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ABSTRACT

The formulation of a simple and effective displace-
ment based pipe bend element is presented. The displacement
assumptions are cubically varying axial, bending and torsional
beam displacements along the axis of the elbow with plane
sections remaining plane, and pipe radial displacement patterns
to include ovalization effects, The amount of cross-sectional
ovalization is assumed to vary cubically along the length of
the element. The element can be employed to model elbows (with
or without internal pressure) of different curvatures, elbows
joining straight pipe sections and elbows connected to flanges.
The appropriate strain terms required for the element formula-
tion are identified using Novozhilov's shell theory. To en-
force the required continuity conditions between elements a
penalty procedure is developed, and the internal pressure
effects are accounted for by including in the formulation the
work preformed by the pressure. A total Lagrangian formulation
is adopted to include some geometric nonlinear effects, while
a bilinear elastic-plastic material model is employed for mate-
rial nonlinear analysis. The results of various sample solutions
are presented, in which the response predicted using the new
element is compared and evaluated with other available experi-
mental and analytical/numerical solutions. These sample analyses
illustirate the general effectiveness and applicability of the
element.

Thesis Supervisor: Dr, Klaus-Jﬁrgen Bathe
Title: Associate Professor of Mechanical
Engineering
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NQTATION

All notation is defined in the text when first used.
The following is only a list of some frequently used con-
ventions.

A bar (=) on a vector or tensor quantity means that
the quantity is referred to or measured in a local coordinate
system.

The convention employed for tensor and vector superscripts
and subscripts is the following:

(a) a left superscript denotes the time of the config-
uration in which the quantity occurs.

(b) a left subscript can have two different meanings.
If the quantity considered is a derivative, the left sub-
script denotes the time of the configuration in which is
measured the coordinate with respect to which it is dif-
ferentiated. Otherwise, the left subscript denotes the
time of the configuration in which the quantity is measured.

(c) right lower case subscripts denote the components
of a tensor or vector referred to a fixed Cartesian coordinate
system (i, j...=1, 2, 3). Differentiation 1is denoted by a
right lower case subscript preceded by a comma, with the
subscript indicating the coordinate with respect to which it

ijs differentiated.
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1. INTRODUCTION

The structural integrity and cost of pipelines are of
major concern in the nuclear, oil and variocus other industries.
Piping structures can be subjected to severe thermal, seismic
and other mechanical loads, and for these reasons, an increasing
amount of attention has been given to their analyses [1].

In the analysis of piping structures it is highly desirable
‘to keep the induced loads on pressure vessels and other piping
supports as small as possible, i.e., to allow most of the thermal
expansion of the piping system to take place without inducing
loads. This expansion is accomodated mainly by the curved pipe
components (elbows), which have a high degree of flexibility
compared to the straight components. Namely, in addition to
undergoing the usual beam deformations, the elbows also ovali:ze.
Although this ovalization of the cross-section can occur in
both curved and straight pipes, it affects the flexibility of
the pipe bend to a great amount and must be properly modeled
in the analysis [2-14].

Because of the importance and the difficulties that lie
in the analysis ar design of pipe bends, much research has been
devoted to the study of their structural behavior. In these
investigations, during recent years, also various simple to
complex finite element models of pipe bends have been proposed.
However, all these structural models have serious limitations

either with regard to their accuracy in predicting pipe stresses
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and displacements or the cost of using them.

The simplést and widely used approach in the linear
anayys%s of pipelines is to model a pipe bend using simple
curved beam theory and scale the stiffness constants and cal-
culated str;sses using factors that account for the ovalization
of the pipe cross-section and the pipe internal pressure (14,
15]. If the effect of the internal pressure can be neglected,
the constants used in this analysis are, in essence, the von
Kirmdn flexibility and stress intensification factors [2].
These constants were derived by von Kidrmdn for in-plane loading
and later by Vigness using the von Kdrmdn analysis procedure
for out-of-plane 1qading [4] with a number of assumptions. A
major point is that von Kidrmdn considered a differential length
of the elbow, hence the internal bending moment and the amount
of cross-sectional ovalization are assumed constant along the
pipe bend. The conditions of a varying magnitude in the internal
bending moment, of no ovalization at an end of the elbow fflanged
condition) as well as interaction effects between pipes of
different radii cannot be taken into account with accuracy.

Because of the limitations of the foregoing beam analysis
of pipe bends, various refined analytical and finite element
models have been proposed [11, 16-18]. In essence, these models
use shell theory to describe the behayior of the pipe bend. Clark
and Reissner proposed equations that treat pipe bends as part

of a torus and proposed an asymptotic solution for the stress
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and flexibility factors [8]. This approach removes some of the
assumptions of the von Kiarmdn analysis but is not effective in
the analysis of general pipelines. The greatest potential for
the general analysis of pipe bends lies in the use of the finite
element method [19]. Pipe elbows are currently being modeled
using three-dimensional elements, general shell elements and
special elbow-shell elements [20-27]. Using either three-
dimensional or general shell elements, in theory, any elbow can
be modeled very accurately by using a fine enough finite element
mesh. However, in practice, such an analysis of a simple elbow
involves typically of the order of a thousand finite element
equilibrium equations that need be operated upon, which means
that the linear analysis of a single elbow is very costly, the
nonlinear analysis of a single elbow is prohibitively expensive
and the nonlinear analysis of an assemblage of elbows is clearly
beyond the current state-of-the-art of computational tools.

In order to reduce the number of finite element variables
special elbow-shell elements have been proposed [26]. Although
these elements are more cost-effective in use, they still involve
a relatively large number of solution variables and are subject
to some major shortcomings, for example, the axial variation of
the magnitude of ovalization is still neglected [27] or the

rigid body mode criterion is not satisfied [24].

Scope of Present Study

The above brief overview on different approaches used in

-15-



the finite element analysis of pipelines shows that the effec-
tiveness of an analysis is the result of a trade-off between
the accuracy required and the computational cost expended.
This is particularly the case in nonlinear analysis, and there
is much neé& for more accurate and effective approaches.

The objective of this investigation is to present the
formulation of a new elbow element that is simple and effective
and predicts accurately the significant displacements and
stresses in piping structures. The elbow element is a four-node
displacement based finite element with axial, bending, and
torsional deformations and the von Kidrmdn ovalization defor-
mations all varying cubically along the elbow length. Basically,
in the formulation of the element the deformation in the plane
of the cross-section are added to the general beam deformations
making the element a very natural extensicn and generalization
of von Kdrmdn's approach. Because of the lack of the digital
computer, von Kédrman could only perform the Ritz analysis in
the hoop direction of the pipe, but it is interesting to note
that von Karman 'urges us engineers to become familiar with the
Ritz method, because the method is simple and ideal to develop
approximate solutions to complex practical problems'" (quoted
from Ref. [2]). The formulation of the elbow element extends
the work of von Xdrmdn in that the Ritz method (the displace-
ment-based finite element method) is used to take also the

lengthwise variation of ovalization into account, to include
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the appropriate shear and bending deformations coupled with
the deformations of the cross-section, and relax some other
von Kidrmdn assumptions. The actual analyéis presented in
this study is only possible because of the availability of
high speed digital computers, and it is performed efficiently
using finite element numerical procedures [28].

An examination of the important concepts in von Karman's
theory and its generalization to model interaction effects
between pipes are presented in Chapter 2. The important strain
terms to enhance von Karman analysis are identified using a
thin shell theory specialized to the analysis of elbow geom-
etries.

In Chapter 3, the formulation of the elbow for linear
infinitesimal displacement analysis is presented. The formu-
lation of a four-node displacement-based pipe-section beam
element is extended by including the ovalization terms in the
displacement description.

The additional terms to be included show that it is
necessary to enforce the continuity of the derivatives in
the pipe skin radial displacements with respect to the longi-
tudinal coordinate of the pipe. This continuity between
elements is imposed using a penalty procedure discussed in
Chapter 4.

In Chapter 5, the effects of internal pressure are
taking into account in the formulation of the element by
adding to its total strain energy the work done by the internal

-17-



pressure during the deformation of the cross-section. This
formulation is applicable to the elbow element with or without
end constraints.

In Chapter 6, we consider the derivation of the elbow
element matrices for large displacement and materially nonlinear
analyses. A.fotal Lagrangian formulation is developed, in which,
however, a number of assumptions are made as discussed in Chapter
6. This formulation represents a fine step towards an effective
large displacement analysis capability using the basic concepts
already employed in linear analysis.

The numerical results obtained in the analyses of some
sample problems are presented in Chapter 7. The analyses
demonstrate the validity of the employed formulation and the
capabilities of the element. The numerical responses obtained
using the element are compared to analytical, experimental and
other available numerical solutions.

Finally the conclusions of this study are drawn and

recommendations for further investigations are given.
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Z. ON THE THEORIES OF PIPE MODELING

Since the success of von Karman's theory including the
effect of the ovalization of the cross-section in the analysis
of a bend, either very simple or quite refined analytical models
have been proposed to account for end (interaction) effects
such as produced by flanges or tangent pipes. In the search
for a more general formulation to include the interaction
effects, shell solutions have been widely used in the recently
proposed models. In this chapter, first, the theory of von
Xirmdn is reviewed and then the theory of Novozhilov of general
thin shells is presented for piping analysis. The objective
is to summarize the various assumptions used in von Kﬁrmén's
pioneering work and to identify the additional strain terms
that are important when interaction effects are to be included

in the model.

2.1 The Theory of von Karman

The formulation of the pipe elbow element that includes
the effects of cross-sectional ovalization can be regarded as
an extension of von Kiarman analysis. For the sake of complete-
ness of this presentation, the major concepts of von Karman's

model are briefly summarized in this section.

2.1.1 Von Kdrman assumptions

In his analysis of pipe elbows von Karman recogni:zed
that in addition to the usual curved beam theory strain com-
ponents, two additional strain components also need be considered

-19-



that are due to the ovalization of the cross-section, see
Fig. 2.1 These strain components are a pipe cross-sectional
circumferential strain,(figg)ov, which is due to the deformation
of the cross-section, and a longitudinal strain,(547n)ov,
which is due to the change in the curvature of the pipe itself.
Corresponding to the usual strain components of curved beam
theory and the above two additional strain components, the von
Karman analysis is based on the following major assumptions:
(a) Plane sections originally plane and normal to the
neutral axis of the pipe are assumed to remain
plane and normal to the neutral axis;
(b) The longitudinal strains are assumed to be of
constant magnitude through the pipe wall thickness;
(c) The circumferential strains are assumed to vanish
at the middle surface of the pipe wall, and are
due to pure transverse bending of the pipe wall.
Hence the pipe wall thickness is assumed to be small
in comparison to the pipe mean-radius; i.e.
&a << L,
(d) The pipe mean-radius is assumed to be much
smaller than the radius of the pipe bend; i.e.
2R+ L and
(e) The effect of Poisson's ratio is neglected.
Using the assumption in (c) a relation can be written

between the radial and circumferential displacements of the

-20-



(a) COORDINATE SYSTEMS USED

INTRADOS
E XTRADOS
(¢ =180°) (g=09 T !
r R P
ELBOW AXIS

(b) DISPLACEMENTS OF DEFORMED CROSS—-SECTION (FIRST
VON KARMAN MODE ; wg IS SHCWN N EGATIVE)

FIGURE 2.1 - Coordinate Systems and Displacements
of Elbow
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middle surface of the pipe wall,

dw.
W — 5

(2.1)

wherewg is the radial displacement,\d% is the tangential dis-
placement and 9 measures the angular position considered as

shown in Fig. 2.1.

2.1.2 Von Karman analysis

In his analysis von Karman established the strain energy
in an element of pipe that is subjected to a constant bending
moment, and used the Ritz method to estimate the amount of
ovalization.

Using the assumptions summarized above, the longitudinal

strains due to the distortion of the cross-section are

- (2.2)

where R is the pipe bend radius and W 1s the local displacement
of the pipe wall in the bend radial direction, see Fig. 1.

Also, the circumferential strain component is

2
- dw
(:._-.g)‘ :-—Lz— [‘-V; + — f]’: (2.3)
=5 0OV A do
where . is the mean-radius of the pipe and - 1is the local radial

coordinate in the pipe wall, see Fig. 2.1.
Using Eqs. (2.1) to (2.3) and assumptions (a) to (e) above,
the total strain energy of an elbow of angle G is

c
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TERM 1 TERM 2
2% s 2
+ sZ\[ 1 d‘-*fg_'_ dw, ie lgs (24)
4 2 e 2 .
C Lf?---%;-_?f{__-ffpa ]
TERM 3 T
C

where & is the pipe wall thickness, .. is the Young's modulus
of the material and AY is the cross-sectional angular rotation.
In Eq. (2.4) TERM 1 corresponds to the curved beam theory
longitudinal strain, and TERM 2 and TERM 3 correspond to the
straining that is due to ovalization.

In Eq. (2.4) the only variable corresponding to the
ovalization of the cross-section is the displacement.: . To

estimate this displacement von Karman assumed for in-plane

bending of the elbow

N
We = Z Cq <in 2ng (2.5)
=

and performed a Ritz analysis to obtain the parameters <,. The

validity of the von Kdrmdn trial functions in Eq. (2.5) has been
substantiated by experiments [4-6, 10].

Considering the von Kdrmdn analysis, a pipe geometric

A g
< .

factor A, where A= =€
1&

determination of the number . of trial functions that should be
-23-
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inciuded in the analysis. Table 2.1 summarizes the number of
trial functions that need be used for different values of A
in order to obtain satisfactory results.-

Considering the von Karmdn analysis, it may be noted that
assumptions™ (b), (d) and (e) are not used in the formulation of
the elbow element presented in Chapter 3.

The basic assumption using the strain components in
Eqs. (2.2) and (2.3) is that, in essence, each differential
length of the elbow can ovalize independently. Therefore, the
interaction effects in the ovalization between elbows of dif-
ferent bend curvatures, an elbow and a straight pipe section,
and an elbow and a rigid flange cannot be properly modeled.

To render the formulation applicable to such situations it is
necessary to extend the von Karman analysis.

In the next section the formulation of a general theory
for thin shells is specialized to the analysis of thin pipe
shell surfaces. The important additional strain terms found
are such that the von Karmdn analysis is naturally extended

to model interaction effects in piping structures.

2.2 Novozhilov's Theory of Thin Shells

A curved elbow subjected to external loading that leads
to ovalization of the cross-section can be regarded as a
doubly-curved thin shell. Despite the completeness of some
currently available thin shell theories used in the analysis
of pipes, they have lead to rather cumbersome formulations

-24-



TABLE .2.1 - NUMBER OF GVALIZATICN SHAPE FUNCTIONS

TC BE USED IN RITZ ANALYSIS (AND
ELBOW FORMULATION)

Geometric Range Number of Functions N
- ' 1

.16 <A < .5 2

.08 <A < .16 5

04 <) < .08 4
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while presenting difficulties in their physical intefpretation
(9, 25, 26]. A relatively simple and effective theory for thin
shells was introduced by Norozhilov [29]. In this theory, which
is based on Kirchhoff's method [30], the deformationsat any
point of th; shell are referred to the deformationsof the shell
midsurface. The objective in this section is to summarize
Novozhilov's theory in order to identify the important strain

terms applicable to the analysis of pipe elbows.

2.2.1 General definitions and basic assumptions

The shell is defined as a body bounded by two curved
surfaces where the distance between the surfaces is small
compared with other dimensions. The locus of points mid-way
between these surfaces defines the middle surface of the shell.
The thickness & of the shell is the distance between the two
surfaces measured along the normal to the mid-surface.

The formulation of Novozhilov's theory of thin shells'
is basically an extension of the well-accepted theory of beam
bending with the following basic assumptions:

(a) the straight fibers of the shell that are perpen-

dicular to the mid-surface before deformation remain so after

TA shell is called "thin" if the ratio < /% (where r. is the
radius of curvature of the midsurface) is very small compared
with unity. Con51der1ng general applications with an admis-
sible relative error of 5%, Novozhilov suggests that for thin
shells this condition corresponds to ,Ccl<.&/ 7 & .05,



deformation and do not change their lengths; and

(b) the normal stresses acting perpendicular to the
mid-surface are neglected in comparison with other stresses.

Using the above assumptions, transverse shear deformations
to the midsurface are neglected. Therefore, the state of
deformations assumed in the theory corresponds to a plane stress
condition, namely, an in-plane shear stress and two normal
stresses all parallel to the shell midsurface, see Fig. 2.2(b).

Basically these hypotheses reduce the problem of the
deformation of a shell to the study of the deformation of its
midsurface, in the same way as the hypothesis regarding plane
sections in the bending of a beam reduces that problem to the

study of the bending of its neutral axis.

o

.2.2 Kinematic relations

In the Novozhilov theory of thin shells, which is based
on the Kirchhoff's hypotheses, the total shell deformations are
the sum of three basic deformation components of its midsurface:
stretching, distortion and bending. To simplify the study of
these deformations it is convenient to define a local set of
curvilinear coordinates in which the formulae for the surface
of the shell attain a simple form [31]. Recalling basic concepts
of differential geometry, such set of coordinates is formed
by two families of orthogonal curves, Fig. 2.2 (a), which are
the lines of principal curvature of the surface. These curves

define a local system of curvilinear coordinates S5; and S5, where
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a position vector

rT=T (bhsz) . (2.6)

defines the entire surface,
From the geometry of the bend in Fig. 2.2(a), independent

variations of each curvilinear coordinate give

ds, (Foedco o) A0 (2.7)

1
!
-
r
I

]
—

ds

\ ,d8 = a dp (2.8)

where 'dgl and c(s‘z are increases in arc lengthsalong principal
coordinate lines, R and a are the bend radius and the mean-radius
of the bend, and © and ¢ are natural angular parameters of

the pipe bend. In theory of surfaces, the quantities '--._L and

L—z are called Lamé parameters and in general they are not the
principal radii of curvature.

During the calculation of deformations, all vectors defining
points of the pipe midsurface will be given in terms of their
projections on the directions of the tangents of the curvilinear
coordinate lines and on the normal to the midsurface of the pipe
at the point considered. These two tangents and the normal form

a local set of Cartesian coordinates defined by the following

set of orthogonal unit vectors, see Fig. 2.2(a),

A (2.9)
- C J:: -t 2

L, = ?‘i-_ - 1. (2.10>
2p = 20 % 2, (2.11)



where 1T , & and S, are as defined in Eqs. (2.6) to (2.8).

Also, the geometry of the midsurface of the pipe gives rise of

the following Gauss-Weingaten relations,

i 0 - s @ cos @ i
Z[e]= | 7 ° ©e] (2.12)
] ] - LDs ¢ C v
F 0 ¢ 0 7
f‘;[@]= (‘fj ’ ‘ ~ le] (2.13)
% ! C

)
M.
t
o
—
1o
| S|
-{
|
[ —]
§Q)
1
{ (L

; '?-g]'

Details of the derivation of the foregoing equations are
given in Appendix A as they represent the transformations of
local unit vectors along the lines of principal curvilinear

coordinates.

2.2.3 Deformations of a shell and deformations of its midsurface

Consider a point O , see Fig, 2.3, at a distance T from the
midsurface of the pipe. If during the process of deformation
point © moves to point <. through a displacement — , by virtue
of assumptions (a) and (b) in Sec, 2.2.1, a point 7' of the

midsurface undergoes a displacement ., and reaches a point O,

Therefore, the total displacement of point £ in terms of the
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midsurface displacement is

A=A + (e~ et (2.14)

with,

A (2.15)

]
b3S
-3
10
3
t
5
1{d
vih
+
b3
y™
o
ut

wue

where gé is the normal to the deformed midsurface and w, ,

w, and v, are the longitudinal, the circumferential and the
>

viL

radial local displacements of the midsurface point o}
Stretching and distortional displacements of the midsurface are
accounted by the displacement vector 4; while the position
dependent term in Eq. (2.14) is the displacement due to bending

of the midsurface. Noting that,

[
Q-
i
-

I A (2.16)

KO H

Q I(')

and using Eqs. (2.12), (2.13) and (2.15), the derivative of

displacements at the midsurface reduces to,

iYL

L2

' g-r;,: :3_._,." + :3 2 A 2, (217)

|

where,

(D

— —i;— ['5"\"-‘ - V., im {.‘i - ] (2.18)

ks

n
Uy
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Aw i. -aWE w H ] -
= | —= - Sin
1 L L3 o ¢" (2.19)
N - a B
X, = |2y vy, e (2.20)
- L'L L O L:‘ ' -
and similarly,
o8 _ C/:J, Ly + /é,, e. + X, e (2.21)
9 35 = ET -¢ 4
where,
N L gy :
w, = —— — (222)
=2 Cis_'j
o [ - .
_- JT I =—L— __C T+ "'.'qu (2.25)
e ] (2.24)
S EP R

A ~- i
., aTe identified with

- 3 ~
The quantities w, , w,, -~ and

rotation angles by which the unit vectors <. 2. and %

y g
Ol -
. g

i

rotate as the result of midsurface deformations [29]. Namely,
’. , . .

5, and 3. are respectively the angular changes experienced
by -, and -. about the normal -. . The in-plane shear strains

at the pipe midsurface are hence,



P
"
J

A ~ -
ng = (4)1 + "‘)2 (Z.Zb)
A Fa
where «, and @, are given in Eqs. (2.19) and (2.22). Also

N
«, and X, are the rotation angles of the normal

2. about the
axes Z. and 2, , respectively. Hence, the normal to the

deformed midsurface is related to the normal in the undeformed
configuration by the equation

(W]

ry >

1]

A A
- ( Xpen v X e

&

A

where X, and <, are given in Egs.

(2.18) and (2.22). The
strain-displacement relations for the bending displacements

are then obtained substituting Eq.

(2.26) into Eq. (2.16), thus

| I
4
[
r—
[EEY)
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and similarly,

a_f’z[fg'gc]“ [“’2 &y t e + X, g:]g (2.3
where,
::3 - - i a ra"'lf. - Wn. A0S f"" (2-52)
2 ciby 57 L06 :
~ 1 2 o Erm )
2 owg 2.33
EE (Lz) oo 09 E] (

(%)2 ["w - WJ (2.34)

Finally, substituting from Egs. (2.27) and (2.31) into
Eq. (2.16) the total strains for a pipe geometry shell using

Novozhilov thin shell theory gives

I ~
C < -
Copm = C?7n + “nn =
A ~
- ,: )': P
Cf - == ':/t' re e > (2-3\5)
S 5 ) SRS
A ~
_‘.\ -"." . . ~
= e - wer 2
= .8

where in-plane midsurface deformations and midsurface bending
parameters are defined by only three linear midsurface displace-

ments v.. , ., and ~ , As in Euler's theory of beams where
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the bending strains result from the change of curvature of the

~ [~

beam neutral axis, the bending parameters Eﬂﬂ and Egg are also
changes of middle surface curvature of the shell during de-

formation.

2.2.4 Evaluation of the ovalization strains

The linear strain components derived in Eqs. (2.35) are
applicable to very general deformation patterns of the pipe,
such as localized deformations of its midsurface. Considering
the important effects in the behavior of a piping strucfure,
two deformation mechanisms take place in the overall response
of the bend under external loading: (a) the deformation of a
beam with circular cross-section which does not distort either
in its plane or out of its piane, and (b) the deformation due to
the ovalization of tﬁe pipe crbss-section. Therefore, in the
formulation of the elbow element presented in the next chapter
we consider the axial, bending and torsional beam displacements
and the cross-sectional ovalization displacements. The cor-
responding pipe-shell deformations resultiﬁg from these dis-
placements are physically identified in Eqs. (2.35) and written

‘as follows,
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where,

TERM 1 is the longitudinal straining due to both axial and
bending beam displacements of the tube. For thin pipes, the
expression in parenthesis is approximated by unity and this

- term reduce; to the derivative of the displacement‘d7 with
respect to the longitudinal curvilinear coordinate. Dis-
placements and strains in both straight and curved pipes are
shown in Fig, 2.4.

TERM 2 is the contribution to the longitudinal strains due to
the stretching of a longitudinal fiber of the elbow whose
cross-section ovalizes. This term is identical to von Karman's
longitudinal strain in Eq. (2.2), except for the von Kdrman
assumption that all longitudinal fibers have the same bend
radius. Conséquently, using the shell equations, the assumption
(d) of the von Kdrmidn analvsis is not used in the elbow formu-
lation. This strain term, shown in Fig. 2.5 (a), is basically
the ratio of the radial displacement A of the longitudinal
fiber to its bend radius, Hence, for the straight pipe
geometry this term vanishes.

TERM 3 is the longitudinal bending strains due to the ovalization
of the pipe cross-section. The first component of this term

is due to the longitudinal bending of the pipe skin while the
second component is the result of the shell double curvature.
In this study we are only concerned with thin pipes, hence, the

second bending component is neglected comparing with other
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(a) beam displacements
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(b) beam longitudinal strains

FIGURE 2.4 Longitudinal Strains in Straight and Curved
Pipes due to Axial and Bending Displacements.
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UNDEFORMED

(b) Longitudinal pipe skin bending of a flanged elbow' .
' (wc is shown negative).

FIGURE 2.5 Stretching and Bending of a Longitudinal Fiber
of the Bend Due to Cross-sectional Ovalization.

+ Figure not to scale. Cross-sectional ovalization exagerated
to show longitudinal bending of the pipe skin.
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terms in Eq. (2.36). The remainder of TERM 3 represénts the
straining due to the variation of the ovalization along the
pipe length, shown in Fig. 2.5(b).

TERM 4 corrqsponds to the circumferential strains due to the
stretching of the pipe midsurface, see Fig. 2.6(a). Using

von Karmdn's assumption of pure transverse bending strains

due to cross-sectional distortions, this term is set equal to
zero and Eq. (2.1) is immediately verified.

TERM 5 is the bending deformation of the elbow midsurface due
to distortions of the pipe cross-section. This term, which is
equivalent to Eq. (2.3) in von Karman analysis, contains the
change in relative curvature of an ovalized cross-section ‘as in
the classical theory of circular beams, see Fig. 2.6(b).

TERM 6 is the shear straining of the elbow midsurface due to
axial and bending displacements of a beam. For thin pipes, the
expressions inside the parenthesis are approximated by unity.
The simplified form then represents the angular distortion

of the pipe midsurface measured in the local convected coordinate
system, see Fig. 2.7(a).

TERM 7 corresponds to in-plane shear strains due to the cir-
cumferential displacements of the cross-section. Hence, this

term contains the shearing due to the torsional beam displace-

ment . of the elbow as well as the shearing due to the dis-
placement w, of the ovalized cross-section. Although the ex-
pression in parenthesis is assumed equal to unity in the elbow

formulation, it accounts for a linear distribution of the
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(a) Transverse deformation due to stretching of the pipe
cross-section.
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(b) Bending strains in the ovalized cross-sections.

FIGURE 2.6 Transverse Strains Due to Cross-sectional Deformations.
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(a) Misdurface shear deformation due to axial and
bending beam displacements (out-of-plane bending
shown). :
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(c) Shear strains in the elbow due to radial displacements.

TERM 8 =

FIGURE 2.7 Shear Mechanisms in the Pipe-shell Formulation.
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e

shear strains throughout the pipe thickness shown in'Fig. 2.7(b).

TERM 8 represents the shear straining due to radial displacements

in a deformed cross-section. In Fig. 2.7(c) we give a physical
significance to the strains in TERM 8 by proceeding from the
kinematics ;resented in Fig. 2.7(b). For thin pipes, this term
is negligible compared to other terms in Eq. (2.38).

Introducing the above assumptions and the Lamé parameters
(Eqs. (2.7) and (2.8)) into Eqs. (2.36) to (2.38) results in
the following important strain terms that include the effects
of cross-section ovalization in the formulation of the pipe-

bend,

. OwWg L. .
W al.”c - _.__.-:-_'__ oz ’.-/

(‘:rr)o- R | T @

(""-:'s:)ov:( 7 ; ) 3 (239

In Eqs. (2.39), the strains due to ovalization reduce to
a proper evaluation of the displacement +/. . As in von Kdrman

-46-
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analysis this feature allows simple pérameters, or generalized
degrees-of-freedom, per cross-section being used to include the
ovalization deformations. "

In the next chapter the formulation of a general beam element
is presented and modified by Eqs. (2.39) to include the ovali-
zation effects. The resulting fofmulation is simple and accurate

in various piping analyses.
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3. FINITE ELEMENT LINEAR FORMULATION OF THE ELBOW ELEMENT

The basic analytical shell formulation employed to model

a pipe whose cross-section is allowed to deform in its own
plane was d;§cussed in the previous chapter. The shell solution,
shown as a natural extension of von Karman's theory for piping
analysis, reduces to a general formulation of the beam modified
by a few strain terms to include the effects of ovalization of
thé tube. The identification of both the beam and the ovalization
deformations in the shell formulation, was possible by using
a convenient local system of coordinates. The separation of
these two independent modes of deformation is an important
feature of the elbow element formulation, because it allows
independent ovalization degrees-of-freedom being added to the
conventional beam degrees-of-freedom.

Using standard finite element procedures, the principle
of virtual work (or principle of minimum total potential energy)
is invoked to derive the equilibrium equations that govern the
response of the element [19], If linear analysis is considered,
we have

E&L UM =R (3.1)

where EL is the element stiffness matrix corresponding to the

degrees-of-freedom listed in &A,

-48-




KL:/v B"CB dv (3.2)

and B_ is the effective nodal point load vector. In Eq. (3.2)
E§ is the strain-displacement matrix, g; is the constitutive
matrix, and the integration is performed over the element
volume U .

In this chapter, the formulation of the elbow element for
linear analysis is presented. First, we discuss the formulation
of an isoparametric displacement-based three-dimensional bending
element that includes the important axial, bending and torsional
displacements of pipe cross-sectional beam elements. Then, the
bearn element deformations are modified by ovalization deforma-
tions with the stra%ns in Eqs. (2,39). This results in the
final strain-displacement matrix 5 of the elbow element, and

we discuss also the corresponding stress-strain matrix g; .

3.1 Evaluation of the Strain-Displacement Matrix

Using the concepts of finite element analysis, we need
to describe the geometry and the variations of internal element
displacements of a typical pipe element in cerms of its nodal
point quantities [19, 32], A generic pipe-elbow element with
the assumed four nodal pointsis shown in Fig. 3.1. To establish
the geometry and displacement interpolation functions of the

element, we assume first that the pipe cross-section does not
-49-
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ovalize. In this case the coordinate and displacement inter-
polations and the degrees-of-freedom are as used in the iso-
parametric finite element formulations of beam, plate and shell

elements recently proposed [28, 33-35].

3.1.1 Element geometry and displacement interpolations assuming

no ovalization

The basic assumption in this formulation is that plane
sections originally normal to the center line axis of the pipe
element remain plane but not necessarily normal to the center
line axis. Thus, we can write the following equations for the

coordinates of a point in the element before and after deform-

ation,
4 4 4
] " - 4 K - 4, x
xi (rst) =30 A + - EBAN + 3 RN (33)
k=1 k=1 k=1
/i=1,2,3
where,
T,s,t = isoparametric coordinates [19]
lxi = Cartesian ccordinate of any point in

the pipe element

isoparametric interpolation functions

o
x
Ly
-
~”
1]

X; = Cartesian coordinate of nodal point
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a = cross-sectional outer radius of element

K :
at nodal point K
-e K K
\Qi = component { of unit vector !& , in
direction t at nodal point K
4 .k . K
st = component L of unit vector Ys , 1in
direction $ at nodal point k,

and the left superscript £ denotes the configuration of the
element; i.e., =0 denotes the original configuration,
whereas €= 4 corresponds to the configuration in the deformed
position.

The interpolation functions gk(f) used in Eq. (3.3)
are derived in Ref. [19]. In this work we use the high order
four node element. The cubic interpolation functions of this
element are summarized in Fig. 3.2. In the application of
Eq. (3.3) it must he noted that the structural cross-section
considered is hollow, meaning that Eq. (3.3) is only applicable

for the values of & and t that satisfy the equation

(1-_3-)25 Settet (3.4)

Qg

where ak is the outside radius of the element at node K
This fact is properly taken into account in the numerical

integration to calculate the element stiffness matrix.
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To obtain the displacement components at any point

T, s,t in the pipe we have

u,'-'(r)s,t) =1Xi. - OX;_ (5-5)

Thus, substituting from Eq. (3.3) we have

-

4 4
s, =30 bt o 63 a8« o3 a 0

k=14 k=1 K’i

where

K
e~

i
R

(3.7)
V.

54

1

&S
I

5:?

Considering the finite element solution for linear

analysis, we express the components \4: and ‘%; in
terms of rotations about the global axes %Q , (=1,2,3
Namely we have
K K
YE = Qn xo!i
(3.8)

(3.6)



where QK is a vector listing the nodal point rotations at

nodal point"k , see Fig. 3.2,

len

=
i

D,

(3.9)

Thus, substituting from Eqs. (3,8) and (3.9) into
Eq. (3.6) the displacement components 'ui(ms,t) are obtained
in terms of the nodal point displacements uf , and rotations

ik .
6& , for ¢=1,2,3 and K=1,2,3,4 (cuhic interpolation).

3.1.2 Element displacement interpolations including ovalization

The beam displacements shown in Eq. (3.6) assume that
the cross-section of the pipe does not deform, To include the
effect of ovalization we use the displacement patterns suggested
by von Kdarmdn and other authors [2, 5 and 6], and interpolate
these displacement patterns cubically along the length of the
elbow. Then, considering the in-plane and the out-of-plane

actions of the pipe we use
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Ne 4

wel(r-,vb) = Z Z ‘ﬁlc C:‘ sin 2m g + EN: i %K d:\ cosZ.m¢ (3.10

=i k=1 m={L k=1

where the Cf,, and d:, , and Kk=4,2,3,4 are the unknown generalized
ovalization displacements. Depending on the pipe geometry, and
the type of loading, it may be sufficient to include only the
first, or first two, terms of one (or both) double summation(s)
in Eq. (3.10), as discussed in Section 2.1.2 (Table 2.1).' In
the implementation of the element we have allowed [“c to be
0 (no ovalization), 1, 2 or 3 and similarly for hh

The total pipe-elbow displacements are the sum of the
displacements given in Eq. (3.6) and Eq. (3.10). Therefore,
a typical nodal point of a three-dimensional elbow element can
have from six to twelve degrees-of-freedom at each node, depending
on whether the ovalization displacements are included and which

ovalization patterns are used.

5.1.3 Displacement derivatives

With the geometry and displacement interpolations given
in Eqs. (3.3) and (3.6), standard procedures are used to

evaluate the appropriate displacement derivatives that con-
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stitute the strain-displacement transformation matrix referred
to the beam displacement. Based on the results presented in
Chapter 2 (Eqs. (2.36) to (2.39) and using the displacement
interpolations given in Eq. (3.10) the complete strain-dis-
placement r;lations for in-plane and out-of-plane bending of

the elbow element can be written as

€

§ s B B, B,
{"IE _ Z =k 1._ _&_ol/l _:_%gv;‘)_ {A‘ (5.11)
g k=41 Q : B-:v?.: 5‘

|

& L |

where

T
K K ,K , kK gk Kk Ak
w - [“]_ w, w; 6 6 6,

(g
x

O
x
Jx

dy d; d_:f] (2.12)

and only as many ovalization displacements need be included as

deemed necessary.
The displacement derivatives in BK correspond to the

strains that are due to the beam nodal point displacement and

rotations. Using Eqs. (3.6) to (3.9) we have
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where we employ the notation

(

ol
\-/R

(3)"

and

(3) = < (@) + t(3)g
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(3.13)

(3.14)

(2.15)

(3.16)



To obtain the displacement derivatives corresponding to

0 . .
the axes X 8 ¢=’,2,3 we employ the Jacobian transformation

0 __{J'l )
— = —_— 3.17
3% = or (3847)

0
where the Jacobian matrix, ;I , contains the derivatives of

. 0 . . . .
the coordinates X; ,t=1,2,3 with respect to the isoparametric

coordinates r, s and t [19]. Then, substituting from

Eq. (3.13) into Eq. (3.17) we have

G, @2 G| |4

-

(Cri):,-Z (GZ)I; (@3 (3.18)

N

GL, (oY, (@3,
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where
(Gm); = ("J,,;‘ <@),';) b, + (‘IJ,;;(@); . ,;;q),';) A, (5.49)

With the displacement derivatives defined in Eq. (3.18) we can
directly assemble the strain-displacement matrix 51( . Namely,
Eq. (3.18) is used to establish the global strain components
(corresponding to the OX;_ , t=1,2,3 axes), which are then

employed to obtain, using a second order tensor transformation,

the local strain components 67? ) b/';E and 3‘7,; correspond-
ing to the elements of the matrix &
3 K K
The elements of the matrices 50\” ’ 5:»42 J B.ov_s. and
K
B.ov« are associated to the element ovalization degrees-of-freedom

as they correspond to the ovalization deformations in Eqs. (2.39).

Thus, substituting WE from Eq. (3.10) into Eqs. (2.39) we obtain

B ! l ] — | L
a 'a, | a, e\k,r (O'IL | O'Iz :0'2)
E:“:__-Q.L_ 0 O E O |, 4 %K (1311 : l:i “3:) (3.20)
R-a tosg : ! dr : !
0100 0100
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where

)
i
Qx =
I
b, -
m =
and
Bk
—0v2 ~
where
bJz =
and
K
R* __
—ov3 =
R -0 cosp

v s (m ¢) ws $ + 5in(m;p) sm ¢

2

2

(R-a ws¢)9_

248

[(R-a cosg)6]

-2
wm cos(mg) Z

sin (vn ¢)

-m (mz- i) cos(mg) £

P
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: RO = length of elbow at center line

=

(3.21)
(a.22)

(3.23)

(3.24)

(3.25)

(3.26)



where

al = -m sinlmg) cosp + cos(mp) sing (3.27)
N; - _[ 2 ]hm s'm(m¢) 3 (5.28)
(R-a cosp)b
E: - |: 2 ] cos (m¢) 3 (3ZQ)
(R - a cosp)B
and
K ~ ~ ~
Eiw« = '%: ‘:b& b, Eg] (3.30)
Q
where, -
B! = m (m?- i) sin (m¢) Z (5.31)

The expressiors given above are for a curved pipe. If a straight

pipe is considered the term R 2 ¢)9:| need be replaced
- O s
by -{%—] where L is the total length of the element. Also,

the first matrices in Eqs. (3.20) and (3.26) vanish and only the

second matrices remain in the formulation of the straight elements.

3.2 Element Constitutive Matrix

The stress-strain matrix emploved in the formulation cor-
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responds to plane stress conditions in the =-¢ plane

(Kirchhoff's hypoteszs). In linear analysis we use

[ r [ [~ "
. t 0 0 3 |]e,
)
. - ° o o L2 o y 3.32)
s 2 o 14

Gge V 9] 0] 1 6§E-j

where £ is the Young's modulus and v is the Poisson's ratio of

the material.

5.5 Element Completeness and Compatibility Considerations

In the idealization of an actual physical problem by

finite elements, the accuracy of the solution depends mainly

on the number of elements used in the model and on the
order of interpolation functions employed within the element
domains . To assure the solution converges monotonically,

the elements must be complete and compatible [19] . It

these conditions are satisfied the analysis results will approx-
imate the analytical ("exact') solution increasingly better as we
continue‘fo refine the finite element mesh. In this section

we investigate whether the formulation of the elbow element,

-63-



which is a degenerated isoparametric (or superparametric)
element, satisfies these convergence critgria.

The requirement of completeness means that the rigid
body displacements and the constant strain states must be
represented'by the element displacement functions. Considering
the superparametric elbow element, this condition is effectively

verified by representing the stiffness matrix in the basis of

its eigenvectors,which must contain the rigid body modes and the

constant straining modes [19].Namely, we want to diagonalize

the element stiffness matrix E¢_by using the transformation,

A= 8K ® (3.83)

with,

¢

where ¢ .us ¢> are the matrix eigenvectors and.JA& is a
1) '_,' o r—

[fli A E?@,] (3.34)

diagonal matrix storing the corresponding eigenvalues Ai .
Table 3.1 presents element lowest twelve eigenvalues and the
physical meaning of the associated eigenvectors. The first
six eigenvalues demonstrate the presence of six rigid body
modes in the element displacement functions. Also, the
remaining eigenvalues show that the element can represent
torsional and flexural modes of the bend.

To satisfy the compatibility condition, the displacements
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TABLE 3.1 THE TWELVE LOWEST EIGENVALUES OF A FOUR-NODE
.30 DEG. BEND ELBOW ELEMENT (A=.165, v=.3)
i Ai/E Eigenvector representations
1 -6 Q.0 Three tigid body displacements and
three rigid body rotations
7 .76806 torsional mode
S .81707 in-plane bending mode
9 2.7167 torsional mode
10 2.9683 torsional plus out-of-plane
bending mode
11 2.9806 in-plane bending mode
12 5.0741 in-plane bending mode
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within the elements and across the element boundaries must be
continuous. In the finite element models for beams where
elements are connected at end nodes, the continuity in dis-
placements between elements is always preserved. In the elbow
element forﬁulation,however, additional compatibility in the
ovalization degrees-of-freedom must be preserved because of

the longitudinal bending of the pipe skin included here. Hence,
it is also necessary to enforce in the finite element formu-
lation continuity on the first derivatives of the cross-sectional
local displacements at the element boundaries. The longitudinal
pipe skin bending strain in Eq. (2.39a) requires that con-

. . . (3\4\;
tinuity in
00

) must be imposed, which is achieved using the
penalty procedure presented in Chapter 4, It is interesting
to notice, however, that the shear strain in Eq. (2.39¢), which
is a function of <eﬁi> , Tequires only continuity in W that

g

is already assured in the formulation,
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4. END- EFFECTS IN THE ELBOW ELEMENT FORMULATION

The initial interest in end-effects on elbows was moti-
vated by Purdue and Vigness [6] who repofted a series of tests
on bends of different sizes. In their work the authors show
that for a 90° flanged elbow, a theory which does not account
for the end-effects overestimates the flexibility and the stress
intensification of the bend by a factor of two or more. Addi-
tional experimental results on 180° bends with or without
flanges [36], on 90° flanged elbows [37], and on curved-straight
pipe assemblages [38-40] further confirmed these conclusions:
(a) the flexibility and stress intensification factors of a
flanged elbow depend on the total bend angle of the pipe ;nd,
(b) in a straight-curved pipe configuration, the amount of the
cross-sectional ovalization decays monotonically from the elbow
into the attached tangent portions, somehow stiffening the bend.

On the basis of these experimental evidences, various
attempts have been made to devise analytical or numerical
models that include these end effects [37, 41-43]. Apart from
the limited success of these models in the analyses of bends,
they are not general in use presenting some deficiencies such
as being only applicable to flanged elbows or considering only
constant in-plane bending loadings. Therefore, it is needed
that a proposed model for general piping analvsis is applicable
to configurations involving assemblages of straight and curved

tube sections while accounting for the important end-effects
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such és flanges and continuity constraints.

In the preceding chapter we presented the finite element
formulation of the pipe-elbow element. As we already pointed
out, the elbow formulation is a natural enhancement of von
Kirman's analysis. It includes the interaction effects (or end-
effects) of the cross-sectional ovalization between elbows of
different curvatures, elbows and straight pipe sections, and
elbows with rigid flanges. The strain terms included in this
formulation, beyond those considered in von Kdrman's formulation,
are due to the variation of ovalization along the longitudinal
axis of the elbow. However, it was shown that to assure com-
patibility between the elements it is now also necessary to
enforce continuity on the derivatives of the radial displacement
with respect to the longitudinal membrane coordinate ;7 . In
this chapter a penalty procedure is introduced to impose this
continuity. Two basic cases are considered: a fixity condition,
when an element is clamped to a rigid fange, and a continuity

condition, when two elements are joined.

4,1 The Penalty-Function Method

The method of penalty-functions, used in applicationsof
mathematical programming [44], is a reliable technique for
solving constrained problems. The technique consists of
transforming a constrained problem into a sequence of uncon-
strained minimization problems using a penalty-function. If

for instance, we consider the problem of uni-dimensional
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minimization of an objective function W{(x) subjected fto equality

constraint equations g;_(x)zo , L= i)...,N , & possible penalty

function for its solution 1is

N, 2
“d(x ) = Wx) + « § [gi,(x)] (4.1)

For each chosen value of « , typically «=14,10,100,... , a
solution that minimizes ®(x,®) is found. As &X gets larger,
the solution will more closely satisfy the imposed constraints.
Subject to certain conditions on the functions WH(x) and
g.(x) , the penalty method has been shown to be a very reliable
technique provided the value of & is sufficiently large [45].
The choice of the appropriate size of X must, in general, be
left to an empirical test. In Table 4.1, an example illustrates
the convergence of the method and shows how easily it can be
applied in the solution of a constrained problem.

Considering the finite element discretization of the pipe
elbow element presented in Chapter 3, it was shown that to
assure the compatibility between adjoining elements it is
necessary to impose equality constraints on the variational
principle governing the element. The usual procedure of
imposing such constraints is through the use of Lagrange
multipliers but this technique increases the number of unknown
parameters to solve for and results into a non-positive
definite stiffness matrix. For these reasoﬁs. an increasing

amount of attention-has been paid to recent applications of
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TABLE 4.1 USE AND CONVERGENCE OF THE PENALTY-FUNCTION

METHOD
. . . 2 2
Objective Function: W(x,y) = x~ + vy
Constraint Function: g(x,y) = 2x + v - 2=0
2 s}
Penalty Function: d(x,v,x) = X + v~ + a(2x+y-2)2
Exact Solution: W . =.8 at x=.8 and y=.4
min
it X v g W
0 0 05 '2 0
1. .6667 3333 -.3333 5556
10. .7843 3921 -.03953 7689
100. .7984 .3992 -.0040 .7968
1000. .7998 .3999 -.0005 .7996
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penalty methods in the finite element formulations of a wide

range of problems [46-50].

4.2 Imposition of Continuity on Derivative of Pipe Skin

Radial Displacement

The objective is to enforce continuity on the first
derivative of the ovalization displacementu@laetween elements
without introducing additional degrees-of-freedom. In the
classical analysis of beam structures this continuity is
achieved by introducing beam rotational degrees-of-freedom.
However, we can enforce the continuity in the elbow formulation
without the use of rotational degrees-of-freedom using a
penalty-function procedure.

As we have already indicated, the basic technique in
.this method is to add the constraint to be achieved in the

solution, say

CONSTRAINT= 0 (4.2)

to the variational indicator of the problem in the following

penalty-function form,

21 2
0=%-%% + %f (CONSTRAINT) d¢ (4.3)
0

where % and Y are the total strain energy and total potential
of the external loads, respectively, and X is the penalty

parameter. The solution obtained using Eq. (4.3), with 6[I=0,
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will satify the condition in Eq. (4.2) to the reqdired accuracy
provided X is selected sufficiently large [19, 32]. The
following example yields some physical inéight in the use of
the penalty method.

The simply supported straight beam loaded at its mid-span,
shown in Fig. 4.1(a), is modeled by two four-noded isoparametric
elements. In the formulation only the beam axis transverse

displacements are considered, i.e.,

A w. (4.4)

wlr) = W

.tv1¢.

-

432

where #Q are the interpolation functions, see Fig. 3.2, and

W, are the displacements at the element nodes. If transverse
shear deformations are neglected, the cross-sectional rotations
are, in linear analysis, the derivatives of the displacements
with respect to the coordinate Yy - Therefore, to impose the

continuity of cross-sectional rotations at the common node it

is necessary to use the following compatibility constraint

d = 2 dw(Z)

w

=2 %W _.c =X 4,

CONSTRAINT —LL o e o= (4.5)
ra+i T=-1

Bringing into Eq. (4.3) the expressions in Eqs. (4.4) and (4.5)

and the usual longitudinal bending strains,

2 2

Egy=-[2] Lt (4.6)

L] dr?
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thé equilibrium equations obtained by invoking the stationarity

of the functional Il are
[_'S_ + K;(tx)]ﬂ =F (4.7)

where t; ané ts; are, respectively, the linear stiffness matrix
and the penalty matrix associated with the model displacements
listed in w, and EE is the load vector. Here we can notice

the importance of the penalty parameter & . The benalty
contribution corresponds to the potential energy in a rotational
spring with stiffness parameter &, and the solution of Eq. (4.7)
depends on the size of & . In fact, the beam stiffness matrix
E is singular and the solution for &=0 corresponds to the
unstable hinged beam. A large positive value of & | or a
large spring constant, enforces the compatibility between the
elements and the solution converges to the usual beam results.

A physical interpretation of the effects of the penalty param-
eter size on the solution is shown, pictorially, in Fig. 4.1(b),
and Table 4.2.

Considering the elbow element we want to impose the
constraints corresponding to two different conditions: firstly,
the fixity condition when an element is clamped to a rigid
flange and, secondly, the continuity condition when elements are

joined.

4.2.1 Fixity condition

When an element is fixed or clamped to a rigid flange,
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CONSTRAINT = -2 [d—‘" - dw ] = 0
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(a) The two equal beam element model.

L%p» ) gJ

UNSTABLE (a=0) STABLE (a>> 0)

Kw=F (K+Kpla)) w=F

(b) Solutions for different sizes of «a.

FIGURE 4.1 The Simply Supported Beam Considered.
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TABLE 4.2 SOLUTIONS OF SIMPLY SUPPORTED BEAM FOR
DIFFERENT SIZES OF a

E = Young's Modulus
I = Moment of Inertia
th _ . pL>
Wy = ,166667 T
gho 2 aw [P0 2w (P
4 L dr | o4 Ldr ..
th 2
a(L/EI) w4/w4 34 (EI/PL™)
0.0 - -
.1 16.0000 -2.499998
1. 2.5000 - .,2499949
10. 1.1500 - .025000
100, 1.0150 - .002500
1,000. 1.0015 - .000250
10,000. 1.0002 - .000025
100,000. 1.0000 - .000002
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as shown schematically in Fig, 4,2(a), the boundary conditions

dws -0

are that at X=0 there is no ovalization and ax . Hence,
) X
we have for the ovalization degrees-of-freedom, Eq. (3.10),
¢ .
=d.. =0  (att w) , (4.8,
and
dw
[ 2 ¢l =0 (49
r=-1
where

4 /N,
dw d4
3 = - 2m cf SNy cos 2mg
2 |2 amen g

dl" r=-i N I‘a-i

Z 2'm dK d& sin 2m¢ (4.1c
r=-4

The constraint in Eq. (4.8) means that the ovalization degrees-
of-freedom at node (i) must be set zero, whereas the constraint
in Eq. (4.9) is imposed with a penalty parameter. Using in

accordance with Eq. (4.2)

2 dwe
(R,-acosp) B, dr

-0 (4.4

r=-1

CONSTRAINT =



(a) ELBOW WITH A RIGID FLANGE AT NODE i

ELEMENT (n)

(b) ELBOWS OF DIFFERENT RADII JOINED AT NODE i

FIGURE 4.2 - Interactions Considered in Analyses
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then substituting into Eq. (4.3) and invoking the stationarity

condition on II results into the following penalty matrix

21 ' 2
]S:, = cx/ G, 2 G, d¢ (4.12)
0 (Ry-a cos ¢) B,

where
Ge=|.. & T & BEEE...] (4.13)
A =~ 2m dh cos 2mg (4.14)
dr r=-1
B =2m L - 2me (@.15)
dI‘ r=-{

F
and kspis defined corresponding to the degrees-of-freedom

ol ke d d L] (4.16)

E
The matrix EP with a relatively large value of & is added
using the usual direct stiffness matrix procedure [19] to

enforce the constraint in Eq. (4.11).

4.2.2 Continuity condition

At the intersection of two elbow elements as shown in
Fig. 4.2(b), the ovalization is automatically continuous
because the same ovalization degrees-of-freedom pertain to

both elements, In addition, we have the continuity condition

d
CONSTRAINT = 2 dugf - l- 2 | (
(R,,-a. cos@)6y | dr Ir=+1 I_(Rm-a cosu;a»)O,,,l dr Ira-t
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This condition is imposed using the penalty

~function method

already used in Section 4.2. Substituting into Eq. (4.3) from
Eq. (4.17) }e now obtain the penalty matrix
21
K -af Gl G, d (4.1)
—p - e ¢ ¢ .
0
where
. () ) () ) = () ) _ [
_C_Tc=[...a.',‘ K" B B, B, ...8&0,3Db bb,
(nel)  (nel) (ne)) = () — (nel) — (nai)
L e B B, b, ] (4.49)
(m) i 7 (n)
. =- 2 2wm .‘L’%& c0s 2m ¢
_(R“- Q cosg) 9.,,- dr |
- K2
) 7 (m)
m = 2 2m d'g'l_‘ Sim 2m¢
-(Rn-a CO$¢) 9.,\-‘ dr r=el
_me) [ 7 (n+)
o = 2 2m dhe | cos 2mg
_(R,‘ o Q& Cos ¢) 9,, ~ d r reot
) - Kl
—Kﬂi‘ ('Ml)ﬁ
m =Tz 2 2m d by sin g
\R,.;~a cosg) O dre |y
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and for the common node (i) of the two elements,

a

et
™ R,-a cos)b,/ dr

?=+L

(n+1)
2 dh, 2m tos 2m (4.24
* ((Rm-i_ a cos #) 8n+1) dr Czal ?
E}n:: ( 2 ) Ci{%:)
(R“"Q. Om¢)9n dr |ra+t
(n+0
- ( 2 ) d%i 2wm sin2mg (4.25
(Rnd- Q@ 005¢)9m,1 dr r=-1

This penalty matrix corresponds to the degrees-of-freedom

node k of element (n), k#2 node i

(ne)  lne) (o)) (n+1) (n+1) (n+)
K K 3 k K
¢ e |C1 CZ C.s di dz ' ds | e o -] (4026

node k of element (n+l1l), k # 1

In the case of a straight pipe abutting a curved pipe, the
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continuity condition in Eq, (4.17) needsbe replaced by the

approximate constraint expression

2 7 dwe

- [2] dwe -H_
CON.STRAINT - [L] foul ?“g d.I‘

e (4.27)

r=-{

where L and R“Q,are the centre lines'lengths of the straight
and the curved adjoining elements. Accordingly, Eqs. (4.20)

to (4.25) should also be modified By replacing the terms

rl.(Rn-agwssﬁ)Gn] ane [(anl'a-zws¢)9nﬂ] i [ta_] and [R—fa] ’

respectively.
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5. INTERNAL PRESSURE EFFECTS IN PIPES

: The recent trend in piping design towards an increasing
use of thin-walled bends subjected to high stresses has called
for a closer attention to the effects of internal pressure on
the pipe beﬁavior. The fact that the internal pressure decreases
the flexibility of the elbow was first considered by Thuloup
[51], who assumed a deformation shape of the tube to obtain a
solution using the method of minimum potential energy. Following
the same method, other analytical solutions have also been
obtained [52-54] where calculations of the work done by the
internal pressure on the ovalized cross-section were employed

to modify von Kirmdn's strain energy equation, see Eq. (2.4).
This way some design formulae were derived for the flexibility
and the stress intensification factors of pressurized curved
pipes [51]. Thin elastic shell theories have also been employed
in some analytical solutions including internal pressure effects
[55-59]. For instance, Crandall and Dahl [56] followed the
shell theory approach presented in Ref. [8] and recognized

that for small displacements of the shell surface, a nonlinear
coupling between pressure and change in pipe cross-sectional
area could be identified as a negative loading term in the

shell equilibrium equations, This nonlinear dependency of

the pressure loading on the displacements in the plane of the
elbow cross-section is regarded as a stiffening effect due to

the pipe internal pressure.
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In this chapter we discuss the additional work due to
internal pressure, in order to include the internal pressure
effects in the variational indicator of the elbow element.

The presentation shows that by using the basic cross-sectional
deformation. modes of the elbow, the important stiffening
mechanism in the bend acts towards the restoration of the

circular shape of the pipe cross-section.

S.1 The Internal Pressure Work

As the cross-section of a pressurized bend deforms
because of external loadings, an additional work represented
by the internal pressure acting against the change in the
cross-section of the elbow must be considered. The work to be

added to the variational indicator of the elbow element is

pr- - _f b dA(r,¢)[R- ¢0s 6] dr (5.1)
o 2 //4srsi
, 0¢gs2m :

where p is the internal pressure, [(R-a.cos¢)9] is the longi-
tudinal arc length of the bend midsurface and <ﬂAQn¢) is

the differential of change in area due to the cross-sectional
ovalization. As shown in Fig, 5,1, this differential area
results from the deformation of an initially circular pipe

section and is a function of the local displacements W, and

g
vdg.
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5,1,1 Calculation of area change in a deformed pipe section

Referring to Fig. 5.1 where points. A and B on the
initially underformed circular cross—section are displaced to
points A’ and B' on the ovalized cross-section, we approximate
the dlfferentlal area dA by the area of a quadrilateral
polygon AA'B'B . The coordinates of the polygon vertices on

the auxiliary coordinate axes X and y are
A( ) B(G. CQSd;b a.smd¢) Q.HAJ; \d) and
8([a+w +dw]c,os d¢ [w +dw]5md¢ )

[Cl.-t- t dw;] sin dg +[u) +dw ] cos d¢) (5.2)

and the area sought is given by the expression :
dA = 5 [(R-%) 5= 3,) = (55, (5-%)] 53)

substituting the point coordinates from Eqs. (5.2) into

Eq. (5.3), making the following two approximations

sindg = dg and cos d¢p = 1 | (5.4)
we obtain
dA - _1_ aa.w,; + wg(w‘,. _dwg) +w;‘ - W dﬁ dg (5.5>
2 de de
""" TERM T~ ""7"7"7" TR

In Eq. (5.5) TERM 1 and TERM 2 are the changes in area due,
respectively, to the stretching and the bending of a deformed
cross-section. Using the inextensionality condition, assumption
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OVALIZED
CROSS-SECTON w%-kdw

UNDEFORMED
CROSS-SECTION

(ELBOW AXIS)

FIGURE 5.1 Area Change of an Ovalized Cross-section.
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(c) in Section 2.1, it is required that AB = A'B' in Fig. 5.1.

Hence, Eqs. (5.2) with the approximations in Eq. (5.4) yields

(a.d¢)2= [dwg - (wg +dw§)d¢]z + [(0.4- W, + dwg)dys + dwg]a , (5.6)

and then we obtain the conditions,

Wg + .d_vi.g_: 0 (5.7)
d¢
2 2
w:.,,(f'_“i‘_) - 2w dws (dwg) ,.ngd_“’é # W =0 (5.8)
dg dg d¢ dg

In Eq. (5.7), which is the von Kdrman's condition employed
in the formulation of the elbow element-- Eq. (2.1)--only first
order approximationsare considered for the deformations of the
elbow cross-section. However, the area change in Eq. (5.5)
depends upon second order displacement terms and, therefore,

it is also necessary to include the second order relation in

Eq. (5.8). Thus, combining the two equations above we
obtain
2
—w, s [z, (de)° (5.9)
9 -2 | 5T \ae?) | ]
and inserting Eqs. (5.7) and (5.9) into Eq., (5,5) yields
2 2
ah =)ot Ll (Lug))lag (5.19
de 4 dg*/ ||

Substituting the foregoing equation and the displacement pat-

terns for w%h3¢) given in Eq. (3,10) into Eq. (5.1), we note
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that the non-squared term in Eq, (5.1Q) vanishes during the
integration process. Hence, considering the bending deformations

only, the expression for the area change reduces to

dA(T,ﬁ'):_}j;_[w;(r, @ - (é%f:‘z»_”)z] d¢ (5.11)

which, when substituted into Eq. (5.1) yields
KW= / / [dw “‘-"’) wéfrm)](lmﬂ&) d¢ dr (512
2

In the next section, the internal pressure effects are included
in the formulation of the elbow element by adding the above

equation to the variational indicator of the element.

5.2 The Elbow Element Formulation with Internal Pressure

In Eq. (5.12), the analytical expression of the work
due to the internal pressure depends on the second power of
the local circumferential displacement W Physically, this
dependence suggests that the additional work <ﬂf , included
in the total potential of the problem, adds directly to the
pipe strain energy and gives an increasing bending stiffness
to the pressurized elhow, In fact, substituting for the
displacements vﬁ§m¢ﬂ from Eq. (3,10) into Eq. (5.12), the
variation in the internal pressure work results in the following

additional stiffness matrix
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where,

a.l:n = -(ZM)Z‘B\k sim 2.m¢

T:K (Zm)z ‘e‘n oS 2m¢

m -
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(5.16)

(5.11)

(5.16)

(5.19)



and _E;Pris defined corresponding to the ovalization degrees-of-

freedom

Moo dadddd..] (5.29

At this point, it is important to note that the equilibrium
equations that govern the linear response of a pressurized

elbow element are given by
(EL+ Ep)ﬂ = _R_ - .EPY <5'21)

where EéL and E;P are the element stiffness and penalty matrices
defined in Chapters 3 and 4, Ei is the element external load

vector, and

=K, U (5.22)

which is the equivalent pressure loading vector. Because of
its displacement dependence, the pressure load is transferred to
the 1.h.s. of Eqs. (5.21) for the solution of the element dis-

placements i& .
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6. ELBOYW ELEMENT FORMULATION FOR NONLINEAR ANALYSES

The formulation of the elbow element presented in the
preceding chapters has been developed for linear analysis of
the pipe bends. In the formulation, the resulting equilibrium
equations are derived with the assumption that during deformation
the element undergoes infinitesimally small displacements without
changes in geometry, material properties or boundary conditions.
However, as the displacements become large or the material law
does not follqw Hooke's law, the effect of nonlinearities
becomes prominent and the linear formulation presented above
is inadequate in modeling the physical behavior of the pipe.
In this chapter, we extend the elbow element formulation to an
incremental formulation that incorporates geometric and material
nonlinearities [60]. We present first the continuum mechanics

equations and then develop the appropriate element matrices.

6.1 A Formulation for a Geometric-Nonlinear-Only Analysis

In a large displacement analysis of a piping system, the
actual strains associated with the deformation may
be small such that the elastic limit of the material is not
exceeded. In this case, the nonlinearity of the problem is
only embodied in the kinematics of the deformation. Such type
of analysis can be considered as a geometric-nonlinear-only
analysis which however is considerably more complex than the

linear analysis [61].
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Considering a large displacement motion of the bend
in a stationary Cartesian coordinate system, we assume that
the solutions for the static and kinematic variables for all
time steps from time 0 (underformed configuration) to time t
are known. The basic aim of the analysis is to establish an
equation of virtual work from which the unknown static and
kinematic variables in the configuration at time t+at (At
is an increment in time) can be solved. Hence, in the
analysis we follow all partic1e§ of the bend in their motion,
from the original to the final configuration, meaning that we
adopt a Lagrangian formulation of the problem [62-64].

Since a displacement-based finite element procedurg is
employed for numerical solution, the principle of virtual work
is used to express the equilibrium of the body. Using tensor

notation, this principle requires, at time t*dt , that

teAt t+At t+At
t et rae 4
Vv
t+At
where 7&' are the Cartesian components of the Cauchy

stress tensor, t+Ateq are the Cartesian components of the
infinitesimal strain tensor measured in the configuration at

time t+at

, ou; ou;
teat Cif = é (_—atw: + —L'atvdt ) ’ (6.2)
xi X,
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) ) t+At
and the corresponding total external virtual work R is
due to the surface tractions with componentsoff and body

force components off ’

t"'At t+At s t+at t+At B t+at
,[ W d5 o+ + of; Su +dV (6'3)

tétg +Atv

In Eqs. (6.1) and (6.3) «; are the components of a displacement

increment vector, and & means "variation in". Note that
t+at ¢ '
= “;- U; , we also use
trAt t+at '
X; = OX;_ + U; (6'4)
t 0 t (
X = X + My 6.5)
0, t+ at, _
where X; ,tX and X; are components of the coordinates at

times 0, t and t+At respectively,

Since the stress and strain measures used in Eq. (6.1)
refer to the current unknown configuration at time ¢t+at , this
equation cannot be directly applied., However, an approximate
solution can be obtained by referring all variables to previously
calculated known configurations, and linearizing the resulting
equation., This solution can then be improved upon by an ite-
ration process. The desired transformation can be achieved

using two equivalent transfoirmations, namely, a total Lagrangian

(T.L.) formulation or an updated Lagrangian (U.L.) formulation
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61, 65-67]. In the T.L. formulation, all static and kinematic
variables are referred to the initial configuration at time 0
while in the U.L. formulation they are re%erred to the last
known configuration, at time t . Both formulations are based
on equivalent procedures and it has been shown that they are
entirely equivalent [68]. The only advantage of using one
formulation rather than the other lies in its better numerical
efficiency.

In the present study we employ the T.L. formulation in
the large displacement analysis of the pipe bend. Using the
configuration at time 0 as a reference, the governing virtual
work in Eq. (6.1) can be expressed as follows

t+at
fo 05,-4- St*gt&g ?ﬂV = tMt@ (6.6)
t+At v t
where the of%f and 1&%; are the components of the 2nd
Piola-Kirchhoff stress tensor and Green—Lagrangeti&Fain tensor,
+

both referred to the initial configuration,and R is

redefined considering the initial configuration of the body,

t+At . .
c% - /t A:f: 80.; 215 + [t A:f? 644‘; f:i\/ (67)
05 °V

The actual equilibrium equation expressed in Eq. (6.6) is

obtained from Eq. (6.1) through the following transformations:
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trat 0 0 ¢rat 0
07y =t-m£t_e' t+at TTLp r$ tmt‘x'j,? (6.8)

¢+At t+at t+at

t+At ¢t+At o ; t+At
where OX% =0 x;/d oxf, , and f’/ r represents the
ratio of mass densities that follows from mass conservation

condition

3 9V = ‘Mjo E+8V (6.10)

It should be noted that Eqs. (6.1) and (6.6) are entirely
equivalent since the corresponding stress and strain measures
used in these equations are energy-conjugate . The 2nd
Piola-Kichhoff stress tensor is used in this study because it
is a simple and symmetric tensor and its components are
invariants when the material is subjected to a rigid body
rotation [19].

To obtain an approximate solution of Eq., (6.6) we need
to linearize the equation about the last calculated configuration
at time t . Using incremental decompositions of the stress

and strain tensors, we rewrite them as

t+at t
osij = o*si.j T 09 (6.11)

-94-



and

t+At t

Eg’ =& t € (6.12)

0

cJ' c;}' ‘
where osg' and oég are increments of the 2nd Piola-Kirchhoff
stress tensor and of the Green-Lagrange strain tensor,

respectively. Also,aéb-can be decomposed into the following

Components, .
oég' =3 oeg' + 0 g (6/3)

with

{ ¢ ¢
0% =T(au'c',‘f * ol *oi oliy *oti °u"fi.) (6.14)

.
-t e . - - - - - - - - - ——

being the linear component, and

o’?io,f jé (ou’k,é o“lc,}) (6.15)

being the nonlinear component, Both components are expressed
in terms of unknown increments of displacement derivatives with
ou.‘-’} = au.,;/ aoxy- . The underlined expression in Eq. (6.14),
obtained in the T.L. formulation, is an initial displacement
effect that contains the derivativesof the total displacements
at time t with respect to the original configuration coordinates
t=4,2,3 , i.e., :u,;’}é atu;/ 3°XJ' . Substituting

0
Xi s

Eqs. (6.11) and (6,12) into Eq. (6.6) and noting that
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oGy = 6 o€ ‘_ 6.16)

and
0‘54}' =0 Cco;‘p?, 0 Ep?, (6.17)

leads to the equation of motion to be solved in the T.L. formu-

lation:
0 t 0
fo"a}"’ oCog S,y AV fo 05? 8§,y AV =
Vv \
t+4¢ 0
R - / oqu 6,85 AV (6.18)

where J:é)? is the incremental material property tensor refer-
red to the initial configuration. To deal with the nonlinearity
appearing in the first integral of Eq. (6.18) we introduce the

following approximations
0 5(.}, = 0 CC ﬂ' 9 o e/uy. (6.19)
and

6069' = é oe,_-oi (6.20)

to obtain the linearization. Therefore, the resulting approxi-

mate equations of motion referred to the original configuration
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become

f Cijrg oSy Sty IV / SQ R dv =

tmt% /o‘st 6e, “ly (6.21)

6.1.1 Finite element formulation (beam displacement modes

only)

The general incremental continuum mechanics equations
presented in the previous section are now used fo develop the
governing finite element equations.

In the derivation of the governing finite element
equations we follow the same steps used in linear analysis:
selected interpolation functions, employed in the interpolation
of element coordinates and displacements, are used in the con-
tinuum mechanics equations, Also, in this derivation we only
consider the beam deformation modes without ovalization and
consider a single element, because the governing equilibrium
equations of an assemblage of elements can be constructed using
the direct stiffness procedure.

The aim is to solve the basic Eqs. (6.21), which express
the equilibrium and compatibility requirements of a general
body in the configuration at time t+aAt. Considering the
components of the Green-Lagrange strain increments in Eqs.
(6.14) and (6.15), two sets of terms, calculated at time t ,

are involved in the expressions: (a) displacement increment
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derivatives, and (b) total displacement derivatives,lboth
referred to the original configuration coordinates. The
evaluation of these terms are obtained using the element
kinematic relation in Eqs. (3.3) and (3.6). Hence, the
displacemeﬂt increment derivatives have already been obtained
in Eq. (3.18) for the linear analysis formulation. The total
displacement derivatives, which account for the inital dis-
placement effects , are now calculated considering the element
known configurations at time 0 and time t . Thus, because

¢ 0 .
u.‘-.-:txi- X; , we have for the beam deformations,

ta‘-:: ZN: %k fu; + tZN: a, 'P\K[t\é:- “] * SZG. A [t\/,.,t s:] (6.22)

k=l k=l Kal

Using Eq. (6.22), the displacement derivatives referred to the

local r, s, t coordinates follow

Yow =30 Bean (V=) (6.23)
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Substituting Eqs. (6.23) with the Jacobian transformation of

Eq. (3.17) we finally obtain

6.1.2 Finite element discretization

At this point, we have the necessary ingredients to per-
form the integrations in Eq. (6.21). In addition, assuming the

material density remains constant during the element deformation,

i.e.,

t:mt-() = t(_) :o(.’ (6. 25)

the resulting equations of motion can be written in the following

form

o=L 0= 0—NL 0=~ o=pNL

[ [EosE w0 [E 3 W
v v v

where,

linear and nonlinear local strain-displace-

1091

e

gf"
n

ment transformation matrices , as
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summarized in Table 6.1

@

incremental stress-strain material property

matrix, given in Eq. (3.32)

= t2
aé, oé = matrix and vector of 2nd Piola-Kirchhoff
local beam stresses, see Table 6.1
t+At
R = external nodal point load vector at time

t+ At

global beam displacement increment vector

N

(does not include ovalization degrees-of-
freedom)
In the derivation of Eq. (6.26), the global strain tensor is
eﬁployed to calculate, using a second order tensor transformation,

¢ t
the local strain components 677 ,

7E and tK7; referred to
the convected coordinates, see Fig. 2.1.(a).

Following the approach used in linear analysis, the
linear strain-displacement transformatioh matrix can now be
modified to include the ovalization deformations of the pipe
cross-section in Eq. (3.11). However, it is not clear how the
geometric nonlinearities corresponding to the ovalization need
be included and further studies are necessary (see Section 8.).
If the geometric nonlinearities correponding to the ovalization
displacements are‘ neglected, the entries in the total

-t—

element nonlinear strain matrix EbNL corresponding to the

0
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ovalization degrees-of-freedom would simply be set equal to
zero. The finite element equilibrium equations in the global
coordinate system can then be finally written in the following

compact form

(K. +K.)u=""R-F (6.27)

o—L —

t

¢t
where o-l-<-l. and 0'—<NL
t+a¢

i A . t .
ness matrices, R is the external loading vector, and Fis

are the global linear and nonlinear stiff-

the nodal point forcing vector equivalent to the stresses at
time t.

6.2 Formulation for Elastic-Plastic Analysis

A derivation of the isothermal elastic-plastic incre-
mental constitutive relations, employed in the material non-
linear analysis of the elbow element, is presented in this
section. The approach used in the presentation follows the
procedures for infinitesimal displacements presented in
Ref. [69]. However, the model can also be employed for large
displacement analysis in a T.L. formulation, by using the
incremental 2nd Piola-Kirchhoff stress and Green-Lagrange
strain measures defined in the previous sections of this
chapter,

In addition to the linear elastic constitutive relation.

of a continuum, three basic conditions are required to establish
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establish the stress-strain matrix in elasto-plasticity., These
conditions are:

(a) a yield condition, which specifies tﬁe state of
multiaxial stress corresponding to start of plastic
flow;

(b) a flow rule, that relates the plastic strain in-
crements to the current stresses and the increment
of stresses beyond yielding; and

(c) a hardening rule, which determines how the yield

condition is modified during plastic flow.

Under isothermal conditions and isotropic hardening, the initial

and subsequent vield criterion is written in the general form

t

F:(Até%, té;)::() &ize)

t= -
where G%- and tqg are the components of the effective stress

tensor and the components of the total plastic strain tensor

measured in the local coordinate system ? ) 6 and L for

éxample,
(;?? G%E G;t
L=
G = Gee (6.29)
Sym
b O o

The von Mises yield condition employed in the elbow element
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formulation gives,

tF(t-G-'-- tép)

{ t= t.2
§0 7Y

t-
=5 D,;j D.:J - % Gy (6.30)

t . .
where Dﬁ are the components of the deviatoric stress tensor
a time t, defined as

N, JEC._ 4L e .
Dé} - G‘J -+ G 5 (6.31)

t
with &Q being the Kronecker delta and Gy is the current yield

stress at time t which is a function of the plastic work per
. txxyP
unit of volume W,

t,?
¢ .-
tWP:[ tG;-J- de% (6.32)
0

A simple tension test performed in a material with elastic modulus

E and constant strain hardening modulus E.T gives an explicity

‘ tegy? . . .
expression for W. From Fig. 6.1, we obtain the expression

W' = (et (s} -5

7

(6.33)

até'.‘:} i+ aééP e‘} =0 (634)
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FIGURE 6.1 Stress-strain Relation in a Simple Tension Test.
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SP . . .
where the (SQ and eq are components of differential increments

in local stresses and local plastic strains. The coefficients

of these increments in Eq. (6.34) can now be evaluated using

Eqs. (6.30) to (6.33) resulting [70],

I _*'D,. (6.35)
puy — ‘J N
%,

- (j b.36
3aE - 3 FW a3\ Fwr) ¢ b2

3 _ 2 %G 96, W __ 2 (*67 Js, )*@I
e--
5 K

but, from Eq. (6.33) we have

t \/
G. 909G, _ EE 3
y a’W' = E-c (6. 7)
that gives
F __2 (EET )tf’:«:' (6.38)
até,; 3 \e-&y ¢

Applying the normality rule to the plastic potential function

F , the strain increments reduces to

g x 2E Dy 6.2)
0 6“}-

and the stress increments are evaluated from the equation

6'9 = C‘:I’?( €pq e;}) (6.40)
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t =g ‘
where Ck- are the components of the linear stress-strain

tensor for isotropic materials in a threetdimensional'
analysis given in Ref. [19], Sec, 4.2,3, Finally, substituting
from Eq. (6.35) and (6.38) to (6.40) into the incremental

Eq. (6.34), the elastic-plastic material law at time t becomes

G_-- = tCEP e (6-41)

4 4ps rp
with,
t=er txe ¢S5, |
Coe = G - et (649
Dy fy - 525515 Dy

where we employ the notation

t 3 t=RE R
B. - C«‘J‘P} Dy (6.43)
The elbow element elastic-plastic incremental constitutive

t=ep
relation C; is then formed by imposing the element zero

stress conditions: 6§§=GEE=O . This is done by performing

static condensation on the appropriate rows and columns of the

€ ~ep
matrix C; .

6.3 Numerical Integration

To evaluate the linear stiffness matrix in Eq. (3.2)
and the stiffness matrices and force vectors in Eq. (6.26) we
are using numerical integration. In linear analysis it may be

possible and more effective to evaluate some of the integrations
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required in closed form, but in general nonlinear analysis
numerical integration must be emnloyed, As a general pro-
cedure, we choose to employ in all analysis numerical in-

tegration [19].

In. recent years, much emphasis has been given to
reduced numerical integration in the use of low order elements
such as beam or plate elements [32, 71]. The use of reduced
integration is necessary in those cases,because if the stiff-
ness matrices‘of very thin low-order elements are evaluated

exactly , the elements display much too stiff a behavior.
Using reduced integration in the evaluation of low-order
elements can drastically improve some analysis results, but
may also introduce spurious zero energy modes that result'

in solution difficulties, and make it difficult to access

the reliability of the solution results in general analysis.
Using the higher-order elbow element presented here, reduced
numerical integration is not needed for an accurate response
prediction, and a feliable and effective solution is obtained
using high-order integration [33, 35].

Considering the assumed displacement distributions for
the elbow element, the Newton-Cotes formulas can be employed
for the numerical integration with the following integration
orders: 3 point integration through the wall thickness, 5 point
integration along the elbow, and, using the composite trapezoidal

rule around the circumference, 12 point integration for in-plane
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loading and 24 point integration for out-of-plane loading [19].
This integration order around the circumference assumes that
all 3 ovalization patterns are included in the analysis: less
integration stations can be employed if a smaller number of
ovalizatio; degrees-of-freedom are used. Also, instead of the
Newton-Cotes formulae, Gauss numerical integration could be

employed.
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7 - SAMPLE ANALYSES

In this chapter, the analysis of a number of linear
and nonlinear piping problems are presented to indicated the
applicability and the effectiveness of the elbow element.
First, corresponding to the von Karman's model, we present the
solutions to some in-plane and out-of-plane bending analyses
that do not include interaction effects. Next, solutions
including flanged pipes and straight-curved pipe assemblages
with interaction effects are presented.

The element formulation has been implemented in a
version of the computer program ADINA [67] (called ADINAP) and
jn this section the response predicted using the elbow elément
is compared to available numerical and experimental results.
In all analyses the Newton-Cotes integration scheme described

in Section 6.3 was employed, and the pipe geometric parameter

used was A = Rc‘/faf\li- Qz] [27].

7.1 Linear Analysis of Two Cantilvered Pipe Cross-Section

Beams

The objective in analyzing the two cantilevered beams
is to demonstrate: (a) the effectiveness of the element in the
analyses of slender structural members, and (b) the accuracy
obtained with the element when the ovalization effects are
neglected. The beam formulation includes transverse shear

deformations at a pipe cross-section and it is instructive to
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(a) Analysis of cantilever stréight pipe using
a one element model.
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E = YOUNG'S MODULUS

MOMENT OF INERTIA

A = CROSS -SECTIONAL AREA
3
v = PR
T™H 4 I
. PR?
YTH' I
M y Pcos@
(@l s M 2] -
iy AR [ R+y A
WHERE ,
| . y
z 2 - [ dA
A J, Rty
B P : 3 |
AT POINT B: (o 2 - —— Z= -
i Z}R-7) V1 -(a/R?
. . B B B
R/"- (V - VTH)/VTH (Y - (TH/ (TH [Onn (Onn)TH]/(Onn)TH
.8 .07600 .23316 .00042
1.0 .06483 .14663 .04033
2.0 .01982 .03646 .07780
5.0 .00182 .00634 .08517

t Winkler-Bach formula for curved beams (Ref.

[72],pp. 336-341)

Figure 7.1

(b) Analysis of 90 deg. cantilever bend using a three
elbow element model.

Linear Analysis of Two Cantilevered Pipe Beams.
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evaluate this assumption in the solution of these problems,
In the analyses one element was used to model the straight
pipe and three equal elements were used to model the 90° bend.
Figs. 7.1 compare the analysis results obtained with
elementary .beam theory solutions for different geometric aspect
ratios. As expected, the displacements and stresses predicted
using ADINAP are very close to those obtained using elementary
beam theory when neglecting shear deformations for large aspect
ratios, because in those cases the shear deformations contribute
negligibly to the tip displacement of the pipe. Hence, it can
be concluded that the element is effective when transverse
shear deformation effects can be neglected, which is the case

in the analyses of thin-walled pipes.

7.2 Analysis of a Pipe Bend

-

The pipe structure shown in Fig. 7.2 was analyzed
using ADINAP, assuming no variation on the ovalization along
the length of the pipe because the analysis results could be
compared with the results presented by Sobel in Ref, [27].
Using ADINAP the pipe bend was modeled using three equal
elbow elements as shown in Fig. 7,2.

In his work Sobel used the state-of-the-art tools
provided in the MARC computer program [73] to analize the
bend. Based on an extensive convergence study, Sobel concluded
that 32 or 64 of the MARC pipe-bend segment elements must be

used to model the bend.
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a) PIPE STRUCTURE; R/a =3.07, a/8 =20.8, » =.3

ELEMENT 2

ELEMENT |

b) THREE ELEMENT MODEL (CENTRE LINE CF ELEMENTS
AND NODAL POINTS ARE SHOWN)

FIGURE 7.2 - Pipe Bend and Finite Element Model Used
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To simulate the conditions that were assumed in the
analysis by Sobel, the ovalization degrees-of-freedom at nodes
1 and 10 (and 2 to 9, see Fig. 7.2) were left free. Figures
7.3 to 7.5 show some stress components calculated using ADINAP
and the corresponding results obtained by Sobel using the MARC
program and the Clark and Reissner Shell Theory [8]. The
ADINAP analysis was performed using the 1, 2 and 3 in-plane
bending ovalization terms of Eq. (3.10). Good correspondence
between ADINAP, MARC and Clark and Reissner shell theory results
is observed. It is also noted that in the ADINAP analysis all
three terms of ovalization had to be included for an accurate
response prediction, which corresponds to the recommendat;on
given in Table 2.1 for the bend geometry considered. In the
subsequent analyses of this bend in Section 7.7, we therefore

included also all these ovalization terms.

~1
(9]

In-Plane and Out-of-Plane Bending Analysis of a Second
Pipe Bend

A second 90° pipe bend was analyzed for in-plane and
out-of-plane bending using the same finite element mesh as was
employed in the previous analysis (see Fig. 7.2(b)). Some
longitudinal and hoop stress results calculated with ADINAP -
are shown for the in-plane bending in Figs. 7.6 and 7.7, and
for out-of-plane bending in Figs. 7.8 and 7.9. The computed
results are compared in the figures with the experimental values

obtained by Smith and Ford in Ref. [74], and good correspondence
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7.4 Analvsis of Pressurized Bends

The effect of internal pressure on the flexibility of
curved pipes is assessed in the present analyses. Experimental
results for the in-plane bending of a short bend radius and
three long bend radius 90° bends were reported in Refs. [53, 547.
The geometric properties of these bends are shown in Fig. 7.10,
together with the finite element model employed in the ADINAP
analyses. Due to symmetry, only half of the test structure is
used in the model that was subjected to a concentrated load P
and internal pressure p varying from 0 to 1100 psi.

Figure 7.11 shows the predicted flexibilities for the
elbow element models, and compares the finite element responses
with the experimental results. As expected, the elbow element
flexibilities, for increasing values of internal pressures, are
larger than given in the test results because the stretching
of the pipe midsurface in the circumferential direction 1is
neglected in the formulation. It is interesting to notice,
however, that moderate thin pipes (Bend 1) and very thin pipes
(Bend 2) with similar geometric parameter A., present quite
different stiffening behaviors under internal pressure. This
way, the flexibility of the bends denend not only on the pipe
factor A but also on the amqunt of ovalization in the pipe

cross-section. Hence, the flexibility of the pipe is also a
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PARAMETER BEND 1
R 45.
§ .5
) 15.
A .10483

BEND '3

12.4
.020
1.75
.08489

BEND 4

10
.016
1.5

.074545

(a) Bend Geometric Parameters (all dimensions in inches)

Bound, Conditions:
At node 1:

- no cross-sectional
rotation, y]=0.

dw
dx
At nodes 4 and 7:

- ovalization and
derivative of
ovalization continuous

E -0

(b) Finite Element Model Used

ELEMENT 3

FIGURE 7-10 - Analysis of Pressurized Bends
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function of the geometric factor a/% [534].

Convergence of Stress Continuity, and Effect of Penalty

~1
.
(a}

Parameter Size - Some Studies with the Elbow Element

The straight cantilever pipe shown in Fig. 7.12 was
analyzed for a prescribed ovalization. The purpose of this
analysis was to investigate the effects of the element size and
penalty parameter size on the response predicted, and thus '
arrive at some guidelines for the use of the element in modeling
more complex piping systems.

Figure 7.13 shows the response predicted in the analysis
when using four equal size elements, It is seen that although
dvg/&x is continuous, the second derivative of\dg with respect
to x is strongly discontinuous at the junction of the first and
second elements. Hence, the pipe skin bending strain due to
deformation of the cross section (in Eq. (2.39a)) displays a
large jump at this point and a finer finite element mesh is
required at the fixed end if the stress distribution is to be
predicted accurately.

The appropriate element size for stress continuity
between elements is evaluated by recognizing that in the straight
pipe stiffness matrix (its closed form expressicn is presented
in Table 7.1), the pipe skin bending strain contribution should

be at least as large as the shearing strain contribution 1in

Eq. (2.39c). This condition gives that for an element in which

these two strain contributions are important we want that, from
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OVALIZATION BOUNDARY CONDITIONS

dw;
AT x=0 : w;=0., on'
AT x=L : C; =05in. (CORRESPONDING TO UNIT

OVALIZATION IN FIRST
VON KARMAN MODE)

ANALYSIS PARAMETERS

L =4.8 in. E=28xI07 psi
g =8.0 in. a=56x10" ib-in
§ =0.37 in.

FIGURE 7.12 - Sfraight Cantilever Pipe Test Problem
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FIGURE 7.14 - Predicted Response of Cantilevered Pipe Using
Fine Finite Element Idealization (same response
obtained using 16 elements of length 0.3 in.,
or 6 elements of 0.3 in, and 1 element of
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Table 7.1,'IT%26. Ficure 7.14 shows the response predicted
using a fine finite element idealization for which this criterion
is satisfied. It is seen that in the predicted response the
second derivative of m% is naw continuous. It is also
important to note that the ovalization displacement “ﬁ' has
changed very little from the response given in Fig. 7.13.

In the study of the appropriate element size for the
analyses of curved pipes; we follow the above procedure with
the stiffness matrix being obtained numerically. Figure 7.15
shows a comparison between the bending and shearing strain
contributions to the stiffness matrix, for various bend element

sizes. It is interesting to note that the condition for the

bending strain contribution to be larger than shearing strain
contribution results in i%§>».27, which is practically the
condition obtained for straight pipes.

To investigate the effect of the size of the penalty
parameter X , the 16 element model of the cantilevered straight
pipe was analyzed using the values of X listed in Fig. 7.16.
As expected, when & is very small, the fixity condition at
x=0. is not properly imposed and when & is very large, the
complete element stiffness matrix is singular. However, for
a large range of X (see cases 2 and 3) an identical response
is predicted. In practice, it is effective to choose A equal
to the largest value in the stiffness matrix corresponding
to the ovalization degrees-of-freedom, and this is how & was
chosen in the following analyses.
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Analysis of a Flanged Pipe Bend

The flanged bend shown in Fig. 7,17 was analyzed using
the finite element model given, Figures 7.18 to 7.22 show the
computed response for two different bend radii and give also the
experimentai results presented by Whatham in Ref. [37]. It is
seen that the correspondence between the computed and experi-
mental flexibility factors and longitudinal stresses is good,
but there is less good correspondence between the measured and

conmputed circumferential stresses,

7.7 Analyses of a Pipe Bend for Different End Constraints

The pipe bend shown in Fig. 7.23 was analyzed in
Section 7.2 and in previous studies [8, 27]. In these anélyses
interaction effects were not considered. Figure 7. 24 shows the
response predicted when now including interaction effects using
the idealizations described in Fig, 7.23. For comparison, also
the responses predicted using two finite element shell ideali-
zations of the piping system with flanges at A and B are shown.
First, we used in these analyses a triangular flat 18 degrees-
of-freedom plate/shell element described in Ref. [75]. The
following element mesh was used: 12 layers of elements around
half the circumference (one layer being two triangles), 9 layers
for the 90 degrees bend and 3 layers for the straight pipe,
see Fi-. 7.25. Thus, a total of 216 and 288 elements were
used to model Case I/flanges at A and B and case II/flanges

at A and B, respectively. Second, the isoparametric 16-node
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R s {aso mm

375 mm
$=125 mm
20 = 275 mm
E = 200 GPa
7 = 028

(a) PIPE BEND CONSIDERED

ELEMENT |
OVAL. BOUND. CONDITIONS

dw
AT NODE |: w; =0, -—;-=0
dx

dw
AT NODE 19 . = 0]

CONTINUITY AT NODES 4,7 10,13816

(5) FINITE ELEMENT MODEL USED (SIX 4-NODE ELEMENTS)

FIGURE 7.17 - Whatham Pipe Bend, E=Young's Modulus,
v=Poisson's Ratio
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curved shell element described in Ref, [35] was employed to
analyze the problem, The following shell element models were
used: 4 layers of elements around half éircumference, 3 layers
for the 90 degrees bend portion, see Fig. 7.26, and 1 layer for
the straiglit pipe portion., Hence, 12 and 16 shell elements
were employed in the analysis of cases I and II, respectively.
Figure 7.24 shows that the ovalizations predicted using the
elbow element are close to the ovalizationscalculated with the
shell element idealizations, The differences between the finite
element solutions represent only 3% of the reduction in cross
sectional ovalization if the interaction effects are included.
Considering the response of the piping structure, we note that
the ovalizations of the piping systems are reduced very sig-
nificantly when the interaction effects are included. In

Table 7.2, the required solution times for Case I/flanged at

A and B analysis using three different element models, are
presented. The analyses were performed on a CDC Cyber 175,

and the required solution time wassubstantially less when the

elbow element was employed.

7.8 Elastic-Plastic Analysis of Whatham Pipe Bend

The 90 deg. flanged elbow shown in Fig. 7.17 was analyzed
for its elastic-plastic response. Two different finite element
jdealizations were employed in this study. Namely, the elbow
element model shown in Fig. 7.17 with 5 Newton-Cotes integration

points through the thickness, and the isoparametric shell element
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FIGURE 7. 26

Shell Element Model Used in Case I/Flanges
at A and B Analys;s.
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model using 4 Gauss integration points through the thickness,
see Fig. 7.26. The bilinear elastic-plastic material model
with isotropic hardening was used in the analysis.

Figure 7.27 shows the calculated response of the bend
using two finite element models. Good agreement between the
two solutions is noted. The predicted stiffness of the bend
is slightly higher using the elbow element model because of
the assumptions that the cross-sections of the bend remain

plane and in-plane cross-sectional displacements are confined

to a number df deformation patterns. The stress results for
different loading sizes are presented in Figs. 7.28 to 7.30. It
is noted that the longitudinal stress predictions are in good
agreement, while the correspondence between the circumferential

stresses is not so good.

7.9 Large Displacement Analysis of a Cantilever Pipe
Section Beam

One four-node element, that does not include ovalization
of the cross-section, was employed in the analysis of a
cantilever pipe section beam subjected to a concentrate bend-
ing moment. The load deflection responses for different
displacement/rotation quantities are shown in Fig. 7.31. The
predicted results are in very good agreement with the analyti-

cal solution given in Ref. [33].
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l L= 12in

> ¢ M1)T a = .408in.

5 =.389in.
utL E=3.0x10" psi.

ANALYTICAL SOLUTION

FIGURE 7.31

2 .3 4
MOMENT PARAMETER m=ML/27E]

Large Displacement Response of a
Cantilever Using One 4-node Element.
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8. CONCLUSIONS

o - .iﬂ

A simple and effective pipe elbow element has been
formulated for linear and nonlinear analysis. The element
exhibits various important features that make it a state-of-
the-art tool for piping analysis:

- the ovalization varies cubically along the length of
the element,

- the element can be employed to model elbows of different
curvatures, glbow-straight pipe intersections, and elbows clamped
to rigid flanges,

- pressure stiffening effects are included, and

- the element can be used in elastic-plastic nonlinear
analysis. |

With these features the element is significantly more
effective than other previously published analysis tools for
various piping analyses.

Although a geometric nonlinear formulation is also
presented, this formulation does not include the geometric
nonlinearities in the ovalization displacements and is therefore
still of limited value,

Considering future work for further developments of the —
element, the following important research areas should be |
considered;:

1. The element formulation for linear analysis has been
derived in detail but a further study would be valuable in which,

the limits of applicability of the element are identified.
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Various sample solutions are presented in this thesis, but a
more detailed investigation considering the element sizes
required for certain problems and the element applicability

to pipe geometries, boundary conditions and loading conditions
would be valuable.

2. The geometric nonlinear formulation should be
refined to include the nonlinearities in the ovalization model.
In this thesis, only the geometric nonlinearities of the beam
deformation modes have been considered and tested. The appro-
priate nonlinear ovalization terms to be included in the formu-
lation may be identified using shell theory. Once these non-
linear terms are included in the formulation, the geometric
buckling behavior of elbows can be analyzed. |

3. Piping structures are frequently subjected to high
temperatures and creep effects, The analysis of displacements
and stresses including these effects could be achieved by
extending the element formulation, but an investigation would
be required to identify whether the appropriate kinematic
assumptions are made for such analysis.

4. Dynamic analysis using the element was not considered
in this thesis. The construction of appropriate mass matrices
requires further research., In particular, if the element is
to be used in explicit time integration, In this case the
ovalization modes may govern the time step that can be employed
for stability of the integration.

5, In the nonlinear analysis, numerical integration is
employed. The cost of calculating the element matrices is

-158-



directly proportional to the number of integration stations
used. An investigation in the use of numerical integration
would be valuable with the objective tonidentify an optimum

scheme.
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APPENDIX A

In this Appendix the rules for the differentiation
of a set of orthogonal unit vectors _e_-q , 5; and _e_,; are
presented.” First, consider two neighboring points P; and
Pz on the line of principal curvilinear coordinates s, of
the pipe midsurface, see Fig. A.l(a). The vector change of

the normal _e; along s, leads to

0gy, = oY e (A.L)

where 0¥ is a differential of the angular position measured at
the center of curvature of s; and €p is the unit vector tangent
to 8,. Using Eq. (2.7 ), the angular coordinate Y and the first
natural coordinate 0 are related by the equation
dY = Lt 50 (a.2)
R,
where L1 and RL are the Lame parameter and the first principal

curvature radius, respectively. Substituting for l..1 and Ri , see

Fig. 2.2, into Eq. (A.2) and then into Eq. (A.1l) we obtain

oe
a—g"‘-:- cos $ em (A.3)

Similarly, along the other line of principal curvature 5, ,shown
in Fig. A.1(b), the vector change of the normal with respect

to the angular position @ is
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de -
—=5 . e A4
o =% ( )

Consider now the evaluation of the derivatives of the unit

vectors §7 and g§<3f the pipe midsurface. First, we notice

that,

d (a:)_ 2_(32) (A.5)

0P \36/ 06 \ap
where ¥ is the midsurface position vector. Then, using the
definition of unit vectors, Eqs. (2.9) and (2.10), in the
above equation we have the following relation
§E£.§74-\_1£%?Z;;.QL£ g + L éﬁéi CA.é)
op o 206 08
where L1=R-aw.s¢ and L,_:a. . Hence, combining equal terms of

each side of Eq. A.6 we obtain,

06
(A.7)
agz - O
Y
Further, consider the components of the derivative .%%F. along
the axes g? , gg and & - Since this derivative is perpendicular
to the unit vector, it has obviously no component in the §7

direction and its components on the remaining axes are given by
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its dot product with these axes,

%-g,;:%(eq.e,)—eq.% - s g
and,
3—%’-’-.§;=—§7.%§£ = cos
and therefore,
%%Z: -sing €, + o§s¢ € (A.8)

de
Similarly, the components of the derivative 8_5 along §7 and

gg axes are calculated in the same way, that is,

de, de de 9
—% .6, = =€ .98 =0 %58 .e,=-¢ 2% - -y
3p ' B3 g T TPy
and therefore,
agﬁ - - 95 (A?)

op

Eqs. (A.3-4) and (A.7-9) form a set of formulae employed in
the differentiation of vectors with given components on the
local pipe midsurface axes of coordinates &, . §5 and &
This set of equations was used to establish Egs. (2.12) and

(2.13).
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