DOMINANT SINGULARITY AND FINITE ELEMENT ANALYSES OF PLANE-STRAIN STRESS
FIELDS IN CREEPING ALLOYS WITH SLIDING GRAIN BOUNARIES

by
CHUN WOON LAU

- S.B. Massachusetts Institute of Technology
(1972)

S.M. Massachusetts Institute of Technology
(1974)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF
DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
" October 2, 1981
(I.\81:%E‘ ]§2>
¢ Massachusetts Institute of Technology, 1981

Signature of Author

—~ ~Bepartment of Mechanical Engineering
October 2, 1981

Certified by

o Ali S. Argon
Thesis Supervisor

“ Accepted by v S Y -

Warren M. Rohsenow
Chairman, Departmenta] Graduate Committee

Archi ves

MASSACHU
SETT T
OF TECHN(SSL(")A&SYDTbTE

JUN 7 195,

. LIBRARIES



-2 -

DOMINANT SINGULARITY AND FINITE ELEMENT ANALYSES OF PLANE-STRAIN STRESS
FIELDS IN CREEPING ALLOYS WITH SLIDING GRAIN BOUNDARIES

by
CHUN WOON LAU

Submitted to the Department of Mechanical Engineering on
October 2, 1981 in partial fulfiliment of the
requirements for the Degree of Doctor of Philosophy in
Mechanical Engineering

ABSTRACT

The most dominant singular stress distributions, caused by
grain boundary sliding accommodated by power-law creep, have been de-
termined locally at hard grain boundary particles and at triple grain
Jjunctions where cavitations and eventual creep cracking are frequently
observed. Finite element computations with specially developed
features have been used to connect these local stresses to the far
field stresses. These finite element analyses incorporate a specially
formulated power-type singularity element, a new method of simulating
periodicity and symmetry boundary conditions, a scheme for automatic
variable step selection for stable time integration and a method to
bypass the influence of incompressibility. The finite element results
show very good agreement with results of the local field analyes, and
provide accurate estimations of the generalized stress intensity
factors.
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CHAPTER ONE

INTRODUCTION

At elevated temperaturesf deformation mechanisms
such as grain boundary sliding,_diffusion, and dislocation
creep, which are usually inactive at low temperatures, can
contribute significantly to the flow of structural alloys
(McClintock and Argon 1966). These additional deformation
mechanisms can give rise to fracture processes that are dif-
ferent from those of the more frequently studied and better
understood low temperature brittle and ductile fractures
(Argon and Im 1975; Knott 1973; McClintock 1971). Fracture
processes in crystalline alloys under service loading at
elevated temperature usually involve the nucleation of inter-
granular cavities, their growth énd linking to form macro-
cracks, and the eventual propagation of these macro-cracks
to final fracture. Experiments have shown that creep cavities
form on particles and at tripie grain junctions on sliding
graip boundaries (Chen and Argon 1981; Perry 1974 ; Grant
1971). It is now clear that such cavities are nucleated by
locally accentuated stresses caused by grain boundary sliding
accommodated principally by power;law creep within the grains

and by diffusional flow over shorter ranges (Argon, Chen and

A*Above 0.4 Tm’ where Tm is- the melting point of the alloy in

degrees Kelvin.



-13 -
Lau 1981, 1980; Lau and Argon 1977). Although many creep
fracture mechanisms have been proposed and reviewed (Morris
1978; Raj 1978; Perry 1974; Grant 1971; Heald and Williams
1970), quantitative description of concentrated stress
fields which are essential for rigorous mechanistic analysis

of intergranular creep crack nucleation have been scarce.

In this thesis, we present computational methods
for determining in detail these singular stress distribu-
tions. More specifically, the dominant stress singularity
together with the generalized creep stress intensity factor
will be solved for (A)'the apexes of hard particles embedded
in sliding grain boundaries and (B) the triple grain junc-
tion, in a creeping continuum where boundaries have little
resistance to sheer deformation -- conditions widely en-
countered in structural alloys under usual operating con-
ditions above 0.4 Tm (Fig. 1.1). The results of this
study make it possible to estimate, in a mechanically con-
sistent manner, the rate of cavity nucleation in a creeping

alloy (Argon, Chen and Lau, 1980, 1981).

The stress analysis of each of these two problems
is in three parts. In part one, the dominant singular
nature of the stresses together with their angular distri-
bution are determined for a linearly creeping alloy by

solving the appropriate local boundary value problems using
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o

e e —_— -

Figure 1.1 Two Boundary Value Problems Important in Intergranular
Cavitation: A, Stress Concentrations Around Grain-
Boundary Particles; B. Stress Concentrations at Triple
Grain Junctions. -
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methods from isotropic, incompressible, plane strain
elasticity. In part two, these linear solutions are ex-
tended to the power-law creep regime by numerically solving
the governing fourth order nonlinear differential equations
for these boundafy value problems using the shobting
method (Roberts and Shipman 1972; Keller 1968) and the para-
meter tracking technique (Shih 1973, 1974) to obtain local
dominant singular fields analogous to the well known HRR
fields of stationery cracks (Hutchinson 1968; Rice and
Rosengren 1968). In part three, a special finite element
program is developed, and coded into a version of ADINA
(Bathe 1976) to solve for the global stress distribution
to provide a connection between the far field stresses and
the local singular stresses. This finite element computa-
tion incorporates specially formulated power-type singularity
elements, a novel method of kinematically simulating boundary
| conditions due to periodicity and symmetry, and a scheme for
automatic variable time step selection for stable explicit.

time integration.

These three parts of the stress analysis for both
| the hard particle and the triple grain junction problems,
are presented in Chapters 2, 3 and 4, respectively. The
principal features of these results which are germane to

‘the understanding of experimental observations will be
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summarized and discussed in Chapter 5. The relevance of
these results to creep cavity nucleation will be pointed
out, and applications of these methods to other problems

of interest in nonlinear fracture mechanics will also be

discussed.



CHAPTER TWO
DOMINANT STRESS SINGULARITY IN LINEAR CREEPING ALLOY

2.1 Introducticn

The goal of this thesis 1is to determine the most
dominant singular stress distribution at both (A) the apex
of a hard inclusion embedded in a siiding grain boundary
and (B) the triple point grain junction, in an alloy creep-
ing above 0.4 T where T_ = 1is its melting point in

degrees Kelvin.

At such elevéted temperatures and under very high
strain rates and stresses (>10_2 u, where u is the shear
modulus), the grain boundaries cast negligible influence
on the deformation and stress distribution in the grains
(Crossman and Ashby 1975; Chen amd Argon 1979; Ghahremani
1980). On the other hand, under moderate stresses (10'4 -
1073 1), such as in most elevated temperature engineering
service conditions, grain boundaries are much less resistant
to shear flow than the material in the grains. These soft
grain boundaries and interface boundaries tend to slide to
relieve any shear stress acting across them. At elevated
temperatures, the bulk of the geometric incompatibility re-
.sulting from such sliding is ultimately accommodated by

creep and diffusional flows in the grains, producing stress
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concentrations at locations having sharp intensified velo-
city gradient. The intensity of these stress singularities

varies directly with the ease of the boundaries to slide.

In this chapter we determine the most severe
stress singularity, which corresponds to free sliding
boundaries that can support no shear stress. There is a
discontinuity in tangential velocity across the sliding
boundaries, but normal stress and normal velocity are con-
tinous across boundaries. At elevated temperatures, this
condition is achieved after only very short periods of

time (Argon, Chen and Lau 1980, 1981).

Only plane strain, which is the more critical
mode in planar fracture mechanics, is considered. The
accommodating flow in the grains is modelled by a linear
creep law., The equations of this linear creep law,
equilibrium, strain-displacement, and compatibility are ob-
tained frdm incompressible plane strain Hookean elasticity
by replacing displacements and strains with their respec-
tive time rates. Hence equilibrium is satisfied by a bi-

harmonic stress function ¢,
4 S
Vié=o0 (2.1)

. where ¢ must satisfy the stress and velocity boundary

conditions. The stresses are then defined in terms of &
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by (Coker and Filon 1931):

2
0; = #%&,— +-‘r—%§— (2.2a)

Op = 9°F | (2.2b)

or?

Opgz -L 32 4 L 9F 2
=" Fore T 38 N

A harmonic function ¢ is related to ¢ by

vE=4-(rig) ~ -

so that the r 'and 8 velocities are defined as

Uy=-L [-2& + o5 r.g%_'l (2.3b)

uﬂ_.:_L[-JFﬁiq» 05 r29¥ 1 2.5

where n is the creep viscosity which replaces the shear

modulus of Hook's law.

The boundary conditions of both the hard particle
problem and triple gréin junction problem (Sections 2.2
.and 2.3) allow the asymptotic expansion of ¢ ébout the
singular point to take a separable, power series form in

terms of r and ¢, which are the coordinates of the
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cylindrical system centered at the singular point. We
shall consider only its dominant term which gives the most

intensified local stress and strain rate fields as r-+0:

$(r4) = K rA+e $({+) (2.4)

. A
where K and ) are constants and ¢ is a nondimensional

function  of 6, all yet to be determined .

Hence the stresses are separable into r and ©

dependent parts:

. A e A
O';. = Kr'\ 8;. — Kr"\[q’ +(/\+Z)4>.] (2.5a)
N\
G =Kr* g =Krlo+nat2)¢] (2.5b)
A
0?9'—‘-KI">‘8;9_ =Kr*[—(/\+:)<t>'1 (2.5c)

The effective stress o, the out of plane stress

O, and the hydrostatic stress o, are given by

A 5 1
O = K0z =K (G- -3041% @0
0z =Kr* o, =Kr*[£(0+0)] (2.7)

i
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Thus, the deviatoric stresses, Sij’ are also

separable into r and 6 dependent parts:
FEN A .
Sij = 0 - % 0%k &
A
= KA 5 (2.9)

= Krh [0 -+ 0 &)

2.2 The Hard Particle

Figure 2.1 shows the geometry, co-ordinate
sysfem and apppopriaté boundary conditions at the apex of
a rigid particle of half angle w pinning a sliding grain
boundary under a far field shear stress.

A

Let ¢ and ¢ have the form (Williams 1952,

1957):
A
P = Gy sin(A+2)6 + Qp COS(A+2)8
+ 05 sin AF + 04 cos A& (2.10)
A S .
P =§\’— L—-a3 cos AG + @y SIN AG] (2.11)

The boundary conditions of Fig. 2.1 require ap, a5,
‘2z, 3,, to satisfy four homogeneous equations.' For a non-
trivial solution, the determinant of the coefficients of

these four equations must vanish. Thus A is governed by
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Figure 2.1 Boundary Conditions at the Apex of Hard Particle of Half
- Angle w Ewbedded in a Sliding Grain Boundary Subject to

Far Field Shearing.
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the eigenvalue equation (in terms of y = 7m-w):

A sin AY cos (A +2)Y - (A+2)sih(A+2)Ycos AY =0 (2.12)

The transcendental equation yields multiple roots
for A, not all of which are of interest. If by physical
arguments a stress singularity is gxpected, values of A
less than zero are of interest. However, A must always
be larger than -1 so that the strain rates within a finite
region about the apex is finite. Hence, the dominant
singularity is given by the solution to the eigen-equation

in the range of -1<A<0,

The solution of A for rigid particles of half
angle w varying from 0 to m/2 is shown by the solid
line in Fig. 2.2. This line demonstrates that stresses
are nonsingular for « = w/2, singular for acute w, and
becomes more singular as the apex half angle w decreases.
This is physically reasonable. At the limit when w is
so large that the particle-grain interface is perpendicular
to the horizontal sliding grain boundary and the loading
axis, not only do the particle-grain 1nterface boundaries
not slide, but they also prevent any relatlve motion per-
‘pendicular to them (Un=0). Hence, the vertical interface
~boundaries of the rigid particle disallow the horizontai

grain boundary to cause any shearing motion at the apex.



- 24 -
The horizontal grain boundary serves no purpose in this
case and the stresses are nonsingular. When w is acute,
the component of the driving shear stress acting across

the particle-grain interface is nonzero. The interfaces

AS and BS (Fig. 2.1) slide in opposite directions.

Near the apex S, material is pressing against the particle
in the lower grain and tearing away from the particle in
the upper gréin. Hence, S 1is an anchor point in the con-
tinuum where the tensile normal strain rate of the upper
interface boundary, AS, and the compressive normal strain
rate of the lower interface boundary, BS, abruptly switches
sign; thus generating the strain rate (and stress) sing-
ularity at S. For a more acute particle, AS and BS

are more in alignment with the direction of the far field
shear loading. The slidings are then more severe, SO

the singularity at the pinning point, S, is more severe.
The solid line in Fig. 2.2 shows that this singularity
tends to i//r as w tends to zero. This reasoning is
valid for any real particle (w>0) which can physically
obstruct the sliding of the upper and lower grains. How-
ever, for the fictitious case of an imaginary particle of

w = 0, the interface boundaries AS and BS are.collinear
with the grain boundary SR. This composite horizontal
boundary ABSR then slides freely as a whole, without any

physical obstruction at S.” Hence, physically no singularity
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is expected at S, The trivial stresses at S then cor-
respond to a solution of selecting the root X from a
range other than -1<A<0 (which presumes a singularity at
S). In this case, ;he overall equilibrium of the upper and
lower grains must then be maintained by obstacles elsewhere
on the grain boundary, such as at triple points or at other

realistic particles with w>0.

To compute the angular distribution of the
stresses, we determine the ai(i=1,2,3,4) corresponding to
the eigenvalue A from the four boundary conditions.

These conditions yield equations homogeneous in a;, so that

if a; is a solution, any arbitrary constant times a, is

also a solution. This means that the stresses, strain
‘rates and velocities are all determined to an arbitrary

multiplicative constant. The circumferential compbnent

A

of the stresses oij are normalized with the maximum cir-

A
cumferential equivalent stress, Og+ This normalization

defines K (Eq. 2.5) uniquely.

A
The angular distribution of stresses, Uij

reveals that, for every apex half-angle w, the maximum
~

opening stress Og is always at the particle-grain inter-

~
face. A typical angular stress distribution (oij versus

8) for a hard particle of w=v/4 is shown in Fig. 2,3.

It shows additionally that 0o attains its maximum value
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at the extension of the sliding particle-grain interface

as might be expected.

2.3 The Triple Grain Junction

Fig. 2.4 shows the boundary conditions at a
triple grain junction of regular hexagonal grains under a
far field tensile loading. Two Airy stress functions, @I
in grain I and ¢y in grain II are used. The boundary
conditions restrict that X and A of oy and ¢;p must
be identical. However, $I (of ¢I) must differ from 311 :
so as to model the discontinuity in gr and Gr across the
slanted sliding grain boundary. Let $I and $II be of

the following forms which are symmetric about 6 = 0:

A
4)1: b, cos (A+2)8 + b, cos A& (2.13a)
A

Ci>n== bs cos (A+2)¢ -+ b4 cos /\Ey (2.13b)
where ¢ is measured from the dotted line of Fig. 2.4 in
anticlockwise direction and the vélocities, strain rates
and stresses of grain II are consistently defined. The
boundary conditions of Fig. 2.4 give four homogeneous
_equations governing by which have nontrivial solutions
only if thé determinant of the coefficients vanishes.

Hence, A obeys the characteristic equation,
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Boundary Conditions at Triple Grain Junction Subject to

Figure 2.4
Far Field Tensile Loading.
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V3D fanl-*—*'s—')—"—}—k&sinzié%)l-f, =0 (2.14)

The only root of this equation within -1<A<0 is A=-0.449
which gives the angﬁlar stress distribution shown in

Fig. 2.5. Thé opening stress, Se, is compressive at the
slanting grain boundary and is tensile and maximum at the
horizontal grain boundary. Indeed, creep fracture
literature gives many examples of observations of cracks
»forming predominantly on the grain boundaries which are

perpendicular to the distant tensile stress (Grant 1971;

Perry 1974; Chen and Argon 1981).

2.4 Discussion

The solution for the stress singularity at a hard
particle, due to grain boundary sliding éccommodated by
linear creep indicates the radial‘dependence of stresses
varies from no singularity for w=n/2 to ~1//r singularity
for w 'close fo 0. The corresponding angular variation |
of the stresses points out :that fhe the sliding of the
interface boundary is always propagated into the adjoining
opposite grain in the form of maxima in 1ocalized'shear'stresé
and strain. The opening stress o5 1is always maximum and
yensile acfoss one of the sliding interface boundaries

(and compressive across the other).



- 31 -

é;%. . m =1
1J(© )
1.0 - ~
Je
0.8 |-
A
Oy
0.6 6re
0.4l
6\_
e
0.2 |
[0}
0.0 0 i ! ; o
/ 60 120 T 180
- &
~0.2 |- 1o
A
&
~0.4 |- 6
~0.6 | i
N\
| | | Ir
-08 |-

Figure 2.5 Variation of %33 with 6 at Triple Grain Junction in

Linear Creep.



- 32 -
For the triple grain junction, there is always a

"0.449 1 stable regular hexagonal

stress singularity of r
grains. The sliding is propagated into the adjoining and
opposite grain as locally accentuated shear stress and strain.
The opening stress Og is maximum and tensile across the
horizontal nonsliding grain boundary, but compressive

across the slanting, sliding grain boundaries. These dis-

tributions of stresses correlate with the microscopic

observations of creep fracture.

The stress singularity exponent, A, determined in
this chapter is the most severe one that can exist for
the same creep law and the same geometry. In cases where
grain boundaries transmit some shear traction while sliding,
the stress singularity would be milder. This can occur at
lowef temperature, at much higher strain rates and stresses
where boundariesbcan be expected to transmit a proportional-
ly larger fraction of the shear traction applied across
them. At the 1limit when boundaries are too viscous to
p;oduce any significant sliding, the stress singuiarity
will vanish. However, the most severe singulérity, cor-
responding to free sliding, is the limiting condition
which is of interest in microme;hanical modelling of creep

fracture processes where the worst possibility is considered.
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The linear creep solutions in this chapter can
serve as a launching point in the numerical solution using
the parameter tracking scheme to determine stress singu-
larities due to sliding interfaces in power -law creep un-
der monotonic loading. Also, they serve as limits to
check the non-linear solutions in which the strains are

likely to be similar, but more concentrated.



- 34 -
CHAPTER THREE
DOMINANT STRESS SINGULARITY IN POWER-LAW CREEPING ALLOY

3.1 Introduction

4 3

u - 0.8x10°

At intermediate stresses (0.5 x 10~ "))

and in the elevated temperature range of 0.4 - 0.6 To»
conditions under which most high temperature alloys are
used, creep flow results from the slide and climb motion
of iattice dislocations. In this regime of dislocation
creep, the steady state creep rate obeys a power-law
stress relationship (Norton 1929; Garofalo 1965; Bird,
Mukherjee and Dorn 1969; Ashby 1972; Gittus 1974) of the

form

85 = A O'Im ' | (3.1a)

where

A =C D}z'uTb /1,,, (3.1b)

where ¢ and m are material constants, Dv is the volume
self-diffusion ccefficient, u the shear modulus, b the
Burgers' vector, k Boltzmann's constant -and T the ab-
~solute temperature; Typical values for m are: 3 for

class I alloy; and 5 for class II alloys and for pure

‘metals (Sherby and Burke 1967; Takeuchi and Argon 1976).
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In this chapter, we determine the stress
singularities in such power-law creeping alloys caused by

grain boundary sliding.

For completeness, ﬁe present results for m up
to 10 -- thus covering not only metals and alloys that
undergo steady state creep (at m ~ 3) but also non-
steady state behavior of many engineering alloys which
show an effective m>5 at the minimum creep rates. Solutions
for higher values of m that might bé useful to model
"near-plastiﬁ behavior' can be routinely generated by the

methods presented in this thesis.

' Grain boundaries and interface boundaries are
modelled as free of shear tractions by virtue of free
sliding. The constitutive relationship within the grain is
the generalized power-law creep, implied by Eq. 3.la, for
an isotropic incompressible continuum,

Ef:, =3 A o Sij | (3.23)

where

’Si‘j'—"- O"U - -—‘—oik S‘J }} E . (3;2b5

N -
0e =[5 Sij SijJ® | (3.2¢)
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Equation 3.2a reduces to Eq. 3.la in simple tension.

We restrict our study to plane strain deformation
which is the more critical mode in plane fracture
mechanics. The only nonlinearity introduced in this
analysis is through the power-law constitutive relation-
.ship, Eq. 3.2. Considering only proportional loading in
the creep history and by Hoff's (1554) analogy, we can
extend the methods of Hutchinson's (1968) pioneering work
on stress singularity at a crack tip in power-law harden-
ing plasticity to solve for stress singularities caused by

grain boundary-sliding accommodated by power-law creep.

The stress quantities are defined by Eqs. 2.2, 2.4,

2.5 and the creep strain rates consistent with Eq. 3.2

are
¢ A
Eij = K" 3 (3.3)
where
/éc 3 AN m-1 A A ' . |
r._-z_—(re (0’,,.—-073) (3.3b)
A |
_ _“%c
= EG
A .
c _3 =m=i2 3.3
Ere=3 00 Gy @39

and
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c
E,=0 (3.3d)

The velocities resulting from Eqs. 3.3 are

_ A Km mA-H ( [ = !",6‘) (3.4a)
where
/N~ N - N s
Ur= a3 0" (5= 0] (3.4v)
and |
o 2—-mA 3 ﬁ\m-—i./\ o~ '
Ue==F1% *50 0" (o - T df (3.4c)

The analog of the biharmonic equation of the previous
linear creep analysis (Eq. 2.1) is now a highly nonlinear

fourth order partial differential equation

3% 2, \ - ' -
[Lds -Li- LI ] [ (+E+HE-2)] .9
+ahirg™ ke =0

where ( )'=B/Br,( )’= 9/96 and e is defined‘in Eq. 3.2.
Readers may refer to Hutchinson (1968) for further details.
When thé_dominant\;erm of the asymptotié'expansion

. (Eq. 2.4) is éubstituted into this équation, a separated
form is obtained which reduces this partial differential

equation into a parametric eigenvalue ordinary differential
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equation of fourth order:
2
Ejle—z maGnk +2)] L0 A0 b+ $1
+4 (A 0(mA+) (B 3 =0

where ;e is defined ‘in Eq. 2.5 and ( ) = d/de. We can manip-

(3.6)

ulate Eq. 3.6 into a more explicit but much longer form (eee

Appendix A).

$....=4>.... 4) 4} 4) N m) .

Buation 3.7 can then be solved to conform to particular
boundary conditions to furnish the eigenvalue A and the
associated eigenfunctions &, ), ¢",6°". The stresses, strain
rates and velocities are then obtained from Eqs. 2.5, 3.3

and 3.4.

Analogous to the eigenvalue equations of
Chapter 2, Bq. 3.7 is also homogenous. When {$,$‘,$‘:$°jare
a set of solutions corresponding to a A, then any scalar
multiple of {¢ ¢, ¢ , ¢ *} is also a solution. Again, we
normalize these eigenfunctions such that Se has a maximum

of unity. This imparts a definite value to K of Eq. 2.5.

3.2 The Hard Particle

Figure 3.1 shows the boundary conditions of a

hard partiole embedded in a sliding grain boundary under a
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constant far field shear stress, in terms of ; and its
derivatives., This two point boundary value problem is
solved by‘the shooting method (Keller 1968; Roberts and
Shipman 1972). The boundary value problem is treated as
if it were an initial-value problem; where the missing
initial conditions on the starting boundary and the eigen-
value A take up guessed values. ‘Equation 3.7 is then
solved by shooting from the particle-grain interface
boundary ST(6=y) to the horizontal grain boundary SR(6=0)

~

where ¢ and . a- of the computed solution are checked
against $ and $° prescribed there by the Bbundary con-
dition. If thé guessed A and the guessed missing
boundary conditions along the starting line ST happen
to be the correct values, the computed 3 and @- along

the destination line SR should equal to those prescribed

there. This is achieved by systematic trials.

To start, $, 3', $" and 5'“ need to be specified
aldng ST together with a value for A. Of these quantities only $°
and ;"' are known. Since Eq. 3.7 is homogeneous in 3,
we can fix g(y)=1.0 and later normalize thé solution
such that 83 has a maximum of 1. We assign to(&" (v)
a parametric value of h and assume A has a value of §.
Any mismatch of the computed versus the prescribed $
and $’ at 0=0 is then due to s and h deviating from

their correct values. The correct § and h can then be



- 41 -

systematically attained by the recurrence formul

- '+‘ — - - -
h ! h | [ M _ oM 1 M !
—_ _ 1| s Js | |
st |s D|_ M, IMy M (3.8)
. L | ah ah . . z—
BM{ BM; oMl om
where D = 5h ' "S55~ ~9s ° TSR in which i stands for

the ith iteration, and My and M, are mismatches defined

on the destination boundary SR,

N

A ‘ _
Mi(S.h)'f— 4’(5( h)compud'ed - C,bpr‘e.scribeol (3.9)

. /\' -
Mz(sth\?:'_ {F (S,MCOnipufed ”4’Prescribeo[.

The finite difference form of the partial derivatives of
M1 and M2 are evalued numerically for each iteration i.
Had the functional form of M1 and M, been known to allow
their partial derivatives to be evaluated exactly,

' Eq. 3.8 would have been the Newton-Raphson iteration with-

a fast (quadrétic) convergence (Hildebrand 1974).

The radius of convergence for this fést method is
smaller ‘than those of most slower (linear) convergent
. methods such as ;térative substitution. Hence, a reason-
able initial estimation of the roots of Eq. 3.9 is

necessary to ensure convergence. To obtain the solution
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for a particular m value, the procedure is started off
by selecting 3» (y) and X from the known solution of
linear créep (m=1) from Chapter 2 to be used as initial
values of h and s for a m value slightly larger than
1. Once a new solﬁtion is obtained,‘its 3“ (y) and A

is in turn used as initial valﬁes of h and s for the
solution of a yet higher m; thus "tracking'" the parameters
$“ (y) and A as a function of m until the solution for
the particular m value is obtained.

A

Since ¢ and its derivatives are expécted to have
zones of rapid variation, a numerical scheme capable of
easily varying step size is necessary. For this purpose
Eq. 3.7 has been converted into a system of four first
order ordinary differential equations which were solved
using an algorithm based on the Runge-Kutta method
(Ralson and Wilf 1960). This algorithm is a stable, self-
starting, fourth order infegrating procedure capable of
| automatically adjusting each step size to minimize the
local truncation error. An initial step size of 2.5

degrees was used for most computations.

The dependence of the eiéenvalue A (the radial
exponent of the stresses) on m for different particle
half angle w(y=m-w) is shown in Fig. 3.2. Actual values

of A for integer values of m for these three different
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half angles are given in Table 3.1. A cross plotting

of A versus w for vavious m is portrayed in Fig. 2.2.
These figures indicate that for the same creep exponent

m, particles of smaller half angle w produce a stronger
singularity, i.e., larger stresses near the origin. This
dependence on ® is strongest when m=1 and becomes less
pronounced as m increases. Also, the rate of this de-
pendence (AN/dw) decreases with w. All points on the
curve for w=15° agree with corresponding points for the
HRR crack (cwr-lﬁh+n) to within 1 per cent. This is a
generalization to higher m of a conclusion already
reached in Chapter 2 that as w becomes smaller and
smaller, the radial dependence of the stresses approaches
that of a mode II crack. However, as has been pointed out
in Chapter 2, the limiting case of an imaginary particle
of w=0 should be treated differently since in that case,
one should select A from a different range -- one that

does not give a singularity.

The eigenvalues for all w fall within a domain
bounded by A=0 and A=-2/(m+1). The upper limit cor-
responds to no stress singularity. The lower limit cor-
responds to a physically unrealistic unbounded strain
' energy rate ét the origin of the singularity. The trend
of A in Fig. 3.2 indicates that for the same particle

(same w), the stresses tend to be less and less singular
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TABLE 3.1

FOR INTEGER VALUES OF m FOR VARIOUS

(w=60C°)

-.384
-.253
-.192
-.156
-.132
-.115
-.101
-.001
-.083
-.076

(w=45°)

-.456
-.299
-.225
-.181
-.152
-.131
-.115
-.103
-.093

-.085

-.499
-.331
-.248
-.198
-.165
-.142
-.124
-.110
-.099
-.090

W

(w=15°)

HRR crack
(A=-1/m+1))

-0.50

-0.333
-0.250
-0.200
-0.167
-0.143
-0.125
-0.111
-0.100
-.091
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as m increases. This trend is sensible as at the limit
of m»w, which corresponds to a rigid-perfectly plastic
material, the stresses should indeed be finite and there-

pN . .
forgﬁpannot be negative. It needs to be pointed out that

as m-o, oij as defined in Eq. 2.5 should approach the

correct stress solution, but é;j as defined in Eq. 3.3
can at most approach one of the many strain rate solutions.
WhenA m+e, the strain rates (strains) can have multiple
values while stresses are single valued, i.e., the strain
rates become non-unique as is well known in the theory of
plasticity. The original governing equation (Eq. 3.5) is
in fact elliptic when m=1, but ultimately tends to become
hyperbolic as m tends to infinity and the behavior reverts
to ideal plasticity. Although it is not apparent how the
relative strengths of ellipticity and hyperbolicity of
this governing equation changes as a function of m,
ﬁutchinson (1968), Rice and Rosengren (1968) and Shih
(1974 , 1973) have demonstrated that solutions of the

form given in Eq. 2.4 that lead to Eq. 2.5 and Eq. 3.3 are
capable of producing correct and physically meaningful
results for the entire intermediate ranges of m,

Shih (1974, 1973) has obtained good results with m as

high as 99.
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The angular distribution of total stresses for
m=3, 5, 7 and 10 are presented in Figs. 3.3-3.6 for a
typical hard particle with half angle w=w/4. Figures
3.7 to 3.10 show the corresponding angular distribution

of deviatoric stress Sij where

I\

. PNEA ’
S‘J Kr Sij (3.10)

Kr"[G\’:J' --ig@;,iégj

i\

and Sij is defined in Eq. 3.2.

Figure 3.11 portrays the angular stress distribu-
tion for hard particles of w=65° (curves terminating at
8=y=115°) and w=15°. (curves terminating at 6=y=165°) at.
m=5. This figure is an extension to Fig. 3.4 in which

w=45°,

From these figures, the following trends about
the angular distribution of the stresses become apparent:

A

O always attains its maximum at 6=Y/2;7=ﬂ-w))and so is
the absolute value of gre' This orientation in general
does not coincide with the extension of a sliding inter-
face boundary. Hence contrary to the case for m=1, the

extension of a sliding interface is not necessarily where

the maximum shear activity occurs. For m>1, the shear



- 48 -
m=3

20

_l.o —

Figure 3.3 variation of %; with 8 at the Apex of a Hard

Particle of w = /4, m = 3.
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Figure 3.6 Variation of Sij with 6 at the Apex of a Hard
Particle of w = w/4, m = 10,
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incompatibility caused by the sliding interface boundary
is diffused such that maximum shear activities always tend
to be midway between the horizontal grain boundary and

the slanted interface boundary.

Analogous to the m=1 results, however, the opening
stress 36 is always tensile at the particle-grain
interface and zero at the horizontal grain boundary. This
is the driving force for particle debonding and void

nucleation.

A

In addition to A becoming more negative, O
at the slanted interface boundary rises as w decreases
(v increases). For the same w, Ge at the interface
increases with m although A grows to be less negative

as m increases,

Figure 3.12 shows the slip line field for the
limiting case of m»», This perfect plasticity solution
confirm§ preceeding numerical results that Og 1is always
maximum and tensile across one of the sliding interfaces

and compressive across the other.

3.3 The Triple Grain Junction

The boundary conditions at the triple grain
junction (where three grain boundaries come together with

120° angles) in terms of ¢ and its derivatives are shown
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in Fig. 3.13 in which F(¢", ¢, 4) stands for
m-l

S————

2@+ 20040 887+ o $ae3 00§77
x[ &4 (At2) $] (3.11)

Equation 3.7 is solved in both grains I and II by shooting
from LS and SR simultaneously towards TS where the solu-
tions in the two grains are matched and compared with pre-
scribed boundary conditions. Again, the fourth order
Runga-Kutta algorithm is used to integfate Eq. 3.7. A
Simpson's rule is employed to integrate F in Eq. 3.11
and the quasi Newton-Raphson method is used to solve for
roots of the mismatches to arrive at the correct initial

values of g, h, k, and s defined in Fig. 3.13.

Figure 3.14 pictures the variation of A with
m (actual values are given in Table 3.2) Analogous to
the solution of the rigid particle problem, A becomes
less negative as m increases., Thus following a similar-.
ly sensible trend as the one described in Section 3.2,

A

Figures 3.15 to 3.18 display Gij versus 6 for

m=3, 5, 7, 10 respectively and Figs. 3.19 to 3.22 show

the corresponding deviatoric stresses S‘j versus 6.
It is at once clear that the maximum shear activities
are alwa&s at m/3 which is the midway between the hori-

zontal and the slanted boundaries as well as the extension

T,
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Figure 3.14 Variation of A with m at the Triple Grain Junction.
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TABLE 3.2

A AND mx FOR INTEGER VALUES OF m FOR THE TRIPLE GRAIN

JUNCTION
A .. mA
m (c ~ 1) G~ ™)
1 -0.449 -0.449
2 -0.312 -0.624
3 -0.231 -0.693
4 -0.182 -0.728
5 -0.150 -0.750
6 -0.128 -0.768
7 -0.112 -0.784
8 -0.099 ‘ -0.792
9 -0.089 -0.801
10 -0.081 -0.810
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of a sliding slanted boundary. Stresses in grain II reveal
that a nearly rigid pocket is being created there as m

increases. The flow situation then resembles a well lubri-
cated wedge being driven sideways into a vertically elonga-
ting specimen. Similar to the results for m=1 the opening

A

stress O is always tensile and maximum at the horizontal

0
grain boundary, and compressive at the slanted grain
boundary. Its magnitude increases slightly with m. Again,
this distribution of 39 gives theoretical explanation

to numerous experimental observations that creep voids

énd cracks develop dominantly in grain boundaries perpendic-
ular to the nominal tensile axis. This ge distribution
dictates that these boundaries are favored sites for void
nucleation. At the initial stage of damage formation,

the existence of microvoids does not significantly alter

the stress state. Thus, these boundaries are also the

favored sites for void and finally crack growth.

Figure 3.23 shows the slipline field within the
grains at the ideal plasticity limit where m»», This
solution was also independently discovered by‘Brunner and
Grant (1956). Although the stresses in the rigid region
ABCD are indeterminate, this solution does confirm pre-
ceeding numerical results that a rigid pocket is developed

in the corner DAB. This slipline field further reveals
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that the sliding of the slanted grain boundaries is beiné
propagated into the adjoining opposite grain to form shear
fan zones at B and E. This zone is flanked by o 1lines
forming a shear fan of 17.5° width, at the extension of
the slanted sliding boundary. This feature again agrees
with the results of the preceeding computation. Indeed,
intense shéar activities manifested in the form of folds
have long been observed in this location in creeping

polycrystalline metal (Grant and Chaudhri 1965).

3.4 Discussion

Hutchinson's (1968) approach to analyze stationary
cracks in a hardening plastic material has been extended
to determine the stress singularities, at both the apexes
of grain boundary hard particles and the triple grain
junctions, caused by grain boundary sliding accommodated
by power-law creep. The resulting stress distributions
are not only physically reasonable, but also correlate

and explain experimental observations.

These‘stress distributions are results of Eq. 3.5
which is based on the Ja deformation theory. By the
theorem of Ilyushin (1946) and by Hoff's (1954) analdgy,

' the stress distribution is always proportional and without
reversal in monotonic power-law creep. Hence, these re-

sults based on deformation theory are as rigorous as
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results based on flow theory (Budiansky 1959). However,
if the loading history includes load reversal, one would

need to use an approach based on flow theory.

Analogous to Chapter 2, these results for free
sliding give the most severe singularities for the same

geometry and creep law.

The accommodation mechanism has been assumed to
be purely power-law creep. However, at the focus of the
stress singularity where stresses are very high, other
processes like diffusion and time independent plasticity
(m»>~) may locaily become the more powerful accommodation
mechanisms. Yet within the temperature range and nominal
stress range where power-law creep is the dominant
deformation mode, such diffusion and plasticity
mechanisms cannot operate competitively in the entire
domain. These mechanisms of diffusion and plasticity,
if presen;)dominate only in a very short range localized
at the focus of the stress singularity. Their effect is
to moderate and alter the stress state and eliminate the
singularity as has been discussed by Argon, Chen and
Lau (1980, 1981). The power law creep solutions presented
in this chapter then furnish the governing boundary con-

ditions to this very localized inner moderation zone.
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The singular stresses have been determined to within
the multiplicative constant K of Eq. 2.5. This scale
factor of the asymptotic singular stresses is the analog
of the stress intensity factor in elastic and plastic
fracture mechanics. It contains information about the re-
mote boundary conditions, the geometry and the constitutive
relationship. This creep stress intensity factor must be
determined by an appropriate global analysis, usually
numerical for such complex conditions, to connect the re-
mote field and the local asymptotic singular field. How-
ever, one has to use a global analysis which is capable of
solving the locgl singular field in great detail. Since
there is no traction free interfaces connecting the local
(near) field and the remote (far) field, K cannot be
determined by the conventional approach of a path in-
dependent contour integral. Therefore, one has to
determine K from the global solution at the immediate

vicinity of the'singularity.
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CHAPTER FOUR

FINITE ELEMENT SOLUTIONS

4.1 Introduction

The dominant singular stress.distributions caused
by grain boundary sliding accommodated by power law-creep
are now available for two geometric configurations of
interest in the creep fracture of engineering alloys.
These solutions have been computed for: (A) the apexes of
hard particles embedded in sliding grain boundaries under
a remote shear.stressAparallel to the sliding grain
toundaries, and (B) at triple grain'junctions under a
remoté tensile stress perpendicular to one of the three
converging grain boundaries (see Chapter 3). These local
asymptotic solutions, in analogy to asymptotic stress
solutions of cracks in elastic (Williams 1957) and plastic
continuua (Hutchinson 1968; Rice and Rosengren 1968), are
each determinable to within a multiplicative constant, K,
which has been defined in Eq. 2.5. 1In this thesis, K
will be referred to as the creep stress intensity factor.
Tkis creeb stress intensity factor needs to be obtained
by an appropriate global analysis to connect the remote

bloading to the local asymptotic singular field.

The finite element method (Zienkiewicz 1978;
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Bathe 1981) has been proven to be a very versatile numerical
technique in computational stress analysis, especially in
problems involving nonlinear behavior, complicated
geometries, and complex boundary conditions. Gallagher
(1972, 1978) has reviewed the wide spread application of
finite élement method in elastic and elasto-plastic
fracture mechanics. Benzley and Parks (1974) has surveyed
the fracture mechanics computer programs being used.
Swedlow (1978a) has reported on special finite element
procedures used for the crack tip and for singularity
computations in general (Swedlow 1978b). Pian (1975) has
evaluated different crack élements used in linear and

nonlinear computations involving stress singularities.

In this chapter, a specially = developed finite
element algorithm is used to solve for the plane strain
creep stress intensity factors related to the hard
particles and the triple grain junctions. This finite
element analysis utilizes speciaily formulated power-type
singularity elements, a novel method to deal with
periodicity and symmetry boundary conditions by kinematic
modelling and a self adaptive scheme for automatic

~adjustment of step size for stable time integration.



4,2 Method of Solution

The creep behavior is obtained by incremental
approach. This method first computes the elastic
solution of the problem. It then computes the creep
strains, based on the latest available stress distribution,
for a small time increment. These creep strains are then
treated as initial strains to solve for the new stress
distribution at the end of the time increment. The
procedure is repeated until a prescribed time is reached.
This prescribed time is usually chosen to correspond to
steady state at which the stress distribution does not
change with time. Details of incremental, initial strain
finite element formulation using Euler's method for for-
ward marching, explicit time integration can be found in
Zienkiewicz and Cormeau (1974), Snyder (1981) and Bathe
(1981).

4.2.1 Elasto-power-law creep constitutive equations

In this plane strain finite element analysis,
the grain matrix is modelled to deform accordihg to
Hookean elasticity and multi-axial power-law creep. If

the deformation were uniaxial, the constitutive relation-

ship in terms of the elastic strain increment, AEE; the

creep strain increment, Aec; the total strain increment,
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Ac; the Young's modulus, E; the tensile stress, 0; the

creep constants A and m, and time t would have been

AE = AE_E + Aic (4.1a)
Lo
A€ =j Ao®™ d+ (4.1b)
o .
A £E= %— : (4.1c)

Assuming isotropy, creep incompressibility, the
existence of a creep potential, and independence of
creep resistance on hydrostatic stresses (0dqvist 1974),
Eq. 4.1 governing the grain matrix is generalized to

multiaxial elasto-power law-creep as follows:

AEU:(A.E‘:} + AE% | (it.Z)
Aby= —':ég—q— o =AEL (4.32)
eij = &ij — 3 & S;J' (4.3b)

Aeg = Z%ﬂ)- ASD’ (4.3c)
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¢ _(ta m-l o
Aej _jo 2 AR s dt

—_—_Aeﬁ

. (4.3d)

where E and v are Young's modulus and Poisson's
ratio respectively, Ok is hydrostatic tension, €1k
is volumetric strain, eij is deviatoric strain defined

by Eq. 4.3b, Si » Ogs A and m have been defined in

j
Eqs. 3.1 - 3.2.

4,2.2 Self-adjusting time step incrementation

The equilibrium equation governing the displace-
ment increments, Au, from time = t to time = t+At for our

jnitial strain finite element formulation is

+tat |
.EAQ= +AF N tF +‘ﬁFc (4.4)

— —— wa—

where t+at

F is a force vector due to the applied load
boundary condition at time = t+At, tE is the force
vector due to the internal stress distribution which is

in equilibrium with the applied load at time t, AtFC is

the equivalent creep force in the time interval At due
to creep strain treated as an initial strain at t. In
addition Au is the yet to be determined displacement

increment in At, and K is the elastic stiffness matrix
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which needs only to be assembled and decomposed once and

stored in high speed storage to be used in all subsequent

steps.

With Euler's forward marching time integration,

the creep force 1is

at ¢ T sCt

F =Z_ S B _c_,_g_(sij)A{: dvel (4.5)
element Vol

where B is the strain-displacement matrix (Ae=BAu), C

is the Hookean matrix of elastic constants (Agécégg),

é? tsij) is the creep strain rate matrix based on the

deviatoric stresses at t (see, for example, Snyder 1981;

Bathe 1981).

The time: increment, At, needs to be chosen with
great care. The Euler forward marching method is a
conditionally stable scheme. When At is larger than a
critical value, there is frequently numerical instability
in the time evolution of the solution. This usually
manifests itself in violently oscillating results. If
allowed to propagate, the instability can grow qﬁickly

to terminate the computation by overflow or underflow.

Although the search for a method to determine

the optimal time step At has long attracted keen interest,



- 82 -

the traditional strategies of selection of At are mainly
empirical in nature. "Rule-of-thumb" strategies of
selecting At such that in each step the effective creep
strain increment is less than some arbitrary fraction
(typically 1% to 15%) of the accumulated total strain
(Levy and Pifko 1981; Zienkiewicz and Cormeau 1974), or
that the new At is not more than an arbitrary fraction
(typically 150%) of the immediately preceeding At
(Zienkiewicz and Cormeau 1974), are frequently used,

Their use, however, cannot always ensure numerical

stability.

In our finite element computations, At is
automatically self adapted according to the latest
available largest equivalent stress of all the spatial

integration points, (oe)max’ by

(4.6)

L. 2 | 1
A—[:*"‘F ‘3‘(|+U)—m EA(%)::;:

where f 1is an adjustable parameter that can be

prescribed to have different values for each time step.

If £ 1is set equal to 2, Eq. 4.6 becomes the

limiting case of

At L 4G L

1
N1
3 m EA (Tl

(4.7)
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which is a stability criterion developed by Cormeau (1975)
for the type of explicit time integrating, initial strain,
incremental finite element algorithm that we are using.
This criterion is derived from applying classical
stability requirements (Lambert 1973; Gear 1971) to the
upperbound estimate of the largest eigenvalue of the
Jacobian matrix of the system of linearlized ordinary
differential equations that govern the stresses at each
spatial integration point. Irons and Treharne (1971) have
developed a similar criterion. Equation 4.7, which is
based on the linearized'system of differential equations
rather than the original nonlinear ones, has been found

to be conservative for some boundary value problems by

Bassani and McClintock (1981).

In our computations, £ has been varied from
larger than 2 (for quick approach to steady state) to
smaller than 2 (for better accuracy). Its effect on the
time evolution of the solution will be reported in

Sections 4.3 and 4.4.
4.2.3 The power-type singularity element

The displacement interpolation functions of
conventional finite elements are constructed so that

the elements can simulate rigid motion, linear displace-
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ment (or constant strain), and, for some elements,
increasingly higher order terms. They are thus equipped
to simulate the nonsingular portion of the series solution
in continuum mechanics. They cannot, however, give an
exact representation to the other portion of a series
solution which involves a singularity in strain and
stress (Williams 1952, 1957, 1961), even if the geometry
and boundary conditions dictate that such a singularity
should exist in the field solution. When a singularity
exists, using substantial mesh refinement of these con-
ventional elements improves the numerical solution, but
the convergence to a final solution is slow (Tong and
Pian 1972). Very large numbers of conventional elements
are usually required to provide a solution that yields
stress intensity factors of reasonable accuracy (5 - 10%)
for simple crack problems in linear elastic analysis
(Chan et al. 1970; Kobayashi et al. 1969). On the other
hand, using elements that contaih the actual type of the
singular behavior at the crack tips lead to increased
accuracy of the near tip solutions with fewer eiements,
and produce accurate estimation of stress intensity
factors by methods that depend on the near tip fields
‘for solution (Henshall and Shaw 1975; Tong, Pian and

Lasry 1573; Hilton and Hutchinson 1969; Barsoum 1977;



- 85 -

Gallagher 1972, 1978). Tracey and Cook (1977) have
developed a power-type singularity element which they have
used to analyse cracks in an elastic bimaterial, and
branch crack in elastic material. The displacement shape
functions of their element are such that the element is
able to represent both constant displacement and a dis-
placement varying as r% in the‘radial dirgction, and
represent both constant and linear displacements in the
circumferential direction. This element is therefore

not compatible with the quadratic isoparametric element
which is versatile and the "work horse" of most dis-
placement based finite element programs. Also, lacking

a linear displacement term in the radial direction, this
singularity element does not satisfy the constant first
.derivative requirement of the element convergence
criterion (Zienkiewicz 1977). Lacking such a term
prevents this element from modelling radial constant
strain (and hence constant stress) béhavior. Therefore,
its radial dimension must be kept very small so that

the exclusion of this behavior from its domain is incon-
sequential. These drawbacks can be rectified by re-
developfng Tracey and Cook's special element to add the
_radial linear displacement term and a quadratic cir-
cumferential displacement term. The new element is a

four node Co-continuity element (Fig. 4.%a). Its dis-
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placement interpolation functions are different from its
coordinate mapping functions, while its coordinate
mapping functions are identical to thbse of the serendipity
isoparametric element. For an element mapping into a unit
square of 0 < £ <1 and 0 < n <1 in the natural space
(54m), Fig. 4.1b, these special displacement interpolation
functions that give rise to the power-type distribution

in strain (e ~ rq—l), are:
9 o
Ny = _3___.5_-":";\ (1-2q)(1-n) (4.8a)

~ 9
N, = %{?—(—'—1—%2@1 (4.8b)

;39
P43:: I—-ég_iLng__ (4.80)

[+ A

q .
= 42380 o)

When the parameter q takes the value of 1, or when the
parameter o takes the value of 0 this special element
is reduced to a standard 5-node isoparametric element
with the fwo corner nodes of the side opposite to the 3-
node side collapsed into -one physical node. Details of

the special element can be found in Appendix B.

In the radial direction in the physical space,
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this special element is capable of representing con-
'stant displacement, constant strain and power-type
singular strain. Thus it covers not just the most
dominant local stress singularity but also the constant
stress term in the field solution. In the circumferential
direction, it can represent constant displacement, con-
stant strain and linear strain., It is compatible with

adjoining serendipity 8-node isoparameter elements.

When applied to solve for the creep stress
>intensity factors for the hard particle or the triple
grain junction, a fan-shaped array of these isosceles-
triangular special elements, with their singularity nodecs
at the origin of the strain singularity, is connected to
a surrounding mesh of 8-node isoparametric elements
(Fig. 4.1c). Special quadratures have been developed to
integrate the stiffness matrix, equivalent force vector and
equivalent creep force vector of the special elements
(Appendix B). A 2x2 Gausé-Legendre quadrature is used

for the 8-node isoparametric elements.
4.2.4 Kinematic modelling of boundary conditions

Symmetry and periodicity (repetition in space)
can simplify the statement of a boundary value problem.

However, fhey frequently give rise to boundary conditions
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that are outside the available conventicnal boundary
condition models of common general purpose finite element
programs. Special algorithms have been developed for
linear multipoint constraints on displacement (Abel and
Shephard 1978; Curiskis and Valliappan 1978). Constraints
on stresses in nonlinear material are more difficult to
deal withf.Coﬁsidérable formulation and programming efforts
are required even for a special purpose program
(Ghahremani 1980). In small strain finite element analysis,
kinematic modelling can be used to readily obtain the
desired constrained boundary conditions on displacements

and stresses, without special formulation or programming.

For example, Fig. 4.2a shows an arrangement con-
sisting of three bars connected to a freely rotating
beam. Equilibrium at the midpoint, E, of the beam
dictates ithat the normal force at A, (Fn)A, must be
equal to the normal force at B,(Fn)B. Also, if the
material of the bars AF, CE, BG is rigid compared to the
material of RACBT,  then the normal displacements at
A and B, (Un)A and (Un)B respectively, are anti-
symmetric about C. Since the analysis is for small
strain and the bars are perpendicular to ACB, the shear

force, FS’ is zero at nodes A, C, and B.

The beam can be modelled by a 3-node beam
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element, or equally well, by a conventional two-
dimensional element with high Young's modulus. We use

a five node isoparametric element to model it. Other
combinations of any available two-dimensional elements
giving rise to the required three nodes on line FEG can

be used.

When several units of these arrangemenfs, are
used,staggering one on top of the other, with node E
in common, as is shown schematically in Fig. 4.2.b, the
condition of o, = 0, o symmetric about C and U}
antisymmetric about C on boundary ACB can be
simulated. This concept is applied to model that part
of the boundary conditions which arises from symmetry and
geometric repetition in the triple grain junction problem

(Fig. 4.4).

A different kinematic arrangement is shown in
Fig. 4.3. Here several bars, AF, BG, CH, DI and EJ, having
high axial but very low bending stiffnesses and vanishingly
small length, connect the boundary ABCDE to the surface
of a rigid but freely rotating plate KFGHIJL. The bars
are perpendicular to ABCDE. The plate can rotate freely
about a pivot L which is physically located at the inter-
section of lines PA and NE. The bars and the plate are

designated with much higher modulus than AENOP. In
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small strain analysis, this kinematic arrangement simulates
the condition that boundary ABCDE slides freely on the
surface of a rigid particle which can rotate, i.e., on
boundary ABCDE, o, = 0 and Un has the same magnitude as
the U, on FGHIJ of the rigid particle.

One high order two dimensional element can model
the rotating rigid plate. Alternatively, a combination
of several low order two dimensional elements can
simulate the -rotating rigid plate equally well. Such an
arrangement is used to model the interface boundary between

the grain matrix and the hard particle in Section 4.3.

The method of kinematic modelling of boundary
conditions has also been applied in a recent study of
stress redistribution in a creeping continuum with a
rigid or an elastic inclusion by McClintock (1981),

producing good results.

\

4.2.5 Incompressibility constraint in FEM

In finite element analysis, except where the
components of the stress tensor corresponding to a
particular direction can be assumed zero a priori (such
.as in plane stress analysis), incompressibility imposes
constraints that require special treatement (Fried 1973 ;

Nagtegaal, Parks and Rice 1974; Argyris, Dunne,
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Angelopoulos, and Bichat 1974). Since Herrman's (1965)
pioneering work, several special finite element approaches
have been reported to be effective in various cases
involving incompressibility. There are four major
categories of approaches: (A). Apply reduce@belective
integration to displacement based finite element
formulation (Naylor 1974; ‘Zienkiewicz 1977; Malkus and
Hughes 1977; Hughes 1980); (B) Incorporate the incom-
pressibility constraint into the variational equation
.governing equilibrium by the Lagrange multiplier or the
penalty function method (Herrman 1965; Oden 1968; Key
1969; Nagtegaal, Parks, and Rice 1974; Hughes, Liu and
Brooks 1979; Bercovier and Engelman 1979; Bercovier,
Hasbani, Gilon and Bathe 1980); (C) Use special elements
in which the kinematically admissible displacement fields
are intrinsically incompressible (Needleman and Shih 1978);
and (D) Use an assumed stress hybrid finite element
formulation (Tong 1969; Pian and Lee 1976). The last
word .in this research area is far from said. Investi-
gatérs are currently in hot pursuit to further study and
to develop a general finite element program for incom-

pressible behavior (Bathe 1981).

In our computations, the effect of the incom-

ﬁressibility constraint is felt- when the accumulated
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creep strains dominate over the elastic strains. The
finite element solution produces stresses that deviate
from the field solution of Chapter 3 by an oscillatory
hydrostatic component. Using 2x2, or 1 x4 Gauss-Legendre
quadrature for the special element (instead of the special
quadrature rule of Appendix B) does not alleviate this
problem. All 8-node isoparametric elements have been
treated by reduced integration by 2x2 Gauss-Legrendre
quadrature. On the other hand, plots of the angular
‘distribution of the effective stress and the deviatoric

stresses agree well with the field solution of Chapter 3.

It has been reported that over constraint can
cause the finite element mesh to '"lock" to produce
erroneous displacement solutions (Nagtegaal, Parks and
Rice 1974; Tsach 1981). However, our incremental
initial strain finite element results indicate that the
incompressibility constraint apparently does not cause a
general locking of the mesh to produce a randomly erroneous
displacement. Instead, it causes a peculiar locking of
the mesh to produce a displacement field that deviates
from the correct solution in a particular way: only
the volumetric strain derived from this displacement is
in error, while the deviatoric strains are given correctly.

Therefore, the total stresses are subject to error but
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the deviatoric stresses are not. This has also been
encountered by Naylor (1974) who has reported that
oscillatory error exists only in hydrostatic pressure,
but not in deviatoric stresses in his iterative tangent
stiffness finite element analysis of an elastic-plastic

sphere under internal pressure.

This characteristic of our solution enables the
creep stress intensity factors to be determined, free from
the effect of incompressibility, from the distribution of
the equivalent stress o, the shear stress o g4 OT any

~

other deviatoric stress quantities:

0. = K A (4.9a)
\ A
U‘r:e,: K r)\ 0?—6, (4.9b)
and .
Sii= Kr /S\ (4.9¢)
4 ) .

4.3 FEM Solution for the Hard Particle

Figure 4.4 defines the geometry and'boundary
conditions for the hard particle on the grain boundary.
Figure 4.5 shows the finite element mesh in which the
special singular element of Section 4.2.3 is used in

conjunction with 8-node isoparametric elements. The
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Figure 4.4 Definition of Problem on Stress Concentration Around
' Grain-Boundary Particles: Statement of the FEM Problem.
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N\

Figure 4.5 Finite Element Mesh for the Hard Particle ProB]em.
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mesh shown is for &/p of 3.Q, but is readily extensible
to other &/p (say, &/p = 10.0). Chen and Argon (1981)
have recently reported on creep cavitation in 304 stain-
less steel in which. the observed average &/p ratio was

3.5.

At time, t = 0, a far field shear stress

= -3
o, = 10

solutions are obtained for m = 3 and 5. For each m,

E is applied and kept constant. Finite element

a convenient set of values are assigned to E, Vv and A
.of Eqs. 4.2 - 4.3. The actual values of E, v and A do
not enter the final steady state creep stress solution.
They may be regarded as mere vehicles to be used to

reach the final stress solution.

Figure 4.6 shows the cdmparison of the finite
element results for the p-variation of the deviatoric

~

stresses, Sij’ with the dominant singular solution of
Chapter 3. The discrete points are finite element
results of r)‘Sij (=K §ij) divided by a scaling constant,
h. .This scaling constant h is determined from
requiring one particular point of the FEM result, that

of roe/h(=8eK/h) at 6 = 62.8°, to have the same value

as ‘ge(62.8°) of the dominant singular solution. By
just "attaching" this one point of the FEM solution to

the singular solution, it is observed that all other



- 101 -

A
Sij

Dominant  Singular Solution

-0.8 |- 0,8,0,v Finite Element Solution
T =0.004p, t-IIIBtN
m=3

Figure 4 6 FEM So]utwn at the Apex of a Hard Particle of w = /4
m= 3, r=0,004p, t =1. 118tN



- 102 -

points of the FEM solution fall on the solid lines
representing the dominant singular solution. This
indicates that the sampling points of these finite element
fesults are within the dominant singularity zone, and

these finite element results indeed obey

A /\
Ue = K A Te (4.10a)

and

A /\
SU = Kr ‘SU (4.10Db)
Then K 1is given by the value of h.

At the sampling time of t = 1.118 tye where ty
js the time for the nominal creep strain to become equal
" to thenominal elastic strain ( ty = [eE(os)]/[éC(os)] =
1/(EA02"‘), the accumulated creep strain at the stress
sampling points at r = 0.004p are at least 900% of the

elastic strains.

The scaling of the rkoe(=Koe) at 6 = 62.8° by
h determines K. Since the FEM results agree with the

A

singuiarity solution very well in all components of Sij
and at all 6, K can be determined from any component
~of Sij gt ahy . We determine K from o, at a
6 value where o is close to maximum. For m = 3,

as determined from r = 0.004p at t = 1.118tN,
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0.965.

prcs

Figure 4.7 shows the corresponding distributions

for m = 5, at t = 1.923t Similarly good agreement

N
between the FEM and the singular solutions is obtained
for all components of §ij' The value of %Ei determined
from this data is 1.109. Figures 4.7 to 4.13 show the
variation of gij of the FEM solution (for m = 5) as a
function of distance, r/p, from the origin of the
singularity. It is observed that gij starts to deviate
appreciably from the singular solution for r > 0.177p.

For r < 0.177p, X values determined from Si”

especially those from O and S at 6 m/3 are
~ € . A
trustworthy. At 6 ~ u/3, Ug and S, obtain their
' 7]

maximum value, and will, therefore, give the least error
in the K determination. Figure 4.14 shows the value
of kp*/os as a function of r/p. It is apparent from

Fig. 4.14 and Figs. 4.7 and 4.13 that even though the gij'
computed by FEM may deviate  from the singular
solution at some 6, ge at 6 ~ 7m/3 is seldpm
influenced by such local deviation. Thus, le

ag
~ )

determined from o, at 8 = 62.8° is valid for a
_surprisingly lbng range (large r/p), as is evident from

Fig. 4.14.

Figures 4.15 to 4.23 demonstrate the gradual
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Figure 4.11 FEM Solution at the Apex of a Hard Particle of w = n/4,
m=5, r=0086p, t = 1.923tN.
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Figure 4.15 FEM Solution at the Apex of a Hard Particle of w = /4,
m=25, r=0.004p, t = O.OOOtN.
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Figure 4.18 FEM Solution at the Apex of a Hard Particle of w = 7/4,
m=5,r=0,004p, t~= 0.577tN.
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dominance of the creep strain over the elastic strain

as a function of time. It is apparent that after

t = 0.0577ty, the deviatoiic stresses at r = 0.004p are
dominated by the steady state singular creep solution.
Figure 4.24 shows the value of I(p"-/g,s determined from
data cérresponding to Figs. 4.16 to 4.23. There are

only minimal fiuctuations in prlos over time, indicating
the self-adapting time step selection scheme of Section
4.2.2 (with £ mostly in a sequence of 5,5,2,2,2,

repeat steps) works quite well.

With values of -Kp)‘/oS obtained for m = 3
and m = 5, one can estimate the pr/qsvalues for
other m by extrapolation. First, one can apply overall
“equilibrium consideration to a characteristic repeat
unit of the geometry (Fig. 4.4) and assume that the
gee (of the singular solution) at the particle-grain
interface is the only stress to balance the far field

shear stress, Og, @as Was done by Argon, Chen and Lau

(1980). This gives

A\ A
E_R. _B o = (H—)\)(ZCOSDO) = I(m) (4.11)

ER Tpo(T—XR)

where w® is the apex half angle of the particle. How-

ever, in reality, oee(w-w) of the singular solution
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does not have a range over the entire surface of the
particle. Equation 4.11 thus tends to overestimate
Kﬁyos. The amount of this overestimation can be treated
as an empirical correction factor C which most likely

varies with m. Hence, a more appropriate estimation of

Kgyos is

P
Kp%. P fuid = 1
— - ——-Tan = m) - m (4.12)
=5 C(m) - I¢m)
‘This function C(m) can be empirically determined. From

our m = 3 and m = 5 results,

Cln)= 06839 + 0.0639.(m-3) (4.13)

The function I(m) is known once the singularity solution
of Chapter 3 is known, and Eq. 4.13 and 4.12 then enables
one to estimate Kpl/cs. For a square, hard particle of
w=r/4, f(m) and Gq}/os)-(P/R)are shown in Fig. 4.25.
Actual values of I(m), C(m) and (pr/ds)-(P/z)-tan w are

given in Table 4.1.

4.4 FE4 Solution for the Triple Grain Junction

Figure 4.26 states the geometry and boundary
conditions at the triple grain junction. Figure 4.27

shows the finite element mesh used in our analysis.
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Figure 4.25 Variation of I(m) and (KpA/os)-(p/ﬂl-tanw with m for a
Square Hard Particle of w = m/4.
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TABLE 4.1

A .
I(m), C(m) and Kg_--g-tan w FOR A HARD PARTICLE OF w=m/4
S

n 1(m = {1¥A)(2xcos 45°)A ¢(m) kp

066(135°) os-/z/p
1 0.437 0.611 0.267
2 0.454 0.650 0.295
3 0.468 0.689 0.322
4 0,477 0.728 0.347
5 0.482 0.767 0.370
6 0.486 0.806 0.392
7 0.489 0.845 0.413
8 0.490 0.884 0.433
9 0.492 0.923 0.454

10 0.493 0.962 0.474
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" Figure 4.26 Definition of Problem on Triple Grain Junction Stress
' Concentration: Statement of the FEM Problem.
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Solutions have been obtained for m=3 and m=5.

The principal boundary condition is the vertical
velccity V (Fig. 4.26) which was assigned a value at
t=0 and kept constant for all subsequent time. The value

of V was assigned such that at steady state creep, it

will generate a nominal stress, 0N=10'3E. The first time
step was assigned as At = 1tN such that its solution (at
t=tN) corresponds to an elastic response of the boundary
moving at % for ty- The very high stresses then activate
massive creep deformation in the second and subsequent
steps to quickly reach steady state creep. Useful in-
formation for the determination of KX is furnished by
those stress sampling points in which the accumulated creep
strain dominates over the elastic strain. The time step
incfements, other than the first step, are automatically
chosen by Eq. 4.6. For m=3, f (Eq. 4.6) is always set to
be 1.0. For m=5, f is assigned a sequence which consists
mostly of (5,5,2,2,2, repeat). The computed quantity

of 110 (66.22°) = Ko_(66.22°) of the finite element solu-
tion, after divided by a scaling constant h,‘is used to

match to 06(66.22°) of the singular solution and hence

determine KdX/ON’

Figure 4.28 shows the comparison of FEM result

and the singular solution of Chapter 3, at r=0.001d, after
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the above-mentioned match is made. The agreement is
very good for 0 < 6 < 2m/3 from which we determine
KfVoN. The agreement is not as good in 27/3 <8 < m.
This is due to the fact that such data is taken from a
corner of the mesh where displacement rate boundary con-
ditions are enforced (Fig. 4.26 - 4.27). From these
results from m = 3, the value of Kda/oN is found to be

0.753.

A

For m = 5, Figs. 4.29 to 4.34 shows Sij at
various distance, r/d, at t = 3.230tN. The dominant
singular solution apparently is a good ‘approximation
at the triple point up to r = 0.096d. Figure 4.35 shows
the computed Kd}/oN as a function of 1r/d for m = 5.
Similar to the hard particle problenm, KdA/oN determined
from Se at 6 = w/3 (where ge is maximum) gives

good accuracy even at large r/d where Sij may

locally deviate from the dominant singular solution.

Figures 4.3¢ to 4.45 show the effect of time,‘
(and accumulated creep strain) on the stress distribution

at

L]
(1

0.001d. Contrary to the hard particle problem,

ty = 1.0 corresponaé to the first step here and hence

is the elastic solution. Figure 4.37 shows that at

t = 1.055t the creep strain and singular stress solution

N’
begin to dominate.
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Figure 4.46 shows the value of de/oN determined
from the data of Figs. 4.37 to 4.45. There is a mild, but
stable fluctuation of KdA/UN with t/tN indicating that
using smaller £ values (Eq. 4.6) than the ones used

(S,S,Z,Z,Qrepeat) may give even better results.

Similar to the hard particle problem, an estima-
tion of K can bé obtained from overall equilibrium con-
sideration by equating the integral of the singular stress
distribution over a characteristic repeat distance to that

of the far field tensile traction, giving

K 2 - (6N CEY 1w
O 3 Gpe (0)

(4.14)

Again, the singular stress distribution is not the only
contribution to the stresses that balance the far field
traction; hence, Eq. 4.14 is subject to a correction.

We assume

o 3

where C(m) is detcrmined empirically. From de/onvalues

de, Z = (C(m)-I(m) (4.15)

- for m=3 and 5, C(m) is found to be
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C(m)= 0-613 — 0.0fo (m-3) (4.16)

Values of I(m) and (KdA/oN)-(Z/S) for m =1 to
10 are shown in Fig. 4.47. Actual values of I(m), c(m)
and (KdA/oN)-(2/3) for m = 1 to 10 are listed in

Table 4.2.
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TABLE 4.2
I(m), C(m) and %%%EE—-FOR THE TRIPLE GRAIN JUNCTION

(1+x)(2/3)A xd

m I(m) = 369(0) C(m) —TT?G&

1 0.425 0.633 0.269

2 0.654 0.623 9.407

3 0.819 0.613 0.502

4 0.903 0.603 0.545

5 0.953 0.593 0.565

6 0.987 0.583 0.575

7 1.01 0.573 0.579

8 1.03 0.563 0.580

9 1.05 0.553 0.581

10 1.07 0.543 0.581



- 153 -

4.5 Summary

Using a specialiy developed finite element pro-
cedure which uses: (a) novel kinematic modelling of un-
conventional boundary conditions; (b) specially formulated
power-type singular elements; (c) self-adapting explicit
time marching; and (d) a matching technique for the angu-
lar variation ofithe deviatoric stresses, we have deter-
mined the creep stress intensity factors,F; at both the
apexes of grain boundary hard particles and at the triple
grain junctions. The values of K are obtained using this
finite element procedure for creep exponents, m, of 3 and
5. These results are used, together with a condition of
overall equilibrium based on the dominant singular stress
distributions of Chapter 3, to develop formulae to esti-
mate the creep stress infénsity factors for other values

of m. Results for m from 1 to 10 are presented.
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CHAPTER FIVE
CONCLUDING REMARKS

The dominant singular stress distributions in
power-law creep at both the apexes of grain boundary hard
particles and the triple grain junctions, as are solved
in Chapter 3 by extending Hutchinson's (1968) approach,
show that the sfrain rates (and hence strains) are more
localized and the stresses are more diffused than their
corresponding counterparts in linear creep, as are solved
in Chapter 1 by William's (1952, 1957) method. The angu-
lar variations of the stresses agree with and explain some
impoitant experimental observations in the creep fracture

of engineering alloys.

The generalized creep stress intensity factors for
m=3 and 5 -- as determined by our specially developed
finite element procedure which incorporates specially form-
ulated power-type singularity elements, kinematic modelling
of unconventional boundary conditions, matching of
angular variation of deviatoric stresses to bypass the
effect of incompressibility, and self-adaptive explicit
time integration wifh Vafiable weights -- enables formulae
to be generated to estimate the generalized creep stress
intensity factors for other values of m without any

further finite element computation.
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The numerical and computational techniques
developed in this thesisare readily applicable to other
researches of nonlinear fracture mechanics. Researches
currently in progress utilizing these techniques include
the study of stress redistribution at the tip of a
stationary creep crack under reversal of loading, and
the micromechanical modelling of the propagation of a
creep ciack under monotonic loading. The special power-
type singular element has also been used to analyze the
stress distribution of cracks in bimaterial, the results

of which will be reported in a separate communication.

The results of Chapter 3 are based on the deforma-
tion theory, but the finite element results of Chapter 4
" are based on the flow theory. The fact tlat these two
zets of results agree with each other serves as a

numerical confirmation to Ilyushin's (1946) theory.

The detailed quantitative description of the
dominant singular stresses at the apexes of grain boundary
hard particles and at triple grain junctions enables one
to estimate the rate of cavity nucleation in a creeping
alloy with the tﬁeory developed by Argon, Chen and Lau
(1980, 1981). |
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APPENDIX B
THE POWER-TYPE SINGULARITY ELEMENT.

The aim of this appendix is to develop a two dimensional

" element that can accurately represent a r(q']) singularity in strain;
has all the usual necessary constant state representations and is com-
patible with the 8-node isoparametric element. For this purpose, we
redeveloped Tracey and Cook's(1977) element which does not fulfill the
second and third requirements mentioned above. " Our new element has
five nodes in the natural space (&,n) but two adjacent nodes are col-
lapsed into one node in the physical space (x,y). (See Figs. 4.1b and
4.1a respectively). Hence, with the node numbers as defined in

Figs. 4.1a and 4.1b, we will refer to this special element as a four
node element. The mapping function that maps an element from the

physical (x,y) space into a unit square in the natural space (g,n) is

X _-:-—_ZH; Xi (A2.1)
where X ={X, Y}
Hy= 5 (1-21)(1=) -
H, = %(—Hzrl)rl |
Hy= 1 - 5. - o (A2.2)
Hy= 4‘%0{“’(2)

Using a cylindrical coordinate system (r,8) with its origin at the col-
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lapsed node in the Physical space (Fig 4.1a), one can derive from

EQs. A2.1-A2. 2, after some simple algebra, that
§c><;r (A2.3)
If we then interpolate the d1splacements, UT- {h,v}, in the
Physical element in such a way that
[/( <><§ and 5‘} (A2.4)
then
U o< snd l"‘q
Hence, the gradient of | has a constant term and is Proportional to
r8-1
He use the displacement interpolation of
u = E Ni U; (A2.5)
where gq
N("" | +a ("‘Zf()(l“'Z)
a 29
Nz~ji~(_[+2q)rt
[+d (A2.6)
N = [ -3 to3
37 [+a
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« is a constant and q < 1.

With this interpolation, not only the strains have a
r(q']) singularity as well as the constant strain term, but the dis-
placements at the element side 1-4-2 (Fig 4.1a) are also compatible

with displacements of 8-node isoparametric elements.

This special element was coded into a version of the Adina
(Bathe 1976) program. For the meshes used in our computations
(Figs. 4.5 and 4.27), o was inputed as 99. For other computations
where the singular element covers a proportionally larger area of the
domain, a lower value should be inputed for o to emphasize the
relative increase in importance of the constant strain term compared

to the r91 strain term at finite r.

Studying in detai1'the functional forms of the stiffness
matrix K (Eq. 4.4) and the creep force A?EF (Eq. 4.5) by following
step-by-step the usual finite element procedures, (Bathe 1981), one
can find that using Eq. A2.8 as interpolation function will necessitate
one to integrate terms of special forms: £29-1 () and &%(n); and
of regular polynomial form, £h(n) over & and n, where f(n), g(n)
and h{n) are polynomials of n. For the results reported in Chapter 4
the regular polynomial term, £h(n), as well as the n portion, [f(n) ‘
and g(n)] of the special terms have been integrated with 2-point Gauss-

29-1 and

Legendre quadrature. The special terms of functional forms &
gq are integrated by the following one point numerical integration

rule at the integration station E; and with a weight of 1,
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fsre-s L,

|
(=17
[+t (A2.8)

This numerical integration is equivalent to exact integra-

where

i

tion since
i+ |
j 3 clg = T3t (A2.9)
(4]

During part of the investigation, we have studied the
effect of using 1-point and 2-point Gauss-Legendre integration to
integrate these special functional terms. Our results indicate that
using the special one point integration rule (A2.7, A2.8), the com-
putations consistently produée more accurate results of stresses and
strain distributions in our bench-mark elastic-power-law creep

~analyses.



