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Abstract

The usage of peptides as therapeutics is a growing area of interest within the
pharmaceutical industry for the facilitation of protein-protein interactions (PPIs).
Peptides inhabit a unique therapeutic space because of their high levels of chemical
customization balanced with their potential for high specificity due to a wide variety
of potential structures. At the same time, discovery tools for finding peptides that
modify PPls have evolved, including advances in affinity selection techniques and
combinatorial chemistry. Specifically, the usage of solid phase peptide synthesis for
split-and-pool chemistry allows for rapid access to highly diverse (>108 total
sequences) compound libraries for use in ligand discovery. A primary technique for
in vitro ligand discovery is affinity selection-mass spectrometry (AS-MS), which
utilizes tandem mass spectrometry to decode complex mixtures of peptide ligands
pulled down from a peptide library through affinity selection. This approach
provides unique advantages due to the high levels of chemical customization that
can be performed on synthetic peptide libraries, including the incorporation of
unnatural amino acids or the modification of library structure through
macrocyclization.

This thesis will focus on the development of experimental and computational
tools to analyze affinity selection datasets more efficiently and thoroughly. We
demonstrate the synthesis of macrocyclic peptide libraries that increases the
diversity of synthetic macrocyclic libraries while utilizing accessible, efficient
chemistry for cyclization. These libraries are then used for the discovery of novel
ligands to two proteins. Structure activity relationships are established for one of
these ligands and its affinity is matured through the usage of focused libraries
containing a variety of unnatural amino acids. Additionally, we investigate a variety
of resins used for solid phase peptide synthesis, particularly in the synthesis of
small domain proteins or difficult peptide sequences.

Because of the high amounts of peptides synthesized and pulled down by AS-
MS experiments, efficient computational methods are crucial for effective ligand
discovery efforts. Here, we discuss two methods of expanding data analysis, first by
a sequence-independent enrichment quantification. AS-MS experiments operate
using the decoded peptide sequence from tandem MS/MS data to nominate
potential hit peptides, but that process depends on the efficient fragmentation of a
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target peptide and the quality of the subsequent MS? spectrum. We utilize
techniques to identify putative hits through the comparison of peptide enrichment
based only off mass-to-charge ratio without an assigned sequence, allowing for
label free MS' quantification. The second method utilizes machine learning
techniques to rationalize trends in successfully sequenced peptide sequences from
AS-MS experiments with respect to target proteins. This approach allows for the
creation of a ligand “sequence space”, which allows for the incorporation of
unnatural amino acids in ligand discovery.

Overall, this thesis presents a variety of methods to enhance the scope of
peptide-based drug discovery. We anticipate this work to accelerate the process of
drug discovery through a diversification of peptide structure combined with more
powerful computational analytics.

Thesis supervisor: Bradley L. Pentelute

Professor of Chemistry
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1. Background and Overview
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1.1. Peptides as therapeutics

Peptides have emerged as a powerful force in facilitating protein-protein
interactions (PPIs) within the pharmaceutical industry for their ability to balance
many crucial properties for drug efficacy."? Peptides occupy a therapeutic space in
between that of small molecules and large protein biologics, where peptides are
highly amenable to precise and diverse chemical modifications but are able to
utilize the specificity inherent to larger biological structures like in PPIs.> However,
there have historically been drawbacks to peptide-based therapeutics, such as poor
proteolytic stability, cell permeability, and oral bioavailability that have led to
peptides trailing in the market share of the global pharmaceutical market behind
biologics and small molecule drugs.* To address this, chemical modifications of
potential peptide therapeutics have been essential in optimizing the
pharmacological properties of a candidate, such as macrocyclization to increase
cell permeability or incorporation of unnatural amino acids to enhance target
specificity and resistance to proteolysis.5>~® However, the breadth of potential
structures and chemical moieties utilized in drug discovery campaigns still has

potential for expansion.
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Figure 1.1: Peptides occupy a promising therapeutic “middle space”. Small molecule drugs
often show high cell permeability and oral bioavailability due to their size, while larger
protein biologics can leverage superior target selectivity. Peptides hold the potential to
bridge the gap between small molecules and biologics to leverage the strengths of both.
Examples of each class of drug are shown.

1.2. Synthesis of peptides

Peptide production is highly amenable to a variety of modifications through
the usage of solid phase peptide synthesis (SPPS).° Peptide sequences up to 200
amino acids in length can be readily accessed through automated fast-flow
synthesizers.'%-'2 The peptide chain is anchored to a solid PEG-polystyrene resin,
where all reactions are performed heterogeneously with the resin being washed
thoroughly with solvent between steps.®'3 The development of the 9-
fluorenylmethyloxycarbonyl (Fmoc)/tert-butyl protecting group strategy allowed for
efficient coupling of amino acids to the growing peptide chain which minimizing side
reactivity with the amino acid side chains.'*-'" In this strategy, the side chains are
masked using acid labile protecting groups, while the N-termini of the amino acid
monomers are protected with the base labile Fmoc group, allowing for cyclic amino
acid coupling and Fmoc deprotection to build the peptide chain.
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SPPS methods also enable a variety of modifications that would be difficult
for biologics produced using standard biological methods, such as the incorporation
of unnatural amino acids'®'°, macrocyclization,?°2" or chemical stapling.??23 A major
example of the power of this chemical flexibility is the recent development of many
Glucagon-Like Peptide-1 receptor agonists, such as dulaglutide (brand name
Trulicity) and semaglutide (brand name Ozempic), which feature both the
incorporation of unnatural amino acids and the addition of a fatty acid chain to a
central lysine residue.?*?% These techniques open a large potential for applications
of peptides as therapeutics.

Additionally, the attachment of the peptide chain to a solid support during
synthesis enables powerful combinatorial chemistry for the generation of large
peptide libraries.?®-28 Resin can be split into individual aliquots, reacted with a
variety of different reagents, then be pooled to rapidly synthesize peptide libraries
(see Figure 1.2). This split-and-pool synthesis method is key for the in vitro
generation of compound libraries and has been used to generate libraries
containing >10° peptide sequences.?® This method is also amenable to the
incorporation of a variety of unnatural amino acids due to its chemical approach,
whereas recombinantly produced biologics require complex cellular

engineering.'8:30.31
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Figure 1.2: Split-and-pool synthesis enables access to high diversity compound libraries.
Peptide resin (represented in black) can be split into multiple aliquots, coupled with a new
amino acid, and pooled together iteratively to exponentially increase the total number of
peptide sequences.

1.3. Affinity selection-mass spectrometry

There are a variety of techniques used for discovering peptidomimetic and small
molecule ligands to desired protein targets, including affinity selection-mass
spectrometry (AS-MS), genetically encoded methods like phage display,?? mRNA
display®3, and DNA encoded libraries,3* as well as many others.?5-37 These
techniques utilize large libraries of compounds (ranging from 10* to 102 total
variants383° depending on platform) to efficiently survey potential hits. The total
number of sequences present during an affinity selection is critical to hit
identification, where a higher number of variants allows for a greater coverage of
the sequence space.?*4041 A protein or protein complex of interest is assayed
against this library of compounds, where the selection process will pull down
ligands of interest from the compound library, referred to as putative hits. The
identity of the hit, the sequence of the peptide, is then identified and validated

through a biophysical assay or protein functional assay.**~*4 For AS-MS, the
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decoding process is done through tandem mass spectrometry, while genetically

encoded methods utilize next-generation sequencing.*s

Tandem mass spectrometry is a key method for hit identification in AS-MS.
Utilizing a data dependent acquisition (DDA) protocol, the mass spectrometer will
identify peptides based on their characteristic isotopic pattern and accumulate the
highest intensity peptide ion for sequencing.46-*8 The sequencing process can be
performed through a handful of methods, commonly through higher-energy collision
dissociation (HCD) and electron transfer dissociation (ETD).4%-%' The HCD process
accelerates peptide ions within the mass spectrometer using electric potential until
the ion collides with a neutral molecule, often a noble gas, causing the kinetic
energy to be rapidly converted to internal energy and fragmenting the peptide at the
amide C-N bond.52 ETD follows similar principles, but first transfers an electron to
the ion of interest from a donor reagent to generate an unstable radical cation,
which will then undergo fragmentation at the a-C-N bond.%*:%* These fragmentation
processes break a peptide into small fragments of unique masses, allowing for the
deconvolution of the sequence.

A major challenge in the drug discovery process is the effective processing of
sequencing data. Samples generating from affinity selections are often highly
complex mixtures of peptides, residual protein, and various small molecules like
buffering agents and detergents. Additionally, DDA methods choose ion candidates
for fragmentation in real-time, meaning that samples that are too complex will not
fragment every peptide, leading to a data completeness problem. This is further
compounded by the reliance on high fidelity sequencing for downstream data
analysis, where peptides that are recalcitrant to fragmentation will give poor data
regardless of abundance, resulting in missed putative hits. While AS-MS has a
history of discovering high affinity ligands,>>-°" data analysis methods that work
independently of sequencing (i.e. at the MS" level) are desired for a deeper analysis
of affinity selection data. Comparing relative abundances of notable mass-to-charge
ratios identified between target protein and off-target control samples can generate
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a list of focused ions for selective sequencing, optimizing spectrometer time while

also giving longer observation times per ion.
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Figure 1.3: AS-MS enables isolation of high affinity binders to a protein of interest. A target
protein and off-target control are immobilized onto a magnetic bead and incubated with a
synthetic peptide library. The beads are then washed, and the bound peptides eluted from
the protein before sequencing using tandem mass spectrometry (MS/MS).

One common method of combating the data completeness problem is through
usage of data independent acquisition (DIA). While DDA isolates and analyzes
individual peptide features, DIA instead isolates ranges of mass-to-charge ratio and
fragments all isolated peptides.58%° This method increases the throughput of
sequencing, but MS? spectra now show multiple peptides of instead of a single
peptide sequence, making identification more difficult. The difficulty is remedied
through usage of database matching; this method involves specifying a set of
peptides that could be contained in the sample to which sequencing software
simulates what each peptide’s MS? spectrum should look like, allowing for
identification from the experimental spectra. This is in contrast to de novo
sequencing, which relies solely on the information gained from the experimental
MS? spectra.®%-62 While powerful, DIA and database matching approaches require
prior knowledge of the sample, which limits its use in AS-MS. If a peptide library is
synthesized combinatorially, this makes the total list of sequences exponentially
large. For example, a library of XgK (X = any canonical amino acid except Cys or
lle), then the total possible sequences is about 10'°, which is more than the age of

the earth.®? This size of database is not feasible for use, making de novo
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sequencing necessary for high diversity peptide libraries. Additionally, this means
that not every sequence will be present from the theoretical set, meaning the
entirety of the library would also need to be identified experimentally. These factors
make database matching and DIA approaches difficult for high diversity synthetic
peptide libraries.

1.4. Machine learning in drug discovery

Machine learning techniques are positioned to transform drug discovery.4-68
There are two primary categories of machine learning: unsupervised and
supervised methods. Unsupervised methods deduce underlying trends in
unlabeled datasets and are often useful for either exploratory purposes or for
simplification of the outputs from a more complex supervised model.5%-""
Clustering is commonly employed to group similar peptide sequences for the
identification of important physicochemical properties or sequence motifs.”?
Supervised methods that take labeled training data (e.g. binding affinity, protein
activity) and interpolate or extrapolate properties to allow for prediction.”3-75
Machine learning models have already been used for various steps of the drug
development process, including hit discovery and activity prediction.”¢-78

Both machine learning methods require input data to be encoded into a
mathematical format, which will significantly influence the capabilities of the
model. The choice of encoding format can be based on a variety of properties,
such as amino acid sequence’® or chemical substructures.®® The power of
machine learning can be leveraged with the incorporation of unnatural amino
acids from AS-MS datasets. Unnatural amino acids can utilize chemical moieties
not found in the canonical twenty monomers, opening new chemical space for
the design of peptide therapeutics. However, effective machine learning models
require large amounts of data, especially the peptide sequence for the effective
encoding of peptide properties. This presents an open challenge, where more
powerful AS-MS data analysis methods will allow for the training of more
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powerful and accurate machine learning models, driving the field of drug
discovery.

1.5. Thesis overview

This thesis presents work done to expand the scope of current drug
discovery technology with respect to AS-MS and synthetic peptide libraries.
Chapter 1 reviews the emerging importance of peptides as therapeutics as well
as methods for peptide-based drug discovery. Chapter 2 outlines a method for
the synthesis of high diversity macrocyclic peptide libraries and their use in novel
ligand discovery to two proteins. Chapter 3 surveys various resin options for
SPPS in the synthesis of difficult peptide sequences. Chapter 4 discusses an
MS'-based analysis of AS-MS data for a quantitative evaluation of putative hits.
Chapter 5 describes an unsupervised machine learning approach for the design
of peptide ligands containing unnatural amino acids. Finally, the Appendix
outlines a supervised machine learning approach for the design of peptide
ligands.
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2. Affinity Selection-Mass Spectrometry with Linearizable
Macrocyclic Peptide Libraries

The work presented in this chapter has been reproduced and adapted from the
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Selection-Mass Spectrometry with Linearizable Macrocyclic Peptide Libraries.
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2.1. Introduction

Macrocyclic peptides show therapeutic promise with advantages over small
molecules to disrupt protein-protein interactions and over proteins to cross
biological membranes barriers.'~* Specifically, macrocyclization can impart several
potential benefits to linear precursors, including increased proteolytic stability, cell
permeability, binding affinity, and oral bioavailability.>® Proteases often engage and
degrade peptides in extended B-strand conformations.”® Macrocyclization can offer
proteolytic resistance by limiting conformational accessibility of the peptide
backbone to the enzyme active site, and enable the use of specific engineerable
scaffolds (e.g., stapled a-helices).®~'2 Cyclization is central to the currently applied
design principles to achieve passive cell permeability, in addition to strategies that
modulate molecular weight, polar surface area, hydrogen bond interactions, and
shape.'3-'® Combining proteolytic stability and passive permeability can impart oral
bioavailability for peptide-based drug candidates, which can further be improved by
pharmaceutical formulation.'”-'® For these reasons, macrocyclic libraries are
preferred for screening with peptide ligand discovery platforms. In addition, the
direct identification of macrocyclic peptide binders from these selections streamlines
subsequent development by alleviating the need to optimize suitable cyclization
sites. Lastly, the conformational constraint imparted by macrocyclization may

improve discovery rates of ligands from libraries against challenging targets.%-2"

Genetically-encoded discovery platforms generally access macrocyclic peptide
libraries while focusing on high diversity (>108 members),??-28 while synthetic
libraries can access the non-natural chemical space at lower diversity (<108
members).2°-33 While more stable macrocyclization linkages are preferred (e.g.,
thioether or alkyl chain),?434 the disulfide linkage is suitable at the ligand discovery
stage, and does not require any chemical modification or treatment that could
compromise genetic amplification in some platforms.?8.3% The disulfide linkage has
been used to create macrocyclic libraries for over two decades in phage display

discovery platforms,36-38 and is commonly encountered in clinically-approved
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drugs.53° Synthetic libraries generally leverage the broader use of non-natural or
abiotic functionalities, which have frequently appeared critical to the success of
clinical peptide drug candidates including inhibitors to the interleukin-23 receptor
(IL-23R), mouse double minute 2 (MDM2), 3-catenin, and proprotein convertase
subtilisin/kexin type 9 (PCSK9).1729.40-42 Because they cannot be genetically-
encoded or amplified, synthetic libraries are screened directly®? as in affinity
selection decoded by mass spectrometry (AS-MS).4344 With a key exception of
DNA-encoded libraries,*® state-of-the-art synthetic macrocyclic libraries generally

number below tens of thousands of individual compounts.3°

The complexity of decoding macrocyclic peptide sequences in mass
spectrometry is a historic limitation for the use of synthetic macrocyclic libraries in
affinity selection discovery platforms. Experimental approaches for decoding
macrocyclic libraries include computational processing of mass spectra*6-4° and
chemically-triggered linearization.%°-%5 Computational approaches process primary,
secondary, and various tertiary mass spectra of cyclic peptide fragments, and have
exceled where database matching is possible.*64° For de novo sequencing, the
complexity of enumerating virtual spectra dramatically increases as the number of
monomers and library size increases, and has only been demonstrated up to
~1,000-membered libraries.*”-5¢ Chemically-triggered linearization adds a synthetic
step that must be near-quantitative and high-yielding to enable bottom-up
sequencing of non-cyclic peptides, which has been demonstrated at very high
diversities.®” However, most chemical linearization treatments are harsh and/or rely
on the inclusion of non-standard chemical functional groups at fixed positions,
limiting library composition.3%-55 Moreover, these approaches have yet to be
demonstrated on high-diversity libraries (~108 members or more).

We demonstrate here ligand discovery from high-diversity libraries (108
members) utilizing AS-MS against anti-hemagglutinin antibody clone 12ca5
(hereinafter abbreviated as 12ca%) and mouse cadherin-2. Cyclization by disulfide
bond formation is accomplished using aqueous iodine. We verify the integrity of the
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library utilizing Ellman’s assay and size-exclusion chromatography (SEC) to confirm
near-quantitative intramolecular macrocyclization of synthetically-prepared
combinatorial libraries. Linearization is accomplished by mild reduction with heat
and 1,3-dithiothreitol (DTT) and confirmed by Ellman’s assay to enable standard
tandem MS sequencing. We apply these new macrocyclic high-diversity libraries
containing natural and non-natural (or noncanonical) amino acids in an MS-based

affinity selection platform for de novo peptide ligand discovery.

We demonstrate successful discovery of nanomolar ligands against 12ca5 and
the ectodomain of cadherin-2. The 12ca5 protein binds peptides containing the
sequence D**DY(A/S).58:5% While 12ca5 has been used to benchmark linear AS-MS
libraries,3:60 we utilize it here to benchmark and additionally validate the use of the
new high-diversity macrocyclic libraries. Cadherin-2 was considered as a second
target because of the potential impacts for chemical biology that an affinity reagent
could provide, ranging from basic cell adhesion, to neural synapses formation,®' to
the construction of intercalated discs of mammalian heart,?? as well as potential
drug delivery due to its relative tissue selectivity in the brain and heart.?® These
critical roles in biology are generally facilitated by homodimerization in domain 1
and 2.616465 Thus, we sought to discover ligands that bind to cadherin-2 domains 4
and 5 as they may not interfere with caherin-2 function. Outside of domain 1 and 2,
there are no ligands to cadherin-2 to our knowledge.®4% Lastly, we demonstrate the
incorporation of non-natural amino acids for second-generation ligand discovery in
libraries designed with input gained by structure-activity relationship (SAR) data
gathered on the initially discovered cadherin-binding peptide (CBP). Taken together,
the successful discovery of macrocyclic ligands to both targets from AS-MS
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demonstrates the potential deployment of ultra-large synthetically-prepared
macrocyclic libraries for peptide ligand discovery and development.
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Figure 2.1: Disulfide linkages allows for high-number diversity libraries compatible with
decoding by tandem MS/MS. (A) Libraries of macrocyclic peptides are prepared for affinity
selection by oxidation of cysteine analogs using aqueous iodine, providing a near-
quantitative conversion to intramolecular macrocyclic peptides. (B) Affinity selection
facilitates the isolation of high affinity ligands to a protein of interest. (C) After affinity
selection, peptides can be quickly linearized using dithiothreitol (DTT). (D) Standard de
novo LCMS/MS sequencing methods can be applied due to the linearization step. (E)
Ligand affinity is confirmed by a biophysical assay (i.e. biolayer interferometry).

2.2. Results and Discussion

Due to its demonstrated utility in genetically-encoded libraries, disulfide-induced
macrocyclization of peptides has become a routine approach with a variety of
existing methods to facilitate the oxidization step. Several different methods exist to
form the disulfide linkage on single peptides, including oxidation using dimethyl
sulfoxide,66 a gentle stream of air, or aqueous iodine with <56% methanol. Ideally,
the macrocyclization step can be introduced during standard peptide library
synthesis without incurring production delays or yield losses. The isolation of
peptides in DMSO-containing solutions could be challenging as the solvent cannot
be easily evaporated or lyophilized and solid-phase extraction could incur sample
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loss due to the DMSO content without further aqueous dilution.®” In comparison,
oxidation utilizing iodine presents itself as a rapid method compatible with mixtures
of aqueous or organic solvents, and can even facilitate the formation of disulfide
bonds on resin during solid-phase peptide synthesis.*368 However, longer reaction
times on resin promote iodine-based side reactions, therefore rapid in-solution

oxidation is preferred (< 15 min).®°

lodine facilitated formation of macrocyclic peptide libraries at 200-million
membered scale. We synthesized macrocyclic libraries by split-and-pool solid-
phase peptide synthesis using mono-sized 20 pm resin (8.33 g of resin, 2.00 mmol
scale total), with each bead providing ~1 pmol of peptide. Two billion-membered
libraries were prepared with the designs of CX12CK and X6CX6CK, where X = all
canonical amino acids except Cys, to control disulfide formation, and lle because it
is isobaric in mass with Leu (18 amino acids) and C = cysteine, homocysteine, and
penicillamine (Figure 2.3A). The libraries were split into five separate 200-million-
membered aliquots and cleaved from the solid phase resin using a cleavage
cocktail. After ether trituration and Iyophilization, peptide libraries were cyclized in
5% acetonitrile in water (with 0.1% trifluoroacetic acid) at ~2 mg/mL (~1 mM) by
dropwise addition of ~1 eq. iodine in methanol until a yellow-brown color persisted.
After 5-10 minutes at room temperature in the dark, the reaction was quenched with
aqueous ascorbic acid to provide a colorless solution again (3.5 eq.). These
libraries were then characterized to verify the efficiency of the oxidation and

linearization reactions as well as their structure (intramolecular vs intermolecular
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disulfide formation).
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Figure 2.2: Characterization of macrocyclic libraries based on size and thiol concentration
showed near-quantitative formation of intramolecular disulfide bonds. (A) Ellman’s assay
showed expected changes in total thiol concentration of the peptides directly after cleavage
from the solid phase resin, after oxidation by dropwise addition of ~1 eq. of 60 mM iodine in
methanol to facilitate disulfide formation (room temperature, 5-10 minutes in the dark,
subsequent quench with 3.5 eq. aqueous ascorbic acid), and after reduction using DTT (50
mg/mL, ~1000 eq at 60 °C for 15 minutes). Free thiol was quantitatively consumed during
the oxidation process and was restored after linearization to concentrations comparable to
those determined directly after cleavage. (B,C) Size exclusion chromatograms of
absorbance at 214 nm of two macrocyclic libraries compared to molecular weight standards
corresponding to the average mass of monomeric, dimeric, and trimeric species. Library
samples were ran using the cyclized form (later used in affinity selection experiments) and
the DTT linearized form, demonstrating the formation of intramolecular disulfide bonds.
Peaks marked with an asterisk (*) were residual elements from the sample buffer. C =
cysteine, homocysteine, and penicillamine.

lodine-promoted cyclization was highly efficient and provided near-quantitative
oxidization to disulfide by thiol quantification using Ellman’s assay. We quantitated
thiol oxidation by performing an Ellman’s assay, normalized by the absorbance of
the library at 280 nm (Figure 2.2A). The thiol content of the library was quantified by
Ellman’s reagent after cleavage, cold ether trituration, and solid-phase extraction
(SPE), to remove any remaining reducing scavengers. Upon aqueous resuspension
of the library, a strong thiol signal was observed. This signal was eliminated
completely by the treatment of the library with iodine, ascorbic acid quench, SPE
purification, and aqueous resuspension, consistent with the near-quantitative
formation of disulfide bonds.
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With macrocyclic libraries in hand, a MS-friendly protocol to reduce and
linearize the peptides was devised to enable standard tandem sequencing
approaches. Both DL-dithiothreitol (DTT) and tris(2-carboxyethyl)phosphine (TCEP)
were considered for disulfide reduction. Compared to TCEP, DTT is smaller and
more hydrophilic and less likely to be retained on reverse phase columns. Because
of the concern for its retention on column, TCEP was utilized in a bead-immobilized
form, whereas DTT was directly added to each sample just before mass
spectrometry, reducing handling steps and potential sample loss. Due to its high
solubility, DTT was utilized at 50 mg/mL, (~1000 eq) at 60 °C for 15 minutes,
whereas immobilized TCEP was utilized at 20 eq at room temperature for 25
minutes per manufacturer protocol.”® For DTT-treated samples, an SPE purification
was performed to remove excess DTT reagent, whereas samples treated with
immobilized TCEP were isolated by centrifugation. While TCEP only provided
incomplete reduction (40% for XeCXsCK and 85% for CX12CK), DTT provided near-
quantitative disulfide reduction (~100% of original Ellman’s signal across all
libraries, Figure 2.15). Additionally, the reduction efficiency by DTT was found to be
similar at pH 3 and pH 8 (Figure 2.15). The direct reduction at pH 3 was performed
to mimic a prepared sample in 0.1% formic acid in water, which could then directly
be injected in the mass spectrometer for tandem sequencing. Overall, these data

support the near-quantitative formation and reduction of disulfide bonds.

Size exclusion chromatography (SEC) confirmed disulfide bonds correspond to
formation of intramolecular species, producing an almost-exclusively monomeric
macrocyclic peptide library. Utilizing SEC to separate the library by its apparent
molecular weight, we assessed if the iodine-facilitated disulfide bond formation was
intramolecular or intermolecular. Library samples were injected on a SuperDex® 30
10/300 GL column, which can distinguish the molecular weight range of 100 to 7000
Da, to analyze the presence of monomeric, dimeric, and oligomeric peptides
induced by iodine oxidation. Aliquots of 25 ug of library were injected after oxidation
by iodine and purification by SPE, as well as in the reduced form after treatment
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with DTT. A custom low-molecular weight peptide standard was also prepared using
peptides that correspond to the average molecular weights of monomeric, dimeric,
and trimeric species along with the exclusion limit of the column; the components of
the custom standard are given in Table 2.3. As shown in Figures 2.2B and 2.2C,
only monomeric library species were observed when compared to the peptide
standard, indicating that the disulfide bonds formed were intramolecular rather than
intermolecular. This result, in tandem with the data from the Ellman’s assay,
asserted a nearly quantitative conversion of peptide thiols to intramolecular disulfide
bonds and confirmed this technique provides a facile method for preparing high-
diversity macrocyclic peptide libraries.

The high-diversity macrocyclic libraries verified to be compatible with standard
tandem MS/MS sequencing protocols and DTT facilitated the expected recovery of
high-confidence peptide sequencing. Small aliquots of library (~1000 beads
equivalent to ~1000 sequences) were taken at various points in the affinity selection
workflow from cyclization to linearization, including directly after cleavage from
resin, after cyclization with iodine, and after linearization with DTT. About 8 ug of
peptide library was purified via a C1s STAGE tip”! from three each steps in the
protocol: linear from cleavage, iodine-macrocyclized, and DT T-linearized. As
expected, the library samples taken directly after cleavage and after linearization
showed high sequencing confidence, described by de novo sequence IDs using
PEAKS Studio 8.5 with an assigned local confidence (ALC) greater than 85% and
an absolute mass error <5 ppm (see Figure 2.3B and Figure 2.17).72 Conversely,
the macrocyclized library sample showed poor sequencing confidence, consistent
with unproductive fragmentation caused by the disulfide macrocycle. Lastly, the
linearization by DTT in the mass spectrometry sample provided a significant
recovery of the peptides discovered in standard tandem sequencing methods
(Figure 2.3B).

Analysis of the MS/MS sequencing data demonstrated a balanced distribution
of amino acid monomers throughout the library, as well as the incorporation of non-
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canonical cysteine analogs. Histograms showing the monomer distribution among
high-confidence sequence assignments are given in Figure 2.3C. Although
penicillamine and methionine are isobaric, the fixed positions of penicillamine
allowed for effective filtering of sequences to prevent inaccurate assignments.
Interestingly, the XeCXsCK library design sequenced with higher confidence overall
compared to the CX12CK library design, suggesting a benefit of the intermediate
cysteine position during fragmentation events in sequence assignment. Overall,
these results corroborate the successful split-and-pool synthesis, oxidation,
reduction, and tandem sequencing decoding of the macrocyclic libraries.
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Figure 2.3: Characterization of the macrocyclic peptide libraries by tandem MS/MS
sequencing shows successful split-and-pool synthesis of 15-residue libraries. (A) The
macrocyclic peptide libraries were synthesized according to two designs, with a large 12-
member macrocycle or a smaller 6-member macrocycle. Additionally, cysteine analogs
including homocysteine and penicillamine were used to increase the diversity around the
resulting disulfide linkage. (B) High-confidence sequence assignments of ~1000-member
library samples directly after cleavage, after oxidation by I», and after subsequence
reduction using DTT show a loss and gain of sequencing capabilities with the
macrocyclization process as expected (n = 3). High-confidence sequences were
determined as having a calculated average local confidences (ALC) in PEAKS Studio 8.5
for the de novo sequence assignment by PEAKS Studio 8.5 greater than 85% and an
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absolute mass error <6 ppm. (C) Normalized residue frequencies assignments (as a
fraction) show a balanced incorporation of amino acids in the variable positions (black) and
cysteine analog positions (green, X is homocysteine, Z is penicillamine).

Macrocyclic low-nanomolar peptide ligands were discovered by affinity
selection-mass spectrometry (AS-MS) performed against 12ca5 as a model protein
target. The anti-hemagglutinin protein 12ca5 binds peptides containing the
sequence D**DY(A/S) and has been used to benchmark AS-MS libraries.33:58-60
Seven high affinity peptide ligands were pulled down from the XeCXeCK library
design, while only one peptide was from the CX12CK library (see Table 2.4 for all
identified sequences). A select number of these sequences were synthesized and
validated (see Figure 2.7) for their binding affinity using biolayer interferometry
(BLI). All identified binders exhibited apparent dissociation constants (Kbp) in the
single-digit nanomolar to estimated high picomolar range, nearing the lower limit of
detection for the instrument (see Figures 2.4 and 2.17). The binding motif was
present in the same position or frameshift in all sequences found from the XeCXsCK
library. Specifically, the cysteine analog in the middle of the library design was
located inside of the 12ca5 motif at the third position (i.e., D*WDY(A/S), where W
was discovered to be cysteine, homocysteine, or penicillamine). Moreover, this
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trend also suggests the XsCXeCK library design is more amenable to enrich high

affinity binders against 12cab5 relative to the CX12CK library.

12ca5-A: Pen-Asp-Ala-GIn-Asp-Tyr-Ala-Ser-Trp-Gln-GIn-Asp-Pro-hCys-Lys
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Figure 2.4: High-affinity macrocyclic peptide ligands to 12cab were enriched and identified
via affinity selection-mass spectrometry (AS-MS), and the binding affinity was confirmed
and measured using biolayer interferometry (BLI). All peptides were prepared with
Lys(Biotin)-aminohexanoic acid (Ahx) attached to the N-terminus of the shown sequence
and immobilized onto the BLI tip. The BLI tip was then dipped into solutions containing
varying concentrations of cadherin-2 to record the concentration-dependent association
and dissociation events. The characteristic 12ca5-binding motif D**DY(A/S) is highlighted in
red and appeared exclusively at a single position in the XsCXsCK library (7 discovered
peptides). In comparison, only one motif-containing peptide was discovered from the
QX12QK Iibrary.

Nanomolar affinity binders to cadherin-2 (CDHZ2) were discovered by AS-MS
with the macrocyclic libraries. Due to the critical roles of CDH2 in adhesion in neural
and cardiac junctions, the discovery of ligands outside of the protein
homodimerization site could be of importance toward its study without affecting
biological function. The homodimerization of cadherin-2 is largely driven by

molecular interactions involving domains 1 and 2 of the ectodomain.61.62.64.65 Based
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on these considerations, a fusion protein construct comprised of domains 4 and 5 of
the CDH2 ectodomain (residues 498 to 724, Uniprot P15116) was used as the
target for AS-MS selections. The fusion protein was cloned and expressed in
mammalian cells, purified using SEC and Anti-Protein-C (clone HPC4) affinity tag
purification, and verified by analytical SEC, reducing and non-reducing SDS-PAGE
gels, as well as Western blotting (Figure 2.8). To our knowledge, no peptide or small
molecular ligands have been reported to these CDH2 domains outside the

homodimerization site.6465

Nanomolar peptide ligands were discovered by AS-MS with both XeCXsCK and
CX12CK libraries against the CDH2[498-724] fusion protein. Only one peptide with
high sequencing confidence was enriched against CDH2 (KMTFLFCNFTYKDZK,
called cadherin-binding peptide, CBP, where Z is penicillamine disulfide bonded to
C). Notably, previous ligand discovery efforts against CDH2 using linear X12K
libraries were unable to identify any ligands. CBP was synthesized and tested for its
binding affinity to CDH2 by BLI, yielding a 53 nM Kp value (Figure 2.5). To verify
sequence binding specificity, a scramble sequence that preserved the size of the
macrocycle was synthesized and shown to have negligible binding response to
CDH2 by BLI (Figures 2.9 and 2.19). The linearized form of CBP was also tested
and demonstrated a greatly reduced binding response (0.2 nm versus 1.6 nm
response for the macrocycle), with an affinity of Kp of 150 nM (Figures 2.20). The
more rigid structure of the macrocyclic CBP thus appears to favor higher affinity.

Structure-activity relationships (SAR) were delineated to characterize CBP
using single residue replacement studies (alanine and D-amino acid scans) and
truncations. In all SAR studies the Cys7-Pen14 disulfide bond was maintained to
provide a consistent macrocycle structure to optimize from. First, an alanine scan
was performed by synthesis of 13 variants featuring individual alanine mutations,
which were assayed by BLI against CDH2 (Table 2.5, Figure 2.10, Figure 2.21).
This alanine scan revealed multiple residues to be important for binding (hot-spots)
including Lys4, Phe6, Lys12, and Lys15, due to the complete ablation of binding to
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CDH2 observed in BLI assays. Other residues including Met2, Thr3, Leu5, Thr10,
Tyr11, and Asp13 had no effect on binding (cold-spots), suggesting they are not
drivers of CBP binding to CDH2. Second, a truncation study focused at shortening
CBP from the N-terminus, producing five additional peptides for BLI testing (Table
2.6, Figure 2.11 and Figure 2.22). BLI assays with these peptides confirmed the
impact of the N-terminal residues on binding affinity, especially Phe6 as well as
Leub, while Met2 and Thr3 contributed minimally to CDH2 binding. Third, a D-amino
acid scan of CBP was performed by iteratively replacing L-amino acids with D-
amino acids to determine the impact of stereochemistry on the ligand
interactions.”374 Notable hot-spots identified from the D-amino acid scan were Phe6
and Tyr11, further reinforcing the importance of the aromatic residues for binding
(see Table 2.7, Figure 2.12 and Figure 2.23). In summary, these initial SAR studies
outline the hot-spot residues that appear to drive the high affinity binding of CBP to
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CDH2, including Lys4, Phe6, Lys12, and Lys15, while Met2, Thr3, Leu5, Thr10, and
Asp13 are designated as cold-spots with a minimal effect on binding.

12ca5-A: Pen-Asp-Ala-GIn-Asp-Tyr-Ala-Ser-Trp-GIn-GIn-Asp-Pro-hCys-Lys
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Figure 2.5: Macrocyclic peptide libraries enabled discovery of a 53 nM peptide ligand to a
portion of the ectodomain of cadherin-2. (A) Structure of CBP. (B) BLI experiment reports
the affinity of CBP to CDH2 with Kp = 563 nM binding affinity. All peptides were prepared
with Lys(Biotin)-Ahx attached to the N-terminus in addition to the sequence shown and
immobilized onto the BLI tip. The BLI tip was then dipped into solutions containing varying
concentrations of CDH?2 to record the concentration-dependent association and
dissociation events. (C) Summary of experimental (alanine scan, D-amino acid scan, and
N-terminal truncation study) SAR data. “NB” denotes non-binding. This SAR information
was used to inform the designation of CBP “hot-spots” and “cold-spots,” which do or do not
drive high affinity binding, respectively.

SAR data informed the design of two focused libraries based on CBP: one to
derivatize the high-affinity hot-spot residues, and the other to derivatize the cold-
spot residues non-essential for binding. A previous approach to design
noncanonical libraries is to diversify the hot-spots.”>’¢ However, peptide
development and optimization often also considers the cold-spot residues that do
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not drive high affinity binding to the target. These cold-spot residues can be non-
intuitively critical to improving binding affinity, solubility, or proteolytic stability.4243
Thus, we chose to compare the results from both maturation strategies. The set of
non-canonical amino acids for incorporation in both the hot- and cold-spot focused
libraries were selected based on the consensus data provided by the docking,
alanine scan, D-amino acid scan, and truncation studies (Figure 2.6A and 2.6B).
These libraries were synthesized and subjected to validation by SEC as shown in
Figure 2.16 to demonstrate the lack of apparent oligomerization after disulfide bond

formation.

No high-affinity ligands were discovered from the hot-spot focused library by
AS-MS, while the cold-spot library provided ten new high-affinity noncanonical
macrocyclic cadherin-2 peptide binders (NCBPs). From the hot-spot library, only
two candidates were identified with high sequencing confidence, which featured
multiple mutations from the original CBP sequence and shared replacements
including Thr10Msn, Tyr11Dph, and Lys15Arg (Table 2.8). However, the two hot-
spot candidates (NCBP-1 and NCBP-2) were synthesized and tested by BLI,
revealing that they were non-binders to CDH2 under these conditions (Figure 2.13,
2.24). From the cold-spot library, ten noncanonical putative binders with high
sequencing confidence were discovered and synthesized (Table 2.8, Figure 2.13).
All discovered sequences from the cold-spot library (NCBP-3 to NCBP-12) were
high-affinity binders to CDH2 in the BLI experiments, with determined Kb values
between 20 and 50 nM (Figure 2.24). The significant improvement in binding
affinities observed by BLI upon derivatization of the cold-spot residues support this
strategy as an efficient avenue for further optimization.
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A) Library Design around CBP Hotspots: B) Library Design around CBP Coldspots:
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Figure 2.6: Single-peptide SAR information informs combinatorial library design and affinity
maturation with noncanonical amino acids. (A and B) From the single peptide SAR studies
summarized in Figure 2.5C, two libraries were designed to perform affinity maturation. The
first library focused on minimally derivatizing the hot-spots by matching the original natural
amino acids properties (e.g., hydrophobicity or positive charge). The second library focused
around diversifying the cold-spots to examine the possibility that the cold-spots could be
mutated to improve the overall binding of the CBP peptide, either by pre-arranging the
conformation of the peptide or facilitating new binding interactions with CDH2. Both libraries
were prepared using split-pool synthesis, except the entirety of the theoretical sequence
space was sampled by the library due to its smaller focused design. Specifically, the
number of beads used in split-pool synthesis approximately matched the theoretical
diversity: Hot-spot library total number of beads: 2.5 x 10° with theoretical sequence space
diversity: 2.7 x 10° and cold-spot library total number of beads: 7.0 x 10° with theoretical
sequence space diversity: 7.2 x 10°. (C) Sequence and structure of NCBP-4 discovered
from affinity selection and its BLI binding response, which exhibited high-affinity binding (Kp
=29 = 5 nM). Nal = 3-(2-naphthyl)-L-alanine, Pip = 4-aminopiperidine-4-carboxylic acid,
Cbg = cyclopentylglycine, and Hyp = L-trans-4-hydroxyproline.

The NCBP-4 noncanonical binder exhibits nanomolar binding affinity to CDH2
(Kp = 29 £ 5 nM). The results from AS-MS of the cold-spot macrocyclic library show

most cold-spot amino acids were replaced in the identified sequences (Table 2.8).
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In all candidates, Met2 was replaced by a hydrophobic amino acid, with 3-(2-
naphthyl)-L-alanine (Nal) appearing in six of the ten. Similarly, Leu5 was replaced
by Phe, Nal, cyclopentylglycine (C5g), or pentafluoro-L-phenylalanine (PFf). For the
polar subset of amino acids in the cold-spot library, the replacements made to CBP
were more mixed. Asn8 and Thr10 were replaced with a diverse set of amino acids,
possibly indicating their lack of contribution to the binding interaction. Thr3 was
replaced by cationic 4-aminopiperidine-4-carboxylic acid (Pip) and polar L-[3-
Homoserine (bSer). And lastly, Asp13 demonstrated a preferred replacement to
trans-4-hydroxyproline (Hyp), appearing in five of ten candidates. With these results
in mind, NCBP-4 was chosen for detailed investigation by BLI as it featured a
consensus of amino acid replacements including Met2Nph, Thr3Pip, Leu5C5g, and
Asp13Hyp. NCBP-4 exhibited clear concentration-dependent binding to CDH2 and
a resulting binding affinity of Ko = 29 + 5 nM determined by BLI (Figure 2.6).
Moreover, NCBP-4 demonstrated a stronger response illustrated by a higher BLI
signal (~4.3 nm), more than double the response seen with CBP (~1.6 nm, Figure
2.25).

A specific mutant of NCBP-4 was constructed with serine mutated at the hot-
spots to specifically examine if the cold-spot residues were effective in creating new
binding interactions with CDH2 (sequence: Ser-Nal-Pip-Ser-C5g-Ser-Cys-Hyp-Ser-
Tyr-Ser-Ser-Hyp-Pen-Ser-NH2). Interestingly, this mutant retained moderate
binding to CDH2 with an apparent Kp of ~ 150 nM (Figure 2.25). This serine-
substituted mutant was also tested against 12ca5 to assess non-specific binding.
The mutant showed no affinity towards 12ca5 (Figure 2.25). This result suggests
the cold spot residues of CBP could have been optimized further in NCBP-4 in AS-
MS, as this control ligand demonstrates some binding to CDH2 without nonspecific

binding.
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2.3. Conclusions

We established a protocol for the split-and-pool synthesis of high-diversity
macrocyclic peptide libraries and demonstrated their use in the discovery of
nanomolar ligands against two protein targets of different structure. Formation of
the macrocycle is performed using a simple disulfide bond, which is rapidly installed
in aqueous solution using iodine. Quantification of free thiol content via Ellman’s
assay in both the cyclized and linearized forms confirmed the complete conversion
of thiols to disulfides in the library, while SEC revealed that the disulfide bonds were
formed exclusively intramolecularly without oligomerization. While the disulfide bond
is not the most robust linkage for cyclization, there are several approaches available
to replace it when needed to improve stability toward therapeutic

development.'.79.80

Affinity selection was able to identify protein-specific ligands from these
synthetic macrocyclic libraries for both a model protein (12ca%) and a novel target,
cadherin-2, which participates in basic biological adhesion of cells in neural and
cardiometabolic function. Both the canonical CBP and non-canonical NCBP-4
peptides demonstrated concentration-dependent binding to CDH2, binding
specificity, and high affinity with Kp values of 50 and 29 nM, respectively. After
examining the SAR of CBP, several hot-spot residues were revealed to be critical
for binding to CDH2, featuring several hydrophobic and cationic residues.

From the SAR studies, two additional macrocyclic libraries containing a diverse
set of noncanonical amino acids were synthesized focusing on the affinity-driving
hot-spots and the non-essential cold-spots, respectively. The subsequent affinity
selection experiments investigated the hypotheses of whether the hot-spots can be
further refined or if the cold-spots can become meaningful contributors to the
binding affinity upon maturation with focused library designs. Overall, AS-MS
utilizing the hot-spot CDH2-focused library did not provide any binders or
improvement to the original CBP peptide. However, AS-MS experiments utilizing the
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cold-spot library were able to provide several candidates individually validated to be
high-affinity binders. Of these, NCBP-4 was examined more closely for its high
affinity (Ko ~29 nM), specificity, and specific side-chain contributions demonstrated

by the amino acids that replaced the original CBP cold-spot residues.

Utilizing noncanonical amino acids in combinatorically prepared macrocyclic
libraries, we demonstrated the rapid affinity maturation of CBP. This process was
successful through the replacement of cold-spot residues with noncanonical
monomers. Overall, due to the improvements that macrocyclization often offer over
linear peptide scaffolds, we expect this work to be fundamental to the impactful
deployment of macrocyclic synthetic libraries for the advancement of peptide

therapeutic discovery and development.

2.4. Materials

Canonical Fmoc-protected amino acids (FmocAla-OHxH20, Fmoc-Arg(Pbf)-
OH; Fmoc-Asn(Trt)-OH; Fmoc-Asp-(O-t-Bu)-OH; FmocCys(Trt)-OH; Fmoc-GIn(Trt)-
OH; Fmoc-Glu(O-t-Bu)-OH; Fmoc-Gly-OH; Fmoc-His(Trt)- OH; Fmoc-lle-OH; Fmoc-
Leu-OH; Fmoc-Lys(Boc)-OH; Fmoc-Met-OH; Fmoc-Phe-OH; Fmoc- ProOH; Fmoc-
Ser(But)-OH; Fmoc-Thr(t-Bu)-OH; Fmoc-Trp(Boc)-OH; Fmoc-Tyr(O-t-Bu)- OH;
Fmoc-Val-OH) were purchased from Sigma Millipore (Novabiochem) and used as
received. Fmoc-Lys(biotin)-OH was purchased from Sigma Millipore (Novabiochem)
and used as received. Fmoc-L-His(Boc)-OH was purchased from Advanced
ChemTech and used as received. O-(7-azabenzotriazol-1-yl)- N,N,N’,N -
tetramethyluronium hexafluorophosphate (HATU, 297.0%) and (7-azabenzotriazol-
1- yloxy)tripyrrolidinophospho-nium hexa-fluorophosphate (PyAOP, 297.0%) were
purchased from P3 Biosystems. Fmoc-Rink amide linker (4-[(R,S)-(2,4-
dimethoxyphenyl)(Fmoc-amino)methyl]phenoxyacetic acid) was purchased from
Chem Impex Inc (Wood Dale, IL) and used as received. 1,4-dithio-DL-threitol (DTT,
299%) was purchased from Chem Impex, Inc. lodine (crystalline, 99.5%) and L-(+)-
ascorbic acid (99%) were purchased from Thermo Fisher Scientific.
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Noncanonical amino acids used in this work with their associated protecting

groups. All were purchased and used as received.

Table 2.1: Noncanonical amino acids used for library synthesis.

Noncanonical amino acid Abbreviation Source
Fmoc-3-(4’-pyridyl)-L-alanine 4Py Chem Impex, Inc
Fmoc-6-aminohexanoic acid Ahx Chem Impex, Inc
Fmoc-4-(Boc-amino)-L-phenylalanine Amf Chem Impex, Inc
Fmoc-O-tert-butyl-L-B-homoserine bSe Chem Impex, Inc
Fmoc-L-cyclopentylglycine Cb5g Chem Impex, Inc
Fmoc-B-cyclobutyl-L-alanine Cba Chem Impex, Inc
Fmoc-(4-tert-butyloxycarbonyl)-L-phenylalanine Cxf Chem Impex, Inc
Fmoc-3,4-dimethoxy-L-phenylalanine Dmf Chem Impex, Inc
Fmoc-3,3-diphenyl-L-alanine Dph Chem Impex, Inc
Fmoc-O-tert-butyl-L-trans-4-hydroxyproline Hyp Chem Impex, Inc
Fmoc-3-methoxy-L-phenylalanine Mmf Chem Impex, Inc
Fmoc-L-methionine sulfone Msn Chem Impex, Inc
Fmoc-3-(1-naphthyl)-L-alanine Nal Chem Impex, Inc
Fmoc-pentafluoro-L-phenylalanine Pff Chem Impex, Inc
1-Boc-piperidine-4-Fmoc-amino-4-carboxylic acid Pip Chem Impex, Inc
Fmoc-3-(4-thiazolyl)-L-alanine Tha Chem Impex, Inc
Fmoc-L-a-tert-butylglycine Tle Chem Impex, Inc

Biosynthesis OmniSolv® grade N,N-dimethylformamide (DMF) was purchased
from EMD Millipore (DX1732-1) and incubated with 1 pack of AldraAmine trapping
agents (for 1000 — 4000 mL DMF, Sigma-Aldrich, catalog number Z511706) for 48
hours prior to use. Diisopropylethylamine (DIEA; 99.5%, biotech grade, catalog
number 387649) and piperidine (ACS reagent, 299.0%) were purchased from
Sigma-Aldrich. Formic acid (FA, 97%) was purchased from Beantown Chemical,
Corp. Reaction vessels were purchased from Torviq equipped with a polypropylene
frit. To each vessel was added a disc of Porex filter paper (0.025” thick, 7-12
micron) from Interstate Specialty Products. Trifluoroacetic acid (HPLC grade,
299.0%), Diethyl ether (anhydrous, ACS reagent, 299.0%), acetonitrile (HPLC
grade, 299.9%), Omnisolv® acetonitrile (LC-MS grade, AX0156-1), Omnisolv®
water (LC-MS grade, WX0001-1) and were purchased from Sigma-Aldrich.
Methanol was purchased from Millipore Sigma. Formic acid Optima LC/MS (A117)
was purchased from Fisher Chemical. Water was deionized using a Milli-Q
Reference water purification system (Millipore). Nylon 0.22 ym syringe filters were

TISCH brand SPEC17984.
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H-Rink Amide-ChemMatrix® (0.49 mmol/g) resin was purchased from PCAS
Biomatrix (St-Jean-sur-Richelieu, Quebec, Canada) and 20 ym TentaGel® M NH,
Monosized Amino Microsphere resin was purchased from Rapp Polymere Inc.
(Tubingen, Germany). HyClone™ Fetal Bovine Serum (SH30071.03HI, heat
inactivated) was purchased from GE Healthcare Life Sciences (Logan, UT)
Dynabeads MyOne Streptavidin T1 magnetic microparticles were purchased from
Invitrogen (Carlsbad, CA). Phosphate buffered saline (10x, Molecular biology
grade) was purchased from Corning. Sodium chloride (ACS grade) was purchased
from Avantor. Guanidine hydrochloride (Cat BP178) and sodium phosphate
monobasic monohydrate were purchased from Fisher Scientific.

Mouse anti-hemagglutinin antibody (clone 12ca%) was purchased from
Columbia Biosciences Corporation (Cat: 00-1722, Frederick, Maryland) biotin-
(PEG)s-NHS ester and biotin-(PEG)s-propionic acid were purchased from ChemPep
Inc. (Wellington, FL). Biotinylation of 12ca5 was performed as previously

described.33

Cadherin-2 plasmid DNA was supplied by Novo Nordisk A/S (4°8-724CDH2-
AviTag-HPC4). The Expi293 Expression System (A14635), Expi293 Expression
Medium (A1435101), Opti-MEM™ | Reduced Serum Medium (31985070),
ExpiFectamine™ 293 Transfection Kit (A14524), and Halt Protease Inhibitor
Cocktail (100X, 78429) were purchased from Thermo Fisher Scientific. Sartoclear
Dynamics® Lab V Clarification and Sterile Filtration Kits were purchased from
Sartorius, Inc. HiTrap Q HP columns were purchased from Cytiva, Inc. Anti-Protein
C Affinity Matrix (11815024001, HPC4, monoclonal Roche) was purchased from
Millipore-Sigma. HPC4-Tag Antibody (68083) was purchased from Cell Signaling
Technology. AviTag Biotinylation Kit (BirA500) was purchased from Avidity LLC.
SuperDex 75 Increase 10/300 GL column (10 x 300 mm, 9 pym particle size,
separation MW range 3000 and 70,000 Da) and Superdex 30 Increase 10/300 GL
column (10 x 300 mm, 9 um particle size, separation MW range 100 to 7000 Da)
was purchased from Cytiva Life Sciences.
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2.5. Methods

2.5.1. Split-and-pool synthesis of cyclized libraries

Synthesis of peptide libraries was performed using 20 um Tentagel M NH2 resin
(0.31 mmol/g) for 108-member libraries. The resin was suspended in DMF and
dividedly evenly between 18 syringes (all canonical amino acids except for cysteine
and isoleucine) for the non-cysteine variable region, while the resin was split into 3
syringes for the variable cysteine analog positions (cysteine, homocysteine,
penicillamine). Couplings were performed using the Fmoc-protected amino acid
dissolved in DMF (10 eq, 0.40M) with PyAOP (0.9 eq relative to amino acid, 0.38M)
activated with DIEA (1.1 eq relative to amino acid for histidine, 3 eq relative to
amino acid for all others). Couplings were incubated for 1 hour. The resin was then
recombined and washed with DMF three times. Fmoc deprotection was performed
using 20% piperidine in DMF (1x flow wash, 2x 5 min batch treatments). The resin
was washed again with DMF three times before being subjected to another split-

couple-pool cycle until completion of all randomized positions.
2.5.2. Peptide Cleavage and global deprotection

Cleavage from solid phase and global deprotection was performed using a
solution of 95% trifluoroacetic acid, 2.5% water, and 2.5% triisopropylsilane (~20 mL
cleavage cocktail / g of resin). The solution was added until the resin was fully
swelled and free flowing, then the resin was agitated on a nutating mixer for 3
hours. The peptides were triturated with 10:1 cold diethyl ether to cleavage solution.
The precipitated solid was centrifuged into a pellet. The precipitate was washed
with cold ethyl ether in the same manner an additional two times. The resulting solid
pellet was dried gently using N2, suspended in 50% acetonitrile in water (0.1%
trifluoroacetic acid), and lyophilized.

2.5.3. Solid-phase extraction
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Peptides were adjusted to 5% acetonitrile in aqueous media (0.1% TFA) and
purified using Supelclean™ LC-18 SPE Tube, bed wt. 1 g (Millipore Sigma Cat:
505471). The SPE tube was first conditioned with 3 CV of acetonitrile (0.1% TFA)
and then equilibrated with 5 CV of 5% acetonitrile in water (0.1% TFA). Then, the
suspended crude was loaded (Approximately 50 mg peptide loaded onto 1 g bed
mass) and washed with 10 CV of 5% acetonitrile in water (0.1% TFA). Peptides
were eluted with 70% acetonitrile (0.1% TFA, 1 CV) and lyophilized.

2.5.4. Stop and Go Extraction (STAGE) Tip preparation of library samples for
nLC-MS/MS analysis

From the CDS Empore™ SDB-XC extraction disk, two cores of material were
pressed using an 18 gauge blunt tip needle (each core binds 2-4 pg) and pressed
into the tip of a 200 pL pipette tip. The STAGE tip was then fitted into a 1.5 mL
microcentrifuge tube with a hole drilled in the center of the cap. The STAGE tip
assembly was then wetted using 60 pL of 80% AcN in water (0.1% TFA) and
centrifuged at 500g for 2 minutes. Then STAGE tip assembly was washed using 60
ML of 1.5% AcN in water (0.1% TFA) and centrifuged at 500g for 2 minutes. The
sample was then loaded onto the STAGE tip and centrifuged at 500g in 3-minute
intervals, checking the liquid level each time to ensure the tip does not run dry. The
STAGE tip was then washed again using 60 pL of 1.5% AcN in water (0.1% TFA)
and centrifuged at 500g for 2 minutes. The STAGE tip was then moved to a fresh
microcentrifuge tube, and the peptides were eluted using 75 yL of 56% AcN in
water (0.1% TFA) and centrifuged at 500g for 10 minutes. The eluted peptides were

then dried using a vacuum centrifuge.
2.5.5. Rapid oxidation of peptide thiols for intramolecular cyclization using
iodine
After cleavage and lyophilization, each peptide library (e.g., 10 mg, 4.2 pmol,

average molecular weight ~ 2400 g/mol) was resuspended at 2 mg/mL in 5% AcN in
Water (0.1% TFA) and treated with 10 uL portions of freshly prepared 60 mM I> in
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MeOH until the solution remained yellow. For the example 10 mg scale,
approximately 70 pL |2 stock solution total was used, resulting in ~1 eq of > with
respect to the library. The iodine-treated library was incubated for 10 minutes in the
dark at rt, upon which 15 uL of freshly prepared 1 M ascorbic acid was added (~3.6
eq of ascorbic acid with respect to the library example). This solution was
immediately loaded onto a pre-equilibrated SPE column, SPE-purified to remove
any remaining iodine and ascorbic acid, and lyophilized. The lyophilized powder
was then resuspended at approximately 0.1 mM and its thiol concentration as
quantified by Ellman’s assay.

2.5.6. Reductive linearization of cyclized library

Peptide libraries were resuspended at 0.62 mg/mL to mimic the maximum
concentration possibly isolated at the end of AS-MS, due to the maximum capacity
of the STAGE tip (8 pg for a double plug, using 13 pL). As described in the Main
Text, reduction after resuspension at pH 3 from 0.1% formic acid in ultrapure water
was successful using 1,4-DL-dithiothreitol (DTT, Chem-Impex Cat: 00127). The
reduction was also tested in 200 mM sodium phosphate, 5 mM EDTA, pH 8 with
DTT, and immobilized Tris (2-carboxyethyl) phosphine (TCEP, Thermo Fisher
Scientific, 77712). DTT was freshly prepared in a stock solution of 500 mg/mL and
added to samples to provide 50 mg/mL final, 1000 eq and incubated at 60 °C for 15
minutes. Samples were then SPE-purified, lyophilized, and Ellman’s quantified upon
resuspension. Immobilized TCEP beads (8 mM stock suspension) were washed
three times before use with the assay buffer using centrifugation at 1000 rcf for 1
minute. Treatment of the library peptides with immobilized TCEP used 20 eq for 25
minutes at room temperature rocking on a nutating mixer. The supernatant was

isolated from centrifugation, lyophilized, and Elliman’s’ quantified.
2.5.7. Sequencing validation of reduced and oxidized libraries

A small portion of library resin was measured and made into a 1 mg/mL stock
solution in DMF. Several aliquots of ~1000 beads (for 20 uym resin, this will be about
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~10 pL of 1 mg/mL stock) were taken, centrifuged, and aspirated of DMF. Each
aliquot was cleaved from the solid phase support using 60 uL of 95% trifluoroacetic
acid, 2.5% water and 2.5% triisopropylsilane at 60 °C for 15 minutes. Half of the
liquid was then evaporated under a gentle stream of N2, followed by dilution to a
total volume of 240 pL using water (0.1% TFA). A third of the solution was aliquoted
to represent the library before cyclization. The remaining solution was cyclized
according to the Section 2.5.5. The cyclized peptide library and aliquoted linear
library were both prepared for nLC/MS-MS analysis according to Section 2.5.11.
The dried library samples were then reconstituted in water (0.1% TFA) at a
concentration of 100 pg/uL/peptide (for example, prepare 8 ug of an aliquot of 1000
peptides in 80 pL). Half of the cyclized peptide sample was then linearized using
DTT as described in Section 2.5.6. All three types of samples, peptide post-
cleavage, cyclized, and cyclized then reduced, were subjected to nLC-MS/MS
analysis as described in Section 2.5.11.

2.5.8. Ellman’s thiol quantification assay

The thiol concentration of suspended peptides was completed using Ellman’s
reagent (Millipore-Sigma, 5,5'-Dithiobis(2-nitrobenzoic acid), D8130, 298%,
BioReagent) using the following conditions. Ellman’s stock solution was prepared at
10.0 mM and assay buffer was 1x PBS pH 8 1 mM EDTA. Nonsterile Greiner 96-
well polystyrene plates (Millipore-Sigma, M2936) were used. Using the assay buffer
to have a final 200 pL well volume, 3.6 pL of Ellman’s stock solution was combined
with the peptide solution to give a final peptide intended concentration of 0.1 mM,
which was determined to be within the linear regime in which signal could be
observed from a standard curve constructed using Cysteine (Millipore-Sigma,
C7352, 298%, BioReagent). After combining, all materials were incubated for 7
minutes, and then read at 416 nm using a TECAN Spark Plate Reader. The
concentration of the library was inferred by measuring its absorbance at 280 nm
(NanoQuant Plate) and was used to normalize the Ellman’s thiol concentration to
account for slight variations in the intended resuspended concentrations.
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Preparation of samples to measure thiol signal from cleavage and SPE of library
(reduced library): Approximately 50 mg of peptide library (peptide + resin) was
globally deprotected and cleaved from resin with 95% (v/v) TFA, 2.5% (v/v) water,
and 2.5% (v/v) triisopropylsilane, for 15 minutes at 60 °C (~ 20 mL / g of resin).
Precipitated peptide was triturated (3 x 100 mL / g resin) with cold diethyl ether,
resuspended in 5% acetonitrile in water (0.1% TFA) and solid-phase extracted. After
lyophilization, this sample was resuspended in assay buffer at 0.1 mM and

measured for its thiol concentration by Eliman’s.
2.5.9. Size exclusion chromatography (SEC) of libraries

Size exclusion chromatography (SEC) was performed using an Agilent 1260
Infinity Il LC System with a Superdex 30 Increase 10/300 GL column (10 x 300 mm,
9 ym particle size from Cytiva Life Sciences, separation MW range 100 to 7000
Da). 25 pg of library was injected in 200 pL of total solution. Cyclized peptide
samples were aliquoted from the main stock prepared according to Sections 2.5.4
and 2.5.11. Linearized samples were prepared by adding 1000 eq from a 50 mg/mL
DTT stock solution and heating the sample to 60 °C for 10 minutes before dilution to
200 pL using 1x PBS. Column conditions: isocratic 1x PBS for 1.5 column volumes
at 0.8 mL/min. Buffer blanks were prepared for both cyclized and linearized
samples and were subtracted from the library samples. A custom mass standard
was prepared by adding 10 ug of a mixture of peptides corresponding to the
following molecular weights: 1807, 3750, 5312, 8305 for average monomer mass,
average dimer mass, average trimer mass, and the exclusion limit of the SEC

column.
2.5.10. Affinity selection using cyclized libraries

Affinity selections were performed using a KingFisher™ Duo Prime Purification
System in 96 Deepwell Plates (Thermo Fisher Scientific, cat. #95040450) with the

following setup:
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Table 2.2: Plate Setup for KingFisher™ Duo Prime

Plate 1
A | 10 pM/member peptide library diluted into 1x PBS, 10% FBS 1mL
B | Wash buffer (1x PBS, 10% FBS, 0.01% Tween20) 1mL
C | Wash buffer (1x PBS, 10% FBS, 0.01% Tween20) 1 mL
D | Wash buffer (1x PBS, 10% FBS, 0.01% Tween20) 1mL
E | Protein (1.5 eq) in Wash buffer (1x PBS, 10% FBS, 0.01% Tween20) 500 pL
F | Wash buffer (1x PBS, 10% FBS, 0.01% Tween20) 1mL
G | Wash buffer (1x PBS, 10% FBS, 0.01% Tween20) 1 mL
H | 1 mg of magnetic beads (100 ulL) diluted in Wash buffer (1x PBS, 10% FBS, 0.01% 1 mL
Tween20)
Plate 2
A [ 1xPBS at4 °C 1 mL
B | 1xPBS at4°C 1 mL
C | 1xPBS at4°C 1 mL
D |1xPBS at4°C 1 mL
E | 1xPBS at4°C 1 mL
F | 1xPBS at4 °C 1 mL
G | Reserved for 12-tip Deepwell magnetic comb (Thermo Fisher, cat. #97003500)
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The program performed the following protocol:

Collect comb from Plate 2 Row G

Collect beads from Plate 1 Row H and wash for 30 sec at medium speed

Wash beads for 30 sec each at medium speed in Plate 1 Rows G and F

Incubate beads with biotinylated protein for 30 mins with slow mixing in Plate

1 Row E

Wash immobilized protein for 30 sec each at medium speed in Plate 1 Rows

D,C,and B

6. Incubate immobilized protein for 1 hr at 10 °C with slow mixing in Plate 1 Row
A

7. Wash immobilized protein for 2 mins each at medium speed in Plate 2 Rows A
through E

8. Elute protein by mixing for 1 min at fast speed in Elution Strips 1 and 2

N

o

After affinity selection, samples were purified by STAGE Tip preparation and
dried using a vacuum centrifuge. Dried samples were reconstituted into 10.8 uL of
nLC-MS/MS mobile phase A and reduced using DTT as described in Section 2.5.6.
4 uL were injected per sample for nLC-MS/MS analysis as described in Section
2.5.11.

2.5.11. Nano-liquid chromatography-tandem mass spectrometry (nLC-
MS/MS) analysis

Peptide sequencing was performed on an EASY-nLC 1200 (Thermo Fisher
Scientific) nano-liquid chromatography system with an Orbitrap Fusion Lumos
Tribrid Mass Spectrometer (Thermo Fisher Scientific). Samples were run on a
PepMap RSLC C18 column (2 um particle size, 15 cm x 50 ym ID; Thermo Fisher
Scientific, cat. #£S801) with a nanoViper Trap Column (C18, 3 ym particle size, 100
A pore size, 20 mm x 75 pym ID; Thermo Fisher Scientific, cat. #164946) for
desalting. Mobile phase A = water (0.1% FA) and mobile phase B = 80% AcN in
water (0.1% FA). Method 1 was used for validation of library samples, and Method 2
was used for analysis of affinity selections.

The ion source voltage was set to 2200 volts in positive mode. Primary mass
spectra were detected using the orbitrap at 120000 resolution with a scan range of

62



300-1400 (m/z), RF lens of 30%, a normalized AGC target of 250% with automatic

injection time, and 1 microscan. Candidate ions were chosen for tandem mass

spectrometry based on the following criteria: precursor mass range of 300-1200

(m/z), monoisotopic peak determination set to peptides, minimum intensity

threshold of 4e4, charge states ranging from +2-+5, dynamic exclusion after 1

observation for 45 seconds with a +10 ppm range. Fragmentation was done in the

orbitrap using HCD followed by EThcD activation types with the following settings:

1.3 m/z isolation window, 30000 resolution, defined first mass of 120 m/z, 600%

normalized AGC target with 100 ms maximum injection time, 2 microscans in

centroid mode. HCD mode used 28% HCD collision energy and EThcD mode used

25% SA collision energy. Full cycle time for MS' and MS? scans was 3 seconds.

1.

Gradient: linear gradient 1-40% B from 0-35 min; linear gradient 40-90% B
from 35-38 min; isocratic 90% B from 38-45 min. Pre-column and analytical
column were equilibrated before each run with 8 uL of mobile phase A before
sample injection. Samples were loaded using 6 pyL of mobile phase A. Mass
data was recorded from 3-37 min.

. Gradient: linear gradient 1-45% B from 0-120 min; linear gradient 45-90% B

from 120-123 min; isocratic 90% B from 123-126 min; linear gradient 90-20%
B from 126-129 min; isocratic 20% B from 129-132 min; linear gradient 20-90%
B from 132-135 min; isocratic 90% B from 135-138 min; linear gradient 90-20%
B from 138-141 min; isocratic 20% B from 141-144 min; linear gradient 20-90%
B from 144-147 min; isocratic 90% B from 147-152 min. Pre-column and
analytical column were equilibrated before each run with 8 yL of mobile phase
A before sample injection. Samples were loaded using 12 uL of mobile phase
A. Mass data was recorded from 3-120 min.

2.5.12. Automated fast-flow peptide synthesis

Before synthesis, all resins were allowed to swell in amine-free DMF for 15

minutes. Fmoc-Lys(Biotin) was manually coupled by preparing a solution in 1:1
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DMF and NMP (5 eq, 0.20M) with PyAOP (0.9 eq relative to amino acid, 0.19M)
activated with DIEA (3 eq relative to amino acid) and incubated for 3 hours. The
resin was then washed with DMF 3 times before being moved to the automated
synthesizer. Utilizing an automated synthesizer, amine-free DMF washed the resin
before coupling, after coupling, and after deprotection (40 strokes, ~25 mL).
Coupling was performed with HATU (single-coupling, 8 strokes, ~5 mL) except S
and A with HATU (double-coupling, 21 strokes, ~10 mL) and C, H, N, Q, R, V, T with
PyAOP (double-coupling, 21 strokes, ~10 mL). Deprotection was completed with
20% piperidine in amine-free DMF with 2% formic acid (13 pump strokes, ~5 mL).
Amino acids were iteratively coupled and deprotected until the stepwise synthesis
was complete. After automated synthesis, the resin was washed again with DMF (3
x 5 mL) and DCM (3 x 5 mL) then dried under reduced pressure. For a detailed
explanation of the instrument setup and related chemistries, see Hartrampf et al .8’

or Mijalis et al.82
2.5.13. Purification of crude single peptides

Single peptides prepared by automated fast-flow peptide synthesis were
cleaved from the resin according to Section 2.5.2. Lyophilized crude peptides were
reconstituted in 10% AcN in water (0.1% TFA) at a concentration of 10 mg/mL.
Peptides were purified using a Biotage Selekt purification system on a Biotage Sfar
C18 Duo (12g, CV =17 mL, 100 A, 30 um, cat. #FSUD-0401-0012) with mobile
phase A = water (0.1% TFA) and mobile phase B = AcN (0.1% TFA). The flow rate
was controlled according to the system pressure, with a maximum flowrate of 12
mL/min. The following gradient was used: isocratic 10% B for 2 CVs, linear gradient
10-50% B over 12 CVs, linear gradient 50-90% B over 1 CV, isocratic 90% B for 2.5
CVs, isocratic 10% B for 2.5 CVs. Fractions were collected based on absorbance at
214 nm, with a minimum absorbance threshold for collection at 25 mAU and
fractionation set based on peak detection. Fractions were subjected to LC-MS
analysis as described in Section 2.5.14 before combining the pure fractions and
lyophilizing.
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2.5.14. Liquid chromatography-mass spectrometry (LC-MS) analysis

LC-MS chromatograms and associated high resolution mass spectra were
acquired using an Agilent 1290 Infinity HPLC coupled to an Agilent 6550 LC/Q-TOF
mass spectrometer using a Phenomenex Jupiter C4 column (150 x 1.0 mm ID, 5
um, 300A silica) heated at 40 °C. Solvent compositions were 0.1% formic acid in
water (mobile phase A) and 0.1% formic acid in acetonitrile (mobile phase B).
Method 1 was used for fraction analysis after semi-preparative HPLC
purification, and method 2 was used for characterization of pure material.

1. Column: Jupiter C4. Gradient: isocratic 1% B from 0-2 min; linear gradient 1-
91% B from 2-8 min; isocratic 95% B from 8-10 min; post time 1% B for 1 min.
Flow rate: 0.5 mL/min. MS data was collected from 2-8 min; MS was run in
positive ionization mode, extended dynamic range (2 GHz), and standard
mass range (m/z in the range of 300 to 3000 a.m.u.).

2. Column: Jupiter C4. Gradient: isocratic 1% B from 0-2 min; linear gradient 1-
91% B from 2-47 min; isocratic 91% B from 47-49 min; post time 1% B for 2
min. Flow rate: 0.5 mL/min. MS data was collected from 2-47 min; MS was run
in positive ionization mode, extended dynamic range (2 GHz), and standard
mass range (m/z in the range of 300 to 3000 a.m.u.).

2.5.15. Analytical high-performance liquid chromatography (HPLC)

Analytical HPLC analysis was performed using an Agilent 1200 series system
with UV detection at 214 nm on a Zorbax 300SB-C3 column (150 x 2.1 mm ID, 5
um, 300A silica) on an Agilent 1200 HPLC at room temperature. Solvent
compositions were 0.1% trifluoroacetic acid in water (solvent A) and 0.08%
trifluoroacetic acid in acetonitrile (solvent B). Gradient: linear gradient 5-65% B from
0-60 min; linear gradient 65-100% B from 60-61 min; isocratic 100% B from 61-66
min; linear gradient 100-5% B from 66-67 min; isocratic 5% B from 67-75 min. Flow
rate: 0.400 mL/min.
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2.5.16. Expression of 498-724CDH?2

498-724CDH2-Avi-HPC4 was expressed using the Expi293 Expression System
(Thermo Fisher Scientific). Plasmid DNA was supplied from Novo Nordisk A/S. Cells
were cultured in suspension at 37 °C, 8% CO: in 1L flasks agitated at 90 rpm.
Expression was carried out according to manufacturer protocol. Protein was
harvested on Day 6 post-transfection via centrifugation at 5000 rcf for 30 minutes at
4 °C. The supernatant was taken and adjusted to pH 8 using 2M Tris pH 9, then
diluted by a factor of 2 with water. Halt Protease Inhibitor Cocktail was added to a
final concentration of 1x and the resulting supernatant was filtered through a 0.22
pm filter (Sartoclear Dynamics® Lab V Clarification and Sterile Filtration Kits,

Sartorius) and immediately subjected to purification.
2.5.17. Purification of 498-724CDH2

The supernatant from Section 2.5.16 was immediately loaded onto a HiTrap Q
HP anion exchange chromatography column (5 mL) via a peristaltic pump at a rate
of 2 mL/min. The supernatant was recycled through the column and allowed two full
volume passes over the column. Protein was then eluted from the column using an
AKTA Pure chromatography system with mobile phase A = 20 mM Tris, pH 9 and
mobile phase B = 20 mM Tris, 1M NaCl, pH 9 using a linear gradient of 0-50% B
over 25 CVs. Flowrate was controlled according to column backpressure with a
maximum flowrate of 5 mL/min. The eluent was fractionated into 1.7 mL fractions
that were then analyzed via western blot based on absorbance at 214 nm. Fractions
containing 4°8-724CDH2 were concentrated using a 10K molecular weight cut-off

centrifugal concentrator (apparent MW ~ 40000 Da).

The concentrated isolated protein was then subjected to anti-protein C affinity
purification using anti-protein C affinity matrix from mouse IgG1 k (clone HPC4)
according to the manufacturer protocol with column elution using EDTA. The protein
was loaded and eluted for 5 cycles to maximize yield. Fractions were analyzed

using western blot and concentrated using a 10K molecular weight cut-off
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centrifugal concentrator. The protein was split in half, with half being biotinylated
and the other half proceeding to SEC purification. The concentration of protein was
measure by absorbance at 280 nm (€ = 25500 M-'cm").

A portion of protein was biotinylated using the BirA500 kit from Avidity LLC
according to the manufacturer’s protocol. The enzymatic reaction was incubated for
a total of 24 hours. The remaining portion immediately subjected to SEC purification

for use in ligand validation experiments.

The protein was then subjected to SEC purification using an AKTA Pure
chromatography system with a SuperDex 75 Increase 10/300 GL column (10 x 300
mm, 9 um particle size from Cytiva Life Sciences). Approximately 1 mg of protein in
a volume of 300 pL of buffer was loaded onto the column with a mobile phase of 1x
PBS. An isocratic gradient was run for 1.5 CVs at a flowrate of 0.8 mL/min and
fractionated at 0.5 mL per fraction. Fractions were analyzed by western blot and
concentrated using a 10K molecular weight cut-off centrifugal concentrator. Final

protein concentration was measured using absorbance at 280 nm.
2.5.18. Anti-#98-724CDH2 Western Blot

Protein samples were subjected to SDS-PAGE by dilution into 4x Laemmli
sample buffer followed by heating to 75 °C for 5 minutes. The resulting samples
were allowed to cool before loading onto a Mini-PROTEAN TGX Stain-free gel
using a Mini-PROTEAN Tetra Cell with a running buffer consisting of 25 mM Tris,
192 mM glycine, 0.1% SDS at pH 8.3. Gels were run at 105V for 75 minutes then
washed with ddH2O three times. The gel was then imaged using the Stain-Free
setting of a ChemiDoc imaging system (Bio-Rad) to assess total protein content.
Following imaging, the gel was then transferred to a 0.22 uym nitrocellulose
membrane using a Trans-blot Turbo Transfer System (Bio-Rad). Following transfer,
the blot was rinsed three times with ddH>O and blocked with 5% nonfat dry milk in
1x PBS for 1 hour at room temperature. The liquid was then decanted and the blot
was stained with 1:1000 HPC4 tag antibody (Cell Signaling Technology, cat.
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#68083) for 1 hour at room temperature. The membrane was washed with 1x PBS
with 0.1% Tween-20 5 times for 5 minutes each. The membrane was then stained
with Goat anti-Rabbit IgG (H+L) secondary antibody, HRP (Thermo Fisher
Scientific, cat. #32460) for 1 hour at room temperature. The membrane was washed
with 1x PBS with 0.1% Tween-20 5 times for 5 minutes each then imaged using
SuperSignal West Pico PLUS Chemiluminescent Substrate (Thermo Fisher
Scientific, cat. #34580) on a ChemiDoc imager (Bio-Rad).

2.5.19. Biolayer interferometry (BLI)

Peptide binding validation was performed using a Gator Plus Next Generation
Biolayer Interferometry instrument. All assays were run at 30 °C and agitated at
1000 rpm. Streptavidin-coated probes (Gator Bio cat. #160029) were dipped into
0.5 pg/mL solutions of biotinylated peptide solution in kinetic buffer (1x PBS with
0.02% BSA and 0.002% Tween-20) for immobilization for 5 minutes. All sequences
have Lys(Biotin)-Ahx attached to the N-terminus in addition to the sequence shown.
The probes were then moved to a dilution series of protein (500, 250, 125, and 62.5
nM) for 10 minutes to obtain the association curve. The tips were then moved into a
new column of wells with kinetic buffer and incubated for 10 minutes to obtain the
dissociation curve. Peptide-only and protein-only (concentration at 500 nM) were
used for background subtraction. Apparent dissociation constants (KD) were
calculated using the global Rmax unlinked algorithm with a 1:1 binding model as

implemented in the Gator Bio data analysis software.
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2.6. Appendix I: Synthesis and characterization data

Analytical HPLC of 12ca5-1
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Figure 2.7 LCMS and analytical HPLC data for the synthesis of identified 12ca5 binding
peptides. All sequences have Gly-Ser-Lys(Biotin) attached to the C-terminus in addition to
the structure shown. 12ca5-1: 95% pure, calc. mass 2148.9941, obs. mass 2149.02283
(+13.4 ppm); 12cab-2: 85% pure, calc. mass 2332.9916, obs. mass 2333.01773 (+11.2
ppm); 12cab-3: 75% pure, calc. mass 2306.9283, obs. mass 2306.9469 (+8.1 ppm); 12ca5-
4: 91% pure, calc. mass 2362.0810, obs. mass 2362.0951 (+6.0 ppm); 12ca5-5: 84% pure,
calc. mass 2346.9245, obs. mass 2346.9731 (+20.7 ppm); 12cab-6: 62% pure; The minor
peak is a result of pyroglutamate formation, a common side reaction for N-terminal
glutamine residues, calc. mass 2247.9864, obs. mass 2248.0119 (+11.3 ppm); 12ca5-7:
88% pure, calc. mass 2333.9756, obs. mass 2333.9737 (-0.8 ppm); 12ca5-A: 70% pure,
calc. mass 2293.9555, obs. mass 2293.9738 (+8.0 ppm).
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a) Size Exclusion Chromatography
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Figure 2.8: Characterization of expressed 4°%72*CDH2. A) Size exclusion chromatogram of
absorbance at 214 nm of °3724CDH2 compared against BioRad Gel Filtration Standard
(Cat. #1511901) shows the expected mass for the protein. Sample peaks eluting after 20
minutes were found to be buffer constituents. B) a-HPC4 tag Western blot against *°%
724CDH2. Lane 1: biotinylated *°37?*CDHZ2; lane 2: reduced biotinylated °472CDH2; lane 3:
nonbiotinylated 4°472*CDH?2; lane 4: reduced nonbiotinylated *°472*CDH?2.
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Figure 2.9: Analytical HPLC and LCMS characterization of CBP and CBP sequence
scramble. Calculated mass of both sequences: 2380.1605. CBP: 85% purity, observed
mass 2380.1886 (+11.8 ppm); CBP Scramble: 84% purity, observed mass 2380.1635 (+1.3

ppm)
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Analytical HPLC of Ala Scan 1
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Figure 2.10: LCMS and analytical HPLC data for the synthesis of CBP alanine scan
peptides. All sequences have Lys(Biotin)-Ahx attached to the N-terminus in addition to the
sequence shown. Ala scan 1: 97% pure, calc. mass 2323.1027, obs. mass 2323.1023 (-0.2
ppm); ala scan 2: 97% pure, calc. mass 2320.1571, obs. mass 2320.1589 (+0.8 ppm); ala
scan 3: 96% pure, calc. mass 2350.1499, obs mass 2350.1420 (+0.9 ppm); ala scan 4:
95% pure, calc. mass 2304.1292, obs. mass 2304.1330 (+1.7 ppm); ala scan 5: 99% pure,
calc. mass 2338.1136, obs. mass 1338.1212 (+3.3 ppm); ala scan 6: 77% pure, calc. mass
2304.1292, obs. mass 2304.1332 (+1.7 ppm); ala scan 7: 99% pure, calc. mass 2337.1546,
obs. mass 2337.1676 (+5.5 ppm), ala scan 8: 94% pure, calc. mass 2304.1292, obs. mass
2304.1314 (+1.0 ppm); ala scan 9: 96% pure, calc. mass 2350.1499, obs. mass 2350.1539
(+1.7 ppm); ala scan 10: 94% pure, calc. mass 2288.1343, obs. mass 2288.1380 (+1.6
ppm); ala scan 11: 94% pure, calc. mass 2323.1027, obs. mass 2323.1000 (-1.1 ppm); ala
scan 12: 95% pure, calc. mass 2336.1707, obs. mass 2336.1781 (+3.2 ppm); ala scan 13:
75% pure, calc. mass 2323.1037, obs. mass 2323.1015 (-0.5 ppm).
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Figure 2.11. LCMS and analytical HPLC data for the synthesis of CBP truncation study
peptides. All sequences have Lys(Biotin)-Ahx attached to the N-terminus in addition to the
sequence shown. Truncation 1: 88% pure, calc. mass 2252.0655, obs. mass 2252.0693
(+1.7 ppm); truncation 2: 86% pure, calc. mass 2121.0251, obs. mass 2121.0278 (+1.3
ppm); truncation 3: 87% pure, calc. mass 2019.9774, obs. mass 2019.9819 (+2.2 ppm);
truncation 4: 90% pure, calc. mass 1872.9090, obs. mass 1872.9202 (+6.0 ppm);
truncation 5: 97% pure, calc. mass 1759.8249, obs. mass 1759.8272 (+1.3 ppm).
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Figure 2.12: L CMS and analytical HPLC data for the synthesis of CBP d-amino acid scan
peptides. All sequences have Lys(Biotin)-Ahx attached to the N-terminus in addition to the
sequence shown. Calc. mass for all peptides: 2380.1605. D scan 1: 89% pure, obs. mass
2380.1626 (+0.9 ppm); D scan 2: 856% pure, obs. mass 2380.1648 (+1.8 ppm); D scan 3:
81% pure, obs. mass 2380.1637 (+1.3 ppm); D scan 4: 90% pure, obs. mass 2380.1612
(+0.3 ppm); D scan 5: 92% pure, obs. mass 2380.1782 (+7.4 ppm); D scan 6: 95% pure,
obs. mass 2380.1630 (+1.1 ppm); D scan 7: 85% pure, obs. mass 2380.1611 (+0.3 ppm); D
scan 8: 84% pure, obs. mass 2380.1653 (+2.0 ppm); D scan 9: 80% pure, obs. mass
2380.1649 (+1.9 ppm); D scan 10: 98% pure, obs. mass 2380.1641 (+1.5 ppm); D scan 11:
86% pure, obs. mass 2380.1627 (+0.9 ppm); D scan 12: 76% pure, obs. mass 2380.1679
(+3.1 ppm); D scan 13: 91% pure, obs. mass 2380.1647 (+1.8 ppm).
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Figure 2.13: LCMS and analytical HPLC data for the synthesis of NCBP peptides. All
sequences have Lys(Biotin)-Ahx attached to the N-terminus. Residues mutated from the
original CBP sequence are highlighted in red. NCBP-1: 86% pure, calc. mass 2757.1864,
obs. mass 2757.1654 (-7.6 ppm); NCBP-2: 75% pure, calc. mass 2797.1670, obs. mass
2797.0775 (+32.0 ppm); NCBP-3: 95% pure, calc. mass 2468.2616, obs. mass 2468.2890
(+11.1 ppm); NCBP-4: 80% pure, calc. mass 2542.2773, obs. mass 2542.4379 (+63 ppm);
NCBP-5: 88% pure, calc. mass 2546.2472 obs. mass 2546.2179 (+11 ppm); NCBP-6: 85%
pure, calc. mass 2580.2025, obs. mass 2580.2280 (+10 ppm); NCBP-7: 98% pure, calc.
mass 2580.2023, obs. mass 2580.2324 (+12 ppm); NCBP-8: 89% pure, calc. mass
2605.2340, obs. mass 2605.2625 (+11 ppm); NCBP-9: 88% pure, calc. mass 2605.2340,
obs. mass 2605.2704 (+14 ppm); NCBP-10: 96% pure, calc. mass 2617.2309, obs. mass
2617.2567 (+10 ppm); NCBP-11: 79% pure, calc. mass 2617.2309, obs. mass 2617.2739
(+16 ppm); NCBP-12: 94% pure, calc. mass 2679.1986, obs. mass 2679.5163 (+120 ppm).
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Figure 2.14: Analytical HPLC and LCMS characterization of NCBP-4 and NCBP-4 serine
substituted sequence. Red residues denote the mutated cold-spots from CBP, and blue

residues denote the hot-spots from CBP mutated to serine. NCBP-4: 80% purity, calc.
mass 2542.2769, obs. mass 2543.3046 (+10.9 ppm); NCBP-4 serine substituted sequence:
82% purity, calc. mass 2162.9475, obs. mass 2162.9847 (+17.2 ppm).
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2.7. Appendix II: Library validation data
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Figure 2.15: Ellman’s assay studies on reduction reaction conditions identify reduction
using dithiothreitol (DTT) in acidic conditions as the most optimal for the reduction of
disulfide bonds within the macrocyclic peptide libraries.
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Table 2.3: Components of the custom peptide standard used for SEC validations. The
average molecular weight of a member of either macrocyclic peptide library is 1802.

Sequence Approx. Molecular Weight
SQETFSDLWKLLPEN 1807
HGPATPRMAKFDQAAGDQYMAGMDKRKAGRAAGATL 3748
MNSTESIPLAQSTVAQSTVAGFTSELESTPVPSNETTCENWREIHHLVFHVA 5685
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Figure 2.16: Size exclusion chromatograms of absorbance at 214 nm of a) CBP hotspot
and b) CBP coldspot macrocyclic libraries were compared to molecular weight standards
corresponding to the average mass of monomeric, dimeric, and trimeric species. Library
samples were ran using the cyclized form (later used in affinity selection experiments) and
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the DTT linearized form, demonstrating the formation of intramolecular disulfide bonds.
Peaks marked with an asterisk (*) were residual elements from the sample buffer.
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Figure 2.17: Heatmaps comparing average local confidence (ALC %) of sequence

assignment by PEAKS Studio 8.5 to instrument error (ppm) showed the loss and recovery
of sequencing capabilities after oxidation and reduction respectively for the (a) XeCXsCK

and (b) CX12CK macrocyeclic peptide library designs. High density within the black box

region were regarded as high fidelity de novo sequence assignments. A high density within
this region is expected when the library is in a reduced form either directly post cleavage

from the resin or after reduction using DTT. Conversely, a low density within the boxed
region is expected when the library is in an oxidated state.
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2.8. Appendix lll: Affinity selection and biolayer interferometry data

Table 2.4: Sequences isolated by AS-MS that contain the characteristic binding motif to
12cab, D**DY(A/S). Assigned local confidences (ALC) for each sequence assignment are
given, as well as the ligand affinity to 12cab as measure by BLI. Retention time (RT, in
minutes), mass-to-charge ratio (m/z), charge state (z), observed mass (Mass) and mass
error in sequence assignment (ppm) are given.

Peptide Library Sequence ALC (%)| Kp, nM RT m/z z Mass ppm
12ca5-1 XgCXsCK|[ Gly Leu Ala Leu Asp Met Pen Asp Tyr Ala Ala Arg Pro Cys Lys 99 45 33.28 | 557.2661 |3| 1668.7786 | -1.2
12ca5-2 XgCXsCK|[Leu GIn Asn GIn Asp Leu Cys Asp Tyr Ala Asp Tyr Phe Cys Lys 97 <1 59.07 | 919.3979 |2| 1836.781 | 0.2
12cab-3 XeCXsCK| Tyr Phe Thr Asp Asp Pro hCys Asp Tyr Ser Asp Val GIn Cys Lys 99 15 43.89 | 906.3663 [2| 1810.7178 | 0.2
12ca5-4 XgCXsCK|[Phe Phe Val His Asp Lys hCys Asp Tyr Ala Val His GIn Pen Lys 99 21 29.58 | 467.4745 |4| 1865.8706 | -0.9
12cab-5 XeCXsCK| Trp Asn Asn Tyr Asp Trp Cys Asp Tyr Ala Ala His Ser Cys Lys 91 3.1 35.18 | 625583 |3| 1873.73 |-1.5
12ca5-6 XgCXsCK| GIn Ala Leu Phe Asp Val hCys Asp Tyr Ser His Pro Asn Cys Lys 89 <1 41.67 | 584.9335 (3| 1751.7759 | 1.5
12cab-7 XeCXsCK| Glu Leu Asn GIn Asp Leu Cys Asp Tyr Ala Asp Tyr Phe Cys Lys 98 <1 58.7 [919.8975 |2( 1837.7651 | 8.4
12ca5-A CX2CK |Pen Asp Ala GIn Asp Tyr Ala Ser Trp GIn GIn Asp Pro Pen Lys 70 1.0 35.85 | 600.2608 |3| 1797.7451 | 8.6
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Figure 2.18: Full BLI data for all identified sequences containing the 12cab binding motif,
D**DY(A/S). The motif is highlighted in red within each structure. All sequences have Gly-
Ser-Lys(Biotin) attached to the C-terminus in addition to the structure shown.
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Figure 2.19: CBP sequence scramble and off-target controls show sequence and protein

specificity of the ligand interaction towards CDHZ2 by BLI. BL| data for CBP tested against
CDH?2 is shown for reference.
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Figure 2.20: The macrocyclic structure of CBP plays a role in the strength of the observed
interactions, a) where a comparison of the cyclized CBP peptide and the DTT-linearized
CBP sequence shows a large decrease in observed signal, as well as a drop in the
observed dissociation constant. b) A magnified version of the BLI trace for the linearized
CBP sequence is given.
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Table 2.5: Alanine scan of CBP shows critical residues for ligand interactions with #°¢
"24CDHZ2. Each peptide is cyclized through disulfide bond formation of the side chains of
cysteine (C) and penicillamine (Z).

Modified Residue Sequence Approx. Kp (nM)

Original KMTFLFCNFTYKDZK-NH, 50
Lys1 AMTFLFCNFTYKDZK-NH, 250
Met2 KATFLFCNFTYKDZK-NH, 70
Thr3 KMAFLFCNFTYKDZK-NH, 60
Phe4 KMTALFCNFTYKDZK-NH, No binding
Leu5 KMTFAFCNFTYKDZK-NH, 80
Phe6 KMTFLACNFTYKDZK-NH, No binding
Asn8 KMTFLFCAFTYKDZK-NH, 100
Phe9 KMTFLFCNATYKDZK-NH, 120
Thr10 KMTFLFCNFAYKDZK-NH, 50
Tyr11 KMTFLFCNFTAKDZK-NH- 70
Lys12 KMTFLFCNFTYADZK-NH- No binding
Asp13 KMTFLFCNFTYKAZK-NH, 50
Lys15 KMTFLFCNFTYKDZA-NH, No binding
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Figure 2.21: BLI data of CBP alanine scan peptides against 4°472*CDH2. Traces with
minimal response were deemed non-binders.
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Table 2.6: Truncation studies of CBP demonstrate the impact of the N-terminal residues in
ligand interactions with “°¢724CDH2. Each peptide is cyclized through disulfide bond
formation of the side chains of cysteine (C) and penicillamine (Z).

Modified Residue Sequence Approx. Kp (nM)

Original KMTFLFCNFTYKDZK-NH, 50

Lys1 MTFLFCNFTYKDZK-NH, 60

Met2 TFLFCNFTYKDZK-NH, 70

Thr3 FLFCNFTYKDZK-NH- 100

Phe4 LFCNFTYKDZK-NH, 190

Leu5 FCNFTYKDZK-NH, No binding
CBP Truncation 1 CBP Truncation 2 CBP Truncation 3

0.00
7\I\\I\\\\‘\\I\I\\\\‘I\\I 7\\\\Iwwwwlwwlw‘\\|||\\\\ 7\I\\I\\Ill\\\\‘\\l\llll\
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Figure 2.22: BL| data of CBP truncated peptides against *°*72*CDH2. Traces with minimal
response were deemed non-binders.
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Table 2.7: D-amino acid scan of CBP identifies critical stereocenters in ligand interactions
with 498724CDH2. Each peptide is cyclized through disulfide bond formation of the side
chains of cysteine (C) and penicillamine (Z).

Modified Residue

Sequence

Approx. Kp (nM)

Original KMTFLFCNFTYKDZK-NH, 50
Lys1 KMTFLFCNFTYKDZK-NH, 50
Met2 KmTFLFCNFTYKDZK-NH. 70
Thr3 KMtFLFCNFTYKDZK-NH 140
Phe4 KMTfLFCNFTYKDZK-NH 60
Leu5 KMTFIFCNFTYKDZK-NH, 50
Phe6 KMTFLfCNFTYKDZK-NH, 3000
Asn8 KMTFLFCnFTYKDZK-NH. 60
Phe9 KMTFLFCNfTYKDZK-NH. 150
Thr10 KMTFLFCNFtYKDZK-NH, 60
Tyr11 KMTFLFCNFTyKDZK-NH, No binding
Lys12 KMTFLFCNFTYKDZK-NH, 60
Asp13 KMTFLFCNFTYKdZK-NH. 50
Lys15 KMTFLFCNFTYKDZK-NH. No binding
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Table 2.8: List of top candidates identified from AS-MS experiments utilizing focused
libraries against ligand °472*CDH?2. Assigned local confidences (ALC) are given for each
sequence, as well as retention time (RT), mass-to-charge ratio observed (m/z), charge
state (z), and observed parent mass (Mass) with mass error of the sequence assignment

(ppm).

Peptide | Library Sequence ALC (%)| RT mi/z

NCBP-1 | Hotspot |4Py| Met | Hyp |Dmf| Leu | Nal | Cys| Asn | Dph|Msn | Dph | His | Asp | Pen| Arg 97 87.35 | 764.9832
NCBP-2 | Hotspot |Amf| Met | His | Nal | Leu | Pff | Cys| Asn|Dmf|Msn | Dph [4Py| Asp | Pen|Arg 89 80.69 | 778.965
NCBP-3 | Coldspot | Lys | Nal | Pip | Phe | C5g | Phe | Cys |bSe| Phe |bSe | Tyr |Lys|Hyp |Pen|Lys 96 52.23 | 501.7623
NCBP-4 | Coldspot | Lys | Nal | Pip | Phe | C5g | Phe | Cys |Hyp | Phe | Tyr | Tyr |Lys|Hyp |Pen|Lys 97 56.34 | 693.3494
NCBP-5 | Coldspot |Lys | Tle |bSe|Phe| Nal | Phe | Cys |Hyp| Phe | Tha | Tyr |Lys| Tyr [Pen|Lys 96 70.19 | 694.6673
NCBP-6 | Coldspot | Lys | Nal | bSe | Phe | Phe | Phe | Cys | Tyr | Phe | Tha | Tyr |Lys |Hyp |Pen|Lys 92 73.5 | 705.9942
NCBP-7 | Coldspot | Lys | Nal | bSe | Phe | Nal | Phe | Cys | Tha| Phe | Hyp | Tyr |Lys |Hyp |Pen|Lys 93 75.16 | 705.9943
NCBP-8 | Coldspot | Lys | Phe | Pip | Phe | Nal | Phe | Cys | Tha | Phe | Tyr | Tyr |Lys |Hyp |Pen|Lys 83 62.65 | 536.0076
NCBP-9 | Coldspot |Lys | Nal | Pip | Phe | Phe | Phe | Cys| Tha | Phe | Tyr | Tyr |Lys|Hyp |Pen|Lys 85 62.95 | 536.0094
NCBP-10| Coldspot | Lys | Pff | Pip |Phe | Phe | Phe [ Cys| Tyr | Phe |Hyp | Tyr |Lys| Pip |Pen|Lys 85 50.47 | 539.0023
NCBP-11| Coldspot | Lys | Phe | Tyr |Phe | Pff |Phe [Cys| Pip | Phe |Hyp | Tyr |Lys| Pip |Pen|Lys 87 48.75 | 539.0036
NCBP-12] Coldspot | Lys | Nal |bSe |Phe | Pff |Phe |Cys|Hyp|Phe | Tyr | Tyr |Lys| Tyr |Pen|Lys 96 74.33 | 738.9948

Mass ppm
2291.9443 | -7.2
2333.8499 | 9.9
2003.0195 | 0.3
2077.0352 | -4.3
2080.9758 | 2
2114.9604 | 0.2
2114.9602 | 0.4
2139.9919 | 4.3
2139.9919 | 7.7
2151.9888 | -4.1
2151.9888 | -1.6
2213.9565 | 2.7

WA DA DDWWWWAWWN
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Figure 2.24: BL| data of NCBP peptides against *°472CDH2. Traces with minimal response
were deemed non-binders.

89
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Figure 2.25: BL| data of the affinity-matured NCBP-4 compared to the original CBP
sequence, as well as the NCBP-4 sequence with all identified hotspots mutated to serines
(NCBP-4 Ser Sub). a) Substituting identified hotspots with serine in CBP still allows for
modest affinity towards CDH2. b) Mutated residues from the NCBP-4 sequence do not
contribute to nonspecific binding of off-target proteins, as demonstrated by BLI assays
against 12cab.
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3. Investigation of Commercially Available Resins for the Automated
Flow Synthesis of Difficult or Long Peptide Sequences

The work presented in this chapter has been reproduced and adapted from the
following publication:

Lee, M.A,; Brown, J.S.; Loas, A.; Pentelute, B.L. Investigation of Commercially
Available Resins for the Automated Flow Synthesis of Difficult or Long Peptide
Sequences. Peptide Science. 2024 24344
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3.1. Introduction

Solid phase peptide synthesis (SPPS) has been established as the mainstay
method for the production of peptides and short proteins for a range of applications
from basic research to the manufacture of clinically-approved peptide therapies.' 23
This method utilizes a swellable crosslinked support functionalized with a chemical
linker that allows for an iterative cycle of coupling amino acids and removal of
protecting groups.* Since its introduction by Nobel Laureate Bruce Merrifield in
1963,° SPPS has seen rapid integration into standard research protocols and
expansion of its capabilities to applications such as the synthesis of over 200
residue-long protein domains®’ or the split-and-pool synthesis of large combinatorial

libraries. A key feature for SPPS is the choice of resin solid support.®

Merrifield (polystyrene) ChemMatrix® (PEG) PEG-Polystyrene

ol

HoN 0/\<~/ \’)n/\o NH;
o

H,N o’\é/ \;n/\o NH,
ol

HaN o/\é/ \an/\o NH;

Figure 3.1: The chemical structure of the resin solid support determines
important physical properties for efficient peptide synthesis. Three common
types of resin are the Merrifield (polystyrene) resins, ChemMatrix® PEG
based resins, and PEG-PS resins.

There are a variety of commercially available and in-house manufactured
options for the solid support, ranging from the original polystyrene crosslinked (PS)
resin to purely polyethyleneglycol- based (PEG) resins, with co-polymers of the two
styles also being available. Each of these supports differ in the ability to swell and
solvate the growing peptide chain.'®'" Notably, there are several formulations
comprised of crosslinked polystyrene supports with grafted polyethyleneglycol
chains, termed PEG-PS, where the proportions of monomers and methods of
grafting can generate a range of properties for SPPS."%13 These different backbone

structures are shown in Figure 3.1.
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The solid support and the elongating peptide chain are an important factor for
SPPS." The synthesis of long peptide sequences can be limited by steric
hindrance of the peptide chain through the formation of secondary structures on
resin or through aggregation of the peptide chain by unfavorable interactions with
the polymer support, causing early terminations of growing peptide chains. These
physical constraints impede reaction progress and can introduce additional mass
transfer limitations into the coupling steps, reducing purity and yield."'"15 Several
approaches have improved SPPS in the attempts to overcome on-resin
aggregation, ranging from chemical optimizations (i.e., backbone protection)'®:'” to
physical parameters optimization (i.e., heat or microwave).'®'® The chemical
structure of the resin has also been investigated. For PS resins, aggregation has
been hypothesized to be due to unwanted interactions with the polystyrene support
from the side chains of the peptide, especially for longer peptide sequences as
reported in literature.'#2%2" PEG resins, on the other hand, can provide stabilizing
polar interactions with the growing chain and can potentially stabilize its structure,
allowing for the synthesis of longer sequences as reported in literature. Therefore,
most advanced, commercially available resins incorporate a significant amount of

PEG into the solid support.

Another critical property of a solid support for SPPS is the degree of swelling in
the selected solvent, which reflects the rate of mass transport through the
matrix.?223 The functionalized reaction sites of the resin are primarily spread
throughout the bead, meaning that rapid transport of reagents into the matrix is
critical to attain satisfactory yield and reaction rate.?*?%> Reagent transport rate has
been historically challenging to engineer and has been primarily achieved through
carefully tuning the cross-linking of the polymer support.’® However, this mobility
can also lead to unwanted side reactions and site-site interactions, where nearby
peptide chains can interact with each other and potentially block the availability of
the N terminus to chain extension through formation of secondary structure. A
balance is necessary to optimize the swelling properties as seen by reaction rate

98



studies performed on a range of cross-linking compositions by Rana et al." These
same principles apply to the resin loading, where higher loading will decrease the
distance between peptide chains; therefore, resin loading is also critical to
performance. Across a range of solvents, PEG resins provide excellent swelling
properties and have been the solid support of choice for the synthesis of difficult,
side-chain to backbone aggregation-prone sequences,?® but they may not be
suitable for all peptide syntheses. Additionally, PEG resins can be difficult to source
commercially, especially in larger quantities.?” PS resins show significantly lower
amounts of swelling, which may introduce coupling limitations, such as a reduction
in reaction rate.?® Thus, hybrid PEG-PS resins appear as strong candidates for the
general synthesis of difficult or long (>50 residues in length) peptide sequences.

Whereas many studies describe the optimization of resins for SPPS, there have
been few side-by- side comparisons of the available resins that have been released
to the market in recent years. In this work, we chose three commercially available
PEG-PS resins recently introduced and compared their performance to previously
published data using ChemMatrix® resin, a common choice of resin for the
synthesis of complex peptides.'? The three PEG-PS resins used for these studies
are: OctaGel™ resin, Tentagel XV resin®, and ProTide® resin. These resins were
chosen as representatives of the PEG-PS candidate design, their excellent swelling
properties in common solvents including dichloromethane (DCM) and N,N-
dimethylformamide (DMF), and for their reported efficiencies compared to
ChemMatrix resins.”?8 Each of these resins were used with an automated fast-flow
peptide synthesizer (AFPS) for production of the following sequences: JR10, a 10-
mer peptide known to aggregate during SPPS;2°30 GLP-1, a 30-mer sequence
previously characterized under automated flow conditions;” a fragment of the
mouse double minute 2 (MDM2) N-terminal domain, an 84-mer sequence; and the
tetranucleotide repeat domain of the E3 ubiquitin-protein ligase CHIP, a 133-mer

sequence.?®
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3.2. Results and Discussion

The first peptide we synthesized was JR10, a ten amino acid peptide
(WFTTLISTIM) that has been previously used to characterize synthesis
conditions,'#30:35 where the ProTide resin performed the best as evaluated by crude
yield and purity. This sequence is known to aggregate during the coupling of Thr4,
where early peptide chain terminations during synthesis were seen using an in-line
UV detector. The observed absorbance at 310 nm quantitatively detects the
fluorenylmethyloxycarbonyl (Fmoc) deprotection and its resulting byproduct
dibenzofulvene.'* Looking at the characteristics of the deprotection peaks, clear
peak width broadening is observed during synthesis on all three candidate resins
(see Figure 3.2)."%:3% The broadening of the deprotection peak width is indicative of
side-chain to backbone aggregation, as the interactions of the peptide chain with
other peptide chains or the solid support interferes with mass transport through the
matrix.2? This occurs as the peptide chain grows and interacts with the polymer
support by impeding fluid flow through the resin, causing increased rates of axial
mixing that will subsequently increase the residence time distribution as measured
by the broadening of the UV absorbance peak of the Fmoc protecting group.3” This
could be approximated by increases of diameter around a reactive site as the
peptide chains grow and aggregate, which would correlate to a decrease in the
Péclet number via the Gunn correlation of axial and radial dispersion over fixed
beds.383° The increased mass of peptide chain on the surface of the bead interferes
with flow of reagents across the resin bed. Raw data of the UV signal for amino acid
coupling and Fmoc group deprotection is given in Figure 3.6. Decreased or
hindered mass transport within the resin in turn leads to the reactive sites of the
growing peptide chain to be less accessible to the reagents, increasing the potential
for single residue deletions and/or early termination of peptide chain elongation as
seen by the drop in peak area.

We cleaved JR10 from each of the resins and characterized the crude material
by HPLC and LC-MS. For each sample, the full 10-mer sequence was obtained, but
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several truncated products were observed by HPLC and LC-MS and characterized
in Figures 3.11-3.13. Octagel resin yielded a mixture of truncation products started
after Thr4, with three major peptides corresponding to the W, WF, and WFT
deletions identified through LC-MS. ProTide and Tentagel XV resins also yielded
significant truncation products, corresponding to W and WF deletions at the N
terminus. Based on this data, the purity of the JR10 peptide synthesized across the
resins was comparable, with a slight advantage to the ProTide and Tentagel XV

resins.

Crude yields across the resins show ProTide to be the best performing
candidate for synthesis of JR10. Octagel, in addition to having the lowest purity of
crude product, also gave the lowest yield off resin, with TentaGel XV being slightly
lower than ProTide (see Table 3.1). This trend also correlates with the loading of
each resin, where Octagel has the highest loading with 0.441 mmol/g, Tentagel XV
the next highest with 0.27 mmol/g, and ProTide with the lowest at 0.20 mmol/g; all
resins have bead sizes of 75-150 microns (200-100 mesh). Since side-chain to
backbone aggregation is the key factor for the efficiency of JR10 synthesis, a lower
loading on each bead of resin could allow for an increased spacing between peptide
chains, potentially lowering the opportunity for aggregation.*°

To investigate this hypothesis, we prepared two batches of Tentagel XV resin
with 50% and 10% of the normal loading as well as three batches of Octagel resin
at 63%, 31%, and 6% loading to roughly match the loading of the Tentagel XV resin.
Reduction in resin loading was done by mixing acetic acid to cap the resin and
Fmoc-methionine-OH (the first residue of JR10) in the respective molar amounts
and coupling manually to the resin. After manual coupling, the resins were moved to
the automated synthesizer to finish synthesis. HPLC analysis (see Figure 3.14) of
the crude products from the Tentagel XV resin showed an improvement of crude
purity, increasing to 61% from the original 32% from the full loading amount.
Meanwhile, the Octagel resin was also able to achieve a similar purity of 60% for a
similar loading amount to Tentagel XV (see Figure 3.15). Lower loading resins are
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often available commercially by request to the respective vendor, as is the case for

all three resins.
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Figure 3.2: Inline UV detection, analytical HPLC, and LC-MS of crude JR10 indicated no
major differences between the candidate resins in automated flow synthesis. UV
absorbance was gathered at 310 nm to quantity the Fmoc deprotection byproduct of
dibenzofulvene in flow. Analytical HPLC and LC-MS spectra of the crude JR10 peptide
(Calculated exact mass: 1210.6420) from each resin enabled performance evaluation.
Known significant aggregation at Thr4 resulted in several truncation side products;
asymmetries in side product peaks were found to be other side products and JR10
coeluting. (a) Sequence of JR10; (b) Data of JR10 synthesized using Octagel Resin. Resin
loading: 0.441 mmol/g. Crude purity: 24%. Observed mass: 1210.654 (9.8 ppm error); (c)
Data of JR10 synthesized using ProTide resin. Resin loading: 0.20 mmol/g. Crude purity:
32%. Observed mass: 1210.665 (19 ppm error); (d) Data of JR10 synthesized using
Tentagel XV resin. Resin loading: 0.27 mmol/g. Crude purity: 32%. Observed mass:
1210.634 (-7.0 ppm error)
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The next sequence we synthesized was GLP-1, a 30-mer peptide hormone,
where ProTide and Tentagel XV performed similarly well by crude purity while
product from Octagel resin showed poor purity. This peptide was chosen as a
routine length sequence characterized in a wealth of previous synthesis data.” Like
JR10, GLP-1 also has a known aggregation point at Ala18.'* This side-chain to
backbone aggregation is clearly seen during synthesis using Octagel, where a
sudden broadening of the deprotection peaks is observed at the coupling
corresponding to Ala18 (see Figure 3.3). However, this side-chain to backbone
aggregation is not as apparent for ProTide and Tentagel XV resins, where only a
slight peak broadening is observed. Full UV data for the synthesis of GLP-1 is given
in Figure 3.7 and characterization of side products is given in Figures 3.16-3.18.
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Figure 3.3: Inline UV detection, analytical HPLC and LC-MS data for GLP-1 synthesis
show excellent performance by ProTide and Tentagel XV resins, but suboptimal
performance by Octagel resin. (a) Sequence of GLP-1; (b) Data of GLP-1 (Calculated
deconvoluted mass: 3295.66) synthesized using Octagel resin. Resin loading: 0.441
mmol/g. Crude purity: 24%. Observed deconvoluted mass: 3295.72 (17 ppm error); (c)
Data of GLP-1 synthesized using ProTide resin. Resin loading: 0.20 mmol/g. Crude purity:
54%. Observed deconvoluted mass: 3295.73 (20 ppm error); (d) Data of GLP-1
synthesized using Tentagel XV resin. Resin loading: 0.27 mmol/g. Crude purity: 49%
Observed deconvoluted mass: 3295.74 (24 ppm error).

Cleavage of GLP-1 resulted in a clear difference between Octagel and the other
two candidate resins. Crude HPLC of the ProTide and Tentagel XV products
showed a pure product, but Octagel yielded a mixture of products. ProTide and
Tentagel XV resins outperformed Octagel resin for producing higher purity crude
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polypeptide (54% and 49% versus 24% respectively). The GLP-1 crude isolated
mass across all three resins were comparable (see Table 3.1). and Tentagel XV
resins provided similarly pure material at comparable yields and purities, thus we
observed either resin is suitable for the synthesis of intermediate length sequences
(=30 residues).

Table 3.1: Resin measurements and crude yields for the synthesis of JR10 and GLP-1 on

Octagel, ProTide, and Tentagel XV resins. Theoretical mass is calculated based on the
reported loading of the resin by the respective vendor.

Isolated

Peptide  Resin Starting Crude Resin Mass Theoretical C!eaved Cruclie
Resin (mg) (mg) (mg) Mass (mg)  Yield Purity
JR10 Octagel 43.6 494 8.7 23.3 37% 24%
JR10 ProTide 98.4 114.4 18.6 23.8 7% 32%
JR10 Tentagel XV 97.9 114.0 18.6 320 58% 32%
GLP-1 Octagel 49.0 922 37.8 71.3 43% 24%
GLP-1 ProTide 99.5 143.6 39.3 63.9 61% 54%
GLP-1 Tentagel XV 96.9 123.7 46.2 88.6 52% 49%

We designed experiments to test the ability of these resins to facilitate the
chemical synthesis of single-domain proteins, illustrated by an 84 amino acid
fragment of the N-terminal domain of MDMZ2 and the 134 amino acid tetranucleotide
repeat domain of CHIP. During synthesis using the ProTide resin of CHIP, however,
the instrument experienced an increase in back pressure over the course of
synthesis, ultimately causing an early termination of the synthesis. This issue could
have potentially been caused by an accumulation of fine particulates from the
ProTide resin downstream of the reactor, causing a clog. Thus, the synthesis of
MDM2 was not attempted with the ProTide resin out of caution for the condition of

the instrument.

Synthesis of the 84 amino acid fragment of the N-terminal domain of MDM2
was evaluated. This protein fragment had been previously produced using the same
AFPS technology, which allows for additional comparison of these three resins to
the ChemMatrix resin.” A biotinylated glutamine residue was manually coupled to
the C-terminus of each resin before automated flow synthesis. While ProTide resin
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was deemed not suitable for the AFPS system, Octagel and Tentagel XV resins
were amenable to producing MDM2. Synthesis data of MDM2 using Octagel and
Tentagel XV resin are given in Figure 3.4, with raw UV data given in Figure 3.8.
Notably, the UV data of Tentagel XV resin shows a strong performance by the
consistency of the deprotection peak shape throughout most of the synthesis. The
deprotection peaks potentially increase in width near the end of the synthesis due to
residual side chain deprotection of nucleophilic amino acids, such as histidine,
leading to side chain elongation.*' However, an initial deprotection peak was not
observed, meaning that the initial manual coupling failed for the Tentagel XV resin.
This outcome could be due to the lower degree of swelling in these resins
compared to ChemMatrix resin, which was the basis for the deprotection protocol.
For consistency, MDM2 without the biontinylated glutamine was synthesized on
Octagel resin and is reported in Figure 3.4.
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TLVRPKPLLL KLLKSVGAQK DTYTMKEVLF YLGQYIMTKR LYDEKQQHIV
(a) YCSNDLLGDL FGVPSFSVKE HRKIYTMIYR NLVV-NH, (84 AA)
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Figure 3.4: Synthesis of MDM?2 evaluated by the inline UV detection, analytical HPLC, and
LC-MS data for Octagel and Tentagel XV resins show superior performance by Tentagel XV
resin. Synthesis on ProTide resin was not completed as it caused significant backpressure
to develop. (a) Sequence of MDMZ2; (b) Data of crude MDM?2 synthesized on Octagel resin.
Resin loading: 0.441 mmol/g. Purity post-HPLC purification: 80% Calculated deconvoluted
mass: 9899.82; Observed deconvoluted mass: 19899.7 (-12 ppm error). Oxidized product
also present. (c) Data of crude MDM?2 synthesized on Tentagel XV resin. Resin loading:
0.27 mmol/g. Purity post-HPLC purification: 81%. Calculated observed mass: 9899.82;
Observed deconvoluted mass: 9899.5 (-31 ppm error). Oxidized product also present.

To further investigate this phenomenon, we compared the efficiency of this
deprotection protocol using a short test peptide with a variety of initial monomers
manually coupled to the resin. Tentagel XV resin was deprotected either using two
five-minute reactions as was previously done for Chem- Matrix resin, or by washing
with deprotection solution followed by three five-minute reactions. Analytical HPLC
and LC-MS analysis following cleavage did not reveal any significant difference in
the coupling for alanine, leucine, arginine, proline, or 2-aminoisobutyric acid (see
Figure 3.19), suggesting the deletion was likely a C-terminal monomer-specific
effect concerning the Tentagel XV resin, potentially due to the PEG based spacer
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present on the side chain interacting with the resin backbone’s PEG network. Each
of the resins come with their amine functional group Fmoc protected, and additional
time may need to be taken at the beginning of synthesis to remove the Fmoc
protecting group. This first Fmoc deprotection was not an issue under automated
conditions due to the high temperature of the reactor (85-90 °C), which expedited
the deprotection. Octagel, while there were no issues with the initial deprotection at
room temperature, demonstrated a poorer performance during synthesis. The
deprotection peaks consistently broadened starting early in the synthesis, signaling
continual peptide chain termination. As with JR10, this could potentially be
ameliorated by reducing the total loading of the resin, as the loading of Octagel
resin is significantly higher than what is generally used for single domain protein
synthesis. In order to test this, we synthesized MDM2 again on Octagel resin with a
reduced loading to 63% of the original value, which roughly matches the loading of
Tentagel XV resin. This resulted in a more stable deprotection peak width (see

Figure 3.20), a notable sign for increased synthesis quality.

Both samples of MDM2 were cleaved off the resin and subjected to preparative
HPLC purification to compare yields of the pure polypeptide. Cleavage yields for
Tentagel XV resin were high (see Table 3.2), outperforming both Octagel in these
experiments and ChemMatrix resin reported in previous work.?® Purification yields
were also high, although formation of oxidized product was observed over the
characterization process. While Tentagel XV resin performed better, Octagel resin
still provided a pure product in acceptable and additionally succeeded in the initial
manual coupling of biontinylated glutamine. However, Tentagel XV resin appeared
to be the optimal choice for this synthesis, provided extra care can be taken for the
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initially coupled amino acids at room temperature, especially during initial

deprotection and subsequent washing steps.

ZSPSAQELKE QGNRLFVGRK YPEAAACYGR AITRNPLVAV YYTNRALCYL
(8)  KMQQHEQALA DCRRALELDG QSVKAHFFLG QCQLEMESYD EAIANLQRAY
SLAKEQRLNF GDDIPSALRI AKKKRWNSIE ERR-NH, (133 AA, Z = Biotin-PEG,)
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Figure 3.5: Synthesis of CHIP evaluated by the inline UV detection, analytical HPLC, and
LC-MS data for Octagel and Tentagel XV resin show improved performance by Tentagel XV
resin. Synthesis on ProTide resin resulted in instrument failure and raw data is shown in
Figure 3.10. (a) Sequence of CHIP; (b) Data of crude CHIP (Calculated deconvoluted
mass: 15671.9) synthesized on Octagel resin. Resin loading: 0.441 mmol/g. Purity post-
HPLC puirification: No pure fractions found. Observed deconvoluted mass: Not found. (c)
Data of crude CHIP synthesized on Tentagel XV resin. Resin loading: 0.27 mmol/g. Purity
post-HPLC purification: 71%. Observed deconvoluted mass: 15672.0 (-3.8 ppm error).

The longest sequence used to compare the three resins was the 134 amino
acid tetranucleotide repeat domain of CHIP. This domain was chosen as a
representative long sequence, which also has synthetic data recently made
available using ChemMatrix resin.?® Figure 3.5 shows the synthesis of CHIP using
Octagel and Tentagel XV resins. Raw UV data for the synthesis of CHIP is shown in
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Figure 3.9. Details on the reactor failure when using ProTide resin in Figure 3.10.
The UV data for the remaining two resins recapitulate the observations for MDM2,
where Octagel resin saw a steady deprotection peak broadening coupled with a
decrease in total peak area. Tentagel XV saw a modest amount of deprotection
peak broadening, ending the synthesis with deprotection peaks with a reduced area
of about 25% and decreased height by 25%. After synthesis, the proteins were
biotinylated using Biotin-PEG4 propionic acid to test modifications of the N-terminus

on each resin.

Cleavage of the protein domain from both resins showed Tentagel XV to be the
preferred choice for the synthesis of long sequences. Tentagel XV resin resulted in
a higher crude yield after cleavage by a margin similar to yields for MDM2 (65%
versus 37% respectively, see Table 3.2). Crude LC-MS analysis also showed no
significant amount of product for Octagel resin, while the full-length biotinylated
sequence was observed in the crude product of Tentagel XV. This result supports
the inline UV absorbance measurements of the Fmoc deprotection, which
suggested a lower synthesis quality with the Octagel resin relative to the Tentagel
XV resin. To confirm these results, both proteins were purified by HPLC, and
fractions were analyzed by LC-MS. No fractions were found to contain the mass
corresponding to the full-length CHIP domain after Octagel synthesis. However,
Tentagel XV resin afforded reasonable isolated purification yield (8%), which was
moderately higher than ChemMatrix resin for the synthesis and purification of CHIP
(2%).28
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Table 3.2: Resin measurements, crude yields and purification yields for the synthesis of
MDM2 and CHIP on Octagel, ProTide and Tentagel XV resins. Theoretical mass is
calculated based on the reported loading of the resin by the respective vendor.
Extrapolated yield refers to the total yield if all crude material was purified with yields similar
to what was recovered from the isolated pure mass.

Isolated

Starting Crude Isolated  Theor. Purified . Extrap.
Protein  Resin Resin Resin Mass Mass C[eaved Mass e Pynﬁed Yield Oyerall
Yield Mass Yield Yield
(mg) (mg) (mg) (mg) (mg) (mg) (mg)
MDM2  Octagel  49.9 2005 713 2309  31% 358 1.1 3% 2% 1%
MDM2  ProTide -2
MDM2 )T(f/”tage' 96.9 3522 1784 2734  65%°  41.1 8.2 20% 35.6 13%
CHP  Octagel 54.0 2652 895 366.1  24% 38.0 00 0% 00 0%
CHIP  ProTide 105.7 oc
CHIP )T(f/”tage' 99.0 5530 1924 4186  46% 468 85 18% 34.9 8%

a Not synthesized due to observed increase in back pressure during CHIP synthesis
b Synthesis ended in reactor failure due to an increase of back pressure by leakage of fine particles into UV module

3.3. Conclusion

Here we report the performance of three different commercially available PEG-
grafted polystyrene resins used for the synthesis of four peptide sequences of
varying length and synthetic difficulty using an automated flow synthesizer. The
synthesis quality of each synthesis was evaluated by inline UV absorbance to
quantify Fmoc deprotection, yields after cleavage from the solid phase, and crude
purities. While these studies were performed on a fast-flow automated peptide
synthesizer, the same chemical principles should apply to batch synthesizers or
manual synthesis assuming similar reaction conditions are used across each resin
type. ProTide resin showed excellent performance for short to intermediate length
peptides JR10 (10 residues) and GLP-1 (30 residues), but due to technical
limitations was unable to be evaluated for synthesis of small proteins MDM2 and
CHIP. The technical issues could be resolved through use of finer filter paper or a
smaller pore size reactor frit, but it would require additional instrument optimization
to ensure comparable fluid delivery and safe operating pressures. Octagel resin
underperformed across all four sequences, showing significant side-chain to
backbone aggregation during synthesis of JR10 and GLP-1, decreased yields for
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MDM2, and an unsuccessful synthesis of CHIP. However, reduction of the loading
amount significantly improved the performance of Octagel resin, making it another
viable possibility. Tentagel XV resin showed acceptable to superior performance
across all sequences and appears to be comparable to reported syntheses on
ChemMatrix resin. Summaries of the yields for JR10 and GLP-1 are given in Table
3.1, while yields for MDM2 and CHIP are given in Table 3.2. Representative
syntheses were shown here, but synthesis results are highly reproducible as
supported by our previous work.7,28,33 Notably, the high reproducibility of
automated flow syntheses enabled collection of high quality UV-Vis data for training
a deep learning model that can predict synthesis outcomes.14 While not an
exhaustive study for the available solid supports for peptide synthesis, this work
seeks to provide a survey of current commercial PEG-PS options, recommends
products tailored for specific sequence length ranges, and offers a template for

evaluation of additional candidates.

3.4. Materials

Fmoc-Rink Amide OctaGel resin (0.441 mmol/g) was purchased from Aapptec,
Tentagel XV RAM resin (0.27 mmol/g) was purchased from Rapp Polymere, and
ProTide Rink amide resin (0.20 mmol/g) was purchased from CEM Corporation.
Reaction vessels were purchased from Torviq equipped with a polypropylene frit. To
each vessel was added a disc of Porex filter paper (0.025” thick, 7-12 micron) from
Interstate Specialty Products. N,N-Dimethylformamide (DMF, biosynthesis grade)
was purchased from Millipore Sigma (product DX1732-1). N,N-
Diisopropylethylamine (DIEA; ReagentPlus 299%), piperidine (ACS reagent,
=299.0%), trifluoroacetic acid (HPLC grade, 299.0%), triisopropylsilane (298.0%),
acetonitrile (AcN, HPLC grade), formic acid (FA, 295.0%), 1,2- ethanedithiol (EDT,
GC grade, 298.0%), and AldraAmine trapping agents (for 1000 - 4000 mL DMF,
catalog number Z511706) were purchased from Sigma-Aldrich. Fmoc-protected
amino acids (FmocAla-OHxH20O, Fmoc-Arg(Pbf )-OH; Fmoc-Asn(Trt)-OH; Fmoc-
Asp-(O-t-Bu)-OH; FmocCys(Trt)-OH; Fmoc-GIn(Trt)-OH; Fmoc-Glu(O-t-Bu)-OH,;
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Fmoc-Gly-OH; Fmoc-His(Trt)- OH; Fmoc-lle-OH; Fmoc-Leu-OH; Fmoc-Lys(Boc)-
OH; Fmoc-Met-OH; Fmoc-Phe-OH; Fmoc- ProOH; Fmoc-Ser(But)-OH; Fmoc-Thr(t-
Bu)-OH; Fmoc-Trp(Boc)-OH; Fmoc-Tyr(O-t-Bu)- OH; Fmoc-Val-OH); Fmoc-
Glu(biotinyl-PEG)-OH (product 8.52102, CAS Num. 817169-73-6) were purchased
from the Novabiochem product line of Millipore Sigma; Fmoc-His(Boc)-OH and
Biotin-PEG4-propionic acid were purchased from ChemPep, Inc. O-(7-
azabenzotriazol-1-yl)-N,N,N’,N-tetramethyluronium hexafluorophosphate (HATU,
297.0%) and (7-azabenzotriazol-1-yloxy)tripyrrolidinophosphonium
hexafluorophosphate (PyAOP, 297.0%) were purchased from P3 Biosystems.
Glacial acetic acid (ACS grade) was purchased from VWR Chemicals. Water was
deionized using a Milli-Q water purification system (Millipore). Nylon 0.22 ym
syringe filters were TISCH brand SPEC17984.

3.5. Methods

3.5.1. Manual amino acid coupling

Sequences were synthesized using the following amounts of resin weighed into
5 mL Torviq syringes: 50 mg of Octagel resin, 100 mg of Tentagel XV resin, and 100
mg of ProTide resin. Before synthesis, all resins were allowed to swell in amine-free
DMF for 15 minutes. For the manual coupling of biotinylated amino acids, resins
were deprotected using 20% (v/v) piperidine in DMF (2 x 5 mL with 5 min incubation
each time) and washed with DMF (3 x 5 mL) before addition of biotinylated acid (5
equivalents) dissolved in a solution of PyAOP (0.38M, 4.5 equivalents) and
activation with DIEA (15 equivalents). Coupling solutions were stirred periodically
and incubated for 2 hours. Resins were then washed with DMF (3 x 5 mL) and DCM

(3 x 5mL), dried under reduced pressure and stored for later synthesis.
3.5.2. Automated fast-flow peptide synthesis

Before synthesis, all resins were allowed to swell in amine-free DMF for 15
minutes. Utilizing an automated synthesizer, amine-free DMF washed the resin

before coupling, after coupling, and after deprotection (40 strokes, ~25 mL).
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Coupling was performed with HATU (single-coupling, 8 strokes, ~5 mL) except S
and A with HATU (double-coupling, 21 strokes, ~10 mL) and C, H, N, Q, R, V, T with
PyAOP (double-coupling, 21 strokes, ~10 mL). Deprotection was completed with
20% piperidine in amine-free DMF with 2% formic acid (13 pump strokes, ~5 mL).
Amino acids were iteratively coupled and deprotected until the stepwise synthesis
was complete. After automated synthesis, the resin was washed again with DMF (3
x 5 mL) and DCM (3 x 5 mL) then dried under reduced pressure. For a detailed
explanation of the instrument setup and related chemistries, see Hartrampf et al.,’
Simon et al.,?"32 Mijalis et al.,®®* and Mong et al.3* Sequences synthesized were as

follows:
1. JR10: WFTTLISTIM-NH:
2. GLP-1: HAEGTFTSDV SSYLEGQAAK EFIAWLVKGR-NH:

3. MDM2: TLVRPKPLLL KLLKSVGAQK DTYTMKEVLF YLGQYIMTKR
LYDEKQQHIV YCSNDLLGDL FGVPSFSVKE HRKIYTMIYR NLVV-NH:

4. CHIP: (Biotin-PEG4)-SPSAQELKEQ GNRLFVGRKY PEAAACYGRA
ITRNPLVAVY YT- NRALCYLK MQQHEQALAD CRRALELDGQ SVKAHFFLGQ
CQLEMESYDE AIAN- LQRAYS LAKEQRLNFG DDIPSALRIA KKKRWNSIEE RR-
NH>

3.5.3. Integration of synthesizer UV signal

UV absorbance at 310 nm was continuously monitored over the course of
synthesis using an Agilent G1315D 1260 variable length diode array detector.
Deprotection peaks were identified based on syncing timepoints to pump steps and
baseline corrected using the PeakUtils package (Version 1.3.3) in Python (Version
3.9.6). Integrated areas, heights, and widths of the deprotection peaks were
normalized to the second deprotection peak. Integration was done using a
cumulative sum of rectangles based on the time step of a single pump stroke (~1.3

sec).
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3.5.4. Cleavage of peptides from the solid-phase support

Before cleavage, all dried resins were weighed to assess crude on-resin yield.
Cleavage from solid phase and global deprotection was performed using a solution
of 94% trifluoroacetic acid, 2.5% water, 2.5% ethanedithiol and 1% triisopropylsilane
for JR10 and GLP-1 resins, and Reagent K (82.5% trifluoroacetic acid, 5% water,
5% phenol, 5% thioanisole, 2.5% ethanedithiol) was used for MDM2 and CHIP.
Each resin was suspended in 2 mLs of their respective cleavage cocktail, with JR10
and GLP-1 resins left to incubate for 2 hours at room temperature and MDM2 and
CHIP resins left to incubate for 3 hours at room temperature. The peptides were
triturated with cold diethyl ether (3 x 15 mL for JR10 and GLP-1, 1 x 45 mL and 2 x
25 mL for MDM2 and CHIP), dried gently using N2, suspended in 50% acetonitrile
in water (0.1% trifluoroacetic acid), and lyophilized. Lyophilized powders were
weighed to give crude yields post-resin cleavage.

3.5.5. Liquid chromatography-mass spectrometry (LC-MS)

LC-MS chromatograms and associated high resolution mass spectra were
acquired using an Agi- lent 1290 Infinity HPLC coupled to an Agilent 6550 Q-TOF
iFunnel mass spectrometer using a Phenomenex Jupiter C4 column (150 x 1.0 mm
ID, 5 um, 300A silica) heated at 40 °C or a Zorbax 300SB-C3 column (150 x 2.1
mm ID, 5 um, 300A silica) at 40 °C. Solvent compositions were 0.1% formic acid in
water (solvent A) and 0.1% formic acid in acetonitrile (solvent B). Method 1 was
used for characterization of crude material, and methods 2 and 3 were used for
fraction analysis after semi-preparative HPLC purification.

1. Column: Zorbax 300SB-C3. Gradient: linear gradient 5-65% B from 0-30 min;
isocratic 91% B from 30-32 min; post time 5% B for 3 min. Flow rate: 0.4 mL/min.
MS data was collected from 1-30 min; MS was run in positive ionization mode,
extended dynamic range (2 GHz), and standard mass range (m/z in the range of
300 to 3000 a.m.u.).
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2. Column: Jupiter C4. Gradient: isocratic 1% B from 0-2 min; linear gradient 1-
91% B from 2-8 min; isocratic 95% B from 8-10 min; post time 1% B for 1 min. Flow
rate: 0.3 mL/min. MS data was collected from 2-8 min; MS was run in positive
ionization mode, extended dynamic range (2 GHz), and standard mass range (m/z
in the range of 300 to 3000 a.m.u.).

3. Column: Jupiter C4. Gradient: isocratic 1% B from 0-3 min; linear gradient 1-
91% B from 3-15 min; isocratic 95% B from 15-18 min; post time 1% B for 2 min.
Flow rate: 0.3 mL/min. MS data was collected from 3-15 min; MS was run in
positive ionization mode, extended dynamic range (2 GHz), and standard mass
range (m/z in the range of 300 to 3000 a.m.u.).

3.5.6. Analytical ultra high-performance liquid chromatography (UHPLC)

Analytical HPLC analysis was performed using an Agilent 1200 series system
with UV detection at 214 nm on a Zorbax 300SB-C3 column (150 x 2.1 mm ID, 5
um, 300A silica) on an Agilent 1200 HPLC at room temperature. Solvent
compositions were 0.1% trifluoroacetic acid in water (solvent A) and 0.08%
trifluoroacetic acid in acetonitrile (solvent B). Gradient: linear gradient 5-65% B from
0-60 min; linear gradient 65-100% B from 60-61 min; isocratic 100% B from 61-66
min; linear gradient 100-5% B from 66-67 min; isocratic 5% B from 67-75 min. Flow
rate: 0.400 mL/min. A solvent-only blank injection was subtracted from each run

before determining purity through manual integration of all signals from 0 to 61 min.

3.5.7. Semi-preparative high-performance liquid chromatography of MDM2
and CHIP

Lyophilized crude sample of protein was weighed in batches of ~35 mg,
dissolved in 10 mL of 6 M guanidinium chloride, 0.1 M dithiothreitol, in 50 mM
sodium phosphate pH 7.5, vortexed briefly, 0.2 pym filtered, and subjected to RP-
HPLC purification using an Agilent Zorbax 300SB-C18 PrepHT (9.4 x 250 mm, 5
pMm) column with an Agilent C3 Zorbax SB 300 guard column heated at 60 °C at 4.0

mL/min with the gradients listed in the subsequent section. Purification was
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performed on an Agilent mass-directed purification system (1260 Infinity LC and
6130 Single Quad MS) with a Timberline Instrument TL105 HPLC column heater.
Fractions showing high purity charge state series were combined, lyophilized, and
analyzed via LC-MS and analytical HPLC.

1. MDMZ2: Isocratic 5% B from 0-2 min; linear gradient 5-30% B from 2-32 min;
linear gradient 30-50% B from 32-132 min; linear gradient 50-65% B from 132-133
min; linear gradient 65-80% B from 133-136 min; post time 5% B for 10 min.

2. CHIP: Isocratic 5% B from 0-2 min; linear gradient 5-35% B from 2-32 min;
linear gradient 35-55% B from 32-132 min; linear gradient 55-75% B from 132-133
min; linear gradient 75-90% B from 133-136 min; post time 5% B for 10 min.
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3.6. Appendix I: UV signals from fast-flow synthesizer

(a) WFTTLISTIM-NH, (10 AA)
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Figure 3.6: Sequence of JR10 (a) and raw UV absorbance data for the synthesis of JR10
on (b) Octagel resin, (c) ProTide resin, and (d) Tentagel XV RAM resin. Each synthesis
begins with washing the resin, followed by deprotection of the Fmoc protecting group as
seen by the lower intensity peaks. The subsequent amino acid is then coupled, as shown
by the high intensity saturated peaks.
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HAEGTFTSDV SSYLEGQAAK EFIAWLVKGR-NH, (3@ AA)
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Figure 3.7: Sequence of GLP-1 (a) and raw UV absorbance data for the synthesis of GLP-
1 on (b) Octagel resin, (c) ProTide resin, and (d) Tentagel XV RAM resin. Each synthesis
begins with washing the resin, followed by deprotection of the Fmoc protecting group as
seen by the lower intensity peaks. The subsequent amino acid is then coupled, as shown
by the high intensity saturated peaks.
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(a) TLVRPKPLLL KLLKSVGAQK DTYTMKEVLF YLGQYIMTKR LYDEKQQHIV
YCSNDLLGDL FGVPSFSVKE HRKIYTMIYR NLVVX-NH, (85 AA, X = Glu(Biotinyl-PEG))

(b) UV Signal of MDM2 Octagel Synthesis
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Figure 3.8: Sequence of MDM?2 (a) and raw UV absorbance data for the synthesis of
MDM?2 on (b) Octagel resin and (c) Tentagel XV RAM resin. Each synthesis begins with
washing the resin, followed by deprotection of the Fmoc protecting group as seen by the
lower intensity peaks. The subsequent amino acid is then coupled, as shown by the high
intensity saturated peaks.
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ZSPSAQELKE QGNRLFVGRK YPEAAACYGR AITRNPLVAV YYTNRALCYL
(@) KMQQHEQALA DCRRALELDG QSVKAHFFLG QCQLEMESYD EATANLQRAY
SLAKEQRLNF GDDIPSALRI AKKKRWNSIE ERR-NH, (133 AA, Z = Biotin-Peg,)
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Figure 3.9: Sequence of CHIP (a) and raw UV absorbance data for the synthesis of CHIP
on (b) Octagel resin, (c) ProTide resin, and (d) Tentagel XV RAM resin. Each synthesis
begins with washing the resin, followed by deprotection of the Fmoc protecting group as
seen by the lower intensity peaks. The subsequent amino acid is then coupled, as shown
by the high intensity saturated peaks.
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Figure 3.10: Synthesis data of CHIP using ProTide resin during reactor failure. (a)
Deprotection peak characterization during synthesis shows aberrant behavior early in the
sequence with a point of failure less than 40 coupling cycles into the stepwise synthesis
process. (b) Close up view of UV absorbance at time of reactor failure, resulting in an
almost complete disappearance of deprotection peaks.
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3.7. Appendix Il: LC-MS and UHPLC characterization data
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Figure 3.11: LC-MS analysis of truncation products from the synthesis of JR10 on Octagel
resin. The panels depict deconvoluted mass spectra of the bands highlighted in red from
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the corresponding total ion count chromatogram (TICC) shown in insets.
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Figure 3.12: LC-MS analysis of truncation products from the synthesis of JR10 on Tentagel
XV RAM resin. The panels depict deconvoluted mass spectra of the bands highlighted in
red from the corresponding total ion count chromatogram (TICC) shown in insets.
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Figure 3.13: LC-MS analysis of truncation products from the synthesis of JR10 on Tentagel
XV RAM resin. The panels depict deconvoluted mass spectra of the bands highlighted in
red from the corresponding total ion count chromatogram (TICC) shown in insets.
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Analytical HPLC of JR10
at Different Resin Loading
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Figure 3.14: Analytical HPLC analysis of JR10 syntheses done with Tentagel XV RAM
resin at full loading, 50% total loading and 10% total loading after capping of the resin with
the respective amounts of acetic acid. Crude purities for the 50% and 10% loading resins
were 61% and 46%, respectively (compared to 32% for the full loading), showing that

lowering the loading of the resin can help prevent aggregation.
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Figure 3.15: Analytical HPLC analysis of JR10 syntheses done Octagel resin at full
loading, 63% total loading, 31% total loading and 6% total loading after capping of the resin
with the respective amounts of acetic acid. Crude purities for the 63%, 31% and 6% loading
resins were 38%, 60% and 80%, respectively (compared to 24% for the full loading),
showing that lowering the loading of the resin can help prevent aggregation.
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Figure 3.16: LC-MS analysis of truncation products from the synthesis of GLP-1 on

Octagel resin. The panels depict deconvoluted mass spectra of the bands highlighted in red

from the corresponding total ion count chromatogram (TICC) shown in insets.
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Figure 3.17: LC-MS analysis of truncation products from the synthesis of GLP-1 on
Tentagel XV RAM resin. The panels depict deconvoluted mass spectra of the bands
highlighted in red from the corresponding total ion count chromatogram (TICC) shown in

insets.
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Figure 3.18: LC-MS analysis of truncation products from the synthesis of GLP-1 on

ProTide resin. The panels depict deconvoluted mass spectra of the bands highlighted in red

from the corresponding total ion count chromatogram (TICC) shown in insets.
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Figure 3.19: Analytical HPLC analysis of syntheses to test for incomplete manual couplings
dependent upon the success of the initial Fmoc deprotection. (a) Test sequence used for
each synthesis, with a variable residue at the C terminus to test individual monomer effects.
(b) Analytical HPLC data for five different C terminal monomers, showing no significant
differences between two five-minute deprotection reactions compared to three five-minute
deprotection reactions.
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Deprotection Peak Characteristics
of MDM2 Octagel 63% Loading
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Figure 3.20: UV absorbance, crude analytical HPLC, and crude LC-MS data for the
synthesis of MDM?2 on Octagel resin that has been reduced to 63% of its original loading,
roughly matching the loading of Tentagel XV resin. Calculated deconvoluted mass:
9899.82; Observed deconvoluted mass: 9899.7 (-9.0 ppm error).
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4. pyBinder: Label-free Quantitation to Advance Affinity Selection-
Mass Spectrometry

The work presented in this chapter has been reproduced and adapted from the
following publication:

Lee, M.A.*; Brown, J.S.*; Loas, A.; Pentelute, B.L. pyBinder: Label-free Quantitation
to Advance Affinity Selection-Mass Spectrometry. Manuscript in preparation. 2024

*Denotes equal contribution
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4.1. Introduction

Affinity selection-mass spectrometry (AS-MS) discovers high-affinity ligands to
biomolecular targets using mass spectrometry for ligand identification.’-® The
affinity selection of AS-MS is highly similar to phage and mRNA display,*® though
AS-MS generally utilizes a single enrichment step without genetic amplification. AS-
MS utilizes synthetic libraries, providing unfettered access to non-natural amino
acids and a facile design opportunity to tailor libraries toward the target. Thus, one
of the primary uses of AS-MS is the selection of small combinatorial libraries (103-
10°) biased or ‘focused’ toward the target to gain structure activity relationship
(SAR) information.”~'° These approaches can accelerate medicinal chemistry efforts
by the rapid identification of ‘hot-spot’ residues as well as the combinatorial
sampling of the chemical space available to non-natural amino acids.”'"-'> Beyond
these focused efforts, recent advancements have demonstrated de novo ligand
discovery with AS-MS from fully randomized peptide and peptidomimetic libraries
up to 108 members against several targets.'*-'6 Despite its prominence, AS-MS
heavily depends on mass spectrometry analysis and stands to benefit by leveraging
methods from the field of MS-based proteomics.

Solutions developed to combat data incompleteness in the field of proteomics
could be highly valuable to improve AS-MS. MS-based proteomics has long detailed
the “missing value” problem, hallmarked by an incomplete series of peptides or
proteins expected across samples or replicates.'’-2° This challenge is pronounced
in approaches that use data dependent acquisition (DDA), where precursors are
selected from the mass spectrum (MS") for tandem MS? fragmentation. Precursor
ions are often selected in order of their signal intensity in DDA, biasing the
discovery of highly ionizing species. While the rules for precursor selection for MS?
are clearly outlined, the precursor selection process is not perfectly reproducible
and is instead stochastic. This stochasticity can hinder further data analysis,
ranging from the identified peptides across technical replicates as well as statistical

analysis for sample comparison.
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Label-free quantitation (LFQ) is directly compatible with AS-MS and provides a
solution to incomplete data without relying on peptide sequence identification from
MS? fragmentation. LFQ has long been a foundational method for the analysis of
proteomic mixtures through the examination of peptide precursor ions. This
approach makes LFQ highly compatible with AS-MS because it allows for the
comparison of peptide ions without relying on sequence databases, stable isotope
labeling, or chemical labeling.?'-2® The MS" spectra LFQ uses provide a larger
dynamic range of ion detection, as opposed to quantification in tandem MS? spectra
(e.g., tandem mass tags).?* However, the quantitation capability of LFQ is strongly
reliant on mass spectrometry resolution, with precise, high-resolution instruments
demonstrating improved discernment between peptide features.?52¢ LFQ is also
highly susceptible to variation in experimental conditions. Advances in
computational analysis of mass spectrometry have become largely ubiquitous for
LFQ, commonly seen in commercial and open-source software including
MaxQuant,?? Proteome Discoverer, and PEAKS Studio.?’-2° LFQ has thus been
shown to increase data depth, sensitivity, and data completeness with applications
in biomarker discovery, disease profiling, elucidation of drug mechanisms, and
single-cell proteomics, underscoring its versatility and value in both basic and
applied research.?'3° Thus, LFQ is well-positioned to enhance the capabilities of
AS-MS.

In this work, we demonstrate the integration of LFQ into AS-MS for the
improved discovery of target-selective, high-affinity peptide ligands, named
pyBinder. Data processing methods in AS-MS have primarily focused on filtering
peptide sequencing data derived from MS? spectra, strongly increasing the
dependence on mass spectrometry performance.®' However, we seek to
understand the target-selectivity of the ligand discovered, best done by comparing
the MS' mass spectrometry data. Specifically, we use the result from LFQ of AS-MS
samples to create two scores to understand the value of the peptides ligands
discovered: i) target selectivity by comparing experimental samples (target versus
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off-target) and ii) concentration-dependent enrichment score (CDE), understood by
comparing multiple samples from affinity selections completed at different target
concentrations. We examine the ligands discovered from AS-MS against anti-
hemagglutinin antibody (12ca5) and WD repeat-containing protein 5 (WDRS5), which
both have known high-affinity binding motifs that can validate the analysis method
used. Overall, the outcome of pyBinder analysis demonstrates that 12ca5 and
WDRS5 motif-containing peptides are highly ranked by target selectivity and CDE
versus other peptide features identified in the LFQ analysis. This result also enables
targeted measurement of desired ions that show target selectivity and CDE. Thus,
from discovery data, pyBinder appears poised to provide a variety of benefits for
peptide drug discovery from AS-MS data ranging from minimizing the discovery of
nonspecific ligands, structure activity relationships (SAR), to the estimation of
binding affinity (Kb) direct from ligand discovery experiments.

4.2. Results and Discussion

Using peptide libraries, AS-MS performs an affinity selection against
biomolecular targets and relies upon mass spectrometry to reveal the target-
enriched peptide sequences. Thus, improvements to mass spectrometry protocols
stand to improve AS-MS broadly. To understand AS-MS data, we considered what
we term “sequencing coverage” and “sequencing fidelity.” Sequencing coverage is
defined as the percentage of peptide precursor ions isolated for MS? fragmentation.
Low sequencing coverage would indicate that the mass spectrometer was
“‘overwhelmed” with peptides above its capabilities and/or the peptides were in low
abundance necessitating long accumulation times. In comparison, high sequencing
coverage would indicate that the spectrometer generated MS? spectra to most all
peptides. Sequencing fidelity is defined as the percentage of MS? spectra that
produce high-quality sequence assignment in its analysis. In our work, de novo
sequencing analysis was performed in PEAKS Studio where an Average Local
Confidence (ALC) of = 80 was considered to be sufficient for high-quality sequence
assignment.?” Low sequence fidelity is generally due to poor or incomplete
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fragmentation patterns (i.e., b- and y-ions) due to low peptide abundance, co-
isolation of multiple peptide precursors, poor fragmentation kinetics of the particular
sequence (e.g. presence of C-terminal proline hindering nonspecific
fragmentation®2-3%) and/or errant isolation of non-peptide library species by the mass
spectrometer. Thus, by investigating the sequence coverage and sequence fidelity
of our mass spectrometer, we can improve the data generated by AS-MS both in

quantity and quality.

We performed retrospective analysis of a prior AS-MS discovery campaign to
estimate sequence coverage and fidelity to be 10-18% and 0.2-1%, respectively
(Figure 4.1), indicating a data incompleteness challenge in AS-MS currently. We
reanalyzed the raw data from our previously published ligand discovery campaign
of a natural 12-mer library against angiotensin-converting enzyme 2 (ACE2) with
anti-hemagglutinin antibody 12ca5 used as a side-by-side off-target control.’
Analysis of the raw data in PEAKS Studio enumerated the peptide features in the
mass chromatogram (retention time versus mass-to-charge ratio, m/z), MS?
spectra, and ALC of the sequence assignment per peptide feature. With over
30,000 peptide features, 3,468 (ACE2) and 5,895 (12ca5) MS? spectra were
gathered, meaning the sequence coverage was low at 10.6% and 17.7% for ACE2
and 12ca5. Thus, a maximum rate of ~1.2 MS? spectra per second was observed.
While modern mass spectrometers like the Orbitrap Fusion Lumos used here can
perform faster, both higher-energy collisional dissociation (HCD) and electron-
transfer dissociation (ETD) fragmentation methods were used and has been
previously seen to improve the fidelity of de novo sequencing due to their
orthogonality.8.'33" This sequencing coverage indicates that most peptides (> 80%
of the ~33,000 peptides) were not isolated for MS? fragmentation by the mass
spectrometer despite the use of a long 120-minute gradient. In addition, sequence
fidelity was low at 0.24% and 1.1% for ACE2 and 12ca5, respectively, meaning that
most all (> 95%) MS? mass spectra gathered did not produce a high-quality
sequence assignment to the library used in the affinity selection experiment. This
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analysis clearly indicates that AS-MS samples are highly complex, and the mass
spectrometer appeared “overwhelmed” with the number of peptides eluting given its
throughput.
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Figure 4.1: Retrospective analysis of previous AS-MS campaigns reveals the opportunity
for deeper data analysis by LFQ. (A) Total map of mass-to-charge ratio versus retention
time with peptide features identified by PEAKS studio in black, all collected MS? scans in
blue, and all MS? scans that resulted in a high confidence sequence in red. High confidence
sequences were defined by having an ALC score calculated by PEAKS Studio greater than
80% with a sequence that conforms to the synthetic library design. (B) A zoomed in portion
of the mass-to-charge ratio versus retention time plot filtered to show only z states of 3
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shows the dearth of high confidence identifications during untargeted runs. (C) Statistics for
each of the three groups, showing the percentages of the total number of features
subjected to MS? and that resulted in high confidence sequences that conform to the
synthetic library design.

To improve the mass spectrometry in AS-MS, MS-based proteomic methods
were considered, first with the use of spectral database matching. The practice of
spectral database matching is commonplace and would boost sequencing fidelity if
applicable. This method matches MS? spectra with a database of peptide
sequences that may be present in the sample, meaning peptide sequences can be
confidently assigned to an incomplete MS? spectra. However, the use of spectral
database matching appeared intractable for AS-MS using large (108) libraries for de
novo discovery.’® AS-MS libraries are prepared by split-and-pool synthesis to
sample a vast theoretical sequence space.*® For example, one common AS-MS
library design uses an X12K design, where X is the 20 natural amino acids except
cysteine (to exclude disulfide formation) and isoleucine (indistinguishable from
leucine). For this Xi2K library, 108 beads are used in synthesis, resulting in a 108
peptide library; however, the theoretical sequence space is 10'° in total size.'3-16
Because the sampling of the 108 peptides from the 10 is unbiased by design,
database matching analysis of an X42K library would need to consider spectral
matching against the full 105 theoretical sequence space. This large number of
sequences would result in a 15 PB/15000 TB FASTA file using a minimal UTF-8
encoding of each sequence and ignoring any additional sequence information
commonly used in a FASTA file format, which is unable to be handled by most MS
analysis software. Thus, database matching appeared intractable except for use
with smaller, more-focused libraries (e.g., a 108 peptide library database using the
same encoding method would be on the scale of 1-2 GB). For similar reasons due
to the scale of the theoretical sequence space, DDA-based MS methods appear
necessary, as DIA methods often rely upon spectral matching to improve the MS?
deconvolution of co-isolated peptides.®=*° Nevertheless, several strategies from
MS-based proteomics appear compatible with AS-MS including (LFQ) as

aforementioned were explored further.?'-23
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In an analysis method we call pyBinder, we combine LFQ with AS-MS data to
understand the quality and value of the ligands discovered for their target-selectivity
(Figure 4.2). While several standard proteomic software can accomplish LFQ
analysis of mass spectrometry data,?2?’-2° we sought to develop an open-source
approach in Python. Thus, the Python-based interface of OpenMS?° (pyOpenMS*°)
was chosen to perform LFQ, with the ACE2/12ca5 AS-MS dataset for initial
development. pyOpenMS was used to identify peptide features and prepare data for
LFQ. Peptides were identified according to fitting to the Averagine isotopic
distribution with z state filtering to compile a list of peptide features per AS-MS
sample replicate. Optimization of the feature identification was performed by
comparing the overlap in features identified between pyOpenMS and PEAKS
Studio, until both showed comparable feature detection capability. Details of the
parameter optimization are given in Table 4.2. Because AS-MS experiments are
completed in triplicate, the map of peptide features (retention time vs m/z) from
each sample was aligned in retention time using the pose clustering algorithm as
described in Lange et al*'. The resulting aligned map was used to generate a
consensus list of features across all proteins and replicates.

Affinity selection Mass Label-free quantitation Targeted mass
with synthetic spectrometry  (LFQ) of MS' features spectrometry
libraries ™ iEers : R
i 2 I .~ o . Larger amount of
. £, § E,| o '—5’ target-selective
Y — " —_ — =, —> peptide sequences
e o i, - (MS2 data) and
5 g u N 3y improved data
@ Calculate target selectivity “ v generation

vs off-target protein R RN and concentration- AN
Mass-to-charge ratio dependent enrichment Mass-to-charge ratio

Figure 4.2: The combination of label-free quantitation (LFQ) and affinity selection-mass
spectrometry (AS-MS) stands to provide an improved AS-MS discovery platform. LFQ
performed by pyBinder enables the analysis of AS-MS data from the MS' peptide features
without relying on tandem sequencing results (MS? data). Thus, the success of the affinity
selection can be robustly judged by the enrichment level of peptides identified from MS’
features. The MS' features can be evaluated for the target-selectivity as well as target
concentration-dependent enrichment (CDE). With the target-selectivity and CDE scores, a
list of promising peptide features can be generated by pyBinder and fed back into a
subsequent targeted mass spectrometry run to potentially reveal a larger amount of target-
selective peptide ligands.
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To discern target-selectivity, pyBinder processes all peptide ion features
discovered from AS-MS using extracted ion chromatograms (EICs), where an EIC
shows all signal of a defined range of mass-to-charge ratio. In the EICs, the peptide
ion features are highly unique given the high precision of the Orbitrap spectrometer
utilized when combined with a specified retention time window. From these EICs, all
consensus features are quantitated by integration. Integrated peak areas were
gathered after a Savitsky-Golay noise filter was applied. Detection of the peak was
done independently by using the PeakUtils Python package within the EIC window
to account for retention time drift across AS-MS replicates. The smoothed, identified
peaks were then integrated numerically using cumulative trapezoids, as this method
accounts for abnormal peak shape while also remaining fast to compute.

From the integrated peaks areas, two scores were developed to rank and
prioritize peptides for their value as ligands: target-selectivity and concentration-
dependent enrichment (CDE, Figure 4.3). Target-selectivity of a ligand is a critical
and elusive property at play in all ligand discovery platforms. While experimental
controls and protocols are optimized, the discovery of nonselective or non-specific
ligands plagues discovery efforts.*?4* By comparing the integrated peak areas from
experimental replicates, the selectivity of each prospective ligand towards the target
protein versus off-target proteins is immediately assessed. As illustrated in Figure
4.3A, the target-selectivity score for a specific protein concentration is determined
by the fraction of the total peak area contributed by that protein, assigning a
selectivity score to each peptide feature for every protein, with all scores summing
to one. A target selective ligand will appear only in the AS-MS samples that contain
the target, whereas a nonselective ligand will have a target selectivity equal to the
reciprocal of the total number of targets. Thus, selectivity scores differentiate
between target-selective and nonselective ligands. With multiple AS-MS replicates,

statistical significance of the target selectivity is assigned.

The second score calculated in pyBinder is concentration-dependent
enrichment (CDE). CDE was inspired by the connection between concentration-
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dependence in binding interactions and selectivity and specificity.**** In pyBinder,
CDE measures the change in the integrated intensity of a peptide feature relative to
the amount of target protein used in the affinity selection experiment (Figure 4.3B).
To enable this, affinity selections were completed using varying quantities of target-
labelled magnetic beads, as well as a negative control with beads lacking the target
protein. We calculated the integrated peak areas for each protein loading scenario
and assigned a CDE score based on the formula depicted in Figure 4.3B. The sign
and magnitude of the CDE score is reported to gauge the target-selectivity of each
peptide feature.

Beyond target-selectivity, CDE scores can provide potential insight into ligand
binding affinity (Kb), with theoretical scenarios given assumed Kp values shown in
Figure 4.7. High CDE scores indicate strong peptide enrichment from the affinity
selection due to the target protein. Meanwhile, low CDE scores (e.g., near zero)
indicates peptide enrichment regardless of target protein concentration, explained
by nonspecific binding or poor affinity. Another potential case is a negative CDE
score that could indicate that the target protein reduces peptide enrichment,

possibly by reducing nonspecific binding.

By utilizing these two scores, peptides are prioritized based on their potential as
high-affinity, target-selective ligands. If known, the peptide sequences can provide
insight into structure activity relationships with respect to the target protein. If
unknown, the peptide ion features can be formulated into a targeted list to perform
subsequent targeted mass spectrometry. Readdressing the ACE2/12ca5 AS-MS
campaign, pyBinder revealed many peptide features that were target-specific, but
not isolated for MS? sequencing, consistent with the low sequence coverage. Full
results from pyBinder for both ACE2 and 12ca5 are given in Figures 4.8 and 4.9.
The low overall sequence coverage of AS-MS samples left many potential ligands
undiscovered, with >500 target-specific ligands to ACE2 and 12ca5 not isolated for
MS? sequencing. These peptide features could be formulated into a targeted list
and provide a strategy to overcome the stochastic nature of DDA-based tandem
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mass spectrometry of these complex AS-MS samples with improved sensitivity

(Figure 4.2). A much larger amount of data could then be revealed, greatly

improving the data generation capabilities of AS-MS as a ligand discovery platform.
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Figure 4.3: Target selectivity and concentration-dependent enrichment (CDE) scores are
used for the evaluation of the value of peptide features. (A) The selectivity score is
calculated by comparing the area for a given feature with respect to a single protein and the
total feature area measured across all proteins. A high selectivity score reflects a protein-
specific feature, while a selectivity score near the reciprocal of the total number of proteins
reflects a nonspecific binding feature. (B) The CDE score is calculated using the extracted
feature area across several protein concentrations using the formula shown at the right. A
high CDE score shows a strong pulldown of the peptide feature even at lower protein
concentrations, while a low CDE score shows a lack of relationship between protein
concentration and peptide pulldown.

To evaluate the performance of LFQ analysis by pyBinder of AS-MS data, an
affinity selection was completed using 12ca5 compared against unlabeled magnetic

beads. The anti-hemagglutinin antibody 12ca5 was chosen for its known binding
motif, where peptides containing the sequence D**DY(A/S) often exhibit high affinity

binding (e.g., Kb < 200 nM)."*4¢ The selection was performed using three different
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amounts of 12ca5 loaded on the beads to enable CDE score calculations with either
0 (beads only), 55, 110, or 180 pmol of 12ca5 utilized. Selectivity scores were
calculated using the beads only control as the off-target protein. After selection,
peptide sequencing was performed with the standard intensity-ranked DDA
approach, as in the 12ca5/ACE2 campaign. The list of sequenced peptides was
filtered to match the library design and peptides containing the 12cab binding motif
assigned with high confidence were compiled for analysis. This list of motif-
containing peptides was then compared to the results from pyBinder for the high-
priority peptide features.

Both the selectivity and CDE scores from pyBinder were high for 12cab motif-
containing peptides, which are expected to have high-affinity, target-selective
binding (Figure 4.4). Independently, the motif-containing peptides were color-coded
and visualized for the target-selectivity and CDE (Figure 4.4A and 4.4B). While their
statistical significance, denoted by -log1o(P-value), was less discerning than the
scores themselves, the target selectivity and CDE scores were clear to indicate the
high performance of the motif-containing peptides in the affinity selection
experiment. Also, as expected, many peptide features were not sequenced (shown
in gray) due to the low sequence coverage or low sequencing fidelity. Last,
combining the two scores (Figure 4.4C) presented a high density of motif-containing
peptides in the top right quadrant of the graph. Thus, this analysis in pyBinder,
rooted in LFQ, demonstrated clear potential to deeply analyze AS-MS data and
distinguish ligands that are expected to be target-selective and high-affinity.
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Figure 4.4: The target selectivity and CDE scores of 12ca5 motif containing peptides
demonstrate the ability of pyBinder to distinguish target-selective, high-affinity peptides due
to the presence of their known motif. Motif-containing peptides are shown in blue in each
graph, while all other detected features are shown in grey. (A) A comparison of the
selectivity score with respect to 12cab and the statistical significance as shown by the p-
value. (B) A comparison of the CDE score and the statistical significance as shown by the
p-value. (C) A comparison of the selectivity score and the CDE score. (D) A comparison of

selectivity score, CDE score, and p-value.
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With the proof-of-concept established with 12ca$, pyBinder demonstrated the
ability to evaluate an AS-MS experiment for two target proteins, 12ca5 and WDRS5,
using a similar motif-based analysis for validation. WDRS5, like 12ca5, also has a
known set of sequence motifs that are common to several ligands and inhibitors to
the WIN binding site based on arginine-containing tripeptide sequences (e.g., ART
and ARA) at the N-terminus of the peptide.*’*® From the AS-MS data, target
selectivity and CDE were calculated and sequence assignments were gathered
from the standard tandem sequencing of the 12ca5 and WDRS samples. Motif-
containing peptide sequences for both 12ca5 and WDRS5 assigned from the data
(ALC = 70) were matched back to their respective scores in pyBinder by mass and
are plotted according to their selectivity scores, CDE scores, and p-values in Figure
4.5. For this case, the CDE score appeared a more effective filter than target-
selectivity. A range of target selectivity scores were observed across all the motif-
containing peptides, suggesting a degree of nonspecific interactions with 12ca5 or
possible sample carry-over in the mass spectrometer. Last, the low P-value cutoffs
(p < 0.05) appeared to hinder the prioritization of motif-containing peptides,
consistent with the observations from the 12ca5 vs beads experiment in Figure 4.4A
and B. For both cases, these results indicate that the peak detection and integration
could potentially be improved to decrease the noise of the peak areas gathered.

Full pyBinder output is given in Figures 4.10 to 4.16.

Given its potential, target-selective peptide features from pyBinder were used in
a second round of mass spectrometry to reveal a larger amount of peptide ligands
compared to the standard approach for WDRS (Figure 4.5). The output from
pyBinder allows the quick prioritization of peptide features observed from the AS-
MS experiment using the target selectivity and CDE scores to construct a list of
features for tandem sequencing. With the same samples, additional mass
spectrometry to the m/z and retention time of promising peptide features was
completed. For WDRS5, this approach increased the number of ligands discovered
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(ALC > 70%) from 3 to 14, demonstrating the application to of pyBinder to increase

the data generated from AS-MS.
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Figure 4.5: The application of pyBinder in a second round of targeted mass spectrometry
increases the discovery rate of peptides containing the WDR5 binding motifs compared to
untargeted methods. Plots shown highlight WDR5 motif containing sequences that were
successfully sequenced with high enough confidence, defined as an ALC score greater than or
equal to 70. Gray points reflect extracted features that either were not sequenced or had too
low confidence in the sequence assignment. Motif containing peptides trend towards having
high selectivity scores and high CDE scores. Scatterplots comparing relationships between all
the scores used are shown, where (A) shows selectivity score against statistical confidence, (B)
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shows CDE score against statistical confidence, (C) shows selectivity score against CDE score,
and (D) shows all three values compared simultaneously. A tolerance value of 0.005 in mass-to-
charge ratio was used to match sequence assignments back to features annotated by pyBinder,
causing potential double assignments.

4.3. Conclusion

We presented a workflow to perform LFQ on AS-MS data called pyBinder
through the implementation of two scores of target-selectivity and concentration-
dependent enrichment (CDE). Starting from the results gathered from LFQ of AS-
MS data, target-selective ligands can be identified without the need for isobaric
labeling, stable-isotope labeling, or observation of MS2-based mass tags. Trends in
the two scores were shown to distinguish high-affinity, target-selective ligands for
two target proteins, 12ca5 and WDRS5. Because they are connected to the ligand
affinity, CDE scores are expected to be able to be combined with peptide sequence
information in machine learning models discover and develop ligands. However, we
did observe that the statistical significance of the two scores was less discerning.
Aside from improvements to the data quality, we expect this challenge could
potentially be remedied with improvements to the peak detection and integration
methods; however, the current method provides sufficiently powerful
characterization of the data.

From the two pyBinder scores, a list of prioritized peptide features could be
enumerated for successful targeting in subsequent mass spectrometry to expand
the data gathered from AS-MS. Lists of peptide features that exhibit high target
selectivity and CDE can be fed back into targeted mass spectrometry methods by
their mass-to-charge ratio and retention time extracted from MS" data. This
approach of targeted mass spectrometry enabled by pyBinder remedies the
challenge of high sample complexity and low sequencing coverage by focusing the
MS sequencing capacity toward promising ligands. Carried further, the targeting
enabled by pyBinder can enable the deliberate use of increased amounts of mass
spectrometer time per peptide to potentially increase sequencing fidelity. Thus,
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pyBinder appears able to overcome the two bottlenecks that limit AS-MS, sequence
coverage and sequence fidelity, originally revealed in our retrospective analysis.

Overall, we expect this work to improve the robustness of AS-MS ranging
from increasing the number of target-selective ligands discovered to the evaluation
of affinity selection conditions and peptide libraries. We demonstrated in the ability
of pyBinder to increase the amount of data generated from AS-MS experiments for
the purpose of target-selective ligand discovery (Figure 4.5). pyBinder removes the
reliance on sequencing results, which can be poor due to multiple reasons, and
instead reports quality of the AS-MS data using LFQ of MS" information. Thus,
pyBinder can analyze the general enrichment achieved by the affinity selection and
be used to evaluate experimental designs and the suitability of peptide libraries to
new targets. We expect pyBinder to significantly improve AS-MS for its ability to
perform de novo ligand discovery and establishing structure activity relationships.

4.4. Materials

Canonical Fmoc-protected amino acids (FmocAla-OHxH20, Fmoc-Arg(Pbf)-
OH; Fmoc-Asn(Trt)-OH; Fmoc-Asp-(O-t-Bu)-OH; FmocCys(Trt)-OH; Fmoc-GIn(Trt)-
OH; Fmoc-Glu(O-t-Bu)-OH; Fmoc-Gly-OH; Fmoc-His(Trt)- OH; Fmoc-lle-OH; Fmoc-
Leu-OH; Fmoc-Lys(Boc)-OH; Fmoc-Met-OH; Fmoc-Phe-OH; Fmoc- ProOH; Fmoc-
Ser(But)-OH; Fmoc-Thr(t-Bu)-OH; Fmoc-Trp(Boc)-OH; Fmoc-Tyr(O-t-Bu)-OH,;
Fmoc-Val-OH) were purchased from Sigma Millipore (Novabiochem) and used as
received. Fmoc-Lys(biotin)-OH was purchased from Sigma Millipore (Novabiochem)
and used as received. Fmoc-L-His(Boc)-OH was purchased from Advanced
ChemTech and used as received. O-(7-azabenzotriazol-1-yl)-N,N,N’,N’-
tetramethyluronium hexafluoro-phosphate (HATU, 297.0%) and (7-azabenzotriazol-
1-yloxy)tripyrrolidinophosphonium hexafluorophosphate (PyAOP, 297.0%) were
purchased from P3 Biosystems. Fmoc-Rink amide linker (4-[(R,S)-(2,4-
dimethoxyphenyl)(Fmoc-amino)methyl]phenoxyacetic acid) was purchased from
Chem Impex Inc (Wood Dale, IL) and used as received.
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Biosynthesis OmniSolv® grade N,N-dimethylformamide (DMF) was purchased
from EMD Millipore (DX1732-1) and incubated with 1 pack of AldraAmine trapping
agents (for 1000 — 4000 mL DMF, Sigma-Aldrich, catalog number Z511706) for 48
hours prior to use. was purchased from Sigma-Aldrich. Diisopropylethylamine
(DIEA; 99.5%, biotech grade, catalog number 387649) and piperidine (ACS
reagent, 299.0%) were purchased from Sigma-Aldrich. Formic acid (FA, 97%) was
purchased from Beantown Chemical, Corp. Reaction vessels were purchased from
Torviq equipped with a polypropylene frit. To each vessel was added a disc of Porex
filter paper (0.025” thick, 7-12 micron) from Interstate Specialty Products.
Dichloromethane (DCM; 299.8%, HPLC grade, contains amylene as stabilizer,
catalog number 34856), trifluoroacetic acid (HPLC grade, 299.0%),
triisopropylsilane (98%, catalog number 233781), diethyl ether (anhydrous, ACS
reagent, 299.0%), acetonitrile (HPLC grade, 299.9%), Omnisolv® acetonitrile (LC-
MS grade, AX0156-1), and Omnisolv® water (LC-MS grade, WX0001-1) were
purchased from Sigma-Aldrich. Methanol was purchased from Millipore Sigma.
Formic acid Optima LC/MS (A117) was purchased from Fisher Chemical. Water
was deionized using a Milli-Q Reference water purification system (Millipore). Nylon
0.22 pm syringe filters were TISCH brand SPEC17984.

20 ym TentaGel® M NH, Monosized Amino Microsphere resin was
purchased from Rapp Polymere Inc. (Tubingen, Germany). Nestle Carnation instant
nonfat dry milk (Code 12428935) was purchased from Nestle Professional (Solon,
OH). Dynabeads MyOne Streptavidin T1 magnetic microparticles were purchased
from Invitrogen (Carlsbad, CA). Phosphate buffered saline (10x, Molecular biology
grade) was purchased from Corning. Sodium chloride (ACS grade) was purchased
from Avantor. Guanidine hydrochloride (Cat BP178) and sodium phosphate
monobasic monohydrate were purchased from Fisher Scientific.

Mouse anti-hemagglutinin antibody (clone 12ca%) was purchased from
Columbia Biosciences Corporation (Cat: 00-1722, Frederick, Maryland) biotin-
(PEG)s-NHS ester and biotin-(PEG)s-propionic acid were purchased from ChemPep
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Inc. (Wellington, FL). Biotinylation of 12ca5 was performed as previously
described.'® WD repeat-containing protein 5 WDR5 was supplied by Civetta
Therapeutics (Cambridge, MA).

4.5. Methods

4.5.1. Split-and-pool synthesis of linear X12K peptide library

Synthesis of peptide libraries was performed using 20 um Tentagel M NH2 resin
(0.31 mmol/g) for a total of 2.4 x 10° sequences split into aliquots of 2 x 108
sequences. The resin was suspended in DMF and dividedly evenly between 18
syringes (all canonical amino acids except for cysteine and isoleucine) for variable
regions. Couplings were performed using the Fmoc-protected amino acid dissolved
in DMF (10 eq, 0.40M) with PyAOP (0.9 eq relative to amino acid, 0.38M) activated
with DIEA (1.1 eq relative to amino acid for histidine, 3 eq relative to amino acid for
all others). Couplings were incubated for 1 hour. The resin was then recombined
and washed with DMF, DCM, and DMF. Fmoc deprotection was performed using
20% piperidine in DMF (1x flow wash, 3 x 5 min batch treatments). The resin was
washed again with DMF, DCM, then DMF before being subjected to another split-

couple-pool cycle until completion of all randomized positions.
4.5.2. Peptide cleavage and global deprotection

Cleavage from solid phase and global deprotection was performed using a
solution of 95% trifluoroacetic acid, 2.5% water, and 2.5% triisopropylsilane (~20 mL
cleavage cocktail / g of resin). The solution was added until the resin was fully
swelled and free flowing, then the resin was agitated on a nutating mixer for 3
hours. The peptides were triturated with 10:1 cold diethyl ether to cleavage solution.
The precipitated solid was centrifuged into a pellet. The precipitate was washed
with cold ethyl ether in the same manner an additional two times. The resulting solid
pellet was dried gently using N2, suspended in 50% acetonitrile in water (0.1%

trifluoroacetic acid), and lyophilized.
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4.5.3. Solid-phase extraction of peptide library

Peptides were adjusted to 5% acetonitrile in aqueous media (0.1% TFA) and
purified using Supelclean™ LC-18 SPE Tube, bed wt. 1 g (Millipore Sigma Cat:
505471). The SPE tube was first conditioned with 3 CV of acetonitrile (0.1% TFA)
and then equilibrated with 5 CV of 5% acetonitrile in water (0.1% TFA). Then, the
suspended crude was loaded (Approximately 50 mg peptide loaded onto 1 g bed
mass) and washed with 10 CV of 5% acetonitrile in water (0.1% TFA). Peptides
were eluted with 70% acetonitrile (0.1% TFA, 1 CV) and lyophilized.

4.5.4. Affinity selection

Dynabeads MyOne Streptavidin T1 magnetic microparticles (3 mg, 300 uL per
replicate) were aliquoted and washed three times with Wash Buffer composed of 1x
PBS, 2% nonfat dry milk (NFDM) and 0.01% Tween20. 100 uL per protein replicate
of washed beads were aliquoted and incubated with biotinylated protein (1.2 eq) for
1 hour at 4 °C with agitation. At the same time, the peptide library dissolved in 1x
PBS was combined with prewashed beads (150 pL per replicate) and
supplemented with 10% NFDM in 1x PBS to a final concentration of 2% NFDM. The
library mixture was then incubated for 1 hour at 4 °C with agitation. The beads were
removed from the library mixture via magnetic rack and aliquoted to a 96 Deepwell
plate as shown below. Protein labelled beads were washed three times with Wash
Buffer and aliquoted into a 96 Deepwell plate as shown below in fractions based on
the desired protein loading per replicate. For lower protein concentrations,
additional unlabeled, prewashed beads were added to keep a constant total amount
of beads used per sample. An example setup for variable protein concentration is
shown below in Table 4.1.

Table 4.1: Example setup for an affinity selection utilizing variable protein concentrations
using 150 uL of beads total per replicate

Fraction Protein Loading 0% 33% 66% 100%
Unlabeled Beads Vol per well, uL 150 100 50 0
Protein Labeled Beads Vol per well, uL 0 50 100 150
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Affinity selections were then performed using a KingFisher™ Duo Prime
Purification System in 96 Deepwell Plates (Thermo Fisher Scientific, cat.
#95040450) with the following setup:

Plate 1

A | 10 pM/member peptide library diluted into 1x PBS, 2% milk 0.5
mL

B | 1.5 mg of magnetic beads (150 pL) diluted in Wash buffer (1x PBS, | 1 mL
2% NFDM, 0.01% Tween20)

C Wash buffer (1x PBS, 2% NFDM, 0.01% Tween20) 1 mL

D Reserved for 12-tip Deepwell magnetic comb (Thermo Fisher, 1 mL
cat. #97003500)

Plate 2

A 1x PBS at 4 °C 1 mL
B 1x PBS at 4 °C 1 mL
C 1x PBS at 4 °C 1 mL
D 1x PBS at 4 °C 1 mL

The program performed the following protocol:

1. Collect comb from Plate 1 Row D

2. Collect beads from Plate 1 Row B and wash for 30 sec at low

3. Wash beads for 30 sec in Plate 1 Row C

4. Incubate immobilized protein for 1 h at 10 °C with slow mixing in Plate 1 Row
A

5. Wash immobilized protein for 2 mins each at low speed in Plate 2 Rows A
through D
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6. Elute protein by mixing for 1 min at fast speed in Elution Strips 1 and 2
containing 100 pL of 6M guanidinium chloride in 50 mM sodium phosphate at
pH 7.4.

After affinity selection, samples were purified by STAGE Tip preparation, split
40:60 for initial analysis and targeted analysis separately, and dried using a vacuum
centrifuge. Dried samples for the initial scouting run were reconstituted into 16 yL of
nLC-MS/MS mobile phase A and 1.778 pL of Pierce Retention Time Calibration
Mixture (Thermo Fisher, catalog number 88321). Samples were centrifuged at 21.3k
rcf for 10 minutes at 4 °C. 4.5 pL were injected per sample for nLC-MS/MS analysis.
Dried samples for targeted analysis were reconstituted into 24 pL of nLC-MS/MS
mobile phase A and centrifuged at 21.3k rcf for 10 minutes at 4 °C. 4.5 yL were
injected per sample for nLC-MS/MS analysis.

4.5.5. Nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS)

analysis

Peptide sequencing was performed on an EASY-nLC 1200 (Thermo Fisher
Scientific) nano-liquid chromatography system with an Orbitrap Fusion Lumos
Tribrid Mass Spectrometer (Thermo Fisher Scientific). Samples were run on a
PepMap RSLC C18 column (2 um particle size, 25 cm x 75 ym ID; Thermo Fisher
Scientific, cat. #£S902) with a nanoViper Trap Column (C18, 3 uym particle size, 100
A pore size, 20 mm x 75 pym ID; Thermo Fisher Scientific, cat. #164946) for
desalting. Mobile phase A = water (0.1% FA) and mobile phase B = 80% AcN in
water (0.1% FA).

The ion source voltage was set to 2200 volts in positive mode. Primary mass
spectra were detected using the orbitrap at 120000 resolution with a scan range of
300-1400 (m/z), RF lens of 30%, a normalized AGC target of 250% with automatic
injection time, and 1 microscan. Candidate ions were chosen for tandem mass
spectrometry based on the following criteria: precursor mass range of 300-1200
(m/z), monoisotopic peak determination set to peptides, minimum intensity
threshold of 4e4, charge states ranging from +2-+6, dynamic exclusion after 1
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observation for 30 seconds with a +10 ppm range. Fragmentation was done in the
orbitrap using HCD followed by EThcD activation types with the following settings:
1.3 m/z isolation window, 0.3 m/z offset, 30000 resolution, defined first mass of 120
m/z, 300% normalized AGC target with 100 ms maximum injection time, 2
microscans in centroid mode. HCD mode used 25% HCD collision energy and
EThcD used 50% SA collision energy for z = 2 ions, 40% SA collision energy for z =
3 ions, and 35% SA collision energy for z = 4 to z = 6 ions. For targeted runs, a list
of m/z values were supplied for each protein with start times 20 minutes before the
reported retention time and stop times 20 minutes after the reported retention time
with a tolerance of +0.02 m/z. Full cycle time for MS' and MS? scans was 3

seconds.

The following gradient was used: linear gradient 1-45% B from 0-120 min; linear
gradient 45-90% B from 120-123 min; isocratic 90% B from 123-126 min; linear
gradient 90-20% B from 126-129 min; isocratic 20% B from 129-132 min; linear
gradient 20-90% B from 132-135 min; isocratic 90% B from 135-138 min; linear
gradient 90-20% B from 138-141 min; isocratic 20% B from 141-144 min; linear
gradient 20-90% B from 144-147 min; isocratic 90% B from 147-152 min.

Pre-column and analytical column were equilibrated before each run with 8 pL
and 12 uL of mobile phase A respectively xbefore sample injection. Samples were
loaded using 12 yL of mobile phase A. Mass data was recorded from 3-120 min.

4.5.6. Analysis of AS-MS data using pyBinder

RAW files of the initial runs were converted to mzML file format using
MSConvert from the ProteoWizard toolkit. Only MS" spectra were included in the
conversion. A full guide for the inputs is given with the pyBinder source code.
Briefly, the names of the proteins and concentrations used are input, as well as
user-determined limits for selectivity scoring and statistical confidence (default o =
0.05) along with parameters for peak detection. All inputs are checked for validity

and output directories are created in the user-specified locations. mzML files are
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then opened using OpenMS (version 3.0.0) and centroided using the
PeakPickerHiRes class with the default parameters. Plots comparing the profile and

centroided versions are generated for inspection.

Following data centroiding, feature maps are generated for each mzML file
using the FeatureFinder class with the following parameters:
isotopic_pattern:mz_tolerance = 0.01, isotopic_pattern:charge_low = 2,
isotopic_pattern:charge_high = 5, feature:max_rt_span = 3,
mass_trace:min_spectra = 9, feature:rt_shape = asymmetric, seed:min_score = 0.5,
feature:min_score = 0.5, mass_trace:max_missing = 4. All other parameters were
used at their default value. All feature maps were exported to featureXML file

format.

The feature maps were then aligned in retention time with the feature map with
the greatest number of features as a reference. The
MapAlignmentAlgorithmPoseClustering class was used with the following
parameters: superimposer.mz_pair_max_distance = 0.5,
pairfinder:distance_RT:max_difference = 300, superimposer:max_shift = 2000. All
other parameters were used at their default value. Original retention times for each
feature map were stored separately. Plots showing the retention times before and
after alignment were generated. The aligned feature maps were then grouped into a
consensus feature map using the FeatureGroupingAlgorithmQT class with the
following parameters: distance_MZ:max_difference = 0.01,
distance RT:max_difference = 150. All other parameters were used at their default
value. Retention time and mass-to-charge ratios were then extracted from the
consensus map for use in further analysis, and the consensus map was also

exported to a consensusXML file.

A mass filter is applied to the list of all features, defined as having a minimum
mass of a sequence comprised of only glycine and a maximum mass of a sequence

comprised of only tryptophan. Next, MS' data is read for all files and extracted ion
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counts (EICs) are taken for each peptide feature in each file, defined with mass-to-
charge tolerance of 0.01 and a retention time window as specified by the user
(default 2 minutes). The EIC signal is smoothed using a Savitsky-Golay noise filter
from the SciPy module (version 1.11.1) with a window length of 19 and a polynomial
order of 9. Peaks are then detected using the PeakUtils module (version 1.3.4) with
thresholds defined by the maximum observed signal per EIC. The largest peak for
each EIC is stored and integrated using the cumulative_trapezoid method from the
SciPy module, and if a peak is not detected, a placeholder value near the limit of
detection for the instrument is used.

Selectivity scores and feature p-values were calculated using the areas of the
highest concentration of protein, where selectivity scores are calculated as shown in
Figure 4.3. Welch’s ANOVA test is used to determine statistical significance for
more than two proteins, and a homoscedasticity test is performed to check the
variances of each group. If the variances are equal, Tukey’s test is then used to
calculate p-values across pairs of proteins; if the variances are not equal, a Games-
Howell post hoc test is used. If the p-value falls below the specified threshold, the
protein areas that are statistically significant are labelled with the relevant protein.

Concentration-dependent enrichment scoring is performed using the different
concentration levels of protein used, as well as the control run using unlabeled
beads. The percentage of protein loading on the bead and corresponding areas are
used to calculate the CDE score as shown in Figure 4.3. The results from both
scores are then filtered as desired and exported into an inclusion list that can be
exported directly into the Thermo Xcalibur Method Editor (Version 4.2.47) or into an
Excel spreadsheet that displays the EICs and CDE score calculations for a

specified number of top candidates.
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4.6. Code availability

All code used in this work is available at https://github.com/malee97/pyBinder. A

Jupyter notebook facilitating the usage of pyBinder is present in the repository and
is the primary method of using pyBinder.
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4.7. Appendix: Full pyBinder Output
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Figure 4.6: Retrospective analysis of previously published AS-MS experiments reveals
extent of “missing values” problem. Although high affinity ligands were discovered from
these experiments, there is still a large volume of peptide features that are not analyzed
during an untargeted run, leaving many potential ligands unobserved.
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Table 4.2: Parameter optimization for the feature finding process in OpenMS. First round
results were judged based on the percentage of features in common with the output from
PEAKS 8.5 and balanced around the total number of annotated features, while second
round results were judged based on the percentage of previously identified ligands to
12cab5 and ACE2 present in the OpenMS output.

mass_trace: mass_tra mass_trace: isotopic_p  isotopic_p. isotopic_pa isotopic_pattern:  isotopic_pattern:  isotopic_pattem: - isotopic_patter: ~seed: fit feature: feature: feature:  feature: feature: feature:  %ID %ID
Intensity: mz_toleranc ce:min_s max missin mass_trace: attern:cha attem:cha tiern:mz_to ntensity_percent intensity_precent optional_fit impro mass_window_wi min_ max_iter min_sco min_isoto min_trace min_its max_t_ feature: max_inters from  from  Total

Entry bns e pectra g slope_bound rge_low rge_high lerance  age age_optional  vement dth score ations  re pefit  score pan  span rtshapeection  set  set  Features

First Round

1 (default) 10 0.02 5 1 05 2 5 0.04 10 0.1 2 25 08 500 05 05 05 0333 25 smmewe 07 9745 100 351135
10 0.02 5 1 05 2 5 0.04 01 0.1 2 25 08 500 05 05 05 0333 25 sy 07 0 0 0
10 0.02 5 1 05 2 5 0.04 1 0.1 2 25 08 50 05 05 05 0333 25 smmesc 07  80.04 97.96 211364
10 0.02 5 1 05 2 5 0.04 5 0.1 2 2 08 500 05 05 05 0333 25 semmec 07 9209 97.96 283895
10 0.02 5 1 05 2 5 0.04 10 0 2 2 08 500 05 05 05 0333 25 sommwc 07 9745 100 350761
10 0.02 5 1 05 2 5 0.04 10 05 2 25 08 500 05 05 05 0333 25 smenc 07  97.45 100 350388
10 0.02 5 1 05 2 5 0.04 10 1 2 25 08 500 05 05 05 0333 25 e 07 9745 100 349979
10 0.02 5 1 05 2 5 0.04 10 5 2 25 08 500 05 05 05 0333 25 e 07 9745 100 343139
10 0.02 5 1 05 2 5 0.04 10 10 2 2 08 50 05 05 05 0333 25 s 07  97.66 100 345099
10 0.02 5 1 05 2 5 0.04 10 50 2 2 08 500 05 05 05 0333 25 sgmmenc 0.7 0 0 0
10 0.02 5 1 05 2 5 0.04 10 0.1 2 2 08 500 05 05 05 0333 25 semmewc 07 9745 100 350843
10 0.02 5 1 05 2 5 0.04 10 0.1 2 5 08 500 05 05 05 0333 25 wmmesc 07 9745 100 350744
10 0.02 5 1 05 2 5 0.04 10 0.1 2 10 08 50 05 05 05 0333 25 e 07 9745 100 351135
5 0.02 5 1 05 2 5 0.04 10 0.1 2 25 08 50 05 05 05 0333 25 smmesc 07  97.24 100 349784
20 0.02 5 1 05 2 5 0.04 10 0.1 2 2 08 50 05 05 05 0333 25 s 07 9745 100 351953
10 0.02 5 2 05 2 5 0.04 10 0.1 2 2 08 500 05 05 05 0333 25 semmec 07  97.66 100 354623
10 0.02 5 1 05 2 5 0.04 10 0.1 5 25 08 500 05 05 05 0333 25 smmenc 07  97.45 100 349165
10 0.02 5 1 05 2 5 0.04 10 0.1 10 25 08 500 05 05 05 0333 25 smewe 07  97.24 100 346309
10 0.02 5 1 1 2 5 0.04 10 0.1 2 25 08 50 05 05 05 0333 25 smmewe 07 9682 97.96 145613
10 0.02 5 1 2 2 5 0.04 10 0.1 2 25 08 50 05 05 05 0333 25 smmesc 07 9745 9502 79207
10 0.02 5 1 5 2 5 0.04 10 0.1 2 2 08 500 05 05 05 0333 25 semmesc 07 9682 97.96 65395
10 0.02 5 1 10 2 5 0.04 10 0.1 2 2 08 500 05 05 05 0333 25 semmewc 07 966 97.96 64481
10 0.02 5 1 1000 2 5 0.04 10 0.1 2 25 08 500 05 05 05 0333 25 wmmec 07 966 97.96 63997
10 0.02 5 1 05 2 5 0.04 0.1 0.1 2 25 05 50 05 05 05 0333 25 symmewe 07 0 0 [
10 0.02 5 1 05 2 5 0.04 15 0.1 2 25 05 50 05 05 05 0333 25 smmec 07 983 100 373446
10 0.02 5 1 05 2 5 0.04 20 0.1 2 25 05 50 05 05 05 0333 25 ssmmewc 07 9809 100 390483
10 0.02 5 1 05 2 5 0.04 2 0.1 2 2 05 500 05 05 05 0333 25 semmewc 07 9809 100 419866
10 0.02 5 1 05 2 5 0.04 10 20 2 25 05 500 05 05 05 0333 25 smmenc 07 9915 100 446136
10 0.02 5 1 05 2 5 0.04 10 30 2 25 05 50 05 05 05 0333 25 smmewe 07 9851 100 375865
10 0.02 5 1 05 2 5 0.04 10 40 2 25 05 50 05 05 05 0333 25 sy 07 ) [ [
10 0.02 5 1 05 2 5 0.04 10 50 2 25 05 50 05 05 05 0333 25 sammec 07 0 0 0
10 0.02 5 1 05 2 5 0.04 10 01 1 2 05 500 05 05 05 0333 25 semmesc 07 9745 100 352011
10 0.02 5 1 05 2 5 0.04 10 0.1 2 2 05 500 05 03 05 0333 25 smmenc 0.7  97.45 100 367276
10 0.02 5 1 05 2 5 0.04 10 0.1 2 25 05 500 05 04 05 0333 25 smmenc 07  97.45 100 361250
10 0.02 5 1 05 2 5 0.04 10 0.1 2 25 05 50 05 06 05 0333 25 smewe 07  97.88 100 334588
10 0.02 5 1 05 2 5 0.04 10 0.1 2 25 05 50 05 07 05 0333 25 smmewc 07 9745 100 351135
10 0.02 5 3 05 2 5 0.04 10 01 2 2 05 50 05 05 05 0333 25 semmesc 07  97.88 100 356447
10 0.02 5 4 05 2 5 0.04 10 0.1 2 2 05 500 05 05 05 0333 25 semmewc 07  97.88 100 357762
10 0.02 5 025 2 5 0.04 10 01 2 25 05 500 05 05 0333 25 sommenc 0.7 9851 100 621603

DONE ON DIFFERENT SET - THIS ONE COMPARED TO PEAKS FEATURES, NOT LIST OF D**DYAS AND ABPS

Second Round - matched to PEAKS Output
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 08 50 07 08 05 0333 25 wmmewe 035 2532 227 5695
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 08 50 07 08 05 0333 25 ammec 07 2547 2273 5815
10 0.004 10 1 01 2 5 0.005 10 0.1 2 25 08 500 07 08 05 0333 25 omwwe 05 2539 2274 5773
10 0.004 10 2 01 2 5 0.005 10 0.1 2 25 08 50 07 08 05 0333 25 omee 035 30.36 28.12 7047
10 0.004 10 3 0.1 2 5 0.005 10 0.1 2 25 08 50 07 08 05 0333 25 smewe 035 3551 3336 8523
10 0.004 10 4 0.1 2 5 0.005 10 0.1 2 25 08 500 07 08 05 0333 25 umeewe 035 412 3981 9776
10 0.004 10 5 0.1 2 5 0.005 10 0.1 2 25 08 50 07 08 05 0333 25 smmewe 035 4623 4537 10827
10 0.004 10 1 01 2 5 0.005 10 0.1 2 2 08 500 07 05 05 0333 25 ommee 035 2493 2229 5373
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 2 08 500 07 06 05 0333 25 omee 035 2531 228 5450
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 08 500 07 07 05 0333 25 omee 035 2855 2293 5583
10 0.004 5 1 0.1 2 5 0.005 10 0.1 2 25 08 500 07 08 05 0333 25 smewe 035 80.56 821 50537
10 0.004 6 1 0.1 2 5 0.005 10 0.1 2 25 08 500 07 08 05 0333 25 smmewe 035 6564 669 21188
10 0.004 7 1 0.1 2 5 0.005 10 0.1 2 2 08 50 07 08 05 0333 25 smmec 035 6564 669 21188
10 0.004 8 1 01 2 5 0.005 10 0.1 2 2 08 500 07 08 05 0333 25 omwe 035 4223 4103 10425
10 0.004 9 1 0.1 2 5 0.005 10 0.1 2 25 08 500 07 08 05 0333 25 omen 035 4223 41.03 10425
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 05 500 07 08 05 0333 25 omee 035 4483 44 9108
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 06 500 07 08 05 0333 25 uwewe 035 4367 427 8779
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 07 500 07 08 05 0333 25 umme 035 3834 3726 7486
10 0.004 10 1 01 2 5 0.005 10 01 2 2 08 500 05 08 05 0333 25 smmee 035 3923 3802 7522
10 0.004 10 1 01 2 5 0.005 10 0.1 2 2 08 500 06 08 05 0333 25 omwe 035 3558 3404 7166
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 08 500 07 08 05 0333 25 wmnewc 035 27.06 24.89 5992
5 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 08 500 07 08 05 0333 25  smene 24.87 2217 5366
15 0.004 10 1 0.1 2 5 0.005 10 0.1 2 2 08 500 07 08 05 0333 25  smenc 2505 2231 5415
20 0.004 10 1 01 2 5 0.005 10 0.1 2 2 08 500 07 08 05 0333 25  smmenc 2504 2228 5415
10 0.004 10 1 01 2 5 0.005 01 0.1 2 25 08 500 07 08 05 0333 25  smonc 502 516 896
10 0.004 10 1 0.1 2 5 0.005 1 0.1 2 25 08 500 07 08 05 0333 25  smmenc 957 875 1993
10 0.004 10 1 0.1 2 5 0.005 5 0.1 2 25 08 500 07 08 05 0333 25  smoene 17.92 1562 3944
10 0.004 10 1 0.1 2 5 0.005 15 0.1 2 25 08 500 07 08 05 0333 25  sene 2523 2251 5702
10 0.004 10 1 01 2 5 0.005 20 0.1 2 2 08 500 07 08 05 0333 25  smenc 2628 2335 5985
10 0.004 10 1 0.1 2 5 0.005 2 0.1 2 2 08 500 07 08 05 0333 25  ammenc 2649 2365 6082
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 08 500 07 08 05 0333 25  smmene 2501 2227 5405
10 0.004 10 1 025 2 5 0.005 10 0.1 2 25 08 50 07 08 05 0333 25  smoene 27.97 24.96 6340
10 0.004 10 1 1 2 5 0.005 10 0.1 2 25 08 500 07 08 05 0333 25  smnene 19.84 16.34 4986
10 0.004 10 1 2 2 5 0.005 10 0.1 2 25 08 500 07 08 05 0333 25  smenc 19.35 1584 4914
10 0.004 10 1 5 2 5 0.005 10 01 2 2 08 500 07 08 05 0333 25  smmenc 19.35 1584 4903
10 0.004 10 1 10 2 5 0.005 10 01 2 2 08 500 07 08 05 0333 25  smmonc 19.35 1584 4902
10 0.004 10 1 0.1 2 5 0.005 10 0 2 25 08 50 07 08 05 0333 25 smewe 035 2522 2246 5388
10 0.004 10 1 0.1 2 5 0.005 10 05 2 25 08 500 07 08 05 0333 25 umeewe 135 2484 2211 5406
10 0.004 10 1 0.1 2 5 0.005 10 1 2 2 08 50 07 08 05 0333 25 ammenc 235 2489 2213 5406
10 0.004 10 1 01 2 5 0.005 10 5 2 2 08 500 07 08 05 0333 25 omwe 335 2506 2251 5460
10 0.004 10 1 01 2 5 0.005 10 10 2 25 08 500 07 08 05 0333 25 omene 435 248 2192 5438
10 0.004 10 1 0.1 2 5 0.005 10 20 2 25 08 500 07 08 05 0333 25 omee 535 2354 19.89 6186
10 0.004 10 1 0.1 2 5 0.005 10 50 2 25 08 500 07 08 05 0333 25 smee 635 0 0 [
10 0.004 10 1 0.1 2 5 0.005 10 0.1 1 25 08 50 07 08 05 0333 25 wmeene 7.35 2495 2215 5421
10 0.004 10 1 01 2 5 0.005 10 01 5 2 08 500 07 08 05 0333 25 ommec 835 2442 2159 5355
10 0.004 10 1 01 2 5 0.005 10 0.1 10 2 08 500 07 08 05 0333 25 omenc 9.35 2409 2133 5316
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 08 400 07 08 05 0333 25 omee 1035 2501 2227 5403
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 08 600 07 08 05 0333 25 umewe 1135 2501 2577 5400
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 08 80 07 08 05 0333 25 smeewe 1235 2501 2227 5406
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 2 08 1000 07 08 05 0333 25 smmenc 1335 2503 2234 5433
10 0.004 10 1 01 2 5 0.005 10 0.1 2 2 08 500 07 08 05 0333 15 w1435 1396 1139 2624
10 0.004 10 1 01 2 5 0.005 10 0.1 2 25 08 500 07 08 05 0333 2 oguwe 1535 2119 1844 4206
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 08 500 07 08 05 0333 3 oo 1635 2593 2347 6111
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 08 500 07 08 05 0333 5  umewe 17.35 2593 2317 6112
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 08 500 07 08 05 02 25 umeene 1835 24.97 2224 5404
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 2 08 500 07 08 05 05 25 w1935 2085 1813 4126
10 0.004 10 1 01 2 5 0.005 10 0.1 2 25 08 500 07 08 03 0333 25 omwe 2035 2518 2256 5943
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 08 500 07 08 04 0333 25 omee 2135 2549 2281 5693
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 08 50 07 08 06 0333 25 umene 2235 23.66 2073 4834
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 08 500 07 08 07 0333 25 umeewe 2335 17.76 14.89 3570
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 2 08 500 07 08 08 0333 25 ummec 2435 803 523 1623
10 0.004 10 1 01 2 5 0.001 10 0.1 2 2 08 500 07 08 05 0333 25 omwe 035 1169 836 4205
10 0.004 10 1 0.1 2 5 0.002 10 0.1 2 25 08 500 07 08 05 0333 25 omee 035 159 124 5249
10 0.004 10 1 0.1 2 5 0.003 10 0.1 2 25 08 50 07 08 05 0333 25 umewe 035 1829 1469 5809
10 0.004 10 1 0.1 2 5 0.004 10 0.1 2 25 08 500 07 08 05 0333 25 smeewe 035 2136 17.85 6109
10 0.004 10 1 01 2 5 0.006 10 01 2 2 08 500 07 08 05 0333 25 ammenc 035 2638 2325 6716
10 0.004 10 1 01 2 5 0.007 10 0.1 2 2 08 500 07 08 05 0333 25 omene 035 3044 2766 7131
10 0.004 10 1 01 2 5 0.008 10 0.1 2 25 08 500 07 08 05 0333 25 omenc 035 3426 3211 7568
10 0.004 10 1 0.1 2 5 0.009 10 0.1 2 25 08 500 07 08 05 0333 25 omene 035 3815 3623 8082
10 0.004 10 1 0.1 2 5 0.01 10 0.1 2 25 08 500 07 08 05 0333 25 umewe 035 4173 4044 8555
10 0.001 10 1 0.1 2 5 0.005 10 0.1 2 25 08 500 07 08 05 0333 25 ummee 035 992 859 2365
10 0.002 10 1 01 2 5 0.005 10 01 2 2 08 500 07 08 05 0333 25 ammec 035 1934 1617 5127
10 0.003 10 1 01 2 5 0.005 10 0.1 2 2 08 500 07 08 05 0333 25 omenc 035 2208 1861 5915
10 0.005 10 1 0.1 2 5 0.005 10 0.1 2 25 08 500 07 08 05 0333 25 omee 035 2424 2054 6643
10 0.006 10 1 0.1 2 5 0.005 10 0.1 2 25 08 50 07 08 05 0333 25 umewe 035 2585 2239 6608
10 0.007 10 1 0.1 2 5 0.005 10 0.1 2 25 08 500 07 08 05 0333 25 smewe 035 2695 2378 6707
10 0.008 10 1 0.1 2 5 0.005 10 0.1 2 2 08 500 07 08 05 0333 25 smmec 035 2822 2519 6940
10 0.009 10 1 01 2 5 0.005 10 01 2 2 08 500 07 08 05 0333 25 omwe 035 2868 2555 7229
10 0.01 10 1 01 2 5 0.005 10 01 2 25 08 500 07 08 05 0333 25 omec 035 294 2641 7340

Final Result: 10 0.004 9 4 0.1 2 5 0.01 10 0.1 2 25 05 500 05 08 05 0333 3 e 035 9338 9525 130993
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Figure 4.7: Simulated values of concentration-dependent enrichment and their
hypothesized affinities. A stronger affinity is expected to pull down a greater fraction of a
ligand at lower protein concentrations, and that property is reflected in the CDE score.
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A) Sel Score vs P-Value for 12ca5

B) Selectivity Score Ranking for 12ca5
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Figure 4.8: Complete results for 12cab of the retrospective analysis of AS-MS performed
against 12cab and ACE2 show extent of data incompleteness. Sequence coverage of the
untargeted analysis was in the range of 10 — 18% of the total identified features, where
sequence fidelity was as low as 0.24 — 1.1%. pyBinder analysis identified about 7700 target
specific features for 12cab, compared to the 373 peptides with an ALC = 80 identified in the
untargeted run. Because this analysis was done retrospectively, the concentration-
dependent enrichment scores were unable to be calculated since the selection was
performed with only one concentration of protein.
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A) Sel Score vs P-Value for ACE2 B) Selectivity Score Ranking for ACE2
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Figure 4.9: Complete results for ACE2 of the retrospective analysis of AS-MS performed
against 12cab and ACE2 show extent of data incompleteness. Sequence coverage of the
untargeted analysis was in the range of 10 — 18% of the total identified features, where
sequence fidelity was as low as 0.24 — 1.1%. pyBinder analysis identified about 3100 target
specific features for ACE2, compared to the 80 peptides with an ALC = 80 identified in the
untargeted run. Because this analysis was done retrospectively, the concentration-
dependent enrichment scores were unable to be calculated since the selection was
performed with only one concentration of protein.
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Figure 4.10: Plots comparing the calculated selectivity score versus the p-value for

features identified from selection against 12cab and WDRS. Data points in blue showed are
identified as statistically significant (a = 0.05) when compared to the extracted areas in the

opposing protein. Data points in red have a p-value above the threshold.
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identified as statistically significant (¢ = 0.05) when compared to the extracted areas in the

opposing protein. Data points in red have a p-value above the threshold.

166




A) CDE vs Selectivity Score of 12ca5 B) CDE vs Selectivity Score of WDR5
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Figure 4.12: Plots comparing the calculated selectivity score versus the selectivity score for
features identified from selection against 12cab and WDRS. Data points in blue showed
have a selectivity score greater than 0.5, which for an experiment comparing two proteins

signifies a degree of selectivity for that protein.
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Figure 4.13: Plot comparing the selectivity scores, CDE scores, and p-values calculated by
pyBinder for all detected features.
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Figure 4.14: Rankings of features based on their (A) selectivity scores and (B) CDE scores
with respect to 12ca5 or WDRS5. Relative values for selectivity score are calculated based
on the fraction of total area observed as defined in Figure 4.3, while absolute values for
selectivity score are based on the total area observed for a single protein and are not
normalized relative to total area across all proteins.
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Figure 4.15: Visualization of the retention times and scoring for the inclusion list of peptide
features for each protein. (A) Histograms show the distribution of retention times, selectivity
scores, and concentration-dependent enrichment scores for 12ca5 and WDRS. (B)
Estimated feature maps for the inclusion lists for 12cab5 and WDRYS, with the retention time
windows used in the targeted sequencing runs shown for each feature.
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Figure 4.16: Analysis of the scoring for peptides containing the characteristic 12cab

binding motif D**DY(A/S). Fewer overall sequences were observed compared to WDRS,
likely due to the increased stringency of binding introduced by utilizing a four-residue motif
rather than three-residue motifs seen for WDRS5. Overall, the trend of using the sign of the
CDE score as a filter still applies, but the weakness of the p-value is also shown.
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5. Unsupervised Machine Learning Rationalizes Abiotic Picomolar
Ligand Discovery
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5.1. Introduction

In the chemical space between small molecules and biologics,
peptidomimetic therapeutics have become more prevalent in regulatory approvals,
with 80 drugs now in the market.”? With higher clinical trial success rates than small
molecules,?® peptides and peptidomimetics can be inexpensive relative to other
biologics,! while offering sufficiently large surface area for high-affinity interactions
with shallow or difficult binding interfaces.*-® For initial de novo discovery of peptide
ligands, several affinity selection techniques isolate high-affinity ligands to
biomolecular targets including phage display,”® mRNA display,® and recently affinity
selection-mass spectrometry (AS-MS).10-12

However, the development of preclinical peptidomimetic candidates can be
time-consuming due to the lack of guiding chemical design rules. Peptide ligands
nominated from affinity selection or virtual screening are experimentally validated to
confirm their affinity or activity. Then, peptides undergo optimization for lead
generation through multiple cycles of synthesis, biophysical, and biological
evaluations.'®-'% The goal of this optimization process is to increase activity and
proteolytic stability, limit toxicity, and improve pharmacokinetics. Often, diverse
abiotic or “noncanonical” amino acids and macrocyclization are utilized toward this
goal."29.16 This process can be especially challenging if the hit is of poor initial
quality or affinity,'s in a local activity minimum, or if it exhibits nonintuitive “activity
cliffs.”’” At the end of this process, critical features or residues are understood to
drive high-affinity binding or function, called a “motif,”'-3.18-20 However, limited
chemical design rules guide the exchange of canonical for noncanonical amino
acids in this process, with peptidomimetics known for breaking rules that guide
small molecule development.?! As such, the most reliable approach is
comprehensive sampling of the unexplored, noncanonical chemical space through
time-consuming cycles of synthesis and experimental testing of individual
compounds.'®'° Thus, this process would greatly benefit from intuitive tools to
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translate functional knowledge across the canonical and noncanonical chemical

spaces and predict peptidomimetic functionality before synthesis.??

Machine learning (ML) is poised to facilitate a paradigm shift in drug
discovery and development.??-2* Generally, unsupervised methods can identify
patterns within unlabeled datasets, hence its common application in omics data
analysis.?®~2” Additionally, unsupervised learning can evaluate embeddings from
supervised models, as dimensionality reduction is typically performed with no
weighting.?®-3" Supervised learning can interpolate and expand from labeled
training data, where labels describe function or activity.?® Where there are
sufficiently large datasets of labeled peptide data, supervised learning has been
applied toward the discovery of antimicrobial, cell-penetrant, or immunogenic
peptides.32-34 Though significant advancements have been made,3® publicly-
available peptide ligand data do not appear large or diverse enough to provide
general ligand prediction, with little-to-no data available for peptidomimetics that
include noncanonical amino acids. Thus, state-of-the-art peptide ligand discovery
programs currently deploy a mixture of computational and ML analysis with expertly
gathered experimental datasets. Recent examples largely include genetically-
encoded discovery methods, where round-to-round enrichment serves as the label

in supervised learning analysis.36-38

In contrast to genetically-encoded platforms, AS-MS has unparalleled use of
abiotic chemical libraries, meaning its datasets could enable the development of an
ML approach to broadly connect chemical space. AS-MS has historically been a
screening tool;3° but has been advanced with target-focused libraries,'®4% and
onward to de novo discovery with peptidomimetics against multiple biomolecular
targets with large libraries (>10® members).'%-12 AS-MS experiments are rapid,
utilizing only a single round of enrichment to identify high-affinity binders. However,
this practical advantage limits the potential application of several commonly utilized
supervised ML models. Direct modeling of binding affinity is not possible since AS-
MS does not provide binding affinity or enrichment information about each reported
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compound, prohibiting regression. A binary classification model could be considered
(i.e., binder vs nonbinder), but it would also lack any resolution of the continuum of
binding across the range of reported compounds (Kp < 300 nM)." The utility of a
classification model could be further compromised by target-dependent effects,
which can strongly affect the resulting quality, quantity, and extent of nonspecific
binder recovery within the data. Nevertheless, unsupervised learning techniques
including dimensionality reduction remain well-suited to identify concealed patterns
or clusters from affinity selection datasets.3' In contrast to binary classification,
dimensionality reduction may offer a more accessible, reliable, and unbiased
representation of the data from ligand discovery experiments to aid expert
interpretation. Toward this goal, two challenges remain: First, because of the
noncanonical chemical diversity available to AS-MS, an optimal encoding
representation of peptidomimetics should be investigated.*! Second, the choice of
dimensionality reduction method and optimization remains open and is usually

referred to as an art more than a science.?®

Herein, we demonstrate the utility of unsupervised learning to generate two-
dimensional “maps” of the chemical space from peptide ligand discovery datasets.
These maps visualize the chemical space of peptides and noncanonical
peptidomimetics isolated from AS-MS protocols. For this study, we utilized anti-
hemagglutinin antibody (12cab) as the protein target. We surveyed five diverse
representation methods ranging in complexity from low-dimensional one-hot
encoding and physicochemical encoding, to high-dimensional protein language
pretrained representations from the Evolutionary Scale Model-2 (ESM-2),4?
extended connectivity Fingerprints (ECFP_6), and N-grams encoding.3°-32:43 For
dimensionality reduction, we primarily compared linear and nonlinear decomposition
by principal component analysis (PCA) and uniform manifold approximation
(UMAP), respectively. Clusters within the constructed maps enabled highly sensitive
motif discovery by the isolation of the consensus and centroid sequence of the
cluster. Lastly, we defined boundaries that separate regions of high-affinity peptides
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from the remaining chemical space, represented by nonspecific peptides and
peptides sampled from the original library. While seen first in the canonical space,
these boundaries are shown to be consistent in the broader peptidomimetic space,
as supported by the experimental testing of all peptidomimetics discovered. AS-MS
demonstrated its rapid ability to sample the noncanonical sequence space, with the
discovery of mixed canonical-noncanonical peptidomimetic demonstrating a Kp of
210 pM. Thus, we expect these sequence space maps to inform the derivatization

and generation of functional high affinity peptidomimetics.

5.2. Results and Discussion

5.2.1. Diverse representations and dimensionality reduction methods create
chemical space maps of peptides discovered by AS-MS.

AS-MS experiments using anti-hemagglutinin antibody (12ca5) provided a
ligand dataset for unsupervised learning analysis. Twelve libraries of X12K design
each containing 200 million peptides (2.4 billion total) were synthesized, validated,
and used in AS-MS, where X is any proteinogenic “canonical” amino acid, except
cysteine and isoleucine. As an affinity selection, AS-MS only reports peptide ligands
with sufficient binding affinity (4,104 peptides after filtering across all libraries),
whereas nonbinding peptides are washed away and unidentified (Figure 5.1A). With
less than 350 peptides identified per experiment, nearly all of the 200 million library
peptides used do not bind. Thus, we sequenced a small subsample (e.g., ~500
peptides) of each X12K library to generate a dataset of nonbinders (5,047 peptide
after filtering). The subsample of the libraries does not contain any motifs or pattern,
as observed in Figure 5.11, and appears to be randomly dispersed over the X12K
sequence space. Thus, by comparing target-enriched AS-MS ligands versus the
subsampled library, we expected that overrepresentation of peptides with shared
motifs within the AS-MS ligand could be due to target-based affinity enrichment.

Five different representations were used: one-hot, physicochemical property,

latent embeddings from the evolutionarily-learned language model ESM-2,
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Fingerprint, and N-grams based encoding. All encoding methods strive to maintain
human interpretability, while capturing sufficient ‘machine-readable’ detail 232444
First, one-hot and physicochemical encoding were used as common encoding
methods (Table 5.5, see Section 5.5.9). Third, we utilized latent embeddings of the
entire peptide from the protein language model ESM-2.2642 Evolutionarily-pretrained
models including ESM-2 infer properties from the primary sequence, and could
provide additional homological information outside of other encodings.?¢4? Fourth,
extended connectivity Fingerprints (ECFP_6) from RDKit represented each amino
acid as a vector, where each index indicates the presence (1) or absence (0) of a
specific molecular substructure (see Figure 5.6). Similarities between amino acids
including noncanonicals is encoded through shared substructures.324% Fifth, N-
grams encoding represented the entire peptide by its ungapped motifs, irrespective
of position. The possible n-mer motifs were pre-calculated from the dataset to
maintain computational practicality (Figure 5.8). Overall, these representations
cover diverse aspects peptides across a range of dimensionalities (vector length,
Figure 5.1B).

For dimensionality reduction, three methods were deployed based on the
diversity of their theoretical underpinning including linear, non-linear reduction, and
similarity mapping. Principal component analysis (PCA)*¢ was used as the linear
dimensionality reduction method. PCA is highly interpretable and deterministic,
because components are built from the global variance of the data. Uniform
manifold approximation (UMAP)3' provided non-linear reduction and is user-friendly,
requiring little hyperparameter optimization. The primary UMAP hyperparameter of
n_neighbors was optimal at 5-10% of the dataset size to balance the representation
(Figure 5.9). In Figure 5.1B, the AS-MS ligand data was combined with nonbinders
from sampling the library without re-learning. The similarity mapping method,
multidimensional scaling, showed poor ability to form any clusters (Figure 5.10) and
the nonbinder library peptides could not be added without re-learning.
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Figure 5.1: Affinity selection-mass spectrometry (AS-MS) discovers peptides that appeared
in separate regions from nonbinders in sequence space maps constructed by unsupervised
dimensionality reduction across diverse encoding methods. (A) From AS-MS with 12ca5,
4,104 peptide ligands were identified after filtering and 5,047 peptides were identified as
presumed nonbinders by directly sampling the original peptide library. (B) AS-MS peptides
were encoded using one-hot, physicochemical property, latent space embeddings from the
protein transformer language model (ESM-2), Fingerprint, and N-grams encoding methods,
each describing different aspects and dimensional (vector) lengths. Dimensionality
reduction of encoded peptides using PCA and UMAP constructed two-dimensional “maps”
of the sequence space. Each peptide has a corresponding embedding (coordinate point) on
the two-dimensional map, and several points densely grouped together form a cluster.

5.2.2. Novel sequences are found at the edge of PCA maps and at the center
of UMAP clusters.

The encoding and dimensionality reduction method strongly affect the
resulting map (Figure 1B). Across all representations, PCA reduction placed the

nonbinding library peptides at the center of the map, while most AS-MS ligands
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were pushed toward the edge. Only one-hot encoding provided distinct clusters,
while physicochemical, ESM-2, and Fingerprint encoding provided 3 diffuse clusters
at the map edge. In contrast to PCA, UMAP showed tight clusters with all
encodings, while nonbinding library peptides filled the cluster interspace. All maps
showed approximately 5-6 macro-clusters with varying resolution of smaller
clusters. N-grams encoding showed a multitude of clusters grouped loosely into
macro-clusters, far beyond all other methods. Color-coding 12ca5-specific labels
further supported the localization of novel sequences at the PCA map edge and the
center of UMAP clusters, separate from nonspecific or nonbinding library peptides
(see Figure 5.12). Peptides containing the known high-affinity motif D**DY (A/S)
were labeled as 12cab-specific binders and were located mostly at the PCA map
edge and in the center of UMAP clusters.'247:48 AS-MS peptides that did not contain
the common motif in any form were labeled as nonspecific (Table 5.6, see Section
5.7.2) and were found near the nonbinding library peptides at the center of PCA
maps and in the UMAP cluster interspace.
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Figure 5.2: In-depth motif discovery was made possible by high-dimensional peptide
encoding techniques (ESM-2, Fingerprint, and N-grams) with UMAP, expanding upon the
commonly known motif of D**DY(A/S). (A) All sequence space maps were analyzed to
detect the sequences within dense groups of points (clusters), wherein each point
represents a peptide. For each cluster, the geometric average of all peptide coordinates is
marked with a black marker dot, defining the cluster center. Analysis of the sequences
within each cluster allowed the assignment that the cluster contains a consensus sequence
or motif that expands (orange) upon the common motif (blue), or is weak (gray). Maps
constructed using UMAP and high-dimensional peptide encoders (ESM-2, Fingerprint, and
N-grams encoding) provided most of the clusters with expanded motif information (see
Figure 5.13 for all). (B) Corresponding logo plots, consensus sequences, and a centroid
sequence for each method, corresponding to the numbered clusters in A. The centroid
sequence of each cluster was reported as the peptide closest to the geometric center
(black dot), with the option to report more sequences interspersed within the cluster
available. Because N-grams encoding is irrespective of frameshift, sequences within each
cluster were aligned by ClustalW2* to the second position in order to simply report the logo
plot displaying the consensus sequence (motif) within the cluster. Logo plots were
constructed using Logomaker.*® Centroid sequences from N-grams can show the exact
frameshift location of the motif (e.g., UMAP N-grams Cluster 1 motif is *DLHDYA*, which
starts at frameshift 7). For brevity, the information from only five clusters are shown (see
Section 5.7.4 for all).

Each cluster was assigned a label based on its consensus sequence and
logo plot to either expand upon (shown in orange) the common motif (D**DY(A/S),

shown in blue) or contain weak motifs shown in gray (Figure 5.2). Clusters were
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algorithmically detected based on cluster density (Table 5.7).5" Density-based
spatial clustering of applications with noise (DBSCAN)*' was found especially
useful as clusters initialized at the dense cluster center, the known location of novel
sequences. Most maps did not contain clusters with expanded motifs beyond the
common motif (Figure 5.13). However, four maps showed clusters that contained
expanded motifs and revealing more information depth from this discovery dataset
(Figure 5.2). With PCA, one-hot encoding revealed motifs containing an additional
alanine and additional aspartic acids (Table 5.8). However, of the maps that
contained cluster with expanded motifs, the PCA one-hot map also showed the

largest number of weak motifs.

5.2.3. High-dimensional descriptors provided most of the expanded motifs
discovered in UMAP-constructed maps.

UMAP-constructed maps of the peptides encoded by high-dimensional
descriptors (ESM-2, Fingerprint, and N-grams) provided additional clustering
resolution to reveal many expanded motifs. ESM-2 encoding showed some similar
motif results as the one-hot encoded PCA map, with additional weighting for N-
terminal methionine. The one-hot, physicochemical, and Fingerprint encoded maps
exhibited six ‘macro-clusters’ arising from the frameshifts of the common motif in a
12-mer variable region. However, the Fingerprint map provided more cluster
resolution and expanded motifs. Moreover, of all the UMAP-constructed plots, the
Fingerprint encoded map balanced cluster resolution, resulting chemical motif
information depth, while maintaining a globally connected chemical space, with
nonbinding library peptides contiguously filling the cluster interspace (Figure 5.1B).

By far, N-grams encoding with UMAP provided the highest cluster resolution
and motif detection sensitivity, providing 64 clusters containing expanded motifs and
more information depth than leading techniques. This high resolution is likely
because the N-grams encoding only depends on the presence or absence of a n-

mer or motif, irrespective of its frameshift. Thus, all frameshifts of a motif are
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encoded the same, combining to increase the sensitivity of detection. For motif
detection comparison, the AS-MS ligand data was input to the MEME Suite using
XSTREME,*? one of the leading motif detection and discovery platforms.33 The
XSTREME analysis found only the common D**DY(A/S) motif within the dataset
(see Section 5.7.6), except the expanded motif of *D**DYAD*. With our highly
sensitive clustering approach, all motifs can be ranked and aid in building or
contextualizing structure activity relationships from discovery datasets. For this
target (12cab5), the preferred motif appeared to be *DOIMNDYA*, with ® =L, V, and M,
and M = amino acids including Q, E, H, or P, consistent with literature.12:4748

A. UMAP, N-Grams motif detection

10 target peptides
clearly clustered out of
5000 random peptides

UMAP NGrams, Component 2
>
1]
-
o

UMAP NGrams, Component 1

B. UMAP, One-hot or Fingerprint motif detection
10 target peptides unclear in 5000 random peptides

UMAP OneHot, Component 2
UMAP Fingerprint, Component 2

UMAP OneHot, Component 1 UMAP Fingerprint, Component 1

With 80 target peptides, some clusters become clear
random peptides (seven clusters = seven frameshifts)

ar

3

UMAP Fingerprint, Component 2

UMAP OneHot, Component 2

UMAP OneHot, Component 1 UMAP Fingerprint, Component 1

Figure 5.3: N-grams encoding with UMAP provided highly sensitive clustering and
identification of <10 unaligned target peptides, which contained a 6-mer target motif at
random frameshifts in a large dataset of nonbinding library peptides. A. Target peptides
containing a *DLHDYA™ motif at random frameshifts from the AS-MS data were combined
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with library peptides for 5,000 total to test the sensitivity of successful clustering, detection,
and identification. N-grams encoding with UMAP provided the lowest threshold of <10
peptides required for the formation of a tight, distinct cluster, primarily because N-grams
encoding is agnostic of frameshift by design. The sensitivity of detection was compared to
the MEME Suite using XSTREME,*?°3 which required 20 peptides before the motif was
detected. B. One-hot and Fingerprint encoding were unable to produce distinct clusters with
10 target peptides. At 80 target peptides, one-hot and Fingerprint encoded UMAP maps
exhibited 7 clusters each for the frameshifts of the target peptide motif (Figure 5.24). AS-
MS peptides are shown in blue with library peptides in gray.

Toward further proving its motif detection sensitivity, N-grams encoding
clustered as few as 10 unaligned motif-containing peptides in a large dataset,
whereas the leading technique XSTREME required 20 sequences (see Section
5.7.5 and 5.7.6.2). The utility of this mapping approach hinges upon the sensitive
clustering of novel sequences together in low-data regimes. Thus, we evaluated
dimensionality reduction-encoding pairs to cluster and identify a small number of
similar peptides containing an unaligned motif ("DLHDYA¥) in a large dataset of
library peptides (5,000 total). XSTREME analysis uses deterministic optimization
based on the expectation maximization to perform motif detection.>® Our clustering
method could be categorized to perform enumeration (i.e., enumerate all n-mers),
which is inherently more sensitive. Enumeration is computationally avoided;
however, our approach is feasible because it precomputes n-mers from the input
peptides, which are short relative to genes. For the same data, one-hot and
Fingerprint encoding required = 80 unaligned peptides (Figure 5.3B), but only
required < 10 peptides if the motif was placed at the same frameshift (Figure 5.25),

meaning the clustering limit is primarily limited by UMAP.

Related to sensitivity, the augmentation of a small AS-MS ligand dataset with
library peptides unexpectedly clarified the appearance and density of clusters. Maps
prepared from a small number (~100) of peptides appeared dispersed, even for
highly similar peptides. However, in these low data regimes, augmenting the
dataset with nonbinding library peptides for co- learning improved cluster clarity of
similar peptides (Figure 5.26). At a minimum, an augmented dataset should improve
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the contextualization of the original dataset but could also outline nearby chemical
space to power Bayesian exploration.
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Figure 5.4: The translation of canonically-understood binding function into the
noncanonical chemical space was tested by the addition of peptidomimetics discovered
from a highly noncanonical library. A. From unsupervised ML analysis of the canonical data,
amino acids that drive high-affinity function over-represented in discovered motifs were
identified and included in a high-diversity noncanonical library for peptidomimetic discovery
and derivatization. B. Fingerprint encoding robustly encoded AS-MS peptidomimetics.
Fingerprint encoding encodes using molecular functional groups regardless of their
canonical or noncanonical identity, ensuring semantic consistency of the map. With robust
encoding, the boundaries and regions of canonically-understood high-affinity function can
be hypothesized to be maintained and translated across the canonical and noncanonical
chemical space.

5.2.4. Discovered peptidomimetics were proposed to test the sequence map

fidelity across the canonical and noncanonical sequence space.

The ultimate utility of these sequence maps would be to maintain consistency
of function across the broader chemical space. Thus, peptidomimetics were
discovered from AS-MS using highly noncanonical libraries were augmented into
the dataset (Figure 5.4). Acommon approach to design noncanonical libraries is to
diversify the high-affinity motifs.'® However, maintaining some randomization could
discover other high-affinity motifs and/or improve other non-motif residues. Seven

canonical monomers were chosen to be included in the noncanonical library
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because of their likely role in driving high affinity binding to maintain a likelihood of
ligand discovery, while increasing the chemical diversity. Our noncanonical library
utilized 36 monomers of the same X12K design, sampling a theoretical sequence
space 4,000 times larger than the original library (see Table 5.1), including two
synthetically prepared monomers: bis-pyridyl lysine and a galactosyl-citrulline for
their structural diversity (see Section 5.8.7). From AS-MS experiment, seventeen
peptidomimetics were identified from the noncanonical library (Table 5.18). This
fewer number of identified compounds were expected because AS-MS still utilized
200 million compounds, meaning the sampling rate of the larger chemical space

was lower relative to the canonical library.

AS-MS discovered noncanonical peptidomimetics were robustly augmented
into the sequence maps using Fingerprint encoding. A semantically consistent map
almost certainly requires similarities between all monomers to be encoded,
eliminating one-hot and N-grams encoding for this this task. Encoding based on any
proteome-based model (e.g., ESM-2) is unavailable as it lacks noncanonical
training. Physicochemical encoding could be made possible by calculations or
measurements but was not explored. In contrast, Fingerprint encoding was well-
suited as the molecular similarities of all amino acids are readily apparent and
captured at the same fidelity. Thus, Fingerprint encoded peptidomimetics were

added to develop a co-learned sequence space.

Because the peptidomimetics appeared throughout the sequence space
maps, we hypothesized that peptidomimetics localized near motif-containing
canonical peptides would also be high-affinity binders. Half of the peptidomimetics
were in or near high-affinity canonical clusters, with the other half located at
clusters’ edges or in the cluster interspace. However, it is unclear if the binding
function of these peptidomimetics will be consistently connected to their location on
the map, as is it for high-affinity canonical peptides. For example, noncanonical
derivatization of a high-affinity canonical peptide would change its location on the
map, even if the common motif were maintained.
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Figure 5.5: Experimental binding validation of AS-MS peptidomimetics reveals a picomolar
binder and reinforced the hypothesized regions of high-affinity binders, separated from
nonbinders in the combined noncanonical and canonical sequence space. A. Labels of
experimentally confirmed binder or nonbinder from biolayer interferometry (BLI) were
overlayed onto the Fingerprint-encoded, UMAP and PCA maps. High affinity
peptidomimetics were located at the PCA map edge, except for Peptidomimetic 5.
However, with no exception, high affinity peptidomimetics were located in or closely near
UMARP clusters, indicating the robust consistency of high affinity binding function between
the canonical and noncanonical chemical space. B. A functional boundary can be visualized
by plotting the distance of each peptidomimetic from its associated UMAP cluster versus its
experimentally measured binding affinity (Dissociation constant, Kp). The distance from
each cluster was normalized by the size of the characteristic cluster radius, which was
determined by minimizing the summed error between all cluster points to the circle radius.
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C. Of the high-affinity peptidomimetics discovered, Peptidomimetics 3, 5, and 16 are
highlighted for the effectiveness of AS-MS to rapidly sample the noncanonical sequence
space while maintaining high-affinity binding function. Concentration-dependent binding
observed on BLI sensorgrams of immobilized biotinylated peptidomimetics and unlabeled
12cab in solution were fit using a 1:1 binding model shown as a black dashed line on top of
the data (see Section 5.8.3). Peptidomimetic 16 combines noncanonical and canonical
amino acids for the highest affinity observed. The R group corresponds to a SGGK(Biotin)
linker utilized in BLI immobilization (see Section 5.5.15).

5.2.5. Boundaries of high-affinity function were robustly consistent with
UMAP across the chemical space, highlighted best by Peptidomimetic 5.

All seventeen of the peptidomimetics were tested for their experimental
binding using biolayer interferometry (BLI, Section 5.8.2, 5.8.3, and 5.5.15). In
general, high-affinity peptidomimetics were found in regions of high-affinity motif-
containing canonical peptides. Of the high-affinity binders observed, three
peptidomimetics (Peptidomimetics 3, 5, and 16) demonstrated the effectiveness of
AS-MS to rapidly sample the noncanonical space while maintaining high-affinity
binding function (Figure 5.5C). Peptidomimetic 3 exhibited high-affinity binding and
was completely noncanonical except for its common motif. Peptidomimetic 16
displayed the highest binding affinity of Kp 210 + 150 pM and was comprised of the

common motif and noncanonical amino acids.

The discovery of Peptidomimetic 5 (Ko = 77 nM), which does not contain the
common canonical motif, is significant for demonstrating of the utility of both AS-MS
and the UMAP-constructed maps. Since the binding interaction mode is through
anionic residues, the phosphoserine and 4-carboxy phenylalanine likely serve the
role of aspartic acid in the common motif. Peptidomimetic 5 is evidence that AS-MS
can rapidly sample the noncanonical space to discover a completely different
abiotic binding motif. With UMAP, all peptidomimetics were localized in or close to
canonical binding clusters with no exception. However, In the PCA map,
Peptidomimetic 5 localized in the center of the map near nonspecific and
nonbinding library peptides. Thus, the UMAP-constructed map robustly aggregated
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and clustered functional high-affinity binding compounds across both the canonical

and noncanonical chemical space.

Across the chemical space, a functional ‘boundary’ between high-affinity
binders and nonbinders can be seen when comparing the binding activity of the
peptidomimetics to their normalized proximity to UMAP clusters (Figure 5.5B).
While the boundary between high-affinity binders and nonbinders is not sharp, this
result suggests that the binding activity of any peptide derivatization with
noncanonicals can be predicted with a high degree of confidence. Thus, a
functional design space can be defined in the combined canonical and

noncanonical chemical space.

5.3. Conclusion

We applied unsupervised machine learning to peptide and peptidomimetic
ligand discovery data for the visualization, clustering and in-depth extraction of
motifs, and construction of functional boundaries between high-affinity binders and
nonbinders. From comparison with nonbinding library and nonspecific peptides,
novel sequences are found at the PCA map edge and the center of UMAP clusters
(Figure 5.1), and further supported by 12ca5-specific labels (see Figure 5.12). While
this analysis works well with a large dataset, small discovery datasets can be
augmented with library peptides to contextualize discovered peptides, and
potentially facilitate cluster formation (Figure 5.26). With UMAP, encodings that
produced high-dimensionality descriptors resulted in sequence maps with increased
cluster resolution, with frameshift-irrespective encoding by N-grams showing the
highest sensitivity for motif discovery. From clusters, the consensus and centroid
sequences identifies motifs and peptide binder families (Figure 5.2). This process
can readily nominate representative peptides across the diversity of the dataset to
“‘down-sample” and prioritize peptides for binding validation experiments and avoid
nonspecific peptides. Thus, we expect this approach could readily be applied to
accelerate any ligand discovery platform.
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The experimental binding validation of AS-MS discovered peptidomimetics
supported the ability to define functionally consistent chemical space, across
canonical peptides and noncanonical peptidomimetics. AS-MS rapidly sampled the
noncanonical space, exchanging and derivatizing canonical residues. We
experimentally validated 7 peptidomimetics, with Peptidomimetic 5 discovered
without the common canonical motif and with a Peptidomimetic 16 exhibiting Kp =
210 pM through natural and non-natural amino acids. With only 17 peptidomimetics
and 4,014 peptides, unsupervised learning appeared unaffected in its ability to
enable the prediction of peptidomimetic binding function and define a functional
embedding space, despite the class imbalance.

Our results may imply that significant derivatization from the originally
discovered hits decreases the likelihood of maintaining binding. However, significant
derivatization, including a full exchange of the common canonical motif, was still
rationalized from our analysis (e.g., Peptidomimetic 5). Overall, we expect this
analysis to have a range of applications including the definition of functional
chemical design spaces, prediction of peptidomimetic functionality before synthesis,
and the ML-guided generation or “hallucination” of functional peptidomimetics to
accelerate the discovery and development of therapeutics.

5.4. Materials

Table 5.1: List of abbreviations used.

Abbreviation Full name

AGC Automatic gain control

AggCl Agglomerative clustering

ALC Average local confidence

AS-MS Affinity selection-mass spectrometry
BLI Biolayer interferometry

Boc tert-Butyloxycarbonyl

BSA Bovine serum albumin

CID Collision induced dissociation

cv Column volume

Da Dalton mass unit

DBSCAN Density-Based Spatial Clustering of Applications with Noise
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DCM

DIPEA or DIEA
DMF

ECFP_6

ESI

ESM-2

EThcD

FBS

Fmoc

HATU

HCD
HPLC

K Buffer
LCMS
MDS
MeCN
MEME
MeOH
NHS
nLC
PBS
PCA
PEG
PTM

SA

SAR
STREME
TFA

Trt
UMAP
XSTREME

Dichloromethane

N, N-diisopropylethylamine

N,N-dimethylformamide

Extended connectivity Fingerprint

Electrospray ionization

Evolutionary scale model-2

Electron-transfer dissociation with higher-energy collision
Fetal bovine serum

9-fluorenylmethyloxycarbonyl

1-[Bis(dimethylamino) methyl-ene]- 1H-1,2,3-triazolo[4,5-b]-pyridinium
3- oxide hexafluoro-phosphate

Higher-energy CID

high pressure or high performance liquid chromatography
Kinetics buffer

Liquid chromatography-mass spectrometry
Multidimensional scaling

Acetonitrile

Multiple Em for Motif Elicitation

Methanol

N-Hydroxysuccinimide

Nano liquid chromatography

Phosphate buffer saline

Principal component analysis

Polyethylene glycol

Post-translational modification

Streptavidin

Structure activity relationship

Sensitive, Thorough, Rapid, Enriched Motif Elicitation
Trifluoroacetic acid

Trityl

Uniform manifold approximation

Extreme Sensitive, Thorough, Rapid, Enriched Motif Elicitation

Canonical Fmoc-protected amino acids Fmoc-L-Ala-OH, Fmoc-L-Arg(Pbf)-OH;
Fmoc-L-Asn(Trt)-OH; Fmoc-L-GIn(Trt)-OH; Fmoc-L-Leu-OH; Fmoc-L-Lys(Boc)-OH;
Fmoc-L-Pro-OH; Fmoc-L-Ser(t-Bu)-OH; Fmoc-L-Tyr(t-Bu)-OH, Fmoc-L-Asp-(Ot-
Bu)-OH; Fmoc-L-Glu(Ot-Bu)-OH; Fmoc-Gly-OH; Fmoc-L-Phe-OH; Fmoc-L-Thr(t-
Bu)-OH; and Fmoc-L-Val-OH were purchased from Sigma Millipore (Novabiochem)

and used as received. Fmoc-L-His(Boc)-OH was purchased from Advanced

ChemTech and used as received. Fmoc-Rink amide linker (4-[(R,S)-(2,4-
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dimethoxyphenyl)(Fmoc-amino)methyllphenoxyacetic acid) was purchased from

Chem Impex Inc (Wood Dale, IL) and used as received.

Table 5.2: Noncanonical amino acids used in this work with their associated protecting
groups. Unless specified as synthetically produced, all were purchased and used as

received.

Noncanonical amino acid

Fmoc-L-Phe(2-trifluoromethyl)-OH
Fmoc-3-fluoro-L-phenylalanine
Fmoc-4-(Boc-amino)-L-phenylalanine
Fmoc-Asn(GIcNAc(Ac)s-B-D)-OH
Fmoc-a-aminoisobutyric acid
Fmoc-(4-aminomethyl) benzoic acid
Fmoc-azetidine-3-carboxylic acid
Fmoc-B-cyclopropyl-L-alanine
Fmoc-(4-tert-butyloxycarbonyl)-L-phenylalanine
Fmoc-3,4-difluoro-L-phenylalanine
Fmoc-4-diethylphosphomethyl-L-phenylalanine
Fmoc-3,3-diphenyl-L-alanine
Fmoc-L-HomoArg(Pbf)-OH
Fmoc-L-homocitrulline
Fmoc-O-tert-butyl-L-trans-4-hydroxyproline
Fmoc-L-methionine sulfone
Fmoc-3-(1-naphthyl)-L-alanine
Fmoc-pentafluoro-L-phenylalanine

Fmoc-4-phenylpiperidine-4-carboxylic acid

1-Boc-piperidine-4-Fmoc-amino-4-carboxylic acid

Fmoc-(S)3-amino-2-(phenylsulfonylamino)propionic acid

Fmoc-O-benzylphospho-L-serine
Fmoc-3-(4-thiazolyl)-L-alanine

Fmoc-4-amino-tetrahydropyran-4-carboxylic acid

Fmoc-(3S-)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic

acid

Fmoc-Bispyridinolysine-OH

Fmoc-D-Galactosyl-L-citrulline

Abbreviation

2F3F
3fF
4AF
Agn
Aib
Amb
Aza
Cpa
Cxf
DfF
Dpf
DPh
hArg
hCit
Hyp
Msn
Nal
PfF
Php
Pip
Psa
pSer
Tha
Thp
Tic
Bpl

Git

1-Letter
Abbreviation
\%

~ a o I o X X 3

c — o T 0o s N -

- <

Source

Chem Impex, Inc
Chem Impex, Inc
Chem Impex, Inc

Millipore Sigma

Chem Impex, Inc

Chem Impex, Inc

Chem Impex, Inc

Chem Impex, Inc

Chem Impex, Inc

Chem Impex, Inc

Chem Impex, Inc

Chem Impex, Inc

Chem Impex, Inc

Chem Impex, Inc

Chem Impex, Inc

Chem Impex, Inc

Chem Impex, Inc

Chem Impex, Inc

Chem Impex, Inc

Chem Impex, Inc

Chem Impex, Inc

Chem Impex, Inc

Chem Impex, Inc

Chem Impex, Inc

Chem Impex, Inc

Synthesized,
see Noncanonical Monomer Synthesis
Synthesized,
see Noncanonical Monomer Synthesis

For the synthesis of noncanonical monomers (Bpl and Git, see Noncanonical

Monomer Synthesis), Fmoc-Lys-OH was purchased from Ambeed Inc. Sodium

triacetoxyborohydride, 2-pyridinecarboxaldehyde, 1,2-dichloroethane, methanaol,

(D)-(+)-galactose, acetic anhydride and pyridine were purchased from

MilliporeSigma. Fmoc-Cit-OH was purchased from Chem-Impex International Inc
(Wood Dale, IL). Coupling agent O-(7-azabenzotriazol-1-yl)-N,N,N’,N -
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tetramethyluronium hexafluorophosphate (HATU, 297.0% ) was purchased from P3
Biosystems (Lyndon, Kentucky).

Biosynthesis OmniSolv® grade N,N-dimethylformamide (DMF) was purchased
from EMD Millipore (DX1732-1) and incubated with 1 pack of AldraAmine trapping
agents (for 1000 — 4000 mL DMF, Sigma-Aldrich, catalog number Z511706) for 48
hours prior to use. Diisopropylethylamine (DIEA; 99.5%, biotech grade, catalog
number 387649) and piperidine (ACS reagent, 299.0%) were purchased from
Sigma-Aldrich. Formic acid (FA, 97%) was purchased from Beantown Chemical,
Corp. Trifluoroacetic acid (HPLC grade, 299.0%), Diethyl ether (anhydrous, ACS
reagent, 299.0%), acetonitrile (HPLC grade, 299.9%), Omnisolv® acetonitrile (LC-
MS grade, AX0156-1), Omnisolv® water (LC-MS grade, WX0001-1) and were
purchased from Sigma-Aldrich. Formic acid Optima LC/MS (A117) was purchased
from Fisher Chemical. Water was deionized using a Milli-Q Reference water
purification system (Millipore). Nylon 0.22 pym syringe filters were TISCH brand
SPEC17984.

H-Rink Amide-ChemMatrix® (0.49 mmol/g) resin was purchased from PCAS
Biomatrix (St-Jean-sur-Richelieu, Quebec, Canada) and 20 ym TentaGel® M NH,
Monosized Amino Microsphere resin was purchased from Rapp Polymere Inc.
(Tubingen, Germany). HyClone™ Fetal Bovine Serum (SH30071.03HI, heat
inactivated) was purchased from GE Healthcare Life Sciences (Logan, UT)
Dynabeads MyOne Streptavidin T1 magnetic microparticles were purchased from
Invitrogen (Carlsbad, CA). Phosphate buffered saline (10x, Molecular biology
grade) was purchased from Corning. Sodium chloride (ACS grade) was purchased
from Avantor. Guanidine hydrochloride (Cat BP178) and sodium phosphate
monobasic monohydrate were purchased from Fisher Scientific.

Mouse anti-hemagglutinin antibody (clone 12ca%) was purchased from
Columbia Biosciences Corporation (Cat: 00-1722, Frederick, Maryland) biotin-
(PEG)s-NHS ester and biotin-(PEG)s-propionic acid were purchased from ChemPep
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Inc. (Wellington, FL). Biotinylation of 12ca5 was performed as previously

described.?
5.5. Methods
5.5.1. Canonical peptide library synthesis

A total of three libraries were prepared, each portioned into 5 aliquots each (15
aliquots total), with 12 sampled in affinity selection-mass spectrometry experiments.

The procedure below describes the synthesis of a single library.

Total number of beads: 1x10°

Size: 20 micron Tentagel M NH2 (Cat: M30202)
Library design: X12K-NH:

Variable Positions: 12

# of monomers: 18 (Canonical 20 minus lle,Cys)

Ala, Asp, Glu, Phe, Gly, His, Lys, Leu, Met, Asn, Pro, GIn, Arg, Ser, Thr, Val, Trp, Tyr
Theoretical diversity: 1.16 x 10"
Redundancy: 4.32 x 107

Note: Redundancy is Total number of beads in each library / Theoretical
diversity or 1.16 x 10"® / 1 x 108 and speaks to the sampling rate of the

theoretical sequence space available
5.5.2. Noncanonical peptidomimetic library synthesis

A single library was prepared, each portioned into 5 aliquots (5 aliquots total),

with 3 sampled in affinity selection-mass spectrometry experiments.

Total number of beads: 1x10°

Size: 20 micron Tentagel M NH2 (Cat: M30202)
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Library design: X12K-NH:2
Variable Positions: 12
# of monomers: 36

Noncanonical monomers: Aze, Aib, Bpl, Cpa, Hyp, Pip, Thp, Amb, Tha,
Tic, 4AF, Msn, 3fF, pSer, hArg, hCit, DfF, Php, CxF, Nal, 2F3F, DPh, Psa,
Agn, PfF, Dpf, Git

Also, the following canonicals were included: Ala, Asp, Gly, His, Pro, Gin,
Thr, Val, and Tyr, as well as Lys that was only included at the C-terminus

position.
Theoretical diversity: 4.74 x 108
Redundancy: 1.06 x 10°1°

Note: For both canonical and noncanonical library synthesis, these libraries are
highly ‘nonredundant,” meaning the theoretical sequence is under-sampled. The
successful discovery of high-affinity peptide binders is dependent on the presence
of the minimal required motif / sequence required for binding. Low-complexity
binding motifs defined by 3-5 amino acids are readily discovered because they are
statistically common even within a highly nonredundant library. Since the library is
highly nonredundant, sequence isomers can be confidently identified and removed

(see Curation of AS-MS Data) as they are highly unlikely to exist.
5.5.3. Solid-phase peptide library synthesis by split-pool synthesis

4.2 g of 20 ym TentaGel M NH2 resin (0.26 mmol/g, 1.1 mmol, 1.0 x 10° beads)
was swollen in and washed with DMF (3x) within a 250mL peptide synthesis vessel
(medium frit, 10-15 ym pore size, ChemGlass CG-1866-05). Fmoc-Rink amide
linker (2.9 g, 5.4 mmol, 5 eq) was dissolved in HATU solution (0.38 M in DMF, 12.9
mL, 4.5 mmol), activated with DIEA (2.7 mL, 16 mmol) immediately prior to
coupling, and added to resin bed. Coupling was performed for 30 min and then
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washed with DMF (2 x 100 mL). Fmoc removal was completed with 20% piperidine
in DMF (1 x 50 mL flow wash followed by 2 x 50 mL, 5 min batch treatments). Resin
was then washed with DMF (3 x 150 mL). This process of coupling and Fmoc
deprotection was repeated with the Fmoc-Lys(Boc)-OH (2.54 g, 5.4 mmol, 5 eq).

The resin was then split for the coupling of randomized (“X”) positions with the
library amino acids. The resin was suspended in DMF (50 mL) and carefully divided
evenly among HSW Norm-Ject syringes (Torviq) mounted on Restek Resprep SPE
vacuum manifolds equipped (Cat 26077) with valves for coupling of each amino
acid monomer in the library (i.e., for canonical synthesis: 18 syringes; for

noncanonical synthesis 36 syringes).

With the Resprep valves closed, Fmoc-protected amino acids (0.6 mmol, 10 eq
relative to resin) in HATU solution (0.38 M in DMF, 1.4 mL, 0.54 mmol, 0.9 eq
relative to amino acid) were activated with DIEA (1.2 mmol, 2 eq relative to amino
acid) and each added to their respective split resin (theory: ~260 mg resin, 60
pmol). Couplings proceed for one hour minimum. For Fmoc-Bpl-OH, 5.0 equiv. of
DIEA relative to amino acid was used. For precious amino acids, lower equivalents
were used: Fmoc-Blp-OH (6.6 equiv.), Fmoc-Git(OAc)4+-OH (4.7 equiv.), Fmoc-Dpf-
OH (3.8 equiv.) and Fmoc-Agn(OAc)s-OH (2.3 equiv.) with extended coupling times
up to three hours. After coupling was completed, the Resprep valves were opened

to remove the excess coupling solution from the resin.

All resin was then pooled into the 250 mL peptide synthesis vessel and the
syringes were washed (3 x 5 mL) to recombine all resin. Additional wash (2 x 100
mL) and Fmoc deprotection (1 x 50 mL flow wash followed by 2 x 50 mL, 5 min
batch treatments) with 20% piperidine in DMF. Resin was washed with DMF (3 x
100 mL) and was then ready again for the next split cycle. The cycle was iterated
12 times total to accomplish the X12K-NH2 design.

With the final N-terminal Fmoc group was removed, the resin was washed with
DMF (150 mL), then suspended in DMF (~ 50 mL) and divided evenly among 5

198



aliquots in 20 mL syringes (2 x 108 peptides per aliquot). Then each were washed
with DCM (3x) and dried under reduced pressure overnight. Resin was taken to
perform experiment to validate the quality of the library, see Library Validation

Analysis.
5.5.4. Cleavage from resin and stock solution preparation

Deacetylation of peracetylated noncanonical side-chains (Agn, Git) was carried
out by treatment of resin with a solution of 5% anhydrous hydrazine in DMF for 16 h
at ambient temperature. After deacetylation, the resin was washed with DMF (3x),
DCM (3x), DMF (3x), MeOH (3x) and DCM (3x) and dried under reduced pressure.

Canonical libraries were globally deprotected and cleaved from resin with 94%
(v/iv) TFA, 2.5% (v/v) ethanedithiol, 2.5% (v/v) water, and 1.0% (v/v)
triisopropylsilane, for 3 h at ambient temperature (~2 mL/mg of resin). Noncanonical
libraries were globally deprotected and cleaved from resin with 85% (v/v) TFA, 5%
(v/v) water, 5% (v/v) phenol and 5% (v/v) thioanisole for 2 h at ambient temperature
(TIPS was found to reduce the GIcNAc of the Agn side chain).

The crude peptides were triturated with cold diethyl ether. Precipitated peptide
was triturated (3x) with cold diethyl ether, dissolved in 50% acetonitrile in water
(0.1% TFA), passed through a 0.2 ym nylon syringe filter, and lyophilized.

Crude lyophilized powders were resuspended in 5% acetonitrile in water (0.1%
TFA) purified using Supelco Discovery® DSC-18 SPE Tubes (Millipore Sigma Cat:
52607-U). The SPE tube was first conditioned with 3 CV of acetonitrile (0.1% TFA)
and then equilibrated with 5 CV of 5% acetonitrile in water (0.1% TFA). Then, the
suspended crude was loaded (Maximum 150 mg crude peptide loaded onto 2 g bed
mass) and washed with 10-12 CV of 5% acetonitrile in water (0.1% TFA). Peptides
were eluted with 70% acetonitrile (0.1% TFA) and lyophilized.

Lyophilized, SPE-purified powders of libraries were each dissolved first in DMF
and then diluted with 1x PBS to a final library concentration of 8 mM (~40
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pM/member), and a final DMF concentration of 5% (v/v). Stock solutions were
aliquoted out into low-bind tubes and stored at -80 °C. Aliquots were thawed on ice

prior to use.
5.5.5. Library validation analysis

Canonical libraries were validated as previously described.! For the
noncanonical library, 20 mg of resin was weighed out in a microcentrifuge tube and
agitated for 16 h in 5% anhydrous hydrazine in DMF (100 mg/mL). The resin was
then transferred to a 3 mL fritted Torviq syringe and washed with DMF (3x), DCM
(3x), DMF (3x), MeOH (3x) and DCM (3x). The resin was suspended in DCM and
transferred to a 15 mL conical tube and the solvent was evaporated under a stream

of nitrogen.

For both the canonical and noncanonical libraries, 1.5 mg of dried resin was
weighed out and suspended in DMF (5 mg/mL). From this stock suspension, 1.5 pyL
(estimated 877 beads) were transferred to a microcentrifuge tube, suspended in
200 pL cleavage solution. Canonical libraries were treated with 94% (v/v) TFA,
2.5% (v/v) ethanedithiol, 2.5% (v/v) water, and 1.0% (v/v) triisopropylsilane and
heated to 60 °C for 10 minutes. Noncanonical libraries were treated with 85% (v/v)
TFA, 5% (v/v) water, 5% (v/v) phenol and 5% (v/v) thioanisole) and left at room
temperature for 2 hours. The TFA was then evaporated under a stream of nitrogen
and the remaining waxy oil was dissolved in 200 pL of 5% acetonitrile in water
(0.1% TFA) and sonicated / vortex vigorously. The suspension was centrifuged at
21,300 rcf at room temperature. The supernatant was added onto a conditioned
C18 STAGE tip (CDS Empore™ SDB-XC, Fisher Scientific Cat: 13-110-020) and
purified according to the protocol of Rappsilber et al.%” The eluting solvent was
evaporated by vacuum centrifugation and the peptides were resuspended in 29 uL
of 0.1% formic acid in water to enable the injection of 100 pg/peptide with 1 uL. The
solution was centrifuged at 21,300 rcf at 4°C for 10 min and the supernatant was

transferred to a MS vial for Orbitrap analysis. Upon analysis of the canonical and
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noncanonical libraries, the canonical library demonstrated near even monomer
incorporation as previously reported.! However, within the noncanonical library,
higher monomer variation was observed, with Bpl (Fmoc-Bispyridinolysine-OH) and
PfF (Fmoc-pentafluoro-L-phenylalanine) showing poor incorporation at all positions.
FfF (Fmoc-pentafluoro-L-phenylalanine) has previously been successfully
incorporated into other noncanonical libraries. Additionally, the hydrazinolysis of for
deacetylation of the glycan-mimetic functional groups (Agn, Git) was suspected to
affect the slightly lower incorporation of Psa. Despite these shortcomings in the
noncanonical library, it was used in AS-MS experiments as follows.

5.5.6. Affinity selection-mass spectrometry (AS-MS) experiments

Affinity selection-mass spectrometry (AS-MS) was performed manually as
previously described with modifications'? or with a KingFisher™ Duo Prime (Thermo

Fisher Scientific).

For manual AS-MS, 100 pL of magnetic beads (1 mg; 0.13 nmol IgG binding
capacity, MyOne Streptavidin T1 Dynabeads, Thermo Fisher Scientific Cat: 65602)
were transferred to 1.7 mL plastic centrifuge tubes and washed 3 times with
blocking buffer (10% fetal bovine serum (FBS) in 1x PBS pH 7.4 and 0.01%
Tween20, 0.2 um filtered) using a magnetic separation rack (NEB Cat: S1506S).
Then, 1.2 to 2 eq of biotinylated anti-hemagglutinin antibody (clone 12ca5,
Columbia Biosciences Cat: 00-1722) was incubated with the magnetic beads at
approximately 0.5 pM. The resulting suspensions were incubated on a nutating
mixer for 30 min at 4 °C and then washed 3 times with blocking buffer.

Next, the affinity selection samples were prepared. The peptide library was
depleted of ‘bead binders.’ In a new tube, the following were combined for a 1mL
sample and scaled if needed for multiple replicates using the library: 100 uL of neat
FBS, 550 uL of 1x PBS, 250 uL of library stock solution to provide 10 fmol/peptide,
and 50 uL of pre-washed magnetic beads. This sample was incubated for 1 hour at
4 °C. Then, this sample was then centrifuged at 21,300 rcf and the supernatant
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aliquoted to a new tube to provide the library depleted of peptides that bind to the
magnetic beads with high affinity. Then, 1 mg (100 uL volume in blocking buffer) of
the washed magnetic beads with 12ca5 immobilized was mixed with the pre-
depleted library solution to provide a solution concentration of 100-130 nM of 12ca5
final. These affinity selection samples were then incubated at 4 °C for 1 hour on a
nutating mixer. Then, the samples were washed 3-6 times with cold 1x PBS pH 7.4
using a magnetic rack (~10 minutes contact time with buffer). The isolated beads
were eluted using 2 x 100 uL of 6 M guanidine, 50 mM sodium phosphate pH 7.

For automated selections, a KingFisher™ Duo Prime was utilized with two (2) x
96 Deepwell Plates (Thermo Fisher, #95040450) in the following format, marked by
rows. Three replicates were run by using three columns per library aliquot for 12
separate X12K libraries. The isolated peptides bound to the beads were eluted using
2 x 100 uL of 6 M guanidine, 50 mM sodium phosphate pH 7 in elution strips.

Table 5.3: Plate layout for AS-MS using a KingFisher™ Duo Prime system

Plate 1 Plate 2

Row | Description Vol, mL Description Vn?ll_,
A Selection samples, see text 1 | 1x PBS, cold 1
B Blocking buffer 1 | 1x PBS, cold 1
C Blocking buffer 1 | 1x PBS, cold 1
D Blocking buffer 1 | 1x PBS, cold 1
E Biotinylated 12ca5 0.5 | 1x PBS, cold 1
F Blocking buffer 1 | 1x PBS, cold 1
G Blocking buffer 1 | Comb for Kingfisher magnet

H Blocking buffer + beads 1

Elution strip 1 Elution strip 2
Row | Description Vol mL Elution strip 2 Vnc:ll_,
6 M guanidine, 50 mM sodium phosphate, 6 M guanidine, 50 mM sodium phosphate, pH

N/A pH 7 0.1 7 0.1

For the “Selection samples” (Plate 1 Row A), the sample was prepared similarly
to the manual selection. First, the peptide library was depleted of ‘bead binders.’ In
a new tube, the following were combined for a each sample and scaled if needed
for multiple columns / replicates: 100 uL of neat FBS, 550 uL of 1x PBS, 250 uL of

library stock solution to provide 10 fmol/peptide, and 50 uL of pre-washed magnetic
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beads. This sample was incubated for 1 hour at 4 °C. Then, this sample was then
centrifuged at 21,300 rcf and the supernatant aliquoted to the 96 Deepwell plate to
provide the library depleted of peptides that bind to the magnetic beads with high
affinity.

For “Blocking buffer + beads” (Plate 1 Row H), 100 uL of magnetic beads were
added to 900 uL of blocking buffer (10% fetal bovine serum (FBS) in 1x PBS pH 7.4
and 0.01% Tween20, 0.2 ym filtered).

For “Biotinylated 12ca5” (Plate 1 Row E), 500 uL of blocking buffer was added
with the amount needed to provide 1.2-2 eq of 12ca5 from its stock solution
(typically 10.4 uL of 12ca5 stock solution at 25 uyM for 2 eq).

The following steps were programmed for affinity selection:

Collect comb from Plate 2, Row G

Wash beads by release beads (30 s, medium) in Plate 1, Row H, collect beads (3 x 1 second)
Wash beads as in Step 2 in Plate 1, Row G

Wash beads as in Step 2 in Plate 1, Row F

Release beads (20 s, medium) into Plate 1 Row E (30 minutes, mix slowly)
Wash beads as in Step 2 in Plate 1, Row D

Wash beads as in Step 2 in Plate 1, Row C

Wash beads as in Step 2 in Plate 1, Row B

Release beads into Plate 1, Row A, (1 hour, mix slowly)

10. Add plate 2, containing cold 1x PBS to the Kingfisher instrument

11. Collect beads from Plate 1, Row A (5 x 1 second)

12. Wash beads as in Step 2 in Plate 2, Row A

13. Wash beads as in Step 2 in Plate 2, Row B

14. Wash beads as in Step 2 in Plate 2, Row C

15. Wash beads as in Step 2 in Plate 2, Row D

16. Wash beads as in Step 2 in Plate 2, Row E

17. Wash beads as in Step 2 in Plate 2, Row F

18. Release beads into elution strip 1, 1 minute mix fast, collect beads (5 x 1 s)
19. Release beads into elution strip 2, 1 minute mix fast, collect beads (5 x 1 s)
20. Release beads and comb into Plate 2 Row G to end the program

Eluted peptide samples were then prepared for Orbitrap analysis by C18
STAGE tip (CDS Empore™ SDB-XC, Fisher Scientific Cat: 13-110-020) and purified
according to the protocol of Rappsilber et al.>” The eluting solvent was evaporated

©OReNO>OA~LD =

by vacuum centrifugation and the peptides were resuspended in 12-13 uL of 0.1%
formic acid in water. The solution was centrifuged at 21,300 rcf at 4°C for 10 min
and the supernatant was transferred (leave behind 1.5 uL) to a MS vial for Orbitrap
analysis. Usually, 4-5 uL were injected onto the Orbitrap Fusion Lumos whereas 2-3

uL were injected onto the Orbitrap Eclipse.
203



5.5.7. Nanoscale liquid chromatography-tandem mass spectrometry (nLC-
MS/MS)

Nanoscale liquid chromatography tandem mass spectrometry (nLC-MS/MS)
was performed using an EASY-nLC 1200 (Thermo Fisher Scientific) nano-liquid
chromatography handling system connected to an Orbitrap Fusion Lumos or an
Orbitrap Eclipse Tribrid Mass Spectrometer (Thermo Fisher Scientific). Solvent A is
water (0.1% formic acid) and solvent B is 80% acetonitrile in water (0.1% formic
acid). Precolumn and analytical column equilibration with 8 pL of solvent A was
performed at maximum of 1 yL/min or 600 bar. Samples were injected and loaded
onto a nanoViper Trap Column (C18, 3 um particle size, 100 A pore size, 20 mm x
75 ym ID; Thermo Fisher Scientific, Cat: 164946) for desalting with 12 pL of solvent
A (maximum of 1 yL/min or 600 bar). The autosampler wash was 100 uL of solvent
A. After trapping, samples were injected onto a PepMap RSLC C18 column (2 pym
particle size, 15 cm x 50 ym ID; Thermo Fisher Scientific, Cat: ES901). The
standard nano-LC method was run at 40 °C and a flow rate of 300 nL/min with the
following gradient, expressed in % solvent B in solvent A: 1% to 41% over 120
minutes (AS-MS Experiments) or 90 minutes (Library Validation Analysis or other
simple mixtures), move to 90% in 3 minutes, hold for 7 minutes, and then perform 2
“seesaw” washes (each comprising of moving to 20% over 3 minutes, holding at
20% for 3 minutes, moving to 90% for 3 minutes, and holding at 90% for 3 minutes).

Mass spectrometry acquisition was performed using an Orbitrap Fusion Lumos
or an Orbitrap Eclipse Tribrid Mass Spectrometer (Thermo Fisher Scientific) with
positive mode, where the ion source settings was set by the tune parameters
(Spray voltage usually ~ 2200 V with no Arb gas). The method to perform data-
dependent acquisition has been iteratively optimized.

The standard AS-MS MS analysis method analyzes from 3-120 minutes, with an
expected LC peak width of 20 seconds, default charge state of 3, and no internal

mass calibration. Primary spectra acquisition in positive mode was observed by the
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Orbitrap with resolution = 120,000, using quadrupole isolation, 200-1400 m/z, RF
Lens 30%, 250% AGC Target (auto injection time, usually < 10 ms), and 1
microscan. Secondary MS was performed with the following filters: Precursor
selection range: 300-1200 m/z, MIPS: Peptide, Intensity threshold: 4e4, Charge
state: 2-5 excluding undetermined charge states, Dynamic exclusion: exclude after
1 time for 30 seconds (10 ppm tolerance), Targeted mass exclusion of all peptides
in the Pierce™ Peptide Retention Time Calibration Mixture (z = 2 and 3, Thermo
Fisher Scientific, Cat: 88321). HCD and EThcD were completed. HCD used
quadrupole isolation (1.3 m/z, no offset) at a fixed 28% collision energy and was
observed on the Orbitrap with resolution = 30,000, Scan Range Mode: Define First
Mass: 120 m/z, 600% AGC Target, maximum injection time 100 ms, and 2
microscans. EThcD used a charge filter of z = 3, quadrupole isolation (1.3 m/z, no
offset), using calibrated charge-dependent ETD activation, and supplemental HCD
activation a fixed 25% collision energy and was observed on the Orbitrap with
resolution = 30,000, Scan Range Mode: Define First Mass: 120 m/z, 600% AGC

Target, maximum injection time 100 ms, and 2 microscans.
5.5.8. Curation of AS-MS data

De novo analysis of sequencing data was performed as described previously for
canonical libraries using PEAKS Studio 8.5 (Bioinformatics Solutions, Inc, ON,
Canada).’> Mass precursor correction was used. Auto de novo sequencing was
performed using a 15 ppm precursor mass error and 0.02 Da fragment mass error.
For canonical libraries, the following PTM modifications were used: fixed C-terminal
amidation (-.98 Da) on lysine, and variable oxidation on methionine (+15.99 Da). For
noncanonical libraries, the PTMs used are shown in Table 5.4. 20 candidate
sequences were obtained for each preprocessed scan. Post-de novo data analysis
was performed as previously described®® to convert the PTMs to 1-letter encoding

also in Table 5.4.
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Table 5.4: Post-translational modification (PTM) utilized in PEAKS de novo sequencing
analysis of noncanonical library. Where a single amino acid is modified (e.g., F modified to
be F(+17.99) to represent 3fF), a fixed PTM is used. When the same amino acid can be
modified to represent multiple noncanonical amino acids (e.g., alanine), a variable PTM
was used.

Monomer PTM 1-letter
code

Aze A(+12.00) a
Aib A(+14.02) b
Cpa A(+40.03) d
Hyp A(+42.01) e
Pip A(+55.04) f
Thp A(+56.03) g
Amb A(+62.02) h
Tha A(+82.98) i
Tic A(+88.03) j
4AF A(+91.04) k
Msn M(+31.99) I
3fF F(+17.99) m
pSer S(+79.97) n
hArg R(+14.02) o]
hCit N(+57.06) p
hCit A(+100.06) C
DfF C(+80.04) r
Php E(+58.06) s
CxF A(+120.02) t
Nal L(+84.00) u
2F3F A(+144.02) v
DPh W(+37.02) w
Psa A(+155.00) X
PfF A(+165.98) y
Dpf A(+226.08) z
Bpl A(+239.14) B
Agn A(+246.09) X
Git A(+248.10) z

After concatenating all data from de novo sequencing, the data was rigorously
cleaned to remove poorly sequenced peptides and sequence isomers from the data,
beyond what has previously been published.58

First, simple filters on the average local confidence of sequencing (ALC) and
calculated ppm error of sequencing from PEAKS Studio 8.5 were applied: ALC > 85
(canonical) or > 80 (noncanonical) and absolute ppm error < 10 ppm were retained.
Also, all duplicate peptides were removed.
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Second, all sequences were compared pairwise and marked for removal if they
had the same precursor mass within 0.01 Da or had specific differences in
precursor mass corresponding to 1) incorrect monoisotopic precursor selection
(absolute delta of 1, 2, or 3 Da), oxidation (absolute delta of 16, 32), or sodium
adduct (absolute delta of 22). Additionally, the peptides must have some amount of
sequence similarity (empirically seen to work well on trial datasets with a similarity
of 0.69 by difflib.SequenceMatcher in Python). Retention time differences were not
considered in case the data was acquired using different gradients. The highest
ALC peptide was retained, with the lowest ppm sequencing error as tie-breaker.

Third, all remaining sequences were compared pairwise and marked for
removal based only on a very high degree of sequence similarity. Again using
difflib.SequenceMatcher in Python, a peptide similarity of > 0.92 was only seen for
sequence isomers with either a single amino acid replacement or a dipeptide swap
with the X12K type of peptides. While rigorous and potentially overly conservative,
this step often removes < 5% of the remaining data after the second step is
completed.

With the canonical library, 4104 peptides were uniquely identified from AS-
MS with high sequencing fidelity for unsupervised learning analysis.

With the noncanonical library, 17 peptides were uniquely identified from

AS-MS with high sequencing fidelity for unsupervised learning analysis.
5.5.9. Encoding of peptides for unsupervised analysis
5.5.9.1. One-hot encoding

Each amino acid was represented by the vectors seen below. A peptide was
represented by concatenating these vectors together. Thus, each peptide was
represented by a vector 12 * 20 = 240 in length vector descriptor for each
peptide.
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Table 5.5. One-hot encoding vectors for canonical amino acids

Amino acid One hot encoded vector:

A [ 1 000 0O0O0OU O OUOTOT OUOTO OO0 0]
D [ 01 00 0O0O0O0UOTUO0UOTOTUOUOTO OO0 0 0]
E [ 001 00O0O0UO0UOTUOUOTOTUOUOTO OO0 0 0]
F [ 000 100 0O0O0OTUO0UOTOTUO0UO0OO0O0 0 0]
G [ 0000 1000UO0UO0UO0TO0OTO0UO0OTO OO0 0 0]
H [ 000 OO0 T10U0UO0OTOTOTOTO OTU OO0 0 0]
K [ 000 O0OO0OUOT1O0UOTO O OUOTOUOO 0 0 0]
L [ 000 O0ODO0OOTO OU1O0OUOUOT OOO0 0 0 0]
M [ 00O O0OO0OOT OU OT 1O0O0UO0TO OO0 OO0 0 0]
N [ 00O OO0OUOT OUOUOT1O0UOTO0OO0OO0 0 0]
P [ 000 O0ODO0OOTOUOUOT OTI1O0O0O0 OO0 0 0]
Q [ 000 0O0O0OOTOUOUOT OUOT1O0O0 OO0 0 0]
R [ 00O O0OOOT OU OGO OUOUOT1O0TO0O0 0 0]
s [ 00O O0O0OOT OUOUOT O0UOGOTUO0 100 0 0]
T [ 000 0O0OOT O0OUOUOT OUOTOT OO 10 0 0]
% [ 000 0O0OOT O0OUOTO O OUOTOTUO0OUOO0 1 0 0]
w [ 000 O0OOOT OO OTO O OUOTOTUO0O0O0 0 1 0]
Y [ 000 OO0OOU O OUOT OTUOUOTO OO OO0 0 1]

5.5.9.2. Physicochemical encoding

Each amino acid was represented by 12 physicochemical properties as
reported from literature.>*

The reported properties were standardized before use. These properties
included H11 and H12: hydrophobicity; H2: hydrophilicity; NCI: net charge index of
side chains; P11 and P12: polarity; P2: polarizability; SASA: solvent-accessible
surface area; V: volume of side chains; F: flexibility; A1: accessibility; E: exposed; T:
turns; A2: antigenic. Hydrophobicity (H11 and H12) and polarity (P11 and P12) were
calculated using two methods. The peptide was represented by concatenating the
vectors of each amino acid together (12 residues * 12 properties = 144 length
vector descriptor for each peptide)

5.5.9.3. ESM-2 encoding

ESM-2 is a protein language model that can be used for multiple applications
where properties, structure, and function are derived from the input sequence,
where the model was trained on the proteome (UniRef 50). Encoding was
completed by extracting the amino acid embeddings of the peptides from 33 layer
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of the pretrained “esm2_t33_650M_URS0D” model. From this layer, each
embedding per amino acid is size 1280, and a peptide is represented by
concatenating this output residue by residue, resulting in a 12 residues * 1280
sized embedding = 15,360 length vector descriptor for each peptide. While this
can seem large, N-grams encoding was also on this order of magnitude.

5.5.9.4. Fingerprint encoding

Extended connectivity Fingerprint encoding was used with bit-vectors of 256
length and radius = 3. Canonical and noncanonical amino acids were drawn in
ChemDraw 21.0.0 with N-acetylation and N-methyl carboxamidation to replicate the
featured of the amino acid integrated within a peptide. Histidine was drawn in its
most common 1-tautomer form. Amino acids were exported as SMILES and
canonicalized (standardized) in using molvs (standardize_smiles). The Fingerprint
was the isolated using Chem.GetMorganFingerprintAsBitVect and
Chem.MolFromSmiles. With an n-bit vector of 256, each peptide was represented
as 12 residues * 256 bit-vector length = 3,072 length vector descriptor for each
peptide
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Monomer A/DIE|/F|IGIHIK/ILIM|IN/IPIQIR|S|T|V|W]Y
Unique Features | 2 | 2 |1 /3|58 | 1/3|6|2|9 2,|7,|4,5|2]J12 5
Shared Features | 20 |24 |29 |30 |16 (3231|2524 |126|23|29|31|21|20|21 /36|29
Sum Features 2212630332140 32|28 /30|28|32|31|38 25|23 |48 34
Index |
I
I
o

Figure 5.6: The Fingerprint encoding illustrates the similarities and number of unique
features in canonical amino acids. Specifically, one can see the similarity in specific
substructure features between amino acids, as well as the number of unique features.

N-bit = 32 N-bit = 64 N-bit = 128 N-bit = 256 N-bit = 512 N-bit = 1024 N-bit = 2048
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Figure 5.7: The Fingerprint radius of 3 is generally set for extended connectivity Fingerprint
encoding for ECFP_6. However, the bit-vector length can and was varied to see if it
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affected the data ranging from 2° (32 bit vector length) - 2'" (2048 bit vector length). Low
bit-vector length minimized the appearance of distinct clusters in some analyses of the AS-
MS data (e.g., UMAP Fingerprint shown above). The bit-vector length of 256 length was
seen to provide more distinct clusters within some of the sequence maps, and above this
value, no additional resolution was seen.

5.5.9.5. N-grams encoding

N-grams encoding was completed by pre-calculating the observed n-mers in the
dataset up to a maximum n-mer length of the full peptide length (12 residues), as
described below. As pre-calculated (Figure 5.7), the entire peptide was
represented at once as a 138,622 length vector, where each index of the vector

describes an n-mer motif that is either present (1) or absent (0) in the peptide.

Theoretical maximum, Practical maximum, bound
bound by # of unique by # of peptides and available
monomer combinations frameshifts in dataset

40000 -e- Observed # of unique N-mers
" Maximum # of unique N-mers,
T 30000 & (The minimum between the
zg theoretical and practical maximum)
£ 20000
g
c
5
S 10000+ Observed sum = 138622
T+

0 T T

0 5 10
Maximum N-mer length

Figure 5.8: The number of unique N-grams for encoding versus the maximum N-gram
length used. N-Grams encoding proceeds first by predetermining all n-mers (sometimes
called k-mers) within the dataset. The theoretical number of n-mers is bound by the number
of unique combinations of monomers and the maximum N-gram length (i.e., [# of
monomers]Maximum N-gram length), which up to a 12-mer length peptide would be 1015
n-mers. However, since the n-mer space is pre-calculated from the dataset, significantly
fewer are actually observed than theoretically possible even with the maximum N-gram
length set to the length of the peptides in the library. The practical maximum is the
observed n-mers, bound by (# of peptides) x [ 1 + (Full Peptide Length — Maximum N-gram
length)]. The true maximum is the minimum of the theoretical and practical maximum
shown in the figure above in green.
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5.5.10. UMAP dimensionality reduction hyperparameter optimization

UMAP is a user-friendly, non-linear dimensionality reduction technique that
requires minimal optimization to use. However, UMAP embedding results are
generally stochastic. Thus the random seed state was always fixed. Some variation
in the embeddings was noticed due to the UMAP version, which was 0.5.3 for this
work. Lastly, UMAP embeddings are affected by the order of the data within the
datafile used (see UMAP shuffle samples leads to quit different result - Issue #268 -

Imcinnes/umap) likely because data seen first is weighted more in the initialization

of the manifold. Thus, the sequences from AS-MS were randomly shuffled, and then
used throughout this work. Additionally, we have observed that exact embedding

results can vary from computer to computer but should remain generally similar.

The two main hyperparameters are n_neighbors and min_dist, and the distance

metric setting.

First, n_neighbors balances the importance of the local vs global structure
within the data. Low n_neighbors values (~1% of the dataset size) will provide
results that focus on local structures, while large values seek to emphasize the
global structures, losing fine local detail. This is observed by producing the UMAP
embeddings versus n_neighbors (Figure 5.9).
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https://github.com/lmcinnes/umap/issues/268
https://github.com/lmcinnes/umap/issues/268

Opservaﬂgns as _  Develop local Re-connect local clusters to Lose definition of local clusters to
n_neighbors increases clusters global structure global structure

Scan of n_neighbors from 2 to 16384, as % of total data
2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
0.049% 0.10% 0.19% 0.39% 0.78% 1.6% 3.1% 6.2% 12% 25% 50% 100% 200% 399%

One Hot Encoding, min_dist 0.1

" ." . " .
- &N
i N o ¥ ®
- - , , . ;' 7 7
Fingerprint Encoding, min_dist 0.1
e .-..‘. = .‘*‘
v . & 8 . ¥ L s s
R J - ] ® e € ‘ * ®

N—grams__ Em:ocling3 min_dist D:1 )

p &

Figure 5.9: Scan of n_neighbors with UMAP using one-hot, Fingerprint, and N-grams
encoding. Local clusters are rapidly and initially developed. As n_neighbors increases, local
clusters are reconnected to the global structure of the data at an optimal n_neighbors. As
n_neighbors grows to a significant percentage of the dataset (> 50%), the clusters begin to
be obscured in the global structure unifying the peptides. Stable embeddings results were
seen at n_neighbors throughout the dataset from (1.5 - 25%), so 6.2% (n_neighbors = 256)
was taken as an optimal value.

Second, min_dist sets the minimum distance between points, meaning that tight
local clusters are forced to be spread apart. The default of 0.1 was used for all
analysis except for one-hot encoding, which showed exceptionally tight clusters,
and so it was set to 0.4.

The distance metric was appropriately set based on the encoding type:®® binary
encoding method (one-hot, Fingerprint, and N-grams) used the Tanimoto distance
metric, while continuous descriptors (evolutionarily-learned and physicochemical

encoding) used the Euclidean distance metric.
5.5.11. Multidimensional scaling (MDS) dimensionality reduction

Multidimensional scaling (MDS)%® was used as the similarity mapping method.
However, it is currently unable to incorporate additional results without re-learning.
Thus, the dataset of randomly sampled peptides could not be added as it would
cause MDS to learn over random sequence space combined with the AS-MS

discovered space. Specifically, MDS does not have a .transform function in the
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current version used (scikit-learn, version 1.0.2), see https://github.com/scikit-

learn/scikit-learn/issues/2887, and https://github.com/scikit-learn/scikit-

learn/issues/15808 .
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Figure 5.10: MDS dimensionality reduction versus encoding method of the AS-MS data.

5.5.12. Individual peptide synthesis and cleavage from resin

Peptides and peptidomimetic a-carboxamides were manually synthesized in
batch using 100 mg of H-Rink Amide ChemMatrix resin (0.49 mmol/g). Resin was
swollen in amine-free DMF for a minimum of 10 minutes in HSW Norm-Ject syringe
(Torviq) syringes mounted on a Restek Resprep SPE vacuum manifolds equipped
(Cat 26077) with valves. For each coupling cycle, Fmoc-protected amino acids (5
eq, 0.245 mmol) were dissolved at 0.4 M in 0.38 M HATU (4.75 eq relative to resin,
0.95 eq relative to Fmoc-protected amino acid) in amine free DMF and sonicated or
vortexed as needed. Diisopropylethyl amine (DIEA; 10 eq, 0.49 mmol, 85.4 yL) was
added and the solution, hand mixed to form the active ester, and confirmed to return
being visually transparent as a clear light yellow solution. Using the Restek
manifold, the excess DMF was drained from the DMF-swelled resin. Then the
solution containing the activated Fmoc-amino acid ester was added to the resin and
incubated at room temperature for 45 minutes. After which, the resin was drained
and washed 3 x with amine free DMF. Fmoc deprotection was completed using 20%

piperidine in DMF (2 x 5 minutes), and then washed 3 x with amine free DMF. Then
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the next amino acid coupling cycle could proceed. After synthesis was complete,
resins were washed 5 x with amine free DMF, 3 x DCM, vacuum was pulled on the
dry resin to remove the DCM (5 minutes), and then the resin was dried under

vacuum before cleavage.

Cleavage was performed in HSW Norm-Ject syringe (Torviq) syringes by using
the syringe plunger to pull the cleavage solution onto the resin with a blunt tip
needle and then capping the syringe. Global side chain deprotection and cleavage
from solid support were carried out using solution of 94% (v/v) TFA, 2.5% (v/v)
ethanedithiol, 2.5% (v/v) water, and 1.0% (v/v) triisopropylsilane, for 1 hour
minimum at ambient temperature (~2 mL of deprotection solution / 100 mg of resin).
Upon which, the crude peptide and cleavage solution was isolated from the syringe
into a 15 mL Falcon tube and triturated with cold diethyl ether (~12 mL, chilled on
dry ice). The peptide was then suspended in 50% acetonitrile in water (0.1% TFA)
and lyophilized.

Peptide purification was completed using reverse-phase flash purification or
with preparative high performance liquid chromatography purification (HPLC). For
flash purification, a Biotage Selekt was used with a Biotage® Sfar C18 D - Duo 100
A 30 um 12 g column. One-third of the cleaved, lyophilized peptide mass (< 10 mg)
was suspended in 0.9 to 1.8 mL of 20% MeCN in Water (0.1% TFA), centrifuged at
3.4k rcf for 10 minutes, and the supernatant was loaded onto the column and
separated using using a gradient of 10% to 55% MeCN in Water (0.1% TFA) over
12-15 column volumes (CVs) and observed by UV absorption at 210 and 280 nm
and fraction collected with 3 mL maximum fraction sizes. Peptides that exhibited
close elution to deletion products or poor elution profiles were purified by
preparative HPLC. Preparative HPLC was performed on an Agilent 1260 Infinity LC
equipped with a 6130 single quadrupole mass spectrometer. Samples were
prepared as described above, filtered using a 0.2 um filter, and loaded onto a
Zorbax 300SB C18 column (9.4 x 150 mm, 5 ym, 8 mL/min) with a C8 guard
column using a automated injector and separated using 5% to 55% MeCN in Water
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(0.1% TFA) over 30 minutes with fractionation over the entire run using 62 fractions.

Fractions were analyzed by LCMS and UPLC to assess purity.
5.5.13. Liquid chromatography-mass spectrometry (LC-MS) analysis

LC-MS analysis was acquired using an Agilent 6550 MS Q-TOF mass
spectrometer with Dual Agilent Jet Stream (AJS) ESI ion source in extended
dynamic mode in mass range 100 - 3000 m/z with scan rate of 1.00 spectra/sec. An
isopump delivered a reference ion mass (922.0098 m/z). The following instrument
parameters were used: gas temperature 200 °C, gas flow 14 L/min, nebulizer
pressure 55 psig, sheath gas temperature 350 °C, sheath gas flow 11 L/min. The
following scan source parameters were used: VCap: 3500, nozzle voltage 1000 V,
fragmentor 175, and Octopole RF Vpp 750. Column was a Zorbax 300SB C3, 2.1 x
150 mm, 5 ym kept at 40 °C. The gradient utilized 0.1% formic acid in water
(solvent A) and 0.1% formic acid in acetonitrile (solvent B), flow rate 0.5 mL/min,
starting at 1% B in A running to 91% B in A over 7 minutes with 1 minute at 91% B
in A and 1 minute post-time re-equilibration at 1% B in A. Data were analyzed in
Agilent MassHunter Qualitative Analysis B.06.00.

5.5.14. Purity analysis by ultra performance liquid chromatography (UPLC)

LC analysis was performed with an Agilent 1260 LC system controlled by
ChemStation software, using an Agilent Zorbax RRHD 300SB-C18, 2.1 x 50 mm,
1.8 um (Cat: 857750-902) column at 40 °C. The gradient utilized 0.1%
trifluoroacetic acid (TFA) in water (solvent A) and 0.1% TFA in acetonitrile (solvent
B). The flow rate was 0.5 mL/min, starting at 5% B in A running to 65% B in A over
11 minutes, moving to 90% B in A in 0.25 minute, holding for 1 minute, moving to
5% B in Aiin 0.05 minute, and re-equilibrating for 1.5 minutes. Approximately 1-10
ug of each peptide was injected for analysis for a target response of <1000 mAU.
The absorbance at 214 nm was recorded and integrated using ChemStation
software to report the purity relative to an equal volume injection of 50% acetonitrile

in water.
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5.5.15. Biolayer interferometry (BLI) measurements

Ideally, proteins including 12cab would be immobilized and dipped into solutions
of the peptides to test their binding activity. This immobilization orientation is preferred
because it would use the same biotinylated 12ca5 used in AS-MS in the same
orientation and avoid potential avidity affects. However, when immobilizing 12ca5
onto the BLI tip, insufficient signal was observed when dipping into solutions of known
peptide binders. This lack of signal was attributed to the relatively small size of these
peptides (e.g., ~2 kDa HA tag) to the size of the immobilized 12ca5 (~150 kDa). Thus,
biotinylated peptides were prepared using a resin preloaded with GGSK(Biotin). To
avoid avidity effects and use a 1:1 model, the ligand density of the immobilized
biotinylated peptide or peptidomimetic on the BLI tip was immobilized slowly (over
300 s) up to < 60% of saturation level.

BLI was carried out using the GatorBio GatorPlus Label-Free Analysis system
using Greiner Bio-One 96-well Non-treated Black Polypropylene Microplates
(FisherSci Cat 07-000-110) using Streptavidin (SA) Probes (GatorBio Cat 160002).
All well solution conditions were prepared using kinetics buffer (K Buffer, 0.02% BSA
and 0.02% Tween20 in 1x PBS pH 7.4, 0.2 um filtered). SA tips were equilibrated in
K Buffer for 15 minutes prior to analysis. Plate temperature was set to 30 °C with
agitation speed at 1000 rpm during measurement and 200 yL well volumes were used.

During each run, sensor tips were equilibrated K buffer (120 seconds), then
dipped into of 50-500 nM biotinylated peptide solution for peptides immobilization
(300 seconds), with an additional well with no peptide as a control. Concentrations
of the peptide immobilization solutions were surveyed beforehand and adjusted
such that the peptide response signal (nm) arrived at 60% or less of its saturation
level during 300 seconds of immobilization. This extra step was done to
appropriately load the tip to minimize avidity effects during downstream association
per manufacturer recommendation. Once loaded with peptides, the tips were then

moved into wells containing various concentrations of 12ca5 (nonbiotinylated) for
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association measurement, with an additional well corresponding to a sensor tip with
immobilized peptide with no protein as a control. After association (300 seconds),
the tips were moved to a well with K buffer to obtain the dissociation (600 seconds).
Peptide-only and protein-only conditions (concentration at 1000 nM) were used as
references for background subtraction. The association and dissociation curves
were fitted with the GatorOne Software (v 2.7.3.1013) using a 1:1 binding model (n
> 3 fit curves accepted with Full R? > 0.8 and X? < 32, see Table 5.19) to calculate
the apparent dissociation constant (Kp, reported as the average of the fits +
standard deviation of the fits).

5.6. Code availability

Data supporting the findings of this work are available within following appendices
and precending materials and methods sections, which provides additional
information on the preparation of synthetic split-pool peptide and peptidomimetic
libraries; AS-MS and nLC-MS/MS experiment protocols; details on the encoding and
dimensionality reduction methods; report of all consensus, centroid, and logo plots
for all clusters; comparison of our clustering method to perform motif detection versus
the MEME suite; as well as peptidomimetic synthesis, purification, and verification.
All data utilized in this work is available at https://github.com/josephsbrown1/Peptide-
Map/

5.7. Appendix I: Clustering Information by Dimensionality Reduction Methods

5.7.1. Characteristics of the peptides sampled from the original peptide

libraries (presumed to be nonbinders)

From the library validation analysis of the canonical library, 5,047 peptides
were identified by sampling the original library before AS-MS. In all cases except
the sensitivity analysis in Figure 5.3, these peptides were added to PCA- and UMAP-
constructed maps without re-learning. MDS is unable to add additional data to its

sequence map without re-learning.
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Figure 5.11: Logo plot of the peptides sampled from the X12K library, presumed to be
nonbinders. Essentially no residues are shown, even at this zoomed y-scale, meaning that
the peptides are largely random. This is corroborated by the unsupervised clustering seen
during the motif detection testing in Section 5.7.5, where the library peptides largely show a
diffuse sequence space when the AS-MS ligand dataset is not added.

5.7.2. Label definitions for 12ca5-specific and nonspecific binders

From the curated AS-MS data,12ca5-specific peptides are defined as *D..DYA*
or *D..DYS* from the motif known in literature.*”>® Note that “*” is a variable length

wildcard, while “.” is a single amino acid length wildcard.

Care was taken in defining nonspecific binders. From the full dataset, all *D..DYA*
or *D..DYS* sequences were removed. Also, all possible mis-sequenced isobaric
dipeptides based on of the D**DYA or D**DYS motif were removed. Isobaric was
defined as within 10 ppm to match the de novo sequencing error tolerance.
Sequences containing *DYA*, *DYS* and the commonly observed *PDY*, and *EDY*
motifs, gapped isomers (e.g., *D.YA* and *D..YA*), and their dipeptide sequence
isomers were removed for consideration as nonspecific binders. Lastly, sequence
containing *D.D*, *D..D*, and *D...D* were also removed for consideration as
nonspecific binders

All other sequences that were not considered 12ca5-specific or nonspecific were

labeled as unknown.

219



Table 5.6: Number of peptides manually assigned in each class as defined in Label
definitions for 12ca5-specific and nonspecific binders.

12ca5-specific Nonspecific Unknown Total
3512 139 453 4014
5.7.3. All dimensionality reduction results with manually added common motif
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Figure 5.12: All dimensionality reduction results using all representation encodings with
manually added common motif labels as described in Section 5.7.2: Label definitions for
12cab-specific and nonspecific binders.

5.7.4. Information about all clusters from dimensionality reduction

Every report here on each combination of encoding and dimensionality
reduction technique has the following:

1. The sequence map shown in the Main Text, with the manually categorized
color-coded labels:
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a. Common Motif in blue, defined as D**DYA or D**DYS, where * is a

single-character wildcard at any frameshift within a peptide,

b. , defined as any reported motif that
expands, deviates, or adds additional definition to the Common Motif,
or

c. Weak in gray, displays a weak signal, no clear motif.

2. The same sequence map with its respective automatous labels.

3. If any expanded motifs are observed in the analysis, a large plot reporting the

centroid peptide from each cluster. While a single centroid peptide is reported

here, the option is available to report more centroid peptides spread

throughout the cluster.

. Atable of all information about each cluster including:

a. Main text cluster number, if applicable

b. Autonomously assigned cluster number

c. The number of peptides in each cluster

d. One centroid sequence. More centroids can be reported interspersed
within each cluster.

e. Consensus sequence, determined from each cluster with the
requirement that the amino acid position shown must be present 33%
or more in all of the peptides in the cluster, otherwise X.

f. Logo of the cluster to infer Consensus sequence and Motif class,
prepared using Logomaker.®°

g. Motif Class, assigned manually by inspecting the Logo.
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Table 5.7: Report of automated cluster detection algorithm and parameters used from
scikit-learn with either Agglomerative Clustering (AggCl) or Density-Based Spatial
Clustering of Applications with Noise (DBSCAN).°" The parameters used and reported here
were found by scanning the parameters and inspecting the results.

glemdﬁr;fi:;):;ll:{ho d Encoding Method Algorithm eps min_samples ;liglsu:rt\;aer(sj

PCA One-hot AggCl 31 31
Physicochemical AggCl 5 5
ESM-2 AggCl 6 6
Fingerprint AggCl 6 6
N-grams AggCl 2 2

UMAP One-hot DBSCAN 0.21 10 8
Physicochemical DBSCAN 0.21 10 7
ESM-2 DBSCAN 0.1446 23 16
Fingerprint DBSCAN 0.1125 15 19
N-grams DBSCAN 0.1022 16 67
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Figure 5.13: Summary of analyzing the motif of each cluster across all encoding and
dimensionality reduction techniques. All sequence maps are shown, with the color-coded
labels based on motif class. Motif class was manually categorized as Common Motif in
blue, defined as D**DYA or D**DYS, where * is a single-character wildcard at any
frameshift within a peptide Expanded Motif in orange, defined as any reported motif that
expands, deviates, or adds additional definition to the Common Motif, or Weak in gray,
displays a weak signal, no clear motif. Note that no cluster information is available to multi-
dimensional scaling as the clusters had little-to-no definition and could not be detected well
with DBSCAN or Agglomerative clustering.
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5.7.4.1. PCA, one-hot encoding cluster information
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Figure 5.14: PCA decomposition of all AS-MS data encoded by one-hot encoding with
automated cluster detection as described in Table 5.8. Top Left: Figure as labeled in the
main text. Top Right: The same data fully with its automatous labels. Note that in Main
Text, Clusters {1,2,3,4,5,6,7} correspond to automatously labeled clusters
{23,13,10,8,2,19,24)}, respectively. Each cluster is colorblind color coded and labeled with a
central point. Bottom: A single centroid peptide is reported for each cluster, with the option
available to report more centroid peptides spread throughout the cluster.
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Table 5.8: Sequence logo report of all clusters detected from PCA dimensionality reduction
using one-hot encoding. Both cluster number labels in the Main Text and as autonomously
labeled are reported in the table for clarity. Also reported are the number of peptides in
each cluster, a single centroid sequence, consensus sequence, logos, and motif class.
Details are described in Information about all clusters from dimensionality reduction.

Main 4 of Centroid
o :\:St;;-ned : tide Sequence, Sequence Logo Motif
ST cluster # bep Consensus a g Class
sequence
4 —_
LEADTADYAAMF
1 23 100 , 8 Expande
XXXDXXDYAAX g“ d motif
4 -
PNFMDKHDYAAS
2 13 121 , 4 Expande
XXXXDXXDYAA gD d motif
FDMQDYAAYVIWV 3
3 10 103 , 2 Expande
XDXXDYADXXX (Q)D d motif
4
AVDRWDYSDVRN
4 8 139 2 Expande
3 — .
XXDXXDYADXX gc' d motif
FQLHYDDHDYAE
S 2 89 ° Expande
, 0
XXXDXDXXDYA d motif
LASDDFPDYAEA
19 44 Expande
, 0
XXXDDXXDYAX d motif
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5.7.4.2. PCA, physicochemical encoding cluster information
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Figure 5.15: PCA decomposition of all AS-MS data encoded by Physicochemical encoding
with automated cluster as described in Table 5.9. Left: Figure as labeled in the main text.
Right: The same data fully with its automatous labels. No clusters are labeled or reported
in the main text because all clusters contain the common or a weak motif. Each cluster is
colorblind color coded and labeled with a central point. No centroid plot is reported as no

expanded motifs were observed.
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Table 5.9: Sequence logo report of all clusters detected from PCA dimensionality reduction
using Physicochemical encoding. In the table, automatously numbered clusters are
reported with the number of peptides in each cluster, a single centroid sequence,
consensus sequence, logos, and motif class. Details are described in Information about all
clusters from dimensionality reduction.

Centroid
Auto- # of \
. . sequence, Motif
assigned peptide Sequence Logo
Consensus Class
cluster # s
sequence
LLQTQDYPDYS
QTR Q Commo
1 1403 9 n motif
XXXXXDXXDYA
VFDLEDYAGRAP
Commo
2 609 J n motif
XXDXXDYAXXX
YFNEDAPDYASP
Commo
3 1197 J n motif
XXXXDXXDYAX
MPLDVGDYAAQN
Commo
4 625 J n motif
XXXDXXDYAXX
SPAVHHDVEDYA
5 270 s Weak
XXXXXXDXXXX
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5.7.4.3. PCA, ESM-2 encoding cluster information
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Figure 5.16: PCA decomposition of all AS-MS data encoded by ESM2 encoding with
automated cluster detection as described in Table 5.10. Left: Figure as labeled in the main
text. Right: The same data fully with its automatous labels. No clusters are labeled or
reported in the main text because all clusters contain the common or a weak motif. Each
cluster is colorblind color coded and labeled with a central point. No centroid plot is
reported as no expanded motifs were observed.

Table 5.10: Sequence logo report of all clusters detected from PCA dimensionality
reduction using ESM2 encoding. In the table, automatously numbered clusters are reported
with the number of peptides in each cluster, a single centroid sequence, consensus
sequence, logos, and motif class. Details are described in Information about all clusters
from dimensionality reduction.

Centroid
Auto- # of .
. . sequence, Motif
assigned peptide Sequence Logo
Consensus Class
cluster # s
sequence
4
WFRAFDMEDYSD " Commo
1 1599 2 'E:o' n motif
XXXXXDXXDYA 0
2
LDDPADYAVGTK " Commo
2 648 9 & n motif
XXDXXDYXXXX 0
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Figure 5.17: PCA decomposition of all AS-MS data encoded by Fingerprint encoding with
automated cluster detection as described in Table 5.11. Left: Figure as labeled in the main
text. Right: The same data fully with its automatous labels. No clusters are labeled or
reported in the main text because all clusters contain the common or a weak motif. Each
cluster is colorblind color coded and labeled with a central point. No centroid plot is
reported as no expanded motifs were observed.
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Table 5.11: Sequence logo report of all clusters detected from PCA dimensionality
reduction using Fingerprint encoding. In the table, automatously numbered clusters are
reported with the number of peptides in each cluster, a single centroid sequence,
consensus sequence, logos, and motif class. Details are described in Information about all
clusters from dimensionality reduction.

Auto- Centroid sequence, .
- # of Motif
assigned . Consensus Sequence Logo
peptides Class
cluster # sequence
3 484 FDRLDYSDQFFK, Common
XDXXDYAXXXX motif
5 572 HADVQDYAFHYT, Common
XXDXXDYAXXX motif
LDGDLWDYADTY,
4 575 XXXDXXDYAXX
5 703 FFLMDLWDYARS, Common
XXXXDXXDYAX motif
4.4 -
1 1521 LLKWVDKHDYAY, 8 V Common
XXXXXDXXDYA o motif
0.0 =— oW | Se=
KDHDYAYFMETR,
6 249 XXXXXXDXXDY
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5.7.4.5. PCA, N-grams encoding cluster information

@ Cluster center
o~ B Expanded motif
E Common motif
c
8- Weak S .
= £
[e]
o S B 2 A
) 'y & z
E S
E a
]
=z
<
@]
o
PCA NGrams, Component 1 ’ ’ * pCA NGrams C1

Figure 5.18: PCA decomposition of all AS-MS data encoded by N-grams encoding with
automated cluster detection as described in Table 5.12. Left: Figure as labeled in the main
text. Right: The same data fully with its automatous labels. No clusters are labeled or
reported in the main text because all clusters contain the common or a weak motif. Each
cluster is colorblind color coded and labeled with a central point. No centroid plot is
reported as no expanded motifs were observed.

Table 5.12: Sequence logo report of all clusters detected from PCA dimensionality
reduction using N-grams encoding. In the table, automatously numbered clusters are
reported with the number of peptides in each cluster, a single centroid sequence,
consensus sequence, logos, and motif class. Details are described in Information about all
clusters from dimensionality reduction.

NOTE: Because N-grams encodes peptides by the presence of their motifs, irrespective of
frameshift, the logo plot displays the sequences aligned by ClustalW to the second position
to show the motif.

Auto- # of Centroid
assigned - sequence, Consensus ALIGNED Sequence Logo
peptides
cluster # sequence
PSDLRDYAAGFF ]
1 242 ! 4 .
3 XDXXDYAX----- = D D A motif
ol Ei===W I Ll= e
QVDTRDYSDLYF ]
2 2 ’
862 DXXDYSX- = D QY
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5.7.4.6. UMAP, One-hot encoding cluster information
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Figure 5.19: UMAP decomposition of all AS-MS data encoded by one-hot encoding with
automated cluster detection as described in Table 5.13. Left: Figure as labeled in the main
text. Right: The same data fully with its automatous labels. No clusters are labeled or
reported in the main text because all clusters contain the common or a weak motif. Each
cluster is colorblind color coded and labeled with a central point. No centroid plot is
reported as no expanded motifs were observed.

Table 5.13: Sequence logo report of all clusters detected from UMAP dimensionality
reduction using one-hot encoding. In the table, automatously numbered clusters are
reported with the number of peptides in each cluster, a single centroid sequence,
consensus sequence, logos, and motif class. Details are described in Information about all
clusters from dimensionality reduction.

gsu;?g-ned # of ) Centroid sequence, Sequence Logo Motif
cluster # peptides Consensus sequence Class
4
8 59 DVRDYAENDFLV, 8 Common
DXHDYAXXXXX m motif
0
4
7 354 LDMQDYAAGDWM, Common
XDXXDYAXXXX motif
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739
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323

209

163

EGDAEDYAAFRG,
XXDXXDYAXXX

FNLDEQDYADTP,
XXXDXXDYAXX

FPVVDWEDYATW,
XXXXDXXDYAX

SNEFSDMLDYAE,
XXXXXDXXDYA

FDLFLDVPDYSS,
XXXXXDXXDYS

LPGGFLDWEDYA,
XXXXXXDXXDY
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5.7.4.7. UMAP, physicochemical encoding cluster information
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Figure 5.20: UMAP decomposition of all AS-MS data encoded by Physicochemical
encoding with automated cluster detection as described in Table 5.14. Left: Figure as
labeled in the main text. Right: The same data fully with its automatous labels. No clusters
are labeled or reported in the main text because all clusters contain the common or a weak
motif. Each cluster is colorblind color coded and labeled with a central point. No centroid
plot is reported as no expanded motifs were observed.

Table 5.14: Sequence logo report of all clusters detected from UMAP dimensionality
reduction using Physicochemical encoding. In the table, automatously numbered clusters
are reported with the number of peptides in each cluster, a single centroid sequence,
consensus sequence, logos, and motif class. Details are described in Information about all
clusters from dimensionality reduction.

Auto-assigned # of Centroid sequence, Motif
cluster # peptides Consensus sequence Sequence Logo Class
4
3 64 DLKDYADNHWEA, 4] Common
DXXDYAXXXXX oM motif
0
4
4 358 ADMEDYAQNYPL, Common
XDXXDYAXXXX motif

© Bits

236



465

578

756

1572

214

97

FFDLPDYSVPKL,
XXDXXDYAXXX
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5.7.4.8. UMAP, ESM-2 encoding cluster information
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Figure 5.21: UMAP decomposition of all AS-MS data encoded by ESM-2 encoding with
automated cluster detection as described in Table 5.15. Top Left: Figure as labeled in the
main text. Top Right: The same data fully with its automatous labels. Note that in Main
Text, Clusters {1,2,3,4,5,6,7} correspond to automatously labeled clusters
{13,14,15,10,5,9,12}, respectively. Each cluster is colorblind color coded and labeled with a
central point. Bottom: A single centroid peptide is reported for each cluster, with the option
available to report more centroid peptides spread throughout the cluster.
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Table 5.15: Sequence logo report of all clusters detected from UMAP dimensionality
reduction using ESM-2 encoding. Both cluster number labels in the Main Text and as
autonomously labeled are reported in the table for clarity. Also reported are the number of
peptides in each cluster, a single centroid sequence, consensus sequence, logos, and motif
class. Details are described in Information about all clusters from dimensionality reduction.

Aut Centroid

as“s;’g'ned # of sequence, Sequence Logo Motif

cluster # peptides Consensus Class
sequence

13 45 MQDQEDYASLEW, Expanded
MXDXXDYAXXX motif

14 51 MRYKTDWSDYAD, Expanded
MXXXXDXXDYA motif

10 115 TTLYFDEPDYAA, Expanded
XXXXXDXXDYA motif

5 149 SFVVDMPDYASS, Expanded
XXXXDXPDYAX motif

9 109 HTTMMDMPDYAQ, Expanded
XXXXXDXPDYA motif

12 87 RGLSVDKPDYSD, Expanded
XXXXXDXPDYS motif
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S

11 54 DEHDYAHVSRFL, 4] Expanded
DXHDYAXXXXX om motif
0
4
15 29 MLAMVDLHDYSD, U] Expanded
MXXXXDXXDYS m motif
0
4
SDLEDYAALGLK
8 330 : ki Common
XDXXDYAXXXX m motif
o EZEl o=
4
, 397 VYDLSDYADKVG, g Corr_lmon
XXDXXDYAXXX m motif
0
3 518 YDFDVEDYSHRV, Common
XXXDXXDYAXX motif
5 564 HTHWDMQDYAAY, Common
XXXXDXXDYAX motif
4 645 FSYGSDLLDYAD, Common
XXXXXDXXDYA motif
16 24 LLGVGDTPDYAE, Common
XXXXXDXXDYA motif
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UMAP Fingerprint, Component 2

132 WDWLKDHRDYSD,
XXXXXDXXDYS
191 ELSGSTDVEDYA,
XXXXXXDXXDY
671

S

© Bits

IS

© Bits

© Bits M

5.7.4.9. UMAP, fingerprint encoding cluster information

® Cluster center
M Expanded motif
M Common motif
M Weak

»

.
.

-

:_éi}‘:{‘%

.

UMAP Fingerprint C2

19
agtl

Common
motif

Common
motif

Weak

UMAP Fingerprint, Component 1

241

4 6
UMAP Fingerprint C1



UMAP Fingerprint big centroid plot
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Figure 5.22: UMAP decomposition of all AS-MS data encoded by Fingerprint encoding with
automated cluster detection as described in Table 5.16. Top Left: Figure as labeled in the
main text. Top Right: The same data fully with its automatous labels. Note that in Main
Text, Clusters {1,2,3,4,5,6,7} correspond to automatously labeled clusters {8,6,15,2,16,5,7},
respectively. Each cluster is colorblind color coded and labeled with a central point.
Bottom: A single centroid peptide is reported for each cluster, with the option available to
report more centroid peptides spread throughout the cluster.

Table 5.16: Sequence logo report of all clusters detected from UMAP dimensionality
reduction using Fingerprint encoding. Both cluster number labels in the Main Text and as
autonomously labeled are reported in the table for clarity. Also reported are the number of
peptides in each cluster, a single centroid sequence, consensus sequence, logos, and motif
class. Details are described in Information about all clusters from dimensionality reduction.

Aut Centroid
Main Text = Uto- # of sequence, Motif
Cluster # 2|suss'?:,e; peptides Consensus Sequence Logo Class
sequence
4 -
1 8 122 FMDKHDYALYKK, " Expanded
XXDXHDYAXXX £ motif
0
4 -
: 5 179 KLWQRDMHDYAS, " Expanded
XXXXXDXHDYA £ motif
0 .
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56
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5.7.4.10. UMAP, N-grams encoding cluster information
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Figure 5.23: UMAP decomposition of all AS-MS data encoded by N-grams encoding with
automated cluster detection as described in Table 5.17. Top Left: Figure as labeled in the
main text. Top Right: The same data fully with its automatous labels. Note that in Main
Text, Clusters {1,2,3,4,5,6,7} correspond to automatously labeled clusters
{8,12,20,9,26,19,23}, respectively. Each cluster is colorblind color coded and labeled with a
central point. Bottom: A single centroid peptide is reported for each cluster, with the option
available to report more centroid peptides spread throughout the cluster.

Table 5.17: Sequence logo report of all clusters detected from UMAP dimensionality
reduction using N-grams encoding. Both cluster number labels in the Main Text and as
autonomously labeled are reported in the table for clarity. Also reported are the number of
peptides in each cluster, a single centroid sequence, consensus sequence, logos, and motif
class. Details are described in Information about all clusters from dimensionality reduction.

NOTE: Because N-grams encodes peptides by the presence of their motifs, irrespective of
frameshift, the logo plot displays the sequences aligned by ClustalW to the second position
to show the motif.
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23
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peptides

121

121

121

104

102

97

94

Centroid sequence,
Consensus sequence

EQFHHYDLHDYA,
- XXXXXDLHDYAXXXX -

HQFDKDLQDYAE,
-XXXXXDLQDYAXXX - -

GNMNLGDLEDYA,
= XXXXXDLEDYAXXX-

GNFGGDVEDYAY,
- XXXXXDVEDYAXXX-

EMWADLPDYAHA,
= XXXXXDLPDYAXXX-

VPTDVQDYAHPR,
- XXXXXDVQDYAXXX - -

HMTDVPDYAYHV,
- XXXXXDVPDYAXXX -
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FLTQQDREDYAH,

- XXXXXDREDYAXX- - -

WWEATADTEDYA,
= XXXXXDTEDYAXX- -

VVGGLDTQDYAH,
XXXXXDXQDYAX - -

FDFHDYAYNQGM,
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56 9o VLWTFDQADYAE, Expanded
XXXXXDXADYAX - - motif
3
5 18 DVRDYADDKYYE, 9 Expanded
XXXXXDVRDYAXXXX - 5 motif
0
3
28 16 AGFDKKDYADAF, 9 Expanded
XXXXXDXKDYAXXX - & motif
0
4
3
0 1102 - - - S XXXXDXXDYXXXX - £ Weak
0
3
FYWNEMFWDHQP, 0
4 16 — = O XOXXXWXXXXXXXX - o Weak
0

5.7.5. Motif-based clustering sensitivity of UMAP dimensionality reduction

For this analysis, specific data were isolated from the AS-MS data. Specifically,
a variable number of unaligned peptides containing the *DLHDYA* motif were
added to random library peptides (which do not contain the motif) for 5000 total.
The motif *DLHDYA* was used since it was discovered by clustering of the 12ca5

AS-MS data, most clearly seen in the UMAP + N-grams encoding analysis.
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Figure 5.24: UMAP sensitivity to cluster and enable the detection and isolation of target
peptides in a 5000-peptide dataset. Unaligned target peptides contain the high-affinity
binding motif of *DLHDYA™ at random frameshifts. N-grams demonstrates the lowest
sensitivity, with only 10 peptides required for a distinct cluster to appear. One-hot and
Fingerprint encoding requires 80 and 160 peptides, respectively. This result is because N-
grams encoding is performed irrespective of frameshift, whereas one-hot and Fingerprint
encoding are frameshift sensitive. Thus, as the number of target peptides increases, one-
hot and Fingerprint encoded UMAP sequence maps form seven clusters as the seven
frameshifts of *“DLHDYA™ in a 12-mer variable region are populated to have at least 10
peptides in each cluster. A red box is placed to guide the readers eye to location in which
clusters appear to form distinctly from the random library peptides. AS-MS peptides are
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shown in blue with random library peptides in gray. The theoretical statistical significance
via Fishers Exact Test of each condition is shown,’"-"? indicating that at only 5 sequences,
the peptides with the *DLHDYA™ motif could be theoretically distinguished from the
background (randomized input dataset), though 10 are required for a clear cluster to form.
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Figure 5.25: N-grams, one-hot, and Fingerprint encoding provide similar clustering
sensitivity with target peptides containing a motif at the same frameshift. See Figure 5.22
for further details. A red box is placed to guide the readers eye to location in which clusters
appear to form distinctly from the random library peptides. AS-MS peptides are shown in
blue with random library peptides in gray.
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Figure 5.26: The construction of UMAP sequence space is affected by the total dataset
size. At low dataset sizes, highly similar peptides can be dispersed on the sequence space
map. Thus, augmenting the total dataset size with random library peptides can sometimes
improve clarity of the clusters of similar peptides.
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5.7.6. Comparison of motif-detection sensitivity with XSTREME

Motif discovery was performed using the XSTREME, part of the MEME Suite

webserver.61.62

XSTREME combines:

e MEME, which discovers novel, ungapped motifs (recurring, fixed-length
patterns) in sequences. ME