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ABSTRACT

The genome is the blueprint of human life, and it is crucial to understand its organiza-
tion. The genome organization is hierarchical with different principles dominating at different
scales. At the near-atomistic level, nucleosomes are organized as ordered chromatin fibers
or disordered chromatin arrays. Furthermore, chromatin and related proteins can function
within condensate environments. Computational modeling provides valuable insights into
such complex biological processes. Considering the complexity of chromatin and biomolecu-
lar condensates, coarse-grained (CG) modeling is essential to achieve the biologically relevant
timescales. We have developed CG models and toolkits to facilitate modeling chromatin and
related proteins. We have also applied CG protein and DNA models to study chromatin
folding and phase separation.

In Chapter 1, we begin with an overview of the hierarchical scales of genome organization.
We also introduce CG modeling as a powerful tool to understand the chromatin structures
and dynamics. In Chapters 2 and 3, we demonstrate the development of CG simulation force
fields and toolkits. In Chapter 2, we present novel CG force fields trained with contrastive
learning. We have achieved a new set of hydropathy parameters trained with a99SB-disp all-
atom force field trajectories of intrinsically disordered proteins, which accurately reproduces
their average radius of gyration. In addition, we have developed a unified force field that
captures the average radius of gyration of both ordered and disordered proteins in the train-
ing set. In the future, we will focus on benchmarking our models and existing CG models
with condensate simulations, which enables more appropriate selections of CG models based
on specific conditions. In Chapter 3, we introduce OpenABC, a versatile toolkit designed to
streamline the setup of CG simulations, especially condensate simulations. OpenABC incor-
porates diverse CG force fields within an extensible framework and is built on a simulation
platform that supports GPU acceleration, thus speeding up CG simulations.
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In Chapters 4 and 5, we shift our focus to the applications of CG simulations. In Chapter
4, we discuss the force extension and inter-chain contacts of chromatin fibers. Our CG
simulations reveal that the chromatin fiber behaves like an elastic spring under forces no more
than 3 pN, while it dramatically unstacks and unwraps at approximately 4 pN. Meanwhile,
inter-chain contacts can help unfold the native two-start fibril-like structures. The study
demonstrates that biologically relevant pN-level forces and crowding environments contribute
to the absence of 30-nm fibers in vivo. In Chapter 5, we apply Markov state models and
non-Markovian dynamics models to study the folding dynamics of tetra-nucleosomes. The
tetra-nucleosome with 10n + 5-bp linkers shows more diverse structures without dominant
native structures, while 10n-bp linkers lead to funnel-shaped free energy landscape with
a strong folding trend. Within the condensate, the transition rates slow down, while the
unfolding and folding rates are comparable. These two studies highlight that the intrinsic
physical chemistry properties of chromatin are fundamental to the genome organization in
cells.

Thesis supervisor: Bin Zhang

Title: Pfizer-Laubach C.D. Associate Professor of Chemistry
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sampling starting from diverse configurations. (B) Project MD conformations

onto the collective variables identified by tICA, and further cluster them into

microstates. (C) Employ TPT to identify ensemble of kinetic pathways con-

necting source and sink based on microstate MSM. The pathways are further

categorized into metastable path channels by LPC algorithm. The yellow,

green, and orange color represent the assignments of three path channels.

(D) Construct non-Markovian dynamics model by IGME method. The mi-

crostates are further lumped to few interpretable macrostates, and the transi-

tion dynamics are modeled by incorporating the memory kernel through the

generalized master equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Analysis results of the NRL = 167 single tetra-nucleosome system.

(A) The free energy profile along d13 and d24. (B) Top three transition path-

ways of each type of path channels. The red pathways are sequential pathways,

and the yellow ones are concerted pathways. The dots are the samples along

the top pathways. The overall flux of each path channel are labeled as per-

centage. (C) Macrostate non-Markovian dynamics model with inverse MFPT

labeled in unit (10 µs)−1. Histones are hidden for clarity. . . . . . . . . . . 110
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5.4 Analysis results of the NRL = 167 tetra-nucleosome condensate sys-

tem. (A) The free energy profile along d13 and d24. (B) Top three transition

pathways of each type of path channels. The red pathways are sequential

pathways, and the yellow ones are concerted pathways. The dots are the sam-

ples along the top pathways. The overall flux of each path channel are labeled

as percentage. (C) Macrostate non-Markovian dynamics model with inverse

MFPT labeled in unit (10 µs)−1. Histones are hidden for clarity. . . . . . . 112

5.5 Analysis results of the NRL = 172 tetra-nucleosome system. (A)

The free energy profile along d13 and d24. (B) Macrostate non-Markovian

dynamics model with inverse MFPT labeled in unit (10 µs)−1. (C)-(E) More

representative structures from most populated microstates of macrostate 3, 5,

and 6, respectively. Histones are hidden for clarity. . . . . . . . . . . . . . . 115

A.1 20 hydrophobic scale parameters trained on 7 IDPs with noise samples gener-

ated with different models. One set of noise samples were generated with the

HPS-Urry model with regularization parameter ζ = 20.0, and the other set of

noise samples were generated with the same non-bonded potential functional

form, but all the λ values are uniformly set as 0.3, with electrostatic cutoff

as 5λD (λD is the Debye length), and ζ = 10.0. The λ values in the trained

model are not sensitive to the exact parameters of the potential that produced

the noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.2 The comparison of average Rg between the simulation and reweighting on the

training set with the model trained on 41 IDPs and 20 hydropathy parameters,

which is the same model as shown in main text Figure 2. . . . . . . . . . . . 140

A.3 The comparison of average Rg between several CG models and experimental

values on test set IDPs. Here the trained model is trained with 41 IDPs and

20 hydropathy parameters, which is the same as the model shown in main

text Figure 2. Root mean square errors (RMSEs) are provided. . . . . . . . 141
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B.1 The log of the bond vector correlation, logC(n), as a function of the bond

separation n. The dots were obtained from MD simulations, with three colors

indicate three independent simulations. The lines are numerical fits to the

data. See text Section: Computing DNA persistence length with the MRG-

CG model for simulation details and computing persistence length from the

numerical fitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

B.2 Density profiles obtained from slab simulations of HP1α (left) and HP1β

(right) dimers with the MOFF model. Vertical lines are set at z = ±10

and ±50 nm. The final snapshots of the slab simulations at 260 K for HP1α

and 210 K for HP1β are shown. CG atoms with |z| < 10 nm are colored in

yellow, while the remaining are shown in blue. . . . . . . . . . . . . . . . . 167

B.3 Density profiles obtained from slab simulations of DDX4 and FUS LC with

the HPS model using the Urry scale optimal parameter set (µ = µopt
Urry = 1

and ∆ = ∆opt
Urry = 0.08) at different temperatures. Vertical dashed lines are

set at z = ±5 nm and ±50 nm. The final snapshots of the slab simulations

at 260 K are shown. CG atoms with |z| < 5 nm are colored in yellow, while

the remaining are shown in blue. This figure shows that the |z| < 5 nm

and |z| > 50 nm regimes can represent the concentrated and dilute phases,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
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C.1 Secondary structure motifs for disordered histone tails negligibly impact nu-

cleosome stability and protein-DNA interactions. The two curves correspond

to the free energy profiles of the outer layer nucleosomal DNA unwrapping as

a function of the DNA end-to-end distance. These profiles were determined

from replica-exchange umbrella simulations with biases on the end-to-end dis-

tance of the nucleosomal DNA. The two sets of simulations only differ in the

treatment of histone tails but otherwise share identical settings. The black

curve was computed using simulations performed with the same model as that

presented in the main text. On the other hand, the red curve was determined

using simulations that explicitly accounted for secondary structure biases in

the disordered histone tails. In particular, we used AlphaFold2 [322] to pre-

dict the structure of all the histone tails. We built new structure-based models

for histone tails that account for the bonds, angles, and dihedrals from these

initial structures. Therefore, the new models should reproduce the residue

folding of histone tails and their tendency to form any secondary/tertiary

structures. The umbrella centers were placed on a uniform grid [5.0:70.0:5.0]

nm. The temperature replica exchange was applied between temperatures

from 300 K to 410 K with a spacing of 10 K. Each simulation replica lasted

for 5.5 million steps with a time step of 10.0 fs, and the first 250k steps were

excluded for equilibration. We used the WHAM algorithm [311] to process

the simulation data from all temperatures and compute the free energy pro-

files. Error bars correspond to the standard deviation of the means estimated

from three independent data blocks. . . . . . . . . . . . . . . . . . . . . . . 206
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C.2 The cutoff distance used for the Debye Hückel potential has negligible impact

on the computed free energy profile. The black line is identical to the one

presented in Figure 2.1. The red curve was computed with a new set of

simulations that adopted a cutoff distance of five times Debye screening length.

The new simulations were carried out following the same simulation protocol

as those presented in the main text with the presence of 4 pN force. . . . . 207
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C.3 Rigidifying the inner layer nucleosomal DNA does not impact the energetics of

outer layer DNA unwrapping. (A) Illustration of the groups of atoms rigidified

in simulations. For simulations presented in the main text (bottom), both the

histone core and inner layer (73 bp) of nucleosome DNA (shown in blue) are

treated together as one rigid body. As an alternative treatment (top), we

only rigidified the four residues and two nucleotides (shown in blue) located

on the dyad axis to avoid nucleosomal DNA sliding. (B) Free energy profiles

of outer layer nucleosomal DNA unwrapping as a function of the DNA end-to-

end distance. These profiles were determined from replica-exchange umbrella

simulations with biases on the end-to-end distance of the nucleosomal DNA.

The two sets of simulations only differ in the treatment of rigid groups, as

illustrated in part A, but otherwise share identical settings. The umbrella

centers were placed on a uniform grid [5.0:70.0:5.0] nm. The temperature

replica exchange was applied between temperatures from 300 K to 410 K

with a spacing of 10 K. Exchanges among the replicas were attempted every

100 steps. Each simulation replica lasted for at least 5.5 million steps. The

simulations that rigidified both the histone core and inner layer of nucleosomal

DNA used a time step of 10.0 fs. The simulations that only rigidified the four

residues and two nucleotides on the dyad axis require a smaller time step of

1.0 fs to ensure energy conservation. In both cases, the first 250k steps were

excluded for equilibration. We used the WHAM algorithm [311] to process the

simulation data from all temperatures and compute the free energy profiles.

Error bars correspond to the standard deviation of the means estimated from

three independent data blocks. . . . . . . . . . . . . . . . . . . . . . . . . . 208
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C.4 Mean distances between pairs of nucleosomes at various values of nucleosome

separation n. Error bars correspond to the standard deviation of the mean

estimated from three independent data blocks. These data suggest that the

average distance between nucleosome pairs separated by four or more nucleo-

somes is larger than 13 nm. Therefore, nonbonded interactions between these

nucleosomes contribute negligibly to the overall potential energy and stability

of the chromatin structure. Therefore, neglecting their contribution to the

chromatin conformational free energy in the neural network model is a rea-

sonable approximation. See Section: Neural Network Model for the 12mer

Chromatin for more details on the neural network model. . . . . . . . . . . 209

C.5 Comparison between experimental [202] force-extension curve (black) and the

one predicted by the neural network model. The neural network model quan-

tifies chromatin stability as a function of inter-nucleosome distances. Based on

the derivation shown in Eq. C.9, when the extension force is larger than 1 pN,

the extension along z-axis (Lz) is very close to the end-to-end distance (L), so

that we approximated the z-axis extension per nucleosome using the distance

between first and last nucleosome (L) divided by 11. L at different extension

forces was calculated using umbrella simulations of the neural network model.

See text Section: Initial configurations from the neural network model and

Section: Neural Network Model for the 12mer Chromatin for simulation details.210

C.6 Two dimensional free energy profiles as a function of nucleosome unwrapping

(qwrap) and unstacking (dstack) at various extension forces determined from

umbrella simulations. See text Section: Free Energy Profiles for Chromatin

Under Tension for simulation details. . . . . . . . . . . . . . . . . . . . . . . 211
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C.7 Theoretical predictions of chromatin extension along the z-axis, Zext. We as-

sumed a harmonic potential for the end-to-end distance of the unbiased chro-

matin. Parameters in the potential were obtained from a least-square fitting

to the simulation results shown in Figure 2.1C at 0 pN. From the harmonic

potential, Zext can be computed with the analytical expression provided in

Eq. C.9. See Section: Theoretical predictions of chromatin extension along

the z-axis for a detailed discussion. . . . . . . . . . . . . . . . . . . . . . . . 212
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C.8 Comparison between the simulated (red) and experimental [202] (black) force-

extension curves. The results for simulations performed with 150 mM monova-

lent ions are reproduced from Fig. 1B. The green dot corresponds to chromatin

extension at 4pN force obtained from simulations with 100 mM monovalent

ions. We note that while previous experimental studies [285] have shown

that lower salt concentrations lead to chromatin decompaction, our results do

not contradict them. A critical difference between the results presented here

and previous experimental studies is the presence of force. In previous stud-

ies, chromatin was probed without any tension and should, in general, adopt

compact conformations. For compact chromatin, linker DNAs come in close

contact and contribute significantly to chromatin stability. Therefore, factors

that affect their repulsion, such as increasing salt concentration, will dra-

matically impact chromatin extension. However, with 4 pN force, chromatin

adopts much more extended configurations with very few contacts between

linker DNA (Figure 2.2). Histone-DNA interactions become more important

for chromatin stability and extension in these configurations as many nucle-

osomes have unwrapped. Therefore, lowering the salt concentration would

enhance attraction between histone proteins and DNA to stabilize individual

nucleosomes and reduce chromatin extension. Consistent with this interpre-

tation, many experimental studies have shown that nucleosome unwrapping

becomes more prevalent at higher salt concentrations [323]–[326]. . . . . . . 213

C.9 Additional representative chromatin structures from simulations performed

under various extension forces. The values for the extension force are pro-

vided next to the structures. Similar to the ones shown in Figure 2.2, these

structures correspond to the central configurations of the clusters identified

by the single-linkage algorithm using root mean squared distance (RMSD) as

the distance between structures. . . . . . . . . . . . . . . . . . . . . . . . . . 214
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C.10 The ensemble of simulated chromatin configurations at different forces sat-

isfy the C2 symmetry. (A, B) Average nucleosome pair-wise contact maps

computed using chromatin structures simulated with the presence of 0 and

4 pN force. The contact between nucleosome pairs (i, j) is defined as cij =〈
1−

(
rij−d0

r0

)n

1−
(

rij−d0
r0

)m

〉
with d0 = 3 nm, r0 = 8 nm, n = 6, and m = 12. The angu-

lar brackets ⟨·⟩ represent ensemble averaging. (C, D) Difference in contacts

between pairs of nucleosomes defined as ∆cij = |cij − c13−i,13−j|. The differ-

ence in contacts was designed to examine the C2 symmetry of the system.

For example, we anticipate that for the 12mer, 1-2 nucleosomes should have

comparable contacts as 11-12, 1-3 nucleosomes should have similar contacts

as 10-12, etc. We note that the 12mer does not have translational symmetry,

since n and n+m nucleosomes are not identical due to the boundary effects

and the finite length of chromatin. . . . . . . . . . . . . . . . . . . . . . . . 215

C.11 Illustration of the nucleosome coordinate system used to distinguish shearing

and normal motions. The nucleosome is shown in the coarse-grained repre-

sentation derived from the crystal structure (PDB ID: 1KX5) [4]. The origin

of the coordinate system is defined as the center of residues 63-120, 165-217,

263-324, 398-462, 550-607, 652-704, 750-811, and 885-949. The red arrow

points from the origin to the center of residues 63-120, 165-217, 750-811, and

885-949. The green arrow points towards the nucleosome dyad defined as

the center of residues 81-131 and 568-618. The blue arrow is defined as the

cross product of vectors along the red and the green arrows. See text Section:

Decomposing Inter-nucleosome Distances into Shear and Normal Motions for

further discussions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

C.12 Additional representative chromatin structures at smaller and larger distances

than the average extension at 4 pN force. The end-to-end distances are pro-

vided above the structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
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C.13 Simulations initialized from uniform chromatin configurations produce clutched

structures. See text Section: Simulations starting from uniformly extended

chromatin configurations for additional simulation details. (A) Illustration

of the two uniformly extended configurations used to initialize the umbrella

simulations. (B) Representative chromatin structures with different end-to-

end distances per nucleosome produced by umbrella simulations. We selected

configurations with the most likely α values. Numbers below the structures

correspond to values for α and the end-to-end distance per nucleosome. . . 218

C.14 Simulations with uniform chromatin configurations reproduce findings pre-

sented in the main text. See text Section: Simulations starting from uniformly

extended chromatin configurations for additional simulation details. (A) Com-

parison of the two free energy profiles as a function of end-to-end distance per

nucleosome obtained from simulations with uniform chromatin configurations

(black) and with configurations predicted by the neural network model (red).

The red curve is identical to that presented in Figure 2.1C of the main text.

The statistical equivalence of two independent sets of simulations initialized

with different configurations within error bars supports the convergence of

our results. We note that the residual differences between the two free energy

profiles highlight the challenges of sampling chromatin configurations, which

motivated our use of initial configurations predicted by the neural network

model for simulations presented in the main text. (B) Free energy profile as

a function of α. The global minimum at large α value supports the formation

of clutched chromatin configurations. . . . . . . . . . . . . . . . . . . . . . . 219
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C.15 Restricting nucleosomal DNA unwrapping reduces clutch formation. See text

Section: Simulations with Fully Rigidified Nucleosomes for additional simula-

tion details. (A) Representative chromatin structures with different end-to-

end distances produced by umbrella simulations. We selected configurations

with the most likely α values. Numbers next to the structures correspond to

values for α and the end-to-end distance per nucleosome. (B) Free energy pro-

files as a function of α = dmax
i,i+2/d

min
i,i+2 calculated from simulations under 4 pN

tension with the entire 147 bp nucleosomal DNA rigidified (black) and with

only the inner 73 bp nucleosomal DNA rigidified (red). (C) The average value

of α calculated as a function of the per-nucleosome DNA end-to-end distance

from simulations under 4 pN tension with the entire 147 bp nucleosomal DNA

rigidified (black) and with only the inner 73 bp nucleosomal DNA rigidified

(red). Error bars are calculated from the standard deviation estimated via

block averaging. For a better comparison between these two sets of simula-

tions, we only show data with per-nucleosome end-to-end distance below 10

nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

C.16 Correlation between α = dmax
i,i+2/d

min
i,i+2, the ratio between maximum and min-

imum values of the 1-3 nucleosome stacking distance, and the inter or intra-

nucleosome histone-DNA interaction energies. α was introduced to quantify

the degree of irregularity in chromatin structure. As the name suggests, The

intra-nucleosome energy (red) only accounts for the interactions between his-

tone proteins and DNA segments from the same nucleosome, while the inter-

nucleosome energy (black) quantifies interactions from different nucleosomes.

The two curves were computed using data from simulations with the 4 pN

force presented in the main text. They were shifted to set the maximum val-

ues as zero. The errorbars correspond to the standard deviation of the mean

computed via block averaging. . . . . . . . . . . . . . . . . . . . . . . . . . 221
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C.17 Representative structure of two contacting chromatin segments that adopt

more extended configurations. Extension leads to more interdigitation be-

tween the two chains. The inset highlights the interactions between inter-

chain nucleosomes. The free energy and collective variable value are indicated

as the green dot in the free energy profile. . . . . . . . . . . . . . . . . . . . 222

C.18 The average value of ᾱ as function of d̄stack determined using the same simula-

tions presented in Figure 2.5. α = dmax
i,i+2/d

min
i,i+2 was introduced to quantify the

degree of irregularity in chromatin structure. We averaged over two chromatin

segments to define the mean value as ᾱ = (αfiber 1 + αfiber 2)/2. The errorbars

measure the standard deviation of the mean and were estimated from three

independent data blocks. This plot supports the formation of irregular chro-

matin configurations with nucleosome clutches (larger ᾱ values) as chromatin

extends to break stacking interactions (higher d̄stack values). . . . . . . . . . 223

C.19 Average ᾱ (Left) and d̄stack (Right) as a function of inter-chain contact numbers

determined using simulations presented in Figure 2.5. The error bars measure

the standard deviation of the mean and were estimated from three independent

data blocks. The two plots support that chromatin become more irregular

(larger ᾱ values) and extended (larger d̄stack values) as contacts form. The

slight decrease in ᾱ for very large contacts arises from chromatin compaction as

seen in the drop for d̄stack. More contacts necessitate more compact chromatin

configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
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C.20 Free energy surface as a function of the inter-chain contacts and the average

extension of the two 12mers determined with simulations that permit (left) or

prohibit (right) outer nucleosomal DNA unwrapping. The left plot is identical

to Figure 2.5A but with a different color scale. The right plot was computed

with a new set of umbrella simulations in which the entire 147 bp nucleosomal

DNA was rigified together with the histone core. Representative structures

near the free energy minimum are shown below, with the collective variable

values indicated as green dots in free energy surfaces. See Section: Simulations

with Fully Rigidified Nucleosomes for simulation details. . . . . . . . . . . . . 225

D.1 Validate equilibrium of single tetra-nucleosome simulations. (A)-(C), The en-

ergy profiles for NRL = 167, 172, and 177 single tetra-nucleosome unbiased

simulations, respectively. Starting from restrained MD final snapshots, the

potential energy reaches equilibrium in about 20,000 steps. The energies are

averaged over all the trajectories, and error bars are manifested. The first

30,000 steps (left side of the gray dashed line) were removed from every tra-

jectory to ensure that the analyzed data were at equilibrium. The samples

collected after the initial 30,000 steps were well-equilibrated and used for anal-

ysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
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D.2 Validate the energy convergence and the simulation box is large enough for the

sea-of-nucleosome simulation. (A) The mean energy profile for relaxing the

sea-of-nucleosome simulations. Due to the large constant energy contributed

by the rigid bodies, the energy of each trajectory is shifted by removing the

value at the final snapshot. Only the first 400,000 steps are shown. (B) The

mean energy profile of the production run. Again, the energy of each trajec-

tory is shifted by the value at the final snapshot, and only the first 100,000

steps are shown. The dashed line indicates 50,000 steps, and trajectories be-

fore 50,000 steps do not undergo analyses. (C)-(E) The size distributions of the

tetra-nucleosome along the x, y, and z directions, respectively. This indicates

that the cubic box of length 55 nm is large enough for the tetra-nucleosome

to avoid touching its own periodic image. . . . . . . . . . . . . . . . . . . . . 245

D.3 To construct the MSM for the NRL = 167 system, optimize the hyperparame-

ters for (A) the number of collective variables, (B) tICA lag time, and (C) the

number of microstate clusters through cross-validation using GMRQ scores.

During all GMRQ cross-validations, the dataset is divided into four subsets.

Among these, three subsets are allocated for training, while one subset is re-

served for validation. The MSM lag time is set to 0.4 million steps. For each

hyperparameter, the cross-validation process is repeated ten times, employing

different random seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
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D.4 To construct the MSM for the NRL=172 system, optimize the hyperparame-

ters for (A) the number of collective variables, (B) tICA lag time, and (C) the

number of microstate clusters through cross-validation using GMRQ scores.

During all GMRQ cross-validations, the dataset is divided into four subsets.

Among these, three subsets are allocated for training, while one subset is re-

served for validation. The MSM lag time is fixed at 0.4 million steps. For each

hyperparameter, the cross-validation process is repeated ten times, employing

different random seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

D.5 To construct the MSM for the NRL=177 system, optimize the hyperparame-

ters for (A) the number of collective variables, (B) tICA lag time, and (C) the

number of microstate clusters through cross-validation using GMRQ scores.

During all GMRQ cross-validations, the dataset is divided into four subsets.

Among these, three subsets are allocated for training, while one subset is re-

served for validation. The MSM lag time is fixed at 0.4 million steps. For each

hyperparameter, the cross-validation process is repeated ten times, employing

different random seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

D.6 To construct the MSM for the NRL=167 tetra-nucleosome in the sea-of-

nucleosome system, optimize the hyperparameters for (A) the number of col-

lective variables, (B) tICA lag time, and (C) the number of microstate clus-

ters through cross-validation using GMRQ scores. During all GMRQ cross-

validations, the dataset is divided into four subsets. Among these, three

subsets are allocated for training, while one subset is reserved for validation.

The MSM lag time is fixed at 1.5 million steps. For each hyperparameter,

the cross-validation process is repeated ten times, employing different random

seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
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D.7 Validate the microstate MSM for the NRL = 167 system. (A) Transition

Count Matrices (TCMs) calculated at various lag times for the 530-microstate

MSM. The symmetrical nature of the TCMs substantiates the notion that the

folding dynamics satisfies detailed balance. The TCMs have been reorganized

in accordance with the PCCA+ lumping results. (B) Implied Time Scales

(ITS) plot for the 530-microstate MSM. (C) Chapman-Kolmogorov (CK) test

for the 8 most populated microstates utilizing a Markovian lag time of 0.25

million steps. The agreement between the residence probabilities predicted by

the MSM and those directly obtained from the MD simulation serves as the

validation for the MSM. The error bars in the ITS plot and the CK test plots

are calculated by bootstrapping the MD trajectories 20 times with replacements.250

D.8 Validate the microstate MSM for the NRL = 172 system. (A) Transition

Count Matrices (TCMs) calculated at various lag times for 500 microstates

MSM. The symmetrical nature of the TCMs substantiates the notion that the

folding dynamics satisfy detailed balance. The TCMs have been reorganized

in accordance with the PCCA+ lumping results. (B) Implied Time Scales

(ITS) plot for 500 microstates MSM. (C) Chapman-Kolmogorov (CK) test for

the 8 most populated microstates utilizing a Markovian lag time of 0.25 million

steps. The agreement between residence probabilites predicted by the MSM

and those directly obtained from MD simulation serves as the validation for

the MSM. The error bars in the ITS plot and the CK test plots are calculated

by bootstrapping the MD trajectories 20 times with replacements. . . . . . . 251
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D.9 Validate the microstate MSM for the NRL = 177 system. (A) Transition

Count Matrices (TCMs) calculated at various lag times for 1000 microstates

MSM. The symmetrical nature of the TCMs substantiates the notion that the

folding dynamics satisfy detailed balance. The TCMs have been reorganized in

accordance with the PCCA+ lumping results. (B) Implied Time Scales (ITS)

plot for 1000 microstates MSM. (C) Chapman-Kolmogorov (CK) test for the

8 most populated microstates utilizing a Markovian lag time of 0.25 million

steps. The agreement between residence probabilites predicted by the MSM

and those directly obtained from MD simulation serves as the validation for

the MSM. The error bars in the ITS plot and the CK test plots are calculated

by bootstrapping the MD trajectories 20 times with replacements. . . . . . . 252

D.10 Validate the microstate MSM for the NRL=167 tetra-nucleosome in the sea-

of-nucleosome system. (A) Transition Count Matrices (TCMs) calculated at

various lag times for 400 microstates MSM. The symmetrical nature of the

TCMs substantiates the notion that the folding dynamics satisfy detailed

balance. The TCMs have been reorganized in accordance with the PCCA+

lumping results. (B) Implied Time Scales (ITS) plot for 400 microstates MSM.

(C) Chapman-Kolmogorov (CK) test for the 8 most populated microstates

utilizing a Markovian lag time of 1.5 million steps. The agreement between

residence probabilites predicted by the MSM and those directly obtained from

MD simulation serves as the validation for the MSM. The error bars in the ITS

plot and the CK test plots are calculated by bootstrapping the MD trajectories

20 times with replacements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
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D.11 Visualize the representative kinetic pathways exhibiting the highest fluxes

within three distinct path channels for the NRL = 172 system. (A) Up-

sequential channel, (B) concerted channel, and (C) down-sequential channel.

The solid dots represent the centers of the microstates that the pathways tra-

verse, while the dashed dots indicate the samples belonging to those microstates.254

D.12 Visualize the representative kinetic pathways exhibiting the highest fluxes

within three distinct path channels for the NRL = 177 system. (A) Up-

sequential channel, (B) concerted channel, and (C) down-sequential channel.

The solid dots represent the centers of the microstates that the pathways tra-
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Chapter 1

Introduction

The genome is the blueprint of human life. It is remarkable that the extensive 2-meter-long

DNA is intricately packed within the tiny 10-µm cell nucleus. Since the genome is organized

hierarchically across multiple scales, different physical principles dominate at different scales

[1], [2]. The nucleosome is the most fundamental unit of the eukaryotic genome. It is a

protein-DNA complex with 147-bp DNA wrapped around a protein octamer called histone

[3], [4]. It has a heterogeneous distribution of electrostatic potentials, leading to a sticky

molecule with abundant valency and binding sites [5]. At the near-atomistic level, it is

vital to understand the structure and dynamics of chromatin, which is the polymer chain

composed of nucleosomes connected by DNA linkers. Understanding chromatin structure

and dynamics helps unravel the biologically relevant processes such as transcription and

chromatin remodeling [6], [7]. There is a notable contradiction related to the chromatin

structures: early in vitro experiments proved the existence of the 30-nm fiber with a zig-zag

topology and two stacks of nucleosomes [8], [9]; however, in vivo experiments do not support

the prevalence of 30-nm fibers, despite its significant stability in vitro [10]–[12]. Instead,

the disordered chromatin topology called the 10-nm array dominates in cells [13]. This

discrepancy suggests that certain biologically relevant factors may be neglected in some in

vitro experiments.
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The phase separation has been demonstrated as a widespread phenomenon in cells and

governs various biological processes [14]. These membraneless aggregates control biochemical

reactions by regulating the partition and dynamics of different molecules within distinct

phases [15]. Considering the Flory-Huggins theory and the polymeric nature of chromatin,

it is perhaps not surprising that chromatin can also undergo phase separation [2], [16].

Reconsidering the chromatin organization from the perspective of phase separation may help

decipher the role of chromatin phase separation in genome organization. In vitro experiments

have shown that chromatin can phase separate with liquid-like properties under various

biologically relevant conditions [17], [18]. However, the situation becomes more complicated

in vivo. The chromatin condensate shows more liquid-like properties locally, for example, at

50-150 nm length scales [19], while more solid- or gel-like at larger scales [19], [20]. Such

scale-dependent properties of the chromatin condensate can be attributed to the viscoelastic

properties of polymer condensates [2], [21]. The complexity of the phenomena calls for

methods to reveal the mechanism and improve comprehension.

Computational modeling plays an indispensable role in studying biomolecules and un-

derstanding biological processes. Molecular dynamics (MD) simulations, which describe the

motions of molecules based on interactions between molecules and the fundamental laws of

mechanics, illustrate molecular motions with complete details [22], [23]. For example, the

breathing and unwrapping of a single nucleosome can be explored through 15-µs all-atom

explicit solvent simulations. However, the chromatin folding and phase separation, which in-

volve multiple nucleosomes, occur on millisecond or second time scales [17], [24], [25]. These

processes may surpass the capacity of state-of-the-art simulation engines, even supercomput-

ers specifically designed for MD simulations [26]. To overcome the time-scale barriers, one

workaround is to apply the coarse-grained (CG) modeling. CG modeling increases sampling

efficiency by simplifying molecular representations, thus reducing the degrees of freedom and

smoothing the effective free-energy landscape. The modifications accelerate dynamics and

permit larger integration timesteps [27]. In all, CG modeling extends MD simulations to
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achieve biologically meaningful timescales and improves comprehension.

There are three aspects to consider when training CG models: the CG mapping, the CG

potential, and the learning method. All these aspects are evaluated based on the specific

problems. There are many systematic methods to determine the optimal CG mappings [28],

[29]. However, we use more intuitive residual-level CG mappings since biopolymers such as

proteins and DNA are composed of residues. The residual-level CG mappings preserve se-

quence information and support transferability to new sequences. Regarding the functional

forms of the CG potential, ideally, the CG potential should be the PMF of the given CG

mapping, which is typically a complex multi-body potential and hard to parameterize. In-

spired by all-atom force fields, traditional CG potentials approximate PMF with bond, angle,

dihedral, and two-body non-bonded interactions [30]. There are also attempts to explicitly

include multi-body effects into the CG potential as analytical functionals [31], [32]. Modern

neural networks are promising ways to capture multi-body effects [33]–[40]. However, the

neural networks may be difficult to train, and the inference is much slower than analyti-

cal functionals, hindering practical usages in large biomolecular systems. To train the CG

potential with the given resolution and functional form, we need to further select the most

appropriate learning method. The learning methods can be classified as bottom-up and top-

down methods. Bottom-up methods aim to reproduce the microscopic distributions of the

fine-grained models [30], [41], while the top-down methods seeks to capture the macroscopic

properties measured by experiments. In this thesis, we focus on the bottom-up methods.

Theoretically, the best bottom-up CG potential with the given CG mapping should be the

potential of mean force (PMF), which consistently reproduces the distributions of CG co-

ordinates based on fine-grained trajectories [42]. However, since the analytical expression

of PMF is a high-dimensional integration and impossible to solve, we need some alternative

methods to effectively achieve PMF. The existing bottom-up learning methods can be classi-

fied as three families: match gradients, match distributions, and compare distributions. The

examplary methods of the three families are force matching [42], relative entropy [43], and
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contrastive learning [44]–[46]. Although these methods are all rigorous and theoretically

lead to the unique solution of PMF, they have different features when training in practice.

Force matching requires net forces of the fine-grained model, which are not available in most

datasets; moreover, atomistic forces are extremely noisy and the mean force is hard to esti-

mate. Relative entropy demands iterations of sampling with the CG model during training.

Contrastive learning needs additional efforts for noise sampling. Researchers have to wisely

select the training method based on the available data, CG mappings, and CG functional

forms.

There are many existing CG models for biopolymers [27], [41] that provide insights

into various biological processes related to genome organization and function [1], [2], [47].

Near-atomistic residual-level CG models are particularly suitable for studying the behavior of

chromatin since they balance accuracy and efficiency. For instance, residual-level CG models

have been utilized to investigate chromatin folding [46], [48] and chromatin force extension

[49]. Additionally, many proteins play functional roles in mediating genome organization

and functions. Residual-level CG models are also appropriate for studying the interactions

between such proteins and nucleosomes or chromatin [50], [51]. Importantly, many related

proteins such as linker histones, HP1, and transcription factors have both ordered and dis-

ordered domains [52]–[54], necessitating modern CG models that work well for both ordered

and disordered proteins [55]. Residual-level CG models have been widely used to study the

phase separation of various proteins with disordered regions [55]–[59]. Since the nucleosome

concentration in cells is comparable to the nucleosome concentration in condensates mea-

sured in vitro [60], it is promising to extend the phase separation simulations to chromatin

and decipher the motions of chromatin in condensates.

In the following chapters, we will introduce our studies related to CG modeling of biopoly-

mers, including CG model optimization, toolkit development, and applications. In Chapter

2, we present a series of novel CG protein models trained with the contrastive learning as

a bottom-up approach [44]–[46]. We begin by deriving a new hydrophobic scale based on
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a99SB-disp all-atom force field trajectories of intrinsically disordered proteins. This new

set of parameters accurately reproduces the average sizes of training set trajectories and

approaches the state-of-the-art CG models in matching the experimental average sizes. To

generalize the applicability, we extend our training set by incorporating ordered proteins

and train a comprehensive model with more balanced non-bonded interactions compatible

with both ordered and disordered proteins. We will further improve our model by includ-

ing multi-body potentials and calibrate our model with existing models in the context of

condensate simulations.

In Chapter 3, we present OpenABC [61], a CG model toolkit that incorporates many

state-of-the-art CG models into a unified and extensible framework. OpenABC is built on

OpenMM [62], which is a versatile Python library optimized for GPU-accelerated simula-

tions. OpenABC streamlines the setup of CG simulations, particularly condensate simu-

lations, which are typically complicated to initialize. Meanwhile, OpenABC utilizes GPU

acceleration supported by OpenMM to significantly expedite CG simulations, especially

condensate simulations. Together with comprehensive tutorials and documentation, these

advantages make CG simulations accessible to a broader community, even experimentalists

with limited computational experience. The research article related to the study has been

published in PLoS Computational Biology 19.9 (2023): e1011442.

In Chapter 4, we shift our focus to the applications of CG models in chromatin orga-

nization. We analyze the unfolding and inter-chain interactions of chromatin fibers [49].

Our protein-DNA CG model successfully reproduces the experimental force extension curve

of the chromatin fiber, which validates the accuracy of our CG model. Furthermore, the

MD simulation reveals the unfolding mechanism. Below 4 pN, the nucleosomal stacking is

only partially broken by the shear motions. However, at about 4 pN, some stackings are

completely broken apart and the chromatin fiber splits into multiple small oligomers sep-

arated by unwrapped linker DNA. We further compute the inter-chain contact free energy

and highlight the strong inter-chain contacts. The results suggest that pN-level forces and
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high concentration contribute to the unfolding of chromatin in cells, which are biologically

relevant factors but are sometimes overlooked by in vitro experiments. This explains the

stability of the chromatin fiber observed in vitro [9], while it is less prevalent in vivo [10],

[12], [13]. The research article related to the study has been published in Nucleic acids

research 50.17 (2022): 9738-9747.

In Chapter 5, we explore the dynamics of the chromatin by investigating the tetra-

nucleosome system. We combine Markov state models (MSMs) and non-Markovian dynamics

modeling [63] with chromatin CG modeling to study two biologically important factors:

local nucleosomal concentration and linker lengths. These two factors are fundamental in

chromatin and are important to mediate the chromatin organization [17], [18], [20], [21], [64].

The tetra-nucleosome with 10n-bp linkers displays a funnel-shaped free energy landscape

with the stable fibril-like structure as the native structure. Within the condensate, the

folding and unfolding rates decrease, while the unfolding rate becomes comparable to the

folding rate, indicating the reduction in popluation of fibril-like strctures due to the long-

range contacts with other nucleosomes. Inserting an additional 5-bp into the 10n-bp linkers

induces additional twist and misaligns the nucleosomes. The tetra-nucleosome with 10n+5-

bp linkers exhibits a more flat free energy landscape, indicating a wide spectrum of partially

unfolded structures with similar stability. This study serves as a pioneering example of

applying non-Markovian dynamics modeling to study complex biological systems featuring

slow dynamics and non-negligible memory effects.
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Chapter 2

Contrastive Learning Optimized

Coarse-grained Force Field for Ordered

and Disordered Proteins

2.1 Introduction

Molecular dynamics (MD) simulations are indispensable tools to study the motions of com-

plex biomolecules [22], [23]. The large size of biomolecules and the long-time scales of bio-

logically significant motions are intrinsic challenges to computational modeling. To overcome

the challenges and relieve computational burden, coarse-grained (CG) modeling, which sim-

plifies the system by grouping atoms into CG beads and implicitly capturing solvent effects,

is essential for studying large biomolecular systems. It facilitates much simpler represen-

tations with smoother free energy landscapes [27], [30], [41]. The integration of modern

simulation platforms [26], enhanced sampling techniques [65], and CG modeling advances

the understanding of complex biomolecular behaviors.

There are a series of existing methods for training CG models, which can be categorized

as bottom-up and top-down methods. Bottom-up methods aim to fit the microscopic distri-
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butions given the data from more accurate models, typically of higher resolution [30], [42].

In contrast, top-down methods try to fit the macroscopic properties measured by experi-

ments. The two families of methods are suitable for different situations, such as different CG

resolutions and different available data. As CG modeling can be formulated as learning an

energy that ideally captures the potential of mean force (PMF) [42], many machine learning

algorithms from the energy-based model (EBM) community can be applied to training CG

models as bottom-up methods [66]. Such methods include maximum likelihood estimation,

minimizing contrastive divergence [67], score matching [68], and contrastive learning (also

known as noise contrastive estimation) [44], [45]. These methods share similarities with CG

model training methods known to the computational chemistry community. For example,

the relative entropy method [43] can be derived from the maximum likelihood principle,

while force matching [42] corresponds to score matching as both aim to match gradients of

PMF. Among these methods, contrastive learning stands out as an unbiased method that

avoids iterations or sampling during training. It also does not require force recordings or

high-order derivatives. As a trade-off, noise samples generated with a known energy function

are required as a baseline, and the training task is to distinguish data samples from noise

samples as logistic regression. Contrastive learning strikes a balance between accuracy and

efficiency. In practice, more noise samples and a good overlap between noise distribution

and data distribution help to achieve better training results [44], [45]. In particular, the

contrastive learning framework has been extended so that the noise samples can come from

known potentials instead of known normalized distributions (e.g. Gaussian distribution).

Enhanced sampling methods can be further applied to explore diverse noise samples, facil-

itating better overlap between noise and data distributions [69]. Several CG models have

been successfully trained with contrastive learning and demonstrate the power of this method

[40], [70].

In the present work, we used the contrastive learning method to train a series of trans-

ferable CG force fields based on long-time all-atom explicit solvent simulation trajectories
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performed by D. E. Shaw Research [71]–[73] and in-house simulation trajectories as our

training data. Our training data includes both intrinsically disordered proteins (IDPs) and

ordered proteins (OPs). We parameterized a new set of hydropathy parameters based on

the a99SB-disp force field trajectories of IDPs [72]. We also trained a unified model for

both IDPs and OPs with trajectories of IDPs and OPs. It balances the non-bonded inter-

actions within ordered and disordered domains, which should represent the protein-protein

interactions more faithfully. We compared our results with existing CG models developed

with top-down and other data-driven methods. The new set of hydropathy parameters pre-

cisely reproduces the average Rg in the training set. These results highlight the effectiveness

of contrastive learning as an emerging bottom-up method in the computational chemistry

community and provide a series of powerful models that can be readily used to study phase

behaviors of diverse protein sequences.

2.2 Methods

2.2.1 Train coarse-grained force field with contrastive learning

Contrastive learning converts an unsupervised learning task of learning data distribution to

a supervised learning task of distinguishing data samples from noise samples. Our goal is to

learn the distribution of Cα atom trajectories mapped from the all-atom trajectories as a re-

duced potential, which is the reduced potential of mean force (PMF) along the Cα positions.

This goal can be achieved as a logistic regression task. With N0 noise samples generated

with a known distribution or reduced energy, and N1 data samples, the log-likelihood is

l =
1

N

[
N0∑
i=1

logP (x
(0)
i ∈ X0|x(0)

i ) +

N1∑
i=1

logP (x
(1)
i ∈ X1|x(1)

i )

]
(2.1)

where X0 and X1 represent the noise and data collections, respectively, and N = N0 + N1.

The noise samples are x
(0)
i , and data samples are x

(1)
i . In our case, the noise samples come

57



from a known reduced potential u0(x), thus the noise distribution is p0(x) = exp(−u0(x)+f0),

where f0 is the reduced free energy. On the other hand, the reduced potential u1(x; θ)

includes parameters θ that remain to be optimized, and the data distribution is intended to

be captured as p1(x) = exp(−u1(x; θ
∗)+ f1), where θ∗ represents optimal parameters and f1

is the reduced free energy. The probability of recognizing a sample x as data or noise is

P (x ∈ X0|x) =
1

1 + ν−1p1(x)/p0(x)

P (x ∈ X1|x) =
1

1 + νp0(x)/p1(x)

(2.2)

with ν = N0/N1. The proof of equation 2.2 is provided in Appendix A section Proof of

contrastive learning loss based on the Bayes’ theorem. The contrastive loss L is the negative

log-likelihood. We can view all the noise and data samples as a mixed ensemble including

N samples {(xi, yi)} (i = 1, . . . , N), where xi is the sample configuration and yi ∈ {0, 1} is

the class label. We can formulate L as binary cross-entropy

L(θ,∆f) = − 1

N

N∑
i=1

[yi log σ(αi) + (1− yi) log(1− σ(αi))] (2.3)

with sigmoid σ(α) = 1/(1 + exp(−α)), logit αi = − log ν + u0(xi) − u1(xi, θ) + ∆f and

∆f = f1 − f0. Maximizing log-likelihood is equivalent to minimizing contrastive loss over

θ and ∆f . Importantly, although f0 and f1 depend on u0(x) and u1(x; θ), respectively, in

Appendix A section Prove the feasibility of viewing ∆f as an independent variable, we prove

that we can effectively view ∆f and θ as independent parameters to be optimized without

losing rigor. An intuitional explanation is that arbitrary constants can be added to u0 or u1,

thus tuning ∆f without changing p0 or p1. In the Appendix A section A sufficient condition

for the convexity of the contrastive loss, we also prove that a potential as a linear function of

θ is a sufficient condition for the convexity of L, thus leading to a unique optimal solution

(θ∗,∆f ∗). In this study, all training parameters θ satisfy this condition. Additionally, we
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added regularizer to control the scale of parameters θ. The regularizer has the form

R(θ) =
ζ

2
mean(θ2) (2.4)

where coefficient ζ is the hyperparameter that controls the strength of the regularizer. The

regularizer is a convex function of θ, and the overall loss as L+R remains convex.

2.2.2 Coarse-grained force field for disordered and ordered proteins

Here, we introduce the model that we trained for intrinsically disordered proteins (IDPs)

and ordered proteins (OPs). Since we only optimize the parameters of non-bonded contacts,

while parameters of other terms are all fixed, we only provide details of non-bonded contacts

while briefly introducing other potential terms. More details of all potential terms can be

found in Appendix A section Force field definitions.

The IDP CG model is based on a well-known CG Cα model called hydrophobic scale

(HPS) model. It is composed of harmonic bond, non-bonded contact, and Debye-Hückel

potentials

UIDP = Ubond + UAH + Uelec (2.5)

Our training target is to optimize the parameters of the non-bonded contact (i.e. parameters

of UAH), which has the Ashbaugh-Hatch (AH) functional form [74]

UAH(r) =
∑
i<j


ULJ(rij) + (1− λij)ϵLJ if rij ≤ 21/6σij

λijULJ(rij) otherwise
(2.6)

where ULJ is the Lennard-Jones (LJ) potential

ULJ(rij) = 4ϵLJ

[(
σij

rij

)12

−
(
σij

rij

)6
]

(2.7)

with ϵLJ = 0.2 kcal/mol. λij are the hydropathy parameters that depend on the amino
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acid types. We can view each λij as an independent parameter, leading to 210 independent

parameters λij. Alternatively, we apply the mixing rule λij = (λi + λj)/2, which results in

20 independent parameters λi. Most existing HPS models use the scheme of 20 independent

parameters λi [56], [57], [59]. The AH potential is a linear function of λij or λi, thus

contrastive learning leads to a unique solution λ∗
ij or λ∗

i given data and noise samples. More

details about the IDP models can be found in Appendix A section Force field of intrinsically

disordered proteins.

We also trained some unified models that can be applied to both IDPs and ordered

proteins (OPs). For unified models, IDPs and OPs share the harmonic bond, non-bonded

contact, and Debye-Hückel potential, while the OPs have additional harmonic angle, peri-

odic dihedral, and native pair potentials which are defined based on the reference native

structures. Thus, the OP potential is

UOP = Ubond + Uangle + Udihedral + Unative pair + UAH + Uelec (2.8)

The reference native structures are located from the all-atom trajectories by clustering.

Native pairs are essentially bonds between atoms that have close contacts in the reference

structure and are from the same continuous secondary structure domains. Importantly, the

native pairs are only kept between Cα atom pairs within the same continuous secondary

structure domains, while native pairs between Cα atoms from different secondary structure

domains are removed. Our mission is to correctly specify the contact strengths between

different secondary structure domains or disordered regions with the optimized λij or λi

parameters, thus correctly calibrating the non-bonded interaction strengths. More details

about ordered protein models and the selection of reference structures can be found in

Appendix A section Force field of ordered proteins and Details of noise simulations for

ordered proteins.
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Figure 2.1: Example structures and non-bonded potential functional form. (A)
Representative structures of two IDPs. (B) Reference structures of three ordered proteins.
(C) Fraction of amino acids of training set sequences. The fractions are normalized over all
the IDPs or OPs.

2.2.3 Produce noise with existing coarse-grained models

We produced noise samples with existing CG models since we need to evaluate the energy

with the noise potential. For IDPs, noise samples were generated with the optimal scale

of the HPS-Urry model (i.e. the normalized Urry scale shifted by −0.08) [57] with minor

modifications on the bond parameters and electrostatic interaction cutoffs to align with the

trained model. For each IDP, multiple independent umbrella simulations [75] were performed

with umbrella bias on the radius of gyration (Rg) to enhance sampling. For OPs, the

noise samples came from the same model as IDPs with additional harmonic angle, periodic

dihedral, and native pair terms defined based on the reference native structures. Note that

these angle, diheral, and native pair potentials are the same as the ones in the trained

model for OPs (i.e. Uangle, Udihedral, and Unative pair in equation 2.8). Umbrella samplings were

performed with umbrella bias applied to the root mean square deviation (RMSD) relative

to the same reference native structures. Samples from different umbrella simulations were

reweighted with the MBAR equation as a generalized ensemble [76]. More details about

noise simulations and reweighting noise samples are provided in Appendix A sections Details

of noise simulations and Generate the mixed noise ensemble. Importantly, with a small
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training set, we demonstrated that our results are not sensitive to the exact parameters of

the noise potential (Figure A.1), indicating that the trained model learns the distribution of

the data samples without being overly affected by the noise distribution.

2.3 Results

2.3.1 Hydrophobic scale model trained with a99SB-disp trajecto-

ries

We started by training a new set of hydropathy parameters with 20 independent parameters

λi for the HPS model and IDPs. We used the Cα trajectories extracted from a99SB-disp

all-atom explicit solvent simulation trajectories [72] of 41 IDPs as our training data (Figure

2.1A, 2.1C). a99SB-disp is the state-of-the-art all-atom explicit solvent force field for IDPs

[72], [77]. By training the model with contrastive learning, we obtained a new set of hy-

dropathy parameters (Figure 2.2A) that can accurately reproduce the Rg of proteins in the

training set (Figure 2.2B). We also compared with two other popular Cα IDP force fields,

which are HPS-Urry and Mpipi force fields [57], [58]. Previous comparisons have shown that

these two force fields perform the best in predicting the average experimental Rg of many

IDP sequences [58]. Our comparisons show that HPS-Urry performs similarly to our model

in the training set in reproducing the all-atom trajectory average Rg (Figure 2.2B). In the

test set, our model approaches the other two models in matching the experimental average

Rg (Figure A.3). It is worth mentioning that some CG IDP force fields parameterized with

top-down methods, such as the HPS-Urry model, were designed to directly match the exper-

imental average Rg [55], [57], [59]. In contrast, our method aims to learn the distribution

as a bottom-up method instead of directly matching Rg. As the model only contains 20

hydropathy parameters and is unlikely to overfit, the discrepancy of the accuracy on the

training set and the test set may come from: (1) the all-atom force field is not perfect and
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Figure 2.2: 20 hydropathy parameter model trained with a99SB-disp all-atom
IDP trajectories reproduce the average sizes. (A) The comparison between the new
hydropathy parameter trained with all-atom trajectories with the normalized KR and Urry
scales. (B) The comparison of average Rg between several CG models and all-atom trajec-
tories on training set IDPs. The root mean square errors (RMSEs) are provided.

there is intrinsic disparity between all-atom models and experiments; (2) samplings of all-

atom simulations may not be sufficient; (3) the sequence diversity is not adequate enough to

represent the sequence diversity in the test set. The first two points are challenges of most

bottom-up CG force field training methods and call for more accurate all-atom force fields

and advanced simulation platforms. Since our results are upper-bounded by the accuracy

and sampling ergodicity of the training data, reproducing the data distribution is the main

target, while matching experimental average Rg of test set is of second priority. Although

we try to balance the abundance of different types of amino acids (see Appendix A section

Details of all-atom simulations for more details), cystine and tryptophan are lacking in the

training set (Figure 2.1C), indicating the intrinsic scarcity of certain amino acids in IDPs

[78]. In all, we learned a new set of hydropathy parameters from a99SB-disp IDP trajectories

and the new parameters lead to results with some state-of-the-art IDP Cα force fields. With

increasing amounts of high-quality all-atom data, our method can further improve the CG

force field.
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2.3.2 Unified model trained with ordered and disordered protein

trajectories

We move forward by including 19 ordered proteins into our training set. The ordered protein

trajectories were reported by D. E. Shaw Research and simulated with different force fields,

including CHARMM22*, a99SB-disp, and DES-Amber force fields [71]–[73]. Because 20

independent parameters λi can hardly satisfy both ordered and disordered proteins, we

proceed with the 210 independent parameters λij. Since the results of the 210 parameters

λij are closely related to the occurrence of each type of contacts in the data and noise

samples, while some contacts may be deficient, we train the parameters formulated as a prior

parameter plus correction λij = λ0
ij + ∆λij, where the prior λ0

ij comes from the Miyazawa-

Jernigan (MJ) contact potential parameters eij [79]. MJ contact potential parameters eij

are derived based on the contacts within abundant protein crystal structures, thus capturing

the driving force of protein folding. As the original eij values are all negative and the more

negative ones mean stronger attractions, while the more positive λij values indicate stronger

attractions, we set λ0
ij = α(−eij + β), which is effectively shifted and scaled −eij. During

training, we fixed α and β as hyperparameters while only optimizing ∆λij and ∆f with

regularizer on ∆λij. By testing different sets of hyperparameters, we selected the optimal

one that achieves best results on both ordered and disordered proteins. We notice that

this new set of parameters are within range about 0-2.5 (Figure 2.3A), which is at a larger

scale relative to the hydropathy scales for IDPs (Figure 2.2A). Moreover, the new model

shows a clear distinction between hydrophobic residues and hydrophilic ones, with very

strong attraction when hydrophobic residues are involved. When comparing to training set

IDPs, the trained model has similar RMSE to HPS-Urry and Mpipi (Figure 2.3B), while the

comparison on training set OPs shows that HPS-Urry and Mpipi tend to overstretch proteins.

Note that for a fair comparison on OPs, we added the same structure-based potentials (i.e.

angle, dihedral, and native pair potentials) to HPS-Urry and Mpipi as our trained model to
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Figure 2.3: 210 hydropathy parameter model trained with ordered and disordered
protein all-atom trajectories reproduce the average sizes. (A) The 210 hydropathy
parameters as heat map. (B) The comparison of average Rg between several CG models
and all-atom trajectories on training set IDPs. (C) The comparison of average Rg between
several CG models and all-atom trajectories on training set OPs. The root mean square
errors (RMSEs) are provided.

stabilize secondary structures. We also compared with structure-based model called MOFF

[55], which also includes the same structure-based potentials. MOFF achieves great results

on reproducing Rg of ordered proteins. The results showed that the inter-residue attraction

strengths of state-of-the-art IDP force fields are too weak for OPs, while our trained model

achieves a more balanced result for IDPs and OPs.

2.4 Conclusions and Discussion

In this study, we applied contrastive learning to train Cα CG models for IDPs and OPs

with all-atom explicit solvent trajectories. For the model optimized only for IDP, a new

set of hydropathy scale parameters are derived based on a99SB-disp all-atom trajectories

(Figure 2.2A). This new set of hydropathy parameters can excellently reproduce the average

Rg of all-atom trajectories in the training set (Figure 2.2B). The accuracy on the training

set is similar to one of the best top-down Cα CG models, namely HPS-Urry, although our

trained model has very different parameters relative to HPS-Urry (Figure 2.2A). We point

out that our method is a bottom-up method that learns the data distribution without directly

matching Rg. It is a pure bottom-up method that achieves results comparable to state-of-

the-art top-down methods, which is an uncommon achievement. However, in the test set,
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where we compare new IDP sequences with experimental average Rg, HPS-Urry and Mpipi

reproduce average Rg more precisely. Such different performance in training and test sets

indicates the imperfection of all-atom data [80] and scarcity of certain amino acids in IDP.

Although the sequence diversity can be enhanced by accumulating more data, the upper

bound of our bottom-up method is the intrinsic quality of the data trajectories. We call

for more accurate all-atom models and sufficient data as the foundation for training more

accurate CG models with bottom-up methods.

We also trained some unified models to balance the non-bonded interactions within or-

dered and disordered proteins. With the model parameters based on the scaled MJ potential,

we achieved a set of parameters with 210 independent λij parameters (Figure 2.3A). This

new set of parameters are obviously spanning a larger scale than those IDP-only parameters

(Figure 2.2A). The introduction of ordered proteins and MJ as prior clearly changes the

interaction pattern and attribute hydrophobic residues as stickers. Such parameters obtain

excellent results on both ordered and disordered proteins on the training set, while the dis-

crepancy to the experimental average Rg of IDPs is a bit larger. Considering the abundance

of data we used, such 210 parameters model are unlikely to overfit as well, so the gap is likely

coming from data quality and insufficient co-occurences of different types of amino acids.

In the future, we aim to train and test some potential with multi-body effects. Such

multi-body effects are important for the CG protein models [31]. We will also perform

some condensate simulations to compare the capability of different models in reproducing

the experimental phase separation behaviors.
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Chapter 3

OpenABC enables flexible, simplified,

and efficient GPU accelerated

simulations of biomolecular condensates

3.1 Introduction

Biomolecular condensates underlie the organization of many cellular processes, such as speck-

les for RNA splicing, nucleoli for ribosomal RNA processes, and P granule for stress response,

etc. [14], [15], [81]–[92]. They are also termed membrane-less organelles due to the lack

of enclosure and exhibit liquid-like properties. Intrinsically disordered proteins (IDPs) and

RNA molecules are enriched inside the condensates [14], [15], [83], [88]. These molecules

promote promiscuous, multivalent interactions, leading to spontaneous phase transition and

condensate formation [16]. The nature of the molecular interactions that drive phase sepa-

ration, the microenvironment of the condensates, and their dynamical relaxation, are under

active investigation.

Computational modeling can prove invaluable for studying biomolecular condensates by

providing detailed structural and dynamic characterizations [36], [48], [49], [56]–[59], [69],
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[93]–[111]. Particle-based coarse-grained modeling approaches are promising since their com-

putational efficiency enables long-timescale simulations to promote large-scale reorganization

for structural relaxation [112]–[115]. Such simulations may predict condensate physical

properties de novo, elucidating the connection between molecular sequences and emergent

properties [106], [116]. However, the reduced resolution of these coarse-grained models could

be insufficient to describe the complex microenvironment of the condensate interior [117]–

[119]. Atomistic simulations with explicit representation of solvent molecules and counter

ions can be necessary to further characterize physicochemical interactions that produce the

selective partition of small molecules within condensates [72], [118]–[121]. Combining the

two modeling approaches at different resolutions could be particularly powerful since they en-

able long-timescale simulations for structural relaxation while preserving the fine-resolution

details.

While many computational models and force fields have been introduced for simulations

of IDPs and biomolecules, software engineering has yet to catch up. There is an urgent

need to build user-friendly tools to set up and execute condensate simulations. Preparing

biomolecular simulations can be rather involved. Even creating initial configurations for such

simulations is often non-trivial. Much-dedicated software has been introduced to prepare

atomistic simulations [122]–[125], and existing molecular dynamics (MD) simulation pack-

ages are highly optimized for computational efficiency [122], [125]–[127]. However, existing

tools are not immediately transferable for setting up coarse-grained condensate simulations.

Furthermore, coarse-grained force fields are often implemented into disparate simulation en-

gines not necessarily best suited for condensate simulations, hindering cross-validation and

the unleashing of full modeling potential. Further software development can significantly

reduce the entry barrier for in silico studies, allowing more researchers to experience the

usefulness of computational modeling. They could facilitate comparing and benchmarking

various force fields, driving continuous improvement.

We introduce a software package termed OpenABC for “OpenMM GPU-Accelerated
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simulations of Biomolecular Condensates". The package is flexible and implements multiple

popular coarse-grained force fields for simulating proteins and nucleic acids. It dramati-

cally simplifies the simulation setup: only a few lines of Python scripts are needed to carry

out condensate simulations starting from initial configurations of a single protein or DNA.

The package is integrated with OpenMM, a GPU-accelerated MD engine [62], enabling

efficient simulations with advanced sampling techniques. Finally, we include tools that con-

vert coarse-grained configurations to atomistic structures for further condensate modeling

with all-atom force fields. Tutorials in Jupyter Notebooks are provided to demonstrate the

various capabilities. We anticipate that OpenABC will greatly facilitate the application of

existing computer models for simulating biomolecular condensates and the continued force

field development.

3.2 Methods

3.2.1 Details of molecular dynamics simulations

We performed temperature replica-exchange simulations [128] with MOFF to determine

the conformational ensembles of HP1α and HP1β dimers. Atomistic protein structures

were predicted with RaptorX [129] and used to initialize simulations. Details on modeling

HP1 proteins to preserve the tertiary structure of folded domains are provided in Appendix

B Setting up MOFF HP1 system. Six independent replicas were simulated to maintain

temperatures at 300 K, 315.79 K, 333.33 K, 352.94 K, 375.00 K, and 400 K, respectively,

with the Langevin middle integrator [130] and a friction coefficient of 1 ps−1. Each replica

lasted for 200 million steps with a timestep of 10 fs. Exchanges between neighboring replicas

were attempted every 1000 steps. More details on the replica exchange simulations are

attached in Appendix B Implementation of the temperature replica exchange algorithm. We

discarded the first 100 million steps as equilibration and used the remaining data for analysis.

We carried out slab simulations to evaluate the stability of condensates formed by HP1α
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and HP1β dimers. Initial configurations of these simulations were prepared as follows. First,

we randomly placed 100 copies of protein dimers into a cubic box of length 75 nm. Then

we performed 5-million-step constant pressure and constant temperature (NPT) simulations

at one bar and 150 K to compress the system with a timestep of 10 fs. Control of pressure

and temperature was achieved by coupling the Monte Carlo barostat with the Langevin

middle integrator [130]. The length of the compressed cubic box was about 25 nm. Then

we fixed the compressed configuration and extended the box size to 25 × 25 × 400 nm3.

The rectangular geometry leads to the creation of a dense-dilute interface along the z-axis.

Simulation results are expected to be independent of the exact box lengths and we chose

400 nm to be long enough to support phase coexistence (Figure B.2). Starting from this

initial configuration, we gradually increased the temperature from 150 K to a target value

in the first 0.1 million steps. We then performed 200-million-step production simulations at

constant volume and constant temperature using the Nosé-Hoover integrator [130] with a

collision frequency of 1 ps−1 and a timestep of 5 fs. Compared to the Langevin thermostat,

the Nosé-Hoover integrator allows faster diffusion of protein molecules in the dilute phase to

facilitate the equilibration of slab simulations.

Following similar protocols outlined above, we performed slab simulations for disordered

regions of protein DDX4 and FUS with the HPS model using parameters derived from the

Urry hydrophobicity scale [131]. Detailed amino acid sequences of the two proteins are

provided in Appendix B. For each protein, we first obtained an equilibrium configuration

from a 0.1-million-step constant temperature simulation initialized with a straight Cα chain.

We placed 100 replicas of the equilibrium configurations into a cubic box of length 75 nm.

Upon compression by a 5-million-step NPT compression at 1 bar and 150 K with a timestep

of 10 fs, the system reaches a cubic box with a size of about 15 nm. We then performed

slab simulations with an elongated box of size 15 × 15 × 280 nm3 and a 10 fs timestep.

Nosé-Hoover integrator was again applied with a collision frequency of 1 ps−1 to maintain

the temperature.
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3.2.2 Computing phase diagrams from slab simulations

To determine the concentration of dense and dilute phases from slab simulations, we first

identified the largest cluster in a given configuration as the largest connected component of

the protein-contact network. Two monomers were defined as in contact if their center-of-mass

distance was less than 5 nm, though the computed phase diagrams are rather insensitive to

this specific cutoff value (Table B.15). Subsequently, we translated the system so that the

center of mass of the largest cluster coincides with the box center, which was located at

z = 0. We recognized the region with |z| < 5 nm for HPS simulations and |z| < 10 nm

for MOFF simulations as the dense phase, while the region with |z| > 50 nm as the dilute

phase. The threshold values were chosen to be consistent with prior literature [55], [56] and

to roughly follow the size of the condensate as revealed in the density profiles (Figures B.2,

B.3). The concentrations were determined as the average density value in specified regions

using the second half of the simulation trajectories. We fitted the concentration values at

various temperatures using the following equation to determine the critical temperature

ρH − ρL = A(Tc − T )β. (3.1)

ρH and ρL are the densities at the concentrated and dilute phases. Parameter β = 0.325 is

the critical exponent corresponding to the universality class of 3D Ising model [132]. Tc is

the critical temperature and A is the coefficient.

3.3 Results

3.3.1 Flexible force field selections for Biomolecular simulations

OpenABC implements several existing force fields for coarse-grained (CG) modeling of pro-

tein, RNA, and DNA molecules (Fig 3.1). Single-bead per amino acid force field for proteins
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Figure 3.1: OpenABC facilitates coarse-grained and atomistic simulations of
biomolecular condensates with multiple force fields. The diagram illustrates the
workflow and various functionalities of OpenABC. To set up condensate simulations, the
users must provide a configuration file in the PDB format for the molecule of interest. Open-
ABC parses topological and structural information from the PDB file to build a molecule
object. Specifying force field options allows direct simulations of individual molecules. On
the other hand, the molecule object can be replicated for condensate simulations. In ad-
dition, OpenABC allows the conversion of CG configurations to atomistic structures for
simulations with all-atom force fields.

include the hydropathy scale (HPS) models [56], [57], the Mpipi force field [58], a gener-

alized structure-based model [46], [49], [133], and the maximum entropy optimized force

field (MOFF) [55]. HPS models define interactions between different pairs of amino acids

based on various hydrophobicity scales [56], [57]. Recent studies have attempted to im-

prove the accuracy of HPS models with systematic optimizations of the hydrophobicity scale

to match experimental observations of IDP monomers [59], [99]. They have been used to

study the phase behaviors of numerous proteins [134]–[136], revealing the contribution of

charge distribution patterns, cation-π interactions, and the balance between hydrophobic

and electrostatic interactions [135], [137] to the stability of condensates.
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The Mpipi force field was parameterized using data from all-atom simulations and bioin-

formatics analysis with a careful calibration of π-π and π-cation interactions [58]. These

interactions play significant roles in the formation of biomolecular condensates. The force

field was shown to accurately capture the radius of gyration and critical temperatures of

diverse protein sequences.

SMOG was originally introduced for studying folded proteins using interaction potentials

derived from initial input configurations. We generalized the model to describe proteins

with disordered domains and leveraged the Miyazawa-Jernigan statistical potential [79] for

protein-protein interactions [46], [49].

MOFF was parameterized with the maximum entropy algorithm [138], [139] and the

protein folding energy landscape theory [140] to provide consistent descriptions of both

folded and disordered proteins [55], [141]–[143]. It was shown to reproduce the radius of

gyration for a collection of proteins, including both ordered and disordered proteins [55],

[144]. The balanced interactions among amino acids have proven beneficial in describing

complex contacts among phase-separating proteins, including those with both ordered and

disordered domains [55], [116], [143].

In addition to protein models, we implemented several force fields for nucleic acids. For

example, the molecular renormalization group coarse-graining (MRG-CG) DNA model was

initially introduced for simulations with explicit ions to reproduce the salt-dependent DNA

persistence length [145]. We adopted it for implicit ion modeling with the Debye-Hückel

approximation for electrostatic interactions. We rescaled the strength of bonded interactions

to ensure the accuracy of the implicit-ion model in reproducing DNA persistence length at the

physiological salt concentration [116]. We further incorporated the DNA model 3SPN [146],

[147] into OpenABC for studying sequence specific properties. Unlike MRG-CG DNA that

only uses one bead to represent each nucleotide, 3SPN adopts three beads to differentiate

sugar, base, and phosphate. Finally, the Mpipi force field can be used to simulate RNA

molecules.
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While one can in principle combine different force fields for simulating complex sys-

tems with both proteins and nucleic acids, care needs to be taken when modeling cross

interactions. Previous studies have carried out systematic validations of protein-DNA and

protein-RNA interactions and we implemented them into OpenABC, with combinations that

include SMOG-3SPN [46], [49], [50], [102], [147]–[150], MOFF-MRG-CG DNA [116], and

Mpipi Protein-RNA [58]. These combinations account for both excluded volume effect and

electrostatic interactions. Detailed expressions of all the force field potentials are provided

in Appendix B Force Field Definitions, with the parameters provided in Tables B.1-9.

3.3.2 Simplified Setup of Condensate Simulations

OpenABC leverages the MD simulation engine, OpenMM [62], to offer simulation setup

with Python scripting, thus dramatically simplifying the workflow. The software treats each

molecule as an object and appends such objects into a container-like class. This class allows

the incorporation of various force field options and integration schemes for MD simulations.

An illustration of the typical workflow for condensate simulations is provided in Fig 3.1.

OpenABC first parses a configuration file in the PDB format supplied by users to create a

molecule object. The object contains topological and structural information extracted from

the input file. Upon introducing interactions defined in various force fields, the molecule

object can be used to simulate individual biomolecules. On the other hand, the molecule

object can also be replicated N times for condensate simulations consisting of N molecules.

As demonstrated in an example code in Fig 3.2, setting up an entire MD simulation of a

protein condensate with default parameters only requires about 20 lines of code.

To enhance conformational sampling of individual molecules and condensates, we provide

an implementation of the temperature replica exchange algorithm [128] with PyTorch [151]

as part of the package (see Appendix B Implementation of the temperature replica exchange

algorithm for details). Furthermore, we introduce utility functions to reconstruct atomistic

structures from coarse-grained protein configurations with only α carbons. This functionality
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Figure 3.2: OpenABC simplifies simulation setup with Python scripting. The
example code includes all the steps necessary for setting up and performing MD simulations
of a protein condensate with MOFF and default settings in a cubic box of length 100 nm.
The ten lines included in the highlight box correspond to the creation of the condensate
system by parsing topological information from an initial PDB file, building a configuration
file by inserting molecules into a box and incorporating the molecular objects, protein, into
a container class, condensate, with appropriate force fields. The rest of the code includes
standard simulation setups generic to OpenMM. We chose the Langevin middle integrator
to perform simulations at 300 K with a friction coefficient of 1 ps−1 and a timestep of 10 fs.

relies on the software “reconstruct atomic model from reduced representation (REMO)” [152]

and can facilitate downstream all-atom simulations. More tutorials in Jupyter Notebook

format are available online at the OpenABC GitHub repository.
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3.3.3 Efficient simulations with GPU-enabled MD engine

A significant advantage of integrating with OpenMM comes from its native support of GPU

acceleration. Simulating implicit solvent coarse-grained condensates on GPUs can be par-

ticularly beneficial due to the inhomogeneous distribution of particles arising from implicit

solvation [147]. CPU parallelization, which often relies on the spatially-based, domain de-

composition strategy, is often less effective because the inhomogeneity in particle density

between the condensate and dilute phases produces an imbalanced workload between CPUs.

To demonstrate the efficiency of GPU-enabled simulations, we studied five independent

condensate systems. The first four systems consist of N1 HP1α dimers and N2 200-bp-

long dsDNA randomly distributed in a cubic box of length 200 nm with periodic boundary

conditions. In the fifth system, 100 HP1α dimers in a compact configuration were placed at

the center of an elongated box of size 25 × 25 × 400 nm3 (Fig 3.3A). This rectangular setup

is typical for the so-called slab simulations to produce a dilute and dense interface along the

z-axis for computing co-existence curves and phase diagrams [56], [153], [154]. MOFF and

MRG-CG force fields were used to describe the interactions among coarse-grained particles.

We simulated each system for one million steps using the Langevin middle integrator [130]

to control the temperature at 300 K, with a friction coefficient of 1 ps−1 and a time step

of 10 fs. For comparison, we simulated the same systems with a closely related integrator

using GROMACS, a leading MD engine with state-of-the-art performance on CPUs [122],

[125]. More simulation details are provided in Appendix B Benchmarking the performance

of condensate simulations.

As shown in Fig 3.3B, OpenMM single GPU performance matches GROMACS with

hundreds of CPUs in the first four systems. While GROMACS achieved nearly linear scaling

for the first four systems, introducing more CPUs did not lead to any significant speedup in

the last system with a dense-dilute interface. As mentioned above, the presence of vacuum

regions in slab simulations hinders the efficacy of domain decomposition. On the other hand,
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Figure 3.3: OpenABC integrates with OpenMM for GPU-accelerated MD simu-
lations. (A) Snapshots of the five systems used to benchmark simulation performance. The
systems consist of N1 HP1α dimers (blue) and N2 200-bp-long dsDNA (red, N2 = 0 if not
specified). The first four systems adopt homogeneous density distributions in cubic boxes
of length 200 nm, while the last exhibits a dense-dilute interface in an elongated box of size
25 × 25 × 400 nm3. (B) The five data sets compare the performance of CPU simulations
using GROMACS with single GPU simulations using OpenMM. The different colors indicate
the number of CPUs in GROMACS simulations, as shown in the legends. The benchmarks
were performed with Intel Xeon Gold 8260 CPUs and Nvidia Volta V100 GPUs.

OpenMM is less sensitive to the simulation setup and retains superior performance.

The performance of GROMACS depends on our implementation of the CG force fields and

may not reflect the theoretical upper limit of the software. In particular, our use of tabulated

potentials for the Debye Hückel potential and domain decomposition for parallelization may

significantly affect the simulation speed. While performance improvement is possible with

additional software engineering, the advantage of CG simulations of condensates on GPUs
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remains given the differences shown in Fig 3.3B.

3.3.4 Application: Validating force field implementations in Open-

ABC

Before applying the software for extensive simulations, we validated our implementations of

various force fields with existing ones. We generated ten configurations for an HP1α dimer

with MOFF and GROMACS through an NVT simulation. As shown in Table B.10, the

potential energies evaluated using MOFF from OpenABC match those reported by GRO-

MACS. Similar comparisons with a protein-DNA complex produce nearly identical energy

values as well, as shown in Table B.11. The protein-DNA complex is formed by an HP1α

dimer with a 200-bp-long dsDNA, and MOFF and MRG-CG DNA were used to quantify

their interactions. The minor differences between OpenMM and GROMACS energies are

mainly caused by using tabulated functions for nonbonded interactions in GROMACS.

We further evaluated the potential energies defined by the HPS model on ten configu-

rations of a disordered protein, DDX4, using both OpenMM and HOOMD-Blue [155]. As

shown in Table B.12, the two sets of energies match exactly, supporting the correctness of

our force field implementation. We also validated the Mpipi force field using interaction

energies evaluated with OpenMM and LAMMPS [127] for a protein-RNA system, as shown

in Table B.13.

In addition to energy comparisons, we examined the conformational ensembles of HP1α

and HP1β dimers using MOFF with temperature replica exchange simulations [128]. Con-

sistent with our previous study [55], the force field succeeds in resolving the difference in

their conformational distribution between the two homologs (Fig 3.4). The radii of gyration

for the two dimers at 300 K are 3.33 ± 0.19 nm, and 4.27 ± 0.09 nm, respectively. These

values match the previously reported values computed using GROMACS quantitatively, re-

producing experimental trends. Therefore, OpenABC produces consistent results with other

software despite differences in integration schemes.
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Figure 3.4: OpenABC produces consistent results with a previous studying, re-
solving the structural differences between two HP1 homologs. (A) Secondary struc-
tures of HP1α and HP1β along sequences. (B) Representative structures for HP1α and HP1β
dimer rendered with Mol* Viewer [156]. The radii of gyration (Rg) for the two structures
are 2.77 and 4.44 nm, respectively. We colored the chromodomain (CD) in orange, the chro-
moshadow domain (CSD) in blue, and the rest in green. (C) Probability density distributions
of Rg for HP1α (red) and HP1β dimer (blue).

Using the MRG-DNA model, we computed the persistence length of a 200-bp-long DNA

segment. The estimated value at a monovalent salt concentration of 100 mM, 48.83 ± 2.71

nm (see Figure B.1), is consistent with that reported in a previous study using simulations of

the same model but with GROMACS [116]. Additional simulation details for estimating the

persistence length are provided in Appendix B Estimating the persistence length of MRG-

DNA

3.3.5 Application: Coarse-grained simulation of protein conden-

sates

As additional evaluations of force field implementation and to demonstrate the usefulness of

OpenABC, we performed slab simulations to determine the phase diagram of four proteins,

which are known to form various biomolecular condensates inside the cell. For example, HP1
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Figure 3.5: OpenABC produces phase diagrams that match previous results. (A)
Phase diagrams for HP1α (red) and HP1β (blue) dimer condensates computed with MOFF.
(B) Phase diagrams for DDX4 (red) and FUS LC (blue) computed with the HPS model
parameterized using the Urry hydrophobicity scale. The dots in both plots denote the
density values determined from slab simulations, and the triangles represent the critical
point obtained from numerical fitting.

dimers are involved in chromatin compaction and regulation [157], while DDX4 and FUS

are a primary constituent of nuage or germ granules [158] and cytoplasmic RNP granules

[159], respectively. The simulations for HP1α and HP1β were performed with MOFF, while

those for FUS LC and DDX4 were modeled with the HPS model using the shifted Urry

hydrophobicity scale [57].

The resulting phase diagrams are shown in Fig 3.5, with the concentrations listed in Ta-

bles B.14-16. The density profiles at different temperatures and the representative snapshots

at the lowest temperatures are shown in Figures B.2-3. We fitted the computed phase dia-

grams with an analytical expression to determine the critical temperature Tc (see Methods).

The critical temperatures are 306.30 K for HP1α and 245.99 K for HP1β, consistent with

previous results obtained with GROMACS simulations [55]. Similarly, the critical tem-

peratures for DDX4 and FUS LC are 324.21 K and 340.04 K, respectively, matching values

reported in a previous study that used the software HOOMD-Blue for simulations [57]. Thus,

OpenABC produces statistically indistinguishable results on the phase behavior of protein

condensates as in previous studies.
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Figure 3.6: OpenABC facilitates all-atom simulations by producing equilibrated
initial atomistic configurations. (A) Illustrations of the conversion from a coarse-grained
configuration (top) to a fully atomistic model with explicit solvent molecules (bottom). Only
2% of water molecules and counter ions of the atomistic model are shown for clarity. The
system consists of 100 HP1α dimers, and different molecules are shown in one of 25 colors.
Both figures are rendered with Mol* Viewer [156]. (B) The atomistic potential energy
evaluated using the CHARMM force field is shown as a function of simulation time.

3.3.6 Application: Atomistic simulation of protein condensates

While residue-level CG models are helpful for long timescale simulations, their limited res-

olution may prove insufficient to characterize specific properties of condensates, including

the solvation environment [117], counter-ion distributions [118], and protein-ligand interac-

tions [119]. Therefore, we implemented functionalities in OpenABC to convert equilibrated

CG configurations to atomistic structures. Starting from these structures, well-established

tools, such as CHARMM-GUI [123], GROMACS [122], [125], and AMBER [124], can be

easily applied to set up explicit solvent simulations with diverse force fields. Furthermore,

for explicit solvent simulations, the advantage of OpenMM over other MD packages is less

evident. Therefore, we terminate the OpenABC workflow at producing atomistic conden-

sate structures and leave the users with flexibility to choose MD packages and force fields

for further studies.
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As proof of principle, we converted the final snapshot from the slab simulation of HP1α

dimer at 260 K to an atomistic configuration (Fig 3.6). This conversion leverages the software

REMO [152] to build atomistic details starting from the Cα positions of each amino acid.

We solvated the atomistic HP1α dimer condensates with water molecules and counter ions.

After energy minimization, we carried out an all-atom MD simulation using GROMACS

with the CHARMM36m force field [160] and the CHARMM-modified TIP3P water model

[161]. More details on simulation preparation can be found in Appendix B Building and

relaxing atomistic structures from coarse-grained configurations. As shown in Fig 3.6, the

system relaxes with a continuously decreasing potential energy in the first 20 ns and remains

stable afterward.

3.4 Conclusion

We introduced a software package, OpenABC, to facilitate coarse-grained and all-atom sim-

ulations of biomolecular condensates. The package implements several of the leading coarse-

grained force fields for protein and DNA molecules into OpenMM, enabling GPU-accelerated

simulations with performances rivaling GROMACS simulations with hundreds of CPUs. New

force fields can be quickly introduced within the framework, and we plan to incorporate RNA

models into the package as the next step. Comprehensive tutorials are provided to familiarize

the users with the various functionalities offered by OpenABC. We anticipate the intuitive

Python interface of OpenABC to reduce entry barriers and promote coarse-grained modeling

for its adoption by a broader community.
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Chapter 4

Chromatin fiber breaks into clutches

under tension and crowding

4.1 Introduction

Eukaryotic genomes are packaged into nucleosomes by wrapping DNA around histone pro-

teins. While the structure of a single nucleosome has been extensively characterized [3]–[5],

the organization for a string of nucleosomes, i.e., chromatin, remains debatable [162]–[164].

Regular, fibril configurations are commonly observed in experiments that study chromatin

materials extracted from the nucleus [165]–[168]. The invention of in vitro reconstituted

nucleosome arrays with strong-positioning DNA sequences [169] helped to remove sample

heterogeneity in nucleosome spacing and made possible the determination of high-resolution

structures [9], [170]–[173]. However, despite the large amount of evidence supporting their

formation in vitro, fibril structures are rarely detected by in vivo experiments that have

managed to characterize chromatin at a fine resolution [10], [12], [13], [174]. Therefore,

their biological relevance has been questioned, and chromatin organization inside the nu-

cleus remains controversial.

It is worth noting that the nuclear environment is rather complex. In addition to in-
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teractions among nucleosomes, many factors, including tension and crowding, can impact

chromatin organization. Chromatin is known to associate with various force-generating

protein molecules involved in transcription and nucleosome remodeling [175]–[179]. Fur-

thermore, chromatin is often attached to the nuclear envelope and other liquid droplet-like

nuclear bodies [96], [180]–[182]. Dynamical fluctuations in these nuclear landmarks could

exert forces on chromatin as well [183], [184]. Finally, local nucleosome density can be

quite high, especially in heterochromatin regions [60]. Such a crowded environment could

lead to cross-chain contacts that might compete with interactions stabilizing single-chain

conformations [10]. Therefore, both tension and crowding could destabilize the most sta-

ble configuration for isolated chromatin, driving chromatin unfolding and the formation of

irregular structures.

Chromatin unfolding has indeed been studied extensively with various techniques [185],

[186]. Single-molecule force spectroscopy is a powerful tool for characterizing chromatin orga-

nization under tension [50], [187]–[189]. Force-extension curves at low-force regimes are par-

ticularly informative regarding inter-nucleosomal interactions [190]. Single-molecule Förster

resonance energy transfer is another popular technique for probing nucleosome contacts and

chromatin conformational dynamics [24], [191]–[193]. Mesoscopic modeling has also been

frequently used to interpret experimental data with structural details [194]–[201]. However,

because of the experimental techniques’ low resolution and assumptions on nucleosome-

nucleosome interactions introduced in computational models, the exact conformations of

unfolded chromatin have not reached a consensus and necessitates further investigations.

We perform computer simulations of a 12-nucleosome-long chromatin segment (12mer)

to investigate chromatin unfolding under tension and crowding. Residue-level coarse-grained

representations are adopted for protein and DNA molecules to capture their interactions with

physical chemistry potentials at high resolution. Using a combination of enhanced sampling

techniques and machine learning, we show that the computed force-extension curve agrees

well with results from single-molecule force spectroscopy experiments [202]. Our simulations
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support chromatin unfolding under tension proceeds through intermediate structures with

nucleosome clutches, i.e., configurations that have been directly observed via super-resolution

imaging of cell nucleus [203]. These structures sacrifice nucleosomal DNA by unwrapping to

preserve close contacts among neighboring nucleosomes. In addition, the presence of another

12mer promotes inter-chain interactions to stabilize extended chromatin configurations as

well. Together, our results suggest that in vivo chromatin configurations can arise from the

unfolding of fibril configurations as a result of tension and crowding.

4.2 Methods

4.2.1 Coarse-grained modeling of chromatin organization

We applied a coarse-grained model to study a chromatin segment with twelve nucleosomes.

The structure-based model [133], [204] was used to represent protein molecules with one

bead per amino acid and stabilize the tertiary structure of the histone octamer while main-

taining the conformational flexibility of disordered tail regions. Secondary structure motifs

in the disordered regions of histone proteins do not impact nucleosome stability and protein-

DNA interactions (Figure C.1) and were not explicitly accounted for in the model. Protein

molecules from different nucleosomes interact through both an electrostatic and amino acid-

specific potential [205]. We represented the DNA molecule with three beads per nucleotide

using the 3SPN.2C model [206]. Protein-DNA interactions were described with the screened

Debye-Hückel potential at a salt concentration of 150 mM and the Lennard-Jones potential

for excluded volume effect. We ignored electrostatics interactions for particles that are

farther than four times the screening length (3.14 nm), at which point the Debye-Hückel

potential is expected to become negligible. Further increasing the cutoff length does not

quantitatively impact simulation results (Figure C.2). The coarse-grained model has been

used extensively in prior studies with great success to investigate protein-protein/protein-

DNA interactions [55], [102], the energetics of single nucleosome unwinding [148], [150],
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nucleosome-nucleosome interactions [207], and the folding pathways of a tetra-nucleosome

[46]. More details on the model setup and validation and force field parameters can be found

in the Appendix C.

The software package LAMMPS [208] was used to perform molecular dynamics simula-

tions with periodic boundary conditions and a time step of 10 fs. The length of the cubic

simulation box was set as 2000 nm, which is much larger than the maximum chromatin

extension length to prevent interactions between periodic images. We used the Nosé-Hoover

style algorithm [209] to maintain the temperature at 300 K with a damping constant of 1

ps. The globular domains of histone proteins and the inner layer of nucleosomal DNA were

rigidified. Positions and velocities of all the atoms within each rigid body were updated

together such that the body moves and rotates as a single entity. Disordered histone tails,

outer nucleosomal DNA, and linker DNA remained flexible, and no restrictions were applied

to their conformational dynamics. Our partition of the rigid and flexible parts was motivated

by prior studies showing that unwinding the inner layer of nucleosomal DNA does not occur

at forces below 5 pN [190], [202]. Furthermore, the histone core remains relatively stable

during DNA unwinding [210], [211]. As shown in Figure S11 of [46], this treatment does

not impact the accuracy in sampling inter-nucleosome interactions but significantly reduces

the computational cost. Rigidizing inner layer DNA with the globular domains of histone

proteins does not affect the energetics of outer layer DNA unwrapping either (Figure C.3).

4.2.2 Force extension curves from enhanced sampling

To characterize chromatin structures under tension and compute force-extension curves, we

introduced two collective variables that monitor the important degrees of freedom for chro-

matin unfolding. The first variable, dstack, measures the average geometric center distance

between the i-th and (i + 2)-th nucleosomes. For small values of dstack, nucleosomes are

stacked on top of each other as in the zigzag conformation [8], [9]. The second variable,

qwrap, quantifies the average degree of nucleosome unwrapping. The two variables can better
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differentiate the various chromatin conformations and capture the energetic cost of exten-

sion than the DNA end-to-end distance. Mathematical expressions for the two variables are

provided in the Appendix C.

For extension forces below 3 pN, we carried out a set of two-dimensional umbrella sam-

pling based on qwrap and dstack. qwrap was restricted to centers from 0.45 to 0.90 with a

spacing of 0.15 and a spring constant of 50.0 kcal/mol. dstack was limited to centers from

10.0 nm to 30.0 nm with a spacing of 5 nm and a spring constant of 0.05 kcal/(mol · nm2).

Additional simulations were added to improve the overlap between umbrella windows and

the convergence of free energy calculations. When extension forces are larger than 3 pN,

chromatin can adopt fully unstacked structures with large end-to-end distances. Covering

the entire accessible phase space with two-dimensional umbrella simulations becomes too

costly computationally. Therefore, we restricted to one-dimensional free energy calculations

using dstack as the collective variable.

Most simulations were initialized from the most probable configurations predicted by a

neural network model for chromatin stability under the same umbrella biases (see below and

Appendix C for details). They lasted for at least 10 million steps. Details of the umbrella

centers and spring constants used in simulations and exact trajectory lengths are provided

in Table C.1. We computed the error bars by dividing the data into three equal-length,

non-overlapping blocks and calculated the respective quantities using data from each block.

The standard deviations of the three estimations were used to measure the errors of the

mean.

4.2.3 Facilitating conformational sampling with a neural network

model for chromatin

Conformational sampling for the 12mer is challenging because of the many possible degen-

erate configurations. For example, both unstacking and unwrapping can extend chromatin,

and different combinations of the two from various nucleosomes can result in many struc-
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tures that share similar end-to-end distances. Conformational transitions are slow due to

considerable energetic barriers arising from non-specific electrostatic interactions.

To alleviate the sampling problem, we introduced a neural network model for the 12mer.

As detailed in the Appendix C, the model quantifies the stability and the free energy of

chromatin structures using inter-nucleosome distances (Figure C.4). It was parameterized

using mean forces estimated with coarse-grained simulations for 10,000 independent tetra-

nucleosome configurations [46]. The neural network model is computationally efficient and

allows exhaustive Monte Carlo sampling to determine the most likely chromatin structures

at a given setup. These structures were provided to initialize coarse-grained simulations and

free energy calculations.

The neural network model is imperfect due to approximations introduced when building

the free energy surface with tetra-nucleosome calculations. However, it does reproduce the

force-extension curve reasonably well at the lower force regime (Figure C.5). We only used the

neural network model for conformational exploration, and all quantitative results presented

in the manuscript were obtained with coarse-grained simulations.

4.2.4 Exploring the impact of crowding on chromatin extension

To study the effect of crowding on chromatin organization, we computed the free energy

profile as a function of two collective variables that measure intra- and inter-chain contacts.

Umbrella sampling was used to enhance conformational exploration, and details on the re-

straining centers and constants are provided in Table C.2.

Umbrella simulations were initialized from configurations in which the two chains were

separated far apart with zero contacts. For simulations biased toward small values of d̄stack <

10 nm, we prepared each chromatin with a two-helix zigzag configuration that resembles the

cryo-EM structure [9]. The rest of the simulations were initialized with extended chromatin

configurations predicted by the neural network model. More simulation details can be found

in the Appendix C.
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Figure 4.1: Coarse-grained modeling reproduces the force-extension curve for
chromatin. (A) Illustration of the two-helix fibril chromatin structure with a linker length
of 20 bp. The DNA molecule varies from red to cyan across the two ends, and histone
proteins are drawn in ice blue. (B) Comparison between the simulated (red) and experimen-
tal [202] (black) force-extension curve. (C) Free energy profiles as a function of the DNA
end-to-end distance computed with the presence of 0 pN (top) and 4 pN (bottom) extension
force. A harmonic fit to the 0 pN simulation result is shown in red. Error bars correspond
to the standard deviation of the mean estimated via block averaging by dividing simulation
trajectories into three independent blocks of equal length.

4.3 Results

4.3.1 Coarse-grained modeling reproduces force-extension curve

We applied a residue-level coarse-grained model to characterize the unfolding of a 12mer

chromatin with the 601 nucleosome positioning sequence [169] and a linker length of 20

bp (Figure 4.1A). One bead per amino acid and three sites per nucleotide were employed

to describe protein and DNA molecules, leading to a system of 23590 coarse-grained beads

in size. Interactions among the coarse-grained beads were parameterized by accounting for

solvent effect implicitly with physically motivated potentials (see Methods for model details).

Similar approaches have been extensively used to characterize single nucleosomes [51], [150],

[207] and nucleosome oligomers [46], [212] with great success.

We computed the average chromatin extension length under various pulling forces along
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the z-axis for a direct comparison with results from single-molecule pulling experiments [202].

Comprehensive sampling of chromatin conformations can be rather challenging because of

the non-specific and strong electrostatic interactions between nucleosomes that give rise to

slow dynamics. To alleviate the sampling difficulty, we carried out umbrella simulations [75]

on two collective variables that quantify the degree of nucleosomal DNA unwrapping (qwrap)

and nucleosome unstacking (dstack) (Figure C.6). The simulations were initialized from the

most probable configurations at respective umbrella centers obtained from an exhaustive

sampling of a neural network model that approximates the free energy landscape of the

12mer in terms of inter-nucleosome distances (see Methods). This initialization protocol

attempts to prepare umbrella simulations with equilibrium configurations to avoid traps of

local minima.

As shown in Figure 4.1B, the simulation results match well with the experimental force-

extension curve measured by Kaczmarczyk et al. [202]. In particular, we observe a linear

extension regime at low forces (≤ 3 pN). The sharp increase in extension at large forces

deviates from the linear behavior, resulting in a plateau regime. We emphasize that there

are no tuning parameters in the model, and we do not make assumptions regarding stacking

energies.

The free energy profiles as a function of the DNA end-to-end distance are consistent with

the linear and plateau regimes seen in force-extension curves (Figure 4.1C). In particular, at

0 pN force, the free energy curve can be well approximated with a harmonic potential, which

naturally produces a linear relationship between the force and extension. Consistent with

a harmonic behavior near the minimum, theoretical predictions based on the free energy

profile at 0 pN match well with simulation results at 1-3 pN (Figure C.7). However, the free

energy profile at 4 pN is strongly anharmonic. The bottom panel shows that the curve is

relatively flat over a wide range of end-to-end distances. Because of the lack of energetic

penalty, a slight change in pulling force can produce significant variations in the extension

length, giving rise to the observed plateau regime.
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We note that several factors could contribute to the discrepancy between simulated and

experimental curves at large forces. For example, the relatively flat landscape over a wide

range of chromatin conformations makes it challenging to predict the free energy minimum

and the average end-to-end distance. Minor errors in conformational sampling and free

energy calculations could be amplified into significant changes in the chromatin extension.

In addition, our implicit treatment of counter ions introduces approximations to protein-

DNA interactions. It may be insufficient to mimic the exact experimental setting with

both monovalent and divalent ions [202]. Consistent with this hypothesis, varying the salt

concentration in simulations improved the agreement in the average extension length with

the experimental value (Figure C.8).

4.3.2 Intermediate states support nucleosome-clutch formation

The nucleosome arrangement in extended, unfolded chromatin has been the subject of nu-

merous studies [24], [188], [189], [196]. The residue-level coarse-grained simulations offer a

unique opportunity to produce high-resolution structures with minimal assumptions. Their

success in reproducing experimental observations shown in Figures 4.1B and A.8 supports

the biological relevance of the predicted structures.

We determined representative structures at various forces to better characterize chro-

matin unfolding under tension (Figure 4.2). These structures share end-to-end distances

close to the mean force-dependent extension lengths. They correspond to the central con-

figurations of the most populated clusters identified by the single-linkage algorithm [125]

using root mean squared distance (RMSD) as the distance between structures. At small

forces (≤ 3 pN), though chromatin extends linearly, we do not observe a uniform extension

of nucleosomes along the principal fiber axis (Figures 4.2 and C.9). The conformational

change mainly occurred in the plane perpendicular to the fiber axis via a shearing motion,

causing the formation of irregular, compact structures. Such structures are more kineti-

cally accessible as they avoid complete unstacking, which could cause a significant energetic
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1 pN
2.7 nm

2 pN
3.5 nm

3 pN
4.5 nm

4 pN
15.8 nm

Figure 4.2: Representative chromatin structures from simulations performed un-
der various extension forces (also see Figure C.9). The values for the extension force
and the end-to-end distance are provided next to the structures. The same coloring scheme
as in Figure 4.1A is adopted here.

penalty as shown by [207]. We note that an ensemble of chromatin configurations exists

at a given end-to-end distance, and only example ones are shown in Figure 4.2. Averaging

the entire ensemble produces more symmetric structures and nucleosome contact patterns

(Figure C.10).

The preference of shearing over complete unstacking can be readily seen in Figure 4.3.

There, we decomposed the distance between two nucleosomes into motions that are within

or perpendicular to the nucleosomal plane (Figure C.11). We further computed the free

energy profile for the two decomposed distances under no extension force. It is evident that

the energetic penalty for chromatin unfolding along the shearing direction is much smaller.

Shearing can better preserve inter-nucleosome contacts as nucleosomes move away from each

other, lowering the energetic penalty.
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Figure 4.3: Chromatin extension favors shearing motion within the nucleosomal
plane over the normal motion perpendicular to the plane. (A) Illustration of the
nucleosome coordinate system and the decomposition of the inter-nucleosome distance into
shearing and normal components. (B) The free energy profile as a function of the two
different modes of breaking inter-nucleosome distances shown in part A.

The representative structure from 3 pN to 4 pN undergoes a dramatic transformation

from a compact configuration to one with many nucleosomes losing stacking interactions.

Notably, the unfolded structures fall into small clusters of nucleosomes. These structures

often feature one or two nucleosomes with a highly unwrapped outer layer. Unwrapping

the outer layer DNA only incurs modest energetic cost [148], [150], [213] and serves as

an economic strategy to extend chromatin under force. Nucleosome clutch formation is

not specific to a particular end-to-end distance and can be readily seen in structures with

smaller distances as well (Figure 4.4 and C.12). We note that the nucleosomes that remain

in contact are not perfectly stacked as in the crystal structure of a tetranucleosome [8], but

are somewhat irregular as configurations observed in prior simulations [46], [199] and in

vivo experiments [13], [25], [214], [215]. Further stretching the chromatin eventually leads

to configurations with most of the outer nucleosomal DNA unwrapped.

Our results suggest chromatin unfolding does not proceed via a uniform nucleosome un-

stacking. On the contrary, nucleosomes prefer to stay in close contact as much as possible by
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9.5 nm 9.5 nm

23.5 nm

Figure 4.4: Representative chromatin structures at smaller and larger distances
than the average extension at 4 pN force (see also Figure C.12). These structures
again support the formation of nucleosome clutches, which do not break into individual
nucleosomes until at very large per-nucleosome end-to-end distances around 23.5 nm.

forming clusters separated by unwrapped DNA. To ensure that the formation of nucleosome

clutches is not a result of biases from initial configurations prepared by the neural network

model, we carried out an additional set of simulations starting from uniformly extended

chromatin structures (Figure C.13A). More simulation details are provided in the Appendix

C and Tables C.3 and C.4. As shown in Figure C.14A, these new simulations produced a free

energy profile as a function of the end-to-end distance that matches well with the one pre-

sented in Figure 4.1C, supporting the statistical convergence of our simulations. To resolve

the degree of clutch formation in chromatin configurations, we introduced a new collective

variable, α, that quantifies the ratio of the maximum and minimum distance between 1-3

nucleosomes, i.e., α = dmax
i,i+2/d

min
i,i+2. For clutched configurations, the distance between two

nucleosome clusters is expected to be much larger than the distance between nucleosomes

within the same cluster, and α will be much larger than one. On the other hand, for more

uniformly extended configurations, α will approach one. The free energy profile as a function

of α exhibits a global minimum at values much larger than one (Figure C.14B), support-

ing the stability of clutched configurations. Example configurations at various end-to-end

distances adopt large α values (Figure C.13B) and resemble those presented in Figure 4.2.

Therefore, the formation of nucleosome clutches under tension is an inherent property of
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chromatin and robust to simulation protocols.

We further confirmed that the unwrapping of the outer nucleosomal DNA is essential

for clutch formation. In a new set of umbrella simulations, we removed DNA unwrapping

by rigidifying the entire 147 bp nucleosomal DNA with the histone core. These simulations

were performed with the presence of 4 pN force and were initialized from the fibril structure

(see the Appendix C for additional simulation details). Figure C.15 shows that, when the

DNA was prohibited from unwrapping, chromatin favors more uniform configurations when

extended. The free energy profile as a function of α computed with the new simulations

reaches the minimum value at around 3 ((Figure C.15B). On the other hand, much larger

values for α are favored when unwrapping is allowed. DNA unwrapping helps chromatin

preserve inter-nucleosome contacts when stretched, leading to energetically more favorable

clutched configurations (Figure C.16). Without unwrapping, inter-nucleosome contacts must

be broken to satisfy geometric constraints to reach a given extension, resulting in more

uniform chromatin structures (Figure C.15C).

4.3.3 Inter-chain contacts stabilize unfolded chromatin

The pulling simulations suggest that in vivo configurations can arise from the unfolding of

chromatin fiber under tension. Inside the nucleus, chromatin is not in isolation but sur-

rounded by other chromatin segments in a crowded environment [12], [203]. The more

exposed nucleosomes in the intermediate configurations could facilitate inter-chain interac-

tions, further stabilizing the unfolded structures.

To evaluate the impact of crowding on chromatin stability, we computed a two-dimensional

free energy profile using simulations with two 12mers. The first collective variable quantifies

the inter-chain contacts as the number of nucleosome pairs within a distance of 15 nm. Only

pairs with one nucleosome from each chromatin segment were included to define the contacts.

The other dimension measures chromatin extension using the average unstacking of the two

chains, d̄stack. Figure 4.5A shows that configurations with close contacts between the two
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Figure 4.5: Crowding and inter-chain contacts stabilize extended chromatin con-
figurations. (A) The free energy surface as a function of the inter-chain contacts and the
average extension of the two 12mers. (B) Free energy profiles of chromatin unstacking with
(blue) and without (orange) the presence of an additional 12mer. Chromatin unstacking
is quantified with dstack and d̄stack for single and two fiber simulations, respectively. (C)
Representative structure for two contacting chromatin segments that maintain fibril configu-
rations, with the corresponding collective variables indicated as the green dot in part A. The
inset highlights the side-side contacts between inter-chain nucleosomes. (D) Representative
structure of the free energy minimum, with the corresponding collective variables indicated
as the orange dot in part A. The inset highlights the stacking interactions between inter-
chain nucleosomes.

chromatin segments are more favorable. A representative structure for two contacting fibril

chromatin identified by the single-linkage clustering algorithm is provided in Figure 4.5C.

The contacts are mediated mainly by histone tail-DNA interactions, as can be seen in the
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inset that provides a zoomed-in view of the interface. Favorable interactions for compact

chromatin are consistent with previous simulation studies that support the liquid chromatin

state [48].

Notably, the global minimum of the free energy profile resides at larger values for d̄stack

corresponding to more extended chromatin configurations. While extending chromatin is

unfavorable (Figure 4.5B), such structures promote close contacts between nucleosomes from

different chains (Figure 4.5D). In particular, trans-nucleosomes can now engage in stacking

interactions (Figure 4.5D), which are more favorable energetically compared to side-side

contacts [207]. The emergence of a new binding mode, unavailable when chromatin is

constrained into fibril configurations, compensates for the energetic penalty of breaking cis-

chain contacts. Further extending the chromatin leads to more intertwined structures at a

rather modest energetic cost (Figure C.17).

Similar to the single-chain simulations, extending chromatin again led to irregular con-

figurations with nucleosome clutches. As shown in Figures C.18 and A.19, the degree of

irregularity increases monotonically with d̄stack and for intermediate values of inter-chain

contacts. DNA unwrapping in irregular chromatin configurations relieves the torsional con-

straints on nucleosomes to sample a much wider range of relative nucleosome-nucleosome

orientations and distances. As a result, nucleosomes can now engage in many simultaneous

energetically-favorable interactions, both with nucleosomes from the same chain and different

chains.

To further evaluate the contribution of DNA unwrapping to inter-chain contacts, we

carried out a new set of simulations with fully rigidified nucleosomes. As before, the core

nucleosomes move as rigid bodies, and only linker DNA and histone tails were kept flexible.

The setup of umbrella centers and restraining constants are similar to simulations that

allow DNA unwrapping (Table C.5), and more details are provided in the Appendix C. We

found that the two chromatin forms fewer contacts in the new simulations. The free energy

minimum for inter-chain contacts is located around 42 (Figure C.20), a value that is much
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smaller than that shown in Figure 4.5. Chromatin is less extended when DNA unwrapping

is prohibited, reducing the free energy minimum for d̄stack from 10 to 8 nm. When chromatin

does extend, the configurations are also more uniform with less irregularity (Figure C.20),

hindering the formation of interdigitated structures.

4.4 Conclusions and Discussion

We characterized the impact of tension and crowding on chromatin organization with com-

putational modeling using a coarse-grained model. The compact fibril configuration with

nucleosomes following a zigzag path was most stable for a 12mer chromatin segment in

isolation. Consistent with previous studies [195], [196], [200], [216], we observed both un-

wrapping of nucleosomal DNA and unstacking between nucleosomes as chromatin unfolds

from the fibril configuration due to the presence of tension. However, these changes are non-

uniform and are initially localized to a small set of nucleosomes, leading to the formation of

nucleosome clutches separated by unwrapped nucleosomal DNA. Such intermediate struc-

tures emerge as a result of balancing intra- and inter-nucleosome interactions. The clutched

configurations sacrifice nucleosomal DNA by unwrapping to extend chromatin and preserve

the energetically more favorable inter-nucleosome contacts.

Notably, the simulated intermediate structures resemble in vivo chromatin configurations.

For example, super-resolution imaging of the core histone protein H2B in interphase human

fibroblast nuclei has revealed the formation of nucleosome clutches of varying size [203].

High-resolution electron tomography studies further support the prevalence of trimers in the

clutches [13], [215]. Cross-linking-based experiments that detect nucleosome contacts in situ

support nucleosome clutches with tri- or tetranucleosome as well [214], [217]. Our results

generalize the findings from a previous study on tetra-nucleosomes [46]. They support

that certain in vivo chromatin structures may form as a result of unfolding from the fibril

configuration. Since chromatin inside the nucleus can experience forces from various active
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processes [175], [176], [218]–[221], even for DNA sequences and linker lengths that strongly

favor the fibril structure, chromatin may adopt irregular configurations because of tension.

The clutched configurations are mostly seen at forces below 4 pN, a value that is indeed

within the range expected from molecular motors [175], [219]–[221].

We further showed that unfolded chromatin could promote inter-chain contacts, leading

to the formation of interdigitated structures. Such structures present an alternative binding

mode compared to the close contacts between two fibril configurations. Interdigitation is

indeed consistent with electron microscopy images of two chromatin segments that are in

close contact [222]–[228]. These images revealed structures with diameters less than twice the

30 nm fiber, supporting an overlap between the two chromatin. In addition to supporting

chromatin unfolding in a crowded environment, the interdigitated structures suggest that

chromatin may, in fact, form gels at high density inside the nucleus. Gelation can form due

to the stacking interactions between exposed nucleosomes from different chains, which are

stronger than side-side interactions that are only accessible for nucleosomes in closely stacked

fibers. The emergence of strong interactions could arrest the coarsening dynamics of small

clusters to drive the percolation transition [229]. Furthermore, interdigitation could give

rise to topological entanglements among chromatin chains, further producing slow kinetics

and gelation. Therefore, the two binding modes could help understand the observation of

both liquid and gel state of chromatin mixtures [17], [20], [25], [48], [230], [231].

We studied idealized chromatin with uniform DNA linker length and strong positioning

sequence. Nucleosomes from natural chromatin are more heterogeneous with variations in

histone modifications [232]–[236], linker DNA lengths and DNA sequences [170], [212],

[237]–[241], and linker histone binding [9], [203], [242]–[244]. Such heterogeneity could also

contribute to the formation of irregular chromatin structures and clutches, as shown recently

by the Schlick group [236], [240], [245]. Our findings complement these studies and point

to additional intrinsic factors that affect the stability of chromatin fibers. They might be

particularly relevant for interpreting chromatin organization in heterochromatic regions and
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mitotic chromosomes. Due to its low transcriptional activity, chromatin in these systems

is expected to be more uniform in histone modifications and linker DNA length, and its

irregular organization may indeed arise from tension and crowding effects.
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Chapter 5

Non-Markovian dynamics model reveals

chromatin fiber destabilization in

nucleosme condensates

5.1 Introduction

The genome organization is vital for diverse genetic functions. The hierarchical genome

organization is dominated by different rules at different scales [1], [2], [47], [246], [247].

At the near-atomistic level, the genome is organized as nucleosomes connected by linker

DNA, similar to beads on a string. Such DNA string of nucleosomes folds as chromatin.

Although the crystal structure of short chromatin with uniform 10n-bp linkers are well-

knwon as 30-nm fibers [8], [9], the dynamics and structure of chromatin in vivo remain

elusive and controversial [10], [248]. Many in vivo experimental techniques including cryo-

electron microscopy, Micro-C, ChromEMT, show the lack of ordered fibril-like structures,

while the 10-nm disordered arrays with some prevaling local oligomer motifs, such as trimers,

α-tetrahedron and β-rhombus tetramers [10], [13], [174], [214], [249], [250].

Recently, condensate has been uncovered as a rule that pervades and governs diverse
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biological systems [14], [88], [251]. In vitro experiments show that chromatin can also

form liquid-like condensates under diverse conditions [17], [18]. The condensate property

is affected by many factors, such as linker lengths, post-translational modifications (PTMs),

salt conditions, and involvement of other biomolecules [17], [18], [20], [21], [25], [252], [253].

Although the situation is very complex in vivo as other molecules interact with chromatin

and cause loop extrusion, transcription, and topologically associating domains (TAD) [254]–

[257], recent studies provide compelling evidence that inter-nucleosomal interactions alone

can reproduce many chromatin organization features in vivo: with interaction energy defined

based on the condensability score, which measures the ability of various types of nucleosomes

to condense [258], molecular dynamics (MD) simulations recover the nucleosomal contact

map and compartments [2]. This supports the idea that chromatin can be viewed as block

copolymers and microphase separation drives chromatin organizations. Beyond the cause

of phase separation, the exact physical properties of chromatin condensates in cells remain

obscure. They demonstrate both liquid- and solid-like properties [19], [20]. This duality can

be attributed to the intrinsic viscoelasticity of the polymers, or the heterogeneity of various

chromatin condensates in cells [2], [21]. Therefore, understanding the phase separation

behavior of nucleosomes is essential for understanding genome organization.

Computational models play a pivtol role in understanding genome organizations. At

the nucleosome level, coarse-grained (CG) modeling is the appropriate model as it balances

chemical details and efficiency. Numerous studies have proven the effectiveness of combining

a three-bead-per-nucleotide DNA model called 3SPN2 [146] with a residue-level CG protein

model, such as AWSEM [31] or SMOG [204] or AICG [259]. These CG models have been

applied to study nucleosome unwrapping [150], [211], transcription factor (TF) binding [51],

and chromatin fibers [46], [49]. Ding et al. applied 3SPN2 and SMOG to model the tetra-

nucleosome. They further utilized enhanced sampling methods, neural network free energy

landscape, and the string method to explore the folding mechanism of the tetra-nucleosome

[46]. This study demonstrates the strength of exhaustive parallel sampling, while the exact
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flux of pathways and the transition dynamics remain to be solved.

The integration of the CG model with molecular dynamics (MD) simulations provides

a powerful approach to investigate the intricate conformational changes of chromatin un-

der different circumstances. A seamless approach for elucidating the folding dynamics and

pathway flux from MD trajectories involves integrating Markov state models (MSMs) with

transition path theory (TPT) [260]–[267]. This approach has been successfully applied to

investigate a range of conformational changes in chemical and biological processes, such as

protein folding [268], [269], protein-ligand recognition [270], [271] and the self-assembly

of soft materials [272], [273]. Chromatin has a high degree of freedom even under CG

representations (about 2000 CG atoms per nucleosome), and normally biologically relevant

phenomena are very slow, so it takes long time for MD simulations to sample a continuous

long trajectory to directly observe the phenomena. MSMs could coarse-grain MD trajectories

into conformational states and bridge the timescale gap by integrating multiple short MD

trajectories and modeling dynamics as a series of Markovian jumps between conformational

states under given lag times. Additionally, the transition path theory (TPT) can be natu-

rally applied to MSMs to compute the committor functiosn and identify the kinetic pathways

[260], [261], [274]. Constructing MSMs with parallel short trajectories requires employing

a large number of states to ensure their transitions are Markovian, which greatly compli-

cates intuitive interpretation. A new approach called integrative generalized master equation

(IGME), which builds non-Markovian dynamics models by explicitly evaluating memory ef-

fects [63], promotes human comprehension. The non-Markovian dynamics model built by

IGME with much fewer metastable states provides an intuitive picture of the slowest pro-

cesses, and non-Markovian dynamics can be encoded in the memory kernels. Such a method

is promising for deciphering various slow processes in biological systems with abundant short

trajectories.

In this study, we combined CG modeling, MD simulations, and transition path analysis

with non-Markovian dynamics models to quantitatively determine the folding dynamics of
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the tetra-nucleosome. Specifically, we study two biologically related factors: the high local

nucleosome concentration and the linker lengths. We try to understand how these two factors

affect the folding dynamics, including folding pathways, intermediate states, and transition

rates.

5.2 Methods

5.2.1 Coarse-grained modeling and molecular dynamics simulations

of chromatin organization

We applied a structure-based model (SBM) called SMOG for histones [133], and a 3-site per

nucleotide model called 3SPN for DNA [146], [147], [206]. Note that the histone core and

the inner layer 73 bp of the core DNA were always rigid during all simulations. This setting

stabilized the nucleosome cores and was proved valid in previous studies [46], [49]. Start-

ing from the 10,000 diverse configurations of tetra-nucleosome with 20 bp linkers explored

with enhanced sampling methods reported in a previous study [46], we picked all the 4643

configurations with d13 ≥ d24 (dij is the distance between the i-th and j-th nucleosomes) as

our starting configurations. We measured the dij (i, j = 1, 2, 3, 4) of 4643 configurations and

enforced the tetra-nucleosome structure with 20 or 25 or 30 bp linkers towards the target

dij values with restrained MD. All the single tetra-nucleosome systems are shown in Figures

5.1A-C. Then we removed all the restraints and performed 10-ns unbiased NVT simulations

for 4643 structures (Figure 5.2A). The 10-ns NVT simulation trajectories were utilized for

post-analysis, which will be introduced below.

We further performed simulations for the NRL = 167 system in a sea of nucleosomes to

mimic the nucleosome condensate environment. Since such simulations were expensive, we

reduced the number of initial configurations by selecting 530 representative structures from

the Markov State Model (MSM) results of the individual NRL = 167 tetra-nucleosome. The
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initial tetra-nucleosome configurations were placed in a cubic box of length 55 nm. Then we

added single nucleosomes to the box so that the total nucleosome concentration was 0.3 mM.

The overall system is composed of a tetra-nucleosome and 26 single nucleosomes. We began

with fixing the whole tetra-nucleosome as a rigid body and relaxing the single nucleosomes

with NVT simulations for 2 ns. Next, we released the global rigid body restraints on the

tetra-nucleosome (the histone core and core DNA of tetra-nucleosome and single nucleosomes

were still rigid) and ran NVT simulations as the production run. Each production NVT

trajectory lasts at least 70 ns. Exemplary snapshots are shown in Figure 5.1D, which shows

the tetra-nucleosome unfolding process within the condensate.

All the electrostatic interactions were computed under temperature 300 K and 150 mM

ionic strength with Debye-Hückel potential. All simulations were performed under 300 K

with a time step of 10 fs. All the single tetra-nucleosome simulations were performed with

LAMMPS on CPUs [127], and all the condensate simulations were performed with OpenMM

and OpenABC packages on GPUs [61], [62]. More details of the simulations are provided

in SI.

5.2.2 Markov State Modeling

We constructed MSMs for four systems: single nucleosomes with NRL = 167 individual,

172, and 177, as well as the NRL = 167 system in a sea of nucleosomes (named as NRL

= 167 condensate system, or condensate system for brevity). These MSMs were based on

six pairwise distances dij between the nucleosomes. Although these six distances effectively

illustrate the global topology of the tetra-nucleosome as proved in the previous study [46],

some of them exhibit high correlations and redundant information. Therefore, we further

performed tICA [275]–[278] to recombine the six distances to obtain independent collective

variables (CVs). The number of CVs and tICA relaxation time were determined through

cross-validation using GMRQ scores [279]. Upon projecting all the samples onto the selected

CVs, the resulting samples were clustered into hundreds of microstates by the K-Means algo-
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rithm (Figure 5.2B). Furthermore, microstate MSMs were constructed, and their Markovian

properties were validated using the implied time scale (ITS) and the Chapman-Kolmogorov

(CK) test [263]–[266].

Utilizing the microstate MSM in conjunction with transition path theory (TPT), we

analyzed kinetic transition pathways and folding dynamics [272]. By designating the source

and sink microstates as extended and folded conformational states, respectively, we identified

numerous pathways that traverse multiple microstates. To simplify analyses, we further

grouped these pathways into three channels based on their distribution in the tICA space

using the latent space path clustering algorithm [267] (Figure 5.2C).

To construct representative and interpretable models, we aggregated hundreds of mi-

crostates into six macrostates for all four systems. Since relaxation within macrostates re-

quires a longer lag time than for microstates, potentially exceeding the trajectory length, we

considered non-Markovian effects to determine macrostate model properties [280]. Utilizing

the recently developed integrative generalized master equation methods [63], we effectively

captured long-term dynamical behavior by incorporating historical memory (Figure 5.2D).

This enabled us to accurately calculate the associated stationary populations and mean first

passage times (MFPTs).

5.3 Results

5.3.1 Computing transition pathways and rates for folding tetra-

nucleosomes

We used coarse-grained (CG) models and molecular dynamics (MD) simulations to study the

folding dynamics of tetra-nucleosomes. Specifically, we used a one-bead-per-amino-acid and

three-bead-per-nucleotide model to capture the physical chemistry interactions. Such models

have been successfully applied to chromatin systems and match the experimental results

106



Figure 5.1: The chromatin systems simulated in this study. (A) 20-bp linker tetra-
nucleosome (NRL = 167). (B) 25-bp linker tetra-nucleosome (NRL = 172). (C) 30-bp linker
tetra-nucleosome (NRL = 177). (D) Example snapshots from one production trajectory of
the condensate simulation with tetra-nucleosome unfolding. The tetra-nucleosome is shown
in green and cyan, and the single nucleosomes are shown in orange and yellow.

accurately [46], [49], [50]. To study the effects of linker lengths, which is the length of DNA

connecting two neighboring nucleosomes, we built a series of tetra-nucleosome structures

with 20, 25, and 30 bp linkers, correspoding to nucleosomal repeat length (NRL) equal to

167, 172, and 177 (Figure 5.1A-C). To study the more biologically relevant condition, we

placed the 20-bp linker tetra-nucleosome in the sea of single nucleosomes, leading to an

overall nucleosomal concentration of 0.3 mM (Figure 5.1D), which is on the same scale as

the interphase nucleosome concentration (about 0.1 mM) [60], and close to the condensate

concentration in vitro (about 0.35-0.5 mM) [17], [25]. More details about building the

systems can be found in Appendix D Simulation Details.

We performed exhaustive unbiased simulations at 300 K to explore the conformational

changes of the tetra-nucleosome. For the individual tetra-nucleosome systems with 20, 25,

and 30 bp linkers, we adopted 4643 independent simulations for each system starting from

diverse configurations obtained from unified free energy sampling [281]. For the NRL =
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Figure 5.2: The cartoon overview of the simulation and post-analysis protocol.
(A) Explore and sample the free energy landscape with exhaustive unbiased sampling start-
ing from diverse configurations. (B) Project MD conformations onto the collective variables
identified by tICA, and further cluster them into microstates. (C) Employ TPT to identify
ensemble of kinetic pathways connecting source and sink based on microstate MSM. The
pathways are further categorized into metastable path channels by LPC algorithm. The yel-
low, green, and orange color represent the assignments of three path channels. (D) Construct
non-Markovian dynamics model by IGME method. The microstates are further lumped to
few interpretable macrostates, and the transition dynamics are modeled by incorporating
the memory kernel through the generalized master equation.

167 tetra-nucleosome condensate system, we adopted 530 independent long-time trajecto-

ries (at least 70 ns for each trajectory) as the production run. The simulations were long

enough to fully relax the system and reach equilibrium, and the condensate simulation box

is large enough to prevent tetra-nucleosome self-contact across box boundaries (Figure D.1-

2). According to the evolution of the example trajectory, the nucleosomes aggregate as the

simulation proceeds (Figure 5.1D). These unbiased simulations extensively explore the free

energy landscape and facilitate subsequent analysis (Figure 5.2A).

We performed the folding pathway analysis based on the microstate Markov state models

(MSMs), and further constructed the macrostate non-Markovian dynamics models to under-

stand the folding mechanism. First, we doubled the trajectories based on the symmetry that

nucleosome indices (1, 2, 3, 4) are equivalent to (4, 3, 2, 1), which was applied in a previous

study as well [46]. For the construction of microstate MSMs and the application of TPT, we

began by featurizing the MD conformations using six inter-nucleosome distances, denoted

as d = (d12, d13, d14, d23, d24, d34), which has been demonstrated to effectively differentiate

tetra-nucleosome configurations and capture the folding dynamics [46]. Subsequently, we
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utilized time-independent component analysis (tICA) with the kinetic mapping algorithm

to identify three independent collective variables [275]–[278]. After projecting MD confor-

mations onto these three collective variables, we employed the K-means algorithm to group

them into hundreds of microstates (Figure 5.2B). Then we applied TPT to discern all the

kinetic pathways connecting the unfolded and folded states [260], [261], [274]. Furthermore,

we used LPC algorithms to categorize thousands of identified pathways into three metastable

path channels for each system to improve understanding of mechanisms [267], [272], [282]

(Figure 5.2C).

To comprehend the dynamics of conformational changes in tetra-nucleosomes and im-

prove understanding, we employed IGME to construct non-Markovian dynamics models [63],

encompassing six macrostates through kinetic lumping from hundreds of microstates (Figure

5.2D). IGME outperforms conventional MSMs by considering non-Markovian dynamics with

the generalized master equation, thereby providing more accurate predictions for long-term

dynamics between macrostates. More details about the MSM analysis and non-Markovian

dynamics models can be found in Appendix D Markov State Model and non-Markovian

Dynamics Model Construction.

5.3.2 Downhill folding channels for tetra-nucleosome

We initiated the investigation into the folding dynamics of the NRL = 167 tetra-nucleosome.

Utilizing an ensemble of unbiased MD trajectories, we estimated the free energy landscape

of the NRL = 167 tetra-nucleosome based on d13 and d24 coordinates (Figure 5.3A). The

downhill landscape, displaying an approximate 8 kcal/mol disparity between the unfolded

and folded states, signifies the stability of the native tetra-nucleosome structure and aligns

with previous findings from deep learning fitting and umbrella sampling [46]. By construct-

ing a 530-state MSM and conducting TPT analysis, we found over 25,000 pathways linking

unfolded and folded states, with the dominant pathway representing just 0.09% of total flux.

This contrasts with typical protein folding; for example, while the top 10 pathways account
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Figure 5.3: Analysis results of the NRL = 167 single tetra-nucleosome system.
(A) The free energy profile along d13 and d24. (B) Top three transition pathways of each
type of path channels. The red pathways are sequential pathways, and the yellow ones are
concerted pathways. The dots are the samples along the top pathways. The overall flux
of each path channel are labeled as percentage. (C) Macrostate non-Markovian dynamics
model with inverse MFPT labeled in unit (10 µs)−1. Histones are hidden for clarity.

for 25% of NTL9 folding flux [269], approximately 600 pathways are required to achieve

the same level of flux in tetra-nucleosome folding. The downhill landscape and identification

of parallel pathways with comparable fluxes suggest that tetra-nucleosome behavior is more

similar to heterogeneous aggregation and self-assembly systems instead of the proteins [272].

Due to the abundance of parallel pathways with similar fluxes, we further grouped the

pathways into three path channels to facilitate understanding folding mechanism. We got

three path channels: two sequential channels (up and down sequential channels), and one

concerted channel (Figure 5.3B and B.17). Sequential channels indicate that one pair of nu-

cleosomes stacks before the other, while the concerted channel exhibits simultaneous stacking

motions. This is consistent with the existing study, which characterized the tetra-nucleosome
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folding pathways with the string method [46]. Beyond qualitatively identifying path chan-

nels, we quantify the flux of each path channel with slightly higher flux for sequential ones,

possibly due to stable intermediates. Meanwhile, we visualized transition states with com-

mittor Q close to 0.5 and the states with highest fluxes (Figures D.23-24). Due to the

downhill nature of the free energy landscape, the Q ≈ 0.5 states displayed more extended

and unfolded conformations, while those structures with larger Q show structures similar to

the β-rhombus structures and oligomers observed in situ [13], [214].

We further lumped hundreds of microstates into six metastable macrostates and built the

non-Markov dynamics model by considering the memory effects with IGME to promote the

comprehension of the folding mechanism. The transition network with the inverse mean first

passage time (MFPT) as shown in Figure 5.3C. The inverse MFPT values, which represents

reaction rates, and the stationary populations, align with the strong folding tendency. The

partially-unfolded state 3 and state 4 resembled metastable intermediates in sequential chan-

nels. State 5 is recognized as the misfolded state since no top 3,000 pathways going through

the state. The β-rhombus structures, through which the concerted channel proceeds, are

assigned to folded state 6, suggesting their low metastability and fast transition to folded

structures. Together, these analyses build a quantitative and intuitional picture of the NRL

= 167 tetra-nucleosome folding process.

5.3.3 Crowding environment promotes and accelerates chromatin

unfolding

Inspired by recent studies, which show that nucleosomes tend to form liquid- or solid-like

condensates [17], [18], [20], [21], [25], we placed the NRL = 167 tetra-nucleosome into a

sea of single nucleosomes with overall nucleosomal concentration as 0.3 mM to investigate

how the condensate environment affects the folding of tetra-nucleosomes. Initiating the

simulations with uniformly distributed single nucleosomes, we observed that they undergo a

self-assembly process, either interacting and stacking with tetra-nucleosomes or aggregating
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Figure 5.4: Analysis results of the NRL = 167 tetra-nucleosome condensate sys-
tem. (A) The free energy profile along d13 and d24. (B) Top three transition pathways of
each type of path channels. The red pathways are sequential pathways, and the yellow ones
are concerted pathways. The dots are the samples along the top pathways. The overall flux
of each path channel are labeled as percentage. (C) Macrostate non-Markovian dynamics
model with inverse MFPT labeled in unit (10 µs)−1. Histones are hidden for clarity.

into clusters independently. We estimated the free energy landscape of the tetra-nucleosome

within condensate based on the simulations. As illustrated in Figure 5.4A, although the

difference between the unfolded and folded states remains around 8 kcal/mol, a broader

range of configurations around the native structure exhibit lower free energy. This occurs

because interactions between tetra-nucleosome and single nucleosomes resemble intra-chain

contacts and stabilize partially unfolded conformations (Figure 5.1D).

By further identifying the folding pathways and clustering them into path channels, we

discovered numerous pathways with comparable fluxes, and the pathways can be attributed

to similar sequential and concerted channels. The distribution of fluxes among these channels

remained largely unchanged compared to the single NRL = 167 tetra-nucleosome (Figure
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5.4B and D.17). However, the transition rates change dramatically, as demonstrated by the

six-macrostate non-Markovian dynamics model (Figure 5.4C). It is evident that the nucleo-

some condensate influences both the thermodynamics and kinetics of the tetra-nucleosome.

The populations of partially unfolded states (state 3 and 4) have significantly increased,

approaching that of the folded state, and the unfolding rates increases dramatically rela-

tive to folding ones. In general, the nucleosome condensate promoted and accelerated all

unfolding processes relative to the folding process. This rapid unfolding is consistent with

the liquid-like properties of wild-type chromatin condensate in vitro [17], [18] and perhaps

related to chromatin organizations and functions in vivo. The misfolded state 5 persists,

with its population remaining relatively unchanged. In all, we observed that the nucleosome

condensate did not introduce new conformations or folding modes of the tetra-nucleosome,

however, it modulates the free energy landscape and favors unfolding dynamics.

5.3.4 The role of DNA linker length on chromatin folding

Linker length is another critical factor that influences chromatin organization and phase sep-

aration behaviors [17]. With a DNA twist periodicity of about 10 base pairs, a linker length

of 10n facilitates well-aligned stacking between i and i+ 2 nucleosomes. However, inserting

additional 5-bp into linker DNA causes an additional half-turn twist, thus hindering the

well-aligned nucleosomal stacking and destabilizing the native state of the tetra-nucleosome.

Supporting evidence is the lack of crystal structures of 10n + 5 linker chromatin, despite

the abundance of solved chromatin structures with 10n linkers [8], [9], [244], [283]. 10n+ 5

linkers are important as there are plentiful 10n+5 linkers in certain mammalian cells [284].

Here, we further investigate how longer linkers, particularly the 10n+ 5 linkers, impact the

folding of the tetra-nucleosome. We performed the similar workflow to tetra-nucleosomes

with 25-bp linkers (NRL = 172) and 30-bp linkers (NRL = 177), respectively.

In the NRL = 172 system, we observed that the half-turn linker DNA significantly per-

turbs the free energy landscape of the tetra-nucleosome, with a broader global minimum and
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a smaller free energy gap between the folded and unfolded states (Figure 5.5A). Again, we

constructed the six-macrostate non-Markovian dynamics model (Figure 5.5B) and character-

ized representative structures. State 1 is the extended state. Although its population is low,

the structure does not suffer from unfavorable DNA twists or curves. It demonstrates that

when DNA is fully relaxed, consecutive nucleosomes will reside on different sides of the linker

due to 10n+ 5-bp linker lengths, while 10n-bp linkers will position two nucleosomes on the

same side. This is the main topological difference between 10n and 10n+5 linkers. State 2,

3, and 4 are also of low populations. They feature one pair of nucleosomes in contacts. They

are unstable as DNA is over-curved and wrapped, while the inter-nucleosomal interactions

are not strong enough to compensate. For example, in 5.5B, the DNA wrapped more on the

green nucleosome in state 2 structure, the orange nucleosome in state 4 structure. Similarly,

DNA is overwrapped in the orange and green nucleosomes in Figure 5.5C. State 5 and 6 are

the most populated macrostates. State 5 adopts α-shaped conformations without stackings

(Figure 5.5D). Such conformations are favored because DNA curves and inter-nucleosomal

interactions are balanced. State 6 has more contacts between i and i + 2 nucleosomes, but

perfectly aligned stackings are still topologically disfavored due to the additional 5 bp.

In the NRL = 177 system, with the longer linker of 10n-bp pattern, the folded minimum

basin clearly reappears, and the free energy landscape becomes similar to that of the NRL =

167 system, though slightly more extended. The six-state non-Markovian dynamics model

reveals similar patterns to NRL = 167 single tetra-nucleosome system (Figure D.22). For

example, state 2 and 4 in NRL = 177 system correspond to state 3 and 4 in NRL = 167

system, respectively. Due to the slightly increased flexibility and electrostatic repulsion

caused by additional 10-bp, the native state (state 6) is slightly more destabilized, while

some partially-unfolded states thrive with less well-aligned stackings, consistent with in vitro

experiments [285]. This increased flexibility also decrease the folding rate towards the native

state compared to the NRL = 167 system. This suggests that 10n linkers lead to similar

topological restraints, but longer linkers (i.e. larger integer n) enhance flexibility and slightly
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Figure 5.5: Analysis results of the NRL = 172 tetra-nucleosome system. (A) The
free energy profile along d13 and d24. (B) Macrostate non-Markovian dynamics model with
inverse MFPT labeled in unit (10 µs)−1. (C)-(E) More representative structures from most
populated microstates of macrostate 3, 5, and 6, respectively. Histones are hidden for clarity.
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extend. Interestingly, although increasing flexibility seems to be correlated with more active

genome regimes, longer DNA may lead to more silent genes [284], possibly due to more

binding space for histone H1 [286]. So that we can see that linker lengths also affect

chromatin structure by mediating protein binding with chromatin.

5.4 Discussion

We combined CG modeling, long-time MD simulations, and transition path analysis and non-

Markovian dynamic modeling techniques to explore the folding dynamics of tetra-nucleosome

with different linker lengths and within a biologically relevant concentration. Our condensate

simulation shows configurations similar to observations by ChromEMT and cryo-ET [13],

[25]. Specifically, the chromatin is distributed heterogeneously with diverse contact patterns,

but lacks well-stacked fibril structures, consistent with the findings that ordered 30-nm fiber

lacks in vivo. By comparing the dynamics of the 20-bp individual tetra-nucleosome (similar

to traditional in vitro study condition with low concentration) and the same tetra-nucleosome

in biologically relevant condensate environment, we found the unfolding dynamics of tetra-

nucleosome, which is the basic unit of genome organization, is significantly accelerated rel-

ative to the folding dynamics. This quantitatively reveals the liquid-like dynamic nature of

chromatin in condensate. This canonical liquid-like property of chromatin condensate has

been validated by some in vitro condensate studies [17], [18], and such intrinsic physical

chemistry interactions drive chromatin organizations [2], [256], [258]. The liquid-like prop-

erty at nucleosomal oligomer level can be related to diverse processes and functions, such

as chromatin remodeling, loop extrusion, and transcription, since biomolecules can diffuse

rapidly within the liquid-like condensate, and fast local unfolding facilitates the binding of

other molecules and nucleosomal disassembly [7], [255], [287], [288]. The relatively rapid

local dynamics of biomolecular condensates is actually general as validated by the experi-

ments, although some large-scale motions are slower in condensates [289]. Meanwhile, linker
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lengths, especially 10n-bp and 10n+ 5-bp, exhibit strikingly different patterns of chromatin

structures due to the linker twist. Such topological effects caused by an additional 5 bp are

most significant for short linkers, as longer linkers can enhance flexibility and extend chro-

matin [285]. The polymeric and ampholytic nature of chromatin can lead to viscoelasticity

and gel-like properties [2], [290]. Therefore, chromatin may show more solid-like properties

at larger scales [19], [20].

It is biologically significant to understand the inter-nucleosomal interactions and the

polymeric nature of the chromatin. In vitro yeast chromatin reconstitution has shown that

specific linker patterns controlled by remodelers are sufficient to form chromatin domains and

boundaries, while loop extrusion and transcription are not required [64], [291]. This high-

lights that inter-nucleosomal interactions and polymeric effects play the most fundamental

role in genome organization, as they are sufficient to reproduce many genome organization

features. PTM can further perturb and diversify inter-nucleosomal interactions, thus acting

as an additional layer of control factors [2], [258]. Meanwhile, linker DNA plays the role more

than spatial joints. Regulated linker lengths directly control the nucleosomal orientations

and binding positions of other molecules [286], thus further governing the genome states and

functions [284]. Meanwhile, other molecules such as linker histones, chromatin remodelers,

transcription factors, and multivalent cations can also affect chromatin organizations [7],

[11], [255], [287], [288], [292]–[294]. These molecules can not only mediate inter-nucleosomal

interactions and linker patterns, but also actively change the chromatin organizations. All

these factors collectively organize the genome in a complicated mechanism.
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Appendix A

Supplementary information for chapter 2

A.1 Training Methods

A.1.1 Proof of contrastive learning loss

Contrastive learning can be formulated as logistic regression [44], [45]. Given N0 samples

from distribution p0 and N1 samples from distribution p1, there are N = N0 + N1 samples

in all. If we mix these N samples together and randomly pick a sample xi from them, the

probability that xi comes from p0 is

P (xi ∈ X0|xi) =
P (xi|xi ∈ X0)P (xi ∈ X0)

P (xi|xi ∈ X0)P (xi ∈ X0) + P (xi|xi ∈ X1)P (xi ∈ X1)

=
p0(xi)N0/N

p0(xi)N0/N + p1(xi)N1/N

=
1

1 + ν−1p1(xi)/p0(xi)

(A.1)

here X0 and X1 means the collection of samples from p0 and p1, and ν = N0/N1. Similarly

we can get

P (xi ∈ X1|xi) =
1

1 + νp0(xi)/p1(xi)
(A.2)

In the context of contrastive learning, p0 is the noise distribution, while p1 is the data
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distribution. p1 is unknown and we intend to learn the reduced energy u1(x; θ) such that

p1(x; θ) ∝ e−u1(x;θ) (θ represents parameters). On the other hand, p0 ∝ e−u0(x) is the noise

distribution with known reduced energy u0. The log-likelihood of correctly distinguish data

from noise

l =
1

N

[
N0∑
i=1

logP (x
(0)
i ∈ X0|x(0)

i ) +

N1∑
i=1

logP (x
(1)
i ∈ X1|x(1)

i )

]
(A.3)

where samples from p0 are x
(0)
i and samples from p1 are x

(1)
i . During training, we aim to

maximize the log-likelihood.

In practice, the normalization factors of p0 and p1, which are the partition functions,

cannot be solved. By defining the reduced free energy as fi = − log
∫
e−ui(x)dx (i = 0 or 1),

we have probability density pi(x) = e−ui(x)+fi . Thus we have

l =
1

N

[
N0∑
i=1

log
1

1 + ν−1 exp(−u1(x
(0)
i ) + u0(x

(0)
i ) + ∆f)

+

N1∑
i=1

log
1

1 + ν exp(u1(x
(1)
i )− u0(x

(1)
i )−∆f)

] (A.4)

where ∆f = f1−f0. This is the contrastive log-likelihood. In practice, u0 is known, while u1

is the potential including parameters θ to be optimized. The negative of the log-likelihood

can be written as the binary cross-entropy (BCE) with logit loss LBCEWithLogit, which is the

contrastive loss L

L(θ,∆f) = LBCEWithLogit(θ,∆f) = − 1

N

N∑
i=1

[yi log σ(αi) + (1− yi) log(1− σ(αi))] (A.5)

where yi is the binary label as 0 or 1, indicating whether sample xi comes from distribution

p0 or p1. σ is the sigmoid function σ(α) = 1/(1 + exp(−α)), and αi = − log ν + u0(xi) −

u1(xi, θ) + ∆f (αi is called logit). Thus maximizing log-likelihood in equation A.4 is equiv-

alent to minimizing contrastive loss in equation A.5 over θ and ∆f . Notably, when doing

optimization, we view ∆f as an independent parameter, though it depends on u0 and u1.
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In the following subsection, we will show the feasibility of viewing ∆f as an independent

parameter.

A.1.2 Prove the feasibility of viewing ∆f as an independent vari-

able

Here we prove the feasibility of viewing ∆f as an independent parameter to optimize, though

it depends on u0 and u1. To show the feasibility, we need to prove the ∆f achieved by

maximizing the log-likelihood in equation A.4 is the same as ∆f computed with MBAR

equation [76], [295], which is the canonical method to compute ∆f based on the sample

weights. We first derive MBAR equation for the general case of multiple thermodynamic

states, then show when there are only 2 thermodynamic states corresponding to the noise

and data, ∆f given by MBAR equation is the same as the one given by maximizing the

log-likelihood in equation A.4.

Suppose we collect samples from M thermodynamic states, and each state is characterized

with the reduced potential energy as ui. For state i, we collect Ni samples. The collection of

all the samples is defined as a generalized ensemble G = {x(i=1,...,M)
j=1,...,Ni

} and we can view that

the samples come from such distribution

P (λ = i, x) ∝ exp (−ui(x)− vi) (A.6)

where λ is the state index, and vi is a reweight factor to be determined that balances the

relative weight of different states. Note this form ensures P (x|λ = i) ∝ exp(−ui(x)). Given

a point x, the probability that it comes from the i-th state is

P (λ = i|x) = P (λ = i, x)∑M
j=1 P (λ = j, x)

=
exp(−ui(x)− vi)∑M
j=1 exp(−uj(x)− vj)

(A.7)
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If we randomly pick a sample x from G (i.e. P (x) = 1/N), the probability that the sample

comes from the i-th state is P (λ = i) = Ni/N , thus we have

P (λ = i) =
∑
x∈G

P (λ = i|x)P (x)

⇒ Ni

N
=

1

N

∑
x∈G

exp(−ui(x)− vi)∑M
j=1 exp(−uj(x)− vj)

⇒ Ni =
∑
x∈G

exp(−ui(x)− vi)∑M
j=1 exp(−uj(x)− vj)

(A.8)

This is the MBAR equation and vi can be solved iteratively. Alternatively, solving equation

A.8 is equivalent to minimizing loss LMBAR(v1, . . . , vM) defined as

LMBAR(v1, . . . , vM) =
1

N

∑
x∈G

log

(
M∑
i=1

exp(−ui(x)− vi)

)
+

M∑
i=1

Nivi
N

(A.9)

So far we have shown the canonical way to compute the relative weight of samples. Now

consider the context of contrastive learning, where state 0 is the noise ensemble, and state 1

is the data. With MBAR equation we have

N0 =
∑
x∈G

exp(−u0(x)− v0)∑
j=0,1 exp(−uj(x)− vj)

N1 =
∑
x∈G

exp(−u1(x)− v0)∑
j=0,1 exp(−uj(x)− vj)

(A.10)

Note these two equations are dependent on each other as the sum of them is an identical

equation N0 +N1 = N . We can define b(x) = exp(u1(x) + v1 − u0(x)− v0), and we get

N0 =
∑
x∈G

b(x)

1 + b(x)
(A.11)

Now we want to compare the free energy of two states. Without adding factor vi, the reduced

free energy is fi. By adding factor vi to ui, the reduced free energy is increased to f ′
i = fi+vi.
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f ′
i reflects the relative population of the states within the generalized ensemble, and f ′

i is

f ′
i = − logP (λ = i) = − log

Ni

N
(A.12)

So in the context of contrastive learning with only 2 states, f ′
0 = f0 + v0 and f ′

1 = f1 + v1,

thus

∆f = f1 − f0 = f ′
1 − f ′

0 + v0 − v1 = log ν + v0 − v1 (A.13)

recall that ν = N0/N1. So that

b(x) = exp(u1(x) + v1 − u0(x)− v0) = ν exp(u1(x)− u0(x)−∆f) (A.14)

so we can rewrite the log-likelihood in equation A.4 as

l =
1

N

(
N0∑
i=1

log
b(x

(0)
i )

1 + b(x
(0)
i )

+

N1∑
i=1

log
1

1 + b(x
(1)
i )

)
(A.15)

Since ∂b(x)/∂∆f = −b(x), to maximize log-likelihood, we have

∂l

∂∆f
=

1

N

(
−

N0∑
i=1

1

1 + b(x
(0)
i )

+

N1∑
i=1

b(x
(1)
i )

1 + b(x
(1)
i )

)
(A.16)

when log-likelihood is maximized, ∂l/∂∆f is equal to 0, this leads to

N0∑
i=1

1

1 + b(x
(0)
i )

=

N1∑
i=1

b(x
(1)
i )

1 + b(x
(1)
i )

⇒
N0∑
i=1

1

1 + b(x
(0)
i )

+

N0∑
i=1

b(x
(0)
i )

1 + b(x
(0)
i )

=

N1∑
i=1

b(x
(1)
i )

1 + b(x
(1)
i )

+

N0∑
i=1

b(x
(0)
i )

1 + b(x
(0)
i )

⇒ N0 =
∑
x∈G

b(x)

1 + b(x)

(A.17)

Here sum over x ∈ G means sum over all the samples in the data and noise ensembles.

This result is consistent with the results achieved from MBAR equation (equation A.11),
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indicating the by viewing ∆f as an independent parameter to be optimized, when log-

likelihood is maximized (equivalent to minimizing contrastive loss), ∆f obtained from the

optimization is consistent with the MBAR equation, which rationalizes the workaround to

view ∆f as an independent parameter during training.

It is also worth mentioning that the conclusion remains valid even if we add a regularizer

on θ. With the regularizer R(θ), we aim to maximize l − R(θ) or equivalently minimize

L+R(θ), and all the derivations shown before are still valid.

A.1.3 A sufficient condition for the convexity of the contrastive loss

Theoretically, given a functional with sufficient capacity, infinite data and noise samples,

and non-zero noise density where data density is non-zero, the learned potential is the exact

data potential [45]. However, in practice, limited functional forms with finite parameters

can possibly lead to local optimal solutions [44], [45]. Here we compute the second-order

derivatives of the loss function to show the sufficient condition under which the contrastive

loss is convex, thus leading to a unique solution.

We begin with the contrastive loss (equation A.5). In the context of contrastive learning,

noise samples are produced with known potential energy u0, while potential u1 depends on

parameters θ, which remain to be optimized. We define

g(x, y) = −y log σ(α)− (1− y) log(1− σ(α)) (A.18)

where α = − log ν + u0(x) − u1(x; θ) + ∆f . Thus contrastive loss L = (
∑N

i=1 g(xi, yi))/N .

The first order derivative of g to θi is

∂g

∂θi
=


(1− σ(α))

∂u1

∂θi
if y = 1

− σ(α)
∂u1

∂θi
if y = 0

(A.19)
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and the second order derivative of g to θi is

∂2g

∂θi∂θj
=


(1− σ(α))

[
∂2u1

∂θi∂θj
+ σ(α)

(
∂u1

∂θi

)(
∂u1

∂θj

)]
if y = 1

σ(α)

[
− ∂2u1

∂θi∂θj
+ (1− σ(α))

(
∂u1

∂θi

)(
∂u1

∂θj

)]
if y = 0

(A.20)

If ∂2u1

∂θi∂θj
= 0, which is the case when u1 is linear function of θi, then

∂2g

∂θi∂θj
= σ(α)(1− σ(α))

(
∂u1

∂θi

)(
∂u1

∂θj

)
y = 0 or 1 (A.21)

Meanwhile, consider the derivatives involving ∆f , we have first order derivative

∂g

∂∆f
=


σ(α)− 1 if y = 1

σ(α) if y = 0

(A.22)

for second order derivatives,

∂2g

∂∆f∂θi
= −σ(α)(1− σ(α))

∂u1

∂θi
y = 0 or 1 (A.23)

and
∂2g

∂∆f 2
= σ(α)(1− σ(α)) y = 0 or 1 (A.24)

Now we can write out the Hessian matrix of g with respect to θ1, . . . , θn,∆f . We define the

column vector

v =

(
∂u1

∂θi
, . . . ,

∂uN

∂θN
,−1

)T

(A.25)

so the Hessian matrix is

H = σ(α)(1− σ(α))vvT (A.26)

since 0 < σ(α) < 1, it is obvious that H is positive semi-definite. Thus u1 being a linear

function of θ is a sufficient condition for g(x, y) being a convex function relative to θ and
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∆f , and the contrastive loss L, which is the mean of g(xi, yi), is also convex. Minimizing

contrastive loss should lead to a unique optimal solution. Furthermore, if the regularizer

R(θ) is also convex to θ, then L + R is also convex with respect to θ and ∆f , and the

conclusion remains.

A.1.4 Generate the mixed noise ensemble

In practice, we ran multiple independent umbrella simulations with known reduced energy to

generate noise, so the noise samples cover diverse configurations. To correctly reweight the

noise samples and view them together as coming from a noise potential u0, we need to use the

idea of generalized ensemble and MBAR equation introduced before. In this subsection, we

describe how to correctly compute u0, and the sampling procedures are explained in section

Details of noise simulations.

Suppose that we performed M independent noise samplings, each with reduced potential

unoise
i (x) (i = 1, . . . ,M). In our case, we applied umbrella sampling [75] to collect noise

samples, so unoise
i (x) = unoise

unbiased(x) + bi(x), where unoise
unbiased(x) is the reduced energy of the

unbiased system, and bi(x) is the i-th reduced umbrella bias. Other enhanced sampling

methods, such as replica exchange [128], can also be applied to enhance noise sampling.

Nnoise
i noise samples are collected in the i-th sampling. All the noise samples are mixed

together as a generalized noise ensemble Gnoise = {xnoise,i=1,...,M

j=1,...,Nnoise
i

}. The samples can be viewed

as sampled from distribution

P (λ = i, x) ∝ exp(−unoise
i (x)− vi) (A.27)

and vi can be solved by minimizing MBAR loss as shown in equation A.9. The samples in

the generalized noise ensemble can be viewed as coming from probability

p0(x) =
M∑
i=1

P (λ = i, x) ∝
M∑
i=1

exp(−unoise
i (x)− vi) (A.28)
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so the reduced potential of the noise ensemble should be

u0(x) = − log p0(x) = − log

(
M∑
i=1

exp(−unoise
i (x)− vi)

)
(A.29)

A.1.5 Validate and filter hyperparameters with reweighting scheme

In practice, since we only have finite data and noise samples, and the model has finite capacity

with finite parameters, the trained model deviates from the ground truth [45]. We applied

regularization term R over parameters θ to control the scale of interactions strengths, and

the regularizer strength is controlled by hyperparameters ζ

R(θ) =
ζ

2
mean(θ2) (A.30)

In contrast to maximum log-likelihood, which performs sampling during training, contrastive

learning does not have direct control over the samples generated with the trained model

during training, so that we need to run simulations with the trained model to validate

and choose the optimal hyperparameters, which is computationally expensive. A practical

workaround is to use the reweighting scheme. By reweighting the noise ensemble with the

trained model, we can rapidly estimate the average radius of gyration (Rg) produced with the

trained model to select the best hyperparameters. The workflow is essentially the same as

estimating the free energy along Rg with the trained model and the noise ensemble with the

free energy perturbation method [296] and can be executed with FastMBAR [76]. Suppose u0

is the noise ensemble reduced energy, and u1(x; θ
∗) is the potential with optimized parameters

θ∗, the reweighting factor should be

w(x) = exp(−u1(x; θ
∗) + u0(x)) + const. (A.31)
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which has an arbitrary constant factor that does not affect the result but in practice affects

numerical accuracy. By dividing the Rg axis as discrete bins, the reduced free energy along

Rg in the i-th bin under potential u1(x; θ
∗) is

fi = − log

(
1

N0

N0∑
j=1

w(x
(0)
j )Ii(R̂g(x

(0)
j ))

)
(A.32)

where Ii(Rg) is the indicator function and equals 1 if Rg is within the i-th bin, otherwise the

indicator function equals 0. x
(0)
j is the j-th sample of the noise ensemble. R̂g represents the

function that computes Rg as the function of the sample configuration including n atoms

R̂g(x) =

√∑n
i=1mi|r⃗i − r⃗COM|2∑n

i=1 mi

(A.33)

where r⃗i is the coordinate of the i-th atom, and r⃗COM is the center-of-mass coordinate

r⃗COM =

∑n
i=1mir⃗i∑n
i=1mi

(A.34)

The average Rg is

R̄g =

∑Nbins
i R

(i)
g exp(−fi)∑Nbins

i exp(−fi)
=

∑Nbins
i

∑N0

j=1R
(i)
g w(x

(0)
j )Ii(R̂g(x

(0)
j ))∑Nbins

i

∑N0

j=1w(x
(0)
j )Ii(R̂g(x

(0)
j ))

(A.35)

where R
(i)
g is the center value of the i-th bin, and there are Nbins in all. We chose the model

with the estimated R̄g that best matches the benchmark. We ended up with MD simulations

to confirm that the R̄g values computed with MD simulations match the training data or

experiments. Figure A.2 shows the average Rg estimated by the reweighting scheme is close

to the one achieved by MD simulation, supporting the effectiveness of the reweighting scheme.

The key to successful reweighting lies in the decent overlap between the noise ensemble and

the ensemble produced by the trained model, which is almost guaranteed in our case, since

we performed multiple umbrella simulations to explore diverse noise configurations, and the
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noise potential is similar to the trained potential. In particular, this reweighting scheme

enables comparison of any collective variable and is compatible with any training method

that avoids sampling during training to accelerate validation.

Finally, we underscore that the reweighting scheme is only for rapidly filtering hyperpa-

rameters, and all the results displayed are computed with MD simulations unless otherwise

specified.
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A.2 Force Field Definitions

In this section, we elaborate the force field potential functional forms used as our trained

model. The noise potential is produced with existing models and is explained in section

Details of noise simulations.

A.2.1 Force field of intrinsically disordered proteins

For the force field for intrinsically disordered proteins (IDPs), we used the HPS model [56],

which is a coarse-grained (CG) potential of Cα representation (i.e. one CG bead per amino

acid at Cα). We summarize the model below.

The force field for IDPs is represented as

UIDP = Ubond + UAH + Uelec (A.36)

which is the same functional form as the HPS model. The bonds between two residues are

harmonic bonds

Ubond =
∑
i

kbond

2
(ri,i+1 − r0) (A.37)

where ri,i+1 is the distance between two connected CG beads, and r0 is the bond length.

Based on the mean bond lengths measured from the all-atom trajectories, we chose r0 = 0.386

nm. We set kbond = 8000 kJ/mol/nm2 so that the simulation timestep can be 10 fs.

The nonbonded contact between two CG beads is the Ashbaugh-Hatch functional form

[74]

UAH(r) =
∑
i<j


ULJ(rij) + (1− λij)ϵLJ if rij ≤ 21/6σij

λijULJ(rij) otherwise
(A.38)
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where ULJ is the Lennard-Jones (LJ) potential

ULJ(rij) = 4ϵLJ

[(
σij

rij

)12

−
(
σij

rij

)6
]

(A.39)

Here rij is the distance between the two Cα atoms. λij is the hydrophobic scale parameter

that captures the interaction strength between two CG atoms and depends on the types of

amino acids. Interaction strength parameter ϵLJ = 0.2 kcal/mol. σij is the size parameter.

Both λij and σij depend on atom types. The cutoff distance is 4σij. When computing

the nonbonded contact, bonded atom pairs (i.e. i and i + 1 pairs on the same chain) are

excluded. We directly applied the σij values used in existing HPS series models, while λij

were optimized with contrastive learning. Notably, UAH is a linear function of λij, which

ensures the contrastive loss is convex.

The electrostatic interaction is defined as

Uelec =
∑
i<j

qiqj
4πϵ0ϵwaterrij

exp(−rij/λD) (A.40)

where qi and qj are charges of two CG atoms, ϵ0 is the vacuum permittivity, ϵwater = 80.0 is

the dielectric, and λD is the Debye length

λD =

√
kBTϵ0ϵ

2NAIe2c
(A.41)

where kB is the Boltzmann constant, T is the temperature, NA is the Avogadro constant,

I is the ionic strength, and ec is the elementary charge. Charges of residues on the N- and

C-terminal ends of the chains are added and subtracted by 1 charge, respectively. The cutoff

distance is 5λD, which ensures the cutoff error is small enough. Compared to using fixed

cutoff length such as 3.5 nm or 4.0 nm, this setting significantly decreases the cutoff error for

some systems with ionic strength much lower than the physiological condition (about 150

mM). Bonded atom pairs (i.e. i and i + 1 pairs on the same chain) are excluded from the
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electrostatic interactions.

A.2.2 Force field of ordered proteins

For the force field of ordered proteins, we generalized the HPS model by adding structure-

based terms, thus capturing the folding tendency of ordered proteins (OPs). The overall

potential is

UOP = Ubond + Uangle + Udihedral + Unative pair + UAH + Uelec (A.42)

The bond potential Ubond is the same as the one used for IDPs (equation A.37) with the

same parameters r0 = 0.386 nm and kbond = 8000 kJ/mol/nm2.

The angle, dihedral, and native pair potentials are parameterized with the given reference

structures, which should be the native structure, thus stabilizing the ordered protein. The

method to select the reference structure from all-atom trajectories is elaborated in Section:

Details of noise simulations for ordered proteins.

The angle potential is

Uangle = kangleM
2

[
1− cos

(
θ − θ0
M

)]
(A.43)

where kangle = 120 kJ/mol/rad2 and M = 5. When θ − θ0 ∈ [−π, π], such potential is

similar to a harmonic potential kangle(θ − θ0)
2/2, but the cosine function facilitates more

stable simulations. θ0 is the angle read from the reference structure.

The dihedral potential is a periodic torsion force

Udihedral =
∑
n=1,3

kdihedral,n[1 + cos(n(ϕ− ϕ0 − π))] (A.44)

with periodicity n = 1 or 3. kdihedral,1 = 3.0 kJ/mol and kdihedral,1 = 1.5 kJ/mol. ϕ is the

dihedral, and ϕ0 is the reference value read from the reference structure.

The native pair potential stabilize continuous ordered α-helices or β-sheets. The native
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pairs are applied between Cα atoms which satisfy: (1) both Cα atoms are within the same

continuous α-helix or β-sheet (this implicitly requires them to be on the same chain), with

secondary structures of the reference structure recognized by DSSP [297] implemented in

MDTraj [298]; (2) the two Cα atoms are not involved in bond, angle, or dihedral potentials

(i.e. the indices of two Cα atoms i and j satisfy |i− j| > 3 if on the same chain); (3) the two

residues of the Cα atoms have contacts in the reference all-atom structure identified by the

shadow algorithm [299], which is implemented in OpenABC [61]. The native pair potential

is

Unative pair =
∑

native pairs (i,j)
i<j

ϵnative pair

[
5

(
µij

rij

)12

− 6

(
µij

rij

)10
]

(A.45)

where ϵnative pair = 3 kJ/mol. µij is the distance between two Cα atoms in the reference

structure.

The functional forms of non-bonded contact UAH and electrostatic interaction Uelec are

the same as the ones used in IDP force field (equations A.38 and A.40), the parameters are

also the same. The only difference is now the atom pairs involved in bond, angle, dihedral,

and native pairs (i.e. pairs i and i + 1/2/3 on the same chain, and native pairs) are all

excluded from both non-bonded interactions.
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A.3 Training and validation dataset

To train the coarse-grained force field by contrastive learning, we need high-quality molecular

configurations as data samples. We used the Cα representations of structures collected from

all-atom explicit solvent simulations with known temperatures and ionic strengths. Our

noise samples are produced with existing Cα models implemented in OpenABC [55], [57],

[61]. Here we provide more details of the data and noise samples.

A.3.1 Details of all-atom simulations

All the training data samples come from long-time unbiased all-atom simulations. For IDPs,

all the training data samples come from all-atom simulations with the a99SB-disp force field

[72], which is the state-of-art all-atom explicit ion force field for IDPs. We include 7 IDPs

reported by D. E. Shaw Research [72] and 34 additional IDPs simulated in house. The all-

atom simulations of ordered proteins were simulated with either a99SB-disp, DES-Amber,

or CHARMM22*/TIP3P, which have been reported by D. E. Shaw Research [71]–[73]. Some

detailed information of the all-atom simulations are provided in Table A.1 and A.2. Here,

we provide details of in-house all-atom simulations of 34 additional IDPs (named as Evo

dataset).

The sequences of the 34 IDPs simulated in house were selected from the S. cerevisiae

proteome based on the previous research by Zarin et al [78]. They identified over 5000

intrinsically disordered regions in the S. cerevisiae proteome and clustered them into 53

clusters based on their evolutionary signatures using a hierarchical clustering algorithm. To

ensure a broad representation of IDPs, we selected sequences from each cluster for subsequent

simulation, following the process outlined below:

1. Initially, we filtered sequences to a length of 40 amino acids, which is short enough for

long time scale all-atom molecular dynamics simulations.

2. To identify sequences with a significant degree of intrinsic disorder, we employed
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ColabFold [300] to predict the per-residue pLDDt scores of each sequence. According to

previous study, the pLDDt score ≤ 72 can be used to measure whether a sequence is disor-

dered [301]. Sequences were considered sufficiently disordered if over 90% of their residues

exhibited a pLDDt score at or below this threshold. This criterion resulted in 47 clusters

each containing at least one qualifying sequence.

3. The next step of selection focused on the composition of the amino acids. We observed

a deficiency in cysteine (C) and tryptophan (W) within the candidate sequences. To ensure

a balanced amino acid combination, which is crucial for training force field, we ranked

sequences within each cluster based on the number of C and W. In cases of ties, we employed

the number of amino acid types present in the sequence as a secondary ranking criterion.

The top-ranked sequence from each cluster was selected, yielding 47 sequences in total.

4. We then conducted 10.5 µs all-atom molecular dynamics simulation for each selected

sequence. The structures predicted from the ColabFold were used as the initial structures

for the all-atom simulations. We parameterized the a99SB-disp force field [72] with the

a99SB-disp water model using the GROMACS [125] software. Each protein was placed in a

dodecahedron box with a length of 8.0 nm. NaCl at a concentration of 150 mM was added

to the simulation box. The simulation was performed using the OpenMM [62] package.

Following energy minimization, a constant pressure, and temperature (NPT) simulation was

carried out for 10.5 µs at a temperature of 300 K and a pressure of 1 Bar. The hydrogen

mass repartitioning [302] method was used to enable a timestep of 4 fs. The Langevin middle

integrator [130] was used to produce more accurate configurational sampling. Configurations

were saved every 100 ps during the simulation, resulting in 105,000 configurations for each

sequence. Based on these simulations, sequences exhibiting narrow ranges of the radius

of gyration (Rg) were excluded to ensure a diverse set of expanded protein conformations.

Sequences that frequently exhibited configurations where the smallest distance between two

periodic boundary condition images was shorter than the non-bonded interaction cutoff (0.9

nm) were also excluded to ensure the accuracy of the conformation distributions. Following
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the above criteria, we finalized a set including 34 IDP sequences.

A.3.2 Details of noise simulations

Since noise samples have to be generated with known potentials, we produced noise samples

with existing Cα CG force fields with small modifications and additional bias. Notably,

small modifications of the parameters of the existing force fields are only applied to produce

noise samples. When we compare the performance of the trained model and existing force

fields, we keep parameters of the existing force fields unchanged unless otherwise specified.

Details of noise simulations for intrinsically disordered proteins

For the noise of IDPs, we produced noise samples with HPS-Urry model [57] with slight

modifications and umbrella bias. The overall potential of the i-th umbrella sampling is

U
(i)
noise, IDP = Ubond + UAH + Uelec + U

(i)
bias (A.46)

The bond potential is the harmonic bond potential (equation A.37). The parameters are

also kbond = 8000 kJ/mol/nm2 and r0 = 0.386 nm. We used these values as such parameters

were used in our final trained model.

The nonbonded contact potential is the Ashbaugh-Hatch potential in equation A.38 with

the ϵLJ σij and λij values reported in a previous study [57]. Note the λij values are shifted by

-0.08 to achieve the optimal results reported before (all the HPS-Urry simulations use such

shifted Urry scale) [57]. Atom pairs with bonds were excluded from the nonbonded contact.

The electrostatic interaction is the Debye-Hückel potential in equation A.40. Dielectric

constant ϵwater = 80.0, electrostatic interaction cutoff is 4.0 nm. Charges of Cα atoms on the

N-terminal and C-terminal ends have +1 and -1 additional charge, respectively. The Debye

length was computed with the ionic strength and temperature same as the ones used in the

corresponding all-atom simulations. Similar to the contact potential, atom pairs connected
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with bonds were excluded.

We applied umbrella bias along Rg to enhance sampling. The umbrella bias is

U
(i)
bias =

κi

2
(R̂g(r⃗)−R(i)

g )2 (A.47)

where κi and R
(i)
g are the force constant and umbrella center of the i-th umbrella sampling.

R̂g(r⃗) is the function that computes radius of gyration of the configuration defined as

R̂g(r⃗) =

√∑N
i=1 mi(r⃗i − r⃗COM)2∑N

i=1mi

(A.48)

where r⃗i is the position of the i-th atom, mi is the mass of the i-th atom, and rCOM is the

center-of-mass position of the molecule, with all the mass of each amino acid on the Cα atom

r⃗COM =

∑N
i=1mir⃗i∑N
i=1mi

(A.49)

The umbrella bias helps explore both compact and extended configurations, thus facilitate

sampling a wide distribution of noise and ideally has a decent overlap with the data sample

distribution.

Details of noise simulations for ordered proteins

For the noise of ordered proteins, to keep some overlap between the noise distributions

and data distributions, we kept using the AH potential as the nonbonded potential, with

structure-based terms to stabilize the structure with respect to the reference native struc-

ture. Additionally, umbrella bias on the root-mean square deviation (RMSD) relative to the

reference structure is applied to enhance noise sampling.

First, we explain how to select reference structures from the all-atom trajectories of

ordered proteins. Reference structures were required to define structure-based potentials

(angles, dihedrals, and native pairs) and RMSD umbrella bias. Considering the funneled
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landscape of folding proteins, we used hierarchical clustering to locate the folded structure

with SciPy [303]. Given the all-atom trajectory, we converted the all-atom trajectory to the

CA trajectory and computed the RMSD matrix, where the (i, j) element of the matrix is

the RMSD between the i-th and j-th snapshots. Hierarchical clustering is then performed

on the RMSD matrix using the metric that the distance between two clusters is the average

of distances between any two points from each cluster separately. Hierarchical clustering is

further converted to flat clustering with the maximal number of clusters as 50. The folded

configurations should be the largest flat cluster, and we chose the configuration from the

largest cluster that minimizes the mean RMSD with all other members in the largest cluster

as the reference structure.

The overall potential for the i-th umbrella sampling is defined as

U
(i)
noise, OP = Ubond + Uangle + Udihedral + Unative pair + UAH + Uelec + U

(i)
bias (A.50)

The bond potential Ubond is still the harmonic bond potential (equation A.37) with the same

parameters kbond = 8000 kJ/mol/nm2 and r0 = 0.386 nm. The angle potential Uangle is the

cosine function in equation A.43 with the same parameters kangle = 120 kJ/mol/rad2 and

M = 5. θ is the angle, and θ0 is read from the reference structure. The dihedral potential

Udihedral is the periodic torsion force in equation A.44 with the same parameters n = 1 or 3,

kdihedral,1 = 3.0 kJ/mol and kdihedral,1 = 1.5 kJ/mol. ϕ is the dihedral, and ϕ0 is the reference

value read from the reference structure. The native pair potential Unative pair is the same as

equation A.45, and native pairs were searched in the same way as explained in Section: Force

field of ordered proteins. The nonbonded contact, electrostatic interaction, and umbrella bias

are the same as the ones for producing noise of IDPs, which have been introduced in Details

of noise simulations for intrinsically disordered proteins.
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Figure A.1: 20 hydrophobic scale parameters trained on 7 IDPs with noise samples generated
with different models. One set of noise samples were generated with the HPS-Urry model
with regularization parameter ζ = 20.0, and the other set of noise samples were generated
with the same non-bonded potential functional form, but all the λ values are uniformly set
as 0.3, with electrostatic cutoff as 5λD (λD is the Debye length), and ζ = 10.0. The λ values
in the trained model are not sensitive to the exact parameters of the potential that produced
the noise.
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Figure A.2: The comparison of average Rg between the simulation and reweighting on the
training set with the model trained on 41 IDPs and 20 hydropathy parameters, which is the
same model as shown in main text Figure 2.

140



Experimental Rg (nm)

si
m

ul
at

ed
 R

g (
nm

)

Test set IDP average Rg comparison

1 2 3 4 5

1

2

3

4

5
trained RMSE=0.027
HPS-Urry RMSE=0.014
Mpipi RMSE=0.017

Figure A.3: The comparison of average Rg between several CG models and experimental
values on test set IDPs. Here the trained model is trained with 41 IDPs and 20 hydropathy
parameters, which is the same as the model shown in main text Figure 2. Root mean square
errors (RMSEs) are provided.
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Protein T (K) I (mM) t (µs) N Force field
ACTR 300 150 30 71 a99SB-disp
Aβ40 300 50 30 40 a99SB-disp
Ash1 300 150 30 83 a99SB-disp
Ntail 300 100 30 132 a99SB-disp

α-synuclein 300 100 30 140 a99SB-disp
drkN SH3 300 50 30 59 a99SB-disp
p15PAF 300 50 30 110 a99SB-disp

sic1 300 150 30 92 a99SB-disp
34 Evo proteins 300 150 10.5 40 a99SB-disp

Table A.1: All-atom simulation data of IDPs used for training. “34 Evo proteins" represents
34 IDPs clustered with evolutionary features [78], and each IDP has its own individual
trajectory. T is the simulation temperature, I is the ionic strength, t is the trajectory
duration, N is the sequence length. All the 34 Evo protein systems share the same T, I, t
and N parameters.
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Protein T (K) I (mM) t (µs) N Force field
α3D TRE 3.11 DES-Amber
BBA TRE 33.04 1000 DES-Amber
BBL TRE 199.58 1000 DES-Amber

engrailed TRE 280.46 1000 DES-Amber
gpw TRE 36.54 1000 DES-Amber

λ-repressor TRE 51.04 1000 DES-Amber
NTL9 TRE 121.46 1000 DES-Amber

Protein B TRE 51.44 1000 DES-Amber
BPTI 300 37.02 DES-Amber

calmodulin 300 249.98 DES-Amber
Ubiquitin 300 150 a99SB-disp

GB3 300 9.98 a99SB-disp
HEWL 300 26.63 a99SB-disp

Chignolin 340 25.9 106 CHARMM22*/TIP3P
Trp-cage 290 65 208 CHARMM22*/TIP3P

Villin 360 40 120 CHARMM22*/TIP3P
WW domain 360 7.1 1137 CHARMM22*/TIP3P

Homeodomain 360 45 327 CHARMM22*/TIP3P
Protein G 350 100 1154 CHARMM22*/TIP3P

Table A.2: All-atom simulation data of ordered proteins used for training. T is the simulation
temperature, I is the ionic strength, t is the trajectory duration, N is the sequence length.
TRE means temperature replica exchange simulations.
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Appendix B

Supplementary information for chapter 3

B.1 Force Field Definitions

B.1.1 MOFF protein force field

MOFF is a transferable protein force field optimized for both ordered and disordered proteins

utilizing the maximum entropy principle and ordered protein folding landscape [55]. Each

amino acid is represented with one coarse-grained (CG) bead whose position is defined using

the Cα atom from the atomistic structures. MOFF energy function is defined as

UMOFF = Ubond + Uangle + Udihedral + Umemory + Ucontact + Uelectrostatics (B.1)

The bonded term, Ubond, consists of harmonic potentials for distances ri,i+1 between

bonded nearest neighbor beads

Ubond =
∑
i

1

2
kbond(ri,i+1 − r0)

2, (B.2)

where the equilibrium length r0 = 0.38 nm, and force constant kbond = 1000 kJ/mol/nm2.

The angular term, Uangle, consists of harmonic potentials for angles between nearest
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neighbor bonds

Uangle =
∑
i

1

2
kangle(θi − θi,0)

2, (B.3)

where θi is the i-th angle. The equilibrium angles, θi,0, are measured from the input atomistic

structure and force constant kangle = 120 kJ/mol/rad2.

The dihedral term, Udihedral, consists of periodic torsion potentials with periodicity n = 1

or 3

Udihedral =
∑
i

∑
n=1,3

kdihedral,n[1 + cos(n(θi − θi,0 − π))] (B.4)

where θi is the i-th dihedral. The equilibrium values, θi,0, are measured from the input

atomistic structure, kdihedral,1 = 3.0 kJ/mol/rad2, and kdihedral,3 = 1.5 kJ/mol/rad2.

The memory potential, Umemory, also known as native pair potential, stabilizes the ordered

secondary and tertiary structures of folded protein domains. It is limited to native pairs

identified from the initial input native structure using the Shadow Algorithm detailed below.

It is defined as

Umemory =
∑

native pairs (i,j)
i<j

ϵ

[
5

(
µij

rij

)12

− 6

(
µij

rij

)10
]
. (B.5)

µij is the distance between Cα atoms from residue i and j measured from the input native

structure, and by default ϵ = 3 kJ/mol.

The contact potential, Ucontact, measures nonbonded interactions between pairs of amino

acids. It involves a repulsion term for excluded volume effect and a specific term that

measures the energetic cost of bringing a pair of amino acids into contact. The expression is

Ucontact =
∑
i<j

{αij

r12
− ϵij

2
[1 + tanh(η(r0 − r))]

}
(B.6)

η = 7 nm−1 and r0 = 0.8 nm. αij and ϵij are parameters depending on amino acid type i

and j. αij = σ12
ij |ϵij|. σij = (σi + σj)/2 where σi is the size of amino acid i. The amino
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acid sizes (i.e. σi) are listed in B.1, and parameters ϵij are listed in B.2. We used a cutoff

distance rc = 2 nm, and the potential is shifted to zero and remains continuous at r = rc

(such shift is not explicitly shown in equation B.6). 1-2, 1-3, 1-4 atom pairs, and native pairs

are excluded from the sum.

The electrostatic potential, Uelectrostatics, is defined with the Debye-Hückel potential with

a distance-dependent relative permittivity (dielectric) ϵ(r) as

Uelectrostatics =
∑
i<j

S(rij)QiQj

4πϵ0ϵ(rij)rij
exp(−rij/λD(rij)), (B.7)

with

ϵ(r) = A+
B

1 + κ exp(−ζBr)
, (B.8)

and

λD(r) =

√
kBTϵ0ϵ(r)

2NAce2
. (B.9)

Qi and Qj denote the charges of residues i and j with values provided in B.1, and ϵ0 is the

vacuum permittivity. 1-2, 1-3, and 1-4 pairs are excluded from the sum, but native pairs are

included. The distance-dependent dielectric, ϵ(r), switches continuously between the value

in water (ϵwater) to the one in bulk protein, with A = −8.5525, B = ϵwater − A, κ = 7.7839,

and ζ = 0.03627 nm−1. ϵwater = 78.4 is the relative permittivity (dielectric) constant of

water. λD is the Debye length, which also depends on distance. The variables in equation

B.9 correspond to the Boltzmann constant (kB), temperature (T ), the Avogadro constant

(NA), the monovalent salt concentration (c), and the elementary charge (i.e. proton charge)

(e), respectively.

The switch function gradually turns off the electrostatic interaction within regime r1 ≤
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r ≤ r2

S(r) =



1 (r < r1)

5∑
i=0

an

(
r − r1
r2 − r1

)n

(r1 ≤ r < r2)

0 (r ≥ r2)

, (B.10)

where a0, a1, · · · , a5 equal 1, 0, 0, -10, 15, and -6, respectively. Thus the switch function

equals 1 at r1 = 1.2 nm while 0 at r2 = 1.5 nm.

B.1.2 HPS protein force field

Hydropathy scale (HPS) models [56], [57] are designed to simulate the phase behaviors of

intrinsically disordered proteins (IDP). The energy function of these models is defined as

UHPS = Ubond + Uelectrostatics + UAH. (B.11)

The bonded term, Ubond, consists of harmonic potentials for distances ri,i+1 between

nearest neighbor beads

Ubond =
∑
i

1

2
kbond(ri,i+1 − r0)

2, (B.12)

where the equilibrium length r0 = 0.38 nm, and force constant kbond = 8368 kJ/mol/nm2.

The electrostatic potential, Uelectrostatics, is defined with the Debye-Hückel potential as

Uelectrostatics =
∑
i<j

QiQj

4πϵ0ϵr
exp(−rij/λD), (B.13)

where ϵ0 is the vaccum permittivity, ϵ = 80 is the relative permittivity of water, and λD = 1

nm is Debye length at the monovalent salt concentration of 100 mM. Qi and Qj denote the

charges of residues i and j with values provided in B.1.

The AH potential describes amino acid-specific interactions using Ashbaugh and Hatch’s
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functional form [74] as

UAH =
∑
i<j


[ϕLJ

ij (rij) + (1− λij)ϵ] rij ≤ 21/6σij

λijϕ
LJ
ij (rij) rij > 21/6σij.

(B.14)

λij = µλ0
ij −∆ and λ0

ij = (λi + λj)/2, where λi is the normalized hydropathy scale of amino

acid i. µ and ∆ are the scaling and drift factors, respectively. λi represents normalized

hydrophobicity scales. By default, the scale by Kapcha and Rossky (KR scale) [304] is

applied with µKR = 1, ∆KR = 0.0 and the scale by Urry et al. (Urry scale) [131] is applied

with µUrry = 1, ∆Urry = 0.08. These are the optimal scaling and drift factors for the two

hydropathy scales [57].

ϕLJ
ij in equation B.14 corresponds to the normal Lennard-Jones potential defined as

ϕLJ
ij (r) = 4ϵ

[(σij

r

)12
−
(σij

r

)6]
, (B.15)

with ϵ = 0.8368 kJ/mol. σij = (σi + σj)/2, where σi is the size of amino acid i with values

provided in B.1.

We use a cutoff distance of 3.5 nm for electrostatic interactions and 4σij for the amino-

acid-specific AH potential. Both potentials were shifted by the values at the cutoff to ensure

continuity (the shifts are not explicitly shown in equation B.13 and B.14). Furthermore,

nearest neighbors (i.e. bonded atom pairs) are excluded from the electrostatic and AH

potentials.

B.1.3 MRG-CG DNA force field

MRG-CG DNA force field was originally developed by Savelyev et al for simulating Watson-

Crick (WC) paired dsDNA with the explicit presence of counter ions [145]. Each nucleotide

is represented with one CG bead of mass 325 Da. The energy function excluding ions is
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defined as

UDNA = Ubond + Uangle + Ufan-bond + Ucontact + Uelectrostatics (B.16)

Bonded potentials are applied to every two neighboring CG atoms on each ssDNA chain,

and

Ubond =
∑
i

4∑
n=2

kbond,n(ri,i+1 − r0)
n. (B.17)

Values for the spring constants, kbond,n, and the equilibrium distance, r0, are listed in B.3.

Angular potentials are applied to every three neighboring CG atoms on each ssDNA

chain, and

Uangle =
∑
i

4∑
n=2

kangle,n(θi − θ0)
n. (B.18)

θi is the i-th angle. Values for the spring constants, kangle,n, and the equilibrium distance,

θ0, are listed in B.3.

The fan bonds are introduced to capture base-pairing, cross-stacking, and other inter-

actions between two ssDNA chains. They are applied between CG beads i and j − 5, j −

4, · · · , j + 5, where bead i and j form a WC pair.

Ufan-bond =
∑

WC pair (i,j)
i<j

5∑
∆=−5

4∑
n=2

kfan bond,n(ri,j+∆ − r∆,0)
n (B.19)

Values for the spring constants, kfan bond,n, and the equilibrium distance, r∆,0, are listed in

B.5.

To adapt the force field to implicit-ion simulations, we scaled the bonded interactions by

a factor of 0.9 so that the simulated persistence length for dsDNA matches the experimental

value [55]. Note the parameter values listed in B.3, B.4, and B.5 are the original values

reported in reference [145] before scaling. We further replaced the original electrostatic

interaction with the same Debye-Hückel electrostatic interaction with distance-dependent

dielectric defined in equation B.7. Each CG nucleotide atom possesses a −e charge.
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Finally, the nonbonded contact potential for excluded volume effect is defined as

Ucontact =
∑
i<j

αDNA-DNA

r12ij
, (B.20)

with αDNA-DNA set as 1.678× 10−5 nm12 · kJ/mol.

Nearest neighbor CG beads with bonded and angular potentials are excluded from contact

and electrostatic interactions. CG beads with fan bonds are from different DNA strands and

are not excluded from such nonbonded interactions.

B.1.4 MOFF Protein-MRG DNA interactions

MOFF Protein-MRG DNA interactions include both contact and electrostatic potentials.

The contact potentials are defined as

Ucontact =
∑
i<j

αprotein-DNA

r12ij
, (B.21)

with αprotein-DNA = 1.6264 × 10−3 nm12 · kJ/mol. Electrostatic interactions follow the same

definition as in equation B.7. A previous study has shown that the above simple treat-

ment of protein-DNA interactions successfully reproduces the binding free energy of several

complexes [116].

B.1.5 Mpipi protein and RNA force field

The Mpipi force field is developed based on atomistic simulations and bioinformatic data

[58]. Its energy function is defined as

UMpipi = Ubond + Uelectrostatics + UWF (B.22)
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The bond term Ubond is of the harmonic form

Ubond =
∑
i

1

2
kbond(ri,i+1 − r0)

2 (B.23)

with kbond = 1920 kcal/mol/nm2. r0 is 0.381 nm for protein, and 0.5 nm for RNA molecules.

The electrostatic interaction is computed with the Debye-Hückel potential

Uelectrostatics =
∑
i<j

QiQj

4πϵ0ϵr
exp(−rij/λD) (B.24)

with ϵ = 80 for water. The Debye length λD depends on the salt concentration of the system.

Notably, the model uses scaled charges for amino acids and nucleotides, with +0.75e for Arg

and Lys, −0.75e for Asp and Glu, +0.375e for His, and −0.75e for nucleotides.

Nonbonded interactions are captured by the Wang-Frenkel potential [305]

UWF =
∑
i<j

ϵijαij

[(σij

r

)2µij

− 1

][(
Rij

r

)2µij

− 1

]2νij

αij =2νij

(
Rij

σij

)2µij


2νij + 1

2νij

[(
Rij

σij

)2µij

− 1

]


2νij+1 (B.25)

with cutoff at Rij = 3σij. All the ϵij and σij values are listed in B.7 and B.8. µij for most

pairs is set as 2, except for two Ile as 11, for Val and Ile as 4, and for protein and RNA or

RNA and RNA as 3. All the νij values are equal to 1.

B.1.6 The generalized structure-based protein model

The structure-based model (SMOG) was originally introduced for modeling single folded

proteins. It requires an input configuration file with the protein in the native state to define

the stabilizing interaction potential. The SMOG energy function is defined as
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USMOG = Ubond + Uangle + Udihedral + Umemory + Ucontact + Uelectrostatics (B.26)

The bonded term, Ubond is defined using harmonic potentials

Ubond =
∑
i

1

2
kbond(ri,i+1 − roi,i+1)

2, (B.27)

where ri,i+1 is the distance between two Cα atoms. roi,i+1 is the corresponding value measured

from the input native structure. By default kbond = 50000 kJ/mol/nm2.

The angle term, Uangle, is defined as

Uangle =
∑
i

1

2
kangle(θi − θoi )

2, (B.28)

where θi is the i-th angle, and θoi is the native angle value measured from the input native

structure. By default kangle = 100 kJ/mol/rad2.

Udihedral is the dihedral potential defined as

Udihedral =
∑
i

∑
n=1,3

kdihedral,n[1 + cos(n(θi − θoi − π))] (B.29)

where θi is the i-th dihedral, and θoi is the dihedral measured from the input native structure.

kdihedral,1 = 2.5 kJ/mol, and kdihedral,3 = 1.25 kJ/mol.

The memory potential Umemory includes Gaussian functions and stabilizes ordered do-

mains. The native pairs are found by the shadow algorithm, and the potential is defined

as

Umemory =
∑

native pairs (i,j)
i<j

−ϵG exp

(
−(rij − µij)

2

2σ2
G

)
+

αG

r12ij

[
1− exp

(
−(rij − µij)

2

2σ2
G

)]
, (B.30)

where ϵG = 2.5 kJ/mol, αG = 4.194304 × 10−5 kJ·nm12/mol, and σG = 0.05 nm. µij is
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the distance between the i-th and j-th Cα atoms measured from the native structure. The

potential has cutoff distances as µij + 6σG. We note that when modeling proteins with

disordered regions, native pairs should be limited only to amino acid pairs from the folded

domains.

The contact potential is modeled with the Lennard-Jones (LJ) potential as

Ucontact =
∑
j>i+3

4ϵij

[(σ
r

)12
−
(σ
r

)6]
, (B.31)

where σ = 0.5 nm and the cutoff is 1.25 nm. Values for ϵij are defined using a scaled

Miyazawa-Jernigan (MJ) statistical potential and provided in B.9. This potential is essential

for describing the interactions between protein domains and across protein molecules.

Electrostatic interactions are described with the Debye-Hückel potential

Uelectrostatics =
∑
j>i+3

QiQj

4πϵ0ϵr
exp(−r/λD), (B.32)

where Qi and Qj are the charges of residues i and j, respectively. ϵ0 is the vaccum permit-

tivity and ϵ = 78.0 is the relative permittivity of water. λD is the Debye length computed

as

λD =

√
kBTϵ0ϵ

2NAce2
(B.33)

where the variables are the Boltzmann constant (kB), temperature (T ), the Avogadro con-

stant (NA), the monovalent salt concentration (c), and the elementary charge (i.e. proton

charge) (e). The arginine and lysine Cα atoms have +1 e charges, the aspartic acid and

glutamic acid Cα atoms possess −1 e charges, and other amino acid Cα atoms have zero

charges.
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B.1.7 SMOG Protein-3SPN2 DNA interactions

SMOG and 3SPN2 are combined in OpenABC. Such implementations are suitable for study-

ing protein-DNA complexes such as nucleosomes. Here we only elaborate the parameters for

B-curved DNA.

The protein-DNA nonbonded contact interactions between Cα and any DNA CG atom

also follow equation B.31, with ϵij = 0.125 kJ/mol, σ = 0.57 nm, and cutoff equal to 1.425

nm.

The protein-DNA electrostatic interactions also follow equation B.32. +e charge is as-

signed to arginine and lysine Cα atoms, −e charge is assigned to aspartic acid and glutamic

acid Cα atoms, and phosphate. All the other CG atoms have zero charge.

B.2 Details for Preparing and Performing Simulations

B.2.1 Python implementation of the shadow algorithm for native

pair identification

MOFF uses native pairs identified in the input atomistic configuration with the shadow

algorithm [299] to stabilize secondary and tertiary structures. We provide a Python imple-

mentation of the shadow algorithm to avoid the installation of Perl, which is the programming

language used in the original implementation [133].

The shadow algorithm searches contacts between residues based on atomistic configura-

tions. Residues α and β are in contact if any heavy atom i from residue α contacts with any

heavy atom j from residue β. To test if atom i contacts with atom j, imagine there are light

sources at the center of the two atoms. If neither the light from i to j nor the light from j to

i is blocked by a third heavy atom k, then atoms i and j are in contact. We further provide

pseudocode below to clarify the implementation of the algorithm.

Note the shadow algorithm requires atomistic models as inputs, while outputs contacts
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between residues. The algorithm also ignores contacts between residues that are involved in

bond, angle, or dihedral potentials in the CG force field (i.e. residues that are in 1-2, 1-3, or

1-4 relations).
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Algorithm 1 Pseudocode for shadow algorithm implementation. rc is the cutoff distance
for searching close neighbors. We used the MDTraj package [298] to load and parse the
initial input PDB structure, and the O(N) complexity cell list spatial neighbor searching is
achieved by MDAnalysis [306], [307]. By default rc = 0.6 nm, r = 0.1 nm, and rb = 0.05
nm.
Input: {x⃗i} (i = 1, · · · , N) # input atomistic coordinate
Input: rc, r, rb # set cutoff rc, atom radius r, and bonded atom radius rb
1: Find all the spatially close heavy atom pairs NeighborHeavyAtomPairs = {(i, j)}dij<rc and

i < j # use cell list to search spatially close pairs with O(N) complexity
2: create empty list ResiduePairs = []
3: for (i, j) in NeighborHeavyAtomPairs do
4: if not (i and j are from same residue or i and j are from residues with 1-2, 1-3, or 1-4

relation or dij < r or (Residue(i), Residue(j)) in ResiduePairs) then
5: # Residue(i) means the residue that atom i is from
6: # ensure i and j are from different residues without bonded interactions and dij ≥ r
7: Flag = True, ri = r, rj = r
8: Find all heavy atoms k (k ̸= i and k ̸= j) that dik < dij and djk < dij , the set including

all such atoms k is called HeavyAtomNeighbors(i, j) # find all the blocking candidates

9: for k in HeavyAtomNeighbors(i, j) do
10: if k is connected to i or k is connected to j then
11: rk = rb
12: else
13: rk = r
14: end if
15: # test if any atom k blocks the contact between i and j
16: if rk > dik or rk > djk then
17: Flag = False
18: Break
19: else
20: # ensure rk ≤ dik and rk ≤ djk, which is required by LightIsBlocked
21: if LightIsBlocked(i, j, k, rj , rk) or LightIsBlocked(j, i, k, ri, rk) then
22: # see the next algorithm for the definition of function LightIsBlocked
23: Flag = False
24: Break
25: end if
26: end if
27: end for
28: if flag then
29: Add (Residue(i), Residue(j)) to ResiduePairs
30: end if
31: end if
32: end for
Output: ResiduePairs
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Algorithm 2 Define function LightIsBlocked
Define LightIsBlocked(i, j, k, rj, rk) # check if the light from atom i to j is blocked

by atom k
Require: rj ≤ dij and rk ≤ dik # ensure arcsin can be computed properly
1: θjik is the angle of j-i-k
2: if arcsin(rj/dij) + arcsin(rk/dik) ≥ θjik then
3: return True # k blocks the light from i to j
4: else
5: return False
6: end if
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B.2.2 Implementation of the temperature replica exchange algo-

rithm

We implemented the temperature replica exchange [128] simulation protocol in Open-

ABC. We used “torch.distributed" package to enable communications between replicas. The

replica exchange is executed by exchanging coordinates and rescaled velocities while the

replica temperatures are fixed. The exchange is accepted with probability determined by

the Metropolis-Hastings algorithm. For example, for two replicas with indices 0 and 1,

each one has temperature, coordinates, potential energy, and velocities as (T0, x0, E0, v0)

and (T1, x1, E1, v1), respectively. If an exchange is attempted, the acceptance probability is

min(1, exp((β1 − β0)(E1 − E0))), where βi = 1/(kBTi) and kB is the Boltzmann constant.

If the exchange is accepted, the corresponding quantities will become (T0, x1, E1, v1
√

T0/T1)

and (T1, x0, E0, v0
√

T1/T0). Rescaling the velocities ensures that the average kinetic energy

is consistent with the new temperature. The Debye length is always computed at a tempera-

ture of 300 K, even if the replica thermostat has a different temperature, so the Hamiltonian

of different replicas is the same.

B.2.3 Building and relaxing atomistic structures from coarse-grained

configurations

We used “reconstruct atomic model from reduced representation (REMO)" to reconstruct

atomic configurations of protein condensates [152]. Given a coarse-grained configuration

with only coordinates for α carbons, REMO first removes steric clashes between these atoms.

It then reconstructs atomistic representations by optimizing the hydrogen bond networks

with backbone built from a backbone isomer library. We iteratively applied REMO to indi-

vidual chains of the condensate system for improved computation efficiency (see Algorithm

3).

To perform atomistic simulations starting from the reconstructed structure, we solvated
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it with explicit water molecules and counter ions. The box size was chosen such that protein

atoms are at least 2 nm from the boundary, resulting in a size of 39.887 × 44.420 × 45.281

nm3. The concentration of monovalent ions was set as 82 mM NaCl.

From the solvated structure, we first carried out an energy minimization using a double-

precision version of GROMACS. Subsequently, using mixed-precision GROMACS, we per-

formed a 62.5-ps-long NVT simulation with a timestep of 0.5 fs, followed by a 1-ns-long

NVT simulation with a timestep of 1 fs. Finally, we performed the production simulation

for more than 20 ns with a timestep of 1.5 fs. The temperature was maintained at 260 K

during simulations using the velocity rescaling [308] scheme with a coupling constant of 1

ps. 240 CPU cores were used to perform the atomistic simulation.

Algorithm 3 Reconstruct full atomic configurations for proteins
Input: CGCoords = {x⃗i} (i = 1, · · · , N) # input Cα coordinates of the system
Input: n # number of protein chains
Input: NumRes = {Nj}(

∑n
j Nj = N) # number of residues in each chain

1: Create empty atomic coordinates list AtomicCoords = []
2: if n == 1 then
3: AtomicCoords = REMO(CGCoords) # there is only one chain, so reconstruct

using REMO model directly
4: else if n > 1 then
5: CGCoordsList = split(CGCoords,NumRes) # there are multiple protein

chains, so split the Cα coordinates of the whole system into n coordinate lists
CGCoordsList = [CGCoords_1, ..., CGCoords_n].

6: for CGCoords_i in CGCoordsList do
7: AtomicCoords_i = REMO(CGCoords_i) # reconstruct i-th protein chain

using REMO
8: AtomicCoords_i = align(AtomicCoords_i, CGCoords_i) # align atomic co-

ordinates of i-th chain with its CG cooridnates
9: end for

10: AtomicCoords = combine([AtomicCoords_1, ..., AtomicCoords_n]) # combine
atomic coordinates of all the protein chains together

11: end if
Output: AtomicCoords
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B.2.4 Setting up MOFF HP1 system

Setting up MD simulations with MOFF requires 3D protein native configurations as inputs.

We followed the protocols established before [55], [116] to build HP1 dimer structures. We

first built the monomeric atomistic structures with RaptorX [129]. Each monomer contains

two ordered domains: chromodomain (CD) and chromoshadow domain (CSD). The CD and

CSD of HP1α correspond to regions with residues 17-72 and residues 115-176, respectively,

while the CD and CSD of HP1β correspond to regions with residues 21-79 and residues

117-175. To build dimer structures, we aligned the CSDs of two monomers to the bound

configuration reported in PDB ID 3I3C for HP1α and PDB ID 3Q6S for HP1β.

From the constructed atomistic structures for HP1 dimers, we determined the equilibrium

angles, dihedrals, and native pair distances with MDTraj [298] to define the corresponding

terms in the force field. We only included native pairs between residues from the same

CD, the same CSD, or between two CSDs. For HP1β, the initial dimer structure includes

unphysical overlaps between the C-terminal tail and CSD from different monomers. To avoid

the impact of these overlaps on native pair detection, we applied the shadow algorithm to a

single monomer to determine intra-CD and CSD native pairs. For native pairs at the dimer

interface between two CSDs, we applied the shadow algorithm to a structure containing only

the two CSDs.

The interaction strength in the native pair potential was set as ϵ = 6 kJ/mol (equation

B.5). We used a concentration of 82 mM monovalent salt to compute the Debye length

(equation B.9) and to closely mimic the experimental setup [252].

B.2.5 Benchmarking the performance of condensate simulations

We carried out simulations of condensate systems with N1 HP1α dimers and N2 200-bp-long

dsDNA using both GROMACS and OpenMM. GROMACS version is 2018.4 and compiled

with mixed precision. The precision style for OpenMM was set as “mixed", which means
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single precision for forces while double precision for integration.

For CPU simulations with GROMACS, we used the leap-frog stochastic dynamics inte-

grator (sd integrator) with the coupling constant (tau-t) set as 1 ps. We used the repository

that implements the MOFF and MRG-CG DNA force field available at https://github.com/

ZhangGroup-MITChemistry/MOFF. For single-GPU simulations with OpenMM, the in-

tegrator was set as Langevin middle integrator with a friction coefficient of 1 ps−1. All

simulations were performed under temperature 300 K and lasted one million steps with a

timestep of 10 fs.

B.2.6 Validating the force field implementation in OpenMM

To validate our implementation MOFF, we ran a 0.1-million-step NVT simulation for HP1α

dimer with GROMACS at 300 K to collect ten configurations. We used sd integrator with

time coupling constant as 1 ps and a timestep of 10 fs. We then evaluated the potential

energies for the ten configurations using both OpenMM and GROMACS with a salt concen-

tration of 82 mM and temperature at 300 K. The interaction strength for protein native pair

contacts was set as ϵ = 6.0 kJ/mol. The results are shown in B.10, and the energies computed

from the two software agree well. The minor differences come from using tabulated functions

for native pair, contact, and electrostatic potentials in GROMACS but analytical expressions

in OpenMM. In addition, GROMACS does not shift nonbonded contact potentials to zero

at cutoff distances, while OpenMM does.

To validate the MRG implementation and its integration with MOFF, we simulated a

protein-DNA complex (HP1α dimer + 200-bp-long dsDNA) to collect ten configurations.

An umbrella bias on the center of mass (COM) distance, rCOM defined as

Ubias =
kbias

2
r2COM (B.34)

was applied to promote protein-DNA contacts, with kbias = 50 kJ/mol/nm2. The simulation
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was performed with GROMACS at 300 K and lasted 2 million steps, with configurations

saved at every 0.2 million steps. The timestep is 10 fs and the time coupling constant is

1 ps. The umbrella bias was implemented using PLUMED [309]. We then evaluated the

potential energies for the ten configurations using both OpenMM and GROMACS with a

salt concentration of 82 mM and temperature at 300 K. The interaction strength for protein

native pair contacts was set as ϵ = 6.0 kJ/mol. The results are shown in B.11 and agree

well. Again, the use of tabulated functions in GROMACS resulted in minor differences.

To verify our implementation of the HPS force field, we ran a 0.1-million-step simulation

for DDX4 with OpenMM to collect ten configurations. We used Langevin middle integra-

tor with friction coefficient as 1/ps and a timestep of 10 fs, with configurations saved at

every 10,000 steps. We evaluated the potential energies for the ten configurations using

both OpenMM and HOOMD-Blue. We tested both Urry and KR scales with the optimal

parameter set (µopt
Urry = 1, ∆opt

Urry = 0.08 and µopt
KR = 1, ∆opt

KR = 0). Since HOOMD-Blue does

not shift the potential to ensure continuity at cutoff distances, we did not offset nonbonded

potentials in OpenMM for energy comparisons. The energies computed with OpenMM and

HOOMD-Blue match exactly as shown in B.12.

To validate our implementation of the Mpipi force field, we ran a 1-million-step-long

simulation for a polyR+polyK+polyU system with LAMMPS. The system consists of a

chain of 10 arginines, a chain of 10 lysines, and 2 individual chains of 10 uracils. The

simulation was performed with Langevin dynamics at 300 K, with a damping coefficient of

10.001 ps and a timestep of 10 fs. The configurations were saved every 0.1 million steps.

We evaluated the interaction energies for the 10 configurations using both OpenMM and

LAMMPS and the results as shown in B.13.

B.2.7 Computing DNA persistence length with the MRG-CG model

To compute the DNA persistence length, we simulated a 200-bp dsDNA chain with the

MRG-CG model at 300 K with a monovalent salt concentration of 100 mM. The dsDNA was
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placed into a cubic box of length 500 nm. We performed three independent 5-billion-step

NVT simulations using the Langevin middle integrator with a friction coefficient of 1/ps and

a timestep of 10 fs. The configurations were saved every 0.1 million steps, and the first one

billion steps were discarded as equilibration.

Using the simulated configurations, we computed the persistence length as follows. Since

DNA is a double-strand helix with a periodicity of about 10 bp, we choose CG particles of

index 66, 76, 86, 96, 106, 116, 126, 136 to define a pseudo chain. These particles are within

the middle 70 bp of the DNA, thus avoiding boundary effects. By connecting neighboring

particles on the pseudo chains, we can define a bond vector b⃗i as the normalized vector

of pointing from the i − 1-th to the i-th particle. The average correlation between two

normalized pseudo bond vectors with gap n was computed as

C(n) =
〈⃗
bi · b⃗i+n

〉
(B.35)

where the average was performed over pseudo bond index i and all the configurations. As-

suming an exponential decay for C(n) ≈ exp
(
−nl̄b/lp

)
, we determined the persistence length

with numerical fitting of logC(n) and n as

logC(n) = −αn+ β. (B.36)

α = l̄b/lp with l̄b as the mean bond length along the pseudo chain. The mean bond length

l̄b was 3.37 nm, and the persistence length lp was 48.83 ± 2.71 nm. The fitting results are

shown in Figure B.1.

B.3 Sequences

The following sequences were used in simulations of respective proteins.
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B.3.1 HP1α monomer

MGKKTKRTADSSSSEDEEEYVVEKVLDRRVVKGQVEYLLKWKGFSEEHNTWEPEKN

LDCPELISEFMKKYKKMKEGENNKPREKSESNKRKSNFSNSADDIKSKKKREQSND

IARGFERGLEPEKIIGATDSCGDLMFLMKWKDTDEADLVLAKEANVKCPQIVIAFY

EERLTWHAYPEDAENKEKETAKS

B.3.2 HP1β monomer

MGKKQNKKKVEEVLEEEEEEYVVEKVLDRRVVKGKVEYLLKWKGFSDEDNTWEPEE

NLDCPDLIAEFLQSQKTAHETDKSEGGKRKADSDSEDKGEESKPKKKKEESEKPRG

FARGLEPERIIGATDSSGELMFLMKWKNSDEADLVPAKEANVKCPQVVISFYEERL

TWHSYPSEDDDKKDDKN

B.3.3 FUS LC

MASNDYTQQATQSYGAYPTQPGQGYSQQSSQPYGQQSYSGYSQSTDTSGYGQSSYS

SYGQSQNTGYGTQSTPQGYGSTGGYGSSQSSQSSYGQQSSYPGYGQQPAPSSTSGS

YGSSSQSSSYGQPQSGSYSQQPSYGGQQQSYGQQQSYNPPQGYGQQNQYNS

B.3.4 DDX4

MGDEDWEAEINPHMSSYVPIFEKDRYSGENGDNFNRTPASSSEMDDGPSRRDHFMK

SGFASGRNFGNRDAGECNKRDNTSTMGGFGVGKSFGNRGFSNSRFEDGDSSGFWRE

SSNDCEDNPTRNRGFSKRGGYRDGNNSEASGPYRRGGRGSFRGCRGGFGLGSPNND

LDPDECMQRTGGLFGSRRPVLSGTGNGDTSQSRSGSGSERGGYKGLNEEVITGSGK

NSWKSEAEGGES
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Figure B.1: The log of the bond vector correlation, logC(n), as a function of the bond
separation n. The dots were obtained from MD simulations, with three colors indicate three
independent simulations. The lines are numerical fits to the data. See text Section: Comput-
ing DNA persistence length with the MRG-CG model for simulation details and computing
persistence length from the numerical fitting.
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Figure B.2: Density profiles obtained from slab simulations of HP1α (left) and HP1β (right)
dimers with the MOFF model. Vertical lines are set at z = ±10 and ±50 nm. The final
snapshots of the slab simulations at 260 K for HP1α and 210 K for HP1β are shown. CG
atoms with |z| < 10 nm are colored in yellow, while the remaining are shown in blue.
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Figure B.3: Density profiles obtained from slab simulations of DDX4 and FUS LC with the
HPS model using the Urry scale optimal parameter set (µ = µopt

Urry = 1 and ∆ = ∆opt
Urry = 0.08)

at different temperatures. Vertical dashed lines are set at z = ±5 nm and ±50 nm. The
final snapshots of the slab simulations at 260 K are shown. CG atoms with |z| < 5 nm are
colored in yellow, while the remaining are shown in blue. This figure shows that the |z| < 5
nm and |z| > 50 nm regimes can represent the concentrated and dilute phases, respectively.
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Table B.1: The amino acid mass, sizes, and charges used by MOFF and HPS models. Both
models share the same amino acid mass and sizes. The charge of HIS differs in the two
models, while other amino acids share the same charge. Here e is the elementary charge.

Amino acid Mass (Da) Size (nm) MOFF charge (e) HPS charge (e)
ALA 71.08 0.504 0 0
ARG 156.20 0.656 1 1
ASN 114.10 0.568 0 0
ASP 115.10 0.558 -1 -1
CYS 103.10 0.548 0 0
GLN 128.10 0.602 0 0
GLU 129.10 0.592 -1 -1
GLY 57.05 0.450 0 0
HIS 137.10 0.608 0.25 0.5
ILE 113.20 0.618 0 0
LEU 113.20 0.618 0 0
LYS 128.20 0.636 1 1
MET 131.20 0.618 0 0
PHE 147.20 0.636 0 0
PRO 97.12 0.556 0 0
SER 87.08 0.518 0 0
THR 101.10 0.562 0 0
TRP 163.20 0.678 0 0
TYR 163.20 0.646 0 0
VAL 99.70 0.586 0 0
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Table B.3: MRG DNA model bond parameters. All the kbond,n are in unit kcal/mol/nm2,
and r0 unit is nm.

kbond,2 kbond,3 kbond,4 r0
262.5 -226 149 0.496

Table B.4: MRG DNA model angle parameters. All the kangle,n are in unit kcal/mol/degree2,
and θ0 unit is degree.

kangle,2 kangle,3 kangle,4 θ0
9.22 4.16 1.078 156

Table B.5: MRG DNA model fan bond parameters. All the kfan bond,n are in kcal/mol/nm2,
and r∆,0 unit is nm. ∆ means the fan bond between CG nucleotide i and j + ∆, where
nucleotide i and j are WC-paired.

∆ kbond,2 kbond,3 kbond,4 r∆,0

-5 4.67 2.1 1.46 1.71
-4 0.0001324 -12.2 18.5 1.635
-3 8.5 -44.4 50.0 1.47
-2 12.3 -40.0 37.0 1.345
-1 4.0 -10.0 8.0 1.23
0 292.0 410.0 720.0 1.13
1 11.5 -41.0 58.0 0.99
2 9.55 -45.9 50.2 0.92
3 13.78 -52.7 50.0 1.02
4 13.86 -56.8 50.0 1.25
5 36.26 -77.0 50.0 1.69
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Table B.6: The normalized KR scale and Urry hydropathy scale values (i.e. λi parameters
in equation B.14).

Amino acid KR scale Urry scale
ALA 0.730 0.602942
ARG 0.0 0.558824
ASN 0.432 0.588236
ASP 0.378 0.294119
CYS 0.595 0.64706
GLN 0.514 0.558824
GLU 0.459 0.0
GLY 0.649 0.57353
HIS 0.514 0.764707
ILE 0.973 0.705883
LEU 0.973 0.720589
LYS 0.514 0.382354
MET 0.838 0.676471
PHE 1.0 0.82353
PRO 1.0 0.758824
SER 0.595 0.588236
THR 0.676 0.588236
TRP 0.946 1.0
TYR 0.865 0.897059
VAL 0.892 0.664707
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Table B.10: Comparison of potential energies computed with OpenMM and GROMACS
using MOFF for ten configurations of HP1α dimer. The energy unit is kJ/mol. See text
Section:Validating the force field implementation in OpenMM for simulation details.

Frame ID Software Bonds Angles Dihedrals Native pairs Contacts Electrostatics
1 OpenMM 4.97 2.55 1.67 -3346.36 -103.74 -53.22

GROMACS 4.97 2.55 1.67 -3346.36 -103.74 -53.24
2 OpenMM 386.61 375.45 454.22 -2936.22 -87.27 -65.96

GROMACS 386.61 375.44 454.22 -2936.22 -87.26 -65.95
3 OpenMM 444.53 384.39 400.96 -2925.66 -109.99 -62.71

GROMACS 444.53 384.39 400.96 -2925.66 -109.98 -62.70
4 OpenMM 387.01 384.20 422.79 -2877.72 -96.31 -53.14

GROMACS 387.01 384.20 422.79 -2877.72 -96.30 -53.13
5 OpenMM 440.40 383.35 450.34 -2934.92 -88.74 -59.70

GROMACS 440.40 383.35 450.34 -2934.92 -88.73 -59.70
6 OpenMM 428.49 352.92 445.23 -2913.69 -90.77 -78.06

GROMACS 428.49 352.92 445.23 -2913.69 -90.77 -78.06
7 OpenMM 473.75 439.53 480.74 -2915.47 -128.57 -54.99

GROMACS 473.75 439.53 480.74 -2915.47 -128.56 -54.98
8 OpenMM 433.29 375.09 427.08 -2915.08 -127.77 -65.20

GROMACS 433.29 375.09 427.08 -2915.08 -127.77 -65.19
9 OpenMM 423.03 382.15 455.44 -2982.15 -99.48 -84.06

GROMACS 423.03 382.15 455.44 -2982.15 -99.48 -84.05
10 OpenMM 452.80 417.20 494.68 -2896.97 -126.01 -85.76

GROMACS 452.80 417.20 494.68 -2896.97 -126.00 -85.76
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Table B.11: Comparison of potential energies computed with OpenMM and GROMACS
using MOFF for proteins and MRG for DNA for ten configurations of HP1α dimer bound
to a dsDNA. The energy unit is kJ/mol. See text Section: Validating the force field imple-
mentation in OpenMM for simulation details.

Protein DNA

Frame ID Software Bonds Angles Dihedrals Native pairs Bonds & fan bonds Angles Contacts Electrostatics
1 OpenMM 5.08 2.70 2.33 -3346.29 98.90 3.21 -106.02 759.21

GROMACS 5.08 2.70 2.33 -3346.29 98.90 3.21 -106.02 759.04
2 OpenMM 420.00 344.70 459.40 -2940.25 1264.66 411.22 -140.32 686.32

GROMACS 420.00 344.70 459.40 -2940.25 1264.65 411.22 -140.31 686.27
3 OpenMM 404.52 387.80 480.73 -2913.34 1341.51 438.40 -161.86 673.97

GROMACS 404.52 387.80 480.73 -2913.34 1341.51 438.40 -161.85 673.91
4 OpenMM 418.64 416.13 472.84 -2878.63 1352.10 416.04 -137.46 633.35

GROMACS 418.64 416.13 472.84 -2878.63 1352.10 416.04 -137.45 633.32
5 OpenMM 437.58 376.80 452.27 -2869.10 1387.26 413.92 -119.47 665.30

GROMACS 437.58 376.80 452.27 -2869.10 1387.26 413.92 -119.47 665.26
6 OpenMM 425.41 416.51 502.90 -2874.56 1375.09 390.28 -108.54 600.42

GROMACS 425.41 416.51 502.90 -2874.56 1375.09 390.28 -108.53 600.37
7 OpenMM 415.22 385.06 466.07 -2922.99 1292.21 390.08 -144.63 641.36

GROMACS 415.22 385.06 466.07 -2922.99 1292.21 390.08 -144.62 641.30
8 OpenMM 427.79 401.11 488.72 -2922.98 1284.19 393.42 -160.31 595.48

GROMACS 427.79 401.11 488.72 -2922.98 1284.19 393.42 -160.30 595.43
9 OpenMM 423.46 397.75 537.37 -2917.23 1376.37 381.50 -142.74 570.76

GROMACS 423.46 397.75 537.37 -2917.23 1376.37 381.50 -142.73 570.71
10 OpenMM 391.07 332.69 509.94 -2903.83 1303.68 410.59 -162.62 567.65

GROMACS 391.07 332.69 509.94 -2903.83 1303.68 410.59 -162.61 567.60
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Table B.12: Comparison of potential energies computed with OpenMM and HOOMD-Blue
using HPS with Urry or KR scales for ten configurations of protein DDX4. The energy
unit is kJ/mol. See text Section: Validating the force field implementation in OpenMM for
simulation details.

Frame ID Software Bonds Contacts (Urry) Contacts (KR) Electrostatics
1 OpenMM 399.36 -62.28 -76.41 12.69

HOOMD-Blue 399.36 -62.28 -76.41 12.69
2 OpenMM 333.40 -67.89 -83.48 13.89

HOOMD-Blue 333.40 -67.89 -83.48 13.89
3 OpenMM 314.07 -66.08 -82.68 12.95

HOOMD-Blue 314.07 -66.08 -82.68 12.95
4 OpenMM 341.34 -68.28 -86.45 13.69

HOOMD-Blue 341.34 -68.28 -86.45 13.69
5 OpenMM 346.92 -68.09 -85.46 14.10

HOOMD-Blue 346.92 -68.09 -85.46 14.10
6 OpenMM 342.02 -74.57 -94.67 13.08

HOOMD-Blue 342.02 -74.56 -94.67 13.08
7 OpenMM 252.22 -73.01 -93.11 15.66

HOOMD-Blue 252.22 -73.01 -93.11 15.66
8 OpenMM 296.98 -63.08 -84.78 11.16

HOOMD-Blue 296.98 -63.08 -84.78 11.16
9 OpenMM 338.76 -68.30 -88.34 12.56

HOOMD-Blue 338.76 -68.30 -88.34 12.56
10 OpenMM 386.13 -72.54 -94.43 13.99

HOOMD-Blue 386.13 -72.54 -94.43 13.99
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Table B.13: Comparison of potential energies computed with OpenMM and LAMMPS using
Mpipi force field for a polyR+polyK+polyU system. The system consists of a chain of 10
arginines, a chain of 10 lysines, and 2 individual chains of 10 uracils. The energy unit
is kJ/mol. See text Section: Validating the force field implementation in OpenMM for
simulation details.

Frame ID Software Bonds Contacts Electrostatics
1 OpenMM 0.07 -12.49 19.22

LAMMPS 0.07 -12.49 19.22
2 OpenMM 35.10 -22.14 12.26

LAMMPS 35.10 -22.14 12.26
3 OpenMM 32.01 -37.80 12.77

LAMMPS 32.01 -37.80 12.77
4 OpenMM 24.04 -62.50 6.19

LAMMPS 24.04 -62.49 6.19
5 OpenMM 51.21 -29.63 14.43

LAMMPS 51.20 -29.63 14.43
6 OpenMM 52.29 -33.85 11.85

LAMMPS 52.29 -33.85 11.85
7 OpenMM 56.81 -37.85 2.63

LAMMPS 56.81 -37.85 2.63
8 OpenMM 50.78 -28.42 11.88

LAMMPS 50.78 -28.42 11.88
9 OpenMM 69.27 -72.28 2.20

LAMMPS 69.27 -72.28 2.20
10 OpenMM 55.98 -36.91 9.33

LAMMPS 55.98 -36.91 9.33
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Table B.14: The coexistence concentrations of HP1α and HP1β dimers measured by slab
simulations with MOFF at different temperatures below the critical temperature. The cutoff
distance for searching the largest cluster is 5 nm.

Protein T (K) ρL (mg/mL) ρH (mg/mL)
HP1α dimer 260 0.02 387.37

270 0.16 327.11
280 0.51 305.77
290 2.51 242.44
300 13.45 207.17

HP1β dimer 210 0.00 347.36
220 0.82 310.57
230 2.31 252.44
240 7.64 199.42
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Table B.15: The coexistence concentrations of HP1α and HP1β dimers measured by slab
simulation with MOFF. The concentrations were similarly determined as those shown in
Table B.14 but the cutoff distance for searching the largest cluster set as 8 instead of 5 nm.
The results are almost identical to the ones shown in Table B.14, supporting the robustness
of phase diagrams with respect to the cutoff distance used for protein clustering.

Protein T (K) ρL (mg/mL) ρH (mg/mL)
HP1α dimer 260 0.02 387.37

270 0.16 327.11
280 0.51 305.77
290 2.51 242.44
300 13.45 207.17

HP1β dimer 210 0.00 347.36
220 0.82 310.58
230 2.31 252.54
240 7.63 199.00
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Table B.16: The coexistence concentrations of FUS LC and DDX4 proteins measured by
performing slab simulations with HPS model Urry scale and the optimal parameter set (µ =
µopt

Urry = 1 and ∆ = ∆opt
Urry = 0.08) at different temperatures below the critical temperature.

The cutoff distance for searching the largest cluster is 5 nm.

Protein T (K) ρL (mg/mL) ρH (mg/mL)
FUS LC 260 0.00 695.41

270 0.00 653.23
280 0.01 610.82
290 0.28 569.50
300 0.28 525.02
310 1.25 480.18
320 4.96 425.01
330 14.57 361.59

DDX4 260 0.00 560.53
270 0.00 514.19
280 0.10 474.87
290 0.57 431.43
300 1.89 379.44
310 7.69 326.18
320 47.67 271.05
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Appendix C

Supplementary information for chapter 4

C.1 Details of Coarse-grained Simulations

We carried out all molecular dynamics simulations with the software LAMMPS [208]. Um-

brella sampling was performed using collective variables implemented by the Plumed package

[310]. We applied the weighted histogram method [133], [311] and fastmbar [76] to process

the data and computed the unbiased extension length at a given force.

C.1.1 System Setup

We built a structural model for the chromatin with 12 nucleosomes and 20-bp linker DNA

following two steps. We first connected 12 individual nucleosomes into a continuous segment

without much regard to the overall chromatin topology. We then aligned the DNA model to

a template that closely resembles the cryo-EM structure with a two-start fibril organization

[9].

We connected individual nucleosomes to build a 12mer chromatin as follows. The nu-

cleosome unit with 167-bp of DNA was extracted from the tetranucleosome X-ray structure

(PDB ID: 1ZBB) [8]. The DNA was taken as residues 158-324 of chain I and the corre-

sponding complementary segment from chain J. There are no extra base pairs at the entry
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side of the nucleosome in this setup, but 20-bp linker DNA exists at the exiting end. The

resulting sequence with the core DNA (147bp) in the underline is

ACAGGATGTAACCTGCAGATACTACCAAAAGTGTATTTGGAAACTGCTCCAT

CAAAAGGCATGTTCAGCTGGATTCCAGCTGAACATGCCTTTTGATGGAGCAG

TTTCCAAATACACTTTTGGTAGTATCTGCAGGTGATTCTCCAGGGCGGCCAG

TACTTACATGC

We further replaced the coordinates for histone proteins with that from PDB ID: 1KX5 [4],

which resolved the coordinates for histone tails.

We added one additional DNA base pair at the end of the linker DNA as one sticky

end using the software 3DNA [312] for alignment between neighboring nucleosomes. This

168-bp segment is the building block for constructing the dodecamer. For example, to

extend chromatin with n nucleosomes, we align the 168-th bp of the n-th nucleosome with

the first bp of the (n + 1)-th nucleosome. The alignment determines the orientation of

the (n + 1)-th nucleosome, and the fiber is extended by one nucleosome after removing the

overlapping nucleotides. For the last (12-th) nucleosome, we deleted the linker DNA to build

the dodecamer with 1984 bp of DNA. The resulting all-atom model was converted into the

coarse-grained model with in-house scripts.

While the above procedure succeeds at building an all-atom model for the 12mer, the

precise topology of the resulting structure cannot be controlled easily. To construct a two-

start fibril configuration resembling the compact and twisted Cryo-EM structure [9], we

aligned the model to a two-start fiber structure built by the software FiberModel, as detailed

below. The structural alignment was performed using MDAnalysis [306], [307] with RMSD

coordinate fitting [313], [314].

The template was generated by the software fiberModel as the lowest energy configu-

ration [201]. FiberModel optimized fiber configurations by utilizing a series of geometric

parameters, including the height per nucleosome along the fiber axis (h), the rotation angle

per nucleosome around the fiber axis (θ), the radius of the fiber (R), and three Euler an-
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gles that determine the direction of each nucleosome (α, β, γ). To build a fibril chromatin

structure, we set initial values for the parameters (h, θ, R, α, β, γ) as (2.34 nm, 2.88, 7.3 nm,

-3.14, 0.622, 0) as estimated from the cryo-EM structure [9]. Also, each nucleosome was

treated as a cylinder with a radius and height of 5.2 and 4.5 nm. We then used FiberModel

to optimize the chromatin structure based on parameters α and γ, keeping the other param-

eters fixed. The optimization utilized the basin hopping global search technique [315]. The

final structure aligned with the FiberModel template is shown in Figure 2.1A.

C.1.2 Force Field Setup

We used the same force fields as in the tetra-nucleosome study [46] to simulate the 12mer.

The 3SPN.2C DNA model [206] was adopted to model each nucleotide with three coarse-

grained beads for phosphate, sugar, and base, respectively. The Cα structure-based model

[204] was adopted to simulate the conformational dynamics of individual histone proteins.

Both bonded and nonbonded interactions were generated based on the nucleosome crystal

structure (PDB ID: 1KX5). For nonbonded contact potentials, two residues were considered

in contact when their minimum distance is smaller than 6Å, implemented using the Shadow

algorithm [299]. We further scaled the default interaction strength [133] by 2.5 to prevent

proteins from unfolding at 300K. To model the disordered portions of the histones, we

removed the dihedral and contact potentials for disordered residues not included in the

core histones (residue ID: 44-135, 160-237, 258-352, 401-487, 531-622, 647-724, 745-839, 888-

974). Including the secondary structure motifs in the disordered regions of histone proteins

does not quantitatively change nucleosome stability and protein-DNA interactions (Figure

C.1). The IDs continuously index residues from chain A to chain H of the crystal structure

with PDB ID: 1KX5.

In addition, residue-specific protein-protein interactions were introduced with the Miyazwa-

Jernigan (MJ) potential [205] and scaled by a factor of 0.4. In a previous study, we showed

that the scaled MJ potential provides a balanced modeling of the radius of gyration for both
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folded and disordered proteins [46].

Protein-DNA interactions include the electrostatic potential modeled at the Debye-Hückel

level with a monovalent salt concentration of 150 mM. In addition, a weak, non-specific

Lennard-Jones potential was applied between all protein-DNA beads. Detailed expression

for these potentials can be found in Ref. [211].

Our group and the de Pablo group have shown that the force field can reproduce the

energetic cost of nucleosomal DNA unwinding [148], [150], [211], the dependence of the

unwinding barrier on applied tension [148], and the sequence-specific DNA binding strength

to the histone octamer [316]. The de Pablo group further showed that the model could

reproduce the binding strength between a pair of nucleosomes measured in DNA origami-

based force spectrometer experiments [207], [317].

The quantitative accuracy of the coarse-grained model in reproducing single nucleosome

stability and inter-nucleosome interactions strongly supports its application to longer chro-

matin segments. Our prior study of tetranucleosomes further supports the model’s accuracy

in studying connected nucleosomes. For example, we simulated two di-nucleosomes with

different link lengths and succeeded in resolving the structural difference, quantitatively re-

producing FRET measurements from the van Noort group [318]. More details about this

comparison can be found in Figure S10 of Ref. [46]. For the tetra-nucleosome, we predicted

that stacked conformations with the two columns of nucleosomes more aligned have lower

free energy than the PDB structure. This prediction was validated by independent simula-

tions performed with an explicit solvent force field SIRAH [319] and by all-atom simulations

from the Wereszczynski group [320]. More details about this comparison can be found in

Figure S5 of Ref. [46].

C.1.3 Free Energy Profiles for Chromatin Under Tension

We defined two collective variables to explore chromatin configurations and compute free en-

ergy profiles. The unwrapping variable, qwrap, quantifies DNA unwrapping using the distance
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between neighboring nucleosome di,i+1. It is defined as

qwrap =
1

11

11∑
i=1

exp

[
−(max(di,i+1, do)− do)

2

2σ2
w

]
. (C.1)

do = 15 nm is close to the distance between two neighboring nucleosomes in the PDB struc-

ture (PDB ID: 1KX5) [4], and we used σw = 4 nm. The function max selects the larger

value of the two distances. The above definition makes use of the geometric constraint that

increase in the distances between neighboring nucleosomes (di,i+1) can only arise from nu-

cleosome unwrapping. The unstacking variable, dstack, measures the mean distance between

i-th and (i+ 2)-th nucleosomes as

dstack =
1

10

10∑
i=1

di,i+2. (C.2)

Umbrella simulations with the two collective variables at forces 0-3 pN were carried

out to compute the free energy profiles. To compare our simulations with force-extension

experiments, we applied force fext along the z-axis projection of the DNA end-to-end distance

(Lz). The two DNA ends were defined as the geometric centers of all the coarse-grained beads

for the first and last five base pairs. The potential energy function of these simulations at

center (qo, do) and force fext is defined as

Ubiased = U(r) +
κq

2
(qwrap − qo)

2 +
κd

2
(dstack − do)

2 − fextLz, (C.3)

where U(r) corresponds to the interaction energy defined by the force field. The umbrella

centers (qo, do) were initially placed on a uniform grid [0.45:0.90:0.15]×[10:30:5] nm. We

introduced additional centers to improve the overlap between umbrella simulations. A com-

plete list of the umbrella centers and the restraining constants is provided in Table C.1.

At the extension force larger than 3 pN, the 12mer can adopt configurations that cover a

wide range of qwrap and dstack. Uniform sampling of the entire accessible phase space becomes
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too costly computationally. Therefore, we only carried out one-dimensional umbrella sim-

ulations with dstack as the collective variable. The corresponding potential energy function

was defined as

Ubiased = U(r) +
κd

2
(dstack − do)

2 − fextLz. (C.4)

We used κd = 0.05 kcal/(mol · nm2), and do spans from 10 to 50 nm with a step size of 2.5

nm.

Initial configurations from the neural network model

Conformational sampling of the coarse-grained model is challenging due to strong but non-

specific electrostatic interactions. We initialized the umbrella sampling simulations with

the most probable configurations predicted by a neural network under a similar setup to

alleviate the sampling challenge. As detailed in the Section: Neural Network Model for the

12mer Chromatin, the neural network model quantifies the stability of chromatin configura-

tions using inter-nucleosome distances. It is computationally efficient and allows equilibrium

sampling of chromatin configurations.

For a coarse-grained umbrella simulation centered at (qNo , dNo ) with extension force fext ≤

3 pN, we carried out replica exchange Monte Carlo sampling of the following biased free

energy

Fbiased = F12(d) +
κq

2
(qwrap − qNo )2 +

κd

2
(dstack − dNo )

2 − fextL, (C.5)

with κq = 47.8 kcal/mol and κd = 4.78 × 10−2 kcal/(mol · nm2). F12(d) quantifies the free

energy of the 12-mer as function of inter-nucleosome distances, d, with a neural network

model. More details about the free energy function can be found in the Section: Neural

Network Model for the 12mer Chromatin. L is the distance between the first and the last

nucleosomes. See Section: Numerical Simulations of the Neural Network Model for sampling

details. We used the samples collected in the final 300000 steps of the 300 K replica for a
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K-means clustering analysis with 10 centers. The configuration closest to the center of the

largest cluster was selected as the most probable configuration.

For simulations with 3.5 pN force, we only performed umbrella sampling of the neural

network model at a limited set of values for dNo = 10.0 nm, 15.0 nm, 20.0 nm, 25.0 nm, and

30.0 nm. qNo was set as 0.45. A total of five neural network configurations were constructed.

We assigned these configurations to initialize coarse-grained simulations by minimizing the

difference between dNo and the corresponding umbrella center of coarse-grained simulations.

For simulations with 4 pN force, we performed two sets of coarse-grained simulations.

These simulations were initialized with neural network configurations obtained from umbrella

sampling with centers located at [qNo =0.45, 0.6] × [dNo =10:30:5] nm.

The neural network model represents chromatin structures with inter-nucleosome dis-

tances. We performed short targeted molecular dynamics simulations starting from the

two-helix fiber to build coarse-grained model structures consistent with the most probable

configurations from the neural network sampling. These simulations bias on all the inter-

nucleosome distances with a restraining constant of 23.9 kcal/(mol · nm2) for approximately

300000 steps. The end configurations of these simulations were used to initialize the coarse-

grained umbrella simulations.

One-dimensional free energy calculations at 4.5 pN force

For simulations with 4.5 pN force, the neural network model is no longer sufficient for

producing equilibrated, most probable starting configurations. It was trained using tetra-

nucleosome configurations with a maximum extension of 50 nm, so the model can at most

predict an end-to-end distance of 183 nm. This value is smaller than that anticipated in the

linear regime (∼ 270 nm). We performed two independent sets of umbrella simulations using

different initial configurations as detailed below.

In the first set of simulations, we initialized the trajectories using the end configurations

from the second set of 4 pN simulations presented in the main text (Table C.1). A total of
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17 simulations were performed.

From the first set of umbrella simulations, we observed that chromatin at large end-to-end

distances tends to fall into configurations with clusters formed by neighboring nucleosomes.

To sample more extended configurations, we introduced another collective variable, dmin
i,i+1,

defined as min(di,i+1), to initialize the second set of umbrella simulations from the most

probable configuration predicted from the neuronal network model at 4 pN. The new variable

quantifies the minimal distance between nearest-neighbor nucleosomes. Explicit biases on

dmin
i,i+1 help overcome the energetic barrier associated with breaking these clusters. Specifically,

we ran nine umbrella-sampling simulations using harmonic biases on dmin
i,i+1, with umbrella

centers placed on a uniform grid of [5.0:25:2.5] nm and an umbrella bias of 0.0005 kcal/(mol ·

nm2). Each simulation lasted for 12.75 million steps and was performed with the presence

of a 4.5 pN force on the DNA end-to-end distance. The end structures of these simulations

were used to initialize production simulations at the 4.5 pN force with harmonic biases on

dstack as all simulations presented in the main text. The production runs lasted 25 million

steps.

We combined the two data sets to estimate the chromatin extension at 4.5 pN.

Estimating the extension per nucleosome from experimental data

We processed the force-extension curve from single-molecule force spectroscopy experiments

to compute the extension per nucleosome. The extension length from experiments includes

contributions from the DNA handle and the chromatin. Following previous study [190], we

estimate the DNA handle extension as

Lz,handle = Lc,handle ×

(
1− 1

2

√
kBT

fextA
+

fext

S

)
(C.6)

where kB is Boltzmann constant, T is temperature, A is the persistence length of DNA, fext

is the extension force along the z-axis, and S is the stretching modulus. We used A = 50 nm,
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S = 900 pN, and T = 300 K. The contour length of the DNA handle, Lc,handle, is estimated

as

Lc,handle = [nbp − NRL × (nnucl − 1)− 147]b (C.7)

where nbp is the total number of base pairs in DNA, NRL is nucleosomal repeat length, nnucl

is the total number of nucleosomes, and b is the length of each base pair. We used NRL =

167 bp, nnucl = 25, nbp = 7045 bp, and b = 0.34 nm.

Subtracting the extension of the DNA handle from the total extension length Lz, the

extension per nucleosome can be estimated as

Lz,nucl =
Lz − Lz,handle

nnucl − 1
. (C.8)

Theoretical predictions of chromatin extension along the z-axis

To better understand the linear extension of chromatin at small forces, we introduced an

analytical model based on simulation results without extension force.

We approximate the unbiased free energy profile for chromatin extension at zero force

with a harmonic function, F (L) = a(L−L0)
2+b, where L is the extension length, i.e., the end-

to-end distance. The parameters were obtained by a least-squares fitting to the simulation

data presented in Figure 2.1C, resulting in a = 1.200× 10−2 kBT/nm2, L0 = 26.83 nm, and

b = 0.3820 kBT . The corresponding free energy profile with an extension force f along the

z-axis can be defined as Ff (L) = F (L) − fL cos θ, where θ is the azimuthal angle (i.e. the

angle between the fiber end-to-end distance direction and the z-axis). From this expression,

the average extension along the z-axis can be computed as

⟨Lz⟩f =

∫∞
0

∫ π

0
L cos θe−βFf (L)L2dL sin θdθ∫∞

0

∫ π

0
e−βFf (L)L2dL sin θdθ

(C.9)

Numerical integration of the above equation led to ⟨Lz⟩f = 0, 33.87, 45.76, and 56.36 nm
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for extension force of 0, 1, 2, and 3 pN, respectively. The extension per nucleosome along

the z-axis (Zext per nucleosome) is defined as ⟨Lz⟩f/11 and shown in Figure C.7.

C.1.4 Decomposing Inter-nucleosome Distances into Shear and Nor-

mal Motions

As discussed in the main text, two distinct motions can increase the distance between i-

th and (i + 2)-th nucleosomes and the collective variable dstack. To characterize these two

motions quantitatively, we introduced a coordinate system for each nucleosome. Following

de Pablo and coworkers [207], we defined the origin of the coordinate system using the

geometric center of residues 63-120, 165-217, 263-324, 398-462, 550-607, 652-704, 750-811,

and 885-949. The IDs continuously index residues from chain A to chain H of PDB 1KX5.

Two additional points were introduced to define the nucleosomal plane using the geometric

center of the dyad that includes CG atoms 81-131, 568-618, and the geometric center of

CG atoms 63-120, 165-217, 750-811, and 885-949. Two unit vectors, u and v, can then be

defined using the vectors pointing from the origin to the dyad and the third point. Atoms in

the third point were chosen such that u and v are approximately orthogonal to each other.

The unit normal vector w for nucleosome plane can then be defined as parallel to the cross

product, u× v. An illustration of the various axes is provided in Figure C.11.

With the nucleosomal axes defined above, the distances between two nucleosomes can be

decomposed to the distances within the nucleosomal plane, i.e., shearing, and the distance

perpendicular to the plane, i.e., unstacking. Denoting the vector from nucleosome i to

nucleosome i + 2 as di,i+2 (here we use the distance between the coordinate origins for the

two nucleosomes), the corresponding normal and shear distances are dni,i+2 = |di,i+2 ·wi| and

dsi,i+2 =
√

|di,i+2|2 − dni,i+2
2. The normal and shear distances for the 12mer chromatin, dn and

ds, are defined using the mean values of all nucleosome i and i+2 pairs as dn = 1
10

∑10
i=1 d

n
i,i+2

and ds =
1
10

∑10
i=1 d

s
i,i+2.
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C.1.5 Free Energy Calculations for Two Interacting 12mers

To quantify the impact of chromatin-chromatin interactions and crowding on the stability

of fibril configurations, we carried out simulations with two chromatin segments. Umbrella

sampling was performed using two collective variables. The first variable quantifies the

average extension of the two 12mers with d̄stack defined as

d̄stack =
1

2
(d1stack + d2stack). (C.10)

dstack is defined in Eq. C.2 and 1, 2 index the two 12mers. The second variable measures

the number of contacts between the two chromatins. Contacts were defined at the nucleo-

some level, and a pair of nucleosomes is denoted as in-contact if the distance between their

geometric centers (di,j) is less than 15 nm. Mathematically, the interchain contacts, C, is

defined as

C =
12∑
i=1

24∑
j=13

1− (di,j/do)
6

1− (di,j/do)12
, (C.11)

where i and j indices over nucleosomes from the two 12mers and do = 15 nm.

We biased the simulations towards various collective variable values for a comprehen-

sive exploration of the phase space. Details of the umbrella centers and force restraints

used in our simulations are provided in Table C.2. Simulations with umbrella centers d̄stack

biased to values ≤ 10nm were initialized using the two-helix fibril configuration for each

chromatin placed at ≥ 20 nm apart. The rest of the simulations were initialized with ex-

tended chromatin configurations extracted from the neural network simulations. Chromatin

configurations in simulations with 4 pN extension force at umbrella centers do were adopted

here for simulations that biased d̄stack to the same values. Only chromatin configurations

for the first set of simulations with 4 pN extension force were used here (see Section: One-

dimensional free energy calculations at 4 pN ). The initial five million steps of each trajectory
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were discarded as equilibration in our free energy calculations.

C.2 Neural Network Model for the 12mer Chromatin

To facilitate conformational sampling of the 12mer, we introduced a neural network model

to quantify the free energy of chromatin configurations as a function of inter-nucleosomal

distances. The neural network model is a generalization of the free energy surface for a

tetra-nucleosome determined in a previous study [46].

C.2.1 Parameterizing the Tetra-nucleosome Free Energy Landscape

with Neural Networks

In Ref. [46], we parameterized a neural network model to compute the free energy of a

tetra-nucleosome (A) from the six internuclesome distances (d).

To make the neural network’s output invariant with respect to nucleosome indexing

order, i.e., A(d = (d12, d13, d14, d23, d24, d34)) = A(d̃ = (d34, d24, d14, d23, d13, d12)), we further

converted the inter-nucleosome distances into symmetrical features s(d) = (s1(d), s2(d),

s3(d), s4(d), s5(d), s6(d)) as follows:

s1 = d12 + d34

s2 = d13 + d24

s3 = d14

s4 = d23

s5 = d12 · d13 + d24 · d34

s6 = d12 · d213 + d224 · d34.

(C.12)

From the above definition, it is straightforward to verify that s(d) = s(d̃). In addition, given

any s in the range of s(d), two solutions of d exist for Eq. (C.12) and these two solutions cor-
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responds to the two different ways of indexing nucleosome. Specifically, if one of the solution

is d = (d12, d13, d14, d23, d24, d34), the other solution will be d̃ = (d34, d24, d14, d23, d13, d12).

Therefore, the features s(d) are symmetric and only symmetric to the two ways of indexing

nucleosomes.

Using the symmetric features as input, i.e., A(d) = A(s(d)), a neural network with two

fully connected hidden layers, each of which has 200 nodes, was used to parameterize the

free energy. The neural network was trained by minimizing the loss function

||(−∇A(d))− F(d)||2 + λ||w||2, (C.13)

where w are weight parameters of the neural network. F(d) are mean forces at d estimated

using restrained molecular dynamics simulations (see below). λ = 6 × 10−4 is the weight

decay factor and acts as a regularizer of optimization. Overall, the neural network has 41801

(7× 200+ 201× 200+ 201× 1 = 41801) parameters, which is smaller than the total number

of constraints 10000 × 6 = 60000. The Adam optimizer [321] was used to train the neural

network for 100000 steps with a learning rate of 0.001. To prevent over fitting and improve

the robustness of neural networks, we trained 30 models independently and used the average

results to estimate the final free energy.

To estimate mean forces at different chromatin configurations with inter-nucleosome dis-

tances do, we carried out restrained molecular dynamics simulations with the harmonic

biasing potential

Vb =
1

2

3∑
i=1

4∑
j=i+1

k(dij(r)− doij)
2, (C.14)

where i and j are indexes of the four nucleosomes, k = 1000 kJ/(mol·nm2), and doij is the

inter-nucleosome distances between nucleosome i and j for the selected center do. The mean

forces were estimated as

Fo
ij =

1

T

T∑
t=1

k(dtij − doij). (C.15)
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Here T = 50, 000 represents the number of configurations collected from a 500,000 step-long

trajectory.

Ten thousand tetra-nucleosome configurations were selected to compute mean forces and

parameterize the neural network. To ensure that these configurations cover relevant struc-

tures for chromatin folding, we selected them from simulation trajectories that repeatedly

probe chromatin folding and unfolding. These trajectories were performed by combining

metadynamics with temperature accelerated molecular dynamics (TAMD) to bias the sim-

ulations along two collective variables Rg and Q. The radius of gyration, Rg, is defined

as

Rg =

√√√√1

4

4∑
i=1

(ri − rcom)2, (C.16)

where ri is the geometric center of the i-th nucleosome using the coordinates of nucleosome

core histone residues. rcom is the center of mass coordinate for all nucleosomes. Q measures

the similarity of a given tetra-nuclesome configuration to the crystal structure (PDB ID:

1ZBB) and is defined as

Q =
1

6

3∑
i=1

4∑
j=i+1

exp

[
−
(rij − roij)

2

2σ2

]
, (C.17)

where rij measures the distance between the center of the two nucleosomes. More simulation

details can be found in Ref. [46].

C.2.2 Generalizing Tetra-nucleosome Results to 12mer Chromatin

We generalized the tetra-nucleosome neural network model to estimate the free energy of

12mer. We defined Fn(1 . . . , n) as the free energy of an oligomer including n nucleosomes

of indices 1, . . . , n. We assumed that each nucleosome with index i could only interact with

nucleosomes i±1/2/3, ignoring nucleosome pair interactions beyond tetramers. As shown in

Figure C.4, mean distances for these nucleosome pairs are much larger and no interactions
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are expected among them. Under this assumption, the free energy of n + 1 nucleosomes

(Fn+1) can be determined from the following recursive relationship as

Fn+1(1, . . . , n+ 1) = Fn(1, . . . , n) + F4(n− 2, n− 1, n, n+ 1)− F3(n− 2, n− 1, n). (C.18)

Subtracting the free energy (F3) avoids the double-counting from adding the tetrameric

contribution (F4).

The trimer free energy is estimated as follows. Assuming that the fourth nucleosome is

far away from the rest of the three and its interaction with them can be ignored, the free

energy difference between the two should be a constant. Therefore, we have

F3(d1,2, d1,3, d2,3) = F4(d1,2, d1,3, d2,3, d1,4 = d2,4 = d3,4 = 15nm) + const. (C.19)

Here di,j refers the distance between nucleosome i and j. The distances from the fourth

nucleosome to the other three (i.e. d1,4, d2,4, d3,4) were set as 15 nm. For d3,4, this value

is comparable to the distance between neighboring nucleosomes in the PDB structure for

a tetra-nucleosome to avoid significant DNA unwrapping or DNA overstretching. It is also

large enough to unstack i and i ± 2 nucleosomes and to dissociate i and i ± 3 nucleosome

contacts, based on previous computational results [207]. The effectiveness of this generalized

neural network model is verified based on the fact that it can accurately predict the extension

at different forces (Figure C.5).

Given all the di,i±1/2/3 and assuming a left-handed helix, the relative position of each

nucleosome can be uniquely determined geometrically, as long as the distances satisfy some

geometric requirements such as triangle inequality. After determining the relative position

of each nucleosome, the full set of distances (i.e. distances between any two different nucleo-

somes) was used to bias coarse-grained simulations towards the most probable configurations

predicted by the neural network sampling.
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C.2.3 Numerical Simulations of the Neural Network Model

We used the replica-exchange Monte Carlo algorithm to explore the free energy surface

defined by the neural network. 20 Replicas with temperatures as the geometric sequence

from 300 K to 2000 K were used. 500000 steps of simulations were performed for each

replica. The initial 20000 steps were used to optimize the MC simulation step size so that

the mean acceptance rate of MC movement is ∼ 0.20-0.25. The exchange between two

neighboring replicas was attempted every 50 steps. We used the samples collected in the

final 300000 steps of the replica at 300 K for analysis.

C.3 Details of Validation Simulations

C.3.1 Simulations Starting from Uniformly Extended Chromatin

Configurations

As detailed in the Section: Free Energy Profiles for Chromatin Under Tension, we used

chromatin configurations predicted by the neural network model to initialize the umbrella

simulations. From the initial configurations, we performed extensive, long molecular dynam-

ics simulations to alleviate any biases that the neural network model might have introduced.

We acknowledge that, despite our best effort, it remains possible that the simulations are

not sufficient to remove biases that the neural network might introduce. As an additional test,

we carried out a new set of umbrella simulations starting from uniformly extended chromatin

structures. By design, the initial configurations are free of clutches. These simulations were

again performed with the presence of a 4 pN extension force for direct comparison with

results presented in the main text.

To facilitate the conformational sampling of clutched versus uniform chromatin confor-

mations, we performed two dimensional umbrella simulations using both dstack and α. As

mentioned in the main text, dstack uses the average distance between 1-3 nucleosomes to
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measure the average chromatin extension. α is defined as the ratio of the maximum and

minimum distance between 1-3 nucleosomes, i.e., α = dmax
i,i+2/d

min
i,i+2. For clutched configura-

tions, the distance at the interface between two nucleosome clusters is expected to be much

larger than the distance between nucleosomes within the same cluster, and α will be much

larger than one. On the other hand, for more uniformly extended configurations, α will

approach one. The maximal and minimal values of di,i+2 were computed with the following

expressions with analytical derivatives

dmax
i,i+2 =β1 ln

(
10∑
i=1

edi,i+2/β1

)

dmin
i,i+2 =β2/ ln

(
10∑
i=1

eβ2/di,i+2

)
,

(C.20)

where β1 = 0.1 nm and β2 = 1000 nm. The list of umbrella centers is provided in Table C.3.

We initialized these umbrella simulations with two uniform chromatin configurations that

lack nucleosome clutches (Figure C.13A). Both configurations were obtained from biased

simulations initialized with the fibril structures. The less extended uniform structure with

an end-to-end distance per nucleosome of 7.74 nm was produced by restricting pair-wise

nucleosome distances di,i+1, di,i+2, di,i+3 to 15, 20, 25 nm, respectively. The more extended

uniform chromatin structure with an end-to-end distance per nucleosome of 13.64 nm was

prepared with a constant-velocity pulling simulation that stretches the end-to-end distance

to 150 nm. The entire 147 bp nucleosomal DNA and the histone core proteins were rigidified

during the biasing simulations to prevent DNA unwrapping and clutch formation.

From the two initial configurations, we first carried out 0.5 million steps equilibration

simulations to relax them towards individual umbrella centers. Simulations with dstack ≤ 20

nm started from the structure with a end-to-end distance per nucleosome of 7.74 nm (Figure

C.13A, top), and the rest of the simulations started from the second structure. The relaxation
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was achieved with a moving harmonic restraint Urelax(t) defined as

Urelax(t) =
1

2

[
κdstack(t)(dstack − dstack,0(t))

2 + κα(t)(α− α0(t))
2
]
, (C.21)

where κdstack(t) and κα(t) are time-dependent harmonic restraint constants. dstack,0(t) and

α0(t) are time-dependent moving restraint centers. Values for these time-dependent quanti-

ties are provided in Table C.4.

During the relaxation period, for umbrella centers with dstack ≤ 25 nm and α ≤ 4, we kept

the entire 147 bp nucleosomal DNA and the histone core rigidified to avoid DNA unwrapping

and clutch formation. For umbrella simulations at larger dstack values, no such restrictions

were applied since doing so may prevent chromatin extension.

After equilibration, we launched production simulations that lasted 10 million steps. The

production simulations used the same force field setup as those presented in the main text.

The first three million steps were discarded and the rest of the data were used for free energy

calculations.

C.3.2 Simulations with Fully Rigidified Nucleosomes

To explore the role of DNA unwrapping on nucleosome clutch formation and inter-chain

contacts, we performed additional simulations with fully rigidified nucleosomes. Unlike sim-

ulations presented in the main text, the entire 147 bp nucleosomal DNA and the histone

core were constrained together as rigid bodies in the native configurations using the same

algorithms. Only linker DNA and histone tails remain flexible.

Chromatin extension under 4 pN force

To more directly evaluate the impact of DNA unwrapping on clutch formation, we carried out

a new set of simulations with fully rigidified nucleosomes to study chromatin extension under

4 pN force. A total of 10 umbrella simulations were performed to bias dstack to values between
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10 nm to 32.5 nm, with an increment of 2.5 nm. We set the umbrella restraining constant

κ = 100.0 kcal/(mol·nm2) in the first 400,000 steps to drive chromatin configurations towards

the restraining centers. After that, the umbrella bias was relaxed to κ = 0.05 kcal/(mol·nm2)

and the simulations continued for another 15 millions steps. The initial 1 million steps were

excluded when calculating the free energy profile. Umbrella centers and force restraints used

in these simulations are provided in Table C.5.

Two sets of configurations were used to initialize the above simulations. They were

produced by constant-velocity pulling simulations over 5 million steps initialized from a

fibril structure. The pulling bias was applied to the z-axis projection of the end-to-end

distance. Fiver pulling simulations were performed using independent random seeds with a

target bias of 75 nm, and another five with a target bias of 150 nm. In total, these pulling

simulations produced ten configurations. The first five 75 nm configurations were used to

initialize umbrella simulations centered between 10 nm to 20 nm. The second five 150 nm

configurations were used to initialize umbrella simulations centered between 22.5 nm to 32.5

nm.

Inter-chain contacts with two 12mer simulations

To explore the contribution of nucleosomal DNA unwrapping to inter-chain contacts, we

carried out additional simulations following the same protocol as that described in Section:

Free Energy Calculations for Two Interacting 12mers, but with fully rigidified nucleosomes.

Initial configurations of these simulations were obtained from a constant-velocity pulling

simulation that drives the chromatin z-axis extension towards 75 nm over 20 million steps.

The two 12mers adopt identical configurations at the beginning of the simulations and were

separated 20 nm part as measured by the center-of-mass distance. Umbrella centers and

harmonic restraining constants used in these simulations are provided in Table C.5. The

initial 5 million steps of the umbrella sampling were discarded as equilibration.
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Table C.1: Summary of umbrella simulation details for free energy calculations at various
extension forces. The format for umbrella centers, “start:end:step”, indicates the a series
of values from “start” to “end” with a spacing of “step”. The two restraining constants are
shown in the format “(κqwrap (kcal/mol), κdstack (kcal/(mol · nm2)))”.

Extension force
(pN) Umbrella center:

qwrap
Umbrella center:

dstack (nm)
Restraining
constants

Simulation length
(million steps)

0 0.45:0.90:0.15 10.0:30.0:5.0 (50, 0.05) 10.5
0 1.00 6.0:10.0:0.5 (47.8, 1.20) 10
0 1.00 10.0:15.0:2.5 (47.8, 0.120) 10
0 1.00 12.5:15.0:2.5 (47.8, 0.478) 10
0 0.75:0.95:0.05 6.0:10.0:0.5 (120, 1.20) 10
0 0.90:0.95:0.05 10.0:15.0:2.5 (120, 0.120) 10
0 0.90:0.95:0.05 12.5:15.0:2.5 (120, 0.478) 10
0 0.80:0.85:0.05 10.0:20.0:2.5 (120, 0.0120) 10
0 0.75:0.85:0.05 12.5:20.0:2.5 (120, 0.478) 10
1 0.45:0.90:0.15 10.0:30.0:5.0 (50, 0.05) 10
2 0.45:0.90:0.15 10.0:30.0:5.0 (50, 0.05) 10
3 0.45:0.90:0.15 10.0:30.0:5.0 (50, 0.05) 15
3 0.45 10.0:20.0:5.0 (50, 0.2) 15
3 0.60 10.0:20.0:5.0 (50, 0.2) 15
3 0.75 10.0:30.0:5.0 (50, 0.2) 15
3 0.90 10.0:30.0:5.0 (50, 0.2) 15

3.5 (1st set) n.a. 10.0:50.0:2.5 (0, 0.05) 25
4 (1st set) n.a. 10.0:50.0:2.5 (0, 0.05) 24.5
4 (2nd set) n.a. 10.0:50.0:2.5 (0, 0.05) 25
4.5 (1st set) n.a. 10.0:50.0:2.5 (0, 0.05) 25
4.5 (2nd set) n.a. 10.0:50.0:2.5 (0, 0.05) 25
4.5 (3rd set) n.a. 47.5:50.0:2.5 (0, 0.5) 25
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Table C.2: Summary of umbrella simulation details for free energy calculations with two
12-mers. The same format as in Table A.1 is adopted here. The two restraining constants
are shown in the format “(κC (kcal/mol), κd̄ (kcal/(mol · nm2)))"

.

Umbrella center:
C

Umbrella center:
d̄ (nm)

Restraining
constants

Simulation length
(million steps)

30.0:45.0:5.0 10.0:25.0:2.5 (0.1, 0.05) 20
10.0:20.0:5.0 6.0:10.0:0.5 (0.120, 1.20) 10
10.0:20.0:5.0 10.0:25.0:2.5 (0.478, 0.239) 10
10.0:20.0:5.0 10.0:25.0:2.5 (0.120, 0.0478) 10
10.0:20.0:5.0 9.0:9.5:0.5 (0.120, 4.78) 10
25.0:45.0:5.0 6.0:10.0:0.5 (0.120, 1.20) 20

25.0 10.0:25.0:2.5 (0.120, 0.0478) 20
25.0:45.0:5.0 9.0:9.5:0.5 (0.120, 4.78) 20

25.0 10.0 (0.120, 4.78) 20
25.0:45.0:5.0 10.0 (0.478, 0.239) 20
30.0:45.0:5.0 10.0 (0.120, 0.0478) 20
30.0:40.0:5.0 12.5:15.0:2.5 (0.478, 0.239) 20
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Table C.3: Summary of umbrella simulation details for free energy calculations using dstack
and α as collective variables. The same format as in Table A.1 is adopted here. The two
restraining constants are shown in the format “(κdstack (kcal/(mol · nm2)), κα (kcal/mol))"

Umbrella center:
dstack (nm)

Umbrella center:
α

Restraining
constants

Simulation length
(million steps)

10.0:35.0:2.5 2.0:8.0:2.0 (0.05, 0.2) 10
22.5:27.5:2.5 2.0:8.0:2.0 (0.2, 0.2) 10
10.0:25.0:2.5 2.0:4.0:2.0 (0.05, 0.5) 10

Table C.4: Summary of simulations with moving restraints to target chromatin con-
figurations towards specific umbrella centers using dstack and α as collective vari-
ables. The format for “restraining constants and centers" is (κdstack (kcal/(mol ·
nm2)), κα (kcal/mol)), (dstack,0 (nm), α0 (1)). We only listed the restraining constants and
centers at simulation time of zero, 4 × 105 and 5 × 105 steps, and values in between these
time points were updated via linear interpolation during the simulation.

Umbrella center:
dstack (nm)

Umbrella center:
α

Restraining
constants and centers

at t = 0

Restraining
constants and centers
at t = 4× 105 steps

Restraining
constants and centers
at t = 4× 105 steps

10.0:25.0:2.5 2.0:4.0:2.0 (50, 200), (30, 1) (50, 200), (dstack, α) (0.05, 0.2), (dstack, α)
10.0:20.0:2.5 6.0:8.0:2.0 (50, 200), (20, 1) (50, 200), (dstack, α) (0.05, 0.2), (dstack, α)
22.5:25.0:2.5 6.0:8.0:2.0 (50, 200), (30, 1) (50, 200), (dstack, α) (0.05, 0.2), (dstack, α)
27.5:35.0:2.5 2.0:8.0:2.0 (50, 200), (30, 1) (50, 200), (dstack, α) (0.05, 0.2), (dstack, α)
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Table C.5: Summary of umbrella simulation details for free energy calculations with two
12-mers with fully rigidified nucleosomes. The same format as in Table A.1 is adopted here,
and the units for the two restraining constants are κC (kcal/mol), κd̄stack

(kcal/(mol · nm2)).

Umbrella center:
C

Umbrella center:
d̄stack (nm)

Restraining
constants

Simulation length
(million steps)

30.0:55.0:5.0 6.0:10.0:0.5 (0.0478, 0.478) 20
30.0:55.0:5.0 10.0:17.5:2.5 (0.0478, 0.239) 20
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Figure C.1: Secondary structure motifs for disordered histone tails negligibly impact nucleo-
some stability and protein-DNA interactions. The two curves correspond to the free energy
profiles of the outer layer nucleosomal DNA unwrapping as a function of the DNA end-to-
end distance. These profiles were determined from replica-exchange umbrella simulations
with biases on the end-to-end distance of the nucleosomal DNA. The two sets of simulations
only differ in the treatment of histone tails but otherwise share identical settings. The black
curve was computed using simulations performed with the same model as that presented
in the main text. On the other hand, the red curve was determined using simulations that
explicitly accounted for secondary structure biases in the disordered histone tails. In par-
ticular, we used AlphaFold2 [322] to predict the structure of all the histone tails. We built
new structure-based models for histone tails that account for the bonds, angles, and dihe-
drals from these initial structures. Therefore, the new models should reproduce the residue
folding of histone tails and their tendency to form any secondary/tertiary structures. The
umbrella centers were placed on a uniform grid [5.0:70.0:5.0] nm. The temperature replica
exchange was applied between temperatures from 300 K to 410 K with a spacing of 10 K.
Each simulation replica lasted for 5.5 million steps with a time step of 10.0 fs, and the first
250k steps were excluded for equilibration. We used the WHAM algorithm [311] to process
the simulation data from all temperatures and compute the free energy profiles. Error bars
correspond to the standard deviation of the means estimated from three independent data
blocks.
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Figure C.2: The cutoff distance used for the Debye Hückel potential has negligible impact on
the computed free energy profile. The black line is identical to the one presented in Figure
2.1. The red curve was computed with a new set of simulations that adopted a cutoff distance
of five times Debye screening length. The new simulations were carried out following the
same simulation protocol as those presented in the main text with the presence of 4 pN force.

207



Fr
ee

 e
ne

rg
y 

(k
BT

)

End-to-end distance (nm)

Rigid_body
No_rigid_body

A B

0 10 20 30 40
0

5

10

15

20

25

30

Figure C.3: Rigidifying the inner layer nucleosomal DNA does not impact the energetics of
outer layer DNA unwrapping. (A) Illustration of the groups of atoms rigidified in simulations.
For simulations presented in the main text (bottom), both the histone core and inner layer
(73 bp) of nucleosome DNA (shown in blue) are treated together as one rigid body. As an
alternative treatment (top), we only rigidified the four residues and two nucleotides (shown
in blue) located on the dyad axis to avoid nucleosomal DNA sliding. (B) Free energy profiles
of outer layer nucleosomal DNA unwrapping as a function of the DNA end-to-end distance.
These profiles were determined from replica-exchange umbrella simulations with biases on
the end-to-end distance of the nucleosomal DNA. The two sets of simulations only differ in
the treatment of rigid groups, as illustrated in part A, but otherwise share identical settings.
The umbrella centers were placed on a uniform grid [5.0:70.0:5.0] nm. The temperature
replica exchange was applied between temperatures from 300 K to 410 K with a spacing of
10 K. Exchanges among the replicas were attempted every 100 steps. Each simulation replica
lasted for at least 5.5 million steps. The simulations that rigidified both the histone core
and inner layer of nucleosomal DNA used a time step of 10.0 fs. The simulations that only
rigidified the four residues and two nucleotides on the dyad axis require a smaller time step
of 1.0 fs to ensure energy conservation. In both cases, the first 250k steps were excluded for
equilibration. We used the WHAM algorithm [311] to process the simulation data from all
temperatures and compute the free energy profiles. Error bars correspond to the standard
deviation of the means estimated from three independent data blocks.
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Figure C.4: Mean distances between pairs of nucleosomes at various values of nucleosome sep-
aration n. Error bars correspond to the standard deviation of the mean estimated from three
independent data blocks. These data suggest that the average distance between nucleosome
pairs separated by four or more nucleosomes is larger than 13 nm. Therefore, nonbonded
interactions between these nucleosomes contribute negligibly to the overall potential energy
and stability of the chromatin structure. Therefore, neglecting their contribution to the
chromatin conformational free energy in the neural network model is a reasonable approx-
imation. See Section: Neural Network Model for the 12mer Chromatin for more details on
the neural network model.
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Figure C.5: Comparison between experimental [202] force-extension curve (black) and the
one predicted by the neural network model. The neural network model quantifies chromatin
stability as a function of inter-nucleosome distances. Based on the derivation shown in
Eq. C.9, when the extension force is larger than 1 pN, the extension along z-axis (Lz) is
very close to the end-to-end distance (L), so that we approximated the z-axis extension per
nucleosome using the distance between first and last nucleosome (L) divided by 11. L at
different extension forces was calculated using umbrella simulations of the neural network
model. See text Section: Initial configurations from the neural network model and Section:
Neural Network Model for the 12mer Chromatin for simulation details.
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Figure C.6: Two dimensional free energy profiles as a function of nucleosome unwrapping
(qwrap) and unstacking (dstack) at various extension forces determined from umbrella simula-
tions. See text Section: Free Energy Profiles for Chromatin Under Tension for simulation
details.
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Figure C.7: Theoretical predictions of chromatin extension along the z-axis, Zext. We as-
sumed a harmonic potential for the end-to-end distance of the unbiased chromatin. Pa-
rameters in the potential were obtained from a least-square fitting to the simulation results
shown in Figure 2.1C at 0 pN. From the harmonic potential, Zext can be computed with the
analytical expression provided in Eq. C.9. See Section: Theoretical predictions of chromatin
extension along the z-axis for a detailed discussion.
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Figure C.8: Comparison between the simulated (red) and experimental [202] (black) force-
extension curves. The results for simulations performed with 150 mM monovalent ions are
reproduced from Fig. 1B. The green dot corresponds to chromatin extension at 4pN force
obtained from simulations with 100 mM monovalent ions. We note that while previous
experimental studies [285] have shown that lower salt concentrations lead to chromatin
decompaction, our results do not contradict them. A critical difference between the results
presented here and previous experimental studies is the presence of force. In previous studies,
chromatin was probed without any tension and should, in general, adopt compact conforma-
tions. For compact chromatin, linker DNAs come in close contact and contribute significantly
to chromatin stability. Therefore, factors that affect their repulsion, such as increasing salt
concentration, will dramatically impact chromatin extension. However, with 4 pN force,
chromatin adopts much more extended configurations with very few contacts between linker
DNA (Figure 2.2). Histone-DNA interactions become more important for chromatin stabil-
ity and extension in these configurations as many nucleosomes have unwrapped. Therefore,
lowering the salt concentration would enhance attraction between histone proteins and DNA
to stabilize individual nucleosomes and reduce chromatin extension. Consistent with this in-
terpretation, many experimental studies have shown that nucleosome unwrapping becomes
more prevalent at higher salt concentrations [323]–[326].
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Figure C.9: Additional representative chromatin structures from simulations performed un-
der various extension forces. The values for the extension force are provided next to the
structures. Similar to the ones shown in Figure 2.2, these structures correspond to the cen-
tral configurations of the clusters identified by the single-linkage algorithm using root mean
squared distance (RMSD) as the distance between structures.
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Figure C.10: The ensemble of simulated chromatin configurations at different forces satisfy
the C2 symmetry. (A, B) Average nucleosome pair-wise contact maps computed using chro-
matin structures simulated with the presence of 0 and 4 pN force. The contact between

nucleosome pairs (i, j) is defined as cij =

〈
1−

(
rij−d0

r0

)n

1−
(

rij−d0
r0

)m

〉
with d0 = 3 nm, r0 = 8 nm, n = 6,

and m = 12. The angular brackets ⟨·⟩ represent ensemble averaging. (C, D) Difference in
contacts between pairs of nucleosomes defined as ∆cij = |cij − c13−i,13−j|. The difference
in contacts was designed to examine the C2 symmetry of the system. For example, we an-
ticipate that for the 12mer, 1-2 nucleosomes should have comparable contacts as 11-12, 1-3
nucleosomes should have similar contacts as 10-12, etc. We note that the 12mer does not
have translational symmetry, since n and n + m nucleosomes are not identical due to the
boundary effects and the finite length of chromatin.
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Figure C.11: Illustration of the nucleosome coordinate system used to distinguish shearing
and normal motions. The nucleosome is shown in the coarse-grained representation derived
from the crystal structure (PDB ID: 1KX5) [4]. The origin of the coordinate system is
defined as the center of residues 63-120, 165-217, 263-324, 398-462, 550-607, 652-704, 750-
811, and 885-949. The red arrow points from the origin to the center of residues 63-120,
165-217, 750-811, and 885-949. The green arrow points towards the nucleosome dyad defined
as the center of residues 81-131 and 568-618. The blue arrow is defined as the cross product of
vectors along the red and the green arrows. See text Section: Decomposing Inter-nucleosome
Distances into Shear and Normal Motions for further discussions.
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Figure C.12: Additional representative chromatin structures at smaller and larger distances
than the average extension at 4 pN force. The end-to-end distances are provided above the
structures.
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Figure C.13: Simulations initialized from uniform chromatin configurations produce clutched
structures. See text Section: Simulations starting from uniformly extended chromatin con-
figurations for additional simulation details. (A) Illustration of the two uniformly extended
configurations used to initialize the umbrella simulations. (B) Representative chromatin
structures with different end-to-end distances per nucleosome produced by umbrella sim-
ulations. We selected configurations with the most likely α values. Numbers below the
structures correspond to values for α and the end-to-end distance per nucleosome.
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Figure C.14: Simulations with uniform chromatin configurations reproduce findings pre-
sented in the main text. See text Section: Simulations starting from uniformly extended
chromatin configurations for additional simulation details. (A) Comparison of the two free
energy profiles as a function of end-to-end distance per nucleosome obtained from simula-
tions with uniform chromatin configurations (black) and with configurations predicted by the
neural network model (red). The red curve is identical to that presented in Figure 2.1C of
the main text. The statistical equivalence of two independent sets of simulations initialized
with different configurations within error bars supports the convergence of our results. We
note that the residual differences between the two free energy profiles highlight the challenges
of sampling chromatin configurations, which motivated our use of initial configurations pre-
dicted by the neural network model for simulations presented in the main text. (B) Free
energy profile as a function of α. The global minimum at large α value supports the forma-
tion of clutched chromatin configurations.
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Figure C.15: Restricting nucleosomal DNA unwrapping reduces clutch formation. See text
Section: Simulations with Fully Rigidified Nucleosomes for additional simulation details.
(A) Representative chromatin structures with different end-to-end distances produced by
umbrella simulations. We selected configurations with the most likely α values. Numbers
next to the structures correspond to values for α and the end-to-end distance per nucleosome.
(B) Free energy profiles as a function of α = dmax

i,i+2/d
min
i,i+2 calculated from simulations under

4 pN tension with the entire 147 bp nucleosomal DNA rigidified (black) and with only
the inner 73 bp nucleosomal DNA rigidified (red). (C) The average value of α calculated
as a function of the per-nucleosome DNA end-to-end distance from simulations under 4
pN tension with the entire 147 bp nucleosomal DNA rigidified (black) and with only the
inner 73 bp nucleosomal DNA rigidified (red). Error bars are calculated from the standard
deviation estimated via block averaging. For a better comparison between these two sets of
simulations, we only show data with per-nucleosome end-to-end distance below 10 nm.
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Figure C.16: Correlation between α = dmax
i,i+2/d

min
i,i+2, the ratio between maximum and min-

imum values of the 1-3 nucleosome stacking distance, and the inter or intra-nucleosome
histone-DNA interaction energies. α was introduced to quantify the degree of irregularity in
chromatin structure. As the name suggests, The intra-nucleosome energy (red) only accounts
for the interactions between histone proteins and DNA segments from the same nucleosome,
while the inter-nucleosome energy (black) quantifies interactions from different nucleosomes.
The two curves were computed using data from simulations with the 4 pN force presented
in the main text. They were shifted to set the maximum values as zero. The errorbars
correspond to the standard deviation of the mean computed via block averaging.
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Figure C.17: Representative structure of two contacting chromatin segments that adopt more
extended configurations. Extension leads to more interdigitation between the two chains.
The inset highlights the interactions between inter-chain nucleosomes. The free energy and
collective variable value are indicated as the green dot in the free energy profile.
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Figure C.18: The average value of ᾱ as function of d̄stack determined using the same simu-
lations presented in Figure 2.5. α = dmax

i,i+2/d
min
i,i+2 was introduced to quantify the degree of

irregularity in chromatin structure. We averaged over two chromatin segments to define the
mean value as ᾱ = (αfiber 1 + αfiber 2)/2. The errorbars measure the standard deviation of
the mean and were estimated from three independent data blocks. This plot supports the
formation of irregular chromatin configurations with nucleosome clutches (larger ᾱ values)
as chromatin extends to break stacking interactions (higher d̄stack values).

223



10 20 30 40 50
Inter-chain contacts

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

10 20 30 40 50
Inter-chain contacts

7

8

9

10

11

12

d st
ac

k (
nm

)

α

Figure C.19: Average ᾱ (Left) and d̄stack (Right) as a function of inter-chain contact numbers
determined using simulations presented in Figure 2.5. The error bars measure the standard
deviation of the mean and were estimated from three independent data blocks. The two
plots support that chromatin become more irregular (larger ᾱ values) and extended (larger
d̄stack values) as contacts form. The slight decrease in ᾱ for very large contacts arises from
chromatin compaction as seen in the drop for d̄stack. More contacts necessitate more compact
chromatin configurations.
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Figure C.20: Free energy surface as a function of the inter-chain contacts and the average
extension of the two 12mers determined with simulations that permit (left) or prohibit (right)
outer nucleosomal DNA unwrapping. The left plot is identical to Figure 2.5A but with a
different color scale. The right plot was computed with a new set of umbrella simulations
in which the entire 147 bp nucleosomal DNA was rigified together with the histone core.
Representative structures near the free energy minimum are shown below, with the collective
variable values indicated as green dots in free energy surfaces. See Section: Simulations with
Fully Rigidified Nucleosomes for simulation details.
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Appendix D

Supplementary information for chapter 5

D.1 Simulation Details

D.1.1 System Setup

We built three tetra-nucleosome models with DNA linker lengths of 20, 25, and 30 bp,

respectively. No additional DNA was attached to either end of the tetra-nucleosome. This

workflow was introduced in a previous publication [49], and we briefly summarize it here.

We built tetra-nucleosome models by connecting nucleosomes with given DNA linker

lengths. Single nucleosome structure is extracted from the tetra-nucleosome x-ray structure

(PDB: 1ZBB) [8] with 147 bp wrapped around the histone and an additional 20 bp at the

exiting end. The histones were then replaced with the structure from PDB 1KX5 [4], which

includes histone tails. Such a 167-bp nucleosome is the building block for all tetra-nucleosome

models.

To concatenate the 167 bp blocks, we used 3dna [312] to build small segments of DNA

and align them with the 167 bp blocks. We also removed additional DNA linkers at either

end. By adjusting the lengths of the short DNA segments, we constructed tetra-nucleosomes

with different linker lengths.
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D.1.2 Force Field setup

We combined 3SPN.2C for DNA [146], [206] and SMOG for protein [133]. 3SPN.2C models

each nucleotide as 3 CG beads, and SMOG models each amino acid as 1 CG bead. Relative

to the default SMOG parameters, we scaled all the bonded interaction strength by 2.5 to

prevent unfolding at 300 K. The nucleosome core is defined as the histone core (residue ID:

44-135, 160-237, 258-352, 401-487, 531-622, 647-724, 745-839, 888-974) and the middle 73

bp wrapped around histone (i.e. inner layer DNA that wraps around the histone). Each

nucleosome core is set as a rigid body to prevent the inner layer DNA from unwrapping and

sliding. This also stabilizes the histone core. All the protein dihedral potentials involving

histone tail atoms (i.e. histone atoms not within histone core belong to histone tails) are

removed, as tails are intrinsically disordered. Specific nonbonded interactions between amino

acids are captured with Miyazwa-Jernigan (MJ) potential [205] scaled by 0.4. Protein-DNA

nonbonded interactions include Lennard-Jones and Debye-Hückel potentials. Debye length

is computed under 150 mM monovalent salt and 300 K. We used the same force field to

successfully capture the folding dynamics of tetra-nucleosome and chromatin 12mer [46],

[49]. The force field with the parameters introduced before has been implemented in a CG

simulation force field package named OpenABC and can be readily used [61].

D.1.3 Select Initial Structures from Enhanced Sampling Trajecto-

ries

We intend to start our simulations from diverse configurations explored with enhanced sam-

pling techniques. The sampling method and configurations are reported in the previous work

[46]. Here we briefly summarize the protocol applied in the previous study.

In the previous study [46], the tetra-nucleosome structure was initialized as the x-ray

structure (PDB: 1ZBB) [8]. This structure has linkers of lengths 20 bp. The same CG force

field was applied. Two collective variables (CVs), the radius of gyration (Rg, equation D.1)
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and the fraction of native contacts (Q, equation D.2) were defined to help enhance sampling.

Rg =

√√√√1

4

4∑
i=1

(ri − rCOM)2 (D.1)

Q =
1

6

3∑
i=1

4∑
j=i+1

exp

(
−
(rij − roij)

2

2σ2

)
(D.2)

ri is the position of the i-th nucleosome, and rCOM is the center of mass (COM) of all

the nucleosomes. rij is the distance between the i-th and j-th nucleosomes, and roij is the

distance within the native structure (i.e. x-ray structure). Rg measures whether the structure

expands, and Q measures how much the structure deviates from the native one.

The enhanced sampling method called unified free energy dynamics (UFED) [281] was

applied to explore diverse configurations. This method combines temperature accelerated

molecular dynamics (TAMD) [327] and metadynamics [328]. The two target CVs, Rg and

Q, were coupled to fictitious variables, r and q, respectively, with harmonic bias (equation

D.3). Here force constants kr = 200 kJ/mol/nm2 and kq = 10000 kJ/mol.

Vharmonic =
kr
2
(Rg(r)− r(t))2 +

kq
2
(Q(r)− q(t))2 (D.3)

The two fictitious variables, r and q, were coupled to a thermostat of Tc = 1000 K,

while the real coordinate variables r were coupled to a thermostat of T = 300 K. The

higher temperature for fictitious variables together with the harmonic potential accelerated

dynamics along Rg and Q and helped cross free energy barriers. Additionally, similar to

metadynamics [328], a history-dependent bias is applied to r and q (equation D.4), thus

avoiding revisiting explored states. Potential height h = 0.1 kJ/mol, potential deposit

interval ∆t is 500 steps, width parameters σr = 0.5 nm and σq = 0.02.
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Vmetad = h
∑

i,i∆t<t

[
exp

(
−(r(t)− r(i∆t))2

2σ2
r

)
+ exp

(
−(q(t)− q(i∆t))2

2σ2
q

)]
(D.4)

20 independent UFED simulations were performed, and more than 50 million steps were

run for each simulation. The snapshots were saved every 5000 steps, and 293,291 configura-

tions were collected in all. 10,000 representative configurations were selected from the saved

configurations with K-means algorithm.

In the current study, considering the symmetry that nucleosome indices (1, 2, 3, 4) is

equivalent to (4, 3, 2, 1), we only picked the configurations with d13 ≥ d24 (dij means the

distance between the i and j-th nucleosomes) from the 10,000 configurations, leading to

4643 configurations. We computed dij for all 4643 configurations. Due to the symmetry that

(d12, d13, d14, d23, d24, d34) is equivalent to (d34, d24, d14, d23, d13, d12), samples collected by MD

simulation can be essentially doubled by this mapping, and we do this mapping to double

our samples before doing analyses (see Section: Trajectory Preprocessing for details). Such

symmetry was also enforced in the architecture of the neural network free energy estimator

reported before to prevent overfitting [46].

D.1.4 Single Tetra-nulcoeosome Simulation Protocols

Given the tetranucleosome linker lengths as 20 or 25 or 30 bp, we first ran restrained MD to

drag the structures towards the target dij values given by the 4643 selected configurations.

Then we ran an unbiased NVT simulation. Here we provide detailed protocols for running

single tetra-nucleosome restrained MD and unbiased NVT simulations. All the single tetra-

nucleosome simulations were performed with LAMMPS [127] in a cubic box of length 200

nm with Nosé-Hoover integrator [209], [329], the temperature was 300 K, the damping

parameter was 1 ps, and the timestep was 10 fs. Each nucleosome core was always fixed as

a rigid body.

230



Restrained MD Simulation

The position of each nucleosome is defined as the geometric center of the following Cα atoms:

44-135:3, 160-237:3, 258-352:3, 401-487:3, 531-622:3, 647-724:3, 745-839:3, 888-974:3. Here

n1-n2:n3 means atoms start from index n1 and end at index n2 (inclusive) with step size n3.

These Cα atoms are all within the ordered domain of histone. We applied strong umbrella

bias on dij with a strong force constant κ = 1000 kJ/mol/nm2 to shift the distances to the

target values (equation D.5). Here d
(k)
ij means the distance between nucleosome i and j from

the k-th selected configuration. All the restrained MD simulations lasted 0.2 million steps.

V
(k)
restrain =

∑
i<j

κ

2
(dij − d

(k)
ij ) (D.5)

For the NRL = 172 tetra-nucleosome system, since our initial structure built by the protocol

introduced before has slight overlap between CG atoms, we first dragged the 3dna built

structure to (d12, d13, d14, d23, d24, d34) = (15, 15, 25.98, 15, 15, 15) nm with the same bias

shown in equation D.5, and force constant κ = 100 kJ/mol/nm2. This preliminary step

ensures the structure can extend to a configuration without nonphysical overlap. Then all

the restrained simulations started from this extended configuration. For NRL = 167 and

177 systems, the restrained MD directly started from the structure built by 3dna.

Unbiased MD simulation

For a single tetra-nucleosome, we continued the simulation from the final snapshot of the

restrained MD by releasing the restraint (i.e. removing the restraint bias shown in equation

D.5). Unbiased NVT simulations were performed under 300 K. For NRL = 167 system, at

least 0.8 million steps were performed for each simulation. For NRL = 172, 177 systems,

1 million steps were executed for each simulation. The simulations converged after about

20,000 steps. The ensembles of unbiased and parallel trajectories were further analyzed with

Markov State Models (MSMs) introduced below.
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D.1.5 Tetra-nucleosome in Sea of Nucleosomes Simulation Proto-

cols

We also performed the simulation for a single tetra-nucleosome with 20 bp linkers within a sea

of nucleosomes. A tetra-nucleosome and 26 single nucleosomes were placed in a cubic box of

length 55 nm, resulting in an overall nucleosome concentration of 0.3 mM. This concentration

is close to the one in chromatin condensate [17] and sufficient inter-nucleosomal contacts

are observed. Such a large system is slow to run with CPU parallelization. It has been

manifested that OpenMM [62] GPU acceleration can execute large systems efficiently [61],

[147], and we run all the dense phase simulations with OpenMM and GPUs. We combined

SMOG [330] and 3SPN2 [147], which have been implemented into OpenMM separately, into

one force field following the OpenABC framework [61]. All the OpenMM NVT simulations

were performed in a cubic box of length 55 nm with Langevin middle integrator [130],

The friction coefficient was 0.01 ps−1, the temperature was 300 K, and the timestep was

10 fs. Note we used the Langevin middle integrator instead of the Nosé-Hoover integrator

as the OpenMM rigid body algorithm is more robust with the Langevin middle integrator

(https://github.com/openmm/openmm/issues/3993).

Since the condensate simulation is more expensive and requires longer time to observe

equilibration and condensation, we ran simulations with fewer individual trajectories but

extended simulation time. We selected 530 representative initial structures from each MSM

microstate constructed from unbiased trajectories of the single NRL = 167 tetra-nucleosome

(See section Construction and Validation of Microstate-MSM for details). The selection

guaranteed that all of the chosen structures fell within the 10% standard deviation from the

mean value of the Root Mean Squared Distances (RMSD) of each cluster in the MSM. We

placed the tetra-nucleosome with the selected configuration at the center of the box, then

randomly inserted single nucleosomes into the box with the tools provided by OpenABC [61].

The first stage is to relax the single nucleosomes while fixing the whole tetra-nucleosome. We
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fixed the whole tetra-nucleosome at given configurations as a whole rigid body, and the nucle-

osome core of every single nucleosome is a rigid body. We ran NVT simulations for 0.2 million

steps to relax the positions of single nucleosomes relative to the tetra-nucleosome. Figure

D.2A demonstrates that the relaxation reached equilibrium after about 50,000 steps, thus

the relaxation stage is long enough. Next, we released the constraints on tetra-nucleosomes.

Each nucleosome core of the tetra-nucleosome is an individual rigid body, while other parts

are flexible. Nucleosome cores of single nucleosomes are still kept as rigid bodies. We did

energy minimization, then ran NVT simulations for at least 7 million steps (i.e. at least 70

ns) as the production simulation, and analyzed these production trajectories with MSMs.

Figure D.2B shows the production run reached equilibrium at about 40,000 steps. The

distances between two nucleosomes within tetra-nucleosome, as well as all the nucleosome

positions, were recorded every 500 steps with PLUMED [309]. Since the simulation box is

not too large, we measured the size distributions of tetra-nucleosome in the production run,

and validated that the tetra-nucleosome did not touch its periodic images (Figure D.2C).

To ensure the distances between two nucleosomes were computed within the same intact

tetra-nucleosome, we first used the PLUMED “WHOLEMOLECULES" command to rebuild

the tetra-nucleosome so the whole tetra-nucleosome was built as a complete molecule, then

the distances between two nucleosomes within the tetra-nucleosome were computed with this

rebuilt configuration by adding “NOPBC” flag.

D.2 Markov State Model and Non-Markovian Dynamics

Model Construction

We built three independent MSMs based on the unbiased simulations of single tetra-nucleosomes

with different DNA linker lengths (NRL = 167, 172, 177), respectively. For the simulation

of the tetra-nucleosome in the sea of single nucleosomes, we constructed the MSM by only

considering the features of the tetra-nucleosome. All MSM constructions followed similar
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protocols:

(a) Select the converged segments of the trajectories and duplicate the converged trajec-

tories according to the reflection symmetry of nucleosome indices. All the following analyses

were applied to the converged and duplicated trajectories.

(b) With six inter-nucleosomal distances dij as input features, apply the time-lagged

independent component analysis (tICA) method with kinetic mapping algorithm to identify

the collective variables [275]–[278].

(c) Group MD conformations into microstates by the K-Means algorithm according to

their kinetic similarities based on the geometric distances in the tICA collective variable

space. The hyperparameters of the tICA and clustering (tICA relaxation time, number

of tICs, and number of microstates) were optimized using the cross-validation tool: the

generalized matrix Rayleigh quotient (GMRQ) [279].

(d) Construct and validate the microstate-MSM by the Chapman-Kolmogorov (CK) test

and implied-timescale analysis [265], [266] to ensure the Markovian properties.

(e) Employ the Transition Path Theory (TPT) [260], [261], [274] to elucidate the folding

kinetic pathways and the corresponding fluxes.

(f) Lump multiple parallel kinetic pathways into a small set of metastable and repre-

sentative path channels using latent-space path clustering (LPC) algorithm to facilitate the

understanding of folding mechanisms [267], [272], [282].

(g) Group microstates into a few macrostates with the Robust Perron Cluster Analysis

(PCCA+) algorithm [331], [332] and implement the Integrative Generalized Master Equation

(IGME) theorem [63] to calculate thermodynamical (such as stationary populations of

macrostates) and kinetic properties (such as mean first passage time).

All analyses were conducted using in-house Python codes and codes based on MSM-

Builder version 3.8.1. [333]. We explain more details in the following sections.
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D.2.1 Trajectory Preprocessing

Since the unbiased simulations of three individual tetra-nucleosome systems began with

conformations generated by restrained MD simulations, it was essential to exclude the initial

portion of each trajectory to ensure that only equilibrium trajectories were considered for

subsequent analysis. Consequently, we removed the initial 30,000 steps from each trajectory

of all three single tetra-nucleosome systems based on the convergence of their energies (Figure

D.1A-C). For the simulation of the tetra-nucleosome in the sea of nucleosome, we discarded

the first 50,000 steps of each production run according its energy convergence (Figure D.2B).

Because we focused on the tetra-nucleosome folding process, we neglected the detailed

local conformational changes of the histone proteins or DNA segments. Previous studies

have shown that six distances between the geometric centers of each pair of nucleosomes can

sufficiently describe the large-scale folding of the tetra-nucleosome [46]. Thus, we adopted

the strategy of incorporating these six distances as embedded features for each conformation.

Since the initial and terminal points of the tetra-nucleosome are indistinguishable, to ensure

consistency with the symmetry of the tetra-nucleosome in our analysis, we duplicated the

six-distance trajectories by mapping (d12, d13, d14, d23, d24, d34) to (d34, d24, d14, d23, d13, d12),

leading to 4643 × 2 trajectories. The duplicated ensembles of converged six-distance trajec-

tories were used for further analysis.

D.2.2 Identification of Collective Variables by tICA

To reduce the dimension of features for further analyses, we further employed tICA coupled

with kinetic mapping to identify the low-dimensional collective variables (CVs) by recom-

bining the six pairwise distances. The Euclidean distances in the tICA-reconstructed space

can be viewed as approximations of the kinetic distances, which facilitate the clustering of

kinetically close conformations. To determine the optimal hyperparameters including the

number of CVs, the tICA relaxation time, and the number of microstates, we employed the
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GMRQ cross-validation method to select the hyperparameters, thus balancing systematic

and statistical error. During the cross-validation process, for each system, all trajectories

were randomly divided into four subsets. Among these subsets, three were designated as the

training set, while the remaining one was used as the validation set. This procedure was

repeated 10 times for each system. We selected the optimal hyperparameters to maximize

the validation score and minimize the difference between the training and validation scores.

We also verified the number of CVs by checking the reconstruction error of the correlation

matrix [277], [334]. GMRQ score supports using the top 3 tICA eigenvectors as the CVs

(Figure D.3A, D.4A, D.5A, D.6A). For all the four systems, the top three tICA eigenvectors

can reconstruct more than 80% of the eigenvalues of the correlation matrix, so we continued

following analyses with the top 3 tICs as CVs. For the NRL = 167, 172, 177 and condenstate

systems, tICA lag time of 25,000, 12,500, 25,000, 50,000 steps were adopted based on GMRQ

scores (Figure D.3B, D.4B, D.5B, D.6B).

D.2.3 Construction and Validation of Microstate-MSM

We further performed K-means algorithm to cluster samples in the CV space. The optimal

number of clusters was determined through GMRQ cross-validation. The dataset was ran-

domly divided into a 3:1 ratio for training and testing purposes, and this cross-validation

process was repeated 10 times. All MSMs used for the GMRQ test were constructed using

the optimal number of CVs and tICA relaxation time identified before. The optimal clus-

ter numbers for the NRL = 167, 172, and 167 condensate systems were determined to be

530, 500, and 400, respectively (Figure D.3C, D.4C, D.6C). For the NRL = 177 system, the

training and testing GMRQ scores exhibited minimal changes over a wide range of K-Means

clusters (600-1500). Therefore, we selected 1000 as the midpoint for the number of clusters

(Figure D.5C).

We constructed the microstate MSMs for the NRL = 167, 172, and 177 systems using

a lag time of 0.25 million steps, while a longer lag time of 1.5 million steps for the NRL =
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167 condensate system due to the more dominant memory effect induced by the condensed

environment of the nucleosomes. The transition count matrices (TCMs) indicate all the

systems have reached detailed balance (Figure D.7A, D.8A, D.9A, D.10A). We verified the

Markovian properties with the implied time scale (ITS) and the Chapman-Kolmogorov (CK)

test. The ITS plots reach plateaus at the corresponding lag times (Figure D.7B, D.8B,

D.9B, D.10B), indicating the corresponding lag times lead to Markovian properties. We

further validated microstate MSMs with the CK test. This involves comparing the residence

probabilities of the eight most populated microstates, as predicted by the microstate MSMs,

with the residence probabilities directly obtained from all-atom MD simulations. The CK

test confirmed a consistent agreement between the predicted residence probabilities and those

derived from the MD simulations (Figure D.7C, D.8C, D.9C, D.10C).

D.2.4 Characterization of Folding Pathways

To comprehend the folding mechanisms of each system, we discerned the kinetic folding path-

ways for all four systems using Transition Path Theory (TPT) based on microstate MSMs.

To define the source of kinetic pathways, we assigned the microstates with center coordi-

nates ranging from 25.0 nm to 32.0 nm along both d13 and d24, which represent extended

and unfolded configurations. On the contrary, microstates with center coordinates between

5.0 nm and 6.0 nm along both d13 and d24 were designated as the sink. Given source and

sink, we computed the committor probabilities for each microstate in all four systems at

their respective Markovian lag times. These probabilities were then used to construct net

flux matrices, which characterize the transition flow through the bottleneck of the pathway.

We further applied Dijkstra algorithm to identify kinetic pathways [335].

In all four systems, the intrinsic properties of tetra-nucleosome folding resulted in the

elucidation of numerous kinetic pathways with comparable fluxes. The highest flux pathways

of NRL = 172 and 177 systems are shown in Figure D.11 D.12, and the similar figures for

the NRL = 167 systems are shown in the main text. To enhance our comprehension of the
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folding mechanisms, we employed the LPC algorithm to condense thousands of pathways into

a smaller number of metastable path channels. The LPC algorithm utilizes the Variational

AutoEncoder (VAE) neural network to learn and embed the path distributions in the CVs

space into a low-dimensional latent space, where each pathway is represented as a single

point. Subsequently, the K-Means clustering algorithm was applied to group these points

into distinct path channels [267].

In all four systems, the kinetic pathways were initially identified and depicted in the 3-

dimensional CV space by linking the microstates traversed by the pathways. By projecting

the MD conformations belonging to each microstate onto the CV space, the spatial configu-

ration and distribution of each pathway were captured. To simplify the data structure and

facilitate training, each pair of two-dimensional CVs (three CVs were combined to form three

two-dimensional subspaces) space was divided into 30× 30 bins to visualize and embed the

distribution of pathways. As a result, the distribution for each pathway was described by a

3× 30× 30 one-hot vector [267]. These distributions of pathways would subsequently serve

as inputs for training the VAE models. We included and embedded 8000, 8000, 11000, and

3500 kinetic pathways for NRL = 167, 172, 177, and 167 condensate systems, respectively.

The number of pathways was chosen to encompass approximately 95% or more of the total

flux for each individual system (Figures D.13-D.16A).

To ascertain the dimension of the latent space in VAE, we utilized the fraction of variance

explained (FVE) by VAE as a criterion [336], which is defined as

FVE = 1−
∑N

i=1 ||D(i)− D̂(i)||2∑N
i=1 ||D(i)− D̄||2

(D.6)

where D(i) represents the distribution vector for path i in the CVs space, D̄ is the mean of

input path distribution vector, and the D̂(i) is the reconstructed path distribution vector of

path i. For all four systems, we trained multiple VAEs using the same input path distribution

but with different dimensions of latent spaces to calculate the FVE values. The training of
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each VAE was conducted ten times, employing different random seeds to estimate the error

bars. We selected the dimensionality when the FVE reached convergence, meaning it did

not increase by more than 5% when including an additional dimension. As shown in Figures

D.13-D.16 B, the dimensionality for the NRL = 167, 172, 177 and 167 in the nucleosome sea

system were selected as 5, 4, 5 and 5, respectively.

To determine the number of path channels, we utilized the average of squared errors

(ASE) [337] and the Silhouette score [338] as criteria. The ASE represents the average

of the distances between the data points and their corresponding cluster centers, which is

defined as follows:

ASE =
1

N

K∑
i=1

ni∑
c∈Ci

||Xc −M(Ci)||2 (D.7)

where K is the number of clusters, ni is the number of data points belonging to cluster Ci, Xc

is the data point c, and M(Ci) is the center of cluster Ci. We utilized the Elbow method to

identify the optimal number of clusters, where the ASE exhibits the most significant change

in slope (Figures D.13-D.16 C). This indicates that increasing the number of clusters beyond

the optimal number would not improve the clustering performance further.

The Silhouette score quantifies the distinctiveness and separation of clusters, and it is

defined as

Sihouette Score =
1

K ·N

K∑
i=1

ni∑
c∈Ci

b(i)− a(i)

max{a(i), b(i)}
(D.8)

where b(i) = min
k ̸=i

1
nk

∑
j∈Ck

d(i, j) denotes the inter-cluster distance, calculated as the average

distance to the nearest cluster other than the one which data point i belongs to, while

a(i) = 1
ni−1

∑
j∈Ci,i ̸=j d(i, j) represents the intra-cluster distance, computed as the average

distance to all other points within the same cluster, excluding point i. We chose the number

of clusters that maximizes the Silhouette score, indicating the optimal separation of data

points. As illustrated in Figure D.13-D.16 D, for all four systems, the optimal number of

clusters remains consistent for both of these two scores, and the optimal number is 3. The

examples of loss decay for training are shown in Figure D.13-D.16 E. The distribution of

239



path channels as heatmaps are shown in Figure D.17.

D.2.5 Construction and Validation of Macrostates-MSM

To generate explainable and representative models, we lumped the microstate models to

macrostate models for all four systems using PCCA+ algorithm [331], [332]. The PCCA+

algorithm categorizes microstates into macrostates by considering the sign of the top eigen-

vectors of the transition probability matrix, which leads to the recombination of microstates

based on their kinetic similarities. Across all four systems, varying number of microstates

were grouped into six macrostates. To enhance our comprehension, we visualized the

macrostate distribution along d13 and d24 (Figures D.18-D.21 A).

Larger macrostates require more time for the dynamics between states to reach equilib-

rium, consequently leading to an extended Markovian lag time for the macrostate model

[63], [265]. Since we conducted multiple parallel simulations of limited length and the lag

time is bounded by the trajectory length, achieving Markovian for the macrostate model be-

comes a challenge. To address this issue and consider non-Markovian dynamics, we utilized

the Integrative Generalized Master Equation (IGME) method to propagate dynamics and

predict thermodynamic and kinetic properties [63]. Unlike MSMs that utilize a first-order

master equation to evolve dynamics, IGME employs a generalized master equation which

considers memory effects, making it applicable to non-Markovian dynamics.

IGME is derived based on the Nakajima-Zwanzig equation [339] and the Hummer-Szabo

projection operator [340]. As demonstrated in our recent study [63], [265], [341], the

dynamics of the state model can be characterized by the Generalized Master Equation,

which relies on transition probability matrices (TPMs):

˙T (t) = T (t)Ṫ (0)−
∫ min[t,τk]

0

T (t− s)K(s)ds (D.9)

Where T (t) is the TPM at lag time t, K(t) is the memory kernel at time t and τk is the
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memory kernel decay time (K(t ≥ τk) = 0). By applying the Taylor expansion and solving

the GME equation in a self-consistent manner, we can derive the solution for long-time

dynamics:

T (t ≥ τk) = AT̂ t (D.10)

Where A and T̂ are two constant matrices, and T̂ satisfies equation:

ln T̂ = Ṫ (0)−M0 −
∞∑
n=1

(−1)n

n!
(ln T̂ )nMn (D.11)

Where Mn(t) are the time integrals of memory kernels:

Mn(t) =

∫ t

0

K(s)snds (D.12)

When t → ∞, lim
t→∞

T (t) = t ln T̂ , so that T̂ matrix describes the dynamics at the infinite long

lag time, while A matrix represents the contribution from fast dynamics. Additionally, the

zero-order term of the Equation D.11 can be employed to assess the integral of the memory

kernels: M0 ≈ Ṫ (0) − ln T̂ , which also facilitates the calculation of the mean integral of

memory kernels (MIKs): MIK(τk) = ||M0||F/N , where ||M0||F is the Frobenius norm of M0,

and N is the number of macrostates.

To acquire long-time transition probabilities according to Equation D.10, it is necessary

to estimate the matrices A and T̂ using the simulation trajectories. In detail, we employed

the logarithm of multiple TPMs at various lag times (T (τk), T (τk+∆t), T (τk+2∆t), ..., T (τk+

n∆t)) to do least squared fitting to generate each element of A and T̂ matrices. For the single

tetra-nucleosome systems with NRL = 167, 172, and 177, we selected τk = 2.5 × 105 steps

and n∆t = 3.5× 105 steps as the fitting range, guided by the convergence of the MIKs. For

the NRL = 167 tetra-nucleosome system within the sea-of-nucleosomes environment, owing

to its condensed nature, we utilized τk = 1× 106 steps and n∆t = 1.5× 106 steps for fitting

the IGME model. As depicted in Figure D.18-D.21, when using the transition probabilities
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directly derived from the raw MD data as reference and comparing with the MSM constructed

at the lag time τk + n∆t, it becomes evident that the IGME model exhibits significantly

improved accuracy in predicting long-time dynamics. Since the T̂ matrix represents the

system’s dynamical behavior at an infinitely long lag time, we subsequently used the T̂

matrix to compute the stationary populations of macrostates and the MFPTs between every

pair of macrostates for all four systems, as shown in Figure D.18-D.21.

D.3 Sequences

The DNA sequences used for all the systems are provided. Here only the nucleosomal repeat

length (NRL) sequence of the first ssDNA is provided. If the NRL sequence is s and there

are nnucl nucleosomes, then the full sequence of the first ssDNA is s × (nnucl − 1) + s[: 147]

(here s[: 147] means the slice of the first 147 letters in s, and this segment belongs to the

nucleosome), and there is no additional DNA on either end of the tetra-nucleosome or single

nucleosome. The second ssDNA sequence is Watson-Crick paired.

D.3.1 NRL 167 DNA Sequence

ACAGGATGTAACCTGCAGATACTACCAAAAGTGTATTTGGAAACTGCTCCATCAA

AAGGCATGTTCAGCTGGATTCCAGCTGAACATGCCTTTTGATGGAGCAGTTTCCA

AATACACTTTTGGTAGTATCTGCAGGTGATTCTCCAGGGCGGCCAGTACTTACAT

GC

D.3.2 NRL 172 DNA Sequence

ACAGGATGTAACCTGCAGATACTACCAAAAGTGTATTTGGAAACTGCTCCATCAA

AAGGCATGTTCAGCTGGATTCCAGCTGAACATGCCTTTTGATGGAGCAGTTTCCA

AATACACTTTTGGTAGTATCTGCAGGTGATTCTCCAGGGCGGCCAGTACTTACAT

GCGGCGG
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D.3.3 NRL 177 DNA Sequence

ACAGGATGTAACCTGCAGATACTACCAAAAGTGTATTTGGAAACTGCTCCATCAA

AAGGCATGTTCAGCTGGATTCCAGCTGAACATGCCTTTTGATGGAGCAGTTTCCA

AATACACTTTTGGTAGTATCTGCAGGTGATTCTCCAGGGCGGCCAGTACTTACAT

GCGGCGGCCAGT

D.3.4 Single nucleosome DNA sequence

ACAGGATGTAACCTGCAGATACTACCAAAAGTGTATTTGGAAACTGCTCCATCAA

AAGGCATGTTCAGCTGGATTCCAGCTGAACATGCCTTTTGATGGAGCAGTTTCCA

AATACACTTTTGGTAGTATCTGCAGGTGATTCTCCAG
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Figure D.1: Validate equilibrium of single tetra-nucleosome simulations. (A)-(C), The en-
ergy profiles for NRL = 167, 172, and 177 single tetra-nucleosome unbiased simulations,
respectively. Starting from restrained MD final snapshots, the potential energy reaches equi-
librium in about 20,000 steps. The energies are averaged over all the trajectories, and error
bars are manifested. The first 30,000 steps (left side of the gray dashed line) were removed
from every trajectory to ensure that the analyzed data were at equilibrium. The samples
collected after the initial 30,000 steps were well-equilibrated and used for analysis.
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Figure D.2: Validate the energy convergence and the simulation box is large enough for the
sea-of-nucleosome simulation. (A) The mean energy profile for relaxing the sea-of-nucleosome
simulations. Due to the large constant energy contributed by the rigid bodies, the energy of
each trajectory is shifted by removing the value at the final snapshot. Only the first 400,000
steps are shown. (B) The mean energy profile of the production run. Again, the energy of
each trajectory is shifted by the value at the final snapshot, and only the first 100,000 steps
are shown. The dashed line indicates 50,000 steps, and trajectories before 50,000 steps do
not undergo analyses. (C)-(E) The size distributions of the tetra-nucleosome along the x,
y, and z directions, respectively. This indicates that the cubic box of length 55 nm is large
enough for the tetra-nucleosome to avoid touching its own periodic image.
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Figure D.3: To construct the MSM for the NRL = 167 system, optimize the hyperparam-
eters for (A) the number of collective variables, (B) tICA lag time, and (C) the number of
microstate clusters through cross-validation using GMRQ scores. During all GMRQ cross-
validations, the dataset is divided into four subsets. Among these, three subsets are allocated
for training, while one subset is reserved for validation. The MSM lag time is set to 0.4 mil-
lion steps. For each hyperparameter, the cross-validation process is repeated ten times,
employing different random seeds.
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Figure D.4: To construct the MSM for the NRL=172 system, optimize the hyperparame-
ters for (A) the number of collective variables, (B) tICA lag time, and (C) the number of
microstate clusters through cross-validation using GMRQ scores. During all GMRQ cross-
validations, the dataset is divided into four subsets. Among these, three subsets are allocated
for training, while one subset is reserved for validation. The MSM lag time is fixed at 0.4
million steps. For each hyperparameter, the cross-validation process is repeated ten times,
employing different random seeds.
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Figure D.5: To construct the MSM for the NRL=177 system, optimize the hyperparame-
ters for (A) the number of collective variables, (B) tICA lag time, and (C) the number of
microstate clusters through cross-validation using GMRQ scores. During all GMRQ cross-
validations, the dataset is divided into four subsets. Among these, three subsets are allocated
for training, while one subset is reserved for validation. The MSM lag time is fixed at 0.4
million steps. For each hyperparameter, the cross-validation process is repeated ten times,
employing different random seeds.
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Figure D.6: To construct the MSM for the NRL=167 tetra-nucleosome in the sea-of-
nucleosome system, optimize the hyperparameters for (A) the number of collective variables,
(B) tICA lag time, and (C) the number of microstate clusters through cross-validation using
GMRQ scores. During all GMRQ cross-validations, the dataset is divided into four sub-
sets. Among these, three subsets are allocated for training, while one subset is reserved for
validation. The MSM lag time is fixed at 1.5 million steps. For each hyperparameter, the
cross-validation process is repeated ten times, employing different random seeds.
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Figure D.7: Validate the microstate MSM for the NRL = 167 system. (A) Transition
Count Matrices (TCMs) calculated at various lag times for the 530-microstate MSM. The
symmetrical nature of the TCMs substantiates the notion that the folding dynamics satisfies
detailed balance. The TCMs have been reorganized in accordance with the PCCA+ lumping
results. (B) Implied Time Scales (ITS) plot for the 530-microstate MSM. (C) Chapman-
Kolmogorov (CK) test for the 8 most populated microstates utilizing a Markovian lag time
of 0.25 million steps. The agreement between the residence probabilities predicted by the
MSM and those directly obtained from the MD simulation serves as the validation for the
MSM. The error bars in the ITS plot and the CK test plots are calculated by bootstrapping
the MD trajectories 20 times with replacements.
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Figure D.8: Validate the microstate MSM for the NRL = 172 system. (A) Transition Count
Matrices (TCMs) calculated at various lag times for 500 microstates MSM. The symmetri-
cal nature of the TCMs substantiates the notion that the folding dynamics satisfy detailed
balance. The TCMs have been reorganized in accordance with the PCCA+ lumping results.
(B) Implied Time Scales (ITS) plot for 500 microstates MSM. (C) Chapman-Kolmogorov
(CK) test for the 8 most populated microstates utilizing a Markovian lag time of 0.25 mil-
lion steps. The agreement between residence probabilites predicted by the MSM and those
directly obtained from MD simulation serves as the validation for the MSM. The error bars
in the ITS plot and the CK test plots are calculated by bootstrapping the MD trajectories
20 times with replacements.
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Figure D.9: Validate the microstate MSM for the NRL = 177 system. (A) Transition
Count Matrices (TCMs) calculated at various lag times for 1000 microstates MSM. The
symmetrical nature of the TCMs substantiates the notion that the folding dynamics satisfy
detailed balance. The TCMs have been reorganized in accordance with the PCCA+ lumping
results. (B) Implied Time Scales (ITS) plot for 1000 microstates MSM. (C) Chapman-
Kolmogorov (CK) test for the 8 most populated microstates utilizing a Markovian lag time
of 0.25 million steps. The agreement between residence probabilites predicted by the MSM
and those directly obtained from MD simulation serves as the validation for the MSM. The
error bars in the ITS plot and the CK test plots are calculated by bootstrapping the MD
trajectories 20 times with replacements.
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Figure D.10: Validate the microstate MSM for the NRL=167 tetra-nucleosome in the sea-of-
nucleosome system. (A) Transition Count Matrices (TCMs) calculated at various lag times
for 400 microstates MSM. The symmetrical nature of the TCMs substantiates the notion
that the folding dynamics satisfy detailed balance. The TCMs have been reorganized in
accordance with the PCCA+ lumping results. (B) Implied Time Scales (ITS) plot for 400
microstates MSM. (C) Chapman-Kolmogorov (CK) test for the 8 most populated microstates
utilizing a Markovian lag time of 1.5 million steps. The agreement between residence proba-
bilites predicted by the MSM and those directly obtained from MD simulation serves as the
validation for the MSM. The error bars in the ITS plot and the CK test plots are calculated
by bootstrapping the MD trajectories 20 times with replacements.
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Figure D.11: Visualize the representative kinetic pathways exhibiting the highest fluxes
within three distinct path channels for the NRL = 172 system. (A) Up-sequential channel,
(B) concerted channel, and (C) down-sequential channel. The solid dots represent the centers
of the microstates that the pathways traverse, while the dashed dots indicate the samples
belonging to those microstates.
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Figure D.12: Visualize the representative kinetic pathways exhibiting the highest fluxes
within three distinct path channels for the NRL = 177 system. (A) Up-sequential channel,
(B) concerted channel, and (C) down-sequential channel. The solid dots represent the centers
of the microstates that the pathways traverse, while the dashed dots indicate the samples
belonging to those microstates.
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Figure D.13: Cluster the parallel kinetic pathways for the NRL = 167 system by LPC
algorithm. (A) Accumulated flux as a function of the number of transition pathways (based
on the 530-microstate MSM). Clustering is conducted using the top 8000 pathways, which
collectively account for over 95% of the total flux. (B) Fraction of Variance Explained (FVE)
as a function of the dimension of the latent space. (C)-(D) Both the average of squared errors
and the average Silhouette score, plotted as functions of the number of clusters in the latent
space, favor the categorization of 3 clusters. The error bars are estimated by training the
VAE models for 10 times with different random seeds. (E) An illustrative example of the
VAE training process.
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Figure D.14: Cluster the parallel kinetic pathways for the NRL = 172 system by LPC
algorithm. (A) Accumulated flux as a function of the number of transition pathways (based
on the 500-microstate MSM). Clustering is conducted using the top 8000 pathways, which
collectively account for over 98% of the total flux. (B) Fraction of Variance Explained (FVE)
as a function of the dimension of the latent space. (C)-(D) Both the average of squared errors
and the average Silhouette score, plotted as functions of the number of clusters in the latent
space, favor the categorization of 3 clusters. The error bars are estimated by training the
VAE models for 10 times with different random seeds. (E) An illustrative example of the
VAE training process.
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Figure D.15: Cluster the parallel kinetic pathways for the NRL = 177 system by LPC
algorithm. (A) Accumulated flux as a function of the number of transition pathways (based
on the 1000-microstate MSM). Clustering is conducted using the top 11,000 pathways, which
collectively account for around 95% of the total flux. (B) Fraction of Variance Explained
(FVE) as a function of the dimension of the latent space. (C)-(D) Both the average of squared
errors and the average Silhouette score, plotted as functions of the number of clusters in the
latent space, favor the categorization of 3 clusters. The error bars are estimated by training
the VAE models for 10 times with different random seeds. (E) An illustrative example of
the VAE training process.
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Figure D.16: Cluster the parallel kinetic pathways for the NRL=167 tetra-nucleosome in
the sea-of-nucleosome system by LPC algorithm. (A) Accumulated flux as a function of the
number of transition pathways (based on the 400-microstate MSM). Clustering is conducted
using the top 3500 pathways, which collectively account for more than 95% of the total
flux. (B) Fraction of Variance Explained (FVE) as a function of the dimension of the latent
space. (C)-(D) Both the average of squared errors and the average Silhouette score, plotted as
functions of the number of clusters in the latent space, favor the categorization of 3 clusters.
The error bars are estimated by training the VAE models for 10 times with different random
seeds. (E) An illustrative example of the VAE training process.
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Figure D.17: (A)-(D) Heat maps of all the path channels for the NRL = 167 single, conden-
sate, NRL = 172 single, and NRL = 177 single systems, respectively. The three columns are
up-sequential, concerted, and down-sequential pathways. The flux percentages are labeled
in each plot.
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Figure D.18: Construct macrostate MSM and predict properties through IGME for the
NRL = 167 system. (A) Distribution of macrostates on the d13 and d24 map along with
their corresponding stationary populations. Each dot represents the center position of a
microstate, with colors indicating macrostate assignments based on PCCA+. (B) Mean
first passage times (MFPTs) of transitions between macrostates predicted by IGME. The
numbers indicate the predicted MFPTs in unit 106 steps from row index states to column
index states. (C) CK test for the 6-macrostate model using 3.5×105 steps MSM and IGME.
The error bars are estimated by bootstrapping the MD trajectories 20 times.
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Figure D.19: Construct macrostate MSM and predict properties through IGME for the
NRL = 172 system. (A) Distribution of macrostates on the d13 and d24 map along with
their corresponding stationary populations. Each dot represents the center position of a
microstate, with colors indicating macrostate assignments based on PCCA+. (B) Mean
first passage times (MFPTs) of transitions between macrostates predicted by IGME. The
numbers indicate the predicted MFPTs in unit 106 steps from row index states to column
index states. (C) CK test for the 6-macrostate model using 3.5×105 steps MSM and IGME.
The error bars are estimated by bootstrapping the MD trajectories 20 times.
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Figure D.20: Construct macrostate MSM and predict properties through IGME for the
NRL = 177 system. (A) Distribution of macrostates on the d13 and d24 map along with
their corresponding stationary populations. Each dot represents the center position of a
microstate, with colors indicating macrostate assignments based on PCCA+. (B) Mean
first passage times (MFPTs) of transitions between macrostates predicted by IGME. The
numbers indicate the predicted MFPTs in unit 106 steps from row index states to column
index states. (C) CK test for the 6-macrostate model using 3.5×105 steps MSM and IGME.
The error bars are estimated by bootstrapping the MD trajectories 20 times.
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Figure D.21: Construct macrostate MSM and predict properties through IGME for the NRL
= 167 condensate system. (A) Distribution of macrostates on the d13 and d24 map along
with their corresponding stationary populations. Each dot represents the center position of
a microstate, with colors indicating macrostate assignments based on PCCA+. (B) Mean
first passage times (MFPTs) of transitions between macrostates predicted by IGME. The
numbers indicate the predicted MFPTs in unit 106 steps from row index states to column
index states. (C) CK test for the 6-macrostate model using 1.5×106 steps MSM and IGME.
The error bars are estimated by bootstrapping the MD trajectories 20 times.

264



Figure D.22: Analysis results of the NRL = 177 tetra-nucleosome system. (A) The free
energy profile along d13 and d24. (B) Macrostate non-Markovian dynamics model with inverse
MFPT labeled in unit (10 µs)−1. Histones are hidden for clarity.
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Figure D.23: Representative transition state structures of NRL = 167 singe tetra-nucleosome
with committor function close to 0.5. The committor values Q are labeled below each
structure.
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Figure D.24: Representative structures along 3 path channels of NRL = 167 singe tetra-
nucleosome with the highest fluxes. The committor values Q are labeled below each structure.
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Table D.1: Compare NRL = 167 tetra-nucleosome OpenMM energy with LAMMPS energy
by rerunning a trajectory. The trajectory is a 1-million-step unbiased NVT simulation at
300 K with a timestep of 10 fs performed by LAMMPS. During the rerun, protein dihedrals
and native pairs are not included in the comparisons as these potentials are not applied in
the simulations. LAMMPS rerun uses the old DNA base step geometry parameters, while
OpenMM rerun uses the new ones reported in Open3SPN2 paper [147]. The old and the
new base step parameters slightly affect the DNA template structure, thus slightly changing
the equilibrium DNA bond, angle, and dihedrals. Meanwhile, cross-stacking interactions are
also updated in Open3SPN2 [147]. However, the difference is negligible and should not
affect our results. All the energy values are in kcal/mol.

Protein DNA

Frame ID Software Bonds Angles Bonds Angles Stackings Dihedrals Base pairs Cross stackings Contacts Electrostatics
1 LAMMPS 11509.91 679.42 12946.48 10229.06 7833.97 -3290.11 -1270.28 -417.01 60.62 -441.75
1 OpenMM 11509.90 679.41 12946.09 10228.26 7833.98 -3290.19 -1270.28 -421.86 60.63 -441.75
2 LAMMPS 11529.70 662.17 12925.30 10195.33 7838.65 -3270.53 -1268.79 -425.52 52.15 -424.23
2 OpenMM 11529.69 662.17 12925.39 10194.42 7838.60 -3270.46 -1268.79 -429.52 52.17 -424.22
3 LAMMPS 11522.15 712.93 12948.77 10205.07 7845.94 -3275.16 -1282.39 -417.87 65.08 -443.99
3 OpenMM 11522.14 712.93 12948.89 10203.98 7845.74 -3275.17 -1282.39 -422.89 65.07 -443.99
4 LAMMPS 11509.97 706.53 12911.58 10191.69 7844.01 -3267.21 -1266.77 -419.71 54.90 -458.91
4 OpenMM 11509.96 706.53 12910.91 10190.58 7843.89 -3267.11 -1266.77 -423.64 54.90 -458.90
5 LAMMPS 11508.79 666.34 12946.52 10222.69 7822.12 -3264.30 -1280.75 -420.09 46.84 -448.44
5 OpenMM 11508.79 666.34 12946.62 10220.81 7822.04 -3264.25 -1280.76 -423.13 46.86 -448.44
6 LAMMPS 11504.78 671.32 12939.06 10184.24 7817.63 -3270.48 -1293.49 -421.79 52.79 -451.66
6 OpenMM 11504.76 671.32 12938.25 10184.10 7817.57 -3270.51 -1293.50 -424.95 52.78 -451.66
7 LAMMPS 11504.54 695.20 12930.58 10217.42 7842.98 -3268.54 -1275.23 -422.52 65.59 -446.10
7 OpenMM 11504.53 695.20 12930.50 10215.45 7842.93 -3268.63 -1275.22 -427.14 65.58 -446.10
8 LAMMPS 11517.74 662.87 12934.04 10190.59 7828.94 -3277.05 -1273.37 -420.83 59.31 -410.87
8 OpenMM 11517.73 662.87 12933.44 10189.83 7828.92 -3277.16 -1273.38 -425.15 59.33 -410.87
9 LAMMPS 11509.69 689.16 12926.25 10248.27 7855.45 -3237.75 -1291.39 -416.42 65.33 -429.43
9 OpenMM 11509.68 689.16 12927.07 10247.74 7855.40 -3237.77 -1291.38 -420.83 65.34 -429.43
10 LAMMPS 11483.97 680.86 12943.83 10224.32 7834.67 -3262.36 -1278.69 -419.54 61.44 -468.65
10 OpenMM 11483.95 680.86 12944.76 10222.46 7834.55 -3262.28 -1278.70 -423.07 61.43 -468.65
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Table D.2: Compare two single nucleosome OpenMM energy with LAMMPS energy by
rerunning a trajectory. The trajectory is a 0.1-million-step unbiased NVT simulation at 300
K with a timestep of 10 fs performed by LAMMPS. The snapshots were saved every 10,000
steps. Small difference is caused by same reasons mentioned in table D.1 and is negligible.
All the energy values are in unit kcal/mol.

Protein DNA

Frame ID Software Bonds Angles Bonds Angles Stackings Dihedrals Base pairs Cross stackings Contacts Electrostatics
1 LAMMPS 1650.88 189.64 2143.52 3168.15 2644.02 -1469.24 -393.78 -187.58 55.97 -183.99
1 OpenMM 1651.60 189.66 2230.20 3162.02 2644.01 -1469.78 -393.78 -187.14 55.97 -183.99
2 LAMMPS 1654.88 189.08 2142.63 3193.59 2640.01 -1474.48 -406.79 -188.36 60.63 -192.49
2 OpenMM 1655.60 189.11 2228.84 3186.11 2640.01 -1474.94 -406.79 -188.46 60.64 -192.49
3 LAMMPS 1646.26 198.79 2140.26 3191.23 2646.23 -1468.23 -407.74 -186.77 51.89 -203.44
3 OpenMM 1647.04 198.83 2226.49 3182.68 2646.24 -1469.18 -407.74 -187.02 51.89 -203.44
4 LAMMPS 1644.86 179.53 2158.04 3216.87 2637.28 -1470.98 -429.57 -190.11 51.74 -207.68
4 OpenMM 1645.62 179.57 2244.57 3210.04 2637.29 -1471.70 -429.57 -191.16 51.75 -207.68
5 LAMMPS 1647.16 174.63 2146.99 3193.40 2646.37 -1473.03 -408.23 -185.41 56.07 -218.35
5 OpenMM 1647.92 174.68 2233.76 3186.91 2646.37 -1473.55 -408.23 -185.14 56.08 -218.35
6 LAMMPS 1659.40 201.84 2149.16 3177.91 2661.89 -1468.73 -404.40 -181.06 60.03 -208.02
6 OpenMM 1660.08 201.86 2235.80 3172.52 2661.90 -1469.37 -404.40 -181.55 60.02 -208.03
7 LAMMPS 1640.32 203.55 2139.00 3176.86 2637.54 -1473.43 -419.26 -187.15 51.70 -209.24
7 OpenMM 1640.92 203.58 2225.15 3172.96 2637.53 -1473.88 -419.26 -188.17 51.69 -209.24
8 LAMMPS 1649.89 188.39 2156.81 3200.63 2646.82 -1472.63 -402.73 -184.09 58.28 -189.88
8 OpenMM 1650.75 188.41 2243.95 3194.89 2646.82 -1473.11 -402.73 -184.78 58.29 -189.88
9 LAMMPS 1649.54 179.47 2139.95 3193.25 2647.39 -1468.93 -395.35 -182.68 50.21 -201.40
9 OpenMM 1650.36 179.50 2226.19 3185.96 2647.40 -1469.56 -395.35 -181.72 50.21 -201.40
10 LAMMPS 1651.76 197.59 2150.19 3188.49 2644.81 -1465.87 -412.90 -185.01 50.58 -205.03
10 OpenMM 1652.30 197.58 2236.09 3183.64 2644.81 -1466.44 -412.89 -185.43 50.58 -205.03
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