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ABSTRACT

High-performance computing (HPC) is essential for scientific research, enabling complex sim-
ulations and analyses across various fields. However, the specialized knowledge required to utilize
HPC effectively can be a barrier for many scientists. This work introduces a hardware-agnostic,
large-scale tiled linear algebra framework in Julia designed to enhance accessibility and usabil-
ity without compromising performance. By providing a flexible abstraction layer, the framework
simplifies the development and testing of new algorithms across diverse computing architectures.
Julia language’s multiple-dispatch and type inference facilitate the development of type-agnostic,
hardware-agnostic, and multi-use frameworks by allowing composability. Utilizing a tiled approach,
the implemented framework improves data locality, parallelism, and scalability, making it well-suited
for modern heterogeneous environments. Its practical benefits are demonstrated through the imple-
mentation of tiled QR-based singular value decomposition (SVD), demonstrating how it streamlines
the development process and accelerates scientific discovery. The developed framework is used to
implement an in-GPU tiled SVD and an out-of-core GPU-accelerated SVD. Furthermore, its exten-
sibility is demonstrated by implementing a tiled QR algorithm. This work aims to democratize HPC
resources by bridging the gap between advanced computational capabilities and user accessibility,
empowering a broader range of scientists to fully leverage modern computing technologies.
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Introduction

HPC accesibility

Over the last decade, the amount of available data has grown exponentially[2], resulting in today’s

applications processing terabyte-sized datasets[3–5]. As a result of the increased data availability,

computer science has embedded itself in every scientific field, and simulations are becoming a

requirement for almost any theoretical or experimental study. The field of High-Performance Com-

puting (HPC) has developed in kind, but such advanced computational tools have not necessarily

become easier to use. This raises the question: ”Should every scientist become an HPC specialist

to keep up with the demands of modern science?"

Figure 1: The goal of the current work in the scope of high-performance computing. HPC ranges
from more accessible user-level applications to high-level software and low-level software, to the
most specialized hardware programming. Today linear algebra underlying many more complex
computational methods such as machine learning and computational fluid dynamics is typically
situated between low-level and high-level software. The goal of this work is to bring linear algebra
to a more accessible application level.
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This work proposes an alternative and introduces a hardware-agnostic, scale-agnostic, and

type-agnostic tiled linear algebra framework in Julia designed to enhance accessibility and us-

ability without compromising performance. Currently, linear algebra and advanced computational

methods find them approximately between the high-level and low-level software. The developed

abstraction would bring the dense linear algebra field towards the user-application level as shown

in Figure 1, increasing its accessibility to the scientific community.

Generic frameworks

As we enter the post-Moore era, and hardware approaches the bounds of clock speed, we can no

longer expect automatic performance gains over time. To keep up with increasing computational

demands, alternative avenues and new technologies need to be explored. However, these devel-

opments in hardware seldom provide free performance gains and require re-design at every step.

[6]

The popular linear algebra libraries are a prime example of an application that has constantly

evolved to run on the newest hardware architecture since the launch of the first supercomput-

ers 60 years ago[7, 8]. In the 1960s, the emergence of vector operations resulted in the vector-

optimized LINPACK library[9]. Next, the development of the cache-optimized and tiled LAPACK

library followed[10]. In the nineties, the growth of multicore architectures gave rise to the ScaLA-

PACK library[11]. The PLASMA/MAGMA libraries were developed subsequently for GPU and hy-

brid architecture[12]. Finally, in recent decades SLATE has been developed as the successor to

ScaLAPACK to include more memory flexibility and heterogeneous architecture support[13]. In

the meantime, the original LINAPACK libraries have also been subject to revision for GPU- and

multicore architecture. [14]
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One of the lead authors of the linear algebra libraries libraries has recently stated that:

"[With every new hardware] we scramble for the next three or four years to figure out how

to use it effectively, [which is] an incredibly intensive process of redesigning algorithms"
— Jack Dongarra, 2024[15]

The secondary goal of the tiled hardware-agnostic, scale-agnostic, and type-agnostic tiled lin-

ear algebra framework proposed in this work is genericness. Julia language’s multiple-dispatch

and type inference facilitate such frameworks by allowing composability: the same function can

be re-used or re-defined for a different data type, making implementations future-proof as novel

components can be seamlessly integrated into an existing ecosystem.

Research questions

This thesis aims to answer the following research questions:

1. Tiled Abstraction: What type of computational abstraction can be designed for tiled linear

algebra that can serve multiple data sizes and hardware types?

2. Singular value decomposition: How can a GPU-accelerated out-of-core SVD algorithm be

implemented in this abstraction?

3. Performance: Does such an abstraction have an impact on performance?

9



Contributions of the work

The contributions of this work are as follows:

1. Tiled Abstraction: We implement a hardware-agnostic, large-scale tiled linear algebra frame-

work in Julia. This framework attempts to provide a higher-level abstraction available to non-

HPC specialists who desire to develop linear algebra using HPC computing resources.

2. Singular value decomposition: We implement a tiled singular value decomposition in

this framework, demonstrating how the same algorithm can be used for a GPU-only band-

diagonalization of matrices, or for out-of-core GPU/CPU-combined band-diagonalization.

Additionally, the extensibility of the framework for other algorithms is demonstrated by im-

plementing a tiled QR factorization.

3. Performance: The performance of the implemented tiled singular value is demonstrated:

it can calculate singular values for matrices larger than the GPU memory, at a lower matrix

size-dependence than CPU-based methods.

Thesis organization

The singular value decomposition and its computation, as well as the symbiosis of tiled linear al-

gebra fameworks with modern hardware architecture, are discussed in Chapter 1, the three-phase

QR-based tiled single value decomposition algorithm and its implementation are discussed in Chap-

ter 2, and its performance benchmarking in Chapter 3. Conclusions and avenues for further work

are discussed in Chapter 4.
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Chapter 1

The SVD and its computation on modern

computing architecture

1.1 The singular value decomposition and its numerical com-

putation

As the size of databases continues growing, the singular value decomposition is an algorithm of

particular interest because it reveals the best low-rank approximation of datasets. It is widely used

in machine learning[16], image processing,[17–19], quantum information theory[20, 21], and in

any field that uses principal component analysis, matrix rank estimation, matrix inverse, or least

squares calculation.[21, 22] Figure 1.1 shows a schematic representation of its format.

Figure 1.1: Schematic representation of a singular value decomposition: the product of a unitary
matrix, a diagonal matrix, and the transpose of a unitary matrix.
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The reduced singular value decomposition (SVD) 𝑈Σ𝑉𝑇 of a general matrix 𝐴 ∈ C𝑚×𝑛 with

𝑟 = rank(𝐴), where 𝑈 ∈ C𝑚×𝑟 and 𝑉 ∈ C𝑛×𝑟 are unitary matrices and Σ ∈ C𝑟×𝑟 is a non-negative

diagonal matrix, can be understood as follows: [23, 24]

• The columns of 𝑈 and 𝑉 are the unitary bases for the column and row space of 𝐴, respec-

tively. We call them the left and right singular vectors.

• The column-vectors of 𝑈 and 𝑉 are the eigenvectors of the 𝐴𝐴𝑇 and 𝐴𝑇 𝐴 matrices, respec-

tively. Σ2 contains their eigenvalues.

• The SVD decomposes the linear mapping 𝐴 : C𝑚 → C𝑛 into a rotation, an extension and

a rotation. In other words, it maps the m-dimensional unit hypersphere to an n-dimensional

hyperellipse.

The full SVD 𝐴 = 𝑈′Σ′𝑉 ′𝑇 , where 𝑈′ ∈ C𝑚×𝑚, 𝑉 ′ ∈ C𝑚×𝑛, and Σ′ ∈ C𝑚×𝑛 can be obtained

by completing the compact SVD to a full basis and completing the Σ matrix with zeros. In the

remainder of this work, we will assume full-rank input matrices and will use the term singular value

decomposition to refer to the compact singular value decomposition.

For the numerical calculation of the dense singular value decomposition three groups of algo-

rithms can be considered[25, 26]:

• Jacobi methods: The Jacobi-methods[27] consist of the application of subsequent appro-

priate Givens rotations to zero elements.

• Divide-and-conquer methods: Divide-and-conquer methods[28] are an extension of Jacobi-

methods for multicore architecture: the original matrix is split into sub-blocks that are each

diagonalized with the Jacobi-methods, and then joined back together.

• QR-based methods: These methods[29–31] consist of the application of unitary Q matrices

to the whole matrix. The Q-factors are obtained by the QR-factorization of a small subpart of

the matrix in order to zero elements out.

12



While the QR method is plagued by serial bottlenecks, it is in practice still generally considered

faster than the Jacobi methods, as Jacobi-methods require iterating until convergence is reached,

while the number of iterations for bidiagonalization using the QR algorithm is deterministic. All

three strategies have been optimized for modern GPU and multicore architectures, but the current

state-of-the-art methods in terms of performance are tiled QR-based algorithms [29–31]. Extensive

work has been done into their optimization, in particular for scheduling overhead [32, 33]. Novel

avenues for optimizing SVD performance include nested task parallelism[34].

A series of different approaches exist for the computation of the highest or lowest singular val-

ues; randomized methods [4, 35–39], Krylov subspace methods[40, 41], Tucker decomposition[42],

power methods[30], QR-based Dynamically Weighted Halley methods,[43], and polar decomposi-

tion[44, 45]. For the estimation of the number of singular values in a specific range, specialized

spectrum methods are available[46]. Additionally, specific methods exist for particular matrix types,

such as the Multiple Relatively Robust Representations for a symmetric tridiagonal matrix [47], the

K-means clustering for sparse data [48]. For higher-order tensors, many of the same methods have

been extended. [49, 50]

1.2 Tiled linear algebra algorithms for modern hardware

To understand the value of tiled algorithms, let us consider the design of modern architectures used

to accelerate computing, GPUs, and their differences with CPUs. Where CPUs consist of highly

optimized cores that can process a large amount of complicated operations, but only a limited

amount simultaneously, GPUs have a large amount of small cores, called threads, which han-

dle simple operations best, as represented in Figure 1.2(a). They are grouped in blocks, inside

which memory is limited and communication between the different threads in a block goes relatively

fast(approximately 30 cycles[51, 52]) through their shared memory shown in Figure 1.2(b). How-

ever, communication between the different blocks runs through the lower-bandwitch GPU global

memory (access speed approximately 500 cycles per [51, 52]). In other words: there is now an
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abundant number of computes that can happen, but communications come at a high cost. Thus,

the development of linear algebra routines that prioritize the localization of data at the cost of addi-

tional flops is a natural result. [29, 53, 54]

(a) GPU architecture schematic from [55]

(b) GPU architecture schematic from [56]

Figure 1.2: GPU architecture schematic, demonstrating the many small versus few large computing
cores on the GPU and CPU, respectively in sub-figure (a). The memory hierarchy is illustrated in
sub-figure (b): several threads are organized into a thread-block with a shared high-bandwidth
memory and have access to the global GPU lower-bandwidth memory. Finally, the communication
between the CPU and GPU has the lowest bandwidth.
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Abstracting the tiled algorithms into an accessible layer with widely-utilizable building blocks

has been the topic of extensive recent research. Such frameworks has been developed for out-

of-core tiled algorithms for neural network acceleration [57], and for linear algebra in C/C++ [58].

Furthermore, other libraries have come out providing other levels of abstractions, such as a generic

set of BLAS kernels for the development of custom-kernel developed for user-accessibility in C[59,

60], frameworks for development of kernels for heterogenous architecture [61], and frameworks for

vendor-agnostic dense linear algebra[62].

The proposed framework in this work does not have the ambition to replace the existing libraries,

rather its purpose is to demonstrate the capabilities of the Julia Language in implementing such gen-

eral lightweight frameworks with maximal composability and minimal development requirements.

Cache and memory access effects

Considering the lower-memory bandwidth between the different thread-blocks on a GPU , making

optimal use of this memory is crucial. On the GPU there are two main memory access effects to

consider: memory coalescing and bank conflicts[54, 63].

• Memory coalescing for accessing global memory by threads in a warp. Global memory is

accessed in data chunks of at least 32 bytes. When multiple threads in a warp access non-

consecutive data pieces smaller than 32 bytes, each data access will necessarily read 32

bytes. In contrast, when aligned data is read by threads in a warp, a single 32-byte memory

chunk read can be coalesced to multiple threads in the warp. For memory coalescing to be

possible, the data types need to be of size 1,2,4,8, or 16 bytes, and the first address needs to

be a multiple of the type size. Misalignment typically occurs when accessing non-contiguous

data and can be prevented by memory padding.
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• Bank conflicts for accessing shared memory by threads in a warp. Shared memory is

divided into 32 memory banks, each of a set size (typically 4 or 8 bytes). Data is contiguously

distributed over the lanes, and each memory bank can only be accessed by a single thread

at a time. For optimal performance, all memory lanes should be used and the number of

bank conflicts (i.e. multiple threads accessing the same lane) minimized.

In a recent benchmark of the novel NVIDIA architecture[63], the authors describe how under-

standing the architecture behavior is a critical factor in optimizing performance: "Authors have

also shown that knowledge of instruction encoding and microarchitectural behavior is necessary to

achieve this full potential." In the framework we propose here, we attempt to make some of these

parameters and characteristics that optimize performance available on a higher-level, facilitating

performance fine-tuning without requiring low-level coding.

16



Chapter 2

Methods

2.1 The out-of-core three-phase tiled SVD

The out-of-core tiled QR-based singular value decomposition as described in [64] is implemented

in Julia. This framework consists of a three-step-singular value algorithm that is visualized in Figure

2.1. The QR-based algorithm consists of applying appropriate unitary transformations so that the

elements outside the bidiagonal become zero, as unitary transformations preserve the singular

values. The algorithm is particularly appropriate for GPU and multicore architectures as it localizes

calculations: the number of operations increases locally, but communication is limited to smaller

data units.

1. STEP 1 BAND-DIAGONALIZATION: The matrix is divided into 𝑛×𝑛 smaller blocks. For each

𝑛, a QR sweep and an LQ sweep are applied. The QR sweep consists of the calculation of

the QR-factorization of the first block of the first row to zero out the lower triangular part of

the block and applying the unitary Q matrix to the remainder of the row to retain a matrix

with the same singular values. Next, the QR factorization of the resulting upper triangular

matrix combined with the first block of the second row is calculated. This factorization zeros

out the full lower block and the resulting unitary Q matrix is applied to the remainder of the

first and second row. The same process is repeated for the third row, and this concludes

17



Figure 2.1: Schematic overview of the three-step QR-based singular value decomposition algorithm
as described in [64]. The top two rows show step one, the band-diagonalization. In the first row, the
QR sweep is shown. The left figure on the first row represents the calculation of the QR-factorization
of block 1,1; and the application of the resulting Q-matrix on the blocks to the right of it. Block 1,1
becomes upper-triangular. The second figure on the first row represents the calculation of the
QR-factorization of the upper triangular first block and the first block of the second row; and the
application of the resulting Q-matrix on the blocks to the right of it so that the block becomes zero.
The third figure on the first row represents the same procedure as for the second figure for the third
row. The first and second images of the second row represent the LQ sweep: the calculation of LQ-
factorizations and the application of their Q-factors to the blocks below to obtain lower triangular and
zero matrices on the first row while preserving the singular values. The third and fourth images of
the second row represent the QR sweep and LQ sweep for the second and third iterations. Finally,
the third row shows the second and third steps, the bulgechasing and diagonalization.

the first QR sweep. The LQ sweep is the transpose of the QR sweep: transformations are

calculated to obtain a lower triangular block and to zero out blocks and the transformations

are applied on the columns instead of the rows. This process is repeated for every 𝑛 and

results in a banded diagonal matrix. This step contains a large amount of natural parallelism,

in particular when applying the Q-factors to the rows and columns each block is independent,

making it well-suited for GPU computations.

2. STEP 2 BI-DIAGONALIZATION bulgechasing: Similarly to the bidiagonalization, for every

line a QR factorization is calculated to zero out elements and the resulting transformations

are applied to the remainder of the matrix. This application then results in more non-zero
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elements, which are then also annihilated in subsequent QR sweeps. This step is visualized

in Figure 2.2. In the implemented algorithm, rather than apply a full band-reduction at every

line, subsequent half-band reductions are applied, as this reduces the size of the matrices for

which QR factorizations and matrix multiplies need to be calculated. Progressive half-band

reductions are then executed. The smaller matrix sizes and large amount of communication

needed combined with the limited amount of natural parallelism in this step, make it better

suited for CPU-calculation.

Figure 2.2: Schematic overview of the bulgechasing step of the three-step SVD algorithm, figure
from [28]. The leftmost figure shows the QR-annihilation step of the lower diagonal elements,
resulting in additional non-zero elements in the remainder of the row after the application of the
Q-factor. The second figure then shows the annihilation of these new non-zero values, by an LQ
step and the resultant additional non-zero elements at the remainder of the column. The additional
elements are ’chased down’ by subsequent QR and LQ sweeps until all have been zeroed out.

3. STEP 3 DIAGONALIZATION: An iterative procedure, for which the standard LAPACK divide-

and-conquer bdsdc function is used. This procedure is typically faster on CPUs.

The algorithm is typically implemented as GPU-accelerated, where the first step is executed

on the GPU, and steps two and three are calculated on the CPU. Executing the full first phase on

the GPU without intermediate communication with the CPU is only possible when the matrix fits on

GPU memory with sufficient memory for calculation left. In this case, the matrix is communicated

once to the GPU, retained and calculated there, and sent back to the CPU. For matrices larger

than the GPU memory, the same algorithm is used but is implemented as out-of-core, meaning

that the CPU is used as ’storage space’ while the GPU is used as a computing unit. The out-of-

core algorithm includes more communication between the CPU and GPU, making it slower than a

pure GPU algorithm, but can process larger sizes. In addition, it is typically faster than CPU-only
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algorithms when those are compute-bound (versus memory-bound). As such, it combines the best

of both strategies.

The optimal pattern of memory movement for out-of-core large SVD has been studied and de-

scribed in [31]. We adopt a simplified version of methodology as follows: the first row and first

column of QR and LQ sweeps, respectively, are held in GPU memory during a sweep, while the

other rows are communicated in memory between the application of the Q-factor and communi-

cated out after completion of this step. The work in [31] describes this framework for even larger

matrices and communicates the rows and columns partially while the calculation is ongoing. We

also overlap the communication and the computation step using multiple threads. This methodol-

ogy is followed until the matrix formed by all the blocks right and below the diagonal sweep tile fits

into GPU memory, at which point the tiled algorithm is applied as GPU-only. Figure 2.3 shows this

schematically: the dark blue row is computed, while the light blue rows move in and out of the GPU

memory from the CPU memory. The top row is retained in memory. Once the algorithm reaches a

diagonal tile, the matrix below and right from that tile is retained in the GPU.

Figure 2.3: Schematic overview of the communication pattern implemented for the out-of-core SVD,
based on [31]. The top row is retained in the GPU memory, while the remaining rows circulate in
and out from the CPU memory. The middle row of the retained rows is used for computation, while
the other two are scheduled for communication.
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2.2 A general framework for tiled SVD

1 function Blockbidiag!(A::GeneralTiledMatrix; kend=A.no_tiles)
2 verify_kerneldims(A)
3

4 for k in 1:kend
5

6 QRandmulQt1!(A,k, alg="SVD")
7 for row in k+1:A.no_tiles
8 QRandmulQt2!(A,row,k, alg="SVD")
9 end

10

11 (k==A.no_tiles) && break
12

13 LQandmulQt1!(A,k, alg="SVD")
14 for col in k+2:A.no_tiles
15 LQandmulQt2!(A,k,col, alg="SVD")
16 end
17 end
18 finish_algo!(A, kend, alg="SVD")
19 end

Source Code 2.1: The Singular Value Decomposition Algorithm generic code that is applicable for
both GPU-only and out-of-core GPU-accelerated execution, for several data types and hardware
types. Lines 6-9 execute a QR sweep, while lines 13-16 execute an LQ sweep of input matrix A.
The parameter kend at which sweep the algorithm stops is optional. The finish_algo! function is
included for finishing up communication in the out-of-core version.

While the out-of-core tiled singular value decomposition and the in-core singular value decom-

position use the same algorithm, with as the only difference the communication step, many pro-

gramming languages require reprogramming of the whole algorithm for each hardware type (CPU,

GPU), each hardware vendor (Nvidia, AMD) and for each data type. Julia language’s multiple-

dispatch and type inference enables LLVM to generate optimized machine code for performance

over various argument types.[65, 66] The multiple-dispatch allows the same function to be rede-

fined for various input types, and enables composability of the language, which renders the im-

plementations future-proof as new components in the systems can be seamlessly included in an

existing ecosystem. Composability also enables writing generic frameworks for tiled algorithms,
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mapping one-to-one with pseudo-algorithms, and functioning over several types of hardware. This

is demonstrated for the SVD algorithm in Code 2.1.

The generic function Blockbidiag! can then be used by GeneralTiledMatrix, where the QRand-

mult! algorithms can be redesigned for their specific type while underlying functions could be

generic again. We design to GeneralTiledMatrix types: a TiledMatrix type designed for the GPU-

only tiled band-diagonalization containing a reference to the tiled views of the GPU-located matrix,

and a LargeTiledMatrix type for the out-of-core band-diagonalization containing 4 rows used to cir-

culate the data in and out of the GPU memory. The code for their definition is included in Appendix

A.3.

1 function QRandmulQt1!(A::TiledMatrix, k::Int; alg="QR")
2 QR1!(A,k)
3 Qtapply1_par!(A, k)
4 alg=="SVD" && triu!(A,k,k)
5 end
6

7 function QRandmulQt1!(A::LargeTiledMatrix, k::Int,
8 prevR::Bool,currentR::Bool, zerofactor::Bool)
9

10 if (k>1 && currentR) #import first row back into memory
11 getandset_first!(A, k-1,k, prevR, currentR )
12 elseif !currentR
13 getandset_first!(A, k,k, prevR, currentR )
14 end
15

16 @sync begin
17 Threads.@spawn begin
18 CUDA.@sync begin
19 if (k+Int(!currentR)<A.no_tiles)
20 recycle_tilerow(A, k, k+1+Int(!currentR), #next row in
21 currentR, false, false)
22 end
23 end
24 end
25

26 Threads.@spawn begin
27 CUDA.@sync begin #calculation on current row
28 QR1!(A,k)
29 Qtapply1_par!(A, k)
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30 zerofactor && triu!(A,1)
31 end
32 end
33 end
34 finish_recycle!(A)
35 CUDA.synchronize()
36 end

Source Code 2.2: Definition of specialized QR multiplication functions for LargeTiledMatrix and
TiledMatrix data types. The QRandmult! algorithm for the TiledMatrix type consists of the QR
factorization of the first row (line 2) and the parallel multiplication of the tiles to the right of it by the
Q-factor (line 4), followed by rendering the first block zero if the algorithm is for the SVD, rather
than QR factorization (line 5). The function is identical for the LargeTiledMatrix, but includes the
simultaneous launch of threads that execute the data communication to obtain the next row from
the CPU memory (lines 17-24), as well as the importing of the first row into memory before starting
the calculation (lines 10-14). The QR1! function of the TiledMatrix then operates on a tile, while
the QR1! function of the LargeTiledMatrix operates on a row in the memory.

The QRandmult! algorithm for the TiledMatrix type displayed in Code 2.2 consists of the QR

factorization of the first row and the parallel multiplication of the tiles to the right of it by the Q-factor.

The function is identical for the LargeTiledMatrix, but includes the simultaneous launch of threads

that execute the data communication to obtain the next row from the CPU memory. The QR1!

function of the TiledMatrix then operates on a tile, while the QR1! function of the LargeTiledMatrix

operates on a row in the memory.

2.3 The out-of-core tiled QR

To demonstrate the ease with which one tiled algorithm can be implemented based on a similar

one, the tiled QR algorithm is implemented in Code 2.3. It consists of the consecutive application

of QR sweeps in the same manner as in the SVD algorithm, without the LQ sweeps. In this thesis,

the viability of a general tiled framework in Julia is demonstrated by applying it to the singular value

decomposition algorithm and the QR algorithm. The same framework could in the future be readily

extended to other tiled algorithms, in particular the tiled LU decomposition[67].
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1 function tiled_QR!(A::GeneralTiledMatrix; kend=A.no_tiles)
2 verify_kerneldims(A)
3 for k in 1:kend
4 QRandmulQt1!(A,k)
5 for row in k+1:A.no_tiles
6 QRandmulQt2!(A,row,k)
7 end
8 end
9 finish_algo!(A, kend)

10 end

Source Code 2.3: The QR Decomposition Algorithm generic code that is applicable for both GPU-
only and out-of-core GPU-accelerated execution, for several data types and hardware types. Lines
6-9 execute a QR sweep. The parameter kend at which sweep the algorithm stops is optional. The
finish_algo! function is included for finishing up communication in the out-of-core version.

2.4 Performant generic QR kernels

To make the algorithm hardware-agnostic across GPU vendors, custom QR kernels for the GPU are

written using the KernelAbstractions.jl package [68]. Recent advances in vendor-agnostic frame-

works make such a cross-platform implementation possible[69–72]. The kernels are written as

two-dimensional kernels that operate on data of size (32,32) with a block of threads (32, x) where

x is a parameter that can be defined for the application of the Q-factor and is set to 32. One

such kernel is included in Appendix A.1 as an example. While extensive work has been done into

the optimization of specific kernels [73], the goal of this work is to implement rudimentary kernels

based on simple principles and demonstrate this results in adequate performance such that the

end-user-based implementations are not required to be hyper-optimized for adequate performance

and accessibility is maintained.
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Julia Language’s functionality of transposing and obtaining references to parts of matrices,

called views, allow the LQ kernels to be expressed as transposes of the QR kernels instead of fully

rewritten, as demonstrated in Code 2.4.

1 applyLQ1!(A,T;ndrange)=applyQR1!(A',T,ndrange=ndrange)
2 applyLQ2!(A,B, T;ndrange)=applyQR2!(A',B', T,ndrange=ndrange)
3 applyQt1L!(A,B,T;ndrange)=applyQt1!(A',B',T,ndrange=ndrange)
4 applyQt2L!(A,B,C,T;ndrange)=applyQt2!(A',B',C', T,ndrange=ndrange)

Source Code 2.4: LQ kernels expressed as transposes of QR kernels. Kernel applyQR1! takes as
input a matrix for which to calculate a QR factorization, a memory space T for the scaling factors
for the householder reflectors, and the desired total number of threads across blocks ndrange.
Kernel applyQR2! takes as input an upper triangular matrix, and a matrix, for whose combination to
calculate a QR factorization, a memory space T for the scaling factors for the householder reflectors,
and the desired total number of threads across blocks ndrange. Kernel applyQt1! takes as input a
matrix that contains QR factorization, a memory space T with its scaling factors for the householder
reflectors, the matrix on which to apply the Q-factor, and the desired total number of threads across
blocks ndrange. Kernel applyQt2! takes as input the lower matrix resulting from the application
of applyQR2!, a memory space T with its scaling factors for the householder reflectors, upper and
lower matrix on which to apply the Q-factor and the desired total number of threads across blocks
ndrange.

2.5 Bulgechasing and diagonalization

The bulgechasing is implemented by making use of the LAPACK-based function geqrt! imple-

mented in Julia, without any parallelism across the different factorizations, but with parallelism in

the QR function itself. The views functionality in Julia allows pointer-type access to any part of a

matrix based on its indexes, facilitating the development of the bulgechasing algorithm. Part of the

bulgechasing code demonstrating this functionality is included in Appendix A.2. The diagonaliza-

tion uses the LAPACK divide-and-conquer bdsdc function.
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2.6 Testing and benchmarking

The correctness of the kernels and code is tested and verified using unit tests and benchmarked

against QR-based SVD algorithms CUSOLVER (GPU-only) and gesvd! in gesvd in LAPACK (CPU-

only). Two hardware types are tested: a consumer laptop and a supercomputing cluster. Their

technical specifications are shown in Table 2.1.

Type Supercomputer Consumer laptop
Vendor Intel Intel
Family Xeon Gold AMD Ryzen 7 5800H
Model 6248 80
Cores per socket 16 8
RAM/core 9GB 8GB
Clock Speed 2.5GHz 3.20 GHz
L3 Cache size 55MiB 16MiB
GPU type NVIDIA v100 32GB NVIDIA GeForce RTX 3050

Table 2.1: Hardware specifications for the computing resources used to obtain benchmarking. All
benchmarks were run with a limit of 4 threads on both hardware types.

While the kernels are fully vendor-agnostic, the overlapping of the communication and compu-

tation is Nvidia-only for now. However, extension to other hardware is intuitive and is subject to

further work.
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Chapter 3

Results and discussion

3.1 Performance benchmarking

To examine the performance of the implemented singular value decomposition algorithm, the com-

putation time for each of the three phases, GPU-only KernelAbstractions-native band-diagonalization,

bulgechasing, and diagonalization is benchmarked in Figure 3.1. Additionally, the performance of

out-of-core only KernelAbstractions-native band-diagonalization is included, this refers to the tiled

singular value decomposition where rows and columns are migrated to and from the CPU up and

until the last QR sweep. Based on the literature[74], the first stage is the most time-consuming due

to the amount of communication required.

The graph in Figure 3.1 shows the execution time in function of the matrix size. We notice that

indeed the diagonalization step computation time is negligible compared to the other two stages.

However, the bulgechasing step is the most time-consuming. As the band-diagonalization step has

optimized specific kernels, implements multi-threading to overlap communication and computation,

and is GPU-computed, it is expected to be perform better than the non-optimized rudimentary bul-

gechasing algorithm. Future work should include automatic parallel scheduling for the bulgechasing

step to make this step competitive in the algorithm, as suggested by [74]. For the remainder of this

chapter, we will examine only the band-diagonalization algorithm to obtain sensitive benchmark-
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(a) Execution Time on Intel AMD Ryzen consumer laptop with RTX 3050 GPU(see Table 2.1).

(b) Execution Time on Intel Xeon Gold supercomputer with V100 GPU(see Table 2.1).

Figure 3.1: Performance breakdown of execution time into band-diagonalization using multi-
threaded Julia KernelAbstractions-based SVD on the GPU (blue), bulgechasing phase on the CPU
based on LAPACK QR functions (orange), and LAPACK diagonalization (green) in function of the
size 𝑛 for input matrices of size 𝑛 × 𝑛. The total SVD time is the sum of all three methods. The
comparatively largest computation time can be attributed to the bulgechasing. The KA-native band-
diagonalization is shown as GPU-only without any CPU-GPU communication ("in-GPU") and as an
out-of-core only version where the communication phase extends until the last tile, without holding
the last part of the matrix in the GPU when possible("pure-OOC"). The difference between both is
a non-matrix size dependent factor.
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ing results focusing on this step. Comparing the in-core KA-based band-diagonalization and the

out-of-core exclusive version, we find a non-matrix size dependent constant factor difference, in-

dicating that as the matrix sizes go further up, the cost of communication relative to computation

is negligible. This suggests that in optimizing for large matrix sizes in out-of-core tiled algorithms,

communication cost does not necessarily need to be the focus in every case.

Figure 3.2 shows the execution time in function of the matrix sizes of the out-of-core GPU-

accelerated band-diagonalization algorithm, the GPU CUSOLVER SVD, and the LAPACK CPU SVD.

The figure shows a significant size-dependent speed-up of the out-of-core algorithm versus the

CPU-only algorithm. For matrix sizes that are smaller than the GPU memory, CUSOLVER still pro-

vides a faster algorithm. This is hardly surprising, as NVIDIA optimizes some of their most common

operations on a hardware level[63], a speed that cannot simply be matched by compiled kernels.

However, the implemented band-diagonalization algorithm shows a size-dependence that is differ-

ent from the CPU-based calculation, indicating that as the matrix size increases, the advantage of

using GPU-accelerating increases, and can process matrices larger than the GPU memory, com-

bining the best of both strategies. While performance is not the end goal of the tiled framework, the

current benchmarking indicates such abstract frameworks do not stand in the way of performance,

thanks to Julia Language’s LLM-based compiler[65].

To demonstrate the portability and genericness of the framework, a tiled QR factorization was

implemented based on the tiled bi-diagonalization: it contains only the QR sweeps of the algorithm.

Figure 3.3 confirms that indeed the tiled QR executes approximately half of the work of the tiled

band-diagonalization, demonstrating how portable the generic framework is.
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(a) Execution Time on Intel AMD Ryzen consumer laptop with RTX 3050 GPU(see Table 2.1). The GPU
reaches its memory limit beyond matrix size 8k×8k.

(b) Execution Time on Intel Xeon Gold supercomputer with V100 GPU(see Table 2.1). The GPU reaches its
memory limit beyond matrix size 16k×16k.

Figure 3.2: Performance comparison of the execution time of LAPACK (orange) and CUSOLVER
(blue) SVD functions with the multi-threaded Julia KernelAbstractions-based (KA-based) band-
diagonalization with thread-sizes (32,8) in function of the size 𝑛 for input matrices of size 𝑛×𝑛. The
CUSOLVER-based SVD includes the time it takes to copy the matrix into GPU memory and back. It
is limited to matrices that fit in the GPU memory. The KernelAbstractions-based out-of-core SVD
can calculate the SVD of matrices larger than the GPU can hold, at a lower size-dependence than
the LAPACK function.
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(a) Execution Time on Intel AMD Ryzen consumer laptop with RTX 3050 GPU(see Table 2.1).

(b) Execution Time on Intel Xeon Gold supercomputer with V100 GPU(see Table 2.1).

Figure 3.3: Performance comparison of the execution time of KernelAbstractions-based Julia tiled
band-diagonalization (orange) and tiled QR (blue) in function of the size 𝑛 for input matrices of size
𝑛× 𝑛. The tiled algorithms show the same size dependence, with only a non-size dependent factor
difference.
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3.2 Data type-agnostic performance

Figure 3.4 demonstrates the correctness and performance of the algorithm for several data types

through a single implementation, enabled by Julia language’s multiple-dispatch facilitated compos-

ability. The figure displays a non-matrix size dependent difference in performance between data

types, demonstrating how the single-API implementation still provides high performance.

Figure 3.4 does not contain a plot for the CUSOLVER performance of Float16 data types, as it

has not yet been included in Julia-wrappers for CUDA, highlighting the challenges that come with

type-specific implementations and the advantages of composability and generality of frameworks:

new data types can seamlessly integrate into an existing environment, without requiring additional

adaptations in many cases.

3.3 Optimization of kernel sizes

Figure 3.5 displays the performance of the KernelAbstractions-based in-GPU band-diagonalization

for different thread block sizes for which the algorithm is executed. This comparison was used to

optimize the individual QR kernels. The QR-kernels themselves are set as either symmetric 2D

thread-block-sizes (32,32) or (32,1) while the application of the Q-factors on other tiles is the func-

tion where the thread-block-size can be varied to optimize performance. Kernels with a smaller

second dimension have each thread operate on multiple elements, reducing some of the kernel

launch overhead. In the figures, we notice the optimization of thread-block-sizes makes no signifi-

cant difference as long as the kernel-block-size first dimension is larger. Subtle differences can be

observed for the larger thread-block-sizes (32,32) and (32,16) that perform worse than the optimal

thread-block-size of (32,4).
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(a) Execution Time of tiled band=-
diagonalization/SVD algorithm on Intel AMD
Ryzen consumer laptop with RTX 3050 GPU(see
Table 2.1).

(b) Execution Time of tiled band-
diagonalization/SVD algorithm on Intel Xeon
Gold supercomputer with V100 GPU(see Table
2.1).

(c) Execution Time of tiled QR on Intel AMD Ryzen
consumer laptop with RTX 3050 GPU(see Table
2.1).

(d) Execution Time of tiled QR on Intel Xeon Gold
supercomputer with V100 GPU(see Table 2.1).

Figure 3.4: Performance comparison of the execution time of KernelAbstractions-based Julia tiled
band-diagonalization and CUSOLVER SVD for Float16, Float32, Float64, and Complex32 data types
in function of the size 𝑛 for input matrices of size 𝑛 × 𝑛. No Float16 performance is included for
the CUSOLVER SVD since it has not yet been included in the julia-wrapper for CUSOLVER. [75] The
KA-based algorithm shows no significant matrix size-dependent performance decline between data
types.
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(a) Execution Time of tiled band-
diagonalization/SVD algorithm on Intel AMD
Ryzen consumer laptop with RTX 3050 GPU(see
Table 2.1).

(b) Execution Time of tiled band-
diagonalization/SVD algorithm on Intel Xeon
Gold supercomputer with V100 GPU(see Table
2.1).

(c) Execution Time of tiled QR on Intel AMD Ryzen
consumer laptop with RTX 3050 GPU(see Table
2.1).

(d) Execution Time of tiled QR on Intel Xeon Gold
supercomputer with V100 GPU(see Table 2.1).

Figure 3.5: Performance comparison of the execution time of KernelAbstractions-based Julia tiled
band-diagonalization and CUSOLVER SVD (first row), and for KernelAbstractions-based Julia tiled
QR and CUSOLVER QR (second row) for several different thread block sizes in function of the size
𝑛 for input matrices of size 𝑛 × 𝑛. Across all architectures and input data sizes, the difference in
performance between the different kernel block configurations of size (32, x) is minimal. Smaller
first dimensions of the thread sizes, blocks of (16,16), do cause a decline in performance.
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Chapter 4

Conclusions and perspectives

Tiled abstraction

A hardware-agnostic, type-agnostic, and size-agnostic tiled linear algebra framework in Julia was

developed to increase the accessibility of HPC resources. The flexible abstraction layer simplifies

the development and testing of new algorithms across diverse computing architectures and demon-

strates Julia language’s potential for becoming the cradle of similar abstractions that democratize

HPC resources in the future. The framework also provides an alternative to redeveloping software

for every architecture, by integrating into a composable ecosystem.Further work could continue

expanding upon the existing framework by including batched QR or SVD algorithms as in [76], by

including more general-purpose kernels for other dense linear algebra algorithms, or by including

a new algorithm such as the LU decomposition.

Singular value decomposition

This work demonstrated the viability of the tiled dense linear algebra framework by implement-

ing a tiled singular value decomposition that served for both GPU-only band-diagonalization of

matrices and for out-of-core GPU/CPU-combined band-diagonalization. This is based on custom-

implemented QR kernels that are platform-agnostic, and a LAPACK-based bulgechasing and diago-

nalization phase. Additionally, the extensibility of the framework was demonstrated by implementing
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a tiled QR factorization. The out-of-core band-diagonalization now provides a Julia-based imple-

mentation that can process matrices larger than the GPU memory faster than the CPU. Further

work could expand upon this and render the computation/communication-overlap vendor-agnostic

and demonstrate cross-platform performance for the tiled algorithms (versus for the kernels only in

this work), include automatic scheduling for optimizing the bulgechasing phase, and implement a

tiled memory layout to optimize the data access speed.

Performance

Through the performance benchmarking of the tiled band-diagonalization, it was demonstrated

that general abstraction frameworks do not hinder performance. However, the resulting flop count

of the singular value decomposition algorithm grows unavoidably with a factor 𝑛3, excluding the

communication cost between partitions of large matrices. Currently, algorithms are being devised

aiming to reduce memory movement and increase data locality, but no measure is available on

how much impact both factors respectively have on the final performance. While it is generally

believed communication between CPU and GPU is a bottleneck, during our benchmarking we

found the decrease in performance due to CPU/GPU communication a factor that is independent

of the matrix size; in other words, at large matrix sizes computation might still be the bottleneck.

Comprehensive theories of performance that include not only flop count but also data movement

could provide a more quantitative perspective on how to best optimize for performance at different

data sizes.
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Appendix A

Code fragments

A.1 QR kernel code example

1 @kernel function QR_unsafe_kernel2_2d!(input, input2, tau)
2 i, j = @index(Local, NTuple)
3 N = @uniform @groupsize()[1]
4

5 # +1 to avoid bank conflicts on shared memory
6 tile = @localmem eltype(input) (2N + 1, N)
7 cache = @localmem eltype(input) (2N + 1)
8 tau_iter = @localmem eltype(input) (1)
9 corrvalue = @localmem eltype(input) (1)

10

11 @inbounds tile[N+i, j] = input2[i, j]
12 @inbounds tile[i, j] = input[i, j]
13

14 @synchronize
15 for iter in 1:N
16 if (j==iter)
17 cache[i] = tile[i+N, iter]^2
18 end
19 @synchronize
20 if (i == 1) && (j==1)
21 tmp_sum = zero(eltype(input))
22 for l in 1:N
23 tmp_sum += cache[l]
24 end
25 tmp_sum2 = sqrt(tmp_sum + tile[iter, iter]^2)
26 newvalue = tile[iter, iter] + sign(tile[iter,iter]) *tmp_sum2
27 tmp_sum2 = sqrt(tmp_sum + newvalue^2)
28 tau_iter[1] = 2 * (newvalue / tmp_sum2)^2
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29 corrvalue[1] = newvalue
30 tau[iter] = tau_iter[1]
31 end
32 tileiNiter= tile[i+N, iter]
33 tileiterj=tile[iter, j]
34 if (j>=iter)
35 tmp_sum = zero(eltype(input))
36 for l = N+1:2N
37 tmp_sum += tile[l, iter] * tile[l, j]
38 end
39 end
40 @synchronize
41 taucorr=tau_iter[1] / corrvalue[1]
42 corrvalue1 = corrvalue[1]
43 if (j >= iter)
44 tmp_sum += corrvalue1 * tileiterj
45 if (i==iter)
46 tile[i, j] = tile[i,j] - tmp_sum * taucorr
47 end
48 if (j>iter)
49 tile[i+N, j] = tile[i+N, j] - tileiNiter *
50 tmp_sum *taucorr / corrvalue1
51 end
52 end
53 if (j==1)
54 tile[i+N, iter] = tileiNiter / corrvalue1
55 end
56 @synchronize
57 end
58

59 @inbounds input2[i, j] = tile[N+i, j]
60 @inbounds input[i, j] = tile[i, j]
61 @synchronize
62

63 end

Source Code A.1: A custom QR kernel written using KernelAbstractions.jl.
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A.2 Partial bulge-chasing code

1 function block_bidiagonalize!(A, n, bandwidth, target_bandwidth)
2 for j=1:target_bandwidth:n-target_bandwidth
3

4 QR_row!(A,j, min(j+bandwidth+target_bandwidth-1, n) ,
5 target_bandwidth)
6

7 for i=j:bandwidth:n
8 #index of end of block and its neighbor
9 lastindex=min(i+bandwidth+target_bandwidth-1, n)

10 s_capped= min(bandwidth+target_bandwidth-1,
11 max(n-i-bandwidth-target_bandwidth+1,0))
12 QR_col!(A,i+target_bandwidth,lastindex,s_capped)
13

14 i+target_bandwidth>(n-bandwidth) && break
15 QR_row!(A,i+target_bandwidth,lastindex+s_capped,bandwidth)
16 end
17 end
18 return A
19 end
20

21 function QR_col!(A, startindex, lastindex, indexgap)
22 qr!(view(A,startindex:lastindex, startindex:indexgap+lastindex))
23 view(A,startindex:lastindex, startindex:indexgap+lastindex).=
24 triu(view(A,startindex:lastindex, startindex:indexgap+lastindex))
25 return;
26 end

Source Code A.2: Partial code for the bulge-chasing portion of the algorithm, making use of
the standard lapack-refering qr! kernels in Julia and using views to avoid allocations. The
block_bidiagonalize! function executes one sweep that reduces the bandwith to a target-bandwith,
both are required to be powers of two.
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A.3 Partial GeneralTiledMatrix definition code

1 struct TiledMatrix
2 TileViews::Array{SubArray} #pointers to the tiles
3 Tau::Array{CuArray}
4 end
5

6 struct LargeTiledMatrix
7 A::AbstractArray #CPU-located source matrix
8 Rows::Array{TileRow}
9 end

10

11 struct TileRow
12 RowTile::AbstractArray #GPU-located row matrices
13 Tau::CuArray
14 end
15

16 GeneralTiledMatrix=Union{TiledMatrix, LargeTiledMatrix}
17

18 function TiledMatrix(A::AbstractArray{T, 2}, blocksize::Int) where T
19

20 no_tiles=Int(size(A,1)/blocksize)
21 TileViews=Array{SubArray}(undef, no_tiles,no_tiles)
22

23 for i in 1:no_tiles
24 for j in 1:no_tiles
25 TileViews[i,j]=view(A, (i-1)*blocksize.+(1:blocksize),
26 (j-1)*blocksize.+(1:blocksize))
27 end
28 end
29

30 backend=KernelAbstractions.get_backend(A)
31 Tau=Array{CuArray}(undef, no_tiles,no_tiles)
32 for i in 1:no_tiles
33 for j in 1:no_tiles
34 Tau[i,j]=KernelAbstractions.zeros(backend, T, blocksize)
35 end
36 end
37

38 return TiledMatrix(TileViews, Tau)
39

40 end
41
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42 function LargeTiledMatrix(A::Matrix{T}, backend, blocksize::Int) where T
43

44 matrixsize=size(A,1)
45 no_tiles=Int(matrixsize/blocksize)
46

47 rows=[]
48 Tau= KernelAbstractions.zeros(backend, T, blocksize)
49 Row=KernelAbstractions.zeros(backend, T, blocksize, matrixsize)
50 copyto!(Row,copy(view(A,1:blocksize,1:matrixsize)))
51 push!(rows, TileRow(true, 1, 1, Row, Tau))
52

53 for i in 1:3
54 Tau= KernelAbstractions.zeros(backend, T, blocksize)
55 Row=KernelAbstractions.zeros(backend, T,
56 blocksize, matrixsize)
57 push!(rows, TileRow(true, 1, 1, Row, Tau))
58 end
59

60 return LargeTiledMatrix(A, rows)
61

62 end

Source Code A.3: Definition of GeneralTiledMatrix, LargeTiledMatrix and TiledMatrix data types
for the singular value decomposition, shortened from the original to display only the important pa-
rameters. The TiledMatrix type is designed for the GPU-only tiled band-diagonalization containing
a reference to the tiled views of the GPU-located matrix, and the LargeTiledMatrix type is desgined
for the out-of-core band-diagonalization and contains 4 GPU matrix rows used to circulate the data
in and out of the GPU memory.
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