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ABSTRACT

This thesis describes the development and application of theories that elucidate
both the static and time-dependent responses of various condensed-phase environ-
ments to molecular systems.

Part I, the cornerstone of this thesis, explores the role of surface vibrations in
gas-phase heterogeneous catalysis. Utilizing the Mori-Zwanzig projection operator
formalism, I have developed a theory that maps surface vibrations to a generalized
Langevin equation (GLE). Two projection schemes are considered. The first scheme
projects the motion of the entire solid substrate onto the motion of molecular adsor-
bates. The second scheme projects onto both the motion of adsorbates and of surface
adsorption sites. Through the first approach, I demonstrate that physisorbed species
primarily couple with acoustic phonons, while chemisorbed species couple with dis-
persionless local vibrations. I also use this scheme to examine how phonons affect
reactions rates, both in ensembles near and far-from thermal equilibrium. Using the
second approach, I study how energy is dissipated in simulations of molecule-surface
scattering. I demonstrate that phonon confinement effects from nanoscale simulations
can significantly impact calculated surface sticking coefficients.

Part II considers the role of solvent in adsorption and desorption at liquid-solid
interfaces. Specifically, I employ enhanced sampling methods to study a model system
of carbon monoxide at a water/platinum interface. Using these methods, I show that
the local coordination number around a CO molecule plays a crucial role in the
transition states of the adsorption/desorption process, and that CO tends to increase
its coordination number before desorbing.

Part III develops a machine learning and electronic structure framework for the
computationally efficient parametrization of Frenkel Hamiltonians from snapshots of
molecular dynamics simulations of organic semiconductors. Direct electronic struc-
ture calculations on these snapshots encode the nuclear fluctuations of the chro-
mophores in the material and how they couple to excitons, but at enormous cost.
I discuss how the strategic application of machine learning methods can drastically
reduce the number of electronic structure calculations needed to produce a complete
exciton trajectory. Critically, I demonstrate that by decomposing the two-molecule
excitonic coupling into interactions between one-molecule transition monopoles, a
more accurate and less data-intensive machine learning scheme can be devised.
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Chapter 1

Introduction to heterogeneous

catalysis

1.1 The Sabatier principle

Catalysis is the science of accelerating chemical reactions by introducing a non-

interacting intermediary. Perhaps the most renowned example is the Haber-Bosch

process, in which an iron metal catalyst is used to convert atmospheric nitrogen

into ammonia, a key ingredient in fertilizer[1, 2]. Without the Haber-Bosch process,

Europe would have faced a massive famine in the early 20th century. Today, from

plastics to pharmaceuticals, almost 30% of the world’s industrial production relies

on catalysis[3, 4]. Moreover, many of the most promising research programs for

renewable energy and green chemistry hinge on the discovery of better catalysts[4–

6]. For example, zeolites, naturally occurring aluminum and silicon crystals, have

attracted significant interest as an alternative to the several environmentally toxic

catalysts used in the petrochemical industry [6, 7].

Catalysts are divided into two categories based on the phase of the catalyst sub-

stance: homogeneous and heterogeneous. Homogeneous catalysts exist in the same

phase as the reactants and include examples such as biological enzymes or acid cat-

alysts. Heterogeneous catalysts, the focus of this thesis, exist in a different phase

than the reactants and typically consist of a solid surface to which the reactants bind
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(adsorb).

Due to the past and continuing importance of heterogeneous catalysts, under-

standing the physical principles governing their effectiveness and selectivity — par-

ticularly at the molecular scale — is a central challenge for physical chemistry and

materials science. Significant progress has been made in this endeavor over the past

century. Of particular note is the Sabatier principle, the fundamental thermodynamic

principle that governs magnitude of the rate enhancement of a given heterogeneous

catalyst.

Desorption 
Limited

Activation 
Limited

Sabatier 
Maximum

Surface Binding EnergyStrong Weak

Ra
te

Figure 1.1: Schematic of Sabatier principle.

In Sabatier’s seminal treatise, for which he would later win the Nobel Prize, he

details the reactions of organic molecules across a wide variety of metal surfaces under

different conditions [8]. Through his analysis of these reactions, he postulates that

the optimal rate enhancement for a heterogeneous catalyst occurs when the binding

energy between the surface and the reagent molecules is neither too high nor too

low. If the binding energy is too high, the products will be unable to leave (desorb

from) the surface. Conversely, if the binding energy is too low, the catalyst will

be unable to sufficiently reduce the activation barrier of the reaction. Sabatier’s

principle directly leads to the familiar volcano-shaped plot of catalytic rates versus

binding strengths (Figure 1) and has been verified across a wide variety of reactions

using both experimental and computational methods [9–15].

Despite its many successes and explanatory value, the Sabatier principle is not a
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complete theory. It does not address the physical properties that determine the bind-

ing strength, nor can it explain the selectivity of a given catalyst toward a particular

product. In order to solve such problems, more detailed theories are needed, which

specifically examine the interplay between the catalyst and molecular reagent degrees

of freedom. Additionally, several experiments have demonstrated that when subject

to time-dependent external forces, some catalysts can exhibit rate enhancements or-

ders of magnitude larger than the static Sabatier limit [16, 17]. The mechanisms

behind such dynamic effects are still poorly understood, and significant technological

advancements may be possible if descriptive theories are developed.

Attempts to develop theories that build beyond Sabatier’s principle typically focus

on describing either the electronic or the nuclear degrees of freedom of the catalyst.

Both are crucially important, but the two can often be separated owing to the validity

of the Born-Oppenheimer approximation for heavy atoms at room temperature. In

Part I of this thesis concerns the nuclear vibrations (phonons) of the catalyst surface

and their coupling to the molecular degrees of freedom. The remainder of Chapter 1

is devoted to giving an overview of the study of phonons in heterogeneous catalysis

and an outline of the major results presented thereafter.

1.2 Surface vibrations in heterogeneous catalysis

The study of the effects of surface vibrations in heterogeneous catalysis has its

origins in molecular beam scattering experiments. In such an experiment, a high-

pressure nozzle directs a beam of molecules towards a surface, and the flux of scat-

tered products from the surface is subsequently measured, often as a function of the

incident angle and velocity. As early as 1975, molecular beam experiments illustrated

a sharp increase in the dissociation probability of methane (CH4) when the cata-

lyst surface was heated above a certain critical temperature [18, 19]. It is important

to note that such effects are not observed when only increasing the temperature of

the molecular beam, and cannot not be explained by the naive exp
(
− E‡

kBT

)
scaling

of Arrhenius theory. Further experimental and theoretical studies revealed that the
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surface-temperature dependence arises from a strong coupling of the dissociation reac-

tion’s transition state to the displacement of the metal surface atoms[19–25]. Similar

observations have been made for nitrogen dissociation on a variety of metal surfaces

as well [26–29].

In order to gain insight into the timescales of energy transfer between metal vi-

brations and molecular adsorbates, many scattering experiments began to use laser

pulses in order to heat the metal in specific locations and at specific rates [30–37].

A particularly notable example of such an experiment was done by Bonn et al.[38]

In that study, the oxidation of CO to CO2 on Ru(0001) was observed shortly after

a near-infrared laser was used to heat the surface. It is worth noting that conduc-

tive heating of the surface does not increase the reactive flux. Time of flight spectra

revealed a spike in CO2 production occurring simultaneously with a spike in CO des-

orption, and thus the mechanism of the reaction is considered to be a concerted effect

between hot electrons coupling to the oxidation step and hot phonons coupling to the

desorption step.

Another very important class of experiments which demonstrate the coupling be-

tween surface vibrations and molecular adsorbates involves the use of acoustic waves

to generate forced oscillations of the catalyst surface [16, 39–42]. In such experiments,

a thin (10-100nm) catalyst surface is placed on top of a piezoelectric material (typ-

ically LiNbO3). An oscillating electric field applied to this material creates a sound

(acoustic) wave, which then propagates into the thin catalyst material. Several stud-

ies have demonstrated that these acoustic waves, when applied at specific frequencies

and polarizations, can cause a substantial increase in the rates of certain reactions.

However, the mechanisms behind this effect have been hotly debated in recent years.

One explanation is that the displacements caused by the acoustic waves alter the

electronic structure of metal and therefore the binding strength to molecular adsor-

bates. Oscillation between high and low binding strengths allows for the adsorbate

bonds to be highly activated, without poisoning of the surface, leading to reaction

rates above the Sabatier limit. This explanation was supported by photoelectron

emission microscopy (PEEM) experiments showing that acoustic waves produced re-
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versible changes in the work function of the metal in tandem with an increase in

reaction products [16, 39, 43]. However, it remained unclear whether the work func-

tion changes were themselves the causal factor, or just another consequence of an

underlying physical mechanism. In 2020, a critical study published by von-Boehn et

al.[42] quantified the magnitude of the local work-function changes and demonstrated

that they were only on the order of a few µeV, far too small to substantially impact

surface chemistry. Instead, von-Boehn et al. attributed the increased rate to surface

roughening/restructuring, which they illustrated by showing that the SAW can cause

the intermixing between platinum and rhodium thin films. However, von-Boehn et

al. also admit that even this explanation is far from a definitive theory.

The abundance of experiments delineating the myriad of ways that surface vibra-

tions affect catalytic reactions has spurned enormous interest in developing theoretical

and computational methods which can reproduce said experiments and give insight

into their atomistic mechanisms. In particular, the ability to calculate and predict

how and when surface acoustic waves activate a given reaction could lead to devel-

opment of finely-tunable and selective catalysts that could unlock chemical synthesis

pathways previously impossible [16, 17]. However, relevant surface vibrations can

couple motion spanning the nano-, meso-, and macroscopic scales, and therefore the

numerical integration of equations of motion for model systems is costly and can ex-

hibit spurious finite-size effects. A more prudent approach is to project the collective

vibrations of a solid surface either onto the adsorbate itself or onto a collective of sur-

face active sites, giving an effective equation of motion for these degrees of freedom

[44–48]. This effective equation of motion, called a generalized Langevin equation,

is non-Markovian with a time-dependent friction constant called a memory kernel.

The memory kernel is of central importance to determining the timescales of energy

exchange between adsorbates and the metal surface.

The following chapters develop a general theory for the coupling of phonons to

molecular adsorbates within the projection operator / generalized Langevin equation

framework. Chapter 2 provides an overview of Mori-Zwanzig projection operator the-

ory and then describe the application of that theory to solid phonons. The formal
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Chapter 3 Chapter 4
Project solid vibrations onto 
adsorbate

Project solid vibrations onto 
adsorbate + adsorption site

m ··xA = − ∂U
∂xA

m ··xS = − ∂U
∂xS

m ··xA = − ∂Ueff
∂xA

− ∫
t

0
K(t − τ) ·x(τ)dτ+R(t)

Project

Figure 1.2: Schematic of models developed in Chapter 3 and Chapter 4. The equations
shown illustrate how projections map the deterministic Newtonian motion to stochastic,
non-Markovian motion.

properties of the memory kernel are described, including theories for how memory

affects reaction rates near thermal equilibrium. Chapter 3 describes results for pro-

jecting vibrations directly onto the motion of adsorbates. It is shown that adsorbates

couple to different phonons depending on the relative value of the molecule-surface

bond frequency and solid Debye frequency. Using this theory phonon-contributions

to transition state theory rates are calculated and compared with experiment. Chap-

ter 4 describes results for projecting vibrations directly onto the motion of individual

surface sites. Notably, a subtle, but universal source of error in many calculations of

molecule-surface scattering is described.
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Chapter 2

Theoretical preliminaries

Catalytic reactions are an intricate dance between the reagent and catalyst degrees

of freedom. However, we are rarely interested in the motion of the catalyst itself,

but instead the effect of the catalyst on the motion of the molecular reagent. It is

therefore natural to desire theories which project the catalyst degrees of freedom onto

the molecular reagent.

This chapter is devoted to a description of the mathematical background necessary

to develop and understand such theories within classical statistical mechanics. First,

an introduction to Mori-Zwanzig theory is given and subsequently used to derive

a generalized Langevin equation (GLE) for a system interacting with a harmonic

environment. Subsequently, the mathematical and physical properties of GLEs are

explored, particularly focusing on the properties of the memory kernel and its Fourier

transform. Finally, an overview of the role of memory in reaction rate theory is given.

2.1 Mori-Zwanzig theory

The theory of projection operators for dynamical equations of motion is called

Mori-Zwanzig theory, after physicists Hazime Mori and Robert Zwanzig who de-

veloped the theory in the 1960s [49, 50]. The motivation for the theory is to use

projection operators to reduce the dynamics of a complex, many-body system (either

classical or quantum) onto effective equations of motion for a set of collective variables
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of interest. In the most general formulation of the theory, neither the dynamics nor

the projection operators need be linear. However, the fully non-linear Mori-Zwanzig

equations are often just as difficult to analyze and solve as the original equations of

motion[51]. Interested readers may find a discussion of the non-linear Mori-Zwanzig

equations in Appendix A.

Fortunately, when considering the nuclear vibrations of a solid we can approximate

the potential energy as harmonic. Furthermore, since our collective variables (the

adsorbate) are just a subset of the total degrees of freedom, the projection operators

are also linear. When both the dynamics and the projection operators are linear, an

exact form of the generalized Langevin equation for the collective variables be derived.

The derivation given below essentially follows the one given by Zwanzig himself in

Ref. [52].

Let q denote a vector containing the coordinates of a classical many-body system.

We separate these degrees of freedom into a subspace corresponding to the degrees

of freedom of interest qA and the remainder qB. Henceforth, we term the degrees

of freedom of interest as system, and the remainder as the bath. For example, in

Chapter 3 the system will correspond to the adsorbate degrees of freedom, and the

bath correspond to the solid degrees of freedom.

It is convenient to also separate the total potential energy V (qA,qA) into two

parts,

V (qA,qB) = VA(qA) + VAB(qA,qB). (2.1)

where VA(qA) contains any terms that only depend on qA, and VAB(qA,qB) contains

the remaining terms. The purpose of this separation is to preserve any anharmonicites

in VA(qA). Expanding VAB to second-order around the equilibrium positions q̄ gives,

VAB(qA,qA) ≈
∑
ij

Hij(qi − q̄i)(qj − q̄j), (2.2)

where the summation indices go over all the degrees of freedom both of the system

and the bath, and the matrix elements Hij correspond to the Hessian of VAB evaluated
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at the equilibrium positions,

Hij =
1

2

∂2VAB

∂qi∂qj

∣∣∣∣∣
q̄i,q̄j

. (2.3)

Using Eq. 2.1 and Eq. 2.2 we may express the total system and bath equations of

motion as,

mA
..
qA(t)

mB
..
qB(t)

 = −


∂VA
∂qA

(t)

0

−

 H


qA(t)− q̄A

qB(t)− q̄B

 . (2.4)

It is convenient to introduce mass-weighted coordinates xi =
√
mi(qi − q̄i), such that

the equations of motion may be written as,


..
xA(t)

..
xB(t)

 = −


∂VA
∂xA

(t)

0

−

 D2


xA(t)

xB(t)

 , (2.5)

where D2 is the mass-weighted Hessian,

D2
ij =

1
√
mimj

∂2VAS

∂qi∂qj

∣∣∣∣∣
q̄i,q̄j

. (2.6)

We now introduce two projection operators A and B. A is a matrix with ones on

the diagonal corresponding to the indices of the system degrees of freedom such that

Ax = xA, and B = 1−A is it’s orthogonal complement,

A =


1 0

0 0

 B =


0 0

0 1

 (2.7)
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With these projection operators we can separate equation Eq. 2.6 into,

..
xA(t) = −∂VA

∂xA

(t)−D2
AAxA(t)−D2

ABxB(t), (2.8)

and,
..
xB(t) = −D2

BAxA(t)−D2
BBxB(t), (2.9)

where D2
AA = AD2A, D2

AB = AD2B, D2
BA = BD2A, and D2

BB = BD2B.

In order to solve Eq. 2.9 we must introduce a set of normal modes which diagonalize

D2
BB. Let uB = UTxB, where U is a matrix with the eigenvectors of D2

BB as columns.

In terms of these normal modes Eq. 2.9 may be written as,

..
uB(t) = −UTD2

BAxA(t)−Ω2Ω2Ω2uB(t), (2.10)

where ΩΩΩ2 = UTD2
BBU is a diagonal matrix of the squared frequencies of the normal

modes. Each row of Eq. 2.10 is now 2nd-order inhomogeneous differential equation

that may be solved analytically to yield,

uB(t) = cos(ΩΩΩt)uB(0) +
sin(ΩΩΩt)

ΩΩΩ
.
uB(0)−

∫ t

0

dτ
sin(ΩΩΩ(t− τ))

ΩΩΩ
CTxA(τ), (2.11)

where CT = UTD2
BA is the matrix of the couplings between xA and each normal

mode. Substituting Eq. 2.11 into Eq. 2.8 yields a GLE,

..
xA(t) = −∂VA

∂xA

(t)−D2
AAxA(t)−

∫ t

0

dτΘΘΘ(t− τ)xA(t) +RΘ(t), (2.12)

where ΘΘΘ(t) and the RΘ(t) are the memory kernel and random forces respectively,

satisfying,

ΘΘΘ(t) = −C
sin(ΩΩΩt)

ΩΩΩ
CT , (2.13)

RΘ(t) = −C

(
cos(ΩΩΩt)uB(0) +

1

ΩΩΩ
sin(ΩΩΩt)

.
uB(0)

)
. (2.14)

Although RΘ(t) is not truly random, it is entirely independent of the position of the
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system. Furthermore, it can be shown that for a very large bath comprised of ∼ 1023

normal modes RΘ(t) limits to random Gaussian noise [53]. The random forces and

memory kernel satisfy a fluctuation-dissipation relationship. In order to derive this

relationship, note that the equilibrium correlation between any two normal modes is,

⟨uB,iuB,j⟩ =
kBT

ω2
i

δij, where ωi is the frequency of the ith mode. Thus, taking the

autocorrelation function of RΘ(t) we have,

〈
RΘ(t)R

T
Θ(0)

〉
= kBTC

cos(ΩΩΩt)

ΩΩΩ2
C, (2.15)

ΘΘΘ(t) =
1

kBT

d

dt

〈
RΘ(t)R

T
Θ(0)

〉
(2.16)

The memory integral in Eq. 2.12 depends on the displacement of the system from

its equilibrium position, and such a dependence is problematic in cases where the po-

sition of the system is unbound, leading the memory integral to diverge. Fortunately,

this dependence can be removed by integrating the memory integral by parts, leading

to a different GLE,

..
xA(t) = −∂VA

∂xA

(t)−
[
D2

AA −K(t = 0)
]
xA(t)−

∫ t

0

dτK(t− τ)
.
xA(t) +R(t), (2.17)

K(t) = C
cos(ΩΩΩt)

ΩΩΩ2
CT , (2.18)

R(t) = −C

(
cos(ΩΩΩt)uB(0) +

sin(ΩΩΩt)

ΩΩΩ
.
uB(0) +

cos(ΩΩΩt)

ΩΩΩ2
CTxA(0)

)
. (2.19)

K and R also satisfy a fluctuation-dissipation theorem,

K(t) =
1

kBT

〈
R(t)RT (0)

〉
. (2.20)

Eq. 2.17 is the form of the generalized Langevin equation that we will utilize in

subsequent chapters. We see that by integrating out the bath degrees of freedom,

we are left with a non-Markovian differential equation for the system, which depends

not only on the instantaneous value of the position/velocity, but also on the entire

history of past velocity values. This non-Markovianity or memory arises because
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of the time-lag between the force of the system on the bath, and the response of

the bath. Since we assumed that the bath potential energy VAB was harmonic, we

have found that the non-Markovian response can be encoded in terms of a linear-

operator K(t). The properties of this memory kernel are crucial for understanding the

dynamics induced by Eq. 2.17. In the subsequent section, the general mathematical

and physical properties of memory kernels are discussed.

2.2 Properties of memory kernels

The memory kernel is the most important quantity in Eq. 2.17 as it encapsulates

both how the bath affects both the equilibrium and the non-equilibrium statistics of

the system. For the equilibrium statistics, the dynamics of the bath widen the local

fluctuations of the system around its equilibrium position. This widening can be seen

from the total potential energy in Eq. 2.17,

VS,eff(xA) = VS(xA) + xT
A

(
D2

AA −K(t = 0)
)
xA, (2.21)

where the mass-weighted Hessian of the system D2
AA is reduced by the instantaneous

component of memory kernel, K(t = 0). It is important to note that for an general,

anharmonic bath, the equilibrium statistics of the system are determined by the

potential of mean force,

W (xA) = −kBT ln

[∫
dxBVA(xA,xB)

]
, (2.22)

and that VS,eff is just a local approximation to the potential of mean force. An

illustrative example of how the potential energy widens due to the presence of the

bath is provided in Figure 2.1. For the non-equilibrium statistics, since ⟨R(t)⟩ = 0, if

R(t) is modeled as Gaussian noise its statistics are purely determined by the two-time

correlation function, and therefore the memory kernel by virtue of Eq. 2.20.

The properties of of the memory kernel are often more transparent in frequency

space than in real-time. In order to analyze the Fourier transform of the memory
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Figure 2.1: Bare potential energy (U) and potential of mean force (W ) for a Morse os-
cillator system coupled to a single harmonic mode bath. The bath mode widens the width
of the bare Morse potential, such that the frequency at the minimum shifts from ωA = 500
cm−1 to ωeff = 167 cm−1.

kernel, it is easiest to first express K(t) in index form,

Kij(t) =
∑
k

CikCjk

ω2
k

cos(ωkt), (2.23)

where Cik is an element of the coupling matrix C. Taking the Fourier transform of

Eq.2.23 leads to,

K̃ij(ω) = π
∑
k

CikCjk

ω2
k

(δ(ω − ωk) + δ(ω + ωk)) . (2.24)

As the negative frequency components of Eq. 2.24 are mere a reflection of the positive

frequency components, it is common drop them leading to,

K̄ij(ω) =
∑
k

CikCjk

ω2
k

δ(ω − ωk). (2.25)

K̄ij(ω) is called the power spectral density or simply spectral density of the bath.

The name arises from the Wiener-Khinchin theorem, which states that the Fourier

transform of the autocorrelation function of a stationary random process is equivalent
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to the power spectrum of that process. Alternatively we can re-express Eq. 2.25 as,

K̄ij(ω) =
Ci(ω)Cj(ω)

ω
ρ(ω), (2.26)

where ρ(ω) =
∑

k δ(ω − ωk) is the bath density of states. Equations 2.25 and 2.26

reveal that the Fourier transform of K(t) can be interpreted as the density of states

of the bath reweighted by the value of the system-bath coupling C. Eq. 2.26 is a

more appropriate definition of the spectral density when the bath is made up of a

continuum of normal modes.

We can learn much about the physical properties of a given bath and how it in-

teracts with the system by analyzing the shape of the memory kernel and spectral

density. For a Markovian (memoryless) bath, the memory kernel is simply a delta

function, and thus the spectral density is a uniform distribution across all frequencies.

For a particle moving in a liquid, the memory kernel tends to decay exponentially,

K(t) ∼ e−αt, and the spectral density is very broad as there are no distinct normal

modes in liquids. The broad, flat spectral density supports why Markovian approxi-

mations are often reasonable when simulating the dynamics of particles of liquids. In

contrast, in a glassy environment both the memory kernel and the spectral density

can behave like a power-law, K(t) ∼ t−α, with long-tails due to the slow rate of relax-

ation. In fact, the presence of long tails in the memory kernel is one way to quantify

the ergodicity breaking. Finally, many environments behave like damped harmonic

oscillators; that is, they have one or more central frequencies but also dissipate energy

at a certain rate. In such cases, the memory kernel will behave like a damped sinusoid

K(t) ∼ e−αt cos(ω0t) and the spectral density will be a Lorentzian centered at a finite

frequency. In Chapters 3 and 4 we will show that the vibrations of a solid surface

indeed behave in such a manner.

One may wonder why, given the fact that the GLE in Eq. 2.17 was derived under

the assumption that the bath was harmonic, the GLE can and often is be applied to

baths which are highly anharmonic. The answer to this question is subtle and relies

on linear response theory. One can show that the fluctuation-dissipation theorem
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Figure 2.2: Depiction of characteristic forms of the (A) memory kernel and (B) spectral
density. The overdamped form is common in systems coupled to liquid environments, while
the underdamped form common in systems coupled to solid environments.

Eq. 2.20 does not require the bath itself to be harmonic, only that the statistics of

the bath change linearly due to forces from the system. Thus, the true test of the

validity of the GLE is whether one can safely say that the bath remains near thermal

equilibrium regardless of the state of the system. Further insight can be found in

Ayaz et al.[54]

2.3 Reaction rate theory

One of the most important physical consequences of memory is how it can affect

reaction rates. For a 1D system embedded in a Markovian bath, Kramers[55] showed

that the rate constant may be expressed as,

kKr =
ω0

2π

1

ω‡

(
−γ
2
+

√
γ2

4
+ (ω‡)2

)
e−βE‡

, (2.27)

where ω0 is the frequency of the reactant well (see Figure 2.3), ω‡ is the frequency of

the barrier, E‡ is the height of the barrier, and γ is the Markovian friction constant.

γ can be expressed as a limit of the memory kernel integrated across time,

γ =

∫ ∞

0

dtK(t). (2.28)

Kramers’ theory reveals that while friction/memory affects the rate prefactor, but

the height of the barrier is left unchanged. To derive Eq. 2.27, Kramers exploited the
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equivalence between the Langevin equation and the Fokker-Planck equation in order

to solve for the probability flux towards the products at the top of the barrier.

E‡

E

xω0

ω‡

Reactants

Products

Figure 2.3: Characteristic potential energy curve for barrier-crossing problem.

Grote and Hynes generalized Kramers formula for a non-Markovian bath[56],

kGH =
ω0

2π

λ

ω‡ e
−βE‡

, (2.29)

where λ is the unique real, positive solution to the algebraic equation,

λ2 + λK(λ) + (ω‡)2 = 0, (2.30)

and K(λ) is the Laplace transform of the memory kernel. If one takes the memory

kernel to be a delta function, the Grote-Hynes rate constant is equivalent to the

Kramers rate constant.

Both Kramers and Grote-Hynes rate constants rely on the assumption that the

attempts to make it over the barrier are generated by a Gaussian distribution, or put

more simply, that the reactants are in thermal equilibrium. This assumption is not

valid if the friction constant is very large and/or the decay rate of the memory kernel

is very slow (see Figure 2.4). Indeed Kramers himself noted that there is a turnover

in the dependence of the rate constant with friction that is not captured by Eq. 2.27

and Kramers turnover has been verified experimentally[55, 57, 58]. Unfortunately,

for non-Markovian environments, there is no general form for the rate-constant for

for an arbitrary memory kernel. For an overview of perturbative solutions that are
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possible for exponential memory, see Ref. 59 and Ref. 60.
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Figure 2.4: Grote-Hynes rate constants versus numerical simulation results for a 1D barrier
crossing problem with exponential memory, K(t) = Ae−

t
τ .

Another approach to calculating rate constants in chemistry is called transition

state theory (TST), first developed by Eyring and Wigner [61–63]. TST is a philosoph-

ically different approach to the Kramers-Grote-Hynes (KGH) theory. KGH theory

presupposes a one-dimensional reaction coordinate and captures the effects of other

degrees of freedom implicitly through the friction constant/memory kernel. In con-

trast, TST posits the existence of a high-dimensional dividing surface in coordinate

space, f(q) = 0 that seperates reactants and products. The transition state is defined

as a saddle point along this dividing surface such that if a trajectory crosses the saddle

point, it cannot re-cross. TST thus calculates the rate constant as the equilibrium

flux through this saddle point,

kTST =
1

ZR

∫
dqdp e−βH(q,p)δ [f(q)] (∇f · p)Θ (∇f · p) , (2.31)

where H =
∑3N

i
p2i
2mi

+ V (q) is the Hamiltonian, ∇f is the normal vector to the

surface, Θ is the Heaviside step function, and ZR is the reactant partition function.
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ZR is defined as,

ZR =
1

h3N

∫
R

dqdp e−β(H(q,p)−ER). (2.32)

where the subscript R denotes that the integral is taken only over the reactant region

in position space. Eq. 2.31 is often simplified by carrying out the momentum and

position integrals along the surface normal vector in the numerator giving,

kTST =
kBT

h

Z‡

ZR

e−β∆E‡
, (2.33)

where ∆E‡ = E‡−ER is energy difference between the transition and reactant state,

and Z‡ is a partition function for configurations taken near the transition state,

Z‡ =
1

h3N−1

∫
R

dq3N−1dp3N−1 e−β(H(q3N−1,p3N−1)−E‡). (2.34)

In Eq. 2.34, q3N−1 p3N−1 refer the 3N − 1 position and momentum coordinates

that orthogonal to ∇f . Eq. 2.33 is the form of the TST rate constant found in most

modern texts. Often the partitions functions ZR and Z‡ in Eq. 2.33 are approximated

by products of harmonic partition functions,

kTST ≈ 1

2π

3N∏
i=1

ωi

3N−1∏
i=1

ω‡
i

e−β∆E‡
, (2.35)

where ωi are the eigenfrequencies of the mass-weighted Hessian evaluated at the

reactant minimum, and ω‡ are the real, positive eigenfrequencies of the mass-weighted

Hessian evaluated at the transition state. Note that because the transition state is

defined to be a saddle point, one of the eigenfrequencies at the transition state is

always imaginary.

Both TST and KGH theory assume that the reactants remain in thermal equilib-

rium and that there are no recrossings over the barrier. However, Eq. 2.33 is far more

expressive and generally applicable than KGH theory. Surprisingly though, Eq. 2.35

can be shown to be equivalent to KGH theory for a specific class of harmonic system-
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bath Hamiltonians, as was shown by Pollak in his seminal paper [64]. Despite this

equivalence, we emphasize that even Eq. 2.35 is still more general than KGH theory,

as KGH theory assumes that the system-bath coupling remains the same in the reac-

tant state and the transition state, while Eq. 2.35 does not necessarily. In Section 3.1,

we will apply Eq. 2.35 to derive corrections factors for desorption constants due to

phonons.
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Chapter 3

Phonon-induced memory on

adsorbates 1

3.1 Introduction

As discussed in Chapter 1, the vibrations of a heterogeneous catalyst can signif-

icantly influence the rates and mechanisms of surface chemical processes.[12, 66–68]

Unraveling these influences experimentally is difficult, motivating the development

of theoretical tools. In this chapter, we introduce a theory for the coupling between

the nuclear dynamics of surface-bound (adsorbed) molecules and the vibrations of

the underlying surface. The theory projects the collective surface vibrations onto the

motion of the adsorbate via the Mori-Zwanzig formalism discussed in Section 2.1,

and in doing so, describes the motion of surface-bound molecules via a generalized

Langevin equation (GLE).

Using this formalism, we demonstrate that the influence of surface vibrations on

the dynamics of an adsorbed molecule depends significantly on the magnitude of the

adsorbate-surface coupling. Specifically, we find that chemisorbed species couple pri-

marily to dispersionless local vibrations, while physisorbed species couple primarily

to acoustic phonons. The key parameter that determines whether the primary in-

fluence of surface vibrations is via extended or localized phonon modes is the ratio
1Based on work published in Ref. 65.
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of the solid’s Debye frequency to the frequency of the adsorbate-surface bond (Fig-

ure 3.1). By combining these observations with harmonic transition state theory, we

derive equations that describe how phonons alter reaction rates at solid surfaces and

demonstrate that these phononic corrections agree with experimental measurements

of desorption rate constants. Below we summarize the topic and main findings of

each remaining section of this chapter.

ωD

ωas

Local Friction

Acoustic Friction

Mixe
d Regime

Figure 3.1: 2D schematic illustrating the dominant phonon modes in terms of their coupling
to the adsorbate or contribution to the memory kernel. ωas is the frequency of the adsorbate-
surface bond and the ωD is the solid’s Debye frequency.

In Section 3.2, we begin by presenting the physical and computational model

we used to compute the phonon-induced memory kernel. Subsequently, we analyze

results for the memory kernel across a range of values for the adsorbate-surface bond

frequency ωas, illustrating that the mode contributing to the memory kernel is an

acoustic phonon for physisorbed species, and a local phonon for chemisorbed species.

We show this result is qualitatively independent of the details of the atomistic model

used.

In Section 3.3, we use perturbation theory to interrogate the generality of the

results presented in the previous section. We show that in the chemisorbed regime,

the bulk phonons are a small perturbation to the motion of the adsorption site, while

in the physisorbed regime, the local vibrations of the adsorption site are a small
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perturbation to the bulk phonons. We derive analytical results for the memory kernel

in the chemisorbed regime.

In Section 3.4, we analyze the role phonon dispersion plays in the memory kernel.

Since the acoustic mode has a linear dispersion, summing over k-space broadens the

acoustic peak in the spectral density. In contrast, the localized phonon modes are

dispersionless, and thus spectral density in the chemisorbed limit remains roughly the

same.

In Section 3.5, we analyze the effect of anharmonicity in the metal potential energy

surface on the shape of the memory kernel. It is well known that anharmonicities

couple phonon modes together, broadening the spectral density. We show that this

is indeed the case for our models, but further illustrate that surface diffusion, if

sufficiently fast, also broadens the spectral density. We conclude by illustrating that

chemisorbed species can form surface polarons.

In Section 3.6, we use transition state theory to develop a general methodology

for computing the phononic contribution to reaction rates at catalyst interface. We

subsequently apply that methodology to surface desorption and validate our theory

by demonstrating an improved agreement with experiments of CO desorption from

Pt(111).

Finally, in Section 3.6 we discussing the relationship between the memory kernel

and response functions to external forces. We demonstrate that adsorbates cou-

ple strongly to applied extensional and surface shockwave forces, but do not couple

strongly to applied shear forces. We contextualize these results in terms of experi-

ments analyzing surface chemistry under applied acoustic waves.

3.2 Memory for physisorbed and chemisorbed species

We have studied the phonon memory kernel acting on the surface normal (des-

orption) coordinate for a simple model of CO on Pt(111). The CO was modeled as

a single adatom and interacting with a single adsorption site, as experimental struc-

tures show that CO adsorbs primarily atop Pt(111) sites [69, 70]. The metal potential
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energy surface VS was modeled using an effective medium theory (EMT) forcefield

developed by Norskov et al.[71, 72] All calculations were performed using the Atomic

Simulation Environment (ASE) python package [73–78].

In Equations 2.23 and 2.25 we gave the general formula for the memory kernel, and

the spectral density (its Fourier transform) in terms of the normal mode frequencies

of the bath and their coupling to the system. In our model, these normal mode

frequencies correspond to the phonon modes of the solid surface, and the couplings

correspond to the interaction, mediated by the adsorbate-surface bond, between each

phonon mode of the solid and the adsorbate. Since we have assumed that CO interacts

with a single surface Pt atom, Eqs. 2.23 and 2.25 may be simplified to,

K(t) =
µ2

mM
ω4
as

∑
j

U2
sj

ω2
j

cos(ωjt), (3.1)

K̄(ω) =
µ2

mM
ω4
as

∑
j

U2
sj

ω2
j

δ(ω − ωj), (3.2)

where m, M , and µ are the CO mass, Pt mass, and reduced CO-Pt mass respectively,

Usj is the expansion coefficient of the adsorption site s in the jth normal mode, and

ωas is the adsorbate-surface bond frequency. In the remainder of this section, we will

artificially vary ωas over a range of physically motivated values in order to assess how

the strength of the adsorbate-surface interaction affects the properties of the memory

kernel.

Figure 3.2 illustrates the results of our calculations for a selected set of ωas values

ranging from those characteristic of weakly adsorbed species to those characteristic

of strongly adsorbed species. We plot the memory kernel computed in the direction

normal to the surface in systems with either a 4x4x8 or 8x8x8 Pt(111) slab. The

lower values of ωas that we consider lie below that of the platinum’s Debye frequency

of ωD = 156cm−1. We associate these values with the physisorbed regime, as they

are characteristic of weakly adsorbed systems such as noble gases on Pt(111).[79] The

higher values of ωas that we consider are associated with the chemisorbed regime, cor-

responding to physical systems such as CO on Pt(111), which has ωas ≈ 480 cm−1).[70,

41



CHAPTER 3. PHONON-INDUCED MEMORY ON ADSORBATES

80, 81] Delta function peaks in K̄(ω) and ρ(ω) were broadened to thin Lorentzians of

width 1cm−1 for ease of visualization.
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Figure 3.2: (A) Memory kernel, (B) spectral density, and (C) density of states for Pt(111)
and three values of ωas. The density of states in (C) was calculated using the 4x4x8 surface
slab.

For all cases of ωas, the adsorbate couples strongly to a surface acoustic mode

appearing around ω = 10cm−1. The location of this peak is highly dependent on

the dimensions of the simulated surface slab, consistent with the behavior of an

acoustic phonon. In Section 3.5, we give a more detailed theoretical and numerical

analysis of the size effects observed here, fully accounting for phonon dispersion.

In the physisorbed regime, the memory kernel is dominated by this acoustic mode,
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resulting in highly non-Markovian behavior. The phonon mode associated with this

peak is associated with the flexing of the lattice in the direction perpendicular to the

surface. Snapshots of this motion are provided in the insets in Figure 3.1.

In the chemisorbed regime, the memory kernel is dominated by a high frequency

mode around ω = 210 cm−1. This mode arises from the local oscillations of the

surface site the adsorbate is bound to. The frequency of this mode is independent of

simulation cell size, suggesting that it is dispersionless. The large amplitude of this

mode signifies that in the chemisorbed limit, the adsorbate is primarily sensitive to

the local oscillations of the surface binding site (which are shifted in frequency due

to the presence of the adsorbate). Many published models for reactive scattering on

solid surfaces will describe solid vibrations using only a single, harmonically bound

surface atom [19, 27, 82–84]. These results explain why such a method is successful

for strongly coupled species.

Despite this large shift in the spectral density when varying ωas, in Figure 3.2C

we demonstrate that the phonon density of states is nearly identical to that of a bare

surface. The only significant change in ρ(ω) is the presence of the aforementioned

surface site local mode present around ω = 210 cm−1. These results make physical

sense given that the low frequency acoustic modes of a solid should be unaffected by

gaseous species, especially at low pressures and surface coverages.

To evaluate the effect of the solid force field and structure on these results, we have

tested several different crystal structures, facets, elemental compositions, and force

fields. While the quantitative properties of the memory kernel vary across different

systems, the qualitative dependence of the memory kernel on ωas is quite general. In

Figure 3.3 we present the memory kernel and spectral density for CO adsorbed atop

Ru(0001) sites, where interactions between Ruthenium atoms were calculated using

an embedded atom method (EAM) forcefield [85]. Since Ru has a much higher Debye

Frequency than Pt (225 cm−1 for Ru and 156 cm−1 for Pt) the dependence of the

spectral density on ωas is shifted, but the modes associated with the primary peaks

in the physisorbed and chemisorbed regimes remains the same.

This independence with respect to the details of the atomistic model is appeal-
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Figure 3.3: (A) Memory kernel and (B) spectral density for Ru(0001) surface.

ing and can be understood from a perturbative perspective. Specifically, in the ph-

ysisorbed limit, the motion of the surface binding site is a small perturbation to the

bulk phonon modes, while in the chemisorbed limit, the bulk phonon modes are a

small perturbation to the motion of the surface binding sites. In the next section, we

rigorously examine this statement by comparing perturbative schemes to the exact

results for K(t) and K̄(ω).

Finally, we note that in this section we have only studied the effects of phonons for

an ideal clean surface. Presumably, sources of surface heterogeneity, such as steps and

defects, may add further richness and complexity to the picture we have provided here.

We also note that we have only studied elemental solids, and the optical modes of

polyatomic crystals could add another interesting dimension to this physical picture.

3.3 Perturbation Theory

In this section, we compare the results for the memory kernels and spectral densi-

ties calculated using exact diagonalization to two different perturbative schemes: one
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which agrees well with exact results in the physisorbed limit (when ωas is small), and

the other which agrees well with exact results when in the chemisorbed limit (when

ωas is large).

The formulas for the perturbative corrections are the familiar Rayleigh-Schrodinger

perturbation theory equations. In this section, we will only use 1st and 2nd order cor-

rections to the eigenvalues and 1st order corrections to the eigenvectors. We provide

the formulas below for completeness. For the eigenvalues we have,

λi ≈ λ
(0)
i + λ

(1)
i + λ

(2)
i (3.3)

where λi is equal to the square phonon frequency ω2
i and λ

(0)
i , λ(1)i , and λ

(2)
i are the

0th, 1st, and 2nd order corrections respectively.

λ
(1)
i = P

(0)
i · δH ·P(0)

i , (3.4)

where P
(0)
i is the ith eigenvector of the unperturbed Hessian H0 and δH is the per-

turbation term.

λ
(2)
i =

∑
j ̸=i

(
P

(0)
j · δH ·P(0)

i

)2
λ
(0)
i − λ

(0)
j

. (3.5)

For the eigenvectors we have,

Pi ≈ P
(0)
i +P

(1)
i , (3.6)

where,

P
(1)
i =

∑
j ̸=i

P
(0)
j · δH ·P(0)

i

λ
(0)
i − λ

(0)
j

P
(0)
j . (3.7)

In order to gain insight from perturbation theory, we must judiciously choose

how to separate the solid’s mass-weighted Hessian (denoted as HB) into the reference

Hessian H0 and the perturbation δH. In order to do so, we first structure HB into

blocks corresponding to the surface adsorption site(s) HX, the remaining bulk atoms
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HY, and off-diagonal blocks between the two HXY,

HB =


HX HXY

HT
XY HXY

 , (3.8)

Note that the size of HY should be much larger than HX as most atoms in the solid

can be treated as not interacting with the adsorbate. We may diagonalize the HY to

arrive the following form,

HB =


HX G

GT ΩΩΩ2
Y

 , (3.9)

where G is the coupling between the adsorption site(s) and each bulk phonon mode

and ΩΩΩ2
Y is a diagonal matrix containing the square frequencies of these bulk modes.

With this setup we are ready to perform perturbation theory. We will illustrate the

results of perturbation theory on a 4x4x4 Pt(111) lattice with the Hessian evaluated

using the EMT[72] forcefield.

3.3.1 Strong coupling/chemisorbed limit

In the chemisorbed limit, we set the reference Hessian to where the adsorption

site(s) and the phonon modes of the bulk are uncoupled,

H0 =


HX 0

0 ΩΩΩ2
Y

 , (3.10)
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and therefore the perturbation is coupling,

δH =


0 G

GT 0

 . (3.11)

If we assume adsorption site to be a single atom, then the following analytical forms

can be found for the memory kernel to 0th, 1st, and 2nd order respectively:

K(0)(t) =
µ2

mM

ω4
as

ω̃2
s

cos(ω̃st), (3.12)

K(1)(t) = K(0)(t) +
µ2

mM
ω4
as

∑
i ̸=s

g2i
(ω̃2

s − ω2
Y,i)

2ω2
Y,i

cos(ωY,it), (3.13)

K(2)(t) = K(0)(t)+

µ2

mM
ω4
as

∑
i ̸=s

g2i
(ω̃2

s − ω2
Y,i)

2ω2
Y,i + (ω̃2

s − ω2
Y,i)g

2
i

cos

(√
ω2
Y,i +

g2i
ω̃2
s − ω2

Y,i

t

)
, (3.14)

where gi is the ith element G, ωi,Y is ith element of ΩΩΩY, and ω̃s is the frequency of

motion of the adsorption site with the adsorbate bound,

ω̃s =

√
µ

M
ω2
as + ω2

s . (3.15)

In this scheme, we see that to 0th order the surface adsorption site does not interact

with the other modes of the solid, which results in the phonon memory kernel being

a single sinusoid with frequency ω̄s due to solely the motion of the surface adsorption

site. The perturbation introduces coupling between the surface adsorption site(s)

and the bulk solid, allowing for the bulk phonons to contribute to the memory kernel.

Figure 3.4 illustrates the spectral density calculated using this scheme to first and

second order, and compares it to the results from exact diagonalization. The 1st
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order results qualitatively match the exact results, however they underestimate the

frequency of the adsorption-site local mode. This mismatch is because the first order

corrections to the eigenvalues of the Hessian are zero. Introducing second order

corrections removes this discrepancy, leading to excellent agreement with the exact

results when ω̄s > ωD. As the effective frequency of motion of the adsorption site

approaches ωD, this perturbative scheme qualitatively fails to describe the memory

kernel/spectral density.
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Figure 3.4: Spectral density for Pt(111) surface calculated using exact diagonalization, 1st
order, and 2nd order perturbation theory in the strong-coupling scheme.

3.3.2 Weak-coupling/physisorbed limit

In the physisorbed limit, we treat HX as the perturbation, δH = HX , and the

remaining Hessian as the reference,

H0 =


0 G

GT ΩΩΩ2
Y

 . (3.16)

This scheme assumes that the contribution of the adsorption sites to the bulk phonon

modes is small. Figure 3.5 illustrates the spectral density calculated using this scheme,

to first and second order, and compares it to the results from exact diagonalization.

The 1st order results for K(ω) use 1st order corrections for both the eigenvectors and

eigenvalues, while the 2nd order results add 2nd order corrections to the eigenvalues
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while keeping the eigenvectors at 1st order. Both 1st and 2nd order results agree well

with the exact results when ωas is less than platinum’s Debye frequency ωD = 156

cm−1 as expected, and even qualitatively capture results at ωas ≈ ωD. However, as the

effective frequency of motion of the adsorption site, approaches ωD, this weak-coupling

perturbative scheme fails.
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Figure 3.5: Spectral density for Pt(111) surface calculated using exact diagonalization, 1st
order, and 2nd order perturbation theory in the weak-coupling scheme.

The success of these perturbative schemes at reproducing the exact results within

the appropriate regime suggests that the behavior we have observed is not a feature

of a particular atomistic model, but a fundamental consequence of the response of

phonon modes in different physical regimes.

3.4 Dispersion

The dependence of the acoustic peak frequency on simulation size, such as illus-

trated in Figure 3.2, is an artifact that has the potential to prevent straightforward

comparison between experiment and simulation. With or without periodic bound-

ary conditions, the size of the simulated solid limits the maximum wavelength of the

phonon modes. In this section, we illustrate how to generalize the theory presented in

Chapter 2 by computing the memory kernel in the limit of an infinite surface through

integration of frequencies and eigenmodes across the first Brillouin zone.

In an infinite crystalline solid, displacement by a lattice vector returns the same

solid. This symmetry can be leveraged to calculate the phonon frequencies and dis-
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placements of the bulk solid using a spatial Fourier transform of the mass-weighted

Hessian. This approach leads to the well-known Bloch’s theorem, which is summa-

rized as follows. Let a and b be the indices of two primitive unit cells, and let HS(a, b)

be the mass-weighted Hessian of the crystal, HS;ij(a, b) =
∂2V

∂xS,i(a)∂xS,j(b)
. The Fourier

transform of this matrix may be expressed as,

D(k) =
∑
a,b

HS(a, b)e
ik·(ra−rb), (3.17)

where ra is the origin of the ath cell. D(k) is known as the dynamical matrix satis-

fying,

D(k)Uj(k) = −ω2
j (k)Uj(k). (3.18)

where ωj is the jth phonon band frequency and Uj is the corresponding polarization

vector. For 3D monatomic crystals, the primitive (Wigner-Seitz) cell consists of a

single atom with three degrees of freedom, thus producing three phonon bands. These

bands, illustrated in Figure3.6A for FCC platinum, are the acoustic transverse and

longitudinal modes, and are characterized by linear dispersion at low wavenumber.

In a surface slab, the presence of anisotropy breaks the symmetry of the 3D

crystal. This symmetry breaking leads to additional surface mode bands, which can

be acoustic (Rayleigh waves) or non-acoustic in character[86–88]. In Figure 3.6B and

3.6C we demonstrate the phonon dispersion of a Pt(111) surface calculated via EMT.

These results were calculated using a 4x4x8 surface replicated in a 6x6 super-cell. We

verified convergence with respect to supercell size. Of course, the number of surface

phonon bands depends on the size of the surface unit cell used in computing D(k),

however, we verified that the results are qualitatively similar across different unit cell

sizes.

Figure 3.6B illustrates the phonon dispersion for a bare surface, while Figure 3.6C

illustrates the dispersion for a surface with an adsorbed CO. The bands are col-

ored based on their mean slope between the Γ and K high-symmetry points. The

three lowest frequency bands are all surface acoustic modes, for example, the flexing

mode depicted in the inset of Figure 3.1, confirming that the corresponding peak in
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Figure 3.6: Phonon dispersion curves. (A) Bulk Pt dispersion curves calculated using an
EMT forcefield and a 10x10x10 atom supercell. (B) Dispersion curves for a 4x4x8 atom
surface slab replicated in a 6x6 surface cell (C) Same as middle but with an adsorbed CO
molecule corresponding to ωas = 480 cm−1.

the phonon spectral density in Figure 3.1 arises from an acoustic phonon. The re-

maining modes are nearly dispersionless — especially the highest frequency mode in

Figure 3.6C, which corresponds to the surface site local vibration. The dispersionless

nature of this mode supports why it was not seen to be dependent on surface slab

size in Figure 3.2.

Using these dispersion relations, we can average the memory kernel across the first

Brillouin zone,

K(t) =
µ2

mM
ω4
as

∑
j

∑
k

′ |Usj(k)|2
ωj(k)2

cos(ωj(k)t), (3.19)

K̄(ω) =
µ2

mM
ω4
as

∑
j

∑
k

′ |Usj(k)|2
ωj(k)2

δ(ω − ωj(k)), (3.20)

where the primed summation is taken over all wavevectors in the first Brillouin zone

and the sum over j is taken over all surface unit cell phonon modes. Equations 3.19

and 3.20 simply separate the sum in Eqs. 3.1 and 3.2 into two parts: the outer sum

varying intra-cell displacements and the inner sum varying inter-cell displacements.

In principle, this procedure eliminates the dependence on boundary conditions and

generalizes results from a surface unit cell to an infinite periodic surface. However,

the depth of the surface (corresponding to the non-periodic dimension) is still limited

to the depth of the surface unit cell.

Figure 3.7 demonstrates the results of Eq. 3.19 and Eq. 3.20 and compares them
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Figure 3.7: Memory kernel for a model adsorbate on Pt(111) in a finite system (black) and
in the infinite system size limit (blue). The finite system is equivalent to the 4x4x8 results
presented in Figure 1.

to previous results for a single unit cell slab. Naturally, the strong coupling of the

adsorbate to a single acoustic mode is broadened, resulting in a much flatter spectral

density in the low frequency ranges. Such a flat spectral density is characteristic of

Markovian (white) noise. The high-frequency range of the spectral density is largely

unaltered, due to the dispersionless nature of the high frequency modes. In the

Appendix C, we discuss how a flat spectral density for acoustic phonons is consistent

with predictions from continuum elastic theory.

3.5 Anharmonic effects

The memory kernels depicted in Figure 3.1 have finite correlations even as t→ ∞.

Such persistent correlations are a hallmark of non-ergodicity, suggesting that the

adsorbate will not relax to thermal equilibrium. Indeed, all finite harmonic baths

are non-ergodic. However, even a very small amount of anharmonicity can break

the symmetry of the harmonic motion and cause the memory kernel to decay as

t→ ∞. Physically, such a decay is equivalent to heat-dissipation in the lattice due to

phonon-phonon interactions. In this section, we explore how anharmonicity affects the

memory by calculating the memory kernel using time-correlation functions computed

with molecular dynamics (MD) simulation. Methods for calculating memory kernels

using MD simulation are discussed in Appendix B. Here we use the same EMT model
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as in Section 3.2 for the surface motion, and model the surface-adsorbate interaction

as a Morse potential,

V (z) = D(1− e−α(z−z0)2) (3.21)

where the well-depth D is 0.77 eV, and the equilibrium distance z0 is 2.5 Å, and the

well-width α is treated as a tunable parameter that determines the adsorbate-surface

frequency ωas.
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Figure 3.8: (A) Memory kernel and (B) spectral density for a 4x4x4 Pt surface calculated
via Eqs. 3.1 and 3.2 versus with time-correlation functions calculated with MD simulations
(Eq. B.1).

Figure 3.8 compares memory kernels and spectral densities calculated from di-

agonalizing the Hessian (harmonic approximation) versus those directly from MD,

which account for anharmonicities. We see that the anharmonicities in the potential,

though very small in magnitude, broaden the spectral density and cause the mem-

ory to decay asymptotically, as expected. We also note that anharmonicity causes

a small shift in the frequency of the peaks in the spectral density as well, however,

such phonon-softening effects are also expected and a consequence of anharmonicity

affecting the dispersion relations [89].
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Besides memory decay and dissipation, anharmonicity (specifically in the adsorbate-

surface interactions) is also responsible for allowing adsorbates to diffuse on the sur-

face of the metal. The harmonic approximation made in arriving at Eq. 3.1 and

Eq. 3.2 forces the adsorbate to remain bound to its adsorption site for eternity. How-

ever, in reality, adsorbates diffuse along the surface, and even chemisorbed species will

hop between surface sites at a characteristic rate[90]. In order to model the influence

of surface diffusion on the memory kernel, we stochastically varied the surface site

the adsorbate was bound to over the course of an MD simulation. Waiting times were

sampled from an exponential distribution, such that the adsorbate would hop at a

certain average rate kh. Results from these simulations are shown in Figure 3.9.
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Figure 3.9: Dependence of (A) memory kernel and (B) spectral density on hopping rate
with ωas = 480 cm−1.

In Figure 3.9, we see that as the hopping rate increases, the spectral density

flattens, becoming more structureless and Markovian. Essentially, as the rate of

hopping becomes faster than the frequency of the phonon modes, the modes do not

have time to respond/relax before the adsorbate hops to another site. This mixing

of timescales causes the frequency information of the phonon bath to be lost. On

the other hand, when kh is much larger than the phonon frequencies, the spectral

density looks nearly identical to that of a particle fixed to a single site. For reference,

kh for chemisorbed species like CO kh is typically on the order of nanoseconds to

microseconds[90], which is much larger than the frequency of the local phonon mode

that dominates the contribution to the memory kernel. These observations imply
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that chemisorbed species form localized vibrational distortions that travel with them

as they move along the surface. Such behavior is highly reminiscent of a polaron,

more specifically, a surface polaron.

3.6 Ramifications for reaction rates

The most salient motivation for studying the effects of phonons on molecular

adsorbates is to derive how phonons affect rate constants of catalytic reactions. Here

we derive phononic corrections to rate constants of reaction near equilibrium using

harmonic transition-state theory (Eq. 2.35), noting once again that such a method

is essentially equivalent to Kramers-Grote-Hynes (KGH) theory, however in KGH it

is assumed that the coupling between the system and adsorbate remains the same in

the reactant and transition states, while in harmonic transition state we may relax

that assumption. We begin by deriving a formula for the phonon corrections in

general, and then specialize to the case of desorption rates and compare the results

of our model to experimental temperature dependent rate constants for CO and Xe

desorption from Pt(111).

Following the formalism Section 2.3, using harmonic transition state theory we

can express the rate constant for a reaction at a solid surface as in terms of the total

molecular + solid Hessian,

k =
λ‡

2π

√
det(HR)

det(H‡)
e−β(E‡−ER), (3.22)

where HR is the mass-weighted Hessian expanded around the reactant state, H‡ is the

mass-weighted Hessian expanded around the transition state, λ‡ is the frequency of

the unstable mode of H‡, and "det" denotes the matrix determinant. These Hessians

can be organized into a block structure corresponding to the molecular/adsorbate
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degrees of freedom, the solid degrees of freedom, and the coupling between them,

H =


HA C

CT HB

 . (3.23)

The determinant of such a block matrix may be evaluated as,

det(H) = det(HB)× det(HA −CTH−1
A C). (3.24)

Using this determinant identity together with Eq. 3.22 yields,

k =
1

2π
×

NS−1∏
i=0

ωi

ω‡
i

×

NA−1∏
i=0

f̃i

NA−1∏
i=1

f̃ ‡
i

× e−β∆E‡
, (3.25)

where NS and NA are the number of solid and adsorbate degrees of freedom respec-

tively (NS + NA = N)), ωi and ω‡
i are the phonon frequencies in the reactant and

transition state respectively, and f̃i and f̃ ‡
i are effective molecular frequencies in the

reactant and transition state respectively. Let HA be the mass-weighted Hessian

of the adsorbate degrees of freedom, then f̃i and f̃ ‡
i are the eigenfrequencies of an

effective molecular Hessian,

H̃A = HA −CΩΩΩ−2CT , (3.26)

where the shift term is equal to the instantaneous (t = 0) component of the memory

kernel, K(t = 0) = CΩΩΩ−2CT .

From Eq. 3.25, we see that phonons induce two correction factors to the rate con-

stant: the ratio of solid phonon frequencies between the reactant and transition state,

and the shift in molecular frequencies both in the reactant and transition state. The

ratio of phonon frequencies is largest when the reactant molecules are strongly coupled
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to the surface and the transition state is not. In Figure 3.1C we demonstrated even

a molecule strongly coupled to a surface affects only the highest frequency phonon

mode, leaving the bulk of the phonon density of states unchanged. Thus, we can

approximate the ratio of phonon frequencies as,

NS−1∏
i=0

ωi

ω‡
i

≈ ω̃D

ωD

, (3.27)

where ω̃D is the highest frequency phonon mode when the reactants are bound to the

surface and ωD is the bare solid Debye frequency. For physisorbed species ω̃D and

ωD are the same, however, for chemisorbed species the in the adsorbate frequencies

is a thermodynamic correction arising from phonons altering the free energy surface

along the reaction coordinate. Indeed, if we denote f̃0 as the adsorbate normal mode

along the reaction coordinate Eq. 3.25 can be simplified to,

k =
f̃0
2π

×
NS−1∏
i=0

ωi

ω‡
i

× e−β(∆E‡+T∆S̃‡), (3.28)

where ∆S̃‡ is the effective barrier entropy,

∆S̃‡ = kB

NA−1∑
i=0

ln

(
f̃ ‡
i

f̃i

)
. (3.29)

In the harmonic approximation this barrier entropy is independent of temperature,

but in a more general context it can be shown to be temperature dependent.

3.6.1 Surface desorption

The formalism described in the previous subsection can be applied to derive a rate

constant for surface desorption. For gas-phase desorption, the reaction coordinate

can be defined as the distance of the adsorbate center of mass from the surface.

Furthermore, in many cases, the desorption process is barrierless, meaning that at

the transition state the molecule and surface do not interact [48]. Thus, we can adapt
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Eq. 3.27 to express the gas-phase desorption rate constant,

kd =
ω̃as

2π
× ω̃D

ωD

× e−β∆E‡
, (3.30)

where ω̃as is the effective adsorbate-surface interaction frequency satisfying,

ω̃as =

√
µ

m
ω2
as −K(t = 0). (3.31)

While transition state theory is primarily a classical theory [63, 91–93], studies

have demonstrated improved agreement with experiment when introducing quantum

corrections, such as accounting for the rotational motion of the molecule or using

quantum harmonic oscillator partition functions instead of classical oscillator parti-

tion functions [48, 90]. We will thus compare four different models for the desorption

rate constant to experimental results: (1) a fixed-surface model using classical har-

monic oscillator partition functions and a rotation correction,

kd1 =
ωas

2π
× 2I

ℏ2β
× e−β∆E‡

, (3.32)

where I denotes the moment of inertia of the adsorbate. (2) a phonon-corrected model

using classical harmonic oscillator partition functions and a rotational correction,

kd2 =
ω̃as

2π
× ω̃D

ωD

× 2I

ℏ2β
× e−β∆E‡

, (3.33)

(3) a fixed-surface model using quantum harmonic oscillator partition functions and

a rotational correction,

kd3 =
1− e−βℏωas

2πβℏ
× 2I

ℏ2β
× e−β∆E‡

, (3.34)

and (4) a phonon-corrected model using quantum harmonic oscillator partition func-

tions and a rotational correction,

kd4 =
1− e−βℏω̃as

2πβℏ
× 1− e−βℏω̃D

1− e−βℏωD
× 2I

ℏ2β
× e−β∆E‡

. (3.35)
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Note that by "fixed-surface" we do not mean a surface at absolute zero, but rather a

surface that acts as an ideal, structureless, thermal environment.

3.6.2 Comparison to experiment

We have compared results from Eqs. 3.32 to 3.35 to experimental temperature-

dependent desorption rate constants for CO and Xe from a Pt(111) surface. Param-

eters used in computing Eqs. 3.32 to 3.35 are presented in Table 3.1. Note that

because Xe is an atomic species, its moment of inertia is 0, and thus we ignore the

rotational partition function factors for Xe calculations. The phonon corrections in

Eq. 3.33 and Eq. 3.35 were computed using a 4x4x8 EMT surface slab and subse-

quently averaged across the first Brillouin zone to approximate an infinite surface,

as described in Sec. 3.4. In the SI, we illustrate that the rate constant corrections

we present here are not sensitive to the size of the surface slab used, or whether one

accounts for phonon dispersion.

Table 3.1: Parameters used for computing desorption rate constants shown in Figure 3.11.

E‡ (eV) ωas (cm−1) ω̃as (cm−1) ω̃D (cm−1)

CO 1.47[90] 480[70] 164 203
Xe 0.245[94] 28[79] 21 156

The CO desorption rate constants were taken from Ref. 90, and the Xe desorption

rates were taken from Ref. 94. In Ref. 90, desorption rate constants were calculated

by fitting the time-dependent flux from a beam scattering experiment to two models:

a single exponential model and a bi-exponential model. The single exponential model

fit the entire flux signal, mixing contributions from terrace and steps. Meanwhile the

bi-exponential model separated the flux into a fast component, arising from terrace

desorption, and a slow component, arising from step to terrace diffusion followed by

terrace desorption. While our TST calculations do not include the role of steps, we

compare the results of our models to data both from the single exponential model

and the fast component of the bi-exponential for thoroughness and transparency.

In Figure 3.10A, we see that the phonon-corrected models (Eqs. 3.33 and 3.35)
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Figure 3.10: Rate constants for desorption from a Pt(111) surface. (A) CO desorption.
Grey squares are experimental data which mixed contributions from both steps and terraces.
Black circles refer experimental data where the kinetics of terrace desorption was isolated.
(B) Xe desorption.

give improved agreement with experimental results for CO desorption. In particular,

kd4 the quantum, flexible surface model and the terrace desorption rate constants

yield the best agreement. The improved agreement when using Eqs. 3.33 to 3.35

versus Eqs. 3.32 to 3.34 arises from the reduced adsorbate-surface frequency ω̃as.

Physically, the flexible surface reduces the stiffness of the adsorbate-surface bond,

leading to a lower frequency of attempts over the barrier and a lower rate prefactor.

In Figure 3.10B, we demonstrate results for Xe. Here, all the TST models lie

essentially on top of each other and are lower in value than the experimental rate

constants, although by a small margin. The smaller phonon corrections for Xe versus

CO are a natural result of the weaker interactions with the surface. Weaker coupling
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means a smallK(t = 0), leading to ω̃as ≈ ωas. Furthermore, weak coupling also results

in a phonon density of states that is unchanged from a bare lattice, implying ω̃D = ωD.

In general, the theory presented in this section suggests the phonon corrections to the

rate constant are much larger for chemisorbed species than physisorbed species.

It is worth emphasizing that using slightly different values for the surface binding

energy, ∆E‡, can substantially shift the quality of agreement of theoretical calcula-

tions with experiment. The major impediment to the first principles calculation of

chemical rates is still the calculation of the barrier energy, and the phonon corrections

to the rate constants seem to be a comparatively minor factor, even for chemisorbed

species. Indeed, the purpose of this section was not to demonstrate that the mag-

nitude of phonon corrections to reaction rates is large, but rather to illustrate that

the theoretical models we developed in Sections 2 and 3, when combined with transi-

tion state theory, produce physically interpretable results which correspond well with

existing experimental measurements.

3.7 Phonon response functions

Many important experiments, such as the surface acoustic wave experiments out-

lined in Chapter 1, apply external driving forces to the surface and/or adsorbate,

observing large increases in the reaction rates when such applied forces are at par-

ticular polarizations and/or frequencies[16, 17, 39]. The transition state theories we

previously developed cannot be used to understand such experiments as they are only

valid in ensembles near thermal equilibrium. In fact, understanding how reactions

respond to time-dependent external forces remains one of the grand challenges of

modern theoretical chemistry and non-equilibrium statistical mechanics[95, 96]. In

this section, we analyze the effect that external driving applied to a thin platinum

film has on the motion of the molecular adsorbate.

We begin with the explicit solid/bath equation of motion derived in Chapter 2
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(Eq. 2.9), but now include an additional driving force term,

..
xB(t) = −D2

BAxA(t)−D2
BBxB(t) + F(t), (3.36)

where F(t) is the external force acting on each surface atom. This equation may be

integrated analytically and inserted back into the equation of motion for adsorbates

yielding a GLE with an additional driving force term,

..
xA(t) = −∂VA

∂xA

(t)−
[
D2

AA −K(t = 0)
]
xA(t)−

∫ t

0

dτK(t−τ) .xA(t)+R(t)+

∫ t

0

χχχ(t−τ)f(t),
(3.37)

where f(t) is the time-dependent part of the external force vector, F(t) = Ff(t), and

the response function vector χχχ is given by,

χχχ = C
sin(ΩΩΩt)

ΩΩΩ
UTF. (3.38)

The definitions of C, ΩΩΩ and U were given in Section 2.1. The response function χχχ

is nearly equivalent to the position memory kernel ΘΘΘ defined in Eq. 2.13, and indeed

the two can be shown to be equal (up to a multiplicative constant) in the case where

the external force couples to the surface atoms in the same manner as the adsorbate,

F = DBA. In most experimentally relevant cases however, external forces are not

solely applied to the adsorption sites, but to the boundary atoms of the surface.

We study three different cases for applied force F and their concomitant effects on

the response function for the surface-normal motion of an adsorbate with ωas = 480

cm−1. The adsorbate is bound atop a surface site in the center of a 25x25x10 platinum

film. Schematics of cases studied are presented in Figure 3.11A. In the first case, an

extensional (surface-normal) force is applied to the bottom-layer of the thin Pt film.

In the second case a shear force is applied to the bottom-layer. In the final case, a

spherically symmetric force of radius 0.5 nm is applied at the edge of the top-layer of

the Pt film. The final case mimics many surface shockwave experiments [97]. Note

that in all these cases the time-envelope f(t) may be different, but this does not affect

χ.
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Figure 3.11: Schematics for (A) extensional forces, (B) shear forces, and (C) shockwave
forces used for computing χ. (D) Time-domain response functions for extensional, shear,
and shockwave forces. (F) Imaginary part of frequency-domain response function. Response
functions were calculated using a 25x25x10 Pt film with an EMT forcefield[71].

Figure 3.11D and E analyze time-domain response function and the imaginary part

of its Fourier transform, respectively. We see that the response of the adsorbate to

the extensional and surface-shock forces is significantly larger (by about two orders of

magnitude) than the response to the shear forces. This discrepancy in the response is

because extensional and surface-shock forces couple songly to a z-polarized acoustic

phonon that also couples strongly to the adsorbate, while the shear forces do not.

Our results seem to correspond to observations made in Ref. [16] wherein similar

extensional forces were observed to produce a rate enhancement for the oxidation

of ethanol to acetaldehyde on a palladium catalyst, but shear forces were not. The

strong coherence of the χext(t) suggests that a resonant force applied at the same

frequency to the catalyst would cause
∫ t

0
χ(t− τ)f(t) to grow over time, which might

allow the adsorbate to cross barriers more easily. Interestingly, while the magnitude

of χshock is similar χext, the oscillations in χshock are much less coherent, negating any

possible resonance effects.
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3.8 Conclusions

In this chapter, we have developed a theory for how surface phonons couple to

molecular adsorbates based on Mori-Zwanzig theory and the generalized Langevin

equation. By integrating out the solid degrees of freedom (assuming they could be

described harmonically), we derived a GLE for the adsorbate, wherein the memory

kernel is merely a sum of the phonon frequency of the solid weighted by their coupling

to the adsorbate. We demonstrated that this memory kernel depends sensitively on

the frequency of the adsorbate-surface bond. When the frequency of this bond is

smaller than the Debye frequency of the solid, adsorbates couple primarily to the

acoustic phonons of the solid. When the frequency of the bond is much larger than

the Debye frequency of the solid, adsorbates couple primarily to the dispersionless

local vibrations of the adsorption site. Anharmonicity causes the memory to decay

exponentially with time, but does not change the qualitative correlation between the

frequency of the surface-adsorbate bond and the dominant frequency in the memory

kernel. Subsequently, we used harmonic transition state theory to derive phononic

corrections to reaction rate constants. We show that these corrections improved agree-

ment between theory and experiment for CO desorption rates from Pt(111). Finally,

we studied the phonon response functions, demonstrating that applied extensional

forces couple far more strongly to adsorbates than applied shear forces.
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Chapter 4

Phonon-induced memory on surface

sites 1

4.1 Introduction

Molecular beam scattering experiments are an invaluable tool for understanding

the properties and mechanisms of surface reactions [19, 21–24, 26, 28, 29, 99–106].

In this chapter, we develop a generalized Langevin equation (GLE) based model

suitable for the simulation of the effects of surface vibrations in such experiments.

Rather than projecting out the entire solid to derive a GLE for the adsorbates degrees

of freedom, our model projects out the bulk lattice degrees of freedom to derive a

GLE for surface sites which are explicitly and anharmonically coupled to adsorbates.

Much like the memory kernels for adsorbates, the memory kernels for surface sites

also exhibit a strong coupling to particular acoustic phonon modes. We demonstrate

that nanoscale boundary conditions, such as those of atomistic simulation, cause the

acoustic modes to oscillate on chemical timescales. We show that this effect can lead

to a systematic decrease in sticking coefficients in surface scattering simulations from

the macroscopic limit. A GLE-based approach, such as we present here, can mitigate

these unwanted finite-size effects without necessitating large and computationally

expensive simulations.
1Based on work published in Ref. 98. Copyright 2023, American Chemical Society.
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Using the same GLE model described in Chapter 3 for surface scattering simula-

tions would be inappropriate due to the harmonic approximation for the adsorbate-

surface interaction. At sufficiently large distances, the adsorbate and surface no

longer interact, suggesting that the memory and random forces in a GLE for ad-

sorbates should be spatially dependent and decay to zero as the adsorbate-surface

distance increases. Indeed, the memory kernels presented in Section 3.5, which sup-

posedly account for anharmonicity, only average over the true spatial dependence of

the memory kernel. Capturing this spatial dependence of the memory is essential

for calculating the energy dissipated due to vibrations over the course of a surface

scattering trajectory. Unfortunately, the numerical parametrization and simulation

of GLEs with spatially-dependent memory are quite expensive. A simpler and more

elegant approach is to only project out the solid atoms that interact with adsorbates

and treat all of the adsorbate and adsorption site degrees of freedom explicitly. Under

such a scheme, the equations of motion become,

..
xA(t) = −∂VAS

∂xA

, (4.1)

..
xS(t) = −∂VAS

∂xS

−
[
ω2
S −KS(t = 0)

]
xS(t)−

∫ t

0

dτKS(t− τ)
.
xS(t) +RS(t), (4.2)

where xA and xS are the mass-weighted displacements of adsorbates and adsorption

sites respectively, VAS is the adsorbate-surface interaction, ωS is the local oscillation

frequency of adsorption sites, and KS and RS are the memory and random forces

respectively arising from the influence of bulk lattice motion on the adsorption sites.

We use the subscript roman S to differentiate this memory kernel from the memory

kernel acting on adsorbates discussed in Chapter 3.

Adelman and Doll[45] were the first to discuss in depth how the GLE could be

used to model the effect of substrate phonons on a site within a harmonic lattice

and the concomitant effects on gas-surface scattering. Later, Tully developed the

generalized Langevin oscillator (GLO) method, wherein the motion of a surface site

is described via a GLE with a memory kernel that is given by a single exponentially
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damped sinusoid [46]. As we discuss in Section 4.2.1, such a memory kernel is equiv-

alent to coupling the surface atom to a single dissipative (ghost) oscillator. Tully’s

GLO method has seen much success as a highly computationally efficient way of

modeling surface dynamics, particularly in application to molecular beam scattering

experiments [27, 83, 84, 107, 108]. However, modeling the dynamics of the surface

with a single mode is a limiting approximation; in principle, surface atoms should

couple to each normal mode of the lattice.

In this chapter, we extend Tully’s GLO model to allow for a memory kernel of

arbitrary complexity, and examine when and how the properties of the memory kernel

affect molecular adsorption and surface scattering. We call this model the lattice

generalized Langevin equation (LGLE). In order to parameterize the memory kernel,

we use data taken from atomistic simulations. Crucially, in Section 4.2 we show

that the qualitative properties of the memory kernel are independent of the atomistic

model details, such as forcefield parameters.

The remainder of this chapter is organized as follows. In Section 4.2, we detail

our simulation methods and review the extended variable transformation used to

map the non-Markovian dynamics to a bath of dissipative harmonic oscillators. In

Section 4.3, we analyze memory kernels derived from these simulations, varying the

choice of force fields, elemental composition, solvation state, and surface-slab size.

Finally, in Section 4.4 we discuss how the properties of the memory kernel generated

via our approach affect surface scattering, highlighting systematic errors that occur

in sticking coefficients when basing the memory kernel on data from small periodic

systems. Much of the content of this chapter is adapted from Ref. 98.

4.2 Methods

4.2.1 Extended variable transformation

Computing the integral over the memory kernel in Eq. 4.2 is computationally

intensive, especially for systems with long correlation times. A common strategy for
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simplifying this calculation is to expand the GLE back out into a set of Markovian

equations[109, 110]. These equations describe a system bilinearly coupled to a bath

of dissipative, stochastic harmonic oscillators. The advantage of using a dissipative

bath, as opposed to an energy conserving bath, is that an extended bath can often

be represented with one or two dissipative oscillators and that doing so dramatically

reduces the dimensionality of the equations of motion. Here we briefly summarize the

method, a more thorough derivation may be found in Appendix D.

Given a GLE with a memory kernel that is a finite sum of exponentially damped

sinusoids,

K(t) =
N∑
i=1

e−γit (Ci cos(ωit) +Di sin(ωit)) , (4.3)

the original non-Markovian equation of motion can be replaced with,

d

dt

 .
xA

b

 =

− ∂W
∂xA

0

+

 0 ΛΛΛAB

ΛΛΛBA ΛΛΛBB

 .
xA

b

+

0 0

0 ΣΣΣBB


dW

 . (4.4)

Here b is a set of bath variables we must involve in time with our system. dW is an

array of uncorrelated Gaussian random variables satisfying ⟨dWi(t)dWj(0)⟩ = δijδ(t),

where δij is the Kronecker delta and δ(t) the Dirac delta. The matrix ΛΛΛBB is block

diagonal with entries,

ΛΛΛBB =

 2γi
√
γ2i + ω2

i

−
√
γ2i + ω2

i 0

 , (4.5)

and ΛΛΛAB and ΛΛΛBA are arrays of form,

ΛΛΛAB =
(√

Ci

2
− 2

Diω2
i

γi

√
Ci

2
+ 2

Diω2
i

γi

)
, ΛΛΛBA =

√Ci

2
− 2

Diω2
i

γi√
Ci

2
+ 2

Diω2
i

γi

 . (4.6)

The matrix ΣΣΣBB is related to ΛΛΛBB by the equation,

ΣΣΣBBΣΣΣ
T
BB = kBT

(
ΛΛΛBB +ΛΛΛT

BB

)
, (4.7)

68



CHAPTER 4. PHONON-INDUCED MEMORY ON SURFACE SITES

which ensures that the ensuing dynamics obey the fluctuation-dissipation theorem.

Tully’s GLO model is based on the same approach beginning from Eq. 4.3 and

setting the number of terms N = 1. In the work we present in this manuscript, we

determine the optimal values of N , as determined based on the analysis of K(t). We

drop the sin terms in Eq. 4.3, thus casting the memory kernel as a set of exponentially

damped cosines and yielding a Lorentzian power spectral density of the form,

K̄(ω) =
N∑
i=1

Ci

(
γi

γ2i + (ω − ωi)2

)
. (4.8)

4.2.2 Simulation details

Simulations were performed using the Atomic Simulation Environment (ASE)

[73–78] and LAMMPS[111] packages. Simulations using Effective Medium Theory

(EMT) [71] or Embedded Atom Method (EAM) [112] forcefields for metal dynamics

were performed using ASE. The parameters for these forcefields were taken from

Ref. 113 and Ref. 114 respectively. Simulations using Lennard-Jones forcefield,

both solvated and in vacuum state, were performed using LAMMPS. Lennard-Jones

forcefield parameters were taken from Ref. 115. The solvent used was SPC/E [116].

All simulations were performed in two steps. First, a temperature equilibration

step was run for 50 picoseconds at 300K using a Langevin thermostat. Afterwards

simulations were run in a constant energy ensemble using the velocity Verlet algorithm

for 4 nanoseconds. Only data from the NVE step was used in subsequent analysis

and calculations. All simulations were performed using periodic boundary conditions

in the X/Y directions (parallel to the surface). Four atoms of the bottom row of the

unit cell were rigidly constrained in order to remove center of mass motion.

For the surface scattering simulations used to generate data for Section 4.4, 5000

independent trajectories were averaged per value of the incident velocity to obtain

sticking coefficients for GLE simulations, while 2000 independent trajectories were

averaged for EMT simulations. Each trajectory was twenty picoseconds in length,

which we found to be adequate for the convergence of results.
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4.3 Memory kernels for surface sites in metal lattices

We begin by analyzing the memory kernel for the fluctuations of a single atom site

in the surface of a 4x4x4 cell of Pt(111) with periodic boundary conditions. Results

were calculated for each surface site individually and subsequently averaged. All

memory kernels and spectral densities presented in the main text are calculated via

analysis of time-correlation functions from molecular dynamics (MD) simulation (see

Appendix B).

Figure 4.1A presents the orthogonal x, y, and z components of the memory ker-

nel calculated from all-atom simulations using an Effective Medium Theory (EMT)

forcefield. The x and y components arise from fluctuations in the plane of the lat-

tice and the z component arises from fluctuations normal to it. Note the anisotropy

between the x and y components and the z component, a simple consequence of

the difference in the coordination number, and anisotropy between longitudinal and

transverse modes. In the analysis that follows, we focus only on Kz—the compo-

nent of the memory kernel acting in the z coordinate—because fluctuations in this

direction (perpendicular to the metal surface) are most relevant to surface adsorp-

tion/desorption.

In Figure 4.1C we present the noise power spectrum (Fourier transform of the

memory kernel) of the z component Kz(ω) specifically. As elaborated upon in Section

2.1, each peak in the power spectrum gives information about the lattice phonon

modes and how they couple to the motion of a surface site. The value of ω at

each peak corresponds to the frequency of the mode, the width γ corresponds to the

timescale of energy exchange or dissipation between the mode and the surface site,

and the coefficient C indicates the coupling strength of the system to that particular

mode.

The spectral densities in Figure 4.1C are essentially bimodal. The red peak—

henceforth referred to as the acoustic peak—is centered at a low frequency (ω =

18.6cm−1) and thus exchanges energy relatively slowly (γ = 0.03ps−1), while the

blue peak—henceforth referred to as the Debye peak—is centered near the Debye fre-
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Figure 4.1: Memory kernel and random force power spectrum for surface sites of a Pt(111)
lattice computed using an EMT forcefield. (A) Memory kernel for fluctuations in x/y (in-
surface plane) and z (out of plane) directions. (B) z component of the memory kernel. Red
and blue lines are two exponential sinusoids optimized to fit the computed memory kernel
(grey line). (C) Power spectrum of z component of the memory kernel. The grey dashed
vertical line corresponds to the experimental Debye frequency. (D) Depiction of lattice
normal modes most associated with red and blue lines. τ is the period of the respective
normal mode. The yellow-highlighted sphere in the middle of the lattice represents the
chosen adsorption site, which is fixed in space, while the surrounding grey atoms represent
the fluctuating bulk lattice.

quency of Pt (ω = 131cm−1) and exchanges energy relatively rapidly (γ = 3.42ps−1).

By comparing the spectral densities computed from MD simulation to the spectral
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densities computed using the harmonic approximation, it is possible to determine

precisely which normal modes of the lattice are primarily responsible for these two

peaks. These normal modes are illustrated in Figure 4.1D. The acoustic peak arises

from a longitudinal acoustic oscillations normal to the surface plane. Meanwhile, the

Debye peak arises from many closely spaced normal modes near the Debye frequency,

which consist of atomic scale local oscillations.
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Figure 4.2: (A) Memory kernel and (B) spectral densities for surface site fluctuations
of Pt(111) simulated using three different atomistic models: Effective Medium Theory,
Embedded-Atom Method, and a Lennard-Jones model. The acoustic peak at 20 cm−1

of the spectral density has been scaled by a factor of 0.3 for the purposes of visual clarity.

In order to ensure the validity and transferability of our results, we tested the

forcefields other than EMT. These results are illustrated in Figure 4.2. The Lennard-

Jones (LJ) model is based on a very different underlying physics than the EMT/EAM

models (LJ model uses only pairwise interactions, while EMT/EAM are both many-

body potentials based on the local atom density). Despite this fact, all three models

produce the same qualitative bimodal form. Much of the quantitative difference
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between the EMT/EAM and LJ models can be explained by the fact that the LJ

model results in a stiffer lattice than both EMT and EAM. The lattice stiffness can

be roughly quantified in terms of the average value of the mass-weighted Hessian. For

EMT the stiffness of the 4x4x4 Pt(111) lattice is 19.5 kJ/(mol nm2), for EAM it is

19.8 kJ/(mol nm2), and for LJ it is 37.1 kJ/(mol nm2).

We also tested lattices of different elemental composition and surface facets. Once

again, although variations were observed in the location, widths, and heights of the

primary peaks of the spectral density, all of the lattices exhibited the same qualitative

bimodal response. It is worth noting that this universality is not trivial. The bimodal

behavior is not recovered in simple 1D systems with nearest-neighbor interactions (see

Ref. 117 and 118 and Appendix E for more details), and therefore is an emergent

property of the 3D metal lattice (see Appendix E).

4.3.1 Finite-size effects

Periodic boundary conditions are used in MD simulations to mimic an infinite sys-

tem, but can still introduce finite-size effects into phonon-mediated processes. Specif-

ically, the size of the crystalline solid sets the maximum phonon wavelength. As such,

increasing the size of the simulation should shift the frequencies of the acoustic modes,

which in turn affects the shape of the memory kernel. In Figure 4.3 we confirm that

the acoustic peak shifts to lower frequency as the size of the lattice increases, while

the Debye peak remains unchanged. Even when increasing the lattice size of ∼45

nm (8000 atoms), the memory kernel and power spectrum do not converge. In fact,

the frequency ratio between the acoustic peak of different size lattices roughly agrees

with the results of an isotropic wave equation, suggesting that the acoustic peak will

decrease like as 1/L where L is the side-length of the lattice.

The demonstration that the memory kernel exhibits significant finite size effects

has implications for the accuracy of simulation studies of surface phenomena. Perhaps

most notably, this demonstration suggests that in the macroscopic limit, the frequen-

cies of acoustic modes will be too low to affect any chemical dynamics at the surface.

In other words, the acoustic modes are effectively frozen. Therefore, for observables
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Figure 4.3: Memory kernel and spectral densities for surface site fluctuations of Pt(111)
lattices of different sizes. The plots on the right zoom-in on the regions near to acoustic and
Debye peaks respectively

that depend on memory, all finite-size simulations contain an intrinsic error which is

purely kinetic in nature. We demonstrate this explicitly in Section 4.4.

The size-dependence of the memory kernel may also have ramifications for nanopar-

ticle catalyst design, because it demonstrates how nanoparticle vibrational modes be-

have quite differently than their macroscopic counterparts, much as their electronic

modes do. Indeed, experimental studies of electron relaxation in metal-supported

nanoparticles have already shown that the phonon-mediated dissipation of electron

energy depends strongly on the nanoparticle size [119].

4.3.2 Solvation effects

We now consider the effects of an adjacent solvent on the memory kernel of surface

lattice vibrations. Thus far, we have assumed an idealized lattice in the limit of low

pressure and substrate surface coverage. Most catalysts operate under conditions

where there is significant surface coverage by solvent and/or reactive species. Here

we will explore how solvation affects surface site fluctuations by computing memory

kernels for Pt(111) surfaces solvated in SPC/E water using the CF approach. We

will save the more difficult, yet still very important question, of surface coverage by
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Figure 4.4: (A) Memory kernel and (B) spectral densities for surface site fluctuations of
Pt(111) simulated using a LJ model with and without SPC/E solvent.

physisorbed and chemisorbed species for future study.

Figure 4.4 demonstrates the difference between Pt(111) surfaces in vacuum versus

in solvent. The primary difference is in the damping of the acoustic mode, whose

coupling to the surface site motion is much smaller when the surface is solvated. This

effect is likely attributable to the additional pressure exerted by the solvent, making

large fluctuations in the direction normal to the surface plane more energetically

costly. The damping of the acoustic mode suggests that the finite-size effects discussed

previously are likely far less important for solvated surfaces than they are for surfaces

in the gas phase.

4.4 How memory affects scattering

Tully’s GLO model is often used in simulations of surface scattering (either reac-

tive or non-reactive) as an efficient computational method for describing energy loss
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to the lattice during the scattering process [27, 83, 84, 107, 108]. In this section, we

employ the LGLE for the same purpose, specifically studying the differences between

the finite-size limit and the macroscopic limit (when the low-energy acoustic modes

are held fixed).

We demonstrate our approach on the simple case of the non-reactive scattering

of Argon on Pt(111), in the direction normal to the surface. The PES describing the

interaction between the Argon atom and the Pt surface is taken to be of Morse form,

U(∆z) = D
[
1− e−a(∆z−z0)

]2
, (4.9)

where ∆z is the vertical distance between the Ar and the nearest Pt atom, D is

a parameter which controls the depth of the PES well, a controls the width of the

well, and z0 is the location of the well’s minimum. The values of these parameters

were fit from DFT calculations presented in Ref. 79 using the vdW-DF2 density

functional. Each scattering trajectory was initialized outside the Morse well at a

distance of z = 15 Angstroms, with a fixed initial velocity directed into the well

and randomized lattice atom positions/velocities drawn from a thermal distribution

at 300K. From these trajectories, the sticking probability, S, was calculated as the

ratio of trajectories that remain trapped within the well (z ≤ 15) Angstroms after a

collision with the surface.

Figure 4.5A illustrates variations in the sticking probability for using four different

simulations. The blue curve uses an all-atom simulation using an EMT forcefield

to treat the metal degrees of freedom. The red and orange curves use the LGLE

parameterized from a 4x4x4 EMT simulation to treat the metal. The red curve uses

only two damped sinusoids to fit K(t), while the orange curve uses a five term fit

to give a more accurate estimation of the memory kernel and power spectrum. The

black curve corresponds to the extrapolated macroscopic limit of the LGLE, wherein

the surface site motion is coupled to only to the Debye mode (see 4.5C).

The blue, red, and orange curves of Figure 4.5A largely agree with one another,

illustrating that the LGLE accurately captures the dynamics of the forcefield it is
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Figure 4.5: Sticking probabilities S as a function of the ratio of the incident kinetic energy
to the well depth KE(t = 0)/D. (A) Results for Morse PES with D = 6.62eV. (B) Results
for Morse PES with an increased well-depth, D = 30.62eV. (C) Power spectra for a 4x4x4
Pt(111) lattice calculated using the CF method overlayed with the fits used to calculate
results in (A) and (B).

parameterized from. More interesting however, is the consistent increase in the stick-

ing probability between the nanoscale lattices (either modeled with EMT or GLE)

and the macroscopic limit. This discrepancy can be qualitatively explained by the

relative dissipation rates of the acoustic and Debye modes. Since nanoscale lattices

couple the motion of surface atoms to the acoustic modes, and these acoustic modes

dissipate energy much slower than the Debye mode, collisions with nanoscale lattices

are more elastic.

In Figure 4.5B we study the scattering probability of a stickier particle with a

well-depth that is nearly 5 times greater. Increasing D increases the effective coupling

between the adsorbate and the metal phonon bath, exacerbating the finite-size effects

seen in Figure 4.5B. The results in Figure 4.5 highlight an error that is inherent to

nanoscale simulations of surface-molecule interactions. The implication of Figure 4.5
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is that all nanoscale atomistic simulations of surface scattering contain an intrinsic

error. This error is due purely to the phonon confinement effects imposed by the

boundary conditions, and can be exacerbated by errors in the adsorbate’s binding

energy to the metal.

4.5 Conclusions

In this paper, we presented the lattice generalized Langevin equation, a model

for simulating the effects of lattice phonons on surface atoms. The most important

parameter in this model is the memory kernel. We parameterize the memory kernel

using data from MD simulations, showing that it has a universal bimodal form due

to coupling to both coherent acoustic oscillations as well as modes near the Debye

frequency. This bimodal form is non-trivial, as it is not recovered in exactly solvable

1D systems with nearest neighbor interactions. Since the frequency of the acoustic

oscillations depends on the size of the lattice, and nanoscale MD simulations impose

unphysical phonon confinement effects, observables which depend on surface phonons

will also contain artifacts. We showed that this was indeed the case for the surface

trapping probability for a simple system of Argon on Pt(111).

The advantages of the LGLE model are, first, its computational efficiency, as it re-

duces the N degrees of freedom of the lattice to only a small handful of terms needed

to describe the motion of a surface site. This dimensionality reduction makes the

LGLE much faster than all-atom forcefields and particularly well-suited for the simu-

lation of trajectory ensembles. Second, the insight that can be gained from studying

the memory kernel, as we illustrated throughout this paper. Third, the transferability

of the model. Once the LGLE is parameterized for a given type of lattice, any surface

reaction with that lattice can use the same LGLE, given that the thermodynamic

conditions (temperature/pressure/surface coverage/solvation) are roughly the same.
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Part II

Solvent fluctuations at surfaces
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Chapter 5

The influence of solvent on surface

adsorption and desorption

5.1 Introduction

In Part I we focused on the dynamics and behavior of gas-phase adsorbates in-

teracting with solid surfaces. However, many important technologies, including elec-

trolyzers, batteries, fuel cells, hydrothermal reforming, and some capacitors, require

controlling and exploiting chemical reactions that occur at solid-liquid interfaces [120–

123]. In such reactions, the solvent degrees of freedom may also play crucial role in

the reaction mechanism, thermodynamics and rate. [124–129]

Computational tools, such as classical and first-principles molecular dynamics

simulations, can be utilized to gain insight into the mechanisms of surface chemi-

cal processes. However, the application of these tools to solvated interfaces is often

impeded by the significant computational burden of simulating an extended explicit

solvent due to system size and sampling requirements. Simulation cells with dimen-

sions larger than 1nm3 (and ideally much larger) are required to develop a solid-liquid

interface that also includes a region of bulk liquid and an interfacial liquid surface

that is free from finite size effects (e.g., due to orientational correlations that span

the periodic boundaries). In addition, these large simulations must be sampled in

order to represent the effects of thermal fluctuations in local solvent structure and
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composition, e.g., due to the presence or absence of a dilute electrolyte species. Due

to these challenges, molecular dynamics simulations of solvated reactions at metal

interfaces often employ implicit solvent or small ice-like water layers [124–126, 130].

Such approaches have provided valuable insight, but they can neglect longer spa-

tiotemporal correlations, focusing only on how water affects the energetics of local

complexes. In principle, the computational burden of sampling the solvent could be

reduced using enhanced sampling methods like metadynamics and/or the projection

operator methods discussed in Part I. However, it is difficult to determine important

and physically meaningfully collective coordinates of the solvent a priori.

In order to address these issues in this chapter, we use transition path sampling

(TPS) to test the importance of different collective coordinates in solvent phase ad-

sorption and desorption. We specifically study a model system of CO on a Pt surface,

very similar to the model introduced in Chapter 3, due to its simplicity as well as the

ubiquitous importance of CO adsorption in many catalytic reactions and processes,

such as carbon dioxide (CO2) electroreduction[131], Fischer-Tropsch synthesis [132],

automotive catalysts [133], and supercritical-water biomass gasification [134].

The potential energy surface (PES) for CO desorption at a gas-phase Pt interface

can be represented with only a few coordinates (e.g., CO-surface distance, CO ori-

entation). In contrast, the PES for CO desorption at a liquid water-Pt interface is

rugged and inherently high dimensional due to the influence of solvent configuration

on the process. On this rugged landscape, there are numerous possible paths, corre-

sponding to different molecular mechanisms. Determining which of these paths are

relevant and which collective variables unite them can present a significant challenge.

The method of transition path sampling (TPS), first proposed by Dellago et al.,[135,

136] was developed to address this challenge. TPS combined with tools of statistical

analysis and enhanced sampling can be used to identify and validate possible reaction

coordinates that incorporate the collective solvent degrees of freedom, and derive re-

action free energy surfaces based on these coordinates. Using TPS we determine that

solvent reorganization, as quantified by the solvent coordination number, is an impor-

tant component of the reaction coordinate, thereby demonstrating solvent’s crucial
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role in the CO desorption pathway.

The remainder of this chapter is organized as follows. In Chapter 5.2, we provide

an introduction to TPS and describe how it can be used to determine the importance

of putative collective coordinates. In Chapter 5.2, we outline procedure and simu-

lation methods we used to generate our results, and in Chapter 5.3 we provide and

analyze said results. Specifically, using TPS we examine three potential collective

variables relevant to CO adsorption/desorption: the distance from the surface, the

solvent coordination number, and the CO orientation. We show that both the dis-

tance to the surface and the solvent coordination number are crucial to understanding

the transition states of the desorption process. Thereafter, we use metadynamics to

sample the potential of mean force along these collective coordinates and demonstrate

that while in gas-phase the desorption process has no barrier, in solution phase the

potential of mean force has a broad transition state arising from solvent reorganiza-

tion.

5.2 Transition path sampling

Here we provide an overview of TPS theory noting that excellent reviews of TPS

can be found in Ref. 137 and Ref. 138. TPS is a method for the Monte-Carlo sampling

of trajectories connecting reactants and products, which here we define to be adsorbed

(A) and desorbed (D) states, respectively. A trajectory is a time-ordered set of states,

Γ(τ) = {Γ0,Γdt,Γ2dt, . . . ,Γτ}, where Γt = {qt,pt} is a vector of both positions and

momenta at time t, and τ denotes the total length of the trajectory. Let Γ(o) denote an

initial trajectory in this transition path ensemble. In order to sample a new trajectory

Γ(n) from Γ(o), we first select a time index t′, sample a new state Γ
(n)
t′ , and accept

that state based on the Metropolis criterion,

P (Γ
(n)
t′ |Γ(o)

t′ ) = min

[
1,
p(Γ

(n)
t′ )

p(Γ
(o)
t′ )

]
. (5.1)
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Subsequently, we integrate the equations of motion forward and backward in time

from t = t′ to t = τ and t = 0. In order to ensure that the entire trajectory connects

reactants and products we accept the trajectory based on the criterion,

P (Γ(n)|Γ(o)) = hA(Γ
(n)
0 )hD(Γ

(n)
τ )P (Γ

(n)
t′ |Γ(o)

t′ ) (5.2)

where the indicator function hA(Γ
(n)
0 ) returns 0 if the trajectory hasn’t reached the

reactant/adsorption (A) basin by t = 0 and otherwise returns one, and hD(Γadfs
(n)
τ )

works similarly for the product/desorption D basin. The use of hA and hD ensures

all paths sampled are legitimate transition paths connecting reactants and products.

The application of a TPS algorithm yields an ensemble of trajectories that connect

the reactant and product states, i.e., the A and D states in the case of this study.

Once this ensemble has been constructed, it can be analyzed to determine statistics

of the transition process. One of the most important statistics is the committor, pD,

the probability that a system which begins is in neither the A nor D basin, will relax

to state D. The committor is a statistical indicator of the reaction progress. The

transition state ensemble (TSE) can be identified as an isocomittor surface where

pD = pA = 0.5, as such states are, by definition, equally likely to relax to reactants

or products. We note that in general the value of pD for a given configuration, and

therefore the properties of the TSE, depend on how A and D are defined and on how

trajectories are constrained during the implementation of TPS.

Analysis of the TSE allows one to discern which collective coordinates are neces-

sary to characterize the transition state and are therefore good reaction coordinates.

The statistics of committor values, quantified via the committor distribution function,

P (pD), can be analyzed to evaluate whether a proposed reaction coordinate is a good

descriptor of the reaction mechanism. More specifically, the so-called histogram test

considered the shape of P (pD) evaluated at the value of the reaction coordinate for

which ⟨pD⟩ = 0.5.[139] A reaction coordinate that accurately captures the reaction

mechanism will present a histogram (P (pD)) that is narrowly peaked at pD = 0.5. As

the shape of the committor histogram is highly dependent on the number of bins and
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z = 0 Å

Figure 5.1: Snapshot of simulation system consisting of a three-layer Pt(100) surface with
CO molecule adsorbed atop a central site and 57 water molecules in 1650 Å3 volume above
surface to achieve a water density of roughly 1 gm/cm3.

the size of the dataset, it is common to fit the mean and variance to a beta-distribution

model, giving a less biased estimate of the distribution [140].

5.3 Simulation methods

Our basic model, illustrated in Figure 5.1, consists of a 4×4×3 (atoms) Pt(100)

surface with a single CO molecule adsorbed atop a central surface site. The surface

was solvated by a layer of 57 water molecules roughly 1.5nm thick to yield a water

density of 1 g/cm3. The system was periodically replicated in the directions parallel

to the Pt surface. Fixed, reflecting boundary conditions were used in the direction

normal to the surface. A SPC-pol3 forcefield[141] was used to model the water–water

interactions. For metal–water interactions, we used universal force-field parameters

with Lorentz-Berthelot[142] mixing rules. To accurately capture the interaction be-

tween the carbon atom of the CO molecule (CCO) and the platinum surface, we fitted

density functional theory calculations to a Morse potential,

UC−Pt(z) = D(1− e−α(z−z0)2) (5.3)

where z is the displacement between the carbon atom of CO and a Pt surface atom,

the well-depth D is 346 meV, the well width α is 3 Å−1, and the equilibrium C–Pt
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distance is 2.5 angstroms. These parameters were fit to DFT calculations of a single

CO molecule adsorbed atop a Pt(100) site using BEEF-vdW functional. A plane-

wave basis set was used with a 600 eV energy cutoff. Electronic structure calculations

were performed with the GPAW program [143, 144]. All simulations were performed

in LAMMPS [111] using a constant-temperature (NVT thermostat) at 300K, with Pt

atoms held fixed.

For TPS simulations, we defined the states A and D based on the distance of the

CO carbon from the plane of the Pt surface, which we denote as z (z = 0 defines

the position of the Pt surface). Specifically, we define the adsorbed state, A, as all

configurations with z < 2.5 angstroms and the desorbed state, D, as all configura-

tions with z > 5.0 angstroms. We used the open source package openpathsampling to

generate 2000 different transition paths connecting the two basins.[145] We employed

the spring algorithm [146] for our calculations, which is similar in concept the the

shooting algorithm but randomizes the time index at which new trajectories are gen-

erated, picking a new random velocity at a given timestep. Note that spring shooting

algorithms always use a stochastic thermostat. We assigned a configuration to the

TSE if it was one of the 1000 configurations closest to the pD = 0.5 configuration.

After using TPS to identify a collective reaction coordinate, we utilized meta-

dynamics to compute the associated free energy surface. Metadynamics, developed

by Laio and Parrinello,[147] samples rare events by adding an artificial Gaussian bias

potential to the existing potential energy surface. The bias potential is updated at

regular intervals in an MD simulation and pushes the system away from regions that

have been heavily sampled. Metadynamics has been applied to numerous problems

in chemistry and materials science [148–154]. We performed well-tempered meta-

dynamics[155, 156] by adding a bias potential every 100 fs with a bias-factor of 5,

Gaussian height 0.5 kcal/mol and width 0.2 in an NVT MD simulation at 300 K.

We ran these MD simulations for 10 ns each to obtain a two-dimensional free-energy

surface (FES) for the chosen collective variables through TPS - z-coordinate of CO

molecule (z), and water coordination around CO molecule (ηw). Metadynamics sim-

ulations were performed using the PLUMED plugin in LAMMPS [157].
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We note that our TPS simulations utilized an additional Morse potential set at

z = 13.5, with parameters D = 0.43 eV, α = 3 Å−1, and r0 = 0.5 Å. The purpose

of this additional potential is to introduce an artificial basin of attraction to the

desorbed state, which otherwise presents a flat free-energy profile. By introducing

this basin of attraction, the TPS trajectories can be shorter in length, leading to

improved computational efficiency. This basin is displaced from the transition state

and thus does not influence the characteristics of the transition state. The basin is

not present in the calculation of the free energy surfaces.

5.4 Results and discussion

5.4.1 TPS

For any adsorption/desorption process, the direction normal to the metal surface

(the z-axis in Figure 5.1) is an intuitive choice of reaction coordinate. However,

especially in the presence of a solvent, there may be other collective variables, for

example the adsorbate’s surroundings and its orientation, that are crucial for modeling

the transition states of the desorption process. To determine the significance of a given

collective variable, we use TPS and committor analysis, as described in the Section

2.1.

Figure 5.2(A)–(C) shows the average committor probability pD for a configuration

to reach the desorbed state as a function of three collective variables: zC, ηW, and

ϕCO. zC is the distance between CCO and the Pt surface. ηW, which we henceforth

term the solvent coordination number, is defined as a function of the distance of the

nearest-neighboring water molecules to the CO molecule,

ηW =
∑
i


0.5

[
cos

(
πdi
rc

)
+ 1

]
di < rc

0 di ≥ rc

(5.4)

where the index i goes over all water molecules, di is the distance between CCO and
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(A) (B) (C)

(D) (E) (F)

Figure 5.2: (A) Committor as a function of distance to surface. The black dashed line is
a windowed average over the bar heights with a window of 5. The red vertical dashed line
corresponds to the configuration closest to pD = 0.5. (B) Committor as a function of water
coordination number. (C) Committor as a function of CO orientation. (D) Committor
histogram (grey bars) and beta distribution model (black dashed line) for configurations
near z‡C. (E) Committor histogram and beta distribution model for configurations near η‡W.
(F) Committor histogram and beta distribution model for configurations near ϕ‡

CO.

the center of mass of water molecule i, and rc is a cutoff radius. We set rc to 6.5

angstroms. Eq. 5.4 allows us to quantify the CO molecule’s local solvation shell using

a differentiable quantity suitable for the application of enhanced sampling methods.

ϕCO is the CO molecule’s orientation relative to the surface, with 0° corresponding to

the carbon-down configuration.

As expected, the committor probability increased monotonically with zC, rein-

forcing the trivial notion that zC, is an important collective variable. We also ob-

serve that pD(ηW) increases monotonically, indicating that solvent coordination is

also important. The Pearson correlation coefficient between zC and ηW taken over all

configurations sampled is about 0.7, indicating that both collective variables, while

correlated, contain some independent information. In contrast to zC and ηW, the ϕCO
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shows no clear correlation to the committor, indicating that it is not an important

collective variable determining the outcome of CO adsorption/desorption. Previous

experimental and theoretical studies have suggested that, in gas phase, CO orienta-

tion can play an important factor in kinetics of adsorption and desorption when at

sufficiently high temperature, due to the large loss in rotational entropy upon binding

to the surface [158–160]. However, the same studies found that such effects were neg-

ligible at room temperature. Since all our simulations were carried out at 300K, our

finding that ϕCO is not correlated with the committor is consistent with the existing

literature for gas-phase desorption. However, we note that in general the committor

is a temperature-dependent variable, and the conclusions here may not necessarily

hold true at higher temperatures.

(A)

(B)

Figure 5.3: (A) 2D committor probability as a function of the distance to surface and
the water coordination number. The black vertical line corresponds to zC = z‡C, the brown
horizontal line corresponds to ηW = η‡W, and the red dashed line to states along ηW =
1.92zC+17.18. (B) Committor histogram and beta distribution model taken for states near
the red dashed line in 3A.
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The red, vertical, dashed lines in Figure 5.2(A)–(C) represent the value of each

coordinate for which the mean committor has the value ⟨pD⟩ = 0.5. We henceforth

denote the value of the collective variables at these transition states with a superscript

double dagger, e.g., z‡. Figure 5.2(D)–(F) presents the committor distribution func-

tion (gray bars) and corresponding beta-distribution estimates (black dashed lines),

corresponding to 1000 configurations taken near these transition states. A good co-

ordinate should display a histogram narrowly peaked around pD = 0.5, meaning

typical configurations at the nominal transition state also have pD = 0.5. As ex-

pected, all of these distributions have means at (pD ≈ 0.5). Unsurprisingly, the

histogram/distribution for ϕCO is particularly wide, suggesting that ϕ‡
CO = 125 is not

a good description of the transition state.

The committor distributions for both z‡C and η‡W transition states are centered near

the mean; however, they are still much wider than what is considered gold-standard

for a good collective coordinate (σ = 0.15 [140]), illustrating that there are still many

configurations with z‡C ≈ 4.04 or η‡W ≈ 9.63 which do not necessarily have pD ≈ 0.5.

Therefore, while both zC and ηW correlate strongly with the adsorption/desorption

process, alone they do not seem to capture all the information necessary to capture

the transition states, and therefore the kinetics.

To further expand on these results, in Figure 5.3(A) we present a 2-dimensional

histogram of the committer probability as a function of zC and ηW simultaneously.

The previous transition states z‡C and η‡W are indicated by the black vertical and

horizontal lines respectively. One can clearly see that many configurations along

these lines have committor values either much higher or much lower than pD = 0.5.

For example, a CO molecule at zC = z‡C is very likely to desorb if it also begins with

a solvent coordination number ηW > 12. Instead of the one-dimensional transition

state surfaces defined by z‡C and η‡W, a better transition state surface can be defined

along the line η‡W = 1.92z‡C + 17.18, shown as the red dashed line in Figure 5.3(A).

The committor histogram along this 2D transition-state surface, Figure 5.3(B), has

a significantly smaller standard deviation (σ = 0.18) than considering zC and ηW

alone. However, we acknowledge that there may yet be some other subtle solvent
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coordinates playing a role in the desorption process.

5.4.2 Free-energy surface

(A)

(B) (C)

Figure 5.4: (A) 2D FES along zC and ηW calculated using metadynamics. The black con-
tour corresponds to the path of minimum local free-energy stage (steepest descent) between
reactants and products. A minor windowed average smoothing, with a window of 3 was
applied to this contour to remove noise. The green contour represents a path of constant
ηW. The red dashed line represents the transition state surface shown in Figure 2A found
using TPS. (B) 1D cross-section of free-energy as a function of zC along the χ and ηW = 6.2
contours, as well as the gas phase desorption free-energy surface. (C) 1D cross-section of
free-energy as a function of ηW along the χ contour. The red vertical lines show the pD = 0.5
states found with TPS.

In Figure 5.4, we present the 2-dimensional FES - F - for CO desorption along

the relevant coordinates identified by committor analysis, zC and ηW. This FES

was calculated using metadynamics. Note that while the adsorption basin is clearly
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evident, with a minimum around zC = 1.3 and ηW = 6.4, and the desorption basin is

quite wide.

We considered two desorption pathways. The green line corresponds to a process

where the water coordination number remains constant as the CO leaves the surface.

The black line corresponds to the pathway along the gradient of the free-energy surface

(henceforth denoted as χ) between the adsorbed and desorbed states. This is the path

a CO molecule is most likely to travel. Analyzing the changes in slope of χ allows

one to make conclusions about the steps and therefore mechanism of the desorption

pathway. In particular, the results of Figure 5.4A suggest a multistep mechanism

where, first, the solvent coordination number increases at roughly constant zC, second,

the molecule increases its distance to the surface at roughly constant ηW, and third,

both zC and ηW increase together. The initial increase in the coordination number

occurs due to a constriction of the first solvation shell around the CO molecule before

it desorbs.

In Figure 5.4B and Figure 5.4C, we present one-dimensional cross sections of F

for both the constant-ηW and χ pathways, and contrast them to the gas-phase Pt-CO

potential of mean force for a single CO molecule desorbing in vacuum. Comparing

the dashed-dotted green line and solid black line reveals that the reaction barrier is

much higher (≈ 0.5eV) if CO does increase its coordination number while desorbing.

Also notable is the presence of a barrier for the desorption of CO in solvent (along χ),

which does not exist for the corresponding system in vacuum. This barrier/transition

state is not a result of a single, high-energy, bottleneck conformation, as in gas phase

reactions, but a collective effect arising from solvent reorganization.[161]. The collec-

tive nature of this transition state, similar to transition states observed in classical

nucleation theory, supports why it is naturally broad.

The red-dotted lines in Figure 5.4 correspond to the transition states (pD = 0.5)

we found using TPS. We see excellent agreement with the location of these lines and

the location of the barriers on the free-energy surface. The agreement between TPS

and metadynamics emphasizes the robustness of our results.

With regards to kinetics, the increased free-energy barrier to desorption between
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the gas and liquid phase (∼0.2 eV), suggests a much slower desorption rate in so-

lution. More interestingly, the fact that solvent reorganization must occur in order

for the reagent to desorb highlights the importance of understanding surface–solvent

interactions. A surface which interacts with solvent very strongly may hinder solute

desorption not only directly, but through hindering solvent reorganization. In this

study, we used a simple Lennard Jones model for the H2O–Pt interaction, which leads

to a somewhat weak interaction. We believe that a fruitful area for further research

may be to study the effects of solvent-reorganization under different, and in particular

stronger, surface-solvent potentials.

5.5 Conclusions

In this paper, we have used enhanced sampling methods to analyze the role of

solvent in the desorption of a model system of a CO molecule on a Pt(100) surface.

We first employed transition path sampling to determine the relative importance of

different collective coordinates. Using the committor analysis we illustrated that both

the distance to the surface and the solvent coordination number are needed to give

a good description of transition states. Conversely, we found that the orientation of

the CO molecule played a negligible role in the desorption process. We subsequently

sampled the free-energy surface along our multi-dimensional reaction coordinate us-

ing metadynamics. Both methods showed excellent correspondence in the locations

of transition states. Our metadynamics analysis indicated that desorption happens

in a multi-step mechanism, where the initial step involves solvent reorganization and

nearly constant distance to the surface. Not allowing for solvent reorganization leads

to a free-energy barrier that is significantly higher. Our results highlight the impor-

tance of the solvent for kinetics of reactions at interfaces.
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Exciton dynamics
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Chapter 6

Machine learning Frenkel

Hamiltonians 1

6.1 Introduction

The performance of organic-based semiconductors depends not only on their molec-

ular composition but also on how molecules are arranged within the material. The

inter- and intramolecular interactions that underlie this dependence are well under-

stood, but predicting how many such interactions combine to produce macroscopic

material properties remains a significant scientific problem. Because these materials

are often amorphous, lacking in microscopic periodicity, this problem cannot gener-

ally be solved with analytical theory. Computational modeling has played and will

continue to play a vital role in advancing our understanding of these materials and

guiding their development. Unfortunately, current methods for modeling materials

with specific molecular structures include computational bottlenecks that limit their

scope to system sizes that are too small to infer bulk properties. Here, we demon-

strate that these bottlenecks can be effectively eliminated through the application

of machine learning (ML), thereby enabling existing frameworks for computational

modeling to be extended to larger and more experimentally relevant system sizes.

Organic molecular semiconductors (OMSs) provide an attractive alternative to
1Based on work published in Ref. 162. Copyright 2020, American Institute of Physics.
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traditional inorganic semiconductors and have been increasingly utilized in the de-

velopment of devices with notable applications to lighting, solar energy conversion,

and even nanoscle electronic circuitry.[163–167] The performance of these materials is

determined in large part by the properties of Coulombically bound excited electron-

hole pairs, known as Frenkel excitons. When molecules within the material are weakly

coupled, the static and dynamic properties of these excitons can be efficiently simu-

lated with the Frenkel-Davydov model [168, 169], in which the molecular system is

described in terms of a Hamiltonian for a coupled network of singly excitable chro-

mophores. When appropriately parameterized, this efficient model has been shown to

accurately reproduce experimental measurements, [170, 171] and large scale electronic

structure calculations.[171–174]

The Frenkel Hamiltonian can be parameterized directly from first-principles based

on all-atom configurations of representative systems of many organic conjugated

molecules [169, 171, 173, 174]. Unfortunately, the procedure for this parameteriza-

tion requires performing, at a minimum, one excited-state electronic-structure (ES)

calculation per fragment. This cost is further exacerbated if one incorporates time

dependence into the parameters, for example by analyzing a time series of configu-

rations generated from molecular dynamics (MD) simulation. Despite the computa-

tional cost, including explicitly derived time dependence in the Frenkel Hamiltonian

provides several key advantages over static models or models with phenomenolog-

ical time dependence. Most significantly, trajectory-based parameterizations allow

one to systematically evaluate the consequences of molecular disorder and correlated

environmental noise on exciton transport.[171, 175] However, even for a system con-

taining ∼10 chromophores (far below any reasonable approximation of the bulk), a

1ns simulation can require ∼ 106 ES calculations. Even with the least demanding ES

methods, this requirement represents an extremely large computationally expense.

Notably, however, many of the systems of interest, such as organic semiconduc-

tors [171, 175–178], DNA nanowires [179, 180], and biological light-harvesting com-

plexes [174, 181–183] are comprised of many identical chromophore units with very

similar electronic structure properties, e.g., differing in nuclear or environmental con-
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figuration. Here, we circumvent the costly model parameterization by developing a

ML model to accelerate the computations associated with the ES calculations. This

model utilizes the similarities across different configurations to rapidly predict molec-

ular excitation energies and intermolecular electronic couplings. In this manuscript,

we present this ML model and examine its application to two different OMSs mor-

phologies made up of sexithiophene (T6) molecules.

The first system is a monolayer phase, in which molecules are aligned longitudi-

nally in a manner analogous to experimental structures obtained via vapor deposition

[184–186]. The second system is a completely amorphous bulk phase. We choose to

study T6 because it has been widely characterized experimentally [184, 186–197], and

its optoelectronic properties can be generalized to polythiophenes (such as P3HT).

Mechanistic insight into the interplay between spatial disorder and exciton transport

in these systems and other OMSs is key to making them more efficient and tunable,

and our ML approach is an important step for building computer models capable of

giving such insight.

All Atom Configuration

NN

Frenkel Hamiltonian

KRR �qf

Vmn

Em

Vmn

KRR

E1 … VN1
⋱ Vnm

⋮ Em ⋮
Vmn ⋱

V1N … EN

Figure 6.1: Depiction of machine learning schemes described by this work. Three machine
learning models are tested, one for the excitation energy and two for the excitonic couplings.
The deep neural network (DNN) model for direct prediction of couplings is shown to perform
worse than the transition charge based kernel ridge regression (KRR) model.

Our approach to building a ML model Frenkel Hamiltonian, as illustrated in Fig-

ure 6.1, is to train separate models for the diagonal and off-diagonal elements, corre-
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sponding to the excitation energies, Em, and intermolecular electronic couplings, Vmn,

using information only from the nuclear conformations of the constituent molecules.

We consider two distinct approaches to building a ML model for Vmn. The first is

to predict Vmn directly from bimolecular features. The second, is to predict a set

of atom-centered transition charges using unimolecular features, from which the cou-

pling may be obtained. We show that this transition charge approach is far superior

to the direct approach, even when taking into account the additional error from the

transition charge embedding.

In all cases, we evaluate the performance of our ML model through a set of four

rigorous criteria. The first criteria is that the model apply to a broad range of ES

methods, and therefore, we study its performance on both semi-empirical Pariser-

Parr-Pople/Configurations Interaction Singles (PPP/CIS) [198] and time-dependent

density functional theory (TDDFT) calculations. The second criteria is that the

model require no more than 10,000 ES calculations as training data to yield error

levels below that of the intrinsic uncertainty in the ES method. Third, the model

should produce significantly less error than the intrinsic fluctuations in Em and Vmn

given by the interactions within the MD bath. The final criteria is that the model

be transferable, meaning it should still perform well when encountering molecular

conformations far outside what it was trained on. This criterion not only gives us

added confidence in the performance of our model, but also allows us to apply our

model beyond the morphology it was originally trained on. We show that both our Em

ML model and our transition charge based Vmn ML model satisfy the aforementioned

criteria.

The organization of this chapter is as follows. We give a derivation the Frenkel

Hamiltonian and associated matrix elements from first principles in Section 6.2.

We then give a description of methods used for data generation, organization, and

machine-learning in Section 6.3. In Secs. 6.4 through 6.6, we development and evalu-

ate the ML models for the excitation energies and intermolecular electronic couplings.

Finally, in Sec. 6.7, we provide concluding remarks.
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6.2 The Frenkel-Davydov Model

The Frenkel-Davydov model supposes that the excited-state properties of an N

molecule system may be expressed in terms of a reduced excitonic Hamiltonian

ĤF =
∑
m

Em |m⟩ ⟨m|+
∑
m ̸=n

Vmn |n⟩ ⟨m| , (6.1)

where |m⟩ represents the basis state where molecule m is in the excited state (all

other molecules are assumed to be in the ground state), Em is the excitation energy

of molecule m and Vmn is the coupling between excitations on molecules m and n.

When using CIS or TDDFT with the Tamm-Dancoff approximation (TDDFT/TDA),

the basis states in Eq. 6.1 may be expressed as

|m⟩ =
∑
ia

Dm
ia

∣∣∣∣ψm
a (
∏
j ̸=i

ψm
j )ψ

n
1ψ

n
2 . . . ψ

n
N

∣∣∣∣, (6.2)

where ψm
i refers to the ith orbital of molecule m and Dm

ia is the CIS coefficient for

an excitation from occupied orbital i to virtual orbital a on molecule m. This basis

can readily be expanded to the full N molecule case by appending ground state MO’s

to the determinant. Assuming the molecules interact weakly, we may optimize the

CIS and MO coefficients for each fragment independently, and derive the Frenkel

Hamiltonian matrix elements by projecting the supersystem electronic Hamiltonian

into this basis. The couplings (off-diagonal elements) that result from this procedure

may be expressed as,

Vmn =
∑
iajb

Dm
iaD

n
jb

[
2(ψm

i ψ
m
a |ψn

j ψ
n
b )− (ψm

i ψ
n
j |ψn

aψ
m
b )

]
, (6.3)

where (ia|jb) =
∫
dr1dr2ψi(r1)ψ

∗
a(r1)

1
r12
ψj(r2)ψ

∗
b (r2). It is common to make several

additional approximations to make calculating this coupling more tractable. Many

studies neglect the exchange terms in Eq. 6.3 under the assumption that the MO’s

on different molecules do not have significant spatial overlap [169, 199–204]. We
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examined the contribution of exchange to the coupling in section 6.6 of this study,

however, it is also worth noting that it is not clear if the Frenkel exciton model itself

is appropriate in strong coupling regimes where exchange is significant.

The Coulomb couplings in Eq. 6.3, may also be simplified in terms of an interaction

between transition charge monopoles qf , on the atoms of each molecule [199].

Vmn ≈
∑
f,g

qmf q
n
g

|rf − rg|
, (6.4)

where the summation is taken over pairs of atoms belong to separate molecules, rf is

the position of atom f , and qmf is the charge of atom f of molecule m. The transition

charges may be determined via a variety of methods. One popular approach is to use

Mulliken population analysis on the transition density matrix,

qf =
∑
ia

Nao,f∑
µ

Nao∑
ν

DiaCiµCaνSµν . (6.5)

Here, the summation over µ and ν is taken over the atomic orbitals. Ciµ are atomic

orbital coefficients, and Sµν is the overlap between orbitals µ and ν. Nao,f is the num-

ber of atomic orbitals on atom f . In PPP/CIS theory, Eq. 6.4 is essentially equivalent

to the exact coupling integral, due to the zero-differential ovelap approximation and

highly localized orbitals[171]. However, for TDDFT and other ab-initio methods

Eq. 6.4 is an approximation which should hold if the two molecules are sufficiently

far apart. The particular charge embedding scheme in Eq. 5 is equivalent to Mulliken

population analysis performed on the transition density matrix. This approach has

been adopted in several studies [199, 200, 202, 203, 205] due to how it is significantly

more computationally efficient than directly computing the two-electron integrals in

Eq. 6.3. In Section 6.6A., we benchmark differences when calculating couplings using

transitions charges derived from Mulliken, Löwdin, and Natural population analysis

to the exact Coulomb coupling from TDDFT.
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6.3 Computational Details

6.3.1 Data Generation

We consider two materials, each with identical chemical composition but differ-

ing molecular morphology. Specifically, we consider a monolayer morphology, of 150

molecules, where molecules are in rough mutual alignment, as illustrated in Fig-

ure 6.2A, and an amorphous bulk morphology of 343 molecules, as illustrated in

Figure 6.2B. For each morphology, we generate a 10 ps trajectory of the nuclear dy-

namics using molecular dynamics (MD) simulations with the OPLS/2005 force field

[206, 207]. Periodic boundary conditions were employed with the monolayer system

periodically replicated in the plane parallel to the film, while the amorphous system

was periodically replicated in 3 dimensions. All simulations were done in an NVT

ensemble at 300K with a Nosé-Hoover thermostat [208, 209] with a coupling constant

of 2.0 ps after equilibration. Simulations were done with the DESMOND package

[210].

We map the MD snapshots to the Frenkel Hamiltonians using a set of inde-

pendent one-molecule excited-state electronic structure (ES) calculations (see Sec-

tion 6.2). We use two different ES methods to calculate Frenkel Hamiltonians:

PPP/CIS and TDDFT with the Tamm-Dancoff Approximation (TDDFT/TDA). For

our TDDFT/TDA calculations we employ the CAM-B3LYP functional [211], along

with 6-31+G(d) basis set, due to the functional’s demonstrated performance at re-

producing the coupled-cluster excitation energies of organic chromophores [212–214].

Despite the functionals incomplete use of long-range corrections, Lu et al. demon-

strated that the accuracy of lowest singlet excitation energy increases with the size

of the number of monomers in an oligothiophene [212]. TDDFT/TDA calculations

were done with the PySCF package [215].

Using PPP/CIS we mapped MD snapshots to Frenkel Hamiltonians calculations

at 10 fs intervals, assuming we may treat the Frenkel Hamiltonians to be roughly

constant within 10fs. Due to significant increased cost of TDDFT/TDA, a longer
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Figure 6.2: Snapshots of different molecular morphologies used in this study. Panels (A)
and (B) show the monolayer and amorphous morphologies, respectively.

interval of 100 fs was used when calculating Frenkel Hamiltonians. We note however,

that one of the advantage of our proposed ML model is that it may be used to

calculate Frenkel Hamiltonians at intervals much smaller than even 10fs with little

added cost. Couplings for molecules at intermolecular separations greater than 20Å

are neglected due to the fact that they are extremely small (1meV on average for the

monolayer system). While the 20Å cutoff has not been explicitly shown to have a

negligible effect on exciton dynamics, we hope to use the efficiency of the ML model

described herein to further elucidate the effects of coupling cutoffs in future studies.

6.3.2 Data Preparation and Machine Learning

To train and evaluate our unimolecular ML models (for predicting Em and tran-

sition charges using KRR), the data (features and associated values) were separated

into training and testing sets. The term "features" refers to the inputsX of the regres-

sion algorithm: information about the molecular conformations. The term "values"

refers the quantities, Y = f(X) we are trying to predict with the ML model. The
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training sets ranged in size from 100 to 10,000 datapoints and the testing sets con-

tained 5,000 datapoints. We found that 5000 testing examples was sufficient to get an

unbiased estimate of the error. The training and testing data are always independent

and randomly sampled, meaning that no two datapoints are shared between training

and testing sets, and both are randomly chosen from the master dataset containing

all of the available data.

To train and evaluate our deep neural network (DNN) for the direct prediction

of Vmn, data was separated into independent randomly-sampled training, validation,

and testing sets. The training sets ranged in size 130,000 to 520,000 datapoints, the

validation set contained 200,000 datapoints, and the testing set contained 300,0000

datapoints. The validation set was used to pick the optimal number of epochs for

early-stopping during the training phase of the DNN. Only PPP/CIS data was used

in the training of our direct Vmn model. In Section 6.5 we report the sizes of the

training sets in terms of the equivalent number of ES calculations needed to produce

the couplings, as we believe number of ES calculations to be a more informative

measure when trying to ascertain the cost vs accuracy tradeoff of the machine learning

approach.

KRR models were trained using the scikit-learn python package[216]. The KRR

hyperparameters were selected via 5-fold cross-validation. The DNN described in

Section 6.5 was trained with Tensorflow 2.0[217]. The network consisted of three

layers with 1200,1000,800 neurons respectively. The first and third layers used sigmoid

activation functions, while the second layer used an exponential activation function to

avoid the vanishing gradients problem. ADAM was used as the optimizer and Early

Stopping with the validation dataset was used to avoid overfitting.

6.4 ML Model For Excitation Energies

There are numerous ML models and featurizations that are very successful at pre-

dicting various molecular energies from unimolecular conformational data [218–227].

Recently, Lu et al. [212] compared the performance of a series of molecular DNN’s
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at predicting excitation energies of high-temperature gas-phased T6 and showed a

mean absolute error (MAE) of around 50 millielectronvolts (meV) when compared

to the actual TDDFT results. Here, we adopt a simpler approach, using a kernel

ridge regression (KRR) model with a Gaussian kernel. KRR offers several advan-

tages to neural network models since it is generally much less expensive to train, has

fewer hyperparameters, and is guaranteed to give the optimal solution (lowest train-

ing error) for a given set of training data and hyperparameters. Additionally, KRR

is a well-understood, well-tested ML model that has already been shown to perform

excellently as a way of accelerating non-adiabatic excited state dynamics[227–230].

For features, we employ the Coulomb matrix (CM) [218],

Cij =
ZiZj

rij
, (6.6)

where Zi are a set of atomic partial charges taken from semi-empirical model, and rij

is the distance between atoms i and j. While traditionally the diagonal elements of

the CM are given by 0.5Z2.4
i , here we neglect the diagonal elements since they give no

additional information about the conformation of the molecule. We tested the perfor-

mance of a series of four different charge models, as well as just using pairwise atomic

distances without any charges, and found that while performances were comparable,

the Gasteiger charge model[231] gave the lowest error (Figure 6.3A). Thus, in sub-

sequent analysis the Gasteiger charge model was used whenever employing Coulomb

matrix features.

We evaluate the performance of our ML model subject to the criteria outlined in

the introduction through a series of numerical experiments. We begin by evaluating

the dependence of the testing set MAE on the size of the training set for both the

monolayer and amorphous systems (Figure6.3B). We see that in both systems the er-

ror converges well, with a difference of only 10meV or less in the error between training

with 5000 examples versus 10,000 examples. For both systems, the converged errors

are significantly lower than the intrinsic uncertainty of a TDDFT calculation with

CAM-B3LYP or similar range-separated hybrid functional, which based on previous
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Figure 6.3: (A) Differential performance of using several different charge models with
the Coulomb Matrix. Performances reported here are using the 10,000 example monolayer
PPP/CIS training set. atom-dist = pairwise atomic distances (no charges), atm# = atomic
numbers, uff = Universal Forcefield [232], gastg = Gasteiger charges[231], opls = OPLS/2005
Forcefield [206]. (B) Mean absolute error in Em predictions versus training set size used.
(C) 2D principal component analysis of pairwise atomic distances and coulomb matrices
taken from T6 conformations. (D) Cross-morphology error analysis on predictions of Em

from TDDFT. Dashed lines indicate fluctuations (standard deviation) in Em from MD bath.

studies we estimate to be around 200 meV [171, 212]. When training with 10,000

examples, the errors are only about 0.4% of the mean Em in the monolayer system

and 0.7% of the mean Em in the amorphous system. However, comparing ML errors

to the mean value of the excitation energy is not a very informative metric, as one can

subtract any constant value out from diagonal elements of the Frenkel Hamiltonian

without changing the dynamics. It is more appropriate to compare the ML errors

to the fluctuations (standard deviation) in Em, as one would expect that ML errors

that are of the same order of magnitude or greater than the fluctuations would lead

to significant errors in the exciton dynamics [175]. The standard deviation in Em

from the MD bath is about 150meV and 210meV for the monolayer and amorphous

systems respectively if calculated with TDDFT, and about 103meV and 181meV if
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calculated with PPP/CIS. These fluctuations are significantly higher than the MAE

in Figure 6.3B so long as 1000 or more training examples are used. Thus, our model

satisfies our first three performance criteria. The strong performance of our model

matches results from other studies using kernel based regression methods to predict

unimolecular quantities [220, 221, 223, 233].

Interestingly, the errors for the amorphous system tend to be higher than the

MAE for the monolayer system. We attribute this increase to the greater range

of intermolecular forces and larger conformational space sampled by the amorphous

system. In Figure 6.3C, we demonstrate this larger sampling by performing principal

component analysis (PCA) in two dimensions on the internal coordinates, showing

that the area covered by the amorphous conformations is far larger than the area

covered by the monolayer conformations. The wider range of intermolecular forces is

also reflected in the larger standard deviation of Em in the amorphous system.

Also of note is the fact that the error for the TDDFT data tends to be slightly

higher than the error for the corresponding PPP/CIS data. The reduced performance

on TDDFT data can be attributed to the increased complexity of the excited-state

energy landscape from TDDFT as compared to PPP/CIS, which is a natural result

of the more complex equations and much larger basis set.

To evaluate the final performance criteria: transferability across morphologies, we

take a model trained with 10,000 examples on a given morphology, and test it against

conformations from the other morphology. Despite the wider sampled space, the error

of the model trained on monolayer conformations does not increase significantly when

evaluated against conformations from the amorphous system (Figure6.3D). Indeed,

while the KRR model’s predictive performance is best on the morphology it was

trained on, the the errors from cross-morphology predictions are still small fractions

of the fluctuations in Em. We take this result to indicate that our model can generalize

to morphologies of T6 beyond what it was originally trained (if at roughly the same

temperature), satisfying our fourth performance criterion.
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6.5 Direct ML Model For Couplings

In principle, the increased scaling between the number of ES calculations and the

number of couplings values merits using a different ML model than KRR. Each unique

pair of molecules equates to a single coupling value, giving a total of N(N−1)
2

coupling

datapoints per N molecules in a single timestep. Roughly, this scaling equates to

10,000 ES calculations per 260,000 couplings in both the monolayer and amorphous

systems. The O(N3) cost of inverting the kernel matrix makes KRR unsuitable for

datasets much larger than 50,000 examples in size, but DNNs have been shown to

be excellent at handing "big-data". Thus, we chose to use a 3-layer neural network

model for the direct ML of the couplings. For features we employ an intermolecular

Coulomb matrix, with pairwise distances between atoms of separate molecules. A

very similar model for electron-transfer coupling using a much smaller dataset with

KRR was recently reported by Wang et al[234]. We decided to test this model only

on the PPP/CIS data, due to the poor convergence of the model and need for larger

training sets.

The predictive performance of the direct Vmn model is significantly worse than

performance of the Em ML model. Figure 6.4A demonstrates that the errors do not

converge as quickly as they did in the Em model. Although the errors here appear

small, especially in comparison to the corresponding errors for Em, one must keep in

mind that the magnitude for Vmn is about two order of magnitude smaller than the

magnitude of Em in these systems. The mean magnitude for Vmn is only 14.7meV

and 8.8meV for the monolayer and amorphous systems respectively, while the mean

magnitude of Em is about 2960meV and 3120meV respectively. Thus, the % error is

much larger than what we had for Em even when training with only 1,000 examples.

Perhaps more importantly, the errors are large proportion of the fluctuations in Vmn,

and the cross-morphology error is very significant. The latter suggests that even if

we accept the lower accuracy to training size trade-off of this coupling ML model, for

every different morphology that one might want to simulate, one would need to do

tens of thousands of additional ES calculations, significantly hampering the efficiency

106



CHAPTER 6. MACHINE LEARNING FRENKEL HAMILTONIANS

bonus of using ML.
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Figure 6.4: Vmn prediction performance using direct model. (A) Mean absolute error
in PPP/CIS Vmn predictions versus the number of one-molecule PPP/CIS excited-state
calculations used to generate the training set. (B) Cross-morphology error analysis on
predictions of Vmn using 10,000 ES calculations = 260,000 coupling training sets.

We believe the poor performance of the direct Vmn model can be attributed to the

very large bimolecular conformational space, which requires significantly more data

to properly sample than that of the unimolecular space for Em. The unimolecular

conformational space only includes small perturbations of the nuclear positions due

the vibrations and intermolecular forces, whereas bimolecular conformational space

contains the same small perturbations as well as the myriad of different ways the

two molecules (and constituent segments/rings) may be oriented with respect to each

other. Clearly, sampling such a space thoroughly would require much more data.
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Even with the naturally higher ES calculation to number of datapoints ratio (1:1 for

Em vs 1:26 for Vmn), the amount of ES calculations required to train a Vmn model

from bimolecular data far exceeds the number of calculations required to train an

equivalent accuracy Em model from unimolecular data. Motivated by this difficulty,

we sought to find a ML approach whereby we could predict Vmn from unimolecular

features, which lead to our transition charge model.

6.6 Indirect ML Model For Couplings via Transition

Densities

6.6.1 Coupling Calculation Benchmarking

In this section we benchmark several methods of calculating the excitonic cou-

pling. We begin by comparing couplings calculated via PPP/CIS to exact couplings

calculated via TDDFT (Figure 6.5A). The PPP/CIS couplings tend to significantly

underestimate the TDDFT couplings for larger values. The decreased couplings of

PPP/CIS would result in lower exciton transport rates when compared to TDDFT,

highlighting the importance of the ML approach for allowing us to use higher levels

of theory when parametrizing Vmn. However, given the very low computational cost

and severe simplifications of PPP/CIS, we are encouraged by how well the PPP/CIS

and TDDFT couplings are correlated.

There appears to be no clear consensus in the literature about whether exchange

(Dexter transfer) is physically significant when considering the excitonic couplings

in small-molecule organic semiconductors, so here we benchmark the error when ne-

glecting exchange. In Figure 6.5B we illustrate the exchange contribution to cou-

pling is completely negligible in the monolayer system, with an average difference of

0.03meV from between using exchange or not. This result is somewhat surprising as

T6 molecules come in very close proximity to each other during the MD simulation,

with the minimum center of geometry distance between two T6 molecules being as

small as 3.5 Å.
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Figure 6.5: Parity plots for benchmarking coupling calculations. All values are from mono-
layer simulation. (A) Exact PPP/CIS versus TDDFT couplings. (B) TDDFT couplings with
and without exchange. (C) TDDFT Coulomb couplings from Mulliken transition charges.
(D) TDDFT Coulomb couplings from Löwdin transition charges.
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Figure 6.6: Charges and density visualizations for a typical molecule taken from monolayer
simulation. (A) Isosurface of transition density using a value of 0.07, violet lobes are positive,
red lobes are negative. (B) Mulliken charges, the size of each sphere indicates the magnitude
of the assigned charge. (C) Löwdin charges.

Now that we have established that Coulomb couplings are sufficient when com-

puting couplings in T6, we test whether they can be reproduced using a set of tran-

sition charges localized on each atom as in Eq. 6.4 (Figure 6.6). Both Mulliken and
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Löwdin population analysis were tested. The Mulliken-charge based couplings show

significant deviation from the exact Coulomb couplings, due to the significant overes-

timation of the charge on the central atoms of T6 (Figure 6.6B). Mulliken population

analysis is well known to be highly basis set dependent [235]; in the limit where a

complete basis set is localized on a single atom, Mulliken analysis will assign the en-

tire transition density to that atom. In T6, the high overlap between the atomic basis

functions of the carbons on the central rings with the surrounding atomic orbitals,

can lead to an artificial concentration of charge on a few carbon atoms. This con-

centration of charge leads to couplings which are highly dependent on the positions

of these carbons; i.e. if the central carbons are too close together, Mulliken charges

can give up to double the actual coupling. Although it is well-known that Löwdin

analysis may also show significant basis set dependence, in T6 the Löwdin orbital or-

thogonalization procedure leads to charges are more evenly spread across the atoms,

giving a better representation of the actual charge density, and thus better couplings.

The Löwdin charges do an excellent job at reproducing the Coulomb couplings, with

an average difference of only 0.6 meV from the exact Coulomb integral calculations.

One may think that, given the high predictive performance of the Löwdin tran-

sition charges, it may be possible to calculate the couplings using a single-set of

transition charges, similar to how interactions between molecules are calculated in

molecular dynamics. This approach would side-step the need for high dimensional

regression algorithms like NN and KRR, however, in Figure 6.7 we show that such

an approach leads to an enormous increase in error, with an MAE of 1.74meV.

We also explored charge embedding based on the natural atomic orbitals as op-

posed to the Löwdin orbitals (so-called Natural population analysis), and found that

the results were essentially equivalent to the Löwdin analysis Figure 6.8, and therefore

proceed with using the Löwdin charges for the remainder of the study.

We emphasize that the transition charge method is effective not only because it

gives us another avenue for machine learning the couplings, but also because it is

significantly less computationally demanding than calculating the couplings exactly.

In Table 6.1, we demonstrate that computing the exact Coulomb coupling calculation
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Figure 6.7: Parity plot comparing exact Coulomb couplings to couplings from using a
single, average value of the Löwdin transition charges. The MAE here is 1.74 meV

(A) (B)

Figure 6.8: (A) Parity plot comparing exact Coulomb couplings to transition charge cou-
pling from natural population analysis. All values are from monolayer simulation. (B) Parity
plot comparing NAO and Lowdin transition charge couplings.

takes 8300 CPU hours for the monolayer system. Meanwhile, the cost of the Löwdin

transition charge couplings is only 22 CPU hours. While, as shown in Figure5C, the

Löwdin transition charge method produces some systematic error for molecules very

close together, we believe this degree of error is acceptable in light of the enormous

improvement in computational efficiency.
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Table 6.1: Relative computational cost for different methods of computing coupling and
TDDFT calculations. All CPU times were measured on an Intel(R) Xeon(R) CPU E5-2620
@ 2.10GHz. The costs shown are for the entire 100ps trajectory, but are estimated using
the cost of a single calculation, and account for the 20Åcoupling cutoff.

Method CPU Hours - Mono-
layer

CPU Hours - Amor-
phous

Lowdin TQ 22 51
Coulomb 8300 17800
Coulomb + Exchange 15800 34000

6.6.2 Machine Learning Model

In the preceding section we described how Löwdin transition charges can effectively

reproduce the excitonic coupling Vmn, in this section we proceed with describing a

ML model for Vmn by predicting the Löwdin transition charge on each atom from

molecular conformations. Our strategy is generally the same as our model for Em:

a KRR model with Coulomb matrix features. However, here we train an individual

KRR model per transition charge. This approach is similar to the one described by

Brockherde et al.[233] as a way of predicting the ground-state one-electron density.

Even using the same model and features, the percent mean absolute error (%MAE)

when predicting individual transition charges is higher than the %MAE when predict-

ing the excitation energies (Table SII). This increase is to be expected however, both

the transition density and transition charges vary greatly with small perturbations in

the positions of the nuclei. Fortunately, the prediction quality when calculating the

couplings from the transition charges improves dramatically, due to how this approach

captures the 1
r

dependence of the Coulomb interaction between charge densities ex-

actly, as opposed to relying on the ML algorithm to determine this dependence on

its own. The performance of this transition charge ML model for predicting Vmn is

significantly better than the performance of the direct model. In Figure 6.9A we

see that the error convergence is much improved, almost on par with the energy cal-

culations, and the increase in error from cross-morphology predictions is negligible.

Overall, when training with 10,000 examples, the MAE is only a small fraction of
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Figure 6.9: Comparing the error between actual transition charge couplings and machine-
learned transition charge couplings. (A) Mean absolute error in Vmn predictions versus
training set size used. (B) Cross-morphology error analysis with TDDFT data. (C) Average
coupling versus center of geometry distance, solid lines are from exact transition charges,
dashed lines are from ML predicted charges. (D) Couplings distributions.

the fluctuations in Vmn and roughly the same as the degree of intrinsic error from

the Löwdin charge embedding. Thus, in stark contrast to the direct Vmn model, the

transition charge Vmn model satisfies all of our ML performance criteria.

To further illustrate the high performance of this transition charge model, we

analyzed the performance of the model at predicting the average distance dependence

of Vmn as well as the probability distribution of (Figure 6.9C/D). In both cases, the

agreement between ML results and actual values is almost exact, due to how the ML

errors are largely random and these random errors are effectively averaged out. Such

high accuracy is a very desirable property, as these distributions are an important

visual tool for giving mechanistic insight into exciton transport and assessing why

exciton diffusion rates differ between systems.

It is worth noting that the error analysis shown in Figure6.9 focuses on differences

between the ML predictions and the actual transition charge coupling from Eq. 6.4,

not the exact couplings from Eq. 6.3. Thus, in Figure 6.10), we compare the MAE of
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(A) (B)

Figure 6.10: Parity plots for comparing accuracy of ML predictions to (A) the exact values,
and (B) the values computed with TDDFT Coulomb couplings from Löwdin transition
charges. All values are from monolayer simulation. ML model was trained using 10,000
molecular conformations.

the ML predicted couplings to the exact Coulomb couplings in the monolayer mor-

phology. The error between the ML predicted transition charge couplings and exact

Coulomb couplings is only 0.03meV greater than the error induced by the charge

monopole approximation itself (Figure 6.5D). This result once again indicates the

efficacy of the ML approach, as it highlights how the errors induced by the ML (when

trained with sufficient data) are insignificant compared to the standard approxima-

tions already necessary for computing the electronic structure of extended condensed

phase systems.

6.6.3 Trajectory Analysis

Now that we have described ML models capable of reproducing Em and Vmn at

high accuracy, we turn to using said models in tandem to predict a time-series of

Frenkel Hamiltonians. As proof that our ML models can give accurate dynamics,

we compare exciton trajectory statistics from the ML predicted Hamiltonians (using

10,000 training examples) to those directly from PPP/CIS calculations. In order to

asses the transferability of the ML models we only include only conformations from

the monolayer simulation in the training data. We do not test TDDFT here since the

large time interval makes it difficult to accurately assess dynamics.

Exciton dynamics are propagated using a discrete set of time-ordered propagators
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calculated at 10fs intervals from MD conformations:

|Ψ(n∆t)⟩ =
[ n∏

j=0

exp(−iHj∆t/ℏ)
]
+

|Ψ(0)⟩ , (6.7)

where Ψ(t) denotes the time dependent exciton wavefunction, ∆t is the time-step

interval andHj represents the jth Frenkel Hamiltonian. We study two, experimentally

observable, statistics of interest: the exciton mean-square displacement (MSD) and

the lowest energy eigenvalue (LEE) of the Frenkel Hamiltonian. The MSD is defined

as

MSD(t) =

〈∑
n

|rn(t)− rm(0)|2|cn(t)|2
〉

m

, (6.8)

where rn(t) is the center of mass position of molecule n at time t, and |cn(t)|2 is the

probability of finding the the exciton on molecule n at time t. The angled brackets

indicate an average over an ensemble of trajectories with the exciton initially localized

on each different molecule. Without exciton delocalization, this MSD is equivalent to

the usual MSD for particles.

In both cases, the predictions from the ML model match exact PPP/CIS results

very well. There is virtually no difference in the MSD, as the ML predictions do not

produce systematic errors, and the random errors are washed out when averaging over

many trajectories. The agreement for the LEE is not as quantitative as the MSD,

particularly for the amorphous system, but still quite strong as the PPP/CIS and

ML lines are very well correlated. We believe the close fit between actual MSD/LEE,

and the ML predictions illustrates that our model can not only predict individual

Em and Vmn elements accurately, but also gives very good predictions for the Frenkel

Hamiltonian as a whole.

6.7 Conclusions

In this work we presented a novel ML strategy for generating Frenkel Hamiltonian

trajectories from MD conformations. We built separate models for the diagonal exci-
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Figure 6.11: PPP/CIS trajectory statistics from monolayer and amorphous simulations.
Solid lines are using exact calculations dashed lines are using ML model trained with 10,000
training examples selected only from the monolayer simulation. (A) Mean square displace-
ment. (B) Lowest energy eigenvalue.

f

tation energies, Em and off-diagonal couplings, Vmn, and tested the ML models against

a set of four rigorous criteria: (1) applicability across electronic-structure methods, (2)

lower errors than intrinsic uncertainty in the electronic-structure method, (3) lower

errors than fluctuations from MD bath, and (4) transferability across morphologies.

We showed that a simple KRR model with Coulomb matrix features is capable of

satisfying all four criteria when predicting Em. We then attempted to build a ML

model to directly predict Vmn from two-molecule features, but illustrated that such

an approach failed the performance criteria, likely due to the much larger size of

the bimolecular conformational space. The failure of this approach motivated us to

pursue building an ML model for Vmn from unimolecular features by predicting a set

of atom-centered transition charges. We demonstrated that these transition charges

reproduce the coupling quite poorly when assigned with Mulliken population anal-

ysis, but do much better when assigned with Löwdin population analysis. We then

built another ML model, completely analogous to the Em model, but for predicting
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each individual transition-charge independently. We demonstrated that like the Em

model, it satisfied the performance criteria. While regression algorithms other than

KRR may be proposed and utilized in the future, we hope that the insight into the

relative ease of predicting a vectorial unimolecular quantity versus a scalar bimolec-

ular quantity will prove to be generally helpful to the broader community interested

in combining machine-learning and quantum chemistry.

The strong performance of both our Em and transition charge Vmn models with

10,000 training examples suggests that an even smaller training set may be employed

if necessary. However, 10,000 ES calculations is still orders of magnitude less than the

number of calculations necessary to produce a single Frenkel Hamiltonian trajectory

in many systems. In the future it would be interesting to expand the models built

here using “active learning” methods [236, 237], where the ML algorithm retrains itself

when encountering datapoints far outside the training set.

While we studied the application of our model only in T6 systems, we believe it

may be applied in across a variety of systems where the Frenkel-Davydov model is

appropriate. Of course, care must be taken in systems such as polymers, where in-

dividual fragments may have significant wavefunction overlap and exchange coupling

is not negligible, as our transition charge Vmn model breaks down with significant

exchange. However, it may be possible to build a very similar unimolecular Vmn

model by predicting the entire transition density matrix using features taken from

lower level electronic structure data, such as overlap and Fock matrices. We believe

this is another exciting area for future development. It is also worth noting that it is

dubious whether the assumptions made in the standard Frenkel-Davydov model are

appropriate in strong-coupling situations where exchange is significant.

Finally, we note that parametrizing Frenkel Hamiltonians directly from MD con-

formations does neglect the backaction of the exciton on the nuclear bath. However,

we hope that with the improved efficiency of our ML-Frenkel model, we may begin

to address this limitation by introducing corrections to the MD forces based on the

state of the exciton. We hope to further develop this ML-Frenkel protocol, and after

careful validation against experiment, employ it to understand the effects of molec-
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ular morphology and correlated environmental noise on exciton diffusion in organic

semiconductors and guide organic semiconductor design.
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Conclusions
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Chapter 7

Summary and outlook

In this final chapter, we provide a broad overview of the work done in this thesis,

tying together central themes, and subsequently discussing future steps.

The central theme of this thesis has been the role that environmental correlations

play in condensed-phase chemical dynamics. This theme is most apparent in Chap-

ters 3 and 4, where we explicitly delineated how the time-correlations of the vibrations

of a heterogeneous catalyst surface can affect reaction rates and sticking coefficients.

However, the same theme is also present in Chapters 5 and 6. In Chapter 5, we

used TPS/metadynamics to study the effects of the spatial correlations of the solvent

degrees of freedom on desorption. And while Chapter 6 is primarily a methodological

study of ML in application to exciton dynamics, the purpose of developing such a

method was to study how spatiotemporal correlations of Frenkel Hamiltonians affect

long exciton trajectories.

It is widely appreciated that chemistry in condensed-phase environments differs

starkly from chemistry in gas-phase due to how the environment responds and re-

organizes itself around the chemical system. The development of theoretical models

which capture the effect of the environment on the chemical system is important

not only for our fundamental understanding of chemistry, but also for our ability to

deliberately design and engineer chemical reactivities.

One of the major difficulties in disentangling the correlations between chemical

systems and their environments is the large time and length scales such correlations
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can span. Such multiscale dynamics negate the effectiveness of brute-force simulation,

but fortunately, there exist many solutions. The projection operator (generalized

Langevin equation) approach we took in Chapters 3 and 4 is one way to develop a

theory that can naturally span different length scales; as are the enhanced sampling

methods we used in Chapter 5. And, of course, machine learning presents a new and

very exciting way of making physical simulations much faster and more accurate. One

exciting avenue of future research may be to combine machine learning with the Mori-

Zwanzig projection operator method. While there already exist many approaches to

machine-learning the potential of mean force, far less work has been done on machine-

learning the memory integral/random forces.

Many open questions remain about the ways phonons couple to adsorbates. Our

studies focused only on elemental solids, and the optical modes of polyatomic solids

may add another interesting dimension to our results. We did not develop a far-from-

equilibrium reaction rate theory for adsorbates responding to surface acoustic waves.

Such a theory is key to definitively resolving the paradox of why and how surface

acoustic waves promote reactivity and selectivity. We did not perform an extensive

study on how surface-coverage and pressure affect the phonon-induced memory. Fi-

nally, our study focused on the effect of phonons for simple adsorption/desorption

reactions, and it certainly would be interesting to study the effects on more complex

reactions.

We note that much of the same generalized Langevin formalism we used to interro-

gate how adsorbates respond to phonons can also be used to examine how adsorbates

respond to electric fields.

With regards to Frenkel exciton dynamics, we believe it would be very interesting

to use the ML formalism described in this thesis to calculate time and spatial correla-

tion functions for Frenkel Hamiltonians. Such correlation functions then could be fit

to a Nakajima-Zwanzig generalized quantum master equation, in effect combining the

methodologies of Chapters 3 and 4 with that of Chapter 6. Such a quantum master

equation approach could yield critical insight into how excitons dissipate energy as

they diffuse in organic thin films and how chemical functionalization can be harnessed
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to mitigate exciton energy loss.
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Appendix A

Non-linear Mori-Zwanzig theory

In Chapter 2.1 a derivation of the generalized Langevin equation was given for

a system interacting harmonically with a bath of harmonic oscillators. In such a

derivation, both the dynamics of the bath degrees of freedom and the projection

operators themselves are linear. However, Mori-Zwanzig theory can be adapted to

cases where the dynamics are non-linear and/or the projection operators are non-

linear. In this appendix, a more generic derivation of the Mori-Zwanzig equations

is given for non-linear equations of motion, with or without non-linear projection

operators. The properties of the Mori-Zwanzig generalized Langevin equation under

the action of such projection operators is discussed.

Let Γ be some vector of variables following a first-order differential equation,

d

dt
Γ = LΓ (A.1)

where L a time-independent operator, though it need not be linear. Let the vector

A = (A1(Γ), A2(Γ), . . . , AN(Γ)) be a vector of collective variables that are differential

functions of Γ. Suppose that A = PΓ, where P is some idempotent operator. Like

L, P need not be linear. Also note that in general L and P do not commute. As we

are only interested in the time-evolution of A, we introduce P to into Eq. A.1,

d

dt
(PΓ) = LPΓ. (A.2)
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to arrive at,
d

dt
A(t) = etLLA(t = 0), (A.3)

where we have explicitly factored the time-propagator, etL, out of the left-hand side.

Let Q be the orthogonal complement of P , such that Q = 1 − P , where 1 is the

identity operator. We can insert this identity operator into Eq. A.3 to have,

d

dt
A(t) = etL(P +Q)LA(0). (A.4)

We now introduce the Kawasaki identity:

etL = etQL +

∫ t

0

dτe(t−τ)LPLeτQL, (A.5)

which can be readily verified using integration by parts. While this identity may seem

to arise from some deep mathematical insight, in reality we have done little more than

add and subtract one from the original propagator. Using Eq. A.5 we may express

Eq. A.4 as,

d

dt
A(t) = PLA(t) +

∫ t

0

dτe(t−τ)LPLeτQLQLA(0) + etQLQLA(0) (A.6)

Eq. A.6 is the fully-general Mori-Zwanzig "generalized-Langevin equation". It is

worth noting that it an exact identity of the original equation of motion (Eq. A.1),

that is, we have made no approximations in arriving at Eq. A.6, we have only re-

arranged the terms in the original equation using the projection operators P and Q.

We identify the three terms on the left-hand side of as,

F(t) = PLPA(t), (A.7)

the projected generator of time-translations,

R(t) = etQLQLA(0), (A.8)
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the orthogonal dynamics and,

I(t) =

∫ t

0

dτe(t−τ)LPLR(τ) (A.9)

the memory integral.

The derivation above is completely general, and can be applied to a range of

problems in classical mechanics, quantum mechanics, and beyond. However, in order

to make Eq. A.6 physically insightful and potential useful, we must first give specific

forms for the operators L, P and Q. In a classical many-body system of N particles,

Γ would be 6N the coordinates/momenta and L the classical Liouville operator,

LA = {H,A} =
∑
j

∂H

∂pj

∂A

∂qj
− ∂H

∂qj

∂A

∂pj
. (A.10)

where {, } denotes the classical Poisson bracket, H is the classical Hamiltonian, pj

the momentum coordinates, and qj the position coordinates. It should be noted that

the classical Liouville operator is often defined with an additional imaginary factor,

which makes the operator self-adjoint and therefore correspond with the quantum

Liouville operator in phase-space formulations of quantum mechanics. However, for

our purposes such an imaginary factor is unnecessary.

We now introduce Mori’s projection operator and analyze it’s concomitant ef-

fects on the terms in Eq. A.6. To define Mori’s projection operator, once again

let A = (A1, A2, . . . , AN) be a vector of the collective variables of interest and let

B = (B1, B2, . . . , BM) be some other vector. Mori’s projection operator is defined as,

PMori


B1

...

BM

 =
⟨B⊗A⟩
⟨A⊗A⟩A =


⟨B1,A1⟩
⟨A1,A1⟩

⟨B1,A2⟩
⟨A2,A2⟩ . . . ⟨B1,AN ⟩

⟨AN ,AN ⟩
...

...
...

...
⟨BM ,A1⟩
⟨A1,A1⟩

⟨BM ,A2⟩
⟨A2,A2⟩ . . . ⟨BM ,AN ⟩

⟨AN ,AN ⟩



A1

...

AN

 (A.11)

where the angled brackets ⟨, ⟩ denote an appropriately defined inner product. Usually
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this inner-product is defined as the equilibrium correlation function,

⟨Ai(Γ)Bj(Γ)⟩ =
∫
dΓAi(Γ)Bj(Γ) exp (−βH(Γ)) , (A.12)

and it is assumed that the components of A are orthogonal under this choice of inner

product such that

PMori


A1

...

AN

 =


A1

...

AN

 . (A.13)

Mori’s projection operator is always linear, even if A or B are non-linear collective

coordinates.

With such a linear projection operator, both the projected "forces" F(t), and the

memory integral become linear functions of A. The projected forces take the form,

F(t) =
⟨LA⊗A⟩
⟨A⊗A⟩ A(t) (A.14)

which correspond to a harmonic force in A space, with ⟨LA⊗A⟩
⟨A⊗A⟩ being the force-

constant matrix. Likewise, the memory integral can be written in the form,

I(t) =

∫ t

0

dτe(t−τ)L ⟨LR(τ)⊗A(0)⟩
⟨A⊗A⟩ A(0). (A.15)

As the matrix ⟨LR(τ)⊗A(0)⟩
⟨A⊗A⟩ has no explicit dependence on phase-space variables by

virtue of the integral in Eq. A.12, it commutes with the Liouvillian and the time-

translation operator. Thus I(t) may be expressed as,

I(t) =

∫ t

0

dτ
⟨LR(τ)⊗A⟩
⟨A⊗A⟩ A(t− τ). (A.16)

Note that since Q is idempotent, QR = R. Also note that Q is hermitian under the

action of Eq. A.12 and L is anti-hermitian. With these identities we may express the
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memory integral as,

I(t) = −
∫ t

0

dτ
⟨R(τ)⊗QLA⟩

⟨AA⟩ A(t− τ), (A.17)

I(t) = −
∫ t

0

dτ
⟨R(τ)⊗R(0)⟩

⟨A⊗A⟩ A(t− τ) = −
∫ t

0

dτK(t− τ)A(τ) (A.18)

where we see that the memory kernel matrix, K(t) = ⟨R(τ)⊗R(0)⟩
⟨A,A⟩ , is an autocorrela-

tion function of the orthogonal dynamics. This fluctuation-dissipation relationship

is precisely the same was as derived in Chapter 2 for a system interacting with a

harmonic bath. In fact, if we let A be a simple subset of the phase space variables

and linearized L, we could analytically evaluate the orthogonal dynamics and derive

exactly the same generalized Langevin equation as in Chapter 2. However, in the

case where the potential energy is anharmonic and therefore L is non-linear, the or-

thogonal dynamics cannot be solved exactly. Indeed, as both F(t) and I(t) are linear

under Mori’s projection operator, the effect of all non-linearities in L are pushed into

R(t). For highly anharmonic dynamics, it is not clear to what extent and under what

circumstances R(t) can be interpreted as "random-noise"[51].

While F(t) is linear under Mori’s projection operator, in many practical applica-

tion we may seek a form of Eq. A.6 such that F(t) is a non-linear function of the

collective coordinates A. For example, it is often convenient for F to correspond to

the equilibrium fluctuations generated by the potential of mean force (Eq. 2.22), so

that the memory integral and orthogonal dynamics would correspond to the non-

equilibrium dissipation and fluctuations respectively. For a discussion of the deriva-

tion of such a generalized Langevin equation using the Mori-Zwanzig formalism, see

Ref.54.
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Calculating memory kernels from

time-correlation functions

As discussed in Chapter 3, while the generalized Langevin equation is most eas-

ily derived for a system interacting with a harmonic bath, it can applied to baths

which have anharmonicities, so long as they remain near thermal equilibrium. The

question arises then, how to compute the memory kernel when the bath exhibits

anharmonicities, given that we cannot resolve the bath dynamics analytically. One

popular solution is to calculate the memory kernel from time-correlation functions

computed using molecular dynamics (MD) simulation. This method begins from rec-

ognizing that the random force R(t) must be uncorrelated with the system’s momenta:

⟨R(t)p(0)⟩ = 0. This identity can be considered prerequisite for R(t) to be properly

interpreted as a "random" noise, and is indeed consistent with Eq. 2.19.

By taking the equilibrium time correlation function of both sides of the generalized

Langevin equation with the initial momentum we find,

⟨ṗ(t)p(0)⟩+
〈
dW

dq
(t)p(0)

〉
= −

∫ t

0

K(t− τ) ⟨p(τ)p(0)⟩ dτ. (B.1)

Using MD simulation the force-momentum correlation functions (left-hand side) and

the momentum autocorrelation function may be computed, and subsequently Eq. B.1

may be solved to find K(t). One may be tempted to use the convolution theorem and
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Figure B.1: Memory kernel calculated with by using midpoint quadrature, trapezoidal
quadrature, fast Fourier transform methods to solve the Volterra equation versus the input
(target) memory kernel used to conduct the simulation. The trapezoidal quadrature used
the derivative of Eq. B.1.

fast-Fourier transform to solve Eq. B.1, however such an approach has been shown

to lack numerical accuracy [238, 239]. Instead, most approaches to solve Eq. B.1

use real-time iterative methods. Such approaches discretize the memory integral

using a numerical quadrature and solving the system of linear equations that results.

A comparison of the fast-Fourier transform, midpoint quadrature, and trapezoidal

quadrature methods is given in Figure B.1 for a harmonic oscillator interacting with

a bath whose memory kernel is a sum of two-exponentially damped sinusoids. We

see that both the trapezoidal and midpoint quadratures work well at reproducing the

exact/input memory kernel, but that FFT method fails at longer times.

Below we illustrate one approach to calculating the memory kernel using a trape-

zoidal quadrature. To begin, let us rewrite Eq. B.1 in the form,

Cf (t) = −
∫ t

0

K(t− τ)Cp(τ)dτ, (B.2)

where Cf (t) is the force-momentum correlation function and Cp(t) the momentum

autocorrelation function. We take the derivative of Eq. B.2, as so gives an equation
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which is better defined and more numerically stable for small times t,

Ċf (t) = −K(t)Cp(0)−
∫ t

0

K(t− τ)Ċp(τ)dτ. (B.3)

We then introduce the trapezoidal quadrature in order to evaluate the memory inte-

gral at discrete timesteps ∆t,

Ċf (t = 0) = −K(0)Cp(0),

Ċf (t = ∆t) = −K(∆t)Cp(0)−
∆t

2

[
K(∆t)Ċp(0) +K(0)Ċp(∆t)

]
,

Ċf (t = N∆t) = −K(N∆t)Cp(0)−
∆t

2

[
K(N∆t)Ċp(0) +K(0)Ċp(N∆t)

]
−∆t

N−1∑
n=1

K((N − n)∆t)Ċp(n∆t).

(B.4)

Equation B.4 was used to compute the blue dashed curve in Figure B.1.
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Elastic continuum theory

In this appendix, we take an alternative approach to determining the phonon-

induced memory in the limit of a macroscopic solid by using continuum elastic theory

instead of atomistic models. Such an approach was originally explored by Ref. 240 and

Ref. 241. It is theoretically appealing due to the minimal, experimentally accessible

free parameters used in elastic theory. However, it also suffers from several limiting

assumptions which we explicitly delineate.

Elastic (energy conserving) acoustic waves in a material may be modeled via the

Navier-Cauchy equation,

..
u(r, t) = ct∇⃗2u(r, t) + (c2l + c2t )∇ (∇ · u(r, t)) + F(r, t), (C.1)

where u(r, t) is the displacement of the solid at position r = (x, y, z) and time t, ∇⃗2 is

the vector Laplacian, ∇ (∇·) is gradient of the divergence, and F are external forces.

Solutions to this Eq. C.1 can generally be separated into zero divergence and zero curl

components corresponding to the transverse and longitudinal modes respectively,

..
u(x, t) = ul(x, t) + ut(x, t), (C.2)

each of which satisfy a 3D wave equation,

..
ul/t(x, t) = cl/t∇⃗2ul/t(x, t). (C.3)
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Consider a single adsorbate degree of freedom whose displacement is denoted

by q. If this degree of freedom is harmonically coupled to surface normal (z-axis)

displacement the solid at position r0 = (x0, y0, Lz) then the coupled adsorbate-solid

equations are,

q̈(t) = − 1

m

dVA
dq

(t)− µ

m
ω2
as(q(t)− uz(r0, t)) (C.4)

..
u(r, t)− ct∇⃗2u(r, t)− (c2l + c2t )∇ (∇ · u(r, t)) = µω2

as

M
(q(t)− uz(r0, t))a

3δ (r− r0) ẑ,

(C.5)

where ẑ = (0, 0, 1) is the unit vector in the surface normal, a is spacing between atoms

in the crystal, and M is the mass of the solid atom. The a3 factor arises from taking

the continuum limit of a force on a single lattice point and offsets the inverse volume

units of the 3D delta function δ (r− r0). The forces from the adsorbate on the solid

can be be separated in two contributions. A static contribution,

µω2
as

M
uz(r0, t)a

3δ (r− r0) , (C.6)

which enforces to the shift in the solid’s vibrational spectrum due to the presence of

the adsorbate. And, a dynamic contribution,

f(r, t) =
µω2

as

M
q(t)a3δ (r− r0) , (C.7)

representing the time-dependent external force of the adsorbate on the solid. We can

rearrange Eq. C.5 as,

[
d2

dt2
− c2t ∇⃗2 − (c2l + c2t )∇∇ ·+µω

2
as

M
a3δ(r− r0)ẑ

]
u(r, t) = f(r, t)ẑ. (C.8)

The operator on the right-hand-side (RHS) of this equation is a linear operator;

therefore Eq. C.8 may be solved using the method of Green’s functions,

u(r, t) = u0(r, t) +

∫ t

0

dτ

∫
dr′G(r, t; r′, τ) · f(r′, τ)ẑ (C.9)
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where u0(x, t) is the solution to the homogeneous case and G(r, t; r′, τ) is a 3x3

tensor Green’s function corresponding to the operator on the RHS of Eq. C.8. If we

substitute this solution into Eq. C.4 we arrive at a GLE where the memory kernel is

proportional to the antiderivative of the Green’s function,

K(t) =
µ2ω4

as

mM
a3
∫
dtGzz(r0, t; r0, 0). (C.10)

Henceforth we will denote Gzz(r0, t; r0, 0) as simply G(t) for simplicity. This Green’s

function may be decomposed in the following form,

G(t) =
∑
α

∑
k

sin(cα |k| t)
cα |k|

Rz,α(r0,k)R
∗
z,α(r0,k) (C.11)

where α denotes phonon polarizations (i.e. transverse or longitudinal), and Rz,α are

the zth spatial components of the normalized eigenfunctions of the operator on the

RHS of Eq. C.8. The spectrum of k values as well as the specific form of the spatial

eigenfunctions depend on the choice of boundary conditions.

Due to the delta function in the adsorbate shift term (Eq. C.6), the allowed k

values and cannot be computed exactly. Indeed, this term makes Eq. C.8 very similar

to the Schrödinger Equation with a delta function well, in which the spectrum must be

computed numerically as a solution to a system of transcendental equations. However,

perturbation theory, physical intuition, and the numerical results presented in Figure

1 of the main text all suggest that the low-frequency acoustic modes of a solid should

not depend on the presence of an adsorbate. Therefore, we proceed by ignoring the

adsorbate shift term while noting that, by construction, such an approach is only

valid for the low-frequency acoustic modes. Setting periodic boundary conditions in

the xy plane, fixed boundary conditions at z = 0 and Neumann boundary conditions

at z = Lz we have,

R∗
z,α(r,k) =

2√
LxLyLz

e2πikxxe2πikyy sin(kzz) (C.12)

where Lx, Ly, and Lz are the size of the solid in the x, y, and z directions respectively.
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The allowed are values of k are kx = 2πnx

Lx
, ky =

2πny

Ly
, and kz =

(nz+
1
2
)π

Lz
, where nx and

ny are any integers and nz is any integer greater than or equal to zero. Taking the

limit as Lx, Ly, and Lz become very large we find that the Green’s function becomes,

G(t) =
∑
α

1

8π3

∫
dk

sin(cα |k| t)
cα |k|

. (C.13)

It is well-known that the integral in Eq. C.13 diverges if the integral is taken over

all k-space due to the contribution wavelengths smaller than the inter-atom spacing.

Therefore, the integral in Eq. C.13 should only be taken over first Brillouin zone.

Taking inspiration from the Debye model, we may approximate the first Brillouin

zone with a radial cutoff |kD|,

G(t) =
1

2π2

∑
α

∫ kD

0

dk
sin(cαkt)

cαk
. (C.14)

Carrying out the integration over k and subsequently integrating over time t, leads

to the following formulas for the memory kernel and spectral density,

Kcont(t) =
µ2ω4

as

mM

a3

2π2

(
2

c3t
+

1

c3l

)
sin (ωDt)

t
. (C.15)

K̄cont(ω) =
µ2ω4

as

mM

a3

2π2

(
2

c3t
+

1

c3l

)
Θ(ω − ωD). (C.16)

where Θ is the Heaviside step function. Eq. C.16 illustrates that the memory is flat

(Ohmic) with a high frequency cutoff at the Debye frequency.

We can use Eq C.15 to compute the effective adsorbate-surface bond frequency,

ω̃as =

√
µ

m
ω2
as −K(t = 0). (C.17)

Figure C.1 illustrates results for ω̃2
as as a function of the Debye frequency and ωas.

One can see that for physically reasonable choices of parameters (including those

for CO adsorbed on Pt) the effective frequency becomes imaginary, signifying that

there is no stable adsorption state. Such a clearly unphysical conclusion is a result
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Figure C.1: Square of the effective (phonon-renormalized) surface-adsorbate bond fre-
quency as a function of the solid’s Debye frequency.

of the ignoring the adsorbate shift term (Eq. C.6) in the original equations of motion

and its concomitant effects on the Green’s function/memory kernel. Thus, we again

emphasize that the functional forms in Eq. C.15 and Eq. C.16 are only valid for the

low-frequency acoustic modes of the solid, and generally integrating all k vectors up

to the Debye frequency is inappropriate and a lower frequency cutoff should be used.
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Appendix D

Derivation of extended variable

transformation

In this appendix we give a derivation of the extended-variable transformation,

which is used to map the non-Markovian dynamics of a generalization Langevin

equation back into a set of Markovian equations describing a system coupled to a

multivariate Ornstein-Uhlenbeck (OU) bath. We begin by giving an overview of the

OU processes, focusing on the calculation of the two-time autocorrelation function

(covariance). Subsequently, we use the OU autocorrelation function to ensure that

the dynamics of the extended-variables obey the fluctuation-dissipation theorem.

D.1 Ornstein-Uhlenbeck processes

The Ornstein-Uhlenbeck process is a stationary, Gauss-Markov process, which in

1-dimension, may be described as the solution to the linear stochastic differential

equation (SDE),

ẋ(t) = −λx(t) + σdW (t), (D.1)

where λ and σ are parameters of the process and dW (t) is white-noise satisfying,

⟨dW (t)dW (0)⟩ = δ(t). The Langevin equation in the absence of an external potential

is an example of an 1-D Ornstein-Uhlenbeck process. Eq. D.1 may be formally solved
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to yield,

x(t) = e−λtx(0) +

∫ t

0

dτe−λ(t−τ)σdW (τ). (D.2)

Since the noise in Eq. D.1 is additive, the Itô and Stratonovich interpretation of the

integral in Eq. D.2 are equivalent, and we may ignore the mathematical subtleties of

how to define integrals for stochastic processes. From Eq. D.2 we can immediately

see that the average value of x decays exponentially, ⟨x(t)⟩ = e−λt⟨x(0)⟩. Taking the

two-time correlation yields,

⟨x(t+ s)x(s)⟩ = e−λ(t+2s)⟨x(0)2⟩+ σ2

∫ s

0

∫ t+s

0
dτdτ ′e−λ(t+2s−τ−τ ′)⟨dW (τ)dW (τ ′)⟩, (D.3)

⟨x(t+ s)x(s)⟩ = e−λ(t+2s)

(
⟨x(0)2⟩+ σ2

2λ

)
+
σ2

2λ
e−λt, (D.4)

where we see that that, in order for the time-correlation function to not depend on

the absolute time s, and only on the time difference t (in order words in other for the

process to be stationary), x(0) must satisfy the Lyapunov stability criterion,

⟨x(0)2⟩ = σ2

2λ
. (D.5)

This equation is essentially a fluctuation-dissipation relationship; for a Langevin equa-

tion σ2 ∝ kBT are the thermal fluctuations, and λ is the Markovian friction. Given

Eq.D.5, the time correlation function becomes,

⟨x(t+ s)x(s)⟩ = σ2

2λ
e−λt. (D.6)

Analogously, for a multivariate OU process the SDE may be expressed as,

.
x(t) = −ΛΛΛx(t) +ΣΣΣdW(t), (D.7)

where dW(t) satisfies ⟨dWi(t)dWj(0)⟩ = δijδ(t). The underdamped Langevin equa-

tion for a harmonic oscillator is an example of a multivariate OU process. Following

a similar procedure as the 1D case, we may solve for the time correlation function
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yielding,

〈
x(t+ s)xT (s)

〉
= e−ΛΛΛ(t+s)⟨x(0)x(0)T ⟩e−ΛΛΛT s +

∫ s

0

dτe−ΛΛΛ(t+s−τ)ΣΣΣΣΣΣT e−ΛTΛTΛT (s−τ). (D.8)

It is important to note that, in general ΛΛΛ, ΛΛΛT , and ΣΣΣΣΣΣT do not necessarily commute

with one another. Let c(t, s) =
〈
x(t+ s)xT (s)

〉
; we can use the following trick in

order to simplify Eq. D.8,

ΛΛΛc(t, s) + c(t, s)ΛΛΛT = e−ΛΛΛ(t+s)
[
ΛΛΛc(0) + c(0)ΛΛΛT

]
e−ΛΛΛT s

+

∫ s

0
dτ

d

dτ

[
e−ΛΛΛ(t+s−τ)ΣΣΣΣΣΣT e−ΛTΛTΛT (s−τ)

]
, (D.9)

ΛΛΛc(t, s) + c(t, s)ΛΛΛT = e−ΛΛΛ(t+s)
[
ΛΛΛc(0) + c(0)ΛΛΛT −ΣΣΣΣΣΣT

]
e−ΛΛΛT (s) + e−ΛΛΛtΣΣΣΣΣΣT . (D.10)

From Eq. D.10 we find that the Lyapunov equation is,

ΛΛΛc(0) + c(0)ΛΛΛT = ΣΣΣΣΣΣT , (D.11)

and the corresponding stationary autocorrelation function is given by,

ΛΛΛc(t, s) + c(t, s)ΛΛΛT = e−ΛΛΛtΣΣΣΣΣΣT . (D.12)

Under the special case where ΣΣΣΣΣΣT = kBT (ΛΛΛ+ΛΛΛT ), Eq. D.12 may be further simplified

to,

c(t, s) = kBTe
−ΛΛΛt. (D.13)

In the following section, we will use Eq. D.13 to ensure that the dynamics of the

OU bath encode the fluctuation-dissipation relationship for the GLE they are derived

from.
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D.2 Mapping to a multivariate OU bath

Suppose that the memory kernel can be expanded in the form,

K(t) = ΛΛΛAB exp (−ΛΛΛBBt)ΛΛΛBA (D.14)

such that the corresponding GLE becomes,

..
xA(t) = −∂W

∂xA

(t)−
∫ ∞

0

ΛΛΛAB exp (−ΛΛΛBB(t− τ))ΛΛΛBA
.
xA(τ) +R(t), (D.15)

..
xA(t) = −∂W

∂xA

(t)−ΛΛΛAB [ZB(t) +RB(t)] , (D.16)

where ZB(t) and RB(t) denote the memory integral and random forces with ΛΛΛAB

factored out, respectively. Taking the derivative of ZB(t) gives,

.
ZB(t) = −ΛΛΛBA

.
xA(t)−ΛΛΛBBZB(t). (D.17)

Let RB(t) be described as multivariate Ornstein-Uhlenbeck process satisfying the

SDE,
.
RB(t) = −ΛΛΛBBRB(t) +ΣΣΣBBdW(t), (D.18)

where ΣΣΣBB is a matrix that must be selected such that R(t) and K(t) obey the

fluctuation-dissipation theorem (Eq. 2.20). Following Eq. D.12 and Eq. D.13, this

condition can be satisfied by selectingΣΣΣBB such that it satisfiesΣΣΣBBΣΣΣ
T
BB = kBT (ΛΛΛBB+

ΛΛΛT
BB. Note that numerically, ΣΣΣBB may be calculated via Cholesky decomposition.

We not introduce the extended-variables b(t) = ZB(t) +RB(t), which satisfy the

equation of motion,

b(t) = −ΛΛΛBA
.
xA(t)−ΛΛΛBBb(t) +ΣΣΣBBdW(t). (D.19)
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Correspondingly Eq. D.16 becomes,

..
xA(t) = −∂W

∂xA

(t)−ΛΛΛABb(t). (D.20)

The equations above complete the derivation of the extended-variable transformation.

This expansion is most useful when the memory kernel behaves like a sum of a few

exponentially damped sinusoids. For power-law memory kernels, in principle infinitely

largeΛΛΛBB andΣΣΣBB are needed, negating any computational advantages that arise from

avoiding the explicit computation of the memory integral.
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Appendix E

Continuum limit of 1D harmonic

chain

Consider a 1D chain of harmonic oscillators with spring constant k = mω2 and

periodic boundary conditions. Every site in the chain is identical, and the dynamical

matrix is given by,

D2 = ω2



−2 1 0 0 . . . −1

−1 2 −1 0 . . . 0
... . . . . . . ...

0 . . . 0 −1 2 −1

−1 . . . 0 0 −1 2


. (E.1)

Taking our system to be a single site in the lattice, the resulting bath projected matrix

is given by

D2
BB = ω2



2 −1 0 . . . 0

−1 2 −1 . . . 0
... . . . ...

0 . . . −1 2 −1

0 . . . 0 −1 2


. (E.2)

141



APPENDIX E. CONTINUUM LIMIT OF 1D HARMONIC CHAIN

This matrix may be diagonalized analytically allowing one to find a solution to the

memory kernel,

K(t) =
4k

N

N∑
n=1

cos2(θn) cos (2ωt sin(θn)) , (E.3)

where N is the total length of the chain and θn = nπ
2(N+1)

. If we take the limit as

N → ∞, we see that this sum converges to an integral,

K(t) = 8πk

∫ π/2

0

dθ cos2(θ) cos (2ωt sin(θ)) . (E.4)

This integral has no closed form solution. However it can be expressed in terms of

Bessel functions,

K(t) =
4ω2

π

J1(2ωt)

t
, (E.5)

where J is a Bessel function of the first kind.
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Figure E.1: Comparison of memory kernel (A) and power spectra (B) for single site
fluctuations of 1D harmonic chains of various lengths with periodic boundary conditions.

In Figure E.1 we illustrate the size dependence of the memory kernel for a site

in a 1D chain. Like the 3D lattices presented in the main text, there is a frequency

shift as we move to increase the size of the chain. However, the power spectra is not

bimodal, but rather a continuous sum of many modes which decrease in amplitude as

we approach the chain’s Debye frequency 2ω. Furthermore, the memory kernel also

does not decay exponentially, but rather as 1
t
.

142



Appendix F

Derivation of Frenkel-Davydov model

The Frenkel-Davydov model supposes that the excited-state electronic structure

of a supermolecular system may be expressed in terms of a reduced excitonic Hamil-

tonian,

ĤF =
∑
m

Em |m⟩ ⟨m|+
∑
m ̸=n

Vmn |m⟩ ⟨n| , (F.1)

where diagonal elements Em represent the excitation energy of the exciton localized

on molecule m and Vmn is the two-molecule excitonic coupling. While this approxima-

tion may seem severe, studies have shown that the Frenkel-Davydov model compares

well to supermolecular time-dependent density function theory (TDDFT) calculations

[182].

In order to relate the matrix elements of Eq. F.1 to molecular electronic structure,

one may project the exact many-electron Hamiltonian, Ĥel, into a product basis of

single excitations on each molecule,

|m⟩ =
∣∣Ψ(m)

ex

〉 Nmol∏
n̸=m

∣∣Ψ(n)
gr

〉
; ∀m ∈ {1 . . . Nmol}, (F.2)

where
∣∣∣Ψ(m)

ex

〉
is the excited-state wavefunction for molecule m,

∣∣∣Ψ(n)
ex

〉
is the ground-

state wavefunction for molecule n, and Nmol is the total number of molecular chro-

mophores in the system. While it is true that |m⟩ must be antisymmetrized in order

to be consistent with the indistinguishable of electrons, we may sometimes neglect the
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supermolecular antisymmetry of the wavefunction by assuming that there is no spatial

overlap (no exchange) between the molecular orbitals on different chromophores, and

that therefore electrons can be effectively distinguished based on their localization.

This was the ansatz taken by Davydov in his original paper.[169]

Before we proceed with expressing the matrix elements of Ĥel in this Davy-

dov basis, we make two simplifications. First, we work in 2-chromophore basis,

|m⟩ =
∣∣∣Ψ(m)

ex Ψ
(b)
gr

〉
and |n⟩ =

∣∣∣Ψ(n)
ex Ψ

(m)
gr

〉
for simplicity. Second, we assume that

the single-molecule wavefunctions may be described via configuration interaction sin-

gle (CIS) or TDDFT with the Tamm-Dancoff approximation (TDDFT-TDA). Under

such conditions, our electronic basis states take the form

|m⟩ =
∑
ia

D
(m)
ia

∣∣∣Φ(m)
ia

〉 ∣∣∣Φ(n)
0

〉
, (F.3)

where D(m)
ia are the CIS coefficients for excitation from occupied orbital i to virtual

orbital a on molecule m,
∣∣∣Φ(m)

ia

〉
is the corresponding excited determinant, and

∣∣∣Φ(n)
0

〉
is the reference (Hartree-Fock) determinant for molecule n. In terms of molecular

orbitals (MOs) Eq. F.3 may be expressed as,

|m⟩ =
∑
ia

D
(m)
ia ψ(m)

a

(
Nm∏
j ̸=i

ψ
(m)
j

)(
Nn∏
j

ψ
(n)
j

)
, (F.4)

where ψ(m)
j is the jth MO on moleculem, and Nm and Nn are the total number of elec-

trons in molecule m and n respectively. Note that, by Brillouin’s theorem, the overlap

matrix for the basis in Eq. F.3 is diagonal. The CIS and MO coefficients for each

molecular fragment are optimized via independent self-consistent field calculations.

F.1 Diagonal Elements

We begin by expanding Ĥel into one-molecule and two-molecule contributions,

Ĥel = ĥm + ĥn + r̂mm + r̂nn + r̂mn, (F.5)
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where ĥm represent the sum of all one-molecule-one-electron kinetic + nuclear po-

tential energy terms on molecule m, r̂mm represents the the sum of all one-molecule-

two-electron repulsion terms on molecule m, and r̂mn represents the sum the two-

molecule-two-electron repulsion terms. Using this notation, the diagonal elements

are given by,

⟨m|Ĥel|m⟩ =〈
Ψ(m)

ex

∣∣∣ĥm + r̂mm

∣∣∣Ψ(m)
ex

〉
+
〈
Ψ(n)

gr

∣∣∣ĥn + r̂nn

∣∣∣Ψ(n)
gr

〉
+
〈
Ψ(m)

ex Ψ(n)
gr

∣∣∣r̂mn

∣∣∣Ψ(m)
ex Ψ(n)

gr

〉
(F.6)

⟨m|Ĥel|m⟩ = E(m)
ex + E

(m)
0 +

〈
Ψ(m)

ex Ψ(n)
gr

∣∣r̂mn

∣∣Ψ(m)
ex Ψ(n)

gr

〉
, (F.7)

where E(m)
ex is the excited state energy of molecule m and E

(n)
0 is the ground state

energy of molecule n. We can subtract the sum of ground state energies E(m)
0 +E

(n)
0

from these diagonal matrix elements to obtain,

⟨m|Ĥel|m⟩ = E(m)
ex − E

(m)
0 +

〈
Ψ(m)

ex Ψ(n)
gr

∣∣r̂mn

∣∣Ψ(m)
ex Ψ(n)

gr

〉
. (F.8)

Most studies will simplify Eq. F.8 such the diagonal matrix elements are just the exci-

tations energies ⟨m|Ĥel|m⟩ = E
(m)
ex − E

(m)
0 , neglecting the two-molecule-two-electron

terms. To see when and why we may neglect such terms, let us express them in terms

of one-electron densities (see Appendix G),

〈
Ψ(m)

ex Ψ(n)
gr

∣∣r̂mn

∣∣Ψ(m)
ex Ψ(n)

gr

〉
=

Nm,Nn∑
im,jn

∫
dxmdxnΨ

(m)
ex (xm)

∗Ψ(m)
ex (xm)

1

|rim − rjn|
Ψ(n)

gr (xm)
∗Ψ(n)

gr (xn), (F.9)

〈
Ψ(m)

ex Ψ(n)
gr

∣∣r̂mn

∣∣Ψ(m)
ex Ψ(n)

gr

〉
=

∫
drmdrn

ρ
(m)
ex (rm)ρ

(n)
gr (rn)

|rm − rn|
, (F.10)

where ρ(m)
ex and ρ(n)gr are the one-electron densities for the excited-state on molecule m

and the ground state on molecule n respectively, x denotes many-electron spatial +

spin coordinates, and r denotes one-electron spatial coordinates. Eq. F.10 represents

a Coulomb interaction between molecule m in the excited state and the surrounding
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molecules in their ground states. In essence, this term accounts for how the environ-

ment around molecule m polarizes in response to an excitation on molecule m. In

the case where our molecules are sitting in a homogeneous environment, this term

is a constant for all diagonal matrix elements, and therefore can be subtracted out

similar to how we subtracted out the ground state energy contributions.

F.2 Off-Diagonal Elements

We begin by expanding the off-diagonal matrix elements in terms of the factors

presented in Eq. F.5,

⟨m|Ĥel|n⟩ =
〈
Ψ(m)

ex

∣∣ĥm + r̂mm

∣∣Ψ(m)
gr

〉 〈
Ψ(n)

gr

∣∣Ψ(n)
ex

〉
+
〈
Ψ(n)

ex

∣∣ĥn + r̂nn
∣∣Ψ(n)

gr

〉 〈
Ψ(m)

gr

∣∣Ψ(m)
ex

〉
+
〈
Ψ(m)

ex Ψ(n)
gr

∣∣r̂mn

∣∣Ψ(n)
ex Ψ

(m)
gr

〉
.

(F.11)

If Ψ
(m)
ex is a linear combination singley-excited determinants we can use Brillouin’s

theorem to reduce the excitonic coupling to,

⟨m|Ĥel|n⟩ =
〈
Ψ(m)

ex Ψ(n)
gr

∣∣r̂mn

∣∣,〉 (F.12)

⟨m|Ĥel|n⟩ = 2
∑
iajb

D
(m)
ia D

(b)
jb 2(ψ

(m)
i ψ(m)

a |ψ(n)
j ψ

(b)
b ). (F.13)

It is also possible to express the coupling as an interaction between one-electron

transition densities defined in Appendix G. Doing so leads to,

⟨m|Ĥel|n⟩ =
∫
drmdrn

γm(rm)γ
n(rn)

|rm − rn|
. (F.14)

The nature of the coupling term largely depends on the distance between the

molecules. In the limit where the molecules are far apart from each other (< 20Å),

Förster showed that first order transfer rates can be accurately calculated via the

point-dipole approximation [242]. At shorter distances, interaction must be smeared
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out over transition densities or higher order multipole terms; and, at very small

distances where there may be significant overlap between the wavefunctions of neigh-

boring sites, Dexter showed that exchange interactions play a physically important

role in excitation transfer[243].
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Appendix G

1-electron density matrices and

transition density matrices

The one-electron reduced density matrix (1-DM) is defined as the partial trace

of the many-electron density matrix over all except one electron’s spatial + spin

coordinates. Concretely, in the position + spin representation the 1-DM is given by,

P (x, x′) = N

∫
dx2, . . . , dxNΨ(x, x2, . . . , xN)Ψ

∗(x′, x2, . . . , xN), (G.1)

where x are the spatial + spin coordinates of an electron, Ψ is the many-electron wave-

function, and N is the total number of electrons. In the case where our wavefunction

is given by a single reference determinant, 1-DM is simply a sum over molecule spin

orbitals (see Ref. 235 pg 139 and 253),

P (x, x′) =

N/2∑
i

ψi(x)ψ
∗
i (x

′). (G.2)

Often we are only interested in the spatial components of the 1-DM. If we discard

the spin components and expand the molecular orbitals (MOs) in terms of atomic
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orbitals (AOs), we arrive at,

P (r, r′) = 2

N/2∑
i

∑
m,n

CimC
∗
inϕm(r)ϕ

∗
n(r

′) =
∑
m,n

Pmnϕm(r)ϕ
∗
n(r

′), (G.3)

where r are the spatial coordinates of an electron, Cim is the expansion coefficient

of molecular orbital i in atomic orbital m, ϕ denote the atomic orbitals themselves,

and Pmn is the 1-DM in the atomic-orbital basis. The diagonal elements of P (r, r′)

correspond to the one-electron density, the probability of finding a single electron in

some region of space,

ρ(r) = P (r, r) =
∑
µ,ν

Pµνϕµ(r)ϕ
∗
ν(r). (G.4)

Similarly, the one-electron transition density matrix (1-TDM) is defined as the

partial trace of the the outer product of two different many-electron wavefunctions:

the ground state and the excited state. Within the position + spin representation it

is given by,

Γ(x, x′) = N

∫
dx2, . . . , dxNΨgr(x, x2, . . . , xN)Ψ

∗
ex(x

′, x2, . . . , xN). (G.5)

In the simplest case where the ground state is given by a single determinant and the

excited state is a linear combination of single excitations (CIS or TDDFT/TDA) the

1-TDM takes the form,

Γ(x, x′) =
∑
ia

Diaψi(x)ψ
∗
a(x

′). (G.6)

Eq. G.6 elegantly illustrates that the 1-TDM is equivalent to the rectangular CIS

matrix (Dia) in the molecular spin-orbital basis. Discarding spin components and

expanding the MOs into AOs gives,

Γ(r, r′) =
∑
ia

∑
mn

DiaCimC
∗
anϕm(r)ϕ

∗
n(r

′) =
∑
mn

Γmnϕm(r)ϕ
∗
n(r

′), (G.7)
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Were the occupied i and virtual a orbitals indices range only over spatial orbitals.

Setting x = x′, we are left with the one-electron transition density,

γ(x) =
∑
µν

Γµνϕµ(x)ϕ
∗
ν(x). (G.8)

Often an extra factor of
√
2 is introduced to the definition of γ(x), however this is

done purely for convenience when calculating the excitation transfer coupling.
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