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ABSTRACT

The displacement of fossil-fuel based heating is essential for achieving decarbonization
in the building sector, which represents about a third of national emissions in the United
States. Electric heat pumps are the primary technology needed to do so, but widespread
adoption is hindered by a variety of factors including higher upfront costs and a shortage
of experienced labor to fulfill installations. This work examines the role of learning on the
cost and size of heat pump installations throughout the Massachusetts Clean Energy Center
(MassCEC) rebate program. We find that as contractors gain experience, heating systems
are downsized at the cost of less hours of displaced fossil-fuel based heating. This learning
impact is strongest for homes with a natural gas backup heater, which is the cheapest
source of heating in Massachusetts followed by electric heat pump heating. We then analyze
the structure of the MassCEC rebate, and its potential influence on the benefits of the
program.
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Chapter 1

Introduction

In 2020 the use of fossil fuels for combustion in residential and commercial buildings rep-

resented 7 and 5 percent of total CO2 emissions in the United States [1]. These emissions

are largely due to on-site burning of natural gas and oil for heating, with natural gas alone

representing 81% of direct fossil fuel CO2 emissions [1]. Buildings as a whole represent a

a third of national emissions [1], and the replacement of existing heating systems is a key

barrier to meeting net-zero goals by 2050 [2].

High-efficiency electric heat pumps, which provide the most energy-efficient solution to

space heating and cooling, are considered the most promising solution to reduce emissions

from the building sector [3]. According to the International Energy Agency (IEA), the

number of heat pumps must increase globally from 180 million (2020) to 600 million installed

units by 2030 to support the net-zero targets pledged by major economies, tripling the

existing space heated by this technology [4]. In the United States the remaining gap for

2030 goals is 15 million installations from 5 million as 2020 [5].

There are however several barriers to widespread adoption of heat pumps such as higher

upfront costs of installation compared to the replacement of existing natural gas and oil

furnaces and the lack of qualified and experienced contracting companies [4]. Furthermore,

a heat pumps reliance on an effective building envelope poses a challenge for older housing

stock that must upgrade its poor insulation for a heat pump to work efficiently [2]. Finally,

for non single-family-owned homes, the incentives to adopt a heat pump are mixed between

tenant energy savings, the building-owner’s upfront costs, and the disruption needed to
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complete an installation.

In this thesis I focus on the challenge of experienced installers by examining the effects

of learning on contractor installation behavior using data from the Massachusetts Clean

Energy Center (MassCEC) heat pump rebate program, followed by an analysis on the trade-

offs in fuel cost and emissions generated by shifting heating methods. The remainder of the

introductory chapter gives background to the heat pump installation process and the data

used. The analyses are split across three chapters:

1. The examination of individual contractor behavior and the "learning effect".

2. The development of residential building energy models to evaluate the sizing of instal-

lations.

3. An analysis of the MassCEC rebate structure and the role of "learning by doing".

Finally, this thesis is closed off with a discussion across all three sections. The primary

contributions of this work advancing of the learning by doing literature to heat pump tech-

nology, along with the novel combination of real heat pump installation data with the current

state-of-the-art building energy simulation tools to evaluate installations in a way that was

previously impossible.

1.1 Heat pumps and the pathway to decarbonizing the

residential sector

Meeting net-zero goals by 2050 requires large reductions in emissions from our buildings,

which can be achieved through various means like improved energy efficiency through retrofitting

of existing buildings, or the replacement of older housing stock. In their seminal publication,

Berrill and co-authors compare decarbonization outcomes across the evolution of housing

stock and electricity generation scenarios [6]. Specifically, they examine the evolution of

housing stock across three axes: housing stock quantity and turnover: the number of

new units built and the persistence of existing buildings, new housing characteristics:

the size and electrification rate of new homes, and renovation of existing stock: the
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depth of renovation implemented for the current existing stock. Berrill’s analysis takes into

consideration the trade-off between building new purpose-built homes that are better suited

for heat pumps and the embodied emissions resulting from the materials and construction of

the new stock. The large majority (>90%) of the installations in the MassCEC rebate data

were retrofitted heat pump systems installed in existing homes, replacing a previous natural

gas or oil furnace as the primary source of heat.

Though there is regional variability, the associated emissions with building new housing

stock outweigh the gains in average energy efficiency, making the renovation of existing

stock a more effective general strategy for the United States when combined with effective

decarbonization of electricity supply: “ER [extensive renovation] has greatest influence in

regions with cold/mixed climates, low GHG-intensity electricity, low shares of electric heating

higher shares of old housing and lower population growth. New England (northeast United

States) and New York state demonstrate the greatest potential, with 31–35% reduction of

cumulative emissions" [6]. This means that the successful implementation of heat pump

retrofits with the current stock is a winning strategy for decarbonization.

As a final note, Berrill points towards two important considerations on the use of heat

pumps for the extensive renovation strategy, the first being that heat pumps work best with

well insulated homes, which is reflected in their simulations indicating the highest reduction

in GHG emissions from combination of envelope renovations and heat pump retrofits in cold

climates [6]. The second is that heat pumps are most economical when replacing fuel oil and

propane heating, but can be more expensive than natural gas heating [6]. The implications of

cost differences between heat pumps and natural gas heating in terms of upfront equipment

and fuel (operational) cost are explored throughout this work.

Furthermore, this private cost towards the homeowner of heat pump adoption comes at

the societal benefit of reduced CO2 emissions from displaced fossil-fuel use. The tradeoff

between the two brings the economic reasoning behind subsidy programs that promote adop-

tion. Existing literature on the cost effectiveness of heat pumps point towards the cost of

electricity, and magnitude of cold weather exposure as the primary drivers of private cost [7],

[8]. Massachusetts, which is both a state with a cold climate and nationally high electricity

rates[8], makes an interesting case study for heat pump uptake. The literature surrounding
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the social benefits of increased heat pump penetration is complex and developing. On the

home-level, a heat pump displaces CO2 emissions by using electricity, but on a larger scale

poses increased demand on the electric grid, making the exact magnitude of societal bene-

fit ambiguous [9]. In the fourth chapter of this thesis, back-of-the-envelope calculations of

emissions are taken primarily as a tool for understanding the broad implications of changes

in heat pump adoption.

1.2 Required skillset and training for heat pump contrac-

tors

The deployment of a heat pump in residential properties is a demanding exercise that re-

quires a highly skilled HVAC contractor to do a variety of tasks, some of which are novel

to experienced contractors who have primarily worked with gas and oil-based heating in the

past. First, the installation of a heat pump requires a more complex assessment of the right

sizing than the evaluations commonly used for gas heaters, considering factors such as the

quality of the building’s insulation rather than solely the square footage of conditioned space

[10], [11].

Additionally, the installation of heat pumps tends to require the upgrade of existing

elements of the heating system and/or the electric system of the property. For this, installers

need to assess the expected energy demand for the climate of the location. An improper

assessment of the heating needs of the building can have a substantial impact on performance

[10]. In a recent study done by the U.S. Department of Commerce, the faults with the most

potential for performance degradation and increased annual energy consumption were duct

leakages, refrigerant under or overcharge, oversized heat pumps, and low indoor airflow due to

undersized ductworks [10]. A proper installation, therefore, requires a nuanced understanding

of a building’s heating needs, its current infrastructure compatibility, and good judgment on

whether further modifications, such as the improvement of insulation or resizing of existing

ductwork is needed.

The shortage of active training programs for contractors makes them rely on passive
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on-the-job strategies to learn how to select the right-sized heat pump for houses. There

are limited certification requirements for HVAC contractors that install heat pumps. In

Massachusetts, for instance, there are no required HVAC certifications for practice, with

optional national certifications such as the North American Technician Excellence (NATE)

certification.1 These certifications do not overlap with the certifications required for fossil

fuel-based heating: a license issued by The Board of State Examiners of Plumbers and Gas

Fitters to Journeyman or Master plumbers for gas heaters, or a Oil Burners Technician

Certificate for oil heaters [12], [13].

1.3 Learning by doing

"Learning by doing" (LBD) refers to the process by which a worker’s performance increases

over completing repeated tasks, and is often linked to the learning curve, which describes

the rate of increased productivity as the worker gains experience. Early applications of LBD

focused on its strategic implications in industrial settings, such as the decreasing amount of

labor hours needed to produce an airframe as a manufacturer’s plant gains experience [14].

In the past decade, applications of LBD have been made on renewable energy and efficiency

technologies. A prime example of this is the study on LBD throughout the California Solar

Initiative done by Bollinger and Gillingham [15]. Over a ten year period they estimate that

non-harware costs of solar panel installations have fallen by 12 cents per watt due to LBD

[15].

This finding is particularly relevant for heat pumps, where higher costs are a barrier to

widespread adoption. Second, LBD can be used as a justification for the societal cost of

rebate programs. An earlier study done by Gillingham weighs the cost of the environmental

externalities mitigated from solar panel installations against the subsidy provided [16]. The

primary finding is that the reduction in emissions from installing a solar panel are too small

to justify California’s subsidy, but with modest estimates on LBD effects decreasing cost

over time, the subsidy amount is correctly priced [16]. By estimating the effects of learning
1In order to work with refrigerants, which are used in the installation and maintenance of heat pumps and

air conditioners, Massachusetts adheres to the EPA section 608 Refrigerant Certification which is received
upon scoring a passing grade on the section 608 examination EPA-Section-608.
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in heat pump installations, this thesis seeks to draw similar insights about the economic

efficiency of the MassCEC heat pump rebate program.

1.4 MassCEC rebate program

The Massachusetts Clean Energy Center ran a rebate program for qualifying cold-climate

heat pump models from 2014 to 2019. There are two key aspects of the rebate structure:

1. The rebate is on a per-unit basis: after the base rebate for an installation, an additional

$750 or $1,000 is given per heat pump unit installed, up to three units.. So long as the

heat pump satisfies the base capacity requirement, the relevant characteristics like the

range of heating capacity or rating of the heat pump do not change the rebate amount.

2. The rebate does not require a full replacement of the previous source of heating (i.e.,

a removal of gas heater).

Table 1.1: MassCEC Rebate Compensation Structure

Rebate Type Single Head Multi Head Max Units
Base Rebate $500 $500 3
High Income $750 $750 3
Low Income $1,000 $1,000 3

In the process of applying for the rebate, homeowners or the contractors who completed

the installation detailed information about the home and heat pump system installed. The

collected data forms the basis of this work.

1.5 Rebate and home characteristics data

MassCEC rebate data

As stated in the previous section, the MassCEC rebate data is the foundational source

of information on heat pump installations. These data cover Massachusetts homes who

installed a cold-climate heat pump system between the years 2014-2019. Each recorded row

represents one home’s installation, including key information such as the location of the
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Table 1.2: Variables Available in MassCEC Rebate Data

Date of Installation
Total Cost The total recorded cost of installation, including equipment and labor.

Square Footage The square footage of living area in the home.
County The Massachusetts county in which the home is located.
Town The town in which the home is located.

Past Fuel The heating fuel source used by the home (i.e. gas or oil).
Num. Units The number of heat pump units installed.

Installed Capacity The total installed heating capacity of the installed heating system (BTU/Hr).
Is Retrofit Whether installation was in existing or home completing construciton.

Home Address The address of the home.
Contractor The name and address of the contractor who worked on the project.

home, the total cost, the number of heat pumps, the type of previous heating system was in

place, and if it was kept as a backup system (see Table 1.2).

Temporal and geographical distribution of installations

Panel a in Figure 1.1 presents the time series of installations in our sample. There is

an increasing trend in installations over our sample period. There are 2,614 installations

recorded in 2015 in our data and 6,258 installations in 2018. In addition, heat pump instal-

lations have a seasonal trend (Fig 1.1 a), peaking in the summer months and dipping in the

winter months.

Panel b in Figure 1.1 displays the regional distribution of installations in our sample.

There is a particularly high uptake of heat pumps in Barnstable, Middlesex, and Worcester

counties by pure counts.

Figure 1.1: Count of Heat Pump Installations over time (a) and by Massachusetts County
(b)

(a) Time series of installations (b) Regional distribution installations
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Table 1.3: Variables sourced from Zillow

Parcel Number Uniquely identifying number of home.
Home Type The type of home (i.e. Single Family or Multi Family).
Roof Type The type of roofing installed (i.e. Asphalt).

Exterior Features Primarily the exterior finish of the home (i.e. Shingle or Brick).
Construction Materials Material used in construction (i.e. Frame or Concrete).

Living Area Square footage of available living area.
Bedrooms Number of bedrooms.
Bathrooms Number of bathrooms.
Year Built The recorded year of completion of the home.
Heating Most recent recorded heating method of home.
Cooling Most recent recorded cooling method of home.

Price History Recorded prices of home when listed on the market as available to Zillow.
Tax History Recorded tax history of home as available to Zillow.
Zestimate Zillow’s current estimate of the home’s market value.

Zillow home characteristic data

Home characteristic data from Zillow, a home listing website containing information on

homes sourced from public records, are used to supplement the rebate data. The postal

address of the homes in the rebate dataset were used to search and scrape information off

of the Zillow website. The variables collected, when available, are listed in table 1.3. This

provides key information on the characteristics of the home used in the econometric models.

Not including a variable for the year of construction, for example, could lead to conclusions

that would have been explained by variation in age. Data made publicly available by Zillow

has been similarly used in other research for gaining parcel-level information on properties

and the neighborhoods they reside in [17], [18].

The compiled data set is a unique combination of comprehensive information about

14,396 installations within Massachusetts executed by 627 contracting companies..

Tables 1.4 and 1.5 provide the summary statistics of our final data set for the analysis. The

average cost per installation is USD 9,367. The average installation has 2.33 heat-pump

units and 29,180 BTU/hr of installed capacity. The vast majority of these installations were

retrofits to existing homes with a previous form of heating (natural gas heating for 43% and

oil-based heating for 38%). The average size of a dwelling in our sample is 1,858 square feet,

with 3 bedrooms and 2 bathrooms. Houses in our sample were built between 1803 and 2019,

with the average house in our sample built in 1961. The majority of houses in our sample

are single-family houses (93%), with only 6% of heat pumps being installed in multifamily or
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condo units. The average contractor company in our data set has installed 75 heat pumps,

with a range of installations going from 1 to 606 heat pumps.

Table 1.4: Numerical Summary Statistics

Mean Std Min 0.25% 0.50% 0.75% Max
Year of Installation 2017.00 0.94 2015 2016 2017 2018 2019
Total Cost of Installation 9367.50 5274.07 1000 4970 8207 12050 53000
Total num of HP units 2.33 1.40 0 1 2 3 15
Installed Capacity 29180.87 13565.33 6968 20300 25500 36407 144000
Home Square Footage 1858.14 674.70 300 1400 1800 2200 9767
Num Bedrooms 3.21 0.80 1 3 3 4 5
Num Bathrooms 1.97 0.80 1 1 2 2 5
Year Home Built 1961.07 33.91 1803 1950 1969 1985 2022
Last Sell Price 323730.69 246441.91 1 168000 292000 425000 5065500
Zestimate 613744.58 361905.19 133500 431425 563900 731175 9326400

Table 1.5: Categorical Summary Statistics

Num. Categories Most Frequent Frequency
County 14 Barnstable County 3277
Town 518 Falmouth 323
Backup Fuel 5 Natural Gas 6437
Retrofit 3 Yes 15400
Contractor 637 NETR LLC 606
Home Type 8 Single Family 12652

The details in the data are used for two primary purposes: (1) the use as controls in

the econometric analysis and (2) information for constructing home energy models. The

questions posed in 1.6 depend upon the data being valid and detailed enough to control

for varied housing attributes in the models such as the size of the home. Furthermore, the

home characteristics are used for a conditional sampling method, detailed in the home energy

modeling section, which similarly depends on the accuracy of the data provided. Throughout

this thesis multiple robustness checks are taken to ensure that the validity of the data holds.

1.6 Central objective

The objective of this thesis is to understand the role of learning by doing in building elec-

trification, and in doing so, better inform the policy enabling it. The analysis is broken into
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three sequential questions:

1. How do contractors vary in their installation practices in terms of the sizing of the heat

pump system installed and the total cost of installation?

2. Is contractor behavior shifting as they gain experience through a "learning" effect?

3. How are these shifts affecting the gained private and environmental benefits of heat

pump installation?

Furthermore, this work explores how policy can be better shaped to guide these outcomes.

The primary contribution of this work is the estimation of learning by doing in HVAC at a

time when heat pumps were an emerging technology in Massachusetts.
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Chapter 2

Econometric Modeling of Learning by

Doing

The two indicators available to us in the data that have tangible influence on the barriers

to heat pump adoption are the total cost of the installation, and the sizing of the system

installed. The econometric models for each respective variable are used to first estimate

the variation between contractors, and then the effect of increasing experience coded as the

accumulated number of past installations.

2.1 Methods

The estimation of the impact of contractor installation experience on the total cost of the

project and installed heating capacity is undertaken through a fixed effects modeling ap-

proach. The models control for relevant characteristics of installations, such as the hedonic

attributes of the home, as well as the fixed effect dummies of individual contractors, to

estimate the effect of added experience (learning) on installation outcomes.

We use a fixed-effects model to estimate the relationship between added experience in

heat pump installations and installation outcomes, conditional on the relevant characteristics

of the home and heating system:

Yi,c,t = λc ·+τt + γ · ln(Experiencec,t) + βXi + ϵi,c,t (2.1)
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Yi,c,t describes the two main outcomes describing the performance and costs of each

installation in our sample: ln(Capacity/Sqfti,c,t), and ln(TotalCost/Sqfti,c,t) represent the

log of installed capacity (per square footage) of the heating system and the total cost (per

square footage) of the project for home i completed by contracting company c in time t.

λc describes the fixed effects associated with contracting company c, and τt describes the

time fixed effects. Our coefficient of interest is γ, which describes the changes in costs and

installed capacity for each additional heat pump installation by contractor c at year t.

Lastly, β includes a vector of coefficients associated with the list of controls for charac-

teristics of the heating system and home that are controlled for. In particular, the vector

includes the size, year built, value of the property, type of house, number of bedrooms and

bathrooms, and the baseline heating type in the property at the time of the heat pump

installation. The standard errors are clustered at the contracting company level (c), for the

purpose of capturing unobservables correlated at the contractor level.

2.1.1 Model analysis: contractor effects

The individual effect of the contractor on either total cost or installed capacity is estimated

on the company level with λc, which are then collectively centered around 0 by subtracting

the mean. A 95% confidence interval is formulated for each contractor estimate, and is

considered significantly deviant from the mean if the bounds do not contain 0.

[
λ̄− 1.96 · std(λ)√

n
, λ̄+

1.96 · std(λ)√
n

]
(2.2)

2.1.2 Model analysis: learning

The same fixed effect models for cost and capacity are used to draw inference from γ,

the learning estimate. Given that both dependent variables ln(Capacity/Sqfti,c,t) and

ln(TotalCost/Sqfti,c,t) are log transformed, and the independent predictor represents the

log transformation of experience ln(Experiencec,t), the interpretation of the γ estimate is the

percentage increase in the dependent variable for every one percent increase in the experience

variable.
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2.1.3 Model analysis: robustness checks

The key assumptions of the fixed effects models are that the independent variables included

sufficiently control for the variation in cost and capacity not attributed to the contractor or

their learning. In order to test the robustness of the estimates presented, controls are gradu-

ally added to the model and checked for variations in the estimate produced. Estimates that

remain in the same direction and magnitude throughout various control levels are considered

to be stable and accurate.

2.2 Results

2.2.1 Contractor fixed effects

First exploring the systematic differences across contractors in pricing and installed capacity,

Figure 2.1 depicts the fixed effects associated with individual contracting companies. The

estimates presented are with the full set of home and installation characteristics included,

further explored in the robustness checks below. Each point represents the contractor-specific

average estimated added cost, holding all other control variables constant, and bars represent

the 95% confidence intervals of cost for each contractor. Estimates with intervals colored

in blue indicate contractors who have an estimated added cost that is significantly above

or below the mean. Lastly, the dependent variables of total cost and installed capacity are

standardized by the square footage of the home and log-transformed.

For a contractor’s added cost, the majority of contractors significantly deviate from the

mean (455 compared to 179). For the 25th percentile, the added cost is a 14.28% decrease

compared to the mean across all contractors. For the 75th percentile, the added cost is

20.32% increase from the mean. Equivalently, for an average house of 1,894 square feet, with

a total cost of 9,367 USD, the differences between the 25th and 75th percentile of contractor

effects are $4.2394/Sqft and $5.9505/Sqft or 8, 029.42 USD and 11, 270.25 USD.

For the contractor’s effect on installed capacity, 369 contractors are estimated to deviate

significantly from the mean. The 25th percentile of estimates is a 13.70% decrease from the

mean, and a a 16% increase for the 75th percentile.
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Figure 2.1: FE Estimates by Contractor on Total Cost and Heating Capacity

(a) Added Heating Capacity (b) Added Cost

†The Y-axis is on the log scale for (Capacity/Sqft) and (Cost/Sqft). The individual estimates x

are interpreted on in un-logged terms by taking the exponent (ex), to get the multiplicative effect
on the dependent variable. An estimate of −0.1541, translates to exp(−0.1541) = 0.8572

multiplicative effect or equivalently 14.28%

2.2.2 Learning effect on cost and capacity

Table 2.1 panel A presents the association between contractor experience and the heat-

pump capacity installed in the house. The table presents our main estimates in several model

specifications varying the controls and fixed effects described in Eq. 2.1. Once controlling for

time effects, we estimate that added experience leads to a decrease in installed capacity. As

controls for the characteristics of the home and location enter the model, this effect becomes

increasingly significant and negative. For our final model (5), the interpretation for the

estimates is that for each additional percentage increase in installations completed, the next

heat pump the contractor installs is downsized by −0.033%. Another form of interpretation

is that for every doubling in experience, contractors downsize systems by 2.3%.

Table 2.1 panel B presents the models that examine the relationship between the total

cost of installation as the dependent variable and increased installer experience. Once con-

trolling for time effects, the estimate for the effect of additional installation is negative, but

consistently remains non-significant, with relatively large standard errors throughout vari-

ous sets of controls introduced. When introducing the size of the system, the independent

variable quickly captures much of the variation, meaning that total cost is unsurprisingly

closely linked to the sizing of the heating equpment installed.
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Table 2.1: Relationship between installer experience, installed capacity, and installation
costs.

(1) (2) (3) (4) (5)
(A) Installed Capacity Models

Ln(Number Past
Installations)

-0.026**
(0.012)

-0.029**
(0.012)

-0.031**
(0.012)

-0.033***
(0.012)

-0.033***
(0.012)

DF Residuals 13,503 13,017 12,992 12,990 12,990
R-Squared 0.27 0.33 0.36 0.36 0.36

(B) Total Cost of Installation Models
Ln(Number Past

Installations)
-0.011
(0.013)

-0.018
(0.014)

-0.020
(0.014)

-0.021
(0.014)

0.011
(0.0072)

Ln(Installed Capacity) - - - - 0.94***
(0.0093)

DF Residuals 13,503 13,017 12,992 12,990 12,989
R-Squared 0.34 0.38 0.4 0.4 0.84

Controls
Installer FEs Yes Yes Yes Yes Yes

Year Installed FEs Yes Yes Yes Yes Yes
Month Installed FEs Yes Yes Yes Yes Yes

Hedonic Controls Yes Yes Yes Yes Yes
Town FEs No Yes Yes Yes Yes

Previous Heating
Controls No No Yes Yes Yes

Heat Pump Brand No No No Yes Yes
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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Table 2.2: Comparison of learning estimate in individual and combined models.

(1)
Company Only

(2)
Individual Only

(3)
Town Only

(4)
Combined Model

Company Level -0.033***
(0.012) - - -0.039***

(0.011)

Individual Level - -0.026***
(0.0090) - 0.0049

(0.0053)

Town Level - - -0.035***
(0.013)

-0.021
(0.015)

†Controlling for installer, time, town, previous heating source, heat pump type, and hedonics.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

2.2.3 Level of learning

The results reported above were made with the previous installations variable being counted

on the contracting company level. The availability of data allows us the alternative to test

whether the learning effect is stable, and if it is stronger, when counting previous installation

experience on the individual employee level and the town level. Table 2.2 contains the results

from running the models with all controls included as individual learning estimates, and as

a combined model.

Models (1) to (3) show that the effect of system size reduction as a function of experience is

decreasing on all levels, and is highest in magnitude for the company-level. Model (4) includes

all coded levels in a "horse-race", with the company-level effect winning out. Interestingly,

this finding corresponds with the previous research done on photovoltaic installations done

by Bollinger and Gillingham, where learning was on the company-level [15].

2.2.4 Heterogeneity analysis

Next, we test the learning effect on data partitioned by the type of previous heating system

in place. This has particularly important implications for the MassCEC rebate program

because most homes kept their previous form of heating as a backup heating system. Due to

the availability of data, results are shown in table 2.3 by the two primary heating sources:

natural gas and oil, followed by all remaining types gathered as "Other".

When partitioning models by the backup fuel source, the learning effect with regard to
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Table 2.3: Heterogeneity analysis of learning effect across fuel types.

(1)
All Types

(2)
Natural Gas

(3)
Oil

(4)
Other

(A) Outcome: Installed Capacity
Ln(Number Past

Installations)
-0.033***
(0.012)

-0.045**
(0.021)

-0.026
(0.016)

-0.014
(0.031)

Observations 12990 4409 5001 2025
R-Squared 0.36 0.79 0.76 0.90

(B) Outcome: Installation Cost
Ln(Number Past

Installations)
-0.021
(0.014)

-0.046**
(0.021)

-0.0076
(0.020)

-0.0081
(0.033)

Observations 12990 4409 5001 2025
R-Squared 0.41 0.80 0.78 0.91

†Controlling for installer, time, town, previous heating source, heat pump type, and hedonics.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

installed system capacity holds for natural gas, and increases in magnitude. When doing

this partition for the total installation cost models, the learning effect becomes significant

for natural gas as well. What this means is that contractors are downsizing system size over

time particularly for homes with natural gas backups, and this in turn is driving down the

total cost of installation.

2.3 Discussion

The econometric models are used as a tool to make comparisons between contractors across

different homes and installations. While comparing the size of a heating system between

two differently sized homes may not be valid, doing so over several hundreds of homes,

and controlling for variables like size and age, makes the comparison viable. From the

fixed effects models we have learned that (1) contractors are varying significantly from one

another in terms of cost of installation and sizing of the system. (2) Observing this over

gained experience, contractors are decreasing the size of systems over time across all fuel

types. (3) When sub-setting to homes with natural gas backup heating, the learning effect

on downsizing is stronger, and decreases in cost become statistically significant. (4) These
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decreases in cost are explained primarily by the reductions in the size of the system.

While these results shed light upon the direction of change, questions on whether behavior

is converging to some optimal size or cost is not yet answerable. Furthermore, the impact

of this shifting behavior on the total operational cost and end use emissions cannot be

determined without further building energy modeling. The following chapter explores these

questions.
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Chapter 3

Home Energy Modeling and the

Learning Curve

Our previous estimates indicate that the contractors are decreasing the total size of the

systems as they gain experience. The impact of the reduction is unclear without knowing

the heating needs of a home. Past research into the sizing of HVAC equipment point to-

wards systems being initially oversized to guarantee that the home’s full heat demand can

be met [10], [19]–[21]. System overisizing leads to higher upfront costs for unnecessarily

large equipment, and reductions in operational efficiency through duct leakage and low-load

cycling [21]. Learning to reduce cases of oversizing would increase the quality of heat pump

installations. This implies that in the learning process contractors first install larger heat

pumps than necessary, and then begin to decrease size to match the actual heating needed.

The results of the building energy demand models covered in this chapter, however, suggest

that the heating systems were undersized to begin with, and continued to decrease with

experience. The following policy chapter investigates the structure of the MassCEC rebate

program that can explain this finding.

In order to simulate the heating needs of the homes in the rebate data, the known char-

acteristics of the homes are used in conjunction with conditionally sampled building models

made possible through ResStock: a state-of-the-art tool developed by the National Renew-

able Energy Laboratory (NREL). ResStock combines data from multiple sources including

the EIA’s Residential Energy Consumption Survey (RECS) to create high-resolution condi-
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tional probability tables for home characteristics like square footage, insulation, window-type,

HVAC type, and HVAC efficiency [22]. The use of full characteristics with the OpenStudio

and EnergyPlus modeling framework makes foundational work towards predicting energy

demand and its corresponding challenges across the United States possible [23]–[25].

ResStock and its resulting expected energy demand outputs are used to evaluate the

sizing of the actual installed heat pump systems. The modeling is done in three key steps:

1. Housing Stock Characterization: The definition of the building stock. The na-

tional ResStock profile targets the residential buildings in the 48 contiguous states of

the U.S. This paper subsets to characteristics that match the Massachusetts homes

within the rebate data.

2. Statistical Sampling: A representative sample of home characteristics are sampled,

conditional on the definition of the housing stock. For the purposes of this work the

housing stock is characterized by location, the age of the building, and the square

footage (i.e., Massachusetts homes built in 1970-1979 that are between 1500-2000

square feet in size).

3. Baseline Building Simulations: Characteristics of homes are facilitated by the

OpenStudio software to be fed into EnergyPlus building energy simulation to assess

the heating and energy needs of homes.

The advantage of using ResStock in combination with existing heat pump installation

data is that the missing characteristics needed to simulate heating needs for comparison can

be reliable sampled by conditioning on the characteristics we do have and then simulated

through EnergyPlus. Details on sampling are in the following section.

3.1 Methods

3.1.1 Home sampling

The homes in the heat pump installation data are grouped by their characteristics to subse-

quently be sampled for in ResStock. For example, the most common grouping of homes in
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Figure 3.1: Home Energy Modeling Flow

the data are ones that were built before 1940 and have a floor area between 1500 and 1999

square feet. This grouping covers 931 homes in the data. Conditional on the location, time

built, and floor area size, we use ResStock to return a representative sample of 100 homes

that match the description, which are then simulated for a year’s worth of energy data.

The histogram in 3.2 compares the design heat load for the subgroup of home energy

models (i.e. the magnitude of heat the heating system must output to keep the home at the

set point temperature [usually 70° F)]) and the Installed Capacity at 5° F in our data.

There are 766 installations that match the group description.

The specificity of groupings can be increased, with characteristics like roof material (as-

phalt, wood shake, etc.), exterior material (brick, wood, etc.), and number of bedrooms,

showing the most promise in terms of availability. Increasing the specificity of groupings,

however, multiplicatively increases the number of sampling and simulations that must be

conducted by the dimension of the variable. The 10 categories of home age and 9 categories

of home size results in (10 · 9 = 90) subgroups, which are each sampled and simulated 100

times from ResStock, resulting in approximately 9000 simulations. Due to limitations in

time and computation, the housing stock was not specified further, but portability to high

performance computing systems is available through ResStock.
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Figure 3.2: Comparison between the installed capacity and design load for heat pump homes
that were built in the 1980’s and are between 1500-1999 sqft. in size.

Table 3.1: Ten most prevalent combinations of home vintage and floor area bin in Mas-
sachusetts heat pump data.

Home Age Subgroup Floor Area Subgroup Count
<1940 1500-1999 931
1980s 1500-1999 766
<1940 1000-1499 751
1970s 1500-1999 729
1950s 1000-1499 709
1960s 1500-1999 613
1970s 1000-1499 591
1980s 2000-2499 565
1950s 1500-1999 537
1980s 1000-1499 520
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3.1.2 Inability to evaluate sizing of heat pump system through in-

stalled and simulated capacity comparison

The most direct method of judging the sizing of the system installed is by comparing the heat

load of the home, and the optimally sized pump to meet that load, to what was actually

installed. The core issue is that most homes kept their previous heating system

from a lack of incentive structure to remove them. The lack of information on the size of the

previous heating system, and the usage strategy for it as a backup, makes direct comparisons

impractical. The distributions in figure 3.2, for example, suggest that the rebate distribution

is largely undersizing relative to the simulated ResStock heat load. With the right amount

of information on the size of the backup heating system, the combined heating capacity of

the heat pumps installed in the rebate program could be shifted rightwards to compensate,

but no such data is available.

3.1.3 Measuring quality of installation by load hours

The alternative to judging the sizing of the actual installed systems is measuring the number

of hours in which the heat pumps can sufficiently supply heat for a typical weather year. This

is done using the specific model number of the heat pumps recorded in the rebate data, which

are then matched up to the North East Energy Efficiency Partnership (NEEP) heat pump

database. Table 3.2, shows the data for a given model. Notably, heat pump performance

varies across outdoor conditions, with minimum and maximum heating capacities decreasing

at lower outdoor temperatures.

Given information on the heat pumps, the second piece to understanding the sizing is

the heating needs of the home. The ResStock simulations are used to estimate the design

heat load : the heat load the heating system must output to keep the home at the set indoor

temperature [such as 68° F] at the design temperature (which the ACAA Manual J sets

at the temperature at which 99% of the expected hourly temperatures in a typical weather

year are above for that location).

Specifically, ResStock is used to generate heat loads for 100 homes, which are taken as

a balance between addressing the uncertainty inherent in conditionally sampling models for
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Table 3.2: Heating and cooling capabilities for a Mitsubishi Electric M-Series H2i, model
number SUZ-KA12NAHZ

Heat/Cool Outdoor Temp Indoor Temp Unit Min Rated Max

Cooling 95F 80F
Btu/h 5,770 12,000 12,000
kW 0.34 0.85 0.85
COP 4.97 4.14 4.14

Cooling 82F 80F
Btu/h 6,300 - 12,300
kW 0.26 - 0.72
COP 7.1 - 5.01

Heating 47F 70F
Btu/h 7,900 15,000 18,000
kW 0.48 1.1 1.39
COP 4.82 4 3.8

Heating 17F 70F
Btu/h 4,500 9,000 15,000
kW 0.46 0.97 1.62
COP 2.87 2.72 2.71

Heating 5F 70F
Btu/h 3,300 - 15,000
kW 0.45 - 2.1
COP 2.15 - 2.09

a single home and having a reasonable computational demand. For each of the head load

estimates for a home, a heat load line is constructed to measure the installed heating systems

capabilities throughout a typical weather year.

Figure 3.3 (a) depicts the estimated heat load line for an example home that has a

heating set point temperature 60° F. At the design temperature of 15° F, the home requires

approximately 4500 BTU/hr to maintain the 60° F set point. As a simplification, the load is

assumed linear, and is 0 when the outdoor temperature is the same as the heating set point.

Similar linear assumptions have been discussed in the literature [26].

The heat load line is then used to assess the capabilities of the installed heat pump

system. The variable capacity heat pumps installed as a requirement for the Mass CEC

rebate have a functional range of heat output at various rated temperatures. Each variable

capacity heat pump has a minimum and maximum BTU/hr output capacity, which varies

by model and outdoor conditions. Given the rated capacities, the modulating range is the

space where the installed heating system can serve the heating demand of the home. Once

the heat load line is above the maximum capacity of the system, a backup heat source is

needed, marked as the backup heat range . When the heat load line is below the minimum
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Table 3.3: Cost to produce heat in Massachusetts winter 2023/24 by heating technology.

Heating Technology $ Cost per MBtu Cost per Unit of Fuel
Natural gas furnace 24.91 $2.04/therm
Air-source heat pump 32.03 $0.33/kWh
Oil furnace 40.27 $4.36/gal
Propane heating 50.33 $3.59/gal
Electric resistance 96.12 $0.33/kWh

heating capacity, the heating system will begin to low load cycle, meeting heat demand at a

lower efficiency. Figure 3.3 (b) displays the ranges for the example home.

An average weather year is matched to the location of the installation, and is used to

evaluate the number of hours in which the installed system is able to meet the full demand

in the modulation zone, and when it is insufficient and in the backup heat zone. The mean

is taken across the 100 simulations per matched actual installation.

Aside from the count of hours in each zone, the ratio between backup heating hours

and modulating hours is taken as a reference of heating hours served by the electric heat

pump system to the hours served using fossil fuels. The log-transformation is taken in the

regression model to better fit the normality assumption.

Backup Ratio =
Backup Hours

Modulating Hours

3.1.4 Calculation of emissions and annual fuel costs

Emissions and annual fuel costs per heating fuel are estimated to assess the wider impact of

system downsizing and increases in backup heating hours. The Massachusetts Department

of Energy Resources reports the cost per million Btu by heating technology[27], shown in

table 3.3.

Estimating the emissions by energy type is split by heating from electric sources (heat

pumps and electric-resistance), and fuels (natural gas and oil). The latter does not vary

from state-to-state, and is provided directly in terms of kg of CO2 emissions per million Btu

in residential and commercial buildings by the U.S. Energy Information Administration [28].

For electric-based heating, the emissions estimates are subset to the Massachusetts elec-
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Figure 3.3: Relationship between outdoor temperature, heat load, and installed system for
example home.

(a) Heat load line relative to design temperature and heating set point.

(b) Heat load line relative to installed system capabilities.

38



Table 3.4: Emissions associated with producing heat in Massachusetts winter 2023/24 by
heating technology.

Heating Technology kg CO2 per MBtu
Natural gas furnace 52.91
Air-source heat pump 42.01
Oil furnace 74.14
Electric resistance 126.00
Electric resistance 96.12

tric grid, and are prone to speculation based on the varied sources of electricity generation.

The conversion is made in two steps: (1) the derivation of kWh consumed per MBtu for an

air source heat pump (eq. 3.1) and electric resistance heater (eq. 3.2) and (2) multiplication

by the average kg CO2 produced per kWh of electricity produced for Massachusetts. Below

is step (1) using the technology-specific costs from Mass DOER:

$32.03

MBtu
/
$0.33

kWh
= 97.1

kWh

MBtu
(3.1)

$96.12

MBtu
/
$0.33

kWh
= 291.3

kWh

MBtu
(3.2)

9, 098 kTons CO2
21, 026, 161 MWh

= 0.0004327
TonsCO2

kWh
(3.3)

The total net generation from the Massachusetts Electricity Profile for 2022 [29] is divided

by the kilotons of CO2 produced to produce the average emissions per kWh of electricity in

equation 3.3. The estimates by technology are in table 3.41. Finally, each cost and emission

coefficient is multiplied by the total Btu served by the backup heating system over a year.

3.1.5 Learning model for heat load hours

Given the hours in each heat load zone and the backup ratio, the same regression-based

model described in equation 2.1 is used to estimate the learning effect on heating outcomes.

Notably the outcomes to direct backup hours and modulation hours are unaltered, while the
1Projected goals from the MassSave program set Tons CO2 emissions per MWh at 0.1869 for 2025 and

0.1065 for 2030.
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ratio is log-transformed to better support the assumption of normality. Similar heterogeneity

analyses are conducted across fuel types to examine the relationship between fuel costs and

observed learning behavior.

3.2 Results

Table 3.6 compares the impact of learning on (1) the annual number of hours in which a

simulated backup heating system is needed, (2) the annual number of hours in which the

simulated heat pump system can sufficiently supply the heat demand for a home, and (3)

the ratio of the two. For every 10% increase in the number of installations a contractor

completes, we estimate a multiplicative increase of 5.38 in backup hours2. The learning

effect on modulation hours is not statistically significant, but the ratio between the two is

in favor of increases in backup hours. This implies that as contractor experience increases,

the shift in heat pump size reductions is coming at the cost of more hours being served by

the backup system, increasing the overall portions of the year in which fossil-fuels are still

being used for space heating.

Table 3.5: Comparison of learning effects across cost, capacity, and heating hours.

(1)
Backup Hours

(2)
Modulation Hours

(3)
Ln(Backup/Mod Ratio)

Ln(Number Past
Installations)

56.46*
(33.49)

-22.70
(22.48)

0.053**
(0.022)

Observations 11424 11424 11424
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

The heterogeneity analysis across fuel types is shown in table 3.6. An ongoing thread

of results pertaining to natural gas backups having a stronger correlation to learning effects

persists. The following question is whether the differences in the cost and emissions between

natural gas and other fuel sources can be seen through the lens of experience. The impact

of learning on these outcomes split by BTU/hr for each heating technology is in table 3.7.
2Due to the natural log transformation of the independent variable, the interpretation is produced as:

ln(1.10) · 56.46 = 5.38
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Table 3.6: Relationship between backup hours to modulation hours: Ln(Backup/Mod), by
previous heating fuel.

(1)
All Types

(2)
Natural Gas

(3)
Fuel Oil

(4)
Electric Resistance

Ln(Number Past Installations) 0.053**
(0.022)

0.082**
(0.039)

0.017
(0.032)

0.018
(0.094)

Observations 11424 3817 4527 862
R-Squared 0.83 0.95 0.93 0.85

∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

Across all heating fuels, operational cost and emissions estimates are increasing as con-

tractors gain experience. When sub-setting to homes with natural gas backup systems, the

effect is again stronger. The implications of this are discussed in the next section.

Table 3.7: Realized impact of learning on annual cost and emissions by backup heating
source.

(1)
All Types

(2)
Natural Gas

(3)
Oil

(4)
Electric Resistance

(A) Outcome: Ln(Annual Fuel Cost)
Ln(Number Past

Installations)
0.011*

(0.0056)
0.016**
(0.0066)

0.0077
(0.0075)

-0.00076
(0.043)

(B) Outcome: Ln(Annual Emissions)
Ln(Number Past

Installations)
0.014**
(0.0062)

0.022***
(0.0075)

0.0088
(0.0087)

-0.00076
(0.043)

Observations 10378 3813 4523 862
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

3.3 Discussion

Prior to the home energy demand models, contractors were observed to be downsizing as

they gain experience, but information to whether behavior was converging to an optimal

heat pump sizing was unknown. With ResStock, we know that the heat pump systems were

undersized for serving the whole heating demand of homes to begin with, and continue to

decrease in capacity. The key question is if this "learning" behavior reaching some optimal

goal, or is it going in the wrong direction?
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The MassCEC rebate allowed homeowners to keep their previous heating system as a

backup heating source. Additionally, the rebate was on a per-unit basis, meaning that

qualifying cold climate heat pumps would receive the same amount regardless of individual

unit size. Looking at the most recent year of data available at the time of writing, natural

gas was the cheapest source of heating per million Btu of heating in Massachusetts, followed

by air source heat pumps, heating oil, and finally electric resistance heating (table 3.3) [27].

In the short-term, downsizing heat pumps to allocate more annual hours to a natural

gas backup would decrease costs, as opposed to doing so for other, more expensive fuel

sources. This strategy coincides with the findings specific to natural gas: the learning effect

on downsizing and increased backup hours is consistently stronger.
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Chapter 4

Policy Analysis and Conclusion

4.1 Economics of incentivizing heat pump adoption

The use of fossil-fuels for space heating makes up the majority of on-site emissions in buildings

[1], and heat pumps are the primary technology set to replace gas and oil-based heating. A

barrier to heat pump adoption is the higher upfront cost of installation relative to replacing

an existing gas or oil furnace [4], which subsidy programs seek to address. Incentive programs

have been used to promote adoption for earlier green technologies like electric vehicles (EVs)

and rooftop solar installations, providing potential guidance for incentivizing heat pump

adoption.

An initial concern from incentive programs is that they may not reach the target pop-

ulation, and subsidize adoption for wealthier households or "free-riders" who would have

adopted the technology without the program. For US clean energy tax credits (2006-2016),

Borenstein and Davis found that "the bottom three income quintiles have received about

10% of all credits, while the top quintile has received about 60%" [30]. This results in two

negative outcomes: economic inefficiency from spending tax credits on households that were

already inclined to adopting, and the distributional impact of subsidies not reaching low

income households. Though heat pump rebates are similarly structured as previous green

subsidy programs, the distribution of their adoption varies in some fundamental ways.

Recent work shows that there is little correlation between heat pump adoption and house-

hold income in the United States, and instead the correlation lies with geography, climate,
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Figure 4.1: Heat pump adoption barriers and policy interventions.

and electricity prices [8]. High electricity prices are negatively correlated with adoption,

highlighting the importance of fuel costs [8]. Notably, the intensity of the cold climate de-

scribed through Heating Degree Days (HDD) has a negative correlation with adoption in

the US, but is positively correlated with adoption in the European Union [8]. The south-

ern United States therefore has high rates of adoption, with Alabama, North Carolina, and

South Carolina having about 40% of homes heated by heat pumps [8].

While this mitigates concerns around the distributional effects of the subsidy by income,

it emphasizes factors observed to be working against adoption in Massachusetts: a cold

climate, high electricity prices, and low natural gas prices. The latter becomes a key point

in understanding the reasons for downsizing observed in the rebate data. In Massachusetts

the average cost per kilowatt hour is 33 cents, as opposed to 7 cents per equivalent kilowatt

hour in natural gas [27] 1. Subsidies like MassCEC’s and MassSave target the upfront cost of a

heat pump installation, but not the operational cost driven by the price of fuel. Adjustments

to electricity rate design to make heat pumps cost-competitive with natural gas, however, is
1A better comparison is not cost per kwh, but cost per BTU, which accounts for the differences in heating

efficiency between a natural gas furnace and a heat pump.
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outside the scope of this thesis2.

Finally the overall efficiency of the subsidy must be put to question. The economic

justification behind subsidies towards technology adoption like solar panels and heat pumps

is that the cost of subsidization will be equal to, or less than the societal benefit from a

reduction in negative externalities (i.e., GHG emissions) [16]. Benthem, Gillingham, and

Sweeney found that for the California Solar Initiative, the societal benefit (in the form of US

dollars) from reductions in GHG emissions through solar panel adoption only made up for a

small fraction of the cost of the subsidy [16]. With a modest progress ratio in installer learning

of 0.9, signifying that for every doubling in solar panels installed the non-hardware cost drops

by 10%, the paper finds that the existing subsidy is near optimal [16]. The existence of

learning by doing therefore is a primary motivation for the subsidy, and can play an important

positive role in the justification for subsidized heat pumps. The correct utilization of LBD

through the MassCEC subsidy and future building electrification programs, is essential to

achieving net-zero emission goals in an economically effective manner.

4.2 The direction of learning and misaligned incentives

The previous two chapters indicate that heat pumps are being downsized as contractors gain

experience, and the effect is strongest for homes that have a natural gas backup system.

Furthermore, the home energy models reveals that this shift comes at the cost of more

heating hours served by fossil-fuel backup heating, increasing annual emissions from the

learning baseline. If the intention of the rebate program was to reduce emissions and increase

full building electrification, the learning by doing externality, which worked in favor of the

California solar initiative, works against the MassCEC program’s goal.

Such instances of misaligned incentives set by electrification and efficiency programs has

been observed before. Allcott and Greenstone examine the implications of realized gains from

two Wisconsin incentive programs in their working paper "Measuring the Welfare Effects

of Residential Energy Efficiency Programs" [31]. First, they find that the programs under-
2Thesis work done by Graham Turk at the MIT Energy Initiative does look into this challenge, however,

and should be considered.

45



delivered on gained home energy efficiency, realizing only 68 percent of the engineering model

predictions [31]. Energy savings falling short of expectation are not a new finding, and reflect

a pervasive view of an "energy-efficiency" gap between expected and actual energy savings

in home energy efficiency programs[32]. The paper goes further to indicate potential reasons

for the shortcomings, and structural improvements to the rebate program. Notably, the

authors identify a misalignment between the goals of the subsidy and its spending, created

by subsidizing energy use across all heating fuels and home sizes equally [31]. What this

means is that the goals of the program, to reduce GHG emissions and the negative externality

it imposes on society, did not maximize its dollars spent towards reducing the externality.

The structure favored smaller homes that already had lower GHG emissions, and ignored the

large differences in emissions produces by heating fuel type. If the program had distinguished

between the size and heating fuel source of homes, the authors estimate that the programs

would have generated four times the gains, partially in the form of carbon abatement [31].

This misalignment in program structure points towards sub-optimal program spending, but

what about installer behavior?

Misalignment in subsidy program structure has also been shown to influence contractor

behavior. In the California Energy Savings Assistance (ESA) program, which provided

appliance upgrades for low-income households, contractors were paid a small fee to conduct

an energy audit for eligibility, and a larger fee to install the appliance if the home was

eligible [33]. Motivated by the discrepancy in compensation, the author found that for

contractors that both completed the energy audit and appliance installation, the rate of

misreported eligibility was more than doubled (7.8% to 19%) compared to cases where the

tasks were done by separate contractors [33]. The structuring of the rebate program therefore

had important impact on incentivized behavior, and the realized benefits of the program.

Unqualified appliances that were subsidized for replacement reduced energy consumption by

30% less than qualified ones [33].

This thesis distinguishes itself from the energy-efficiency gap and incentives literature

by incorporating the learning by doing aspect for heat pump technology. Even when the

oversizing of HVAC systems is the prevalent issue in the industry [10], [19]–[21], the structure

of the rebate, allowing for backup systems to remain in place, and compensating homeowners

46



per-unit independent of capacity, created incentives to where upfront installation costs and

short-term fuel cost could be decreased by undersizing the heat pump systems.

4.3 MassSave and alternative rebate structures

After the MassCEC rebate program ended in 2019, it was followed by the Mass Save program,

which also provides heat pump rebates. Notably, the incentive structure changed, only

providing the full rebate amount to whole-home heating replacement, and a capacity-based

rebate otherwise (table 4.1). A short analysis is done on data on the 163 homes that installed

heat pumps through the Mass Save program for which data is available.

Table 4.1: Mass Save Rebate Compensation Structure

Rebate Type Rebate Amount
Whole-Home $10,000 per home
Partial-Home $1,250 per ton up to $10,000

The Mass Save program involved more detailed data collection, allowing the direct com-

parison of peak building heat load, calculated through an energy auditing process prior to

installation, to the full installed capacity of the heating system (figure 4.2). When the full

replacement of heating is incentivized, the majority of installations we observe in Mass Save,

which lie above the 1:1 line, are sized at, or larger than the expected heating demand. When

compared to the installed capacity vs simulated heating demand of the MassCEC rebates,

the majority of the installations are below the 1:1 ratio line, suggesting undersized heat

pumps which need a backup to meet full heat demand.

The differences that can be seen from this short analysis is clear, but exactly what to do

about it is not. Did the change in Mass Save’s structure solve the problem? What lessons

can be learned for future incentive programs? These questions are explored further in the

final section.
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Figure 4.2: Home heating needs per square foot to installed capacity of heating systems in
MassCEC and Mass Save rebate programs.

4.4 Considerations for future policy

The importance of learning by doing has been a mainstay throughout this thesis. If utilized

properly, it can reduce the future costs of deploying new technologies, and can make up a

substantial benefit to expensive subsidy programs. With large amounts of federal money

being spent on energy efficiency and electrification through the Inflation Reduction Act, it

is as important as ever to be intentional about the direction of learning by doing.

The MassCEC program saw LBD go in the direction of reducing upfront costs of in-

stallation, and the short-term fuel cost of heating. This thesis is not here to say that this

LBD direction is wrong, but that contractor learning is happening and should be considered

when structuring policy. The macro-level tradeoff between more hours of natural gas use and

increased demand on the electric grid is complex and ongoing. "Fixing" the misalignment

in displacing fossil-fuel heating would entail a large increase in electric heating demand from

Massachusetts’ current grid, which has not been decarbonized. Whether the five years of

learning under the MassCEC rebate will have any significant effect from re-learning under
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the MassSave program is a future direction of research.

The MassCEC program was also early, starting in late 2014, bringing possible questions

on the capabilities of heat pumps at the time. While single-speed heat pumps struggle

cold climates, the MassCEC program was forward-looking and required variable-speed, cold-

climate capable heat pumps that are fully capable of serving full heating demand when

sized properly [34]. Technology at the time therefore could keep up to a full replacement

alternative.

Finally, I make three recommendations for policy that can align with the decarbonization

goals of building electrification:

1. Consider the heating fuel that the heat pump is displacing. This has an impact

on the operating cost that the electric heat pump will have to compete with, and the

externality posed by the continued burning of that fuel. For Massachusetts, we have

seen that heating oil is both more expensive than electricity and produces higher GHG

emissions per million BTU produced than natural gas, making it a low-hanging fruit

for displacement by heat pumps.

2. Consider the suitability of the building for heat pump installation. Heat

pumps rely on an effective building envelope for proper function, and as a result, a

large amount of time was spent on ensuring the heating demand of homes was properly

modeled through ResStock. The discussion on investments made towards improved

home insulation vs heating fuel switching is ongoing [24], and deploying heat pumps in

buildings where they can be most effective again ensures program dollars well spent.

3. Consider the role of learning, and its impact on new technologies. This can

take on many forms, but past thinking about the alignment of incentives with program

goals, subsidies could be tiered, paying more towards early-learners that can bring the

largest savings.
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Appendix A

Appendix

A.1 Analysis on market competition

A final aspect of the data to be explored is the spatial distribution of heat pump installations

within Massachusetts. The eyeball observation is that there are clear clusters of installers’

contracts, and it seems that many of the installers operate quite locally. This bears interest

in the context of contractors because contractors who operate near each other are presumably

competing in the same market for installations. In order to measure this, we use the HHI

index, a commonly used measure of market concentration [35]. HHI values below 1,500 are

considered unconcentrated industry, and HHI ranges between 1,500 and 2,500 are considered

to have moderate concentration [35]. Here, we group the heat pump installations into 20

sub-markets through K-means clustering, and calculate the HHI index for each sub-market,

as shown in figure A.1.

All submarkets sit below the 2,500 mark, informing us of a reasonable enough level of

competition in each locality for consumers to have a reasonable choice across competitors.

The location with the highest amount of market concentration is locality 13, with an HHI of

2,411, which is in the far west of Massachusetts and has the lowest density of installations.

The lowest amount of concentration is seen in locality 2, in the Boston area, with an HHI

306. Low market concentration is not exclusive to the Boston area. However, areas such

as localities 15 and 4 are in less dense areas of Massachusetts and still have high levels of

market competition.
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Figure A.1: HHI Index Across selected 20 Sub-Markets

(a) Locality Clustering Map (b) HHI Values per Locality

Colors in figure (a) represent the localities in which HHI was calculated. Localities were

determined through K-means clustering from point address locations of completed heat pump
installations across Massachusetts.
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