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Abstract 
 The usage of peptides as therapeutics is a growing area of interest within the 

pharmaceutical industry for the facilitation of protein-protein interactions (PPIs). 
Peptides inhabit a unique therapeutic space because of their high levels of chemical 
customization balanced with their potential for high specificity due to a wide variety 
of potential structures. At the same time, discovery tools for finding peptides that 
modify PPIs have evolved, including advances in affinity selection techniques and 
combinatorial chemistry. Specifically, the usage of solid phase peptide synthesis for 
split-and-pool chemistry allows for rapid access to highly diverse (>108 total 
sequences) compound libraries for use in ligand discovery. A primary technique for 
in vitro ligand discovery is affinity selection-mass spectrometry (AS-MS), which 
utilizes tandem mass spectrometry to decode complex mixtures of peptide ligands 
pulled down from a peptide library through affinity selection.  This approach 
provides unique advantages due to the high levels of chemical customization that 
can be performed on synthetic peptide libraries, including the incorporation of 
unnatural amino acids or the modification of library structure through 
macrocyclization.  

This thesis will focus on the development of experimental and computational 
tools to analyze affinity selection datasets more efficiently and thoroughly. We 
demonstrate the synthesis of macrocyclic peptide libraries that increases the 
diversity of synthetic macrocyclic libraries while utilizing accessible, efficient 
chemistry for cyclization. These libraries are then used for the discovery of novel 
ligands to two proteins. Structure activity relationships are established for one of 
these ligands and its affinity is matured through the usage of focused libraries 
containing a variety of unnatural amino acids. Additionally, we investigate a variety 
of resins used for solid phase peptide synthesis, particularly in the synthesis of 
small domain proteins or difficult peptide sequences. 

Because of the high amounts of peptides synthesized and pulled down by AS-
MS experiments, efficient computational methods are crucial for effective ligand 
discovery efforts. Here, we discuss two methods of expanding data analysis, first by 
a sequence-independent enrichment quantification. AS-MS experiments operate 
using the decoded peptide sequence from tandem MS/MS data to nominate 
potential hit peptides, but that process depends on the efficient fragmentation of a 
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target peptide and the quality of the subsequent MS2 spectrum. We utilize 
techniques to identify putative hits through the comparison of peptide enrichment 
based only off mass-to-charge ratio without an assigned sequence, allowing for 
label free MS1 quantification. The second method utilizes machine learning 
techniques to rationalize trends in successfully sequenced peptide sequences from 
AS-MS experiments with respect to target proteins. This approach allows for the 
creation of a ligand “sequence space”, which allows for the incorporation of 
unnatural amino acids in ligand discovery.  

Overall, this thesis presents a variety of methods to enhance the scope of 
peptide-based drug discovery. We anticipate this work to accelerate the process of 
drug discovery through a diversification of peptide structure combined with more 
powerful computational analytics.   

Thesis supervisor: Bradley L. Pentelute 

Professor of Chemistry 

  



6 
 

 

 

Acknowledgements 
I’d like to thank Professor Brad Pentelute for allowing me a very enriching 

and engaging experience in graduate school. I joined his lab having very little 
background in biology, but he still excitedly took me into his group and helped me 
learn the necessary skills and acquire the right mindset to have success in chemical 
biology. Brad’s emphasis on learning allowed me to gain experience in many 
different aspects, ranging from recombinant protein expression to instrument 
maintenance to machine learning. I’d also like to thank Dr. Andrei Loas for making 
sure the group is running on the day-to-day and providing valuable feedback on 
manuscripts and presentations. Thank you to my committee members Professor 
Matt Shoulders and Professor Alex Shalek for challenging my scientific thinking and 
helping me become a more well-rounded scientist. 

 Thank you to all the Pentelute lab members for making the past four years a 
unique and enjoyable experience. Special thanks to the Novo team, Dr. Joe Brown, 
Dr. Sarah Antilla, Dr. Tom Wood, Dr. Genwei Zhang, Dr. Chengxi Li, and Roman 
Misteli. To Joe especially, a huge thank you for being an incredible mentor and 
providing constant guidance and assurance; he has had an enormous hand in 
refining my abilities in the lab. Another huge thank you to Dr. Charlie Farquhar for 
their incredible empathy and patience. Their support during my graduate school 
experience has been a cornerstone of stability during chaotic times. I would also 
like to thank the many friends I’ve made in the lab, including Dr. Wayne Vuong, Gha 
Young Lee, Dr. Jeff Wong, Dr. Ed Miller, Dr. Amanda Cowfer, Dr. Azin Saebi, Dr. 
Corey Johnson, Sydney Kelly, Dr. Nate Dow, Dr. Alex Callahan, Dr. Jacob 
Rodriguez, Dr. Dio Dieppa-Matos, Dr. Katsushi Kitahara, Dr. Hiro Takeuchi, 
Professor Kohei Sato, Yehlin Cho and everyone I’ve had the pleasure to work with. 
Also, shoutouts to 7/11 for providing a concerning amount of office snacks and 
being a great distraction for when I’m having a bad day.  

I’d also like to thank Professor Steven Castle at BYU for being the start of my 
journey in chemistry. It was in his group that I discovered how much I enjoyed doing 
lab work and research, and it was my time in his group that ultimately convinced me 
to pursue chemistry. Thank you to Dr. Concordia Lo, Dr. Jatinder Singh, Stephen 
White, D.D.S, Dr. Daniel Joaquin, Dr. Diego Moyá, Dr. Alex Ramos, Dr. Ankur Jalan, 
Austin LeSuer, and Taylor Talentino for many fun days in the lab as well as 
important lessons in chemistry. Also, a special thanks to Jennah Mumford – working 
on p chem homework together not only helped grow my appreciation for chemistry 
but also gained me an invaluable friend. 

I also thank the Longfellow Park crew for their support during my time in 
Boston. Knowing I had a friend from undergraduate in the legendary Darren Miller 
move to Boston at the same time I did was invaluable, especially since this was 
during the height of COVID lockdowns where I didn’t have much opportunity for 
social interaction being locked in my sad, crooked box in Back Bay thousands of 
miles away from anyone else I knew. I’m grateful that Darren introduced me to 



7 
 

 

 

many of my friends at LP, even if he thought that I wouldn’t get along with some of 
them. Thank you to Trish Franks, Amanda Strong, Keith Tambe, Dylan Ottney, 
Sarah Taggart, Emily Loveland, Rowan Cheney, Kristen Vellinga, Eric Moss, Liam 
Tan, Edz Cabral, Caleb Lindgren and everyone else from the ward that makes it 
such a welcoming and loving place to be. All the movie nights, theme parties, and 
game nights provided a well-needed respite from the doldrums and stress of 
graduate school. In addition to Darren, I’d also like to thank my friends from BYU, 
including Smoom, Jack Wright, Tommy Doxey, Jordan Johnson, Dave Christenson, 
THE Zach Gormley, Gibson Ainge, Nick Clarke, Trevor Harmon, Aaron Kim, Shean 
Gass, Connor Finuf, Davy Clarke, TJ Knotts, and Dan Brown for many fun game 
nights, especially during lockdown when that was about as much social interaction 
as you were legally allowed to get.  

 I want to thank Parin Rau and Chris Harrison for over a decade of my 
closest friendship. They always have a way to put a smile on my face, usually 
through something incredibly stupid. Thank you also to Trever Speck, Emily Hanley, 
Kyle Reynolds, and Morena Morales for always being great friends.  

Finally, I’d like to thank my family. To my parents, thank you for your 
unconditional love and support throughout my entire life. They have always been an 
example of hard work, integrity, and charity ever since I was a baby. Thank you to 
my brothers for putting up with your baby brother and always being role models for 
me to look up to. Thank you to Nei Nei and Yeh Yeh for emphasizing the importance 
of education to me and supporting me greatly financially through this journey. Thank 
you to all my family for the warm memories and loving support.  

 

  



8 
 

 

 

Table of Contents 
ABSTRACT .................................................................................................................... 4 

ACKNOWLEDGEMENTS ............................................................................................... 6 

TABLE OF CONTENTS .................................................................................................. 8 

LIST OF FIGURES ....................................................................................................... 10 

LIST OF TABLES ......................................................................................................... 16 
1. BACKGROUND AND OVERVIEW ........................................................................................... 18 
1.1. Peptides as therapeutics .............................................................................................. 19 
1.2. Synthesis of peptides ................................................................................................... 20 
1.3. Affinity selection-mass spectrometry ............................................................................ 22 
1.4. Machine learning in drug discovery ............................................................................. 25 
1.5. Thesis overview ........................................................................................................... 26 
1.6. References ................................................................................................................... 27 

2. AFFINITY SELECTION-MASS SPECTROMETRY WITH LINEARIZABLE MACROCYCLIC PEPTIDE 
LIBRARIES   ...................................................................................................................................... 34 

2.1. Introduction .................................................................................................................. 35 
2.2. Results and Discussion ................................................................................................ 38 
2.3. Conclusions .................................................................................................................. 52 
2.4. Materials ....................................................................................................................... 53 
2.5. Methods ....................................................................................................................... 56 
2.6. Appendix I: Synthesis and characterization data ......................................................... 69 
2.7. Appendix II: Library validation data .............................................................................. 76 
2.8. Appendix III: Affinity selection and biolayer interferometry data ................................... 79 
2.9. Acknowledgements ...................................................................................................... 90 
2.10. References ................................................................................................................. 91 

3. INVESTIGATION OF COMMERCIALLY AVAILABLE RESINS FOR THE AUTOMATED FLOW SYNTHESIS 
OF DIFFICULT OR LONG PEPTIDE SEQUENCES ..................................................................................... 96 

3.1. Introduction .................................................................................................................. 97 
3.2. Results and Discussion .............................................................................................. 100 
3.3. Conclusion ................................................................................................................. 111 
3.4. Materials ..................................................................................................................... 112 
3.5. Methods ..................................................................................................................... 113 
3.6. Appendix I: UV signals from fast-flow synthesizer ..................................................... 118 
3.7. Appendix II: LC-MS and UHPLC characterization data ............................................. 123 
3.8. Acknowledgements .................................................................................................... 130 
3.9. References ................................................................................................................. 131 

4. PYBINDER: LABEL-FREE QUANTITATION TO ADVANCE AFFINITY SELECTION-MASS 
SPECTROMETRY ............................................................................................................................. 134 

4.1. Introduction ................................................................................................................ 135 
4.2. Results and Discussion .............................................................................................. 137 
4.3. Conclusion ................................................................................................................. 150 
4.4. Materials ..................................................................................................................... 151 



9 
 

 

 

4.5. Methods ..................................................................................................................... 153 
4.6. Code availability ......................................................................................................... 160 
4.7. Appendix: Full pyBinder Output ................................................................................. 161 
4.8. References ................................................................................................................. 171 

5. UNSUPERVISED MACHINE LEARNING RATIONALIZES ABIOTIC PICOMOLAR LIGAND DISCOVERY 175 
5.1. Introduction ................................................................................................................ 176 
5.2. Results and Discussion .............................................................................................. 179 
5.3. Conclusion ................................................................................................................. 191 
5.4. Materials ..................................................................................................................... 192 
5.5. Methods ..................................................................................................................... 196 
5.6. Code availability ......................................................................................................... 218 
5.7. Appendix I: Clustering Information by Dimensionality Reduction Methods ................ 218 
5.8. Appendix II: Synthesis, characterization, and biophysical measurements of discovered 

peptides containing unnatural amino acids .............................................................................. 266 
5.9. References ................................................................................................................. 293 

6. APPENDIX: LIGAND DISCOVERY FROM PHAGE DISPLAY SIGNIFICANTLY IMPROVED BY 
REGULARIZED PROXY LEARNING ....................................................................................................... 297 

A.1. Introduction ................................................................................................................ 298 
A.2. Results and Discussion ............................................................................................. 303 
A.3. Conclusion ................................................................................................................. 316 
A.4. Materials .................................................................................................................... 317 
A.5. Methods ..................................................................................................................... 318 
A.6. Acknowledgements .................................................................................................... 334 
A.7. References ................................................................................................................ 335 

 
  



10 
 

 

 

List of Figures 
FIGURE 1.1: PEPTIDES OCCUPY A PROMISING THERAPEUTIC “MIDDLE SPACE”.. .................................................... 20 
FIGURE 1.2: SPLIT-AND-POOL SYNTHESIS ENABLES ACCESS TO HIGH DIVERSITY COMPOUND LIBRARIES. ..................... 22 
FIGURE 1.3: AS-MS ENABLES ISOLATION OF HIGH AFFINITY BINDERS TO A PROTEIN OF INTEREST……. ....................... .24 
FIGURE 2.1: DISULFIDE LINKAGES ALLOWS FOR HIGH-NUMBER DIVERSITY LIBRARIES COMPATIBLE WITH DECODING BY 

TANDEM MS/MS.. ........................................................................................................................ 38 
FIGURE 2.2: CHARACTERIZATION OF MACROCYCLIC LIBRARIES BASED ON SIZE AND THIOL CONCENTRATION SHOWED NEAR-

QUANTITATIVE FORMATION OF INTRAMOLECULAR DISULFIDE BONDS.. ......................................................... 40 
FIGURE 2.3: CHARACTERIZATION OF THE MACROCYCLIC PEPTIDE LIBRARIES BY TANDEM MS/MS SEQUENCING SHOWS 

SUCCESSFUL SPLIT-AND-POOL SYNTHESIS OF 15-RESIDUE LIBRARIES.. ...................................................... 43 
FIGURE 2.4: HIGH-AFFINITY MACROCYCLIC PEPTIDE LIGANDS TO 12CA5 WERE ENRICHED AND IDENTIFIED VIA AFFINITY 

SELECTION-MASS SPECTROMETRY (AS-MS), AND THE BINDING AFFINITY WAS CONFIRMED AND MEASURED USING 

BIOLAYER INTERFEROMETRY (BLI).. ................................................................................................... 45 
FIGURE 2.5: MACROCYCLIC PEPTIDE LIBRARIES ENABLED DISCOVERY OF A 53 NM PEPTIDE LIGAND TO A PORTION OF THE 

ECTODOMAIN OF CADHERIN-2.. ....................................................................................................... 48 
FIGURE 2.6: SINGLE-PEPTIDE SAR INFORMATION INFORMS COMBINATORIAL LIBRARY DESIGN AND AFFINITY MATURATION 

WITH NONCANONICAL AMINO ACIDS.. ................................................................................................ 50 
FIGURE 2.7 LCMS AND ANALYTICAL HPLC DATA FOR THE SYNTHESIS OF IDENTIFIED 12CA5 BINDING PEPTIDES.. ......... 69 
FIGURE 2.8: CHARACTERIZATION OF EXPRESSED 498-724CDH2.. ....................................................................... 70 
FIGURE 2.9: ANALYTICAL HPLC AND LCMS CHARACTERIZATION OF CBP AND CBP SEQUENCE SCRAMBLE.. .............. 70 
FIGURE 2.10: LCMS AND ANALYTICAL HPLC DATA FOR THE SYNTHESIS OF CBP ALANINE SCAN PEPTIDES.. ................ 71 
FIGURE 2.11. LCMS AND ANALYTICAL HPLC DATA FOR THE SYNTHESIS OF CBP TRUNCATION STUDY PEPTIDES.. .......... 72 
FIGURE 2.12: LCMS AND ANALYTICAL HPLC DATA FOR THE SYNTHESIS OF CBP D-AMINO ACID SCAN PEPTIDES.. ......... 73 
FIGURE 2.13: LCMS AND ANALYTICAL HPLC DATA FOR THE SYNTHESIS OF NCBP PEPTIDES.. ................................. 74 
FIGURE 2.14: ANALYTICAL HPLC AND LCMS CHARACTERIZATION OF NCBP-4 AND NCBP-4 SERINE SUBSTITUTED 

SEQUENCE.. ............................................................................................................................... 75 
FIGURE 2.15: ELLMAN’S ASSAY STUDIES ON REDUCTION REACTION CONDITIONS IDENTIFY REDUCTION USING 

DITHIOTHREITOL (DTT) IN ACIDIC CONDITIONS AS THE MOST OPTIMAL FOR THE REDUCTION OF DISULFIDE BONDS 

WITHIN THE MACROCYCLIC PEPTIDE LIBRARIES. .................................................................................... 76 
FIGURE 2.16: SIZE EXCLUSION CHROMATOGRAMS OF ABSORBANCE AT 214 NM OF A) CBP HOTSPOT AND B) CBP 

COLDSPOT MACROCYCLIC LIBRARIES WERE COMPARED TO MOLECULAR WEIGHT STANDARDS CORRESPONDING TO 

THE AVERAGE MASS OF MONOMERIC, DIMERIC, AND TRIMERIC SPECIES.. ..................................................... 77 
FIGURE 2.17: HEATMAPS COMPARING AVERAGE LOCAL CONFIDENCE (ALC %) OF SEQUENCE ASSIGNMENT BY PEAKS 

STUDIO 8.5 TO INSTRUMENT ERROR (PPM) SHOWED THE LOSS AND RECOVERY OF SEQUENCING CAPABILITIES AFTER 

OXIDATION AND REDUCTION RESPECTIVELY FOR THE (A) X6CX6CK AND (B) CX12CK MACROCYCLIC PEPTIDE LIBRARY 

DESIGNS.. .................................................................................................................................. 78 
FIGURE 2.18: FULL BLI DATA FOR ALL IDENTIFIED SEQUENCES CONTAINING THE 12CA5 BINDING MOTIF, D**DY(A/S).. 80 
FIGURE 2.19: CBP SEQUENCE SCRAMBLE AND OFF-TARGET CONTROLS SHOW SEQUENCE AND PROTEIN SPECIFICITY OF 

THE LIGAND INTERACTION TOWARDS CDH2 BY BLI. BLI DATA FOR CBP TESTED AGAINST CDH2 IS SHOWN FOR 

REFERENCE. ............................................................................................................................... 81 
FIGURE 2.20: THE MACROCYCLIC STRUCTURE OF CBP PLAYS A ROLE IN THE STRENGTH OF THE OBSERVED INTERACTIONS, 

A) WHERE A COMPARISON OF THE CYCLIZED CBP PEPTIDE AND THE DTT-LINEARIZED CBP SEQUENCE SHOWS A 



11 
 

 

 

LARGE DECREASE IN OBSERVED SIGNAL, AS WELL AS A DROP IN THE OBSERVED DISSOCIATION CONSTANT. B) A 

MAGNIFIED VERSION OF THE BLI TRACE FOR THE LINEARIZED CBP SEQUENCE IS GIVEN. ................................. 82 
FIGURE 2.21: BLI DATA OF CBP ALANINE SCAN PEPTIDES AGAINST 498-724CDH2.. ................................................ 84 
FIGURE 2.22: BLI DATA OF CBP TRUNCATED PEPTIDES AGAINST 498-724CDH2.. .................................................... 85 
FIGURE 2.23: BLI DATA OF CBP D-AMINO ACID SCAN PEPTIDES AGAINST 498-724CDH2.. ......................................... 87 
FIGURE 2.24: BLI DATA OF NCBP PEPTIDES AGAINST 498-724CDH2.. ................................................................. 89 
FIGURE 2.25: BLI DATA OF THE AFFINITY-MATURED NCBP-4 COMPARED TO THE ORIGINAL CBP SEQUENCE, AS WELL AS 

THE NCBP-4 SEQUENCE WITH ALL IDENTIFIED HOTSPOTS MUTATED TO SERINES (NCBP-4 SER SUB).. ............... 90 
FIGURE 3.1: THE CHEMICAL STRUCTURE OF THE RESIN SOLID SUPPORT DETERMINES IMPORTANT PHYSICAL PROPERTIES FOR 

EFFICIENT PEPTIDE SYNTHESIS.. ....................................................................................................... 97 
FIGURE 3.2: INLINE UV DETECTION, ANALYTICAL HPLC, AND LC-MS OF CRUDE JR10 INDICATED NO MAJOR DIFFERENCES 

BETWEEN THE CANDIDATE RESINS IN AUTOMATED FLOW SYNTHESIS. ......................................................... 102 
FIGURE 3.3: INLINE UV DETECTION, ANALYTICAL HPLC AND LC-MS DATA FOR GLP-1 SYNTHESIS SHOW EXCELLENT 

PERFORMANCE BY PROTIDE AND TENTAGEL XV RESINS, BUT SUBOPTIMAL PERFORMANCE BY OCTAGEL RESIN.. ... 104 
FIGURE 3.4: SYNTHESIS OF MDM2 EVALUATED BY THE INLINE UV DETECTION, ANALYTICAL HPLC, AND LC-MS DATA FOR 

OCTAGEL AND TENTAGEL XV RESINS SHOW SUPERIOR PERFORMANCE BY TENTAGEL XV RESIN. SYNTHESIS ON 

PROTIDE RESIN WAS NOT COMPLETED AS IT CAUSED SIGNIFICANT BACKPRESSURE TO DEVELOP.. ..................... 107 
FIGURE 3.5: SYNTHESIS OF CHIP EVALUATED BY THE INLINE UV DETECTION, ANALYTICAL HPLC, AND LC-MS DATA FOR 

OCTAGEL AND TENTAGEL XV RESIN SHOW IMPROVED PERFORMANCE BY TENTAGEL XV RESIN. SYNTHESIS ON 

PROTIDE RESIN RESULTED IN INSTRUMENT FAILURE AND RAW DATA IS SHOWN IN FIGURE 3.10.. ...................... 109 
FIGURE 3.6: SEQUENCE OF JR10 (A) AND RAW UV ABSORBANCE DATA FOR THE SYNTHESIS OF JR10 ON (B) OCTAGEL 

RESIN, (C) PROTIDE RESIN, AND (D) TENTAGEL XV RAM RESIN. .............................................................. 118 
FIGURE 3.7: SEQUENCE OF GLP-1 (A) AND RAW UV ABSORBANCE DATA FOR THE SYNTHESIS OF GLP-1 ON (B) OCTAGEL 

RESIN, (C) PROTIDE RESIN, AND (D) TENTAGEL XV RAM RESIN.. ............................................................. 119 
FIGURE 3.8: SEQUENCE OF MDM2 (A) AND RAW UV ABSORBANCE DATA FOR THE SYNTHESIS OF MDM2 ON (B) OCTAGEL 

RESIN AND (C) TENTAGEL XV RAM RESIN.. ........................................................................................ 120 
FIGURE 3.9: SEQUENCE OF CHIP (A) AND RAW UV ABSORBANCE DATA FOR THE SYNTHESIS OF CHIP ON (B) OCTAGEL 

RESIN, (C) PROTIDE RESIN, AND (D) TENTAGEL XV RAM RESIN. EACH SYNTHESIS BEGINS WITH WASHING THE RESIN, 
FOLLOWED BY DEPROTECTION OF THE FMOC PROTECTING GROUP AS SEEN BY THE LOWER INTENSITY PEAKS.. ..... 121 

FIGURE 3.10: SYNTHESIS DATA OF CHIP USING PROTIDE RESIN DURING REACTOR FAILURE.. ................................. 122 
FIGURE 3.11: LC-MS ANALYSIS OF TRUNCATION PRODUCTS FROM THE SYNTHESIS OF JR10 ON OCTAGEL RESIN.. ...... 123 
FIGURE 3.12: LC-MS ANALYSIS OF TRUNCATION PRODUCTS FROM THE SYNTHESIS OF JR10 ON TENTAGEL XV RAM 

RESIN.. .................................................................................................................................... 124 
FIGURE 3.13: LC-MS ANALYSIS OF TRUNCATION PRODUCTS FROM THE SYNTHESIS OF JR10 ON TENTAGEL XV RAM 

RESIN.. .................................................................................................................................... 125 
FIGURE 3.14: ANALYTICAL HPLC ANALYSIS OF JR10 SYNTHESES DONE WITH TENTAGEL XV RAM RESIN AT FULL LOADING, 

50% TOTAL LOADING AND 10% TOTAL LOADING AFTER CAPPING OF THE RESIN WITH THE RESPECTIVE AMOUNTS OF 

ACETIC ACID.. ............................................................................................................................ 126 
FIGURE 3.15: ANALYTICAL HPLC ANALYSIS OF JR10 SYNTHESES DONE OCTAGEL RESIN AT FULL LOADING, 63% TOTAL 

LOADING, 31% TOTAL LOADING AND 6% TOTAL LOADING AFTER CAPPING OF THE RESIN WITH THE RESPECTIVE 

AMOUNTS OF ACETIC ACID. ........................................................................................................... 126 
FIGURE 3.16: LC-MS ANALYSIS OF TRUNCATION PRODUCTS FROM THE SYNTHESIS OF GLP-1 ON OCTAGEL RESIN.. .... 127 



12 
 

 

 

FIGURE 3.17: LC-MS ANALYSIS OF TRUNCATION PRODUCTS FROM THE SYNTHESIS OF GLP-1 ON TENTAGEL XV RAM 

RESIN.. .................................................................................................................................... 128 
FIGURE 3.18: LC-MS ANALYSIS OF TRUNCATION PRODUCTS FROM THE SYNTHESIS OF GLP-1 ON PROTIDE RESIN. ...... 128 
FIGURE 3.19: ANALYTICAL HPLC ANALYSIS OF SYNTHESES TO TEST FOR INCOMPLETE MANUAL COUPLINGS DEPENDENT 

UPON THE SUCCESS OF THE INITIAL FMOC DEPROTECTION. ................................................................... 129 
FIGURE 3.20: UV ABSORBANCE, CRUDE ANALYTICAL HPLC, AND CRUDE LC-MS DATA FOR THE SYNTHESIS OF MDM2 ON 

OCTAGEL RESIN THAT HAS BEEN REDUCED TO 63% OF ITS ORIGINAL LOADING, ROUGHLY MATCHING THE LOADING OF 

TENTAGEL XV RESIN.. .................................................................................................................. 130 
FIGURE 4.1: RETROSPECTIVE ANALYSIS OF PREVIOUS AS-MS CAMPAIGNS REVEALS THE OPPORTUNITY FOR DEEPER DATA 

ANALYSIS BY LFQ. ...................................................................................................................... 140 
FIGURE 4.2: THE COMBINATION OF LABEL-FREE QUANTITATION (LFQ) AND AFFINITY SELECTION-MASS SPECTROMETRY (AS-

MS) STANDS TO PROVIDE AN IMPROVED AS-MS DISCOVERY PLATFORM. ................................................... 142 
FIGURE 4.3: TARGET SELECTIVITY AND CONCENTRATION-DEPENDENT ENRICHMENT (CDE) SCORES ARE USED FOR THE 

EVALUATION OF THE VALUE OF PEPTIDE FEATURES. ............................................................................... 145 
FIGURE 4.4: THE TARGET SELECTIVITY AND CDE SCORES OF 12CA5 MOTIF CONTAINING PEPTIDES DEMONSTRATE THE 

ABILITY OF PYBINDER TO DISTINGUISH TARGET-SELECTIVE, HIGH-AFFINITY PEPTIDES DUE TO THE PRESENCE OF THEIR 

KNOWN MOTIF. .......................................................................................................................... 147 
FIGURE 4.5: THE APPLICATION OF PYBINDER IN A SECOND ROUND OF TARGETED MASS SPECTROMETRY INCREASES THE 

DISCOVERY RATE OF PEPTIDES CONTAINING THE WDR5 BINDING MOTIFS COMPARED TO UNTARGETED METHODS..
 ............................................................................................................................................. 149 

FIGURE 4.6: RETROSPECTIVE ANALYSIS OF PREVIOUSLY PUBLISHED AS-MS EXPERIMENTS REVEALS EXTENT OF “MISSING 

VALUES” PROBLEM. ..................................................................................................................... 161 
FIGURE 4.7: SIMULATED VALUES OF CONCENTRATION-DEPENDENT ENRICHMENT AND THEIR HYPOTHESIZED AFFINITIES.

 ............................................................................................................................................. 163 
FIGURE 4.10: PLOTS COMPARING THE CALCULATED SELECTIVITY SCORE VERSUS THE P-VALUE FOR FEATURES IDENTIFIED 

FROM SELECTION AGAINST 12CA5 AND WDR5. ................................................................................. 166 
FIGURE 4.11: PLOTS COMPARING THE CALCULATED CDE SCORE VERSUS THE P-VALUE FOR FEATURES IDENTIFIED FROM 

SELECTION AGAINST 12CA5 AND WDR5. ......................................................................................... 166 
FIGURE 4.12: PLOTS COMPARING THE CALCULATED SELECTIVITY SCORE VERSUS THE SELECTIVITY SCORE FOR FEATURES 

IDENTIFIED FROM SELECTION AGAINST 12CA5 AND WDR5. ................................................................... 167 
FIGURE 4.13: PLOT COMPARING THE SELECTIVITY SCORES, CDE SCORES, AND P-VALUES CALCULATED BY PYBINDER FOR 

ALL DETECTED FEATURES. ............................................................................................................. 167 
FIGURE 4.14: RANKINGS OF FEATURES BASED ON THEIR (A) SELECTIVITY SCORES AND (B) CDE SCORES WITH RESPECT TO 

12CA5 OR WDR5. ..................................................................................................................... 168 
FIGURE 4.15: VISUALIZATION OF THE RETENTION TIMES AND SCORING FOR THE INCLUSION LIST OF PEPTIDE FEATURES FOR 

EACH PROTEIN. .......................................................................................................................... 169 
FIGURE 4.16: ANALYSIS OF THE SCORING FOR PEPTIDES CONTAINING THE CHARACTERISTIC 12CA5 BINDING MOTIF 

D**DY(A/S). ........................................................................................................................... 170 
FIGURE 5.1: AFFINITY SELECTION-MASS SPECTROMETRY (AS-MS) DISCOVERS PEPTIDES THAT APPEARED IN SEPARATE 

REGIONS FROM NONBINDERS IN SEQUENCE SPACE MAPS CONSTRUCTED BY UNSUPERVISED DIMENSIONALITY 

REDUCTION ACROSS DIVERSE ENCODING METHODS. ........................................................................... 181 



13 
 

 

 

FIGURE 5.2: IN-DEPTH MOTIF DISCOVERY WAS MADE POSSIBLE BY HIGH-DIMENSIONAL PEPTIDE ENCODING TECHNIQUES 

(ESM-2, FINGERPRINT, AND N-GRAMS) WITH UMAP, EXPANDING UPON THE COMMONLY KNOWN MOTIF OF 

D**DY(A/S). ........................................................................................................................... 183 
FIGURE 5.3: N-GRAMS ENCODING WITH UMAP PROVIDED HIGHLY SENSITIVE CLUSTERING AND IDENTIFICATION OF ≤10 

UNALIGNED TARGET PEPTIDES, WHICH CONTAINED A 6-MER TARGET MOTIF AT RANDOM FRAMESHIFTS IN A LARGE 

DATASET OF NONBINDING LIBRARY PEPTIDES. ..................................................................................... 185 
FIGURE 5.4: THE TRANSLATION OF CANONICALLY-UNDERSTOOD BINDING FUNCTION INTO THE NONCANONICAL CHEMICAL 

SPACE WAS TESTED BY THE ADDITION OF PEPTIDOMIMETICS DISCOVERED FROM A HIGHLY NONCANONICAL LIBRARY.
 ............................................................................................................................................. 187 

FIGURE 5.5: EXPERIMENTAL BINDING VALIDATION OF AS-MS PEPTIDOMIMETICS REVEALS A PICOMOLAR BINDER AND 

REINFORCED THE HYPOTHESIZED REGIONS OF HIGH-AFFINITY BINDERS, SEPARATED FROM NONBINDERS IN THE 

COMBINED NONCANONICAL AND CANONICAL SEQUENCE SPACE. ........................................................... 189 
FIGURE 5.6: THE FINGERPRINT ENCODING ILLUSTRATES THE SIMILARITIES AND NUMBER OF UNIQUE FEATURES IN 

CANONICAL AMINO ACIDS. ............................................................................................................ 210 
FIGURE 5.7: THE FINGERPRINT RADIUS OF 3 IS GENERALLY SET FOR EXTENDED CONNECTIVITY FINGERPRINT ENCODING 

FOR ECFP_6. ........................................................................................................................... 210 
FIGURE 5.8: THE NUMBER OF UNIQUE N-GRAMS FOR ENCODING VERSUS THE MAXIMUM N-GRAM LENGTH USED. N-GRAMS 

ENCODING PROCEEDS FIRST BY PREDETERMINING ALL N-MERS (SOMETIMES CALLED K-MERS) WITHIN THE DATASET.
 ............................................................................................................................................. 211 

FIGURE 5.9: SCAN OF N_NEIGHBORS WITH UMAP USING ONE-HOT, FINGERPRINT, AND N-GRAMS ENCODING.. ........ 213 
FIGURE 5.10: MDS DIMENSIONALITY REDUCTION VERSUS ENCODING METHOD OF THE AS-MS DATA. ...................... 214 
FIGURE 5.11: LOGO PLOT OF THE PEPTIDES SAMPLED FROM THE X12K LIBRARY, PRESUMED TO BE NONBINDERS. ....... 219 
FIGURE 5.12: ALL DIMENSIONALITY REDUCTION RESULTS USING ALL REPRESENTATION ENCODINGS WITH MANUALLY ADDED 

COMMON MOTIF LABELS AS DESCRIBED IN SECTION 5.7.2: LABEL DEFINITIONS FOR 12CA5-SPECIFIC AND 

NONSPECIFIC BINDERS. ............................................................................................................... 220 
FIGURE 5.14: SUMMARY OF ANALYZING THE MOTIF OF EACH CLUSTER ACROSS ALL ENCODING AND DIMENSIONALITY 

REDUCTION TECHNIQUES. ............................................................................................................ 222 
FIGURE 5.14: PCA DECOMPOSITION OF ALL AS-MS DATA ENCODED BY ONE-HOT ENCODING WITH AUTOMATED CLUSTER 

DETECTION AS DESCRIBED IN TABLE 5.8. .......................................................................................... 223 
FIGURE 5.15: PCA DECOMPOSITION OF ALL AS-MS DATA ENCODED BY PHYSICOCHEMICAL ENCODING WITH AUTOMATED 

CLUSTER AS DESCRIBED IN TABLE 5.9. ............................................................................................. 228 
FIGURE 5.16: PCA DECOMPOSITION OF ALL AS-MS DATA ENCODED BY ESM2 ENCODING WITH AUTOMATED CLUSTER 

DETECTION AS DESCRIBED IN TABLE 5.10. ........................................................................................ 230 
FIGURE 5.17: PCA DECOMPOSITION OF ALL AS-MS DATA ENCODED BY FINGERPRINT ENCODING WITH AUTOMATED 

CLUSTER DETECTION AS DESCRIBED IN TABLE 5.11. ............................................................................ 231 
FIGURE 5.18: PCA DECOMPOSITION OF ALL AS-MS DATA ENCODED BY N-GRAMS ENCODING WITH AUTOMATED CLUSTER 

DETECTION AS DESCRIBED IN TABLE 5.12. ........................................................................................ 233 
FIGURE 5.19: UMAP DECOMPOSITION OF ALL AS-MS DATA ENCODED BY ONE-HOT ENCODING WITH AUTOMATED CLUSTER 

DETECTION AS DESCRIBED IN TABLE 5.13.. ....................................................................................... 234 
FIGURE 5.20: UMAP DECOMPOSITION OF ALL AS-MS DATA ENCODED BY PHYSICOCHEMICAL ENCODING WITH 

AUTOMATED CLUSTER DETECTION AS DESCRIBED IN TABLE 5.14. ............................................................ 236 
FIGURE 5.21: UMAP DECOMPOSITION OF ALL AS-MS DATA ENCODED BY ESM-2 ENCODING WITH AUTOMATED CLUSTER 

DETECTION AS DESCRIBED IN TABLE 5.15.. ....................................................................................... 238 



14 
 

 

 

FIGURE 5.22: UMAP DECOMPOSITION OF ALL AS-MS DATA ENCODED BY FINGERPRINT ENCODING WITH AUTOMATED 

CLUSTER DETECTION AS DESCRIBED IN TABLE 5.16. ............................................................................ 242 
FIGURE 5.23: UMAP DECOMPOSITION OF ALL AS-MS DATA ENCODED BY N-GRAMS ENCODING WITH AUTOMATED 

CLUSTER DETECTION AS DESCRIBED IN TABLE 5.17. ............................................................................ 245 
FIGURE 5.24: UMAP SENSITIVITY TO CLUSTER AND ENABLE THE DETECTION AND ISOLATION OF TARGET PEPTIDES IN A 

5000-PEPTIDE DATASET. .............................................................................................................. 256 
FIGURE 5.25: N-GRAMS, ONE-HOT, AND FINGERPRINT ENCODING PROVIDE SIMILAR CLUSTERING SENSITIVITY WITH TARGET 

PEPTIDES CONTAINING A MOTIF AT THE SAME FRAMESHIFT. ..................................................................... 257 
FIGURE 5.26: THE CONSTRUCTION OF UMAP SEQUENCE SPACE IS AFFECTED BY THE TOTAL DATASET SIZE.. ............... 258 
FIGURE 5.27: XSTREME MOTIF DETECTION RESULT OF MOTIFS ENRICHED IN THE AS-MS DATASET (POSITIVE) RELATIVE TO 

THE RANDOMLY SAMPLED LIBRARY PEPTIDES (NEGATIVE). ...................................................................... 260 
FIGURE 5.28: THE XSTREME RESULTS FOR MOTIF DISCOVERY AND DETECTION USING THE DATASET OF 5 TARGET PEPTIDES 

IN 5000 RANDOM LIBRARY PEPTIDES. .............................................................................................. 261 
FIGURE 5.29: THE XSTREME AND STREME RESULTS FOR MOTIF DISCOVERY AND DETECTION USING THE DATASET OF 10 

TARGET PEPTIDES IN 5000 RANDOM LIBRARY PEPTIDES. ........................................................................ 262 
FIGURE 5.30: THE XSTREME AND STREME RESULTS FOR MOTIF DISCOVERY AND DETECTION USING THE DATASET OF 20 

TARGET PEPTIDES IN 5000 RANDOM LIBRARY PEPTIDES. ........................................................................ 263 
FIGURE 5.31: AUGMENTATION OF CANONICAL SEQUENCE MAPS WITH NONCANONICAL PEPTIDES DISCOVERED FROM AS-

MS AND EXPERIMENTALLY EVALUATED USING BLI TO DISTINGUISH BINDERS FROM NONBINDERS (SEE BIOLAYER 

INTERFEROMETRY (BLI) MEASUREMENTS). ........................................................................................ 265 
FIGURE 5.32: 1H NMR (400 MHZ, DMSO-D6 + 1% D2O) OF FMOC-BPL-OH. .............................................. 268 
FIGURE 5.33: 13C NMR (101 MHZ, DMSO-D6) OF FMOC-BPL-OH ............................................................. 269 
FIGURE 5.34: 1H NMR (500 MHZ, DMSO-D6) OF FMOC-GIT-OH ............................................................... 271 
FIGURE 5.35: 13C NMR (126 MHZ, DMSO-D6) OF FMOC-GIT-OH. ............................................................. 272 
FIGURE 5.36: ANALYTICAL CHARACTERIZATION OF PURIFIED NONCANONICAL PEPTIDE 1.. .................................... 273 
FIGURE 5.37: ANALYTICAL CHARACTERIZATION OF PURIFIED NONCANONICAL PEPTIDE 2.. .................................... 274 
FIGURE 5.38: ANALYTICAL CHARACTERIZATION OF PURIFIED NONCANONICAL PEPTIDE 3.. .................................... 275 
FIGURE 5.39: ANALYTICAL CHARACTERIZATION OF PURIFIED NONCANONICAL PEPTIDE 4.. .................................... 276 
FIGURE 5.40: ANALYTICAL CHARACTERIZATION OF PURIFIED NONCANONICAL PEPTIDE 5.. .................................... 277 
FIGURE 5.41: ANALYTICAL CHARACTERIZATION OF PURIFIED NONCANONICAL PEPTIDE 6.. .................................... 278 
FIGURE 5.42: ANALYTICAL CHARACTERIZATION OF PURIFIED NONCANONICAL PEPTIDE 7.. .................................... 279 
FIGURE 5.43: ANALYTICAL CHARACTERIZATION OF PURIFIED NONCANONICAL PEPTIDE 8. ..................................... 280 
FIGURE 5.44: ANALYTICAL CHARACTERIZATION OF PURIFIED NONCANONICAL PEPTIDE 9. ..................................... 281 
FIGURE 5.45: ANALYTICAL CHARACTERIZATION OF PURIFIED NONCANONICAL PEPTIDE 10. ................................... 282 
FIGURE 5.46: ANALYTICAL CHARACTERIZATION OF PURIFIED NONCANONICAL PEPTIDE 11. ................................... 283 
FIGURE 5.47: ANALYTICAL CHARACTERIZATION OF PURIFIED NONCANONICAL PEPTIDE 12. ................................... 284 
FIGURE 5.48: ANALYTICAL CHARACTERIZATION OF PURIFIED NONCANONICAL PEPTIDE 13. ................................... 285 
FIGURE 5.49: ANALYTICAL CHARACTERIZATION OF PURIFIED NONCANONICAL PEPTIDE 14. ................................... 286 
FIGURE 5.50: ANALYTICAL CHARACTERIZATION OF PURIFIED NONCANONICAL PEPTIDE 15.. .................................. 287 
FIGURE 5.51: ANALYTICAL CHARACTERIZATION OF PURIFIED NONCANONICAL PEPTIDE 16.. .................................. 288 
FIGURE 5.52: ANALYTICAL CHARACTERIZATION OF PURIFIED NONCANONICAL PEPTIDE 17.. .................................. 289 
FIGURE 5.53: BLI SENSORGRAMS OF ALL BINDING PEPTIDES AND PEPTIDOMIMIETICS WITH THEIR MONOMERS AND 

STRUCTURES SHOWN. ................................................................................................................. 290 



15 
 

 

 

FIGURE 5.54: BLI SENSORGRAMS OF ALL NONBINDING PEPTIDES AND PEPTIDOMIMIETICS WITH THEIR MONOMERS AND 

STRUCTURES SHOWN. ................................................................................................................. 292 
FIGURE A.1: THE APPROACH PRESENTED IN THIS WORK COMBINES DESCRIPTORS OF PEPTIDE FITNESS IN PHAGE BIO-

PANNING ALONG WITH SEQUENCE INFORMATION TO ELUCIDATE TARGET-SPECIFIC PEPTIDE HITS FROM COMPLEX 

SEQUENCING DATA. .................................................................................................................... 302 
FIGURE A.2: FOLD CHANGE (FC) AND ENRICHMENT RATIO (ER) PROVIDE PARTIALLY ORTHOGONAL INFORMATION THAT 

WHEN COMBINED WITH PEPTIDE SEQUENCE IN A PROXY MACHINE-LEARNED APPROACH MAY IMPROVE THE ISOLATION 

OF HIGH-AFFINITY TARGET-SPECIFIC PEPTIDE LIGANDS FROM PHAGE DISPLAY AGAINST MDM2 WITH 12CA5 AS 
CONTROL.. ............................................................................................................................... 305 

FIGURE A.3: BILSTM MODEL HIGHLY RANKS MDM2 MOTIF-CONTAINING PEPTIDE HITS >300% BETTER THAN ANY 

COMBINATION OF EXPERIMENTAL APPROACHES. RANKING PRIORITIZES THE INVESTMENT OF SYNTHESIS AND 

EXPERIMENTAL BINDING VALIDATION TOWARD PEPTIDES THAT HAVE THE HIGHEST PREDICTED CONFIDENCE TO BE 

HITS. ....................................................................................................................................... 308 
FIGURE A.4: HIT RATE BENCHMARK OF MODEL ARCHITECTURES, PEPTIDE REPRESENTATION, AND PROXY OBJECTIVE ON 

BOTH THE MDM2 AND 12CA5 TARGET PROTEIN SYSTEMS. ..................................................................... 310 
FIGURE A.5: THE UMAP DECOMPOSITIONS OF THE LEARNED LATENT FEATURES FOR EACH PEPTIDE INDICATE SUCCESSFUL 

PROXY LEARNING, WITH STRONG PRIORITIZATION TOWARD CLUSTERING SIMILAR INPUT PEPTIDE SEQUENCE FEATURES.
 ............................................................................................................................................. 312 

FIGURE A.6: BUILT-IN MODEL INTERPRETABILITY USING SHAPLEY ANALYSIS PROVIDED AMINO-ACID LEVEL SAR. (A) 
SHAPELY FEATURE IMPORTANCE ACROSS REPRESENTATION FEATURES AS CALCULATED BY THE 10-MODEL ENSEMBLE 

TRAINED VIA CROSS VALIDATION SPLITTING ON A TEST SET OF 500 RANDOMLY SAMPLED PEPTIDES.. .................. 314 
FIGURE A.7: A TYPICAL PHAGE DISPLAY SCREENING AGAINST IMMOBILIZED PROTEINS ON MAGNETIC BEADS. .............. 318 
FIGURE A.8: ANALYTICAL CHARACTERIZATION OF CRUDE AND PREPARATIVE PURIFIED MDM2.. .............................. 327 
FIGURE A.9: K-MEANS CLUSTERING OF RAW NGS DATA FROM 12CA5 AND MDM2 MULTIPLEX PHAGE DISPLAY PANNING. 

BOTH A AND C ARE OF THE SAME CLUSTERING RESULT USING UNIFORM MANIFOLD APPROXIMATION (UMAP) BASED 

CLUSTERING WITH K NUMBER OF CLUSTERS. ...................................................................................... 329 
FIGURE A.10: PARITY PLOTS OF RANDOM HYPERPARAMETER SWEEPS ACROSS ONE HUNDRED 12CA5 RUNS AND ONE 

HUNDRED MDM2 RUNS. ............................................................................................................. 330 
FIGURE A.11: PARITY PLOT OF EXPERIMENTAL VERSUS PREDICTED VALUES INCLUDING ER, AS -LN(ER); FC, AS -LN(FC) 

WITH ITS ASSOCIATED P-VALUE AS -LOG10(P-VALUE). HIGH-AFFINITY MOTIF-CONTAINING PEPTIDES ARE SHOWN IN 

ORANGE. .................................................................................................................................. 330 
FIGURE A.12: UMAP DECOMPOSITIONS OF THE LEARNED LATENT FEATURES FOR EACH PEPTIDE SHOW THAT MOTIF-

CONTAINING SEQUENCES WERE SOMEWHAT CLUSTERED TOGETHER BY THE BILSTM PROXY LEARNING PROCESS. 331 
FIGURE A.13: THE UMAP PROJECTIONS OF THE LEARNED LATENT FEATURES FOR EACH PEPTIDE FROM PHAGE DISPLAY WITH 

12CA5 INDICATE SUCCESSFUL PROXY LEARNING. ............................................................................... 332 
FIGURE A.14: BILSTM MODEL HIGHLY RANKS 12CA5 MOTIF-CONTAINING PEPTIDE HITS >30% BETTER THAN ANY 

COMBINATION OF EXPERIMENTAL APPROACHES.. ................................................................................ 333 
FIGURE A.15: POSITIONAL SHAPELY FEATURE IMPORTANCE ACROSS RESIDUE IDENTITIES AS CALCULATED BY THE 10- 

MODEL ENSEMBLE ON THE SET OF ALL 12CA5 MOTIFS CONTAINING HITS WITHIN THE DATASET.. ....................... 334 
 



16 
 

 

 

List of Tables 
TABLE 2.1: NONCANONICAL AMINO ACIDS USED FOR LIBRARY SYNTHESIS. .......................................................... 53 
TABLE 2.2: PLATE SETUP FOR KINGFISHERTM DUO PRIME ............................................................................... 60 
TABLE 2.3: COMPONENTS OF THE CUSTOM PEPTIDE STANDARD USED FOR SEC VALIDATIONS.. ................................. 76 
TABLE 2.4: SEQUENCES ISOLATED BY AS-MS THAT CONTAIN THE CHARACTERISTIC BINDING MOTIF TO 12CA5, 

D**DY(A/S). ............................................................................................................................. 78 
TABLE 2.5: ALANINE SCAN OF CBP SHOWS CRITICAL RESIDUES FOR LIGAND INTERACTIONS WITH 498-724CDH2.. .......... 82 
TABLE 2.6: TRUNCATION STUDIES OF CBP DEMONSTRATE THE IMPACT OF THE N-TERMINAL RESIDUES IN LIGAND 

INTERACTIONS WITH 498-724CDH2. .................................................................................................... 84 
TABLE 2.7: D-AMINO ACID SCAN OF CBP IDENTIFIES CRITICAL STEREOCENTERS IN LIGAND INTERACTIONS WITH 498-

724CDH2. .................................................................................................................................. 85 
TABLE 2.8: LIST OF TOP CANDIDATES IDENTIFIED FROM AS-MS EXPERIMENTS UTILIZING FOCUSED LIBRARIES AGAINST 

LIGAND 498-724CDH2. .................................................................................................................... 87 
TABLE 3.1: RESIN MEASUREMENTS AND CRUDE YIELDS FOR THE SYNTHESIS OF JR10 AND GLP-1 ON OCTAGEL, PROTIDE, 

AND TENTAGEL XV RESINS. ........................................................................................................... 105 
TABLE 3.2: RESIN MEASUREMENTS, CRUDE YIELDS AND PURIFICATION YIELDS FOR THE SYNTHESIS OF MDM2 AND CHIP 

ON OCTAGEL, PROTIDE AND TENTAGEL XV RESINS. ............................................................................. 111 
TABLE 4.1: EXAMPLE SETUP FOR AN AFFINITY SELECTION UTILIZING VARIABLE PROTEIN CONCENTRATIONS USING 150 UL OF 

BEADS TOTAL PER REPLICATE .......................................................................................................... 154 
TABLE 4.2: PARAMETER OPTIMIZATION FOR THE FEATURE FINDING PROCESS IN OPENMS.. .................................... 162 
TABLE 5.1: LIST OF ABBREVIATIONS USED ................................................................................................. 191 
TABLE 5.2: NONCANONICAL AMINO ACIDS USED IN THIS WORK WITH THEIR ASSOCIATED PROTECTING GROUPS. ......... 193 
TABLE 5.3: PLATE LAYOUT FOR AS-MS USING A KINGFISHERTM DUO PRIME SYSTEM ............................................ 201 
TABLE 5.4: POST-TRANSLATIONAL MODIFICATION (PTM) UTILIZED IN PEAKS DE NOVO SEQUENCING ANALYSIS OF 

NONCANONICAL LIBRARY. ............................................................................................................ 205 
TABLE 5.5. ONE-HOT ENCODING VECTORS FOR CANONICAL AMINO ACIDS ........................................................ 207 
TABLE 5.6: NUMBER OF PEPTIDES MANUALLY ASSIGNED IN EACH CLASS AS DEFINED IN LABEL DEFINITIONS FOR 12CA5-

SPECIFIC AND NONSPECIFIC BINDERS. ............................................................................................. 220 
TABLE 5.7: REPORT OF AUTOMATED CLUSTER DETECTION ALGORITHM AND PARAMETERS USED FROM SCIKIT-LEARN WITH 

EITHER AGGLOMERATIVE CLUSTERING (AGGCL) OR DENSITY-BASED SPATIAL CLUSTERING OF APPLICATIONS WITH 

NOISE (DBSCAN). .................................................................................................................... 222 
TABLE 5.8: SEQUENCE LOGO REPORT OF ALL CLUSTERS DETECTED FROM PCA DIMENSIONALITY REDUCTION USING ONE-

HOT ENCODING. ........................................................................................................................ 224 
TABLE 5.9: SEQUENCE LOGO REPORT OF ALL CLUSTERS DETECTED FROM PCA DIMENSIONALITY REDUCTION USING 

PHYSICOCHEMICAL ENCODING. ..................................................................................................... 229 
TABLE 5.10: SEQUENCE LOGO REPORT OF ALL CLUSTERS DETECTED FROM PCA DIMENSIONALITY REDUCTION USING 

ESM2 ENCODING. ..................................................................................................................... 230 
TABLE 5.11: SEQUENCE LOGO REPORT OF ALL CLUSTERS DETECTED FROM PCA DIMENSIONALITY REDUCTION USING 

FINGERPRINT ENCODING. ............................................................................................................. 232 
TABLE 5.12: SEQUENCE LOGO REPORT OF ALL CLUSTERS DETECTED FROM PCA DIMENSIONALITY REDUCTION USING N-

GRAMS ENCODING. ..................................................................................................................... 233 
TABLE 5.13: SEQUENCE LOGO REPORT OF ALL CLUSTERS DETECTED FROM UMAP DIMENSIONALITY REDUCTION USING 

ONE-HOT ENCODING. .................................................................................................................. 234 



17 
 

 

 

TABLE 5.14: SEQUENCE LOGO REPORT OF ALL CLUSTERS DETECTED FROM UMAP DIMENSIONALITY REDUCTION USING 

PHYSICOCHEMICAL ENCODING. ..................................................................................................... 236 
TABLE 5.15: SEQUENCE LOGO REPORT OF ALL CLUSTERS DETECTED FROM UMAP DIMENSIONALITY REDUCTION USING 

ESM-2 ENCODING. .................................................................................................................... 239 
TABLE 5.16: SEQUENCE LOGO REPORT OF ALL CLUSTERS DETECTED FROM UMAP DIMENSIONALITY REDUCTION USING 

FINGERPRINT ENCODING. ............................................................................................................. 242 
TABLE 5.17: SEQUENCE LOGO REPORT OF ALL CLUSTERS DETECTED FROM UMAP DIMENSIONALITY REDUCTION USING N-

GRAMS ENCODING. ..................................................................................................................... 245 
TABLE 5.18: PEPTIDOMIMETICS DISCOVERED USING AS-MS FOR PURITY AND LCMS CHARACTERIZATION SEE ANALYTICAL 

CHARACTERIZATION OF ALL SYNTHESIZED NONCANONICAL PEPTIDOMIMETICS DISCOVERED BY AS-MS. ............ 264 
TABLE 5.19: BLI DATA SUMMARY OF ALL BINDING PEPTIDES AND PEPTIDOMIMETICS IN THIS WORK. ......................... 290 
TABLE A.1: PLATE SETUP FOR KINGFISHERTM DUO PRIME ............................................................................. 321 
  



18 
 

 

 

1. Background and Overview 
  



19 
 

 

 

1.1. Peptides as therapeutics  
Peptides have emerged as a powerful force in facilitating protein-protein 

interactions (PPIs) within the pharmaceutical industry for their ability to balance 

many crucial properties for drug efficacy.1,2 Peptides occupy a therapeutic space in 

between that of small molecules and large  protein biologics, where peptides are 

highly amenable to precise and diverse chemical modifications but are able to 

utilize the specificity inherent to larger biological structures like in PPIs.3 However, 

there have historically been drawbacks to peptide-based therapeutics, such as poor 

proteolytic stability, cell permeability, and oral bioavailability that have led to 

peptides trailing in the market share of the global pharmaceutical market behind 

biologics and small molecule drugs.4 To address this, chemical modifications of 

potential peptide therapeutics have been essential in optimizing the 

pharmacological properties of a candidate, such as macrocyclization to increase 

cell permeability or incorporation of unnatural amino acids to enhance target 

specificity and resistance to proteolysis.5–8 However, the breadth of potential 

structures and chemical moieties utilized in drug discovery campaigns still has 

potential for expansion. 
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Figure 1.1: Peptides occupy a promising therapeutic “middle space”. Small molecule drugs 
often show high cell permeability and oral bioavailability due to their size, while larger 
protein biologics can leverage superior target selectivity. Peptides hold the potential to 
bridge the gap between small molecules and biologics to leverage the strengths of both. 
Examples of each class of drug are shown.  

1.2. Synthesis of peptides 
Peptide production is highly amenable to a variety of modifications through 

the usage of solid phase peptide synthesis (SPPS).9 Peptide sequences up to 200 

amino acids in length can be readily accessed through automated fast-flow 

synthesizers.10–12 The peptide chain is anchored to a solid PEG-polystyrene resin, 

where all reactions are performed heterogeneously with the resin being washed 

thoroughly with solvent between steps.9,13 The development of the 9-

fluorenylmethyloxycarbonyl (Fmoc)/tert-butyl protecting group strategy allowed for 

efficient coupling of amino acids to the growing peptide chain which minimizing side 

reactivity with the amino acid side chains.14–17  In this strategy, the side chains are 

masked using acid labile protecting groups, while the N-termini of the amino acid 

monomers are protected with the base labile Fmoc group, allowing for cyclic amino 

acid coupling and Fmoc deprotection to build the peptide chain. 
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SPPS methods also enable a variety of modifications that would be difficult 

for biologics produced using standard biological methods, such as the incorporation 

of unnatural amino acids18,19, macrocyclization,20,21 or chemical stapling.22,23 A major 

example of the power of this chemical flexibility is the recent development of many 

Glucagon-Like Peptide-1 receptor agonists, such as dulaglutide (brand name 

Trulicity) and semaglutide (brand name Ozempic), which feature both the 

incorporation of unnatural amino acids and the addition of a fatty acid chain to a 

central lysine residue.24,25 These techniques open a large potential for applications 

of peptides as therapeutics.  

Additionally, the attachment of the peptide chain to a solid support during 

synthesis enables powerful combinatorial chemistry for the generation of large 

peptide libraries.26–28 Resin can be split into individual aliquots, reacted with a 

variety of different reagents, then be pooled to rapidly synthesize peptide libraries 

(see Figure 1.2). This split-and-pool synthesis method is key for the in vitro 

generation of compound libraries and has been used to generate libraries 

containing >109 peptide sequences.29 This method is also amenable to the 

incorporation of a variety of unnatural amino acids due to its chemical approach, 

whereas recombinantly produced biologics require complex cellular 

engineering.18,30,31 
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Figure 1.2: Split-and-pool synthesis enables access to high diversity compound libraries. 
Peptide resin (represented in black) can be split into multiple aliquots, coupled with a new 
amino acid, and pooled together iteratively to exponentially increase the total number of 
peptide sequences. 

 

1.3. Affinity selection-mass spectrometry 
There are a variety of techniques used for discovering peptidomimetic and small 

molecule ligands to desired protein targets, including affinity selection-mass 

spectrometry (AS-MS), genetically encoded methods like phage display,32 mRNA 

display33, and DNA encoded libraries,34 as well as many others.35–37 These 

techniques utilize large libraries of compounds (ranging from 104 to 1012 total 

variants38,39 depending on platform) to efficiently survey potential hits. The total 

number of sequences present during an affinity selection is critical to hit 

identification, where a higher number of variants allows for a greater coverage of 

the sequence space.29,40,41 A protein or protein complex of interest is assayed 

against this library of compounds, where the selection process will pull down 

ligands of interest from the compound library, referred to as putative hits. The 

identity of the hit, the sequence of the peptide, is then identified and validated 

through a biophysical assay or protein functional assay.42–44 For AS-MS, the 
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decoding process is done through tandem mass spectrometry, while genetically 

encoded methods utilize next-generation sequencing.45  

Tandem mass spectrometry is a key method for hit identification in AS-MS. 

Utilizing a data dependent acquisition (DDA) protocol, the mass spectrometer will 

identify peptides based on their characteristic isotopic pattern and accumulate the 

highest intensity peptide ion for sequencing.46–48 The sequencing process can be 

performed through a handful of methods, commonly through higher-energy collision 

dissociation (HCD) and electron transfer dissociation (ETD).49–51 The HCD process 

accelerates peptide ions within the mass spectrometer using electric potential until 

the ion collides with a neutral molecule, often a noble gas, causing the kinetic 

energy to be rapidly converted to internal energy and fragmenting the peptide at the 

amide C-N bond.52 ETD follows similar principles, but first transfers an electron to 

the ion of interest from a donor reagent to generate an unstable radical cation, 

which will then undergo fragmentation at the α-C-N bond.53,54 These fragmentation 

processes break a peptide into small fragments of unique masses, allowing for the 

deconvolution of the sequence. 

A major challenge in the drug discovery process is the effective processing of 

sequencing data. Samples generating from affinity selections are often highly 

complex mixtures of peptides, residual protein, and various small molecules like 

buffering agents and detergents. Additionally, DDA methods choose ion candidates 

for fragmentation in real-time, meaning that samples that are too complex will not 

fragment every peptide, leading to a data completeness problem. This is further 

compounded by the reliance on high fidelity sequencing for downstream data 

analysis, where peptides that are recalcitrant to fragmentation will give poor data 

regardless of abundance, resulting in missed putative hits. While AS-MS has a 

history of discovering high affinity ligands,55–57 data analysis methods that work 

independently of sequencing (i.e. at the MS1 level) are desired for a deeper analysis 

of affinity selection data. Comparing relative abundances of notable mass-to-charge 

ratios identified between target protein and off-target control samples can generate 
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a list of focused ions for selective sequencing, optimizing spectrometer time while 

also giving longer observation times per ion.     

 

Figure 1.3: AS-MS enables isolation of high affinity binders to a protein of interest. A target 
protein and off-target control are immobilized onto a magnetic bead and incubated with a 
synthetic peptide library. The beads are then washed, and the bound peptides eluted from 
the protein before sequencing using tandem mass spectrometry (MS/MS). 

One common method of combating the data completeness problem is through 

usage of data independent acquisition (DIA). While DDA isolates and analyzes 

individual peptide features, DIA instead isolates ranges of mass-to-charge ratio and 

fragments all isolated peptides.58,59 This method increases the throughput of 

sequencing, but MS2 spectra now show multiple peptides of instead of a single 

peptide sequence, making identification more difficult. The difficulty is remedied 

through usage of database matching; this method involves specifying a set of 

peptides that could be contained in the sample to which sequencing software 

simulates what each peptide’s MS2 spectrum should look like, allowing for 

identification from the experimental spectra. This is in contrast to de novo 

sequencing, which relies solely on the information gained from the experimental 

MS2 spectra.60–62 While powerful, DIA and database matching approaches require 

prior knowledge of the sample, which limits its use in AS-MS. If a peptide library is 

synthesized combinatorially, this makes the total list of sequences exponentially 

large. For example, a library of X8K (X = any canonical amino acid except Cys or 

Ile), then the total possible sequences is about 1010, which is more than the age of 

the earth.63 This size of database is not feasible for use, making de novo 
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sequencing necessary for high diversity peptide libraries. Additionally, this means 

that not every sequence will be present from the theoretical set, meaning the 

entirety of the library would also need to be identified experimentally. These factors 

make database matching and DIA approaches difficult for high diversity synthetic 

peptide libraries.        

1.4. Machine learning in drug discovery 

Machine learning techniques are positioned to transform drug discovery.64–68 

There are two primary categories of machine learning: unsupervised and 

supervised methods. Unsupervised methods deduce underlying trends in 

unlabeled datasets and are often useful for either exploratory purposes or for 

simplification of the outputs from a more complex supervised model.69–71 

Clustering is commonly employed to group similar peptide sequences for the 

identification of important physicochemical properties or sequence motifs.72 

Supervised methods that take labeled training data (e.g. binding affinity, protein 

activity) and interpolate or extrapolate properties to allow for prediction.73–75 

Machine learning models have already been used for various steps of the drug 

development process, including hit discovery and activity prediction.76–78 

Both machine learning methods require input data to be encoded into a 

mathematical format, which will significantly influence the capabilities of the 

model. The choice of encoding format can be based on a variety of properties, 

such as amino acid sequence79 or chemical substructures.80 The power of 

machine learning can be leveraged with the incorporation of unnatural amino 

acids from AS-MS datasets. Unnatural amino acids can utilize chemical moieties 

not found in the canonical twenty monomers, opening new chemical space for 

the design of peptide therapeutics. However, effective machine learning models 

require large amounts of data, especially the peptide sequence for the effective 

encoding of peptide properties. This presents an open challenge, where more 

powerful AS-MS data analysis methods will allow for the training of more 
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powerful and accurate machine learning models, driving the field of drug 

discovery. 

1.5. Thesis overview 

This thesis presents work done to expand the scope of current drug 

discovery technology with respect to AS-MS and synthetic peptide libraries. 

Chapter 1 reviews the emerging importance of peptides as therapeutics as well 
as methods for peptide-based drug discovery. Chapter 2 outlines a method for 
the synthesis of high diversity macrocyclic peptide libraries and their use in novel 

ligand discovery to two proteins. Chapter 3 surveys various resin options for 
SPPS in the synthesis of difficult peptide sequences. Chapter 4 discusses an 
MS1-based analysis of AS-MS data for a quantitative evaluation of putative hits. 

Chapter 5 describes an unsupervised machine learning approach for the design 
of peptide ligands containing unnatural amino acids. Finally, the Appendix 
outlines a supervised machine learning approach for the design of peptide 

ligands.  
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2.1. Introduction 
Macrocyclic peptides show therapeutic promise with advantages over small 

molecules to disrupt protein-protein interactions and over proteins to cross 

biological membranes barriers.1–4 Specifically, macrocyclization can impart several 

potential benefits to linear precursors, including increased proteolytic stability, cell 

permeability, binding affinity, and oral bioavailability.5,6 Proteases often engage and 

degrade peptides in extended β-strand conformations.7,8 Macrocyclization can offer 

proteolytic resistance by limiting conformational accessibility of the peptide 

backbone to the enzyme active site, and enable the use of specific engineerable 

scaffolds (e.g., stapled α-helices).9–12 Cyclization is central to the currently applied 

design principles to achieve passive cell permeability, in addition to strategies that 

modulate molecular weight, polar surface area, hydrogen bond interactions, and 

shape.13–16 Combining proteolytic stability and passive permeability can impart oral 

bioavailability for peptide-based drug candidates, which can further be improved by 

pharmaceutical formulation.17,18 For these reasons, macrocyclic libraries are 

preferred for screening with peptide ligand discovery platforms. In addition, the 

direct identification of macrocyclic peptide binders from these selections streamlines 

subsequent development by alleviating the need to optimize suitable cyclization 

sites. Lastly, the conformational constraint imparted by macrocyclization may 

improve discovery rates of ligands from libraries against challenging targets.19–21  

Genetically-encoded discovery platforms generally access macrocyclic peptide 

libraries while focusing on high diversity (>108 members),22–28 while synthetic 

libraries can access the non-natural chemical space at lower diversity (<108 

members).29–33 While more stable macrocyclization linkages are preferred (e.g., 

thioether or alkyl chain),24,34 the disulfide linkage is suitable at the ligand discovery 

stage, and does not require any chemical modification or treatment that could 

compromise genetic amplification in some platforms.28,35 The disulfide linkage has 

been used to create macrocyclic libraries for over two decades in phage display 

discovery platforms,36–38 and is commonly encountered in clinically-approved 
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drugs.5,39 Synthetic libraries generally leverage the broader use of non-natural or 

abiotic functionalities, which have frequently appeared critical to the success of 

clinical peptide drug candidates including inhibitors to the interleukin-23 receptor 

(IL-23R), mouse double minute 2 (MDM2), β-catenin, and proprotein convertase 

subtilisin/kexin type 9 (PCSK9).17,29,40–42 Because they cannot be genetically-

encoded or amplified, synthetic libraries are screened directly30 as in affinity 

selection decoded by mass spectrometry (AS-MS).43,44 With a key exception of 

DNA-encoded libraries,45 state-of-the-art synthetic macrocyclic libraries generally 

number below tens of thousands of individual compounts.30 

The complexity of decoding macrocyclic peptide sequences in mass 

spectrometry is a historic limitation for the use of synthetic macrocyclic libraries in 

affinity selection discovery platforms. Experimental approaches for decoding 

macrocyclic libraries include computational processing of mass spectra46–49 and 

chemically-triggered linearization.50–55 Computational approaches process primary, 

secondary, and various tertiary mass spectra of cyclic peptide fragments, and have 

exceled where database matching is possible.46,49 For de novo sequencing, the 

complexity of enumerating virtual spectra dramatically increases as the number of 

monomers and library size increases, and has only been demonstrated up to 

~1,000-membered libraries.47,56 Chemically-triggered linearization adds a synthetic 

step that must be near-quantitative and high-yielding to enable bottom-up 

sequencing of non-cyclic peptides, which has been demonstrated at very high 

diversities.57 However, most chemical linearization treatments are harsh and/or rely 

on the inclusion of non-standard chemical functional groups at fixed positions, 

limiting library composition.50–55 Moreover, these approaches have yet to be 

demonstrated on high-diversity libraries (~108 members or more). 

We demonstrate here ligand discovery from high-diversity libraries (108 

members) utilizing AS-MS against anti-hemagglutinin antibody clone 12ca5 

(hereinafter abbreviated as 12ca5) and mouse cadherin-2. Cyclization by disulfide 

bond formation is accomplished using aqueous iodine. We verify the integrity of the 
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library utilizing Ellman’s assay and size-exclusion chromatography (SEC) to confirm 

near-quantitative intramolecular macrocyclization of synthetically-prepared 

combinatorial libraries. Linearization is accomplished by mild reduction with heat 

and 1,3-dithiothreitol (DTT) and confirmed by Ellman’s assay to enable standard 

tandem MS sequencing. We apply these new macrocyclic high-diversity libraries 

containing natural and non-natural (or noncanonical) amino acids in an MS-based 

affinity selection platform for de novo peptide ligand discovery.  

We demonstrate successful discovery of nanomolar ligands against 12ca5 and 

the ectodomain of cadherin-2. The 12ca5 protein binds peptides containing the 

sequence D**DY(A/S).58,59 While 12ca5 has been used to benchmark linear AS-MS 

libraries,33,60 we utilize it here to benchmark and additionally validate the use of the 

new high-diversity macrocyclic libraries. Cadherin-2 was considered as a second 

target because of the potential impacts for chemical biology that an affinity reagent 

could provide, ranging from basic cell adhesion, to neural synapses formation,61 to 

the construction of intercalated discs of mammalian heart,62 as well as potential 

drug delivery due to its relative tissue selectivity in the brain and heart.63  These 

critical roles in biology are generally facilitated by homodimerization in domain 1 

and 2.61,64,65 Thus, we sought to discover ligands that bind to cadherin-2 domains 4 

and 5 as they may not interfere with caherin-2 function. Outside of domain 1 and 2, 

there are no ligands to cadherin-2 to our knowledge.64,65 Lastly, we demonstrate the 

incorporation of non-natural amino acids for second-generation ligand discovery in 

libraries designed with input gained by structure-activity relationship (SAR) data 

gathered on the initially discovered cadherin-binding peptide (CBP). Taken together, 

the successful discovery of macrocyclic ligands to both targets from AS-MS 
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demonstrates the potential deployment of ultra-large synthetically-prepared 

macrocyclic libraries for peptide ligand discovery and development.  

 
Figure 2.1: Disulfide linkages allows for high-number diversity libraries compatible with 
decoding by tandem MS/MS. (A) Libraries of macrocyclic peptides are prepared for affinity 
selection by oxidation of cysteine analogs using aqueous iodine, providing a near-
quantitative conversion to intramolecular macrocyclic peptides. (B) Affinity selection 
facilitates the isolation of high affinity ligands to a protein of interest. (C) After affinity 
selection, peptides can be quickly linearized using dithiothreitol (DTT). (D) Standard de 
novo LCMS/MS sequencing methods can be applied due to the linearization step. (E) 
Ligand affinity is confirmed by a biophysical assay (i.e. biolayer interferometry). 

2.2. Results and Discussion 
Due to its demonstrated utility in genetically-encoded libraries, disulfide-induced 

macrocyclization of peptides has become a routine approach with a variety of 

existing methods to facilitate the oxidization step. Several different methods exist to 

form the disulfide linkage on single peptides, including oxidation using dimethyl 

sulfoxide,66 a gentle stream of air, or aqueous iodine with <5% methanol. Ideally, 

the macrocyclization step can be introduced during standard peptide library 

synthesis without incurring production delays or yield losses. The isolation of 

peptides in DMSO-containing solutions could be challenging as the solvent cannot 

be easily evaporated or lyophilized and solid-phase extraction could incur sample 
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loss due to the DMSO content without further aqueous dilution.67 In comparison, 

oxidation utilizing iodine presents itself as a rapid method compatible with mixtures 

of aqueous or organic solvents, and can even facilitate the formation of disulfide 

bonds on resin during solid-phase peptide synthesis.43,68 However, longer reaction 

times on resin promote iodine-based side reactions, therefore rapid in-solution 

oxidation is preferred (< 15 min).69 

Iodine facilitated formation of macrocyclic peptide libraries at 200-million 

membered scale. We synthesized macrocyclic libraries by split-and-pool solid-

phase peptide synthesis using mono-sized 20 μm resin (8.33 g of resin, 2.00 mmol 

scale total), with each bead providing ~1 pmol of peptide. Two billion-membered 

libraries were prepared with the designs of CX12CK and X6CX6CK, where X = all 

canonical amino acids except Cys, to control disulfide formation, and Ile because it 

is isobaric in mass with Leu (18 amino acids) and C = cysteine, homocysteine, and 

penicillamine (Figure 2.3A). The libraries were split into five separate 200-million-

membered aliquots and cleaved from the solid phase resin using a cleavage 

cocktail. After ether trituration and lyophilization, peptide libraries were cyclized in 

5% acetonitrile in water (with 0.1% trifluoroacetic acid) at ~2 mg/mL (~1 mM) by 

dropwise addition of ~1 eq. iodine in methanol until a yellow-brown color persisted. 

After 5-10 minutes at room temperature in the dark, the reaction was quenched with 

aqueous ascorbic acid to provide a colorless solution again (3.5 eq.). These 

libraries were then characterized to verify the efficiency of the oxidation and 

linearization reactions as well as their structure (intramolecular vs intermolecular 
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disulfide formation). 

 

Figure 2.2: Characterization of macrocyclic libraries based on size and thiol concentration 
showed near-quantitative formation of intramolecular disulfide bonds. (A) Ellman’s assay 
showed expected changes in total thiol concentration of the peptides directly after cleavage 
from the solid phase resin, after oxidation by dropwise addition of ~1 eq. of 60 mM iodine in 
methanol to facilitate disulfide formation (room temperature, 5-10 minutes in the dark, 
subsequent quench with 3.5 eq. aqueous ascorbic acid), and after reduction using DTT (50 
mg/mL, ~1000 eq at 60 ºC for 15 minutes). Free thiol was quantitatively consumed during 
the oxidation process and was restored after linearization to concentrations comparable to 
those determined directly after cleavage. (B,C) Size exclusion chromatograms of 
absorbance at 214 nm of two macrocyclic libraries compared to molecular weight standards 
corresponding to the average mass of monomeric, dimeric, and trimeric species. Library 
samples were ran using the cyclized form (later used in affinity selection experiments) and 
the DTT linearized form, demonstrating the formation of intramolecular disulfide bonds. 
Peaks marked with an asterisk (*) were residual elements from the sample buffer. C = 
cysteine, homocysteine, and penicillamine. 

Iodine-promoted cyclization was highly efficient and provided near-quantitative 

oxidization to disulfide by thiol quantification using Ellman’s assay. We quantitated 

thiol oxidation by performing an Ellman’s assay, normalized by the absorbance of 

the library at 280 nm (Figure 2.2A). The thiol content of the library was quantified by 

Ellman’s reagent after cleavage, cold ether trituration, and solid-phase extraction 

(SPE), to remove any remaining reducing scavengers. Upon aqueous resuspension 

of the library, a strong thiol signal was observed. This signal was eliminated 

completely by the treatment of the library with iodine, ascorbic acid quench, SPE 

purification, and aqueous resuspension, consistent with the near-quantitative 

formation of disulfide bonds. 
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With macrocyclic libraries in hand, a MS-friendly protocol to reduce and 

linearize the peptides was devised to enable standard tandem sequencing 

approaches. Both DL-dithiothreitol (DTT) and tris(2-carboxyethyl)phosphine (TCEP) 

were considered for disulfide reduction. Compared to TCEP, DTT is smaller and 

more hydrophilic and less likely to be retained on reverse phase columns. Because 

of the concern for its retention on column, TCEP was utilized in a bead-immobilized 

form, whereas DTT was directly added to each sample just before mass 

spectrometry, reducing handling steps and potential sample loss. Due to its high 

solubility, DTT was utilized at 50 mg/mL, (~1000 eq) at 60 ºC for 15 minutes, 

whereas immobilized TCEP was utilized at 20 eq at room temperature for 25 

minutes per manufacturer protocol.70 For DTT-treated samples, an SPE purification 

was performed to remove excess DTT reagent, whereas samples treated with 

immobilized TCEP were isolated by centrifugation. While TCEP only provided 

incomplete reduction (40% for X6CX6CK and 85% for CX12CK), DTT provided near-
quantitative disulfide reduction (~100% of original Ellman’s signal across all 

libraries, Figure 2.15). Additionally, the reduction efficiency by DTT was found to be 

similar at pH 3 and pH 8 (Figure 2.15). The direct reduction at pH 3 was performed 

to mimic a prepared sample in 0.1% formic acid in water, which could then directly 

be injected in the mass spectrometer for tandem sequencing. Overall, these data 

support the near-quantitative formation and reduction of disulfide bonds.  

Size exclusion chromatography (SEC) confirmed disulfide bonds correspond to 

formation of intramolecular species, producing an almost-exclusively monomeric 

macrocyclic peptide library. Utilizing SEC to separate the library by its apparent 

molecular weight, we assessed if the iodine-facilitated disulfide bond formation was 

intramolecular or intermolecular. Library samples were injected on a SuperDex® 30 

10/300 GL column, which can distinguish the molecular weight range of 100 to 7000 

Da, to analyze the presence of monomeric, dimeric, and oligomeric peptides 

induced by iodine oxidation. Aliquots of 25 μg of library were injected after oxidation 

by iodine and purification by SPE, as well as in the reduced form after treatment 
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with DTT. A custom low-molecular weight peptide standard was also prepared using 

peptides that correspond to the average molecular weights of monomeric, dimeric, 

and trimeric species along with the exclusion limit of the column; the components of 

the custom standard are given in Table 2.3. As shown in Figures 2.2B and 2.2C, 

only monomeric library species were observed when compared to the peptide 

standard, indicating that the disulfide bonds formed were intramolecular rather than 

intermolecular. This result, in tandem with the data from the Ellman’s assay, 

asserted a nearly quantitative conversion of peptide thiols to intramolecular disulfide 

bonds and confirmed this technique provides a facile method for preparing high-

diversity macrocyclic peptide libraries.  

The high-diversity macrocyclic libraries verified to be compatible with standard 

tandem MS/MS sequencing protocols and DTT facilitated the expected recovery of 

high-confidence peptide sequencing. Small aliquots of library (~1000 beads 

equivalent to ~1000 sequences) were taken at various points in the affinity selection 

workflow from cyclization to linearization, including directly after cleavage from 

resin, after cyclization with iodine, and after linearization with DTT. About 8 μg of 

peptide library was purified via a C18 STAGE tip71 from three each steps in the 

protocol: linear from cleavage, iodine-macrocyclized, and DTT-linearized. As 

expected, the library samples taken directly after cleavage and after linearization 

showed high sequencing confidence, described by de novo sequence IDs using 

PEAKS Studio 8.5 with an assigned local confidence (ALC) greater than 85% and 

an absolute mass error <5 ppm (see Figure 2.3B and Figure 2.17).72 Conversely, 

the macrocyclized library sample showed poor sequencing confidence, consistent 

with unproductive fragmentation caused by the disulfide macrocycle. Lastly, the 

linearization by DTT in the mass spectrometry sample provided a significant 

recovery of the peptides discovered in standard tandem sequencing methods 

(Figure 2.3B). 

Analysis of the MS/MS sequencing data demonstrated a balanced distribution 

of amino acid monomers throughout the library, as well as the incorporation of non-
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canonical cysteine analogs. Histograms showing the monomer distribution among 

high-confidence sequence assignments are given in Figure 2.3C. Although 

penicillamine and methionine are isobaric, the fixed positions of penicillamine 

allowed for effective filtering of sequences to prevent inaccurate assignments. 

Interestingly, the X6CX6CK library design sequenced with higher confidence overall 
compared to the CX12CK library design, suggesting a benefit of the intermediate 
cysteine position during fragmentation events in sequence assignment. Overall, 

these results corroborate the successful split-and-pool synthesis, oxidation, 

reduction, and tandem sequencing decoding of the macrocyclic libraries.   

 
Figure 2.3: Characterization of the macrocyclic peptide libraries by tandem MS/MS 
sequencing shows successful split-and-pool synthesis of 15-residue libraries. (A) The 
macrocyclic peptide libraries were synthesized according to two designs, with a large 12-
member macrocycle or a smaller 6-member macrocycle. Additionally, cysteine analogs 
including homocysteine and penicillamine were used to increase the diversity around the 
resulting disulfide linkage. (B) High-confidence sequence assignments of ~1000-member 
library samples directly after cleavage, after oxidation by I2, and after subsequence 
reduction using DTT show a loss and gain of sequencing capabilities with the 
macrocyclization process as expected (n = 3). High-confidence sequences were 
determined as having a calculated average local confidences (ALC) in PEAKS Studio 8.5 
for the de novo sequence assignment by PEAKS Studio 8.5 greater than 85% and an 
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absolute mass error <5 ppm. (C) Normalized residue frequencies   assignments (as a 
fraction) show a balanced incorporation of amino acids in the variable positions (black) and 
cysteine analog positions (green, X is homocysteine, Z is penicillamine).    

Macrocyclic low-nanomolar peptide ligands were discovered by affinity 

selection-mass spectrometry (AS-MS) performed against 12ca5 as a model protein 

target. The anti-hemagglutinin protein 12ca5 binds peptides containing the 

sequence D**DY(A/S) and has been used to benchmark AS-MS libraries.33,58–60 

Seven high affinity peptide ligands were pulled down from the X6CX6CK library 
design, while only one peptide was from the CX12CK library (see Table 2.4 for all 
identified sequences). A select number of these sequences were synthesized and 

validated (see Figure 2.7) for their binding affinity using biolayer interferometry 

(BLI). All identified binders exhibited apparent dissociation constants (KD) in the 

single-digit nanomolar to estimated high picomolar range, nearing the lower limit of 

detection for the instrument (see Figures 2.4 and 2.17). The binding motif was 

present in the same position or frameshift in all sequences found from the X6CX6CK 
library. Specifically, the cysteine analog in the middle of the library design was 

located inside of the 12ca5 motif at the third position (i.e., D*ΨDY(A/S), where Ψ 

was discovered to be cysteine, homocysteine, or penicillamine). Moreover, this 
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trend also suggests the X6CX6CK library design is more amenable to enrich high 
affinity binders against 12ca5 relative to the CX12CK library.  

 
Figure 2.4: High-affinity macrocyclic peptide ligands to 12ca5 were enriched and identified 
via affinity selection-mass spectrometry (AS-MS), and the binding affinity was confirmed 
and measured using biolayer interferometry (BLI). All peptides were prepared with 
Lys(Biotin)-aminohexanoic acid (Ahx) attached to the N-terminus of the shown sequence 
and immobilized onto the BLI tip. The BLI tip was then dipped into solutions containing 
varying concentrations of cadherin-2 to record the concentration-dependent association 
and dissociation events. The characteristic 12ca5-binding motif D**DY(A/S) is highlighted in 
red and appeared exclusively at a single position in the X6CX6CK library (7 discovered 
peptides). In comparison, only one motif-containing peptide was discovered from the 
CX12CK library. 

Nanomolar affinity binders to cadherin-2 (CDH2) were discovered by AS-MS 

with the macrocyclic libraries. Due to the critical roles of CDH2 in adhesion in neural 

and cardiac junctions, the discovery of ligands outside of the protein 

homodimerization site could be of importance toward its study without affecting 

biological function. The homodimerization of cadherin-2 is largely driven by 

molecular interactions involving domains 1 and 2 of the ectodomain.61,62,64,65 Based 
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on these considerations, a fusion protein construct comprised of domains 4 and 5 of 

the CDH2 ectodomain (residues 498 to 724, Uniprot P15116) was used as the 

target for AS-MS selections. The fusion protein was cloned and expressed in 

mammalian cells, purified using SEC and Anti-Protein-C (clone HPC4) affinity tag 

purification, and verified by analytical SEC, reducing and non-reducing SDS-PAGE 

gels, as well as Western blotting (Figure 2.8). To our knowledge, no peptide or small 

molecular ligands have been reported to these CDH2 domains outside the 

homodimerization site.64,65 

Nanomolar peptide ligands were discovered by AS-MS with both X6CX6CK and 
CX12CK libraries against the CDH2[498-724] fusion protein. Only one peptide with 
high sequencing confidence was enriched against CDH2 (KMTFLFCNFTYKDZK, 

called cadherin-binding peptide, CBP, where Z is penicillamine disulfide bonded to 
C). Notably, previous ligand discovery efforts against CDH2 using linear X12K 

libraries were unable to identify any ligands. CBP was synthesized and tested for its 
binding affinity to CDH2 by BLI, yielding a 53 nM KD value (Figure 2.5). To verify 

sequence binding specificity, a scramble sequence that preserved the size of the 

macrocycle was synthesized and shown to have negligible binding response to 

CDH2 by BLI (Figures 2.9 and 2.19). The linearized form of CBP was also tested 
and demonstrated a greatly reduced binding response (0.2 nm versus 1.6 nm 

response for the macrocycle), with an affinity of KD of 150 nM (Figures 2.20). The 

more rigid structure of the macrocyclic CBP thus appears to favor higher affinity.  

Structure-activity relationships (SAR) were delineated to characterize CBP 
using single residue replacement studies (alanine and D-amino acid scans) and 

truncations. In all SAR studies the Cys7-Pen14 disulfide bond was maintained to 

provide a consistent macrocycle structure to optimize from. First, an alanine scan 

was performed by synthesis of 13 variants featuring individual alanine mutations, 

which were assayed by BLI against CDH2 (Table 2.5, Figure 2.10, Figure 2.21). 

This alanine scan revealed multiple residues to be important for binding (hot-spots) 

including Lys4, Phe6, Lys12, and Lys15, due to the complete ablation of binding to 
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CDH2 observed in BLI assays. Other residues including Met2, Thr3, Leu5, Thr10, 

Tyr11, and Asp13 had no effect on binding (cold-spots), suggesting they are not 

drivers of CBP binding to CDH2. Second, a truncation study focused at shortening 
CBP from the N-terminus, producing five additional peptides for BLI testing (Table 
2.6, Figure 2.11 and Figure 2.22). BLI assays with these peptides confirmed the 

impact of the N-terminal residues on binding affinity, especially Phe6 as well as 

Leu5, while Met2 and Thr3 contributed minimally to CDH2 binding. Third, a D-amino 

acid scan of CBP was performed by iteratively replacing L-amino acids with D-
amino acids to determine the impact of stereochemistry on the ligand 

interactions.73,74 Notable hot-spots identified from the D-amino acid scan were Phe6 

and Tyr11, further reinforcing the importance of the aromatic residues for binding 

(see Table 2.7, Figure 2.12 and Figure 2.23). In summary, these initial SAR studies 

outline the hot-spot residues that appear to drive the high affinity binding of CBP to 
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CDH2, including Lys4, Phe6, Lys12, and Lys15, while Met2, Thr3, Leu5, Thr10, and 

Asp13 are designated as cold-spots with a minimal effect on binding.  

 
Figure 2.5: Macrocyclic peptide libraries enabled discovery of a 53 nM peptide ligand to a 
portion of the ectodomain of cadherin-2. (A) Structure of CBP. (B) BLI experiment reports 
the affinity of CBP to CDH2 with KD = 53 nM binding affinity. All peptides were prepared 
with Lys(Biotin)-Ahx attached to the N-terminus in addition to the sequence shown and 
immobilized onto the BLI tip. The BLI tip was then dipped into solutions containing varying 
concentrations of CDH2 to record the concentration-dependent association and 
dissociation events. (C) Summary of experimental (alanine scan, D-amino acid scan, and 
N-terminal truncation study) SAR data. “NB” denotes non-binding. This SAR information 
was used to inform the designation of CBP “hot-spots” and “cold-spots,” which do or do not 
drive high affinity binding, respectively. 

SAR data informed the design of two focused libraries based on CBP: one to 
derivatize the high-affinity hot-spot residues, and the other to derivatize the cold-

spot residues non-essential for binding. A previous approach to design 

noncanonical libraries is to diversify the hot-spots.75,76 However, peptide 

development and optimization often also considers the cold-spot residues that do 
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not drive high affinity binding to the target. These cold-spot residues can be non-

intuitively critical to improving binding affinity, solubility, or proteolytic stability.42,43 

Thus, we chose to compare the results from both maturation strategies. The set of 

non-canonical amino acids for incorporation in both the hot- and cold-spot focused 

libraries were selected based on the consensus data provided by the docking, 

alanine scan, D-amino acid scan, and truncation studies (Figure 2.6A and 2.6B). 

These libraries were synthesized and subjected to validation by SEC as shown in 

Figure 2.16 to demonstrate the lack of apparent oligomerization after disulfide bond 

formation.  

No high-affinity ligands were discovered from the hot-spot focused library by 

AS-MS, while the cold-spot library provided ten new high-affinity noncanonical 

macrocyclic cadherin-2 peptide binders (NCBPs). From the hot-spot library, only 
two candidates were identified with high sequencing confidence, which featured 

multiple mutations from the original CBP sequence and shared replacements 
including Thr10Msn, Tyr11Dph, and Lys15Arg (Table 2.8). However, the two hot-

spot candidates (NCBP-1 and NCBP-2) were synthesized and tested by BLI, 
revealing that they were non-binders to CDH2 under these conditions (Figure 2.13, 

2.24). From the cold-spot library, ten noncanonical putative binders with high 

sequencing confidence were discovered and synthesized (Table 2.8, Figure 2.13). 

All discovered sequences from the cold-spot library (NCBP-3 to NCBP-12) were 
high-affinity binders to CDH2 in the BLI experiments, with determined KD values 

between 20 and 50 nM (Figure 2.24). The significant improvement in binding 

affinities observed by BLI upon derivatization of the cold-spot residues support this 

strategy as an efficient avenue for further optimization.  
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Figure 2.6: Single-peptide SAR information informs combinatorial library design and affinity 
maturation with noncanonical amino acids. (A and B) From the single peptide SAR studies 
summarized in Figure 2.5C, two libraries were designed to perform affinity maturation. The 
first library focused on minimally derivatizing the hot-spots by matching the original natural 
amino acids properties (e.g., hydrophobicity or positive charge). The second library focused 
around diversifying the cold-spots to examine the possibility that the cold-spots could be 
mutated to improve the overall binding of the CBP peptide, either by pre-arranging the 
conformation of the peptide or facilitating new binding interactions with CDH2. Both libraries 
were prepared using split-pool synthesis, except the entirety of the theoretical sequence 
space was sampled by the library due to its smaller focused design. Specifically, the 
number of beads used in split-pool synthesis approximately matched the theoretical 
diversity: Hot-spot library total number of beads: 2.5 x 106 with theoretical sequence space 
diversity: 2.7 x 106 and cold-spot library total number of beads: 7.0 x 105 with theoretical 
sequence space diversity: 7.2 x 105. (C) Sequence and structure of NCBP-4 discovered 
from affinity selection and its BLI binding response, which exhibited high-affinity binding (KD 
= 29 ± 5 nM). Nal = 3-(2-naphthyl)-L-alanine, Pip = 4-aminopiperidine-4-carboxylic acid, 
C5g = cyclopentylglycine, and Hyp = L-trans-4-hydroxyproline. 

The NCBP-4 noncanonical binder exhibits nanomolar binding affinity to CDH2 
(KD = 29 ± 5 nM). The results from AS-MS of the cold-spot macrocyclic library show 

most cold-spot amino acids were replaced in the identified sequences (Table 2.8). 

KMTFLFCNFTYKDZK
LysPhe/Tyr Thr

A) Library Design around CBP Hotspots:

KMTFLFCNFTYKDZK
PolarHydrophobic

B) Library Design around CBP Coldspots:

C) NCBP-4:  Lys-Nal-Pip-Phe-C5g-Phe-Cys-Hyp-Phe-Tyr-Tyr-Lys-Asp-Pen-Lys
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In all candidates, Met2 was replaced by a hydrophobic amino acid, with 3-(2-

naphthyl)-L-alanine (Nal) appearing in six of the ten. Similarly, Leu5 was replaced 

by Phe, Nal, cyclopentylglycine (C5g), or pentafluoro-L-phenylalanine (PFf). For the 

polar subset of amino acids in the cold-spot library, the replacements made to CBP 
were more mixed. Asn8 and Thr10 were replaced with a diverse set of amino acids, 

possibly indicating their lack of contribution to the binding interaction. Thr3 was 

replaced by cationic 4-aminopiperidine-4-carboxylic acid (Pip) and polar L-β-

Homoserine (bSer). And lastly, Asp13 demonstrated a preferred replacement to 

trans-4-hydroxyproline (Hyp), appearing in five of ten candidates. With these results 

in mind, NCBP-4 was chosen for detailed investigation by BLI as it featured a 
consensus of amino acid replacements including Met2Nph, Thr3Pip, Leu5C5g, and 

Asp13Hyp. NCBP-4 exhibited clear concentration-dependent binding to CDH2 and 
a resulting binding affinity of KD = 29 ± 5 nM determined by BLI (Figure 2.6). 

Moreover, NCBP-4 demonstrated a stronger response illustrated by a higher BLI 
signal (~4.3 nm), more than double the response seen with CBP (~1.6 nm, Figure 
2.25). 

A specific mutant of NCBP-4 was constructed with serine mutated at the hot-
spots to specifically examine if the cold-spot residues were effective in creating new 

binding interactions with CDH2 (sequence: Ser-Nal-Pip-Ser-C5g-Ser-Cys-Hyp-Ser-

Tyr-Ser-Ser-Hyp-Pen-Ser-NH2). Interestingly, this mutant retained moderate 

binding to CDH2 with an apparent KD of ~ 150 nM (Figure 2.25). This serine-

substituted mutant was also tested against 12ca5 to assess non-specific binding. 

The mutant showed no affinity towards 12ca5 (Figure 2.25). This result suggests 

the cold spot residues of CBP could have been optimized further in NCBP-4 in AS-
MS, as this control ligand demonstrates some binding to CDH2 without nonspecific 

binding. 
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2.3. Conclusions 

We established a protocol for the split-and-pool synthesis of high-diversity 

macrocyclic peptide libraries and demonstrated their use in the discovery of 

nanomolar ligands against two protein targets of different structure. Formation of 

the macrocycle is performed using a simple disulfide bond, which is rapidly installed 

in aqueous solution using iodine. Quantification of free thiol content via Ellman’s 

assay in both the cyclized and linearized forms confirmed the complete conversion 

of thiols to disulfides in the library, while SEC revealed that the disulfide bonds were 

formed exclusively intramolecularly without oligomerization. While the disulfide bond 

is not the most robust linkage for cyclization, there are several approaches available 

to replace it when needed to improve stability toward therapeutic 

development.11,79,80   

Affinity selection was able to identify protein-specific ligands from these 

synthetic macrocyclic libraries for both a model protein (12ca5) and a novel target, 

cadherin-2, which participates in basic biological adhesion of cells in neural and 

cardiometabolic function. Both the canonical CBP and non-canonical NCBP-4 
peptides demonstrated concentration-dependent binding to CDH2, binding 

specificity, and high affinity with KD values of 50 and 29 nM, respectively. After 

examining the SAR of CBP, several hot-spot residues were revealed to be critical 
for binding to CDH2, featuring several hydrophobic and cationic residues.  

From the SAR studies, two additional macrocyclic libraries containing a diverse 

set of noncanonical amino acids were synthesized focusing on the affinity-driving 

hot-spots and the non-essential cold-spots, respectively. The subsequent affinity 

selection experiments investigated the hypotheses of whether the hot-spots can be 

further refined or if the cold-spots can become meaningful contributors to the 

binding affinity upon maturation with focused library designs. Overall, AS-MS 

utilizing the hot-spot CDH2-focused library did not provide any binders or 

improvement to the original CBP peptide. However, AS-MS experiments utilizing the 
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cold-spot library were able to provide several candidates individually validated to be 

high-affinity binders. Of these, NCBP-4 was examined more closely for its high 
affinity (KD ~29 nM), specificity, and specific side-chain contributions demonstrated 

by the amino acids that replaced the original CBP cold-spot residues.  

Utilizing noncanonical amino acids in combinatorically prepared macrocyclic 

libraries, we demonstrated the rapid affinity maturation of CBP. This process was 
successful through the replacement of cold-spot residues with noncanonical 

monomers. Overall, due to the improvements that macrocyclization often offer over 

linear peptide scaffolds, we expect this work to be fundamental to the impactful 

deployment of macrocyclic synthetic libraries for the advancement of peptide 

therapeutic discovery and development. 

2.4. Materials  

Canonical Fmoc-protected amino acids (FmocAla-OHxH2O, Fmoc-Arg(Pbf)-

OH; Fmoc-Asn(Trt)-OH; Fmoc-Asp-(O-t-Bu)-OH; FmocCys(Trt)-OH; Fmoc-Gln(Trt)-

OH; Fmoc-Glu(O-t-Bu)-OH; Fmoc-Gly-OH; Fmoc-His(Trt)- OH; Fmoc-Ile-OH; Fmoc-

Leu-OH; Fmoc-Lys(Boc)-OH; Fmoc-Met-OH; Fmoc-Phe-OH; Fmoc- ProOH; Fmoc-

Ser(But)-OH; Fmoc-Thr(t-Bu)-OH; Fmoc-Trp(Boc)-OH; Fmoc-Tyr(O-t-Bu)- OH; 

Fmoc-Val-OH) were purchased from Sigma Millipore (Novabiochem) and used as 

received. Fmoc-Lys(biotin)-OH was purchased from Sigma Millipore (Novabiochem) 

and used as received. Fmoc-L-His(Boc)-OH was purchased from Advanced 

ChemTech and used as received. O-(7-azabenzotriazol-1-yl)- N,N,N’,N’-

tetramethyluronium hexafluorophosphate (HATU, ≥97.0%) and (7-azabenzotriazol-

1- yloxy)tripyrrolidinophospho-nium hexa-fluorophosphate (PyAOP, ≥97.0%) were 

purchased from P3 Biosystems. Fmoc-Rink amide linker (4-[(R,S)-(2,4-

dimethoxyphenyl)(Fmoc-amino)methyl]phenoxyacetic acid) was purchased from 

Chem Impex Inc (Wood Dale, IL) and used as received. 1,4-dithio-DL-threitol (DTT, 

≥99%) was purchased from Chem Impex, Inc. Iodine (crystalline, 99.5%) and L-(+)-

ascorbic acid (99%) were purchased from Thermo Fisher Scientific. 
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Noncanonical amino acids used in this work with their associated protecting 

groups. All were purchased and used as received. 

Table 2.1: Noncanonical amino acids used for library synthesis. 

Noncanonical amino acid Abbreviation Source 
Fmoc-3-(4’-pyridyl)-L-alanine 4Py Chem Impex, Inc 
Fmoc-6-aminohexanoic acid Ahx Chem Impex, Inc 
Fmoc-4-(Boc-amino)-L-phenylalanine Amf Chem Impex, Inc 
Fmoc-O-tert-butyl-L-β-homoserine bSe Chem Impex, Inc 
Fmoc-L-cyclopentylglycine C5g Chem Impex, Inc 
Fmoc-β-cyclobutyl-L-alanine Cba Chem Impex, Inc 
Fmoc-(4-tert-butyloxycarbonyl)-L-phenylalanine Cxf Chem Impex, Inc 
Fmoc-3,4-dimethoxy-L-phenylalanine Dmf Chem Impex, Inc 
Fmoc-3,3-diphenyl-L-alanine Dph Chem Impex, Inc 
Fmoc-O-tert-butyl-L-trans-4-hydroxyproline Hyp Chem Impex, Inc 
Fmoc-3-methoxy-L-phenylalanine Mmf Chem Impex, Inc 
Fmoc-L-methionine sulfone Msn Chem Impex, Inc 
Fmoc-3-(1-naphthyl)-L-alanine Nal Chem Impex, Inc 
Fmoc-pentafluoro-L-phenylalanine Pff Chem Impex, Inc 
1-Boc-piperidine-4-Fmoc-amino-4-carboxylic acid Pip Chem Impex, Inc 
Fmoc-3-(4-thiazolyl)-L-alanine Tha Chem Impex, Inc 
Fmoc-L-α-tert-butylglycine Tle Chem Impex, Inc 

Biosynthesis OmniSolv® grade N,N-dimethylformamide (DMF) was purchased 

from EMD Millipore (DX1732-1) and incubated with 1 pack of AldraAmine trapping 

agents (for 1000 – 4000 mL DMF, Sigma-Aldrich, catalog number Z511706) for 48 

hours prior to use. Diisopropylethylamine (DIEA; 99.5%, biotech grade, catalog 

number 387649) and piperidine (ACS reagent, ≥99.0%) were purchased from 

Sigma-Aldrich. Formic acid (FA, 97%) was purchased from Beantown Chemical, 

Corp. Reaction vessels were purchased from Torviq equipped with a polypropylene 

frit. To each vessel was added a disc of Porex filter paper (0.025” thick, 7-12 

micron) from Interstate Specialty Products. Trifluoroacetic acid (HPLC grade, 

≥99.0%), Diethyl ether (anhydrous, ACS reagent, ≥99.0%), acetonitrile (HPLC 

grade, ≥99.9%), Omnisolv® acetonitrile (LC-MS grade, AX0156-1), Omnisolv® 

water (LC-MS grade, WX0001-1) and were purchased from Sigma-Aldrich. 

Methanol was purchased from Millipore Sigma. Formic acid Optima LC/MS (A117) 

was purchased from Fisher Chemical. Water was deionized using a Milli-Q 

Reference water purification system (Millipore). Nylon 0.22 μm syringe filters were 

TISCH brand SPEC17984. 
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H-Rink Amide-ChemMatrix® (0.49 mmol/g) resin was purchased from PCAS 

Biomatrix (St-Jean-sur-Richelieu, Quebec, Canada) and 20 μm TentaGel® M NH₂ 

Monosized Amino Microsphere resin was purchased from Rapp Polymere Inc. 

(Tübingen, Germany). HyClone™ Fetal Bovine Serum (SH30071.03HI, heat 

inactivated) was purchased from GE Healthcare Life Sciences (Logan, UT) 

Dynabeads MyOne Streptavidin T1 magnetic microparticles were purchased from 

Invitrogen (Carlsbad, CA). Phosphate buffered saline (10x, Molecular biology 

grade) was purchased from Corning. Sodium chloride (ACS grade) was purchased 

from Avantor. Guanidine hydrochloride (Cat BP178) and sodium phosphate 

monobasic monohydrate were purchased from Fisher Scientific.  

Mouse anti-hemagglutinin antibody (clone 12ca5) was purchased from 

Columbia Biosciences Corporation (Cat: 00-1722, Frederick, Maryland) biotin-

(PEG)4-NHS ester and biotin-(PEG)4-propionic acid were purchased from ChemPep 

Inc. (Wellington, FL). Biotinylation of 12ca5 was performed as previously 

described.33 

Cadherin-2 plasmid DNA was supplied by Novo Nordisk A/S (498-724CDH2-

AviTag-HPC4). The Expi293 Expression System (A14635), Expi293 Expression 

Medium (A1435101), Opti-MEM™ I Reduced Serum Medium (31985070), 

ExpiFectamine™ 293 Transfection Kit (A14524), and Halt Protease Inhibitor 

Cocktail (100X, 78429) were purchased from Thermo Fisher Scientific. Sartoclear 

Dynamics® Lab V Clarification and Sterile Filtration Kits were purchased from 

Sartorius, Inc. HiTrap Q HP columns were purchased from Cytiva, Inc. Anti-Protein 

C Affinity Matrix (11815024001, HPC4, monoclonal Roche) was purchased from 

Millipore-Sigma. HPC4-Tag Antibody (68083) was purchased from Cell Signaling 

Technology. AviTag Biotinylation Kit (BirA500) was purchased from Avidity LLC. 

SuperDex 75 Increase 10/300 GL column (10 x 300 mm, 9 μm particle size, 

separation MW range 3000 and 70,000 Da) and Superdex 30 Increase 10/300 GL 

column (10 x 300 mm, 9 μm particle size, separation MW range 100 to 7000 Da) 

was purchased from Cytiva Life Sciences. 
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2.5. Methods 

2.5.1. Split-and-pool synthesis of cyclized libraries 

Synthesis of peptide libraries was performed using 20 μm Tentagel M NH2 resin 

(0.31 mmol/g) for 108-member libraries. The resin was suspended in DMF and 

dividedly evenly between 18 syringes (all canonical amino acids except for cysteine 

and isoleucine) for the non-cysteine variable region, while the resin was split into 3 

syringes for the variable cysteine analog positions (cysteine, homocysteine, 

penicillamine). Couplings were performed using the Fmoc-protected amino acid 

dissolved in DMF (10 eq, 0.40M) with PyAOP (0.9 eq relative to amino acid, 0.38M) 

activated with DIEA (1.1 eq relative to amino acid for histidine, 3 eq relative to 

amino acid for all others). Couplings were incubated for 1 hour. The resin was then 

recombined and washed with DMF three times. Fmoc deprotection was performed 

using 20% piperidine in DMF (1x flow wash, 2x 5 min batch treatments). The resin 

was washed again with DMF three times before being subjected to another split-

couple-pool cycle until completion of all randomized positions.  

2.5.2. Peptide Cleavage and global deprotection 

Cleavage from solid phase and global deprotection was performed using a 

solution of 95% trifluoroacetic acid, 2.5% water, and 2.5% triisopropylsilane (~20 mL 

cleavage cocktail / g of resin). The solution was added until the resin was fully 

swelled and free flowing, then the resin was agitated on a nutating mixer for 3 

hours. The peptides were triturated with 10:1 cold diethyl ether to cleavage solution. 

The precipitated solid was centrifuged into a pellet. The precipitate was washed 

with cold ethyl ether in the same manner an additional two times. The resulting solid 

pellet was dried gently using N2, suspended in 50% acetonitrile in water (0.1% 

trifluoroacetic acid), and lyophilized.  

2.5.3. Solid-phase extraction 
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Peptides were adjusted to 5% acetonitrile in aqueous media (0.1% TFA) and 

purified using Supelclean™ LC-18 SPE Tube, bed wt. 1 g (Millipore Sigma Cat: 

505471). The SPE tube was first conditioned with 3 CV of acetonitrile (0.1% TFA) 

and then equilibrated with 5 CV of 5% acetonitrile in water (0.1% TFA). Then, the 

suspended crude was loaded (Approximately 50 mg peptide loaded onto 1 g bed 

mass) and washed with 10 CV of 5% acetonitrile in water (0.1% TFA). Peptides 

were eluted with 70% acetonitrile (0.1% TFA, 1 CV) and lyophilized. 

2.5.4. Stop and Go Extraction (STAGE) Tip preparation of library samples for 

nLC-MS/MS analysis 

From the CDS Empore™ SDB-XC extraction disk, two cores of material were 

pressed using an 18 gauge blunt tip needle (each core binds 2-4 μg) and pressed 

into the tip of a 200 μL pipette tip. The STAGE tip was then fitted into a 1.5 mL 

microcentrifuge tube with a hole drilled in the center of the cap. The STAGE tip 

assembly was then wetted using 60 μL of 80% AcN in water (0.1% TFA) and 

centrifuged at 500g for 2 minutes. Then STAGE tip assembly was washed using 60 

μL of 1.5% AcN in water (0.1% TFA) and centrifuged at 500g for 2 minutes. The 

sample was then loaded onto the STAGE tip and centrifuged at 500g in 3-minute 

intervals, checking the liquid level each time to ensure the tip does not run dry. The 

STAGE tip was then washed again using 60 μL of 1.5% AcN in water (0.1% TFA) 

and centrifuged at 500g for 2 minutes. The STAGE tip was then moved to a fresh 

microcentrifuge tube, and the peptides were eluted using 75 μL of 56% AcN in 

water (0.1% TFA) and centrifuged at 500g for 10 minutes. The eluted peptides were 

then dried using a vacuum centrifuge.  

2.5.5. Rapid oxidation of peptide thiols for intramolecular cyclization using 

iodine 

After cleavage and lyophilization, each peptide library (e.g., 10 mg, 4.2 μmol, 

average molecular weight ~ 2400 g/mol) was resuspended at 2 mg/mL in 5% AcN in 

Water (0.1% TFA) and treated with 10 μL portions of freshly prepared 60 mM I2 in 
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MeOH until the solution remained yellow. For the example 10 mg scale, 

approximately 70 μL I2 stock solution total was used, resulting in ~1 eq of I2 with 

respect to the library. The iodine-treated library was incubated for 10 minutes in the 

dark at rt, upon which 15 uL of freshly prepared 1 M ascorbic acid was added (~3.6 

eq of ascorbic acid with respect to the library example). This solution was 

immediately loaded onto a pre-equilibrated SPE column, SPE-purified to remove 

any remaining iodine and ascorbic acid, and lyophilized. The lyophilized powder 

was then resuspended at approximately 0.1 mM and its thiol concentration as 

quantified by Ellman’s assay. 

2.5.6. Reductive linearization of cyclized library 

Peptide libraries were resuspended at 0.62 mg/mL to mimic the maximum 

concentration possibly isolated at the end of AS-MS, due to the maximum capacity 

of the STAGE tip (8 μg for a double plug, using 13 μL). As described in the Main 

Text, reduction after resuspension at pH 3 from 0.1% formic acid in ultrapure water 

was successful using 1,4-DL-dithiothreitol (DTT, Chem-Impex Cat: 00127). The 

reduction was also tested in 200 mM sodium phosphate, 5 mM EDTA, pH 8 with 

DTT, and immobilized Tris (2-carboxyethyl) phosphine (TCEP, Thermo Fisher 

Scientific, 77712). DTT was freshly prepared in a stock solution of 500 mg/mL and 

added to samples to provide 50 mg/mL final, 1000 eq and incubated at 60 ºC for 15 

minutes. Samples were then SPE-purified, lyophilized, and Ellman’s quantified upon 

resuspension. Immobilized TCEP beads (8 mM stock suspension) were washed 

three times before use with the assay buffer using centrifugation at 1000 rcf for 1 

minute. Treatment of the library peptides with immobilized TCEP used 20 eq for 25 

minutes at room temperature rocking on a nutating mixer. The supernatant was 

isolated from centrifugation, lyophilized, and Ellman’s’ quantified. 

2.5.7. Sequencing validation of reduced and oxidized libraries 

A small portion of library resin was measured and made into a 1 mg/mL stock 

solution in DMF. Several aliquots of ~1000 beads (for 20 μm resin, this will be about 
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~10 μL of 1 mg/mL stock) were taken, centrifuged, and aspirated of DMF. Each 

aliquot was cleaved from the solid phase support using 60 μL of 95% trifluoroacetic 

acid, 2.5% water and 2.5% triisopropylsilane at 60 oC for 15 minutes. Half of the 

liquid was then evaporated under a gentle stream of N2, followed by dilution to a 

total volume of 240 μL using water (0.1% TFA). A third of the solution was aliquoted 

to represent the library before cyclization. The remaining solution was cyclized 

according to the Section 2.5.5. The cyclized peptide library and aliquoted linear 

library were both prepared for nLC/MS-MS analysis according to Section 2.5.11. 

The dried library samples were then reconstituted in water (0.1% TFA) at a 

concentration of 100 pg/μL/peptide (for example, prepare 8 μg of an aliquot of 1000 

peptides in 80 μL). Half of the cyclized peptide sample was then linearized using 

DTT as described in Section 2.5.6. All three types of samples, peptide post-

cleavage, cyclized, and cyclized then reduced, were subjected to nLC-MS/MS 

analysis as described in Section 2.5.11.  

2.5.8. Ellman’s thiol quantification assay 

The thiol concentration of suspended peptides was completed using Ellman’s 

reagent (Millipore-Sigma, 5,5′-Dithiobis(2-nitrobenzoic acid), D8130, ≥98%, 

BioReagent) using the following conditions. Ellman’s stock solution was prepared at 

10.0 mM and assay buffer was 1x PBS pH 8 1 mM EDTA. Nonsterile Greiner 96-

well polystyrene plates (Millipore-Sigma, M2936) were used. Using the assay buffer 

to have a final 200 μL well volume, 3.6 μL of Ellman’s stock solution was combined 

with the peptide solution to give a final peptide intended concentration of 0.1 mM, 

which was determined to be within the linear regime in which signal could be 

observed from a standard curve constructed using Cysteine (Millipore-Sigma, 

C7352, ≥98%, BioReagent). After combining, all materials were incubated for 7 

minutes, and then read at 416 nm using a TECAN Spark Plate Reader. The 

concentration of the library was inferred by measuring its absorbance at 280 nm 

(NanoQuant Plate) and was used to normalize the Ellman’s thiol concentration to 

account for slight variations in the intended resuspended concentrations. 
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Preparation of samples to measure thiol signal from cleavage and SPE of library 

(reduced library): Approximately 50 mg of peptide library (peptide + resin) was 
globally deprotected and cleaved from resin with 95% (v/v) TFA, 2.5% (v/v) water, 

and 2.5% (v/v) triisopropylsilane, for 15 minutes at 60 ºC (~ 20 mL / g of resin). 

Precipitated peptide was triturated (3 x 100 mL / g resin) with cold diethyl ether, 

resuspended in 5% acetonitrile in water (0.1% TFA) and solid-phase extracted. After 

lyophilization, this sample was resuspended in assay buffer at 0.1 mM and 

measured for its thiol concentration by Ellman’s.  

2.5.9. Size exclusion chromatography (SEC) of libraries 

Size exclusion chromatography (SEC) was performed using an Agilent 1260 

Infinity II LC System with a Superdex 30 Increase 10/300 GL column (10 x 300 mm, 

9 μm particle size from Cytiva Life Sciences, separation MW range 100 to 7000 

Da). 25 μg of library was injected in 200 μL of total solution. Cyclized peptide 

samples were aliquoted from the main stock prepared according to Sections 2.5.4 

and 2.5.11. Linearized samples were prepared by adding 1000 eq from a 50 mg/mL 

DTT stock solution and heating the sample to 60 oC for 10 minutes before dilution to 

200 μL using 1x PBS. Column conditions: isocratic 1x PBS for 1.5 column volumes 

at 0.8 mL/min. Buffer blanks were prepared for both cyclized and linearized 

samples and were subtracted from the library samples. A custom mass standard 

was prepared by adding 10 μg of a mixture of peptides corresponding to the 

following molecular weights: 1807, 3750, 5312, 8305 for average monomer mass, 

average dimer mass, average trimer mass, and the exclusion limit of the SEC 

column.  

2.5.10. Affinity selection using cyclized libraries 

Affinity selections were performed using a KingFisherTM Duo Prime Purification 

System in 96 Deepwell Plates (Thermo Fisher Scientific, cat. #95040450) with the 

following setup: 
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Table 2.2: Plate Setup for KingFisherTM Duo Prime  

Plate 1 

A 10 pM/member peptide library diluted into 1x PBS, 10% FBS 1 mL 

B Wash buffer (1x PBS, 10% FBS, 0.01% Tween20) 1 mL 

C Wash buffer (1x PBS, 10% FBS, 0.01% Tween20) 1 mL 

D Wash buffer (1x PBS, 10% FBS, 0.01% Tween20) 1 mL 

E Protein (1.5 eq) in Wash buffer (1x PBS, 10% FBS, 0.01% Tween20) 500 μL 

F Wash buffer (1x PBS, 10% FBS, 0.01% Tween20) 1 mL 

G Wash buffer (1x PBS, 10% FBS, 0.01% Tween20) 1 mL 

H 1 mg of magnetic beads (100 uL) diluted in Wash buffer (1x PBS, 10% FBS, 0.01% 
Tween20) 

1 mL 

 

Plate 2 

A 1x PBS at 4 oC 1 mL 

B 1x PBS at 4 oC 1 mL 

C 1x PBS at 4 oC 1 mL 

D 1x PBS at 4 oC 1 mL 

E 1x PBS at 4 oC 1 mL 

F 1x PBS at 4 oC 1 mL 

G Reserved for 12-tip Deepwell magnetic comb (Thermo Fisher, cat. #97003500) 
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The program performed the following protocol: 

1. Collect comb from Plate 2 Row G 
2. Collect beads from Plate 1 Row H and wash for 30 sec at medium speed 
3. Wash beads for 30 sec each at medium speed in Plate 1 Rows G and F 
4. Incubate beads with biotinylated protein for 30 mins with slow mixing in Plate 
1 Row E 

5. Wash immobilized protein for 30 sec each at medium speed in Plate 1 Rows 
D, C, and B 

6. Incubate immobilized protein for 1 hr at 10 oC with slow mixing in Plate 1 Row 
A 

7. Wash immobilized protein for 2 mins each at medium speed in Plate 2 Rows A 
through E 

8. Elute protein by mixing for 1 min at fast speed in Elution Strips 1 and 2 

After affinity selection, samples were purified by STAGE Tip preparation and 

dried using a vacuum centrifuge. Dried samples were reconstituted into 10.8 μL of 

nLC-MS/MS mobile phase A and reduced using DTT as described in Section 2.5.6. 

4 μL were injected per sample for nLC-MS/MS analysis as described in Section 

2.5.11.  

2.5.11. Nano-liquid chromatography-tandem mass spectrometry (nLC-

MS/MS) analysis 

Peptide sequencing was performed on an EASY-nLC 1200 (Thermo Fisher 

Scientific) nano-liquid chromatography system with an Orbitrap Fusion Lumos 

Tribrid Mass Spectrometer (Thermo Fisher Scientific). Samples were run on a 

PepMap RSLC C18 column (2 μm particle size, 15 cm x 50 μm ID; Thermo Fisher 

Scientific, cat. #ES801) with a nanoViper Trap Column (C18, 3 μm particle size, 100 

A pore size, 20 mm x 75 μm ID; Thermo Fisher Scientific, cat. #164946) for 

desalting. Mobile phase A = water (0.1% FA) and mobile phase B = 80% AcN in 

water (0.1% FA). Method 1 was used for validation of library samples, and Method 2 

was used for analysis of affinity selections.  

The ion source voltage was set to 2200 volts in positive mode. Primary mass 

spectra were detected using the orbitrap at 120000 resolution with a scan range of 
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300-1400 (m/z), RF lens of 30%, a normalized AGC target of 250% with automatic 

injection time, and 1 microscan. Candidate ions were chosen for tandem mass 

spectrometry based on the following criteria: precursor mass range of 300-1200 

(m/z), monoisotopic peak determination set to peptides, minimum intensity 

threshold of 4e4, charge states ranging from +2-+5, dynamic exclusion after 1 

observation for 45 seconds with a ±10 ppm range. Fragmentation was done in the 

orbitrap using HCD followed by EThcD activation types with the following settings: 

1.3 m/z isolation window, 30000 resolution, defined first mass of 120 m/z, 600% 

normalized AGC target with 100 ms maximum injection time, 2 microscans in 

centroid mode. HCD mode used  28% HCD collision energy and EThcD mode used 

25% SA collision energy. Full cycle time for MS1 and MS2 scans was 3 seconds.  

1. Gradient: linear gradient 1-40% B from 0-35 min; linear gradient 40-90% B 

from 35-38 min; isocratic 90% B from 38-45 min. Pre-column and analytical 

column were equilibrated before each run with 8 μL of mobile phase A before 

sample injection. Samples were loaded using 6 μL of mobile phase A. Mass 

data was recorded from 3-37 min. 

2. Gradient: linear gradient 1-45% B from 0-120 min; linear gradient 45-90% B 

from 120-123 min; isocratic 90% B from 123-126 min; linear gradient 90-20% 

B from 126-129 min; isocratic 20% B from 129-132 min; linear gradient 20-90% 

B from 132-135 min; isocratic 90% B from 135-138 min; linear gradient 90-20% 

B from 138-141 min; isocratic 20% B from 141-144 min; linear gradient 20-90% 

B from 144-147 min; isocratic 90% B from 147-152 min. Pre-column and 

analytical column were equilibrated before each run with 8 μL of mobile phase 

A before sample injection. Samples were loaded using 12 μL of mobile phase 

A. Mass data was recorded from 3-120 min. 

2.5.12. Automated fast-flow peptide synthesis 

Before synthesis, all resins were allowed to swell in amine-free DMF for 15 

minutes. Fmoc-Lys(Biotin) was manually coupled by preparing a solution in 1:1 
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DMF and NMP (5 eq, 0.20M) with PyAOP (0.9 eq relative to amino acid, 0.19M) 

activated with DIEA (3 eq relative to amino acid) and incubated for 3 hours. The 

resin was then washed with DMF 3 times before being moved to the automated 

synthesizer. Utilizing an automated synthesizer, amine-free DMF washed the resin 

before coupling, after coupling, and after deprotection (40 strokes, ∼25 mL). 

Coupling was performed with HATU (single-coupling, 8 strokes, ∼5 mL) except S 

and A with HATU (double-coupling, 21 strokes, ∼10 mL) and C, H, N, Q, R, V, T with 

PyAOP (double-coupling, 21 strokes, ∼10 mL). Deprotection was completed with 

20% piperidine in amine-free DMF with 2% formic acid (13 pump strokes, ∼5 mL). 

Amino acids were iteratively coupled and deprotected until the stepwise synthesis 

was complete. After automated synthesis, the resin was washed again with DMF (3 

x 5 mL) and DCM (3 x 5 mL) then dried under reduced pressure. For a detailed 

explanation of the instrument setup and related chemistries, see Hartrampf et al.81 

or Mijalis et al.82 

2.5.13. Purification of crude single peptides 

Single peptides prepared by automated fast-flow peptide synthesis were 

cleaved from the resin according to Section 2.5.2. Lyophilized crude peptides were 

reconstituted in 10% AcN in water (0.1% TFA) at a concentration of 10 mg/mL. 

Peptides were purified using a Biotage Selekt purification system on a Biotage Sfär 

C18 Duo (12g, CV = 17 mL, 100 Å, 30 μm, cat. #FSUD-0401-0012) with mobile 

phase A = water (0.1% TFA) and mobile phase B = AcN (0.1% TFA). The flow rate 

was controlled according to the system pressure, with a maximum flowrate of 12 

mL/min. The following gradient was used: isocratic 10% B for 2 CVs, linear gradient 

10-50% B over 12 CVs, linear gradient 50-90% B over 1 CV, isocratic 90% B for 2.5 

CVs, isocratic 10% B for 2.5 CVs. Fractions were collected based on absorbance at 

214 nm, with a minimum absorbance threshold for collection at 25 mAU and 

fractionation set based on peak detection. Fractions were subjected to LC-MS 

analysis as described in Section 2.5.14 before combining the pure fractions and 

lyophilizing.  
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2.5.14.  Liquid chromatography-mass spectrometry (LC-MS) analysis 

LC-MS chromatograms and associated high resolution mass spectra were 

acquired using an Agilent 1290 Infinity HPLC coupled to an Agilent 6550 LC/Q-TOF 

mass spectrometer using a Phenomenex Jupiter C4 column (150 x 1.0 mm ID, 5 

µm, 300Å silica) heated at 40 °C. Solvent compositions were 0.1% formic acid in 

water (mobile phase A) and 0.1% formic acid in acetonitrile (mobile phase B). 

Method 1 was used for fraction analysis after semi-preparative HPLC 

purification, and method 2 was used for characterization of pure material. 

1. Column: Jupiter C4. Gradient: isocratic 1% B from 0-2 min; linear gradient 1-

91% B from 2-8 min; isocratic 95% B from 8-10 min; post time 1% B for 1 min. 

Flow rate: 0.5 mL/min. MS data was collected from 2-8 min; MS was run in 

positive ionization mode, extended dynamic range (2 GHz), and standard 

mass range (m/z in the range of 300 to 3000 a.m.u.). 

2. Column: Jupiter C4. Gradient: isocratic 1% B from 0-2 min; linear gradient 1-

91% B from 2-47 min; isocratic 91% B from 47-49 min; post time 1% B for 2 

min. Flow rate: 0.5 mL/min. MS data was collected from 2-47 min; MS was run 

in positive ionization mode, extended dynamic range (2 GHz), and standard 

mass range (m/z in the range of 300 to 3000 a.m.u.). 

2.5.15.  Analytical high-performance liquid chromatography (HPLC) 

Analytical HPLC analysis was performed using an Agilent 1200 series system 

with UV detection at 214 nm on a Zorbax 300SB-C3 column (150 x 2.1 mm ID, 5 

µm, 300Å silica) on an Agilent 1200 HPLC at room temperature. Solvent 

compositions were 0.1% trifluoroacetic acid in water (solvent A) and 0.08% 

trifluoroacetic acid in acetonitrile (solvent B). Gradient: linear gradient 5-65% B from 

0-60 min; linear gradient 65-100% B from 60-61 min; isocratic 100% B from 61-66 

min; linear gradient 100-5% B from 66-67 min; isocratic 5% B from 67-75 min. Flow 

rate: 0.400 mL/min.  
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2.5.16.  Expression of 498-724CDH2 

498-724CDH2-Avi-HPC4 was expressed using the Expi293 Expression System 

(Thermo Fisher Scientific). Plasmid DNA was supplied from Novo Nordisk A/S. Cells 

were cultured in suspension at 37 oC, 8% CO2 in 1L flasks agitated at 90 rpm. 

Expression was carried out according to manufacturer protocol. Protein was 

harvested on Day 6 post-transfection via centrifugation at 5000 rcf for 30 minutes at 

4 oC. The supernatant was taken and adjusted to pH 8 using 2M Tris pH 9, then 

diluted by a factor of 2 with water. Halt Protease Inhibitor Cocktail was added to a 

final concentration of 1x and the resulting supernatant was filtered through a 0.22 

μm filter (Sartoclear Dynamics® Lab V Clarification and Sterile Filtration Kits, 

Sartorius) and immediately subjected to purification. 

2.5.17.  Purification of 498-724CDH2 

The supernatant from Section 2.5.16 was immediately loaded onto a HiTrap Q 

HP anion exchange chromatography column (5 mL) via a peristaltic pump at a rate 

of 2 mL/min. The supernatant was recycled through the column and allowed two full 

volume passes over the column. Protein was then eluted from the column using an 

ÄKTA Pure chromatography system with mobile phase A = 20 mM Tris, pH 9 and 

mobile phase B = 20 mM Tris, 1M NaCl, pH 9 using a linear gradient of 0-50% B 

over 25 CVs. Flowrate was controlled according to column backpressure with a 

maximum flowrate of 5 mL/min. The eluent was fractionated into 1.7 mL fractions 

that were then analyzed via western blot based on absorbance at 214 nm. Fractions 

containing 498-724CDH2 were concentrated using a 10K molecular weight cut-off 

centrifugal concentrator (apparent MW ~ 40000 Da).   

The concentrated isolated protein was then subjected to anti-protein C affinity 

purification using anti-protein C affinity matrix from mouse IgG1 κ (clone HPC4) 

according to the manufacturer protocol with column elution using EDTA. The protein 

was loaded and eluted for 5 cycles to maximize yield. Fractions were analyzed 

using western blot and concentrated using a 10K molecular weight cut-off 
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centrifugal concentrator. The protein was split in half, with half being biotinylated 

and the other half proceeding to SEC purification. The concentration of protein was 

measure by absorbance at 280 nm (Ɛ = 25500 M-1cm-1). 

A portion of protein was biotinylated using the BirA500 kit from Avidity LLC 

according to the manufacturer’s protocol. The enzymatic reaction was incubated for 

a total of 24 hours. The remaining portion immediately subjected to SEC purification 

for use in ligand validation experiments.   

The protein was then subjected to SEC purification using an ÄKTA Pure 

chromatography system with a SuperDex 75 Increase 10/300 GL column (10 x 300 

mm, 9 μm particle size from Cytiva Life Sciences). Approximately 1 mg of protein in 

a volume of 300 μL of buffer was loaded onto the column with a mobile phase of 1x 

PBS. An isocratic gradient was run for 1.5 CVs at a flowrate of 0.8 mL/min and 

fractionated at 0.5 mL per fraction. Fractions were analyzed by western blot and 

concentrated using a 10K molecular weight cut-off centrifugal concentrator. Final 

protein concentration was measured using absorbance at 280 nm.  

2.5.18.  Anti-498-724CDH2 Western Blot 

Protein samples were subjected to SDS-PAGE by dilution into 4x Laemmli 

sample buffer followed by heating to 75 oC for 5 minutes. The resulting samples 

were allowed to cool before loading onto a Mini-PROTEAN TGX Stain-free gel 

using a Mini-PROTEAN Tetra Cell with a running buffer consisting of 25 mM Tris, 

192 mM glycine, 0.1% SDS at pH 8.3. Gels were run at 105V for 75 minutes then 

washed with ddH2O three times. The gel was then imaged using the Stain-Free 

setting of a ChemiDoc imaging system (Bio-Rad) to assess total protein content. 

Following imaging, the gel was then transferred to a 0.22 μm nitrocellulose 

membrane using a Trans-blot Turbo Transfer System (Bio-Rad). Following transfer, 

the blot was rinsed three times with ddH2O and blocked with 5% nonfat dry milk in 

1x PBS for 1 hour at room temperature. The liquid was then decanted and the blot 

was stained with 1:1000 HPC4 tag antibody (Cell Signaling Technology, cat. 
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#68083) for 1 hour at room temperature. The membrane was washed with 1x PBS 

with 0.1% Tween-20 5 times for 5 minutes each. The membrane was then stained 

with Goat anti-Rabbit IgG (H+L) secondary antibody, HRP (Thermo Fisher 

Scientific, cat. #32460) for 1 hour at room temperature. The membrane was washed 

with 1x PBS with 0.1% Tween-20 5 times for 5 minutes each then imaged using 

SuperSignal West Pico PLUS Chemiluminescent Substrate (Thermo Fisher 

Scientific, cat. #34580) on a ChemiDoc imager (Bio-Rad).      

2.5.19.  Biolayer interferometry (BLI) 

Peptide binding validation was performed using a Gator Plus Next Generation 

Biolayer Interferometry instrument. All assays were run at 30 °C and agitated at 

1000 rpm. Streptavidin-coated probes (Gator Bio cat. #160029) were dipped into 

0.5 μg/mL solutions of biotinylated peptide solution in kinetic buffer (1x PBS with 

0.02% BSA and 0.002% Tween-20) for immobilization for 5 minutes. All sequences 

have Lys(Biotin)-Ahx attached to the N-terminus in addition to the sequence shown. 

The probes were then moved to a dilution series of protein (500, 250, 125, and 62.5 

nM) for 10 minutes to obtain the association curve. The tips were then moved into a 

new column of wells with kinetic buffer and incubated for 10 minutes to obtain the 

dissociation curve. Peptide-only and protein-only (concentration at 500 nM) were 

used for background subtraction. Apparent dissociation constants (KD) were 

calculated using the global Rmax unlinked algorithm with a 1:1 binding model as 

implemented in the Gator Bio data analysis software.  
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2.6. Appendix I: Synthesis and characterization data 

 

Figure 2.7 LCMS and analytical HPLC data for the synthesis of identified 12ca5 binding 
peptides. All sequences have Gly-Ser-Lys(Biotin) attached to the C-terminus in addition to 
the structure shown. 12ca5-1: 95% pure, calc. mass 2148.9941, obs. mass 2149.02283 
(+13.4 ppm); 12ca5-2: 85% pure, calc. mass 2332.9916, obs. mass 2333.01773 (+11.2 
ppm); 12ca5-3: 75% pure, calc. mass 2306.9283, obs. mass 2306.9469 (+8.1 ppm); 12ca5-
4: 91% pure, calc. mass 2362.0810, obs. mass 2362.0951 (+6.0 ppm); 12ca5-5: 84% pure, 
calc. mass 2346.9245, obs. mass 2346.9731 (+20.7 ppm); 12ca5-6: 62% pure; The minor 
peak is a result of pyroglutamate formation, a common side reaction for N-terminal 
glutamine residues, calc. mass 2247.9864, obs. mass 2248.0119 (+11.3 ppm); 12ca5-7: 
88% pure, calc. mass 2333.9756, obs. mass 2333.9737 (-0.8 ppm); 12ca5-A: 70% pure, 
calc. mass 2293.9555, obs. mass 2293.9738 (+8.0 ppm). 
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Figure 2.8: Characterization of expressed 498-724CDH2. A) Size exclusion chromatogram of 
absorbance at 214 nm of 498-724CDH2 compared against BioRad Gel Filtration Standard 
(Cat. #1511901) shows the expected mass for the protein. Sample peaks eluting after 20 
minutes were found to be buffer constituents. B) ⍺-HPC4 tag Western blot against 498-
724CDH2. Lane 1: biotinylated 498-724CDH2; lane 2: reduced biotinylated 498-724CDH2; lane 3: 
nonbiotinylated 498-724CDH2; lane 4: reduced nonbiotinylated 498-724CDH2. 

 
Figure 2.9: Analytical HPLC and LCMS characterization of CBP and CBP sequence 
scramble. Calculated mass of both sequences: 2380.1605. CBP: 85% purity, observed 
mass 2380.1886 (+11.8 ppm); CBP Scramble: 84% purity, observed mass 2380.1635 (+1.3 
ppm). 
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Figure 2.10: LCMS and analytical HPLC data for the synthesis of CBP alanine scan 
peptides. All sequences have Lys(Biotin)-Ahx attached to the N-terminus in addition to the 
sequence shown. Ala scan 1: 97% pure, calc. mass 2323.1027, obs. mass 2323.1023 (-0.2 
ppm); ala scan 2: 97% pure, calc. mass 2320.1571, obs. mass 2320.1589 (+0.8 ppm); ala 
scan 3: 96% pure, calc. mass 2350.1499, obs mass 2350.1420 (+0.9 ppm); ala scan 4: 
95% pure, calc. mass 2304.1292, obs. mass 2304.1330 (+1.7 ppm); ala scan 5: 99% pure, 
calc. mass 2338.1136, obs. mass 1338.1212 (+3.3 ppm); ala scan 6: 77% pure, calc. mass 
2304.1292, obs. mass 2304.1332 (+1.7 ppm); ala scan 7: 99% pure, calc. mass 2337.1546, 
obs. mass 2337.1676 (+5.5 ppm); ala scan 8: 94% pure, calc. mass 2304.1292, obs. mass 
2304.1314 (+1.0 ppm); ala scan 9: 96% pure, calc. mass 2350.1499, obs. mass 2350.1539 
(+1.7 ppm); ala scan 10: 94% pure, calc. mass 2288.1343, obs. mass 2288.1380 (+1.6 
ppm); ala scan 11: 94% pure, calc. mass 2323.1027, obs. mass 2323.1000 (-1.1 ppm); ala 
scan 12: 95% pure, calc. mass 2336.1707, obs. mass 2336.1781 (+3.2 ppm); ala scan 13: 
75% pure, calc. mass 2323.1037, obs. mass 2323.1015 (-0.5 ppm). 
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Figure 2.11. LCMS and analytical HPLC data for the synthesis of CBP truncation study 
peptides. All sequences have Lys(Biotin)-Ahx attached to the N-terminus in addition to the 
sequence shown. Truncation 1: 88% pure, calc. mass 2252.0655, obs. mass 2252.0693 
(+1.7 ppm); truncation 2: 86% pure, calc. mass 2121.0251, obs. mass 2121.0278 (+1.3 
ppm); truncation 3: 87% pure, calc. mass 2019.9774, obs. mass 2019.9819 (+2.2 ppm); 
truncation 4: 90% pure, calc. mass 1872.9090, obs. mass 1872.9202 (+6.0 ppm); 
truncation 5: 97% pure, calc. mass 1759.8249, obs. mass 1759.8272 (+1.3 ppm). 
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Figure 2.12: LCMS and analytical HPLC data for the synthesis of CBP d-amino acid scan 
peptides. All sequences have Lys(Biotin)-Ahx attached to the N-terminus in addition to the 
sequence shown. Calc. mass for all peptides: 2380.1605. D scan 1: 89% pure, obs. mass 
2380.1626 (+0.9 ppm); D scan 2: 85% pure, obs. mass 2380.1648 (+1.8 ppm); D scan 3: 
81% pure, obs. mass 2380.1637 (+1.3 ppm); D scan 4: 90% pure, obs. mass 2380.1612 
(+0.3 ppm); D scan 5: 92% pure, obs. mass 2380.1782 (+7.4 ppm); D scan 6: 95% pure, 
obs. mass 2380.1630 (+1.1 ppm); D scan 7: 85% pure, obs. mass 2380.1611 (+0.3 ppm); D 
scan 8: 84% pure, obs. mass 2380.1653 (+2.0 ppm); D scan 9: 80% pure, obs. mass 
2380.1649 (+1.9 ppm); D scan 10: 98% pure, obs. mass 2380.1641 (+1.5 ppm); D scan 11: 
86% pure, obs. mass 2380.1627 (+0.9 ppm); D scan 12: 76% pure, obs. mass 2380.1679 
(+3.1 ppm); D scan 13: 91% pure, obs. mass 2380.1647 (+1.8 ppm). 
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Figure 2.13: LCMS and analytical HPLC data for the synthesis of NCBP peptides. All 
sequences have Lys(Biotin)-Ahx attached to the N-terminus. Residues mutated from the 
original CBP sequence are highlighted in red. NCBP-1: 86% pure, calc. mass 2757.1864, 
obs. mass 2757.1654 (-7.6 ppm); NCBP-2: 75% pure, calc. mass 2797.1670, obs. mass 
2797.0775 (+32.0 ppm); NCBP-3: 95% pure, calc. mass 2468.2616, obs. mass 2468.2890 
(+11.1 ppm); NCBP-4: 80% pure, calc. mass 2542.2773, obs. mass 2542.4379 (+63 ppm); 
NCBP-5: 88% pure, calc. mass 2546.2472 obs. mass 2546.2179 (+11 ppm); NCBP-6: 85% 
pure, calc. mass 2580.2025, obs. mass 2580.2280 (+10 ppm); NCBP-7: 98% pure, calc. 
mass 2580.2023, obs. mass 2580.2324 (+12 ppm); NCBP-8: 89% pure, calc. mass 
2605.2340, obs. mass 2605.2625 (+11 ppm); NCBP-9: 88% pure, calc. mass 2605.2340, 
obs. mass 2605.2704 (+14 ppm); NCBP-10: 96% pure, calc. mass 2617.2309, obs. mass 
2617.2567 (+10 ppm); NCBP-11: 79% pure, calc. mass 2617.2309, obs. mass 2617.2739 
(+16 ppm); NCBP-12: 94% pure, calc. mass 2679.1986, obs. mass 2679.5163 (+120 ppm). 
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Figure 2.14: Analytical HPLC and LCMS characterization of NCBP-4 and NCBP-4 serine 
substituted sequence. Red residues denote the mutated cold-spots from CBP, and blue 
residues denote the hot-spots from CBP mutated to serine. NCBP-4: 80% purity, calc. 
mass 2542.2769, obs. mass 2543.3046 (+10.9 ppm); NCBP-4 serine substituted sequence: 
82% purity, calc. mass 2162.9475, obs. mass 2162.9847 (+17.2 ppm). 

 

 



76 
 

 

 

2.7. Appendix II: Library validation data 

 
Figure 2.15: Ellman’s assay studies on reduction reaction conditions identify reduction 
using dithiothreitol (DTT) in acidic conditions as the most optimal for the reduction of 
disulfide bonds within the macrocyclic peptide libraries. 
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Table 2.3: Components of the custom peptide standard used for SEC validations. The 
average molecular weight of a member of either macrocyclic peptide library is 1802. 

 

 
Figure 2.16: Size exclusion chromatograms of absorbance at 214 nm of a) CBP hotspot 
and b) CBP coldspot macrocyclic libraries were compared to molecular weight standards 
corresponding to the average mass of monomeric, dimeric, and trimeric species. Library 
samples were ran using the cyclized form (later used in affinity selection experiments) and 
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the DTT linearized form, demonstrating the formation of intramolecular disulfide bonds. 
Peaks marked with an asterisk (*) were residual elements from the sample buffer. 

 
Figure 2.17: Heatmaps comparing average local confidence (ALC %) of sequence 
assignment by PEAKS Studio 8.5 to instrument error (ppm) showed the loss and recovery 
of sequencing capabilities after oxidation and reduction respectively for the (a) X6CX6CK 
and (b) CX12CK macrocyclic peptide library designs. High density within the black box 
region were regarded as high fidelity de novo sequence assignments. A high density within 
this region is expected when the library is in a reduced form either directly post cleavage 
from the resin or after reduction using DTT. Conversely, a low density within the boxed 
region is expected when the library is in an oxidated state. 
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2.8. Appendix III: Affinity selection and biolayer interferometry data 
Table 2.4: Sequences isolated by AS-MS that contain the characteristic binding motif to 
12ca5, D**DY(A/S). Assigned local confidences (ALC) for each sequence assignment are 
given, as well as the ligand affinity to 12ca5 as measure by BLI. Retention time (RT, in 
minutes), mass-to-charge ratio (m/z), charge state (z), observed mass (Mass) and mass 
error in sequence assignment (ppm) are given. 

 

 

Peptide Library ALC (%) KD, nM RT m/z z Mass ppm
12ca5-1 X6CX6CK Gly Leu Ala Leu Asp Met Pen Asp Tyr Ala Ala Arg Pro Cys Lys 99 4.5 33.28 557.2661 3 1668.7786 -1.2
12ca5-2 X6CX6CK Leu Gln Asn Gln Asp Leu Cys Asp Tyr Ala Asp Tyr Phe Cys Lys 97 <1 59.07 919.3979 2 1836.781 0.2
12ca5-3 X6CX6CK Tyr Phe Thr Asp Asp Pro hCys Asp Tyr Ser Asp Val Gln Cys Lys 99 1.5 43.89 906.3663 2 1810.7178 0.2
12ca5-4 X6CX6CK Phe Phe Val His Asp Lys hCys Asp Tyr Ala Val His Gln Pen Lys 99 2.1 29.58 467.4745 4 1865.8706 -0.9
12ca5-5 X6CX6CK Trp Asn Asn Tyr Asp Trp Cys Asp Tyr Ala Ala His Ser Cys Lys 91 3.1 35.18 625.583 3 1873.73 -1.5
12ca5-6 X6CX6CK Gln Ala Leu Phe Asp Val hCys Asp Tyr Ser His Pro Asn Cys Lys 89 <1 41.67 584.9335 3 1751.7759 1.5
12ca5-7 X6CX6CK Glu Leu Asn Gln Asp Leu Cys Asp Tyr Ala Asp Tyr Phe Cys Lys 98 <1 58.7 919.8975 2 1837.7651 8.4
12ca5-A CX12CK Pen Asp Ala Gln Asp Tyr Ala Ser Trp Gln Gln Asp Pro Pen Lys 70 1.0 35.85 600.2608 3 1797.7451 8.6

Sequence
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Figure 2.18: Full BLI data for all identified sequences containing the 12ca5 binding motif, 
D**DY(A/S). The motif is highlighted in red within each structure. All sequences have Gly-
Ser-Lys(Biotin) attached to the C-terminus in addition to the structure shown. 
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Figure 2.19: CBP sequence scramble and off-target controls show sequence and protein 
specificity of the ligand interaction towards CDH2 by BLI. BLI data for CBP tested against 
CDH2 is shown for reference. 
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Figure 2.20: The macrocyclic structure of CBP plays a role in the strength of the observed 
interactions, a) where a comparison of the cyclized CBP peptide and the DTT-linearized 
CBP sequence shows a large decrease in observed signal, as well as a drop in the 
observed dissociation constant. b) A magnified version of the BLI trace for the linearized 
CBP sequence is given. 
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Table 2.5: Alanine scan of CBP shows critical residues for ligand interactions with 498-
724CDH2. Each peptide is cyclized through disulfide bond formation of the side chains of 
cysteine (C) and penicillamine (Z). 
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Figure 2.21: BLI data of CBP alanine scan peptides against 498-724CDH2. Traces with 
minimal response were deemed non-binders. 
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Table 2.6: Truncation studies of CBP demonstrate the impact of the N-terminal residues in 
ligand interactions with 498-724CDH2. Each peptide is cyclized through disulfide bond 
formation of the side chains of cysteine (C) and penicillamine (Z). 

 

 
Figure 2.22: BLI data of CBP truncated peptides against 498-724CDH2. Traces with minimal 
response were deemed non-binders. 
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Table 2.7: D-amino acid scan of CBP identifies critical stereocenters in ligand interactions 
with 498-724CDH2. Each peptide is cyclized through disulfide bond formation of the side 
chains of cysteine (C) and penicillamine (Z). 
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Figure 2.23: BLI data of CBP d-amino acid scan peptides against 498-724CDH2. Traces with 
minimal response were deemed non-binders. 
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Table 2.8: List of top candidates identified from AS-MS experiments utilizing focused 
libraries against ligand 498-724CDH2. Assigned local confidences (ALC) are given for each 
sequence, as well as retention time (RT), mass-to-charge ratio observed (m/z), charge 
state (z), and observed parent mass (Mass) with mass error of the sequence assignment 
(ppm). 

 

Peptide Library ALC (%) RT m/z z Mass ppm
NCBP-1 Hotspot 4Py Met Hyp Dmf Leu Nal Cys Asn Dph Msn Dph His Asp Pen Arg 97 87.35 764.9832 3 2291.9443 -7.2
NCBP-2 Hotspot Amf Met His Nal Leu Pff Cys Asn Dmf Msn Dph 4Py Asp Pen Arg 89 80.69 778.965 3 2333.8499 9.9
NCBP-3 Coldspot Lys Nal Pip Phe C5g Phe Cys bSe Phe bSe Tyr Lys Hyp Pen Lys 96 52.23 501.7623 4 2003.0195 0.3
NCBP-4 Coldspot Lys Nal Pip Phe C5g Phe Cys Hyp Phe Tyr Tyr Lys Hyp Pen Lys 97 56.34 693.3494 3 2077.0352 -4.3
NCBP-5 Coldspot Lys Tle bSe Phe Nal Phe Cys Hyp Phe Tha Tyr Lys Tyr Pen Lys 96 70.19 694.6673 3 2080.9758 2
NCBP-6 Coldspot Lys Nal bSe Phe Phe Phe Cys Tyr Phe Tha Tyr Lys Hyp Pen Lys 92 73.5 705.9942 3 2114.9604 0.2
NCBP-7 Coldspot Lys Nal bSe Phe Nal Phe Cys Tha Phe Hyp Tyr Lys Hyp Pen Lys 93 75.16 705.9943 3 2114.9602 0.4
NCBP-8 Coldspot Lys Phe Pip Phe Nal Phe Cys Tha Phe Tyr Tyr Lys Hyp Pen Lys 83 62.65 536.0076 4 2139.9919 4.3
NCBP-9 Coldspot Lys Nal Pip Phe Phe Phe Cys Tha Phe Tyr Tyr Lys Hyp Pen Lys 85 62.95 536.0094 4 2139.9919 7.7
NCBP-10 Coldspot Lys Pff Pip Phe Phe Phe Cys Tyr Phe Hyp Tyr Lys Pip Pen Lys 85 50.47 539.0023 4 2151.9888 -4.1
NCBP-11 Coldspot Lys Phe Tyr Phe Pff Phe Cys Pip Phe Hyp Tyr Lys Pip Pen Lys 87 48.75 539.0036 4 2151.9888 -1.6
NCBP-12 Coldspot Lys Nal bSe Phe Pff Phe Cys Hyp Phe Tyr Tyr Lys Tyr Pen Lys 96 74.33 738.9948 3 2213.9565 2.7

Sequence
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Figure 2.24: BLI data of NCBP peptides against 498-724CDH2. Traces with minimal response 
were deemed non-binders. 



90 
 

 

 

 
Figure 2.25: BLI data of the affinity-matured NCBP-4 compared to the original CBP 
sequence, as well as the NCBP-4 sequence with all identified hotspots mutated to serines 
(NCBP-4 Ser Sub). a) Substituting identified hotspots with serine in CBP still allows for 
modest affinity towards CDH2. b) Mutated residues from the NCBP-4 sequence do not 
contribute to nonspecific binding of off-target proteins, as demonstrated by BLI assays 
against 12ca5.    
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3.1. Introduction 
Solid phase peptide synthesis (SPPS) has been established as the mainstay 

method for the production of peptides and short proteins for a range of applications 

from basic research to the manufacture of clinically-approved peptide therapies.1,2,3 

This method utilizes a swellable crosslinked support functionalized with a chemical 

linker that allows for an iterative cycle of coupling amino acids and removal of 

protecting groups.4 Since its introduction by Nobel Laureate Bruce Merrifield in 

1963,5 SPPS has seen rapid integration into standard research protocols and 

expansion of its capabilities to applications such as the synthesis of over 200 

residue-long protein domains6,7 or the split-and-pool synthesis of large combinatorial 

libraries.8 A key feature for SPPS is the choice of resin solid support.9 

 

There are a variety of commercially available and in-house manufactured 

options for the solid support, ranging from the original polystyrene crosslinked (PS) 

resin to purely polyethyleneglycol- based (PEG) resins, with co-polymers of the two 

styles also being available. Each of these supports differ in the ability to swell and 

solvate the growing peptide chain.10,11 Notably, there are several formulations 

comprised of crosslinked polystyrene supports with grafted polyethyleneglycol 

chains, termed PEG-PS, where the proportions of monomers and methods of 

grafting can generate a range of properties for SPPS.12,13 These different backbone 

structures are shown in Figure 3.1. 

Figure 3.1: The chemical structure of the resin solid support determines 
important physical properties for efficient peptide synthesis. Three common 
types of resin are the Merrifield (polystyrene) resins, ChemMatrix® PEG 
based resins, and PEG-PS resins. 
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The solid support and the elongating peptide chain are an important factor for 

SPPS.14 The synthesis of long peptide sequences can be limited by steric 

hindrance of the peptide chain through the formation of secondary structures on 

resin or through aggregation of the peptide chain by unfavorable interactions with 

the polymer support, causing early terminations of growing peptide chains. These 

physical constraints impede reaction progress and can introduce additional mass 

transfer limitations into the coupling steps, reducing purity and yield.1,11,15 Several 

approaches have improved SPPS in the attempts to overcome on-resin 

aggregation, ranging from chemical optimizations (i.e., backbone protection)16,17 to 

physical parameters optimization (i.e., heat or microwave).18,19 The chemical 

structure of the resin has also been investigated. For PS resins, aggregation has 

been hypothesized to be due to unwanted interactions with the polystyrene support 

from the side chains of the peptide, especially for longer peptide sequences as 

reported in literature.14,20,21 PEG resins, on the other hand, can provide stabilizing 

polar interactions with the growing chain and can potentially stabilize its structure, 

allowing for the synthesis of longer sequences as reported in literature. Therefore, 

most advanced, commercially available resins incorporate a significant amount of 

PEG into the solid support. 

Another critical property of a solid support for SPPS is the degree of swelling in 

the selected solvent, which reflects the rate of mass transport through the 

matrix.22,23 The functionalized reaction sites of the resin are primarily spread 

throughout the bead, meaning that rapid transport of reagents into the matrix is 

critical to attain satisfactory yield and reaction rate.24,25 Reagent transport rate has 

been historically challenging to engineer and has been primarily achieved through 

carefully tuning the cross-linking of the polymer support.10 However, this mobility 

can also lead to unwanted side reactions and site-site interactions, where nearby 

peptide chains can interact with each other and potentially block the availability of 

the N terminus to chain extension through formation of secondary structure. A 

balance is necessary to optimize the swelling properties as seen by reaction rate 
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studies performed on a range of cross-linking compositions by Rana et al.11 These 

same principles apply to the resin loading, where higher loading will decrease the 

distance between peptide chains; therefore, resin loading is also critical to 

performance. Across a range of solvents, PEG resins provide excellent swelling 

properties and have been the solid support of choice for the synthesis of difficult, 

side-chain to backbone aggregation-prone sequences,26 but they may not be 

suitable for all peptide syntheses. Additionally, PEG resins can be difficult to source 

commercially, especially in larger quantities.27 PS resins show significantly lower 

amounts of swelling, which may introduce coupling limitations, such as a reduction 

in reaction rate.26 Thus, hybrid PEG-PS resins appear as strong candidates for the 

general synthesis of difficult or long (>50 residues in length) peptide sequences. 

Whereas many studies describe the optimization of resins for SPPS, there have 

been few side-by- side comparisons of the available resins that have been released 

to the market in recent years. In this work, we chose three commercially available 

PEG-PS resins recently introduced and compared their performance to previously 

published data using ChemMatrix® resin, a common choice of resin for the 

synthesis of complex peptides.12 The three PEG-PS resins used for these studies 

are: OctaGel™ resin, Tentagel XV resin®, and ProTide® resin. These resins were 

chosen as representatives of the PEG-PS candidate design, their excellent swelling 

properties in common solvents including dichloromethane (DCM) and N,N-

dimethylformamide (DMF), and for their reported efficiencies compared to 

ChemMatrix resins.7,28 Each of these resins were used with an automated fast-flow 

peptide synthesizer (AFPS) for production of the following sequences: JR10, a 10-

mer peptide known to aggregate during SPPS;29,30 GLP-1, a 30-mer sequence 

previously characterized under automated flow conditions;7 a fragment of the 

mouse double minute 2 (MDM2) N-terminal domain, an 84-mer sequence; and the 

tetranucleotide repeat domain of the E3 ubiquitin-protein ligase CHIP, a 133-mer 

sequence.28 
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3.2. Results and Discussion 

The first peptide we synthesized was JR10, a ten amino acid peptide 

(WFTTLISTIM) that has been previously used to characterize synthesis 

conditions,14,30,35 where the ProTide resin performed the best as evaluated by crude 

yield and purity. This sequence is known to aggregate during the coupling of Thr4, 

where early peptide chain terminations during synthesis were seen using an in-line 

UV detector. The observed absorbance at 310 nm quantitatively detects the 

fluorenylmethyloxycarbonyl (Fmoc) deprotection and its resulting byproduct 

dibenzofulvene.14 Looking at the characteristics of the deprotection peaks, clear 

peak width broadening is observed during synthesis on all three candidate resins 

(see Figure 3.2).15,36 The broadening of the deprotection peak width is indicative of 

side-chain to backbone aggregation, as the interactions of the peptide chain with 

other peptide chains or the solid support interferes with mass transport through the 

matrix.30 This occurs as the peptide chain grows and interacts with the polymer 

support by impeding fluid flow through the resin, causing increased rates of axial 

mixing that will subsequently increase the residence time distribution as measured 

by the broadening of the UV absorbance peak of the Fmoc protecting group.37 This 

could be approximated by increases of diameter around a reactive site as the 

peptide chains grow and aggregate, which would correlate to a decrease in the 

Péclet number via the Gunn correlation of axial and radial dispersion over fixed 

beds.38,39 The increased mass of peptide chain on the surface of the bead interferes 

with flow of reagents across the resin bed. Raw data of the UV signal for amino acid 

coupling and Fmoc group deprotection is given in Figure 3.6. Decreased or 

hindered mass transport within the resin in turn leads to the reactive sites of the 

growing peptide chain to be less accessible to the reagents, increasing the potential 

for single residue deletions and/or early termination of peptide chain elongation as 

seen by the drop in peak area. 

We cleaved JR10 from each of the resins and characterized the crude material 

by HPLC and LC-MS. For each sample, the full 10-mer sequence was obtained, but 
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several truncated products were observed by HPLC and LC-MS and characterized 

in Figures 3.11-3.13. Octagel resin yielded a mixture of truncation products started 

after Thr4, with three major peptides corresponding to the W, WF, and WFT 

deletions identified through LC-MS. ProTide and Tentagel XV resins also yielded 

significant truncation products, corresponding to W and WF deletions at the N 

terminus. Based on this data, the purity of the JR10 peptide synthesized across the 

resins was comparable, with a slight advantage to the ProTide and Tentagel XV 

resins. 

Crude yields across the resins show ProTide to be the best performing 

candidate for synthesis of JR10. Octagel, in addition to having the lowest purity of 

crude product, also gave the lowest yield off resin, with TentaGel XV being slightly 

lower than ProTide (see Table 3.1). This trend also correlates with the loading of 

each resin, where Octagel has the highest loading with 0.441 mmol/g, Tentagel XV 

the next highest with 0.27 mmol/g, and ProTide with the lowest at 0.20 mmol/g; all 

resins have bead sizes of 75-150 microns (200-100 mesh). Since side-chain to 

backbone aggregation is the key factor for the efficiency of JR10 synthesis, a lower 

loading on each bead of resin could allow for an increased spacing between peptide 

chains, potentially lowering the opportunity for aggregation.40 

To investigate this hypothesis, we prepared two batches of Tentagel XV resin 

with 50% and 10% of the normal loading as well as three batches of Octagel resin 

at 63%, 31%, and 6% loading to roughly match the loading of the Tentagel XV resin. 

Reduction in resin loading was done by mixing acetic acid to cap the resin and 

Fmoc-methionine-OH (the first residue of JR10) in the respective molar amounts 

and coupling manually to the resin. After manual coupling, the resins were moved to 

the automated synthesizer to finish synthesis. HPLC analysis (see Figure 3.14) of 

the crude products from the Tentagel XV resin showed an improvement of crude 

purity, increasing to 61% from the original 32% from the full loading amount. 

Meanwhile, the Octagel resin was also able to achieve a similar purity of 60% for a 

similar loading amount to Tentagel XV (see Figure 3.15). Lower loading resins are 
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often available commercially by request to the respective vendor, as is the case for 

all three resins. 

 
Figure 3.2: Inline UV detection, analytical HPLC, and LC-MS of crude JR10 indicated no 
major differences between the candidate resins in automated flow synthesis. UV 
absorbance was gathered at 310 nm to quantity the Fmoc deprotection byproduct of 
dibenzofulvene in flow. Analytical HPLC and LC-MS spectra of the crude JR10 peptide 
(Calculated exact mass: 1210.6420) from each resin enabled performance evaluation. 
Known significant aggregation at Thr4 resulted in several truncation side products; 
asymmetries in side product peaks were found to be other side products and JR10 
coeluting. (a) Sequence of JR10; (b) Data of JR10 synthesized using Octagel Resin. Resin 
loading: 0.441 mmol/g. Crude purity: 24%. Observed mass: 1210.654 (9.8 ppm error); (c) 
Data of JR10 synthesized using ProTide resin. Resin loading: 0.20 mmol/g. Crude purity: 
32%. Observed mass: 1210.665 (19 ppm error); (d) Data of JR10 synthesized using 
Tentagel XV resin. Resin loading: 0.27 mmol/g. Crude purity: 32%. Observed mass: 
1210.634 (-7.0 ppm error) 
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The next sequence we synthesized was GLP-1, a 30-mer peptide hormone, 

where ProTide and Tentagel XV performed similarly well by crude purity while 

product from Octagel resin showed poor purity. This peptide was chosen as a 

routine length sequence characterized in a wealth of previous synthesis data.7 Like 

JR10, GLP-1 also has a known aggregation point at Ala18.14 This side-chain to 

backbone aggregation is clearly seen during synthesis using Octagel, where a 

sudden broadening of the deprotection peaks is observed at the coupling 

corresponding to Ala18 (see Figure 3.3). However, this side-chain to backbone 

aggregation is not as apparent for ProTide and Tentagel XV resins, where only a 

slight peak broadening is observed. Full UV data for the synthesis of GLP-1 is given 

in Figure 3.7 and characterization of side products is given in Figures 3.16-3.18. 
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Figure 3.3: Inline UV detection, analytical HPLC and LC-MS data for GLP-1 synthesis 
show excellent performance by ProTide and Tentagel XV resins, but suboptimal 
performance by Octagel resin. (a) Sequence of GLP-1; (b) Data of GLP-1 (Calculated 
deconvoluted mass: 3295.66) synthesized using Octagel resin. Resin loading: 0.441 
mmol/g. Crude purity: 24%. Observed deconvoluted mass: 3295.72 (17 ppm error); (c) 
Data of GLP-1 synthesized using ProTide resin. Resin loading: 0.20 mmol/g. Crude purity: 
54%. Observed deconvoluted mass: 3295.73 (20 ppm error); (d) Data of GLP-1 
synthesized using Tentagel XV resin. Resin loading: 0.27 mmol/g. Crude purity: 49% 
Observed deconvoluted mass: 3295.74 (24 ppm error). 

Cleavage of GLP-1 resulted in a clear difference between Octagel and the other 

two candidate resins. Crude HPLC of the ProTide and Tentagel XV products 

showed a pure product, but Octagel yielded a mixture of products. ProTide and 

Tentagel XV resins outperformed Octagel resin for producing higher purity crude 
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polypeptide (54% and 49% versus 24% respectively). The GLP-1 crude isolated 

mass across all three resins were comparable (see Table 3.1). and Tentagel XV 

resins provided similarly pure material at comparable yields and purities, thus we 

observed either resin is suitable for the synthesis of intermediate length sequences 

(~30 residues).  

Table 3.1: Resin measurements and crude yields for the synthesis of JR10 and GLP-1 on 
Octagel, ProTide, and Tentagel XV resins. Theoretical mass is calculated based on the 
reported loading of the resin by the respective vendor. 

 
Peptide 

 
Resin Starting 

Resin (mg) 
Crude Resin 
(mg) 

Isolated 
Mass 
(mg) 

Theoretical 
Mass (mg) 

Cleaved 
Yield 

Crude 
Purity 

JR10 Octagel 43.6 49.4 8.7 23.3 37% 24% 
JR10 ProTide 98.4 114.4 18.6 23.8 77% 32% 
JR10 Tentagel XV 97.9 114.0 18.6 32.0 58% 32% 
GLP-1 Octagel 49.0 92.2 37.8 71.3 43% 24% 
GLP-1 ProTide 99.5 143.6 39.3 63.9 61% 54% 
GLP-1 Tentagel XV 96.9 123.7 46.2 88.6 52% 49% 

 

We designed experiments to test the ability of these resins to facilitate the 

chemical synthesis of single-domain proteins, illustrated by an 84 amino acid 

fragment of the N-terminal domain of MDM2 and the 134 amino acid tetranucleotide 

repeat domain of CHIP. During synthesis using the ProTide resin of CHIP, however, 

the instrument experienced an increase in back pressure over the course of 

synthesis, ultimately causing an early termination of the synthesis. This issue could 

have potentially been caused by an accumulation of fine particulates from the 

ProTide resin downstream of the reactor, causing a clog. Thus, the synthesis of 

MDM2 was not attempted with the ProTide resin out of caution for the condition of 

the instrument. 

Synthesis of the 84 amino acid fragment of the N-terminal domain of MDM2 

was evaluated. This protein fragment had been previously produced using the same 

AFPS technology, which allows for additional comparison of these three resins to 

the ChemMatrix resin.7 A biotinylated glutamine residue was manually coupled to 

the C-terminus of each resin before automated flow synthesis. While ProTide resin 
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was deemed not suitable for the AFPS system, Octagel and Tentagel XV resins 

were amenable to producing MDM2. Synthesis data of MDM2 using Octagel and 

Tentagel XV resin are given in Figure 3.4, with raw UV data given in Figure 3.8. 

Notably, the UV data of Tentagel XV resin shows a strong performance by the 

consistency of the deprotection peak shape throughout most of the synthesis. The 

deprotection peaks potentially increase in width near the end of the synthesis due to 

residual side chain deprotection of nucleophilic amino acids, such as histidine, 

leading to side chain elongation.41 However, an initial deprotection peak was not 

observed, meaning that the initial manual coupling failed for the Tentagel XV resin. 

This outcome could be due to the lower degree of swelling in these resins 

compared to ChemMatrix resin, which was the basis for the deprotection protocol. 

For consistency, MDM2 without the biontinylated glutamine was synthesized on 

Octagel resin and is reported in Figure 3.4.  
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Figure 3.4: Synthesis of MDM2 evaluated by the inline UV detection, analytical HPLC, and 
LC-MS data for Octagel and Tentagel XV resins show superior performance by Tentagel XV 
resin. Synthesis on ProTide resin was not completed as it caused significant backpressure 
to develop. (a) Sequence of MDM2; (b) Data of crude MDM2 synthesized on Octagel resin. 
Resin loading: 0.441 mmol/g. Purity post-HPLC purification: 80% Calculated deconvoluted 
mass: 9899.82; Observed deconvoluted mass: 19899.7 (-12 ppm error). Oxidized product 
also present. (c) Data of crude MDM2 synthesized on Tentagel XV resin. Resin loading: 
0.27 mmol/g. Purity post-HPLC purification: 81%. Calculated observed mass: 9899.82; 
Observed deconvoluted mass: 9899.5 (-31 ppm error). Oxidized product also present. 

To further investigate this phenomenon, we compared the efficiency of this 

deprotection protocol using a short test peptide with a variety of initial monomers 

manually coupled to the resin. Tentagel XV resin was deprotected either using two 

five-minute reactions as was previously done for Chem- Matrix resin, or by washing 

with deprotection solution followed by three five-minute reactions. Analytical HPLC 

and LC-MS analysis following cleavage did not reveal any significant difference in 

the coupling for alanine, leucine, arginine, proline, or 2-aminoisobutyric acid (see 

Figure 3.19), suggesting the deletion was likely a C-terminal monomer-specific 

effect concerning the Tentagel XV resin, potentially due to the PEG based spacer 
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present on the side chain interacting with the resin backbone’s PEG network. Each 

of the resins come with their amine functional group Fmoc protected, and additional 

time may need to be taken at the beginning of synthesis to remove the Fmoc 

protecting group. This first Fmoc deprotection was not an issue under automated 

conditions due to the high temperature of the reactor (85-90 ºC), which expedited 

the deprotection. Octagel, while there were no issues with the initial deprotection at 

room temperature, demonstrated a poorer performance during synthesis. The 

deprotection peaks consistently broadened starting early in the synthesis, signaling 

continual peptide chain termination. As with JR10, this could potentially be 

ameliorated by reducing the total loading of the resin, as the loading of Octagel 

resin is significantly higher than what is generally used for single domain protein 

synthesis. In order to test this, we synthesized MDM2 again on Octagel resin with a 

reduced loading to 63% of the original value, which roughly matches the loading of 

Tentagel XV resin. This resulted in a more stable deprotection peak width (see 

Figure 3.20), a notable sign for increased synthesis quality. 

Both samples of MDM2 were cleaved off the resin and subjected to preparative 

HPLC purification to compare yields of the pure polypeptide. Cleavage yields for 

Tentagel XV resin were high (see Table 3.2), outperforming both Octagel in these 

experiments and ChemMatrix resin reported in previous work.28 Purification yields 

were also high, although formation of oxidized product was observed over the 

characterization process. While Tentagel XV resin performed better, Octagel resin 

still provided a pure product in acceptable and additionally succeeded in the initial 

manual coupling of biontinylated glutamine. However, Tentagel XV resin appeared 

to be the optimal choice for this synthesis, provided extra care can be taken for the 
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initially coupled amino acids at room temperature, especially during initial 

deprotection and subsequent washing steps.  

 
Figure 3.5: Synthesis of CHIP evaluated by the inline UV detection, analytical HPLC, and 
LC-MS data for Octagel and Tentagel XV resin show improved performance by Tentagel XV 
resin. Synthesis on ProTide resin resulted in instrument failure and raw data is shown in 
Figure 3.10. (a) Sequence of CHIP; (b) Data of crude CHIP (Calculated deconvoluted 
mass: 15671.9) synthesized on Octagel resin. Resin loading: 0.441 mmol/g. Purity post-
HPLC purification: No pure fractions found. Observed deconvoluted mass: Not found. (c) 
Data of crude CHIP synthesized on Tentagel XV resin. Resin loading: 0.27 mmol/g. Purity 
post-HPLC purification: 71%. Observed deconvoluted mass: 15672.0 (-3.8 ppm error). 

The longest sequence used to compare the three resins was the 134 amino 

acid tetranucleotide repeat domain of CHIP. This domain was chosen as a 

representative long sequence, which also has synthetic data recently made 

available using ChemMatrix resin.28 Figure 3.5 shows the synthesis of CHIP using 

Octagel and Tentagel XV resins. Raw UV data for the synthesis of CHIP is shown in 
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Figure 3.9. Details on the reactor failure when using ProTide resin in Figure 3.10. 

The UV data for the remaining two resins recapitulate the observations for MDM2, 

where Octagel resin saw a steady deprotection peak broadening coupled with a 

decrease in total peak area. Tentagel XV saw a modest amount of deprotection 

peak broadening, ending the synthesis with deprotection peaks with a reduced area 

of about 25% and decreased height by 25%. After synthesis, the proteins were 

biotinylated using Biotin-PEG4 propionic acid to test modifications of the N-terminus 

on each resin.     

Cleavage of the protein domain from both resins showed Tentagel XV to be the 

preferred choice for the synthesis of long sequences. Tentagel XV resin resulted in 

a higher crude yield after cleavage by a margin similar to yields for MDM2 (65% 

versus 37% respectively, see Table 3.2). Crude LC-MS analysis also showed no 

significant amount of product for Octagel resin, while the full-length biotinylated 

sequence was observed in the crude product of Tentagel XV. This result supports 

the inline UV absorbance measurements of the Fmoc deprotection, which 

suggested a lower synthesis quality with the Octagel resin relative to the Tentagel 

XV resin. To confirm these results, both proteins were purified by HPLC, and 

fractions were analyzed by LC-MS. No fractions were found to contain the mass 

corresponding to the full-length CHIP domain after Octagel synthesis. However, 

Tentagel XV resin afforded reasonable isolated purification yield (8%), which was 

moderately higher than ChemMatrix resin for the synthesis and purification of CHIP 

(2%).28 
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Table 3.2: Resin measurements, crude yields and purification yields for the synthesis of 
MDM2 and CHIP on Octagel, ProTide and Tentagel XV resins. Theoretical mass is 
calculated based on the reported loading of the resin by the respective vendor. 
Extrapolated yield refers to the total yield if all crude material was purified with yields similar 
to what was recovered from the isolated pure mass. 

 
Protein 

 
Resin 

Starting 
Resin 
(mg) 

Crude 
Resin 
(mg) 

Isolated 
Mass 
(mg) 

Theor. 
Mass 
(mg) 

 
Cleaved 
Yield 

Purified 
Mass 
(mg) 

Isolated 
Pure 
Mass 
(mg) 

 
Purified 
Yield 

Extrap. 
Yield 
(mg) 

 
Overall 
Yield 

MDM2 Octagel 49.9 200.5 71.3 230.9 31% 35.8 1.1 3% 2.2 1% 

MDM2 ProTide -a - - - - - - - - - 

MDM2 Tentagel 
XV 96.9 352.2 178.4 273.4 65%b 41.1 8.2 20% 35.6 13% 

CHIP Octagel 54.0 265.2 89.5 366.1 24% 38.0 0.0 0% 0.0 0% 

CHIP ProTide 105.7 0c - - - - - - - - 

CHIP Tentagel 
XV 99.0 553.0 192.4 418.6 46% 46.8 8.5 18% 34.9 8% 

a   Not synthesized due to observed increase in back pressure during CHIP synthesis 
b   Synthesis ended in reactor failure due to an increase of back pressure by leakage of fine particles into UV module 

3.3. Conclusion 
Here we report the performance of three different commercially available PEG-

grafted polystyrene resins used for the synthesis of four peptide sequences of 

varying length and synthetic difficulty using an automated flow synthesizer. The 

synthesis quality of each synthesis was evaluated by inline UV absorbance to 

quantify Fmoc deprotection, yields after cleavage from the solid phase, and crude 

purities. While these studies were performed on a fast-flow automated peptide 

synthesizer, the same chemical principles should apply to batch synthesizers or 

manual synthesis assuming similar reaction conditions are used across each resin 

type. ProTide resin showed excellent performance for short to intermediate length 

peptides JR10 (10 residues) and GLP-1 (30 residues), but due to technical 

limitations was unable to be evaluated for synthesis of small proteins MDM2 and 

CHIP. The technical issues could be resolved through use of finer filter paper or a 

smaller pore size reactor frit, but it would require additional instrument optimization 

to ensure comparable fluid delivery and safe operating pressures. Octagel resin 

underperformed across all four sequences, showing significant side-chain to 

backbone aggregation during synthesis of JR10 and GLP-1, decreased yields for 
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MDM2, and an unsuccessful synthesis of CHIP. However, reduction of the loading 

amount significantly improved the performance of Octagel resin, making it another 

viable possibility. Tentagel XV resin showed acceptable to superior performance 

across all sequences and appears to be comparable to reported syntheses on 

ChemMatrix resin. Summaries of the yields for JR10 and GLP-1 are given in Table 

3.1, while yields for MDM2 and CHIP are given in Table 3.2. Representative 

syntheses were shown here, but synthesis results are highly reproducible as 

supported by our previous work.7,28,33 Notably, the high reproducibility of 

automated flow syntheses enabled collection of high quality UV-Vis data for training 

a deep learning model that can predict synthesis outcomes.14 While not an 

exhaustive study for the available solid supports for peptide synthesis, this work 

seeks to provide a survey of current commercial PEG-PS options, recommends 

products tailored for specific sequence length ranges, and offers a template for 

evaluation of additional candidates. 

3.4. Materials 

Fmoc-Rink Amide OctaGel resin (0.441 mmol/g) was purchased from Aapptec, 

Tentagel XV RAM resin (0.27 mmol/g) was purchased from Rapp Polymere, and 

ProTide Rink amide resin (0.20 mmol/g) was purchased from CEM Corporation. 

Reaction vessels were purchased from Torviq equipped with a polypropylene frit. To 

each vessel was added a disc of Porex filter paper (0.025” thick, 7-12 micron) from 

Interstate Specialty Products. N,N-Dimethylformamide (DMF, biosynthesis grade) 

was purchased from Millipore Sigma (product DX1732-1). N,N-

Diisopropylethylamine (DIEA; ReagentPlus ≥99%), piperidine (ACS reagent, 

≥99.0%), trifluoroacetic acid (HPLC grade, ≥99.0%), triisopropylsilane (≥98.0%), 

acetonitrile (AcN, HPLC grade), formic acid (FA, ≥95.0%), 1,2- ethanedithiol (EDT, 

GC grade, ≥98.0%), and AldraAmine trapping agents (for 1000 - 4000 mL DMF, 

catalog number Z511706) were purchased from Sigma-Aldrich. Fmoc-protected 

amino acids (FmocAla-OHxH2O, Fmoc-Arg(Pbf )-OH; Fmoc-Asn(Trt)-OH; Fmoc-

Asp-(O-t-Bu)-OH; FmocCys(Trt)-OH; Fmoc-Gln(Trt)-OH; Fmoc-Glu(O-t-Bu)-OH; 



113 
 

 

 

Fmoc-Gly-OH; Fmoc-His(Trt)- OH; Fmoc-Ile-OH; Fmoc-Leu-OH; Fmoc-Lys(Boc)-

OH; Fmoc-Met-OH; Fmoc-Phe-OH; Fmoc- ProOH; Fmoc-Ser(But)-OH; Fmoc-Thr(t-

Bu)-OH; Fmoc-Trp(Boc)-OH; Fmoc-Tyr(O-t-Bu)- OH; Fmoc-Val-OH); Fmoc-

Glu(biotinyl-PEG)-OH (product 8.52102, CAS Num. 817169-73-6) were purchased 

from the Novabiochem product line of Millipore Sigma; Fmoc-His(Boc)-OH and 

Biotin-PEG4-propionic acid were purchased from ChemPep, Inc. O-(7-

azabenzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium hexafluorophosphate (HATU, 

≥97.0%) and (7-azabenzotriazol-1-yloxy)tripyrrolidinophosphonium 

hexafluorophosphate (PyAOP, ≥97.0%) were purchased from P3 Biosystems. 

Glacial acetic acid (ACS grade) was purchased from VWR Chemicals. Water was 

deionized using a Milli-Q water purification system (Millipore). Nylon 0.22 µm 

syringe filters were TISCH brand SPEC17984. 

3.5. Methods  

3.5.1. Manual amino acid coupling 

Sequences were synthesized using the following amounts of resin weighed into 

5 mL Torviq syringes: 50 mg of Octagel resin, 100 mg of Tentagel XV resin, and 100 

mg of ProTide resin. Before synthesis, all resins were allowed to swell in amine-free 

DMF for 15 minutes. For the manual coupling of biotinylated amino acids, resins 

were deprotected using 20% (v/v) piperidine in DMF (2 x 5 mL with 5 min incubation 

each time) and washed with DMF (3 x 5 mL) before addition of biotinylated acid (5 

equivalents) dissolved in a solution of PyAOP (0.38M, 4.5 equivalents) and 

activation with DIEA (15 equivalents). Coupling solutions were stirred periodically 

and incubated for 2 hours. Resins were then washed with DMF (3 x 5 mL) and DCM 

(3 x 5mL), dried under reduced pressure and stored for later synthesis. 

3.5.2. Automated fast-flow peptide synthesis 

Before synthesis, all resins were allowed to swell in amine-free DMF for 15 

minutes. Utilizing an automated synthesizer, amine-free DMF washed the resin 

before coupling, after coupling, and after deprotection (40 strokes, ~25 mL). 
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Coupling was performed with HATU (single-coupling, 8 strokes, ~5 mL) except S 

and A with HATU (double-coupling, 21 strokes, ~10 mL) and C, H, N, Q, R, V, T with 

PyAOP (double-coupling, 21 strokes, ~10 mL). Deprotection was completed with 

20% piperidine in amine-free DMF with 2% formic acid (13 pump strokes, ~5 mL). 

Amino acids were iteratively coupled and deprotected until the stepwise synthesis 

was complete. After automated synthesis, the resin was washed again with DMF (3 

x 5 mL) and DCM (3 x 5 mL) then dried under reduced pressure. For a detailed 

explanation of the instrument setup and related chemistries, see Hartrampf et al.,7 

Simon et al.,31,32 Mijalis et al.,33 and Mong et al.34 Sequences synthesized were as 

follows: 

1. JR10:  WFTTLISTIM-NH2 

2. GLP-1: HAEGTFTSDV SSYLEGQAAK EFIAWLVKGR-NH2 

3. MDM2: TLVRPKPLLL KLLKSVGAQK DTYTMKEVLF YLGQYIMTKR 

LYDEKQQHIV YCSNDLLGDL FGVPSFSVKE HRKIYTMIYR NLVV-NH2 

4. CHIP: (Biotin-PEG4)-SPSAQELKEQ GNRLFVGRKY PEAAACYGRA 

ITRNPLVAVY YT- NRALCYLK MQQHEQALAD CRRALELDGQ SVKAHFFLGQ 

CQLEMESYDE AIAN- LQRAYS LAKEQRLNFG DDIPSALRIA KKKRWNSIEE RR-

NH2 

3.5.3. Integration of synthesizer UV signal 

UV absorbance at 310 nm was continuously monitored over the course of 

synthesis using an Agilent G1315D 1260 variable length diode array detector. 

Deprotection peaks were identified based on syncing timepoints to pump steps and 

baseline corrected using the PeakUtils package (Version 1.3.3) in Python (Version 

3.9.6). Integrated areas, heights, and widths of the deprotection peaks were 

normalized to the second deprotection peak. Integration was done using a 

cumulative sum of rectangles based on the time step of a single pump stroke (~1.3 

sec). 
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3.5.4. Cleavage of peptides from the solid-phase support 

Before cleavage, all dried resins were weighed to assess crude on-resin yield. 

Cleavage from solid phase and global deprotection was performed using a solution 

of 94% trifluoroacetic acid, 2.5% water, 2.5% ethanedithiol and 1% triisopropylsilane 

for JR10 and GLP-1 resins, and Reagent K (82.5% trifluoroacetic acid, 5% water, 

5% phenol, 5% thioanisole, 2.5% ethanedithiol) was used for MDM2 and CHIP. 

Each resin was suspended in 2 mLs of their respective cleavage cocktail, with JR10 

and GLP-1 resins left to incubate for 2 hours at room temperature and MDM2 and 

CHIP resins left to incubate for 3 hours at room temperature. The peptides were 

triturated with cold diethyl ether (3 x 15 mL for JR10 and GLP-1, 1 x 45 mL and 2 x 

25 mL for MDM2 and CHIP), dried gently using N2, suspended in 50% acetonitrile 

in water (0.1% trifluoroacetic acid), and lyophilized. Lyophilized powders were 

weighed to give crude yields post-resin cleavage. 

3.5.5. Liquid chromatography-mass spectrometry (LC-MS) 

LC-MS chromatograms and associated high resolution mass spectra were 

acquired using an Agi- lent 1290 Infinity HPLC coupled to an Agilent 6550 Q-TOF 

iFunnel mass spectrometer using a Phenomenex Jupiter C4 column (150 x 1.0 mm 

ID, 5 µm, 300Å silica) heated at 40 °C or a Zorbax 300SB-C3 column (150 x 2.1 

mm ID, 5 µm, 300Å silica) at 40 °C. Solvent compositions were 0.1% formic acid in 

water (solvent A) and 0.1% formic acid in acetonitrile (solvent B). Method 1 was 

used for characterization of crude material, and methods 2 and 3 were used for 

fraction analysis after semi-preparative HPLC purification. 

1. Column: Zorbax 300SB-C3. Gradient: linear gradient 5-65% B from 0-30 min; 

isocratic 91% B from 30-32 min; post time 5% B for 3 min. Flow rate: 0.4 mL/min. 

MS data was collected from 1-30 min; MS was run in positive ionization mode, 

extended dynamic range (2 GHz), and standard mass range (m/z in the range of 

300 to 3000 a.m.u.). 
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2. Column: Jupiter C4. Gradient: isocratic 1% B from 0-2 min; linear gradient 1-

91% B from 2-8 min; isocratic 95% B from 8-10 min; post time 1% B for 1 min. Flow 

rate: 0.3 mL/min. MS data was collected from 2-8 min; MS was run in positive 

ionization mode, extended dynamic range (2 GHz), and standard mass range (m/z 

in the range of 300 to 3000 a.m.u.). 

3. Column: Jupiter C4. Gradient: isocratic 1% B from 0-3 min; linear gradient 1-

91% B from 3-15 min; isocratic 95% B from 15-18 min; post time 1% B for 2 min. 

Flow rate: 0.3 mL/min. MS data was collected from 3-15 min; MS was run in 

positive ionization mode, extended dynamic range (2 GHz), and standard mass 

range (m/z in the range of 300 to 3000 a.m.u.). 

3.5.6. Analytical ultra high-performance liquid chromatography (UHPLC) 

Analytical HPLC analysis was performed using an Agilent 1200 series system 

with UV detection at 214 nm on a Zorbax 300SB-C3 column (150 x 2.1 mm ID, 5 

µm, 300Å silica) on an Agilent 1200 HPLC at room temperature. Solvent 

compositions were 0.1% trifluoroacetic acid in water (solvent A) and 0.08% 

trifluoroacetic acid in acetonitrile (solvent B). Gradient: linear gradient 5-65% B from 

0-60 min; linear gradient 65-100% B from 60-61 min; isocratic 100% B from 61-66 

min; linear gradient 100-5% B from 66-67 min; isocratic 5% B from 67-75 min. Flow 

rate: 0.400 mL/min. A solvent-only blank injection was subtracted from each run 

before determining purity through manual integration of all signals from 0 to 61 min. 

3.5.7. Semi-preparative high-performance liquid chromatography of MDM2 

and CHIP 

Lyophilized crude sample of protein was weighed in batches of ~35 mg, 

dissolved in 10 mL of 6 M guanidinium chloride, 0.1 M dithiothreitol, in 50 mM 

sodium phosphate pH 7.5, vortexed briefly, 0.2 µm filtered, and subjected to RP-

HPLC purification using an Agilent Zorbax 300SB-C18 PrepHT (9.4 × 250 mm, 5 

µm) column with an Agilent C3 Zorbax SB 300 guard column heated at 60 °C at 4.0 

mL/min with the gradients listed in the subsequent section. Purification was 



117 
 

 

 

performed on an Agilent mass-directed purification system (1260 Infinity LC and 

6130 Single Quad MS) with a Timberline Instrument TL105 HPLC column heater. 

Fractions showing high purity charge state series were combined, lyophilized, and 

analyzed via LC-MS and analytical HPLC. 

1. MDM2: Isocratic 5% B from 0-2 min; linear gradient 5-30% B from 2-32 min; 

linear gradient 30-50% B from 32-132 min; linear gradient 50-65% B from 132-133 

min; linear gradient 65-80% B from 133-136 min; post time 5% B for 10 min. 

2. CHIP: Isocratic 5% B from 0-2 min; linear gradient 5-35% B from 2-32 min; 

linear gradient 35-55% B from 32-132 min; linear gradient 55-75% B from 132-133 

min; linear gradient 75-90% B from 133-136 min; post time 5% B for 10 min. 
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3.6. Appendix I: UV signals from fast-flow synthesizer 

 
Figure 3.6: Sequence of JR10 (a) and raw UV absorbance data for the synthesis of JR10 
on (b) Octagel resin, (c) ProTide resin, and (d) Tentagel XV RAM resin. Each synthesis 
begins with washing the resin, followed by deprotection of the Fmoc protecting group as 
seen by the lower intensity peaks. The subsequent amino acid is then coupled, as shown 
by the high intensity saturated peaks. 
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Figure 3.7: Sequence of GLP-1 (a) and raw UV absorbance data for the synthesis of GLP-
1 on (b) Octagel resin, (c) ProTide resin, and (d) Tentagel XV RAM resin. Each synthesis 
begins with washing the resin, followed by deprotection of the Fmoc protecting group as 
seen by the lower intensity peaks. The subsequent amino acid is then coupled, as shown 
by the high intensity saturated peaks. 
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Figure 3.8: Sequence of MDM2 (a) and raw UV absorbance data for the synthesis of 
MDM2 on (b) Octagel resin and (c) Tentagel XV RAM resin. Each synthesis begins with 
washing the resin, followed by deprotection of the Fmoc protecting group as seen by the 
lower intensity peaks. The subsequent amino acid is then coupled, as shown by the high 
intensity saturated peaks. 
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Figure 3.9: Sequence of CHIP (a) and raw UV absorbance data for the synthesis of CHIP 
on (b) Octagel resin, (c) ProTide resin, and (d) Tentagel XV RAM resin. Each synthesis 
begins with washing the resin, followed by deprotection of the Fmoc protecting group as 
seen by the lower intensity peaks. The subsequent amino acid is then coupled, as shown 
by the high intensity saturated peaks. 
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Figure 3.10: Synthesis data of CHIP using ProTide resin during reactor failure. (a) 
Deprotection peak characterization during synthesis shows aberrant behavior early in the 
sequence with a point of failure less than 40 coupling cycles into the stepwise synthesis 
process. (b) Close up view of UV absorbance at time of reactor failure, resulting in an 
almost complete disappearance of deprotection peaks. 
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3.7. Appendix II: LC-MS and UHPLC characterization data 

 
Figure 3.11: LC-MS analysis of truncation products from the synthesis of JR10 on Octagel 
resin. The panels depict deconvoluted mass spectra of the bands highlighted in red from 
the corresponding total ion count chromatogram (TICC) shown in insets. 
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Figure 3.12: LC-MS analysis of truncation products from the synthesis of JR10 on Tentagel 
XV RAM resin. The panels depict deconvoluted mass spectra of the bands highlighted in 
red from the corresponding total ion count chromatogram (TICC) shown in insets. 



125 
 

 

 

 
Figure 3.13: LC-MS analysis of truncation products from the synthesis of JR10 on Tentagel 
XV RAM resin. The panels depict deconvoluted mass spectra of the bands highlighted in 
red from the corresponding total ion count chromatogram (TICC) shown in insets. 
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Figure 3.14: Analytical HPLC analysis of JR10 syntheses done with Tentagel XV RAM 
resin at full loading, 50% total loading and 10% total loading after capping of the resin with 
the respective amounts of acetic acid. Crude purities for the 50% and 10% loading resins 
were 61% and 46%, respectively (compared to 32% for the full loading), showing that 
lowering the loading of the resin can help prevent aggregation. 

 
Figure 3.15: Analytical HPLC analysis of JR10 syntheses done Octagel resin at full 
loading, 63% total loading, 31% total loading and 6% total loading after capping of the resin 
with the respective amounts of acetic acid. Crude purities for the 63%, 31% and 6% loading 
resins were 38%, 60% and 80%, respectively (compared to 24% for the full loading), 
showing that lowering the loading of the resin can help prevent aggregation. 
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Figure 3.16: LC-MS analysis of truncation products from the synthesis of GLP-1 on 
Octagel resin. The panels depict deconvoluted mass spectra of the bands highlighted in red 
from the corresponding total ion count chromatogram (TICC) shown in insets. 
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Figure 3.17: LC-MS analysis of truncation products from the synthesis of GLP-1 on 
Tentagel XV RAM resin. The panels depict deconvoluted mass spectra of the bands 
highlighted in red from the corresponding total ion count chromatogram (TICC) shown in 
insets. 

 
Figure 3.18: LC-MS analysis of truncation products from the synthesis of GLP-1 on 
ProTide resin. The panels depict deconvoluted mass spectra of the bands highlighted in red 
from the corresponding total ion count chromatogram (TICC) shown in insets. 
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Figure 3.19: Analytical HPLC analysis of syntheses to test for incomplete manual couplings 
dependent upon the success of the initial Fmoc deprotection. (a) Test sequence used for 
each synthesis, with a variable residue at the C terminus to test individual monomer effects. 
(b) Analytical HPLC data for five different C terminal monomers, showing no significant 
differences between two five-minute deprotection reactions compared to three five-minute 
deprotection reactions. 
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Figure 3.20: UV absorbance, crude analytical HPLC, and crude LC-MS data for the 
synthesis of MDM2 on Octagel resin that has been reduced to 63% of its original loading, 
roughly matching the loading of Tentagel XV resin. Calculated deconvoluted mass: 
9899.82; Observed deconvoluted mass: 9899.7 (-9.0 ppm error). 
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4. pyBinder: Label-free Quantitation to Advance Affinity Selection-
Mass Spectrometry 
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4.1. Introduction 
Affinity selection-mass spectrometry (AS-MS) discovers high-affinity ligands to 

biomolecular targets using mass spectrometry for ligand identification.1–3 The 

affinity selection of AS-MS is highly similar to phage and mRNA display,4–6 though 

AS-MS generally utilizes a single enrichment step without genetic amplification. AS-

MS utilizes synthetic libraries, providing unfettered access to non-natural amino 

acids and a facile design opportunity to tailor libraries toward the target. Thus, one 

of the primary uses of AS-MS is the selection of small combinatorial libraries (103-

106) biased or ‘focused’ toward the target to gain structure activity relationship 

(SAR) information.7–10 These approaches can accelerate medicinal chemistry efforts 

by the rapid identification of ‘hot-spot’ residues as well as the combinatorial 

sampling of the chemical space available to non-natural amino acids.7,11,12 Beyond 

these focused efforts, recent advancements have demonstrated de novo ligand 

discovery with AS-MS from fully randomized peptide and peptidomimetic libraries 

up to 108 members against several targets.13–16 Despite its prominence, AS-MS 

heavily depends on mass spectrometry analysis and stands to benefit by leveraging 

methods from the field of MS-based proteomics.  

Solutions developed to combat data incompleteness in the field of proteomics 

could be highly valuable to improve AS-MS. MS-based proteomics has long detailed 

the “missing value” problem, hallmarked by an incomplete series of peptides or 

proteins expected across samples or replicates.17–20 This challenge is pronounced 

in approaches that use data dependent acquisition (DDA), where precursors are 

selected from the mass spectrum (MS1) for tandem MS2 fragmentation. Precursor 

ions are often selected in order of their signal intensity in DDA, biasing the 

discovery of highly ionizing species. While the rules for precursor selection for MS2 

are clearly outlined, the precursor selection process is not perfectly reproducible 

and is instead stochastic. This stochasticity can hinder further data analysis, 

ranging from the identified peptides across technical replicates as well as statistical 

analysis for sample comparison.  
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Label-free quantitation (LFQ) is directly compatible with AS-MS and provides a 

solution to incomplete data without relying on peptide sequence identification from 

MS2 fragmentation. LFQ has long been a foundational method for the analysis of 

proteomic mixtures through the examination of peptide precursor ions. This 

approach makes LFQ highly compatible with AS-MS because it allows for the 

comparison of peptide ions without relying on sequence databases, stable isotope 

labeling, or chemical labeling.21–23 The MS1 spectra LFQ uses provide a larger 

dynamic range of ion detection, as opposed to quantification in tandem MS2 spectra 

(e.g., tandem mass tags).24 However, the quantitation capability of LFQ is strongly 

reliant on mass spectrometry resolution, with precise, high-resolution instruments 

demonstrating improved discernment between peptide features.25,26 LFQ is also 

highly susceptible to variation in experimental conditions. Advances in 

computational analysis of mass spectrometry have become largely ubiquitous for 

LFQ, commonly seen in commercial and open-source software including 

MaxQuant,22 Proteome Discoverer, and PEAKS Studio.27–29 LFQ has thus been 

shown to increase data depth, sensitivity, and data completeness with applications 

in biomarker discovery, disease profiling, elucidation of drug mechanisms, and 

single-cell proteomics, underscoring its versatility and value in both basic and 

applied research.21,30 Thus, LFQ is well-positioned to enhance the capabilities of 

AS-MS. 

In this work, we demonstrate the integration of LFQ into AS-MS for the 

improved discovery of target-selective, high-affinity peptide ligands, named 

pyBinder. Data processing methods in AS-MS have primarily focused on filtering 

peptide sequencing data derived from MS2 spectra, strongly increasing the 

dependence on mass spectrometry performance.31 However, we seek to 

understand the target-selectivity of the ligand discovered, best done by comparing 

the MS1 mass spectrometry data. Specifically, we use the result from LFQ of AS-MS 

samples to create two scores to understand the value of the peptides ligands 

discovered: i) target selectivity by comparing experimental samples (target versus 
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off-target) and ii) concentration-dependent enrichment score (CDE), understood by 

comparing multiple samples from affinity selections completed at different target 

concentrations. We examine the ligands discovered from AS-MS against anti-

hemagglutinin antibody (12ca5) and WD repeat-containing protein 5 (WDR5), which 

both have known high-affinity binding motifs that can validate the analysis method 

used. Overall, the outcome of pyBinder analysis demonstrates that 12ca5 and 

WDR5 motif-containing peptides are highly ranked by target selectivity and CDE 

versus other peptide features identified in the LFQ analysis. This result also enables 

targeted measurement of desired ions that show target selectivity and CDE. Thus, 

from discovery data, pyBinder appears poised to provide a variety of benefits for 

peptide drug discovery from AS-MS data ranging from minimizing the discovery of 

nonspecific ligands, structure activity relationships (SAR), to the estimation of 

binding affinity (KD) direct from ligand discovery experiments. 

4.2. Results and Discussion 

Using peptide libraries, AS-MS performs an affinity selection against 

biomolecular targets and relies upon mass spectrometry to reveal the target-

enriched peptide sequences. Thus, improvements to mass spectrometry protocols 

stand to improve AS-MS broadly. To understand AS-MS data, we considered what 

we term “sequencing coverage” and “sequencing fidelity.” Sequencing coverage is 

defined as the percentage of peptide precursor ions isolated for MS2 fragmentation. 

Low sequencing coverage would indicate that the mass spectrometer was 

“overwhelmed” with peptides above its capabilities and/or the peptides were in low 

abundance necessitating long accumulation times. In comparison, high sequencing 

coverage would indicate that the spectrometer generated MS2 spectra to most all 

peptides. Sequencing fidelity is defined as the percentage of MS2 spectra that 

produce high-quality sequence assignment in its analysis. In our work, de novo 

sequencing analysis was performed in PEAKS Studio where an Average Local 

Confidence (ALC) of ≥ 80 was considered to be sufficient for high-quality sequence 

assignment.27 Low sequence fidelity is generally due to poor or incomplete 
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fragmentation patterns (i.e., b- and y-ions) due to low peptide abundance, co-

isolation of multiple peptide precursors, poor fragmentation kinetics of the particular 

sequence (e.g. presence of C-terminal proline hindering nonspecific 

fragmentation32–35) and/or errant isolation of non-peptide library species by the mass 

spectrometer. Thus, by investigating the sequence coverage and sequence fidelity 

of our mass spectrometer, we can improve the data generated by AS-MS both in 

quantity and quality. 

We performed retrospective analysis of a prior AS-MS discovery campaign to 

estimate sequence coverage and fidelity to be 10-18% and 0.2-1%, respectively 

(Figure 4.1), indicating a data incompleteness challenge in AS-MS currently. We 

reanalyzed the raw data from our previously published ligand discovery campaign 

of a natural 12-mer library against angiotensin-converting enzyme 2 (ACE2) with 

anti-hemagglutinin antibody 12ca5 used as a side-by-side off-target control.14 

Analysis of the raw data in PEAKS Studio enumerated the peptide features in the 

mass chromatogram (retention time versus mass-to-charge ratio, m/z), MS2 

spectra, and ALC of the sequence assignment per peptide feature. With over 

30,000 peptide features, 3,468 (ACE2) and 5,895 (12ca5) MS2 spectra were 

gathered, meaning the sequence coverage was low at 10.6% and 17.7% for ACE2 

and 12ca5. Thus, a maximum rate of ~1.2 MS2 spectra per second was observed. 

While modern mass spectrometers like the Orbitrap Fusion Lumos used here can 

perform faster, both higher-energy collisional dissociation (HCD) and electron-

transfer dissociation (ETD) fragmentation methods were used and has been 

previously seen to improve the fidelity of de novo sequencing due to their 

orthogonality.8,13,31 This sequencing coverage indicates that most peptides (> 80% 

of the ~33,000 peptides) were not isolated for MS2 fragmentation by the mass 

spectrometer despite the use of a long 120-minute gradient. In addition, sequence 

fidelity was low at 0.24% and 1.1% for ACE2 and 12ca5, respectively, meaning that 

most all (> 95%) MS2 mass spectra gathered did not produce a high-quality 

sequence assignment to the library used in the affinity selection experiment. This 
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analysis clearly indicates that AS-MS samples are highly complex, and the mass 

spectrometer appeared “overwhelmed” with the number of peptides eluting given its 

throughput. 
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Figure 4.1: Retrospective analysis of previous AS-MS campaigns reveals the opportunity 
for deeper data analysis by LFQ. (A) Total map of mass-to-charge ratio versus retention 
time with peptide features identified by PEAKS studio in black, all collected MS2 scans in 
blue, and all MS2 scans that resulted in a high confidence sequence in red. High confidence 
sequences were defined by having an ALC score calculated by PEAKS Studio greater than 
80% with a sequence that conforms to the synthetic library design. (B) A zoomed in portion 
of the mass-to-charge ratio versus retention time plot filtered to show only z states of 3 
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shows the dearth of high confidence identifications during untargeted runs. (C) Statistics for 
each of the three groups, showing the percentages of the total number of features 
subjected to MS2 and that resulted in high confidence sequences that conform to the 
synthetic library design. 

To improve the mass spectrometry in AS-MS, MS-based proteomic methods 

were considered, first with the use of spectral database matching. The practice of 

spectral database matching is commonplace and would boost sequencing fidelity if 

applicable. This method matches MS2 spectra with a database of peptide 

sequences that may be present in the sample, meaning peptide sequences can be 

confidently assigned to an incomplete MS2 spectra. However, the use of spectral 

database matching appeared intractable for AS-MS using large (108) libraries for de 

novo discovery.13 AS-MS libraries are prepared by split-and-pool synthesis to 

sample a vast theoretical sequence space.36 For example, one common AS-MS 

library design uses an X12K design, where X is the 20 natural amino acids except 

cysteine (to exclude disulfide formation) and isoleucine (indistinguishable from 

leucine). For this X12K library, 108 beads are used in synthesis, resulting in a 108 

peptide library; however, the theoretical sequence space is 1015 in total size.13–16 

Because the sampling of the 108 peptides from the 1015 is unbiased by design, 

database matching analysis of an X12K library would need to consider spectral 

matching against the full 1015 theoretical sequence space. This large number of 

sequences would result in a 15 PB/15000 TB FASTA file using a minimal UTF-8 

encoding of each sequence and ignoring any additional sequence information 

commonly used in a FASTA file format, which is unable to be handled by most MS 

analysis software. Thus, database matching appeared intractable except for use 

with smaller, more-focused libraries (e.g., a 108 peptide library database using the 

same encoding method would be on the scale of 1-2 GB). For similar reasons due 

to the scale of the theoretical sequence space, DDA-based MS methods appear 

necessary, as DIA methods often rely upon spectral matching to improve the MS2 

deconvolution of co-isolated peptides.37–39 Nevertheless, several strategies from 

MS-based proteomics appear compatible with AS-MS including (LFQ) as 

aforementioned were explored further.21–23 



142 
 

 

 

In an analysis method we call pyBinder, we combine LFQ with AS-MS data to 
understand the quality and value of the ligands discovered for their target-selectivity 

(Figure 4.2). While several standard proteomic software can accomplish LFQ 

analysis of mass spectrometry data,22,27–29 we sought to develop an open-source 

approach in Python. Thus, the Python-based interface of OpenMS29 (pyOpenMS40) 

was chosen to perform LFQ, with the ACE2/12ca5 AS-MS dataset for initial 

development. pyOpenMS was used to identify peptide features and prepare data for 

LFQ. Peptides were identified according to fitting to the Averagine isotopic 

distribution with z state filtering to compile a list of peptide features per AS-MS 

sample replicate. Optimization of the feature identification was performed by 

comparing the overlap in features identified between pyOpenMS and PEAKS 

Studio, until both showed comparable feature detection capability. Details of the 

parameter optimization are given in Table 4.2. Because AS-MS experiments are 

completed in triplicate, the map of peptide features (retention time vs m/z) from 

each sample was aligned in retention time using the pose clustering algorithm as 

described in Lange et al41. The resulting aligned map was used to generate a 

consensus list of features across all proteins and replicates.  

 
Figure 4.2: The combination of label-free quantitation (LFQ) and affinity selection-mass 
spectrometry (AS-MS) stands to provide an improved AS-MS discovery platform. LFQ 
performed by pyBinder enables the analysis of AS-MS data from the MS1 peptide features 
without relying on tandem sequencing results (MS2 data). Thus, the success of the affinity 
selection can be robustly judged by the enrichment level of peptides identified from MS1 
features. The MS1 features can be evaluated for the target-selectivity as well as target 
concentration-dependent enrichment (CDE). With the target-selectivity and CDE scores, a 
list of promising peptide features can be generated by pyBinder and fed back into a 
subsequent targeted mass spectrometry run to potentially reveal a larger amount of target-
selective peptide ligands. 
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To discern target-selectivity, pyBinder processes all peptide ion features 

discovered from AS-MS using extracted ion chromatograms (EICs), where an EIC 

shows all signal of a defined range of mass-to-charge ratio. In the EICs, the peptide 

ion features are highly unique given the high precision of the Orbitrap spectrometer 

utilized when combined with a specified retention time window. From these EICs, all 

consensus features are quantitated by integration. Integrated peak areas were 

gathered after a Savitsky-Golay noise filter was applied. Detection of the peak was 

done independently by using the PeakUtils Python package within the EIC window 

to account for retention time drift across AS-MS replicates. The smoothed, identified 

peaks were then integrated numerically using cumulative trapezoids, as this method 

accounts for abnormal peak shape while also remaining fast to compute.  

From the integrated peaks areas, two scores were developed to rank and 

prioritize peptides for their value as ligands: target-selectivity and concentration-

dependent enrichment (CDE, Figure 4.3). Target-selectivity of a ligand is a critical 

and elusive property at play in all ligand discovery platforms. While experimental 

controls and protocols are optimized, the discovery of nonselective or non-specific 

ligands plagues discovery efforts.42,43 By comparing the integrated peak areas from 

experimental replicates, the selectivity of each prospective ligand towards the target 

protein versus off-target proteins is immediately assessed. As illustrated in Figure 

4.3A, the target-selectivity score for a specific protein concentration is determined 

by the fraction of the total peak area contributed by that protein, assigning a 

selectivity score to each peptide feature for every protein, with all scores summing 

to one. A target selective ligand will appear only in the AS-MS samples that contain 

the target, whereas a nonselective ligand will have a target selectivity equal to the 

reciprocal of the total number of targets. Thus, selectivity scores differentiate 

between target-selective and nonselective ligands. With multiple AS-MS replicates, 

statistical significance of the target selectivity is assigned. 

 The second score calculated in pyBinder is concentration-dependent 

enrichment (CDE). CDE was inspired by the connection between concentration-
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dependence in binding interactions and selectivity and specificity.44,45 In pyBinder, 

CDE measures the change in the integrated intensity of a peptide feature relative to 

the amount of target protein used in the affinity selection experiment (Figure 4.3B). 

To enable this, affinity selections were completed using varying quantities of target-

labelled magnetic beads, as well as a negative control with beads lacking the target 

protein. We calculated the integrated peak areas for each protein loading scenario 

and assigned a CDE score based on the formula depicted in Figure 4.3B. The sign 

and magnitude of the CDE score is reported to gauge the target-selectivity of each 

peptide feature.  

Beyond target-selectivity, CDE scores can provide potential insight into ligand 

binding affinity (KD), with theoretical scenarios given assumed KD values shown in 

Figure 4.7. High CDE scores indicate strong peptide enrichment from the affinity 

selection due to the target protein. Meanwhile, low CDE scores (e.g., near zero) 

indicates peptide enrichment regardless of target protein concentration, explained 

by nonspecific binding or poor affinity. Another potential case is a negative CDE 

score that could indicate that the target protein reduces peptide enrichment, 

possibly by reducing nonspecific binding. 

By utilizing these two scores, peptides are prioritized based on their potential as 

high-affinity, target-selective ligands. If known, the peptide sequences can provide 

insight into structure activity relationships with respect to the target protein. If 

unknown, the peptide ion features can be formulated into a targeted list to perform 

subsequent targeted mass spectrometry. Readdressing the ACE2/12ca5 AS-MS 

campaign, pyBinder revealed many peptide features that were target-specific, but 

not isolated for MS2 sequencing, consistent with the low sequence coverage. Full 

results from pyBinder for both ACE2 and 12ca5 are given in Figures 4.8 and 4.9. 

The low overall sequence coverage of AS-MS samples left many potential ligands 

undiscovered, with >500 target-specific ligands to ACE2 and 12ca5 not isolated for 

MS2 sequencing. These peptide features could be formulated into a targeted list 

and provide a strategy to overcome the stochastic nature of DDA-based tandem 
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mass spectrometry of these complex AS-MS samples with improved sensitivity 

(Figure 4.2). A much larger amount of data could then be revealed, greatly 

improving the data generation capabilities of AS-MS as a ligand discovery platform. 

 
Figure 4.3: Target selectivity and concentration-dependent enrichment (CDE) scores are 
used for the evaluation of the value of peptide features. (A) The selectivity score is 
calculated by comparing the area for a given feature with respect to a single protein and the 
total feature area measured across all proteins. A high selectivity score reflects a protein-
specific feature, while a selectivity score near the reciprocal of the total number of proteins 
reflects a nonspecific binding feature. (B) The CDE score is calculated using the extracted 
feature area across several protein concentrations using the formula shown at the right. A 
high CDE score shows a strong pulldown of the peptide feature even at lower protein 
concentrations, while a low CDE score shows a lack of relationship between protein 
concentration and peptide pulldown.  

To evaluate the performance of LFQ analysis by pyBinder of AS-MS data, an 

affinity selection was completed using 12ca5 compared against unlabeled magnetic 

beads. The anti-hemagglutinin antibody 12ca5 was chosen for its known binding 

motif, where peptides containing the sequence D**DY(A/S) often exhibit high affinity 

binding (e.g., KD < 200 nM).13,46 The selection was performed using three different 



146 
 

 

 

amounts of 12ca5 loaded on the beads to enable CDE score calculations with either 

0 (beads only), 55, 110, or 180 pmol of 12ca5 utilized. Selectivity scores were 

calculated using the beads only control as the off-target protein. After selection, 

peptide sequencing was performed with the standard intensity-ranked DDA 

approach, as in the 12ca5/ACE2 campaign. The list of sequenced peptides was 

filtered to match the library design and peptides containing the 12ca5 binding motif 

assigned with high confidence were compiled for analysis. This list of motif-

containing peptides was then compared to the results from pyBinder for the high-

priority peptide features.  

Both the selectivity and CDE scores from pyBinder were high for 12ca5 motif-

containing peptides, which are expected to have high-affinity, target-selective 

binding (Figure 4.4). Independently, the motif-containing peptides were color-coded 

and visualized for the target-selectivity and CDE (Figure 4.4A and 4.4B). While their 

statistical significance, denoted by -log10(P-value), was less discerning than the 

scores themselves, the target selectivity and CDE scores were clear to indicate the 

high performance of the motif-containing peptides in the affinity selection 

experiment. Also, as expected, many peptide features were not sequenced (shown 

in gray) due to the low sequence coverage or low sequencing fidelity. Last, 

combining the two scores (Figure 4.4C) presented a high density of motif-containing 

peptides in the top right quadrant of the graph. Thus, this analysis in pyBinder, 

rooted in LFQ, demonstrated clear potential to deeply analyze AS-MS data and 

distinguish ligands that are expected to be target-selective and high-affinity. 
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Figure 4.4: The target selectivity and CDE scores of 12ca5 motif containing peptides 
demonstrate the ability of pyBinder to distinguish target-selective, high-affinity peptides due 
to the presence of their known motif. Motif-containing peptides are shown in blue in each 
graph, while all other detected features are shown in grey. (A) A comparison of the 
selectivity score with respect to 12ca5 and the statistical significance as shown by the p-
value. (B) A comparison of the CDE score and the statistical significance as shown by the 
p-value. (C) A comparison of the selectivity score and the CDE score. (D) A comparison of 
selectivity score, CDE score, and p-value. 
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With the proof-of-concept established with 12ca5, pyBinder demonstrated the 

ability to evaluate an AS-MS experiment for two target proteins, 12ca5 and WDR5, 

using a similar motif-based analysis for validation. WDR5, like 12ca5, also has a 

known set of sequence motifs that are common to several ligands and inhibitors to 

the WIN binding site based on arginine-containing tripeptide sequences (e.g., ART 

and ARA) at the N-terminus of the peptide.47,48 From the AS-MS data, target 

selectivity and CDE were calculated and sequence assignments were gathered 

from the standard tandem sequencing of the 12ca5 and WDR5 samples. Motif-

containing peptide sequences for both 12ca5 and WDR5 assigned from the data 

(ALC ≥ 70) were matched back to their respective scores in pyBinder by mass and 

are plotted according to their selectivity scores, CDE scores, and p-values in Figure 

4.5. For this case, the CDE score appeared a more effective filter than target-

selectivity. A range of target selectivity scores were observed across all the motif-

containing peptides, suggesting a degree of nonspecific interactions with 12ca5 or 

possible sample carry-over in the mass spectrometer. Last, the low P-value cutoffs 

(p < 0.05) appeared to hinder the prioritization of motif-containing peptides, 

consistent with the observations from the 12ca5 vs beads experiment in Figure 4.4A 

and B. For both cases, these results indicate that the peak detection and integration 

could potentially be improved to decrease the noise of the peak areas gathered. 

Full pyBinder output is given in Figures 4.10 to 4.16. 

Given its potential, target-selective peptide features from pyBinder were used in 

a second round of mass spectrometry to reveal a larger amount of peptide ligands 

compared to the standard approach for WDR5 (Figure 4.5). The output from 

pyBinder allows the quick prioritization of peptide features observed from the AS-

MS experiment using the target selectivity and CDE scores to construct a list of 

features for tandem sequencing. With the same samples, additional mass 

spectrometry to the m/z and retention time of promising peptide features was 

completed. For WDR5, this approach increased the number of ligands discovered 
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(ALC > 70%) from 3 to 14, demonstrating the application to of pyBinder to increase 

the data generated from AS-MS. 

 
Figure 4.5: The application of pyBinder in a second round of targeted mass spectrometry 
increases the discovery rate of peptides containing the WDR5 binding motifs compared to 
untargeted methods. Plots shown highlight WDR5 motif containing sequences that were 
successfully sequenced with high enough confidence, defined as an ALC score greater than or 
equal to 70. Gray points reflect extracted features that either were not sequenced or had too 
low confidence in the sequence assignment. Motif containing peptides trend towards having 
high selectivity scores and high CDE scores. Scatterplots comparing relationships between all 
the scores used are shown, where (A) shows selectivity score against statistical confidence, (B) 
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shows CDE score against statistical confidence, (C) shows selectivity score against CDE score, 
and (D) shows all three values compared simultaneously. A tolerance value of 0.005 in mass-to-
charge ratio was used to match sequence assignments back to features annotated by pyBinder, 
causing potential double assignments. 

4.3. Conclusion 
We presented a workflow to perform LFQ on AS-MS data called pyBinder 

through the implementation of two scores of target-selectivity and concentration-

dependent enrichment (CDE). Starting from the results gathered from LFQ of AS-

MS data, target-selective ligands can be identified without the need for isobaric 

labeling, stable-isotope labeling, or observation of MS2-based mass tags. Trends in 

the two scores were shown to distinguish high-affinity, target-selective ligands for 

two target proteins, 12ca5 and WDR5. Because they are connected to the ligand 

affinity, CDE scores are expected to be able to be combined with peptide sequence 

information in machine learning models discover and develop ligands. However, we 

did observe that the statistical significance of the two scores was less discerning. 

Aside from improvements to the data quality, we expect this challenge could 

potentially be remedied with improvements to the peak detection and integration 

methods; however, the current method provides sufficiently powerful 

characterization of the data.  

From the two pyBinder scores, a list of prioritized peptide features could be 

enumerated for successful targeting in subsequent mass spectrometry to expand 

the data gathered from AS-MS. Lists of peptide features that exhibit high target 

selectivity and CDE can be fed back into targeted mass spectrometry methods by 

their mass-to-charge ratio and retention time extracted from MS1 data. This 

approach of targeted mass spectrometry enabled by pyBinder remedies the 

challenge of high sample complexity and low sequencing coverage by focusing the 

MS sequencing capacity toward promising ligands. Carried further, the targeting 

enabled by pyBinder can enable the deliberate use of increased amounts of mass 

spectrometer time per peptide to potentially increase sequencing fidelity. Thus, 
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pyBinder appears able to overcome the two bottlenecks that limit AS-MS, sequence 

coverage and sequence fidelity, originally revealed in our retrospective analysis. 

 Overall, we expect this work to improve the robustness of AS-MS ranging 

from increasing the number of target-selective ligands discovered to the evaluation 

of affinity selection conditions and peptide libraries. We demonstrated in the ability 

of pyBinder to increase the amount of data generated from AS-MS experiments for 

the purpose of target-selective ligand discovery (Figure 4.5). pyBinder removes the 

reliance on sequencing results, which can be poor due to multiple reasons, and 

instead reports quality of the AS-MS data using LFQ of MS1 information. Thus, 

pyBinder can analyze the general enrichment achieved by the affinity selection and 

be used to evaluate experimental designs and the suitability of peptide libraries to 

new targets. We expect pyBinder to significantly improve AS-MS for its ability to 

perform de novo ligand discovery and establishing structure activity relationships.   

4.4. Materials 

Canonical Fmoc-protected amino acids (FmocAla-OHxH2O, Fmoc-Arg(Pbf)-

OH; Fmoc-Asn(Trt)-OH; Fmoc-Asp-(O-t-Bu)-OH; FmocCys(Trt)-OH; Fmoc-Gln(Trt)-

OH; Fmoc-Glu(O-t-Bu)-OH; Fmoc-Gly-OH; Fmoc-His(Trt)- OH; Fmoc-Ile-OH; Fmoc-

Leu-OH; Fmoc-Lys(Boc)-OH; Fmoc-Met-OH; Fmoc-Phe-OH; Fmoc- ProOH; Fmoc-

Ser(But)-OH; Fmoc-Thr(t-Bu)-OH; Fmoc-Trp(Boc)-OH; Fmoc-Tyr(O-t-Bu)-OH; 

Fmoc-Val-OH) were purchased from Sigma Millipore (Novabiochem) and used as 

received. Fmoc-Lys(biotin)-OH was purchased from Sigma Millipore (Novabiochem) 

and used as received. Fmoc-L-His(Boc)-OH was purchased from Advanced 

ChemTech and used as received. O-(7-azabenzotriazol-1-yl)-N,N,N’,N’-

tetramethyluronium hexafluoro-phosphate (HATU, ≥97.0%) and (7-azabenzotriazol-

1-yloxy)tripyrrolidinophosphonium hexafluorophosphate (PyAOP, ≥97.0%) were 

purchased from P3 Biosystems. Fmoc-Rink amide linker (4-[(R,S)-(2,4-

dimethoxyphenyl)(Fmoc-amino)methyl]phenoxyacetic acid) was purchased from 

Chem Impex Inc (Wood Dale, IL) and used as received.  
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Biosynthesis OmniSolv® grade N,N-dimethylformamide (DMF) was purchased 

from EMD Millipore (DX1732-1) and incubated with 1 pack of AldraAmine trapping 

agents (for 1000 – 4000 mL DMF, Sigma-Aldrich, catalog number Z511706) for 48 

hours prior to use. was purchased from Sigma-Aldrich. Diisopropylethylamine 

(DIEA; 99.5%, biotech grade, catalog number 387649) and piperidine (ACS 

reagent, ≥99.0%) were purchased from Sigma-Aldrich. Formic acid (FA, 97%) was 

purchased from Beantown Chemical, Corp. Reaction vessels were purchased from 

Torviq equipped with a polypropylene frit. To each vessel was added a disc of Porex 

filter paper (0.025” thick, 7-12 micron) from Interstate Specialty Products. 

Dichloromethane (DCM; ≥99.8%, HPLC grade, contains amylene as stabilizer, 

catalog number 34856), trifluoroacetic acid (HPLC grade, ≥99.0%), 

triisopropylsilane (98%, catalog number 233781), diethyl ether (anhydrous, ACS 

reagent, ≥99.0%), acetonitrile (HPLC grade, ≥99.9%), Omnisolv® acetonitrile (LC-

MS grade, AX0156-1), and Omnisolv® water (LC-MS grade, WX0001-1) were 

purchased from Sigma-Aldrich. Methanol was purchased from Millipore Sigma. 

Formic acid Optima LC/MS (A117) was purchased from Fisher Chemical. Water 

was deionized using a Milli-Q Reference water purification system (Millipore). Nylon 

0.22 μm syringe filters were TISCH brand SPEC17984. 

 20 μm TentaGel® M NH₂ Monosized Amino Microsphere resin was 

purchased from Rapp Polymere Inc. (Tübingen, Germany). Nestle Carnation instant 

nonfat dry milk (Code 12428935) was purchased from Nestle Professional (Solon, 

OH). Dynabeads MyOne Streptavidin T1 magnetic microparticles were purchased 

from Invitrogen (Carlsbad, CA). Phosphate buffered saline (10x, Molecular biology 

grade) was purchased from Corning. Sodium chloride (ACS grade) was purchased 

from Avantor. Guanidine hydrochloride (Cat BP178) and sodium phosphate 

monobasic monohydrate were purchased from Fisher Scientific.  

 Mouse anti-hemagglutinin antibody (clone 12ca5) was purchased from 

Columbia Biosciences Corporation (Cat: 00-1722, Frederick, Maryland) biotin-

(PEG)4-NHS ester and biotin-(PEG)4-propionic acid were purchased from ChemPep 
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Inc. (Wellington, FL). Biotinylation of 12ca5 was performed as previously 

described.13 WD repeat-containing protein 5 WDR5 was supplied by Civetta 

Therapeutics (Cambridge, MA).  

4.5. Methods 

4.5.1. Split-and-pool synthesis of linear X12K peptide library 

Synthesis of peptide libraries was performed using 20 μm Tentagel M NH2 resin 

(0.31 mmol/g) for a total of 2.4 x 109 sequences split into aliquots of 2 x 108 

sequences. The resin was suspended in DMF and dividedly evenly between 18 

syringes (all canonical amino acids except for cysteine and isoleucine) for variable 

regions. Couplings were performed using the Fmoc-protected amino acid dissolved 

in DMF (10 eq, 0.40M) with PyAOP (0.9 eq relative to amino acid, 0.38M) activated 

with DIEA (1.1 eq relative to amino acid for histidine, 3 eq relative to amino acid for 

all others). Couplings were incubated for 1 hour. The resin was then recombined 

and washed with DMF, DCM, and DMF. Fmoc deprotection was performed using 

20% piperidine in DMF (1x flow wash, 3 x 5 min batch treatments). The resin was 

washed again with DMF, DCM, then DMF before being subjected to another split-

couple-pool cycle until completion of all randomized positions.  

4.5.2. Peptide cleavage and global deprotection 

Cleavage from solid phase and global deprotection was performed using a 

solution of 95% trifluoroacetic acid, 2.5% water, and 2.5% triisopropylsilane (~20 mL 

cleavage cocktail / g of resin). The solution was added until the resin was fully 

swelled and free flowing, then the resin was agitated on a nutating mixer for 3 

hours. The peptides were triturated with 10:1 cold diethyl ether to cleavage solution. 

The precipitated solid was centrifuged into a pellet. The precipitate was washed 

with cold ethyl ether in the same manner an additional two times. The resulting solid 

pellet was dried gently using N2, suspended in 50% acetonitrile in water (0.1% 

trifluoroacetic acid), and lyophilized.  
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4.5.3. Solid-phase extraction of peptide library  

Peptides were adjusted to 5% acetonitrile in aqueous media (0.1% TFA) and 

purified using Supelclean™ LC-18 SPE Tube, bed wt. 1 g (Millipore Sigma Cat: 

505471). The SPE tube was first conditioned with 3 CV of acetonitrile (0.1% TFA) 

and then equilibrated with 5 CV of 5% acetonitrile in water (0.1% TFA). Then, the 

suspended crude was loaded (Approximately 50 mg peptide loaded onto 1 g bed 

mass) and washed with 10 CV of 5% acetonitrile in water (0.1% TFA). Peptides 

were eluted with 70% acetonitrile (0.1% TFA, 1 CV) and lyophilized. 

4.5.4. Affinity selection 

Dynabeads MyOne Streptavidin T1 magnetic microparticles (3 mg, 300 μL per 

replicate) were aliquoted and washed three times with Wash Buffer composed of 1x 

PBS, 2% nonfat dry milk (NFDM) and 0.01% Tween20. 100 μL per protein replicate 

of washed beads were aliquoted and incubated with biotinylated protein (1.2 eq) for 

1 hour at 4 oC with agitation. At the same time, the peptide library dissolved in 1x 

PBS was combined with prewashed beads (150 μL per replicate) and 

supplemented with 10% NFDM in 1x PBS to a final concentration of 2% NFDM. The 

library mixture was then incubated for 1 hour at 4 oC with agitation. The beads were 

removed from the library mixture via magnetic rack and aliquoted to a 96 Deepwell 

plate as shown below. Protein labelled beads were washed three times with Wash 

Buffer and aliquoted into a 96 Deepwell plate as shown below in fractions based on 

the desired protein loading per replicate. For lower protein concentrations, 

additional unlabeled, prewashed beads were added to keep a constant total amount 

of beads used per sample. An example setup for variable protein concentration is 

shown below in Table 4.1.  

Table 4.1: Example setup for an affinity selection utilizing variable protein concentrations 
using 150 uL of beads total per replicate 

 

Fraction Protein Loading 0% 33% 66% 100%
Unlabeled Beads Vol per well, uL 150 100 50 0
Protein Labeled Beads Vol per well, uL 0 50 100 150
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Affinity selections were then performed using a KingFisherTM Duo Prime 
Purification System in 96 Deepwell Plates (Thermo Fisher Scientific, cat. 
#95040450) with the following setup: 

Plate 1 

A 10 pM/member peptide library diluted into 1x PBS, 2% milk 0.5 
mL 

B 1.5 mg of magnetic beads (150 μL) diluted in Wash buffer (1x PBS, 
2% NFDM, 0.01% Tween20) 

1 mL 

C Wash buffer (1x PBS, 2% NFDM, 0.01% Tween20) 1 mL 

D Reserved for 12-tip Deepwell magnetic comb (Thermo Fisher, 
cat. #97003500) 

1 mL 

 

Plate 2 

A 1x PBS at 4 oC 1 mL 

B 1x PBS at 4 oC 1 mL 

C 1x PBS at 4 oC 1 mL 

D 1x PBS at 4 oC 1 mL 

 

The program performed the following protocol: 

1. Collect comb from Plate 1 Row D 
2. Collect beads from Plate 1 Row B and wash for 30 sec at low 
3. Wash beads for 30 sec in Plate 1 Row C 
4. Incubate immobilized protein for 1 h at 10 °C with slow mixing in Plate 1 Row 
A 

5. Wash immobilized protein for 2 mins each at low speed in Plate 2 Rows A 
through D 
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6. Elute protein by mixing for 1 min at fast speed in Elution Strips 1 and 2 
containing 100 μL of 6M guanidinium chloride in 50 mM sodium phosphate at 
pH 7.4. 

After affinity selection, samples were purified by STAGE Tip preparation, split 

40:60 for initial analysis and targeted analysis separately, and dried using a vacuum 

centrifuge. Dried samples for the initial scouting run were reconstituted into 16 μL of 

nLC-MS/MS mobile phase A and 1.778 μL of Pierce Retention Time Calibration 

Mixture (Thermo Fisher, catalog number 88321). Samples were centrifuged at 21.3k 

rcf for 10 minutes at 4 ºC. 4.5 μL were injected per sample for nLC-MS/MS analysis. 

Dried samples for targeted analysis were reconstituted into 24 μL of nLC-MS/MS 

mobile phase A and centrifuged at 21.3k rcf for 10 minutes at 4 ºC. 4.5 μL were 

injected per sample for nLC-MS/MS analysis. 

4.5.5. Nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) 

analysis 

Peptide sequencing was performed on an EASY-nLC 1200 (Thermo Fisher 

Scientific) nano-liquid chromatography system with an Orbitrap Fusion Lumos 

Tribrid Mass Spectrometer (Thermo Fisher Scientific). Samples were run on a 

PepMap RSLC C18 column (2 μm particle size, 25 cm x 75 μm ID; Thermo Fisher 

Scientific, cat. #ES902) with a nanoViper Trap Column (C18, 3 μm particle size, 100 

A pore size, 20 mm x 75 μm ID; Thermo Fisher Scientific, cat. #164946) for 

desalting. Mobile phase A = water (0.1% FA) and mobile phase B = 80% AcN in 

water (0.1% FA). 

The ion source voltage was set to 2200 volts in positive mode. Primary mass 

spectra were detected using the orbitrap at 120000 resolution with a scan range of 

300-1400 (m/z), RF lens of 30%, a normalized AGC target of 250% with automatic 

injection time, and 1 microscan. Candidate ions were chosen for tandem mass 

spectrometry based on the following criteria: precursor mass range of 300-1200 

(m/z), monoisotopic peak determination set to peptides, minimum intensity 

threshold of 4e4, charge states ranging from +2-+6, dynamic exclusion after 1 



157 
 

 

 

observation for 30 seconds with a ±10 ppm range. Fragmentation was done in the 

orbitrap using HCD followed by EThcD activation types with the following settings: 

1.3 m/z isolation window, 0.3 m/z offset, 30000 resolution, defined first mass of 120 

m/z, 300% normalized AGC target with 100 ms maximum injection time, 2 

microscans in centroid mode. HCD mode used  25% HCD collision energy and 

EThcD used 50% SA collision energy for z = 2 ions, 40% SA collision energy for z = 

3 ions, and 35% SA collision energy for z = 4 to z = 6 ions. For targeted runs, a list 

of m/z values were supplied for each protein with start times 20 minutes before the 

reported retention time and stop times 20 minutes after the reported retention time 

with a tolerance of ±0.02 m/z. Full cycle time for MS1 and MS2 scans was 3 

seconds.  

The following gradient was used: linear gradient 1-45% B from 0-120 min; linear 

gradient 45-90% B from 120-123 min; isocratic 90% B from 123-126 min; linear 

gradient 90-20% B from 126-129 min; isocratic 20% B from 129-132 min; linear 

gradient 20-90% B from 132-135 min; isocratic 90% B from 135-138 min; linear 

gradient 90-20% B from 138-141 min; isocratic 20% B from 141-144 min; linear 

gradient 20-90% B from 144-147 min; isocratic 90% B from 147-152 min.  

Pre-column and analytical column were equilibrated before each run with 8 μL 

and 12 μL of mobile phase A respectively xbefore sample injection. Samples were 

loaded using 12 μL of mobile phase A. Mass data was recorded from 3-120 min.  

4.5.6. Analysis of AS-MS data using pyBinder 

RAW files of the initial runs were converted to mzML file format using 

MSConvert from the ProteoWizard toolkit. Only MS1 spectra were included in the 

conversion. A full guide for the inputs is given with the pyBinder source code. 

Briefly, the names of the proteins and concentrations used are input, as well as 

user-determined limits for selectivity scoring and statistical confidence (default a = 

0.05) along with parameters for peak detection. All inputs are checked for validity 

and output directories are created in the user-specified locations. mzML files are 
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then opened using OpenMS (version 3.0.0) and centroided using the 

PeakPickerHiRes class with the default parameters. Plots comparing the profile and 

centroided versions are generated for inspection.  

Following data centroiding, feature maps are generated for each mzML file 

using the FeatureFinder class with the following parameters: 

isotopic_pattern:mz_tolerance = 0.01, isotopic_pattern:charge_low = 2, 

isotopic_pattern:charge_high = 5, feature:max_rt_span = 3, 

mass_trace:min_spectra = 9, feature:rt_shape = asymmetric, seed:min_score = 0.5, 

feature:min_score = 0.5, mass_trace:max_missing = 4. All other parameters were 

used at their default value. All feature maps were exported to featureXML file 

format.  

The feature maps were then aligned in retention time with the feature map with 

the greatest number of features as a reference. The 

MapAlignmentAlgorithmPoseClustering class was used with the following 

parameters: superimposer:mz_pair_max_distance = 0.5, 

pairfinder:distance_RT:max_difference = 300, superimposer:max_shift = 2000. All 

other parameters were used at their default value. Original retention times for each 

feature map were stored separately. Plots showing the retention times before and 

after alignment were generated. The aligned feature maps were then grouped into a 

consensus feature map using the FeatureGroupingAlgorithmQT class with the 

following parameters: distance_MZ:max_difference = 0.01, 

distance_RT:max_difference = 150. All other parameters were used at their default 

value. Retention time and mass-to-charge ratios were then extracted from the 

consensus map for use in further analysis, and the consensus map was also 

exported to a consensusXML file.   

A mass filter is applied to the list of all features, defined as having a minimum 

mass of a sequence comprised of only glycine and a maximum mass of a sequence 

comprised of only tryptophan. Next, MS1 data is read for all files and extracted ion 
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counts (EICs) are taken for each peptide feature in each file, defined with mass-to-

charge tolerance of 0.01 and a retention time window as specified by the user 

(default 2 minutes). The EIC signal is smoothed using a Savitsky-Golay noise filter 

from the SciPy module (version 1.11.1) with a window length of 19 and a polynomial 

order of 9. Peaks are then detected using the PeakUtils module (version 1.3.4) with 

thresholds defined by the maximum observed signal per EIC. The largest peak for 

each EIC is stored and integrated using the cumulative_trapezoid method from the 

SciPy module, and if a peak is not detected, a placeholder value near the limit of 

detection for the instrument is used.  

Selectivity scores and feature p-values were calculated using the areas of the 

highest concentration of protein, where selectivity scores are calculated as shown in 

Figure 4.3. Welch’s ANOVA test is used to determine statistical significance for 

more than two proteins, and a homoscedasticity test is performed to check the 

variances of each group. If the variances are equal, Tukey’s test is then used to 

calculate p-values across pairs of proteins; if the variances are not equal, a Games-

Howell post hoc test is used. If the p-value falls below the specified threshold, the 

protein areas that are statistically significant are labelled with the relevant protein.  

Concentration-dependent enrichment scoring is performed using the different 

concentration levels of protein used, as well as the control run using unlabeled 

beads. The percentage of protein loading on the bead and corresponding areas are 

used to calculate the CDE score as shown in Figure 4.3. The results from both 

scores are then filtered as desired and exported into an inclusion list that can be 

exported directly into the Thermo Xcalibur Method Editor (Version 4.2.47) or into an 

Excel spreadsheet that displays the EICs and CDE score calculations for a 

specified number of top candidates. 
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4.6. Code availability 

All code used in this work is available at https://github.com/malee97/pyBinder. A 

Jupyter notebook facilitating the usage of pyBinder is present in the repository and 

is the primary method of using pyBinder. 

https://github.com/malee97/pyBinder
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4.7. Appendix: Full pyBinder Output  

 
Figure 4.6: Retrospective analysis of previously published AS-MS experiments reveals 
extent of “missing values” problem. Although high affinity ligands were discovered from 
these experiments, there is still a large volume of peptide features that are not analyzed 
during an untargeted run, leaving many potential ligands unobserved. 
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Table 4.2: Parameter optimization for the feature finding process in OpenMS. First round 
results were judged based on the percentage of features in common with the output from 
PEAKS 8.5 and balanced around the total number of annotated features, while second 
round results were judged based on the percentage of previously identified ligands to 
12ca5 and ACE2 present in the OpenMS output. 

 

Feature finder parameter testing: From 12ca5 From ACE2

Entry
Intensity: 
bins

mass_trace: 
mz_toleranc
e

mass_tra
ce:min_s
pectra

mass_trace: 
max_missin
g

mass_trace: 
slope_bound

isotopic_p
attern:cha
rge_low

isotopic_p
attern:cha
rge_high

isotopic_pa
ttern:mz_to
lerance

isotopic_pattern: 
intensity_percent
age

isotopic_pattern: 
intensity_precent
age_optional

isotopic_pattern: 
optional_fit_impro
vement

isotopic_pattern: 
mass_window_wi
dth

seed: 
min_
score

fit: 
max_iter
ations

feature: 
min_sco
re

feature: 
min_isoto
pe_fit

feature: 
min_trace
_score

feature: 
min_rt_s
pan

feature: 
max_rt_
span

feature: 
rt_shape

feature: 
max_inters
ection

% ID 
from 
set

% ID 
from 
set

Total 
Features 

First Round
1 (default) 10 0.02 5 1 0.5 2 5 0.04 10 0.1 2 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 97.45 100 351135

10 0.02 5 1 0.5 2 5 0.04 0.1 0.1 2 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 0 0 0
10 0.02 5 1 0.5 2 5 0.04 1 0.1 2 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 80.04 97.96 211364
10 0.02 5 1 0.5 2 5 0.04 5 0.1 2 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 92.99 97.96 283895
10 0.02 5 1 0.5 2 5 0.04 10 0 2 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 97.45 100 350761
10 0.02 5 1 0.5 2 5 0.04 10 0.5 2 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 97.45 100 350388
10 0.02 5 1 0.5 2 5 0.04 10 1 2 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 97.45 100 349979
10 0.02 5 1 0.5 2 5 0.04 10 5 2 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 97.45 100 343139
10 0.02 5 1 0.5 2 5 0.04 10 10 2 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 97.66 100 345999
10 0.02 5 1 0.5 2 5 0.04 10 50 2 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 0 0 0
10 0.02 5 1 0.5 2 5 0.04 10 0.1 2 2 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 97.45 100 350843
10 0.02 5 1 0.5 2 5 0.04 10 0.1 2 5 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 97.45 100 350744
10 0.02 5 1 0.5 2 5 0.04 10 0.1 2 10 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 97.45 100 351135
5 0.02 5 1 0.5 2 5 0.04 10 0.1 2 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 97.24 100 349784
20 0.02 5 1 0.5 2 5 0.04 10 0.1 2 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 97.45 100 351953
10 0.02 5 2 0.5 2 5 0.04 10 0.1 2 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 97.66 100 354623
10 0.02 5 1 0.5 2 5 0.04 10 0.1 5 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 97.45 100 349165
10 0.02 5 1 0.5 2 5 0.04 10 0.1 10 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 97.24 100 346309
10 0.02 5 1 1 2 5 0.04 10 0.1 2 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 96.82 97.96 145613
10 0.02 5 1 2 2 5 0.04 10 0.1 2 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 97.45 95.92 79207
10 0.02 5 1 5 2 5 0.04 10 0.1 2 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 96.82 97.96 65395
10 0.02 5 1 10 2 5 0.04 10 0.1 2 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 96.6 97.96 64481
10 0.02 5 1 1000 2 5 0.04 10 0.1 2 25 0.8 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 96.6 97.96 63997
10 0.02 5 1 0.5 2 5 0.04 0.1 0.1 2 25 0.5 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 0 0 0
10 0.02 5 1 0.5 2 5 0.04 15 0.1 2 25 0.5 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 98.3 100 373446
10 0.02 5 1 0.5 2 5 0.04 20 0.1 2 25 0.5 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 98.09 100 390483
10 0.02 5 1 0.5 2 5 0.04 25 0.1 2 25 0.5 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 98.09 100 419866
10 0.02 5 1 0.5 2 5 0.04 10 20 2 25 0.5 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 99.15 100 446136
10 0.02 5 1 0.5 2 5 0.04 10 30 2 25 0.5 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 98.51 100 375865
10 0.02 5 1 0.5 2 5 0.04 10 40 2 25 0.5 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 0 0 0
10 0.02 5 1 0.5 2 5 0.04 10 50 2 25 0.5 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 0 0 0
10 0.02 5 1 0.5 2 5 0.04 10 0.1 1 25 0.5 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 97.45 100 352011
10 0.02 5 1 0.5 2 5 0.04 10 0.1 2 25 0.5 500 0.5 0.3 0.5 0.333 2.5 asymmetric 0.7 97.45 100 367276
10 0.02 5 1 0.5 2 5 0.04 10 0.1 2 25 0.5 500 0.5 0.4 0.5 0.333 2.5 asymmetric 0.7 97.45 100 361250
10 0.02 5 1 0.5 2 5 0.04 10 0.1 2 25 0.5 500 0.5 0.6 0.5 0.333 2.5 asymmetric 0.7 97.88 100 334588
10 0.02 5 1 0.5 2 5 0.04 10 0.1 2 25 0.5 500 0.5 0.7 0.5 0.333 2.5 asymmetric 0.7 97.45 100 351135
10 0.02 5 3 0.5 2 5 0.04 10 0.1 2 25 0.5 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 97.88 100 356447
10 0.02 5 4 0.5 2 5 0.04 10 0.1 2 25 0.5 500 0.5 0.5 0.5 0.333 2.5 asymmetric 0.7 97.88 100 357762
10 0.02 5 0.25 2 5 0.04 10 0.1 2 25 0.5 500 0.5 0.5 0.333 2.5 asymmetric 0.7 98.51 100 621603

DONE ON DIFFERENT SET - THIS ONE COMPARED TO PEAKS FEATURES, NOT LIST OF D**DYAS AND ABPS
Second Round - matched to PEAKS Output

10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 25.32 22.7 5695
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.7 25.47 22.73 5815
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.5 25.39 22.74 5773
10 0.004 10 2 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 30.36 28.12 7047
10 0.004 10 3 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 35.51 33.36 8523
10 0.004 10 4 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 41.2 39.81 9776
10 0.004 10 5 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 46.23 45.37 10827
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.5 0.5 0.333 2.5 symmetric 0.35 24.93 22.29 5373
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.6 0.5 0.333 2.5 symmetric 0.35 25.31 22.8 5459
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.7 0.5 0.333 2.5 symmetric 0.35 28.55 22.93 5583
10 0.004 5 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 80.56 82.1 50537
10 0.004 6 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 65.64 66.9 21188
10 0.004 7 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 65.64 66.9 21188
10 0.004 8 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 42.23 41.03 10425
10 0.004 9 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 42.23 41.03 10425
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.5 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 44.83 44 9108
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.6 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 43.67 42.7 8779
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.7 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 38.34 37.26 7486
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.5 0.8 0.5 0.333 2.5 symmetric 0.35 39.23 38.02 7522
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.6 0.8 0.5 0.333 2.5 symmetric 0.35 35.58 34.04 7166
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 asymmetric 0.35 27.06 24.89 5992

5 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 24.87 22.17 5366
15 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 25.05 22.31 5415
20 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 25.04 22.28 5415
10 0.004 10 1 0.1 2 5 0.005 0.1 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 5.02 5.16 896
10 0.004 10 1 0.1 2 5 0.005 1 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 9.57 8.75 1993
10 0.004 10 1 0.1 2 5 0.005 5 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 17.92 15.62 3944
10 0.004 10 1 0.1 2 5 0.005 15 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 25.23 22.51 5702
10 0.004 10 1 0.1 2 5 0.005 20 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 26.28 23.35 5985
10 0.004 10 1 0.1 2 5 0.005 25 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 26.49 23.65 6082
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 25.01 22.27 5405
10 0.004 10 1 0.25 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 27.97 24.96 6340
10 0.004 10 1 1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 19.84 16.34 4986
10 0.004 10 1 2 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 19.35 15.84 4914
10 0.004 10 1 5 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 19.35 15.84 4903
10 0.004 10 1 10 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 19.35 15.84 4902

10 0.004 10 1 0.1 2 5 0.005 10 0 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 25.22 22.46 5388
10 0.004 10 1 0.1 2 5 0.005 10 0.5 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 1.35 24.84 22.11 5406
10 0.004 10 1 0.1 2 5 0.005 10 1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 2.35 24.89 22.13 5406
10 0.004 10 1 0.1 2 5 0.005 10 5 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 3.35 25.06 22.51 5460
10 0.004 10 1 0.1 2 5 0.005 10 10 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 4.35 24.8 21.92 5438
10 0.004 10 1 0.1 2 5 0.005 10 20 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 5.35 23.54 19.89 6186
10 0.004 10 1 0.1 2 5 0.005 10 50 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 6.35 0 0 0
10 0.004 10 1 0.1 2 5 0.005 10 0.1 1 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 7.35 24.95 22.15 5421
10 0.004 10 1 0.1 2 5 0.005 10 0.1 5 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 8.35 24.42 21.59 5355
10 0.004 10 1 0.1 2 5 0.005 10 0.1 10 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 9.35 24.09 21.33 5316
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 400 0.7 0.8 0.5 0.333 2.5 symmetric 10.35 25.01 22.27 5403
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 600 0.7 0.8 0.5 0.333 2.5 symmetric 11.35 25.01 25.77 5400
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 800 0.7 0.8 0.5 0.333 2.5 symmetric 12.35 25.01 22.27 5406
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 1000 0.7 0.8 0.5 0.333 2.5 symmetric 13.35 25.03 22.34 5433
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 1.5 symmetric 14.35 13.96 11.39 2624
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2 symmetric 15.35 21.19 18.44 4206
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 3 symmetric 16.35 25.93 23.17 6111
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 5 symmetric 17.35 25.93 23.17 6112
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.2 2.5 symmetric 18.35 24.97 22.24 5404
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.5 2.5 symmetric 19.35 20.85 18.13 4126
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.3 0.333 2.5 symmetric 20.35 25.18 22.56 5943
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.4 0.333 2.5 symmetric 21.35 25.49 22.81 5693
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.6 0.333 2.5 symmetric 22.35 23.66 20.73 4834
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.7 0.333 2.5 symmetric 23.35 17.76 14.89 3570
10 0.004 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.8 0.333 2.5 symmetric 24.35 8.03 5.23 1623

10 0.004 10 1 0.1 2 5 0.001 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 11.69 8.36 4205
10 0.004 10 1 0.1 2 5 0.002 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 15.9 12.4 5249
10 0.004 10 1 0.1 2 5 0.003 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 18.29 14.69 5809
10 0.004 10 1 0.1 2 5 0.004 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 21.36 17.85 6109
10 0.004 10 1 0.1 2 5 0.006 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 26.38 23.25 6716
10 0.004 10 1 0.1 2 5 0.007 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 30.44 27.66 7131
10 0.004 10 1 0.1 2 5 0.008 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 34.26 32.11 7568
10 0.004 10 1 0.1 2 5 0.009 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 38.15 36.23 8082
10 0.004 10 1 0.1 2 5 0.01 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 41.73 40.44 8555
10 0.001 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 9.92 8.59 2365
10 0.002 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 19.34 16.17 5127
10 0.003 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 22.08 18.61 5915
10 0.005 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 24.24 20.54 6643
10 0.006 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 25.85 22.39 6608
10 0.007 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 26.95 23.78 6707
10 0.008 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 28.22 25.19 6940
10 0.009 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 28.68 25.55 7229
10 0.01 10 1 0.1 2 5 0.005 10 0.1 2 25 0.8 500 0.7 0.8 0.5 0.333 2.5 symmetric 0.35 29.4 26.41 7340

Final Result: 10 0.004 9 4 0.1 2 5 0.01 10 0.1 2 25 0.5 500 0.5 0.8 0.5 0.333 3 asymmetric 0.35 93.38 95.25 130993
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Figure 4.7: Simulated values of concentration-dependent enrichment and their 
hypothesized affinities. A stronger affinity is expected to pull down a greater fraction of a 
ligand at lower protein concentrations, and that property is reflected in the CDE score. 
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Figure 4.8: Complete results for 12ca5 of the retrospective analysis of AS-MS performed 
against 12ca5 and ACE2 show extent of data incompleteness. Sequence coverage of the 
untargeted analysis was in the range of 10 – 18% of the total identified features, where 
sequence fidelity was as low as 0.24 – 1.1%. pyBinder analysis identified about 7700 target 
specific features for 12ca5, compared to the 373 peptides with an ALC ≥ 80 identified in the 
untargeted run. Because this analysis was done retrospectively, the concentration-
dependent enrichment scores were unable to be calculated since the selection was 
performed with only one concentration of protein.   
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Figure 4.9: Complete results for ACE2 of the retrospective analysis of AS-MS performed 
against 12ca5 and ACE2 show extent of data incompleteness. Sequence coverage of the 
untargeted analysis was in the range of 10 – 18% of the total identified features, where 
sequence fidelity was as low as 0.24 – 1.1%. pyBinder analysis identified about 3100 target 
specific features for ACE2, compared to the 80 peptides with an ALC ≥ 80 identified in the 
untargeted run. Because this analysis was done retrospectively, the concentration-
dependent enrichment scores were unable to be calculated since the selection was 
performed with only one concentration of protein.   
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Figure 4.10: Plots comparing the calculated selectivity score versus the p-value for 
features identified from selection against 12ca5 and WDR5. Data points in blue showed are 
identified as statistically significant (a = 0.05) when compared to the extracted areas in the 
opposing protein. Data points in red have a p-value above the threshold. 

 
Figure 4.11: Plots comparing the calculated CDE score versus the p-value for features 
identified from selection against 12ca5 and WDR5. Data points in blue showed are 
identified as statistically significant (a = 0.05) when compared to the extracted areas in the 
opposing protein. Data points in red have a p-value above the threshold. 
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Figure 4.12: Plots comparing the calculated selectivity score versus the selectivity score for 
features identified from selection against 12ca5 and WDR5. Data points in blue showed 
have a selectivity score greater than 0.5, which for an experiment comparing two proteins 
signifies a degree of selectivity for that protein. 

 
Figure 4.13: Plot comparing the selectivity scores, CDE scores, and p-values calculated by 
pyBinder for all detected features.   
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Figure 4.14: Rankings of features based on their (A) selectivity scores and (B) CDE scores 
with respect to 12ca5 or WDR5. Relative values for selectivity score are calculated based 
on the fraction of total area observed as defined in Figure 4.3, while absolute values for 
selectivity score are based on the total area observed for a single protein and are not 
normalized relative to total area across all proteins. 
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Figure 4.15: Visualization of the retention times and scoring for the inclusion list of peptide 
features for each protein. (A) Histograms show the distribution of retention times, selectivity 
scores, and concentration-dependent enrichment scores for 12ca5 and WDR5. (B) 
Estimated feature maps for the inclusion lists for 12ca5 and WDR5, with the retention time 
windows used in the targeted sequencing runs shown for each feature. 



170 
 

 

 

 
Figure 4.16: Analysis of the scoring for peptides containing the characteristic 12ca5 
binding motif D**DY(A/S). Fewer overall sequences were observed compared to WDR5, 
likely due to the increased stringency of binding introduced by utilizing a four-residue motif 
rather than three-residue motifs seen for WDR5. Overall, the trend of using the sign of the 
CDE score as a filter still applies, but the weakness of the p-value is also shown. 
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5.1. Introduction 
In the chemical space between small molecules and biologics, 

peptidomimetic therapeutics have become more prevalent in regulatory approvals, 

with 80 drugs now in the market.1,2 With higher clinical trial success rates than small 

molecules,3 peptides and peptidomimetics can be inexpensive relative to other 

biologics,1 while offering sufficiently large surface area for high-affinity interactions 

with shallow or difficult binding interfaces.4–6 For initial de novo discovery of peptide 

ligands, several affinity selection techniques isolate high-affinity ligands to 

biomolecular targets including phage display,7,8 mRNA display,9 and recently affinity 

selection-mass spectrometry (AS-MS).10–12  

However, the development of preclinical peptidomimetic candidates can be 

time-consuming due to the lack of guiding chemical design rules. Peptide ligands 

nominated from affinity selection or virtual screening are experimentally validated to 

confirm their affinity or activity. Then, peptides undergo optimization for lead 

generation through multiple cycles of synthesis, biophysical, and biological 

evaluations.13–15 The goal of this optimization process is to increase activity and 

proteolytic stability, limit toxicity, and improve pharmacokinetics. Often, diverse 

abiotic or “noncanonical” amino acids and macrocyclization are utilized toward this 

goal.1,2,9,16 This process can be especially challenging if the hit is of poor initial 

quality or affinity,15 in a local activity minimum, or if it exhibits nonintuitive “activity 

cliffs.”17 At the end of this process, critical features or residues are understood to 

drive high-affinity binding or function, called a “motif,”1–3,18–20 However, limited 

chemical design rules guide the exchange of canonical for noncanonical amino 

acids in this process, with peptidomimetics known for breaking rules that guide 

small molecule development.21 As such, the most reliable approach is 

comprehensive sampling of the unexplored, noncanonical chemical space through 

time-consuming cycles of synthesis and experimental testing of individual 

compounds.18,19 Thus, this process would greatly benefit from intuitive tools to 
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translate functional knowledge across the canonical and noncanonical chemical 

spaces and predict peptidomimetic functionality before synthesis.22 

Machine learning (ML) is poised to facilitate a paradigm shift in drug 

discovery and development.22–24 Generally, unsupervised methods can identify 

patterns within unlabeled datasets, hence its common application in omics data 

analysis.25–27 Additionally, unsupervised learning can evaluate embeddings from 

supervised models, as dimensionality reduction is typically performed with no 

weighting.28–31 Supervised learning can interpolate and expand from labeled 

training data, where labels describe function or activity.23 Where there are 

sufficiently large datasets of labeled peptide data, supervised learning has been 

applied toward the discovery of antimicrobial, cell-penetrant, or immunogenic 

peptides.32–34 Though significant advancements have been made,35 publicly-

available peptide ligand data do not appear large or diverse enough to provide 

general ligand prediction, with little-to-no data available for peptidomimetics that 

include noncanonical amino acids. Thus, state-of-the-art peptide ligand discovery 

programs currently deploy a mixture of computational and ML analysis with expertly 

gathered experimental datasets. Recent examples largely include genetically-

encoded discovery methods, where round-to-round enrichment serves as the label 

in supervised learning analysis.36–38 

In contrast to genetically-encoded platforms, AS-MS has unparalleled use of 

abiotic chemical libraries, meaning its datasets could enable the development of an 

ML approach to broadly connect chemical space. AS-MS has historically been a 

screening tool;39 but has been advanced with target-focused libraries,16,40 and 

onward to de novo discovery with peptidomimetics against multiple biomolecular 

targets with large libraries (>108 members).10–12 AS-MS experiments are rapid, 

utilizing only a single round of enrichment to identify high-affinity binders. However, 

this practical advantage limits the potential application of several commonly utilized 

supervised ML models. Direct modeling of binding affinity is not possible since AS-

MS does not provide binding affinity or enrichment information about each reported 
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compound, prohibiting regression. A binary classification model could be considered 

(i.e., binder vs nonbinder), but it would also lack any resolution of the continuum of 

binding across the range of reported compounds (KD ≲ 300 nM).11 The utility of a 

classification model could be further compromised by target-dependent effects, 

which can strongly affect the resulting quality, quantity, and extent of nonspecific 

binder recovery within the data. Nevertheless, unsupervised learning techniques 

including dimensionality reduction remain well-suited to identify concealed patterns 

or clusters from affinity selection datasets.31 In contrast to binary classification, 

dimensionality reduction may offer a more accessible, reliable, and unbiased 

representation of the data from ligand discovery experiments to aid expert 

interpretation. Toward this goal, two challenges remain: First, because of the 

noncanonical chemical diversity available to AS-MS, an optimal encoding 

representation of peptidomimetics should be investigated.41 Second, the choice of 

dimensionality reduction method and optimization remains open and is usually 

referred to as an art more than a science.25 

Herein, we demonstrate the utility of unsupervised learning to generate two-

dimensional “maps” of the chemical space from peptide ligand discovery datasets. 

These maps visualize the chemical space of peptides and noncanonical 

peptidomimetics isolated from AS-MS protocols. For this study, we utilized anti-

hemagglutinin antibody (12ca5) as the protein target. We surveyed five diverse 

representation methods ranging in complexity from low-dimensional one-hot 

encoding and physicochemical encoding, to high-dimensional protein language 

pretrained representations from the Evolutionary Scale Model-2 (ESM-2),42 

extended connectivity Fingerprints (ECFP_6), and N-grams encoding.30,32,43 For 

dimensionality reduction, we primarily compared linear and nonlinear decomposition 

by principal component analysis (PCA) and uniform manifold approximation 

(UMAP), respectively. Clusters within the constructed maps enabled highly sensitive 

motif discovery by the isolation of the consensus and centroid sequence of the 

cluster. Lastly, we defined boundaries that separate regions of high-affinity peptides 
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from the remaining chemical space, represented by nonspecific peptides and 

peptides sampled from the original library. While seen first in the canonical space, 

these boundaries are shown to be consistent in the broader peptidomimetic space, 

as supported by the experimental testing of all peptidomimetics discovered. AS-MS 

demonstrated its rapid ability to sample the noncanonical sequence space, with the 

discovery of mixed canonical-noncanonical peptidomimetic demonstrating a KD of 

210 pM. Thus, we expect these sequence space maps to inform the derivatization 

and generation of functional high affinity peptidomimetics. 

5.2. Results and Discussion 

5.2.1. Diverse representations and dimensionality reduction methods create 

chemical space maps of peptides discovered by AS-MS. 

AS-MS experiments using anti-hemagglutinin antibody (12ca5) provided a 

ligand dataset for unsupervised learning analysis. Twelve libraries of X12K design 

each containing 200 million peptides (2.4 billion total) were synthesized, validated, 

and used in AS-MS, where X is any proteinogenic “canonical” amino acid, except 

cysteine and isoleucine. As an affinity selection, AS-MS only reports peptide ligands 

with sufficient binding affinity (4,104 peptides after filtering across all libraries), 

whereas nonbinding peptides are washed away and unidentified (Figure 5.1A). With 

less than 350 peptides identified per experiment, nearly all of the 200 million library 

peptides used do not bind. Thus, we sequenced a small subsample (e.g., ~500 

peptides) of each X12K library to generate a dataset of nonbinders (5,047 peptide 

after filtering). The subsample of the libraries does not contain any motifs or pattern, 

as observed in Figure 5.11, and appears to be randomly dispersed over the X12K 

sequence space. Thus, by comparing target-enriched AS-MS ligands versus the 

subsampled library, we expected that overrepresentation of peptides with shared 

motifs within the AS-MS ligand could be due to target-based affinity enrichment. 

Five different representations were used: one-hot, physicochemical property, 

latent embeddings from the evolutionarily-learned language model ESM-2, 
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Fingerprint, and N-grams based encoding. All encoding methods strive to maintain 

human interpretability, while capturing sufficient ‘machine-readable’ detail.23,24,44 

First, one-hot and physicochemical encoding were used as common encoding 

methods (Table 5.5, see Section 5.5.9). Third, we utilized latent embeddings of the 

entire peptide from the protein language model ESM-2.26,42 Evolutionarily-pretrained 

models including ESM-2 infer properties from the primary sequence, and could 

provide additional homological information outside of other encodings.26,42 Fourth, 

extended connectivity Fingerprints (ECFP_6) from RDKit represented each amino 

acid as a vector, where each index indicates the presence (1) or absence (0) of a 

specific molecular substructure (see Figure 5.6). Similarities between amino acids 

including noncanonicals is encoded through shared substructures.32,45  Fifth, N-

grams encoding represented the entire peptide by its ungapped motifs, irrespective 

of position. The possible n-mer motifs were pre-calculated from the dataset to 

maintain computational practicality (Figure 5.8). Overall, these representations 

cover diverse aspects peptides across a range of dimensionalities (vector length, 

Figure 5.1B). 

For dimensionality reduction, three methods were deployed based on the 

diversity of their theoretical underpinning including linear, non-linear reduction, and 

similarity mapping. Principal component analysis (PCA)46 was used as the linear 

dimensionality reduction method. PCA is highly interpretable and deterministic, 

because components are built from the global variance of the data. Uniform 

manifold approximation (UMAP)31 provided non-linear reduction and is user-friendly, 

requiring little hyperparameter optimization. The primary UMAP hyperparameter of 

n_neighbors was optimal at 5-10% of the dataset size to balance the representation 

(Figure 5.9). In Figure 5.1B, the AS-MS ligand data was combined with nonbinders 

from sampling the library without re-learning. The similarity mapping method, 

multidimensional scaling, showed poor ability to form any clusters (Figure 5.10) and 

the nonbinder library peptides could not be added without re-learning.  
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Figure 5.1: Affinity selection-mass spectrometry (AS-MS) discovers peptides that appeared 
in separate regions from nonbinders in sequence space maps constructed by unsupervised 
dimensionality reduction across diverse encoding methods. (A) From AS-MS with 12ca5, 
4,104 peptide ligands were identified after filtering and 5,047 peptides were identified as 
presumed nonbinders by directly sampling the original peptide library. (B) AS-MS peptides 
were encoded using one-hot, physicochemical property, latent space embeddings from the 
protein transformer language model (ESM-2), Fingerprint, and N-grams encoding methods, 
each describing different aspects and dimensional (vector) lengths. Dimensionality 
reduction of encoded peptides using PCA and UMAP constructed two-dimensional “maps” 
of the sequence space. Each peptide has a corresponding embedding (coordinate point) on 
the two-dimensional map, and several points densely grouped together form a cluster.  

5.2.2. Novel sequences are found at the edge of PCA maps and at the center 

of UMAP clusters. 

The encoding and dimensionality reduction method strongly affect the 

resulting map (Figure 1B). Across all representations, PCA reduction placed the 

nonbinding library peptides at the center of the map, while most AS-MS ligands 
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were pushed toward the edge. Only one-hot encoding provided distinct clusters, 

while physicochemical, ESM-2, and Fingerprint encoding provided 3 diffuse clusters 

at the map edge. In contrast to PCA, UMAP showed tight clusters with all 

encodings, while nonbinding library peptides filled the cluster interspace. All maps 

showed approximately 5-6 macro-clusters with varying resolution of smaller 

clusters. N-grams encoding showed a multitude of clusters grouped loosely into 

macro-clusters, far beyond all other methods. Color-coding 12ca5-specific labels 

further supported the localization of novel sequences at the PCA map edge and the 

center of UMAP clusters, separate from nonspecific or nonbinding library peptides 

(see Figure 5.12). Peptides containing the known high-affinity motif D**DY(A/S) 

were labeled as 12ca5-specific binders and were located mostly at the PCA map 

edge and in the center of UMAP clusters.12,47,48 AS-MS peptides that did not contain 

the common motif in any form were labeled as nonspecific (Table 5.6, see Section 

5.7.2) and were found near the nonbinding library peptides at the center of PCA 

maps and in the UMAP cluster interspace. 
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Figure 5.2: In-depth motif discovery was made possible by high-dimensional peptide 
encoding techniques (ESM-2, Fingerprint, and N-grams) with UMAP, expanding upon the 
commonly known motif of D**DY(A/S). (A) All sequence space maps were analyzed to 
detect the sequences within dense groups of points (clusters), wherein each point 
represents a peptide. For each cluster, the geometric average of all peptide coordinates is 
marked with a black marker dot, defining the cluster center. Analysis of the sequences 
within each cluster allowed the assignment that the cluster contains a consensus sequence 
or motif that expands (orange) upon the common motif (blue), or is weak (gray). Maps 
constructed using UMAP and high-dimensional peptide encoders (ESM-2, Fingerprint, and 
N-grams encoding) provided most of the clusters with expanded motif information (see 
Figure 5.13 for all). (B) Corresponding logo plots, consensus sequences, and a centroid 
sequence for each method, corresponding to the numbered clusters in A. The centroid 
sequence of each cluster was reported as the peptide closest to the geometric center 
(black dot), with the option to report more sequences interspersed within the cluster 
available. Because N-grams encoding is irrespective of frameshift, sequences within each 
cluster were aligned by ClustalW249 to the second position in order to simply report the logo 
plot displaying the consensus sequence (motif) within the cluster. Logo plots were 
constructed using Logomaker.50 Centroid sequences from N-grams can show the exact 
frameshift location of the motif (e.g., UMAP N-grams Cluster 1 motif is *DLHDYA*, which 
starts at frameshift 7). For brevity, the information from only five clusters are shown (see 
Section 5.7.4 for all). 

Each cluster was assigned a label based on its consensus sequence and 

logo plot to either expand upon (shown in orange) the common motif (D**DY(A/S), 

shown in blue) or contain weak motifs shown in gray (Figure 5.2). Clusters were 
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algorithmically detected based on cluster density (Table 5.7).51 Density-based 

spatial clustering of applications with noise (DBSCAN)51 was found especially 

useful as clusters initialized at the dense cluster center, the known location of novel 

sequences. Most maps did not contain clusters with expanded motifs beyond the 

common motif (Figure 5.13). However, four maps showed clusters that contained 

expanded motifs and revealing more information depth from this discovery dataset 

(Figure 5.2). With PCA, one-hot encoding revealed motifs containing an additional 

alanine and additional aspartic acids (Table 5.8). However, of the maps that 

contained cluster with expanded motifs, the PCA one-hot map also showed the 

largest number of weak motifs. 

5.2.3. High-dimensional descriptors provided most of the expanded motifs 

discovered in UMAP-constructed maps.  

UMAP-constructed maps of the peptides encoded by high-dimensional 

descriptors (ESM-2, Fingerprint, and N-grams) provided additional clustering 

resolution to reveal many expanded motifs. ESM-2 encoding showed some similar 

motif results as the one-hot encoded PCA map, with additional weighting for N-

terminal methionine. The one-hot, physicochemical, and Fingerprint encoded maps 

exhibited six ‘macro-clusters’ arising from the frameshifts of the common motif in a 

12-mer variable region. However, the Fingerprint map provided more cluster 

resolution and expanded motifs. Moreover, of all the UMAP-constructed plots, the 

Fingerprint encoded map balanced cluster resolution, resulting chemical motif 

information depth, while maintaining a globally connected chemical space, with 

nonbinding library peptides contiguously filling the cluster interspace (Figure 5.1B). 

By far, N-grams encoding with UMAP provided the highest cluster resolution 

and motif detection sensitivity, providing 64 clusters containing expanded motifs and 

more information depth than leading techniques. This high resolution is likely 

because the N-grams encoding only depends on the presence or absence of a n-

mer or motif, irrespective of its frameshift. Thus, all frameshifts of a motif are 
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encoded the same, combining to increase the sensitivity of detection. For motif 

detection comparison, the AS-MS ligand data was input to the MEME Suite using 

XSTREME,52 one of the leading motif detection and discovery platforms.53 The 

XSTREME analysis found only the common D**DY(A/S) motif within the dataset 

(see Section 5.7.6), except the expanded motif of *D**DYAD*. With our highly 

sensitive clustering approach, all motifs can be ranked and aid in building or 

contextualizing structure activity relationships from discovery datasets. For this 

target (12ca5), the preferred motif appeared to be *DΦΠDYA*, with Φ = L, V, and M, 

and Π = amino acids including Q, E, H, or P, consistent with literature.12,47,48  

 
Figure 5.3: N-grams encoding with UMAP provided highly sensitive clustering and 
identification of ≤10 unaligned target peptides, which contained a 6-mer target motif at 
random frameshifts in a large dataset of nonbinding library peptides. A. Target peptides 
containing a *DLHDYA* motif at random frameshifts from the AS-MS data were combined 
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with library peptides for 5,000 total to test the sensitivity of successful clustering, detection, 
and identification. N-grams encoding with UMAP provided the lowest threshold of ≤10 
peptides required for the formation of a tight, distinct cluster, primarily because N-grams 
encoding is agnostic of frameshift by design. The sensitivity of detection was compared to 
the MEME Suite using XSTREME,52,53 which required 20 peptides before the motif was 
detected. B. One-hot and Fingerprint encoding were unable to produce distinct clusters with 
10 target peptides. At 80 target peptides, one-hot and Fingerprint encoded UMAP maps 
exhibited 7 clusters each for the frameshifts of the target peptide motif (Figure 5.24). AS-
MS peptides are shown in blue with library peptides in gray. 

Toward further proving its motif detection sensitivity, N-grams encoding 

clustered as few as 10 unaligned motif-containing peptides in a large dataset, 

whereas the leading technique XSTREME required 20 sequences (see Section 

5.7.5 and 5.7.6.2). The utility of this mapping approach hinges upon the sensitive 

clustering of novel sequences together in low-data regimes. Thus, we evaluated 

dimensionality reduction-encoding pairs to cluster and identify a small number of 

similar peptides containing an unaligned motif (*DLHDYA*) in a large dataset of 

library peptides (5,000 total). XSTREME analysis uses deterministic optimization 

based on the expectation maximization to perform motif detection.53 Our clustering 

method could be categorized to perform enumeration (i.e., enumerate all n-mers), 

which is inherently more sensitive. Enumeration is computationally avoided; 

however, our approach is feasible because it precomputes n-mers from the input 

peptides, which are short relative to genes. For the same data, one-hot and 

Fingerprint encoding required ≥ 80 unaligned peptides (Figure 5.3B), but only 

required ≤ 10 peptides if the motif was placed at the same frameshift (Figure 5.25), 

meaning the clustering limit is primarily limited by UMAP.  

Related to sensitivity, the augmentation of a small AS-MS ligand dataset with 

library peptides unexpectedly clarified the appearance and density of clusters. Maps 

prepared from a small number (~100) of peptides appeared dispersed, even for 

highly similar peptides. However, in these low data regimes, augmenting the 

dataset with nonbinding library peptides for co- learning improved cluster clarity of 

similar peptides (Figure 5.26). At a minimum, an augmented dataset should improve 
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the contextualization of the original dataset but could also outline nearby chemical 

space to power Bayesian exploration. 

 
Figure 5.4: The translation of canonically-understood binding function into the 
noncanonical chemical space was tested by the addition of peptidomimetics discovered 
from a highly noncanonical library. A. From unsupervised ML analysis of the canonical data, 
amino acids that drive high-affinity function over-represented in discovered motifs were 
identified and included in a high-diversity noncanonical library for peptidomimetic discovery 
and derivatization. B. Fingerprint encoding robustly encoded AS-MS peptidomimetics. 
Fingerprint encoding encodes using molecular functional groups regardless of their 
canonical or noncanonical identity, ensuring semantic consistency of the map. With robust 
encoding, the boundaries and regions of canonically-understood high-affinity function can 
be hypothesized to be maintained and translated across the canonical and noncanonical 
chemical space. 

5.2.4. Discovered peptidomimetics were proposed to test the sequence map 

fidelity across the canonical and noncanonical sequence space. 

The ultimate utility of these sequence maps would be to maintain consistency 

of function across the broader chemical space. Thus, peptidomimetics were 

discovered from AS-MS using highly noncanonical libraries were augmented into 

the dataset (Figure 5.4). A common approach to design noncanonical libraries is to 

diversify the high-affinity motifs.16 However, maintaining some randomization could 

discover other high-affinity motifs and/or improve other non-motif residues. Seven 

canonical monomers were chosen to be included in the noncanonical library 
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because of their likely role in driving high affinity binding to maintain a likelihood of 

ligand discovery, while increasing the chemical diversity. Our noncanonical library 

utilized 36 monomers of the same X12K design, sampling a theoretical sequence 

space 4,000 times larger than the original library (see Table 5.1), including two 

synthetically prepared monomers: bis-pyridyl lysine and a galactosyl-citrulline for 

their structural diversity (see Section 5.8.1). From AS-MS experiment, seventeen 

peptidomimetics were identified from the noncanonical library (Table 5.18). This 

fewer number of identified compounds were expected because AS-MS still utilized 

200 million compounds, meaning the sampling rate of the larger chemical space 

was lower relative to the canonical library.  

AS-MS discovered noncanonical peptidomimetics were robustly augmented 

into the sequence maps using Fingerprint encoding. A semantically consistent map 

almost certainly requires similarities between all monomers to be encoded, 

eliminating one-hot and N-grams encoding for this this task. Encoding based on any 

proteome-based model (e.g., ESM-2) is unavailable as it lacks noncanonical 

training. Physicochemical encoding could be made possible by calculations or 

measurements but was not explored. In contrast, Fingerprint encoding was well-

suited as the molecular similarities of all amino acids are readily apparent and 

captured at the same fidelity. Thus, Fingerprint encoded peptidomimetics were 

added to develop a co-learned sequence space. 

Because the peptidomimetics appeared throughout the sequence space 

maps, we hypothesized that peptidomimetics localized near motif-containing 

canonical peptides would also be high-affinity binders. Half of the peptidomimetics 

were in or near high-affinity canonical clusters, with the other half located at 

clusters’ edges or in the cluster interspace. However, it is unclear if the binding 

function of these peptidomimetics will be consistently connected to their location on 

the map, as is it for high-affinity canonical peptides. For example, noncanonical 

derivatization of a high-affinity canonical peptide would change its location on the 

map, even if the common motif were maintained. 
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Figure 5.5: Experimental binding validation of AS-MS peptidomimetics reveals a picomolar 
binder and reinforced the hypothesized regions of high-affinity binders, separated from 
nonbinders in the combined noncanonical and canonical sequence space. A. Labels of 
experimentally confirmed binder or nonbinder from biolayer interferometry (BLI) were 
overlayed onto the Fingerprint-encoded, UMAP and PCA maps. High affinity 
peptidomimetics were located at the PCA map edge, except for Peptidomimetic 5. 
However, with no exception, high affinity peptidomimetics were located in or closely near 
UMAP clusters, indicating the robust consistency of high affinity binding function between 
the canonical and noncanonical chemical space. B. A functional boundary can be visualized 
by plotting the distance of each peptidomimetic from its associated UMAP cluster versus its 
experimentally measured binding affinity (Dissociation constant, KD). The distance from 
each cluster was normalized by the size of the characteristic cluster radius, which was 
determined by minimizing the summed error between all cluster points to the circle radius. 
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C. Of the high-affinity peptidomimetics discovered, Peptidomimetics 3, 5, and 16 are 
highlighted for the effectiveness of AS-MS to rapidly sample the noncanonical sequence 
space while maintaining high-affinity binding function. Concentration-dependent binding 
observed on BLI sensorgrams of immobilized biotinylated peptidomimetics and unlabeled 
12ca5 in solution were fit using a 1:1 binding model shown as a black dashed line on top of 
the data (see Section 5.8.3). Peptidomimetic 16 combines noncanonical and canonical 
amino acids for the highest affinity observed. The R group corresponds to a SGGK(Biotin) 
linker utilized in BLI immobilization (see Section 5.5.15). 

5.2.5. Boundaries of high-affinity function were robustly consistent with 

UMAP across the chemical space, highlighted best by Peptidomimetic 5. 

All seventeen of the peptidomimetics were tested for their experimental 

binding using biolayer interferometry (BLI, Section 5.8.2, 5.8.3, and 5.5.15). In 

general, high-affinity peptidomimetics were found in regions of high-affinity motif-

containing canonical peptides. Of the high-affinity binders observed, three 

peptidomimetics (Peptidomimetics 3, 5, and 16) demonstrated the effectiveness of 

AS-MS to rapidly sample the noncanonical space while maintaining high-affinity 

binding function (Figure 5.5C). Peptidomimetic 3 exhibited high-affinity binding and 

was completely noncanonical except for its common motif. Peptidomimetic 16 

displayed the highest binding affinity of KD 210 ± 150 pM and was comprised of the 

common motif and noncanonical amino acids.  

The discovery of Peptidomimetic 5 (KD = 77 nM), which does not contain the 

common canonical motif, is significant for demonstrating of the utility of both AS-MS 

and the UMAP-constructed maps. Since the binding interaction mode is through 

anionic residues, the phosphoserine and 4-carboxy phenylalanine likely serve the 

role of aspartic acid in the common motif. Peptidomimetic 5 is evidence that AS-MS 

can rapidly sample the noncanonical space to discover a completely different 

abiotic binding motif. With UMAP, all peptidomimetics were localized in or close to 

canonical binding clusters with no exception. However, In the PCA map, 

Peptidomimetic 5 localized in the center of the map near nonspecific and 

nonbinding library peptides. Thus, the UMAP-constructed map robustly aggregated 
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and clustered functional high-affinity binding compounds across both the canonical 

and noncanonical chemical space.  

Across the chemical space, a functional ‘boundary’ between high-affinity 

binders and nonbinders can be seen when comparing the binding activity of the 

peptidomimetics to their normalized proximity to UMAP clusters (Figure 5.5B). 

While the boundary between high-affinity binders and nonbinders is not sharp, this 

result suggests that the binding activity of any peptide derivatization with 

noncanonicals can be predicted with a high degree of confidence. Thus, a 

functional design space can be defined in the combined canonical and 

noncanonical chemical space. 

5.3. Conclusion 

We applied unsupervised machine learning to peptide and peptidomimetic 

ligand discovery data for the visualization, clustering and in-depth extraction of 

motifs, and construction of functional boundaries between high-affinity binders and 

nonbinders. From comparison with nonbinding library and nonspecific peptides, 

novel sequences are found at the PCA map edge and the center of UMAP clusters 

(Figure 5.1), and further supported by 12ca5-specific labels (see Figure 5.12). While 

this analysis works well with a large dataset, small discovery datasets can be 

augmented with library peptides to contextualize discovered peptides, and 

potentially facilitate cluster formation (Figure 5.26). With UMAP, encodings that 

produced high-dimensionality descriptors resulted in sequence maps with increased 

cluster resolution, with frameshift-irrespective encoding by N-grams showing the 

highest sensitivity for motif discovery.  From clusters, the consensus and centroid 

sequences identifies motifs and peptide binder families (Figure 5.2). This process 

can readily nominate representative peptides across the diversity of the dataset to 

“down-sample” and prioritize peptides for binding validation experiments and avoid 

nonspecific peptides. Thus, we expect this approach could readily be applied to 

accelerate any ligand discovery platform. 
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The experimental binding validation of AS-MS discovered peptidomimetics 

supported the ability to define functionally consistent chemical space, across 

canonical peptides and noncanonical peptidomimetics. AS-MS rapidly sampled the 

noncanonical space, exchanging and derivatizing canonical residues. We 

experimentally validated 7 peptidomimetics, with Peptidomimetic 5 discovered 

without the common canonical motif and with a Peptidomimetic 16 exhibiting KD = 

210 pM through natural and non-natural amino acids. With only 17 peptidomimetics 

and 4,014 peptides, unsupervised learning appeared unaffected in its ability to 

enable the prediction of peptidomimetic binding function and define a functional 

embedding space, despite the class imbalance.  

Our results may imply that significant derivatization from the originally 

discovered hits decreases the likelihood of maintaining binding. However, significant 

derivatization, including a full exchange of the common canonical motif, was still 

rationalized from our analysis (e.g., Peptidomimetic 5). Overall, we expect this 

analysis to have a range of applications including the definition of functional 

chemical design spaces, prediction of peptidomimetic functionality before synthesis, 

and the ML-guided generation or “hallucination” of functional peptidomimetics to 

accelerate the discovery and development of therapeutics. 

5.4. Materials 
Table 5.1: List of abbreviations used. 

Abbreviation Full name 
AGC Automatic gain control 
AggCl Agglomerative clustering 
ALC Average local confidence 
AS-MS Affinity selection-mass spectrometry 
BLI Biolayer interferometry 
Boc tert-Butyloxycarbonyl 
BSA Bovine serum albumin 
CID Collision induced dissociation 
CV Column volume 
Da Dalton mass unit 
DBSCAN Density-Based Spatial Clustering of Applications with Noise 
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DCM Dichloromethane 
DIPEA or DIEA N,N-diisopropylethylamine 
DMF N,N-dimethylformamide 
ECFP_6 Extended connectivity Fingerprint 
ESI Electrospray ionization 
ESM-2 Evolutionary scale model-2  
EThcD  Electron-transfer dissociation with higher-energy collision 
FBS Fetal bovine serum 
Fmoc 9-fluorenylmethyloxycarbonyl 
HATU 1-[Bis(dimethylamino) methyl-ene]- 1H-1,2,3-triazolo[4,5-b]-pyridinium 

3- oxide hexafluoro-phosphate 
HCD Higher-energy CID 
HPLC high pressure or high performance liquid chromatography 
K Buffer Kinetics buffer 
LCMS Liquid chromatography-mass spectrometry 
MDS Multidimensional scaling 
MeCN Acetonitrile 
MEME Multiple Em for Motif Elicitation 
MeOH Methanol 
NHS N-Hydroxysuccinimide 
nLC Nano liquid chromatography 
PBS Phosphate buffer saline 
PCA Principal component analysis 
PEG Polyethylene glycol 
PTM Post-translational modification 
SA Streptavidin 
SAR Structure activity relationship 
STREME Sensitive, Thorough, Rapid, Enriched Motif Elicitation 
TFA Trifluoroacetic acid 
Trt Trityl 
UMAP Uniform manifold approximation 
XSTREME Extreme Sensitive, Thorough, Rapid, Enriched Motif Elicitation 
Canonical Fmoc-protected amino acids Fmoc-L-Ala-OH, Fmoc-L-Arg(Pbf)-OH; 

Fmoc-L-Asn(Trt)-OH; Fmoc-L-Gln(Trt)-OH; Fmoc-L-Leu-OH; Fmoc-L-Lys(Boc)-OH; 

Fmoc-L-Pro-OH; Fmoc-L-Ser(t-Bu)-OH; Fmoc-L-Tyr(t-Bu)-OH, Fmoc-L-Asp-(Ot-

Bu)-OH; Fmoc-L-Glu(Ot-Bu)-OH; Fmoc-Gly-OH; Fmoc-L-Phe-OH; Fmoc-L-Thr(t-

Bu)-OH; and Fmoc-L-Val-OH were purchased from Sigma Millipore (Novabiochem) 

and used as received. Fmoc-L-His(Boc)-OH was purchased from Advanced 

ChemTech and used as received. Fmoc-Rink amide linker (4-[(R,S)-(2,4-
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dimethoxyphenyl)(Fmoc-amino)methyl]phenoxyacetic acid) was purchased from 

Chem Impex Inc (Wood Dale, IL) and used as received. 

Table 5.2: Noncanonical amino acids used in this work with their associated protecting 
groups. Unless specified as synthetically produced, all were purchased and used as 
received.  

Noncanonical amino acid Abbreviation 1-Letter 
Abbreviation Source 

Fmoc-L-Phe(2-trifluoromethyl)-OH 2F3F v Chem Impex, Inc 

Fmoc-3-fluoro-L-phenylalanine 3fF m Chem Impex, Inc 

Fmoc-4-(Boc-amino)-L-phenylalanine 4AF k Chem Impex, Inc 

Fmoc-Asn(GlcNAc(Ac)3-β-D)-OH Agn X Millipore Sigma 

Fmoc-α-aminoisobutyric acid Aib b Chem Impex, Inc 

Fmoc-(4-aminomethyl) benzoic acid Amb h Chem Impex, Inc 

Fmoc-azetidine-3-carboxylic acid  Aza a Chem Impex, Inc 

Fmoc-β-cyclopropyl-L-alanine Cpa d Chem Impex, Inc 

Fmoc-(4-tert-butyloxycarbonyl)-L-phenylalanine  Cxf t Chem Impex, Inc 

Fmoc-3,4-difluoro-L-phenylalanine  DfF r Chem Impex, Inc 

Fmoc-4-diethylphosphomethyl-L-phenylalanine Dpf z Chem Impex, Inc 

Fmoc-3,3-diphenyl-L-alanine  DPh w Chem Impex, Inc 

Fmoc-L-HomoArg(Pbf)-OH hArg o Chem Impex, Inc 

Fmoc-L-homocitrulline hCit p Chem Impex, Inc 

Fmoc-O-tert-butyl-L-trans-4-hydroxyproline Hyp e Chem Impex, Inc 

Fmoc-L-methionine sulfone Msn l Chem Impex, Inc 

Fmoc-3-(1-naphthyl)-L-alanine  Nal u Chem Impex, Inc 

Fmoc-pentafluoro-L-phenylalanine  PfF y Chem Impex, Inc 

Fmoc-4-phenylpiperidine-4-carboxylic acid Php s Chem Impex, Inc 

1-Boc-piperidine-4-Fmoc-amino-4-carboxylic acid Pip f Chem Impex, Inc 

Fmoc-(S)3-amino-2-(phenylsulfonylamino)propionic acid Psa x Chem Impex, Inc 

Fmoc-O-benzylphospho-L-serine pSer n Chem Impex, Inc 

Fmoc-3-(4-thiazolyl)-L-alanine Tha i Chem Impex, Inc 

Fmoc-4-amino-tetrahydropyran-4-carboxylic acid Thp g Chem Impex, Inc 
Fmoc-(3S-)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic 
acid  Tic j Chem Impex, Inc 

Fmoc-Bispyridinolysine-OH Bpl B Synthesized,  
see Noncanonical Monomer Synthesis 

Fmoc-D-Galactosyl-L-citrulline  Git Z Synthesized,  
see Noncanonical Monomer Synthesis 

 

For the synthesis of noncanonical monomers (Bpl and Git, see Noncanonical 

Monomer Synthesis), Fmoc-Lys-OH was purchased from Ambeed Inc. Sodium 

triacetoxyborohydride, 2-pyridinecarboxaldehyde, 1,2-dichloroethane, methanol, 

(D)-(+)-galactose, acetic anhydride and pyridine were purchased from 

MilliporeSigma. Fmoc-Cit-OH was purchased from Chem-Impex International Inc 

(Wood Dale, IL). Coupling agent O-(7-azabenzotriazol-1-yl)-N,N,N’,N’-
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tetramethyluronium hexafluorophosphate (HATU, ≥97.0% ) was purchased from P3 

Biosystems (Lyndon, Kentucky).  

Biosynthesis OmniSolv® grade N,N-dimethylformamide (DMF) was purchased 

from EMD Millipore (DX1732-1) and incubated with 1 pack of AldraAmine trapping 

agents (for 1000 – 4000 mL DMF, Sigma-Aldrich, catalog number Z511706) for 48 

hours prior to use. Diisopropylethylamine (DIEA; 99.5%, biotech grade, catalog 

number 387649) and piperidine (ACS reagent, ≥99.0%) were purchased from 

Sigma-Aldrich. Formic acid (FA, 97%) was purchased from Beantown Chemical, 

Corp. Trifluoroacetic acid (HPLC grade, ≥99.0%), Diethyl ether (anhydrous, ACS 

reagent, ≥99.0%), acetonitrile (HPLC grade, ≥99.9%), Omnisolv® acetonitrile (LC-

MS grade, AX0156-1), Omnisolv® water (LC-MS grade, WX0001-1) and were 

purchased from Sigma-Aldrich. Formic acid Optima LC/MS (A117) was purchased 

from Fisher Chemical. Water was deionized using a Milli-Q Reference water 

purification system (Millipore). Nylon 0.22 μm syringe filters were TISCH brand 

SPEC17984. 

H-Rink Amide-ChemMatrix® (0.49 mmol/g) resin was purchased from PCAS 

Biomatrix (St-Jean-sur-Richelieu, Quebec, Canada) and 20 μm TentaGel® M NH₂ 

Monosized Amino Microsphere resin was purchased from Rapp Polymere Inc. 

(Tübingen, Germany). HyClone™ Fetal Bovine Serum (SH30071.03HI, heat 

inactivated) was purchased from GE Healthcare Life Sciences (Logan, UT) 

Dynabeads MyOne Streptavidin T1 magnetic microparticles were purchased from 

Invitrogen (Carlsbad, CA). Phosphate buffered saline (10x, Molecular biology 

grade) was purchased from Corning. Sodium chloride (ACS grade) was purchased 

from Avantor. Guanidine hydrochloride (Cat BP178) and sodium phosphate 

monobasic monohydrate were purchased from Fisher Scientific.  

Mouse anti-hemagglutinin antibody (clone 12ca5) was purchased from 

Columbia Biosciences Corporation (Cat: 00-1722, Frederick, Maryland) biotin-

(PEG)4-NHS ester and biotin-(PEG)4-propionic acid were purchased from ChemPep 
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Inc. (Wellington, FL). Biotinylation of 12ca5 was performed as previously 

described.12 

5.5. Methods 

5.5.1. Canonical peptide library synthesis 

A total of three libraries were prepared, each portioned into 5 aliquots each (15 

aliquots total), with 12 sampled in affinity selection-mass spectrometry experiments. 

The procedure below describes the synthesis of a single library. 

Total number of beads:   1 x 109 

Size:      20 micron Tentagel M NH2 (Cat: M30202) 

Library design:     X12K-NH2 

Variable Positions:   12 

# of monomers:   18 (Canonical 20 minus Ile,Cys) 

Ala, Asp, Glu, Phe, Gly, His, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp, Tyr 

Theoretical diversity:   1.16 x 1015  

Redundancy:    4.32 x 10-7 

Note: Redundancy is Total number of beads in each library / Theoretical 

diversity or 1.16 x 1015 / 1 x 108 and speaks to the sampling rate of the 

theoretical sequence space available 

5.5.2. Noncanonical peptidomimetic library synthesis 

A single library was prepared, each portioned into 5 aliquots (5 aliquots total), 

with 3 sampled in affinity selection-mass spectrometry experiments.  

Total number of beads:   1 x 109 

Size:      20 micron Tentagel M NH2 (Cat: M30202) 
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Library design:    X12K-NH2 

Variable Positions:   12 

# of monomers:   36  

Noncanonical monomers: Aze, Aib, Bpl, Cpa, Hyp, Pip, Thp, Amb, Tha, 

Tic, 4AF, Msn, 3fF, pSer, hArg, hCit, DfF, Php, CxF, NaI, 2F3F, DPh, Psa, 

Agn, PfF, Dpf, Git 

Also, the following canonicals were included: Ala, Asp, Gly, His, Pro, Gln, 

Thr, Val, and Tyr, as well as Lys that was only included at the C-terminus 

position. 

Theoretical diversity:   4.74 x 1018 

Redundancy:    1.06 x 10-10 

Note: For both canonical and noncanonical library synthesis, these libraries are 

highly ‘nonredundant,’ meaning the theoretical sequence is under-sampled. The 

successful discovery of high-affinity peptide binders is dependent on the presence 

of the minimal required motif / sequence required for binding. Low-complexity 

binding motifs defined by 3-5 amino acids are readily discovered because they are 

statistically common even within a highly nonredundant library. Since the library is 

highly nonredundant, sequence isomers can be confidently identified and removed 

(see Curation of AS-MS Data) as they are highly unlikely to exist. 

5.5.3. Solid-phase peptide library synthesis by split-pool synthesis 

4.2 g of 20 μm TentaGel M NH2 resin (0.26 mmol/g, 1.1 mmol, 1.0 x 109 beads) 

was swollen in and washed with DMF (3x) within a 250mL peptide synthesis vessel 

(medium frit, 10-15 μm pore size, ChemGlass CG-1866-05). Fmoc-Rink amide 

linker (2.9 g, 5.4 mmol, 5 eq) was dissolved in HATU solution (0.38 M in DMF, 12.9 

mL, 4.5 mmol), activated with DIEA (2.7 mL, 16 mmol) immediately prior to 

coupling, and added to resin bed. Coupling was performed for 30 min and then 
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washed with DMF (2 x 100 mL). Fmoc removal was completed with 20% piperidine 

in DMF (1 x 50 mL flow wash followed by 2 x 50 mL, 5 min batch treatments). Resin 

was then washed with DMF (3 x 150 mL). This process of coupling and Fmoc 

deprotection was repeated with the Fmoc-Lys(Boc)-OH (2.54 g, 5.4 mmol, 5 eq).  

The resin was then split for the coupling of randomized (“X”) positions with the 
library amino acids. The resin was suspended in DMF (50 mL) and carefully divided 

evenly among HSW Norm-Ject syringes (Torviq) mounted on Restek Resprep SPE 

vacuum manifolds equipped (Cat 26077) with valves for coupling of each amino 

acid monomer in the library (i.e., for canonical synthesis: 18 syringes; for 

noncanonical synthesis 36 syringes).  

With the Resprep valves closed, Fmoc-protected amino acids (0.6 mmol, 10 eq 

relative to resin) in HATU solution (0.38 M in DMF, 1.4 mL, 0.54 mmol, 0.9 eq 

relative to amino acid) were activated with DIEA (1.2 mmol, 2 eq relative to amino 

acid) and each added to their respective split resin (theory: ~260 mg resin, 60 

μmol). Couplings proceed for one hour minimum. For Fmoc-Bpl-OH, 5.0 equiv. of 

DIEA relative to amino acid was used. For precious amino acids, lower equivalents 

were used: Fmoc-Blp-OH (6.6 equiv.), Fmoc-Git(OAc)4-OH (4.7 equiv.), Fmoc-Dpf-

OH (3.8 equiv.) and Fmoc-Agn(OAc)3-OH (2.3 equiv.) with extended coupling times 

up to three hours. After coupling was completed, the Resprep valves were opened 

to remove the excess coupling solution from the resin. 

All resin was then pooled into the 250 mL peptide synthesis vessel and the 
syringes were washed (3 x 5 mL) to recombine all resin. Additional wash (2 x 100 

mL) and Fmoc deprotection (1 x 50 mL flow wash followed by 2 x 50 mL, 5 min 

batch treatments) with 20% piperidine in DMF. Resin was washed with DMF (3 x 

100 mL) and was then ready again for the next split cycle. The cycle was iterated 

12 times total to accomplish the X12K-NH2 design. 

With the final N-terminal Fmoc group was removed, the resin was washed with 

DMF (150 mL), then suspended in DMF (~ 50 mL) and divided evenly among 5 
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aliquots in 20 mL syringes (2 x 108 peptides per aliquot). Then each were washed 

with DCM (3x) and dried under reduced pressure overnight. Resin was taken to 

perform experiment to validate the quality of the library, see Library Validation 

Analysis.  

5.5.4. Cleavage from resin and stock solution preparation 

Deacetylation of peracetylated noncanonical side-chains (Agn, Git) was carried 

out by treatment of resin with a solution of 5% anhydrous hydrazine in DMF for 16 h 

at ambient temperature. After deacetylation, the resin was washed with DMF (3x), 

DCM (3x), DMF (3x), MeOH (3x) and DCM (3x) and dried under reduced pressure.  

Canonical libraries were globally deprotected and cleaved from resin with 94% 

(v/v) TFA, 2.5% (v/v) ethanedithiol, 2.5% (v/v) water, and 1.0% (v/v) 

triisopropylsilane, for 3 h at ambient temperature (~2 mL/mg of resin). Noncanonical 

libraries were globally deprotected and cleaved from resin with 85% (v/v) TFA, 5% 

(v/v) water, 5% (v/v) phenol and 5% (v/v) thioanisole for 2 h at ambient temperature 

(TIPS was found to reduce the GlcNAc of the Agn side chain). 

The crude peptides were triturated with cold diethyl ether. Precipitated peptide 

was triturated (3x) with cold diethyl ether, dissolved in 50% acetonitrile in water 

(0.1% TFA), passed through a 0.2 µm nylon syringe filter, and lyophilized. 

Crude lyophilized powders were resuspended in 5% acetonitrile in water (0.1% 

TFA) purified using Supelco Discovery® DSC-18 SPE Tubes (Millipore Sigma Cat: 

52607-U). The SPE tube was first conditioned with 3 CV of acetonitrile (0.1% TFA) 

and then equilibrated with 5 CV of 5% acetonitrile in water (0.1% TFA). Then, the 

suspended crude was loaded (Maximum 150 mg crude peptide loaded onto 2 g bed 

mass) and washed with 10-12 CV of 5% acetonitrile in water (0.1% TFA). Peptides 

were eluted with 70% acetonitrile (0.1% TFA) and lyophilized. 

Lyophilized, SPE-purified powders of libraries were each dissolved first in DMF 

and then diluted with 1x PBS to a final library concentration of 8 mM (~40 
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pM/member), and a final DMF concentration of 5% (v/v). Stock solutions were 

aliquoted out into low-bind tubes and stored at -80 °C. Aliquots were thawed on ice 

prior to use. 

5.5.5. Library validation analysis 

Canonical libraries were validated as previously described.1 For the 

noncanonical library, 20 mg of resin was weighed out in a microcentrifuge tube and 

agitated for 16 h in 5% anhydrous hydrazine in DMF (100 mg/mL). The resin was 

then transferred to a 3 mL fritted Torviq syringe and washed with DMF (3x), DCM 

(3x), DMF (3x), MeOH (3x) and DCM (3x). The resin was suspended in DCM and 

transferred to a 15 mL conical tube and the solvent was evaporated under a stream 

of nitrogen.  

For both the canonical and noncanonical libraries, 1.5 mg of dried resin was 

weighed out and suspended in DMF (5 mg/mL). From this stock suspension, 1.5 µL 

(estimated 877 beads) were transferred to a microcentrifuge tube, suspended in 

200 µL cleavage solution. Canonical libraries were treated with 94% (v/v) TFA, 

2.5% (v/v) ethanedithiol, 2.5% (v/v) water, and 1.0% (v/v) triisopropylsilane and 

heated to 60 ºC for 10 minutes. Noncanonical libraries were treated with 85% (v/v) 

TFA, 5% (v/v) water, 5% (v/v) phenol and 5% (v/v) thioanisole) and left at room 

temperature for 2 hours. The TFA was then evaporated under a stream of nitrogen 

and the remaining waxy oil was dissolved in 200 µL of 5% acetonitrile in water 

(0.1% TFA) and sonicated / vortex vigorously. The suspension was centrifuged at 

21,300 rcf at room temperature. The supernatant was added onto a conditioned 

C18 STAGE tip (CDS Empore™ SDB-XC, Fisher Scientific Cat: 13-110-020) and 

purified according to the protocol of Rappsilber et al.57 The eluting solvent was 

evaporated by vacuum centrifugation and the peptides were resuspended in 29 uL 

of 0.1% formic acid in water to enable the injection of 100 pg/peptide with 1 µL. The 

solution was centrifuged at 21,300 rcf at 4°C for 10 min and the supernatant was 

transferred to a MS vial for Orbitrap analysis. Upon analysis of the canonical and 
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noncanonical libraries, the canonical library demonstrated near even monomer 

incorporation as previously reported.1 However, within the noncanonical library, 

higher monomer variation was observed, with Bpl (Fmoc-Bispyridinolysine-OH) and 

PfF (Fmoc-pentafluoro-L-phenylalanine) showing poor incorporation at all positions. 

FfF (Fmoc-pentafluoro-L-phenylalanine) has previously been successfully 

incorporated into other noncanonical libraries. Additionally, the hydrazinolysis of for 

deacetylation of the glycan-mimetic functional groups (Agn, Git) was suspected to 

affect the slightly lower incorporation of Psa. Despite these shortcomings in the 

noncanonical library, it was used in AS-MS experiments as follows. 

5.5.6. Affinity selection-mass spectrometry (AS-MS) experiments 

Affinity selection-mass spectrometry (AS-MS) was performed manually as 

previously described with modifications12 or with a KingFisherTM Duo Prime (Thermo 

Fisher Scientific).  

For manual AS-MS, 100 µL of magnetic beads (1 mg; 0.13 nmol IgG binding 

capacity, MyOne Streptavidin T1 Dynabeads, Thermo Fisher Scientific Cat: 65602) 

were transferred to 1.7 mL plastic centrifuge tubes and washed 3 times with 

blocking buffer (10% fetal bovine serum (FBS) in 1x PBS pH 7.4 and 0.01% 

Tween20, 0.2 µm filtered) using a magnetic separation rack (NEB Cat: S1506S). 

Then, 1.2 to 2 eq of biotinylated anti-hemagglutinin antibody (clone 12ca5, 

Columbia Biosciences Cat: 00-1722) was incubated with the magnetic beads at 

approximately 0.5 µM. The resulting suspensions were incubated on a nutating 

mixer for 30 min at 4 ºC and then washed 3 times with blocking buffer.  

Next, the affinity selection samples were prepared. The peptide library was 

depleted of ‘bead binders.’ In a new tube, the following were combined for a 1mL 

sample and scaled if needed for multiple replicates using the library: 100 uL of neat 

FBS, 550 uL of 1x PBS, 250 uL of library stock solution to provide 10 fmol/peptide, 

and 50 uL of pre-washed magnetic beads. This sample was incubated for 1 hour at 

4 ºC. Then, this sample was then centrifuged at 21,300 rcf and the supernatant 
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aliquoted to a new tube to provide the library depleted of peptides that bind to the 

magnetic beads with high affinity. Then, 1 mg (100 uL volume in blocking buffer) of 

the washed magnetic beads with 12ca5 immobilized was mixed with the pre-

depleted library solution to provide a solution concentration of 100-130 nM of 12ca5 

final. These affinity selection samples were then incubated at 4 ºC for 1 hour on a 

nutating mixer. Then, the samples were washed 3-6 times with cold 1x PBS pH 7.4 

using a magnetic rack (~10 minutes contact time with buffer). The isolated beads 

were eluted using 2 x 100 uL of 6 M guanidine, 50 mM sodium phosphate pH 7. 

For automated selections, a KingFisherTM Duo Prime was utilized with two (2) x 

96 Deepwell Plates (Thermo Fisher, #95040450) in the following format, marked by 

rows. Three replicates were run by using three columns per library aliquot for 12 

separate X12K libraries. The isolated peptides bound to the beads were eluted using 

2 x 100 uL of 6 M guanidine, 50 mM sodium phosphate pH 7 in elution strips. 

 

Table 5.3: Plate layout for AS-MS using a KingFisherTM Duo Prime system 

 Plate 1 Plate 2 
Row Description Vol, mL Description Vol, 

mL 
A Selection samples, see text 1 1x PBS, cold 1 
B Blocking buffer 1 1x PBS, cold 1 
C Blocking buffer 1 1x PBS, cold 1 
D Blocking buffer 1 1x PBS, cold 1 
E Biotinylated 12ca5 0.5 1x PBS, cold 1 
F Blocking buffer 1 1x PBS, cold 1 
G Blocking buffer 1 Comb for Kingfisher magnet  
H Blocking buffer + beads 1   
     
 Elution strip 1 Elution strip 2 
Row Description Vol, mL Elution strip 2 Vol, 

mL 

N/A 6 M guanidine, 50 mM sodium phosphate, 
pH 7 0.1 6 M guanidine, 50 mM sodium phosphate, pH 

7 0.1 

For the “Selection samples” (Plate 1 Row A), the sample was prepared similarly 

to the manual selection. First, the peptide library was depleted of ‘bead binders.’ In 

a new tube, the following were combined for a each sample and scaled if needed 

for multiple columns / replicates: 100 uL of neat FBS, 550 uL of 1x PBS, 250 uL of 

library stock solution to provide 10 fmol/peptide, and 50 uL of pre-washed magnetic 
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beads. This sample was incubated for 1 hour at 4 ºC. Then, this sample was then 

centrifuged at 21,300 rcf and the supernatant aliquoted to the 96 Deepwell plate to 

provide the library depleted of peptides that bind to the magnetic beads with high 

affinity. 

For “Blocking buffer + beads” (Plate 1 Row H), 100 µL of magnetic beads were 

added to 900 uL of blocking buffer (10% fetal bovine serum (FBS) in 1x PBS pH 7.4 

and 0.01% Tween20, 0.2 µm filtered). 

For “Biotinylated 12ca5” (Plate 1 Row E), 500 uL of blocking buffer was added 

with the amount needed to provide 1.2-2 eq of 12ca5 from its stock solution 

(typically 10.4 uL of 12ca5 stock solution at 25 µM for 2 eq). 

The following steps were programmed for affinity selection: 
1. Collect comb from Plate 2, Row G  
2. Wash beads by release beads (30 s, medium) in Plate 1, Row H, collect beads (3 x 1 second) 
3. Wash beads as in Step 2 in Plate 1, Row G 
4. Wash beads as in Step 2 in Plate 1, Row F 
5. Release beads (20 s, medium) into Plate 1 Row E (30 minutes, mix slowly) 
6. Wash beads as in Step 2 in Plate 1, Row D 
7. Wash beads as in Step 2 in Plate 1, Row C 
8. Wash beads as in Step 2 in Plate 1, Row B 
9. Release beads into Plate 1, Row A, (1 hour, mix slowly) 
10. Add plate 2, containing cold 1x PBS to the Kingfisher instrument 
11. Collect beads from Plate 1, Row A (5 x 1 second) 
12. Wash beads as in Step 2 in Plate 2, Row A 
13. Wash beads as in Step 2 in Plate 2, Row B 
14. Wash beads as in Step 2 in Plate 2, Row C 
15. Wash beads as in Step 2 in Plate 2, Row D 
16. Wash beads as in Step 2 in Plate 2, Row E 
17. Wash beads as in Step 2 in Plate 2, Row F 
18. Release beads into elution strip 1, 1 minute mix fast, collect beads (5 x 1 s) 
19. Release beads into elution strip 2, 1 minute mix fast, collect beads (5 x 1 s) 
20. Release beads and comb into Plate 2 Row G to end the program 

Eluted peptide samples were then prepared for Orbitrap analysis by C18 

STAGE tip (CDS Empore™ SDB-XC, Fisher Scientific Cat: 13-110-020) and purified 

according to the protocol of Rappsilber et al.57 The eluting solvent was evaporated 

by vacuum centrifugation and the peptides were resuspended in 12-13 uL of 0.1% 

formic acid in water. The solution was centrifuged at 21,300 rcf at 4°C for 10 min 

and the supernatant was transferred (leave behind 1.5 uL) to a MS vial for Orbitrap 

analysis. Usually, 4-5 uL were injected onto the Orbitrap Fusion Lumos whereas 2-3 

uL were injected onto the Orbitrap Eclipse. 
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5.5.7. Nanoscale liquid chromatography-tandem mass spectrometry (nLC-

MS/MS) 

Nanoscale liquid chromatography tandem mass spectrometry (nLC-MS/MS) 

was performed using an EASY-nLC 1200 (Thermo Fisher Scientific) nano-liquid 

chromatography handling system connected to an Orbitrap Fusion Lumos or an 

Orbitrap Eclipse Tribrid Mass Spectrometer (Thermo Fisher Scientific). Solvent A is 

water (0.1% formic acid) and solvent B is 80% acetonitrile in water (0.1% formic 

acid). Precolumn and analytical column equilibration with 8 µL of solvent A was 

performed at maximum of 1 µL/min or 600 bar. Samples were injected and loaded 

onto a nanoViper Trap Column (C18, 3 µm particle size, 100 A pore size, 20 mm x 

75 µm ID; Thermo Fisher Scientific, Cat: 164946) for desalting with 12 µL of solvent 

A (maximum of 1 µL/min or 600 bar). The autosampler wash was 100 uL of solvent 

A. After trapping, samples were injected onto a PepMap RSLC C18 column (2 µm 

particle size, 15 cm x 50 µm ID; Thermo Fisher Scientific, Cat: ES901). The 

standard nano-LC method was run at 40 °C and a flow rate of 300 nL/min with the 

following gradient, expressed in % solvent B in solvent A: 1% to 41% over 120 

minutes (AS-MS Experiments) or 90 minutes (Library Validation Analysis or other 

simple mixtures), move to 90% in 3 minutes, hold for 7 minutes, and then perform 2 

“seesaw” washes (each comprising of moving to 20% over 3 minutes, holding at 

20% for 3 minutes, moving to 90% for 3 minutes, and holding at 90% for 3 minutes). 

Mass spectrometry acquisition was performed using an Orbitrap Fusion Lumos 

or an Orbitrap Eclipse Tribrid Mass Spectrometer (Thermo Fisher Scientific) with 

positive mode, where the ion source settings was set by the tune parameters 

(Spray voltage usually ~ 2200 V with no Arb gas). The method to perform data-

dependent acquisition has been iteratively optimized.  

The standard AS-MS MS analysis method analyzes from 3-120 minutes, with an 

expected LC peak width of 20 seconds, default charge state of 3, and no internal 

mass calibration. Primary spectra acquisition in positive mode was observed by the 
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Orbitrap with resolution = 120,000, using quadrupole isolation, 200-1400 m/z, RF 

Lens 30%, 250% AGC Target (auto injection time, usually < 10 ms), and 1 

microscan. Secondary MS was performed with the following filters: Precursor 

selection range: 300-1200 m/z, MIPS: Peptide, Intensity threshold: 4e4, Charge 

state: 2-5 excluding undetermined charge states, Dynamic exclusion: exclude after 

1 time for 30 seconds (10 ppm tolerance), Targeted mass exclusion of all peptides 

in the Pierce™ Peptide Retention Time Calibration Mixture (z = 2 and 3, Thermo 

Fisher Scientific, Cat: 88321).  HCD and EThcD were completed. HCD used 

quadrupole isolation (1.3 m/z, no offset) at a fixed 28% collision energy and was 

observed on the Orbitrap with resolution = 30,000, Scan Range Mode: Define First 

Mass: 120 m/z, 600% AGC Target, maximum injection time 100 ms, and 2 

microscans. EThcD used a charge filter of z ≥ 3, quadrupole isolation (1.3 m/z, no 

offset), using calibrated charge-dependent ETD activation, and supplemental HCD 

activation a fixed 25% collision energy and was observed on the Orbitrap with 

resolution = 30,000, Scan Range Mode: Define First Mass: 120 m/z, 600% AGC 

Target, maximum injection time 100 ms, and 2 microscans. 

5.5.8. Curation of AS-MS data 

De novo analysis of sequencing data was performed as described previously for 

canonical libraries using PEAKS Studio 8.5 (Bioinformatics Solutions, Inc, ON, 

Canada).12 Mass precursor correction was used. Auto de novo sequencing was 

performed using a 15 ppm precursor mass error and 0.02 Da fragment mass error. 

For canonical libraries, the following PTM modifications were used: fixed C-terminal 

amidation (-.98 Da) on lysine, and variable oxidation on methionine (+15.99 Da).  For 

noncanonical libraries, the PTMs used are shown in Table 5.4. 20 candidate 

sequences were obtained for each preprocessed scan. Post-de novo data analysis 

was performed as previously described58 to convert the PTMs to 1-letter encoding 

also in Table 5.4. 
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Table 5.4: Post-translational modification (PTM) utilized in PEAKS de novo sequencing 
analysis of noncanonical library. Where a single amino acid is modified (e.g., F modified to 
be F(+17.99) to represent 3fF), a fixed PTM is used. When the same amino acid can be 
modified to represent multiple noncanonical amino acids (e.g., alanine), a variable PTM 
was used. 

Monomer PTM 1-letter 
code 

Aze A(+12.00) a 
Aib A(+14.02) b 
Cpa A(+40.03) d 
Hyp A(+42.01) e 
Pip A(+55.04) f 
Thp A(+56.03) g 
Amb A(+62.02) h 
Tha A(+82.98) i 
Tic A(+88.03) j 
4AF A(+91.04) k 
Msn M(+31.99) l 
3fF F(+17.99) m 
pSer S(+79.97) n 
hArg R(+14.02) o 
hCit N(+57.06) p 
hCit A(+100.06) c 
DfF C(+80.04) r 
Php E(+58.06) s 
CxF A(+120.02) t 
NaI L(+84.00) u 
2F3F A(+144.02) v 
DPh W(+37.02) w 
Psa A(+155.00) x 
PfF A(+165.98) y 
Dpf A(+226.08) z 
Bpl A(+239.14) B 
Agn A(+246.09) X 
Git A(+248.10) Z 

After concatenating all data from de novo sequencing, the data was rigorously 

cleaned to remove poorly sequenced peptides and sequence isomers from the data, 

beyond what has previously been published.58 

First, simple filters on the average local confidence of sequencing (ALC) and 

calculated ppm error of sequencing from PEAKS Studio 8.5 were applied: ALC > 85 

(canonical) or > 80 (noncanonical) and absolute ppm error < 10 ppm were retained. 

Also, all duplicate peptides were removed.   
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Second, all sequences were compared pairwise and marked for removal if they 

had the same precursor mass within 0.01 Da or had specific differences in 

precursor mass corresponding to 1) incorrect monoisotopic precursor selection 

(absolute delta of 1, 2, or 3 Da), oxidation (absolute delta of 16, 32), or sodium 

adduct (absolute delta of 22). Additionally, the peptides must have some amount of 

sequence similarity (empirically seen to work well on trial datasets with a similarity 

of 0.69 by difflib.SequenceMatcher in Python). Retention time differences were not 

considered in case the data was acquired using different gradients. The highest 

ALC peptide was retained, with the lowest ppm sequencing error as tie-breaker. 

Third, all remaining sequences were compared pairwise and marked for 

removal based only on a very high degree of sequence similarity. Again using 

difflib.SequenceMatcher in Python, a peptide similarity of > 0.92 was only seen for 

sequence isomers with either a single amino acid replacement or a dipeptide swap 

with the X12K type of peptides. While rigorous and potentially overly conservative, 

this step often removes < 5% of the remaining data after the second step is 

completed. 

With the canonical library, 4104 peptides were uniquely identified from AS-
MS with high sequencing fidelity for unsupervised learning analysis.  

With the noncanonical library, 17 peptides were uniquely identified from 
AS-MS with high sequencing fidelity for unsupervised learning analysis.  

5.5.9. Encoding of peptides for unsupervised analysis 

5.5.9.1. One-hot encoding 

Each amino acid was represented by the vectors seen below. A peptide was 

represented by concatenating these vectors together. Thus, each peptide was 

represented by a vector 12 * 20 = 240 in length vector descriptor for each 
peptide. 
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Table 5.5. One-hot encoding vectors for canonical amino acids 

 

 

 

5.5.9.2. Physicochemical encoding 

Each amino acid was represented by 12 physicochemical properties as 

reported from literature.54  

The reported properties were standardized before use. These properties 

included H11 and H12: hydrophobicity; H2: hydrophilicity; NCI: net charge index of 

side chains; P11 and P12: polarity; P2: polarizability; SASA: solvent-accessible 

surface area; V: volume of side chains; F: flexibility; A1: accessibility; E: exposed; T: 

turns; A2: antigenic. Hydrophobicity (H11 and H12) and polarity (P11 and P12) were 

calculated using two methods. The peptide was represented by concatenating the 

vectors of each amino acid together (12 residues * 12 properties = 144 length 
vector descriptor for each peptide) 

5.5.9.3. ESM-2 encoding 

ESM-2 is a protein language model that can be used for multiple applications 

where properties, structure, and function are derived from the input sequence, 

where the model was trained on the proteome (UniRef 50). Encoding was 

completed by extracting the amino acid embeddings of the peptides from 33rd layer 

Amino acid One hot encoded vector:
A [ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
D [ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
E [ 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
F [ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
G [ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
H [ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ]
K [ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ]
L [ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 ]
M [ 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 ]
N [ 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ]
P [ 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ]
Q [ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ]
R [ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ]
S [ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ]
T [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 ]
V [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ]
W [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 ]
Y [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ]
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of the pretrained “esm2_t33_650M_UR50D” model. From this layer, each 

embedding per amino acid is size 1280, and a peptide is represented by 

concatenating this output residue by residue, resulting in a 12 residues * 1280 
sized embedding = 15,360 length vector descriptor for each peptide. While this 
can seem large, N-grams encoding was also on this order of magnitude.  

5.5.9.4. Fingerprint encoding 

Extended connectivity Fingerprint encoding was used with bit-vectors of 256 

length and radius = 3. Canonical and noncanonical amino acids were drawn in 

ChemDraw 21.0.0 with N-acetylation and N-methyl carboxamidation to replicate the 

featured of the amino acid integrated within a peptide. Histidine was drawn in its 

most common τ-tautomer form. Amino acids were exported as SMILES and 

canonicalized (standardized) in using molvs (standardize_smiles). The Fingerprint 

was the isolated using Chem.GetMorganFingerprintAsBitVect and 

Chem.MolFromSmiles. With an n-bit vector of 256, each peptide was represented 

as 12 residues * 256 bit-vector length = 3,072 length vector descriptor for each 
peptide 
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Figure 5.6: The Fingerprint encoding illustrates the similarities and number of unique 
features in canonical amino acids. Specifically, one can see the similarity in specific 
substructure features between amino acids, as well as the number of unique features. 

 
Figure 5.7: The Fingerprint radius of 3 is generally set for extended connectivity Fingerprint 
encoding for ECFP_6. However, the bit-vector length can and was varied to see if it 

Monomer A D E F G H K L M N P Q R S T V W Y
Unique Features 2 2 1 3 5 8 1 3 6 2 9 2 7 4 5 2 12 5
Shared Features 20 24 29 30 16 32 31 25 24 26 23 29 31 21 20 21 36 29
Sum Features 22 26 30 33 21 40 32 28 30 28 32 31 38 25 25 23 48 34
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affected the data ranging from 25 (32 bit vector length) - 211 (2048 bit vector length). Low 
bit-vector length minimized the appearance of distinct clusters in some analyses of the AS-
MS data (e.g., UMAP Fingerprint shown above). The bit-vector length of 256 length was 
seen to provide more distinct clusters within some of the sequence maps, and above this 
value, no additional resolution was seen. 

5.5.9.5. N-grams encoding 

N-grams encoding was completed by pre-calculating the observed n-mers in the 

dataset up to a maximum n-mer length of the full peptide length (12 residues), as 

described below. As pre-calculated (Figure 5.7), the entire peptide was 
represented at once as a 138,622 length vector, where each index of the vector 
describes an n-mer motif that is either present (1) or absent (0) in the peptide. 

 
Figure 5.8: The number of unique N-grams for encoding versus the maximum N-gram 
length used. N-Grams encoding proceeds first by predetermining all n-mers (sometimes 
called k-mers) within the dataset. The theoretical number of n-mers is bound by the number 
of unique combinations of monomers and the maximum N-gram length (i.e., [# of 
monomers]Maximum N-gram length), which up to a 12-mer length peptide would be 1015 
n-mers. However, since the n-mer space is pre-calculated from the dataset, significantly 
fewer are actually observed than theoretically possible even with the maximum N-gram 
length set to the length of the peptides in the library. The practical maximum is the 
observed n-mers, bound by (# of peptides) x [ 1 + (Full Peptide Length – Maximum N-gram 
length)]. The true maximum is the minimum of the theoretical and practical maximum 
shown in the figure above in green. 
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5.5.10. UMAP dimensionality reduction hyperparameter optimization 

UMAP is a user-friendly, non-linear dimensionality reduction technique that 

requires minimal optimization to use. However, UMAP embedding results are 

generally stochastic. Thus the random seed state was always fixed. Some variation 

in the embeddings was noticed due to the UMAP version, which was 0.5.3 for this 

work. Lastly, UMAP embeddings are affected by the order of the data within the 

datafile used (see UMAP shuffle samples leads to quit different result · Issue #268 · 

lmcinnes/umap) likely because data seen first is weighted more in the initialization 

of the manifold. Thus, the sequences from AS-MS were randomly shuffled, and then 

used throughout this work. Additionally, we have observed that exact embedding 

results can vary from computer to computer but should remain generally similar. 

The two main hyperparameters are n_neighbors and min_dist, and the distance 

metric setting. 

First, n_neighbors balances the importance of the local vs global structure 

within the data. Low n_neighbors values (~1% of the dataset size) will provide 

results that focus on local structures, while large values seek to emphasize the 

global structures, losing fine local detail. This is observed by producing the UMAP 

embeddings versus n_neighbors (Figure 5.9). 

https://github.com/lmcinnes/umap/issues/268
https://github.com/lmcinnes/umap/issues/268
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Figure 5.9: Scan of n_neighbors with UMAP using one-hot, Fingerprint, and N-grams 
encoding. Local clusters are rapidly and initially developed. As n_neighbors increases, local 
clusters are reconnected to the global structure of the data at an optimal n_neighbors. As 
n_neighbors grows to a significant percentage of the dataset (> 50%), the clusters begin to 
be obscured in the global structure unifying the peptides. Stable embeddings results were 
seen at n_neighbors throughout the dataset from (1.5 - 25%), so 6.2% (n_neighbors = 256) 
was taken as an optimal value. 

Second, min_dist sets the minimum distance between points, meaning that tight 

local clusters are forced to be spread apart. The default of 0.1 was used for all 

analysis except for one-hot encoding, which showed exceptionally tight clusters, 

and so it was set to 0.4. 

The distance metric was appropriately set based on the encoding type:55 binary 

encoding method (one-hot, Fingerprint, and N-grams) used the Tanimoto distance 

metric, while continuous descriptors (evolutionarily-learned and physicochemical 

encoding) used the Euclidean distance metric. 

5.5.11. Multidimensional scaling (MDS) dimensionality reduction  

Multidimensional scaling (MDS)56 was used as the similarity mapping method. 

However, it is currently unable to incorporate additional results without re-learning. 

Thus, the dataset of randomly sampled peptides could not be added as it would 

cause MDS to learn over random sequence space combined with the AS-MS 

discovered space. Specifically, MDS does not have a .transform function in the 
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current version used (scikit-learn, version 1.0.2), see https://github.com/scikit-

learn/scikit-learn/issues/2887, and https://github.com/scikit-learn/scikit-

learn/issues/15808 . 

 
Figure 5.10: MDS dimensionality reduction versus encoding method of the AS-MS data. 

5.5.12. Individual peptide synthesis and cleavage from resin 

Peptides and peptidomimetic α-carboxamides were manually synthesized in 

batch using 100 mg of H-Rink Amide ChemMatrix resin (0.49 mmol/g). Resin was 

swollen in amine-free DMF for a minimum of 10 minutes in HSW Norm-Ject syringe 

(Torviq) syringes mounted on a Restek Resprep SPE vacuum manifolds equipped 

(Cat 26077) with valves. For each coupling cycle, Fmoc-protected amino acids (5 

eq, 0.245 mmol) were dissolved at 0.4 M in 0.38 M HATU (4.75 eq relative to resin, 

0.95 eq relative to Fmoc-protected amino acid) in amine free DMF and sonicated or 

vortexed as needed. Diisopropylethyl amine (DIEA; 10 eq, 0.49 mmol, 85.4 µL) was 

added and the solution, hand mixed to form the active ester, and confirmed to return 

being visually transparent as a clear light yellow solution. Using the Restek 

manifold, the excess DMF was drained from the DMF-swelled resin. Then the 

solution containing the activated Fmoc-amino acid ester was added to the resin and 

incubated at room temperature for 45 minutes. After which, the resin was drained 

and washed 3 x with amine free DMF. Fmoc deprotection was completed using 20% 

piperidine in DMF (2 x 5 minutes), and then washed 3 x with amine free DMF. Then 

https://github.com/scikit-learn/scikit-learn/issues/2887
https://github.com/scikit-learn/scikit-learn/issues/2887
https://github.com/scikit-learn/scikit-learn/issues/15808
https://github.com/scikit-learn/scikit-learn/issues/15808
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the next amino acid coupling cycle could proceed. After synthesis was complete, 

resins were washed 5 x with amine free DMF, 3 x DCM, vacuum was pulled on the 

dry resin to remove the DCM (5 minutes), and then the resin was dried under 

vacuum before cleavage. 

Cleavage was performed in HSW Norm-Ject syringe (Torviq) syringes by using 

the syringe plunger to pull the cleavage solution onto the resin with a blunt tip 

needle and then capping the syringe. Global side chain deprotection and cleavage 

from solid support were carried out using solution of 94% (v/v) TFA, 2.5% (v/v) 

ethanedithiol, 2.5% (v/v) water, and 1.0% (v/v) triisopropylsilane, for 1 hour 

minimum at ambient temperature (~2 mL of deprotection solution / 100 mg of resin). 

Upon which, the crude peptide and cleavage solution was isolated from the syringe 

into a 15 mL Falcon tube and triturated with cold diethyl ether (~12 mL, chilled on 

dry ice). The peptide was then suspended in 50% acetonitrile in water (0.1% TFA) 

and lyophilized. 

Peptide purification was completed using reverse-phase flash purification or 

with preparative high performance liquid chromatography purification (HPLC). For 

flash purification, a Biotage Selekt was used with a Biotage® Sfär C18 D - Duo 100 

Å 30 µm 12 g column. One-third of the cleaved, lyophilized peptide mass (< 10 mg) 

was suspended in 0.9 to 1.8 mL of 20% MeCN in Water (0.1% TFA), centrifuged at 

3.4k rcf for 10 minutes, and the supernatant was loaded onto the column and 

separated using using a gradient of 10% to 55% MeCN in Water (0.1% TFA) over 

12-15 column volumes (CVs) and observed by UV absorption at 210 and 280 nm 

and fraction collected with 3 mL maximum fraction sizes. Peptides that exhibited 

close elution to deletion products or poor elution profiles were purified by 

preparative HPLC. Preparative HPLC was performed on an Agilent 1260 Infinity LC 

equipped with a 6130 single quadrupole mass spectrometer. Samples were 

prepared as described above, filtered using a 0.2 µm filter, and loaded onto a 

Zorbax 300SB C18 column (9.4 x 150 mm, 5 µm, 8 mL/min) with a C8 guard 

column using a automated injector and separated using 5% to 55% MeCN in Water 
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(0.1% TFA) over 30 minutes with fractionation over the entire run using 62 fractions. 

Fractions were analyzed by LCMS and UPLC to assess purity. 

5.5.13. Liquid chromatography-mass spectrometry (LC-MS) analysis 

LC-MS analysis was acquired using an Agilent 6550 MS Q-TOF mass 

spectrometer with Dual Agilent Jet Stream (AJS) ESI ion source in extended 

dynamic mode in mass range 100 - 3000 m/z with scan rate of 1.00 spectra/sec. An 

isopump delivered a reference ion mass (922.0098 m/z). The following instrument 

parameters were used: gas temperature 200 ºC, gas flow 14 L/min, nebulizer 

pressure 55 psig, sheath gas temperature 350 ºC, sheath gas flow 11 L/min. The 

following scan source parameters were used: VCap: 3500, nozzle voltage 1000 V, 

fragmentor 175, and Octopole RF Vpp 750. Column was a Zorbax 300SB C3, 2.1 × 

150 mm, 5 μm kept at 40 ºC. The gradient utilized 0.1% formic acid in water 

(solvent A) and 0.1% formic acid in acetonitrile (solvent B), flow rate 0.5 mL/min, 

starting at 1% B in A running to 91% B in A over 7 minutes with 1 minute at 91% B 

in A and 1 minute post-time re-equilibration at 1% B in A. Data were analyzed in 

Agilent MassHunter Qualitative Analysis B.06.00. 

5.5.14. Purity analysis by ultra performance liquid chromatography (UPLC) 

LC analysis was performed with an Agilent 1260 LC system controlled by 

ChemStation software, using an Agilent Zorbax RRHD 300SB-C18, 2.1 x 50 mm, 

1.8 μm (Cat: 857750-902) column at 40 ºC. The gradient utilized 0.1% 

trifluoroacetic acid (TFA) in water (solvent A) and 0.1% TFA in acetonitrile (solvent 

B). The flow rate was 0.5 mL/min, starting at 5% B in A running to 65% B in A over 

11 minutes, moving to 90% B in A in 0.25 minute, holding for 1 minute, moving to 

5% B in A in 0.05 minute, and re-equilibrating for 1.5 minutes. Approximately 1-10 

ug of each peptide was injected for analysis for a target response of <1000 mAU. 

The absorbance at 214 nm was recorded and integrated using ChemStation 

software to report the purity relative to an equal volume injection of 50% acetonitrile 

in water. 
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5.5.15. Biolayer interferometry (BLI) measurements 

Ideally, proteins including 12ca5 would be immobilized and dipped into solutions 

of the peptides to test their binding activity. This immobilization orientation is preferred 

because it would use the same biotinylated 12ca5 used in AS-MS in the same 

orientation and avoid potential avidity affects. However, when immobilizing 12ca5 

onto the BLI tip, insufficient signal was observed when dipping into solutions of known 

peptide binders. This lack of signal was attributed to the relatively small size of these 

peptides (e.g., ~2 kDa HA tag) to the size of the immobilized 12ca5 (~150 kDa). Thus, 

biotinylated peptides were prepared using a resin preloaded with GGSK(Biotin). To 

avoid avidity effects and use a 1:1 model, the ligand density of the immobilized 

biotinylated peptide or peptidomimetic on the BLI tip was immobilized slowly (over 

300 s) up to ≤ 60% of saturation level. 

BLI was carried out using the GatorBio GatorPlus Label-Free Analysis system 

using Greiner Bio-One 96-well Non-treated Black Polypropylene Microplates 

(FisherSci Cat 07-000-110) using Streptavidin (SA) Probes (GatorBio Cat 160002). 

All well solution conditions were prepared using kinetics buffer (K Buffer, 0.02% BSA 

and 0.02% Tween20 in 1x PBS pH 7.4, 0.2 µm filtered). SA tips were equilibrated in 

K Buffer for 15 minutes prior to analysis. Plate temperature was set to 30 °C with 

agitation speed at 1000 rpm during measurement and 200 µL well volumes were used.  

During each run, sensor tips were equilibrated K buffer (120 seconds), then 

dipped into of 50–500 nM biotinylated peptide solution for peptides immobilization 

(300 seconds), with an additional well with no peptide as a control. Concentrations 

of the peptide immobilization solutions were surveyed beforehand and adjusted 

such that the peptide response signal (nm) arrived at 60% or less of its saturation 

level during 300 seconds of immobilization. This extra step was done to 

appropriately load the tip to minimize avidity effects during downstream association 

per manufacturer recommendation. Once loaded with peptides, the tips were then 

moved into wells containing various concentrations of 12ca5 (nonbiotinylated) for 
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association measurement, with an additional well corresponding to a sensor tip with 

immobilized peptide with no protein as a control.  After association (300 seconds), 

the tips were moved to a well with K buffer to obtain the dissociation (600 seconds). 

Peptide-only and protein-only conditions (concentration at 1000 nM) were used as 

references for background subtraction. The association and dissociation curves 

were fitted with the GatorOne Software (v 2.7.3.1013) using a 1:1 binding model (n 

≥ 3 fit curves accepted with Full R2 > 0.8 and Χ2 < 32, see Table 5.19) to calculate 

the apparent dissociation constant (KD, reported as the average of the fits ± 

standard deviation of the fits). 

5.6. Code availability 

Data supporting the findings of this work are available within following appendices 

and precending materials and methods sections, which provides additional 

information on the preparation of synthetic split-pool peptide and peptidomimetic 

libraries; AS-MS and nLC-MS/MS experiment protocols; details on the encoding and 

dimensionality reduction methods; report of all consensus, centroid, and logo plots 

for all clusters; comparison of our clustering method to perform motif detection versus 

the MEME suite; as well as peptidomimetic synthesis, purification, and verification. 

All data utilized in this work is available at https://github.com/josephsbrown1/Peptide-

Map/ 

5.7. Appendix I: Clustering Information by Dimensionality Reduction Methods 

5.7.1. Characteristics of the peptides sampled from the original peptide 

libraries (presumed to be nonbinders) 

From the library validation analysis of the canonical library, 5,047 peptides 
were identified by sampling the original library before AS-MS. In all cases except 
the sensitivity analysis in Figure 5.3, these peptides were added to PCA- and UMAP-

constructed maps without re-learning. MDS is unable to add additional data to its 

sequence map without re-learning. 
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Figure 5.11: Logo plot of the peptides sampled from the X12K library, presumed to be 
nonbinders. Essentially no residues are shown, even at this zoomed y-scale, meaning that 
the peptides are largely random. This is corroborated by the unsupervised clustering seen 
during the motif detection testing in Section 5.7.5, where the library peptides largely show a 
diffuse sequence space when the AS-MS ligand dataset is not added. 

5.7.2. Label definitions for 12ca5-specific and nonspecific binders 

From the curated AS-MS data,12ca5-specific peptides are defined as *D..DYA* 

or *D..DYS* from the motif known in literature.47,59 Note that “*” is a variable length 

wildcard, while “.” is a single amino acid length wildcard.  

Care was taken in defining nonspecific binders. From the full dataset, all *D..DYA* 

or *D..DYS* sequences were removed. Also, all possible mis-sequenced isobaric 

dipeptides based on of the D**DYA or D**DYS motif were removed. Isobaric was 

defined as within 10 ppm to match the de novo sequencing error tolerance. 

Sequences containing *DYA*, *DYS* and the commonly observed *PDY*, and *EDY* 

motifs, gapped isomers (e.g., *D.YA* and *D..YA*), and their dipeptide sequence 

isomers were removed for consideration as nonspecific binders. Lastly, sequence 

containing *D.D*, *D..D*, and *D…D* were also removed for consideration as 

nonspecific binders 

All other sequences that were not considered 12ca5-specific or nonspecific were 

labeled as unknown. 
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Table 5.6: Number of peptides manually assigned in each class as defined in Label 
definitions for 12ca5-specific and nonspecific binders.  

12ca5-specific Nonspecific Unknown Total 
3512 139 453 4014 

5.7.3. All dimensionality reduction results with manually added common motif 
labels 

 
Figure 5.12: All dimensionality reduction results using all representation encodings with 
manually added common motif labels as described in Section 5.7.2: Label definitions for 
12ca5-specific and nonspecific binders.  

5.7.4. Information about all clusters from dimensionality reduction 

Every report here on each combination of encoding and dimensionality 

reduction technique has the following: 

1. The sequence map shown in the Main Text, with the manually categorized 

color-coded labels: 
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a. Common Motif in blue, defined as D**DYA or D**DYS, where * is a 
single-character wildcard at any frameshift within a peptide,  

b. Expanded Motif in orange, defined as any reported motif that 
expands, deviates, or adds additional definition to the Common Motif, 

or 

c. Weak in gray, displays a weak signal, no clear motif. 
2. The same sequence map with its respective automatous labels.  

3. If any expanded motifs are observed in the analysis, a large plot reporting the 

centroid peptide from each cluster. While a single centroid peptide is reported 

here, the option is available to report more centroid peptides spread 

throughout the cluster. 

4. A table of all information about each cluster including: 

a. Main text cluster number, if applicable 

b. Autonomously assigned cluster number 

c. The number of peptides in each cluster 

d. One centroid sequence. More centroids can be reported interspersed 

within each cluster. 

e. Consensus sequence, determined from each cluster with the 

requirement that the amino acid position shown must be present 33% 

or more in all of the peptides in the cluster, otherwise X.  

f. Logo of the cluster to infer Consensus sequence and Motif class, 

prepared using Logomaker.60 

g. Motif Class, assigned manually by inspecting the Logo. 
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Table 5.7: Report of automated cluster detection algorithm and parameters used from 
scikit-learn with either Agglomerative Clustering (AggCl) or Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN).51 The parameters used and reported here 
were found by scanning the parameters and inspecting the results. 

Dimensionality 
Reduction Method Encoding Method Algorithm eps min_samples 

# clusters 
observed 

PCA One-hot AggCl  31 31 
 Physicochemical AggCl  5 5 
 ESM-2 AggCl  6 6 
 Fingerprint AggCl  6 6 
 N-grams AggCl  2 2 
UMAP One-hot DBSCAN 0.21 10 8 
 Physicochemical DBSCAN 0.21 10 7 
 ESM-2 DBSCAN 0.1446 23 16 
 Fingerprint DBSCAN 0.1125 15 19 
 N-grams DBSCAN 0.1022 16 67 

 

 
Figure 5.13: Summary of analyzing the motif of each cluster across all encoding and 
dimensionality reduction techniques. All sequence maps are shown, with the color-coded 
labels based on motif class. Motif class was manually categorized as Common Motif in 
blue, defined as D**DYA or D**DYS, where * is a single-character wildcard at any 
frameshift within a peptide Expanded Motif in orange, defined as any reported motif that 
expands, deviates, or adds additional definition to the Common Motif, or Weak in gray, 
displays a weak signal, no clear motif. Note that no cluster information is available to multi-
dimensional scaling as the clusters had little-to-no definition and could not be detected well 
with DBSCAN or Agglomerative clustering. 
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5.7.4.1. PCA, one-hot encoding cluster information 

 
Figure 5.14: PCA decomposition of all AS-MS data encoded by one-hot encoding with 
automated cluster detection as described in Table 5.8. Top Left: Figure as labeled in the 
main text. Top Right: The same data fully with its automatous labels. Note that in Main 
Text, Clusters {1,2,3,4,5,6,7} correspond to automatously labeled clusters 
{23,13,10,8,2,19,24}, respectively. Each cluster is colorblind color coded and labeled with a 
central point. Bottom: A single centroid peptide is reported for each cluster, with the option 
available to report more centroid peptides spread throughout the cluster. 
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Table 5.8: Sequence logo report of all clusters detected from PCA dimensionality reduction 
using one-hot encoding. Both cluster number labels in the Main Text and as autonomously 
labeled are reported in the table for clarity. Also reported are the number of peptides in 
each cluster, a single centroid sequence, consensus sequence, logos, and motif class. 
Details are described in Information about all clusters from dimensionality reduction. 

Main 
Text 
Cluster 
# 

Auto-
assigned 
cluster # 

# of 
peptide
s 

Centroid 
sequence, 
Consensus 
sequence 

Sequence Logo Motif 
Class 

1 23 100 
LEADTADYAAMF
, 
XXXDXXDYAAX 

 

Expande
d motif 

2 13 121 
PNFMDKHDYAAS
, 
XXXXDXXDYAA 

 

Expande
d motif 

3 10 103 
FDMQDYAAYVWV
, 
XDXXDYADXXX 

 

Expande
d motif 

4 8 139 
AVDRWDYSDVRN
, 
XXDXXDYADXX 

 

Expande
d motif 

5 2 89 
FQLHYDDHDYAE
, 
XXXDXDXXDYA 

 

Expande
d motif 

 19 44 
LASDDFPDYAEA
, 
XXXDDXXDYAX 

 

Expande
d motif 
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 24 65 
WKFRDDKMDYAD
, 
XXXXDDXXDYA 

 

Expande
d motif 

 20 47 
PDKHDYASMYFN
, 
XDXXDYAXXXX 

 

Common 
motif 

 26 183 
KDVMDYASHFNT
, 
XDXXDYAXXXX 

 

Common 
motif 

 14 194 
VVDKPDYARFQT
, 
XXDXXDYAXXX 

 

Common 
motif 

 15 303 
PRRDWRDYADNV
, 
XXXDXXDYAXX 

 

Common 
motif 

 17 72 
TKLDKHDYAYPR
, 
XXXDXXDYAYX 

 

Common 
motif 

 11 94 
VVAELHDYAHDA
, 
XXXDXXDYSXX 

 

Common 
motif 
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 6 429 
WYESDVKDYADT
, 
XXXXDXXDYAX 

 

Common 
motif 

 27 96 
LLFFDKPDYSHK
, 
XXXXDXXDYSX 

 

Common 
motif 

 1 921 
MMTTNDWQDYAY
, 
XXXXXDXXDYA 

 

Common 
motif 

 29 55 
HGGKSDKVDMAF
, 
XXXXXDXXDYA 

 

Common 
motif 

 18 302 
DLVFYDLRDYSS
, 
XXXXXDXXDYS 

 

Common 
motif 

 9 187 
SKWWLADWPDYS
, 
XXXXXXDXXDY 

 

Common 
motif 

 16 56 
DLHDYSHQLVFG
, 
XXXDXXXXXXX 

 

Weak 
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 12 25 
NQPQLDDLPDYA
, 
XXXXXDDXXDY 

 

Weak 

 21 38 
TPGDDPEMDYAG
, 
XXXXXDXXDYX 

 

Weak 

 22 62 
WYTHMMFPWMWF
, 
XXXXXXXXXXX 

 

Weak 

 25 37 
LSAYMVVDWFRM
, 
XXXXXXXXXXX 

 

Weak 

 28 24 
WDMHDYADDMGF
, 
XDXXDYADXXA 

 

Weak 

 30 8 
MYQQDDVDPYSD
, 
XXXXDDXDXYA 

 

Weak 

 31 18 
DLRDYAELGAYN
, 
XXXDXXXXXXX 

 

Weak 
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 3 91 
MLDLADYALADL
, 
XXDXXDYXXXX 

 

Weak 

 4 43 
LDVHDYAYLRDF
, 
XDXXDYAXXXX 

 

Weak 

 7 59 
VFGPPDWDGYAD
, 
XXXXDDXXDYA 

 

Weak 

 5 99 
MEDTQDYSAVHM
, 
XXDXXDYAAXX 

 

Weak 

5.7.4.2. PCA, physicochemical encoding cluster information 

 
Figure 5.15: PCA decomposition of all AS-MS data encoded by Physicochemical encoding 
with automated cluster as described in Table 5.9. Left: Figure as labeled in the main text. 
Right: The same data fully with its automatous labels. No clusters are labeled or reported 
in the main text because all clusters contain the common or a weak motif. Each cluster is 
colorblind color coded and labeled with a central point. No centroid plot is reported as no 
expanded motifs were observed. 
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Table 5.9: Sequence logo report of all clusters detected from PCA dimensionality reduction 
using Physicochemical encoding. In the table, automatously numbered clusters are 
reported with the number of peptides in each cluster, a single centroid sequence, 
consensus sequence, logos, and motif class. Details are described in Information about all 
clusters from dimensionality reduction. 

Auto-
assigned 
cluster # 

# of 
peptide
s 

Centroid 
sequence, 
Consensus 
sequence 

Sequence Logo Motif 
Class 

1 1403 
LLQTQDYPDYSQ
, 
XXXXXDXXDYA 

 

Commo
n motif 

2 609 
VFDLEDYAGRAP
, 
XXDXXDYAXXX 

 

Commo
n motif 

3 1197 
YFNEDAPDYASP
, 
XXXXDXXDYAX 

 

Commo
n motif 

4 625 
MPLDVGDYAAQN
, 
XXXDXXDYAXX 

 

Commo
n motif 

5 270 
SPAVHHDVEDYA
, 
XXXXXXDXXXX 

 

Weak 
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5.7.4.3. PCA, ESM-2 encoding cluster information 

 
Figure 5.16: PCA decomposition of all AS-MS data encoded by ESM2 encoding with 
automated cluster detection as described in Table 5.10. Left: Figure as labeled in the main 
text. Right: The same data fully with its automatous labels. No clusters are labeled or 
reported in the main text because all clusters contain the common or a weak motif. Each 
cluster is colorblind color coded and labeled with a central point. No centroid plot is 
reported as no expanded motifs were observed. 

 

Table 5.10: Sequence logo report of all clusters detected from PCA dimensionality 
reduction using ESM2 encoding. In the table, automatously numbered clusters are reported 
with the number of peptides in each cluster, a single centroid sequence, consensus 
sequence, logos, and motif class. Details are described in Information about all clusters 
from dimensionality reduction. 

Auto-
assigned 
cluster # 

# of 
peptide
s 

Centroid 
sequence, 
Consensus 
sequence 

Sequence Logo Motif 
Class 

1 1599 
WFRAFDMEDYSD
, 
XXXXXDXXDYA 

 

Commo
n motif 

2 648 
LDDPADYAVGTK
, 
XXDXXDYXXXX 

 

Commo
n motif 
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3 663 
HHTYDLPDYSFY
, 
XXXXDXXDYAX 

 

Commo
n motif 

5 389 
LDVQDYANVSES
, 
XDXXDYAXXXX 

 

Commo
n motif 

6 495 
YLMDLFDYAHKT
, 
XXXDXXDYAXX 

 

Commo
n motif 

4 310 
WDVFFPDYSHRP
, 
XXXXXXDXXDY 

 

Weak 

5.7.4.4. PCA, fingerprint encoding cluster information 

 
Figure 5.17: PCA decomposition of all AS-MS data encoded by Fingerprint encoding with 
automated cluster detection as described in Table 5.11. Left: Figure as labeled in the main 
text. Right: The same data fully with its automatous labels. No clusters are labeled or 
reported in the main text because all clusters contain the common or a weak motif. Each 
cluster is colorblind color coded and labeled with a central point. No centroid plot is 
reported as no expanded motifs were observed. 
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Table 5.11: Sequence logo report of all clusters detected from PCA dimensionality 
reduction using Fingerprint encoding. In the table, automatously numbered clusters are 
reported with the number of peptides in each cluster, a single centroid sequence, 
consensus sequence, logos, and motif class. Details are described in Information about all 
clusters from dimensionality reduction.  

Auto-
assigned 
cluster # 

# of 
peptides 

Centroid sequence, 
Consensus 
sequence 

Sequence Logo Motif 
Class 

3 484 FDRLDYSDQFFK, 
XDXXDYAXXXX 

 

Common 
motif 

2 572 HADVQDYAFHYT, 
XXDXXDYAXXX 

 

Common 
motif 

4 575 LDGDLWDYADTY, 
XXXDXXDYAXX 

 

Common 
motif 

5 703 FFLMDLWDYARS, 
XXXXDXXDYAX 

 

Common 
motif 

1 1521 LLKWVDKHDYAY, 
XXXXXDXXDYA 

 

Common 
motif 

6 249 KDHDYAYFMETR, 
XXXXXXDXXDY 

 

Common 
motif 
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5.7.4.5. PCA, N-grams encoding cluster information 

 
Figure 5.18: PCA decomposition of all AS-MS data encoded by N-grams encoding with 
automated cluster detection as described in Table 5.12. Left: Figure as labeled in the main 
text. Right: The same data fully with its automatous labels. No clusters are labeled or 
reported in the main text because all clusters contain the common or a weak motif. Each 
cluster is colorblind color coded and labeled with a central point. No centroid plot is 
reported as no expanded motifs were observed. 

Table 5.12: Sequence logo report of all clusters detected from PCA dimensionality 
reduction using N-grams encoding. In the table, automatously numbered clusters are 
reported with the number of peptides in each cluster, a single centroid sequence, 
consensus sequence, logos, and motif class. Details are described in Information about all 
clusters from dimensionality reduction. 

NOTE: Because N-grams encodes peptides by the presence of their motifs, irrespective of 
frameshift, the logo plot displays the sequences aligned by ClustalW to the second position 
to show the motif. 

Auto-
assigned 
cluster # 

# of 
peptides 

Centroid 
sequence, Consensus 
sequence 

ALIGNED Sequence Logo Motif 
Class 

1 3242 PSDLRDYAAGFF, 
XDXXDYAX----- 

 

Common 
motif 

2 862 QVDTRDYSDLYF, 
XDXXDYSX----- 

 

Common 
motif 
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5.7.4.6. UMAP, One-hot encoding cluster information 

 
Figure 5.19: UMAP decomposition of all AS-MS data encoded by one-hot encoding with 
automated cluster detection as described in Table 5.13. Left: Figure as labeled in the main 
text. Right: The same data fully with its automatous labels. No clusters are labeled or 
reported in the main text because all clusters contain the common or a weak motif. Each 
cluster is colorblind color coded and labeled with a central point. No centroid plot is 
reported as no expanded motifs were observed. 

Table 5.13: Sequence logo report of all clusters detected from UMAP dimensionality 
reduction using one-hot encoding. In the table, automatously numbered clusters are 
reported with the number of peptides in each cluster, a single centroid sequence, 
consensus sequence, logos, and motif class. Details are described in Information about all 
clusters from dimensionality reduction. 

Auto-
assigned 
cluster # 

# of 
peptides 

Centroid sequence, 
Consensus sequence Sequence Logo Motif 

Class 

8 59 DVRDYAENDFLV, 
DXHDYAXXXXX 

 

Common 
motif 

7 354 LDMQDYAAGDWM, 
XDXXDYAXXXX 

 

Common 
motif 
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2 454 EGDAEDYAAFRG, 
XXDXXDYAXXX 

 

Common 
motif 

4 573 FNLDEQDYADTP, 
XXXDXXDYAXX 

 

Common 
motif 

3 739 FPVVDWEDYATW, 
XXXXDXXDYAX 

 

Common 
motif 

1 1230 SNEFSDMLDYAE, 
XXXXXDXXDYA 

 

Common 
motif 

6 323 FDLFLDVPDYSS, 
XXXXXDXXDYS 

 

Common 
motif 

5 209 LPGGFLDWEDYA, 
XXXXXXDXXDY 

 

Common 
motif 

0 163  

 

Weak 
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5.7.4.7. UMAP, physicochemical encoding cluster information 

 
Figure 5.20: UMAP decomposition of all AS-MS data encoded by Physicochemical 
encoding with automated cluster detection as described in Table 5.14. Left: Figure as 
labeled in the main text. Right: The same data fully with its automatous labels. No clusters 
are labeled or reported in the main text because all clusters contain the common or a weak 
motif. Each cluster is colorblind color coded and labeled with a central point. No centroid 
plot is reported as no expanded motifs were observed. 

Table 5.14: Sequence logo report of all clusters detected from UMAP dimensionality 
reduction using Physicochemical encoding. In the table, automatously numbered clusters 
are reported with the number of peptides in each cluster, a single centroid sequence, 
consensus sequence, logos, and motif class. Details are described in Information about all 
clusters from dimensionality reduction. 

Auto-assigned 
cluster # 

# of 
peptides 

Centroid sequence, 
Consensus sequence Sequence Logo Motif 

Class 

3 64 DLKDYADNHWEA, 
DXXDYAXXXXX 

 

Common 
motif 

4 358 ADMEDYAQNYPL, 
XDXXDYAXXXX 

 

Common 
motif 
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2 465 FFDLPDYSVPKL, 
XXDXXDYAXXX 

 

Common 
motif 

6 578 PYLDMEDYAQLF, 
XXXDXXDYAXX 

 

Common 
motif 

1 756 LYWDDVEDYAEH, 
XXXXDXXDYAX 

 

Common 
motif 

5 1572 LDFGGDWPDYAH, 
XXXXXDXXDYA 

 

Common 
motif 

7 214 TPQMEADVDPYA, 
XXXXXXDXXDY 

 

Common 
motif 

0 97  

 

Weak 
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5.7.4.8. UMAP, ESM-2 encoding cluster information 

 
Figure 5.21: UMAP decomposition of all AS-MS data encoded by ESM-2 encoding with 
automated cluster detection as described in Table 5.15. Top Left: Figure as labeled in the 
main text. Top Right: The same data fully with its automatous labels. Note that in Main 
Text, Clusters {1,2,3,4,5,6,7} correspond to automatously labeled clusters 
{13,14,15,10,5,9,12}, respectively. Each cluster is colorblind color coded and labeled with a 
central point. Bottom: A single centroid peptide is reported for each cluster, with the option 
available to report more centroid peptides spread throughout the cluster. 
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Table 5.15: Sequence logo report of all clusters detected from UMAP dimensionality 
reduction using ESM-2 encoding. Both cluster number labels in the Main Text and as 
autonomously labeled are reported in the table for clarity. Also reported are the number of 
peptides in each cluster, a single centroid sequence, consensus sequence, logos, and motif 
class. Details are described in Information about all clusters from dimensionality reduction. 

Main Text 
Cluster # 

Auto-
assigned 
cluster # 

# of 
peptides 

Centroid 
sequence, 
Consensus 
sequence 

Sequence Logo Motif 
Class 

1 13 45 MQDQEDYASLEW, 
MXDXXDYAXXX 

 

Expanded 
motif 

2 14 51 MRYKTDWSDYAD, 
MXXXXDXXDYA 

 

Expanded 
motif 

3 10 115 TTLYFDEPDYAA, 
XXXXXDXXDYA 

 

Expanded 
motif 

4 5 149 SFVVDMPDYASS, 
XXXXDXPDYAX 

 

Expanded 
motif 

5 9 109 HTTMMDMPDYAQ, 
XXXXXDXPDYA 

 

Expanded 
motif 

 12 87 RGLSVDKPDYSD, 
XXXXXDXPDYS 

 

Expanded 
motif 
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 11 54 DEHDYAHVSRFL, 
DXHDYAXXXXX 

 

Expanded 
motif 

 15 22 MLAMVDLHDYSD, 
MXXXXDXXDYS 

 

Expanded 
motif 

 8 330 SDLEDYAALGLK, 
XDXXDYAXXXX 

 

Common 
motif 

 1 397 VYDLSDYADKVG, 
XXDXXDYAXXX 

 

Common 
motif 

 3 518 YDFDVEDYSHRV, 
XXXDXXDYAXX 

 

Common 
motif 

 2 564 HTHWDMQDYAAY, 
XXXXDXXDYAX 

 

Common 
motif 

 4 645 FSYGSDLLDYAD, 
XXXXXDXXDYA 

 

Common 
motif 

 16 24 LLGVGDTPDYAE, 
XXXXXDXXDYA 

 

Common 
motif 
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 6 132 WDWLKDHRDYSD, 
XXXXXDXXDYS 

 

Common 
motif 

 7 191 ELSGSTDVEDYA, 
XXXXXXDXXDY 

 

Common 
motif 

 0 671  

 

Weak 

5.7.4.9. UMAP, fingerprint encoding cluster information 
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Figure 5.22: UMAP decomposition of all AS-MS data encoded by Fingerprint encoding with 
automated cluster detection as described in Table 5.16. Top Left: Figure as labeled in the 
main text. Top Right: The same data fully with its automatous labels. Note that in Main 
Text, Clusters {1,2,3,4,5,6,7} correspond to automatously labeled clusters {8,6,15,2,16,5,7}, 
respectively. Each cluster is colorblind color coded and labeled with a central point. 
Bottom: A single centroid peptide is reported for each cluster, with the option available to 
report more centroid peptides spread throughout the cluster. 

Table 5.16: Sequence logo report of all clusters detected from UMAP dimensionality 
reduction using Fingerprint encoding. Both cluster number labels in the Main Text and as 
autonomously labeled are reported in the table for clarity. Also reported are the number of 
peptides in each cluster, a single centroid sequence, consensus sequence, logos, and motif 
class. Details are described in Information about all clusters from dimensionality reduction. 

Main Text 
Cluster # 

Auto-
assigned 
cluster # 

# of 
peptides 

Centroid 
sequence, 
Consensus 
sequence 

Sequence Logo Motif 
Class 

1 8 122 FMDKHDYALYKK, 
XXDXHDYAXXX 

 

Expanded 
motif 

2 6 172 KLWQRDMHDYAS, 
XXXXXDXHDYA 

 

Expanded 
motif 
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3 2 68 TVSSSDWTDYAD, 
XXXXXDWXDYA 

 

Expanded 
motif 

4 16 193 HLNFYSDQEDYA, 
XXXXXXDXXDY 

 

Expanded 
motif 

5 7 223 PFNSTDMPDYSD, 
XXXXXDXPDYA 

 

Expanded 
motif 

 4 90 NSDMPDYASANF, 
XXDXPDYAXXX 

 

Expanded 
motif 

 5 149 LYLGDVPDYALN, 
XXXXDXPDYAX 

 

Expanded 
motif 

 10 81 TDKHDYAALWNF, 
XDXHDYAXXXX 

 

Expanded 
motif 

 12 56 DLQDYASHLKVL, 
DXHDYAXXXXX 

 

Expanded 
motif 

 14 29 PLVDPDLADYAN, 
PXXXXDLADYA 

 

Expanded 
motif 

 15 62 WAEEGDLTDYAD, 
WXXXXDXXDYA 

 

Expanded 
motif 
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 17 90 FWKDSKHDYAWR, 
XXXXDXHDYAX 

 

Expanded 
motif 

 18 110 NPMDWPDYAYFP, 
XXXDXPDYAXX 

 

Expanded 
motif 

 19 92 NKLDLHDYAFHD, 
XXXDXHDYAXX 

 

Expanded 
motif 

 1 225 SPDLQDYAQVDH, 
XXDXXDYAXXX 

 

Common 
motif 

 3 435 FAFSDVQDYSDK, 
XXXXDXXDYAX 

 

Common 
motif 

 9 723 RAFVMDRLDYAD, 
XXXXXDXXDYA 

 

Common 
motif 

 11 336 YPVDLRDYVDNQ, 
XXXDXXDYAXX 

 

Common 
motif 

 13 243 NDLEDYSAKLAR, 
XDXXDYAXXXX 

 

Common 
motif 

 0 605  

 

Weak 
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5.7.4.10. UMAP, N-grams encoding cluster information 

 
Figure 5.23: UMAP decomposition of all AS-MS data encoded by N-grams encoding with 
automated cluster detection as described in Table 5.17. Top Left: Figure as labeled in the 
main text. Top Right: The same data fully with its automatous labels. Note that in Main 
Text, Clusters {1,2,3,4,5,6,7} correspond to automatously labeled clusters 
{8,12,20,9,26,19,23}, respectively. Each cluster is colorblind color coded and labeled with a 
central point. Bottom: A single centroid peptide is reported for each cluster, with the option 
available to report more centroid peptides spread throughout the cluster. 

Table 5.17: Sequence logo report of all clusters detected from UMAP dimensionality 
reduction using N-grams encoding. Both cluster number labels in the Main Text and as 
autonomously labeled are reported in the table for clarity. Also reported are the number of 
peptides in each cluster, a single centroid sequence, consensus sequence, logos, and motif 
class. Details are described in Information about all clusters from dimensionality reduction. 

NOTE: Because N-grams encodes peptides by the presence of their motifs, irrespective of 
frameshift, the logo plot displays the sequences aligned by ClustalW to the second position 
to show the motif. 
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Main 
Text 
Cluster # 

Auto-
assigned 
cluster # 

# of 
peptides 

Centroid sequence, 
Consensus sequence ALIGNED Sequence Logo Motif 

Class 

1 20 121 EQFHHYDLHDYA, 
-XXXXXDLHDYAXXXX- 

 

Expanded 
motif 

2 8 121 HQFDKDLQDYAE,  
-XXXXXDLQDYAXXX-- 

 

Expanded 
motif 

3 12 121 GNMNLGDLEDYA,  
-XXXXXDLEDYAXXX- 

 

Expanded 
motif 

4 9 104 GNFGGDVEDYAY,  
-XXXXXDVEDYAXXX- 

 

Expanded 
motif 

5 26 102 EMWADLPDYAHA,  
-XXXXXDLPDYAXXX- 

 

Expanded 
motif 

 19 97 VPTDVQDYAHPR,  
-XXXXXDVQDYAXXX-- 

 

Expanded 
motif 

 23 94 HMTDVPDYAYHV,  
-XXXXXDVPDYAXXX- 

 

HA tag 
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 11 80 WFFTDMPDYANL,  
-XXXXXDMPDYXXX-- 

 

Expanded 
motif 

 17 71 WFVHDMEDYAMR,  
-XXXXXDMEDYAXX-- 

 

Expanded 
motif 

 61 69 VGGWYDLADYAG,  
-XXXXXDLADYAXXX-- 

 

Expanded 
motif 

 3 66 DVHDYAYGYYHA,  
--XXXXDVHDYAXXXX- 

 

Expanded 
motif 

 32 64 WNLDMVDYAAKF,  
-XXXXXDXVDYAXXX- 

 

Expanded 
motif 

 10 63 VTWVQDKHDYFS,  
-XXXXXDKHDYXXXX-- 

 

Expanded 
motif 

 1 62 WDLYDDKTDYAA, 
XXXXXDXTDYAXX-- 

 

Expanded 
motif 
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 49 55 WWDFPDYANGRW, 
XXXXXDFPDYXXXX- 

 

Expanded 
motif 

 39 52 KDMHDYASMHMW,  
-XXXXDMHDYAXXXX- 

 

Expanded 
motif 

 18 51 FDRDMQDYASML,  
-XXXXXDMQDYAXXX- 

 

Expanded 
motif 

 43 50 RDLHDYSGPRSN,  
-XXXXDLHDYSXXXX- 

 

Expanded 
motif 

 25 49 TNFQHDVADYAG, 
XXXXXDVADYAXXX-- 

 

Expanded 
motif 

 54 48 MWLGDTRDYADT, 
XXXXXDXRDYADX--- 

 

Expanded 
motif 

 28 47 SVDVKDYADEWN, 
XXXXXDXKDYAXXX-- 

 

Expanded 
motif 



249 
 

 

 

 37 46 QDWPDYAWGGPR,  
-XXXXXDWPDYAXXXX 

 

Expanded 
motif 

 16 45 YVKDKPDYAYKF,  
-XXXXXDKPDYXXX-- 

 

Expanded 
motif 

 58 43 DALSDLPDYSAS,  
-XXXXXDLPDYSXXX- 

 

Expanded 
motif 

 13 42 VQTFTDLKDYAW, 
XXXXXDLKDYAXXX-- 

 

Expanded 
motif 

 35 41 FQAFMDKEDYSF,  
-XXXXXDKEDYAXXX- 

 

Expanded 
motif 

 5 40 VSWDLVDYAWKF,  
-XXXXXDLVDYAXXX- 

 

Expanded 
motif 

 41 40 LRWHNDWQDYAY, 
XXXXXDWQDYAXX-- 

 

Expanded 
motif 
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 65 40 NDMMDYADMDRL, 
XXXXXDMMDYAXXX- 

 

Expanded 
motif 

 31 38 FAKGDLRDYAQK,  
-XXXXXDLRDYAXXXX- 

 

Expanded 
motif 

 34 38 PDYHDYAFARGL, 
XXXXXDXHDYAXXXX- 

 

Expanded 
motif 

 45 38 YDMEDTPDYADM, 
XXXXXDTPDYAXXX-- 

 

Expanded 
motif 

 2 37 VMQFTDQQDYAW,  
-XXXXXDQQDYAXX-- 

 

Expanded 
motif 

 6 37 MLRGDFEDYAAN,  
-XXXXXDXEDYAXX-- 

 

Expanded 
motif 

 51 37 YWEFQDVPDYSY, 
XXXXXDVPDYSXXX- 

 

Expanded 
motif 
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 42 36 AENEDWEDYAST,  
-XXXXXDWEDYAXXX- 

 

Expanded 
motif 

 24 34 YSNVDLMDYAEP,  
-XXXXXDLMDYAXX-- 

 

Expanded 
motif 

 46 34 TSVDVHDYSAHF, 
XXXXXDVHDYSXXXX- 

 

Expanded 
motif 

 27 33 LPVHWYDYPDSF,  
-XXXXXDYPDYAXXX- 

 

Expanded 
motif 

 59 33 FDWHDYAEHVQS,  
-XXXXXDWHDYAXXXX 

 

Expanded 
motif 

 21 32 WDMADYAEADHL, 
XXXXXDMADYAXXX- 

 

Expanded 
motif 

 22 30 FRKWDKQDYAYP,  
--XXXXXDKQDYAXX-- 

 

Expanded 
motif 



252 
 

 

 

 60 30 MYRFDRRDYSDQ,  
-XXXXDXRDYSDXXX- 

 

Expanded 
motif 

 63 30 FSLADKADYAAQ, 
XXXXXDXADYAXX-- 

 

Expanded 
motif 

 48 29 WLQDLQDYSHAP,  
-XXXXDLQDYSXXXX 

 

Expanded 
motif 

 53 29 MMMVDSPDYAAN, 
XXXXXDXPDYAXX- 

 

Expanded 
motif 

 30 28 VSNTNYDLEDYS,  
-XXXXXDLEDYSXXX-- 

 

Expanded 
motif 

 44 28 VSTADRHDYAYL, 
XXXXXDRHDYAXXX- 

 

Expanded 
motif 

 50 28 HFNWYDWHDYSF, 
XXXXXDXHDYSXXXX- 

 

Expanded 
motif 



253 
 

 

 

 56 27 MMTEDPRDYAFF,  
-XXXXXDPRDYAXX--- 

 

Expanded 
motif 

 67 27 WMMPGDADPYAD,  
-XXXXXDXDPYAXX-- 

 

Expanded 
motif 

 14 26 LTDVMDYAAKEA,  
-XXXXXDVMDYAXXX- 

 

Expanded 
motif 

 29 26 YFEDQEDYAGWS,  
-XXXXXDQEDYAXX- 

 

Expanded 
motif 

 40 26 VNSYADTLDYAD, 
XXXXXDXXDYADX-- 

 

Expanded 
motif 

 7 25 SVEDDAPDYADF,  
-XXXXXDAPDYAXX--- 

 

Expanded 
motif 

 15 25 WWHDQHDYAHWT,  
-XXXXDQHDYAXXX- 

 

Expanded 
motif 
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 33 24 FLTQQDREDYAH,  
-XXXXXDREDYAXX--- 

 

Expanded 
motif 

 55 24 WWEATADTEDYA,  
-XXXXXDTEDYAXX-- 

 

Expanded 
motif 

 62 24 VVGGLDTQDYAH, 
XXXXXDXQDYAX-- 

 

Expanded 
motif 

 64 24 FDFHDYAYNQGM, 
XXXXXDFHDYAXXXX- 

 

Expanded 
motif 

 36 23 YGMLDQPDYAAY,  
-XXXXXDQPDYAXXX- 

 

Expanded 
motif 

 47 23 ELAYYDTYDYAD, 
XXXXXDXXDYAXX-- 

 

Expanded 
motif 

 57 23 WDTHDYAAWSGT, 
XXXXXDTHDYAXXXX- 

 

Expanded 
motif 
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 66 22 VLWTFDQADYAE, 
XXXXXDXADYAX-- 

 

Expanded 
motif 

 52 18 DVRDYADDKYYE, 
XXXXXDVRDYAXXXX- 

 

Expanded 
motif 

 38 16 AGFDKKDYADAF, 
XXXXXDXKDYAXXX- 

 

Expanded 
motif 

 0 1102 
,  
----XXXXDXXDYXXXX-
-- 

 

Weak 

 4 16 FYWNEMFWDHQP,  
---XXXXWXXXXXXXX- 

 

Weak 

5.7.5. Motif-based clustering sensitivity of UMAP dimensionality reduction 

For this analysis, specific data were isolated from the AS-MS data. Specifically, 

a variable number of unaligned peptides containing the *DLHDYA* motif were 

added to random library peptides (which do not contain the motif) for 5000 total. 

The motif *DLHDYA* was used since it was discovered by clustering of the 12ca5 

AS-MS data, most clearly seen in the UMAP + N-grams encoding analysis.  
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Figure 5.24: UMAP sensitivity to cluster and enable the detection and isolation of target 
peptides in a 5000-peptide dataset. Unaligned target peptides contain the high-affinity 
binding motif of *DLHDYA* at random frameshifts. N-grams demonstrates the lowest 
sensitivity, with only 10 peptides required for a distinct cluster to appear. One-hot and 
Fingerprint encoding requires 80 and 160 peptides, respectively. This result is because N-
grams encoding is performed irrespective of frameshift, whereas one-hot and Fingerprint 
encoding are frameshift sensitive. Thus, as the number of target peptides increases, one-
hot and Fingerprint encoded UMAP sequence maps form seven clusters as the seven 
frameshifts of *DLHDYA* in a 12-mer variable region are populated to have at least 10 
peptides in each cluster.  A red box is placed to guide the readers eye to location in which 
clusters appear to form distinctly from the random library peptides. AS-MS peptides are 
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shown in blue with random library peptides in gray. The theoretical statistical significance 
via Fishers Exact Test of each condition is shown,11–13 indicating that at only 5 sequences, 
the peptides with the *DLHDYA* motif could be theoretically distinguished from the 
background (randomized input dataset), though 10 are required for a clear cluster to form. 

 
Figure 5.25: N-grams, one-hot, and Fingerprint encoding provide similar clustering 
sensitivity with target peptides containing a motif at the same frameshift. See Figure 5.22 
for further details. A red box is placed to guide the readers eye to location in which clusters 
appear to form distinctly from the random library peptides. AS-MS peptides are shown in 
blue with random library peptides in gray. 
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Figure 5.26: The construction of UMAP sequence space is affected by the total dataset 
size. At low dataset sizes, highly similar peptides can be dispersed on the sequence space 
map. Thus, augmenting the total dataset size with random library peptides can sometimes 
improve clarity of the clusters of similar peptides. 
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5.7.6. Comparison of motif-detection sensitivity with XSTREME 

Motif discovery was performed using the XSTREME, part of the MEME Suite 

webserver.61,62 

XSTREME combines: 

• MEME, which discovers novel, ungapped motifs (recurring, fixed-length 

patterns) in sequences. MEME will split variable-length patterns into two or 

more separate motifs. 

• STREME, which discovers ungapped motifs (recurring, fixed-length patterns) 

that are enriched in sequences or relatively enriched in comparison to a 

control dataset. 

Two experiments were performed 

1. The AS-MS data was input to XSTREME as the positive dataset with the 
randomly sampled library peptides as the negative dataset 

The Fisher Exact Test can quantify the statistical significance of finding a 

specific motif, and is used by STREME when a background dataset is input. 

The motif *DLHDYA*, found in the clustering analysis using UMAP and N-

grams encoding. The p-value is 1.98 x 10-41, meaning it should be detected 

(see below) 

  

Fisher Exact Test Calculation for Cluster 1 found by UMAP, N-grams:

Motif = *DLHDYA*

Motif Present Motif Absent Sum
AS-MS Data 114 3900 4014
Library 0 5047 5047

Sum 114 8947 9061

Fisher Exact Test, p-value 1.98E-41 p-value
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2. The sensitivity of motif detection was determined using the same datasets in 
Figure 5.22, using either 5, 10, or 20 target peptides that contain a 

*DLHDYA* motif at random frameshifts. 

5.7.6.1. XSTREME Experiment 1 (12ca5 AS-MS data vs library) 

 
Figure 5.27: XSTREME motif detection result of motifs enriched in the AS-MS dataset 
(positive) relative to the randomly sampled library peptides (negative). Boxed in red are the 
common motif D**DYA, as well as D**DYAD* and D*DPY* which were the only expanded 
motif discovered with statistical significance. 

5.7.6.2. XSTREME Experiment 2 (Analysis of detection sensitivity of 

unaligned, motif-containing peptides) 
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Next, the detection sensitivity was assessed using the same datasets as in 

Figure 5.22 with 5, 10, and 20 target peptides, containing an unaligned *DLHDYA* 

motif in dataset of 5000 random library peptides. 

For our clustering approach, all 5,000 sequences were input, whereas for 

XSTREME analysis, the same 5,000 input sequences were compared against a 

background dataset constructed from the randomization of the input sequences. 

 
Figure 5.28: The XSTREME results for motif discovery and detection using the dataset of 5 
target peptides in 5000 random library peptides. None of the motifs are statistically 
significant and the 5 *DLHDYA* peptides were not identified. STREME reported all these 
motifs, and motifs evaluated by the Binomial Test, providing the p-value reported. 
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Figure 5.29: The XSTREME and STREME results for motif discovery and detection using 
the dataset of 10 target peptides in 5000 random library peptides. The 10 *DLHDYA* 
peptides were not identified. STREME reported motifs were evaluated by the Fisher Exact 
Test, providing the p-value (E-value * # of reported sequences) reported. MEME reported 
motifs were evaluated by E-value. 
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Figure 5.30: The XSTREME and STREME results for motif discovery and detection using 
the dataset of 20 target peptides in 5000 random library peptides. The 20 *DLHDYA* 
peptides were identified, and were calculated to be statistically significant with an E-value of 
1.3 x 10-4 from discovery by MEME analysis. This is twice as many as can be clearly seen 
by our clustering approach. 

5.7.7. Augmentation of sequence maps with noncanonical peptides 
discovered by AS-MS 
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Table 5.18: Peptidomimetics discovered using AS-MS for purity and LCMS characterization 
see Analytical characterization of all synthesized noncanonical peptidomimetics discovered 
by AS-MS. For BLI characterization see Section 5.5.15 Biolayer interferometry (BLI) 
measurements, Table 5.19 

 

Peptide # Sequence, 1-letter code ALC Binder / 
Nonbinder

KD, nM 
(Ave ± SD)

1 HoiDueDYAoxPK 90 H hArg Tha D Nal Hyp D Y A hArg Psa P Lys Binder 44 ± 29
2 duiDueDYAoxPK 98 Cpa Nal Tha D Nal Hyp D Y A hArg Psa P Lys Binder 75 ± 56
3 giibmDpoDYAiK 99 Thp Tha Tha Aib 3fF D hCit hArg D Y A Tha Lys Binder 3.1 ± 0.67
5 tzwksnYVkuliK 93 Cxf Dpf Dph 4Af Php pSer Y V 4Af Nal Msn Tha Lys Binder 77 ± 57
15 pgYDwDVADYADK 91 hCit Thp Y D Dph D V A D Y A D Lys Binder 3.9 ± 0.68
16 jVVdDQPDYAtlK 99 Tic V V Cpa D Q P D Y A Cxf Msn Lys Binder 0.21 ± 0.15
17 xPAGDTPDYADmK 93 Psa P A G D T P D Y A D 3fF Lys Binder 4.4 ± 2.7
4 ovuxjvVrbevGK 94 hArg 2F3F Nal Psa Tic 2F3F V DfF Aib Hyp 2F3F G Lys Nonbinder
6 ktGwzTQwpptZK 91 4Af Cxf G Dph Dpf T Q Dph hCit hCit Cxf Git Lys Nonbinder
7 jmHVGwhYAQAHK 90 Tic 3fF H V G Dph Amb Y A Q A H Lys Nonbinder
8 irhTAsjViDYAK 88 Tha DfF Amb T A Php Tic V Tha D Y A Lys Nonbinder
9 uTxpzdpmmjTzK 87 Nal T Psa hCit Dpf Cpa hCit 3fF 3fF Tic T Dpf Lys Nonbinder
10 TNXfQYvoTYifK 84 T N Agn Pip Q Y 2F3F hArg T Y Tha Pip Lys Nonbinder
11 iiAldjwTtswzK 84 Tha Tha A Msn Cpa Tic Dph T Cxf Php Dph Dpf Lys Nonbinder
12 NfXlKDbutvzdK 83 N Pip Agn Msn K D Aib Nal Cxf 2F3F Dpf Cpa Lys Nonbinder
13 swrYPzTmjGexK 81 Php Dph DfF Y P Dpf T 3fF Tic G Hyp Psa Lys Nonbinder
14 NrTzzdkYmjzTK 81 N DfF T Dpf Dpf Cpa 4Af Y 3fF Tic Dpf T Lys Nonbinder

Sequence, 3-letter code for noncanonicals
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Figure 5.31: Augmentation of canonical sequence maps with noncanonical peptides 
discovered from AS-MS and experimentally evaluated using BLI to distinguish binders from 
nonbinders (see Biolayer interferometry (BLI) measurements). Peptides are labeled with 
their respective numbers. Also included are the 12ca5-based labels as defined in Label 
definitions for 12ca5-specific and nonspecific binders. Seventeen noncanonical peptides 
were added to the dataset and the sequence space was relearned and then the randomly 
sampled peptides from the canonical X12K library were added to the PCA and UMAP maps. 
The randomly sampled peptides cannot be added to MDS without re-learning. 
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5.8. Appendix II: Synthesis, characterization, and biophysical measurements 
of discovered peptides containing unnatural amino acids 

5.8.1. Synthesis of noncanonical momers 

Reactions were monitored on glass-backed analytical thin-layer 

chromatography (TLC) plates (250 μm, 60 Å, SiliaPlate) containing a fluorescent 

indicator (254 nm). NMR spectra were recorded on a Bruker AVIII HD 400 MHz or 

Bruker Neo 500 MHz. 1H NMR chemical shifts are reported in parts per million 

(ppm, δ scale) and are referenced to the residual protonated NMR solvent (DMSO-

d6: δ 2.50). All 13C spectra recorded are proton decoupled with chemical shifts 

reported in parts per million (ppm, δ scale) and are referenced to the carbon 

resonance of the NMR solvent (DMSO-d6: δ 39.5). 1H NMR spectroscopic data are 

reported as follows: chemical shift in ppm (multiplicity, coupling constants J (Hz), 

assigned number of protons in molecule). The multiplicities are abbreviated with s 

(singlet), br. s (broad singlet), d (doublet), t (triplet), and m (multiplet). The chemical 

shift of all signals is reported as the center of the resonance range, except in the 

case of multiplets, which are reported as ranges in chemical shift. All raw fid files 

were processed, and the spectra analyzed using the program MestReNOVA 14.2 

from Mestrelab Research S. L. High-resolution mass spectra were obtained on an 

Agilent Technologies 6550 Q-TOF LC/MS systems (see Analysis methods with 

Liquid-Chromatography Mass Spectrometry (LC-MS)). 

5.8.1.1. Synthesis of Fmoc-Bpl-OH 

N2-(((9H-fluoren-9-yl)methoxy)carbonyl)-N6,N6-bis(pyridin-2-ylmethyl)-L-lysine 
(Fmoc-Bpl-OH) (2) 
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To a 0°C suspension of Fmoc-Lys-OH (1.50 g, 4.07 mmol, 1.0 eq.) and 

NaBH(OAc)3 (2.59 g, 12.2 mmol, 3.0 eq.) in dichloroethane (22.6 mL) under 

nitrogen atmosphere, 2-pyridinecarboxaldehyde (0.965 mL, 1.09 g, 10.2 mmol, 2.5 

eq.) was added and the resulting suspension was stirred at rt for 16 h. After 

checking the completion of the reaction by LC-MS, the suspension was cooled to 

0°C and quenched by addition of MeOH (25 mL). The resulting solution was 

concentrated under reduced pressure, the residue redissolved in 4:1 MeCN/H2O 

and purified by reverse phase column chromatography (Biotage® Sfär C18 D Duo 

100 Å 30 µm 30 g, MeCN + 0.1% HCl : H2O + 0.1% HCl = 1:9 à 4:1) to afford the 

title compound as dark yellow solid (2.12 g, 79%). 0.1% HCl was used rather than 

0.1% trifluoroacetic acid to prevent against any possible trifluoracetylation during 

coupling.  

ESI-HRMS: calc. C33H34N4O4 [M+H]+ 551.2658 found 551.2714, 10.2 ppm error. 
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Figure 5.32: 1H NMR (400 MHz, DMSO-d6 + 1% D2O) of Fmoc-Bpl-OH: δ 8.79 (d, J = 5.4 
Hz, 2H), 8.40-8.31 (m, 2H), 8.01 (2H, J = 7.8 Hz, 2H), 7.89-7.79 (m, 4H), 7.72-7.64 (m, 2H), 
7.38 (t, J = 7.4 Hz, 2H), 7.28 (t, J = 7.5 Hz, 2H), 4.43 (s, 2H), 4.29-4.14 (m, 3H), 3.90-3.82 
(m, 1H), 2.75 (t, J = 8.3 Hz, 2H), 1.65-1.41 (m, 4H), 1.27-1.12 (m, 2H). 
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Figure 5.33: 13C NMR (101 MHz, DMSO-d6) of Fmoc-Bpl-OH: δ 173.8, 156.2, 151.6, 
144.1, 143.9, 143.7, 140.8, 127.7, 127.1, 126.9, 125.7, 125.4, 120.2, 65.61, 55.2, 53.8, 
53.7, 46.7, 30.4, 24.0, 23.0. 

5.8.1.2. Synthesis of Fmoc-Git-OH 

(S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-5-(3-((2R,3R,4S,5R,6R)-
3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)ureido)pentanoic 
acid (5) 
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A suspension of D-(+)-galactose (1.50 g, 8.33 mmol, 1.0 eq.) and Fmoc-Cit-OH 

(4.30 g, 10.8 mmol, 1.30 eq.) in 4:1 MeCN/2.4 M aq. HCl was heated to 50°C for 3 

h. The mixture was concentrated and purified by reverse phase column 

chromatography (Biotage® Sfär C18 Duo 100 Å 30 µm 30 g, MeCN + 0.1% 

TFA/H2O + 0.1% TFA = 1:9 à 1:1) to afford the title compound as white solid (1.11 

g, 20%) that was used for the next step without further purification. 

(S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-5-(3-((2R,3R,4S,5S,6R)-
3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)ureido)pentanoic 
acid (Fmoc-Git-OH) (6) 

 

To a solution of (S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-5-(3-

((2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-

yl)ureido)pentanoic acid TFA salt (1.11 g, 1.65 mmol, 1.0 eq.) in pyridine (8.24 mL), 

acetic anhydride (7.79 mL, 8.41 g, 82.4 mmol, 50 eq.) was added and the resulting 

solution was stirred at rt for 1 h. After completion of the reaction, the mixture was 

cooled to 0°C and quenched with 2.4 M aq. HCl. The suspension was diluted with 

Et2O (50 mL) and the aqueous phase was extracted with Et2O (5x). The combined 

organic layers were dried over anhydrous MgSO4, concentrated under reduced 

pressure and purified by reverse phase column chromatography (Biotage® Sfär 

C18 D Duo 100 Å 30 µm 30 g, MeCN + 0.1% HCl : H2O + 0.1% HCl = 1:19 à 4:1) 

to yield the title compound as white solid (481 mg, 40%). 

ESI-HRMS: calc. C35H42N3O14 [M+H]+ 728.2667 found 728.2666. -0.1 ppm 

error. 
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Figure 5.34: 1H NMR (500 MHz, DMSO-d6) of Fmoc-Git-OH: δ 12.56 (br s, 1H), 7.89 (d, J 
= 7.5 Hz, 2H), 7.72 (d, J = 7.4 Hz, 2H), 7.65 (d, J = 8.0 Hz, 1H), 7.41 (t, J = 7.4 Hz, 2H), 
7.32 (t, J = 7.4 Hz, 2H), 6.63 (d, J = 10.2 Hz, 1H), 6.12 (s, 1H), 5.32 – 5.21 (m, 2H), 5.17 (t, 
J = 9.7 Hz, 1H), 4.92 (t, J = 9.4 Hz, 1H), 4.32 – 4.15 (m, 4H), 4.08 – 3.82 (m, 3H), 4.08 – 
3.82 (m, 2H), 2.09 (s, 3H), 2.02 – 1.92 (m, 6H), 1.91 (s, 3H), 1.75 – 1.63 (m, 1H), 1.62 – 
1.49 (m, 1H), 1.47 – 1.39 (m, 2H). 
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Figure 5.35: 13C NMR (126 MHz, DMSO-d6) of Fmoc-Git-OH: δ 173.7, 169.8, 169.8, 
169.5, 169.3, 156.5, 156.0, 143.7, 140.6, 127.6, 127.0, 125.2, 120.0, 79.9, 70.8, 70.6, 68.0, 
67.5, 65.5, 61.2, 53.6, 46.6 38.6, 28.1, 26.5, 20.4, 20.4, 20.3, 20.3. 

5.8.2. Analytical characterization of all synthesized noncanonical 
peptidomimetics discovered by AS-MS 
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Figure 5.36: Analytical characterization of purified Noncanonical Peptide 1. (A) Sequence 
information including 1-letter and 3-letter codes for the noncanonical amino acids and 
average local confidence (ALC) of each peptide. (B) Purity and UPLC chromatogram (C) 
Calculated and observed monoisotopic masses with ppm error reported. (D) Raw mass 
spectra of the peptide showing the charge state series (often z = 2,3,4 observed), and E. ~5 
m/z zoom in on the lowest charge species observed (often z = 2). 
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Figure 5.37: Analytical characterization of purified Noncanonical Peptide 2. (A) Sequence 
information including 1-letter and 3-letter codes for the noncanonical amino acids and 
average local confidence (ALC) of each peptide. (B) Purity and UPLC chromatogram (C) 
Calculated and observed monoisotopic masses with ppm error reported. (D) Raw mass 
spectra of the peptide showing the charge state series (often z = 2,3,4 observed), and E. ~5 
m/z zoom in on the lowest charge species observed (often z = 2). 
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Figure 5.38: Analytical characterization of purified Noncanonical Peptide 3. (A) Sequence 
information including 1-letter and 3-letter codes for the noncanonical amino acids and 
average local confidence (ALC) of each peptide. (B) Purity and UPLC chromatogram (C) 
Calculated and observed monoisotopic masses with ppm error reported. (D) Raw mass 
spectra of the peptide showing the charge state series (often z = 2,3,4 observed), and E. ~5 
m/z zoom in on the lowest charge species observed (often z = 2). 
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Figure 5.39: Analytical characterization of purified Noncanonical Peptide 4. (A) Sequence 
information including 1-letter and 3-letter codes for the noncanonical amino acids and 
average local confidence (ALC) of each peptide. (B) Purity and UPLC chromatogram (C) 
Calculated and observed monoisotopic masses with ppm error reported. (D) Raw mass 
spectra of the peptide showing the charge state series (often z = 2,3,4 observed), and E. ~5 
m/z zoom in on the lowest charge species observed (often z = 2). 
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Figure 5.40: Analytical characterization of purified Noncanonical Peptide 5. (A) Sequence 
information including 1-letter and 3-letter codes for the noncanonical amino acids and 
average local confidence (ALC) of each peptide. (B) Purity and UPLC chromatogram (C) 
Calculated and observed monoisotopic masses with ppm error reported. (D) Raw mass 
spectra of the peptide showing the charge state series (often z = 2,3,4 observed), and E. ~5 
m/z zoom in on the lowest charge species observed (often z = 2). 
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Figure 5.41: Analytical characterization of purified Noncanonical Peptide 6. (A) Sequence 
information including 1-letter and 3-letter codes for the noncanonical amino acids and 
average local confidence (ALC) of each peptide. (B) Purity and UPLC chromatogram (C) 
Calculated and observed monoisotopic masses with ppm error reported. (D) Raw mass 
spectra of the peptide showing the charge state series (often z = 2,3,4 observed), and E. ~5 
m/z zoom in on the lowest charge species observed (often z = 2). 
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Figure 5.42: Analytical characterization of purified Noncanonical Peptide 7. (A) Sequence 
information including 1-letter and 3-letter codes for the noncanonical amino acids and 
average local confidence (ALC) of each peptide. (B) Purity and UPLC chromatogram (C) 
Calculated and observed monoisotopic masses with ppm error reported. (D) Raw mass 
spectra of the peptide showing the charge state series (often z = 2,3,4 observed), and E. ~5 
m/z zoom in on the lowest charge species observed (often z = 2). 



280 
 

 

 

 
Figure 5.43: Analytical characterization of purified Noncanonical Peptide 8. (A) Sequence 
information including 1-letter and 3-letter codes for the noncanonical amino acids and 
average local confidence (ALC) of each peptide. (B) Purity and UPLC chromatogram (C) 
Calculated and observed monoisotopic masses with ppm error reported. (D) Raw mass 
spectra of the peptide showing the charge state series (often z = 2,3,4 observed), and E. ~5 
m/z zoom in on the lowest charge species observed (often z = 2). 
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Figure 5.44: Analytical characterization of purified Noncanonical Peptide 9. (A) Sequence 
information including 1-letter and 3-letter codes for the noncanonical amino acids and 
average local confidence (ALC) of each peptide. (B) Purity and UPLC chromatogram (C) 
Calculated and observed monoisotopic masses with ppm error reported. (D) Raw mass 
spectra of the peptide showing the charge state series (often z = 2,3,4 observed), and E. ~5 
m/z zoom in on the lowest charge species observed (often z = 2). 
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Figure 5.45: Analytical characterization of purified Noncanonical Peptide 10. (A) Sequence 
information including 1-letter and 3-letter codes for the noncanonical amino acids and 
average local confidence (ALC) of each peptide. (B) Purity and UPLC chromatogram (C) 
Calculated and observed monoisotopic masses with ppm error reported. (D) Raw mass 
spectra of the peptide showing the charge state series (often z = 2,3,4 observed), and E. ~5 
m/z zoom in on the lowest charge species observed (often z = 2). 
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Figure 5.46: Analytical characterization of purified Noncanonical Peptide 11. (A) Sequence 
information including 1-letter and 3-letter codes for the noncanonical amino acids and 
average local confidence (ALC) of each peptide. (B) Purity and UPLC chromatogram (C) 
Calculated and observed monoisotopic masses with ppm error reported. (D) Raw mass 
spectra of the peptide showing the charge state series (often z = 2,3,4 observed), and E. ~5 
m/z zoom in on the lowest charge species observed (often z = 2). 



284 
 

 

 

 
Figure 5.47: Analytical characterization of purified Noncanonical Peptide 12. (A) Sequence 
information including 1-letter and 3-letter codes for the noncanonical amino acids and 
average local confidence (ALC) of each peptide. (B) Purity and UPLC chromatogram (C) 
Calculated and observed monoisotopic masses with ppm error reported. (D) Raw mass 
spectra of the peptide showing the charge state series (often z = 2,3,4 observed), and E. ~5 
m/z zoom in on the lowest charge species observed (often z = 2). 
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Figure 5.48: Analytical characterization of purified Noncanonical Peptide 13. (A) Sequence 
information including 1-letter and 3-letter codes for the noncanonical amino acids and 
average local confidence (ALC) of each peptide. (B) Purity and UPLC chromatogram (C) 
Calculated and observed monoisotopic masses with ppm error reported. (D) Raw mass 
spectra of the peptide showing the charge state series (often z = 2,3,4 observed), and E. ~5 
m/z zoom in on the lowest charge species observed (often z = 2). 
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Figure 5.49: Analytical characterization of purified Noncanonical Peptide 14. (A) Sequence 
information including 1-letter and 3-letter codes for the noncanonical amino acids and 
average local confidence (ALC) of each peptide. (B) Purity and UPLC chromatogram (C) 
Calculated and observed monoisotopic masses with ppm error reported. (D) Raw mass 
spectra of the peptide showing the charge state series (often z = 2,3,4 observed), and E. ~5 
m/z zoom in on the lowest charge species observed (often z = 2). 
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Figure 5.50: Analytical characterization of purified Noncanonical Peptide 15. (A) Sequence 
information including 1-letter and 3-letter codes for the noncanonical amino acids and 
average local confidence (ALC) of each peptide. (B) Purity and UPLC chromatogram (C) 
Calculated and observed monoisotopic masses with ppm error reported. (D) Raw mass 
spectra of the peptide showing the charge state series (often z = 2,3,4 observed), and E. ~5 
m/z zoom in on the lowest charge species observed (often z = 2). 
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Figure 5.51: Analytical characterization of purified Noncanonical Peptide 16. (A) Sequence 
information including 1-letter and 3-letter codes for the noncanonical amino acids and 
average local confidence (ALC) of each peptide. (B) Purity and UPLC chromatogram (C) 
Calculated and observed monoisotopic masses with ppm error reported. (D) Raw mass 
spectra of the peptide showing the charge state series (often z = 2,3,4 observed), and E. ~5 
m/z zoom in on the lowest charge species observed (often z = 2). 
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Figure 5.52: Analytical characterization of purified Noncanonical Peptide 17. (A) Sequence 
information including 1-letter and 3-letter codes for the noncanonical amino acids and 
average local confidence (ALC) of each peptide. (B) Purity and UPLC chromatogram (C) 
Calculated and observed monoisotopic masses with ppm error reported. (D) Raw mass 
spectra of the peptide showing the charge state series (often z = 2,3,4 observed), and E. ~5 
m/z zoom in on the lowest charge species observed (often z = 2). 
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5.8.3. Biolayer interferometry (BLI) data of all AS-MS discovered 
noncanonical peptides 

 
Figure 5.53: BLI sensorgrams of all binding peptides and peptidomimietics with their 
monomers and structures shown. Peptides were labeled with a SGGLys(Biotin)-NH2 
(labeled as R) at the C-terminus. In the top left, the BLI assay format is shown, with 
biotinylated peptides immobilized and 12ca5 in solution at the concentrations shown. Note 
that Peptide 4, 6, 7, 8, 9, 10, 11, 12, 13, and 14 are nonbinders seen in Figure 5.31. The 
association and dissociation curves were fitted using a 1:1 binding model (n > 2 fit curves 
accepted shown as black dashed lines with Full R2 > 0.8 and Χ2 < 32, see Table 5.19) to 
calculate the apparent dissociation constant (KD). 
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Table 5.19: BLI Data Summary of all binding peptides and peptidomimetics in this work. 
Note that Peptide 4, 6, 7, 8, 9, 10, 11, 12, 13, and 14 are nonbinders. 

 

Peptide 1 12ca5 Conc (nM) koff(1/s) kon(1/Ms) KD(M) Rmax Req Response LoadingHeight FullR2 Full X2
2000 1.52E-03 1.05E+04 1.45E-07 3.13 2.92 3.06 0.624 0.978 38.30
1000 1.27E-03 1.38E+04 9.21E-08 3.07 2.81 2.90 0.689 0.986 19.00

Dissociation Constant, KD 500 1.08E-03 1.80E+04 6.03E-08 2.28 2.03 1.99 0.584 0.993 4.22
44 ± 29 nM 250 7.84E-04 2.16E+04 3.62E-08 2.10 1.84 1.58 0.674 0.998 0.98

Ave ± SD nM 125 5.71E-04 2.63E+04 2.17E-08 1.68 1.43 0.99 0.594 0.999 0.12
62.5 3.44E-04 2.87E+04 1.20E-08 1.67 1.40 0.66 0.649 0.999 0.06

Peptide 2 12ca5 Conc (nM) koff(1/s) kon(1/Ms) KD(M) Rmax Req Response LoadingHeight FullR2 Full X2
2000 1.35E-03 7.60E+03 1.77E-07 2.54 2.33 2.43 0.790 0.983 16.20
1000 1.16E-03 1.01E+04 1.15E-07 2.24 2.01 2.02 0.780 0.991 5.86

Dissociation Constant, KD 500 9.71E-04 1.31E+04 7.41E-08 1.97 1.71 1.57 0.794 0.996 1.57
75 ± 56 nM 250 7.37E-04 1.63E+04 4.52E-08 1.60 1.36 1.05 0.842 0.999 0.29

Ave ± SD nM 125 5.81E-04 2.13E+04 2.73E-08 1.26 1.03 0.65 0.770 0.999 0.08
62.5 4.36E-04 3.23E+04 1.35E-08 0.92 0.75 0.40 0.743 0.998 0.06

Peptide 3 12ca5 Conc (nM) koff(1/s) kon(1/Ms) KD(M) Rmax Req Response LoadingHeight FullR2 Full X2
1000 9.01E-05 1.90E+04 4.73E-09 4.54 4.52 4.67 0.507 0.963 73.80
500 1.16E-04 2.81E+04 4.14E-09 4.19 4.16 4.21 0.513 0.986 30.10

Dissociation Constant, KD 250 1.37E-04 3.91E+04 3.51E-09 3.55 3.50 3.38 0.496 0.996 6.57
3.1 ± 0.67 nM 125 1.54E-04 4.97E+04 3.10E-09 3.08 3.01 2.58 0.499 0.999 1.17
Ave ± SD nM 62.5 1.54E-04 6.15E+04 2.51E-09 2.80 2.69 1.89 0.496 1.000 0.43

31.3 1.37E-04 6.01E+04 2.28E-09 2.69 2.51 1.13 0.505 1.000 0.15

Peptide 5 M Conc.(nM) koff(1/s) kon(1/Ms) KD(M) Rmax Req Response LoadingHeight FullR2 Full X2
1000 1.85E-03 8.55E+03 2.16E-07 0.60 0.49 0.48 1.389 0.986 0.66
500 1.82E-03 1.17E+04 1.56E-07 0.44 0.34 0.31 1.314 0.991 0.18

Dissociation Constant, KD 250 1.50E-03 2.53E+04 5.92E-08 0.30 0.24 0.23 1.334 0.979 0.18
77 ± 57 nM 125 1.33E-03 5.63E+04 2.37E-08 0.19 0.16 0.15 1.345 0.955 0.16

Ave ± SD nM 62.5 8.12E-04 1.72E+05 4.72E-09 0.11 0.10 0.10 1.370 0.854 0.15
31.3 1.21E-03 4.34E+05 2.79E-09 0.05 0.05 0.05 1.332 0.768 0.08

Peptide 15 12ca5 Conc (nM) koff(1/s) kon(1/Ms) KD(M) Rmax Req Response LoadingHeight FullR2 Full X2
1000 9.35E-05 1.86E+04 5.01E-09 4.61 4.59 4.73 0.293 0.977 48.70
500 1.07E-04 2.59E+04 4.15E-09 3.78 3.75 3.76 0.266 0.994 11.40

Dissociation Constant, KD 250 1.28E-04 3.42E+04 3.73E-09 3.05 3.01 2.82 0.264 0.999 0.78
3.9 ± 0.68 nM 125 1.31E-04 4.20E+04 3.13E-09 2.76 2.70 2.17 0.256 1.000 0.17
Ave ± SD nM 62.5 1.08E-04 3.32E+04 3.26E-09 3.71 3.53 1.69 0.289 1.000 0.10

Peptide 16 12ca5 Conc (nM) koff(1/s) kon(1/Ms) KD(M) Rmax Req Response LoadingHeight FullR2 Full X2
1000 1.08E-04 1.61E+04 6.71E-09 5.67 5.63 5.76 0.297 0.972 97.70
500 5.15E-05 2.12E+04 2.43E-09 5.26 5.24 5.11 0.299 0.993 30.40

Dissociation Constant, KD 250 8.47E-06 2.71E+04 3.12E-10 4.41 4.41 3.87 0.262 0.999 4.77
≤ 1 nM* 125 1.22E-07 3.33E+04 3.67E-12 4.06 4.06 2.93 0.303 1.000 0.72

*Measured 0.21 ± 0.15 nM (Ave ± 
SD), out of range for instrument 62.5 1.32E-05 4.15E+04 3.18E-10 3.15 3.14 1.73 0.286 1.000 0.27

Peptide 17 M Conc.(nM) koff(1/s) kon(1/Ms) KD(M) Rmax Req Response LoadingHeight FullR2 Assoc.X2
1000 NA 1.86E+04 NA 4.99 4.99 5.20 0.254 0.966 67.90
500 NA 2.54E+04 NA 4.37 4.37 4.41 0.257 0.991 19.50

Dissociation Constant, KD 250 2.83E-05 3.31E+04 8.54E-10 3.63 3.61 3.38 0.221 0.999 1.78
4.4 ± 2.7 nM 125 2.02E-04 3.99E+04 5.05E-09 3.36 3.23 2.59 0.269 0.999 0.19
Ave ± SD nM 62.5 3.10E-04 4.17E+04 7.44E-09 3.07 2.74 1.62 0.267 0.999 0.11
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Figure 5.54: BLI sensorgrams of all nonbinding peptides and peptidomimietics with their 
monomers and structures shown. Peptides were labeled with a SGGLys(Biotin)-NH2 
(labeled as R) at the C-terminus. 
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6. Appendix: Ligand discovery from phage display significantly 
improved by regularized proxy learning 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The work presented in this chapter has been reproduced and adapted from the 
following publication: 

 
Brown, J. S.*; Tseo, Y.*; Lee, M. A.; Wong, J.Y.-K.; Yang, S.; Kim, C.R.; Loas, A.; 
Gomez-Bombarelli, R.; Pentelute, B.L. Ligand discovery from phage display 
significantly improved by regularized proxy learning. ChemRxiv Preprint. Manuscript 
submission for peer review in progress. 2023 
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A.1. Introduction 

Phage display is a robust method to perform genetically encoded affinity 

selection against biomolecular targets.1–7 As a growing therapeutic modality, 

peptides and peptidomimetics ligands can consolidate weak interactions across 

protein-protein interfaces, have recently experienced higher clinical trial success 

than small molecules, and remain less expensive to produce than biologics.8–12 

Phage display is easily accessible, inexpensive, and can serve as a first-line 

approach to perform peptide ligand discovery with several libraries available 

commercially. Furthermore, engineered phage libraries have enabled 

macrocyclization and covalent pharmacophore modification to improve discovery 

outcomes and pharmacokinetic properties. 4–7,13–15 Due to these advantages, phage 

display has been responsible for the discovery of clinically investigated 

peptidomimetics.15–18 Phage display has found broad utility in a variety of contexts 

including in vivo,2 ex vivo, and in vitro (on-cell) bio-panning.3 Arguably, the robust 

use of phage display has been enabled by the phages’ protection of its genetically-

encoded tag and by the rise of sensitive next-generation sequencing (NGS). The 

sensitivity achieved by NGS has enabled several other ligand discovery 

technologies including DNA-encoded libraries,19,20 mRNA display,14,21 and yeast 

display.22,23 

However, the discovery of peptide ligands to biomolecular targets using 

phage display faces several fundamental challenges, including amplification bias 

and the isolation of target-unrelated phage.24–26 Traditionally, three to five rounds of 

bio-panning are required to enrich high-affinity peptides with specificity towards the 

target.1 While designed to eliminate nonbinding phage, the biological bacterial-

based amplification of phage bio-panning can introduce bias. A recurrent challenge 

is the propagation and isolation of target-unrelated phage (TUP) variants, which 

often have mutations that confer a growth advantage in biological amplification in 

host bacteria.24–26 The isolation of target-specific phage can be especially 

challenging if the biomolecular target struggles to drive the affinity selection or “pull-
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down” of bio-panning (i.e., due to its disorder or allostery)27 resulting in the 

predominant isolation of target-unrelated phage variants. In addition, the efficiency 

of bacterial amplification can be varied with high-affinity candidates being missed or 

in low representations.26 Thus, the resulting NGS data readout from bio-panning 

has additional bias and background “noise” that convolute the straightforward 

ranking of peptides by their affinity toward the target. 

Several descriptors attempt to overcome these challenges by parsing the bio-

panning NGS data and ranking peptides based on their target-specificity. The bio-

panning performance of each peptide can be understood based bioinformatic 

fitness descriptors of i) protein specificity, ii) enrichment, as well as iii) similarity to 

other identified peptide ligands. First, protein specificity has been quantified by fold 

change (FC), and with its associated statistical confidence (p-value) is usually 

represented as a volcano plot similar to other bioinformatic analyses.4,5,28 However, 

utilizing FC with its p-value alone may struggle to identify high-affinity peptides that 

do not exhibit rapid increases in enrichment due to any detrimental amplification 

bias. Moreover, an identical subset of phage must be present across the proteins 

investigated in each replicate; otherwise, the fold change comparison between 

slightly different subsets would inherently lead to the false positive identification.26 

Second, peptide enrichment through bio-panning rounds has been quantified by 

enrichment ratio (ER).19,26 However, enrichment does not include any measure of 

protein specificity and thus relies on the experiment design and/or post-analysis to 

prevent the isolation of nonspecific peptides. Third, clustering can group peptides 

by their chemical similarity and aid in the identification of frequently appearing 

peptide motifs,29 but can be prone to over- or underfitting due to the difficulty in 

determining an optimal number of clusters. Additionally, the presence of nonspecific 

and parasitic peptides can further obfuscate clustering efforts if they share 

sequence similarity with putative hits. Many clustering methods will also make 

assumptions about the general shape of the data, such as K- means clustering 

assumes spherically shaped datasets. The high dimensionality of the input data 
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along with the lack of data labeling can lead to issues with local versus global 

feature relevance.30,31 

Machine learning (ML) is set to facilitate a paradigm shift in drug discovery 

and development for its ability to reveal underlying or nonobvious patterns beyond 

statistical analysis. Thus, it has been deployed for the discovery of antimicrobial, 

cell-penetrant, or immunogenic peptides.32–34 For phage display, ML has improved 

discovery outcomes by being trained directly on the NGS data,35 on curated 

sequences for classification,28 or on peptide fitness descriptors (e.g., FC, ER).36 

However, these approaches using one type of data (e.g., ER)  may be affected 

significantly by the isolation of target-unrelated phage and amplification biases. In 

contrast, the combination of all fitness descriptors and sequence-based information 

may provide a more complete set of information to elucidate high-affinity peptides 

from phage display. To our knowledge, a combined model has not been developed, 

likely because each piece of information (fitness descriptor or sequence) is more 

amenable to separate regression or classification tasks, respectively.  

Herein, we describe the application of proxy learning for revealing underlying 

motif patterns within NGS phage display data to improve the discovery of high-

affinity ligands (Figure A.1B). Specifically, we combine bioinformatic fitness (FC and 

ER) and peptide sequence information through a loss-metric mismatch and enforce 

proxy learning to model the bio-panning NGS data. We completed phage display 

against mouse double minute 2 (MDM2) with anti-hemagglutinin antibody (12ca5) 

as a control, given that the known binding MDM2 motif could facilitate model 

evaluation. This involves the utilization of a heavily regularized neural network 

bidirectional long short-term memory (BiLSTM), trained in a supervised manner 

upon multiple data (Sequence input, FC and ER output). By employing this transfer 

learning technique, we sought to clarify the underlying peptide motifs that could 

drive affinity from the biases present in the data (i.e., “noise”).  Where previous ML 

approaches have proven successful using either metric (FC or ER) 

independently,19,35 to our knowledge this is the first work to combine both sources of 
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information for joint denoising and the first work to apply proxy transfer learning to 

the task of genetically-encoded affinity selection or bio-panning. Our proxy BiLSTM 

model demonstrates a remarkable improvement, with a greater than 300% increase 

in the prioritization of motif-containing high-affinity peptides (termed “hit rate”) 

compared to any experimental-only approach. (Figure A.1C). Furthermore, we 

examine the structure-activity relationship (SAR) and investigate the denoised 

peptide motif using UMAP and shapely additive analysis. From this framework, 

future work will evaluate the binding affinity of prioritized peptides across a wider 

range of biomolecular targets to assess generality of the approach. 
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Figure A.1: The approach presented in this work combines descriptors of peptide fitness in 
phage bio-panning along with sequence information to elucidate target-specific peptide hits 
from complex sequencing data. (A) A significant challenge of de novo discovery with phage 
display is the elucidation and ranking of target-specific peptide binders above the bio-
panning background “noise,” contributed by amplification bias and isolation target-unrelated 
phage, seen in next-generation sequencing data (NGS). (B) Several approaches process 
NGS data and rank peptide sequences for experimental synthesis and validation to improve 
research efficiency and maximize discovery success. Fitness descriptors of each individual 
peptide in bio-panning include enrichment ratio (ER), which quantifies the round-to-round 
change in individual peptide enrichment, and fold change (FC), which quantifies the 
peptide-protein selectivity. Clustering analysis has also been performed to parse and group 
the isolated peptides based on chemical similarity. (C) This work combines all descriptors 
(FC + ER) and sequence information within a bidirectional long short-term memory 
(BiLSTM) trained model that undergoes “proxy” training. Proxy training limits the learning of 
BiLSTM on pure accuracy of experimental FC and ER, which contain bias, and balances 
learning from the input sequence information as well. Overall, the resulting BiLSTM model 
provides a > 300% increase in accuracy of ranking peptide hits (motif-containing peptides) 
from the NGS background, termed “hit rate.” 
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A.2. Results and Discussion 

Multiplexed phage display libraries with linear and macrocyclic peptides were 

selected against mouse double minute 2 (MDM2) and anti-hemagglutinin antibody 

(12ca5, see Figure A.2A). Briefly, three rounds of phage display panning were 

completed using an automated protocol, with the protein target pre-immobilized on 

magnetic beads. Bio-panning was completed simultaneously using multiple libraries 

linear peptide libraries (X12 and X7) and macrocyclic peptide libraries ACX7C and 

AXMCXNC (M+N=6) together, where the libraries were incubated first with unlabeled 

magnetic beads to remove high-affinity bead binders. Nonspecific binding was 

blocked with 2% non-fat milk for 1 hour before incubation of the protein target with 

depleted pooled phage library together for 1 hour. Overall, these measures to limit 

nonspecific binding were successful, with only 0.06% of peptide sequences 

containing the off-target streptavidin binding motif HPQ. 

Within this work, the validation of our approach to prioritize high-affinity 

peptides will be judged by the presence of characteristic motif-containing 

sequences. Specifically, the known 12ca5 binding motif is D**DY(A/S)37–39 and the 

known MDM2 binding motif from prior phage display work is F**ФФ, where Ф are 

the hydrophobic amino acids phenylalanine, tryptophan, leucine, isoleucine, valine 

and tyrosine.40–44 As 12ca5 is a peptide-binding antibody, we placed more focus on 

validating our methodology to isolate motif-containing sequences against MDM2, 

with 12ca5 serving as a positive control. 

In our data, FC and ER appeared partially orthogonal, though neither alone 

appeared able to easily isolate high-affinity, target-specific peptides, or “hits” from 

the data (shown in orange in Figure A.2). Both FC and ER are driven by the affinity 

selection process in bio-panning and each has led to the identification of high-

affinity binders from genetically encoded libraries.4,5,19,26 However, both fitness 

descriptors may be susceptible to amplification bias and target-unrelated phage 

contributing to the background “noise” from NGS data. Common to all affinity 
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selections, a weaker signal may be observed if the biomolecular target does not 

strongly drive the selection through affinity-ranked interactions. In comparison to 

12ca5, MDM2 appeared less able to drive a strong affinity selection as seen in the 

“volcano” plot of -ln(p-value) vs ln(FC) (Figure A.2B). The orange peptide hits would 

be poorly isolated from an FC-based approach. Relating FC to ER, we see that 

additional information emerges (Figure A.1C) with the appearance of three peptide 

groups. The orange peptide hits appear predominantly in the high FC and high-to-

modest ER region, as expected. However, only 2.8 % of the peptides in this region 

(high FC (> 2.5)4,5 and high-to-modest ER (> 0)) contain the desired, high-affinity 

MDM2 motif. Another high FC population has low ER and may represent weak 

target-selective binding peptides. The last population have low FC which are not 

target selective. The clearest localization of the desired orange motif-containing 

peptides can be seen in a three-dimensional overlay (Figure A.2D), where most of 

the hits appear to have a high FC and ER and a modest p-value. Overall, these 

data suggest that the combination of FC and ER may benefit any analysis approach 

toward the identification of specific high-affinity peptides from phage display data 

(Figure A.2B,C,D).  
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Figure A.2: Fold change (FC) and enrichment ratio (ER) provide partially orthogonal 
information that when combined with peptide sequence in a proxy machine-learned 
approach may improve the isolation of high-affinity target-specific peptide ligands from 
phage display against MDM2 with 12ca5 as control. (A) Phage display bio-panning seeks to 
isolate peptide ligands by iterative affinity selection and biological amplification of bound 
phage which genetically-encode the displayed peptide. However, this process is plagued by 
the isolation of target-unrelated phage and is susceptible to a weakly-driven affinity 
selection. (B) Volcano plot of -ln(p-value) vs ln(FC), similar to other bioinformatic analyses. 
(C) The combination of FC and ER partially reveals motif-containing peptide hits as a 
population described by both high FC and high ER. However, only 2.8% of the peptide 
sequences within the high FC (> 2.5) and high-to-modest ER (> 0) region contain the high-
affinity MDM2 motif. (D) The 3-dimensional projection of the data to include all three criteria 
(ER, FC and its associated p-value) aids in visualizing the location of the peptide hits. 
Orange points in plots B through D represent peptides that contain the MDM2 motif. € Our 
approach utilizes a bi-directional long short-term memory (BiLSTM) ML approach to direct 
the proxy learning of peptide sequence toward FC and ER. 

Before employing a more powerful model, we first determined that two 

common clustering methods, K-means clustering30,45 and CD-HIT,29 were 

insufficient to identify high-affinity peptide sequences from the MDM2 phage display 

data. For K-means clustering, the peptides were encoded by amino acid, each 
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represented as a 36-length vector from one-hot encoding, relative propensity for 

binding score,46 DELPHI predicted protein interaction score,47 and 14 

physicochemical property descriptors.46,48 Residue-based encoding directly 

improves the ability to perform SAR analysis, ranging from amino acid-specific 

(one-hot) to generalizable (physical property) contributions toward binding affinity. 

Encoded peptides were decomposed using dimensionality reduction with Uniform 

Manifold Approximation and Projection (UMAP)49 and principal component analysis 

(PCA). The data was then clustered using the K-means algorithm after optimization 

of the number of clusters K using the elbow method, and a logo plot was generated 

for each cluster (Figure A.9D). Additionally, we calculated the ER or FC of each 

cluster to attempt to guide the determination of target-selective clusters (Figure 

A.9B). However, the clustering primarily produced separated clusters for each 

library utilized (i.e., separating linear and macrocyclic libraries), affording no 

meaningful information about potential peptide hits or target-selective clusters within 

each library. Only a single cluster containing the 12ca5-based aspartic acid motif 

could be identified, with no clusters containing the MDM2 motif in any form. This 

result was made more apparent when the location of 12ca5- and MDM2-motifs 

were overlaid on the clusters, which were dispersed across all clusters and 

indicating that our clustering approach did not isolate any motif-containing hit 

peptides. Clustering using CD-HIT was also attempted across a range of similarity 

metrics but was unable to identify any cluster of peptides larger than three 

members. Overall, our efforts indicated that isolation of motif-containing peptides 

can be challenging with unsupervised clustering, warranting the use of more 

powerful tools to combine the partially orthogonal information from the peptide 

sequence, ER, FC and its associated p-value. 

We proposed a proxy learning approach to enforce learned connections 

between sequence patterns and noisy experimental data of bio-panning efficiency 

(ER) and target selectivity (FC and its p-value) using a bidirectional long short-term 

memory (BiLSTM) model. Peptides that exhibit high FC and ER have a higher 
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fraction of high-affinity, motif-containing peptide hits; but, for MDM2 here, only 2.8% 

of these peptides were hits. Thus, we hypothesized that multi-source learning could 

balance prioritization with respect to sequence patterns in the latent space, while 

learning and “denoising” the experimental surrogate metrics of FC and ER. Set-up 

as a supervised regression task, we employed a BiLSTM model with encoded 

peptide sequence inputs and predicted outputs of ER (ŷER) and FC (ŷFC) can then 

be summed to provide a final proxy metric (ŷproxy, Figure A.2E). Thus, this proxy 

metric is a single number output that can be used to rank the peptides for their 

likelihood as high-affinity peptide ligands, and evaluated by whether they contain 

the MDM2-binding motif. From the input peptide sequence, we employed a BiLSTM 

model to predict the proxy metric (Figure A.2E).50 The BiLSTM architecture was 

chosen for its capacity to preserve sequence order, represent peptide libraries of 

multiple lengths without padding, and handle cases of motif frame shift and 

macrocycle bidirectionality.  

Strict regularization in our model demonstrated the greatest training 

performance to identify and highly rank MDM2 and 12ca5 peptide hits via the 

predicted proxy learned metric. Highly regularized, sparse learning has previously 

been shown to be important in DNA-encoded discovery.20 Regularization limits 

overfitting during training and appeared well-suited for proxy learning since a highly 

accurate ML regression with experimental ER and FC would at most provide a 

mixed ranking with only 2.8% of the peptide containing the high-affinity motif (Figure 

A.2C). To arrive at this conclusion, we used Bayesian hyperparameter optimization 

with the Tree-Structured Parzen Estimator algorithm51 to evaluate multiple 

hypotheses using Holm-Bonferroni corrected correlation of hyperparameter values 

against model performance (Figure A.10). Stringent regularization improved the 

model’s ability to highly rank peptide hits at the cost of reducing prediction accuracy 

(Figure A.11), following the classic variance-bias tradeoff.52 Thus, we confirmed that 

strict regularization reduced overfitting and improved the BiLSTM model’s ability to 
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perform multi-source learning on peptide sequence, FC, and ER to highly rank 

peptide hits from NGS data. 

 
Figure A.3: BiLSTM model highly ranks MDM2 motif-containing peptide hits >300% better 
than any combination of experimental approaches. Ranking prioritizes the investment of 
synthesis and experimental binding validation toward peptides that have the highest 
predicted confidence to be hits. (A) Hexbin projections with highlighted zones 
corresponding to the top 500 peptides as determined by the different strategies to rank the 
peptides for their potential as peptide hits. Arrows shown in the bottom right display the 
direction of ranking (x-direction, y-direction, or both). (B) Positional frequency matrix of the 
top 500 identified peptides. The macrocyclic 9-mer library contained most of the motif-
containing peptide hits, outperforming the other libraries. Thus, the positional frequency 
matrices of the top 500 show the 9-mer variable region of the 9-mer library (cysteines not 
shown). (C) A plot of the number of identified peptide hits versus their ranking shows that 
the BiLSTM model outperforms all other experimental methods to rank the peptides. The 
calculation of the normalized area under the curve reveals the BiLSTM model performs 
>300% better. D. Calculation of the area under the hit rate curve in C indicates that 64% of 
the top 500 BiLSTM ranked peptides contain the MDM2 motif. 
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Our BiLSTM model was able to isolate peptides containing F**ΦΦ motif 

known to drive high-affinity peptide binding to MDM2 through proxy learning, where 

bioinformatic or statistical approaches failed (Figure A.3A,B). Additional confidence 

can be placed in the method used for the ligand discovery when a high number of 

compounds containing a similar set of critical features or residues are observed, 

called “motif.”8,9,53–56 In the context of affinity selection, these motifs are generally 

assumed to facilitate high-affinity interactions. Thus, our proposed method would be 

successful if it can isolate peptides containing the MDM2 motif from the NGS data. 

As such, we isolated the top 500 peptides ranked by FC-only, FC with its associated 

p-value (volcano plot),4,5,28 ER-only, and FC+ER, and compared it to the 10-fold 

cross-validated prediction of the proxy metric (ŷproxy = ŷER + ŷFC). The top 500 

peptides from each of these approaches are highlighted in Figure A.3A along with 

the axis of the approach used to rank and isolate the 500 peptides (e.g., FC-only 

uses only the x-axis of the volcano plot). We assessed their motif pattern by using a 

positional frequency matrix seen in Figure A.3B. Only the BiLSTM model showed a 

clear motif pattern closely matching the F**ΦΦ motif known to drive high-affinity 

peptide binding to MDM2.40–44 The other approaches showed no clear discernable 

pattern and appeared random.  

Our BiLSTM was able to rank peptide hits from the NGS data >300% better hit 

rate than bioinformatic or statistical approaches, concentrating the likelihood of 

success for initial synthesis validation attempts (Figure A.3C). We sought to rank 

the peptides from bio-panning NGS data to efficiently prioritize the investment of 

experimental validation toward peptides with the highest likelihood of being high-

affinity hits. A theoretically perfect ranking would rank all motif-containing peptides 

above all non-motif-containing peptides, meaning every peptide synthesized in the 

order of the rank would be a hit (gray dashed line in Figure A.3C). With our targets, 

we again used their known motifs to evaluate if our model correctly ranked peptide 

hits over other peptides within the NGS data. The proxy metric from the 10-fold 

cross-validated model can then be assessed for its accuracy throughout by ranking 
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from the 1st to 500th peptide using a “hit rate.” The hit rate assesses the ranked 

peptides for their presence of the MDM2 motif as a function of their rank, as a 

normalized area under the curve (Equation 1). 

Equation 1:  

 

Thus, per peptide invested in experimental validation, the hit rate assesses how 

quickly and how many hits are identified, with up to the rank of 500 peptides shown 

in Figure A.3C,D. Overall, the BiLSTM model hit rate significantly outperforms all 

approaches to analyze the experimental data by >300%, with ER only providing the 

next best performance. 

 
Figure A.4: Hit rate benchmark of model architectures, peptide representation, and proxy 
objective on both the MDM2 and 12ca5 target protein systems. All results reported on a 
20% holdout set taken before hyperparameter tuning. 

Next, we benchmarked the performance of the BiLSTM model against 

random forests (RF) and K-Nearest Neighbor (KNN) models which are commonly 

employed in the analysis of NGS-based discovery data using the hit rate ranking 

metric.19,57  Hyperparameter optimization of the RF model prioritized shallow tree 

depth (max depth of 10) and greater number of estimators (200) presumably to 

increase regularization by averaging multiple decision trees that individually suffer 

from high variance, resulting in the elucidation of underlying data patterns that are 

robust to noise in the dataset (Figure A.10). Similarly, during hyper parameter 
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optimization, regularization in KNN models was implicitly controlled by adjusting for 

large averaged neighbor set sizes (35). Ultimately, all three model architectures 

achieve comparable performance demonstrating competitive amenability to the 

proxy learning task. Notably, all three model architectures across all peptide 

representations and proxy objectives achieved significantly higher hit rates relative 

to the raw experimental values. This result serves to further underscore the vital 

importance of framing hit discovery as a proxy learning task and applying highly 

regularized models to effectively parse the complex NGS data and discerning 

meaningful underlying patterns in the peptide sequences.  

The BiLSTM model demonstrates greater robustness for combined peptide 

representations (1 Hot and Physicochemical) and multi-learning proxy objectives 

(ER + FC) relative to RF and KNN models (Figure A.4). In the two distinct protein 

systems examined, the experimental information sources (ER, FC, and P Value) 

encode varying levels of information pertaining to peptide fitness. Specifically, for 

MDM2, across the model benchmarks, ER provides the most salient information for 

peptide hit ranking, indicating round to round enrichment is the dominant indicator. 

Whereas for 12ca5, across the model benchmarks, FC and P-Value proxy 

objectives prove to be the most informative indicators of peptide binding, indicating 

intra-round replicates to be the dominant indicator. The BiLSTM model successfully 

incorporates the partially orthogonal information of FC + ER as well as multiple 

peptide encodings (one-hot + physicochemical parameters) to improve hit rate 

ranking whereas the RF and KNN models only learn to competitively rank peptides 

from single-task learning objectives and with individual peptide encodings 

(physicochemical for RF and one hot encoding for KNN). For peptide systems 

without known binding motifs and where RF and KNN cannot be benchmarked on 

different single-task objectives and individual encodings, the robustness of the 

BiLSTM model to multi-task learning and combined representations proves 

imperative. 
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Figure A.5: The UMAP decompositions of the learned latent features for each peptide 
indicate successful proxy learning, with strong prioritization toward clustering similar input 
peptide sequence features. (A) UMAP transformation obtained from the penultimate layer 
of the BiLSTM model with the top 500 predicted FC and ER peptides highlighted. (B) In 
combining FC and ER into the proxy metric (ŷproxy = ŷER + ŷFC), the top 500 peptides are 
grouped together for MDM2 with a logo plot exhibiting multiple frameshifts of hydrophobic 
sequence features. (C) On the same UMAP plot, the motif-containing sequences (F**ΦΦ) 
are overlaid, indicating the nearly the same group of peptides prioritized in the top 500 by 
the BiLSTM model in B. A logo plot of the motif-containing peptides also shows nearly 
identical sequence patterns as prioritized by the BiLSTM model. Cysteine residues are 
excluded from the logo plots. 

To understand the BiLSTM model further, we confirmed proxy learning 

toward FC and ER as well as the cluster-like consolidation of motif-containing 

peptides in the BiLSTM latent space seen by UMAP (Figure A.5). Examining the 

latent space BiLSTM embeddings reveals the balance and influence of the proxy 

learning toward FC and ER (outputs) versus the model’s ability to understand and 

consolidate similar peptide sequence input. The UMAP decomposition into two 
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dimensions of all latent peptide embeddings from the penultimate layer of the 

BiLSTM is shown in Figure A.5. Additionally, the peptides with the top 500 predicted 

ER and FC values are highlighted to indicate the location of peptides that were 

highly ranked by the model. For MDM2, the top 500 predicted FC peptides are 

clustered in two distinctive islands, while the top 500 predicted ER peptides are 

clustered in a single island. 

The clear consolidation of highly ER- and FC-ranked peptides indicated that 

the BiLSTM model placed significant weight toward understanding and grouping 

key motifs and denoising statistically significant structural patterns. The model has 

less prioritization toward the purely accurate matching of predicted ER and FC to 

experimental values, confirmed by parity plots (Figure A.11) as well as the lack of 

consolidation of peptides with high experimental FC or ER (Figure A.12). For MDM2 

(Figure A.4), we see one region in the UMAP plot that contains motif-containing 

peptide sequences that strongly overlaps with those predicted to have high ER and 

FC, which are summed to give the proxy metric. For 12ca5, the top 500 peptides 

exhibiting the highest predicted 12ca5 ER and 12ca5 FC scores also exhibit a 

significant co-localization within the UMAP projection. In addition to successfully 

identifying 12ca5 motif-containing sequences (*DYA*), the BiLSTM model prioritized 

a similar sets of anionic peptides containing motifs including D**DY*, which likely 

drives high affinity binding, and LE*E, which has not been reported before. Overall, 

these findings underscore the nontrivial capability of our proxy learning approach to 

effectively group and denoise peptides from NGS data across these protein targets. 
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Figure A.6: Built-in model interpretability using Shapley analysis provided amino-acid level 
SAR. (A) Shapely feature importance across representation features as calculated by the 
10-model ensemble trained via cross validation splitting on a test set of 500 randomly 
sampled peptides. This result indicated that high volume, low polarity, high hydrophobicity, 
and high flexibility are predicted to improve MDM2 binding propensity. (B) Positional 
Shapely feature importance across residue identities as calculated by the 10-model 
ensemble on the set of all 558 MDM2 motifs containing hits within the dataset. Sequences 
are aligned by motif position, and error bars are calculated according to the standard 
deviation of Shapely values per residue across all peptides and all models. This result 
underlies the importance of hydrophobic amino acids to drive binding and the potential for 
small or polar amino acids to disrupt peptide binding to MDM2. 

In addition to potentiating discovery, we can analyze the BiLSTM model 

results and prioritizations at the individual amino acid level to gain structure activity 

relationship (SAR) information using Shapley Additive Explanation analysis.58 While 

complex, ligand discovery data has a wealth of underexploited information from the 

affinity selection of many compounds. We have demonstrated that the proxy-trained 

BiLSTM model can identify and rank peptides for their likelihood as high-affinity 

binders with high accuracy. From the ranking action, the valuable sequence motifs, 

down to the specific amino acid level, can be inferred using Shapley Additive 

Explanation analysis of our 10-fold cross-validated BiLSTM model ensemble. 

Shapley analysis uses coalition game theory to calculate the contribution of each 

encoded feature (for this work amino acid and physicochemical property) to the final 

model prediction.58 Thus, this analysis identifies the importance of each 

representation feature (Figure A.6A) for its influence in driving MDM2 binding.  
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For MDM2, high volume, low polarity (P12 polarizability), low exposed surface 

area, and high (H12) hydrophobicity descriptors46,48 were found to be the most 

indicative characteristics of residues to drive high-affinity binding (Figure A.6A). 

These parameters match well with the properties of canonical uncharged aromatic 

amino acids, including tyrosine, tryptophan, and phenylalanine, which are known to 

be a part of the MDM2 motif that drives high affinity binding. Other features such as 

low exposure, high flexibility, and median side chain net charge index according to 

the cross validated model ensemble correlate with the MDM2 binding likelihood. 

From the same analysis, favorable properties to drive 12ca5 can be inferred as well 

from the “low” Shapley values or the stand-alone analysis (Figure A.15). High 

polarity, high exposed surface area, low flexibility, and low hydrophobicity were 

seen to likely drive 12ca5 binding, consistent with the D**DYA motif. For both 

proteins, the two pretrained descriptors of relative binding propensity and DELPHI 

protein interaction scores were less connected to peptide binding activity. In 

addition, one-hot descriptors show relatively low shapely importance ranges, which 

suggested that the model ensemble eschewed specific categorical understanding in 

favor of deeper physicochemical understanding. 

For additional SAR interpretability, we summed the Shapley values across 

the representation dimension to determine positional importance, also referred to as 

Positional Shapley (PoSHAP) (as illustrated in Figure A.6B).59 Positional shapely 

analysis of peptide “hits” aligned by the theoretical MDM2 motif (Figure A.6B) allows 

us to quantitatively compare residue importance at different positions. Our findings 

revealed that uncharged aromatic amino acids had the most influence on the 

model's performance, with the highest contributions according to our proxy metric. 

Hydrophobe 1 (Φ1 in F**Φ1Φ2) is often seen to be tyrosine in literature (MDM2 cite) 

but seen to be highly weighted as tryptophan by our model. The negatively charged 

residues aspartic and glutamic acid in position 3 or 7 (relative to the start of the 

motif) were recognized to significantly reduce propensity to bind by our model 

ensemble in addition to other small or polar amino acids. These polar amino acids 
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likely prefer to be solvated rather than bound to the hydrophobic MDM2 patch 

surface. For 12ca5 (Figure A.15), the PoSHAP revealed significant importance of 

the aspartic acids within the motif (D**DYA) significantly more important for binding 

than the tryptophan and alanine residues. Overall, we hope that the integration of 

PoSHAP within the BiLSTM model improves the interpretability of the model and 

the SAR information gained from affinity selection and bio-panning discovery. 

A.3. Conclusion 

Multi-source proxy learning with a BiLSTM architecture effectively identified and 

ranked high-affinity peptide hits from NGS phage data based on the presence of 

their known binding motif to MDM2 and 12ca5. From phage display, bioinformatic 

statistical metrics including fold change (FC) and enrichment ratio (ER) provided 

partially orthogonal information to perform model training. Neither FC nor ER alone 

from the experiment was able to guide the identification and ranking of high affinity 

peptides from the NGS data, clearly indicating the “noise” present in the data, likely 

from favorable genetic bias of target-unrelated phage.24,26 Because of this noise in 

the data, common clustering techniques including K-means clustering and CD-HIT 

were unable to robustly identify motif-containing peptides. 

A proxy machine-learned approach was appropriate to combine information 

from FC and ER along with sequence level information to overcome the “noise” 

from target-unrelated phage and/or weak affinity-driven enrichment. Proxy learning 

was critically enforced by regularization, leading to the cluster-like consolidation of 

sequence feature information (Figure A.5) that was heavily weighted with FC and 

ER. This training led to the identification and ranking of peptides as hits to MDM2 

>300% better than any combination of experimental approaches and stands to 

improve the efficiency and investment in experimental validation (Figure A.3). We 

benchmarked the BiLSTM model against other available supervised ML approaches 

to combine sequence, FC, and ER together including random forest (RF) and K-

Nearest Neighbor (KNN) models. The BiLSTM model demonstrated similar hit rate 
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benchmarks but was clearly more robust in its ability to combine the partially 

orthogonal FC and ER with the combined amino acid descriptors together for both 

MDM2 and 12ca5 (Figure A.4). In comparison, RF and KNN showed variability in its 

optimal encoding method and target objective (e.g., FC, FC+ER, etc), whereas the 

BiLSTM model improved with the more diverse information input. Lastly, the 

addition of Shapley Additive Explanation analysis allows for SAR-level information 

to be isolated from the ligand discovery experiment directly. From initial discovery 

experiments, Shapley analysis holds potential to guide the importance of peptide 

amino acid composition (Figure A.6A) as well as with respect to sequence (Figure 

A.6B), informing derivatization efforts. 

 Next, we will seek to apply this proxy-learning approach to phage display 

against novel targets, with a strong emphasis on experimental validation. This 

future direction will reveal the connection between predicted hit rate against these 

model protein targets (12ca5 and MDM2) as well as establish a true experimental 

hit rate against more challenging targets. We expect that this proxy-learned BiLSTM 

model will generally improve the experimental hit rate and discovery of high-affinity 

peptide ligands against biomolecular targets, all toward the generation of 

peptidomimetic therapeutics. 

A.4. Materials  

Mouse anti-hemagglutinin antibody (clone 12ca5) was purchased from 

Columbia Biosciences (Cat: 00-1722) and biotinylated according to a previously 

published protocol MDM225-109 was synthesized using automated flow synthesis as 

described below. Dynabeads™ His-Tag and Dynabeads™ MyOne™ Streptavidin 

T1 were obtained from Thermo Fisher 

H-Rink Amide-ChemMatrix resin was obtained from PCAS BioMatrix Inc. N,N-

diisopropylethylamine (DIEA; ReagentPlus ≥99%), piperidine (ACS reagent, 

≥99.0%), trifluoroacetic acid (HPLC grade, ≥99.0%), triisopropylsilane (≥98.0%), 

acetonitrile (HPLC grade), formic acid (FA, ≥95.0%), dimethyl sulfoxide (DMSO, 
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HPLC grade, ≥99.7%), 1,2- ethanedithiol (EDT, GC grade, ≥98.0%), and 

AldraAmine trapping agents (for 1000 – 4000 mL DMF, catalog number Z511706) 

were purchased from Sigma-Aldrich. Fmoc-protected amino acids (FmocAla-

OHxH2O, Fmoc-Arg(Pbf)-OH; Fmoc-Asn(Trt)-OH; Fmoc-Asp-(Ot-Bu)-OH; 

FmocCys(Trt)-OH; Fmoc-Gln(Trt)-OH; Fmoc-Glu(Ot-Bu)-OH; Fmoc-Gly-OH; Fmoc-

His(Trt)-OH; Fmoc-Ile-OH; Fmoc-Leu-OH; Fmoc-Lys(Boc)-OH; Fmoc-Met-OH; 

Fmoc-Phe-OH; Fmoc-ProOH; Fmoc-Ser(But)-OH; Fmoc-Thr(t-Bu)-OH; Fmoc-

Trp(Boc)-OH; Fmoc-Tyr(t-Bu)-OH; Fmoc-Val-OH); Fmoc-Lys(Biotin)-OH were 

purchased from the Novabiochem product line of Millipore Sigma; FmocHis(Boc)-

OH was purchased from ChemPep, Inc. O-(7-azabenzotriazol-1-yl)-N,N,N’,N’-

tetramethyluronium hexafluorophosphate (HATU, ≥97.0%) and (7-azabenzotriazol-

1- yloxy)tripyrrolidinophospho-nium hexa-fluorophosphate (PyAOP, ≥97.0%) were 

purchased from P3 Biosystems. Tween20 (Proteomics grade) was purchased from 

VWR. Bovine Serum Albumin (BSA; biotechnology grade) was obtained from VWR 

International. Water was deionized using a Milli-Q Reference water purification 

system (Millipore). Nylon 0.22 µm syringe filters were TISCH brand SPEC17984 

A.5. Methods 

A.5.1. Phage display  

 
Figure A.7: A typical phage display screening against immobilized proteins on magnetic 
beads. 
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Phage display libraries (X12, X7 and ACX7C) were purchased from New England 

Biolab (Cat# E8210S, E8211S and E8212S) The AXMCXNC (M+N=6) library was 

cloned and kindly donated from the Ratmir Derda lab (University of Alberta). 

A.5.1.1. Phage amplification and precipitation 

Phage were infected with 250 µL of E.coli K12 ER2738 for 5 mins. The infected 

E.coli were then transferred to 25 mL of pre-warmed LB broth for incubating for 5 

hours at 37 °C with 220 rpm. After 5 hours, the solution was centrifuged at 5000×g 

for 10 mins. The supernatant was transferred to a 50 mL falcon tube with 5 mL of 

6xPEG/NaCl to precipitate overnight at 4 °C. The next day, the solution was 

centrifuged at 14000×g and the supernatant was discarded. The pellet was 

redissolved in 1 mL 1×PBS. The dissolved phage solution was then transferred to a 

1.7 mL centrifuge tube containing 200 µL of 6xPEG/NaCl to re-precipitate phage on 
ice for 1 hour. The precipitated phage solution was centrifuged at max speed for 30 

mins, and the supernatant was discarded. The pellet was redissolved in 1 mL 

1×PBS and centrifuged at max speed to remove large undissolved debris. The 

supernatant was transferred to a new 1.7 mL centrifuge and stored at 4 °C for next 

round selections.  

A.5.1.2. Phage titering 

10 µL of the phage solution was infected with 250 µL of E.coli K12 ER2738 for 5 

mins. Then, the infected E.coli were combined with top agar and plated on an 

IPTG/Xgal LB plate. The plate was incubated overnight at 37 °C and calculated the 

phage concentration the next day.  

A.5.1.3. Phage bio-panning, first three rounds of selection 

In a 1.7 mL centrifuge tube, a mixture of phage library (1010 PFU/library or 1010 

PFU amplified phage) was incubated with 20 µL of streptavidin magnetic beads 

overnight at 4 °C to deplete bead specific binders. On the next day, the depleted 
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phage library mixture was transferred to a new 1.7 mL centrifuge tube for later use 

and the beads were discarded. 100 µL of streptavidin magnetic beads was washed 

with 1 mL of 1×PBS 3 times and was incubated with 130 pmol (1.2 eq) of 

biotinylated protein for 15 mins on ice. After protein immobilization, the protein-

beads were washed with 1 mL of 1×PBS 3 times. The overall selection was 

performed on a KingFisherTM Duo Prime Purification System. (See KingFisher 

protocol section A.5.1.5) The biotinylated protein immobilized beads, depleted 

phage library, blocking buffer and washing buffer were added into the KingFisher 

Plate in the corresponding wells. After selection, 100 µL of bead solution was 

transferred into a 1.7 mL centrifuge tube, the well was washed with 100 µL of PBS 

and transferred to the same centrifuge tube to a total of 200 µL of bead solution. 

100 µL of the bead solution was added to 100 µL of glycine elution buffer (Glycine-

HCl pH 2.2) for 9 min to elute phage from the beads. The elution supernatant was 

transferred into a new 1.7 mL microcentrifuge tube and neutralized with 15 µL of 1 

M Tris-HCl (pH 9.1). The elution was amplified for the next round of bio panning. 

The remaining 100 µL of bead solution was amplified using PCR with an Illumina 

adapter sequence for Next Generation Sequencing. 

A.5.1.4. Phage bio-panning, fourth round of selection 

In Round 4, negative proteins were introduced to observe enrichment and 

specificity of the enriched library from Round 3. 

In a 1.7 mL centrifuge tube, a mixture of phage library (1010 PFU/library or 1010 

PFU amplified phage) was incubated with 20 µL of streptavidin magnetic beads 

overnight at 4 °C to deplete beads specific binders. On the next day, the depleted 

phage library mixture was transferred to a new 1.7 mL centrifuge tube for later use, 

and the beads were discarded. 100 µL of streptavidin magnetic beads was washed 

with 1 mL of 1×PBS 3 times and was incubated with 130 pmol (1.2 eq) of 

biotinylated protein for 15 mins on ice. After protein immobilization, the protein-

beads were washed with 1×PBS 3 times. The overall selection was performed on a 
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KingFisher Instrument. (See KingFisher protocol Section A.5.1.5) The biotinylated 

protein immobilized beads, depleted phage library, blocking buffer and washing 

buffer were added into KingFisher Plate in the corresponding well. In negative 

control panning, the library against positive protein and against a negative protein 

was also performed in parallel. After selection with the KingFisher Instrument, 100 

µL of bead solution was transferred into a 1.7 mL centrifuge tube, washed the well 

with 100 µL and transferred to the same centrifuge tube to a total of 200 µL of bead 

solution. 100 µL of the bead solution was buffered exchange with 100 µL of glycine 

elution buffer (Glycine-HCl pH 2.2) for 9 min to elute phage from the beads. The 

elution supernatant was transferred into a new 1.7 mL microcentrifuge tube and 

neutralized with 15 µL of 1 M Tris-HCl (pH 9.1). The elution was amplified for the 

next round of bio panning. The remaining 100 µL of bead solution was amplified by 

PCR with an Illumina adapter sequence for Next Gen Sequencing.  

A.5.1.5. KingFisherTM Duo Prime plate setup for selection 

The protein immobilized beads suspension and other reagents were added to a 

96 Deepwell Plate (Thermo Fisher, #95040450) as follows: 
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Table A.1: Plate Setup for KingFisherTM Duo Prime 

A Protein coated magnetic beads (1×PBS Buffer) 300 µL 

B Reserved for 12-tip Deepwell magnetic comb (Thermo Fisher, #97003500) 1 mL 

C Wash Buffer (1×PBS buffer) 1 mL 

D Blocking Buffer (2% non-fat milk (w/v) in PBS Buffer) 1 mL 

E Solution of libraries (1010 PFU/mL 0.1 % Tween-20 (v/v), 0.2% non-fat milk (w/v) 
in PBS Buffer) 

1 mL 

F Wash Buffer (0.1 % Tween-20 (v/v), 0.2% non-fat milk (w/v) in PBS Buffer) 1 mL 

G Wash Buffer (1×PBS Buffer) 1 mL 

H Wash Buffer (1×PBS Buffer) 1 mL 

 

Elution strip: 

1×PBS Buffer 100 µL/well 

The following steps were performed using a KingFisherTM Duo Prime 

Purification System with a magnetic comb to transfer the beads. The program is as 

follows: 

A.      Collect comb from row B 

B.      Collect beads from row A on comb, 

C.      Wash beads in row C – 30 s, 

D.      Block in row D – 1 h, 

E.       Phage binding in row E – 1 h, 

F.       Wash beads in row F – 1 min, 

G.      Wash beads in row G – 1 min, 

H.      Wash beads in row H – 1 min. 
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I.         Transfer beads to elution strip from row H 

At the end of the program, the protein coated beads with phage bound were left 

in Row H. The content of each well from row H was transferred to individual 1.7mL 

tube, and process for next round panning described in Section A.5.1.3 and for 

Illumina deep sequencing described in A.5.1.7. 

A.5.1.6. Polymerase chain reaction (PCR)  

Prior to PCR protocol, 25 µL of beads solution was buffer exchanged with 

nuclease free water. The mixture was boiled at 95 °C for 10 mins and the 

supernatant was used as a template for PCR with a total volume of 50 µL. A Typical 

50 µL reaction mixture contained: 

1. 5x Phusion buffer 10 μL 

2. 10 mM dNTPs 1 μL 

3. Phusion® High-Fidelity DNA Polymerase (NEB, cat#M0530S) 0.5 μL 

4.Forward primer (3’-

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTC 

TTCCGATCTXXXXCCTTTCTATTCTCACTCT-5’, 10 μM) 2.5 μL 

5. Reverse primer (3’-

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCC 

GATCTXXXXACAGTTTCGGCCGA-5’, 10 μM) 2.5 μL 

6. Template solution 25 μL 

7. Nuclease free water 8.5 μL 

Thermocycling was performed using the following steps: 

a) 95 °C for 30 sec 

b) 95 °C for 30 sec 

c) 60.5 °C for 15 sec 

d) 72 °C for 30 sec 

e) Repeat step b) to d) 25 times 

f) 72 °C for 5 min 
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g) Hold at 4°C 

A.5.1.7. Next-generation sequencing (NGS) 

45 µL of the PCR product was submitted for deep sequencing. The excess PCR 

primer was removed using a PureLink™ PCR Purification Kit from Thermo Fisher 

(cat# K310001). The concentration of the PCR product was quantified with an 

Advanced Analytical Fragment Analyzer. The PCR samples were pooled and 

submitted to NextSeq500 for deep sequencing. 

A.5.2. Automated flow synthesis of MDM225-109 

Sequence:  

ETLVRPKPLL LKLLKSVGAQ KDTYTMKEVL FYLGQYIMTK RLYDEKQQHI VYCSNDLLGD 

LFGVPSFSVK EHRKIYTMIY RNLVVK(Biotin) 

The sequence was synthesized on 100 mg of pre-swollen LL ChemMatrix Rink 

Amide resin (0.17 mmol/g) using the published optimized protocol for automated 

flow peptide synthesis (AFPS) as described previously. Before synthesis, the resin 

was washed with DMF and coupled with Fmoc-Lys(Biotin)-OH (0.17 mmol, 10 

equivalents) dissolved into 425 μL of PyAOP (0.38 M solution in DMF, 9.5 

equivalents) with 89 μL of DIEA for activation (30 equivalents).  The resin was 

stirred periodically over a coupling period of 3 hours, then washed with DMF (3 x 5 

mL) before deprotection with 20% (v/v) piperidine in DMF (2 x 10 mL with 5 min 

each time). Briefly, utilizing an automated synthesizer, amine-free DMF washed the 

resin before coupling, after coupling, and after deprotection (40 strokes, ~25 mL). 

Coupling was performed with HATU (single-coupling, 8 strokes, ~5 mL) except S&A 

with HATU (double-coupling, 21 strokes, ~10 mL) and C, H, N, Q, R, V, T with 

PyAOP (double-coupling, 21 strokes, ~10 mL). Deprotection was completed with 

20% piperidine in amine-free DMF with 2% formic acid (2 pumps, 40 mL/min). 

Amino acids were iteratively coupled and deprotected until finished. The resin was 

washed again with DMF (3 x 5 mL) and DCM (3 x 5 mL) then dried under reduced 
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pressure. Reagent K solution (82.5% TFA, 5% water, 5% phenol, 5% thioanisole, 

2.5% EDT) was used for global cleavage for 4 h at RT (15 mL + 5 mL washes), 

triturated with cold diethyl ether (3 x 45 mL), suspended in 50% AcN in Water (0.1% 

TFA), and lyophilized. 

The lyophilized crude sample of MDM225-109 was weighed in batches of 25 mg, 

dissolved in 10 mL 6 M guanidinium chloride, 0.1 M dithiothreitol (DTT), in 50 mM 

sodium phosphate pH 7.5, vortexed briefly, 0.2 µm filtered, and subjected to RP-

HPLC purification using a Agilent Zorbax 300SB-C18 PrepHT (9.4 × 250 mm, 5 μm) 

heated at 50 °C at 4.0 mL/min with the following gradient: isocratic 5% B from 0–5 

min; linear gradient from 15–55% B from 5–65 min; linear gradient from 55-90% B 

from 65-66 min; isocratic 90% B from 66-71 min; isocratic 5% B from 71–76 min. 

Fractions showing high purity charge state series were combined and lyophilized, 

leading to the purification of 75 mg of crude to isolate 8.4 mg of HPLC-purified 

MDM225-109 (11% yield). 

Purified MDM225-109  (1 mg, 96 nmol) was dissolved in phosphate buffered saline 

(PBS) containing 6 M Guanidine hydrochloride (vol) and 20 mM DTT at pH 7.2. 

MDM225-109 concentration was determined by UV280 and adjusted to 150 μM 

(extinction coefficient of MDM2[25-109]: 10430 m-1 cm-1). The resulting solution was 

diluted six-fold using a folding buffer containing PBS and 20 mM DTT at pH 7.2 to a 

final MDM225-109 concentration of 25 μM. The solution was kept at room 

temperature for 1 hour before use in bio-panning or storage. Protein was 

concentrated using a 3 kDa molecular weight cutoff Amicon Ultra-15 centrifugal filter 

unit (Millipore Sigma) to isolate 0.43 mg of folded MDM225-109 (43% yield; 5% overall 

yield) as determined by UV280. 

A.5.2.1. Liquid chromatography-mass spectrometry (LC-MS) analysis 

LC-MS chromatograms and associated high resolution mass spectra were 

acquired using an Agilent 1290 Infinity HPLC coupled to an Agilent 6545 LC/Q-TOF 

mass spectrometer using a Zorbax 300SB-C3 column (2.1 x 150 mm, 5 μm) heated 
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to 40 °C. Solvent compositions used are 0.1% formic acid in H2O (solvent A) and 

0.1% formic acid in acetonitrile (solvent B). The following methods were used:  

1. Gradient: isocratic 5% B from 0-1 min; linear gradient 5-65% B from 1-7 min; 

isocratic 91% B from 7-8 min; post time 5% B for 1 min. Flow rate: 0.5 

mL/min. MS data was collected from 2-7 min; MS was run in positive 

ionization mode, extended dynamic range (2 GHz), and standard mass range 

(m/z in the range of 300 to 3000 a.m.u.).   

2. Gradient: isocratic 5% B from 0-4 min; linear gradient 1-91% B from 4-11 min; 

isocratic 91% B from 11-12 min; post time 1% B for 3 min. Flow rate: 0.5 

mL/min. MS data was collected from 2-7 min; MS was run in positive 

ionization mode, extended dynamic range (2 GHz), and standard mass range 

(m/z in the range of 300 to 3000 a.m.u.).   

A.5.2.2. Analytical high-performance liquid chromatography (HPLC) 

Analytical HPLC analysis was performed using an Agilent 1200 series system 

with UV detection at 214 nm on a Phenomenex Kinetex C18 LC column (2.1 x 100 

mm, 2.6 µm, 100 Å). Solvent compositions used are 0.1% trifluoroacetic acid in H2O 

(solvent A) and 0.08% trifluoroacetic acid in acetonitrile (solvent B). Gradient: 

isocratic 5% B from 0-3 min; linear gradient 5-65% B from 3-18 min; isocratic 65% B 

from 18-20 min; linear gradient 65-5% B from 20-21 min; isocratic 5% B from 21-26 

min. Flow rate: 0.375 mL/min. Purity was determined through manual integration of 

all signals from 3 to 20 min. 
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Figure A.8: Analytical characterization of crude and preparative purified MDM2. (A) LC-MS 
characterization of crude (top) and reverse phase purified MDM2 (bottom). (B) Analytical 
reverse phase chromatogram demonstrating purity of MDM2. 

A.5.3. K-means clustering of raw data 

Raw next-generation sequencing data was analyzed using the K-means 

clustering algorithm from the scikit-learn package in Python. Peptide sequences 

were filtered based on p-value (p < 0.01) and encoded using a 36 dimensional 

aggregate of one hot encodings (20 dimensional), relative propensity for binding 

score (1 dimensional), DELPHI predicted protein interaction score (1 dimensional), 

and physicochemical descriptors (14 dimensional). The data was then subjected to 

dimensionality reduction to prevent inflation of inertia via the uniform manifold 
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approximation and projection, and K-means clustering was subsequently 

performed. The value of k was optimized per protein and encoding method using 

the elbow method. The clustering was run for a maximum of five hundred iterations, 

with the results reported being the output of the best fifty consecutive runs by 

inertia. Clusters of sequences were then visualized using logo plot analysis to 

reveal minimal significant motif analysis for 12ca5 and none for MDM2. Out of the 

15 optimized clusters, one cluster was found to have a significant average fold 

change for each protein (Figure A.9B). Logo plot analysis of these clusters revealed 

only linear motif containing peptides for 12ca5 and no discernible motif for MDM2, 

meaning that almost all information from the macrocyclic libraries would be lost 

through an unsupervised analysis with k means clustering, as shown in the large 

amount of motif containing peptides outside of the two identified clusters (Figure 

A.9A) 
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Figure A.9: K-means clustering of raw NGS data from 12ca5 and MDM2 multiplex phage 
display panning. Both A and C are of the same clustering result using Uniform Manifold 
Approximation (UMAP) based clustering with K number of clusters. (A) Clustering result 
with the location of motif-containing peptides marked, showing no cluster cleanly isolates 
the motif-containing peptides. (B) Experimental enrichment ratio and fold change for each 
of the K clusters, showing that only Cluster 10 and 14 with differed from the average values 
across all clusters. (C) Cluster labeled with a center point. (D) Logo plot of Cluster 10 
showed no clear sequence information beyond the library design of ACX7C. Cluster 14 
showed what appears to be part of the 12ca5-binding motif (D**DY(A/S)), though it had low 
experimental FC and low ER. No MDM2 containing motifs were observed. 
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A.5.4. BiLSTM Hyperparameter Optimization 

 
Figure A.10: Parity plots of random hyperparameter sweeps across one hundred 12ca5 
runs and one hundred MDM2 runs. The lower triangle of each parity plot displays 
scatterplots of the pairwise distribution of hyperparameters. The diagonal of each parity plot 
displays the distribution of individual hyperparameters. The upper triangle reports Holm-
Bonferroni corrected p-value and pairwise Pearson correlation of hyperparameters. 
Focusing on the red highlighted row and column, certain hyperparameter instantiations are 
significantly correlated with improved hit rate ranking. Specifically, large regression penalty 
term (λL2 = 0.5), high dropout (λDropout = 0.3), low learning rate (α = 0.001), shallow network 
depth (depth = 6), and few learning epochs (n = 5). We claim these hyperparameter 
choices effectively serve to regularize our model favoring sparser weight sets. 

 
Figure A.11: Parity plot of experimental versus predicted values including ER, as -ln(ER); 
FC, as -ln(FC) with its associated p-value as -log10(p-value). High-affinity motif-containing 
peptides are shown in orange. 
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Figure A.12: UMAP decompositions of the learned latent features for each peptide show 
that motif-containing sequences were somewhat clustered together by the BiLSTM proxy 
learning process. However, the peptides with the top experimental FC and ER (n = 500) 
were not clustered together for MDM2, indicating the that proxy learning process was not 
focused purely on accuracy. For 12ca5, the top experimental FC and ER (n = 500) were 
clustered together, but was used as a positive control. 
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Figure A.13: The UMAP projections of the learned latent features for each peptide from 
phage display with 12ca5 indicate successful proxy learning. UMAP transformation 
obtained from the penultimate layer of the BiLSTM model with the top 500 predicted FC 
and ER peptides highlighted. The smaller inlaid plots display blue highlights representing 
the top 500 peptides, ranked by predicted enrichment ratio and fold change. In the larger 
UMAP plot, a red overlay indicates the proxy metric combining predicted fold change and 
enrichment ratio. Additionally, the weblogo of the proxy metric learned space reveals a 
prominent 12ca5 binding motif (D**DY(A/S)). 
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A.5.3. Hit rate prediction using 12ca5 

 
Figure A.14: BiLSTM model highly ranks 12ca5 motif-containing peptide hits >30% better 
than any combination of experimental approaches. Ranking prioritizes the investment of 
synthesis and experimental binding validation toward peptides that have the highest 
predicted confidence to be hits. (A) Hexbin projections with highlighted zones 
corresponding to the top 500 peptides as determined by the different strategies to rank the 
peptides for their potential as peptide hits. Arrows shown in the bottom right display the 
direction of ranking (x-direction, y-direction, or both). (B) Positional frequency matrix of the 
top 500 identified peptides. The macrocyclic 9-mer library contained most of the motif-
containing peptide hits, outperforming the other libraries. Thus, the positional frequency 
matrices of the top 500 show the 9-mer variable region of the 9-mer library (cysteines not 
shown). (C) A plot of the number of identified peptide hits versus their ranking shows that 
the BiLSTM model outperforms all other experimental methods to rank the peptides. The 
calculation of the normalized area under the curve reveals the BiLSTM model performs 
>30% better. (D) Calculation of the area under the hit rate curve in C indicates that 50% of 
the top 500 BiLSTM ranked peptides contain the 12ca5 motif. 
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Figure A.15: Positional Shapely feature importance across residue identities as calculated 
by the 10- model ensemble on the set of all 12ca5 motifs containing hits within the dataset. 
Sequences are aligned by motif position, and error bars are calculated according to the 
standard deviation of Shapely values per residue across all peptides and all models. This 
result underlies the importance of aspartic acid to drive binding and the potential for 
hydrophobic or positively-charged acids to disrupt peptide binding to 12ca5. From the 
12ca5 motif (D**DY(A/S)1–3), the “DYA” was used for alignment because of concern the 
macrocyclic peptide structure could off-shift the first aspartic acid, which is seen to be 
D**DYA and D*DYA here. Also, the *DYAD* motif has been seen in other contexts. 
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