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Abstract 

This thesis applies meta-omics data analysis to elucidate the ecological roles of marine 
microorganisms in diverse habitats and includes the development of new bioinformatics tools to 
enhance these analyses. In my second chapter, I applied genome mining tools to analyze the gene 
content and expression of biosynthetic gene clusters (BGCs). The analysis of BGCs through large-
scale genome mining efforts has identified diverse natural products with potential applications in 
medicine and biotechnology. Many marine environments, particularly oxygen-depleted water 
columns and sediments, however, remain under-represented in these studies. Analysis of BGCs in 
free-living and particle-associated microbial communities along the oxycline water column of the 
Cariaco Basin, Venezuela, revealed that differences in water column redox potential were 
associated with microbial lifestyle and the predicted composition and production of secondary 
metabolites. This experience set the stage for my third chapter, in which I developed 
MetaPathPredict, a machine learning-based tool for predicting the metabolic potential of bacterial 
genomes. This tool addresses the lack of computational pipelines for pathway reconstruction that 
predict the presence of KEGG modules in highly incomplete prokaryotic genomes. 
MetaPathPredict made robust predictions in highly incomplete bacterial genomes, enabling more 
accurate reconstruction of their metabolic potential. In my fourth chapter, I performed 
metagenomic analysis of microbial communities in the hydrothermally-influenced sediments of 
Guaymas Basin (Gulf of California, Mexico). Previous studies indicated a decline in microbial 
abundance and diversity with increasing sediment depth. Analysis revealed a distribution of MAGs 
dominated by Chloroflexota and Thermoproteota, with diversity decreasing as temperature 
increased, consistent with a downcore reduction in subsurface biosphere diversity. Specific 
archaeal MAGs within the Thermoproteota and Hadarchaeota increased in abundance and 
recruitment of metatranscriptome reads towards deeper, hotter sediments, marking a transition to 
a specialized deep biosphere. In my fifth chapter, I developed MetaPathPredict-E, a deep learning-
powered extension of MetaPathPredict for eukaryotic metabolism predictions. Eukaryotic 
metabolism is diverse, reflecting varied lifestyles across eukaryotic kingdoms, but the complexity 
of eukaryotic genomes presents challenges for assembly and annotation. MetaPathPredict-E was 
trained on diverse eukaryotic genomes and transcriptomes, demonstrating a robust performance 
on test datasets, thus advancing the study of eukaryotic metabolic potential from environmental 
samples. 
 
Thesis Supervisor: Virginia Edgcomb 
Title: Senior Scientist 
Woods Hole Oceanographic Institution 
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Chapter 1 

Introduction 

General overview of microbial primary metabolism 

Metabolism is the essential cellular process of capturing energy through the oxidation of organic 

matter, inorganic matter, or through photosynthesis coupled with the biosynthesis of small 

molecules and polymerization of those into macromolecules (DeBerardinis and Thompson 2012; 

Hohmann-Marriott and Blankenship 2011). Unveiling the primary metabolic potential encoded in 

the genomes of microorganisms from diverse environments is one of the fundamental foci of 

research in the field of environmental microbiology. Core metabolic pathways encompass all the 

chemical reactions that occur within a cell and can be categorized into three groups: catabolism, 

anabolism, and waste removal (DeBerardinis and Thompson 2012). Catabolic metabolism consists 

of the metabolic pathways that cells use to enzymatically oxidize nutrients from their environment. 

This process releases energy that can be harnessed by the cell and stored primarily in the form of 

high-energy phosphorus bonds in the adenosine triphosphate (ATP) molecule. ATP acts as an 

energetic “currency” for all cells; its phosphorus bonds are hydrolyzed to release the energy 

required to synthesize small molecules such as amino acids, sugars, and nucleic acids, and to 

polymerize macromolecules including DNA, RNA, and proteins (DeBerardinis and Thompson 

2012). Anabolic metabolism includes biosynthetic pathways that expend stored energy to 

synthesize new molecules to facilitate cellular growth, repair, maintenance, and reproduction. 

Some similarities are observed between the metabolic pathways encoded in the genomes 

of prokaryotes (single-celled organisms from the domains Bacteria and Archaea) and eukaryotes 

(single-celled and multicellular organisms with a nucleus and other eukaryote-specific, membrane-

bound organelles). These include several highly conserved metabolic pathways that are a testament 

to their shared evolutionary history and fundamental importance. Catabolic pathways that are 

present in most organisms include glycolysis (the breakdown of the sugar glucose that yields 

acetyl-CoA and ATP), the tricarboxylic acid cycle (TCA cycle; consumes acetyl-CoA and 

produces more ATP), and oxidative phosphorylation (induces chemiosmosis via an electron 
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transport chain (ETC) that generates ATP). It is notable that within these essential pathways there 

is some variation in the enzymes involved (Kwong et al., 2017), leading to pathway variants that 

retain the same function (Evans et al., 2024). Anabolic pathways that are largely conserved include 

the biosynthesis of nucleotides, as well as some amino acids, sugars, and transporters. 

Metabolisms present within both prokaryotes and eukaryotes include oxygenic 

photosynthesis, organoheterotrophy, and diverse fermentations. Oxygenic photosynthesis is the 

process in which energy from sunlight is harnessed to oxidize water, generate ATP, and fix 

inorganic carbon. It originated in an ancestor of Cyanobacteria (Sánchez and Cardona 2020) and 

has been acquired in Eukaryotes through primary, secondary, and tertiary endosymbiosis 

(Hohmann-Marriott and Blankenship 2011). Bacterial phyla that can perform anoxygenic 

photosynthesis (no oxygen released) use terminal electron donors that include elemental sulfur, 

sulfide, thiosulfate, hydrogen and ferrous iron (Ehrenreich and Widdel 1994; Frigaard and Dahl 

2008). Organoheterotrophic prokaryotes and eukaryotes acquire energy and carbon from organic 

sources, while fermenting organisms gain energy through the anaerobic oxidation of sugars. 

Mixotrophy is a trophic mode observed in some protists and bacteria that are capable of both 

photosynthesis and organoheterotrophy (Porter 1988; Eiler 2006). The genomes of some 

mixotrophs contain genes encoding photosynthetic machinery, while some protists steal 

chloroplasts from photoautotrophic or mixotrophic Eukaryotes through phagocytosis (Lewitus 

1999; Johnson 2011). 

All life forms require substrates for catabolism and to fuel cellular activities. Prokaryotes, 

however, exhibit a wider range of energy- and carbon-obtaining strategies than eukaryotes despite 

their simpler cellular architecture (Heider et al., 1998; Schäfer et al., 1999; Offre et al., 2013; Gupta 

and Gupta 2021). In the absence of oxygen, prokaryotes (and some eukaryotes) utilize alternative 

terminal electron acceptors in their electron transport chains (ETCs; Fewson and Nicholas 1961; 

Strohm et al., 2007; Kraft et al., 2011; Kamp et al., 2015). Electron acceptors for anaerobic 

microbes include nitrate (for denitrification and dissimilatory nitrate reduction to ammonium), 

sulfate (dissimilatory sulfate reduction), carbon dioxide (acetogenesis), and ferric iron 

(dissimilatory iron reduction; Sørensen 1982; Lever et al., 2012; Averill and Tiedje 1982; Mohan 

and Cole 2007). Chemolithotrophs include autotrophic and heterotrophic microbes that oxidize 

inorganic compounds for energy, including hydrogen, carbon monoxide, sulfur, methane, alkanes, 

ferrous iron, ammonia (for nitrification and anammox), and manganese (Frigaard and Dahl 2008; 
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Kim and Hegeman 1983; Chen et al., 2009; Wang et al., 2019; Ehrenreich and Freidrich 1994; Yu 

and Leadbetter 2020). Anaerobes can also oxidize additional inorganic molecules, including ions 

of selenium, arsenic, chromium, and uranium, as well as fumarate, trimethylamine N-oxide, and 

dimethyl sulfoxide (Guest 1979; Fredrickson et al., 2000; Stolz et al., 2006; Yu and Leadbetter 

2020; Oren and Trüper 1990). Autotrophic chemolithotrophs acquire carbon from inorganic 

sources, while heterotrophic chemolithotrophs require organic carbon as their carbon source. Some 

bacteria and archaea are also capable of diazotrophy (nitrogen fixation; Delmont et al., 2022; 

Bombar et al., 2016). 

 

General overview of microbial secondary metabolism 

Secondary metabolites, encoded by biosynthetic gene clusters (BGCs), are a diverse set of 

compounds that play essential roles in ecological interactions within prokaryotic communities 

(Hibbing et al., 2010), between prokaryotes and eukaryotes (Contreras-Cornejo et al., 2016; Bi et 

al., 2021), and between eukaryotes (Padder et al., 2018; Jagtap et al., 2020; Li et al., 2023). These 

metabolites are small compounds that do not contribute directly to cellular growth, maintenance, 

repair or reproduction, yet can have profound effects on microorganisms by shaping their structure 

as well as facilitating beneficial and antagonistic interactions (Patin et al., 2017; Chevrette et al., 

2022; Musilova et al., 2016). One of the key roles of these compounds in prokaryotes is to function 

as intercellular signaling molecules (Hibbing et al., 2010). The secretion and uptake of signaling 

molecules facilitates the coordination of group behaviors and responses to environmental stimuli 

through processes that regulate gene expression in prokaryotic microbial populations. N-acyl 

homoserine lactones are well-studied example of secondary metabolite autoinducers (signaling 

molecules) that facilitate quorum sensing (population-wide communication) in bacteria (Fuqua et 

al., 1994), and possibly in archaea (Zhang et al., 2012). 

Secondary metabolites with antimicrobial properties also mediate antagonistic interactions 

between microorganisms. Microorganisms produce antibiotics as a defense mechanism to inhibit 

the growth of competitors, or to evade grazers in their environment (Matz and Kjelleberg 2005; 

Andrić et al., 2023; Teasdale et al., 2009; Wietz et al., 2013). Antibiotic compounds can target 

specific structures in target organisms, including cell walls and DNA gyrase enzymes, that can 

lead to growth inhibition, and ultimately cell death (Epand et al., 2016; Phillips et al., 2011). The 

producer of an antibiotic typically encodes a mechanism (commonly an efflux pump, a 
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modifying/inactivating enzyme, or a modification to the antibiotic’s target structure) to resist the 

inhibitory effects of the compound that it is exuding into the environment to prevent self-toxicity 

(Cundliffe 1989). Many classes of secondary metabolites, including polyketides, non-ribosomal 

peptides (NRPs), terpenes, lactones, and ribosomally-synthesized and post-translationally 

modified peptides (RiPPs) can possess antibiotic properties (Walsh 2004; Cragg and Newman 

2013; Letzel et al., 2014; Mazur et al., 2022; Yamaguchi 2022). 

Biosynthetic gene clusters (BGCs) encode instructions to synthesize enzymes that facilitate 

the biosynthesis of secondary metabolites (Walsh 2004; Wenzel and Müller 2005). In addition to 

core enzymes involved in biosynthesis, BGCs often encode genes for regulation, export, 

resistance, and tailoring of the final product (Blin et al., 2017). While the resulting structures of 

secondary metabolites can vary, the core biosynthetic genes encoded in BGCs are typically highly 

conserved, which facilitates genome mining efforts to unveil the biosynthetic potential of 

recovered environmental genomes (Blin et al., 2017). The emergence of computational tools in 

recent years to detect BGCs in silico has been a major achievement in computational biology. 

Annotation of BGCs in environmental genomes has revealed a hidden world of potential for 

ecological interactions within prokaryotic and eukaryotic microbial communities as well as 

between prokaryotes and eukaryotes (Paoli et al., 2022; Li et al., 2018; Malit et al., 2021; Yan and 

Matsuda 2024). Large-scale genome mining efforts and localized environmental studies have 

shown that the potential of prokaryotes and eukaryotes to produce secondary metabolite is 

significantly more widespread than what has been observed in laboratory settings. This is most 

likely due to the lack of specific but critically important environmental stimuli in typical culturing 

experiments (Zazapoulos et al., 2003; Seyedsayamdost 2019). Understanding the biosynthesis, 

regulation, and ecological functions of secondary metabolites is essential for unraveling the 

complex networks of interactions that govern microbial community dynamics and ecosystem 

functioning.  

 

Advances in genome sequencing technology, bioinformatics tools, and machine learning 

applications for prediction of microbial metabolism  

Predicting metabolism in prokaryotes and eukaryotes requires a roadmap of the complex 

biochemical networks that govern cellular functions, energy production, and the synthesis of 

organic molecules. Our knowledge of microbial biochemistry has expanded since the integration 
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of next-generation sequencing (massively parallel, high-throughput sequencing technology; Slatko 

et al., 2018), third-generation sequencing (single molecule real-time sequencing of longer reads, 

and detection of DNA modification; Athanasopoulou et al., 2021), computational biology, systems 

biology, and machine learning (McElhinney et al., 2022; Jiang et al., 2022; Faure et al., 2021).  

Metagenomics currently utilizes next- and third-generation sequencing strategies to study 

the collective metabolic capabilities encoded in the DNA of whole microbial communities from 

environmental samples (Akaçin et al., 2022). This culture-independent approach yields insights 

into how different microbes may contribute to overall community metabolism and on their 

potential to interact with their surroundings. There are several challenges associated with analyzing 

metagenomics datasets. One major challenge is distinguishing genetic data from different closely-

related species and sub-species within microbial communities due to the difficulty of clustering 

DNA sequences from closely related taxa separately into distinct bins (Quince et al., 2017). This 

can lead to the presence of chimeric sequences in metagenome-assembled genomes (MAGs). 

Additionally, there is composition-based bias in the coverage of metagenomic assemblies and their 

resulting MAGs, often in the form of under-coverage of GC-rich and GC-poor regions (Browne et 

al., 2020). Adjustments to protocols for sequencing library preparation can reduce coverage biases 

(Browne et al., 2020). Fluorescence-activated cell sorting coupled with single-cell amplified 

genome (SAG) sequencing provides an alternative approach (Rinke et al., 2014; Bowers et al., 

2017). This method facilitates the strain-resolved analysis of microbial population structure in 

resulting genomic assemblies (Chen et al., 2020). Single-cell genomics approaches, however, often 

yield fragmented assemblies because they typically do not amplify a cell’s genome completely due 

to the low quantity of DNA within a single cell (Chen et al., 2020).  

The incomplete, fragmented recovery of MAGs and SAGs from environmental ‘omics 

datasets can bias inferences into their functional potential due to missing, contaminated, or 

fragmented gene content (Eisenhofer et al., 2023; Chen et al., 2020). The inherent complexity of 

eukaryotic genomes (including expansive repetitive regions) further contributes to the difficulty in 

recovering their genomes from metagenomes, whole-genome sequencing, and single-cell 

sequencing (Tørresen et al., 2019; Saraiva et al., 2023; Biscotti et al., 2015). Long-read sequencing 

technologies, however, can help reduce the fragmented nature of assemblies produced by short-

read sequencing (Koren and Phillippy 2015; Chakraborty et al., 2016). Taken together, the advent 
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of metagenomics and single-cell genomics have produced significant insights into the coding 

potential of uncultured microbial populations. 

Bioinformatic tools are essential for all steps in the analyses of ‘omics datasets. Algorithms 

and pipelines have been developed to run quality control on sequencing reads (Martin 2011; Bolger 

et al., 2014), assemble DNA sequences (Li et al., 2015; Bankevich et al., 2012) to extract genomes 

coming from individual taxa from assemblies (Kang et al., 2019; Sieber et al., 2018), and assemble 

RNA (Haas et al., 2013) for metatranscriptome analyses to examine expressed genes within 

communities in environmental sequence read datasets. Computational methods have also been 

created to map reads to assemblies for quantification purposes (Patro et al., 2017; Li 2013), as well 

as to predict gene sequences and annotate them to specific protein families (Hyatt et al., 2010; 

Aramaki et al., 2020; Altschul et al., 1990). Gene annotations can then be mapped to the reaction 

steps of metabolic pathways (Neely et al., 2020; Karp et al., 2021). This core computational 

framework provides valuable insights into the functional potential and ecological roles of 

microorganisms and has become increasingly available to the scientific community through the 

creation of open-source tools and pipelines. 

One of the first steps in predicting metabolism is annotating genomes and transcriptomes 

to identify genes and their functions. Tools such as Prokka (Seemann 2014) and RAST (Rapid 

Annotation using Subsystem Technology; Aziz et al., 2008) or pipelines such as MetaSanity 

(Neely et al., 2020) or EukMetaSanity for eukaryotes (Neely et al., 2021) are used to predict the 

function of genes. For gene annotations of either prokaryotes or eukaryotes, tools such as 

KofamScan (Aramaki et al., 2020), DRAM (Shaffer et al., 2020), InterProScan (Jones et al., 2014), 

eggNOG-mapper (Huerta-Cepas et al., 2017), and BLAST (Altschul et al., 1990) are utilized. Once 

genes are annotated, they can be mapped to metabolic pathways using databases such as the Kyoto 

Encyclopedia of Genes and Genomes (KEGG; Kanehisa 2002). KEGG is a resource that contains 

biochemical networks classified into function-based hierarchical structures that consist of 

metabolic pathways, modules, and reactions composed of orthologous groups of genes. MetaCyc 

(Karp et al., 2002) is another metabolic pathway database which contains experimentally verified 

pathways and reactions from prokaryotic and eukaryotic organisms. Cross-referencing gene 

annotations to metabolic pathway databases facilitates analysis of the metabolic capabilities of 

organisms. 
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Mapping gene annotations to metabolic pathway databases can underestimate the full 

biochemical potential of a genome or transcriptome due to several factors. Aside from possible 

incomplete representation of metabolic pathways in databases, genes may be missing from a query 

dataset due to incomplete sequence recovery from an assembly, or they may not be labelled by 

homology-based annotation tools if they contain highly divergent nucleotide/amino acid sequences 

(Sinha et al., 2020). Genes can be missing from the genomes of taxa (or be present in a fragmented 

or nonfunctional form) because they have lost or are losing the capacity for a particular function 

(Douglas et al.,2024). For metagenomes produced from environmental samples, which often 

recover only incomplete genomes for individual taxa (Li et al., 2022), it is thus challenging to 

interpret the significance of missing genes. To address gaps in metabolic pathways, genome-scale 

metabolic models (GEMs) are computational models that represent the complete set of metabolic 

reactions in an organism (Durot et al., 2008). They are optimal only for complete genomes or 

nearly-complete genomes that contain few gaps or poorly annotated gene content. Tools like the 

COBRA Toolbox (Constraint-Based Reconstruction and Analysis Toolbox, Heirendt et al., 2019) 

and Gapseq (Zimmerman et al., 2021) are used to build and analyze GEMs. A common approach 

to studying GEMs is flux balance analysis (FBA), which uses mathematical constraints to predict 

the flow of metabolites through a metabolic network (Fell and Small 1986; Watson 2000; Orth et 

al., 2010). It can predict growth rates, optimal metabolic pathways, and responses to environmental 

changes. Thermodynamics-based modeling considers the energy changes associated with 

metabolic reactions to predict feasible metabolic pathways, and Thermodynamics-based Flux 

Balance Analysis (TFA) is one example (Henry et al., 2007). Additionally, methods that combine 

genomic, transcriptomic, proteomic, and/or metabolomic data can facilitate more comprehensive 

analysis of prokaryotic and eukaryotic metabolism (e.g., Chong et al., 2018; Sun et al., 2014; 

Kamburov et al., 2011). This systems biology approach provides insights into how different layers 

of cellular information interact to influence metabolism. 

Emerging machine-learning techniques are now being applied to metabolism predictions 

in microbial genomes and transcriptomes. Machine-learning algorithms, such as random forests 

(Lambert et al., 2022; Alexander et al., 2023), support vector machines (Weimann et al., 2016), 

and deep learning algorithms (Guo et al., 2017; Shah et al., 2022) can be trained on genomic and 

transcriptomic data to predict the metabolic capabilities or phenotype of organisms. These models 



 20 

leverage genomic features, such as gene content, synteny, and sequence similarity, to predict the 

presence of specific metabolic pathways and to infer the phenotype of microbes. 

Microorganisms are essential drivers of all of Earth's biogeochemical cycles. 

Bioinformatics tools and machine-learning techniques provide powerful tools for mapping gene 

annotations to metabolic processes in prokaryotes and eukaryotes, offering valuable insights into 

the metabolic potential of microbial genomes and facilitating the study of microbial ecology. 

Accurately identifying metabolic pathways is crucial to assessing their role in the environment and 

in interactions with other organisms. However, environmental genomes (MAGs, SAGs) are often 

incomplete due to the limitations of sequencing platforms, bioinformatics algorithms, and gene 

annotation tools and databases. This makes it difficult to predict complete metabolic networks. 

Existing methods for creating GEMs are less effective for highly incomplete genomes and can lead 

to inaccurate predictions (Palù et al., 2022; Bernstein et al., 2021). As computational methods for 

moderately to highly incomplete ‘omics datasets continue to advance, so will our understanding 

of the networks of metabolic pathways and biochemical transformations that underpin the diversity 

and functionality of microbial life. 

 

Oxygen-deficient and anaerobic environments in the world’s oceans 

Marine oxygen-deficient water columns and sediments are prevalent globally and play critical 

roles in biogeochemical cycles, serving as habitats for unique microbial communities. Examples 

of ocean regions that have oxygen-depleted and anoxic water columns and sediments include the 

Eastern Tropical North and South Pacific Oxygen Minimum Zones, the Arabian Sea, and the Black 

Sea, the Cariaco Basin off the coast of Venezuela and Saanich Inlet in British Columbia. These 

ecosystems are characterized by significantly reduced or undetectable oxygen levels, and they 

serve as analogs of ancient ecosystems that existed before the Great Oxidation Event, often 

providing insights into early-diverging taxa and their biogeochemical processes. They also are 

analogs for some potential extraterrestrial ecosystems with anoxic conditions. Climate change and 

eutrophication are expanding the extent and intensity of many oxygen-deficient environments, 

impacting marine biodiversity, fisheries, and biogeochemical cycling (Wright et al., 2012; 

Breitburg et al., 2018; Bhuiyan et al., 2024), highlighting the importance of monitoring and 

understanding the dynamics of these habitats in a changing ocean. Some of these ecosystems 

harbor microorganisms that can degrade pollutants and synthesize novel bioactive compounds, 
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underscoring their ecological and biotechnological significance (Varjani et al., 2017; Oren et al., 

1992; Zhang et al., 2022; Zhang et al., 2005; Singh et al., 2017). Research of these habitats is not 

only fundamental for evolutionary biology and microbial ecology but is also essential for 

addressing contemporary environmental challenges and for harnessing their potential 

biotechnological applications. 

Oxygen-deficient water columns (ODWCs) are marine environments operationally defined 

based on oxygen concentrations ranging from dysoxic (20-90 µM), suboxic (1-20 µM), anoxic (> 

1 µM) or euxinic (anoxic and sulfidic; Wright et al., 2012). These ecosystems include permanently-

stratified basins, oxygen minimum zones (OMZs), and anoxic marine zones (AMZs) and cover an 

area that accounts for 8% of the world’s oceans’ surface (Paulmier and Ruiz Pino 2009). AMZs 

are regions in which oxygen depletion is more severe than in OMZs (Ulloa et al., 2012; Garcia-

Robledo et al., 2017). At oxic/anoxic interfaces when oxygen becomes undetectable in AMZs there 

is typically a peak in nitrite, and below this depth sulfide can accumulate (Ulloa et al., 2012; 

Garcia-Robledo et al., 2017). The eastern tropical North and South Pacific as well as the Arabian 

Sea are examples of AMZs; OMZs include the Bay of Bengal and northeast Pacific (Ulloa et al., 

2012; Garcia-Robledo et al., 2017). The Cariaco Basin and the Black Sea are examples of anoxic 

basins (Murray et al., 1989; Rodriguez-Mora et al., 2013). Limited mixing of ODWCs with 

surrounding waters due to basin geometry (i.e., presence of shallow sills) or stratification restricts 

the replenishment of oxygenated water in these zones (Wright et al., 2012; Friedrich et al., 2014). 

Remaining oxygen is consumed as aerobic microbes remineralize organic matter that descends 

from the surface ocean (Paulmier and Ruiz-Pino 2009; Wright et al., 2012). Climate change 

exacerbates oxygen deficiency in these water columns by increasing thermal stratification that 

restricts water mass circulation (Gilly et al., 2013; Altieri et al., 2015). Eutrophication caused by 

anthropogenic inputs is an additional factor that contributes to the intensification of oxygen 

deficiency in coastal ODWCs. 

The microbial inhabitants of ODWCs are adapted to survive in oxygen-deficient 

conditions. They are primarily composed of strict and facultative anaerobes that perform 

chemoorganotrophic and chemolithoautotrophic metabolisms using various terminal electron 

accepters to obtain energy. The use of alternative electron accepters to oxygen in ODWCs can 

result in the production of climate active gases including nitrous oxide and methane. High rates of 

dark carbon fixation have been previously recorded in and are characteristic of ODWCs (Juniper 
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and Brinkhurst 1986; Taylor et al., 2001; Lengger et al., 2019). Knowledge of the microbial 

contributions to biogeochemical cycles in ODWCs are essential for evaluating the long-term 

impacts of the expansion and intensification of these environments. 

Sediment ecosystems constitute at least two-thirds of the Earth’s surface and are situated 

on the ocean floor. Marine sediments host a heterogenous microbial biosphere with activity that 

can act as a control on the global climate and on the carbon cycle. Organic carbon burial in 

sediments leads to a net removal of carbon dioxide from the atmosphere (Burdige 2007). 

Approximately 80% of organic matter burial in marine sediments occurs in coastal shelf and slope 

regions, where primary productivity in surface waters is fueled by several factors including wind-

driven nutrient upwelling as well as terrestrial and anthropogenic inputs of nutrients (Gattuso et 

al., 1998; Rabalais et al., 2009; Grantham et al., 2004). Marine sediments consist of particulate 

organic matter originating from deceased and sinking organisms, fecal pellets, cellular exudates, 

black carbon, and other organic carbon sources that descend and accumulate on the ocean floor, 

resulting in Earth’s most expansive pool of organic carbon. Much of the particulate and dissolved 

organic matter that accumulates in sediments is recalcitrant and difficult for microorganisms to 

catabolize (Burdige 2007). Microbial communities occupying seafloor and subseafloor ecosystems 

make up approximately 30% of all the Earth’s living biomass (Whitman et al., 1998) and process 

both organic and inorganic carbon while contributing to the biogeochemical cycling of nitrogen, 

sulfur, and iron compounds. Electron donors for catabolic metabolism in the subseafloor include 

organic matter, reduced minerals, and hydrogen (Blair et al., 2007). Electron acceptors include 

oxygen, nitrate, and sulfate (D’Hondt et al., 2019). Despite the global significance of these 

microbial communities, relatively little is known about the taxonomic diversity of the 

microorganisms occupying marine sediments. This is due in part to the heterogeneity of sediment-

occupying microbial communities, and the complicated nature of sampling these habitats. 

The catabolic metabolism rate of microbes inhabiting marine sediments is several orders 

of magnitude slower than microorganisms grown on nutrient-rich media (Hoehler and Jørgensen, 

2013). Growth is at most, very slow for microorganisms in deeper marine sediments, and evidence 

indicates that much if not all the limited energy of active cells in these ecosystems is used for 

maintenance activities (Bradley et al., 2018 Arndt et al., 2006; D’Hondt et al., 2009; Mara et al., 

2023). Dormancy is a transient and reversible state characterized by low metabolic activity. 

Dormant microbes are widespread in marine sediments, which enables them to endure unfavorable 
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conditions for extended periods of time without dividing (Lever et al., 2015; Jørgensen 2011). 

Further studies of marine sediment microbial communities are essential for understanding the fate 

of buried carbon, including microorganisms, and whether they go dormant or remain active. 

Studies of marine sediments can also elucidate the role of biogeochemical cycles in carbon 

sequestration, which has important implications in the context of climate change and methods of 

carbon sequestration being actively considered. Finally, these studies can uncover novel microbial 

processes and interactions, enhancing our knowledge of one of the planet’s most extensive 

ecosystems, and providing potential biotechnological applications. 

 

Thesis summary 

 

Chapter 2 

ODWCs are ocean regions with very little or undetectable levels of oxygen that include anoxic 

basins and oxygen minimum zones. These regions have expanded globally due to climate change 

and pollution. The microbial communities in ODWCs are well-studied for their role in carbon, 

nitrogen, sulfur, and trace metal cycling. The potential for secondary metabolite production and 

expression in these environments, however, has been largely uncharacterized in genome mining 

efforts despite the major advances made in charting the secondary metabolic potential of 

prokaryotes globally. 

To address this knowledge gap in Chapter 2, I analyzed metagenomic and 

metatranscriptomic samples collected along the Cariaco Basin redoxcline and mined them for 

BGCs, with a focus on differences among samples from two different size fractions: the particle-

associated and free-living fractions. I recovered, annotated, and taxonomically labelled prokaryotic 

genomes. I then identified BGCs encoded within their genomes using antiSMASH (Blin et al., 

2021), a bioinformatics pipeline used to detect BGCs in genomes. The identified gene clusters 

encoded diverse and bioactive compounds that facilitate intercellular communication as well as 

antagonist interactions. These included antibiotics (NRPS, polyketides, RiPPs, terpenes, lactones) 

as well as aryl polyenes, which protect against oxidative stress and can facilitate biofilm formation 

(Johnston et al., 2021).  These findings provide a snapshot of the potential to express secondary 

metabolites in microbial communities inhabiting ODWCs. 
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Chapter 3 

Microorganisms play a crucial role in Earth's biogeochemical cycles, and understanding their 

metabolic pathways through studies of their genomic data is essential for gaining insights into their 

ecological interactions and environmental impact given the fact that only a fraction of 

microorganisms in nature have been brought into culture. Advances in genomic sequencing and 

bioinformatics algorithms facilitate the recovery of genomes from environmental samples, 

however most recovered genomes are moderately to highly incomplete. Challenges remain in 

identifying the metabolic potential of incomplete genomes due to limitations of protein annotation 

methods and metabolic pathway gapfilling tools. Current methods for metabolic network 

gapfilling, such as network topology-based and parsimony-based approaches, are not designed to 

predict the presence of metabolic pathways encoded within highly incomplete genomes. 

To address these limitations in Chapter 3, I developed MetaPathPredict, an open-source 

tool using deep learning to predict the presence of KEGG metabolic modules in bacterial genomic 

datasets, including isolate genomes, MAGs, and SAGs. MetaPathPredict integrates manually 

curated metabolic modules from the KEGG database with machine learning models trained on 

gene features from high-quality genomes. MetaPathPredict's deep learning models, trained on 

diverse bacterial isolate genomes and MAGs, demonstrated robust macro precision and recall, 

even on genomes of very low completeness. MetaPathPredict enhances the study of metabolic 

potential in environmental microbiomes, providing a valuable resource to gain further insight into 

microbial metabolism in the environment. 

 

Chapter 4 

The Guaymas Basin is a hydrothermally-active ocean spreading center in the Gulf of California 

with pronounced geothermal and geochemical gradients. The deep sediments deposited on its 

seafloor are host to microbial communities that perform anaerobic metabolic transformations. 

Strong geothermal heatflow from magmatic sill intrusions and hydrothermal fluids drives the 

pyrolysis of buried organic carbon to form a complex mixture of petroleum hydrocarbons, 

carboxylic acids, and ammonia, which are transported by hydrothermal fluids, fostering diverse 

and active microbial communities. These microbes perform chemosynthetic carbon fixation, 

heterotrophic organic matter remineralization, and assimilate fossil carbon into the benthic 

biosphere. Despite its potential, the deep biosphere of Guaymas Basin below the most surficial 
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sediments that have been studied intensively, remains underexplored, with limited studies to date. 

These studies included methanogen enrichments from deep biosphere sediments and bacterial and 

archaeal diversity surveys using 16S rRNA amplicon sequencing.  The spatial extent, diversity, 

and metabolic activity of its deep biosphere has remained largely unknown. 

I bridged the gap in knowledge of the metabolic potential of the Guaymas Basin deep 

biosphere in Chapter 4, by analyzing deep drill core metagenomic and metatranscriptomic data 

sets produced from samples collected during the International Ocean Discovery Program 

Expedition 385. Bacterial and archaeal taxonomic distributions, potential metabolisms, and 

transcriptional activity were analyzed along geothermal and geochemical gradients. Results 

indicated that while moderate temperatures correlated with biogeochemical parameters 

influencing microbial community composition, temperatures above 45ºC significantly reduced 

microbial diversity. However, specific archaeal lineages, including orders from the 

Thermoproteota and Hadarchaeota, thrived under these more extreme conditions, marking the 

transition to a specialized deep, hot biosphere. This study underscored the influence of temperature 

and energy availability on microbial survival in the deep subsurface and explored the genomic 

potential of microbes in Guaymas Basin's varying geothermal and geochemical environments, 

contributing to an understanding of the hydrothermally-influenced deep biosphere's diversity and 

activity. 

 

Chapter 5 

Eukaryotic metabolism displays remarkable diversity across its kingdoms, reflecting varied 

lifestyles. The complexities of eukaryotic genome architecture pose significant challenges for 

genome assembly and annotation algorithms, leading to challenges in predicting the metabolic 

pathways they encode. The improvements of next-generation sequencing technologies and 

advancements in bioinformatics methods have made possible the extraction of eukaryotic genomes 

from environmental datasets, as well as the prediction and functional annotation of their genes, 

allowing for insight into their metabolic potential and trophic modes. Due to large genome sizes 

and the complexities of eukaryotic genomes, most eukaryotic genomes recovered from 

environmental samples, however, are highly incomplete and KEGG metabolic module prediction 

tools for eukaryotes are lacking. 
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To address these limitations in Chapter 5, I designed MetaPathPredict-E, a deep learning-

powered extension of MetaPathPredict for eukaryotic metabolic module prediction. This tool 

reconstructs and predicts KEGG metabolic modules from eukaryotic datasets including isolate 

genomes and transcriptomes, as well as MAGs and SAGs. MetaPathPredict-E’s models are trained 

on data from taxonomically diverse eukaryotic genomes and transcriptomes, leveraging metabolic 

module information from the KEGG database. MetaPathPredict-E’s deep learning models 

demonstrated robust macro precision and recall on test datasets, even when those data were highly 

incomplete. By facilitating the study of eukaryotic genomes and transcriptomes from 

environmental samples, MetaPathPredict-E enhances the ability to decipher eukaryotic metabolic 

potential from environmental samples. 

 

Chapter 6 

In Chapter 6, I summarize the implications of my thesis research, and include an exploration of 

some exciting avenues for future research in the fields of marine microbiology, computational 

biology, and machine learning. 
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Abstract  

Secondary metabolites play essential roles in ecological interactions and nutrient acquisition, and 

are of interest for their potential uses in medicine and biotechnology. Genome mining for 

biosynthetic gene clusters (BGCs) can be used for the discovery of new compounds. Here, we use 

metagenomics and metatranscriptomics to analyze BGCs in free-living and particle-associated 

microbial communities through the stratified water column of the Cariaco Basin, Venezuela. We 

recovered 565 bacterial and archaeal metagenome-assembled genomes (MAGs) and identified 

1154 diverse BGCs. We show that differences in water redox potential and microbial lifestyle 

(particle-associated vs. free-living) are associated with variations in the predicted composition and 

production of secondary metabolites. Our results indicate that microbes, including understudied 

clades such as Planctomycetota, potentially produce a wide range of secondary metabolites in these 

anoxic/euxinic waters. 
 

Introduction  

Secondary metabolites are low-molecular-mass compounds that are not required for the growth or 

reproduction of an organism. Nonetheless, they can serve a variety of functions, including the 

facilitation of intercellular communication, inhibition of competitors, nutrient acquisition, and 

interactions with the surrounding environment (Hibbing et al., 2010). Many classes of these 

molecules can have antibiotic properties, such as polyketides, non-ribosomal peptides, and 

ribosomally synthesized post-translationally modified peptides (RiPPs; Cragg and Newman, 

2013). Other examples of these compounds include terpenes, aryl polyenes, and lactones with 

diverse roles (e.g., pigments, quorum sensing). Groups of co-located genes, referred to as 

biosynthetic gene clusters (BGCs), encode instructions to build these molecules. While the 

chemical structures of secondary metabolites vary significantly, the biosynthetic gene sequences 

that encode them are often highly conserved (Blin et al., 2019). The high similarity of the amino 

acid sequences of core biosynthetic enzymes facilitates the mining of genome data for the presence 
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of specific classes of BGCs. Core biosynthetic genes are frequently flanked by regulatory, export, 

and resistance genes, as well as genes encoding tailoring enzymes that modify the compound 

scaffold (Blin et al., 2019). Genome mining has revealed that the secondary metabolic potential of 

both prokaryotes and eukaryotes is much broader than what is observed under laboratory 

conditions (Gavriilidou et al., 2022; Paoli et al., 2022). This could be due to the absence of specific 

stimuli in laboratory settings that are requisite to upregulate or activate compound production in 

cultures (Scherlach and Hertweck, 2009).   

Large genome mining efforts have revealed widespread and diverse biosynthetic capability 

among prokaryotes; yet “extreme” environments such as oxygen-depleted water columns 

(ODWCs) are underrepresented in these studies (Gavriilidou et al., 2022; Paoli et al., 2022). 

ODWCs are oceanic realms with low (< 20 μM) to undetectable oxygen concentrations (Gilly et 

al., 2013), and include permanently-stratified basins as well as oxygen minimum zones. ODWCs 

have expanded and intensified globally over the past 50 years (Schmidtko et al., 2017) due to 

global climate change and anthropogenic pollution. This expansion causes changes in water 

column stratification and upper water column primary production, and results in shifts in the 

cycling of trace gases that produce feedbacks on climate (e.g., methane, nitrous oxide, carbon 

dioxide; Naqvi et al., 2010). The Cariaco Basin is a permanently stratified marine system off the 

north coast of Venezuela. The Basin’s water column is fully oxic at the surface but stratification 

below the mixed layer (<80 m; Scranton et al., 1987; G. T. Taylor et al., 2001) causes a sharp 

oxygen decline. A strong vertical redox gradient (redoxcline) extends from ~200 m to ~250–350 m 

depth, where oxygen becomes undetectable. Below 350 m the water becomes euxinic with sulfide 

concentrations approaching 80 µM near the basin floor (Scranton et al., 2001, 2014). This 

relatively stable redoxcline makes the Cariaco Basin an ideal natural laboratory for studying how 

microbes organize and function in specific redox conditions. ODWCs are relatively well-studied 

regarding the microbially mediated biogeochemical transformations of carbon, nitrogen, sulfur, 

and redox-sensitive trace metals (Canfield et al., 2010; Dalsgaard et al., 2012; Rapp et al., 2019; 

Schlosser et al., 2018). However, secondary metabolite genomic potential and expression in 

ODWCs hasn’t yet been studied. Further, analyses of size-fractionated water samples are required 

in order to assess the role of particles in the production of secondary metabolites in the 

environment. Particles provide colonizable, nutrient-rich substrates where metabolites can be 
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concentrated and exchanged and can provide protection for oxygen- or sulfide-sensitive 

microbiota.  

In order to address this critical gap in secondary metabolite knowledge and assess the role 

of particles in the production of secondary metabolites in ODWC environments, we analyzed size-

fractionated water samples along various oxygen and sulfide regimes in the water column of 

Cariaco Basin. We reconstructed 565 metagenome-assembled genomes (MAGs) and we estimated 

their relative abundance and fraction partitioning along Cariaco’s redoxcline using metagenomic 

read recruitment and DESeq2 (Love et al., 2014), and we identify the encoded BGCs using 

antiSMASH (Blin et al., 2021). For this environmental survey of secondary metabolites, we use 

metatranscriptomes constructed from in situ filtration and preservation of water samples to 

compare the biosynthetic transcript expression profiles of particle-associated (PA > 2.7 µm) and 

free-living (FL; 0.2-2.7 µm) fractions. In situ filtration and fixation minimizes artifacts that can be 

introduced into RNA pools due to sample handling and physico-chemical changes (Edgcomb et 

al., 2016). The detected biosynthetic clusters encode for production of auxiliary compounds with 

chemical diversity and bioactivity that can provide competitive advantages via antimicrobial 

compounds (e.g., non-ribosomal peptide synthetases [NRPS], polyketides, RiPPs), or can have a 

broader impact on microbial survival via the synthesis of pigments and toxins (e.g., aryl polyenes, 

terpenes) or via their possible role in biofilm formation (e.g., RiPPs and phenazines). 
 

Results  

We recovered 565 metagenome-assembled genomes (MAGs) with ≥75% bin completeness and 

≤5% bin contamination from sulfidic layers of Cariaco Basin using a PA and FL size fraction co-

assembly. Recovered MAGs belonged to 44 bacterial and 8 archaeal phyla (Supplementary Figs. 

1-2; Supplementary Data 1-2). The overall taxonomic profile resembled patterns previously 

observed in MAGs recovered from the Black Sea (Cabello-Yeves et al., 2021). Nonetheless, while 

identified MAGs from the Black Sea affiliated with the Bdellovibrionota and Nitrospirota phyla 

were not recovered in our Cariaco samples, we did recover genomes from 26 phyla not reported 

thus far from the Black Sea (Supplementary Data 3). This was likely due to the analysis of two 

different size fractions in the present dataset. 
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Differential abundance (fraction partitioning) of recovered genomes   

Differential abundance analysis revealed size fraction partitioning of the recovered MAGs from a 

taxonomic perspective, and the results are largely consistent with marker gene profiles from the 

same samples (Suter et al., 2017). The majority of MAGs from the Planctomycetota, Myxococcota, 

Verrumicrobiota, and the candidate phyla Krumholzibacteriota were differentially abundant in PA 

metagenomes (Supplementary Figure 3). Planctomycetota and Verrumicrobiota were previously 

reported to be more abundant in the PA fraction of 16S rRNA gene amplicon samples in various 

marine environments (Duret et al., 2019; J. Li et al., 2021; Mestre, Borrull, et al., 2017; Mestre, 

Ferrera, et al., 2017; Pelve et al., 2017). However, the two Planctomycetota MAGs belonging to 

the genus Scalindua, a group known to perform anaerobic ammonia oxidation (anammox; 

Sinninghe Damsté et al., 2005), were more abundant in the FL metagenomes as shown previously

(Fuchsman et al., 2012). Proteobacteria (primarily Alphaproteobacteria and 

Gammaproteobacteria), Nanoarchaeota, Crenarchaeota, and Iainarchaeota, as well as the 

candidate phyla Omnitrophota, Marinisomatota, Margulisbacteria, SAR324, and Patescibacteria 

were more abundant in the FL fraction. MAGs from the Desulfobacterota and Thermoplasmatota 

did not exhibit a preferred association with either fraction at oxycline and shallow anoxic depths, 

while the majority of MAGs from these phyla were more abundant in the FL fraction at the euxinic 

depth. 
 

Identification of secondary metabolite biosynthetic gene clusters  

Anaerobic/microaerophilic bacteria and archaea have been overlooked as a potential source of 

bioactive secondary metabolites (Scherlach & Hertweck, 2021). Yet, genomic studies now show 

that these organisms can contain enormous biosynthetic potential, much of which remains 

unknown (Letzel et al., 2013). The antiSMASH 6 pipeline identified and annotated 1,154 BGCs 

longer than 10kb (1,369 total clusters identified), which contained 23,845 genes, in 68% of the 

recovered MAGs in this study (Supplementary Figure 4, Supplementary Data 4). The majority of 

BGCs detected in our study encoded for RiPP (332 BGCs), terpene (191 BGCs), non-ribosomal 

peptide (NRPS: 113 BGCs), and polyketide synthases (112 BGCs; types I, II, and III). There were 

additionally 130 hybrid clusters composed of overlapping BGCs (e.g., non-ribosomal peptide-

polyketide combinations), as well as four ectoine clusters (Supplementary Data 4). Sixty-five 

percent of the BGCs had a boundary on a contig edge, indicating potentially incomplete recovery 
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of the whole sequence for nearly two-thirds of our predicted BGCs. BiG-SCAPE (Navarro-Muñoz 

et al., 2020) analysis revealed that the majority of detected BGCs longer than 10kb did not cluster 

together with the other 1,154 biosynthetic clusters. BiG-SCAPE created 15 gene cluster families 

(GCFs) of size 2, while 1,139 clusters were placed into singleton GCFs. Antibiotic Resistance 

Target Seeker (Alanjary et al., 2017; Mungan et al., 2020) identified putative antibiotic resistance 

genes within some BGCs. 

  

Distribution and expression of secondary metabolite biosynthetic gene clusters (BGCs) 

across recovered MAGs  

We detected BGCs in MAGs recovered from most of the recovered phyla; exceptions in BGC 

detection were the bacterial phyla Spirochaetota, Ratteibacteria, Dadabacteria, Dependentiae and 

Aerophobota that were underrepresented (1-2 MAGs per phylum), and the archaeal phylum 

Iainarchaeota where 10 genomes were reconstructed. Lack of detection of BGCs in the 

aforementioned phyla can be attributed to the small sample size analyzed.   

MAGs from phyla Myxococcota, Verrucomicrobiota, and Acidobacteriota were more 

prevalent within the PA fraction and contained some of the largest diversity of biosynthetic gene 

clusters among phyla with an apparent PA preference (Figure 1a). This likely reflects adaptations 

to a particle-associated lifestyle where intercellular communication and competition are relatively 

intense compared to the free-living state, as revealed in culture studies (Long & Azam, 2001; 

Waters et al., 2010). Genomes from these phyla contained several classes of BGCs including 

RiPPs, NRPS, as well as polyketide and terpene synthases (Figure 1a).   

The recovered Cariaco MAGs expressed BGCs in all the PA and FL metatranscriptomes 

(Figure 2). BGCs in the PA fraction were expressed predominantly from MAGs affiliated with the 

Omnitrophota, Desulfobacterota, Planctomycetota, Myxococcota, and Gammaproteobacteria. 

Planctomycetota genomes have recently been reported to contain diverse biosynthetic potential 

(Graça et al., 2016), while the Gammaproteobacteria and Myxococcota are prolific producers of 

secondary metabolites (Murphy et al., 2021; Scherlach & Hertweck, 2021). The majority of 

expressed BGCs in the PA fraction encoded terpenes, RiPPs, and non-ribosomal peptides. Notably, 

2,980 biosynthetic genes were only expressed in PA metatranscriptomes, while 1,901 were 

exclusively expressed in FL. Additionally, the PA fraction showed higher differential expression 

of 21 (P < 0.05; False Discovery Rate (FDR) = 5%) BGC genes across all sampled depths, while 
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138 transcripts were significantly more abundant in the FL samples. MAGs more abundant in PA 

metagenomes (P < 0.05; FDR = 5%) exhibited expression of BGC genes almost exclusively from 

PA metatranscriptomes with little evidence of expression in FL samples (Supplementary Figure 

5a-c). This suggests MAGs with an apparent PA preference primarily expressed biosynthetic gene 

clusters while associated with particles.  

 
Figure 2-1. Normalized biosynthetic gene cluster count per phylum. a Normalized bacterial biosynthetic gene 
cluster count by phylum. b Normalized archaeal biosynthetic gene cluster count by phylum. Bold labels denote 
underrepresented phyla (phyla with only one representative MAG). BGC counts were normalized by dividing the 
total count of each BGC type present in a phylum by the total MAGs within that phylum. 
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Despite the generally small size of free-living marine prokaryote genomes, diverse sets of 

BGCs have been previously reported from free-living marine prokaryotes (Pachiadaki et al., 2019). 

 
Figure 2-2. Expression of secondary metabolite biosynthetic transcripts from individual MAGs in 
metatranscriptomic samples. Each row represents a biosynthetic transcript, each column represents a sample 
from the PA fraction (left) and FL fraction (right), and the color represents the log-normalized transcripts per 
million. 
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The production and potential release of secondary metabolites by free-living prokaryotes has 

received little consideration so far. This may be primarily due to the perception that bioactive 

secondary metabolites would be ineffective in dilute planktonic environments, and thus, not confer 

the selective advantages experienced by microbes associated with highly structured microhabitats 

(e.g., particles, sediments, soils). Yet, analysis of the FL metatranscriptomes in this study revealed 

expression of BGC transcripts associated primarily with Alphaproteobacteria, Omnitrophota, 

SAR324, and Desulfobacterota MAGs. The transcripts were predominantly from terpene, non-

ribosomal peptide, and lactone clusters with inferred antibiotic activity, as well as roles in 

oxidative stress and cell-to-cell signaling. Notably, MAGs with an apparent FL preference (P < 

0.05; FDR = 5%) expressed BGC genes in both the FL and PA fractions with a high degree of 

overlap (Supplementary Figure 5a-c). We postulate some of the free-living cells, and thus their 

transcripts, could have been captured by the 2.7 μm PA filters during sampling. It is also possible 

some MAGs more abundant in the FL fraction dissociated from particles during sample 

processing. Microorganisms likely also attach to, and disassociate from, particles as they sink 

through the water column. Some cells that associate with particles in the surface ocean may remain 

trapped within particles as they sink into realms that no longer favor their survival in the FL state.  

These hypotheses require further investigation, as do other possible roles these secondary 

metabolites might play in the free-living state, including grazer avoidance. Bacterial MAGs with 

high levels of BGC expression in both sample types were affiliated to Desulfobacterota, 

Omnitrophota, and Planctomycetota. The presence of MAGs from these phyla in both FL and PA, 

and the robust expression of BGC transcripts in both fractions may indicate these taxa interact 

intermittently with particles.   

Archaea have only recently gained attention for their potential to produce secondary 

metabolites (Charlesworth & Burns, 2015; Scherlach & Hertweck, 2021; S. Wang & Lu, 2017). 

Fifty-eight BGCs affiliated to Nanoarchaeota, Thermoplasmatota, Aenigmarchaeota, 

Altiarchaeota, Halobacterota, Crenarchaetoa, and Undinarchaeota (previously UAP2) MAGs were 

detected and encoded primarily terpene and polyketide synthases, as well as RiPPs and NRPSs 

(Figure 1b). Thirty-one clusters were identified within Nanoarchaota MAGs, a group reported 

previously to possess biosynthetic genes for molecules with putative antibiotic properties (Castelle 

et al., 2015). Metatrancriptomics revealed NRPS and terpene cluster expression from FL oxycline 

samples from 6 FL-abundant Nanoarchaeota MAGs. Terpene and polyketide synthase transcripts 
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from 4 Thermoplasmatota MAGs with no fraction preference were also expressed at oxycline, 

shallow anoxic, and euxinic depths in PA and FL samples. Further studies of these clades may 

provide a better ecological understanding of these archaea and new natural product discoveries. 
 

Distribution and expression of BGCs across gradients  

We observed differences in BGC abundance and expression across size fraction in both the 

metagenomic and metatranscriptomic samples (Figure 3a, 3b). Uniform Manifold Approximation 

and Projection (UMAP; McInnes et al., 2018) analysis of metagenomic and metatranscriptomic 

read recruitment to biosynthetic clusters primarily separated PA from FL sample types in most 

datasets (Figure 3a, 3b). For the same size fraction and redox regime, UMAP analysis further 

separated most datasets between the two sampling points (May vs. November), particularly for 

BGC expression in oxycline and euxinic water features. 

 

Ladderane biosynthetic cluster detection  

We detected ladderane BGCs in bacterial MAGs affiliated with Desulfobacterota, Fibrobacterota, 

Myxococcota, Verrucomicrobiota, Planctomycetota, Latescibacterota, Omnitrophota, GCA-

001730085, and UBP3. Ladderane lipids are strictly associated with bacterial genera within the 

Planctomycetota phylum that perform anammox, but the pathway of ladderane biosynthesis and 

associated enzymes is unknown. BGCs that resemble ladderane clusters have been reported for 

non-Planctomycetota genomes (Rattray et al., 2009), but an association between those and the 

 
Figure 2-3. Uniform manifold approximation and projection (UMAP) analysis of metagenomic and 
metatranscriptomic reads recruited to BGCs. UMAP analysis for read mapping data of particle-associated and 
free-living metagenomes (a) and metatranscriptomes (b) to all BGCs longer than 10 kb total length detected in 
Cariaco MAGs. Each point represents the BGC expression profile in a sample, with redox regimes denoted by 
different shapes. The two size fractions are represented by filled-in and hollow shapes, and sampling time points 
are colored differently. 
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presence of ladderane lipids was not made. Assessment of contigs containing ladderane BGCs by 

GUNC (Orakov et al., 2021) could not identify any contaminated or chimeric contigs. Clusters 

annotated as ladderanes were expressed by all the phyla to which they were attributed 

(Supplementary Figure 6). The two Planctomycetota MAGs that expressed ladderane clusters were 

differentially abundant in the FL fraction and were from the anammoxer genus Scalindua. The 

highest expression was observed at shallow anoxic depths (Supplementary Figure 6). We conclude 

that the Scalindua ladderane clusters were accurately annotated, based on prior knowledge of 

anammoxers lipids and our expression profiles. Clusters of remaining MAGs encoding ladderanes 

may serve unknown functions in Cariaco Basin. Plausible in silico explanations for ladderanes in 

non-anammox taxa include possible involvement in fatty acid biosynthesis (Rattray et al., 2009) 

and in lineage divergence of closely related taxa via acquisition of ladderane genes (Choudoir et 

al., 2018). These could apply to the Cariaco Basin but needs to be validated experimentally. 
 

Oxidative stress genes in biosynthetic gene clusters  

We annotated genes within 118 BGCs (primarily RiPPs, terpenes, NRPSs and lactones) encoding 

for proteins that detoxify, promote biofilm formation (Y. Li & Rebuffat, 2020), or counter damage 

from free radicals. These BGCs were primarily associated with Alphaproteobacteria, 

Desulfobacterota, Omnitrophota, Planctomycetota, and Myxococcota MAGs. Oxidative stress-

related genes from these clusters were functionally annotated mostly as alkyl hydroperoxide 

reductase subunit C (ahpC), glutathione S-transferase (gst), and nickel superoxide dismutase. It is 

possible these enzymes assist in the intracellular regulation of the free radicals’ concentrations, 

albeit previous studies found AhpC and GST to contribute directly to secondary metabolite 

biosynthesis (Davis et al., 2011; Ma & Payne, 2012). In FL metatranscriptomes, transcripts 

associated with oxidative stress from lactone, phosphonate, and terpene clusters were primarily 

expressed by FL-abundant Scalindua Planctomycetota, Chloroflexota, and SAR324 MAGs from 

oxycline and shallow anoxic depths, habitats that exhibit oxygen fluctuations.  

To further identify redox-related compounds in the Cariaco BGCs, we compared them to 

the MIBiG (Kautsar et al., 2020) database which contains community-curated clusters with known 

functions. Cellular level redox-cycling antibiotics can infiltrate and impose oxidative stress on 

target cells (Orakov et al., 2021). As an example, four of the BGCs contained genes encoding 

phenazine or phenazine-like biosynthesis proteins. Phenazines are redox-active compounds known 
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to contribute to formation of bacterial biofilms and to cause debilitating oxidative stress in targeted 

cells by forming intracellular free radicals of both reactive oxygen and nitrogen species (Laursen 

& Nielsen, 2004; Y. Wang et al., 2011). Nevertheless, expression of phenazines could increase 

microbial fitness in Cariaco Basin by enhancing phosphorus cycling. Within the redoxcline of the 

Cariaco Basin exists a challenging variability in phosphate concentrations whose fate 

(precipitation vs. remobilization) is controlled by the delivery of iron and manganese in the water 

column (McParland et al., 2015). Phenazines are phosphorus/iron-regulated antibiotics suggested 

to promote microbial growth under phosphorus starvation via solubilization of phosphates through 

reduction of iron oxides (McRose & Newman, 2021). Expression of genes associated with redox-

cycling antibiotics was found primarily in FL metatranscriptomes at all water layers.  

Genomes encoding clusters with antibiotic properties often contain genes coding for 

proteins within the same cluster that prevents self-toxicity (Cundliffe, 1989). We applied 

Antibiotic Resistant Target Seeker (ARTS; Alanjary et al., 2017; Mungan et al., 2020) to detect 

antibiotic resistance genes in our BGCs. We detected only 4 types of proteins/protein domains 

involved in resistance (Supplementary Data 5). These include 13 MAGs that had ABC and RND 

efflux pumps, RND-type membrane proteins of the efflux complex MexW/MexI/MexH (Webber 

& Piddock, 2003), and 8 MAGs that contained pentapeptide repeats (Vetting et al., 2006). These 

were all associated with BGCs that coded for terpenes, bacteriocins, T1PKS/T3PKS, homoserine 

lactone (hserlactone), NRPS/NRPS-like, betalactones, arylpolyenes and hgIE-KS. 

  

Core biosynthetic genes and tailoring enzymes in Cariaco biosynthetic gene clusters  

Analysis of antiSMASH results revealed the presence of core biosynthetic genes that are highly 

conserved and essential to secondary metabolite biosynthesis. The most frequently detected core 

biosynthetic gene encoded β-ketoacyl synthase, an essential enzyme in fatty acid biosynthesis 

(Kauppinen et al., 1988; Figure 4a). We also detected pyrroloquinoline quinone subunit D-like 

(PqqD-like) synthase, which is essential to the biosynthesis of RiPP-recognition element-

dependent RiPPs (Kloosterman et al., 2020; Figure 4a). In the PA fraction, there were 235 

differentially expressed or uniquely expressed PqqD-like and beta-ketoacyl synthase transcripts 

(Figure 4b), while only 94 were detected in the FL fraction (Figure 4b).  

Various tailoring enzymes identified in the recovered Cariaco BGCs suggest the 

implementation of diverse chemical transformations and post-translational modifications. Oxygen 
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availability along the oxycline in Cariaco Basin could impact the distribution/number of BGCs 

and tailoring enzymes utilizing molecular oxygen. We searched the BGCs for tailoring enzymes, 

including Rieske non-heme iron oxygenases (ROs). These enzymes contain oxygen-sensitive 

[2Fe-2S] clusters and are involved in synthesis of bioactive natural products (Barry & Challis, 

2013). Overall, we detected 8 types of ROs in 32 MAGs encoding BGCs for terpenes, betalactones, 

 
Figure 2-4. Distribution of core and additional biosynthetic genes or domains and transcripts from 
biosynthetic gene clusters. a Distribution of the most frequently detected core/additional biosynthetic genes, 
genes encoding tailoring enzymes, and biosynthetically important protein domains in clusters ≥10 kb in length. 
The “Core and additional biosynthetic genes” strip title of a refers to genes or domains. b Core/additional 
biosynthetic transcripts, as well as transcripts encoding tailoring enzymes and biosynthetically important protein 
domains differentially expressed or solely expressed in the free-living (left-hand panel) and particle-associated 
(right-hand panel) metatranscriptomes; colored by BGC product class. 
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T1PKS/T3PKS, phosphonates, RiPPs (lasso/thio/ranthipeptides, linear azole/azoline-containing 

peptides), NRPS (cyclodipeptides) and RiPP- and NRPS-like clusters. These ROs/ROs-domains 

were annotated to dioxygenases associated with degradation of aromatic amino acids 

(tyrosine/tryptophan), phosphonate and sulfur (taurine) cycling, pigment biosynthesis 

(carotenoids/betalain), and glyoxalase/bleomycin/validamycin dioxygenase superfamilies. This 

suggests that the identified ROs/ROs can be directly (e.g., synthesis of pigments, antibiotics) or 

indirectly (via nutrient/amino acid cycling) involved in the synthesis of these secondary 

metabolites.  

Other tailoring enzymes in BGCs included radical SAM proteins, glycosyl transferases, 

and flavoenzymes (Figure 4a). The most abundant of these were radical SAM proteins, which are 

known for imparting diverse post-translational modifications on RiPPs (Benjdia et al., 2017). Post-

translational glycosylation of secondary metabolites by glycosyl transferases can have a variety of 

effects, such as toxicity reduction for the producer of the metabolite (Pandey et al., 2018). 

Flavoenzymes help tailor structurally diverse secondary metabolites through various redox 

reactions, including single-electron transfers (Argueta et al., 2015). A total of 169 transcripts 

encoding the above tailoring enzymes were differentially expressed or uniquely expressed in the 

PA fraction, compared to 94 transcripts in the FL samples (Figure 4b).  

Genes encoding specialized domains involved in peptide biosynthesis were also detected 

in the Cariaco biosynthetic clusters (Figure 4a). A prevalence of B12-binding domains identified in 

biosynthetic genes raises the possibility of B12-dependent methylation during synthesis or post-

translational modification of biosynthesized peptides (Benjdia et al., 2017; Jarrett, 2019). 

Phosphopantetheine attachment site domains were also ubiquitous in Cariaco BGCs. 

Phosphopantetheine prosthetic groups from acyl carrier proteins are transferred by acyl 

transferases (Byers & Gong, 2007), both of which were numerous in Cariaco clusters. 

Tetratricopeptide repeats were prevalent as well, which can mediate protein-protein interactions 

in diverse cell processes (D’Andrea & Regan, 2003) by binding many distinct types of ligands 

(Ganesh et al., 2015). The presence of various biosynthetically important protein domains present 

in the recovered BGCs suggests a variety of diverse chemical transformations and post-

translational modifications that could shape the secondary metabolites synthesized by the particle-

associated and free-living microbes identified in the water column of Cariaco Basin. 
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Discussion  

We performed genome mining to detect and classify BGCs across a diverse set of bacterial and 

archaea phyla recovered from the anoxic depths of the Cariaco Basin. Although the increasing 

number of available genomes and bioinformatic approaches have revolutionized the discovery of 

secondary metabolites (Gavriilidou et al., 2022), a key issue that remains is linking the detected 

clusters to biological activity. Previous studies of marine Planctomycetota showed that aqueous 

and organic extracts of isolates that contain bioinformatically-predicted BGCs exhibited 

antimicrobial and antifungal activity (Graça et al., 2016). However, the vast majority of 

microorganisms, particularly those from challenging environments like oxygen-depleted systems, 

escape cultivation, thus hindering our ability to use similar approaches to explore the bioactive 

potential of predicted BGCs. Recently, an analysis of >1000 publicly available marine 

metagenomes revealed ~40,000 putative BGCs (Paoli et al., 2022). Nonetheless, this analysis did 

not include samples from sulfidic waters. For this environmental survey of BGCs, we used mapped 

metatranscriptomes collected and preserved in situ to our BGCs to unveil the expression profiles 

of detected biosynthetic clusters, and to investigate the potential role of redox conditions and 

particles in the observed patterns.   

Particles provide colonizable, nutrient-rich substrates where metabolites can be 

concentrated and exchanged and can provide protection for oxygen- or sulfide-sensitive 

microbiota. Previous work shows particle-associated microbial assemblages from the Eastern 

Tropical North Pacific oxygen minimum zone possess genes coding for antibiotic resistance, 

motility, cell-to-cell transfer, and signal recognition (Ganesh et al., 2014, 2015), and 

microorganisms are able to proliferate in particles in suboxic to anoxic zones where reducing 

conditions can persist for extended periods of time (Alldredge & Cohen, 1987; Fuchsman et al., 

2011). Consistent with previous culture-based studies, BGCs may allow PA taxa to compete for 

precious resources, prevent growth of other potential particle colonizers, and aid survival in 

oxygen-depleted conditions (Long & Azam, 2001). Our study revealed enhanced expression of 

BGCs by members of Myxococcota, Desulfobacterota, Omnitrophota, Planctomycetota and 

Gammaproteobacteria within the PA fractions.  

Analysis with UMAP of biosynthetic cluster abundances and expression profiles revealed 

a marked separation between the PA and FL size fractions in both the metagenomic and 

metatranscriptomic data.  The niche preferences of taxa behind the MAGs we recovered, as well 



 52 

as the two different sampling times likely play a role in the observed differences in expression 

profiles of biosynthetic clusters in our PA vs. FL samples. We detected differences between 

sampling season and redox regime within the metagenomes. In the metagenomic samples, the PA 

euxinic and deep anoxic samples, as well as the FL euxinic samples clustered together (Figure 3a). 

The abundance of metagenome reads mapped to MAGs across size fractions was similar at depths 

where oxygen is very limited or absent, and contributed to the clustering of BGC read abundances 

within these samples. The FL shallow anoxic and oxycline, and the PA oxycline samples formed 

three distinct clusters, suggesting differing redox conditions shaped BGC composition and 

abundance in these samples. Within oxycline samples, the influence of oxygen and the separation 

between PA and FL size fractions is evident.   

UMAP analysis of the metatranscriptomic data revealed BGC expression profiles that 

differentiated primarily by size fraction as well as season of sampling (Figure 3b). Some overlap 

is observed between BGCs expressed in the PA and FL fractions, consistent with the idea that 

some taxa may transiently associate with particles as they sink through the water column. Paoli et 

al., (Paoli et al., 2022) examined MAGs recovered from PA and FL fractions in global datasets 

(that did not include sulfidic end-members) and they found genes for terpenes and RiPPs enriched 

in the FL fraction, and NRPS and PKS genes enriched in PA samples. This supports the idea that 

taxa and the genes they carry are shaped by their FL vs. PA lifestyle (niche 

requirements).  Seasonal differences in primary productivity can also shape microbial 

communities and the genes they express. In Cariaco Basin, upwelling of nutrients occurs between 

January and March, fueling increased primary productivity (Scranton et al., 2006). This may be a 

contributing factor to the observed separation of most PA vs. FL BGC profiles (Figure 3a, b) 

because in the FL state microorganisms will experience environmental shifts more directly than 

those protected within particles.   

While little is known about secondary metabolite expression in free-living marine 

prokaryotes, biosynthetic potential is known to be widespread in their genomes (Pachiadaki et al., 

2019). We detected expression of BGCs in the FL metatranscriptomes, predominantly from 

Alphaproteobacteria, Omnitrophota, SAR324, and Desulfobacterota MAGs. The overlap in BGC 

expression detected in the PA and FL transcriptomes mapping onto preferentially FL-associated 

MAGs was unique, as we did not observe the same phenomenon in expression pattern of 

preferentially PA-associated MAGs. This supports our hypothesis that the PA metatranscriptomes 
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captured some of the BGC expression signal from the FL samples. While it is less clear how free-

living microbes could benefit from release of secondary metabolites, we conclude that interactions 

with particles alone cannot account for all the expression of biosynthetic transcripts in the FL 

samples. Some of these compounds (such as the ladderanes), likely only serve intracellular roles 

within free-living prokaryotes. It is also plausible that higher expression of BGCs in PA samples 

reflects more commonplace release of secondary metabolites within particles than within free-

living ODWC microbial populations.  The role of secondary metabolites in microbial fitness is an 

open debate because possession of secondary metabolism can enhance the overall fitness, but not 

all products of secondary metabolism will necessarily have an effect on the producer (Firn & Jones, 

2000). Nonetheless, secondary metabolites are reported to affect niche utilization, shape microbial 

community assembly, and act as a functional trait driving ecological diversification among closely-

related bacteria inhabiting the same microenvironments (Junkins et al., 2022; Penn et al., 2009). 

Likewise, the example of phenazines and phosphorus acquisition can be a paradigm of 

dual/pleiotropic functions of secondary metabolites where they can serve as potential antibiotics 

and regulators of nutrient cycling. Co-localization of antibiotic resistance genes within 

biosynthetic clusters has been previously observed (Thaker et al., 2013). Bacteria may have 

evolved pleiotropic switching capabilities that allow simultaneous expression of secondary 

metabolites with other co-localized genes in a cluster (e.g., antibiotic regulation and resistance) as 

a survival strategy under unfavorable conditions, and as a self-protection mechanism (Cundliffe, 

1989). Co-localized genes encoding antibiotic resistance were present in the BGCs we identified. 

In addition to antibiotic resistance genes, clusters contained a diverse array of core biosynthetic 

synthases, tailoring enzymes, and significant protein domains involved in secondary metabolite 

synthesis and post-translational modification.  

In summary, our investigation of BGCs in metagenomic and metatranscriptomic datasets 

from an oxygen-depleted marine water column provides considerable evidence for secondary 

metabolite synthesis over a wide taxonomic distribution from 44 bacterial and 8 archaeal phyla. 

More BGCs were expressed (particularly coding for non-ribosomal peptides, polyketides, RiPPs, 

and terpenes) by taxa whose MAGs were particle-associated than in the free-living fraction. The 

BGCs identified here hint at a complex network of ecological interactions coupled to a 

competitive, yet communicative lifestyle mediated by chemical and toxin production not only 

within PA microbes, but to a lesser extent, within the FL communities. These findings open the 
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door for future laboratory characterization of genes for novel bioactive metabolites with potential 

ecological and pharmaceutical importance. 
 

Methods 

Sample collection   

Water samples for metagenomic analyses were collected from 6 depths during two cruises in May 

2014 and in November 2014 using Niskin bottles, as described in detail in Suter et al., 2017 

(Supplementary Data 6). Specifically, 8-10 L water samples for metagenomic analysis were 

gravity-filtered sequentially through EMD Millipore 2.7 µm glass fiber membranes 47mm 

diameter (PA fraction), and then through 0.2 µm Sterivex filters (FL fraction) and stored frozen at 

-20 °C in the field and then -80 °C in the laboratory until extraction. Water samples were also 

collected and preserved in situ for isolation of RNA and construction of metatranscriptome 

libraries from depths selected to capture anoxic and sulfidic water layers. RNA sample collections 

were conducted with a “Microbial Sampler – Submersible Incubation Device” (MS-SID; 

Pachiadaki et al., 2016; C. D. Taylor & Doherty, 1990). Water (2 L) was sequentially filtered 

through EMD Millipore 2.7 µm glass fiber filters and then through 0.2 µm Millipore Express 

polysulfone membranes at depth. The filters were preserved immediately in situ with RNAlater®. 

Upon MS-SID retrieval, preserved filters were transferred to cryovials with additional RNAlater 

and stored frozen at -20 °C in the field and then -80 °C in the laboratory until extraction. 

Biogeochemical data collected in support of molecular samples are available at https://www.bco-

dmo.org/dataset/652313/data. 
 

DNA extractions and sequencing   

DNA was extracted from all samples according to Frias-Lopez et al., (Frias-Lopez et al., 2008) 

and Ganesh et al., Ganesh et al., 2014) and described in detail in Suter et al., 2017 (Suter et al., 

2017). DNA was extracted from all samples according to Frias-Lopez et al., (Frias-Lopez et al., 

2008) and Ganesh et al., (Ganesh et al., 2014) and described in detail in Suter et al., (Suter et al., 

2017). Briefly, lysozyme solution (2 mg in 40 µL of lysis buffer) was added directly to the tube 

containing the 2.7 µm membrane filter or to the Sterivex cartridge, and was incubated for 45 min 

at 37 °C. Subsequently, Proteinase K solution (1 mg in 100 μl lysis buffer, with 100 μl 20% SDS) 

was added, and then incubated for 2 h at 55 °C.  The lysate was transferred to a clean tube and 

nucleic acids were extracted once with phenol:chloroform:isoamyl alcohol (25:24:1) and once with 

https://www.bco-dmo.org/dataset/652313/data
https://www.bco-dmo.org/dataset/652313/data
https://www.bco-dmo.org/dataset/652313/data
https://www.bco-dmo.org/dataset/652313/data
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chloroform:isoamyl alcohol (24:1). The aqueous phase was concentrated using Amicon Ultra-

4w/100 kDa MWCO centrifugal filters (Millipore). After extraction, DNA was purified with the 

Genomic DNA Clean and Concentrator-25 kit (Zymo Research), eluted into 10 mM Tris-HCl, and 

frozen until downstream analysis. Aliquots of the extracted DNA were sent to the Georgia 

Genomics for library preparation and paired-end 2x150 bp Illumina NextSeq sequencing. The R1 

and R2 reads were filtered using Trimmomatic 0.39 (Bolger et al., 2014). Trimmomatic performs 

a “sliding window” trimming removing sequence data when the average quality within the window 

(eight nucleotides used here) drops below a threshold (set to 12). The length of the trimmed 

sequences was set to a minimum of 50 nucleotides. 
 

RNA extraction and sequencing  

RNA was extracted using a modification of the mirVana miRNA Isolation kit (Ambion, Life 

Technologies, Carlsbad, CA, USA) as in Stewart et al., (Stewart et al., 2012). Briefly, filters were 

thawed on ice and the RNA stabilizing buffer (RNAlater) was removed from the cryovials. Cells 

on filters were lysed by adding lysis buffer and miRNA homogenate additive (Ambion) into the 

cryovial or cartridge. After vortexing and incubation on ice, lysates were transferred to RNAase-

free tubes and processed using an acid–phenol/chloroform extraction following the manufacturer’s 

suggestions. We used TURBO DNA-free kit (Ambion, Foster City, CA, USA) to remove carryover 

DNA and we purified the extracts using the RNeasy MinElute Cleanup Kit (Qiagen, Hilden, 

Germany). Removal of DNA was confirmed by PCR using the forward primer (5′-

AYTGGGYDTAAAGNG-3′) and a mix of reverse primers (5′-GCCTTGCCAGCCCGCTCAG, 

TACCRGGGTHTCTAATCC, TACCAGAGTATCTAATTC, CTACDSRGGTMTCTAATC and 

TACNVGGGTATCTAATCC-3′ in a 6:1:2:12 ratio, respectively), designed to cover most 

hypervariable regions of bacterial 16S rRNA (Cole et al., 2009; Conroy et al., 2009). cDNA 

libraries were prepared using the ScriptSeq RNA-Seq Library Preparation Kit (Illumina). Excess 

nucleotides and PCR primers were removed from the library using the Agencourt AMPure™ XP 

(Beckman-Coulter) kit. The Illumina NextSeq platform was used for paired-end 2x150 sequencing 

at the Georgia Genomic Facility. The R1 and R2 reads were filtered using Trimmomatic.  
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MAG co-assembly, binning, and taxonomic assignment   

Metagenomes originating from adjacent regions (such as geographic regions or in this case, 

adjacent depths targeted in this study) are likely to overlap in the sequence space, increasing the 

mean coverage and extent of reconstruction of MAGs when using a co-assembly approach. In 

order to reconstruct MAGs, the trimmed reads of metagenomic datasets from the anoxic to sulfidic 

depths (314m and 900m in May, 267m and 900m in November) and both PA and FL fractions 

were co-assembled into contigs using SPAdes 3.11.1 (Bankevich et al., 2012) with default values 

and flag “--meta”. Assembled contigs were binned using MetaBAT 2.12.1 (Kang et al., 2015) with 

default values. CheckM 1.0.1161 (Parks et al., 2015) was used to estimate the completeness and 

contamination of the reconstructed genomes. Only MAGs with ≥75% complete and ≤5% 

contamination were used for the downstream analysis (Supplementary Data 1). The taxonomic 

placement of the MAGs was performed with GTDB-Tk 2.1.1 (Chaumeil et al., 2020). The 

taxonomic identification of the recovered MAGs revealed the presence of three known lab 

contaminants, including Burkholderia contaminans (Giovannoni et al., 1990) that was 

reconstructed in the first marine genomic study.   

  

Removal of redundant MAGs  

To collapse any redundancy, a workflow using Anvi’o 4 (Eren et al., 2015) was implemented as 

described in Delmont et al., (Delmont et al., 2018). Scaffolds from all MAGs were concatenated 

into a single FASTA file for mapping and processing. Anvi’o commands ‘anvi-gen-contigs-

database’ and ‘anvi-run-hmms’ were run with default parameters to create a MAG contig database, 

and scan MAGs with HMMs, respectively. Contigs were then used to recruit short reads from all 

metagenomic samples using the Bowtie2 2.5.0 (Langmead & Salzberg, 2012) commands 

‘bowtie2-build’ and ‘bowtie2’ with default parameters, and SAMtools 1.16.1 (H. Li et al., 2009) 

commands ‘view’, ‘sort’, and ‘index’ to convert resulting Sequence Alignment/Map format (SAM) 

files into Binary Alignment/Map (BAM) format, as well as sort and index the converted BAM 

files. The Anvi’o command ‘anvi-merge’ was implemented to create a merged profile database of 

all MAGs, describing the distribution and detection statistics of scaffolds in MAGs across all the 

metagenomic samples. The Average Nucleotide Identity (ANI) and Pearson correlation values 

were then calculated to identify MAGs with high sequence similarity and those that were 

distributed similarly across metagenomes. Pairwise Pearson correlations of the MAGs were 
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calculated using the ‘cor’ function in R (Team, 2013), and ANI values were calculated for MAGs 

using NUCmer (from the MUMmer [Marçais et al., 2018] 3.23 package) with default settings, 

grouped by their taxonomy, such that ANI was not computed for pairs of MAGs which did not 

belong to the same phylum. Anvi’o scripts were then used to classify MAGs as redundant if (1) 

their ANI was at least a 98% match (with a minimum alignment of 75% of the smaller genome in 

each comparison), and (2) the Pearson coefficient for their distribution across datasets was > 0.9. 
 

Calculation of MAG relative abundances  

Reads from 48 metagenomic samples (2 sample types: PA- and FL-fraction, 2 replicates per 

fraction from 6 depths, taken over 2 sampling time points = 48 metagenomes; Supplementary 

Table 5) were mapped to each MAG using the BWA (H. Li, 2013) 2.0 aligner via the CoverM  

0.6.1 (Woodcroft, B.; https://github.com/wwood/CoverM) command line tool. The CoverM tool 

automatically concatenated all the MAGs into a single file, and metagenome reads were recruited 

to MAG contigs, setting the parameter --min-read-percent-identity to 95 and --min-read-aligned-

percent to 50. The “Relative Abundance” CoverM method on the “genome” setting was used to 

calculate relative abundances of the 565 MAGs in each of the metagenomic samples. Each relative 

abundance was calculated as the percentage of total reads from the sample that uniquely mapped 

to a MAG (with consideration for the percentage of unmapped reads in the sample). The relative 

abundance values were log-transformed using the log1p formula: y = log(x + 1) and were used for 

heatmap plotting. 
 

Assessing BGC-containing contigs for chimerism and contamination using GUNC  

The GUNC (Orakov et al., 2021) command line tool was used with default settings to assess 

contigs from Cariaco MAGs for contamination that contained ladderane BGCs predicted by 

AntiSMASH (Blin et al., 2021). The flat file outputs from running GUNC 1.0.5 on all contigs 

containing BGCs were then manually assessed for potential chimerism and/or contamination. 
 

Differential abundance analysis  

Differential abundance (PA- or FL-abundant) was determined for individual MAGs exhibiting 

differences in abundance between sample type (PA, FL) and water layer (oxycline, shallow anoxic, 

euxinic). Reads were recruited to a concatenated FASTA file containing whole genome contigs 

using CoverM (Ben Woodcroft, n.d.). A counts matrix was created with rows containing individual 
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MAG read mapping counts and with metagenomic samples as columns. Count data for all MAGs 

was analyzed to calculate DESeq2 1.34.0 size factors for cross-sample count normalization. The 

differential abundance of MAGs between fraction sizes and water layers was modeled using the 

DESeq2 negative binomial model with the metadata variables of fraction size and water layer in 

which “count” was the dependent variable and “fraction” as well as “water layer” were 

independent variables. The significant differential abundances of MAGs (with an FDR-corrected 

P < 0.05) identified by comparing the PA and FL samples were grouped by water layer, and direct 

comparisons were made between normalized counts of significantly differentially abundant MAGs 

from the oxycline, shallow anoxic, and euxinic depths. 
 

Similarity clustering of BGCs using BiG-SCAPE  

The redundancy of the predicted biosynthetic cluster sequences recovered from the Cariaco MAGs 

was assessed using the BiG-SCAPE 1.1.4 (Navarro-Muñoz et al., 2020) command line tool with 

default parameters. The resulting Gene Cluster Families (GCFs) from this sequence similarity 

network analysis were visually assessed using BiG-SCAPE’s default index.html output file. 
 

Scanning of MAGs for BGCs, functionally annotating genes within clusters, and comparing 

mined clusters to the MiBIG database BGCs  

Genes were predicted using Prodigal (Hyatt et al., 2010) 2.6.3 for all 565 MAGs. The resulting 

genes of each MAG were individually scanned for BGCs using antiSMASH 6 (Blin et al., 2021) 

with default parameters. Gene clusters with a total length less than 10kb were discarded from 

downstream analysis to minimize the inclusion of fragmented BGCs in our data. The genes 

predicted using Prodigal were scanned using the InterProScan 581(Jones et al., 2014) and Prokka 

1.14.6 (Seemann, 2014) command line tools with default parameters for functional annotations, as 

well as during the implementation of the antiSMASH 6 pipeline with the antiSMASH HMM 

databases. We manually searched the resulting annotations for genes and domains that encoded a 

variety of functions, such protein domains involved in post-translational modifications. The results 

of comparing the mined Cariaco BGCs to the MiBIG database BGCs was scraped using R from 

the output HTML files from scanning each MAG with antiSMASH. 
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Detection of antibiotic resistance genes in BGCs using ARTS  

The presence of putative antibiotic resistance genes was examined with ARTS version 2 (Alanjary 

et al., 2017; Mungan et al., 2020) that implements antiSMASH 5.0. The web interface was used. 

The results in the “Proximity: BGC table with localized hits” were manually inspected. The 

location and the annotation of potential antibiotic resistance genes that show colocalization with 

BGS is recorded in Supplementary Table 5. 
 

Metatranscriptomic read mapping of RNA-seq data to BGCs   

Metatranscriptomic samples were individually mapped to the concatenated gene FASTA file using 

the minimap2 2.24-r1122 (H. Li, 2018) sequence alignment algorithm with default parameters. 

The resulting output files in PAF format were manually filtered of supplementary alignments using 

a custom R script, and only alignments incorporating at least 50% of the length of a read pair with 

at least 95% percent identity were retained. The same custom script was utilized to concatenate all 

individual alignment counts into a single file in a matrix format, with each sample representing a 

column and each row representing RNA-Seq alignment counts to a gene. The metatranscriptomic 

counts matrix was normalized to Transcripts Per Million (TPM) and the values were log-

transformed using the log1p formula: y = log(x + 1) and were used for heatmap plotting. 
 

Differential gene expression analysis   

To detect differential expression of individual genes within differently expressed biosynthetic 

clusters between sampling depths, the read counts matrix was modeled in the context of the 

metadata variable size fraction using a negative binomial model implemented with DESeq2 1.34.0 

in R. Count data for all genes from all MAGs was analyzed independently so that the DESeq2 size 

factors for cross-sample count normalization would reflect the total transcriptomic activity of 

MAGs in each sample. This approach is robust to biases in total transcriptomic activity per 

organism between samples, and it is used to identify differences in gene expression independent 

of changes in taxonomic composition, similar to previously reported methods (Bray et al., 2016; 

Love et al., 2014). After size factor normalization, read counts were fit to a negative binomial 

model in which “count” was the dependent variable and “size fraction” was an independent 

variable. To test whether any genes exhibited differential expression associated with different size 

fractions, the differential expression results were saved and analyzed. The significant genes (with 

an FDR-corrected P < 0.05) identified by comparing the PA and FL samples and direct 
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comparisons were made between normalized counts of genes that differed significantly in 

expression profiles. This method confirmed differential expression of individual genes within each 

differentially expressed biosynthetic cluster. 
 

UMAP analysis on BGC abundances in metatranscriptomic and metagenomic datasets  

The normalized abundances of BGC read mapping data from both metagenomic and 

metatranscriptomic read recruitment using minimap2 were used as input for UMAP analysis in R 

using the umap 0.2.9.0 (Konopka & Konopka, 2018) package 

(https://github.com/tkonopka/umap). The results were plotted using ggplot2 (Wickham et al., 

2016) 3.3.6. Clustering of the UMAP embedding was done using the hierarchical density-based 

spatial clustering (HDBSCAN) function from the dbscan 1.1-11 (Hahsler et al., 2019) package. 
 

Data Availability  

The metatranscriptome and metagenome data generated in this study have been deposited in the 

NCBI database under accession code PRJNA326482 

(https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA326482). The processed metagenome-

assembled genomes (in FASTA format) and biosynthetic gene cluster files (in ZIP format) are 

available at OSF (https://osf.io/usm8r/). The biogeochemistry data from the CARIACO Basin 

Time Series Station for May to November 2014 are available through the Biological and Chemical 

Oceanography Data Management Office (BCO-DMO) at the Woods Hole Oceanographic 

Institution (https://www.bco-dmo.org/dataset/652313/data). The MIBiG 2.0 database is publicly 

available (https://mibig.secondarymetabolites.org). Source data are provided with this paper. 
 

Code Availability  

The scripts used for all bioinformatic pipelines, data processing, and plotting used in this study are 

available in the following GitHub repository: https://github.com/d-mcgrath/cariaco_basin (Geller-

McGrath et al., 2023). 

 

Source Data 

Links to all datasets used in this analysis, including source data used to generate the figures in this 

chapter can be found here: https://www.nature.com/articles/s41467-023-36026-w. 
 

https://osf.io/usm8r/
https://github.com/d-mcgrath/cariaco_basin
https://www.nature.com/articles/s41467-023-36026-w


 61 

References 

Alanjary, M., Kronmiller, B., Adamek, M., Blin, K., Weber, T., Huson, D., Philmus, B., & 
Ziemert, N. (2017). The Antibiotic Resistant Target Seeker (ARTS), an exploration engine 
for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Research, 
45(W1), W42–W48.  

Alldredge, A. L., & Cohen, Y. (1987). Can microscale chemical patches persist in the sea? 
Microelectrode study of marine snow, fecal pellets. Science, 235(4789), 689–691.  

Argueta, E. A., Amoh, A. N., Kafle, P., & Schneider, T. L. (2015). Unusual non-enzymatic 
flavin catalysis enhances understanding of flavoenzymes. FEBS Letters, 589(8), 880–884.  

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. 
M., Nikolenko, S. I., Pham, S., & Prjibelski, A. D. (2012). SPAdes: a new genome assembly 
algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 
19(5), 455–477.  

Barry, S. M., & Challis, G. L. (2013). Mechanism and catalytic diversity of Rieske non-heme 
iron-dependent oxygenases. ACS Catalysis, 3(10), 2362–2370.  

Ben Woodcroft. (n.d.). CoverM (0.6.1).  
Benjdia, A., Balty, C., & Berteau, O. (2017). Radical SAM enzymes in the biosynthesis of 

ribosomally synthesized and post-translationally modified peptides (RiPPs). Frontiers in 
Chemistry, 5, 87.  

Blin, K., Kim, H. U., Medema, M. H., & Weber, T. (2019). Recent development of antiSMASH 
and other computational approaches to mine secondary metabolite biosynthetic gene 
clusters. Briefings in Bioinformatics, 20(4), 1103–1113.  

Blin, K., Shaw, S., Kloosterman, A. M., Charlop-Powers, Z., van Wezel, G. P., Medema, M. H., 
& Weber, T. (2021). antiSMASH 6.0: improving cluster detection and comparison 
capabilities. Nucleic Acids Research, 1.  

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina 
sequence data. Bioinformatics, 30(15), 2114–2120.  

Bray, N. L., Pimentel, H., Melsted, P., & Pachter, L. (2016). Near-optimal probabilistic RNA-seq 
quantification. Nature Biotechnology, 34(5), 525–527.  

Byers, D. M., & Gong, H. (2007). Acyl carrier protein: structure–function relationships in a 
conserved multifunctional protein family. Biochemistry and Cell Biology, 85(6), 649–662.  

Cabello-Yeves, P. J., Callieri, C., Picazo, A., Mehrshad, M., Haro-Moreno, J. M., Roda-Garcia, 
J. J., Dzhembekova, N., Slabakova, V., Slabakova, N., & Moncheva, S. (2021). The 
microbiome of the Black Sea water column analyzed by shotgun and genome centric 
metagenomics. Environmental Microbiome, 16(1), 1–15.  

Canfield, D. E., Stewart, F. J., Thamdrup, B., De Brabandere, L., Dalsgaard, T., Delong, E. F., 
Revsbech, N. P., & Ulloa, O. (2010). A cryptic sulfur cycle in oxygen-minimum–zone 
waters off the Chilean coast. Science, 330(6009), 1375–1378.  

Castelle, C. J., Wrighton, K. C., Thomas, B. C., Hug, L. A., Brown, C. T., Wilkins, M. J., 
Frischkorn, K. R., Tringe, S. G., Singh, A., & Markillie, L. M. (2015). Genomic expansion 
of domain archaea highlights roles for organisms from new phyla in anaerobic carbon 
cycling. Current Biology, 25(6), 690–701.  

Charlesworth, J. C., & Burns, B. P. (2015). Untapped resources: biotechnological potential of 
peptides and secondary metabolites in archaea. Archaea, 2015.  

Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P., & Parks, D. H. (2020). GTDB-Tk: a toolkit to 
classify genomes with the Genome Taxonomy Database. Oxford University Press.  



 62 

Choudoir, M. J., Pepe-Ranney, C., & Buckley, D. H. (2018). Diversification of secondary 
metabolite biosynthetic gene clusters coincides with lineage divergence in Streptomyces. 
Antibiotics, 7(1), 12.  

Conroy, J. L., Restrepo, A., Overpeck, J. T., Steinitz-Kannan, M., Cole, J. E., Bush, M. B., & 
Colinvaux, P. A. (2009). Unprecedented recent warming of surface temperatures in the 
eastern tropical Pacific Ocean. Nature Geoscience, 2(1), 46–50.  

Cragg, G. M., & Newman, D. J. (2013). Natural products: a continuing source of novel drug 
leads. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(6), 3670–3695.  

Cundliffe, E. (1989). How antibiotic-producing organisms avoid suicide. Annual Review of 
Microbiology, 43(1), 207–233.  

Dalsgaard, T., Thamdrup, B., Farías, L., & Revsbech, N. P. (2012). Anammox and denitrification 
in the oxygen minimum zone of the eastern South Pacific. Limnology and Oceanography, 
57(5), 1331–1346.  

D’Andrea, L. D., & Regan, L. (2003). TPR proteins: the versatile helix. Trends in Biochemical 
Sciences, 28(12), 655–662.  

Davis, C., Carberry, S., Schrettl, M., Singh, I., Stephens, J. C., Barry, S. M., Kavanagh, K., 
Challis, G. L., Brougham, D., & Doyle, S. (2011). The role of glutathione S-transferase 
GliG in gliotoxin biosynthesis in Aspergillus fumigatus. Chemistry & Biology, 18(4), 542–
552.  

Delmont, T. O., Quince, C., Shaiber, A., Esen, Ö. C., Lee, S. T. M., Rappé, M. S., McLellan, S. 
L., Lücker, S., & Eren, A. M. (2018). Nitrogen-fixing populations of Planctomycetes and 
Proteobacteria are abundant in surface ocean metagenomes. Nature Microbiology, 3(7), 
804–813.  

Duret, M. T., Lampitt, R. S., & Lam, P. (2019). Prokaryotic niche partitioning between 
suspended and sinking marine particles. Environmental Microbiology Reports, 11(3), 386–
400.  

Edgcomb, V. P., Taylor, C., Pachiadaki, M. G., Honjo, S., Engstrom, I., & Yakimov, M. (2016). 
Comparison of Niskin vs. in situ approaches for analysis of gene expression in deep 
Mediterranean Sea water samples. Deep Sea Research Part II: Topical Studies in 
Oceanography, 129, 213–222.  

Eren, A. M., Esen, Ö. C., Quince, C., Vineis, J. H., Morrison, H. G., Sogin, M. L., & Delmont, T. 
O. (2015). Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ, 
3, e1319.  

Firn, R. D., & Jones, C. G. (2000). The evolution of secondary metabolism–a unifying model. 
Molecular Microbiology, 37(5), 989–994.  

Frias-Lopez, J., Shi, Y., Tyson, G. W., Coleman, M. L., Schuster, S. C., Chisholm, S. W., & 
DeLong, E. F. (2008). Microbial community gene expression in ocean surface waters. 
Proceedings of the National Academy of Sciences, 105(10), 3805–3810.  

Fuchsman, C. A., Kirkpatrick, J. B., Brazelton, W. J., Murray, J. W., & Staley, J. T. (2011). 
Metabolic strategies of free-living and aggregate-associated bacterial communities inferred 
from biologic and chemical profiles in the Black Sea suboxic zone. FEMS Microbiology 
Ecology, 78(3), 586–603.  

Fuchsman, C. A., Staley, J. T., Oakley, B. B., Kirkpatrick, J. B., & Murray, J. W. (2012). Free-
living and aggregate-associated Planctomycetes in the Black Sea. FEMS Microbiology 
Ecology, 80(2), 402–416.  



 63 

Ganesh, S., Bristow, L. A., Larsen, M., Sarode, N., Thamdrup, B., & Stewart, F. J. (2015). Size-
fraction partitioning of community gene transcription and nitrogen metabolism in a marine 
oxygen minimum zone. The ISME Journal, 9(12), 2682–2696.  

Ganesh, S., Parris, D. J., DeLong, E. F., & Stewart, F. J. (2014). Metagenomic analysis of size-
fractionated picoplankton in a marine oxygen minimum zone. The ISME Journal, 8(1), 
187–211.  

Gavriilidou, A., Kautsar, S. A., Zaburannyi, N., Krug, D., Müller, R., Medema, M. H., & 
Ziemert, N. (2022). Compendium of specialized metabolite biosynthetic diversity encoded 
in bacterial genomes. Nature Microbiology, 7(5), 726–735.  

Gilly, W. F., Beman, J. M., Litvin, S. Y., & Robison, B. H. (2013). Oceanographic and 
biological effects of shoaling of the oxygen minimum zone. Annual Review of Marine 
Science, 5, 393–420.  

Giovannoni, S. J., Britschgi, T. B., Moyer, C. L., & Field, K. G. (1990). Genetic diversity in 
Sargasso Sea bacterioplankton. Nature, 345(6270), 60–63.  

Graça, A. P., Calisto, R., & Lage, O. M. (2016). Planctomycetes as novel source of bioactive 
molecules. Frontiers in Microbiology, 7, 1241.  

Hahsler, M., Piekenbrock, M., & Doran, D. (2019). dbscan: Fast density-based clustering with R. 
Journal of Statistical Software, 91, 1–30.  

Hibbing, M. E., Fuqua, C., Parsek, M. R., & Peterson, S. B. (2010). Bacterial competition: 
surviving and thriving in the microbial jungle. Nature Reviews Microbiology, 8(1), 15–25.  

Hyatt, D., Chen, G.-L., LoCascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). 
Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC 
Bioinformatics, 11(1), 1–11.  

Jarrett, J. T. (2019). Surprise! A hidden B12 cofactor catalyzes a radical methylation. Journal of 
Biological Chemistry, 294(31), 11726–11727.  

Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., 
Mitchell, A., & Nuka, G. (2014). InterProScan 5: genome-scale protein function 
classification. Bioinformatics, 30(9), 1236–1240.  

Junkins, E. N., McWhirter, J. B., McCall, L.-I., & Stevenson, B. S. (2022). Environmental 
structure impacts microbial composition and secondary metabolism. ISME 
Communications, 2(1), 1–10.  

Kang, D. D., Froula, J., Egan, R., & Wang, Z. (2015). MetaBAT, an efficient tool for accurately 
reconstructing single genomes from complex microbial communities. PeerJ, 3, e1165.  

Kauppinen, S., Siggaard-Andersen, M., & von Wettstein-Knowles, P. (1988). β-ketoacyl-ACP 
synthase I of Escherichia coli: Nucleotide sequence of thefabB gene and identification of 
the cerulenin binding residue. Carlsberg Research Communications, 53(6), 357–370.  

Kautsar, S. A., Blin, K., Shaw, S., Navarro-Muñoz, J. C., Terlouw, B. R., Van Der Hooft, J. J. J., 
Van Santen, J. A., Tracanna, V., Suarez Duran, H. G., & Pascal Andreu, V. (2020). MIBiG 
2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Research, 
48(D1), D454–D458.  

Kloosterman, A. M., Shelton, K. E., van Wezel, G. P., Medema, M. H., & Mitchell, D. A. 
(2020). RRE-Finder: a genome-mining tool for class-independent RiPP discovery. 
Msystems, 5(5), e00267-20.  

Konopka, T., & Konopka, M. T. (2018). R-package: umap. Uniform Manifold Approximation 
and Projection.  



 64 

Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature 
Methods, 9(4), 357–359.  

Laursen, J. B., & Nielsen, J. (2004). Phenazine natural products: biosynthesis, synthetic 
analogues, and biological activity. Chemical Reviews, 104(3), 1663–1686.  

Letzel, A.-C., Pidot, S. J., & Hertweck, C. (2013). A genomic approach to the cryptic secondary 
metabolome of the anaerobic world. Natural Product Reports, 30(3), 392–428.  

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 
ArXiv Preprint ArXiv:1303.3997.  

Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18), 
3094–3100.  

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & 
Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 
25(16), 2078–2079.  

Li, J., Gu, L., Bai, S., Wang, J., Su, L., Wei, B., Zhang, L., & Fang, J. (2021). Characterization 
of particle-associated and free-living bacterial and archaeal communities along the water 
columns of the South China Sea. Biogeosciences, 18(1), 113–133.  

Li, Y., & Rebuffat, S. (2020). The manifold roles of microbial ribosomal peptide–based natural 
products in physiology and ecology. Journal of Biological Chemistry, 295(1), 34–54.  

Long, R. A., & Azam, F. (2001). Antagonistic interactions among marine pelagic bacteria. 
Applied and Environmental Microbiology, 67(11), 4975–4983.  

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 1–21.  

Ma, L., & Payne, S. M. (2012). AhpC is required for optimal production of enterobactin by 
Escherichia coli. Journal of Bacteriology, 194(24), 6748–6757.  

Marçais, G., Delcher, A. L., Phillippy, A. M., Coston, R., Salzberg, S. L., & Zimin, A. (2018). 
MUMmer4: A fast and versatile genome alignment system. PLoS Computational Biology, 
14(1), e1005944.  

McInnes, L., Healy, J., & Melville, J. (2018). Umap: Uniform manifold approximation and 
projection for dimension reduction. ArXiv Preprint ArXiv:1802.03426.  

McParland, E., Benitez-Nelson, C. R., Taylor, G. T., Thunell, R., Rollings, A., & Lorenzoni, L. 
(2015). Cycling of suspended particulate phosphorus in the redoxcline of the Cariaco Basin. 
Marine Chemistry, 176, 64–74.  

McRose, D. L., & Newman, D. K. (2021). Redox-active antibiotics enhance phosphorus 
bioavailability. Science, 371(6533), 1033–1037.  

Mestre, M., Borrull, E., Sala, M. M., & Gasol, J. M. (2017). Patterns of bacterial diversity in the 
marine planktonic particulate matter continuum. The ISME Journal, 11(4), 999–1010.  

Mestre, M., Ferrera, I., Borrull, E., Ortega‐Retuerta, E., Mbedi, S., Grossart, H., Gasol, J. M., & 
Sala, M. M. (2017). Spatial variability of marine bacterial and archaeal communities along 
the particulate matter continuum. Molecular Ecology, 26(24), 6827–6840.  

Mungan, M. D., Alanjary, M., Blin, K., Weber, T., Medema, M. H., & Ziemert, N. (2020). 
ARTS 2.0: feature updates and expansion of the Antibiotic Resistant Target Seeker for 
comparative genome mining. Nucleic Acids Research, 48(W1), W546–W552.  

Murphy, C. L., Yang, R., Decker, T., Cavalliere, C., Andreev, V., Bircher, N., Cornell, J., 
Dohmen, R., Pratt, C. J., & Grinnell, A. (2021). Genomes of novel Myxococcota reveal 
severely curtailed machineries for predation and cellular differentiation. Applied and 
Environmental Microbiology, 87(23), e01706-21.  



 65 

Naqvi, S. W. A., Bange, H. W., Farías, L., Monteiro, P. M. S., Scranton, M. I., & Zhang, J. 
(2010). Marine hypoxia/anoxia as a source of CH 4 and N 2 O. Biogeosciences, 7(7), 2159–
2190.  

Navarro-Muñoz, J. C., Selem-Mojica, N., Mullowney, M. W., Kautsar, S. A., Tryon, J. H., 
Parkinson, E. I., De Los Santos, E. L. C., Yeong, M., Cruz-Morales, P., & Abubucker, S. 
(2020). A computational framework to explore large-scale biosynthetic diversity. Nature 
Chemical Biology, 16(1), 60–68.  

Orakov, A., Fullam, A., Coelho, L. P., Khedkar, S., Szklarczyk, D., Mende, D. R., Schmidt, T. S. 
B., & Bork, P. (2021). GUNC: detection of chimerism and contamination in prokaryotic 
genomes. Genome Biology, 22(1), 1–19.  

Pachiadaki, M. G., Brown, J. M., Brown, J., Bezuidt, O., Berube, P. M., Biller, S. J., Poulton, N. 
J., Burkart, M. D., La Clair, J. J., & Chisholm, S. W. (2019). Charting the complexity of the 
marine microbiome through single-cell genomics. Cell, 179(7), 1623–1635.  

Pachiadaki, M. G., Rédou, V., Beaudoin, D. J., Burgaud, G., & Edgcomb, V. P. (2016). Fungal 
and prokaryotic activities in the marine subsurface biosphere at Peru Margin and 
Canterbury Basin inferred from RNA-based analyses and microscopy. Frontiers in 
Microbiology, 7, 846.  

Pandey, R. P., Parajuli, P., & Sohng, J. K. (2018). Metabolic engineering of glycosylated 
polyketide biosynthesis. Emerging Topics in Life Sciences, 2(3), 389–403.  

Paoli, L., Ruscheweyh, H.-J., Forneris, C. C., Hubrich, F., Kautsar, S., Bhushan, A., Lotti, A., 
Clayssen, Q., Salazar, G., & Milanese, A. (2022). Biosynthetic potential of the global ocean 
microbiome. Nature, 1–8.  

Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., & Tyson, G. W. (2015). CheckM: 
assessing the quality of microbial genomes recovered from isolates, single cells, and 
metagenomes. Genome Research, 25(7), 1043–1055.  

Pelve, E. A., Fontanez, K. M., & DeLong, E. F. (2017). Bacterial succession on sinking particles 
in the ocean’s interior. Frontiers in Microbiology, 8, 2269.  

Penn, K., Jenkins, C., Nett, M., Udwary, D. W., Gontang, E. A., McGlinchey, R. P., Foster, B., 
Lapidus, A., Podell, S., & Allen, E. E. (2009). Genomic islands link secondary metabolism 
to functional adaptation in marine Actinobacteria. The ISME Journal, 3(10), 1193–1203.  

Rapp, I., Schlosser, C., Menzel Barraqueta, J.-L., Wenzel, B., Lüdke, J., Scholten, J., Gasser, B., 
Reichert, P., Gledhill, M., & Dengler, M. (2019). Controls on redox-sensitive trace metals 
in the Mauritanian oxygen minimum zone. Biogeosciences, 16(21), 4157–4182.  

Rattray, J. E., Strous, M., Op den Camp, H. J. M., Schouten, S., Jetten, M. S. M., & Damsté, J. S. 
S. (2009). A comparative genomics study of genetic products potentially encoding 
ladderane lipid biosynthesis. Biology Direct, 4(1), 1–16.  

Scherlach, K., & Hertweck, C. (2009). Triggering cryptic natural product biosynthesis in 
microorganisms. Organic & Biomolecular Chemistry, 7(9), 1753–1760.  

Scherlach, K., & Hertweck, C. (2021). Mining and unearthing hidden biosynthetic potential. 
Nature Communications, 12(1), 1–12.  

Schlosser, C., Streu, P., Frank, M., Lavik, G., Croot, P. L., Dengler, M., & Achterberg, E. P. 
(2018). H 2 S events in the Peruvian oxygen minimum zone facilitate enhanced dissolved 
Fe concentrations. Scientific Reports, 8(1), 1–8.  

Schmidtko, S., Stramma, L., & Visbeck, M. (2017). Decline in global oceanic oxygen content 
during the past five decades. Nature, 542(7641), 335–339.  



 66 

Scranton, M. I., Astor, Y., Bohrer, R., Ho, T.-Y., & Muller-Karger, F. (2001). Controls on 
temporal variability of the geochemistry of the deep Cariaco Basin. Deep Sea Research Part 
I: Oceanographic Research Papers, 48(7), 1605–1625.  

Scranton, M. I., McIntyre, M., Astor, Y., Taylor, G. T., Müller-Karger, F., & Fanning, K. (2006). 
Temporal variability in the nutrient chemistry of the Cariaco Basin. In Past and present 
water column anoxia (pp. 139–160). Springer.  

Scranton, M. I., Sayles, F. L., Bacon, M. P., & Brewer, P. G. (1987). Temporal changes in the 
hydrography and chemistry of the Cariaco Trench. Deep Sea Research Part A. 
Oceanographic Research Papers, 34(5–6), 945–963.  

Scranton, M. I., Taylor, G. T., Thunell, R., Benitez-Nelson, C. R., Muller-Karger, F., Fanning, 
K., Lorenzoni, L., Montes, E., Varela, R., & Astor, Y. (2014). Interannual and subdecadal 
variability in the nutrient geochemistry of the Cariaco Basin. Oceanography, 27(1), 148–
159.  

Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30(14), 
2068–2069.  

Sinninghe Damsté, J. S., Rijpstra, W. I. C., Geenevasen, J. A. J., Strous, M., & Jetten, M. S. M. 
(2005). Structural identification of ladderane and other membrane lipids of planctomycetes 
capable of anaerobic ammonium oxidation (anammox). The FEBS Journal, 272(16), 4270–
4283.  

Stewart, F. J., Ulloa, O., & DeLong, E. F. (2012). Microbial metatranscriptomics in a permanent 
marine oxygen minimum zone. Environmental Microbiology, 14(1), 23–40.  

Suter, E. A., Pachiadaki, M., Taylor, G. T., Astor, Y., & Edgcomb, V. P. (2018). Free‐living 
chemoautotrophic and particle‐attached heterotrophic prokaryotes dominate microbial 
assemblages along a pelagic redox gradient. Environmental Microbiology, 20(2), 693–712.  

Taylor, C. D., & Doherty, K. W. (1990). Submersible Incubation Device (SID), autonomous 
instrumentation for the in situ measurement of primary production and other microbial rate 
processes. Deep Sea Research Part A. Oceanographic Research Papers, 37(2), 343–358.  

Taylor, G. T., Iabichella, M., Ho, T.-Y., Scranton, M. I., Thunell, R. C., Muller-Karger, F., & 
Varela, R. (2001). Chemoautotrophy in the redox transition zone of the Cariaco Basin: a 
significant midwater source of organic carbon production. Limnology and Oceanography, 
46(1), 148–163.  

Team, R. C. (2013). R: A language and environment for statistical computing.  
Thaker, M. N., Wang, W., Spanogiannopoulos, P., Waglechner, N., King, A. M., Medina, R., & 

Wright, G. D. (2013). Identifying producers of antibacterial compounds by screening for 
antibiotic resistance. Nature Biotechnology, 31(10), 922–927.  

Vetting, M. W., Hegde, S. S., Fajardo, J. E., Fiser, A., Roderick, S. L., Takiff, H. E., & 
Blanchard, J. S. (2006). Pentapeptide repeat proteins. Biochemistry, 45(1), 1–10.  

Wang, S., & Lu, Z. (2017). Secondary metabolites in archaea and extreme environments. In 
Biocommunication of archaea (pp. 235–239). Springer.  

Wang, Y., Wilks, J. C., Danhorn, T., Ramos, I., Croal, L., & Newman, D. K. (2011). Phenazine-
1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. 
Journal of Bacteriology, 193(14), 3606–3617.  

Waters, A. L., Hill, R. T., Place, A. R., & Hamann, M. T. (2010). The expanding role of marine 
microbes in pharmaceutical development. Current Opinion in Biotechnology, 21(6), 780–
786.  



 67 

Webber, M. A., & Piddock, L. J. V. (2003). The importance of efflux pumps in bacterial 
antibiotic resistance. Journal of Antimicrobial Chemotherapy, 51(1), 9–11.  

Wickham, H., Chang, W., & Wickham, M. H. (2016). Package ‘ggplot2.’ Create Elegant Data 
Visualisations Using the Grammar of Graphics. Version, 2(1), 1–189. 

 

Acknowledgments  

We thank the staff of Fundación La Salle de Ciencias Naturales (FLASA), EDIMAR, Porlamar, 

Edo Nueva Esparta, Venezuela and the crew of the R/V Hermano Ginés for their support during 

field work for this study, especially Y. Astor and R. Varela. The field work that provided samples 

and data for this study was supported by National Science Foundation (NSF) grants (OCE-

1336082 to VE and OCE-1335436 and OCE-1259110 to Gordon Taylor, Stony Brook University). 

Analysis of the data was partially supported by NSF grant OCE-19924492 to MP and VE and 

Simons Foundation award 929985 to MP. 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 68 

Supplementary Figures 

 

 
Supplementary Figure 2-1. Frequency of Cariaco prokaryotic MAGs (≥75% completeness, ≤5% 
contamination) by bacterial (a) and archaeal phylum (b). Colored dots at the end of each line segment correspond 
to the mean genome completeness of the phylum; the number above the dot quantifies the number of genomes 
recovered from the phylum. 
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Supplementary Figure 2-2. MAG relative abundances. The heatmap shows for each column the percentage of total 
pre-processed reads from a metagenomic sample that mapped to the 100 most abundant MAGs (across all samples) 
using a log1p scale ranging from 0-32.12% relative abundance. Each row represents an individual MAG (additional 
information about the MAGs can be found in Supplementary Tables 1-2, 4 and 5). 
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Supplementary Figure 2-3. MAG differential abundance (fraction preference). Bar charts of the differential 
abundances of MAGs, grouped by phylum (DESeq2; P < 0.05; False Discovery Rate (FDR) = 5%) for each layer of 
the water column (oxycline, shallow anoxic, euxinic). The light brown color indicates MAGs that were more abundant 
in the PA metagenomes, the green color represents MAGs that were more abundant in the FL metagenomes, and the 
grey color indicates there was not statistically significant difference between the FL and PA fractions. Phyla 
represented in all three panels are from groups for which at least 5 genomes were recovered. 
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Supplementary Figure 2-4. Distribution of the biosynthetic gene clusters identified using antiSMASH 6.0. Each 
label corresponds to the total amount of biosynthetic gene clusters >= 10kb recovered from a given class, with the 
total number listed below the class followed by the percentage (%) out of the total BGC count (1,154). Other cluster* 
includes resorcinol, nucleoside, linear azol(in)e-containing peptide, acyl amino acid, cyclodipeptide, ectoine, redox-
cofactor, non-alpha poly-amino group acid, siderophore, polybrominated diphenyl ether, and indole biosynthetic gene 
clusters. 
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Supplementary Figure 2-5. Biosynthetic transcript expression of MAGs with strict PA and FL fraction 
preferences. Heatmaps of the expression (transcripts per million) of biosynthetic gene cluster transcripts from MAGs 
with an apparent PA fraction preference (DESeq2; P < 0.05; False Discovery Rate (FDR) = 5%) in left-hand panels 
labelled “PA”, and from MAGs more abundant in the FL fraction in the right-hand panels labelled “FL” from a 
oxycline, b shallow anoxic and c euxinic water layers. 
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Supplementary Figure 2-6. Expression of biosynthetic transcripts from gene clusters annotated as ladderanes. 
Heat map of the expression (transcripts per million) of biosynthetic gene cluster transcripts associated with gene 
clusters annotated by antiSMASH 6 as ladderanes. The column color annotations from top to bottom correspond to 
water layer, sampling season, and sampling fraction. The row color annotations are color-coded to differentiate MAG 
fraction preference (DESeq2; P < 0.05; False Discovery Rate (FDR) = 5%) as well as the phylum the MAG expressing 
the transcript is affiliated with. Each individual row is the aggregated TPM of a ladderane biosynthetic cluster. 
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Chapter 3 

Predicting metabolic modules in incomplete 

bacterial genomes with MetaPathPredict 
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Abstract 

The reconstruction of complete microbial metabolic pathways using ‘omics data from 

environmental samples remains challenging. Computational pipelines for pathway reconstruction 

that utilize machine learning methods to predict the presence or absence of KEGG modules in 

incomplete genomes are lacking. Here, we present MetaPathPredict, a software tool that 

incorporates machine learning models to predict the presence of complete KEGG modules within 

bacterial genomic datasets. Using gene annotation data and information from the KEGG module 

database, MetaPathPredict employs deep learning models to predict the presence of KEGG 

modules in a genome. MetaPathPredict can be used as a command line tool or as a Python module, 

and both options are designed to be run locally or on a compute cluster. Benchmarks show that 

MetaPathPredict makes robust predictions of KEGG module presence within highly incomplete 

genomes.  

 

https://creativecommons.org/publicdomain/zero/1.0/
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Introduction 

Microorganisms play a key role in all major biogeochemical cycles on Earth. Accurate and more 

complete identification of microbial metabolic pathways within genomic data is crucial to 

understanding their potential activities. This identification of pathways within genomic data, and 

assessment of their expression, provides important insight into their influence on the chemistry of 

their environment and their mediation of interactions with other organisms.  

In recent decades, the scientific community has significantly advanced its capability to 

gather and sequence genomes from microorganisms. Key steps in the process of working with 

isolated genomes, single-amplified genomes (SAGs), or metagenome assembled genomes 

(MAGs), are identifying genes coding for enzymes that catalyze metabolic reactions and inferring 

the metabolic potential of the associated organism from these data. These analyses involve 

comparing protein-coding sequences with homologous sequences from reference metabolic 

pathway databases including KEGG (Kanehisa et al., 2000) and MetaCyc (Caspi et al., 2018). 

Environmental genomes that are recovered from high-throughput sequencing samples vary in their 

degree of completeness due to numerous factors including limited coverage of low-abundance 

microbes, composition-based coverage biases, insertion-deletion errors, and substitution errors 

(Browne et al., 2020). Enzymes encoded in genomes are also missed due to limitations in protein 

annotation methods, that is, undiscovered protein families may be undetected by traditional 

homology-based methods. This can limit the ability to determine the extent to which these 

organisms (or communities) can catalyze metabolic reactions and form pathways. 

Sequencing biases, novel protein families, and incomplete gene and protein annotation 

databases lead to missing, ambiguous, or inaccurate gene annotations that create incomplete 

metabolic networks in recovered environmental genomes. This leads to a challenge in genome 

analysis: given a set of annotated genes that incompletely covers some known metabolic network, 

predict whether the network is, in fact, present in that organism (i.e. to predict whether one or more 

unobserved network components is likely present but unobserved for some reason). Existing 

algorithms for this metabolic network “gapfilling” largely fall into two categories of approaches: 

those based on network topology, such as the method utilized by Gapseq (Zimmerman et al., 2021), 

and those that utilize pre-defined KEGG module cutoffs, such as those used by METABOLIC 

(Zhou et al., 2022). Network topology and pathway gene presence/absence cutoffs, however, can 

lead to underestimation of pathways that are present, particularly in highly incomplete genomes. 
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Parsimony-based algorithms such as MinPath detect gaps in a metabolic network and identify the 

minimum number of modifications to the network that can be made to activate those reactions (Ye 

et al., 2009); its conservative approach, however, can lead to underestimation of the metabolic 

pathways present in a sample. KEMET (Palù et al.,, 2022) can detect gaps in metabolic pathways 

by searching unannotated genes in a genome with custom Hidden Markov Models (HMMs) 

created based on the genome’s taxonomy. This approach, however, is limited by the genome 

taxonomies available in the KEGG GENES database. Other modern tools, such as DRAM (Shaffer 

et al., 2020), provide annotations for metagenomic sequences but do not closely tie these to 

metabolic pathways. Flux-balance analysis (e.g. Escher-FBA; Rowe et al., 2018) utilizes genome-

scale metabolic models of organisms and requires experimental growth data for model 

parameterization; it is not easily applied to incomplete genome data, and the additional required 

experimental measurements may prohibit application in many use cases. 

An emerging set of methods utilize machine learning models to a related problem of 

classifying microbial organisms’ niches based on their genomic features. One such example is a 

tool called Traitar, which utilizes Support Vector Machines (SVMs) to predict lifestyle and 

pathogenic traits in prokaryotes based on gene family abundance profiles (Weiman et al., 2016). 

Other recent approaches have used machine learning approaches to train models using eukaryote 

MAG and transcriptome data to classify trophic mode (autotroph, mixotroph, or heterotroph) based 

on gene family abundance profiles (Lambert et al., 2021, Alexander et al., 2021). To our 

knowledge, there are no existing tools that predict the presence/absence of KEGG metabolic 

modules via machine learning models trained on gene features of high-quality genomes. 

Here, we present “MetaPathPredict”, an open-source tool for metabolic pathway prediction 

based on a deep learning classification framework. MetaPathPredict addresses critical deficiencies 

in existing metabolic pathway reconstruction tools that limit the utility and predictive power of 

‘omics data: it connects manually curated, current knowledge of metabolic pathways from the 

KEGG database with machine learning methods to reconstruct and predict the presence or absence 

of KEGG metabolic modules within genomic datasets including bacterial isolate genomes, MAGs, 

and SAGs. 

The models underlying MetaPathPredict contain metabolic reaction and pathway 

information from taxonomically diverse bacterial isolate genomes and MAGs found in the NCBI 

RefSeq (O’Leary et al., 2016) and Genome Taxonomy (GTDB, Parks et al., 2021) databases. The 
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set of metabolic modules from the KEGG database is the basis of the tool’s metabolic module 

reconstruction and prediction. The KEGG database contains metabolic pathway information for 

thousands of prokaryotic species and strains. KEGG modules are functional units of metabolic 

pathways composed of sets of ordered reaction steps. Examples include carbon fixation pathways, 

nitrification, biosynthesis of vitamins, and transporters or two-component systems (see 

Supplementary File 1a for a description of the distribution of modules covered by 

MetaPathPredict). MetaPathPredict is designed to run on the command-line locally or on a 

computing cluster and is available as a Python module on GitHub (https://github.com/d-

mcgrath/MetaPathPredict). 

A detailed overview of the MetaPathPredict pipeline is provided in Figure 1. The tool 

accepts as input gene annotations of one or more (possibly-incomplete) genomes, with associated 

KEGG ortholog (KO) gene identifiers. Because the genomes may be incomplete, it is possible that 

a KEGG module that is truly present in the organism will not be fully represented in the available 

data. MetaPathPredict first reconstructs both complete and incomplete KEGG metabolic modules, 

then predicts whether incomplete modules are in fact present. Input annotations can come from 

tools such as KofamScan (Aramaki et al., 2020), DRAM, blastKOALA (Kanehisa et al., 2016), 

ghostKOALA (Kanehisa et al., 2016), or a custom list of KO identifier gene annotations. 

MetaPathPredict classification models produced accurate results on held-out test genome 

annotation datasets even when the data were highly incomplete. A set of two deep learning models 

(5 hidden layers each) made predictions with a high degree of precision on all test datasets and 

with high recall on genomes with an estimated completeness as low as 30%. One model was 

trained to classify the presence or absence of 96 KEGG modules that were present in ≥10% and 

≤90% of training genomes. The second model classifies 94 modules with an imbalanced profile of 

presence/absence (i.e. were present in <10% or >90% of training genomes). False positive 

predictions were rare in all tests, while false negatives increased when predictions were made with 

highly incomplete gene annotation information, as would be expected. We believe that 

MetaPathPredict is a valuable tool to further enhance studies of metabolic potential in 

environmental microbiome studies as well as synthetic biology efforts. 
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Results and Discussion 

MetaPathPredict is designed to predict the presence of a metabolic module even when annotation 

support for that module is incomplete, for example due to incomplete sequencing/annotation of 

the constituent proteins. It was trained on both complete and down-sampled genomes for this task. 

Complete genomes containing the genes required to non-redundantly complete a KEGG module 

were labelled as containing the module, otherwise the module was labelled as absent. To create 

down-sampled genomes for training, protein annotations were randomly removed form complete 

genomes in increasing increments while still retaining KEGG module class labels (from those 

 

 
 
Figure 3-1. Overview of the MetaPathPredict pipeline. Input genome annotations are read into 
MetaPathPredict as a data object. The data are scanned for present KEGG modules and are formatted into a feature 
matrix. The feature matrix is then used to make predictions for all incomplete modules (or modules specified by the 
user). A summary and detailed reconstruction and prediction objects, along with gapfilling options are returned in a 
list as the final output. 
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complete genomes).  To assess MetaPathPredict’s efficacy in this “gapfilling” task, we performed 

a variety of benchmarking experiments in which the complete genomes/proteomes were down-

sampled to artificially produce incomplete modules. 

MetaPathPredict’s exhibited superior performance to other recently developed metabolic 

pathway reconstruction and prediction approaches. Its performance metrics on held-out test 

datasets suggest its models predict with high fidelity when at least 30% of gene annotations are 

recovered from a reconstructed genome (Figure 2). The efficacy of MetaPathPredict models was 

assessed using incomplete gene annotation data simulated from whole genomes, as well as from 

genomes reconstructed from reads that had been randomly down-sampled. We further 

 
 
Figure 3-2. Comparison of performance metrics of MetaPathPredict’s pair of deep learning multi-label 
classification models to next-best performing XGBoost, single-layer neural network, and XGBoost/single-
layer neural network stacked ensemble machine learning models as well as two naïve classification rules. 
Down-sampled gene annotations of high-quality genomes used in held-out test sets are from NCBI RefSeq and 
GTDB. Each boxplot displays the distribution of model performance metrics for predictions on randomly sampled 
versions of the gene annotation test sets in downsampling increments of 10% (90% down to 10%, from right to left). 
The binary classifier performances are based on the classification of the presence or absence of KEGG modules in 
the complete versions of the gene annotations that were down-sampled for model testing.  
 

Neg Pred Value

Recall Pos Pred Value

F1 Precision

10 20 30 40 50 60 70 80 90

10 20 30 40 50 60 70 80 90

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Percent of gene annotations retained

Sc
or

e

Machine learning model
MetaPathPredict
MLP (single layer)/XGBoost stacked ensemble
MLP (single layer)

XGBoost
KEGG module completeness rule
KEGG module annotation rule

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0



 81 

benchmarked MetaPathPredict against custom presence/absence classification rules, and existing 

gapfilling tools METABOLIC and Gapseq. 

 

Benchmarking MetaPathPredict on down-sampled NCBI RefSeq and GTDB data 

We compared the performance of MetaPathPredict's deep learning models to two classes of 

competitor classifiers: naive rule-based classifiers and various other machine learning model 

architectures. The evaluation was performed on test datasets comprised of isolate and 

metagenome-assembled genomes from GTDB and NCBI (30,596 total genomes; see Methods). 

When evaluating with the same sets of randomly down-sampled gene annotations, we found that 

each competing method showed poorer performance than MetaPathPredict (Figure 2). We 

assessed two naïve classification methods. First, we devised a classification rule based on the 

completeness of a KEGG module relative to the number of genes retained after downsampling: if, 

in a down-sampled genome, the number of genes involved in a KEGG module are present in at 

least the same proportion of all genes retained, the KEGG module is classified as ‘present,’ 

otherwise it is labeled ‘absent’. For example, if 50% of gene annotations were removed from a 

genome during downsampling, then any KEGG module for which 50% of its associated genes are 

retained would be reported as ‘present’. The results of this naive approach (Figure 2) show that 

the relative completeness of a KEGG module alone is not a robust classification strategy. The 

second classification rule that we tested was: for all gene annotation sets in the dataset, if any genes 

were present in an annotation set that were unique to a KEGG module (relative to other modules) 

then the module was classified as ‘present’, otherwise it was labelled ‘absent’. The results of this 

naive approach (Figure 2) suggest that the presence of rare protein annotations or genes unique to 

a certain KEGG module is not always a strong indicator of the presence of a module in a genome.  

Ultimately, the performance of these naive classifiers indicate that MetaPathPredict's models have 

the advantage of incorporating information from genes outside of KEGG modules. We additionally 

compared the performance of various machine learning model architectures. Of these, the 

XGBoost, neural network (single hidden layer) and XGBoost/neural network (single hidden layer) 

stacked ensemble architectures were the next-best performing models and are included in Figure 

2.  

MetaPathPredict’s deep learning strategy produced the best observed performance. Mean 

F1 score (a summary metric of the predictive performance) of the models was 0.96 when predicting 
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on test datasets in which 30-90% of gene annotations had been retained. MetaPathPredict rarely 

made false positive predictions based on data from highly incomplete gene annotation sets; the 

average precision of the models was consistently above 0.94 for all held-out test sets. 

MetaPathPredict also did not misclassify most negative class observations. The recall of 

MetaPathPredict’s models was greater than 0.96 on average for test datasets containing at least 

30% of the complete gene annotation data. The mean recall decreased to 0.89 and the mean 

precision decreased to 0.86 on genomes containing only 20% or less of the complete gene 

annotation data.  The models’ ability to achieve notably high recall even with significantly reduced 

sampling rates implies that it compensates for limited sequence availability by becoming more 

assertive in labeling a module as ‘present’ at the cost of decreased precision. 

 

Benchmarking MetaPathPredict against Genomes from Earth’s Microbiomes repository 

MAGs 

MetaPathPredict was further tested on gene annotations from a set of 40 high-quality metagenome-

assembled genomes from the Genomes from Earth’s Microbiomes (GEM; Nayfach et al., 2021) 

genome repository. This repository contains a set of MAGs recovered from a diverse array of 

environments that make it ideal for benchmarking MetaPathPredict’s performance (Figure 3). The 

MAGs selected from the repository had an estimated completeness of 100 and estimated 

contamination of 0, MIMAG quality score of “High Quality”. The genomes belonged to 7 

taxonomic phyla and were recovered from 9 different environments, primarily from human-

associated and built environment metagenomes (see Appendix–Figure 1 for GEM genome 

taxonomic distributions and environmental sources). We created a set of 9 GEM datasets by 

randomly downsampling the data to retain 10% to 90% of gene annotations (in 10% increments) 

as in the previous section. MetaPathPredict classified the presence/absence of KEGG modules in 

each MAG. Overall, results were comparable to MetaPathPredict’s performance on the 

GTDB/NCBI benchmark. The models excelled at predicting the presence or absence of KEGG 

modules in genomes when at least 40% of gene annotations were randomly retained. Predictions 

were less reliable though still accurate when 30% or less gene annotation data was retained.  

 



 83 

Benchmarking MetaPathPredict against existing tools on a dataset with down-sampled reads 

In addition to model assessments made through down-sampling protein annotations, we evaluated 

a second set of held-out test set genomes from the GTDB/NCBI dataset (n = 50). In this analysis, 

the sequence reads for each genome were randomly down-sampled to simulate genomes 

incompletely recovered from an environmental sample. This analysis replicates situations with 

 
 
Figure 3-3. Boxplots of performance metrics of MetaPathPredict models on high-quality bacterial GEM 
MAGs (n = 40).  Model performance metrics are for predictions on down-sampled versions of GEM genome gene 
annotations in decreasing increments of 10% (retaining 10-90% of the annotations in each test set). 
MetaPathPredict’s deep learning models were benchmarked against XGBoost and neural network model 
architectures. 
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lower sequencing coverage, which can cause proteins to be unobserved due to incomplete or error-

filled assemblies. As an example, using only 3% of reads (equivalent to an average of 1.5x 

 
 
Figure 3-4. Performance metrics boxplots of 2 deep learning classification models. Down-sampled sequence 
reads of high-quality genomes used as a second held-out test set are from NCBI RefSeq and GTDB databases. 
Panel a: Boxplots display the distribution of model performance metrics for predictions of KEGG module 
presence/absence on simulated incomplete genomes down-sampled at the sequence read level by MetaPathPredict 
models, various next-best performing machine learning architectures, and METABOLIC. Downsampling 
increments were chosen based on average estimated completeness of the test set genomes at each increment to 
reflect a range of estimated completeness thresholds. Panel b: Average estimated genome completeness 
distributions of test set genomes that were down-sampled at the sequence read level using SeqTK and then 
assembled with SPAdes. 
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coverage of the genomes), roughly 86% of the genomes’ proteins were assembled; meanwhile a 

reduction to 1% of reads caused assembly to recover ~40% of proteins. MetaPathPredict’s 

performance on this test set resembled protein annotation random sampling results (Figure 4a, 

Figure 4b), though with greater loss in precision for down-sampling <3%. MetaPathPredict had an 

average F1 score for all 190 modules of 0.96 on the second held-out test set observations that had 

an average estimated genome completeness of at least 30%. The similarity of these results to the  

gene annotation downsampling approach validates the latter approach that was used more broadly 

to assess MetaPathPredict.  

In addition to evaluating MetaPathPredict against our custom competitor models, we tested 

the software METABOLIC, which is a command line tool that performs gene annotations and 

estimates the completeness of individual KEGG modules in genomes and prokaryotic microbial 

communities (Figure 4a). METABOLIC showed much poorer recall at all levels of read sampling.  

       MetaPathPredict was also compared to another gapfilling tool, Gapseq (Figure 5a). Gapseq 

makes predictions of the presence or absence of KEGG pathways, and thus indirectly makes 

predictions of all modules and reactions they contain (instead of predictions for individual modules 

or reactions). We facilitated the direct comparison of MetaPathPredict to Gapseq by classifying a 

single KEGG pathway to be present if all modules it contained were predicted “present” by 

MetaPathPredict. MetaPathPredict outperformed predictions made by Gapseq, particularly on 

genomes with low read sampling prior to assembly.  

 

Analysis of model feature importance using SHAP 

Though the neural networks of MetaPathPredict produce accurate predictions of module 

presence/absence, it is not immediately clear what input features contribute to its decision-making 

process. To gain some insight into this, we calculated the importance of the various features of 

MetaPathPredict’s models using the SHAP method (Lundberg and Lee, 2017), a mathematical 

method to explain the predictions of machine learning models. Features with large absolute SHAP 

values play an important role in calculating a model’s predictions. SHAP values in the first model 

(trained to classify modules present in ≥10% and ≤90% of training genomes) indicated that 30 of 

the top 100 most important features (genes) influencing predictions were direct components of 

KEGG modules predicted by this model (Supplementary File 1b). In the second model (classifies 
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modules present in <10% or >90% of training genomes), 37 of the 100 most influential features 

were part of KEGG modules this model was trained to predict.  

The two models share 14 most important features out of the top 50 that are not part of 

KEGG modules. We examined these top features and found that there were a number of proteins 

annotated as sensors or transcriptional regulators (Supplementary File 1b). Also, we noted a 

number of transporters annotated as top features in both models and, interestingly, factors related 

to pathogenesis like toxins and mobile elements. Given the multi-label architecture of our models, 

it is difficult to draw direct conclusions from SHAP analysis. However, it is clear that 

MetaPathPredict’s predictions are in part influenced by select genes present in KEGG modules, 

and also to a larger extent by genes not directly participating in KEGG module reactions. 

 

 
Figure 3-5. Performance metrics boxplots of MetaPathPredict and Gapseq predictions for KEGG pathway 
map00290 (Valine, leucine, and isoleucine biosynthesis) which contains KEGG modules M00019, M00432, 
M00535, and M00570. For MetaPathPredict predictions, the whole KEGG pathway was considered present if the 
aforementioned KEGG modules were all present. Down-sampled sequence reads of high-quality genomes used as a 
second held-out test set are from NCBI RefSeq and GTDB databases. Line segments display model performance 
metrics for MetaPathPredict and Gapseq predictions of KEGG pathway map00290 presence/absence on simulated 
incomplete genomes down-sampled at the sequence read level. Downsampling increments were chosen based on 
average estimated completeness of the test set genomes at each increment to reflect a range of estimated completeness 
thresholds. 
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Conclusion 

MetaPathPredict is an open-source tool that can be used to characterize the functional potential of 

one or more sample genomes by detecting complete KEGG modules and predicting the presence 

or absence of those that are incomplete or missing. The tool accepts sets of gene annotations of 

individual genomes in KO gene identifier format as input. This type of annotation format can be 

acquired by annotating a genome of interest using KEGG-based annotation tools such as 

KofamScan (Aramaki et al., 2020), DRAM, blastKOALA (Kanehisa et al., 2016), or 

ghostKOALA (Kanehisa et al., 2016). MetaPathPredict also provides gene gapfilling options by 

listing putative KO gene annotations that could fill in missing gaps in predicted modules.  

MetaPathPredict further validates the use of gene family presence or absence within a 

genome as a feature for bacterial metabolic function predictions. The performance metrics of 

MetaPathPredict on NCBI/GTDB and GEM test datasets validated the use of deep learning models 

to predict the presence/absence of KEGG metabolic modules with high fidelity on sparse to near-

complete bacterial genomes. MetaPathPredict’s multi-label classification models consistently 

made predictions with high precision and recall on simulated and real genomes using gene 

annotation and sequence read downsampling methods. The predictive power of the deep learning 

models was most limited when predicting on 10%-30% of protein annotations, and when the mean 

estimated completeness of reconstructed genomes from down-sampled reads was below 30%. We 

suggest that optimal performance with MetaPathPredict can be achieved when at least 40% of a 

genome has been recovered in an input bacterial gene annotation dataset. 

Based on our performance tests of MetaPathPredict, the recall of its models was robust 

(mean > 0.9) even when protein sets were down-sampled to 10%. However, MetaPathPredict also 

surprisingly shows a decrease in precision (i.e. an increase in false calls of module presence). This, 

combined with surprisingly high recall rates at such low sampling rates, suggests that the model 

directly compensates for low general sequence availability by increasing aggressiveness in calling 

a module “present”. This over-exuberant positive class prediction problem arose in our analyses 

only when <30% of gene annotation data was retained. Though such low sampling rates are not 

expected to be typical, it suggests an opportunity for method improvement. 

Due to the multi-label architecture of MetaPathPredict’s models, it is difficult to draw 

connections between the important features identified for the models and individual KEGG 

modules. However, the presence of sensing proteins (e.g. iron sensing and chemotaxis), pathogen 
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proteins (e.g. toxins and lysins), and transporters in these lists may indicate the contribution of 

lifestyle and environmental factors in predicting presence or absence of individual modules. 

Additionally, transcriptional regulators may be important due to their outsized influence on the 

expression of many genes (and thus modules) in each organism. Perhaps the most intriguing 

finding was that components of mobile elements (transposases) were found to be important 

features of both models. This could indicate that insertional elements are being used by the model 

to indicate, e.g., evolutionary lineage, which could be used to inform predictions of KEGG module 

composition. 

MetaPathPredict facilitates more complete and accurate reconstruction of the metabolic 

potential encoded within bacterial genomes from a diverse array of environments and will enhance 

the ability to infer what metabolisms they are capable of, and/or how they may respond to 

perturbations. MetaPathPredict connects the field of machine learning with the growing 

community of environmental microbiologists using genomic sequencing techniques and will help 

transform and improve the way they work with environmental genomic datasets. 

 

Materials and Methods 

 

Filtering genome database metadata, downloading high-quality genomes, and gene 

annotations 

The NCBI RefSeq (Release 205) database metadata file was downloaded and filtered to retain only 

the information for all bacterial genomes classified as “Complete genome”. These are defined on 

the NCBI assembly help webpage: “all chromosomes are gapless and have no runs of 10 or more 

ambiguous bases (Ns), there are no unplaced or unlocalized scaffolds, and all the expected 

chromosomes are present (i.e. the assembly is not noted as having partial genome representation). 

Plasmids and organelles may or may not be included in the assembly but if present, then the 

sequences are gapless.” This resulted in 17,491 complete NCBI genomes. 

The GTDB bacterial metadata file for release 95 was downloaded and filtered to keep the 

information for all genomes with an estimated completeness greater than 99, an estimated 

contamination of 0, and a MIMAG (Bowers et al., 2017) quality score of “High Quality”. A total 

of 30,760 non-redundant bacterial genomes from the two database metadata files were downloaded 

using the ncbi-genome-download command line tool (Blin, K.). The RefSeq genomes (17,491 
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total) were downloaded from the RefSeq FTP server, and the GTDB genomes (13,105 total) were 

downloaded from the GenBank FTP server (Appendix–Figure 2). Genes were called using 

Prodigal (Hyatt et al., 2010), and the KofamScan command line tool (Aramaki et al., 2020) was 

used to generate gene annotations (in KO gene identifier format) for all of the genomes using the 

KOfam set of HMMs available for download from the KEGG database (Kanehisa et al., 2002). 

KofamScan-derived annotations had to surpass their HMM’s adaptive scoring threshold to be 

included in the training dataset. This approach provides resilience to using specific e-value cutoffs 

by preventing inflation of our training and assessment datasets with less-confident gene 

annotations. 

 

Formatting gene annotation data, fitting KEGG module classification models 

The full dataset of simulated incomplete genomes (n = 305,960) was split so that 75% of genomes 

were used for training and the remaining 25% as a test dataset. The training dataset was further 

split into 80% training/20% validation test sets. Each observation in the train/test/validation 

datasets contained a vector of length 8,853 that consisted of KO gene identifier (protein family) 

presence/absence indicated by ones and zeroes, respectively.  

Training and test sets contained both complete and incomplete gene annotations of 

bacterial genomes from a diverse array of phyla (Appendix–Figure 2). The incomplete annotations 

used in training and testing of MetaPathPredict’s models were constructed from complete genome 

annotation observations that were randomly down-sampled to retain 10-90% of the total gene 

content while the presence/absence class labels were kept unchanged for all down-sampled data. 

All complete and down-sampled versions of genomes were retained. The training datasets had a 

size of 305,960 observations, and the test datasets each contained 76,490 observations. The percent 

of observations with a positive class (a complete KEGG module ‘present’ in the gene annotations) 

in the training and test datasets varied, with a mean of 26.2% (Appendix–Figure 3).  

The gene copy number data of the downloaded genomes was formatted in a matrix 

containing KO gene identifier presence/absence (1 or 0, respectively) in columns and genomes in 

rows. The label of each model was the presence/absence (1 or 0) of a KEGG module, as was 

determined using the KEGG modules downloaded from the KEGG database and the Anvi’o 

Python module (Eren et al., 2015). The “unroll_module_definition” function from the Anvi’o 

module was utilized with downloaded KEGG module data to create a list of all possible KEGG 
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Ortholog combinations to complete each module. For the module to be categorized as present, at 

least one possible combination of every step of the module had to be present in a genome, 

otherwise it was designated as absent. Two models were constructed for 190 KEGG modules for 

which at least 306 (0.1%) of the complete genomes (n = 30,596) contained the module genes, due 

to an improvement in performance when two models were trained (one model for the more 

balanced labels, one for highly imbalanced labels) instead of one. The models were trained using 

the gene annotation data of the genomes consolidated from the NCBI and GTDB databases. The 

first model was trained to classify modules within ≥10% and ≤90% of training genomes, while the 

second model classified modules within <10% or >90% of training genomes. The constructed 

models classify the presence or absence of complete KEGG modules based on the gene annotations 

of a genome.  

A deep learning classification approach was chosen to model the relationship between 

whole genome KO gene identifier annotation data and the presence of metabolic modules. The 

same training data was used to train both of the models. MetaPathPredict is built on the Keras deep 

learning library (Chollet et al., 2015). L2-regularization was utilized to adjust hidden unit weights 

during training, with a learning rate of 0.001. Features used in each training dataset for 

classification were the presence or absence of protein families that were assigned KO gene 

identifiers. A deep learning architecture consisting of one input layer, five hidden layers, and one 

output layer were used as the machine learning architectures in MetaPathPredict’s models. The 

input layer consisted of the presence/absence vector of KO gene identifiers (n = 8,853), and the 

hidden layers each contained 2,048 hidden units and were fully connected. The output layer of the 

first and second models contained 94 and 96 nodes for a total of 190 module presence/absence 

predictions when prediction outputs from both are combined. 

Stratified sampling is a sampling method that ensures that all groups within the training 

and test data are represented in the same proportion as they are in the population as a whole. A 

multi-label stratified sampling method (Sechidis et al., 2011) was used to generate 75% 

train/25% test dataset splits that each contained data observations with preserved proportions of 

positive (‘KEGG module present’) and negative (‘KEGG module absent’) classes that were 

present in the genome dataset (see boxplot of the distribution of module presence/absence classes 

in Appendix–Figure 2, and an example of a held-out test dataset in Appendix–Figure 4).  The 
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training dataset was further separated into 80% train/20% validation dataset splits to fit the deep 

learning models.  

The binary cross entropy loss function was used in tandem with the Adaptive Moment 

Estimation (Adam) optimizer. The input and hidden layers utilized the rectified linear unit (ReLu) 

activation function; the output layer contained a sigmoid activation function. Dropout (Srivastava 

et al., 2014) was applied to 10% of edges at all layers except the final layer to avoid overfitting the 

training data. The input and hidden layers utilized the “he_uniform” layer weight initializer, and 

each of these layers contained 2,048 hidden units.  

We assessed and benchmarked MetaPathPredict’s models against two naïve classification 

methods. First, we devised a simple model that predicted the presence of a KEGG module if, after 

downsampling test sets of gene annotations, the proportion of module genes present in the dataset 

was greater than or equal to the percentage of annotations retained in the dataset. If the proportion 

of genes involved in a KEGG module were present in a dataset observation at least equivalently 

to the proportion of gene annotations retained after downsampling, the module was classified as 

‘present’, otherwise it was classified as ‘absent’. The second naïve classification rule was: for all 

gene annotation sets in the dataset, if any genes were present in an annotation set that were unique 

to a KEGG module (relative to all other KEGG modules) then the module was classified as 

‘present’, otherwise it was labelled ‘absent’. We additionally benchmarked MetaPathPredict’s 

deep learning models against several other machine learning model types including single-layer 

neural network, XGBoost, and neural network/XGBoost stacked ensemble models, each trained 

on the same input data. 

 

Evaluating models on test data, including test data randomly down-sampled to simulate 

varying degrees of genome incompleteness 

Each of MetaPathPredict’s models was validated on a held-out test set consisting of a combination 

of 76,490 complete and simulated incomplete genomes, and the performance metrics were 

extracted using the Scikit-learn (Pedregosa et al., 2011) Python module. The genome annotations 

in each test set were created by randomly downsampling complete genomes to simulate recovered 

gene annotations from incomplete genomes. 10% to 90% of genes from each annotation set were 

randomly retained (in increments of 10%) and used as input for MetaPathPredict predictions of 
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KEGG module presence/absence. The performance metrics used in evaluating the models were 

precision, recall, F1 score, positive predictive value, and negative predictive value (Table 1). 

 

Metric Definition 

Precision true positive/(true positive + false positive) 

Recall true positive/(true positive + false negative) 

Specificity* true negative/(true negative + false positive) 

F1 score 2 × ((precision × recall)/(precision + recall)) 

Positive predictive value 
recall × prevalence / ((recall × prevalence) + ((1 – 

specificity) × (1 – prevalence)) 

Negative predictive value 
specificity × (1 – prevalence) / ((1 – recall) × 

prevalence) + (specificity × (1 – prevalence)) 

Prevalence* 
(true positive + false negative) / (true positive + 

false positive + true negative + false negative) 

 

Table 3-1. Definitions of machine learning model performance metrics used to assess MetaPathPredict models. 

*Specificity and prevalence are defined due to their use in the definitions of negative and positive predictive value. 

 

Testing models with a set of high-quality metagenome-assembled genomes from the 

Genomes from Earth’s Microbiomes online repository 

MetaPathPredict was further validated on another test set of genome annotations extracted from 

the GEM repository of MAGs. The GEM metadata file was downloaded from the repository and 

filtered to retain a random sample of 40 MAGs with a CheckM2 (Chklovski et al., 2023) estimated 

completeness of 100, an estimated contamination of 0, and a MIMAG quality score of “High 

Quality”. The method for this assessment was the same as was described above for testing 

MetaPathPredict model performances on the held-out test data. 
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Evaluating models on test data down-sampled at the read level 

A second held-out set of complete genomes (n = 50), independent of the training dataset, was 

downloaded from NCBI/GTDB databases using the SRA Toolkit (SRA Toolkit Development 

Team) and SRA explorer (Phil Ewels). The raw sequencing reads were filtered using fastp (Chen 

et al., 2018), and the quality-filtered reads were randomly down-sampled using seqtk (Li, H. 2012). 

Down-sampled reads were assembled into genomes using the SPAdes assembler (Bankevich et 

al., 2012), genes were called with Prodigal and then annotated using KofamScan. 

MetaPathPredict’s deep learning models were then used to predict the presence or absence of all 

190 KEGG modules in each genome and predictions were then cross-referenced with their known 

presence/absence based on the unmodified test dataset. In addition to simple approaches described 

above, the METABOLIC (Zhou et al., 2022) and Gapseq (Zimmerman et al., 2021) tools were 

evaluated on the same benchmark dataset. Both tools were used with default settings. Gapseq 

makes predictions of the presence or absence of entire KEGG pathways, and therefore it was 

benchmarked against MetaPathPredict by evaluating predictions for the presence or absence of the 

KEGG pathway map00290 (Valine, leucine, and isoleucine biosynthesis). This pathway consists 

of KEGG modules M00019, M00432, M00535, and M00570. In order to facilitate a direct 

comparison to Gapseq’s predictions, the whole KEGG pathway was considered present if the 

aforementioned KEGG modules were all predicted as present by MetaPathPredict, otherwise it 

was classified as absent. 

 

Gapfilling for incomplete modules predicted as present 

MetaPathPredict provides enzyme gapfilling options for KEGG modules predicted as present by 

suggesting putative KO gene annotations missing from an input genome’s gene annotations that 

could fill in missing gaps in predicted modules. 

 

Data Availability 

Genomic data used for creation of MetaPathPredict models is available from the NCBI Bacterial 

RefSeq Genomes database (https://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/, version 209) 

and the Genome Taxonomy Database (https://data.gtdb.ecogenomic.org/releases/latest/, version 

r95). The GEM genomes used for model benchmarking are available at the GEM repository 

https://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/
https://data.gtdb.ecogenomic.org/releases/latest/
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(https://portal.nersc.gov/GEM/genomes/). The sequencing reads used for model benchmarking are 

available at the NCBI Sequence Read Archive website (https://www.ncbi.nlm.nih.gov/sra). 

 

Code Availability 

The scripts used for all data processing, model training, model benchmarking, and figure creation 

used in this study are available in the following GitHub repository: https://github.com/Microbiaki-

Lab/MetaPathPredict_workflow. The MetaPathPredict Python module is available from the 

following GitHub repository: https://github.com/d-mcgrath/MetaPathPredict and XetHub 

repository: https://xethub.com/dgellermcgrath/MetaPathPredict. 

 

Source Data 

Links to all datasets used in this analysis, including source data used to generate the figures in this 

chapter can be found here: https://elifesciences.org/articles/85749. 
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Appendix–Figures 

 

 
Supplementary Figure 3-1. Panel a: Bar chart of the taxonomic distribution of genomes (n = 40) from the GEM 

repository used during model validation. Panel b: Bar chart of the environmental sources of metagenomes the 

MAGs from this test set were recovered from. 
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Supplementary Figure 3-2. Distribution of phyla of bacterial genomes from which annotation data was used 

during model training and testing. See Supplementary File 1c for the full metadata table. 
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Supplementary Figure 3-3. Violin plots of the percent of positive “KEGG module present” classes for genomes 

from MetaPathPredict’s deep learning training and test datasets for both of its models (model #1 on the left-

hand side; model #2 on the right-hand side). Each train/test split contains the same distribution of positive and 

negative classes. 
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Supplementary Figure 3-4. Heatmap of held-out test data for the set of features (KEGG Ortholog 

presence/absence) used by MetaPathPredict’s deep learning models. The annotation row on the left-hand side of 

the plot is annotated with classes and predictions for KEGG module M00122 (cobalamin biosynthesis), and is sorted 

by the percentage of protein annotations retained in each observation (increasing in protein annotations retained from 

top to bottom). 
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Abstract 

Previous studies of microbial communities in subseafloor sediments reported that microbial 

abundance and diversity decrease with sediment depth and age, and microbes dominating at depth 

tend to be a subset of the local seafloor community. However, the existence of geographically 

widespread, subsurface-adapted specialists is also possible. Here, we use metagenomic and 

metatranscriptomic analyses of the hydrothermally heated, sediment layers of Guaymas Basin 

(Gulf of California, Mexico) to examine the distribution and activity patterns of bacteria and 

archaea along thermal, geochemical and cell count gradients. We find that the composition and 

distribution of metagenome-assembled genomes (MAGs), dominated by numerous lineages of 

Chloroflexota and Thermoproteota, correlate with biogeochemical parameters as long as 

temperatures remain moderate, but downcore increasing temperatures beyond ca. 45ºC override 

other factors. Consistently, MAG size and diversity decrease with increasing temperature, 

indicating a downcore winnowing of the subsurface biosphere. By contrast, specific archaeal 

MAGs within the Thermoproteota and Hadarchaeota increase in relative abundance and in 

recruitment of transcriptome reads towards deeper, hotter sediments, marking the transition 

towards a specialized deep, hot biosphere.  

 

Introduction 

The interplay between temperature stress and energy availability determines microbial survival in 

the subsurface biosphere, and delineates the extent and limits of life in the deep subsurface 

biosphere (Hoehler et al., 2013; Heuer et al., 2019). As microbial communities in cool, relatively 

shallow subsurface sediments transition into more deeply buried and increasingly warm and finally 

hot sediments, it should be possible to track how subsurface bacteria and archaea react to these 
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gradually harsher regimes downcore on the levels of cellular activity and community change. 

While microbial abundance and diversity are generally expected to decline downcore (Starnawski 

et al., 2017; Kirkpatrick et al., 2019), it is also possible that particular subsurface-adapted microbial 

populations benefit from conditions that would eliminate others, and constitute a specialized deep, 

hot biosphere. Recent studies indicated active microbial populations in extremely deep and hot 

sediments, yet without sequence-based identification (Heuer et al., 2020; Beulig et al., 2022). To 

learn more about bacterial and archaeal communities of the deep, hot biosphere from a genomic 

perspective, downcore trends of diversity and activity in increasingly hot sediments need to be 

examined, and microbial communities and their genomes have to be tracked downcore, as far as 

microbial biomass and DNA yield allow. Yet, investigating downcore changes in microbial 

abundance, community composition and activity in well-characterized geochemical and thermal 

gradients requires a suitable field site where extensive physical, chemical and microbial gradients 

can be sampled in adequate resolution by sediment coring and drilling.  

An ideal natural laboratory for such a research task is Guaymas Basin, a hydrothermally-

active ocean spreading center in the Gulf of California, covered by several hundred meters of 

sediment that host basaltic sill intrusions (Lizarralde et al., 2023) and strong geothermal heat flow 

(Neumann et al., 2023). Pyrolysis of buried organic carbon in these organic-rich sediments 

produces a complex milieu of petroleum hydrocarbons, including light hydrocarbons and methane, 

alkanes, and aromatic compounds, as well as carboxylic acids, and ammonia (Von Damm et al., 

1985; Simoneit et al., 1995). These compounds are transported via hydrothermal fluids through 

Guaymas Basin’s thick sediments, supporting diverse and active microbial communities (Teske et 

al., 2014). Collectively, these communities not only perform chemosynthetic carbon fixation and 

heterotrophic organic matter remineralization, but they also assimilate fossil carbon into the 

benthic biosphere (Pearson et al., 2005). Yet, few studies to date have explored the microbiology 

of deep subsurface sediments in Guaymas Basin. Methanogens were enriched from sediments 

collected during Deep Sea Drilling Project Leg 64 to Guaymas Basin (Oremland et al., 1982), and 

bacterial and archaeal communities in piston cores were surveyed using 16S rRNA amplicon 

sequencing (Ramírez et al., 2020; Teske et al., 2019; Vigneron et al., 2014). Aside from these 

studies, the spatial extent, diversity and activity of the deep biosphere in Guaymas Basin have 

remained largely unknown. 
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International Ocean Discovery Program (IODP) Expedition 385 drilled into Guaymas 

Basin at eight locations that differ in their degree of hydrothermal influence and heatflow 

(Neumann et al., 2023), and to survey their resulting characteristics (Teske et al., 2021a). Drilling 

sites followed broadly a northwest-to-southeast transect across the northern Guaymas axial trough 

(Figure 1). Two neighboring sites (U1545 and U1546) on the northwestern end of Guaymas Basin 

(Teske et al., 2021b, Teske et al., 2021c) essentially differ by the presence of a massive, thermally 

equilibrated sill between 350 to 430 meters below seafloor (mbsf) at Site U1546 (Lizarralde et al., 

2023). Two drilling sites (U1547, U1548) targeted the hydrothermally active Ringvent area, 

approximately 28 km northwest of the spreading center (Teske et al., 2019), where a shallow, 

recently emplaced and hot sill creates steep thermal gradients and drives hydrothermal circulation 

(Teske et al., 2021d). Drilling Site U1549 (Teske et al., 2021e) explores the periphery of an off-

axis methane cold seep, Octopus Mound, located ~9.5 km northwest of the northern axial graben 

(Teske et al., 2021f). 

These contrasting sites provide an opportunity for a comprehensive analysis of subsurface 

microbiota at different temperatures and depths. To assess the environmental distribution and 

genomic potential of microbes living in the deep biosphere of Guaymas Basin, we analyzed 

 
Figure 4-1. Locations, cell count profiles and temperature profiles for IODP Expedition 385 drilling sites. 
A Guaymas Basin bathymetry with drill sites. B Bathymetry of Ringvent with drill sites within and on the 
periphery of the Ringvent site. C Cell counts for drill sites (U1545, U1546, U1547, U1548, and U1549) where 
metagenomic and metatranscriptomic samples were collected. D Temperature profiles for drill sites where 
metagenomic and metatranscriptomic samples were collected. The lines indicated linear functions that were fitted 
to in-situ temperature measurements. Bathymetric maps, courtesy of D. Lizarralde (WHOI). 
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reconstructed metagenome-assembled genomes (MAGs) from depths ranging from 0.8 to 219.5 

mbsf at these thermally and geochemically contrasting sites. We also provide evidence for the 

activity of specific bacterial and archaeal lineages by mRNA transcript mapping on bacterial and 

archaeal MAGs. 

 

Results and Discussion 

 

Sampling sites and depths 

Metagenomes were produced from sediment samples at drilling sites U1545B to U1549B that 

follow a northwest-to-southeast transect across the northwestern flanking region of Guaymas 

Basin (Figure 1A) and include an off-axis hydrothermal system, the Ringvent site (Figure 1B). 

The samples were selected to coordinate with depths used for separate ongoing analyses, and 

ranged from 1.7 m to 219.5 mbsf at Site U1545B, 0.8-16.3 mbsf at U1546B, 2.1-75.7 mbsf at 

U1547B, 9.1-69.4 mbsf at U1548B, and 16.5 mbsf at U1549B (Figure 1; Table 1). For all samples, 

a wide range of geochemical parameters was analyzed shipboard (Supplementary Dataset 1). The 

sites represent distinctly different thermal gradients and cell densities; generally, sites with steeper 

downcore temperature gradients are characterized by more rapidly decreasing cell counts (Figure 

1C, D). U1545B is the reference site for IODP Expedition 385 because of the absence of seepage, 

hydrothermal influence, and massive sill intrusions (Teske et al., 2021b). Here, metagenome 

libraries extended down to 219.5 mbsf, at in-situ temperatures of 54.3°C. Cell count trends for 

sites U1545, U1546 and U1549 were similar, and showed a decrease over three orders of 

magnitude within 100 meters (Figure 1C). At the hot Ringvent sites U1547B and U1548B 

(Neumann et al., 2023; Teske et al., 2021d), comparable temperatures of 50-55°C were already 

reached near 70 mbsf (Figure 1D), and cell counts decreased by four to five orders of magnitude 

within this depth range (Figure 1C). To describe temperature-related trends in MAG recovery and 

diversity, we categorized our samples into three groups according to temperature; cool (2-20°C), 

warm (20-45°C) and hot (>45°C).  

 

Subsurface Biogeochemical zonation 

Most samples collected for metagenomes are from sediments within the sulfate-reducing zone 

where sulfate is still available at near-seawater concentrations (~28 mM) or becomes gradually 
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depleted with depth (Table 1). At those same sediments hydrogen sulfide concentrations are 

gradually increasing towards multiple millimolar concentrations. Metagenome samples from site 

U1545B also include depths spanning the sulfate-methane transition zone (SMTZ) at ~ 64 mbsf 

where sulfate is consumed by microbial sulfate reduction, and methane begins to accumulate. At 

the SMTZ sulfate concentrations drop from 21.1 mM to 0.7 mM, sulfide reaches peak 

concentrations of 8.9 mM, and methane concentrations increase from picomolar to 1.5 mM (Table 

1). High methane concentrations persist also in deeper samples from U1545B, and decrease only 

in the very deepest samples (> 200 msbf). The deep subsurface methane reservoir at this and other 

sites results from long-term thermogenic and biological methane accumulation (Bojanova et al., 

2023). In contrast to site U1545B, samples from Ringvent sites U1547B and U1548B show gradual 

downcore sulfate consumption (from 27.9 to 18.8 mM) but not depletion, combined with hydrogen 

sulfide accumulation (max. 7.1 mM at 75.7 mbsf at U1547B); methane does not accumulate in 

these samples. Ammonia concentrations increase from < 1 mM towards 3 to 5 mM downcore at 

most sites, and reach 9 to 25 mM below the SMTZ in U1545B. Dissolved inorganic carbon (DIC) 

and alkalinity concentrations are generally highest at Site U1545B where they peak in the SMTZ 

(~28 and 60 mM, respectively). Ammonia, DIC and alkalinity remain elevated not only in the 

upper sediment column but also in the deeper samples of Site U1545B, presumably due to 

cumulative bioremineralization of buried organic matter over time at this undisturbed site. In 

contrast, the Ringvent samples (sites U1547B and U1548B) generally have lower ammonia, 

alkalinity and DIC porewater concentrations, suggesting reduced remineralization of organic 

matter at these sites, most likely a consequence of hydrothermal activity due to recent volcanic sill 

emplacement (Teske et al., 2019). Dissolved organic carbon (DOC) remained ~10 to 20 mg/L in 

most samples but increased towards 70 mg/L in the sulfate-methane transition zone of U1545B 

and remained between 20 and 50 mg/L in the deeper sediments of U1545B. This suggests DOC 

enrichment and decreased heterotrophic DOC consumption in deep methanogenic sediments of 

U1545B where energy-rich electron acceptors for heterotrophic carbon remineralization are not 

available. While total nitrogen and total organic carbon generally decrease with depth at all sites, 

the Ringvent sites have moderately elevated TOC/TN ratios (Table 1), likely reflecting the 

influence of nitrogen-depleted hydrothermal carbon sources (Ramírez et al., 2020). Total 

petroleum hydrocarbon, saturated and polyaromatic hydrocarbon content remain each quite similar 

across a wide range of sediments and temperatures, before increasing considerably in hot 
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sediments (>80°C) near deep sill intrusions (Supplementary Dataset 1, and Supplementary Figures 

1A, B). 

 

MAG diversity, distribution, and evidence of activity 

A total of 142 metagenome-assembled genomes (MAGs) were recovered from a co-assembly of 

all metagenomic samples (Supplementary Dataset 2). MAGs that matched those from negative 

controls were excluded from further analysis (Supplementary Dataset 3). For downstream analysis, 

we retained 89 bacterial and archaeal MAGs that had at least ≥ 50% bin completeness and ≤ 10% 

bin contamination (Bowers et al., 2017). Genome completeness ranged from ~50 to 97% 

(Supplementary Figure 2; Supplementary Dataset 4).  

Of these 89 MAGs, 26 MAGs were assigned to 6 archaeal phyla, and 63 MAGs were 

assigned to 13 bacterial phyla (Figure 2); the phylogenetic spectrum includes lineages documented 

previously in 16S rRNA gene amplicon sequencing of shallow subsurface sediments (Ramírez et 

al., 2020; Teske et al., 2019), and in metagenomic surveys of shallow hydrothermal sediments of 

Guaymas Basin (Dombrowski et al., 2018). In parallel to downcore decreasing cell numbers 

(Figure 1), MAG diversity decreased downcore at all sites as temperatures increased (Figure 2). In 

samples from cool (3-20°C) sediments from all sites, reads mapped to diverse bacterial and 

archaeal phyla, including the bacterial phyla Chloroflexota, Acidobacteriota, Desulfobacterota, 

WOR-3, Aerophobota, and Bipolaricaulota, and the archaeal phyla Thermoproteota, 

Thermoplasmatota, and Aenigmatarchaeota (Figure 2). In samples with warm temperatures (20-

45°C), reads were predominantly assigned to bacterial phyla Chloroflexota (mostly order-level 

group G1F9), Acidobacteriota, WOR-3 (order-level group UBA3073), Aerophobota and 

Bipolaricaulota, and to archaeal phyla Thermoproteota, Hadarchaeota, and Aenigmatarchaeota. At 

hot temperatures (45-60°C), bacterial reads mapped primarily to a single Chloroflexota MAG 

(class Dehalococcoidia), a single WOR-3 MAG and two Aerophobota MAGs (class Aerophobia). 

In contrast, several Archaeal MAGs show a marked preference for hot sediments, and mapped to 

the Thermoproteota (class Bathyarchaeia), and Hadarchaeota (class Hadarchaeia). Our recovered 

MAGs reflected metabolisms predicted for the deep biosphere including sulfur, nitrogen and 

methane cycling, hydrocarbon degradation, and carbon fixation (Chklovski et al., 2023; 

Supplementary Note, and Supplementary Figures 3 and 4). Desulfobacterota MAGs linked to 

sulfate reduction contained the dsr operon (e.g., dsrB/J/K/D) that is essential for dissimilatory 
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sulfate reduction (Anantharaman et al., 2018), and were recovered from shallow sediments with 

 
Figure 4-2. Heatmap of MAG relative abundance. Each column shows the percentage of total pre-processed 
metagenomic reads (relative abundance) that mapped to all 89 MAGs, for samples ordered by increasing 
temperature from left to right on the x-axis (annotated by site numbers and depths in mbsf). Temperature regimes 
(Cool, Warm, and Hot) are separated by vertical dashed lines. Each row shows the abundance profile of an 
individual MAG across all samples. MAGs are color-coded by phylum on the left, and annotated by GMP 
(Guaymas MAG Prokaryote) numbers 001 to 089 and order-level affinity to the right. RKPM, reads mapped per 
kilobase of genome, per million mapped reads. Panel section A denotes bacterial MAGs and panel section B 
denotes archaeal MAGs. 
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available sulfate. These MAGs also shared potential for iron reduction using extracellular electron 

transfer mechanisms, such as mtrA, mtoA, and eetB genes (Garber et al., 2020; Chatterjee et al., 

2021). Marker genes of dissimilatory iron reduction (Garber et al., 2020; e.g., dmkA, dmkB, eetA, 

eetB, fmnA, fmnB, pplA, ndh2) with the potential for extracellular electron transfer (EET) were 

identified in 86/89 MAGs within all recovered phyla (Supplementary Note, and Supplementary 

Datasets 5, 6).   

To determine any intra-phylum differences in metabolic activity, we mapped reads of the 

Guaymas Basin subsurface metatranscriptome (Mara et al., 2023) to our recovered MAGs, for 

samples collected at the same sites (Figure 3). Since the metagenome and metatranscriptome of 

the Guaymas Basin subsurface remain incompletely covered by sequence data, the absence of 

transcript read mapping to particular MAGs cannot be taken as evidence of microbial inactivity. 

Microbial activity of the deep biosphere is certainly constrained but not eliminated by substrate 

and energy limitation (Hoehler et al., 2013). To avoid these ambiguities that are inherent in 

negative transcript mapping results, we focus on positive transcript mapping results that support 

the activity of specific MAGs in the subsurface. Actively transcribed genes are present for MAGs 

within all phyla discussed here, albeit at variable levels; some MAGs within individual phyla show 

no or much lower apparent activity than others (Figure 3).  

Most transcriptionally active bacterial and archaeal MAGs from warm and hot sediments 

belong to uncultured lineages previously detected in hydrothermal chimneys, sulfidic springs and 

seeps, and in Guaymas Basin surficial hydrothermal sediments (Figure 3). Bacterial transcripts 

from warm sediments were affiliated with four MAGs (GMP_018, GMP_083, GMP_036, and 

GMP_057) of the Chloroflexota GIF19 lineage, a dominant group in carbonate hydrothermal 

chimneys (Frouin et al., 2018). Other transcripts from warm sediments mapped to MAG GMP_019 

within the dehalogenating Dehalococcoides lineage, to MAGs GMP_007 and GMP_011 within 

the subsurface Aerophobota, and MAG GMP_58 within the Bipolaricaudota lineage UBA7950, 

found at the Lost City hydrothermal vents (Brazelton et al., 2022). Archaeal transcripts in warm 

and hot sediment samples were mapped to MAG GMP_008 within the Hadarchaeota, MAG 

GMP_075 of the Aenigmatarchaeota QMZP01 lineage from a terrestrial sulfur spring (Hahn et al., 

2022), MAG GMP_040l within the thermoproteotal brine pool lineage TCS64 (Zhang et al., 2016), 

and to three Thermoproteota MAGs GMP_002, GMP_026, and GMP_039 within the B26-1 

lineage from Guaymas Basin hydrothermal sediments (He et al., 2016). Transcriptional activity of 
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these MAGs suggests their inherent physiological adaptations to warm and reducing habitats are 

advantageous in the Guaymas Basin subsurface as well.  

 

 
 
Figure 4-3. Heatmap of MAG Metatranscriptomic read recruitment. Each column shows the percentage of 
total pre-processed metatranscriptome reads (relative abundance) that mapped to all 89 MAGs, for samples 
ordered by increasing temperature from left to right on the x-axis (annotated by site numbers and depths in mbsf). 
Temperature regimes (Cool, Warm, and Hot) are separated by vertical dashed lines. Each row shows the 
abundance profile of an individual MAG across all samples. MAGs are color-coded by phylum on the left, and 
annotated by GMP (Guaymas MAG Prokaryote) numbers 001 to 089 and order-level affinity to the right. RKPM, 
reads mapped per kilobase of genome, per million mapped reads. Panel section A denotes bacterial MAGs and 
panel section B denotes archaeal MAGs. 
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The influence of environmental factors on MAG composition 

The relationship between environmental parameters (Supplementary Dataset 1) and the taxonomic 

composition of MAGs from cool (2-20°C), warm (20-45°C), and hot temperatures (45-62°C) was 

investigated using non-metric multidimensional scaling (nMDS) (Figure 4) and Canonical 

Correspondence Analysis (CCA) (Supplementary Figure 5). In both analyses, bacterial and 

archaeal MAGs clustered consistently by temperature, comparable to previous analyses of 

temperature-dependent microbial community composition in surficial sediments in Guaymas 

Basin (Teske et al., 2021f). In particular, MAGs from hot sediments aligned with temperature as 

the strongest influencing factor (Figure 4). Total sulfide concentration (H2S) was aligned with 

temperature in the CCA plot (Supplementary Figure 5). For samples from warm sediments, nMDS 

analyses revealed that methane, alkalinity, and dissolved inorganic carbon (DIC) concentrations 

exerted a significant effect (p < 0.05) on the MAG community (Figure 4). For cool sediments, 

nMDS and CCA showed consistently that MAGs clustered in the direction of total organic carbon 

(TOC) and total nitrogen (TN) content, CO concentration, pH and salinity (Figure 4, 

Supplementary Figure 5). The influence of TN and TOC on MAG diversity in cool samples may 

reflect increased availability of labile sources of dissolved and particulate organic matter in near-

surface sediments. The consistent impact of pH and salinity on MAG diversity in cool samples, in 

both CCA and nMDS analyses, reflects persistent downcore trends towards lower pH and slightly 

reduced porewater salinity (Supplementary Dataset 1).  

To summarize, the environmental parameters that impact MAG composition change 

downcore, from surface-linked factors such as TN, TOC, pH and salinity that impact MAGs in 

cool sediments, to biogeochemical parameters reflecting terminal organic matter degradation, such 

as increasing DIC, alkalinity and methane concentrations, in deeper and warmer sediments. An 

organic substrate-depleted, DIC- and methane-enriched deep subsurface environment may select 

for specific phyla or taxa with autotrophic capabilities (e.g., Hadarchaeota). For MAGs from deep 

and hot samples, carbon or nitrogen substrates, or other chemical factors, become secondary to the 

impact of temperature itself. 

 

Metagenomic features with wide subsurface distribution 

In addition to genes for core metabolic processes (e.g., glycolysis, biosynthesis of nucleotides and 

amino acids), Guaymas Basin MAGs contain widespread genomic features that extend across 
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multiple bacterial and archaeal phyla.  Some of these widespread genomic features have obvious 

adaptive value and are thus retained for survival, while others challenge assumptions on subsurface 

adaptations and evolutionary constraints under subsurface conditions.  

Among genes that confer survival advantages, two-component systems (TCSs) can induce 

metabolic shifts, and are used extensively by bacteria and some archaea to respond and adapt to 

environmental changes (Beier et al., 2006). Generally, archaea acquire TCS genes through 

horizontal gene transfer from bacteria (Schaller et al., 2011). In Guaymas Basin, TCS genes occur 

in the majority of bacterial MAGs but not in archaeal MAGs (Supplementary Datasets 5, 6), and 

they may help cells to adapt to long term burial. For example, the KinABCDE-Spo0FA system is 

 
Figure 4-4. Non-metric multidimensional scaling (nMDS) ordination plot of MAGs and environmental 
parameters. The nMDS plot depicts the correlation of Guaymas Basin MAG occurrence with in-situ 
environmental parameters (plot stress: 0.106). On the basis of Fisher’s method for combining p-values, we show 
environmental variables with p-values < 0.05 resulting from a two-sided permutation test. The directions of the 
arrows indicate a positive or negative correlation among the environmental parameters with the ordination axes 
(temperature, p = 0.0001; pH, p = 0.0041; salinity, p = 0.0119; alkalinity, p = 0.0445; dissolved inorganic carbon 
(DIC), p = 0.0457; methane (CH4), p = 0.0215; carbon monoxide (CO), p = 0.0011; total organic carbon (TOC), 
p = 0.0003; total nitrogen (TN), p = 0.0024). Arrow length reflects correlation strength between environmental 
parameter and MAG occurrence. The samples are color-coded by site, and their temperature regimes are indicated 
by shape (circles for 2–20 °C; triangles for 20–45 °C and squares for 45–62 °C). 
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present in almost all our bacterial MAGs and plays a role in sporulation by shifting cellular 

metabolism from active growth to dormancy/sporulation (Quisel et al., 2001). Likewise, the 

RegB/RegA redox-signaling mechanism involved in carbon fixation, hydrogen oxidation and 

anaerobic respiration (Elsen et al., 2004) is present in the majority of the bacterial MAGs. 

  Among widely distributed genes, we found a variety of transporters and efflux pumps 

associated with microbial defense, and biosynthetic gene clusters involved in synthesis of diverse 

secondary metabolites (Supplementary Datasets 5, 6). While all bacterial and archaeal MAGs 

encoded transporters (Chklovski et al., 2023), efflux pumps (found in 67% of all MAGs) included 

a large proportion of multidrug resistance pumps, detected in, 44% of all MAGs. In 25% of all 

MAGs, biosynthetic gene clusters were involved in the biosynthesis of diverse secondary 

metabolites (Supplementary Dataset 7). Archaeal biosynthetic gene clusters were primarily 

annotated as polyketide synthases, ribosomally synthesized and post-translationally modified 

peptides. Additionally, archaeal genes encoded the synthesis of terpenes (e.g., geranylgeranyl 

diphosphate synthase; Supplementary Dataset 6) that can be part of their lipid membranes, or 

function as pigments, antimicrobial agents and (in plants) as thermoprotectants (Yang et al., 2012). 

Genes involved in chemotaxis (cheA/B/R/W/Y) and motility (flgB/C/E/G/H/I and fliE/F/G/) 

were present in 56% of all bacterial and archaeal MAGs (Supplementary Datasets 5, 6). These 

findings suggest potential for cell-cell interaction, cell movement and competition for resources in 

the Guaymas Basin subsurface microbial community – a surprising result given deep biosphere 

microorganisms are trapped in tight pore spaces that limit movement and interaction (Morono et 

al., 2020). While cell motility genes are gradually depleted downcore in the marine subsurface 

(Biddle et al., 2008), they do not disappear. Cell motility and secondary metabolite biosynthesis 

genes were present and expressed in marine subsurface MAGs from Peru Margin and Canterbury 

Basin sediments at depths down to 345 mbsf (Pachiadaki et al., 2016). 

Our results can be interpreted as evidence that evolution in the deep biosphere proceeds at 

extremely slow rates. Cells deep below the sediment surface must use available energy to maintain 

their cellular integrity over possibly geological timeframes while greatly attenuating cell division 

and genome replication (Hoehler et al., 2013; Morono et al., 2020), unless some physical 

disturbance or fluid flow returns them to the sediment surface. Under subsurface conditions, 

attenuated gene loss slows down the impact of selection that gradually shapes the subsurface 

biosphere (Starnawski et al., 2017). However, the adaptive value for genes of motility and 
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competition may be reduced with depth but is unlikely to expire entirely, since pore space 

constraints do not preclude slow microbial movement (millimeters over months), as demonstrated 

experimentally by gradual recolonization of deep subsurface sediments (Parkes et al., 2000).  

 

Characteristics and distribution of dominant bacterial and archaeal groups 

The Guaymas Basin subsurface yields predominantly MAGs affiliated with specific phylum-and 

order-level lineages that show distinct mesophilic and thermophilic preferences. This suggests 

lineages appearing at specific depths and temperature ranges respond to environmental factors, 

which in turn shape their occurrence patterns. Our central working hypothesis is that the Guaymas 

Basin subsurface community is not a random assemblage, but reveals phylogenetic and functional 

structure that can be tracked downcore. Our account of this structured community focuses on 

dominant bacterial and archaeal phyla (Chloroflexota, Thermoproteota, Hadarchaeota); an 

extended overview on further bacterial and archaeal MAGs is provided in the Supplementary Note.  

 

Dominant subsurface bacteria 

Of 63 bacterial MAGs found in the Guaymas Basin subsurface, 23 are members of the phylum 

Chloroflexota, one of the dominant phyla in marine sediments with metabolically diverse 

fermentative and dehalogenating lineages (Fincker et al., 2020; Supplementary Note). Within the 

Guaymas subsurface, Chloroflexota MAGs comprise 12 order-level lineages, and account for a 

significant fraction of recruited metagenomic reads per sample (up to 8.3%) (Figure 2, 

Supplementary Figure 6). At site U1545B, Chloroflexota MAGs were widespread within cool 

samples (2-20°C) and persisted occasionally into deep and warm sediments; at Ringvent site 

U1547B they were ubiquitous in cool samples but also widely found in warm sediments (20-45°C) 

(Figure 2, Supplementary Figure 6). MAGs that occur in warm sediments are affiliated with the 

subsurface and hydrothermal GIF9 group (Frouin et al., 2018; Hug et al., 2013), the VGOG01 

lineage from the sulfidic, warm water column of tropical Lake Tanganyika (Tran et al., 2021), and 

the dehalogenating Dehalococcoidales lineage. In hot sediments above 45°C, Chloroflexota MAGs 

appear only in traces (Supplementary Figure 6). Thus, the Guaymas Basin subsurface 

Chloroflexota generally prefer cool or moderately warm habitats, and avoid temperatures above 

ca. 40°C.  



 116 

Metagenomes were assembled and annotated for all Chloroflexota in our data sets to gather 

additional information about their metabolic potential (Supplementary Figure 3, and 

Supplementary Dataset 8). Using the KEGG framework for functional annotation, within the 

general category “central carbohydrate metabolism” we find core genes that can participate in the 

TCA cycle, glycolysis, gluconeogenesis, and the pentose phosphate pathway (Supplementary 

Figure 3). This category includes one specific module (K0378) that encodes an aldehyde 

ferrodoxin oxidoreductase (AOR), a tungsten-containing enzyme identified in mesophilic bacteria 

that can reduce aromatic compounds (Arndt et al., 2019). Within the category of “other 

carbohydrate metabolism” we find genes affiliated with galactonate/galactose degradation that can 

be linked to biosynthesis of alkaloids (e.g., terpenoid alkaloids). We also detect modules (assigned 

as “photorespiration”) that are involved in the glycine cleavage system and shared between 

different amino acid biosynthetic pathways (Supplementary Note). In the general category 

“metabolic capacity” we detected genes assigned to oxygenic and anoxygenic photosynthesis, 

nonetheless, these are genes (e.g., pyruvate phosphate dikinase and citryl-CoA lyase) involved in 

carbon fixation. An expanded KEGG module analysis of the whole community metagenome 

(Supplementary Dataset 9) reveals many of the same genes, including those within the categories 

“central carbohydrate metabolism” and “other carbohydrate metabolism”, reflecting the 

dominance of Chloroflexota among the recovered MAGs (Supplementary Figure 4).  

 

Dominant subsurface archaea 

Although the archaea contributed only 26 MAGs compared to 63 bacterial MAGs to our total, and 

represent fewer phylum-level lineages, they exhibit greater thermal range (Figure 2). MAGS of 

two dominant archaeal phyla – the Thermoproteota (11 MAGs) and the Hadarchaeota (4 MAGs) 

– prefer warm and hot subsurface sediments, and are introduced here in greater detail; additional 

archaeal lineages are discussed in the Supplementary Note. 

Archaeal MAGs were dominated by the Thermoproteota, an archaeal phylum consisting of 

four major lineages, the Thaumarchaeota, Aigarchaeota, Korarchaeota and Bathyarchaeia (Oren et 

al., 2021). All 11 Thermoproteota MAGs belonged to the uncultured class Bathyarchaeia; these 

were detected at all examined sites but primarily at the Ringvent sites U1547B and U1548B 

(Figure 2 and Supplementary Figure 6). Order-level identification of bathyarchaeial MAGs reveals 

linkages to subsurface, seep and hydrothermal sediment habitats. Five MAGs assigned to the 
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order-level lineages TCS64 and 40CM−2−53−6 were recovered primarily between 0.8-15 mbsf 

sediments at sites U1545B and U1547B with cool temperatures ranging from 2.8-17.4°C. These 

bathyarchaeial orders have been reported also from deep sea brine pool samples (Zhang et al., 

2016) and from soil samples (Butterfield et al., 2016). The order-level lineage B26-1, previously 

found in Guaymas Basin hydrothermal sediments (Dombrowski et al., 2018; He et al., 2016), 

included three MAGs from warmer sediments (19-40°C) below 63.8 mbsf at U1545B, and from 

warm to hot sediments (24-47°C) between 19.3 and 65.8 mbsf at Ringvent site U1547B. The order-

level lineage RBG-16-48-13, recovered previously from terrestrial subsurface cores 

(Anantharaman et al., 2016), was represented by a MAG detected at site U1548 at 20-45°C (Figure 

2). Two bathyarchaeial MAGs could not be classified at the order level, but one of these MAGs 

was abundant at temperatures between 39.5-47°C at U1547B (Supplementary Figure 6). The 

detection of bathyarchaeial MAGs over a wide temperature spectrum, and the link of 

bathyarchaeial orders to specific temperature regimes, suggests distinct thermal preferences among 

different lineages of Bathyarchaeia (Qi et al., 2021). The ubiquitous presence of Bathyarchaeia in 

anaerobic sediments (Lloyd et al., 2013), including hydrothermal sediments (He et al., 2016), can 

be attributed to their capacity to metabolize multiple organic substrates, e.g., polysaccharides, urea, 

acetate, detrital proteins, and aromatics compounds such as benzoate and lignin (Feng et al., 2019), 

potential substrates in the hydrocarbon-rich Guaymas Basin subsurface. Based on MAG gene 

content, Bathyarchaiea can potentially utilize formaldehyde and shuttle it into carbon fixation via 

the Wood-Ljungdahl pathway (Supplementary Note). Lineage-specific thermophilic adaptations 

among the Bathyarchaeia include reverse DNA gyrase that facilitates DNA supercoiling under 

extreme temperatures (Feng et al., 2019). 

Hadarchaeota thrive in subsurface sediments by a combination of heterotrophic traits 

(fermentation of carbohydrates) with autotrophic energy generation, specifically the oxidation of 

carbon monoxide and hydrogen (Baker et al., 2016). Hadarchaeota were previously recovered from 

surficial hydrothermal sediments in Guaymas Basin (Dombrowski et al., 2018). Consistently, the 

4 hadarchaeotal MAGs (GMP_008, GMP_020, GMP_027, GMP_034) did not recruit any reads 

from cool samples but only from warm and hot samples, indicating a preference for elevated 

temperatures (Figure 2). In contrast to changing thermal preferences for MAGs from different 

bathyarchaeial orders, the Hadarchaeota, originally detected in hot and deep terrestrial aquifers 
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(Takai et al., 2001), consistently prefer elevated temperatures in deep sediments of the Guaymas 

Basin subsurface (Figure 2).  

 

Hadarchaeotal genomic features 

Abundant and highly expressed hadarchaeotal MAGs were examined for characteristic features in 

their genomes and transcriptomes. One Hadarchaeota MAG, Guaymas_P_008, recruited ~19% of 

all metagenomic reads at 74.3 msbf (in-situ temperature 51°C) at Ringvent site U1547B (Figures 

2, 3). This MAG contained genes for carbohydrate hydrolysis (α-RHA, β-galactosidase) and 

nucleoside uptake and degradation (nucleoside transporters, purine nucleosidases) that suggest 

purine/pyrimidine synthesis from nucleosides. This MAG also contained carbon monoxide 

oxidation genes (coxM, coxS) that were absent in the other Hadarchaeota MAGs that encoded 

genes for fermentation (porA, ack, acdA) and aromatics degradation (ubiX) (Supplementary 

Datasets 6, 7). The ability to utilize a wider range of carbohydrates may support higher temperature 

tolerance, as reported for thermally-adapted Bathyarchaeia genomes (Qi et al., 2021). The potential 

for hydrocarbon utilization in Hadarachaeota and other phyla (Supplementary Note) might 

contribute to reduced hydrocarbon concentrations at intermediate sediment depths and 

temperatures (Supplementary Figure 1).  One of our Hadaracheota MAGs (P_034) contained 

homologs to mcrC and mcrG that regulate the expression and assembly of the alkyl/methyl 

coenzyme M reductase operon (Shao et al., 2022), the essential methane and alkane-activating 

genes in archaeal methanogens, methane oxidizers and short-chain alkane oxidizers (Wang et al., 

2021). Finally, we note the presence of KaiC histidine in Hadarchaeota, a circadian clock protein 

that regulates cell division and allows prokaryotes to adapt to changes in environmental conditions 

(Jabbur et al., 2022), and the gene for programmed cell death (protein 5) that is linked to anti-virus 

defense and triggers dormancy under hostile conditions (Koonin et al., 2017). 

 

Genome size trends in the deep biosphere 

Comparisons of estimated genome sizes for all MAGs that recruited at least 0.1% of metagenomic 

reads from cool, warm, and hot sediments revealed a difference in average genome size. The most 

abundant genomes in cool sediments were on average significantly (two-sided partially 

overlapping samples t-test, adjusted p < 0.05) larger (~32%) than those recovered from hot 

sediments (Figure 5A, B). The estimated genome size of MAGs recovered from our shallow (2-15 
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mbsf) samples was also ~22% larger on average than those detected in deeper (> 60 mbsf) and 

warmer (>30-40°C) sediments. Linear regression analysis demonstrated a general reduction in 

average genome size in our samples as both temperature and depth increased (Figure 5C, D). 

Elevated in situ temperatures are thought to select for smaller genome sizes via genome 

 
Figure 4-5. Estimated and average genome size vs. temperature and depth. Boxplots show estimated genome 
size of MAGs that recruited at least 0.1% of metagenomic reads from samples collected in cool (2–20 °C), warm 
(20–45 °C), and hot sediments (45–60 °C) in panel A, and at shallow (2–15 mbsf), intermediate (15-60 mbsf), and 
deep (>60 mbsf) depths in panel B. The Median is shown as the middle horizontal lines, the mean as the white 
diamonds, and interquartile ranges are shown as boxes (whiskers extend to 1.5 times the interquartile range). Each 
data point is overlaid on the boxplots and values at the top denote adjusted p-values from two-sided partially 
overlapping samples t-tests comparing estimated genome sizes by temperature (panel A) and depth (panel B) 
regimes. Panels C and D display the relationship between average estimated genome size in each metagenomic 
sample plotted against temperature (C) and depth (D) using linear regression. The blue lines in panels C and D 
denote the regression lines, with the fitted values +/− 1.96 standard error indicated by the grey bands. The values 
at the top of panels C and D denote the p-value and adjusted R-squared value of the fit. 
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streamlining (Sabath et al., 2013), for example increased gene loss after duplication; the effects of 

genomic streamlining are pervasive and result in the elimination of hundreds of genes all over the 

genome (Simonsen et al., 2022). Reduced genome size lowers the metabolic cost required for 

microbial DNA replication, as suggested for hadal microorganisms in the Challenger Deep at 

Mariana Trench (Zhou et al., 2022). Microbes with smaller genomes would gain a relative survival 

advantage and gradually dominate the microbial community in the subsurface, as metabolically 

more demanding microbial community members with large genomes die off. Such a mechanism 

would contribute to the selection of subsurface-adapted microbial communities that has been 

documented already within the top few meters below seafloor (Starnawski et al., 2017), and it 

would explain the small size of microbial cells in deep subsurface sediments, near 0.5 micrometer 

(Biddle et al., 2006).  

 

Temperature impact on MAG recovery 

The environmental stresses that increasingly exclude microbial lineages, reduce genome size and 

reduce overall microbial population size (and thus, quantity of recovered DNA) are reflected in 

decreased recovery of MAGs in warmer and deeper samples from all sites (Figure 6A, B). Plotted 

 
Figure 4-6. MAG recovery at sampled sites vs. temperature and depth. Panels A and B show the MAGs that 
recruited metagenomic reads from samples t sites U1547B and U1548B (in red) and sites U1545B, U1546B, and 
U1549B (in green) plotted against temperature (A) and depth (B) using best-fit linear regression. The solid lines 
in panels A and B denote the regression lines, with the fitted values +/− 1.96 standard error indicated by the grey 
bands. For both panels A and B, the p-values and adjusted R-squared values of the fits of each regression line are 
shown. MAG numbers for all samples (n = 26), and their depths and temperatures are provided in the Source Data 
file. 
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against depth, MAG recovery declines more quickly for the two hotter Ringvent sites U1547B and 

U1548B than for the cooler sites U1545B, U1546B and U1549B (Figure 6B). When plotted against 

temperature, declining MAG recovery for the hot Ringvent sites and the cooler sites converge 

towards a shared minimum between ca. 50 and 60°C (Figure 6A). These comparisons show that 

the decline of MAG recovery with depth is locally modified, behaves differently at different sites, 

and does not follow a uniform depth-related decay rate. In contrast, the influence of increasing 

temperature is pervasive, reduces microbial diversity at all sites, and occludes the emergence of 

MAGs representing new microbial lineages beyond approximately 50-60°C.  

 

Conclusions and outlook 

While improved DNA and RNA recovery could potentially compensate for declining downcore 

cell density, and extend the recovery of new bacterial and archaeal MAGs towards deeper and 

hotter sediments, the observed trend towards increasingly limited microbial diversity in the 

subsurface stands in marked contrast to the numerous bacterial and archaeal lineages that thrive in 

surficial hydrothermal sediments of Guaymas Basin, where fluidized sediments are permeated by 

pulsating, extremely hot (> 80°C) and highly reducing fluids (Dombrowski et al., 2018). We 

ascribe the difference to contrasting energy supply (Lagostina et al., 2021), and suggest that 

relatively moderate temperatures in IODP boreholes have a disproportionally greater impact on 

the energy-limited microbial deep biosphere, whereas surficial microbial communities that are 

well-supplied with energy-rich circulating hydrothermal fluids can tolerate high temperatures. The 

latter conditions select for thermophilic and hyperthermophilic, frequently chemolithoautotrophic 

bacteria and archaea (Anderson et al., 2015; Reysenbach et al., 2020). We suggest that this 

difference ultimately results in distinct microbial communities in surficial hydrothermal sites, and 

in subsurface sediments where dominant bacteria and archaea (Chloroflexota, Thermoproteota, 

Acidobacteriota, Desulfobacterota) resemble the largely heterotrophic and mesophilic microbiota 

of non-hydrothermal benthic sediments (Baker et al., 2021; Parkes et al., 2014). 

Yet, we note that specific archaea, in particular the Hadarchaeota, show a preference for 

deep, hot sediments of Guaymas Basin. These archaea extend consistently into the deep sediment 

column, not only by MAG detection but also in 16S rRNA gene surveys (Mara et al., 2023), and 

appear to represent deep subsurface thermophiles that are sustained by substrates and energy 

sources of deep, hot sediments. Observations of microbial cells and activity in extremely deep, hot 
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subsurface environments (Heuer et al., 2020; Inagaki et al., 2015) could indicate such thermophile 

communities that have adapted to deep subsurface conditions. Since candidate archaea for deep, 

hot biosphere communities were consistently detected in the hydrothermally influenced Ringvent 

sites where a hot volcanic sill is emplaced into organic-rich marine sediments, we extrapolate 

further that the mineralogically and morphologically complex basalt interface (Teske et al., 2021d) 

could provide microbial substrates and energy sources (Thiel et al., 2019), calling for further 

studies.  

 

Methods 

Sample collection 

Sediment cores were collected during IODP Expedition 385 using the drilling vessel JOIDES 

Resolution. Holes at each site were first advanced using advanced piston coring (APC), then half-

length APC, and then extended core barrel (XCB) coring as necessary. Temperature measurements 

used the advanced piston corer temperature (APCT-3) and Sediment Temperature 2 (SET2) tools 

(Neumann et al., 2023). Downhole logging conducted after coring used the triple combination and 

Formation MicroScanner sonic logging tool strings. After bringing core sections onto the core 

receiving platform of the D/V JOIDES Resolution, whole round samples for microbiology were 

retrieved within ~30 minutes using ethanol-cleaned spatulas. Samples for biogeochemical 

measurements were obtained and processed shipboard (Teske et al., 2021a). Whole round samples 

for DNA-based studies were capped with ethanol-sterilized endcaps, transferred to the 

microbiology laboratory, and stored briefly at 4°C in heat-sealed tri-foil gas-tight laminated bags 

flushed with nitrogen until processing. Masks, gloves and laboratory coats were worn during 

sample handling in the laboratory where core samples were transferred from their gas-tight bags 

onto sterilized foil on the bench surface inside a Table KOACH T 500-F system, which creates an 

ISO Class I clean air environment (Koken Ltd., Japan). In addition, the bench surface was targeted 

with a fanless ionizer (Winstat BF2MA, Shishido Electrostatic Co., Ltd., Japan). Within this clean 

space, the exterior 2 cm of the extruded core section were removed using a sterilized ceramic knife. 

The core interior was transferred to sterile 50-mL Falcon tubes, labeled, and immediately frozen 

at -80°C for post cruise analyses. For RNA-based studies, sampling occurred immediately after 

core retrieval on the core receiving platform by sub-coring with a sterile, cutoff 50cc syringe into 
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the center of each freshly cut core section targeted. These sub-cores were immediately frozen in 

liquid nitrogen and stored at -80°C.  

 

DNA extraction and sequencing 

DNA was extracted from selected core samples using a FastDNA SPIN Kit for Soil (MP 

Biomedicals). Up to 5 grams of sediment were processed following a modified manufacturer’s 

protocol (Ramírez et al., 2018). Briefly, each sediment sample was homogenized twice (vs. once 

that the manufacturer suggests) in Lysing Matrix E tubes for 40 seconds at speed 5.5 m/s, using 

the MP biomedicals bench top homogenizer equipped with 2 ml tube adaptors. Between the two 

homogenization rounds the samples were placed on ice for 2 minutes. After the second 

homogenization the samples were centrifuged at 14,000 x g for 5 minutes. For each sample, the 

supernatant and the top layer of the pellet was transferred to a clean 2 ml tube where proteins were 

precipitated by the addition of the protein precipitation solution (PPS) provided in the extraction 

kit. The rest of the extraction protocol followed the manufacturer’s recommendations. When 

parallel extractions were performed, the extracts were pooled and concentrated using EMD 3kDa 

Amicon Ultra-0.5 ml Centrifugal Filters (Millipore Sigma). A control extraction, in which no 

sediment was added, was included to account for any laboratory contaminants (Supplementary 

Materials). All libraries for metagenome sequencing (n =29; 26 samples and 3 controls; 

Supplementary Data 2) were prepared from genomic DNA extracts that were submitted at the 

University of Delaware DNA Sequencing & Genotyping Center. Thirteen libraries were sequenced 

with NovaSeq S4 PE150 (Illumina) at the University of California, Davis Genome Center, and 

thirteen libraries were sequenced with NextSeq550 (Illumina) at the University of Delaware DNA 

Sequencing & Genotyping Center. Metagenome sequence reads were deposited to the National 

Center for Biotechnology Information Sequence Read Archive under access numbers 

SRR23614663-23614677 and SRR22580794-SRR22580807 (Bioproject PRJNA909197).  

 

Metagenomic co-assembly, binning, dereplication and taxonomic assignment 

Metagenomic reads originating from adjacent regions (such as adjacent depths targeted in this 

study) are likely to overlap in the sequence space, increasing the mean coverage and extent of 

reconstruction of MAGs when using a co-assembly approach. Before assembly, reads were 

trimmed for quality and adapters removed using Trimmomatic v0.39 (Bolger et al., 2014; 
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parameters: leading:20; trailing:20; sliding window: 0-24; min length 50). The quality of reads 

was verified with FastQC v0.11.9 (Andrews et al., 2012). For MAG reconstructions, we used the 

trimmed reads of metagenomic datasets from all 29 Guaymas samples sequenced in this study 

(Supplementary Data 2). The 26 metagenomes were co-assembled into contigs using MEGAHIT 

1.2.9 (Li et al., 2016) with default parameters. For determining non-redundant MAGs, assembled 

contigs were binned using three different binners, MetaBAT2 2.12.183 (Kang et al., 2015), 

MaxBin2 2.2.7 (Wu et al., 2016), as well as CONCOCT 1.1.0 (Alneberg et al., 2014). Output bins 

from all three binning algorithms were refined and dereplicated using DAS Tool 1.1.6 (Sieber et 

al., 2018). DasTool determines a unique MAG through a single-copy gene (SCG) scoring strategy 

coupled to an iterative bin de-replication procedure that produces the highest-scoring set of non-

redundant bins (in terms of SGC completeness/contamination) from input bins generated by 

different binners. Completeness, size, and contamination levels of the reconstructed genomes were 

estimated using CheckM2 1.0.0 (Chklovski et al., 2023). Only MAGs that were at least 50% 

complete and contained less than 10% contamination were used for downstream analyses 

(Supplementary Data 4). The taxonomic placement of the MAGs was performed with GTDB-Tk 

2.1.0 (Chaumeil et al., 2020). 

To account for seawater and laboratory contamination (Supplementary Note), control 

samples (Supplementary Data 2) identified MAGs of lab/control contaminants, including 

Patescibacteria (Paceibacteria, Microgenomatia), Actinobacteriota (Actinomycetia, 

Humimicrobia), Gammaproteobacteria (Pseudomonadales, Burkholderiales), and Firmicutes 

(Staphylococcales); these were removed from downstream analyses (Supplementary Data 3).  

 

Calculation of MAG relative abundances 

Metagenomic reads from 26 samples were mapped to each MAG using the CoverM 0.6.1 

(https://github.com/wwood/CoverM) command line tool with the BWA 2.0 aligner (Vasimuddin 

et al., 2019). The CoverM tool automatically concatenated all the MAGs into a single file, and 

metagenomic reads were recruited to MAG contigs, setting the parameter --min-read-percent-

identity to 95 and --min-read-aligned-percent to 50. The “Relative Abundance” CoverM method 

on the “genome” setting was used to calculate the percent of total metagenomic reads per sample 

that mapped to each of the 89 MAGs. A custom R script was utilized to concatenate all CoverM 

output files into a single file in a matrix format (with each sample representing a column and each 
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row representing total percent of DNA-Seq reads per sample that mapped to a MAG) and was used 

for heatmap plotting.  

 

Gene annotation, and prediction of KEGG metabolic module presence/absence using 

MetaPathPredict 

Genes were called for all MAGs using Prodigal 2.6.3 (Hyatt et al., 2010) and then annotated using 

Prokka 1.14.6 (Seeman 2014), KofamScan 1.3.0 (Aramaki et al., 2020), and METABOLIC 4.0 

(Zhou et al., 2022) using default settings. The KofamScan annotations were used to assign KEGG 

annotations to KEGG modules to give broad overview of the metabolisms present in the genomes 

recovered from Guaymas Basin. The associated script was used to generate Supplementary Figures 

3 and 4, and Supplementary Data 5. To present additional data on Chloroflexota, Thermoproteota, 

Acidobacteriota, Desulfobacterota, Aerophobota, and WOR-3 in a user-friendly format, 

METABOLIC was used to annotate MAGs to identify putatative metabolisms that we predicted 

would be present in Guaymas Basin. The associated script was used to generate Supplementary 

Data 6b. It is recognized that different databases used by the different tools can provide slightly 

different information. KEGG modules for bacterial MAGs were reconstructed using gene 

annotations from the KofamScan 1.3.0 command line tool, and the presence or absence of 

incomplete modules in the genomes was predicted using MetaPathPredict 1.0.0 (Geller-McGrath 

et al., 2022) with default settings. MetaPathPredict cannot yet be applied to archaeal MAGs. 

Briefly, Prodigal was used to call genes, and KofamScan was used to annotate them. Gene 

annotations were generated for predicted genes from bacterial MAGs, and were used as input to 

MetaPathPredict, which generated predictions for the presence or absence of KEGG modules 

based on the gene annotations of all bacterial MAGs.  

 

CCA and nMDS analyses of metagenomic abundance datasets and associated environmental 

parameters 

The abundances of metagenomic reads mapped to MAGs were normalized using the “transcripts 

per million” normalization method (Wagner et al., 2012) with the read mapping "counts" output 

from coverM (https://github.com/wwood/CoverM). The abundance data were analyzed using 

canonical correlation analysis (CCA) as well as non-metric multidimensional scaling (nMDS) and 

were fitted with the environmental parameters in Supplementary Data 1 using R (R Core Team 

https://github.com/wwood/CoverM
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2018). The cca and metaMDS functions were used for CCA and nMDS analyses, respectively, as 

well as the envfit function from the vegan 2.6-4 package (Dixon 2003). The results were plotted 

using ggplot2 3.3.6 (Wickham et al., 2016) with sample shapes corresponding to temperature 

regime. 

 

Estimated genome size analysis 

The estimated genome size of all 89 MAGs was calculated by dividing the MAG assembly size 

(total base pair length of the MAG) by the fractional CheckM2 completeness of the MAG (the 

default CheckM2 completeness output divided by 100; a number between 0 and 1). Difference in 

genome size distributions for MAGs that recruited at least 0.1% of metagenomic reads from 

samples across temperature (cool [2-20°C], warm [20-45°C], hot [45-62°C]) and depth (shallow 

[2-15 mbsf], intermediate [15-60 mbsf], deep [>60 mbsf]) regimes was assessed using the two-

sided partially overlapping samples t-test (Derrick et al., 2017), and resulting p-values were 

adjusted for multiple comparisons via Benjamini-Hochberg correction. The average estimated 

genome size of MAGs that recruited at least 0.1% of reads from metagenomic samples (n = 26) 

was fitted using linear regression against temperature and depth measurements affiliated with the 

samples. 

 

MAG recovery at sampled sites versus temperature and depth 

The number of non-redundant MAGs that recruited at least 0.1% of reads from metagenomic 

samples (n = 26) was fitted using linear regression against temperature and depth measurements 

affiliated with the samples. Temperature values were interpolated for each sample using linear 

regression of the local thermal gradient (°C/m) multiplied by depth (mbsf), plus the y-axis 

intercept:  U1545B, T = 0.225 x depth + 4.899; U1546B, T = 0.221 x depth + 2.627; U1547B, T 

= 0.511 x depth + 13.01; U1548B, T = 0.804 x depth + 6.499; U1549A/B, T = 0.194 x depth + 

3.532. 

 

Scanning of MAGs for secondary metabolite biosynthetic gene clusters 

All 89 MAGs were individually scanned for secondary metabolic biosynthetic gene clusters using 

antiSMASH 6.0 (Blin et al., 2021) with default parameters. Resulting gene cluster prediction 

results (in GenBank format) were parsed and their gene content was analyzed. Clusters with a total 
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length less than 5kb were discarded from downstream analysis to minimize the inclusion of 

fragmented biosynthetic clusters in the analysis. 

 

RNA extraction, library preparation, sequencing, and mapping of RNA reads to the MAGs 

RNA was extracted from 19 sediment samples from sites U1545B-U1552B and a blank sample 

(control) using the RNeasy PowerSoil Total RNA Kit (Qiagen) following the manufacturer’s 

protocol with modifications which are discussed below. RNA samples were prepared from samples 

spanning the depths 0.8 to 101.9 mbsf. All samples, including a blank control, were first washed 

twice with absolute ethanol (200 proof; purity ≥ 99.5%), and sterile DEPC water (once) to reduce 

hydrocarbons and other inhibitory elements that otherwise resulted in low RNA yield. In brief, 13-

15 grams of frozen sediments were transferred into UV-sterilized 50 ml Falcon tubes 

(RNAase/DNase free) using clean, autoclaved and ethanol-washed metallic spatulas. Each sample 

transferred into the 50 ml Falcon tube received an equal volume of absolute ethanol and was shaken 

manually for 2 min followed by 30 seconds of vortexing at full speed to create a slurry. Samples 

were spun in an Eppendorf centrifuge (5810R) for 2 minutes at 2000 x g. The supernatant was 

decanted and after the second wash with absolute ethanol, an equal volume of DEPC water was 

added into each sample and samples were spun for 2 minutes at 2000 x g. The supernatant was 

decanted, and each sediment sample was immediately divided into three 15 mL Falcon tubes 

containing beads provided in the PowerSoil Total RNA Isolation Kit (Qiagen). The RNA 

extraction protocol was followed as suggested by the manufacturer, with the modification that the 

RNA extracted from the three aliquots was pooled into one RNA collection column. All steps were 

performed in a UV-sterilized clean hood equipped with HEPA filters. Surfaces inside the hood and 

pipettes were thoroughly cleaned with RNase AWAYTM (Thermo Scientific™) before every RNA 

extraction and in between extraction steps. 

Trace DNA contaminants were removed from RNA extracts using TURBO DNase 

(Thermo Fisher Scientific) and the manufacturer’s protocol. Removal of DNA was confirmed by 

negative PCR reactions using the bacterial primers BACT1369F/PROK1541R (F: 

5’CGGTGAATACGTTCYCGG 3’, R: 5’AAGGAGGTGATCCRGCCGCA 3’) targeting the 16S 

rRNA gene (Suzuki et al., 2000). Each 25 μl PCR reaction was prepared using 0.5 U μl–1 GoTaq® 

G2 Flexi DNA Polymerase (Promega), 1X Colorless GoTaq® Flexi Buffer, 2.5 mM MgCl2, 

(Promega) 0.4 mM dNTP Mix (Promega), 4 μM of each primer (final concentrations), and DEPC 
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water. PCR reactions used an Eppendorf Mastercycler Pro S Vapoprotect (Model 6321) 

thermocycler with following conditions: 94°C for 5 min, followed by 35 cycles of 94°C (30 s), 

55°C (30 s), and 72°C (45 s). The PCR products were run in 2% agarose gels (Low-EEO/Multi-

Purpose/Molecular Biology Grade Fisher BioReagents™) to confirm absence of DNA 

amplification. Amplified cDNAs from the DNA-free RNA extracts were prepared using the 

Ovation RNA-Seq System V2 (Tecan) following manufacturer’s suggestions. All steps through 

cDNA preparation were completed the same day to avoid freeze/thaw cycles. cDNAs were 

submitted to the Georgia Genomics and Bioinformatics Core for sequencing using NextSeq 500 

PE 150 High Output (Illumina).  The cDNA library generated from our control did not contain 

detectable DNA. It was nonetheless submitted for sequencing, but it failed to generate any 

sequences that met the minimum length criterion of 300-400 base pairs.  

 Reads from the 13 metatranscriptome samples collected from sites that metagenomic 

samples were taken from were mapped to each MAG using the CoverM 0.6.1 

(https://github.com/wwood/CoverM) command line tool with the BWA 2.0 aligner (Vasimuddin 

et al., 2019). The CoverM tool automatically concatenated all the MAGs into a single file, and 

metatranscriptome reads were recruited to MAG contigs, setting the parameter --min-read-percent-

identity to 95 and --min-read-aligned-percent to 50. A custom R script was utilized to concatenate 

all coverM output files into a single file in a matrix format, with each sample representing a column 

and each row representing total percent of RNA-Seq reads per sample that mapped to a MAG. The 

output was used in this study for heatmap plotting to examine evidence for activity of the taxa for 

which we recovered MAGs. Metatranscriptome reads were deposited to the National Center for 

Biotechnology Information Sequence Read Archive under accession numbers SRR22580929-

SRR22580947 (Bioproject PRJNA909197). 

 

Cell counts 

The sediment sampling for cell counts occurred immediately after core retrieval on the core 

receiving platform by sub-coring with a sterile, tip-cut 2.5 cc syringe from the center of each 

freshly cut core section. Approximately 2 cm3 sub-cores were immediately put into tubes 

containing fixation solution consisting of 8 mL of 3xPBS (Gibco™ PBS, pH 7.4, Fischer) and 5% 

(v/v) neutralized formalin (Thermo Scientific™ Shandon™ Formal-Fixx™ Neutral Buffered 

Formalin). If necessary, the mixture was stored at 4°C. 
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Fixed cells were separated from the slurry using ultrasonication and density gradient 

centrifugation (Morono et al., 2013). For cell detachment, a 1 mL aliquot of the formalin-fixed 

sediment slurry was amended with 1.4 mL of 2.5% NaCl, 300 μL of pure methanol, and 300 μL 

of detergent mix (Kallmeyer et al., 2008), 100 mM ethylenediamine tetraacetic acid [EDTA], 100 

mM sodium pyrophosphate, 1% [v/v] Tween-80). The mixture was thoroughly shaken for 60 min 

(Shake Master, Bio Medical Science, Japan), and subsequently sonicated at 160 W for 30 s for 10 

cycles (Bioruptor UCD-250HSA; Cosmo Bio, Japan). The detached cells were recovered by 

centrifugation based on the density difference of microbial cells and sediment particles, which 

allows collection of microbial cells in a low-density layer. The sample was transferred onto a set 

of four density layers composed of 30% Nycodenz (1.15 g cm-3), 50% Nycodenz (1.25 g cm-3), 

80% Nycodenz (1.42 g cm-3), and 67% sodium polytungstate (2.08 g cm-3). Cells and sediment 

particles were separated by centrifugation at 10,000 × g for 1 h at 25°C. The light density layer 

was collected using a 20G needle syringe. The heavy fraction, including precipitated sediment 

particles, was resuspended with 5 mL of 2.5% NaCl, and centrifuged at 5000 × g for 15 min at 

25°C. The supernatant was combined with the previously recovered light density fraction. With 

the remaining sediment pellet, the density separation was repeated. The sediment was resuspended 

using 2.1 mL of 2.5% NaCl, 300 μL of methanol, and 300 μL of detergent mix and shaken at 500 

rpm for 60 min at 25°C, before the slurry sample was transferred into a fresh centrifugation tube 

where it was layered onto another density gradient and separated by centrifugation just as before. 

The light density layer was collected using a 20G needle syringe, and combined with the previously 

collected light density fraction and supernatant to form a single suspension for cell counting.  

For cell enumeration, a 50%-aliquot of the collected cell suspension was passed through a 

0.22-μm polycarbonate membrane filter. Cells on the membrane filter were treated with SYBR 

Green I nucleic acid staining solution (1/40 of the stock concentration of SYBR Green I diluted in 

Tris-EDTA [TE] buffer). The number of SYBR Green I– stained cells were enumerated either by 

direct microscopic counts (Inagaki et al., 2015) or image-based discriminative counts (Morono et 

al., 2009). For image-based discriminative counting, the Count Nuclei function of the MetaMorph 

software (Molecular Devices) was used to detect and enumerate microbial cells. 
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Data availability 

The raw metagenome and metatranscriptome sequence data generated in this study have been 

deposited in the NCBI GenBank database under the Bioproject accession number PRJNA909197 

(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA909197). Metatranscriptome reads are 

deposited under the accession numbers SRR22580929-SRR22580947. Metagenome reads are 

deposited under the accession numbers SRR22580794-SRR2258807 and SRR23614663-

SRR236114677. Biogeochemical and thermal shipboard data for all IODP385 sites discussed in 

this study (U1545-U1552) are publicly available on the IODP Expedition 385 online report 

(http://publications.iodp.org/proceedings/385/385title.html). Shipboard data can be downloaded 

for each drilling site individually, as numbered excel tables. Post-cruise geochemical data sets 

(DIC, TOC, TN, hydrocarbons) have been submitted to the Biological and Chemical 

Oceanography database (BCO-DMO) and are publicly available under project number 833856 

(https://www.bco-dmo.org/project/833856). Publicly available datasets used in this study include 

the CheckM2 database (https://zenodo.org/record/4626519), the GTDB-Tk database release R214 

(https://ecogenomics.github.io/GTDBTk/installing/index.html), the KOfam database 

(ftp://ftp.genome.jp/pub/db/kofam/), the METABOLIC database 

(https://github.com/AnantharamanLab/METABOLIC), the MEROPS database 

(https://www.ebi.ac.uk/merops/download_list.shtml), the dbCAN2 database 

(http://bcb.unl.edu/dbCAN2/download/Databases/dbCAN-old@UGA/dbCAN-fam-HMMs.txt), 

ISfinder database (https://isfinder.biotoul.fr/), NCBI Bacterial Antimicrobial Resistance database 

(https://www.ncbi.nlm.nih.gov/bioproject/313047), UniProtKB (SwissProt) database 

(https://www.uniprot.org/uniprot/?query=reviewed:yes), Prokka databases 

(https://github.com/tseemann/prokka) and the antiSMASH 6.0 databases 

(https://dl.secondarymetabolites.org/releases/).  

 

Code availability 

All custom scripts used for data analysis and figure creation are available in the GitHub repository 

at https://github.com/d-mcgrath/guaymas_basin (Geller-McGrath et al., 2023).  

 

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA909197
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.bco-dmo.org%2Fproject%2F833856&data=05%7C01%7Cpmara%40whoi.edu%7C283930d24cdf4772193808dbc9977a5f%7Cd44c5cc6d18c46cc8abd4fdf5b6e5944%7C0%7C0%7C638325424678160655%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=Rv8LV5cTBGyDYc6ChyR%2Fj%2FLg%2B4VxgUOJwi5M5pjL6OU%3D&reserved=0
ftp://ftp.genome.jp/pub/db/kofam/
http://bcb.unl.edu/dbCAN2/download/Databases/dbCAN-old@UGA/dbCAN-fam-HMMs.txt
https://isfinder.biotoul.fr/
https://www.uniprot.org/uniprot/?query=reviewed:yes
https://github/
https://github.com/d-mcgrath/guaymas_basin97
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Source Data 

Links to all datasets used in this analysis, including source data used to generate the figures in this 

chapter can be found here: https://www.nature.com/articles/s41467-023-43296-x. 
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5110 
2.6 

0 
83 

23.3 
1.5 

2.03 
0.26 

9 

U
1547B_8H

2 
46.6 

65.8 
13 

20.2 
25.4 

6606 
2.9 

0 
91 

23.3 
1.5 

1.25 
0.15 

9.5 

U
1547B_9H

2 
51.0 

74.3 
13.7 

18.8 
28 

7151 
3.7 

0 
54 

15 
1.9 

2.2 
0.26 

10 

U
1547B_9H

3 
51.8 

76.0 
13.7 

18.8 
28 

7151 
3.7 

0 
54 

15 
1.9 

2.2 
0.26 

10 

U
154

8B 

U
1548B_2H

3 
13.7 

8.9 
4.8 

26.8 
24.5 

732.5 
0.3 

0 
554 

13.1 
1.4 

2.4 
0.22 

12.9 

U
1548B_4H

7 
33.5 

33.5 
9.5 

25.4 
18.6 

1913 
0.6 

0 
303 

9.4 
1.2 

1.9 
0.22 

10.3 

U
1548B_8H

5 
62.4 

69.5 
13 

20.2 
25.4 

6606 
2.9 

0 
51 

1.5 
0.2 

1.57 
0.2 

9 

U
154

9B 
U

1549B_3H
2 

6.4 
16.5 

18.7 
17.5 

98.1 
2567 

3.3 
0 

188 
23.6 

5.7 
3.12 

0.59 
6.1 

 

Table 4-1. Geochemical, depth and temperature data for metagenomic samples. The samples are sorted by 
increasing temperature. “Sample ID” is composed by site and core section IDs. Geochemical data are compiled 
from Expedition 385 site chapters using the best available sample matches, and in situ temperatures represent 
linear interpolation based on published temperature gradients in the site chapters (Teske et al., 2021b-e). 



Supplementary Note 

In this Supplementary Note we provide an extended overview on the genomic background of 

bacterial and archaeal lineages that dominate the Guaymas subsurface metagenome and MAG 

surveys, and we describe certain genes involved in carbon and iron cycling that we recovered on 

most of our MAGs. We focus our discussion on Chloroflexota (carbon fixation, DMSO reduction), 

Thermoproteota (acetogenesis and methane cycling), Acidobacteriota (nitrogen fixation), 

Desulfobacterota (sulfate and iron reduction), Aerophobota, and the White Oak River group 3 

(WOR-3) (diverse heterotrophic capabilities, and CRISPR genes). We introduce further 

metagenomic evidence for iron reduction and oxidation, and carbon monoxide oxidation. We 

include a section that examines the application of bioinformatic tool “MetaPathPredict” (Geller-

McGrath et al., 2022) and its insights into the metabolic potential of MAGs assigned to less 

dominant phyla (Zixibacteria and Cloacimonadetes) in the Guaymas Basin subsurface. Finally, at 

end of this Supplementary Note, we devote a section that explains the processing and the rationale 

behind the control samples used in this study. 

   

Overview on the genomic background of subsurface bacterial and archaeal phyla in 

Guaymas Basin  

 

Chloroflexota 

Chloroflexota are abundant in the hadal ocean (Liu et al., 2022a), in marine subsurface sediments 

(Vuillemin et al., 2020, Fincker et al., 2020, ) and hydrothermal settings (Fullerton and Moyer, 

2016, Dombrowski et al., 2018; Reysenbach et al., 2020). Diverse thermophilic Chloroflexota 

lineages have also been enriched and isolated from hot springs (Dodsworth et al., 2014; Palmer et 

al., 2023).  

Genes detected in our Chloroflexota MAGs are associated with fatty acid degradation, 

ornithine biosynthesis and the methionine salvage pathway that produces methionine by recycling 

sulfur-bearing metabolites (Sekowska et al., 2004). Ornithine biosynthesis was also evident in 

MAGs affiliated with other bacterial and archaeal phyla, including the Hadarchaeota. Genes for 

enzymes involved in ornithine synthesis (e.g., ornithine decarboxylase) have been documented 

previously in deep biosphere samples (Orsi et al., 2013), indicating that this capability may be 

widely utilized by subsurface microbiota (Hernández et al., 2021). Ornithine synthesis can be 
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involved in some amino acid metabolisms as well as urea biosynthesis (Cunin et al., 1986; 

Therkildsen et al., 1996). 

The majority of Chloroflexota genomes contained marker genes associated with the 

oxidation of formate (fdhA, fdhB, fdoG, fdoH; McGonigle et al., 2020) and carbon monoxide 

(coxL, coxM, coxS; Islam et al., 2019). Their occurrence coincides with increased carbon monoxide 

concentrations (83-665 nM) between 0.8-60 mbsf (Supplementary Data 1). Hydrogen utilization 

is suggested by Ni-Fe hydrogenases and key genes of acetate/acetyl-CoA production (pta/ack, 

acdA) in Chloroflexota MAGs (Supplementary Data 5, 6). Hydrogen concentrations associated 

with our metagenomic samples ranged between 23-84 nM (Supplementary Data 1) indicative of 

active hydrogen cycling (Lin et al., 2012). Genes associated with the Wood-Ljungdahl pathway 

(WL; cdhD, cdhE, cooS) were present in 17/23 Chloroflexota MAGs, while ATP-citrate lyase 

(aclA), associated with the reductive TCA cycle (rTCA), was present in one MAG from the 

VGOG01 order. The mmoB gene associated with methane oxidation (Supplementary Data 7) was 

identified in two Chloroflexota MAGs from the orders Promineofilales (Speirs et al., 2019) and 

E44-bin15, associated with petroleum seepage in marine sediments (Dong et al., 2019). Previous 

DNA-SIP experiments identified members of the Chloroflexota as putative methane oxidizers and 

detected methane monooxygenases (mmoX or pmoB) in Chloroflexota genomes (Altshuler et al., 

2022). We caution that the identified mmoB has a regulatory role in methane oxidation, while the 

catalytic activity is encoded by the mmoH gene in the mmo operon (Sirajuddin and Rosenzweig, 

2015).  

Genes involved in sulfate and sulfur assimilation for amino acid synthesis (e.g., cysteine; 

cysN, sat, cysD) and in sulfur oxidation (sdo, dsrH) were present in all Chloroflexota MAGs, 

however, none of our Chloroflexota MAGs encoded complete pathways for sulfur oxidation. 

Evidence for dimethyl sulfoxide (DMSO) utilization was suggested by the presence of dmsA 

and/or dmsB (involved in DMSO reduction) in five of our MAGs (Supplementary Data 5-6). 

DMSO is abundant in deep sea ecosystems and was suggested to be an electron acceptor for 

microbes that survive in deep-sea extreme conditions (Xiong et al., 2016). The nirB and nirD genes 

were encoded in one Chloroflexota MAG, which can be involved in denitrification, dissimilatory 

nitrate reduction to ammonium, and/or assimilatory nitrate reduction (Zumft 1997; Stolz and Basu 

2002). Finally, genes for transport of tungstate were identified in 4 Chloroflexota MAGs, and 

transporters of molybdenum/tungsten in 10 MAGs (Supplementary Data 5, 6). Tungsten is found 
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abundantly in hydrothermal ecosystems (Kishida et al., 2004), and serves as a redox catalyst in 

metalloenzymes of thermophilic archaea inhabiting hydrothermal vents (Kletzin and Adams, 

1996) and hot springs (Buessecker et al., 2022). Evidence of putative arsenate biomineralization 

for detoxification (e.g., arsC, arsM genes) or energy gain via arsenotrophy (arrA gene; Saunders 

et al., 2019) was present in three MAGs. Sedimentary arsenic input would explain the elevated 

concentrations of arsenic in Guaymas Basin hydrothermal fluids (up to 1 µmol) that exceed those 

at other hydrothermal vent sites (Von Damm et al., 1985). Five Chloroflexota MAGs contained 

CRISPR/Cas genes involved in genome editing (Supplementary Data 5,6). 

The Chloroflexota are a cosmopolitan phylum of Bacteria that contain a diverse array of 

metabolic capabilities (Dombrowski et al., 2017; Zhou et al., 2022; Rogers et al.,2023). We found 

that the Chloroflexota MAGs recovered from Guaymas Basin contained the potential for 

hydrocarbon and fatty acid utilization, as well as formate oxidation and carbon monoxide oxidation 

as has been reported previously (Dombrowski et al., 2017). Some lineages contained genes for 

carbon fixation via the Wood-Llungdahl pathway, as well as the potential for organohalide 

respiration. These metabolisms for the Chloroflexota have been reported previously in Guaymas 

Basin and other subsurface environments (Dombrowksi et al., 2017; Fincker et al., 2020). 

 

Thermoproteota 

Bathyarchaeia recycle hydrogen and CO2 from fermentation using the WL pathway (He et al., 

2016). Eight out of 11 of our Bathyarchaeia MAGs contained genes involved in the WL pathway. 

In addition, we detected the marker gene for the formaldehyde activating enzyme (fae) in 5 MAGs 

affiliated with 40CM-2-53-6, B26-1 and TCS64 orders. Fae condenses formaldehyde and 

tetrahydromethanopterin to form methylene-tetrahydromethanopterin that can be reduced and 

utilized in the WL pathway (Timmers et al., 2017; Vorholt et al., 2000). Six Bathyarchaeia MAGs 

encoded the mer gene (ffdA synonym, to avoid confusion with the mer operon for mercury 

reduction) for the reduction of methylene-tetrahydromethanopterin in the WL pathway. Various 

Bathyarchaeia sub-lineages have been reported to encode genes for anaerobic oxidation of 

methane/alkane compounds (mcr/acr complex) (Evans et al., 2015, Evans et al., 2019; Qi et al., 

2021; Vanwonterghem et al., 2016). We detected the methane/alkane oxidation marker genes fwd, 

ftr, mtd, mch, and mtr in all Bathyarchaeia MAGs. The acr/mcr genes encoding the methyl/alkyl-

coenzyme M complex were absent in the Bathyarchaeia MAGs, indicating loss of the mcr/acr 
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operon as described previously for Bathyarchaeia. Nine out of 11 Bathyarchaeia MAGs also 

encoded genes for acetate formation (acdA, ack, pta, acs) which could be utilized to couple 

methylotrophy with acetogenesis, as has been described previously in Bathyarchaeia MAGs from 

deep sediments (Farag et al., 2020; He et al., 2016). 

 Marker genes for other specific metabolic capacities in our Bathyarchaeota MAGs included 

genes for fermentation (porA), hydrogen cycling (Ni-Fe hydrogenases) and genes involved in the 

anaerobic degradation of benzoate (bcrA, bcrB, bcrD;  Kung et al., 2009). The bcr genes were also 

observed in Chloroflexota (5 MAGs), Zixibacteria (1 MAG) and Desulfobacterota (4 MAGs); the 

latter group can be enriched in Guaymas Basin sediments on benzoate, under sulfate-reducing 

conditions (Edgcomb et al., 2022). 

 

Acidobacteriota 

Members of the highly diverse heterotrophic phylum Acidobacteriota occur in a wide range of 

freshwater and marine seafloor environments and can utilize oxygen or other electron acceptors 

(e.g., nitrate, nitrite, sulfate) for respiration  (Flieder et al., 2021 and references therein). We 

detected eight Acidobacteriota MAGs annotated to the orders of Aminicenantales (7 MAGs), and 

Acidoferrales (1 MAG). Aminicenantales MAGs were previously recovered from surficial 

Guaymas Basin sediments (Dombrowski et al., 2018), and in this study they were found at all sites 

between 0.8-60 meters below sea floor (mbsf). The Acidoferrales MAG was detected only below 

61.6 mbsf at sites U1545B and U1548B. The overall metabolic potential of Guaymas subsurface 

Acidobacteriota MAGs is summarized in Supplementary Data 5 and 6.  

We observed that almost all Acidobacteriota MAGs encoded the NtrY-NtrX two-

component regulatory system, a redox sensor system widely distributed in Proteobacteria which 

regulates denitrification and nitrogen fixation genes, and senses nitrogen levels under nitrogen 

limitation (Pawlowski et al., 1991; DelVecchio et al., 2002; Bonato et al., 2016). Six of our eight 

Acidobacteriota MAGs contained at least one gene of the nif operon (e.g., nifU, nifB, nifH) which 

suggests putative nitrogen fixation in our subsurface samples. This is similar to previous reports 

of deep-sea sediment Acidobacteriota that encode nifH in their genomes (Kapili et al., 2020). Two 

Acidobacteriota MAGs contained CRISPR/Cas genes involved in genome editing (Supplementary 

Data 5). 
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Desulfobacterota 

Desulfobacterota include primarily heterotrophic sulfate reducers and syntrophic sulfate-reducing 

lineages that couple sulfate reduction with methane and short-chain alkane oxidation by anaerobic 

methane oxidizers (ANME archaea). These bacteria are widespread in Guaymas Basin sediments 

and other hydrothermal and cold seep sites (Knittel and Boetius, 2009; Murphy et al., 2021; Speth 

et al., 2022; Wegener et al., 2022; Zhou et al., 2022). Seven Desulfobacterota MAGs, belonging 

to the Desulfobacterales, Desulfatiglandales, and WTBG01 and WVXP0 orders were recovered 

primarily from shallow sulfate-rich cool sediments of all sites (0.8-15 mbsf, at or above the SMTZ 

with temperatures 2-20oC) (Supplementary Figure 4). Two Desulfobacterales MAGs contained the 

dsr operon (e.g., dsrB/J/K/D) involved in dissimilatory sulfate reduction (Venceslau et al., 2014). 

One MAG annotated to the WTBG01 order (found in freshwater anoxic sulfidic sediments; 

Murphy et al., 2021) encoded the sulfate adenylyltransferase gene (sat) associated primarily with 

sulfur assimilation. Marker genes of DMSO reduction and/or sulfur assimilation were also detected 

in all Desulfobacterota MAGs. One Desulfobacterota MAG contained CRISPR/Cas genes 

involved in genome editing (Supplementary Data 5). 

The potential for iron reduction was evidenced in all Desulfobacterota MAGs by the 

presence of mtrA, mtoA (Garber et al., 2020) and eetB genes, suggesting an extracellular electron 

transfer mechanism. In addition, DFE genes encoding multiheme cytochromes (e.g., DFE_0449, 

DFE_0461, DFE_0451) were found in three of our MAGs annotated to Desulfobacterota and in 

five MAGs annotated to Aminicenantales (Acidobacteriota). DFE genes are involved in iron 

oxidation and were originally documented in the genome of Desulfovibrio ferrophilus strain IS5 

(Deng and Okamoto, 2018). They encode cytochromes and β-propeller proteins, which can 

function as electron carriers and leader peptides in extracellular electron transfer (Chatterjee et al., 

2021; Deng and Okamoto, 2018). At depths where Desulfobacterota MAGs were detected, 

dissolved porewater iron ranged in concentration from < 1 μM to greater than 4 μM 

(Supplementary Data 1), indicating possibly active iron cycling with little accumulation.  

 

Aerophobota and White Oak River group 3 (WOR-3) 

The phylum Aerophobota is widely distributed in deep-sea sediments, and includes fermentative 

thermophiles and hyperthermophiles affiliated with hydrocarbon-rich environments such 

sediments from the Pescadero Basin (Speth et al., 2022), and methane hydrate-bearing sediments 
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(Liu et al., 2022b). We recovered five Aerophobota MAGs (order Aerophobiales) from the deep 

subsurface at depths below 100 mbsf, when temperatures did not exceed 40°C. This suggests that 

the distribution of Aerophobota appears to be constrained by thermal limits rather than by depth. 

Guaymas Aerophobota MAGs encoded marker genes for acetate/acetyl-CoA production (acdA, 

ack, pta) (Dong et al., 2019), fermentation (porA) and degradation of polysaccharides (e.g., 

cellulose, chitin). Two Aerophobota MAGs contained CRISPR/Cas and CRISPR/Csm genes that 

comprise adaptive defense systems against infectious agents in prokaryotes (Colognori et al., 

2023).  

Members of the bacterial WOR-3 candidate phylum were originally described from 

shallow estuarine sediments (Baker et al., 2015) and hydrothermal Guaymas Basin sediments 

(Dombrowski et al., 2017). Five of our six WOR-3 MAGs were recovered from depths at 0.8-26.9 

mbsf; in contrast, a WOR-3 MAG annotated to UBA3073 (order-level) was recovered primarily 

from 112.5 and 154.2 mbsf at site U1545 (up to ~45°C) (Figure 2). Overall, our WOR-3 MAGs 

encoded various peptidases, as well as genes for H2 cycling (Ni-Fe hydrogenase genes) and 

putative chitin degradation (endo-acting chitinase genes). While these results match previous 

findings (Baker et al., 2015), the Guaymas subsurface WOR-3 MAGs also contain genes for 

fermentation and acetate production (acs, acdA, ack, porA), and marker genes for 

endohemicellulases and amylolytic enzymes that can degrade other polysaccharides aside from 

chitin. One WOR-3 MAG encoded CRISPR/Cas genes. 

 

Carbon and Iron cycling 

 

Iron reduction and oxidation 

Iron reduction is a known capability for Bacteria and Archaea associated with marine benthic 

sediments (Flieder et al., 2021; Jiang et al., 2019). Marker genes involved in dissimilatory iron 

reduction (e.g., dmkA, dmkB, eetA, eetB, fmnA, fmnB, pplA, ndh2; Garber et al., 2020) with the 

potential for extracellular electron transfer (EET) were identified in 86/89 MAGs from all 

recovered phyla (Supplementary Data 5, 6), and were only missing from one Thermoproteota, one 

WOR-3, and one Aenigmatarchaeota MAG. These genes participate in EET from the cell towards 

the surrounding environment (Light et al., 2018; Shi et al., 2016). Based on laboratory 
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experiments, EET is suggested to enhance iron bioavailability and iron uptake in anaerobes, and 

to act as a redox mechanism that may contribute to the proton motive force (Jeuken et al., 2020).  

Eight out of 23 Chloroflexota, 2/11 Thermoproteota, 5/8 Acidobacteriota, 3/7 

Desulfobacterota, and 1/6 WOR-3 MAGs also encoded components of the DFE_0448-0451 and 

DFE_0461-0465 operon genes (Supplementary Data 5, 6) homologous to multiheme cytochrome 

systems first identified in Desulfovibrio ferrophilus (Deng et al., 2018). According to the D. 

ferrophilus model, electrons from an external iron source move along extracellular and membrane-

spanning multiheme cytochromes from the outer membrane to the periplasm of the cell and finally 

are passed to a terminal electron acceptor (Deng et al., 2018). Putative terminal electron acceptors 

for this process in MAGs containing DFE components include the sulfur cycle intermediates 

sulfite (based on the presence of sulfite reductase asrA and asrB), tetrathionate (from the detection 

of tetrathionate reductase gene ttrB), and thiosulfate (due to the annotation of thiosulfate reductase 

phsA/B genes; Supplementary Data 5, 6). The capacity for polysulfide reduction was also detected 

based on the presence of polysulfide reductase (psrA) in four Acidobacteriota MAGs containing 

DFE multiheme cytochrome components.  

Electron acceptors from nitrogen cycle intermediates included nitrite (nasD) and nitrate 

(napA, narB). This process is predicted to be utilized when more energy-rich substrates such as 

organic compounds are limited (Deng et al., 2018). Iron (II and III) concentrations associated with 

metagenomic samples containing MAGs that encoded genes affiliated with iron metabolism 

ranged from nanomolar, up to 11.8 µM (Supplementary Data 1).  

 

Carbon monoxide oxidation 

Hydrothermal environments often contain carbon monoxide (CO), which can be produced by the 

breakdown of organic matter or generated by certain anaerobic microorganisms (Kochetkova et 

al., 2011; Sokolova et al., 2009). The potential for CO oxidation, is an energetically favorable 

anaerobic reaction prevalent in subsurface bacterial and archaeal MAGs (Baker et al., 2016; 

Magnabosco et al., 2016). Nine out of 23 Chloroflexota MAGs, 3/11 Thermoproteota, 7/8 

Acidobacteriota, 3/7 Desulfobacterota, 2/5 Aerophobota, and one Hadarchaeota MAGs contained 

the genes coxM and coxS encoding CO dehydrogenase subunits (Supplementary Data 5, 6). Genes 

for catalytic nickel-containing CO dehydrogenase (cooS) and/or its iron-sulfur subunits (cooF) 

were further identified in 9/23 Chloroflexota, 1/11 Thermoproteota, 1/8 Acidobacteriota, 3/7 
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Desulfobacterota, and 2/5 Aerophobota MAGs. The presence of these genes suggests the capacity 

to oxidize CO and H2O to CO2 while reducing an electron-carrying cofactor that is accepting H2. 

Bacteria and Archaea are also capable of CO oxidation coupled to the anaerobic reduction of sulfur 

and nitrogen compounds (King, 2006; Oelgeschläger and Rother, 2008). Potential terminal 

electron acceptors for our CO-oxidizing MAGs included the sulfur cycle intermediates sulfite (due 

to the presence of genes asrA and asrB), tetrathionate (ttrB), thiosulfate (phsA/B), and polysulfide 

(psrA; Supplementary Data 5,6). CO concentrations associated with metagenomic samples 

containing MAGs that encoded these genes ranged from 83 to 665 nM (Supplementary Data 1). 

 

MetaPathPredict insights into metabolic potential of Zixibacteria and Cloacimonadetes 

Some phyla for which we recovered MAGs (e.g., Zixibacteria and Cloacimonadota) remain poorly 

described in terms of their metabolic potential. To assess and predict the metabolic potential of 

some of our less-complete and poorly characterized bacterial MAGs, we applied a new tool 

“MetaPathPredict” (Geller-McGrath et al., 2022) to our Zixibacteria (n= 4) and Cloacimonadota 

(n=1) MAGs. MetaPathPredict is a software designed to predict the presence or absence of 

complete KEGG modules in partially complete bacterial genomes (see below). The tool utilizes 

machine learning models trained on bacterial gene annotations in the format of KEGG gene 

orthologs to predict the presence or absence of whole KEGG modules, and it has been designed to 

handle gene annotations from incomplete bacterial genomes. It is very common in environmental 

metagenomic studies that reconstructed MAGs will vary in their degree of completeness and 

contamination. Usually only a fraction of MAGs exceeds > 80% completeness, and it is known 

that less complete MAGs can result in underestimation of the functional capacity of the genome 

(Eisenhofer et al., 2023), which can be particularly important for uncultured bacterial taxa. 

Application of MetaPathPredict to such partially complete MAGs can be useful for providing 

predictions on whether metabolic pathways are present especially in cases where some key genes 

are missing. While this tool can sometimes miss predictions of pathways that should be present 

based on benchmarking tests with genomic data (Geller-McGrath et al., 2022), it can nonetheless 

be useful for gaining insights into less-complete MAGs, and also for predicting metabolic 

capacities of MAGs affiliated with poorly understood taxonomic groups. 

Our Zixibacteria MAGs were 61-88.5% complete and our single Cloacimonadota MAG 

was 75% complete.  The results of the MetaPathPredict analysis are described below and presented 
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in Supplementary Data 10 which shows: 1) KEGG modules present and complete in our 

Zixibacteria and Cloacimonadota MAGs that were also predicted by MetaPathPredict 2) KEGG 

modules absent or incomplete but predicted to be present by MetaPathPredict, and 3) incomplete 

KEGG modules, also predicted to be absent by MetaPathPredict.  

Lineages of Zixibacteria have been documented in various marine and terrestrial 

subsurface ecosystems, hypersaline settings, and anoxic sediments (Anantharaman et al., 2018; 

Baker et al., 2015; Castelle et al., 2013; Lin et al., 2012b; Momper et al., 2017; Wong et al., 2020). 

This taxon is thought to be capable of dissimilatory nitrate and sulfate reduction, and it seems to 

lack complete carbon fixation pathways (Momper et al., 2017). The 4 Zixibacteria MAGs we 

recovered were detected at all sampling sites down to 25.8 mbsf and metagenome reads mapped 

most intensely from shallow/intermediate depths (8.6-16.2 mbsf). Zixibacteria (order MSB-5A5) 

have the metabolic capacity for oxidation of fatty acids, (e.g., acyl-CoA dehydrogenase) and 

synthesis of a suite of vitamins (e.g, B6, B1). MetaPathPredict predicted the potential for 

dissimilatory sulfate reduction in one of our MAGs (order DG-27), which also contained a marker 

gene for this process (dsrA). Two Zixibacteria MAGs (orders DG-27 and UBA10806) were also 

predicted to encode the potential for dissimilatory nitrate reduction and contained marker genes 

napB and nrfH.  MetaPathPredict additionally predicted the synthesis of vitamin B7 in two 

Zixibacteria MAGs, and acetate production via the phosphate acetyltransferase-acetate kinase 

(Pta-Ack) pathway in all four MAGs. The Pta-Ack pathway can produce acetate/acetyl-CoA and 

can participate in carbon fixation by providing acetyl-CoA. Complete acetogenesis via the pta-ack 

pathway was also confirmed from our genomic data in two MAGs (ack, pta). MetaPathPredict 

predicted various transporters (e.g., phosphate, iron and ABC transporters), pathways involved in 

synthesis of co-factors using amino acids or tRNA reductases (e.g., from glutamate to heme; from 

tRNA-glutamyl to sideroheme), and the synthesis of various amino acids (e.g., threonine, serine, 

valine isoleucine). Many of these processes (e.g., biosynthesis of amino acids, iron reduction) were 

also verified with marker genes. The Zixibacteria MAGs did not contain the potential for carbon 

fixation. 

 Cloacimonadota are abundant in anoxic/sulfidic water columns and cold seep brine pools 

(e.g., Black and Red Sea, respectively; Suominen et al., 2021; Villanueva et al., 2021; Zhang et 

al., 2016). They are suggested to perform diverse metabolisms including carbon fixation, 

fermentation, and assimilation of proteins as carbon and nitrogen sources. Our single 
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Cloacimonadota MAG was present in low abundance at site U1545B in metagenomes between 

25.8 and 63.8 mbsf. The Cloacimonadota MAG was not predicted to contain the capacity for 

carbon fixation, however our data showed (and the MetaPathPredict successfully predicted) that 

this taxon encodes genes for fermentation via acetate production (pta, ack), and synthesis of 

vitamin B7 and salvage of thiamine (vitamin B1), an indispensable cofactor in amino acid and 

carbohydrate metabolism. Further, salvage of B1 is linked to the metabolism of pyrimidines 

essential for maintenance and synthesis of the DNA strands (Gonçalves and Gonçalves, 2019). 

Biosynthesis of purines and pyrimidines is a core metabolic process, and was detected, and 

predicted, in our Cloacimonadota MAG.  

 

Accounting for Seawater and Laboratory Contamination 

Deep-sea drilling employs a mixture of seawater and lubricant mud during drilling operations, 

which carries seawater-derived microbial contaminants into the sediment samples. Contamination 

monitoring (using polyfluorinated chemical tracers) was run throughout the drilling operations on 

selected samples (Lever et al., 2006), yet not every sediment sample of the thousands that are 

collected during an IODP expedition can be tested. It is therefore necessary to account for the 

potential presence of mixed microbial communities derived from seawater and drilling lubricant 

by sequencing a “drilling fluid control” and excluding the detected sequences from our 

metagenomic data. The second type of contaminants are introduced through DNA extraction kits, 

reagents and handling (the “kitome”, e.g., Salter et al., 2014). This contaminant community needs 

to be accounted for based on blank extractions (“kit/method control”) where no sediment sample 

is added. Because DNA for metagenomes was extracted in two different labs, the Amend lab 

(USC) and the Edgcomb lab (WHOI), our study includes two blank extraction controls. 

Contaminants from all three controls were identified by mapping control reads to the metagenome 

assembly and removing all contigs that received mapping with minimum 98% identity over 

minimum 75% of the read length. Contamination control samples are listed in Supplementary Data 

2, and contaminant MAGs in Supplementary Data file 3.  

  



 
 

150 

Supplementary Figures 

 
Supplementary Figure 4-1A. Total Petroleum hydrocarbon (C9-C44) content of Guaymas Basin sediments. 
Samples were analyzed at Alpha Analytical (Mansfield, MA, USA) for fingerprinting diagnostic compounds using 
EPA method 8015 (GC-FID; saturates) and a modified method 8270D (GCMS; PAHs), as detailed in Stout 2016. 
Hydrocarbon concentrations used in this figure are provided in the Source Data file. 
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Supplementary Figure 4-1B. Total Saturated hydrocarbon content of Guaymas Basin sediments. Samples were 
analyzed at Alpha Analytical (Mansfield, MA, USA) for fingerprinting diagnostic compounds using EPA method 
8015 (GC-FID; saturates) and a modified method 8270D (GCMS; PAHs), as detailed in Stout 2016. Hydrocarbon 
concentrations used in this figure are provided in the Source Data file. 
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Supplementary Figure 4-2. MAG recovery frequency. Frequency of Guaymas Basin prokaryotic MAGs (≥ 50% 
completeness, ≤ 10% contamination) by bacterial (A) and archaeal phylum (B). Colored dots at the end of each line 
segment correspond to the mean genome completeness of the phylum; the number above the dot quantifies the number 
of genomes recovered from the phylum. 
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Supplementary Figure 4-3. Heatmap of read frequency for metabolic and cellular processes of Chloroflexi in 
Guaymas Basin metagenome samples. Metabolic and cellular processes were identified at the examined sites/depths 
using KofamScan. Processes involve pathways associated with energy-related metabolisms, genetic maintenance, 
survival strategies, and co-factor/vitamin biosynthesis. Sites and depths (mbsf) are given along the Y axis of the 
heatmap. Expression levels are normalized as log2 transformation of TPM+1 (a value of 1 was added to TPM values 
to avoid zeros). TPM:  Transcripts Per Million.  
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Supplementary Figure 4-4. Heatmap of read frequency for metabolic and cellular processes of the subsurface 
microbial community in Guaymas Basin metagenome samples. Metabolic and cellular processes were identified 
at the examined sites/depths using KofamScan. Processes involve pathways associated with energy-related 
metabolisms, genetic maintenance, survival strategies, and co-factor/vitamin biosynthesis. Sites and depths (mbsf) are 
given along the Y axis of the heatmap. Expression levels are normalized as log2 transformation of TPM+1 (a value of 
1 was added to TPM values to avoid zeros). TPM, Transcripts Per Million.  
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Supplementary Figure 4-5. Canonical Correlation Analysis (CCA) of subsurface MAGs and environmental 
parameters. The CCA plot depicts the correlation of Guaymas Basin MAG occurrence with in-situ environmental 
parameters. On the basis of Fisher’s method for combining p-values, we show environmental variables with p-values 
< 0.05 resulting from a two-sided permutation test. Arrow direction indicates a positive or negative correlation of the 
environmental parameter with the ordination axes, for statistically significant (p < 0.05) environmental parameters 
(temperature, p = 0.0001; pH, p = 0.0102; salinity, p = 0.0268; hydrogen sulfide (H2S), p = 0.0053; carbon monoxide 
(CO), p = 0.004; calcium carbonate (CaCO3), p = 0.0240; total organic carbon (TOC), p = 0.0084; total nitrogen (TN), 
p = 0.0103). Arrow length reflects correlation strength between environmental parameter and MAG occurrence. 
Samples are color-coded by site, and their temperature regimes are indicated by shape (circles for 2-20°C; triangles 
for 20-45°C and squares for 45-62°C). Some samples are overlapping in their positions in the upper left corner of the 
plot. 



 
 

156 

 
Supplementary Figure 4-6. Relative abundance of Chloroflexota and Thermoproteota MAGs, identified by 
order, in metagenomic samples from drill sites U1545B and U1547B. The heatmap for Chloroflexota (A) and 
Thermoproteota (B) shows for each column the percentage of total pre-processed reads from a metagenomic sample 
that mapped to all Chloroflexota and Thermoproteota MAGs, respectively, in order of increasing sampling depth and 
temperature from left to right for samples from sites U1545B (left) and U1547B (right). MAG taxonomy is color 
coded to the left of the plot; taxonomic order names are given in the legend to the right of the heatmap. Temperatures 
and depths are color coded at the top of the plot.  
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Abstract 

Deciphering the metabolic potential within eukaryotic ‘omics datasets recovered from 

environmental samples is challenging, and relative to prokaryotes, there are few high-quality 

representative genomes and transcriptomes of eukaryotic species in reference databases. With 

improvements in sequencing technology and assembly algorithms, genomes and transcriptomes of 

eukaryotes from environmental samples can now be reconstructed. However, this often yields 

partial eukaryotic genomes that give incomplete insight into their full metabolic potential. In 

computational pipelines designed to elucidate eukaryotic metabolism, the application of machine 

learning for the prediction of KEGG module presence or absence in incomplete genomes and 

transcriptomes is virtually unexplored. Here, we present MetaPathPredict-E, an extension of the 

MetaPathPredict software that utilizes machine learning models to predict the metabolic potential 

of incomplete eukaryotic genomes and transcriptomes. MetaPathPredict-E has a command line 

interface, can also be run as a Python module, and both formats can be utilized on a local operating 

system or on a computing cluster. In benchmarking of its classification models, MetaPathPredict-
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E exhibited accurate predictions of KEGG module presence/absence within highly incomplete 

genomes and transcriptomes. 

 

Introduction 

Eukaryotic metabolism exhibits remarkable diversity across its kingdoms. This metabolic 

versatility is reflected by the adaptations and lifestyles of these organisms, with varying energy 

requirements and trophic modes (Weber et al., 2007; Harwood et al., 2009; Ginger et al., 2010; 

Edwards et al., 2023; Müller et al., 2012; Alexander et al., 2023). Protists are a diverse and eclectic 

group of single-celled eukaryotic organisms (Adl et al., 2019) encompassing member clades with 

a range of trophic modes (Lambert et al., 2022; Alexander et al., 2023). Many protists are obligate 

phototrophs or heterotrophs, though there are also mixotrophic protists that can switch between 

these two trophic modes through various mechanisms (Gast et al., 2006; Stoecker et al., 2009). 

Protists also exhibit both aerobic and anaerobic metabolisms (Muller et al., 1991; Ginger et al., 

2010; Gawryluk et al., 2021; Fenchel and Finlay 1991; Fenchel 2011). The Archaeplastida, which 

contain within its member clades the Streptophyta and Chlorophyta, utilize the energy stored in 

glucose through the process of photosynthesis to fuel their cellular activities including growth, 

development, and reproduction (Leegood et al., 2006). Archaeplastida include taxa with 

remarkable metabolic flexibility, demonstrated by their ability to switch between photoautotrophy 

and mixotrophy, supplementing photosynthesis with the absorption of organic nutrients from the 

environment (Tĕšitel et al., 2018). Fungi play critical roles in nutrient cycling by breaking down 

complex organic matter into simpler molecules that can be utilized by other organisms (Harley, 

1971; Finlay, 2004; Rashid et al., 2016). Under aerobic conditions, fungi utilize the ubiquitous 

pathway of oxidative phosphorylation to break down organic matter. However, in anaerobic 

environments, fungal species perform fermentative metabolisms and consort with 

chemoautotrophic prokaryotes (Kazda et al., 2014; Drake and Ivarsson, 2018).  

The metabolic pathways of eukaryotic organisms encompassing processes involved in 

phototrophy, heterotrophy, and mixotrophy are encoded within their genomes. With the advent of 

high-throughput sequencing technologies and advances in computational biology, a suite of 

bioinformatics tools has emerged to unravel the complexities of eukaryotic metabolism and predict 

trophic modes. The process of identifying and functionally annotating genes within a genome is 

one of the first steps in predicting metabolism. Tools such as AUGUSTUS (Stanke et al., 2006), 
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the GeneMark software suite (Lukashin and Borodovsky, 1998), and the BRAKER3 pipeline 

(Gabriel et al., 2023) are designed primarily for predicting genes within eukaryotic genomes. Once 

genes are identified and proteins are predicted, their functional roles are often inferred with 

sequence alignment methods such as BLAST (Altschul et al., 1990) and DIAMOND (Buchfink et 

al., 2015), which compare predicted sequences to known protein databases. Annotation of protein 

families and domains using Hidden Markov Models (HMMs) is another common approach to gene 

annotation. Tools such as KofamScan (Aramaki et al., 2020), eggNOG Mapper (Huerta-Cepas et 

al., 2017), and InterProScan (Jones et al., 2014) utilize profile HMMs to annotate prokaryotic and 

eukaryotic proteins. The resulting gene annotations can then be mapped to metabolic pathways 

from databases including KEGG (Kanehisa, 2002) and MetaCyc (Karp et al., 2002). The presence 

of specific gene orthologs in a genome is thus thought to be indicative of an organism’s metabolic 

potential. 

Genomic sequencing of eukaryotes has yielded a growing number of high-quality draft 

genomes, yet reconstructing eukaryotic genomes remains a significant challenge due to the 

inherent complexity of their genomic architecture (Tørresen et al., 2019). Since expansive 

noncoding and repetitive genomic regions pose challenges for sequence read assembly algorithms, 

transcriptomic sequencing presents a compelling alternative approach. This technique sequences 

only the RNA transcripts of an organism, bypassing these complex non-coding regions of the 

genome to greatly simplify the read assembly process. Software such as Trinity (Haas et al., 2013) 

is used to assemble transcripts from transcriptomic data, while TransDecoder 

(https://github.com/TransDecoder/) or GeneMarkS-T (Tang et al., 2015) can predict coding 

regions of transcripts that can then be functionally annotated. Transcriptomic data only provides 

sequencing information about actively transcribed genes, and does not reflect information about 

genes that were not expressed at the time that a sample was collected. The rapid degradation of 

RNA by cellular machinery presents an additional challenge that can bias transcriptomic 

sequencing results, confounding transcript quantification and other downstream analyses (Gallego 

Romero et al., 2014). 

Machine learning models are also increasingly being deployed in bioinformatics tools to 

analyze eukaryotic datasets, such as to predict their trophic mode. By analyzing large genomic and 

transcriptomic datasets, learning algorithms can identify patterns and relationships that may not be 

readily apparent through manual methods. Machine learning architectures including random 
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forests have been used to successfully predict trophic modes within genomic and transcriptomic 

datasets with a high degree of accuracy (Lambert et al., 2022; Alexander et al., 2023). A major 

challenge, however, is that the coding regions of genomes and transcriptomes of eukaryotes 

reconstructed from environmental samples are often incompletely recovered. Machine learning 

has been shown to be useful in analyzing poorly characterized organisms and/or incompletely 

recovered proteomes (Lambert et al., 2022; Alexander et al., 2023).  

Machine learning methods to predict metabolic pathway completeness in eukaryotes, 

however, are lacking. We aim to fill this gap with the development of a new tool, described here, 

that is designed to predict modules within eukaryotic proteomes. Building upon the open-source 

tool MetaPathPredict (Geller-McGrath et al., 2024), we introduce MetaPathPredict-E, a deep 

learning-powered extension for eukaryotic metabolic pathway prediction. MetaPathPredict-E 

addresses a gap in metabolic pathway reconstruction tools for eukaryotes that harnesses the utility 

and predictive power of genomic and transcriptomic data. It directly connects curated KEGG 

metabolic knowledge with machine learning, enabling the efficient reconstruction and prediction 

of KEGG modules within diverse but incomplete eukaryotic datasets including isolate genomes 

and transcriptomes, metagenome-assembled genomes (MAGs), and single amplified genomes 

(SAGs). 

The models contained within MetaPathPredict-E were trained on gene annotation data from 

taxonomically diverse eukaryotic isolate genomes and transcriptomes obtained from the NCBI 

RefSeq (O’Leary et al., 2016), JGI GOLD (mirrored in NCBI GenBank; Clark et al., 2016), NCBI 

TSA (Wheeler et al., 2007), and MMETSP (Keeling et al., 2014) databases. The metabolic 

modules defined in the KEGG database serve as the tool’s reference for both reconstructing and 

predicting the metabolic potential of input gene annotations. The KEGG database contains 

metabolic pathway information for all domains of life, including eukaryotes. KEGG modules are 

functional units within KEGG pathways that consist of ordered sequences of KEGG reactions. 

Examples of modules include individual carbon fixation and vitamin biosynthesis pathways, as 

well as modules encoding transporters. MetaPathPredict-E has a command line interface for 

execution on a local operating system or computing cluster and is available as part of the 

MetaPathPredict Python module on GitHub (https://github.com/d-mcgrath/MetaPathPredict-E). 

A schematic of the MetaPathPredict-E pipeline is shown in Figure 1. The tool accepts gene 

annotations from one or more genomes or transcriptomes with associated KEGG ortholog (KO) 
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gene identifiers. Due to the potential incompleteness of input datasets, MetaPathPredict-E uses a 

dual-pronged approach. First, it maps input annotations to KEGG modules, and reconstructs both 

complete and fragmented modules within the input data. Subsequently, it predicts the presence or 

absence of all incomplete modules. Input files to MetaPathPredict-E can be from the output of 

tools including KofamScan (Aramaki et al., 2020), DRAM (Shaffer et al., 2020), blastKOALA 

(Kanehisa et al., 2016), ghostKOALA (Kanehisa et al., 2016), or a custom tab-separated values 

(TSV) file of KO gene identifier annotations. The tool contains individual multi-label classification 

models trained specifically for metabolic predictions of Fungi, Streptophyta, Chlorophyta, 

Excavata, Stramenopiles, Alveolates, Rhizaria, and Metazoa (as taxonomically defined by Adl. et 

 
Figure 5-1. Overview of the MetaPathPredict-E pipeline. Input gene annotations are first read into 
MetaPathPredict-E, then the data are scanned for any complete KEGG modules and are formatted into a feature 
matrix. Predictions are then made for all incomplete modules (or modules specified by the user). A summary and 
detailed reconstruction and prediction output, along with gapfilling options are returned as the final output. 
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al., 2012). MetaPathPredict-E also contains a general model that was trained to predict KEGG 

modules that were prevalent in the genome and transcriptome data across all the aforementioned 

eukaryotic supergroups, plus clades that lacked sufficient representation in the downloaded 

datasets used for model creation. The distribution of module classes for each model is shown in 

Supplementary Figure 1. Each of its deep learning models contained distinct network architectures 

determined individually through Bayesian optimization. MetaPathPredict-E made predictions with 

a macro F1 score (a summary metric for multi-label predictive performance) of at least 0.81 on all 

held-out test datasets of proteomes containing at least 30% of their original gene content. The 

models were trained to classify the presence or absence of KEGG modules that were present in at 

least 25% of the proteomes within each of the training datasets. False negative predictions were 

uncommon during model evaluation, while false positives increased when predictions were made 

on highly incomplete (<30% completeness) gene annotation information. We believe that 

MetaPathPredict-E will help facilitate studies of eukaryotic genomes and transcriptomes from 

environmental samples and will help to decipher their metabolic potential. 

 

Materials and Methods 

 

Filtering genome database metadata, downloading genomes and transcriptomes, and 

annotating genes 

A total of 554 genomes (and their predicted gene sequences, where available) were downloaded 

from the NCBI RefSeq database using the ncbi-genome-download tool with the flags “--formats 

all”, “--section refseq”.  The “advanced search” option was used to extract the information for all 

fungal genomes present in the JGI GOLD database, including mirror links to download the 

genomes from the NCBI GenBank database. The database metadata file for release v.9 was 

downloaded (https://gold.jgi.doe.gov/downloads) and filtered to keep the information for 

eukaryotic genomes that were extracted through searching the database. A total of 1,838 eukaryotic 

genomes from JGI GOLD with mirror links to NCBI were downloaded using the ncbi-genome-

download command line tool (Blin 2023). The NCBI RefSeq and JGI GOLD genomes (extracted 

from NCBI GenBank) were cross-referenced, and in instances of duplicate representatives the 

RefSeq version of the genome was retained. A total of 2,473 genomes were further downloaded 

from NCBI using the NCBI Datasets CLI (Sayers et al., 2021) with the “datasets download genome 
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taxon” command including the “--dehydrated” and “--include genome,protein,seq-report” flags 

followed by the “datasets rehydrate” command. A set of 1,562 assembled transcriptomes from the 

NCBI TSA database and protein-coding sequences of 638 improved MMETSP (Johnson et al., 

2019) transcriptome assemblies and their predicted gene content 

(https://zenodo.org/records/3247846) were manually downloaded. Protein-coding sequences were 

predicted for the NCBI TSA transcriptomic assemblies using the “TransDecoder.LongOrfs” and 

“TransDecoder.Predict” scripts from TransDecoder (https://github.com/TransDecoder/). Only 

select genomes downloaded from NCBI had available gene predictions, and therefore BRAKER3 

version 3.0.7 with default parameters (Gabriel et al., 2023) was utilized to predict genes (without 

RNA-Seq/protein evidence) for all the genomes extracted from NCBI. For genomes with both pre-

existing gene predictions and BRAKER3 gene predictions, the BUSCO scores were compared and 

the set of protein sequences with the highest BUSCO score was retained to avoid incorporating 

duplicate proteomes into training datasets. The completeness of all genomes and transcriptomes 

was assessed using BUSCO v5.4.7 (Simão et al., 2015). All proteomes with ≥ 80% BUSCO 

completeness (measured as the total percentage of single copy, duplicate, and fragmented BUSCO 

genes present) were retained for downstream model training.  

The KofamScan command line tool (Aramaki et al., 2020) was utilized to assign functional 

annotations to all downloaded predicted protein coding regions of genomes and transcriptomes. 

Leveraging the KEGG database's KOfam HMM collection (Kanehisa et al., 2002; 

ftp://ftp.genome.jp/pub/db/kofam/), KofamScan assigned KO gene identifiers to genome and 

transcriptome predicted protein sequences. Only KofamScan-derived annotations surpassing the 

HMM's adaptive scoring threshold defined by KofamScan were retained for downstream model 

training. These HMM scoring thresholds were more robust than the use of fixed e-value cutoffs 

and minimized the inflation of our training and assessment datasets with potentially inaccurate 

annotations. 

 

Formatting gene annotation data, fitting KEGG module classification models 

One general model was trained on the entire dataset of available eukaryotic genomes and 

transcriptomes that had at least 80% BUSCO completeness. For this model, the full dataset (n = 

5,184) was split such that 75% of genomes and transcriptomes were used for training with the 

remaining 25% reserved as a test dataset. The training dataset was further split into 80% 

https://github.com/TransDecoder/
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training/20% validation sets. Each sample in the three datasets contained a vector of KO gene 

identifier (protein family) presence/absence encoded by ones and zeroes, respectively. The labels 

for the training data were the presence or absence of complete KEGG modules. Additional training, 

validation and test datasets were curated for major groups of eukaryotes for which sufficient high-

quality proteomes were available, including Metazoa, Fungi, Chlorophyta, Streptophyta, 

Stramenopiles, Alveolata, Rhizaria, and Excavata. 

Training and test datasets contained both complete and incomplete gene annotations of 

eukaryotic proteomes from a diverse array of phyla. The number of genomes and transcriptomes 

in each training dataset, as well as the number of features and labels are presented in 

Supplementary Table 1. Taxonomic groups for which very little data (< 100 genomes and/or 

transcriptomes) were available included the Alveolata and Rhizaria. The taxonomic distribution of 

all genome and transcriptome data used for model training is shown in Supplementary Figure 2. 

The incomplete annotations were constructed from proteome gene annotation samples with a 

BUSCO completeness of at least 80% that were randomly down-sampled to retain 5-95% of the 

original gene content, while the KEGG modules labels associated with the samples remained 

unchanged. Each proteome was downsampled 10 times at each sampling rate with a distinct 

random number generator seed and all complete and down-sampled versions were retained for 

training and testing. Model training datasets varied in sample size, depending on taxon and 

availability of genomic/transcriptomic data (see Supplementary Table 1). 

The gene copy number data of the downloaded proteomes was formatted into a matrix 

containing protein family presence/absence (1 or 0, respectively) in columns and proteome 

samples in rows. The multiple labels in each dataset were the presence/absence (1 or 0) of KEGG 

modules in the samples as determined using the KEGG modules downloaded from the KEGG 

database and the Anvi’o Python module (Eren et al., 2015). The “unroll_module_definition” 

function from the Anvi’o module was utilized with downloaded KEGG module data to create a 

list of all possible KEGG Ortholog combinations to complete each module. For the module to be 

categorized as present, at least one possible (non-redundant) combination of every step of the 

module had to be present in a proteome, otherwise it was designated as absent. The models were 

constructed to predict KEGG modules for which at least 25% of all proteomes in the training data 

contained the full module. The models were trained using the gene annotation data of the genomes 

and transcriptomes consolidated from the NCBI RefSeq, JGI GOLD, NCBI TSA, and MMETSP 
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databases. The constructed models classify the multi-label presence or absence of complete KEGG 

modules based on the gene annotations of a genome or transcriptome. 

A deep learning classification approach was chosen to model the relationship between 

protein family presence/absence and the presence/absence of metabolic modules. 

MetaPathPredict-E is built using the Keras deep learning library (Chollet et al., 2015). L2-

regularization was utilized to adjust hidden unit weights during training, with a learning rate of 

0.001. Features used in the training datasets were protein family presence/absence in the form of 

KO gene identifiers. The deep learning architecture of each of MetaPathPredict-E’s multi-label 

models was determined using a Bayesian optimization hyperparameter tuning method from the 

Keras Tuner library (O’Malley et al., 2019). The number of hidden layers and associated hidden 

units varied by model but were fully connected in each case. The output layer of the models 

contained a set of nodes to predict a multi-label output of KEGG module presence/absence. 

Stratified sampling is a sampling method that ensures that all groups within the training 

and test data are represented in the same proportion as they are in the population as a whole. A 

multi-label stratified sampling method approach was used to generate 75% train/25% test dataset 

splits that each contained data observations with preserved proportions of positive (‘KEGG 

module present’) and negative (‘KEGG module absent’) classes for each of the training datasets. 

The training datasets were further separated using the same method into 80% train/20% validation 

dataset splits to fit deep learning models. Sample weights were also applied to each of the training 

datasets, to penalize misclassification more harshly during training of samples containing modules 

that were less prevalent in the training data. 

The binary cross entropy loss function was used in tandem with the Adaptive Moment 

Estimation (Adam) optimizer. The input and hidden layers utilized the rectified linear unit (ReLu) 

activation function; the output layer contained a sigmoid activation function. Dropout (Srivastava 

et al., 2014) was applied to all hidden layers (with dropout probabilities determined through 

Bayesian optimization) to avoid overfitting the training data. Batch normalization (Ioffe et al., 

2015) was also applied at all layers except the final layer to prevent overfitting the training data 

and to speed up model convergence. 
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Evaluating MetaPathPredict-E on test genomes and transcriptomes randomly down-

sampled to simulate varying degrees of proteome incompleteness 

MetaPathPredict-E’s models were validated on held-out test sets consisting of a combination of 

near-complete to complete and simulated incomplete genomes and transcriptomes, and the 

performance metrics were extracted using the Scikit-learn (Pedregosa et al., 2011) Python module. 

The annotations in each test set were created by randomly downsampling near-complete/complete 

proteomes to simulate recovered gene annotations from incomplete genomes. Five percent to 95% 

of genes from each annotation set were randomly retained (in increments of 5%) and used as input 

for MetaPathPredict-E predictions of KEGG module presence/absence. The performance metrics 

used in evaluating the model were macro precision, macro recall, and macro F1 score (Table 1). 

 

Metric Definition 

Precision true positive/(true positive + false positive) 

Recall true positive/(true positive + false negative) 

F1 score 2 × ((precision × recall)/(precision + recall)) 

 

Table 5-1. Definitions of machine learning model performance metrics used to assess the MetaPathPredict-E 

model. The macro F1 score, precision, and recall are the average F1 score, precision, and recall across all labels, with 

each label weighted uniformly. 

 

Testing MetaPathPredict-E with a set of high-completeness MAGs from built environment 

metagenomes 

MetaPathPredict-E was also validated on a test set of gene annotations extracted from MAGs 

recovered from hospital room and infant gut metagenomes (Olm et al., 2019). MAG protein 

sequences were downloaded (https://github.com/MrOlm/InfantEukaryotes/tree/master) and re-

annotated using KofamScan. The completeness of the MAG protein datasets was assessed using 

BUSCO. The set of protein annotations were filtered to retain 8 MAGs with a BUSCO 

completeness of at least 80%. The method for the assessment of MetaPathPredict-E’s models was 

the same as was described above on held-out test datasets during model training. 
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Testing MetaPathPredict-E with a set of low completeness genomes from the NCBI, JGI 

GOLD, and MMETSP databases 

Further validation of MetaPathPredict-E utilized gene annotations from the low completeness 

(<80% BUSCO completeness) proteomes acquired from the NCBI, JGI, and MMETSP databases. 

MetaPathPredict-E's performance was evaluated on these MAGs using the detection rate method, 

which assessed the percentage of fully present KEGG modules in the data that MetaPathPredict-E 

was able to correctly classify. The low completeness proteomes were separated by eukaryotic 

supergroup, with each model making predictions for its associated group. The general model was 

used to make predictions on the comprehensive set of low completeness proteomes.  

 

Gapfilling for incomplete modules predicted as present 

MetaPathPredict-E provides enzyme gapfilling options for KEGG modules predicted as present 

by suggesting putative KO gene annotations missing from an input proteome’s gene annotations 

that could fill in missing gaps in predicted modules. 

 

Results and Discussion 

MetaPathPredict-E is a machine learning-based tool designed to predict the presence of metabolic 

modules in eukaryotic genomes and transcriptomes that are missing gene annotation information 

due to incomplete sequencing or annotation of a proteome. Its models were trained on both 

complete and down-sampled eukaryotic proteomes, where protein annotations were randomly 

removed in increasing increments. High-completeness proteomes (BUSCO completeness score of 

at least 80%, calculated as the proportion of single copy, duplicated, and fragmented BUSCO 

genes present; see Figure 2) were labelled as containing KEGG modules if all the genes necessary 

to non-redundantly complete the reaction steps of a KEGG module were present, otherwise the 

module was labeled as absent. All labels were preserved in down-sampled versions of the high-

completeness proteomes used during model training. To assess MetaPathPredict-E's performance, 

we implemented a variety of benchmarking experiments in which we tested the tool on simulated 

and unmodified proteome datasets.  

MetaPathPredict-E’s performance metrics on held-out test data from Chlorophyta, 

Streptophyta, Alveolata, Rhizaria, Stramenopiles, Excavata, Fungi, and Metazoa proteomes 

suggest its models predict with high fidelity (macro F1 score ≥ 0.81) when at least 30% of gene 



 
 

174 

annotations are present (Figure 3). The efficacy of MetaPathPredict-E’s models was assessed using 

artificially incomplete gene annotation data, unmodified low-BUSCO completeness proteomes, 

and MAGs recovered from built environment metagenomes. 

 

 
Figure 5-2. Bar chart showing the distribution of phyla of all genomes and transcriptomes utilized for 
model training. Eukaryotic groups are displayed in bold text to the far left. One model was trained for each 
cluster of phyla indicated in the y-axis (one model per group). Bars are colored to show the distribution of 
databases the training genomes and transcriptomes were downloaded from. All genomes and transcriptomes had 
a BUSCO completeness score ≥ 80%. An addition general model was trained to classify KEGG modules prevalent 
across all eukaryotic data that was at least 80% complete. See Supplementary Figure 1 for the full distribution of 
proteomes used to train the general model; see Supplementary Table 1 for more training data information. 
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Benchmarking MetaPathPredict-E on held-out, down-sampled NCBI, JGI GOLD, 

MMETSP, and NCBI TSA data 

The performance of MetaPathPredict-E's deep learning models were first evaluated on held-out 

test datasets comprised of genomes from NCBI RefSeq and JGI GOLD, as well as transcriptomes 

from the NCBI TSA and MMETSP databases. All proteomes had a BUSCO completeness score 

of at least 80%. A set of 19 test datasets was created by randomly downsampling the data to retain 

5% to 95% of gene annotations (in 5% increments). In all 19 datasets, each proteome was randomly 

downsampled 10 times using a distinct random number generation seed for each iteration.  

MetaPathPredict-E’s deep learning strategy exhibited a strong performance on this held-out test 

data. For the Streptophyta, Fungi, Excavata, Rhizaria and general model (group A models), the 

macro F1 score ranged from 0.90-0.95 (average 0.94; Figure 3A) when predicting on test datasets 

 
Figure 5-3. Panel A: Precision-recall (PR) curves for MetaPathPredict-E’s models (n = 9). Each PR curve 
was calculated for predictions made on all test data (including all down-sampled test set genomes and 
transcriptomes) for each model. Panel B:  Boxplots of the distribution of the macro F1 score for all labels 
in each of the 19 down-sampled test datasets, faceted by model (facet labels correspond to specific models). 
The test datasets each contain different versions of gene annotations. In the 95% dataset, 5% of protein families 
present in the samples were randomly removed; this process was repeated in 5% increments, down to 5% on the 
far-left side of the plots. Each point drawn over the boxplots is the F1 score for a particular label from the multi-
label prediction outputs. The module prevalence coloring of the labels corresponds to the percentage of test dataset 
samples containing each label predicted by the models. “Group A” models (described in the text) correspond to 
the Excavata, Fungi, Rhizaria, Streptophyta, and General models. The “Group B” models are the Alveolata, 
Chlorophyta, Metazoa, and Stramenopiles models. 
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in which 30% or more of the original gene annotations had been retained (Figure 3B). For the 

Alveolata, Chlorophyta, Metazoa, and Stramenopiles models (group B models) the macro F1 score 

ranged from 0.81-0.89 (average 0.85; Figure 3B). The average of all the macro recall scores for 

the 19 test datasets was 0.93 and the lowest individual macro recall score was 0.82 (Metazoa 

model, 5% of original gene annotations retained; Figure 3A). For the group A models, 

MetaPathPredict-E rarely made false negative predictions based on data from highly incomplete 

gene annotation sets. MetaPathPredict-E also did not misclassify most positive class (module 

“present”) proteome labels; the average macro precision of MetaPathPredict-E’s models was 0.87 

for all test datasets. Macro precision was lowest for the group B models, ranging from 0.73-0.84 

when 5% of the original gene annotations were retained. MetaPathPredict-E’s capacity to attain 

high macro recall score on datasets with substantially reduced gene annotations indicates that it 

offsets the limited data by more frequently labeling a module as ‘present,’ resulting in decreased 

precision. The reduced performance of the group B models relative to the group A models is most 

likely attributed to the relative inadequacy of available training datasets in covering the taxonomic 

diversity and metabolic variation for these eukaryotic groups (Supplementary Figure 2; 

Supplementary Table 1). A low number of training samples can lead to a reduced capability for a 

model to learn meaningful patterns from the training data for that group. The Excavata and 

Rhizaria models also outperformed the group B models despite also having small training datasets. 

This could be due to the fact that the training and test datasets covered only a small fraction of the 

taxonomic diversity of these two large groups (Supplementary Figure 2) as well as a low number 

of training data features and labels (Supplementary Table 1), and a relatively lower amount of 

variance in module presence/absence which yielded simpler, less comprehensive training datasets. 

Taken together, the Alveolata, Stramenopiles, Metazoa, and Chlorophyta models (as well as the 

Rhizaria and Excavata models) would benefit from larger training datasets as more genome and 

transcriptome data for these groups becomes available. 

 

Benchmarking MetaPathPredict-E against built environment MAGs 

MetaPathPredict-E was further tested on gene annotations from a set of 8 eukaryotic MAGs 

recovered from built environment metagenomes (Olm et al., 2019; Figure 4). This dataset 

contained 8 high-completeness (≥ 80% BUSCO completeness) fungal MAGs affiliated with the 

Ascomycota and Basidiomycota (Figure 4B) that were recovered from infant gut microbiomes and 
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neonatal intensive care hospital rooms. This analysis facilitated the benchmarking of 

MetaPathPredict-E on MAGs. A set of 19 test datasets was created by randomly downsampling 

the gene annotations of these MAGs to retain 5% to 95% of annotations (in 5% increments) as was 

done for the genomic test set. MetaPathPredict-E classified the presence/absence of KEGG 

modules in each MAG. Overall, results were comparable to the performance on the NCBI and JGI 

GOLD genomes. This could be partially due to the near-complete nature of this set of MAGs.  The 

models accurately predicted the presence or absence of KEGG modules in all 19 test datasets 

regardless of the percentage of gene annotations randomly retained. The average macro F1 score 

across all the datasets for KEGG module predictions was 0.87 (Figure 4A). Predictions were still 

reliable when 20% or less gene annotation data was retained, with a mean macro F1 score of 0.86. 

The robust performance of MetaPathPredict-E on built environment fungal MAGs even at low 

gene annotation retention levels was at the cost of decreased precision, however. The average 

macro precision was 0.83, while the mean macro recall was 0.95. This indicates MetaPathPredict-

E could consistently detect positive class labels (KEGG module presence) at the cost of a slightly 

increased rate of misclassifying some negative labels as positive. 

 

Benchmarking MetaPathPredict-E against incomplete genomes and transcriptomes 

In addition to model assessments made through down-sampling protein annotations of high-

completeness proteomes, we evaluated the set of all genomes and transcriptomes downloaded from 

NCBI, JGI GOLD, MMETSP, and NCBI TSA that had a BUSCO completeness score lower than 

 
Figure 5-4. Panel A: Boxplots displaying the macro F1 score distribution of MetaPathPredict-E’s label 
predictions for fungal MAGs. Down-sampled gene annotations of high completeness MAGs (≥ 80% BUSCO 
completeness) used in this held-out test set are from built environment metagenomes. Each boxplot displays 
predictions of randomly down-sampled versions of the gene annotation test set in increments of 5% (95% 
down to 5%; from right to left). Panel B: Distribution of phyla of the MAGs utilized in this test set. Panel 
C: Violin plot of the BUSCO completeness distribution of the 8 fungal MAGs. 
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80%. The majority of low completeness proteomes were affiliated with the Streptophyta, Fungi 

and Stramenopiles (see “Number of genomes” in Figure 5A and Supplementary Figure 3). 

MetaPathPredict-E’s performance on this test set resembled the previous results on simulated and 

unmodified proteome annotation data (Figure 5A,B). The mean detection rate of positive class 

labels was 92.1% across all test dataset proteomes. However, the median BUSCO completeness 

score for genomes and transcriptomes in this test dataset was 61%, and they were 52% complete 

on average. Despite the samples in the test skewing towards a moderate level of completeness, the 

high detection rate of modules suggested a robust performance similar to the previous 

benchmarking tests. All of the models predicted the presence of central carbon metabolisms, purine 

and fatty acid metabolisms, as well as cofactor and vitamin metabolisms (Figure 5B) in instances 

where KEGG modules were missing or incomplete in the data. Predictions for carbon fixation 

modules were prevalent in Streptophyta, Rhizaria, Stramenopiles, and Alveolata proteomes in 

which these modules were only partially recovered or missing. Overall, MetaPathPredict-E 

achieved a high detection rate of module labels in all test datasets on proteomes that ranged from 

a low to moderately high degree of completeness and made sensible predictions for modules that 

were incompletely recovered or missing in the proteome data.  

 The Fungi, Streptophyta, and general model training datasets contained significantly larger 

numbers of taxonomically diverse genome and transcriptome representatives compared to the 

other modelled groups. The volume of training examples for these group models likely contributed 

to their more robust macro precision and recall on test datasets. MetaPathPredict-E’s Excavata and 

 
Figure 5-5. Panel A: Detection rates of complete KEGG modules in test set genomes and transcriptomes 
that had less than 80% BUSCO completeness for 8 of MetaPathPredict-E’s models (Alveolata not shown; 
no low completeness proteomes). Panel B: Stacked bar charts showing MetaPathPredict-E’s detection 
rates of KEGG module categories contained within the test set genomes. Dark green coloring indicates 
MetaPathPredict-E detected the module; the grey coloring is for complete modules that were not detected. 
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Rhizaria models also exhibited robust performance metrics, likely due to the relatively low 

taxonomic and metabolic diversity present in these training datasets. 

 

Conclusion 

Building upon the open-source tool MetaPathPredict, MetaPathPredict-E expands the scope of that 

software to predict the functional potential of eukaryotic genomes and transcriptomes. 

MetaPathPredict-E both identifies complete KEGG modules and predicts the presence or absence 

of fragmented or missing ones. Leveraging annotations of individual protein sets in the format of 

KO gene identifiers, MetaPathPredict-E integrates with existing KEGG-based annotation tools 

like KofamScan (Aramaki et al., 2020), DRAM (Shaffer et al., 2020), blastKOALA (Kanehisa et 

al., 2016), and ghostKOALA (Kanehisa et al., 2016). It is possible to also utilize a custom set of 

KO gene annotations in one or more TSV files as input. MetaPathPredict-E also suggests putative 

KO gene annotations that could potentially fill in the missing steps of KEGG modules that the tool 

predicts are present. 

MetaPathPredict-E further validates the utilization of protein family presence or absence 

as a feature for the prediction of metabolic potential in eukaryotes. Performance metrics assessed 

on genome and transcriptome datasets from the NCBI RefSeq, JGI GOLD, MMETSP, and NCBI 

TSA databases as well as MAGs from the built environment demonstrate the effectiveness of deep 

learning for the accurate prediction of KEGG module presence/absence across a spectrum of 

eukaryotic gene annotation completeness, ranging from sparse to nearly-complete proteomes. Our 

performance tests on MetaPathPredict-E revealed an interesting dynamic between data 

completeness and prediction accuracy. While macro recall remained remarkably robust even when 

downsampling proteins to retain just 5-10% of annotations, a decrease in macro precision was 

observed. This trend was characterized by an increase in false positive predictions (i.e., modules 

incorrectly classified as present) in all our tests and suggests that the model compensates for 

limited sequence data by adopting a more aggressive "presence" calling strategy. This 

overconfident positive class prediction issue emerged only when 25% or less gene annotation data 

was retained from the original gene content, indicating a potential area for future model 

improvement. While severely incomplete inputs (< 30% completeness) may not be optimal for use 

with MetaPathPredict-E, this finding highlights an avenue for enhancing the model's macro 

precision at lower data thresholds. Based on these observations, we recommend using 
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MetaPathPredict-E on datasets containing at least 30% of recovered gene annotation information 

for optimal performance. 

MetaPathPredict-E facilitates more comprehensive reconstruction of the metabolic 

potential encoded within fragmented eukaryotic genomes and transcriptomes from environmental 

samples. The models for group B (Alveolata, Chlorophyta, Metazoa, and Stramenopiles) had a 

macro F1 score of at least 0.81 and less than 0.90 on test datasets containing 30% or more gene 

annotations. This performance was less robust compared to the group A models (general model, 

Fungi, Streptophyta, Rhizaria, Excavata), for which the macro F1 score was at least 0.90 for 

datasets retaining 30% or more of their original gene annotations. This was likely caused by small 

training datasets available for those groups. The tool’s machine learning model will enhance the 

ability to infer what metabolic processes eukaryotes are capable of, even when analyzing 

proteomes that are highly incomplete. MetaPathPredict-E integrates the field of machine learning 

with the expanding use of ‘omics sequencing techniques and will help facilitate the metabolic 

analysis of environmental eukaryotic proteome datasets. Its precision and accuracy will continue 

to improve as genomes and transcriptomes become available for eukaryotic groups for which little 

data exists at present. 

 

Data Availability 

Genomic and transcriptomic data used for creation of MetaPathPredict-E’s models is available 

from the NCBI RefSeq database (https://www.ncbi.nlm.nih.gov/refseq/), the MMETSP improved 

assemblies database (https://zenodo.org/records/3247846), the NCBI TSA database 

(https://www.ncbi.nlm.nih.gov/genbank/tsa/), and the JGI GOLD database 

(https://gold.jgi.doe.gov/). Fungal MAG data used for benching marking is available on GitHub 

(https://github.com/MrOlm/InfantEukaryotes). 

 

Code Availability 

The MetaPathPredict-E Python module is available from the following GitHub repository: 

https://github.com/d-mcgrath/MetaPathPredict-E. 

 

https://www.ncbi.nlm.nih.gov/refseq/
https://zenodo.org/records/3247846
https://www.ncbi.nlm.nih.gov/genbank/tsa/
https://gold.jgi.doe.gov/
https://github.com/MrOlm/InfantEukaryotes
https://github.com/d-mcgrath/MetaPathPredict-E
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Supplementary Figures 

 
Supplementary Figure 5-1. Bar charts of the distribution of KEGG module classes for all nine of 
MetaPathPredict-E’s models. Module classes are labelled along the y-axis, and the count for each module class is 
labelled along the x-axis. Each bar chart corresponds to the specific model that is labelled above it. Model bar charts 
are displayed in the following order from top to bottom, left to right: Alveolata, Chlorophyta, Excavata, Fungi, General 
model, Metazoa, Rhizaria, Stramenopiles, and Streptophyta. Modules had to be present in 25% of the training samples 
for a module to be included in a model’s set of labels (KEGG module presence/absence). 
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Supplementary Figure 5-2. Bar chart showing the distribution of phyla of all genomes and transcriptomes 
with at least 80% BUSCO completeness downloaded from NCBI, JGI, and MMETSP databases. Eukaryotic 
groups are displayed in bold text to the far left. Bars are colored to show the distribution of databases the proteomes 
were downloaded from. One model was trained for each group, and an additional general model was trained to 
classify KEGG modules prevalent across all groups including the “Other” category. 
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Supplementary Figure 5-3. Bar chart showing the distribution of phyla of all genomes and transcriptomes 
with less than 80% BUSCO completeness downloaded from NCBI, JGI, and MMETSP databases. 
Eukaryotic groups are displayed in bold text to the far left. Bars are colored to show the distribution of databases 
the proteomes were downloaded from. KEGG module predictions were for these proteomes by all of 
MetaPathPredict-E’s models. 
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Supplementary Tables 

 
 
Eukaryotic model Number of training samples Number of features Number of labels 

General (all training data) 5,184 10,670 87 

Fungi 2,374 8,499 63 

Streptophyta 1,357 9,331 96 

Stramenopiles 231 5,208 44 

Excavata 208 3,895 26 

Metazoa 206 8,307 56 

Chlorophyta 196 5,700 67 

Alveolata 90 5,158 35 

Rhizaria 54 3,844 18 

Supplementary Table 5-1. A table containing the number of training genomes/transcriptomes (column 2) for 
each model (column 1), in addition to the number of features used for training (column 3) and the number of 
labels each model was trained to predict (column 4). The general model contains 468 additional genomes and/or 
transcriptomes in its training dataset that do not fall into one of the groups listed here. See Supplementary Figure 2 
for the full taxonomic distribution of all the data used for training. Features correspond to the presence or absence of 
protein families (KEGG orthologs), one per feature; the labels are the presence or absence of KEGG modules. 
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Chapter 6 

Conclusion 
 

In this thesis, I aimed to pair two studies that focus on aspects of microbial metabolism in marine 

environments to the development of two bioinformatic tools to facilitate this type of analysis. 

Chapter 2 presented a genome mining study of biosynthetic gene clusters (BGCs) encoding 

secondary metabolites and an evaluation of their expression profiles along an oxycline water 

column. Chapter 4 investigated the primary and secondary metabolism of prokaryotic microbial 

communities inhabiting hydrothermally-influenced deep biosphere sediments. The computational 

analyses in these chapters involved the use of existing bioinformatics tools to examine 

metagenomic and metatranscriptomic datasets. For both of Chapters 2 and 4, I recovered 

metagenome-assembled genomes (MAGs) from metagenomic co-assemblies and analyzed their 

gene content. I quantified genome abundance and gene expression profiles in samples from distinct 

habitats by mapping reads from metagenomic and metatranscriptomic datasets to the MAGs. 

Chapter 3 introduced a novel method for predicting primary metabolism in bacteria when in the 

case of metagenome analysis of environmental samples, there is incomplete genomic data for 

many/most taxa in the sample. Chapter 5 built on Chapter 3 by developing an approach to predict 

primary metabolism for eukaryotes. For theses tool developments, I trained deep learning models 

to predict the presence or absence of metabolic modules (as defined in the KEGG database) in 

bacterial genomes (Chapter 3), and in eukaryotic genomes and transcriptomes (Chapter 5). The 

breadth of these chapters is entirely intentional; as “metabolism” encompasses such a broad 

network of biochemical reactions and pathways, necessitating a multifaceted approach for 

prokaryotic and eukaryotic datasets. 

There are two major observations that emerged from this thesis. These are highly relevant 

to my personal research interests and hold importance for the fields of marine biology, 

bioinformatics, and computational biology. The first is the need for integrated data analyses to 

develop a more comprehensive understanding of metabolic processes. Much of the utility of the 

work presented in this thesis is derived from the integration of metagenomic and 
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metatranscriptomic data types as well as associated geochemical data, which together provided 

greater insight and confirmation of the findings than they would have separately. Chapters 2 and 

4 integrated metagenomic and metatranscriptomic datasets to facilitate the analysis of genes 

involved in primary and secondary metabolisms as well as patterns in their expression. The 

examination of these two data types together facilitated more informative analyses of how 

microorganisms interact with their environments. Chapter 5 utilized genomic and transcriptomic 

datasets from eukaryotic organisms that together provided a larger breadth of taxonomic coverage 

in the training data than either data type would have by itself. The second major observation from 

this thesis is the value of machine learning methods for enhancing the analysis of microbial 

communities. The creation of new metabolic prediction tools in Chapters 3 and 5 highlighted two 

of the many avenues for the use of machine learning algorithms that can be trained on the plethora 

of biological data that has become available since the advent of next-generation sequencing. As 

research projects worldwide continue to generate enormous streams of data, it will be imperative 

to take advantage of machine learning algorithms to help inform future studies. 

Several research questions emerged as I explored the various aspects of my thesis. In my 

second chapter, I aimed to assess the potential for organisms whose MAGs were recovered from 

the Cariaco Basin oxycline water column to produce secondary metabolites. One of my main 

questions was whether there were differences in biosynthetic gene cluster expression between 

particle-associated and free-living microorganisms inhabiting this environment.  This investigation 

inspired several additional scientific questions that propelled the rest of the research in this thesis: 

 

1. How do environmental parameters influence the microbial diversity and the metabolism of 

microorganisms inhabiting subsurface sedimentary habitats, specifically, the hydrothermal deep 

biosphere of Guaymas Basin? This deep biosphere environment consists of largely anoxic 

sediments and samples were obtained from sites with distinct environmental features. The 

sediments of Guaymas Basin also contain abundant hydrocarbons in addition to vast reservoirs of 

organic and inorganic compounds. Investigation of deep drill core samples contributes to the 

understanding of how microorganisms survive in in this deep biosphere. 

 

2. What are the current limitations of bioinformatics tools for assessing the metabolic potential of 

environmental bacterial genomes, and how are they limited by the sequencing coverage of a 
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sample? If machine learning methods could help elucidate the metabolic potential encoded in 

bacterial genomes for incomplete genomic data, this could facilitate a more informed and robust 

understanding of microbial metabolism and functionality in future environmental studies. 

 

3. Could the same or a similar machine learning approach be applied to eukaryotic genomes and 

transcriptomes? Exploring this question could open new avenues for the analysis of eukaryotic 

genomes, which are more complex and often even less complete when recovered from 

environmental samples than those of prokaryotes. Additionally, most available tools have been 

optimized for prokaryotic data. Machine learning models could also facilitate the analysis of 

incomplete eukaryotic data, helping to make inferences about their metabolic capabilities. 

  

Chapter 2 leveraged metagenomes and metatranscriptomes recovered from Cariaco Basin 

over the course of two seasons. Cariaco Basin is a permanently stratified water column situated 

off the coast of Venezuela that receives a restricted flow of oxygenated water from the Caribbean 

Sea due to the presence of a sill that is only ~150 meters below the sea surface. To date, 

microbiological studies of the Cariaco Basin redoxcline have included the characterization of 

bacterial and archaeal communities based on marker genes, metagenomes, metatranscriptomes, 

qPCR, incubation studies, and microscopy, as well as studies of viral elements and protists (Mara 

et al., 2020; Edgcomb et al., 2011; Taylor et al., 2001; Madrid et al., 2001; Taylor et al., 2018; 

Suter et al., 2021). As done in this chapter of the thesis, a previous study compared data from 

particle-associated (PA) and free-living (FL) microbial communities inhabiting the redoxcline 

(Suter et al., 2017). In this chapter, I examined biosynthetic gene clusters (BGCs) encoded in 

prokaryotic MAGs recovered from FL and PA metagenomes from the Cariaco Basin redoxcline. 

Evidence for the expression of biosynthetic transcripts was also investigated by mapping 

metatranscriptome reads to biosynthetic genes. Samples were collected along the Cariaco Basin’s 

redoxcline that included oxic, suboxic, dysoxic, anoxic, and euxinic depths. The samples were 

filtered using filters with two different pore sizes: a larger filter (>2.7 µm) to capture the PA 

microbial communities, and a smaller filter (0.2-2.7 µm) for the FL fraction.  

Mining of biosynthetic gene clusters (BGCs) from environmental genomes has become a 

popular bioinformatics approach for analyzing the potential interactions that can occur within 

microbial communities. A recent study analyzed ~40,000 BGCs from over 1,000 marine 
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metagenomes collected globally from the world’s oceans (Paoli et al., 2022). However, this 

massive genome mining effort did not cover sulfidic end-members, leaving the potential for 

microorganisms to produce secondary metabolites in these habitats virtually unexplored. I mined 

BGCs from MAGs recovered from a co-assembly of PA and FL metagenomes sampled from the 

Cariaco Basin redoxcline. I then examined the potential for microbial communities in each fraction 

to synthesize secondary metabolites. The abundance patterns of BGC-containing MAGs and BGC 

expression patterns were compared between water column fractions. There was enhanced 

expression of BGCs by Myxococcota, Desulfobacterota, Omnitrophota, Planctomycetota, and 

Gammaproteobacteria in the PA fraction, while in the FL fraction BGC expression was 

predominantly from Alphaproteobacteria, Omnitrophota, SAR324, and Desulfobacterota. The 

higher expression of BGCs in PA samples suggests a more common release of secondary 

metabolites within particles than in FL microbial populations, though the exact benefits to FL 

microbes remain unclear and may involve intracellular roles.  

This study could have been enhanced by also including a comparison of biosynthetic 

potential of microorganisms occupying other contrasting habitats to facilitate direct comparisons 

of BGC content and expression profiles found in Cariaco Basin to those reported globally in marine 

(and other) environments. Additional recovered MAGs could have been analyzed for BGCs they 

encoded and expressed; the MAGs analyzed in this study had an estimated CheckM completeness 

of at least 75%, with an estimated contamination of 5% or less. Lower completeness MAGs with 

5% contamination of less could have been included, with the caveat that inclusion of less complete 

MAGs confounds interpretation due to missing information. I also could have annotated BGCs 

from the entire metagenomic co-assembly using tools such as BiosyntheticSPAdes (Meleshko et 

al., 2019) which annotates BGCs from assembly graphs. This could have helped recover a 

significantly larger proportion of biosynthetic potential from the Cariaco redoxcline metagenomes. 

The metagenomic and metatranscriptomic reads could have been mapped to the BGCs detected in 

the whole co-assembly for a more comprehensive analysis of BGC abundance and expression 

profiles. Additional taxonomic and functional information would be available within contigs 

annotated to BGCs from the co-assembly that were not contained within the MAGs. Contigs not 

included in MAGs can be taxonomically classified using tools such as CAT (Bastiaan von 

Meijenfeldt et al., 2019) to infer which lineages contained them. In addition, BiosyntheticSPAdes 

can identify BGCs spanning multiple contigs. One of the limitations of using version 6.0 of 
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antiSMASH is that detection of BGCs was limited to those encoded within a single contig of a 

genomic assembly. This is a particular limitation for MAGs containing very short contigs. In 

addition, the number and type of BGCs that antiSMASH can detect increases with each new 

version of the tool. AntiSMASH version 7.0 was published in July of 2023 and supports the 

prediction of 81 cluster types, up from 71 supported by version 6.0 (Blin et al., 2023). The analyses 

performed in this chapter can therefore be re-run as newer and more robust BGC detection methods 

are made available. 

 The conclusions reached in Chapter 2 helped guide the research question addressed in 

Chapter 3. In my second chapter, I discarded all genomes from downstream analysis that had an 

estimated completeness less than 75%. This “quality control” measure removed a significant 

number of moderately to highly incomplete MAGs from this study. It is common practice in 

metagenomics studies to discard medium- to low-quality MAGs (with 50-75% completeness or 

less), due to difficulties in discerning the metabolic potential of these genomes when much of the 

gene content is missing. In addition, bioinformatics methods for discerning metabolism have 

suboptimal performance on highly incomplete genomes. I addressed these deficiencies in Chapter 

3 with the development of a new tool, MetaPathPredict, that makes accurate predictions for highly 

incomplete bacterial genomes. I utilized the massive amount of sequencing data available in public 

databases to train deep learning models that learned to predict the metabolic capacity present 

within incomplete bacterial genomes that contained as little as 30% of their total gene content. 

Importantly, MetaPathPredict consistently made predictions with a high degree of macro precision 

and recall, indicating its ability to accurately predict an array of various metabolic modules. This 

method is targeted toward environmental metagenomic or single-cell datasets and can be run on 

highly incomplete genomes that would often be discarded prior to further analyses. 

MetaPathPredict could continue to expand its prediction capacity to more modules which will 

improve its predictions as more sequencing data is made available for use as training data.  

MetaPathPredict could be expanded to make predictions for archaea in addition to bacteria. 

The data used to train and validate its models could also be improved upon. Currently, the training 

data has been annotated with KofamScan (Aramaki et al., 2020). To make initial improvements to 

the protein annotations used for training and validation, more than one annotation tool could be 

used to annotate the training data. This could expand the number of genes in training genomes that 

get functionally characterized. After improvements to the training data through the incorporation 
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of multiple annotation methods, the training genomes could be further assessed for the presence 

of complete KEGG modules using gapfilling methods. All genomes used for training and testing 

had a CheckM completeness score of 100, and a contamination estimation of 0. These metrics are 

estimates at best, and there is a possibility that some coding potential is missing from their gene 

annotations. Tools such as KEMET (Palù et al., 2022) could be used on the training genomes to 

further characterize unannotated coding regions or to predict the presence of genes that are missing 

from the DNA sequences of the training genomes. Pathway prediction approaches such as Gapseq 

(Zimmerman et al., 2021) could be applied to predict KEGG pathways (sets of interconnected 

KEGG modules), which may help improve training labels (KEGG module presence/absence) that 

are present in the complete training genomes, even if one or more enzymes are missing or 

unannotated after the aforementioned gapfilling strategies have been implemented. This layered 

approach would facilitate the creation of a more robust set of training data by reducing the 

occurrence of false negative labels. In addition, MetaPathPredict could be expanded to include the 

predictive capacity of metabolic processes documented in other metabolic pathway databases that 

are not contained within the KEGG database. Metabolic pathways from databases including SEED 

(Overbeek et al., 2005) and MetaCyc (Karp et al., 2002) not found in KEGG could be included in 

future releases of MetaPathPredict. 

 In the fourth chapter, I aimed to investigate the environmental factors driving microbial 

community structure in the hydrothermally-influenced deep subsurface sediments of Guaymas 

Basin. Previous studies of Guaymas Basin sediments prior to IODP Expedition 385 were largely 

limited to surficial sediments. These studies have included the analyses of 16S rDNA amplicon 

and metagenomic samples for archaeal and bacterial microbial lineages, as well as Beggiatoa and 

other sulfur-oxidizing bacterial mats on the sediment surface (Ramírez et al., 2020; Teske et al., 

2002; Dhillon et al., 2003; Dombrowski et al., 2017; Teske et al., 2019; Vigneron et al., 2014). 

Additionally, the 18S rDNA sequences of eukaryotic taxa have been characterized from the 

surficial sediments (Edgcomb et al., 2002). The deepest samples collected from the subsurface of 

Guaymas Basin prior to IODP 385 (down to 25 mbsf) were used to measure microbial 

methanogenesis activity as a part of the Deep Sea Drilling Program Leg 64 (Oremland et al., 1982). 

The work in this chapter was part of a larger set of aims of the International Ocean Discovery 

Program Expedition 385, which for the first time collected deep drill core samples over a range of 

sites and depths spanning up to hundreds of meters below the seafloor. Metagenomes and PCR-
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based amplicons of the mcrA methanogenesis marker gene from IODP 385 samples, analyzed in 

separate studies, have provided insights into the sparse populations of methanogens inhabiting the 

deep subsurface of the Guaymas Basin (Bojanova et al., 2023; Hinkle et al., 2023). The IODP 385 

metatranscriptomes were also analyzed individually in a separate study, which found that a 

significant proportion of transcripts were annotated to cellular maintenance and repair functions, 

indicating that subsurface cells invest a substantial amount of energy into these processes (Mara 

et al., 2023), as has been hypothesized previously (Lever et al., 2015; Inagaki et al., 2015). This 

chapter aimed to broadly characterize genomes of the microbial communities inhabiting the deep 

subsurface of Guaymas Basin, and to determine the environmental factors that played a role in 

shaping the taxonomic diversity of communities at different depths and sites. 

Analysis of metagenomes and associated environmental parameters revealed that in situ 

temperature was the main factor influencing microbial diversity. The proximity of an active 

magmatic sill at one of the sites (Ringvent) resulted in a higher rate of temperature increase with 

depth compared to cold seep and off-axis sites. Ringvent exhibited a more rapid depth-wise 

decrease in abundance of microbial lineages in the transition from warm (20-45 °C) to hot (45-

62 °C) sediments, and some thermotolerant lineages persisted in the hot sediments at all sampled 

sites. Key marker genes detected in the metagenomic datasets were indicative of methane, short-

chain alkane, hydrogen, sulfur, and nitrogen metabolisms in addition to carbon fixation, 

fermentation, and hydrocarbon degradation. Despite the variation in microbial community 

profiles, there was a high degree of similarity in expressed metabolic genes within samples from 

cool (2-20 °C) and warm sediments including an abundance of expressed genes involved in 

organoheterotrophic processes. In the hot sediments, there was significantly reduced expression of 

many metabolic pathways as temperature increased, and observed shifts in certain metabolisms. 

Trends in diverse deep biosphere communities show that microbial abundance and diversity 

decrease downcore (Kallmeyer et al., 2012; Starnawski et al., 2017; Kirkpatrick et al., 2019). The 

MAGs recovered in this analysis were dominated by the Chloroflexota and Thermoproteota phyla, 

which have been detected in 16S rDNA amplicon studies of the surficial sediments of Guaymas 

Basin (Vigneron et al., 2014; Teske et al., 2019). The Hadarchaeota, which were most abundant in 

the hottest samples, have also been detected in surficial sediments from studies of 16S rDNA 

amplicons (Teske et al., 2019). However, the results of this chapter suggest that only certain 

lineages of these phyla persist as they are subjected to long-term burial in the deep, hot biosphere. 
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In addition to the examination of recovered MAGs, this study could have provided 

additional information by characterizing the gene content of the metagenomes as a whole by 

examining the metagenomic abundance patterns of all the genes from the metagenomic co-

assembly in more detail. Additionally, the gene expression patterns of different protein coding 

regions of the MAGs (or the entire metagenomic co-assembly) could have been analyzed by 

mapping metatranscriptomic reads to the genes in the MAGs/metagenomic co-assembly. This 

would have provided a more refined view of the transcribed genes in the deep subsurface than the 

assessment done in this chapter, where only the percentages of metatranscriptome reads that 

mapped to each MAG was calculated.  

 The fifth chapter involved the development of MetaPathPredict-E, an extension of 

MetaPathPredict that increased its functionality to include metabolic module predictions for 

eukaryotes. Pipelines for the recovery and analysis of eukaryotic genomes from environmental 

samples are now established and actively supported, and there is a steady development of new 

bioinformatics tools geared towards eukaryotes that continue to improve on and expand upon 

existing methods (Alexander et al., 2023; Krinos et al., 2021; Neely et al., 2021; Gabriel et al., 

2024). As bioinformatic methods and next-generation sequencing technologies continue to 

improve, they will facilitate the capture of more eukaryotic diversity from environmental samples.  

MetaPathPredict-E is a set of deep learning models that have been trained to make 

predictions for groups of eukaryotes including the Fungi, Streptophyta, Chlorophyta, Excavata, 

Stramenopiles, Alveolata (not including Apicomplexa) and Rhizaria. MetaPathPredict-E also 

contains a model trained on all 9 combined training datasets that can make predictions for modules 

prevalent across all eukaryotic groups in the combined training dataset. MetaPathPredict-E made 

robust KEGG module predictions for eukaryotic genomes and transcriptomes that were at least 

30% complete and is designed to handle incomplete annotation information. As metagenomic and 

single cell sequencing studies continue to recover additional eukaryotic organisms, 

MetaPathPredict-E will enable the analysis of genomes and transcriptomes from a broader 

taxonomic selection. 

MetaPathPredict-E could be expanded and improved by incorporating many of the same 

approaches as described above for MetaPathPredict. The functional predictions could be expanded 

to include those from additional metabolic pathway databases in addition to KEGG. The 

annotations of the genomes and transcriptomes used for model training and validation could be 
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annotated with additional tools and gapfilled to build a more robust set of features (gene 

annotations) and labels (KEGG module presence/absence) for model creation. The models within 

MetaPathPredict-E could benefit especially from more training data, as additional eukaryotic 

genome and transcriptome sequences are made publicly available. Models covering more groups 

of eukaryotes can trained in the future as datasets for currently sparsely represented groups are 

made available. 

The chapters of this thesis address multiple knowledge gaps in the understanding of marine 

habitats. The thesis findings have implications for the discovery of novel natural products and 

showcase evidence of survival and communication strategies for free-living and particle-

occupying microbes under varying oxygen concentrations. In addition, this work contributes to the 

understanding of environmental factors shaping microbial communities in the hydrothermal deep 

biosphere. Drill core samples provided evidence of the genomic adaptations of microbes inhabiting 

the hydrothermal deep biosphere and their ability to remain transcriptionally active at depth. The 

bioinformatics tools developed as part of this work are designed to accurately predict the metabolic 

potential of environmental genomic and transcriptomic datasets. These tools are adept at handling 

sparse datasets, making them particularly useful for analyzing data from challenging environments 

where sampling may be limited. Taken together, this thesis enhances the understanding of 

microbial ecology in diverse marine settings and provides robust methodologies to aid future 

studies, thereby contributing to the broader fields of biological oceanography, microbial ecology, 

and bioinformatics. 

 Methods in computational biology and bioinformatics continue to expand the ability to 

recover genomes from environmental samples. The EukHeist pipeline (Alexander et al., 2023) is 

an automated workflow that recovers both prokaryotic and eukaryotic MAGs from large 

metagenomic datasets. The EukMetaSanity (Neely et al., 2021) and EUKelele (Krinos et al., 2021) 

pipelines are scalable workflows to predict eukaryotic gene content and to taxonomically classify 

eukaryotic genomes or transcriptomes, respectively. These tools can be run in tandem with 

prokaryotic gene prediction tools such as Prodigal (Hyatt et al., 2010) and annotation tools and 

pipelines such as Prokka (Seemann 2014), RAST (Aziz et al., 2008), and the NCBI PGAP pipeline 

(Tatusova et al., 2016) to recover and annotate more genomes encompassing taxa from all domains 

of life. These pipelines that facilitate the extraction of genomes from environmental datasets 

continue to expand the contents of genomic databases. This wealth of data enhances the genomic 
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coverage of diverse, environmentally relevant prokaryotes and eukaryotes and enables more 

detailed studies of their ecological roles, evolutionary relationships, and potential biotechnological 

and industrial applications. MetaPathPredict and MetaPathPredict-E complement these methods 

by providing metabolism predictions for moderately to highly incomplete genomes and 

transcriptomes extracted from environmental samples with current bioinformatics tools and 

pipelines. 

Large sequence databases can also be harnessed to facilitate methods to infer protein 

function and structure, which can help inform metabolic pathway prediction models. A deep 

learning model, LookingGlass, was trained on millions of DNA sequencing reads to accurately 

classify oxidoreductase reads, predict enzyme optimal temperature, and recognize open reading 

frames (Hoarfrost et al., 2022). Another deep learning model, ProtENN (Bileschi et al., 2022), was 

trained on Pfam (Bateman et al., 2004) seed sequences and used in tandem with Pfam HMMs to 

assign protein family annotations to millions of unclassified proteins in the Pfam database. Protein 

structure prediction is another area of research that has made substantial progress in the last decade. 

The third version of the AlphaFold (Jumper et al., 2021) protein structure prediction tool, 

AlphaFold3 (Abramson et al., 2024), can predict the structure and interactions of DNA, RNA, 

ligands, and ions in addition to proteins. AlphaFold3 uses a deep learning architecture similar to 

that of the transformer (a.k.a. generative AI). The transformer is a deep learning architecture based 

on the multi-head attention mechanism (Vaswani et al., 2017) that is rapidly gaining a 

technological foothold in computational biology. Generative AI has already been trained for a 

variety of uses such as to generate functional protein sequences (ProteinGAN; Repecka et al., 

2021), antibiotics (Swanson et al., 2024), and antibodies (Hie et al., 2024). Taken together, these 

emerging methods in the field of machine learning hold promising potential to help inform future 

analyses of marine habitats. 

The integration of diverse data types and the development of novel predictive 

methodologies are fundamental to advancing our understanding of microbial metabolism in marine 

habitats. By combining metagenomic, metatranscriptomic, and environmental parameter 

measurements, researchers can achieve a more comprehensive view of how microbial 

communities function and interact within their environments. Future research stands to benefit 

greatly from expanding the scope of comparative studies across different marine ecosystems, 

ranging from coastal waters to deep-sea hydrothermal vents. Employing advanced computational 
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tools from the fields of machine learning and systems biology will be essential to unravel the 

complexities of metabolic processes and microbial interactions. The need for innovative data 

integration and analytical methods will remain critical as researchers strive to understand the vast 

network of metabolic processes and microbial interactions present in marine ecosystems. This 

understanding is not only crucial for marine science but also has practical implications for 

achieving a more complete understanding of biogeochemical cycling, impacts of climate change 

mitigation strategies, and the discovery of novel biotechnologically relevant compounds. As 

marine environments continue to change due to anthropogenic impacts, our ability to accurately 

predict and manage these ecosystems will depend heavily on the advancements made in data 

integration and predictive methodologies. I look forward to further investigating the intricate roles 

of microbial communities in diverse marine ecosystems, their potential for biotechnological 

applications, and their impact on global biogeochemical cycles. 
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