separated into multiple commute routes indicating different sharing
scenarios. Figure 6-3 provides an instance for explaining the route separation. Trip
k indicates a first-mile shared AMoD trip which is shared by commutes (u,,v;) and
(19, v5). Each commute contains both routes with non-shared AMoD trips ry, ry and
routes with shared AMoD trips rf,r%. Routes ry (r;) and r¥ (r§) share the same

itinerary but different first-mile AMoD services.

Let P denote the set of shared AMoD trips. For a shared trip p € P, let R(p)
represent the set of commute routes that incorporates the shared trip p. Meanwhile,
let Q(p) indicate the set of commutes that get involved in the shared trip p. For a
commute (u,v) € Q(p), let R*"(p) denote the set of routes for the commute (u, v)

that includes the shared trip p. Then we introduce additional constraints to the
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(b) Related commuter routes and a shared first-mile
(a) First-mile AMoD scenarios AMoD trip

Figure 6-3: Example explaining the route separation after introducing shared AMoD
services.

optimization problem:

Yoo ST Y vpe PV, v), (v, ) € Q(p). Vi€ T, (6.23)

reR™%¥(p) HeRv. (p)

where i and ¢ are indices of commute-route legs in routes r and v that correspond
to the shared trip p, respectively. Constraint (6.23) maintains the consistency of
boarding variables among commute-route legs that correspond to the same shared

trip.

When allowing shared AMoD services, the number of AMoD trips does not equal
to the number of vehicles utilized for providing AMoD services. Therefore, we define
E,g{z] as the number of vehicles used for providing AMoD trips around rail station

£ at time ¢ with sharing, which is formulated as

E " { z] _ Z Eﬂ,t‘,l‘,l z:.,u,r,l + Z Eu,i:,r,i ztu.u,w,i1 [6.2 4}
(wo.r)EV(=) | M(s) (u,v,ri} N (s)

where £*"™ indicates the vehicle discount factor for a commute-route leg (u,v,r, )

which corresponds to a shared AMoD trip. The value of £%*"* depends on the number

of commutes sharing the same AMoD trip. For instance, £%%™ = 0.5 if the commute-

route leg i corresponds to a shared AMoD trip with another commute (v',v'). In

general, £4v = ?11. where n is the number of commutes included in the shared AMoD

trip.
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The optimization problem with shared AMoD fleet can then be formulated as

in Q(x,N,0 6.25
Eﬁl}eﬁﬁé{m? .8), (6.25)
where

Q(z,N,8) =min Jrransit(2,0,®) + Jamon(2z, 0, N) (6.26a)
s.t. Constraints (6.6b), (6.6d), (6.6e), (6.23), (6.26b)

_ Ar

< ——N? ; .

B,(z) < BT Ni, VseSvteT (6.26¢)

6.3.4 Optimization with design-dependent choices

In this section, we introduce a framework that not only facilitates the generation of
the optimal design for a multimodal system but also enables the service operator to
adjust pricing structures, denoted as p(A) = (p**"(A)). Here, p**"(A) represents the
price levied for a commute between points u and v via route r. This chapter primarily
concentrates on the modification of a discount factor A € [A, A], which is utilized for
the AMoD services. Regarding the pricing of transit services and baseline AMoD
services, it is presumed that their fares are predetermined and treated as exogenous
parameters within our analysis.

For transit services, we assume a flat fare f' for each transit line [ € £ and a
discount factor v for transfers within the multimodal transit system. In practice, a
transfer from the rail system to the bus system is typically free within a time period,
i.e., v = 0 for taking the bus line.

For the baseline AMoD fare, we assume it follows the standard fare structure of
Transportation Network Companies (TNCs), e.g., Uber or Lyft. The fare structure
consists of a base fare f%°¢, a book fare f*°*, a minimum fare f™", a distance rate
g and a time rate m;. Given an AMoD trip with distance d and travel time 7, the

price p will be

p™M°P(d, 1) = max(f** + fP* g - d+ m - T, f).

217



For a route r € R*" of a commute (u,v), let J7%(r) and J4M°P(r) denote
the set of legs in r which corresponds to commuters taking transit lines and AMoD
vehicles, respectively. For each leg j € J(r), let d; represent the travel distance and
7; indicate the travel time. For a transit leg j € J™**(r), let I(j) stand for the
transit line corresponding to the leg j. Let f{r) represent the first transit line in route
r if the route r does not contain any AMoD legs. For a route r including AMoD legs,

[ (r) = 0 is an empty set. The price p**" can then be formulated as

P (A) = fi) 4 Z v i) 4 Z A-pMeD(d. ). (6.27)
jeJtransit(r)\ {i(r)} JETAMaD(r)

It is worth noting that the pricing structures for both transit and AMoD operators
can be adjusted seamlessly without changing the overall optimization model. Future
extensions with more complicated and practical pricing structures can be considered.
By allowing the design-dependent choices for commuters, the path choice param-
eter will be modified as 8(x, N, A), indicating that commuters’ path choices depend
on transit frequencies &, AMoD fleet size N and the discount factor A. And the

optimization with design-dependent choices can be formulated as

zei‘,NnE].J;irI,lJ.eu,i] Q(z,N.8(x, N, A)). (6.28)

The probability of selecting a specific route, denoted by 8(x, N, A), is influenced

by the utility that a commuter derives from each available route option. This utility,
represented by p;""" (x, N, ), pertains to a commute (u,v), departing at time ¢t and
choosing route r, within the context of transit schedules &, AMoD fleet allocations IV,
and discount rate A for AMoD services. It is postulated that the utilities associated
with different route options are predominantly affected by two factors: i) journey

time, and ii) monetary cost.

For a route r € R™", the journey time consists of in-vehicle travel time, waiting
time, and walking time. The in-vehicle travel time can be formulated as }_,_ 7r) Ti-
For a transit line [, the waiting time can be denoted as Ar/2z! assuming a uniformly

distributed headway. The walking time 7™** is predetermined for any route r as-

P
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suming a constant walking speed Tyaiking. For AMoD services, the waiting time for
AMoD services around station s is 2=,/A, /N7 [ ].

For the monetary cost of route r € R™", it is previously defined by p*“*"(A).
Assuming that the commuter utility function is linear in time and cost attributes, the

formulation of p"*"(x, N, A) is given by
F'?,u‘r{:'nﬂ N’ }h) — _.HE! . pu,v,r{)l.}

Ar Aoz [ Astz) walk
— B Z (inﬁ) +’rj) + Z (? W +7; | +T; , (6.29)

jEJtrnnnit(r} jEJAM“D{r:I

where 3 stands for the marginal utility of time, (3> represents the marginal util-
ity of money, I(j) denotes the transit line corresponding to transit leg j, and s(j)

corresponds to the station near the origin of the AMoD leg j.

Discrete choice models

With the systematic utility function for different route choices, we can establish a
discrete choice model to calculate the design-dependent choices 8(x, N, A) based on
utilities pi** (2, N, A). For the standard multinomial logit model [ ', | 1], a Gumbel-

distributed random noise component ;""" is attached to the utility function, i.e.,
(2, Ny A) = pg ™ (e, N, X) + 50777, (6.30)

and the probability for commuters to choose routes with the choice probabilities are

given by
exp (™" (x, N, A))

> wicRus €XP (ﬁ?‘”"" (x,N, l)) '

The multinomial logit model (6.31) suffers from a property known as the indepen-

8(z,N,\) =

(6.31)

dence from irrelevant alternatives (IIA) as utilities of different routes with identical
transportation modes could share similar attributes. To address this issue, we pro-
pose a nested logit model, which consists of a two-level choice model: mode choice

and route choice. Figure 6-4 displays the two-level decisions that commuters has to
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make in the nested logit model. Commuters first choose the mode between AMoD)-
only mode, PT-only mode, and PT-AMoD mode. Under each mode, commuters then

make a route choice given a set of available routes with the selective mode.

| Commute Choice |
Mode Choice | | AMoD-only mode | [ PT-only mode | PT-AMoD mode
Route Choice || Route1 | [ Route2 | [Route3 | [Routed | [ .. | [ Routes ||

Figure 6-4: Multidimensional choices of the nested logit model.

For a set of route options R™" for a commute (u, v), let R5", R;” and R}, rep-
resent the set of route options corresponds to PT-only mode, AMoD-only mode, and

PT-AMoD mode, respectively. Then the route choice probability can be formulated

as
67 (2, N, \) = | — P @mity™ (@, N, 1)) [ exp(@lm)
o Y reri €Xp(Gmpty ™" (@, N, X)) | | exp(@lp) + exp(¢la) + exp(¢lpa) |’
(6.32)
where m corresponds to the travel mode of route r, i.e., r € R, and
1 L i
I = Elﬂ Y bmp (@, N,N) |, ¥m' e {P,A,PA}, (6.33)

rE'R:;:I
where ¢, ¢p, ¢a and ¢pa are parameters for the nested logit model that have to be

estimated from commuter survey data in practice.

Solution algorithm

The problem (6.28) which solves the system design of the TCMUM-AMoD with
design-dependent path choices is a nonlinear optimization problem given the nonlinear
objective function (6.26a) and the nonlinear discrete choice model formulations (6.31)
and (6.32). To solve this problem, we utilize a first-order approximation method

proposed by Bertsimas et al. [ /], where the nonlinear function is replaced with a
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series of locally linear approximations. Given a feasible system design point (&, N \ i),

the nonlinear route choice probabilities can be approximated as
02" (2, N, A&, N, ) = 6" (&, N, X) + 76" (2, N, ) (z — &, N — N, A— 1), (6.34)

where the new system design point (x, N, A) is close to the initial point (&, N, i]. By
substituting the approximated path choice probability (6.34) into the optimization
(6.28), we obtain a linear optimization problem. Given a feasible system design point

(z(-1, NG-D AGE-1) 4 locally better system design can be solved with the problem

min Q(m?N?H{m,N,A;m{i‘l},N{i‘l}?A("‘”}) (6.35)
st. 2 _p<a<ali-lyp (6.35h)
NOED _p< N< NED g (6.35¢)

MY _p < A< A 4 g (6.35d)

T e X, (6.35€)

N eN, (6.35f)
A<ALA (6.35¢g)

where constant vectors p, 1) and o specify step sizes for line frequencies x, local AMoD
fleet allocations N and discount rate A, respectively. For the nonlinear objective
function (6.26a), given we are solving the problem iteratively, we approximate the
objective function of iteration i by using system design decisions (z~1), N1 AG-1))
in iteration ¢ — 1. Therefore, the problem (6.35) becomes a linear program that can
be solved efficiently.

The heuristic algorithm for solving the network design of the TCMUM-AMoD
system with design-dependent path choices is described in Algorithm 1.

It is worth noting that the Algorithm 1 is guaranteed to output a locally opti-
mal solition instead of the global optimum. To improve the quality of solitions, we
generate multiple starting points (2@, N A®) run the approximated algorithm

multiple times and select the best system design solution. Regarding the step size
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Algorithm 1 First-order approximation algorithm for solving the system design of
the TCMUM-AMoD with design-dependent path choices. Inmput: initial feasible sys-
tem design point (z(®, N® A(®), step size vectors p, 1 and o, termination threshold
€, maximum iteration x. Output: locally optimal system design (x*, N'*, A*).

1: function FIRST-ORDER-APPROXIMATION((z(®, N X)) p 5, o, €)
2. i+1

3: Qmﬂ +— 0
4: whilei < k do

5 Solve problem (6.35) with a feasible point (-9, NG-D X6-1))  approx-
imated objective functions, step sizes p.7m,0 and get the optimal solution
(x®, N X)) and the objective value Q*

6: threshold + |Q* — Qprev|
T: if threshold < € then

8 break

0 else

10: i+—i+1

11: Qprew + O

12: return (z?, N @)

vectors p, 17 and o, they have to be chosen to balance the computation complexity
and algorithm accuracy. A smaller step size leads to a more accurate local optimal
solution, but it will take more iterations for the algorithm to converge. For the gradi-
ent 0" (&, N, \) in the equation (6.34), it can be computed using the automatic

differentiation approach.

6.4 Numerical Experiments

In this section, we conduct numerical experiments on the Chicago transit network
operated by the Chicago Transit Authority (CTA), which is one of the largest transit
system in the North America. All models are implemented in Python programming
language [/ ] and solved using Gurobi 10.0.2 [ ]. All experimental results were
generated on a machine with a 3.0 GHz AMD Threadripper 297T0WX Processor and
128 GB Memory.

Before delving into the details of our numerical experiments, it is important to

clarify that the aim of these experiments is not to offer policy recommendations
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to transit authorities. Instead, the objective is to demonstrate the applicability of
our proposed methodology using realistic data. Given the constraints of the data
available to us, we employed the multinomial logit model (6.31) to simulate the route
choice behavior of commuters. It should be noted that while the parameters used in

this study may not be precise, they are considered sufficiently reasonable to provide

valuable insights.

6.4.1 Data description

| e &
L / c
R it A

Figure 6-5: Road and transit networks for the study region.

Transit network data

The parameter values utilized in the experiments are presented in Table 6.2. The
geographical focus of the experiments is the southern region of Chicago, characterized
by several bus routes that interface and integrate with the Red line of the CTA’s rail
network. The road and transit networks under consideration are depicted in Figure 6-

5. Blue region indicates the study region within the CTA network, blue lines represent
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Table 6.2: Model parameters and values.

Parameter | Explanation | Value
Network Design Model Parameters

Tetart Start time of planning period 06:00

Tend End time of planning period 10:00

T Number of time periods 48

A Length of each time interval 5 (min)

|CE| Number of bus lines 40

| Number of rail lines 1

|| Number of morning commutes 2276

By Minimum number of departures for rail 0.5

Bg Maximum number of departures for rail 2.5

Bg Maximum number of departures for bus 1

Brys Number of available bus vehicles 814

B, Number of available rail vehicles 94

K'.1e £F | Bus vehicle capacity 70

K'.1e £® | Rail vehicle capacity 640

|S] Number of rail stations 1

A Area of the nearby region for rail station 90 (km?)

o Coefficient for approximating local trip distance 0.667

¥ Average vehicle speed 20 (mph)

. Maximum wait time for FMLM sharing AMoD trips 60 (seconds)

8q Maximum delay time for FMLM sharing AMoD trips 60 (seconds)
Discrete Choice Model Parameters

A Minimum discount rate for AMol) services 0.1

A Maximum discount rate for AMoD services 1

I Fare for transit system 2.5 (dollars)

v Discount factor for transfers in transit 0

fhase Base fare for AMoD services 1.87 (dollars)

fhook Booking fare for AMoD) services 1.85 (dollars)

frin Minimum fare for AMoD) services 4.98 {dollars)

wd Distance fare rate for AMoD services 0.85 (dollars/mile)

g Time fare rate for AMoD services 0.30 {dollars/minute)

Twalking Average walking speed 3 (mph)

Bl AM oD} | Marginal utility of time in AMoD 16.3 (dollars /hour)

Bi(transit) | Marginal utility of time in transit 21.1 (dollars/hour)

Ba Marginal utility of money 1

First-Order Approximation Algorithm Parameters

€ Termination threshold 0.1

[ Maximum iteration 15

p (rail) Step size for rail frequencies 0.1

] Step size for AMoD allocations 10

T Step size for AMoD discount rate 0.1
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road network, green lines denote bus network, red dots stand for bus stops, and rail

symbols are rail stations.

Within the specified study area, there are 20 distinct bus routes: Routes 3, 4,
8A, 9, X9, 29, 34, 52A, 53A, 87, 95, 100, 103, 106, 108, 111, 111A, 112, 115, and
119. Given that each bus route operates in two directions, our analysis encompasses
a total of 40 bus routes, i.e., |£®| = 40. The rail service included in this study is the
Red line of the CTA transit network. Considering the focus on morning commute
patterns, only the inbound direction of the Red line is taken into account for this

analysis.

The analysis covers the morning hours from 6 AM to 10 AM, segmenting this
time frame into 5-minute intervals, resulting in a total of 48 time periods within the
model. For each bus route, it is assumed that there is a maximum of one departure
per 5-minute interval. Regarding the rail service, the frequency of departures varies,
with headways ranging from 2 to 10 minutes. This variation is designed to ensure
both a minimum gap between consecutive vehicles and adherence to a baseline level

of service.

The experiments leverage data collected over 20 weekdays in September 2019. The
information pertaining to the current transit schedules is obtained from an open-
source Generalized Transit Feed Specification (GTFS) dataset, which is regularly
updated and released by the CTA on a monthly basis. The available number of bus
and rail vehicles are calculated based on the transit schedule information. There are
By.: = 814 bus trips and B,.; = 94 rail trips during the 4-hour study period for

transit lines in the model.

The travel times between any two stops, accommodating various service patterns,
are computed using data from the Automatic Vehicle Location (AVL) dataset for
September 2019, also provided by CTA. For transit vehicle capacity, it is posited that
each bus is capable of accommodating up to 70 passengers. Similarly, for the rail

system, each 8-car rail vehicle is designed to carry a maximum of 640 passengers.
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Demand data

Given our study’s focus on a specific subregion within the CTA s network, we catego-
rize the passenger demand data into two distinet types based on their travel patterns.
The local demand is defined as passengers whose trip origins and destinations are
both located within the boundaries of the study area. Conversely, the downtown
demand refers to passengers who begin their journeys within the study area and then

utilize the Red Line service for traveling to their destinations outside the study area.

The demand data employed in the analysis is sourced from CTA’s ODX dataset
for September 2019. The *ODX” stands for the "origin, destination, and transfer
inference algorithm,” an advanced algorithm developed by Gabriel et al. [ '] and
currently implemented by the CTA. The CTA utilizes a fare collection system that
requires passengers to "tap-on” but does not record their exit points, thereby not
capturing alighting data. To bridge this gap, the ODX algorithm is employed to infer
passengers’ alighting points. Detailed insights into the creation and implementation
of the ODX algorithm can be found in Sdnchez-Martinez [ -], Zhao et al. [ ],

Caros et al. [ 7]

In this chapter, we assume there exists a total commuter demand of 12,400 indi-
viduals throughout the studied period. This analysis incorporates the demand data
for both local and downtown commuters as sourced from the CTA, to establish de-
mand seeding matrices. These matrices serve as the foundation for generating the
demand data used in the optimization model. In the process of constructing these
demand seeding matrices, we calculate the demand for the rail system based on an
average over 20 workdays within the month of September 2019. Conversely, the bus
system’s demand is derived from the data of a specific workday, namely September
5th, chosen due to the bus system’s sparse demand patterns. Altogether, the dataset

encompasses 2276 distinct commutes within the analysis, denoted as |U{| = 2276.
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AMoD parameters

In the context of first-mile AMoD services, our study area includes two rail stations.
Due to their proximity, these stations are consolidated into a single entity within our
analysis. We determine the optimal fleet size for AMoD in the study region across
each time interval. The study region is defined as a rectangular area, approximately
A = 90 km? in size. Following the methodology outlined in Larson and Odoni [ ], we
adopt a coefficient of & = 0.667 for estimating the distance of local trips. Furthermore,
the model assumes an average vehicle speed of 7 = 20 mph.

To reduce the computational complexity, we only allow sharing within FMLM
AMoD trips. To generate sharing scenarios for the first-mile AMoD services, we
assume that each vehicle is limited to being shared by two separate commuters. Ad-
ditionally, it is crucial that each commuter within a shared route adheres to specified
constraints regarding the maximum wait time (4,,) and the maximum delay time (4;).
For the purposes of this study, both the maximum wait time and the maximum delay

time are established at 60 seconds, i.e., 4, = 84 = 60.

Discrete choice model parameters

For the transit system pricing, a uniform fare structure is implemented, with a flat
fare of f' = 2.5 dollars for using any transit line I € £. Additionally, transfers between
transit lines are offered at no additional cost, i.e., v = 0.

In the context of the AMoD services pricing mechanism [ ], the pricing model
includes a base fare of f?*¢ = 1.87 dollars, a booking fee of f*°* = 1.85 dollars,
and a minimum fare of f™" = 4.98 dollars. The fare structure also incorporates a
distance-based rate of my = 0.85 dollars per mile and a time-based rate of m; = 0.30
dollars per minute. For commuters who take AMoD services, a discount rate A is
applied, varying within a range from A = 0.1 to A = 1.

Regarding the parameters in the utility function as specified in Equation (6.29),
with 2 set to 1, [y represents the value of time in vehicles. For this analysis, the

value of time spent in transit vehicles is set at 21.1 dollars per hour, whereas the
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value of time in AMoD vehicles is determined to be 16.3 dollars per hour, based on
findings from Hyland et al. [ ]. The average walking time for commuters is set to

be Tyatking = 3 mph.

Algorithm parameters

In the application of the first-order approximation algorithm to solve the TCMUM-
AMoD system design problem, we initiate the process with 15 randomly selected
starting solutions. The algorithm is set to terminate under one of two conditions:
either after k = 15 iterations or when the objective values of two successive iterations
are within a tolerance of e = 0.1.

Given the relatively low demand observed for bus routes, the decision variables
related to bus schedules are treated as integers. This approach is adopted because em-
ploying continuous variables for these schedules often results in very small, practically
negligible values, essentially equivalent to discontinuing the bus route. Consequently,
continuous step sizes are reserved exclusively for rail decision variables, with a speci-
fied step size of p(rail) = 0.1.

For the allocation of AMoD fleet, the step size is set at n = 10, reflecting ad-
justments in the number of AMoD vehicles allocated. Similarly, the step size for

modifying the AMoD service discount rate is ¢ = 0.1.

6.4.2 Model results

In the experiments, we would like to understand the trade-offs between different
number of buses and AMoD vehicles under different demand profiles. Therefore, we
adjust three parameters in the experiments: i) the proportion of available bus runs
7, ii) the number of available AMoD vehicles N, and iii) the proportion of downtown
cOmImiters .

In the baseline scenario, we assume that the percentage of available bus runs v
and the number of available AMoD vehicles N follows two relationships: i) passenger
car equivalence (PCE), and ii) capital cost equivalence (CCE). For instance, if we
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are removing 20% of bus runs within B, = 814 total bus runs during the four-hour
study period, it is equivalent to remove around w == 41 buses assuming each bus
makes one run every hour. Then, the passenger car equivalence leads to 82 AMoD
vehicles as the passenger car unit (PCU) for bus is 2.0 [ ]. Regarding the capital
cost equivalence, 41 buses is equivalent to 164 AMoD wvehicles, given the cost for a

E-bus around $800, 000 [ ' -] the cost for an AMoD vehicle around $200,000 [ .

For the proportion of downtown commuters, we assume the baseline number to be
iy = 80%, reflecting commuters’ demand pattern in CTA. The demand profile used
in the optimization model is generated as follows: i) generate the downtown demand
with a demand level of 12,400 - ), ii) generate the local demand with a demand level
of 12,400 - (1 — 1), iii) combine local and downtown demand as the final demand
profile.

Figure 6-6 shows the convergence performance for the proposed first-order approx-
imation algorithm under two scenarios. Although some randomly-generated initial
starting points lead to local optimal solutions, the proposed algorithm with 15 initial
starts is capable of generating satisfying system design solutions. Also, 15 iterations

iz enough for the proposed algorithm to converge.
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(a) Scenarios with 80% buses, 82 AMoD (b) Scenarios with 80% buses, 164 AMoD
vehicles, and 80% downtown commuters. vehicles, and 80% downtown commuters.

Figure 6-6: Convergence of the first-order approximation algorithm.
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Table 6.3 presents the findings from the baseline experiment, focusing on a scenario
where 80% of commuters are heading downtown (i = 0.8), within the context of
passenger car equivalence. The term Awg disutility refers to the average disutility for
commmiters, which is a composite measure including walking time, expected waiting
time, and excess waiting time. Awg walking provides the average walking duration
for each commuter, while Avg waiting quantifies the average expected wait time.
Awvg utility reflects the average utility for chosen paths by commuters. A* represents
the optimal discount rate applied to AMoD service usage. The table also shows
the mode share among downtown and local commuters, with L and DT signifying
local and downtown commuters, respectively. Unserved® highlights the proportion
of commuters who were not served by the end of the study period, remaining in wait
for the next awvailable vehicle.

The percentage of selected bus routes in the optimally designed system is captured
by Line utilization, whereas AMoD) activation indicates the average activation rate
of AMoD vehicles throughout the studied period. Given the availability of an AMoD
fleet, system operators have the strategic option to activate only a portion of the
fleet to prevent system-wide congestion associated with the use of AMoD services.
Activating more AMoD vehicles can decrease waiting times for these services, making

them more attractive to commuters according to their behavior choice models.

Table 6.3: Experimental results for baseline scenario with 80% downtown commuters
(¢ = 0.8) under PCE.

System Performance Indicators

T N | Avg disutility Avg walking Avg waiting Avg utility Line utilization A Mol activation A
100% 0 588 107 215 6.00 o0% - -
% &2 14.15 1.48 1.96 -£.20 23% % 1.0
6% 164 046 1.32 1.85 641 TE% 4% 1.0
A0 246 10,06 117 1.78 653 3% 5% 1.0
2% 338 11.32 1.03 1.60 660 40% 100% 1.0
0% 410 13.08 0.82 1.35 £.74 - 100% 1.0

Mode Share for Downtown and Local Computers

¥ N | AMoD% (L)  Bus% (L) Unserved (L) AMoDHraeil (DT) Bus+mil (DT) il (DT) Unserved (DT)
100% 0 [ 100% 2 4% 0% 267 T4% 0.3%
% &2 53% 474 10.6% % 22%% 6050 7.3%
0% 164 E1%% 3o 0% 165 18% 6650 4.1%
A0% 246 4% 2650 0% 21% 13% 6650 505
W% 3!\ 280 12% 0% 255 &4 6750 6.3%
0% 410 1005 0% 0% 3% i 6750 7.9%

Under the passenger car equivalence setting, the replacement of buses with AMoD

230



Table 6.4: Experimental results for baseline scenario with 80% downtown commuters
(1 = 0.8) under CCE.

System Performance Indicators

T N | Avg disutility Avg walking Avg waiting Avg utility Line utilization A Mol activation A
100% 0 588 107 215 6.00 o0% - -
0% 182 TAE 1.30 1.98 £33 B by 1.0
0% 38 .30 1.31 1.94 641 56% 61% 1.0
0% 402 905 1.19 193 655 1% 100% 1.0
W% 656 11.26 1 1.56 £64 40% 6650 1.0
0% 820 13.03 0.82 1.28 £.73 - 100% 1.0

Mode Share for Downtown and Local Computers

¥ N | AMoD% (L) Bus% (L) Unserved™ (L) AMoDHraeil (DT) Bus+mil (DT) Rail (DT) Unserveds (DT)
100% 0 [ 100% 2 4% 0% 267 T4% 0.3%
0% 162 557 45% 0.3% 14% 1% 6650 3.0%
60% 338 B4 365 0.1% 16% 187 6650 3.6%
A0% 492 T5% 25% 0% 10% 16% 65% 4.2%
W% 656 207 1% 0% 265 &4 675 6.4%

0% 820 100% 0% 0% 3% 4 6750 7.8%

vehicles does not influence the traffic condition. Therefore, the fixed travel time
assumption used in this paper holds.

Table 6.4 presents the results for scenarios featuring 80% downtown commuters
(1 = 0.8) under the CCE setting. While the CCE does not preserve the fixed travel
time assumption, it offers transit agencies a financially viable pathway for deploying
the integrated system. Insights from numerical results under PCE and CCE scenarios
can be summarized as follows.

1. Replacing 20% buses with 162 AMoD vehicles can reduce the aver-
age disutility for commuters by 15.8%. While substituting buses with AMoD
vehicles in the PCE setting does not yield benefits at the system level, a decrease
in average disutility is observed within the CCE scenarios. This suggests that a
sufficient number of AMoD vehicles can effectively compliment the transit network.
Specifically, replacing 20% of buses with 82 AMoD vehicles leads to a 59.3% increase
in commuter disutility, while replacing with 162 AMoD vehicles results in a 15.8%

reduction in commuter disutility.

Nonetheless, the benefits of such replacements exhibit a non-monotonic pattern;
substituting 40% of buses with 328 AMoD vehicles leads to a lesser improvement,
reducing commuter disutility by only 6.5%. Further replacements diminish system
performance, underscoring that while AMoD vehicles can enhance transit networks,

maintaining an essential level of transit services is erucial for their capacity to trans-
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port large numbers of people efficiently.

2. Buses can better serve global demand and AMoD vehicles can better
serve local demand. With an increase in the number of AMoD vehicles, there’s a
noticeable decrease in the percentage of unserved local commuters, whereas the per-
centage of downtown commuters not served goes up. AMoD wvehicles are particularly
adept at serving local commuters, owing to the less dense demand patterns in local
areas. On the other hand, downtown commuter demand is more destination-focused,
making bus transportation exceptionally efficient for serving these concentrated de-

mand patterns.

3. Optimal operation strategy is to not discounting AMoD services.
Across various scenarios, the optimal discount factor for utilizing AMoD services
consistently stands at 1.0, suggesting that no discounts are applied to AMoD services.
This decision is intuitive given the limited AMoD vehicles; introducing discounts on
AMoD fares would render it the most attractive option for commuters, subsequently
causing delays across the entire system. Notably, a noticeable increase in disutility
is observed when 20% of buses are substituted with 82 AMoD vehicles. Lowering
AMoD fares under these conditions would only exacerbate the issue, leading to further
increases in excess waiting times.

4. Activation rate of AMoD and utilization of bus routes are non-
monotonic with respect to AMoD-bus configurations. The utilization patterns
of transit line and AMoD services, as shown in Table 6.4, demonstrate non-linear or
non-monotonic changes when replacing transit vehicles with AMoD wvehicles. At first
glance, increasing the number of AMoD wvehicles might seem like a straightforward
solution to replace bus routes serving local commuters. However, as the fleet of AMoD
vehicles increases, the reduced waiting times make these services more appealing,
thereby attracting more commuters to use. Concurrently, reducing bus routes leaves
some local commuters with no option but to use AMoD, leading to potential system

congestion as more commuters waiting for the available AMoD vehicles.

To mitigate system-level congestion when utilizing AMoD services, optimal system

design might involve limiting the availability of AMoD wehicles during peak times,
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despite having a large fleet. This lead to 61% and 66% AMoD activation for scenarios
with 328 and 656 AMoD wvehicles. For the scenario with 40% buses and 492 AMoD
vehicles, AMoD wvehicles can operate at 100% activation rate due to having more bus
lines in operation. This is feasible because the existing bus services can accommodate
most local commuters, reducing the likelihood of a surge in AMoD demand and thus

avoiding congestion.

i g

Figure 6-7: Optimal bus network for 100% buses, 0 AMoD vehicles, and 80% down-
towWn commuters.

Figure 6-8: Optimal bus network for 20% buses, 328 AMoD wvehicles, and 80% down-
town commuters under the PCE setting.

Figure 6-7 to 6-9 illustrate the bus network confipuration in a scenario with 80%
downtown commuters. Figure 6-7 details the network design when it's composed
entirely of buses (100%) without any AMoD vehicles. Figure 6-8 outlines the structure
with a significant reduction in buses to 20%, incorporating 328 AMoD vehicles into the
system under the PCE setting. In this transformation, a noticeable shift occurs with

the majority of bus routes in the north-south direction being eliminated. However,
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Figure 6-9: Optimal bus network for 20% buses, 656 AMoD wvehicles, and 80% down-
town commuters under the CCE setting.

routes that connect to rail stations are preserved, and these retained bus services
enjoy higher frequencies compared to other routes.

Figure 6-9 shows the bus network configuration in a scenario featuring 20% buses
and 656 AMoD vehicles under the CEE setting. While the same bus routes are
preserved as in the PCE scenario, the distribution of buses across these routes is more
equitable in the CCE scenario. The increased presence of AMoD vehicles facilitates
better service to areas with higher demand, thereby reducing the necessity for bus

routes to operate at high frequencies.

6.4.3 Sensitivity Analyses

In this section, we conduct sensitivity analyses over two critical model parameters: i)
AMoD fleet size, and ii) percentage of downtown commuters.

Figure 6-10 illustrates a sensitivity analysis of varying AMoD fleet sizes, from
82 to 246 vehicles, increasing incrementally by 41, within a scenario that maintains
80% buses and 80% downtown commuters. Figure 6-10a details the average disutility
faced by commuters and its breakdown across different AMoD fleet sizes. An increase
in the number of AMoD vehicles leads to a decrease in average disutility, attributed
to improvements in walking time, expected waiting time, and reduction in excess
waiting time. The expansion of the AMoD fleet enhances the provision of door-to-
door services, thereby reducing the waiting time for accessing AMoD services.

Figure 6-10b presents the activation rates of AMoD wvehicles and utilization of

234



" . Walking tima
Expacted Waiting tima
Excuis Waiting tima

Disutility (Minutes)

° 123

&2 (PCE) LE4 (CCE) 205 248
AMoD Fleet Size

(a) Average disutility and its breakdown.

| K_f’

_F'_'_'_'___,_,- 1as
——
0 -
- 1
l:- I I I I I :
" 5
123 205 246

(b) Utilization of AMoD vehicles and bus lines.

Average & of Activated AMoD
Bus Line Utilization Rate

10

AMaoD Fleat Size

Figure 6-10: Sensitivity analysis for different AMoD fleet size.

bus lines, highlighting that the usage of AMoD wvehicles rises with an increase in
fleet size. Surprisingly, the utilization rate of bus lines initially decreases but then
shows an increase. This unexpected trend suggests that while a larger fleet of AMoD
vehicles might theoretically replace more bus services—especially those serving local
commuters—the decreased waiting time for AMoD services actually encourages more
commmiters to choose AMoD. Consequently, certain bus routes remain necessary to
accommodate commuters who would benefit from AMoD services but cannot access

them due to the high demand from others also switching to AMoD.

Figure 6-11 shows how the average commuter disutility varies across different
ratios of available bus runs () and the percentage of downtown commuters (1) under

the PCE setting. In scenarios with entirely downtown commuters (100%), an increase
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Figure 6-11: Sensitivity analysis for different percentage of downtown commuters.

in the proportion of bus services () correlates with reduced average disutility, as
buses are more adept at serving the needs of downtown commuters. Conversely, in
scenarios with exclusively local commuters (0% downtown commuters), a reduction
in bus availability generally leads to lower disutility levels. The relationship is not

straightforward, however, as a balanced mix of buses and AMoD vehicles can better

serve local commuters.

Interestingly, in scenarios without bus services (0% available bus runs), the situ-
ation with 60% downtown commuters has the lowest level of commuter disutility. In
these instances, AMoD vehicles are more efficiently matched to the combined needs
of local commuters and downtown commuters traveling to rail stations. Scenarios
with 100% downtown commuters experience surge demand periods that AMoD ve-
hicles alone cannot immediately accommodate, resulting in increased wait times for

commuters within the system.

In conclusion, AMoD vehicles are particularly effective at accommodating local
demand patterns, while traditional transit systems excel in serving downtown com-
muters. Nevertheless, maintaining a synergy between both systems is crucial for
addressing the full spectrum of demand patterns. Identifying the sweet spot between
the size of the AMoD fleet and the level of transit services emerges as a key strategy

for maximizing efficiency across all commuter types.
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6.5 Conclusions and Future Work

In this chapter, we introduce a comprehensive optimization framework designed to
jointly optimize the transit networks and frequencies, specify the size and distribution
of AMoD fleets, and determine service pricing, all with the objective of minimizing
commuters’ total disutility. We propose an optimization model for the integrated
design of Transit-Centric Multimodal Urban Mobility with Autonomous Mobility-on-
Demand (TCMUM-AMoD) systems, which incorporates commuters’ mode and route
choice behavior via discrete choice models. The proposed optimization model is a
mixed integer non-linear program (MINLP) which is intractable to solve at a large
scale. Therefore, a first-order approximation algorithm is employed which can solve
the problem efficiently. This framework has been tested through a real-world case
study in Chicago, encompassing a variety of demand scenarios. The outcomes validate
the effectiveness of our model in generating system design solutions. Moreover, the
findings reveal the efficiency of AMoD wvehicles in meeting local demand patterns
and the efficacy of transit vehicles in accommodating downtown and long-distance
commuting needs. Meanwhile, the study highlights the importance of striking an
optimal balance between AMoD wvehicle availability and transit service levels when

designing the integrated urban mobility systems.

There are several limitations in this work. Firstly, it does not account for dynamic
information within the commuter decision-making process. The discrete choice model
applied assumes that commuter preferences for modes and routes are based on static
information, an assumption that may not hold true in real-world scenarios. While
real-time travel data for traditional transit systems pose a challenge, AMoD systems
offer up-to-the-minute information on waiting times and estimated arrivals. Secondly,
the model overlooks real-time traffic conditions, which can be significantly impacted
by the introduction of AMoD wehicles, particularly in congested areas near subway
stations. Lastly, the operational dynamics of AMoD systems, including vehicle rebal-
ancing to redistribute vacant vehicles across different areas, are not considered. This

aspect could notably enhance system efficiency. Addressing these limitations presents
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valuable avenues for future research.
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Chapter 7

Conclusion

7.1 Summary: Results and Contributions

This dissertation outlines a framework for creating a robust and integrated urban
mobility system. It implements and evaluates multiple decision-making approaches
under uncertainty, using real-world transportation scenarios. In this section, we sum-

marize the key empirical results and methodological contributions of the dissertation.

7.1.1 Empirical Results

From an empirical perspective, this dissertation assesses the performance of multiple
models within a real-world context. These empirical findings offer valuable insights
into handling demand uncertainty in practical operations and demonstrate how inte-
grated system designs perform under various demand scenarios. In this section, we

will summarize the main empirical findings of the entire dissertation.

Vehicle Rebalancing.

In Chapter 2, we evaluate three models designed to solve the wvehicle rebalancing
problem: 1) matching integrated vehicle rebalancing (MIVR), 2) independent vehicle
rebalancing (VR) and 3) fluid-based empty car routing policy (FERP). Our findings
demonstrate that MIVR consistently outperforms both VR and FERP in terms of
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reducing customer wait times.

When comparing MIVR with VR, performance differences emerge based on demand-
to-supply ratio and demand prediction error. Under conditions of a low demand-to-
supply ratio, MIVR excels by achieving shorter wait times and requiring fewer vehicle
rebalances. However, as the demand-to-supply ratio increases, MIVR necessitates re-
balancing more vehicles than VR. This increased rebalancing makes MIVR more
vulnerable to demand uncertainty, leading to poorer performance compared to VR
when both the demand-to-supply ratio and the demand prediction error are high.

In contrast, when MIVR is compared with FERP, it is observed that MIVR ef-
fectively reduces customer wait times by taking more frequent vehicle rebalancing
actions. FERP, while quicker in decision-making due to its consistent strategy over
fixed time periods (e.g., 2 hours), lacks the responsiveness of MIVR. MIVR updates
its strategy based on the system'’s state at the beginning of every decision interval (ev-
ery 5 minutes in the experiments), solving an optimization problem to generate new
rebalancing decisions. Despite requiring more computational resources, MIVR’s pro-
cess can be executed within seconds for large-scale networks, offering a more dynamic

and responsive solution to the vehicle rebalancing challenge.

Handling Demand Uncertainty in Vehicle Rebalancing.

In Chapters 2 and 3, we explore various methods for handling demand uncertainty
within the framework of the MIVR model. These methods include robust optimiza-
tion, predict-then-optimize framework, and data-driven optimization. Our simulation
results demonstrate that the robust MIVR approach can significantly reduce customer
wait times while requiring fewer vehicle rebalancing. By adopting a conservative po-
sition in the face of uncertainty in demand, robust MIVR improves overall system
performance.

The predict-then-optimize framework performs well when demand forecasts are ac-
curate. However, in scenarios with large prediction errors, underestimating demand
leads to better system outcomes by minimizing customer wait times. Demand un-

derestimation introduces a level of conservativeness in vehicle rebalancing decisions,
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which is a key factor in the success of robust MIVR.

Data-driven approaches outperform the predict-then-optimize framework when
faced with high-demand prediction errors. Moreover, these approaches maintain a
computational advantage over robust optimization methods while delivering compa-
rable results. It is also important to note that data-driven MIVR models benefit from
the sparsity property, meaning that considering only a small proportion of historical

demand data can yield excellent performance outcomes.

Quantification and Reduction of Disparity in Vehicle Rebalancing.

In Chapter 4, we delve into quantifying and reducing disparity within the vehicle
rebalancing problem, which consists of two main components: upstream demand

prediction and downstream vehicle rebalancing.

Upstream Demand Prediction: The disparity here refers to the variance in
prediction errors across different regions. We quantify this disparity using two met-
rics: the Mean-Variance of the Percentage Error (MVPE) and the Generalized En-
tropy Index (GEI). Observing significant error disparities within the existing demand
prediction framework, this dissertation introduces a Social Aware Spatio-Temporal
Graph Convolutional Network (SA-STGCN) framework. The SA-STGCN framework
is able to reduce MVPE and GEI by 11.6% and 12.1%, respectively, without compro-

mising the accuracy of the predictions.

Downstream Vehicle Rebalancing: In this component, disparity is understood
as the service disparity experienced by customers from different regions, quantified by
the standard deviation of customer wait times across regions. To address this issue,
we propose an equity-enhanced version of the MIVR model, which incorporates equity
weights derived from the SA-STGCN framework. This model effectively reduces the
variability in customer wait times by 8.43%, while maintaining a similar average wait

time, thereby enhancing service equity across different geographic areas.
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Handling Demand Uncertainty in Transit Scheduling.

In Chapter 5, we address the issue of demand uncertainty within transit systems by
proposing a robust transit frequency setting model. This model is designed to generate
transit schedules that are resilient against fluctuations in demand. Additionally, a
stochastic transit frequency setting model using stochastic optimization methods is
introduced as a benchmark to compare against the robust model. Multiple demand
scenarios were created to evaluate the performance of various transit schedules along
a specific transit corridor in Chicago.

Under typical demand scenarios, both the robust and stochastic transit schedules
demonstrated superior performance compared to the current operational schedules
and those generated using static optimization models. When comparing the robust
and stochastic schedules directly, the robust schedules were found to reduce in-vehicle
travel time but increase wait time for passengers.

In scenarios of surge demand, the robust schedules clearly outperformed the
stochastic schedules by reducing both in-vehicle travel and wait times. This improve-
ment indicates that robust scheduling is particularly effective under high-demand
conditions, ensuring a more reliable and efficient transit service for passengers. This
chapter highlights the importance of incorporating robustness into transit planning to
better accommodate variable and unpredictable demand patterns, enhancing overall

system performance.

Integrated System Design.

In Chapter 6, we introduce a framework designed to develop a transit-centric multi-
modal system that incorporates Autonomous Mobility-on-Demand (AMoD) services.
This framework was applied to the southern side of Chicago under various demand
scenarios to assess the impacts of integrating AMoD with traditional bus services.
The results of our analysis reveal mianced outcomes when buses are partially
replaced with AMoD vehicles. Specifically, replacing 20% of buses with 82 AMoD

vehicles resulted in a significant increase in average disutility for commuters—up by
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59.3%. In contrast, replacing the same percentage of buses with 164 AMoD vehicles
led to a 15.8% reduction in average disutility, demonstrating improved commuter

experiences.

These numerical findings indicate that integrating AMoD services into existing
transit systems is not merely a straightforward augmentation. Having only a small
fleet of AMoD wvehicles can lead to excessive delays across the system. It is therefore
essential to carefully co-design the transit and AMoD systems, ensuring an adequate
number of AMoD wvehicles are deployed to effectively replace existing low-frequency

bus services.

Moreover, the study suggests that there is an optimal configuration of buses and
AMoD wvehicles for any given demand pattern, which can maximize efficiency and

minimize commuter disutility.

7.1.2 Methodological Contributions

From a methodological standpoint, this dissertation introduces several innovative ap-
proaches designed to tackle diverse challenges within urban mobility systems. These
methods are not only applicable to the specific scenarios discussed in this work but

also hold potential for broader application in other research areas.

Matching-Integrated Vehicle Rebalancing Model.

In Chapter 2, we propose the MIVR model, and it is used as the foundation model
for Chapters 3 and 4. The MIVR model, for the first time, introduce the match-
ing component into the vehicle rebalancing problem to generate a forward-looking
rebalancing decisions. As both problems are generating vehicle movement decisions,
it provides the opportunity to fully integrate two problems under the traditional op-
timization framework. Meanwhile, the MIVR model is also more robust to demand

uncertainty in the vehicle rebalancing problem.

243



Problem-Specific Uncertainty Set for Robust Optimization.

In Chapter 2, we further utilize the robust optimization technique to handle the
demand uncertainty in the vehicle rebalancing problem. Unlike the standard ro-
bust optimization studies, we propose the problem-specific uncertainty set for the ro-
bust MIVR model. The designed uncertainty set describes what level of fluctuations
of ride-hailing demand should be considered when generating rebalancing decisions.
Other transportation-related problems should also consider formulating uncertainty

sets with real-world meanings when applying robust optimization technigues.

Socio-Aware Spatial-Temporal Graph Convolutional Network.

In Chapter 4, we propose the Socio-Aware Spatial-Temporal Graph Convolutional
Network (SA-STGCN) framework for the ride-hailing demand prediction task with
the objective of reducing error disparity. The sociodemographic information is em-
bedded in the framework by integrating with the adjacency matrix, which incorpo-
rates the spatial locality information. Meanwhile, disparity-reduced loss regulariza-
tion terms are added in the training loss function to further reduce the error disparity
in the demand prediction. The proposed SA-STGCN framework can be used in other

transportation-related problems to get a “fairer” prediction.

Transit Downsizing Approach.

In Chapter 5, the Transit Downsizing (TD) approach is introduced to reduce the prob-
lem size in transit frequency setting when employing robust optimization techniques.
This approach reduces the size of the demand matrix utilized in the optimization
model. The TD method is intuitive because transit planning should focus on the
demand profiles of frequent users while disregarding less frequent demand patterns.
This method is universally applicable to any transit-related problems that incorpo-
rate a demand matrix. Given that transit demand matrices are typically sparse and
large-scale, the TD approach proves to be an effective strategy for reducing problem

complexity.
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7.1.3 Results and Contributions of Each Chapter

Robust Matching-Integrated Vehicle Rebalancing in Ride-Hailing System

with Uncertain Demand

In this chapter, we formulate the MIVR model, which incorporates the driver-customer
matching component into the consideration of vehicle rebalancing decisions made by
ride-hailing operators, to protect rebalancing decisions against future demand uncer-
tainty induced by inaccurate demand estimates. We evaluate the performance of our
model by comparing against a benchmark VR model and a state-of-the-art model,
named fluid-based empty-car routing policy (FERP), using real-world ride-hailing
trip data from the New York City. Comparing to the VR model, the MIVR model
reduces the average customer wait time by 4.4% and the total non-occupied VMT
by 8.5%. The MIVR and VR perform differently under different scenarios. When
having more vacant vehicles compared to future demand, the MIVR model conducts
less wehicle rebalancing operations compared to the VR model. When a large fleet
is available, a Pareto improvement can be found regarding the overall non-occupied
VMT, the average vehicle rebalancing trips, the average customer wait time and the
number of unsatisfied requests. Comparing to the FERP, the MIVR model reduces
the average customer wait time by 18% while generating a more proactive rebalancing

strategy with 24% more non-occupied VMT.

To further immunize solutions against demand uncertainty, we propose the robust
MIVR model by introducing RO techniques. The robust MIVR is especially effective
when the supply of ride-hailing vehicles is sufficient and most requests can be satisfied,
reducing average customer wait time by up to 41%. Under both sufficient-supply and
insufficient-supply cases, the robust MIVR model prevents rebalancing decisions from
inaccurate demand estimation by rebalancing fewer vehicles. Additionally, introduc-
ing robustness into the MIVR model generates rebalancing decisions that performs
better than decisions produced by the nominal MIVR model under most demand

scenarios.
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Data-driven Vehicle Rebalancing with Predictive Prescriptions in the Ride-

hailing System

In this chapter, we introduce a novel data-driven optimization approach, predictive
prescriptions, into the vehicle rebalancing problem to handle demand uncertainty in
the ride-hailing system. Building upon a state-of-the-art vehicle rebalancing model,
MIVR proposed in the Chapter 2, point-prediction-driven optimization models and
data-driven optimization models are proposed to improve the model performance
against demand uncertainty. Compared to robust MIVR models, data-driven MIVR
models achieve competitive operational performances while being more computational

efficient.

Regarding point-prediction-driven optimization models, a graph convolutional
LSTM and two zone-based LSTM models are constructed in this paper to predict
future demand for each sub-region. As for data-driven optimization models, SAA
and predictive prescription with KNN and ORT are introduced in this paper. A
real-world simulation with NYC data is used to evaluate model performances under
four different demand scenarios. Between the data-driven optimization and point-
prediction-driven optimization models, one should make a decision based on supply
to demand ratio and the prediction accuracy. When the future demand can be pre-
dicted accurately, point-prediction-driven optimization models should be adopted.
When the demand is volatile and hard to predict, data-driven optimization models
perform better. The system performances can be further improved for data-driven
optimization models when the supply to demand ratio is higher, indicating more
idle vehicles are available to be redistributed. Among all data-driven optimization

methods, predictive prescriptions perform better by leveraging auxiliary information.

Meanwhile, prediction errors over the future demand in the vehicle rebalancing
problem can be beneficial to system performances when errors come from demand
underestimation. The “conservativeness” brought by the demand underestimation
improves the system performance due to highly uncertain demand in the future. The

best-performing data-driven optimization model, predictive prescription with KINN-5,
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iz also compared with the robust MIVR proposed in Chapter 2, which utilizes robust
optimization techniques to protect rebalancing decisions against demand uncertainty.
The robust MIVR model reduces the customer unsatisfaction rate while conducting
fewer vehicle rebalancing trips. On the other hand, predictive prescriptions reduce
the average customer wait time but serve fewer customers.

From a practical perspective, rebalancing models need to be selected ahead of
schedule. When considering a whole day’s demand, demand uncertainty and pre-
diction accuracy of predictive models change from time to time. Therefore, a pood
operation strategy is to separate the whole operation period into high and low uncer-
tainty periods based on historical demand data. For low uncertainty periods, point-
prediction-driven optimization models should be adopted. As for high uncertainty
periods, data-driven optimization models, including robust and predictive prescrip-

tion models, can be applied.

Disparity-Reducing Vehicle Rebalancing in the Ride-hailing System

Service disparity issues are naturally embedded in the vehicle rebalancing problem.
This chapter presents a pioneering framework aimed at reducing disparity in both
predicting ride-hailing demand and delivering equitable service to riders. The frame-
work introduces a Socio-Aware Spatio-Temporal Graph Convolutional Network (SA-
STGCN), which integrates a socio-enriched adjacency matrix and bias-reduction reg-
ularization methods. Additionally, it features a wvehicle rebalancing engine that in-
corporates equity considerations into its objective function. This framework was
evaluated using a simulator with real-world ride-hailing data, demonstrating that
the SA-STGCN maodel not only outperforms standard demand prediction models in
increasing accuracy but also in reducing error disparity. Significantly, mitigation in
disparity at the demand prediction stage lead to more equitable service delivery in the
vehicle rebalancing process. The vehicle rebalancing module, enhanced with equity
weights, showed a notable reduction in the standard deviation of customer wait times
by 6.5%, while not diminishing the system efficiency for ride-hailing platforms.

The proposed framework offers a viable approach for ride-hailing companies to
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reduce service disparity into their operations, and it provides a basis for government
regulations aimed at preventing service imbalances across different areas. However,
realizing the win-win scenario highlighted in the study involves addressing practical
challenges. A key solution lies in developing driver incentive mechanisms. These
mechanisms should ensure that drivers are motivated to serve in underserved com-
mumnities and that their earnings remain stable despite such commitments. As the role
of ride-hailing services becomes more central in our everyday activities, it’s erucial to
make certain that these platforms maintain a strong commitment to social respon-
sibility and proactively enhance the well-being and inclusiveness of the communities

they operate in.

Robust Transit Frequency Setting Problem with Demand Uncertainty

In this chapter, two major issues are addressed when generating transit schedules:
i) inherent demand uncertainties, and ii) gigantic OD matrices. To protect transit
schedules against demand variations, a robust TFSP model is proposed. To the best
of the authors’ knowledge, this chapter is the first to apply RO technique for solving
TFSPs. A nominal optimization model is formulated to solve the TF5Ps under a
single transit line setting, and an extended model considering crowding levels on
transit vehicles is proposed.

To solve optimization problems efficiently given real-world transit instances, the
Transit Downsizing (TD) approach is proposed based on the observation where transit
demand matrices are sparse. We theoretically prove that the optimal objective func-
tion of the problem after TD is close to that of the original problem (i.e., the difference
is bounded from above). A benchmark stochastic TFSP model is also formulated to
demonstrate the robust performance of the TFSP model. Real-world transit lines
operated by CTA are used to test the performance of the transit schedules generated
with the proposed models compared to the current transit schedule. Both stochastic
and robust transit schedules reduce wait times and in-vehicle travel times simulta-
neously for passengers over multiple demand scenarios. Compared to benchmark

stochastic schedules, robust schedules further reduce passengers’ wait times by up to
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2.94% and in-vehicle travel times by up to 1.27% under the surge demand scenario.

Design of Transit-Centric Multimodal Urban Mobility System with Au-

tonomous Mobility-on-Demand

In this chapter, we introduce a comprehensive optimization framework designed to
jointly optimize the transit networks and frequencies, specify the size and distribution
of AMoD fleets, and determine service pricing, all with the objective of minimizing
commuters’ total disutility, which consists of waiting and walking time. We pro-
pose a Mixed Integer Non-Linear Program (MINLP) for the integrated design of
TCMUM-AMoD systems, employing a first-order approximation algorithm that effi-
ciently solves the problem on a large scale. This framework has been tested through

a real-world case study in Chicago, encompassing a variety of demand scenarios.

The outcomes validate the effectiveness of our model in generating system de-
sign solutions. Moreover, the findings underscore the efficiency of AMoD vehicles in
meeting local demand patterns and the efficacy of transit vehicles in accommodating
downtown and long-distance commuting needs. Crucially, the study highlights the
importance of striking an optimal balance between AMoD vehicle availability and
transit service levels when designing the integrated urban mobility systems. There
exists an optimal transit-AMoD configuration under any demand patterns. Also, the
results show that passengers’ mode and route choice behaviors play an important role

when designing the multimodal mobility system.

7.2 Implications

In this section, we discuss the implications of this dissertation, particularly how the
promising numerical results of the proposed methodologies offer practical insights for
the industry. Industry professionals have a substantial opportunity to learn from the
findings of this dissertation and consider adopting some of the proposed methodologies

to optimize their operations.
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7.2.1 Ride-sharing Industry

Chapters 2, 3, and 4 of this dissertation introduce methodologies designed to address
the wehicle rebalancing problem, which is pivotal for the efficiency of ride-sharing
platforms like Uber and Lyft. Currently, these platforms incentivize drivers to repo-
sition themselves through dynamic pricing mechanisms. Although vehicle rebalancing
algorithms are not directly implemented in the current system, decisions generated
from the proposed MIVR models could provide a foundational baseline to establish
such dynamic pricing more effectively.

With the rapid development of autonomous driving technologies, the emergence
of "robo-taxis” is anticipated globally. This shift will give platforms complete control
over their fleets, making vehicle rebalancing the most critical operational challenge.
Therefore, it is important for the ride-sharing industry to develop and implement
models that can efficiently solve vehicle rebalancing problems.

Moreover, given the inherent uncertainties in ride-sharing demand, it is crucial
to implement vehicle rebalancing models that are robust against such uncertainties.
This dissertation proposes three types of models to manage demand uncertainty in
vehicle rebalancing: 1) demand prediction + MIVR, 2) data-driven MIVR, and 3)

robust MIVR. Table 7.1 details the implementation aspects of these three models.

Maodel MIVE Data-driven MIVE. Robust MIVE

Data requirement No historical | Historical information | Estimation of uncer-
data required tainty level from his-

torical data

Demand prediction Yes No No

requirement

Computational High Medium Low

efficiency

Table 7.1: Implementation requirements for MIVR models.

For ride-sharing platforms, selecting the appropriate vehicle rebalancing model is
crucial and depends on the predictability of demand. The baseline MIVR model is
ideal when demand can be accurately predicted, suitable for scenarios with stable or

known demand patterns, allowing efficient vehicle distribution and minimized waiting
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times. In contrast, the data-driven MIVR model is recommended when demand is
challenging to predict, striking a balance between computational efficiency and robust
performance.

In terms of the robust MIVR maodel, it suffers from its higher computational
complexity, although it can serve more customers and reduce waiting times. More-
over, the robust MIVR model requires the level of uncertainty to be predetermined
manually, which can be cumbersome if the uncertainty level changes frequently. In
general, each model offers distinet advantages and challenges, necessitating a strate-
gic approach to model selection based on the specific conditions and demands of the

operational environment.

7.2.2 Public Transit Industry

Chapters 5 and 6 of the dissertation delve into robust operations and integration
with AMoD services for transit systems, particularly relevant in the context of per-
manently reduced transit ridership in the post-pandemic world. This shift provides
an opportunity for transit agencies to reassess and improve their system designs and
operations to enhance service delivery.

Chapter 5 introduces a robust transit frequency setting model that can help transit
agencies create more reliable schedules by accounting for demand fluctuations. Such
robust schedules are better equipped to adapt to uncertainties and changes in demand.
Implementing this model involves establishing a process for estimating the level of
demand uncertainty using historical data. Since transit agencies typically update
their schedules quarterly based on historical data, integrating the robust model into
the current decision-making process could be done seamlessly.

Chapter 6 explores the integration of transit and AMoD services, offering insights
from the perspective of transit agencies. It discusses two approaches for replacing
parts of the bus fleet with AMoD vehicles, as demonstrated in numerical experiments.
From a capital cost perspective, this replacement could reduce overall passenger disu-
tility and enhance user experience. For transit agencies looking to implement such an

integrated system, key steps would include purchasing a sufficient number of AMoD

251



vehicles for local deployment, developing a user-friendly app for AMoD service re-
quests, and implementing backend operations for real-time management of AMoD
system and design of integrated system. While implementing such a comprehen-
sive system poses challenges, transit agencies might also consider outsourcing AMoD
services to specialized companies like Waymo or Cruise. In such cases, the primary
responsibility of the transit agency would be the design of an integrated system, which
can be effectively addressed using the model proposed in this dissertation. Also, fares
structures of two systems need to be integrated. This approach simplifies the oper-
ational demands on the transit agency while leveraging the expertise of established
AMoD providers.

7.3 Future Research Directions

7.3.1 Overcome Limitations in Existing Studies

The studies discussed in this dissertation have several limitations that offer opportuni-
ties for further studies in future research. In Chapter 2, the uncertainty set I{*(I") has
a limited impact on system performance. More effective and interpretable uncertainty
sets could be designed to model uncertainty in the ride-hailing system. In addition,
the MIVR model could be extended to solve the problem of vehicle rebalancing in
the shared MoD system.

In Chapter 3, we found that the vehicle rebalancing problem can be beneficial
to system performances when errors come from demand underestimation. However,
predictive models usually aim for “unbiasedness”, and weight overestimation and un-
derestimation equally. A possible future research direction is to develop predictive
models for ride-hailing systems which have an asymmetric loss function that favors
underestimation over overestimation. Meanwhile, the extra benefits brought by con-
servativeness due to demand underestimation should have a limit. Future research
could identify such an underestimation level where vehicle rebalancing benefits the

most. Another future research direction can be the introduction of robust data-driven
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optimization techniques into the MIVR model, which combines the benefits of both

data-driven optimization and robust optimization.

In Chapter 4, we do not make a formal judgement on what is a fair vehicle rebal-
ancing operation. Instead, we try to understand and reduce the disparity within the
system, which serves as the foundation for understanding the fairness in the system.
More analyses can be performed to better understand and achieve fairness in vehicle
rebalancing. Meanwhile, it would be beneficial to include a focus on driver behav-
ior and earnings, which this study has not addressed. A comprehensive framework
could be developed to reduce disparity in all aspects of ride-hailing vehicle rebalanc-
ing operations: error disparity in demand prediction, pricing disparity for riders, and
earnings disparity for drivers. Such a framework should ensure that drivers who are
redirected to serve underserved communities are compensated equitably, comparable
to those serving in city centers. This approach would create a more balanced and fair

environment for all parties involved in the ride-hailing ecosystem.

In Chapter 5, the main limitation of this study is using heuristics to solve the
robust TFSP model without proof of optimality. Meanwhile, the parameter control-
ling the size of the uncertainty set needs to be selected manually. Future studies
could develop methodologies for decreasing problem sizes while maintaining a certain
level of optimality loss. Data-driven approaches can be introduced to automatically
select the value of uncertain parameter I'. Also, our demand data only provides the
time information when passengers actually board transit vehicles or enter subway
stations, knowing more time information (e.g., the deadline for passengers to arrive
at their destinations) could further introduce passengers’ time preferences into the
model. Another interesting research direction is pattern generation. Our model has
the ability to select an optimal set of patterns to operate on a single transit line.
However, how to generate a set of potential patterns for a single transit line can be a
challenging task. Performances of different pattern generation algorithms can be eval-
uated through our proposed TFSP model. Meanwhile, other sources of uncertainty
in transit systems can be considered when generating robust transit schedules, e.g.,

supply uncertainty (last-minute driver absence) and travel time uncertainty. Lastly,
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the proposed TFSP model can be extended to solve a network-level frequency setting

problem with multiple transit lines.

In Chapter 6, there are several limitations and can be potentially addressed in
the future study. Firstly, it does not account for dynamic information within the
commuter decision-making process. The discrete choice model applied assumes that
commmuter preferences for modes and routes are based on static information, an as-
sumption that may not hold true in real-world scenarios. While real-time travel data
for traditional transit systems pose a challenge, AMoD systems offer up-to-the-minute
information on waiting times and estimated arrivals. Secondly, the model overlooks
real-time traffic conditions, which can be significantly impacted by the introduction
of AMoD wvehicles, particularly in congested areas near subway stations. Lastly, the
operational dynamics of AMoD systems, including vehicle rebalancing to redistribute
vacant vehicles across different areas, are not considered. This aspect could notably

enhance system efficiency.

7.3.2 Generalization of Dissertation

In this dissertation, the numerical experiments evaluating each proposed model are
specifically conducted for New York City or Chicago. This context-specific numerical
results raise the question of whether the insights and findings can be generalized to
other cities or different contexts. Generalizability is a critical aspect of research, and
exploring this could provide a valuable direction for future studies. In this section,
we will discuss the potential for generalizing the MIVR model as a specific example.

Additionally, the approaches proposed in this dissertation, such as transit down-
sizing, possess potential for broader application beyond the specific cases examined.
These methodologies could be adapted and applied to a variety of problems in ur-
ban mobility design and operations. Future research could explore these possibilities,
examining how the methods developed in this dissertation could be modified to suit
different urban contexts or applied to solve different types of problems within the

realm of urban mobility.
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Generalization of Matching-Integrating Vehicle Rebalancing

In Chapter 2, we examined the performance of the MIVR model in relation to the
supply-to-demand ratio, in comparison to the standalone VR model that does not
include a matching component. The findings indicate that the MIVR model redis-
tributes fewer vehicles when the supply-to-demand ratio is high, and more vehicles
when it is low. The advantages of the MIVR model over the VR model increase as the
supply-to-demand ratio grows. These results are specific to the Manhattan network,
which has a grid-based structure. However, the outcomes might differ or not hold
true in different network configurations.

My hypothesis regarding the pgeneralization of MIVR performances is that the
MIVR model will generate an increased number of rebalancing trips as the demand-
to-supply ratio rises. Figure 7-1 illustrates my expectations for how the number
of rebalancing trips will change with increasing demand-to-supply ratios in two dis-
tinct road networks: Boston and Manhattan. The Manhattan network represents
a standard grid-based structure. In contrast, the Boston road network exhibits a
clique-based structure, characterized by well-connected local regions that are linked

together by several express roads.
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Figure 7-1: Relationship between demand-to-supply ratio and number of rebalancing
trips.

In grid-based networks, the number of rebalancing trips increases smoothly as
the demand-to-supply ratio rises. Conversely, in clique-based networks, we expect

to observe a “jump” in the number of rebalancing trips when the demand-to-supply
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ratio increases. This is because when the ratio is low, each local clique has sufficient
available vehicles, making inter-clique rebalancing unnecessary. However, once the
demand surpasses a certain threshold, it becomes necessary to rebalance vehicles
across different cliques.

To further validate this hypothesis, experiments could be conducted in various
cities to observe how these patterns manifest in different urban layouts. Addition-
ally, these relationships should be theoretically modeled within a vehicle rebalancing
framework to predict and understand the dynamics under different urban structures

and demand conditions.

7.3.3 Incorporate Different Sources of Uncertainty

As introduced in Chapter 1, there are three principal sources of uncertainty impact-
ing urban mobility systems: i) supply uncertainty, ii) demand uncertainty, and iii)
environmental uncertainty. Figure 7-2 illustrates how each operational problem can
be aligned with a source of uncertainty to forge new research avenues. In this section,
I will explore a specific future research direction that involves integrating travel time

uncertainty into the matching decisions of ride-sharing systems.

Strategic Planning Decision Uncertainties Orpeerafions Uncertainties

[ Timswbling

Tactical Flanning Deckion

(a) Transit system (b) Ride-sharing system

Figure 7-2: Uncertainty in public transit and ride-sharing systems.

Robust Matching with Travel Time Uncertainty

Existing methodology frameworks for driver-customer matching make assumption of

deterministic travel times, where in reality travel times are highly uncertain. When
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customers request rides from ride-sharing platforms, they typically receive time infor-
mation, such as estimated time of arrival (ETA) and expected wait times. The time
estimation could easily go wrong and significantly impact customer satisfaction with
the platform. Customers could experience excessive wait times and leave the system
or arrive at their destinations beyond the promised ETA.

Figure 7-3 provides an example showing why it is important to incorporate travel
time uncertainty in the ride-sharing operation. Two available vehicles {v{, 75}, and
three customer requests {ry, o, 73} are included in this example. Red arrows represent
the optimal pick-up routes for vehicles to serve all customer requests under each
scenario. Colored road segments have volatile traffic conditions and different matching
and routing decisions are made under different traffic conditions. Under normal traffic
conditions shown in Figure 7-3a, vehicle v, utilizes colored road segments and picks up
both customer requests r; and r3. Under congested traffic conditions shown in Figure
7-3b, both vehicles avoid colored road segments, and vehicle vs picks up both customer
requests r; and ry. With existing matching and routing algorithms, vehicle routes
in Figure 7-3a are adopted and customers could experience excessive waiting when
traffic becomes congested. With robust matching and routing algorithms considering
travel time uncertainty, vehicle routes in Figure 7-3b are adopted since it is less likely

that customers will experience excessive wait times under given routes.
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(a) Matching with normal traffic condition (b) Matching with congested traffic condition

Figure 7-3: Ride-sharing example under normal and congested traffic conditions.

To integrate travel time uncertainty into the driver-customer matching compo-
nent of ride-sharing systems, robust and stochastic optimization techniques can be

utilized. However, the primary challenge with these techniques is maintaining com-
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putational efficiency. The driver-customer matching problem in dynamic ride-sharing
requires decisions to be made within seconds, and incorporating sophisticated models
to account for travel time uncertainty typically leads to increased computational com-
plexity. Therefore, any proposed approaches must be specifically designed to balance

the ability to handle uncertainty with the need for real-time decision-making.

7.3.4 Quantitative Analysis between Integration and Robust-

ness

Chapter 6 is motivated by the hypothesis that system integration serves as a response
to the uncertainty in the urban mobility system. As depicted in Figure 7-4, there
are three general strategies to address system uncertainty: 1) improving prediction
accuracy, 2) enhancing system responsiveness, and 3) mitigating the consequences of
uncertainty. The robust models developed in Chapters 2 and 5 exemplify the approach
of mitigating consequences of demand uncertainty in ride-sharing and transit systems,
respectively.

The integration of AMoD with traditional transit systems enhances system re-
sponsiveness by introducing more adaptable AMoD services. This integration allows
for greater flexibility in managing fluctuating demand and can potentially reduce the
negative impacts of uncertainty in certain scenarios. However, the effectiveness of this
integration may vary depending on the specific uncertainties faced by the system.

The integrated system tends to be more robust against changes in demand pat-
terns, primarily because it offers a broader array of travel options to customers.
Ride-sharing services, which provide convenient door-to-door transportation across
the city, complement traditional transit systems that might struggle with demand
fluctuations due to their fixed schedules and limited adaptability in real-time.

Conversely, system-level uncertainties such as sudden surges in demand can expose
vulnerabilities in the integrated system. During peak demand periods, the flexibility
of ride-sharing, while penerally advantageous, becomes a liability due to the low
capacity of individual vehicles, which are ill-equipped to handle large volumes of
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Figure 7-4: Integration as a response to uncertainty.

passengers. In contrast, transit systems, despite their inflexibility, can transport
large groups of people efficiently over longer distances. In such scenarios, integration
could potentially exacerbate system weaknesses rather than mitigate them.

The effectiveness of using integration as a response to uncertainty within the urban
mobility context requires a more meticulous examination. It is crucial to identify
under what conditions system integration enhances robustness and against which
types of uncertainty. Furthermore, the degree of robustness that system integration

contributes should be quantifiable.

7.3.5 Operations of Integrated Urban Mobility System

Lastly, the operations of an integrated urban mobility system represent a significant
area for future research. In Chapter 6, we proposed a methodological framework
to design such a system. One key insight from our findings is the importance of
co-designing the systems for optimal performance. Merely layering one service onto
another can lead to sub-optimal outcomes for the system as a whole. This insight

holds true for the operations phase as well.
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When operating an integrated public transit and ride-sharing system, implement-
ing timed transfers can create seamless connections between the two services. For
instance, transit schedules could provide precise time windows that ride-sharing ser-
vices need to meet for first-mile trips to transit stations. Similarly, knowing the transit
schedules allows for proactive rebalancing of ride-sharing vehicles to transit stations
to meet demand for last-mile trips from the stations to passengers’ final destinations.
Such strategic operational integration enhances the efficiency and effectiveness of the

integrated urban mobility system.
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Appendix A

Chapter 2 Appendix

A.1 Derivation of The Robust Counterpart

Given the following generic constraint

L(-)+v'¢<e VCel, (A.1)
where L(-) indicates a function of decision variables in problem (P'), v is a vector
in dimension nk and ¢ is a scalar, it is equivalent to
L(- Tt <e A2
() +maxvi¢<ec (A.2)
By taking the convex conjugate of constraint (A.2) we derive the following equiv-
alent constraint
L)+ 8" (v |U)<e, (A.3)

where §(v | i) is an indicator function such that d(v | ) = 0 if v € U, otherwise
o(v | U) = co. §*(v | U) is the convex conjugate of (v | U). Then we introduce

Lemma 2 to help with deriving the robust counterpart [/ ].

Lemma 2. For a constraint @l = + 15*{PT$ | Z) < b, let Zi,..., Z; be closed convex
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sets, such that (), ri(Z;) # 0, and let Z = Nf_; Z;. Then,

k k
51 2) = min, {35 2) | ) v =},

i=1 i=1

and the constraint becomes

alz + Y8 8y | Z:) <b
Ef=1 y'=P'z

Let Up = {C : |[¢]le < p} and Up = {C : [eT(CoX*)| < T},Vk € K, where
¥* € R™ denotes a vector with (ik)-th entry equals to ¢¥, ¥i € N, and other
entries equal to zero. The uncertainty set I{ can be written as: U = N{_glfi. By
applying Lemma 2 to constraint (A.3), we develop the following robust counterpart

for constraint (A.1):

L(-) + 250 0%(0k | Us) < c

(A.4)
Dok =v
Which is equivalent to
r -
L(-) +pllfoll, + T X (nf +15) < e
{?}f‘ — nﬂ")crf' = E}';f“ VieN,Vk=keK
105 =0 VieN,VE£K e K (A.5)

k>0 Vke K

RE;;D ﬂk =1

Where @, € R™ and Hf;,k represents (ik)-th entry of vector 8., V&' € K.

Lvi(Z,) indicates the relative interior of the set Z,.
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A.2 Benchmark Vehicle Rebalancing (VR) Model

In this section, we formulate a benchmark vehicle rebalancing (VR) model to test the
performance of our MIVR model. With similar notations to the MIVR model, we
introduce several additional parameters. Let P* QF be regional transition matrices
regarding vacant vehicles in time period k, which are learned from the historical data.
Pfﬂ stands for the probability for a vacant vehicle in sub-region i at time k to be
in sub-region j at time k + 1 and becomes occupied. Similarly, Qf,jj denotes the
probability for a vacant vehicle in sub-region ¢ at time k to be in sub-region j at

time k + 1 and remains vacant. Two regional transition matrices satisfy the following

condition:

Z{ Q=1 VieN, VkeK.

i=1

Then the benchmark VR model is:

s kg b K kg

(VR) min D ¥ % afidi+a-y Y |SF—rf] (A.6a)
i-'li k=1 i=1 j—l k=1 i=1
s.t. 35:29:;_25:;”;‘“ Yie N, Vke K (A.6h)
V=3 "QLsuST+) QR0F VieN, VkeK\{x}  (A6c)
OF1 = Z Pk, SF+ ZPﬁOj‘ Vie N, ¥k e K\ {s} (A.6d)
i=1 j

Y el <V¥ VieN,VkeK (A.6e)

j=

k
af, -2k =0 VieN, Vke K (A.6f)
af. eR*Y Vi,jeN,VkeK (A.6g)
SEVEOFeRY VieN,VkeK (A.6h)

Where the objective function (B.la) consists of vehicle rebalancing cost and a
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service availability function with a weight parameter o to minimize the difference
between available vehicles and estimated demand in each sub-region. Constraints
(B.1b) to (B.1d) define the relationship between available vehicles S, vacant vehicles
VF and occupied vehicles OF. The maximum number of available vehicles that can
be rebalanced is restricted by constraints (B.1le). Constraints (B.1f) impose the feasi-
bility restrictions for rebalancing decisions, and the non-negativity of integer decision
variables are guaranteed by constraints (B.1g) and (B.1h). To increase the compu-

tational efficiency while maintaining a satisfying solution, we further relax integer

decision variables z*., Sk

k. SE,VF and OF to positive real numbers R*.
The VR model proposed in this section is sufficient to show the benefit of integrat-
ing matching into the VR problem. When having different VR models with the area

partitioning assumption, a matching-integrated version can always be constructed.

A.3 Optimal Assignment of Drivers to Customers

In this section, the driver-customer assignment problem implemented in the matching
engine of the simulator is deseribed. Within each matching decision time interval 4,
let & = {ry,...,rx} denote a set of waiting customers and V = {vy, ..., vm} represent
a set of vacant vehicles in the system. Between a customer r; and a vehicle v;, let
T(r;, v;) indicate the minimum travel time for the vehicle to pick up the customer.
The maximum pickup time for customers is denoted by w. First, we construct a
bipartite graph G = (V, E), where V = R UV and E = {e(r;,v;) : Vr; € R,Vu; €
V,7(r;,v;) < @}, meaning that an edge exists between a vehicle and a customer if
the customer can be picked up by the vehicle within the maximum pickup time. The
cost of each edge e(r;,v;) equals to the pickup time, i.e., Cefr,0,) = T(r:,v;). The
decision variables for the optimal assignment problem are Ze,.;) € {0,1} for each
edge e(r;,v;) € E in the bipartite graph G, and y,, € {0, 1} for each customer r; € K.
Teriw;) = 1 indicates that the customer r; will be picked up by the vehicle v; in the
optimal assignment. y,, = 1 implies that the customer r; will not be assigned to any

vehicles during the current decision time interval 4. Let Z(r;) represent the set of
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edges connected to a customer vertex r; in &. Similarly, let 7(v;) indicate the set of
edges connected to a driver vertex v; in G. The optimal driver-customer assignment

problem is:

min Z Ce(ri,v) Te(riv;) 4+ - Z Ur, (A.Ta)
e(ry,v;)EE rieR
s.t. Y Tep S1 Vo; €V (A.7h)
eirg,vy ) €L(vy)
Y Ty FU¥n=1 VreR (A.7c)
e(ri,vj)€1{ri)
Te(rvg) = {D: 1} 1"i‘f"':l:ﬂﬂ'i':a U_‘i} = {ATd}
U, € 0,1} VrieR (A.Te)

The objective function (C.1a) minimizes the summation of the total pickup time
and penalties for unsatisfied requests, where + stands for the penalty VMT for each
unsatisfied customer. Constraints (C.1b) ensure that each vehicle can only be as-
signed to at most one customer. Constraints (C.1c) guarantee that each customer is
either served by a wvehicle or remained waiting during the current matching period.
Constraints (C.1d) and (C.1e) make sure that the decision variables are binary. The
optimal driver-customer assignment problem can be solved efficiently by the off-the-

shelf ILP solvers (e.g., Gurobi) in the simulation.

A.4 Estimation of Regional Transition Matrix

In this section, the process for estimating the regional transition probability matrices
for occupied and vacant vehicles, P, ), P, and )., with the real travel time and
demand data are described. There are several assumptions we made to generate

these matrices:

¢ Given a travel time and distance between the origin and the destination of a

request, the vehicle travels with a constant speed.
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¢ Given the origin and the destination of a request, the vehicle travels along the

shortest path with regards to travel time.

e For vacant vehicles within sub-regions, 100% of vehicles remain in the same

sub-region.

The detailed procedure is described as follows. First, the list of sub-regions crossed
by the shortest path between each origin and destination pair was determined. The
time spent within each sub-region for each origin-destination pair was weighted by
the total demand to get the average time spent in each sub-region across all trips. For
a given starting sub-region, the interzonal shortest paths, sub-region durations and
origin-destination demand patterns were used to determine the likelihood of a given
vehicle remaining in the starting sub-region, transitioning to a nearby sub-region
or making a dropoff within a time interval. These probabilities were then used to
populate P and ). Because the taxi dataset only contains information about occupied
vehicles, assumptions were made for the vacant vehicle zone transition probability

matrices P, and Q,.

A.5 Benchmark VR Comparison Results for Dif-
ferent Demand Scenarios

In this section, we provide the base case simulation results for four different demand
scenarios: low demand with accurate estimation in Figure A-1, high demand with ac-
curate estimation in Figure A-2, demand underestimation in Figure A-3 and demand

overestimation in Figure A-4.
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Figure A-1: Vehicle- and customer-related metrics in the simulation for the base case
under the low demand with accurate estimation scenario (0 - 6).

267



WA mes = 15 sty = 3,5
o MR maan = 8,7; stdey = 30

0 VR mean = 136! st = 4,8
e R e = 13,5 tdey = 35

o 15 0

5 in 15 0 Fid o 5
HumBar

Dibwtmrcn [mile)

(a) Vehicle non-occupied travel distance (b) Vehicle rebalancing trip distribution
distribution

VR 1346 shdew = 5,0
A - m!:.“rr:-:-ﬂ.ﬁmm-—l.l 1 TR e = 10 stdey = 3122
[ MR mean = E509: sdey = TAT

i o 0 1an 150 200 25 me »

) H 10 1 ) )
Time {seeonds)

(c) Number of customers served (per vehi- (d) Customer wait time distribution
cle) distribution

Figure A-2: Vehicle- and customer-related metrics in the simulation for the base case
under the high demand with accurate estimation scenario (6 - 10).
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Figure A-3: Vehicle- and customer-related metrics in the simulation for the base case
under demand underestimation scenario (11 - 17).
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Figure A-4: Vehicle- and customer-related metrics in the simulation for the base case
under demand overestimation scenario (20 - 24).
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Appendix B

Chapter 3 Appendix

B.1 Driver-Customer Matching Problem

In this section, the driver-customer matching problem utilized in the simulation for
evaluating the performances of vehicle rebalancing models is described. Given lo-
cations for available vehicles V = {vy,...,v,,} and locations for customers who have
requested a demand R = {ry,...,r.}, a driver-customer matching problem is solved
to assign customer requests to drivers. Between a customer r; and a vehicle v;, let
d(r;,v;) and 7(r;,v;) represent the distance and travel time for picking up the cus-
tomer, respectively. A customer will leave the system if the customer is not assigned
to any drivers within the maximum wait time 1.

To solve the driver-customer matching problem, we first construct a bipartite
graph G = (V, E), where V =RUV and E = {e(r;,v;) : Vr; € R,Vv; € V,7(r;,v;) <
w}, indicating that an edge exists between a vehicle and a customer if the customer
can be picked up by the vehicle within the maximum pickup time. The cost of each
edge e(r;,v;) equals to the pickup distance, i.e., Ce(r,v;,) = d(ri,v;). The decision
variables for the driver-customer matching problem are T, »;) € {0, 1} for each edge
e(r;,v;) € E in the bipartite graph G, and y,, € {0,1} for each customer r; € R.
Te(r;w;) = 1 TEPrEsents that the customer r; will be picked up by the vehicle v; in the
optimal matching. y,, = 1 denotes that the customer r; can not be satisfied. Let

I(r;) represent the set of edges connected to a customer vertex r; in . Similarly,
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let 7(v;) indicate the set of edges connected to a driver vertex v; in G. The optimal

driver-customer matching problem is formulated as:

min Z Ce(ri,v) Te(riv;) 4+ - Z Ur, (B.1a)
e(ry,vj)eE rER
s.t. Y Tep S1 Vo; €V (B.1b)
eirg,vy ) €L(vy)
Y Ty FU¥n=1 VreR (B.1c)
e(ri,vj)el{ri)
Te(ri,vj) € {0,1} Ve(ryv;) € E (B.1d)
yr, €{0,1} VrieR (B.le)

The objective function (B.la) minimizes a generalized cost for the driver-customer
matching which consists of total pickup distance and penalties for unsatisfied cus-
tomers. 7y is the penalty parameter for each unsatisfied customer. Constraints (B.1b)
guarantee that each vehicle can only be matched with at most one customer. Each
customer is either assigned to a vehicle or remained to wait in the system, which
is ensured by constraints (B.lc). Constraints (B.1d) and (B.le) make sure that the

decision variables are binary.

B.2 Uncertainty Set in the Robust MIVR Model

In this section, we briefly describe the uncertainty set utilized in the robust MIVR
model, more details can be found in [ ']. Given the future demand r* of sub-region i at
time k, the uncertainty set in the robust MIVR model consists of a box uncertainty
set controlled by the parameter p and a polyhedral uncertainty set defined by the

parameter [

Let pf and oF represent the mean and standard deviation of the demand in sub-

region i at time k from the historical data, respectively. The box uncertainty set

U¥(p) is defined as
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k k
Ty — 1y
G-k

i

) = {rt

where p indicates the parameter controlling the difference between historical av-

Ep} Vie N, Vk e K,

erage demand and future demand for each sub-region i at time k.

The polyhedral uncertainty set I{*(T") is defined as

> (rF— )

i=1

4 (r) = {w;, Y

where ' denotes the parameter ensuring that the overall changes across all sub-

gr} vk € K,

regions at time k should not exceed I'. Then the complete uncertainty set I{ used in

the robust MIVR model is

b s

IR (ﬂ)] n
1

i=1k=

=

h H“{F)] .
k=1

Larger values of p and I" lead to larger uncertainty set in the robust MIVR model,
which leads to more conservative rebalancing decisions. Besides, decentralized vehicle
rebalancing systems were proposed as contingency plans when AVs lost connections
with central dispatch systems. Chen et al. [ ] proposed a decentralized cooperative
cruising method for offline operations of AMoD fleets. Their proposed method shows

significant performance improvements compared to strategies with random-selected

destinations for rebalancing AVs under different fleet sizes.
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Appendix C

Chapter 5 Appendix

C.1 Derivation of the Robust Counterpart

In this section, we will derive the robust counterpart of the robust problem (5.13).
In problem (5.13), there are two constraints with uncertain parameter ¢, Constraints

(5.13b) and (5.13d). We reformulate two constraints as

Ci+M Y. (g?“cf-d) <a, Y¢eU(), (C.1a)
(o dt}E}_
— ol < ppt = O7f, V(o,d,t) € F, V¢ € UT), (C.1b)

where

G X X XY (ue ) e

(odt)eF veV pePad . _ odr

PV ID MDY pTY

{odt}e}‘uevpepnd — e (odt)eF

Cry=> % Z APEPT - (o,d,t) € F.

L'EFFEPDJT—TE d,p

The uncertainty set

UT)={¢: llcllee = LISl = T}
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can be reformulated as

¢4<1, V(odt)eF,

Z CEJ.J <T.

(od t)eF

Let ¢, a4 _ pf‘d""— p:‘d‘_ given two auxiliary non-negative variables p?’d‘+ =0, p:"d’_ =0

we have (' = " 4 g

1

and the uncertainty set can be formulated as

PP 4 Pt <1, W(o,d,t) € F,

> (st Hpptt) <t
(odt)eF

For the Constraints (C.1a), we can rewrite it as

(odf)eF

Cy+ max { M g9t < g, C.2
lﬂm{z“} (©2)

The second term in Equation (C.2) can be written as an optimization problem while

replacing {f‘d with the previous definition:

max Z M G’:’dl:p:‘d’-l- - p:’d‘_j (C.3a)
(e d E)EF
st pP%t 4 24T <1, V(o,d,t) € F, (C.3b)
> (ﬂﬁ"d’+ + ﬂ?’d‘_) <T, (C.3c)
(e d E)EF
PPt >0, Yo,d,t)eF, (C.3d)
Pt >0, V(od,t)eF. (C.3e)

Taking the dual of problem (C.4), we have

min Y 44T (C.4a)
(e d)eF

st. vP* Ly > Mop®, V(o,d,t) e F (C.4b)
VO Ly > — Mo, V(o dt)e F (C.4c)
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v >0, VYo,d,t)eF (C.4d)

v >0, (C.de)

where vi"d‘t and w9 are dual variables. Therefore, the Constraints (C.2) can be reformulated

by plugging in the minimization problem (C.4):

Ci+ Y w*+Tm<a, (C.5a)
(odt)eF

VO 4 oy > Mo, V(o,d,t) e F (C.5b)

vOH 4y > _Mo®, W(o,d,t) e F (C.5¢)

v >0, V(o,d,t)eF (C.5d)

vy >0, (C.5e)

and we have the robust counterpart for Constraints (5.13b).

Similarly, for Constraints (C.1b), we can rewrite it as

od cod od ad
max Tr < ut - O d,t) e F. C.6
¢eU(T) —0 } =y 2 {G? 1 } = |: }

For each (o, d, t) pair, the first term in Equation (C.6) can be written as an optimization

problem using the same replacement for uncertain parameter C:"d:

max  —op (gt — ptT) (C.7a)
st. ottt <1, W, d, ) e F, (C.7h)
S (dtpgt) < (CT¢)

(of ' EEF
o34t >0, V(d,d, ) e F, (C.7d)
o34 >0, v(d,d,t)eF. (C.7e)

Taking the dual of problem (C.8), we have

min Z p;*‘;,ft, g+t (C.8a)
(o " £ EF
st. Vo +vett 2 —a", (C.8b)
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voges +vit > 07, (C.8¢)
vy ea + 8 20, (d,d, ) € F # (0,d,1), (C.8d)
vo'iea20, Y(d,d.t)eF, (C.8e)
vptt > 0, (C.5f)

where vg;i{ﬂ o and v§*" are dual variables. The Constraints (C.6) can then be rewritten

by inserting the minimization problem (C.8) for each (o,d, t) pair:

Yo sttt <ppt—cpf, VodteF (C.9a)
(o d' #)EF
vodia+ i 2 —0p?, V(o,d,t) € F, (C.9b)
Vo + g 2 07?, Y(o.d,t) € F, (C.9¢)
v ua+vet >0, (,d,t) # (0,d,1) € F, (C.9d)
voea 20, V(od,1),(d,d,¥) € F, (C.9¢)
vp™ >0, VY(od.t)eF, (C.9f)

and we have the robust counterpart for Constraints (5.13d).

C.2 Robust Transit Schedules
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Figure C-1: The robust transit schedule with I' = 0.
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Figure C-2: The robust transit schedule with I' = 1.
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Figure C-3: The robust transit schedule with I' = 2.
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Figure C-5: The robust transit schedule with [' = 4.
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Figure C-6: The robust transit schedule with I' = 5.
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Figure C-7: The robust transit schedule with I' = 6.

Boeoeoe e 8§ o oecee e

o000 © o0 © e ©o o

o @ 0 Lo} o o

?'IIII ?:IIS I:IHI J'rlli i';ﬂ lrll.i I:Ilb I:IlS ilﬁﬂ
Tirme

Figure C-8: The robust transit schedule with I' = 7.
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Figure C-9: The robust transit schedule with I' = 8.
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Figure C-10: The robust transit schedule with I' = 9.
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