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ABSTRACT

This thesis introduces novel methods to expedite the solution of a broad range of opti-
mization and control problems using machine learning, specifically decision tree algorithms.
In many practical settings, similar optimization and control problems often need to be solved
repeatedly. We propose methods to leverage patterns from pre-solved problem instances
using machine learning, leading to drastically faster solutions once training is complete.

The thesis is structured into four parts, each tackling different class of optimization or
control problems. In Chapter 2, we propose a machine learning approach to the optimal
control of multiclass fluid queueing networks (MFQNETs). We prove that a piecewise constant
optimal policy exists for MFQNET control problems, with segments separated by hyperplanes
passing through the origin. We use Optimal Classification Trees with hyperplane splits
(OCT-H) to learn an optimal control policy for MFQNETs.

In Chapter 3, we study fluid restless multi-armed bandits (FRMABs), deriving fundamental
properties and designing efficient numerical algorithms. Using these results, we learn state
feedback policies with OCT-H and introduce a novel feature augmentation technique to
handle nonlinearities.

In Chapter 4, we propose a machine learning framework for solving two-stage linear
adaptive robust optimization problems with binary here-and-now decisions and polyhedral
uncertainty sets. We also introduce novel methods to expedite training data generation and
reduce the number of different target classes the machine learning algorithm needs to be
trained on.

In Chapter 5, we introduce a prescriptive machine learning approach to speed up the
process of solving mixed integer convex optimization (MICO) problems. We use a prescriptive
machine learning algorithm, Optimal Policy Trees (OPT), instead of more commonly used
classification algorithms. We demonstrate that OPT-based methods have a significant
advantage in finding feasible solutions compared to classification algorithms.

We test our approach on various synthetic and real-world problems. Using the proposed
methods, we can obtain high-quality solutions to a broad range of large-scale optimization
and control problems in real-time – within milliseconds.

Thesis supervisor: Dimitris J. Bertsimas
Title: Boeing Leaders for Global Operations Professor of Management
Associate Dean for Business Analytics

3



4



Acknowledgments

First, I would like to express my utmost gratitude to my advisor, Dimitris Bertsimas. When I
first arrived at MIT in August 2019, I knew nothing about the topics in this thesis or research
in general. Reflecting on how clueless I was then, I am still amazed by his patience, strength,
and leadership. He has taught me how to think critically, approach complex problems, and
effectively communicate results to others.

Most importantly, I learned through him the importance of fearlessness and perseverance
in taking action on what matters. What I noticed about Dimitris is that he doesn’t get
disappointed by external forces, always looks in a positive direction, and takes immediate
action without looking back if he is convinced that something is important to achieve. It
has been a privilege for me to witness and share such energy, decisiveness, conviction, and
fearlessness over the past five years. He has always been, and will continue to be, a source of
inspiration to me.

I would also like to express my gratitude to my committee members, José Niño-Mora,
Alexandre Jacquillat, and David Gamarnik, for their guidance and support. Ever since I
started working with José, I have consistently and quite frequently asked for meetings and
advice. He has been incredibly patient, kind, and generous with all my requests. His warmth
and gentleness have always made me feel more confident and comfortable. Alex was also my
committee member for the second-year general exam. I am always amazed by his kindness,
passion, compassion, and professionalism. His positive feedback has been a great source of
confidence for me. David has also given me precious advice and help for my future career.
They are the best mentors I could have ever asked for.

My sincere thanks go to Ernest Ryu for his incredible career advice, which has significantly
shaped my future.

I am forever grateful to two of my best friends who are also pursuing PhD degrees:
Kyuseong Choi at Cornell and Jay Yoo at UCLA (alphabetical order). They have been the
best mentors and friends, both in my personal and academic lives. Without them, none of
this would have been possible.

I would also like to thank Seung Hyon Lee, Sangwook Kong, Bomi Huh, and Seunghwan
Paik in Korea, who always help me think in a different, more positive way.

I am very fortunate to have many wonderful Korean friends in Boston: Bumsoo Kim,
Joonhyuk Cho, Seok Hee Han, Sungyun Yang, Byunghun Lee, Wooseok Lee, Hyunwon Chu,
Seungwook Han, JeongHyun Yoon, Eugene Park, Junyoung Hong, Dongwon Lee, Suhan Kim,
Jungmin Kim, Jay Kim, Eunjin Jung, Seunghun Han, Seongwon Kim, Joohee Kim, Insang
Yoo, Yujin Oak, Doyoon Kim, Jayoung Ryu, Ousama, Jiwook Kim, Joonpyo Sohn, Jooli Han,
Sun Kim, Soyoon Yang, Saebyeok Shin, Jaeyoon Song, Jimin Park, Ukjin Kwon, Albert Shin,

5



Jaedong Hwang, Kihyun Kim, Kwanwoo Hahn, and Hyemin Koo (random order). Thanks to
these friends, I have countless wonderful memories in Boston.

I would also like to thank all the friends I have met at the ORC: Evan Yao, Leonard
Boussioux, Cynthia Zeng, Thodoris Koukouvinos for our chat times that helped me adapt to
living overseas; Zhen Lin, who has been my fellow TA and class project teammate multiple
times; Jean Pauphilet and Arthur Delarue for giving me precious advice during my hardest
times in the PhD journey. I would also like to extend my gratitude to Moise Blanchard,
Amine Bennouna, Shuvomoy Das Gupta, Matthew Yuan, Kevin Hu, Sabrina Zhai, Victor
Gonzalez, Leann Thayaparan, Kimberly Villalobos Carballo, Irra Na, Yu Ma, Kayhan Behdin,
Haoyue Wang, Benjamin Boucher, Angelos Georgio Koulouras, and Alex Paskov.

Finally, I owe everything to my family. To my parents and brother, Kyunghee Shin, Jae-il
Kim, and Kwang Woo Kim. To my aunt in New York, Sunghee Shin. To my uncle and aunt
in Korea, Hoyoung Choi and Sookhee Shin. This thesis is dedicated to their unwavering
support and love.

6



Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 11

List of Tables 13

1 Introduction 15
1.1 Outline and Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Optimal Control of Multiclass Fluid Queueing Networks: A Machine
Learning Approach 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Optimal Control of MFQNETs . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Properties of MFQNET Control problems . . . . . . . . . . . . . . . 22
2.2.3 Optimal Classification Trees with Hyperplane Splits . . . . . . . . . . 23

2.3 OCT-H for the Optimal Control of MFQNETs . . . . . . . . . . . . . . . . . 23
2.3.1 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Experiment Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Speed and Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.3 Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.4 OCT-H with sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Optimal Control of Fluid Restless Multi-armed Bandits: A Machine Learn-
ing Approach 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7



3.1.3 Paper Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Optimality Conditions of FRMAB Problems . . . . . . . . . . . . . . 42
3.2.2 Optimal Classification Trees with Hyperplane Splits . . . . . . . . . . 44

3.3 Fluid Restless Multi-Armed Bandits . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 The Shooting Method . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 A Machine Learning Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.2 Addressing Nonlinearity by Feature Augmentation . . . . . . . . . . . 48
3.4.3 Example: Optimal Control of Admission and Routing to Parallel

Infinite-Server Queues . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.2 Experimental Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 A Machine Learning Approach to Two-Stage Adaptive Robust Optimization 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Two-stage Linear Adaptive Robust Optimization . . . . . . . . . . . . . . . . 61

4.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Column and Constraint Generation Algorithm . . . . . . . . . . . . . 62
4.2.3 Obtaining the solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 A Machine Learning Approach to ARO . . . . . . . . . . . . . . . . . . . . . 65
4.3.1 Optimal Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2 Suboptimality and Infeasibility . . . . . . . . . . . . . . . . . . . . . 67
4.3.3 A Classification Approach . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.4 A Prescriptive Approach . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.6 Machine Learning Model for Varying Dimensions . . . . . . . . . . . 73

4.4 Accelerating Training Data Generation . . . . . . . . . . . . . . . . . . . . . 74
4.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Partitioning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.6 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6.3 Solving ARO with Near-Optimal Strategies . . . . . . . . . . . . . . . 81
4.6.4 Analysis of Algorithm 11 . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6.5 Solving ARO with Varying Dimensions . . . . . . . . . . . . . . . . . 86
4.6.6 Solving ARO with Suboptimal Strategies . . . . . . . . . . . . . . . . 88
4.6.7 Analysis of Algorithm 9 and 10 . . . . . . . . . . . . . . . . . . . . . 89

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8



5 A Prescriptive Machine Learning Approach to Mixed-Integer Convex Opti-
mization 91
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1 Optimal Policy Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.2 Optimal Classification Trees . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.3 A Machine Learning Approach to MICO . . . . . . . . . . . . . . . . 95

5.3 A Prescriptive Machine Learning Approach to MICO . . . . . . . . . . . . . 97
5.3.1 Learning Objective: The Edge of Prescriptive over Predictive Machine

Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.2 The Prescriptive Algorithm . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.4 An Extension of OPT(k) . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Computational Experiments on Synthetic Data . . . . . . . . . . . . . . . . 102
5.4.1 Experimental Settings and Problem Descriptions . . . . . . . . . . . 102
5.4.2 Comparison of OPT(1) and OCT(1) . . . . . . . . . . . . . . . . . . 104
5.4.3 On the Choice of the Penalty M . . . . . . . . . . . . . . . . . . . . . 106
5.4.4 Training Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4.5 On-line Solve Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Computational Experiments on Real-World Data . . . . . . . . . . . . . . . 108
5.5.1 Comparison of OPT(1) and OCT(1) . . . . . . . . . . . . . . . . . . 109
5.5.2 Comparison of OPT(k), OPT(k,Q) and OCT(k) . . . . . . . . . . . 110

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Conclusions 113

A Appendix to Chapter 3 115

B Appendix to Chapter 4 117
A1 Analysis on Algorithm 5 and 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A1.1 Analysis on the Tolerance Parameters . . . . . . . . . . . . . . . . . . 117
A1.2 Initial Point in Algorithm 6 . . . . . . . . . . . . . . . . . . . . . . . 118

A2 Additional Computational Experiments . . . . . . . . . . . . . . . . . . . . . 118
A2.1 Testing Under Distributional Shift . . . . . . . . . . . . . . . . . . . . 118
A2.2 Effect of Training Data Size . . . . . . . . . . . . . . . . . . . . . . . 120
A2.3 Offline Computation Time . . . . . . . . . . . . . . . . . . . . . . . . 120
A2.4 Effect of the Size of the Uncertainty Sets . . . . . . . . . . . . . . . . 122

A3 Description of the Unit Commitment Problem . . . . . . . . . . . . . . . . . 122

References 127

9



10



List of Figures

2.1 Criss-cross network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 The decision tree learned by OCT-H for the criss-cross network. . . . . . . . 29
2.3 Rybko-Stolyar network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 The decision tree learned by OCT-H for the Rybko-Stolyar network. . . . . . 31
2.5 Reentrant network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 The decision tree learned by OCT-H for the reentrant network with m = 7

and |s| = 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7 The decision tree learned by OCT-H with the sparsity parameter 0.25 for the

reentrant network with m = 7 and |s| = 21. . . . . . . . . . . . . . . . . . . 37

3.1 The decision tree OCT-H learned for the infinite server routing problem with
n = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Solve time for the unit commitment problem. . . . . . . . . . . . . . . . . . 66
4.2 Decision tree to predict the optimal strategies for the here-and-now decisions. 72
4.3 Decision tree to predict the optimal strategies for the worst-case scenarios. . 72
4.4 Decision tree to predict the optimal strategies for the wait-and-see decisions. 72

5.1 Decision tree obtained by OPT for the synthetic advertisement assignment
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Decision tree learned with OCT(k) for the facility location problem. d9, d4, d2
are the demands from the destination 9,4,2, respectively. . . . . . . . . . . . 101

5.3 Decision tree learned with OPT(k) for the facility location problem. d9, d4, d2
are the demands from the destination 9,4,2, respectively. . . . . . . . . . . . 101

5.4 Comparison of the on-line solve times of OPT(k) and Gurobi, measured in
seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

11



12



List of Tables

2.1 Optimal policy for the criss-cross network when x(t) > 0. . . . . . . . . . . . 28
2.2 Experiment results for the reentrant network. . . . . . . . . . . . . . . . . . 33
2.3 Node split information on the decision tree in Figure 2.6. . . . . . . . . . . . 35
2.4 Node split information on the decision tree in Figure 2.7. . . . . . . . . . . . 36
2.5 Experiment results for the reentrant network using OCT-H with sparsity. . . 37

3.1 Experiment results for the machine maintenance problem. . . . . . . . . . . 57
3.2 Experiment results for the epidemic control problem. . . . . . . . . . . . . . 58
3.3 Experiment results for the fisheries control problem. . . . . . . . . . . . . . . 58

4.1 Numerical results for the facility location problem with k = 1. . . . . . . . . 82
4.2 Numerical results for the inventory control problem with k = 1. . . . . . . . 83
4.3 Numerical results for the unit commitment problem with k = 1. . . . . . . . 83
4.4 Numerical results for the facility location problem with k ≥ 1 using OPT. . . 84
4.5 Numerical results for the inventory control problem with k ≥ 1 using OPT. . 84
4.6 Numerical results for the unit commitment problem with k ≥ 1 using OPT. . 84
4.7 Numerical results of Algorithm 11 applied to the facility location problem. . 86
4.8 Numerical results of Algorithm 11 applied to the inventory control problem. 86
4.9 Numerical results of Algorithm 11 applied to the unit commitment problem. 86
4.10 Numerical results for the inventory control problem with varying number of

decision variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.11 Numerical results for the inventory control problem with varying number of

constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.12 Numerical results for the unit commitment problem with n = 100,m = 24, k ≥

1 using OPT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.13 Numerical results of Algorithm 9 and 10 applied to the unit commitment

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 First five rows of the reward matrix for the synthetic adverstisement assignment
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 The reward matrix of the facility location problem with n = 2 and m = 1. . . 100
5.3 First five rows of the reward matrix of the facility location problem with n = 10

and m = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4 Transportation Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5 Facility Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

13



5.6 Portfolio Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.7 Hybrid Vehicle Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.8 The effect of the penalty M on the performance of OPT(1). . . . . . . . . . 106
5.9 The effect of the penalty M on the training time of OPT(k), measured in

seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.10 Comparison of the training times of OPT(k) and OCT(k), measured in seconds.107
5.11 MIPLIB problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.12 binkar10_1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.13 mas76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A1 Runtime of Algorithm 5 with different tolerance parameters. . . . . . . . . . 117
A2 Variability of Algorithm 6 under different initial points. . . . . . . . . . . . . 118
A3 Numerical results under distributional shift. . . . . . . . . . . . . . . . . . . 119
A4 Numerical results under varying size of training set. . . . . . . . . . . . . . . 121
A5 Inventory control problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A6 Unit commitment problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A7 Numerical results under varying size of uncertainty sets. . . . . . . . . . . . 123

14



Chapter 1

Introduction

Advances in algorithms and hardware capabilities have enabled us to solve optimization and
control problems on a scale that was once considered unimaginable just a couple of decades
ago. However, the computational burden associated with solving large-scale optimization
and control problems, particularly in real-time scenarios, remains an ongoing challenge.
Furthermore, computational complexity theory has revealed that numerous problems of
practical significance are inherently difficult to solve. As a result, researchers have focused on
designing either approximation algorithms with provable guarantees, or heuristics with good
empirical performance [19], [36], [48], [66].

This thesis presents a unified approach to overcome this difficulty by harnessing the
power of machine learning, specifically through decision tree algorithms. In many practical
settings, similar optimization and control problems often need to be solved repeatedly. The
overarching goal of this thesis is to propose methods to expedite the solution of a broad range
of problems, outperforming conventional algorithms by leveraging patterns from previous
instances. By doing so, we can solve large-scale optimization and control problems that were
traditionally viewed as intractable, all in real-time – a matter of milliseconds. This paradigm
shift has the potential to yield substantial enhancements in a wide array of real-world decision
systems, including machine learning, healthcare, power systems, design, simulation, synthesis
and numerous others.

This area of research has received substantial attention within the academic community in
recent years. For instance, [2], [63] have proposed techniques for learning efficient branching
rules to solve mixed-integer optimization problems, while [10], [59] have employed machine
learning to automatically fine-tune hyperparameters in optimization algorithms. Reinforce-
ment learning methods have also played a pivotal role in solving stochastic control problems
with the aid of machine learning techniques [44], [72], [95]. For a comprehensive overview of
this subject, please refer to [18], [73].

However, despite these advancements, the potential of this research direction remains
under-explored. Key areas for improvement include selecting the most suitable machine
learning algorithms for solving specific optimization and control problems. While deep neural
networks are commonly chosen for their powerful approximation capabilities, theoretical
considerations often suggest alternative algorithms that could yield superior empirical results.

Another important area lies in expanding the scope of optimization and control problems
amenable to machine learning. This involves identifying recurring parameters as features and
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selecting relevant prediction targets within a problem class. Moreover, each problem class
presents inherent challenges that must be addressed to successfully apply a machine learning
framework.

In this thesis, we explore the application of decision tree algorithms to a wide range
of problems and propose appropriate approaches tailored to each task. These dual con-
tributions—identifying the most effective machine learning algorithms and expanding the
application scope—complement each other, collectively advancing the integration of machine
learning into optimization and control problems.

1.1 Outline and Main Contributions

This thesis consists of two primary topics. The first two chapters focus on using decision
trees to learn state feedback policies for continuous-time optimal control problems. The final
two chapters focus on accelerating the solution of static mixed-integer programming problems
and their two-stage robust optimization extensions using decision trees.

Chapter 2 We propose a machine learning approach to the optimal control of multiclass
fluid queueing networks (MFQNETs) that provides explicit and insightful control policies. We
prove that a piecewise constant optimal policy exists for MFQNET control problems, with
segments separated by hyperplanes passing through the origin. We use Optimal Classification
Trees with hyperplane splits (OCT-H) to learn an optimal control policy for MFQNETs. We
use numerical solutions of MFQNET control problems as a training set and apply OCT-H
to learn explicit control policies. We report experimental results with up to 33 servers and
99 classes that demonstrate that the learned policies achieve 100% accuracy on the test set.
While the offline training of OCT-H can take days in large networks, the online application
takes milliseconds.

Chapter 3 We propose a machine learning approach to the optimal control of fluid restless
multi-armed bandits (FRMABs) with state equations that are either affine or quadratic in
the state variables. By deriving fundamental properties of FRMAB problems, we design an
efficient numerical algorithm. Using this algorithm, we solve multiple instances with varying
initial states to generate a comprehensive training set. We then learn a state feedback policy
using Optimal Classification Trees with hyperplane splits (OCT-H). We test our approach on
machine maintenance, epidemic control and fisheries control problem. Our method yields
high-quality state feedback policies and achieves a speed-up of more than 26 million times
compared to a direct numerical algorithm for fluid problems.

Chapter 4 We propose an approach based on machine learning to solve two-stage linear
adaptive robust optimization (ARO) problems with binary here-and-now variables and
polyhedral uncertainty sets. We encode the optimal here-and-now decisions, the worst-case
scenarios associated with the optimal here-and-now decisions, and the optimal wait-and-see
decisions into what we denote as the strategy. We solve multiple similar ARO instances
in advance using the column and constraint generation algorithm and extract the optimal
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strategies to generate a training set. We train machine learning models that predict high-
quality strategies for the here-and-now decisions, the worst-case scenarios associated with the
optimal here-and-now decisions, and the wait-and-see decisions. The models can be applied
to problems with varying dimensions. We also introduce novel methods to expedite training
data generation and reduce the number of different target classes the machine learning
algorithm needs to be trained on. We apply the proposed approach to the facility location,
the multi-item inventory control and the unit commitment problems. Our approach solves
ARO problems drastically faster than the state-of-the-art algorithms with high accuracy.

Chapter 5 We introduce a prescriptive machine learning approach to speed up the process of
solving mixed integer convex optimization (MICO) problems. We solve multiple optimization
instances and train a machine learning model in advance, which we use to solve new instances.
Previous works [24], [25] have shown that the predictions of classification algorithms enable
us to solve optimization problems much faster than commercial solvers. What distinguishes
this paper from the previous work is that we use a prescriptive algorithm, Optimal Policy
Trees (OPT) [3], instead of classification algorithms. While classification algorithms aim
to predict the correct label and consider all other labels equally undesirable, a prescriptive
approach takes into account all the available decision options and their counterfactuals.
We first introduce an algorithm that is purely based on OPT, and also its extension. We
compare their performance with Optimal Classification Trees (OCT) [20], [21] on various
MICO problems. Test problems include transportation optimization, portfolio optimization,
facility location and hybrid vehicle control. We also experiment on real-world instances taken
from MIPLIB [53]. OPT-based methods have a significant edge on finding feasible solutions,
while OCT-based methods have a slight edge on the degree of suboptimality. The proposed
extension of the pure OPT algorithm improves on the suboptimality of the solutions the
algorithm produces.
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Chapter 2

Optimal Control of Multiclass Fluid
Queueing Networks: A Machine Learning
Approach

2.1 Introduction

Multiclass queueing networks (MQNETs) are complex systems that model the behavior
of multiple classes of jobs, each with their own arrival and service rates, routing paths
and holding costs. These networks find numerous applications in diverse fields, including
manufacturing [67], healthcare [41] and communication networks [102] among many. The
control of MQNETs is of great importance in improving system efficiency, optimizing resource
allocation, and reducing operational costs. However, the inherent complexity of these systems
makes their analysis and control a challenging task.

Multiclass fluid queueing networks (MFQNETs) have been developed as a deterministic,
continuous approximation of MQNETs, primarily to provide a tractable method for analyzing
the stability of the underlying MQNETs. [43], [104] demonstrate that the stability of
MFQNETs implies the stability of underlying MQNETs. Several related studies including
[47], [51], [80] have also explored the topic. See [27] for a comprehensive review.

MFQNETs also provide a useful way to construct control policies for MQNETs as the
optimal control of MFQNETs is often much more tractable than the optimal control of
underlying MQNETs. To this end, several approaches have been proposed in the literature.
[76], [77] propose discrete review policies and show that they achieve asymptotic optimality
and stability under fluid scailing. [31] provide a robust formulation of MFQNET control
problem and translate the resulting policy to the underlying MQNET. [32], [45] propose
methods to approximately minimize make-span based on the associated fluid models. For a
comprehensive review of the topic, see [79] and [27].

Mathematically, optimal control of MFQNETs falls into a subclass of infinite dimensional
linear optimization models known as separated continuous linear programs (SCLPs). Several
researchers have investigated the theoretical properties of SCLPs, such as [4], [90], [92],
[93]. [7] find closed-form optimal policies for specific MFQNETs using optimality conditions
from optimal control theory. Other works have proposed numerical algorithms for solving
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SCLPs. [74], [91], [94] develop algorithms based on discretization, while [101], [109] propose
simplex-like methods. [14], [49] propose polynomial-time approximation algorithms.

Despite significant efforts in the field and its practical applications, optimal control of
MFQNETs remains a challenging computational task. Moreover, current algorithms typically
provide only numerical solutions, making it difficult to gain insight into the underlying
structure of the optimal policy.

Recently, there has been growing interest in applying machine learning techniques to solve
challenging optimization and control problems. For instance, [2], [24], [25], [28], [39], [63]
propose machine learning-based approaches to mixed-integer optimization. [30] develop a
method to solve two-stage adaptive robust optimization problems using machine learning.
Machine learning has been used for hyperparameter tuning in optimization algorithms as well
[12], [59]. For queueing network control, reinforcement learning methods are proposed in [44],
[72], [95]. Although these approaches have shown to be effective in addressing computational
challenges, it can be difficult to provide theoretical guarantees that the machine learning
methods lead to optimal solutions.

In this paper, we present a novel approach that leverages machine learning to solve
MFQNET control problems. The MFQNET control problem we consider is the fluid analog
of the sequencing problem in MQNETs. The sequencing problem in MQNETs is a stochastic
and discrete control problem that involves deciding which class of jobs to process at each
server at any given time, with the aim of minimizing the expected total cost. We formulate
the fluid analog of this problem as a SCLP problem and propose a machine learning-based
algorithm to address it.

We solve multiple MFQNET control problems and use the resulting numerical solutions
to learn an optimal state feedback policy. The machine learning algorithm we use is Optimal
Classification Trees with hyperplane splits (OCT-H) proposed by [20], [21]. OCT-H is a
classification algorithm that partitions the feature space using hyperplanes and assigns a
prediction to each region. We prove that OCT-H can learn exact optimal policies for the
MFQNET control problems.
The contributions of the paper are as follows.

1. We prove the existence of a piecewise constant optimal policy for MFQNET control
problems, with segments separated by hyperplanes passing through the origin. This
result was previously proven only for special cases.

2. Based on the theoretical findings, we propose an efficient algorithm that can learn an
exact optimal control policy for MFQNETs using OCT-H. We report experimental
results with up to 33 servers and 99 classes that demonstrate that the learned policies
achieve 100% accuracy on the test set.

3. Once a policy is learned offline, it can be directly applied online to unseen states
in milliseconds, leading to a significant speed-up compared to solving the problem
numerically.

4. The high interpretability of decision trees allows us to gain insights into the structure
of the optimal policy, which is a significant advantage that numerical optimization
algorithms often lack. By providing the actual decision trees learned by OCT-H, we
develop a deeper understanding of MFQNETs and their optimal policy.
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The structure of this paper is as follows. Section 2.2 provides the definition of MFQNET
control, along with the associated optimality conditions. We also provide a brief review of
OCT-H. Section 2.3 provides our theoretical results on the structure of optimal policy for
MFQNET control. We then develop a learning algorithm based on OCT-H and provide a
small example to illustrate the method. Section 2.4 reports the results of computational
experiments, where we analyze the accuracy, speed, and interpretability of our approach.

Notational conventions Throughout this paper, we use lower case boldface letters to
denote vectors and upper case boldface letters to denote matrices. The ith entry of a vector
x is denoted xi, and the entry in the ith row and jth column of a matrix A is denoted aij.
Division between two vectors is always assumed to be entry-wise. We use e to denote the
vector of all ones and 0 to denote the vector of zeros. We use x(·) to denote a real-valued
function, and x(·) to denote a vector whose entries are real-valued functions. We use x
instead of x(·) when it is clear from the context that x is referring to a vector of functions.

2.2 Background

In this section, we first define the optimal control problem for MFQNETs. Then, we review
its key theoretical properties and provide a brief overview of OCT-H.

2.2.1 Optimal Control of MFQNETs

Consider a queueing network with m servers and n job classes. Each job class i ∈ [n] is
processed by a single server s(i) ∈ [m] with service rate µi. After jobs of class i are processed,
they either leave the system or change to a different class in a deterministic manner. Jobs
may arrive from either another server or from outside the system with external arrival rate
λi. If there is no external arrival for class i, then λi = 0. The cost per unit time for holding a
job of class i is denoted ci.

For each class i ∈ [n], the control variable ui(t) denotes the fraction of effort the server
s(i) spends processing class i jobs at time t. The state variable xi(t) is the number of jobs of
class i at time t. The dynamics of the system can be expressed using a matrix A ∈ Rn×n,
where aii = −µi and aij = µj if class i receives arrivals from class j, j ̸= i. The rest of the
entries of A are zero. Then, the dynamics of the system is

ẋ(t) = Au(t) + λ.

In addition, the sum of the control variables for all classes that are processed at the same
server should be less than or equal to one. This constraint can be expressed as

Du(t) ≤ e,

where D ∈ {0, 1}m×n is a binary matrix with dij = 1 if s(j) = i and dij = 0, otherwise.
The MFQNET control problem aims to find a control u that minimizes the total holding

cost of the jobs in the system over the time interval [0, T ]. We define the MFQNET control
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problem with an initial state x0 as the following:

min
u(·),x(·)

∫ T

0

c⊤x(t) dt (2.1)

s.t. ẋ(t) = Au(t) + λ, ∀t ∈ [0, T ],

Du(t) ≤ e, ∀t ∈ [0, T ],

u(t),x(t) ≥ 0, ∀t ∈ [0, T ],

x(0) = x0.

We use u∗
x0

and x∗
x0

to denote the optimal control and the associated state trajectory of
problem (2.1) with the initial state x0. We use u∗ and x∗ to denote the optimal control and
the associated state trajectory of general MFQNET control problems when the initial state
is not specified.

We define the vector load −DA−1λ ∈ Rm, and assume that all the entries of the workload
vector are strictly smaller than 1 for stability. We further assume T is large enough, so that
the system can be emptied by time T [79]. Under this setting, identifying the optimal initial
control u∗

x0
(0) for any initial state x0 is equivalent to identifying the optimal stationary

feedback control u∗(t) for any state x(t).
For each job class i ∈ [n], we define the depletion time Ti = inf{t ∈ (0, T ] : x∗

i (t) = 0}
under an optimal state trajectory x∗, assuming that x∗

i (0) > 0. We define the value function
V (x0) as the optimal objective value of Problem (2.1) associated with the initial state x0.

2.2.2 Properties of MFQNET Control problems

We present several theoretical properties of MFQNET control problems, which will be used
to derive our main results. The Pontryagin Maximum Principle [89], [100] provides necessary
optimality conditions for general optimal control problems. Due to the non-negativity
constraints on the state variable in Problem (2.1), the conditions that we provide are tailored
for the optimal control problems with pure state constraints.

We define the Hamiltonian of Problem (2.1) as

H(x,u,y, t) = c⊤x(t) + y(t)⊤[Au(t) + λ],

where y(t) is known as the costate variable.

Lemma 1 (Pontryagin Maximum Principle [89], [100]). If the feasible control u∗ and the state
trajectory x∗ is optimal for Problem (2.1), there exists y(t) for any t ∈ [0, T ] that satisfies
the following conditions.

(a) H(x∗,u∗,y, t) ≤ H(x∗,u,y, t) for all u(t) satisfying u(t) ≥ 0, Du(t) ≤ e.

(b) Whenever u∗(t) is continuous, ẏ(t) = −c+ π(t), where π(t) ≥ 0,π(t)⊤x∗(t) = 0.

(c) y(T ) = 0.

Proof. See [100].
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The following two lemmas describe the property of the costate variable in Lemma 1 and
the optimal feedback policy, respectively.

Lemma 2 ([6]). y(t) is piecewise linear and continuous function of t. Furthermore, slope
changes can only occur at the depletion times {T1, . . . , Tn}.

Proof. See [6].

Lemma 3 ([15]). Consider two initial states x0 and αx0, where α is some positive scalar.
Then, u∗

x0
(0) = u∗

αx0
(0)

Proof. See [15].

2.2.3 Optimal Classification Trees with Hyperplane Splits

Optimal Classification Trees (OCT) is an algorithm to learn near-optimal decision trees for
classification tasks. Classification and Regression Trees (CART) [34], an earlier algorithm
to learn decision trees for prediction tasks, learns a decision tree in a greedy manner using
recursive partitioning of the feature space at each child node. However, OCT aims to learn a
globally optimal decision tree using mixed-integer optimization and local heuristics.

Similar to CART and other classification algorithms, OCT takes N data inputs {(θi, zi)}Ni=1,
where θi is the feature vector and zi is the label for the ith data point. Given this data set,
OCT learns a decision tree that uses a single feature for the split at each node and assigns a
label to each node of the tree. Given a new data point θ0, it traverses the decision tree until
it reaches a leaf node. The prediction of the tree for θ0 is the label assigned to the leaf node.

OCT-H, a generalization of OCT, can use an arbitrary linear combination of the features
for splits at the nodes. This means that OCT-H can use general hyperplanes for splits,
whereas OCT is confined to use hyperplanes that are perpendicular to the axes in the feature
space. Essentially, OCT-H partitions the feature space with hyperplanes, and assigns a
prediction to each region. This observation is the key to our work to solve Problem (2.1)
using OCT-H. Compared to OCT, OCT-H generally shows higher prediction accuracy and
learns shallower trees.

In OCT-H, it is possible to limit the number of features that can be used for splits, which
can result in a more interpretable tree. This version of OCT-H is denoted as OCT-H with
sparsity throughout the remainder of the paper. We simply use OCT-H to denote regular
OCT-H, where the entire features can be used. For a more detailed explanation on OCT and
OCT-H, we refer readers to [20], [21].

2.3 OCT-H for the Optimal Control of MFQNETs

In this section, we first prove that OCT-H can learn an optimal policy of Problem (2.1).
Based on this result, we then proceed to develop an efficient algorithm to learn an optimal
policy of Problem (2.1) using OCT-H.
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2.3.1 Theoretical Results

The following Lemma 4 will be used to prove our main theorem.

Lemma 4. The value of y(0) can be expressed as a linear function of (T1, . . . , Tn).

Proof. We fix an index i ∈ [n] and prove the stated property for yi(0). By Lemma 2,
yi(t) is piecewise linear and continuous, with potential breakpoints at the depletion times
{T1, . . . , Tn}. Although the exact ordering of the depletion times is unknown, the following
argument applies to any ordering. Hence, assume a fixed ordering. By working backwards
in time from t = T (where yi(T ) = 0 by Lemma 1), we can determine the value of y(t)
at the breakpoints {T1, . . . , Tn}, starting from the breakpoint that is closest to T . At any
breakpoint, the value of yi(t) can be expressed as a linear combination of T1, . . . , Tn that are
greater than or equal to t. Once the value of yi(t) at a breakpoint is determined, the value of
yi(t) at the next earlier breakpoint can be determined, as we know that yi(t) is piecewise
linear and continuous. We recursively follow this procedure until t = 0, where the value of
yi(0) can be expressed as a linear combination of (T1, . . . , Tn).

The following theorem is our main theoretical result that generalizes the results by [7] to
general MFQNETs.

Theorem 1. For Problem (2.1), there exists a piecewise constant optimal policy, with segments
separated by hyperplanes passing through the origin.

Proof. Our proof is based upon the algorithm by [6] to solve Problem (2.1) with any given
initial state. We prove that the solution this algorithm finds is a a piecewise constant optimal
policy, with segments separated by hyperplanes passing through the origin.

By condition (a) of Lemma 1, the optimal control at each time t is decided by the priority
index ri(t) defined for each job class i ∈ [n], where ri(t) = [y(t)⊤A]i. Lemma 2 indicates that
ri(t) is a continuous, piecewise linear function and its slope can only change at {T1, . . . , Tn}.
At each server, the optimal policy is to put maximum effort to the job class with the smallest
priority index, and put zero effort to the rest, without violating the non-negativity constraint
on the state variables. When all the job classes at the server have positive priority indices,
the optimal policy is to idle. This case can be captured by considering idling as a job class
with the constant priority index 0. Hence, Lemma 1 implies that as long as the rank of the
priority indices does not change, the optimal control is a constant vector.

The condition under which a server transfers effort from one class to another is defined by
the equalities of the form rj(t) = rk(t), given that class j jobs and class k jobs are processed
by the same server. If this equality holds, then it is indifferent whether the server prioritizes
class j or k. If this equality becomes inequality, then it would be beneficial to prioritize one
class over the other. This description indicates that the switching between job classes are
defined by the equalities between the priority indices.

We derive the condition that the priority is switched from class j jobs to class k jobs,
starting from an initial state x0. Depending on the parameters c and A, certain switches
might not be always possible. Furthermore, the order of the depletion times {T1, . . . , Tn}
and the future switches associated with the trajectory should be adequately decided as well
(Specific examples of how A, c and the order of {T1, . . . , Tn} can make a switch possible or
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not are given in [6], [7]). We assume that A, c, the order of {T1, . . . , Tn} and the switches
associated with the trajectory are appropriately fixed. The specific order of {T1, . . . , Tn}
leads to a collection of equalities between the indices ri(t) during the entire trajectory, and
completely determines the optimal solution of the problem [6], [7].

Without loss of generality, we assume that the switch from class j to k happens at t = 0.
The switching condition that we would like to derive is then rj(0) = rk(0), where rj(0)
and rk(0) are both linear functions of (T1, . . . , Tn) due to Lemma 4. We now prove that
(T1, . . . , Tn) is a linear function of x0, which verifies that rj(0) = rk(0) represents a hyperplane
passing through the origin in the state space.

By definition, Ti can be computed from the equation of the form
∫ b1
0
[Au(t)+λ]i dt+ · · ·+∫ Ti

bq
[Au(t) + λ]i dt = −xi, where bl, l ∈ [q], represents a breakpoint in [Au(t) + λ]i . The

control [Au(t) + λ]i is constant between the breakpoints, and the breakpoints bi are always
the intersections between two indices. Any time of intersection between two indices can be
expressed as a linear function of the vector (T1, . . . , Tn) due to Lemma 4. Hence, the above
equation leads to an equality between xi and a linear function of (T1, . . . , Tn). Likewise, the
collection of equalities that we have all lead to equalities between x0 and linear functions of
(T1, . . . , Tn). Rearranging these equalities leads to the expression of (T1, . . . , Tn) as a linear
function of x0.

The proof above demonstrates that the state space is separated by hyperplanes, according
to the relative ordering of the priority indices of each job class. Within each region, a constant
control vector is optimal. These hyperplanes are referred to as switching curves [79], [100].

The following Corollary 1 is the building block to develop a learning algorithm in Section
2.3.2.

Corollary 1. OCT-H can learn an optimal policy of Problem (2.1).

Proof. By Theorem 1, there exist switching curves that are hyperplanes passing through the
origin. As described in Section 2.2.3, OCT-H learns a decision tree that partitions the feature
space with hyperplanes, and assigns a label to each region. Hence, it can naturally learn the
switching curves and the optimal control at each region partitioned by the switching curves.

Another condition to consider is whether xi(t) = 0 for some class i ∈ [n]. If xi = 0, then
server splitting might occur to satisfy the non-negativity constraint on the state vector. We
first note that the condition xi = 0 is also a hyperplane in the state space passing through
the origin.

In general, decision trees are confined to use inequalities for node splits. In our context,
however, equality conditions such as xi(t) = 0 can be learned as the condition xi ≤ 0. Since
the state vector is always non-negative, these two conditions are equivalent for Problem (2.1).
Hence, OCT-H can learn the optimal policy of Problem (2.1) both in the interior and the
boundary of the state space.

The following Theorem 2, along with Lemma 3 will be used in Section 2.3.2 to develop a
more efficient learning algorithm.

Theorem 2. Consider a pair of optimal control and the associated state trajectory

{(u∗
x0
(t),x∗

x0
(t)) : t ∈ [0, T ]}
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and a positive scalar α. Then, {(u∗
x0
( t
α
), αx∗

x0
( t
α
)) : t ∈ [0, αT ]} is optimal for Problem (2.1)

with the initial state αx0.

Proof. The proof of this theorem follows from the proof of Theorem 3 in [15]. By Theorem
3 in [15], we know V (αx0) = α2V (x0) and also that {(u∗

x0
( t
α
), αx∗

x0
( t
α
)) : t ∈ [0, αT ]} is

feasible. The objective cost associated with the pair {(u∗
x0
( t
α
), αx∗

x0
( t
α
)) : t ∈ [0, αT ]} is

α

∫ αT

0

c⊤x∗
x0
(
t

α
) dt = α2

∫ T

0

c⊤x∗
x0
(t) dt = α2V (x0).

As this solution achieves the optimal objective cost and is also feasible, it is optimal.

2.3.2 Algorithm

We present an algorithm that utilizes OCT-H to learn an optimal policy for Problem
(2.1). To ensure a more comprehensive and efficient learning process, we discuss several key
considerations that have been taken into account while developing the algorithm.

Given Problem (2.1) with the initial state x0, we can solve it to optimality using the
algorithm proposed by [101]. Once we solve it, we obtain the optimal control u∗

x0
(t) and

the optimal state trajectory x∗
x0
(t) for the entire time interval t ∈ [0, T ]. We choose

N ∈ N elements t1, . . . , tN from the interval [0, T ], and extract the corresponding state values
x∗(t1), . . . ,x

∗(tN ) and the control values u∗(t1), . . . ,u
∗(tN ). The training data that we obtain

from this procedure is {(x∗
x0
(ti),u

∗
x0
(ti))}Ni=1. As in the usual supervised learning literature,

x∗
x0
(ti) is the feature vector and u∗

x0
(ti) is the target for the ith data point.

To ensure a comprehensive coverage of the state space, we generate multiple initial states
and solve the associated Problem (2.1) for each initial state. By considering multiple instances
with different initial states, we can obtain a more diverse set of state trajectories. Instead of
arbitrarily generating the initial states, we develop a more systematic approach. Assuming
that there are n job classes, there are

(
n
1

)
+ · · ·+

(
n
n

)
= 2n − 1 possible cases of which classes

among n are non-empty (excluding the trivial case that the entire system is empty). We let
S = {s1, s2, . . . , s2n−1} be the set of such cases, where each element si, i ∈ [2n− 1], represents
a set of non-empty classes. For example, if n = 2, then S =

{
{1}, {2}, {1, 2}

}
. For each

s ∈ S, we generate values for the non-zero entries of the initial state specified in s and fix the
remaining entries to zero. This systematic approach ensures that the training data covers the
state space seamlessly, including both the interior and the boundary regions.

Another consideration is that as n increases, the number of hyperplanes required to
describe the optimal policy can get prohibitively large. To address this issue, we propose
training multiple decision trees, if necessary. Each data point in the training set corresponds
to an element of S, depending on which entries of the state vector are non-zero. Hence,
once we define a partition of S, this partition can also be used to partition the training
set. Then, we train a decision tree for each partition of the training set. For example, if

we define a partition of the set S =
{
{1}, {2}, {1, 2}

}
to be P =

{{
{1}, {2}

}
,
{
{1, 2}

}}
,

we train two decision trees. The first decision tree is trained using the state vectors where
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either the first or the second entry is zero. The second decision tree is trained using the state
vectors that are strictly positive. Essentially, we are dividing the state space into multiple
regions and learning the optimal policy for each region. This approach allows us to distribute
the learning process across multiple decision trees, reducing the computational burden and
enabling efficient training even when dealing with a large number of job classes.

Finally, we use Lemma 3 and Theorem 2 for a more efficient data generation. According
to Theorem 2, solving Problem (2.1) with the initial state x0 and solving it again with αx0

would be redundant. This observation allows us to streamline the data generation process.
Instead of generating initial states arbitrarily, we sample them uniformly at random from the
unit sphere in the non-negative orthant. This approach ensures that we cover a diverse range
of initial states while avoiding unnecessary repetitions. Furthermore, Lemma 3 suggests that
we can augment the training data {(x∗

x0
(ti),u

∗
x0
(ti))}Ni=1 by including additional data points

{(αx∗
x0
(ti),u

∗
x0
(ti))}Ni=1, possibly multiple times with varying α values.

Algorithm 1 outlines the entire procedure more rigorously. We let A denote the set of α
that we use to augment data. We let P denote the partition of S. We use M to denote the
number of initial states we sample for each element in S. We use x[s] to denote the entries of
x in s. For a set K = {(x∗

x0
(ti),u

∗
x0
(ti))}Ni=1, we use αK to denote {(αx∗

x0
(ti),u

∗
x0
(ti))}Ni=1.

Without loss of generality, we assume that the order of the cells in the partition P is fixed
and P[j] is the jth cell of P .

2.3.3 Example

We provide two small examples to illustrate Algorithm 1. For both examples, the closed-form
expressions of the optimal policies are already known. We compare the policy learned by
Algorithm 1 with the closed-form optimal policy to demonstrate that it can learn near-optimal
policies. The first example is to demonstrate that Algorithm 1 can learn the optimal switching
curve in the interior of the state space, and the second example is to demonstrate that it can
learn the optimal server splitting policy when some job classes are empty.

The first example is the criss-cross network considered by [57]. The criss-cross network
is composed of three classes and two servers. Server 1 processes Class 1 and 2 jobs, and
Server 2 processes Class 3 jobs. Class 1 and 2 jobs take external arrivals. After Class 1
jobs are processed at Server 1, they become Class 3 jobs and move to Server 2. After Class
2 and 3 jobs are processed, they leave the system. Its graphical representation is given
in Figure 2.1. It is clear that u∗

3(t) = 1 as long as Server 2 is not empty. The problem
is to choose which class to process at Server 1. For this example, we only demonstrate
the case in which none of the classes are empty. In other words, we learn the optimal
policy for the case s = {1, 2, 3}. We let c = e, λ1 = λ2 = 0.5, µ1 = 1.5, µ2 = 1 and
µ3 = 2. Under this set of parameters, the switching curve and the corresponding optimal
policy of this network derived by [7] are given in Table 2.1. The closed-form expression
of the switching curve is x1(t) = 6x3(t). Other parameters we used for Algorithm 1 are

N = 1, t1 = 0,A = {0.5, 1.5},P =

{{
{s1, s2, s3}

}
, . . .

}
and M = 1000.

Figure 2.2 displays the decision tree learned by OCT-H, where each node contains the
prediction made on that node. The decision tree that OCT-H learned predicts u∗(t) = (0, 1, 1)
if x1(t) ≤ 5.93x3(t) + 0.01 and predicts u∗(t) = (1, 0, 1) if x1(t) ≥ 5.93x3(t) + 0.01. This
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Algorithm 1: OCT-H for MFQNET control.
Input: c,A,λ,D, {t1, . . . , tN},A,S,P ,M
Output: |P| classification trees with hyperplane splits.
Initialization: KS , K1, . . . , K|P| ← ∅

1. Data Generation
for s ∈ S do

j ← 1
while j ≤M do

x0 ← 0 ∈ Rn

Sample a positive vector x̂ from the |s| dimensional unit sphere.
x0[s] ← x̂
Solve Problem (2.1) with the initial state x0.
KS ← KS ∪ {(x∗

x0
(ti),u

∗
x0
(ti))}Ni=1

j ← j + 1

for (x,u) ∈ KS do
ŝ← {i ∈ [n] : xi > 0}
for j ∈ [|P|] do

for s ∈ P[j] do
if s = ŝ then

Kj ← Kj ∪ (x,u)

2. Data Augmentation
for K ∈ {K1, . . . , K|P|} do

for α ∈ A do
K ← K ∪ αK

3. Training
for K ∈ {K1, . . . , K|P|} do

Use OCT-H to train a classification tree on K.

Conditions u∗(t)

x1(t)
x3(t)
≥ c2µ1

c1µ1−c3µ3
× µ1−λ1

µ2−µ1
(1, 0, 1)

x1(t)
x3(t)
≤ c2µ1

c1µ1−c3µ3
× µ1−λ1

µ2−µ1
(0, 1, 1)

Table 2.1: Optimal policy for the criss-cross network when x(t) > 0.
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Figure 2.1: Criss-cross network.

Figure 2.2: The decision tree learned by OCT-H for the criss-cross network.

closely resembles the optimal policy, exhibiting only minor numerical differences.
The second example is the Rybko-Stolyar network studied in [96]. This network is

composed of four classes and two servers. Server 1 processes Class 1 and 4, and Server 2
processes Class 2 and 3 jobs. Class 1 and 3 jobs take external arrivals. After Class 1 jobs are
processed, they become Class 2 job and move to Server 2. After Class 3 jobs are processed,
they become Class 4 jobs and move to Server 1. After Class 2 and 4 jobs are processed,
they exit the system. Its graphical representation is given in Figure 2.3. We let c = e,
λ1 = λ3 = 1, µ1 = µ3 = 6 and µ2 = µ4 = 1.5. Under this set of parameters, the optimal
policy is to prioritize Class 2 and 4 jobs unless either one of them is empty. If any one of them
is empty, server splitting occurs. For this example, we train a single decision tree to learn the
optimal policy that covers the entire state space. The parameters we used for Algorithm 1
are N = 1, t1 = 0,A = {0.5, 1.5},P = {S} and M = 1000.

Figure 2.4 displays the decision tree learned by OCT-H. Since decision trees are confined
to use inequalities for node splits, we can observe that the condition xi = 0 for some i ∈ [4] is
learned as xi ≤ ϵ for a number ϵ with small absolute value. As the state vectors are always
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Figure 2.3: Rybko-Stolyar network.

non-negative, these two conditions are effectively equivalent. Additionally, when both Class 2
and 4 are non-empty, the decision tree prioritizes them. When either one of them is empty,
server splitting occurs. This policy aligns with the description provided earlier. To assess the
quality of this policy when server splitting occurs, we generated a test set following the same
procedure as the training set but with M = 200,A = {5}. This guarantees that the test set
consists of state-control pairs that OCT-H has not seen during training. We then computed
the classification accuracy of the learned policy on this test set. The classification accuracy
was 100%, implying that OCT-H learned a high-quality policy that is empirically optimal.
Furthermore, we compared the optimal objective cost with the cost achieved by applying
the learned policy to the network. We generated 100 random initial points and applied the
decision tree to each instance. When implementing the policy, we discretized the time steps
to simulate continuous dynamics and compute integral values. After calculating the objective
cost, we subtracted the optimal objective cost and divided the resulting value by the optimal
objective cost to compute the suboptimality. We observed that for all 100 instances, the
suboptimality was smaller than 0.0001.

2.4 Computational Experiments

This section presents the findings of computational experiments conducted on MFQNETs with
varying sizes. We analyze the accuracy of the policy learned by Algorithm 1 and compare its
online application speed with that of the algorithm by [101]. In addition, we provide insights
on the optimal policy of MFQNET control problems by presenting some of the actual decision
trees. We also apply OCT-H with sparsity on several MFQNET problems and analyze the
impact of sparsity on the performance and the resulting decision tree. The networks in this
section are taken from [31] and [101].

2.4.1 Experiment Setting

We consider a reentrant network with m servers and 3m classes of jobs. Each Server i ∈ [m]
processes jobs of Classes 3(i− 1) + 1, 3(i− 1) + 2 and 3(i− 1) + 3. Only Class 1 jobs take
external arrivals with the arrival rate λ1. Class 3(i− 1) + 1 jobs become Class 3i+ 1 until
they become Class 3(m− 1) + 1. After Class 3(m− 1) + 1 jobs are processed, they change
to Class 2 and enter Server 1. Class 3(i − 1) + 2 jobs become Class 3i + 2 jobs until they

30



Figure 2.4: The decision tree learned by OCT-H for the Rybko-Stolyar network.
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Figure 2.5: Reentrant network.

become Class 3(m − 1) + 2. After Class 3(m − 1) + 2 jobs are processed, they change to
Class 3 to enter Server 1. Class 3(i− 1) + 3 jobs become 3i+ 3 jobs, until they become Class
3m and exit the system after processed. We provide a graphical representation in Figure 2.5.
The parameters λ,µ, c are randomly generated using the software by [101].

We test Algorithm 1 on the reentrant networks with varying m. We treat all 23m − 1
cases of non-zero entries separately. Using the formalism in Section 2.3.2, we let P ={
{s1}, {s2}, . . . , {s23m−1}

}
. Instead of exhaustively demonstrating our approach on the entire

cells of P, we randomly choose three cells and learn the optimal policy for each cell. We
always include the case where none of the classes are empty. After we fix some s ∈ S, we
generate a training set with N = 1, t1 = 0,A = {0.5, 0.75, 5} and M = 10000. We generate a
test set with N = 1, t1 = 0,A = {10} and M = 2000. Again, this ensures that the test set
consists of state-control pairs that are completely distinct from the training set. We report
the classification accuracy of OCT-H on the test set. For each fluid control instance that is
used to generate test set, we also measure the time it takes to solve the instance using the
algorithm by [101], and divide it by the time it takes for the trained decision tree to make a
prediction. We report the mean of the ratios rounded to the nearest integer as the relative
speed-up of Algorithm 1.

Software for OCT-H is available at [60]. We tune the maximum depth of the tree by grid
searching over the list [3,5,10]. Public implementation of the algorithm by [101] is available
at https://github.com/IBM/SCLPsolver. When we use this implementation, we set the zero
entries in λ to a small number 10−6 instead of 0, as we have observed that this results in
better numerical stability. The experiments were executed on a MacBook Pro with 2.6 GHz
Intel Core i7 CPU and 16GB of RAM, except for the training part. We trained decision trees
on MIT Engaging Computing Cluster with Dell C6300, 2 socket Intel E5-2690v4 processor,
14 Cores per CPU and 128 GB RAM.

2.4.2 Speed and Accuracy

In Table 2.2, we report the results of numerical experiments, focusing on the speed and
accuracy of Algorithm 1. In the second column, we report the number of non-zero entries
of the state vector, denoted by |s|. In the third column, we report the number of distinct
labels for the classification task, denoted by |{u∗}|. In the rest of the columns we report m,
the training time for OCT-H, the relative speed-up of Algorithm 1 and the out-of-sample
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m |s| |{u∗}| Training Time (hours:minutes) Speed-up Accuracy (%)

3
9 3 00:30 153 100
7 3 00:38 196 100
5 3 00:48 125 100

7
21 4 01:26 255 100
9 4 00:34 151 100
7 4 00:34 245 100

8
24 4 00:28 296 100
12 4 00:44 278 100
7 4 00:23 313 100

9
27 4 00:30 364 100
24 2 00:33 360 100
7 2 00:40 343 100

14
42 6 03:50 781 100
36 6 04:34 790 100
7 4 04:20 661 100

20
60 9 46:20 700 100
30 9 44:10 599 100
7 9 40:24 628 100

33
99 9 48:20 6014 100
51 9 47:30 994 100
45 9 42:20 982 100

Table 2.2: Experiment results for the reentrant network.
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classification error on the test set, rounded to the third decimal place.

Observations from Table 2.2

• Algorithm 1 achieves perfect accuracy regardless of the size of the network, the number
of unique labels and the number of non-zero entries.

• The training time for OCT-H takes at most 48 hours in our experiment, suggesting
that data generation and training might take hours to days in practice.

• Once a policy is learned, Algorithm 1 is significantly faster than the algorithm by [101],
with a speed-up ranging from hundreds to thousands of times faster in our experiment.
In general, this relative speed-up becomes even greater as the dimension of the state
space gets higher.

• As the dimension of the state space gets higher, the number of distinct labels do
not increase significantly. This observation suggests that even for high dimensional
problems, the structure of the optimal policy might be simple enough to be learned by
OCT-H with shallow decision trees.

2.4.3 Interpretability

We now provide the decision tree for a problem solved in Section 2.4.2 and develop insights on
the structure of the learned policy. Although not all of the node splits have straightforward
interpretations, we highlight a few splits that make intuitive sense.

Due to space concerns, we display the prediction targets in the tree figures as the list
of job classes that are prioritized, rather than the optimal control vector u∗ itself. The job
classes that are prioritized receive effort 1, and the rest of the job classes receive effort 0. In
addition, we assign a number to each node split and provide a separate table that contains
information on the hyperplane for each split.

Furthermore, we introduce a vector c/µ that offers an interesting interpretation on the
learned policy. This vector captures the relative cost of holding each job class in terms of
their service rate. A higher value in this vector indicates that the corresponding job class
poses a greater challenge to the fluid network controller.

In Figure 2.6, we provide the decision tree for the problem with m = 7, confined to
strictly positive state vectors (|s| = 21). In Table 2.3, we provide the node split information
associated with the decision tree. For this problem, the parameters rounded to the third
decimal place are

µ = (0.143, 0.253, 0.002, 0.287, 0.169, 0.278, 0.22, 0.11, 0.207, 0.216, 0.299, 0.004, 0.185, 0.205,

0.25, 0.268, 0.027, 0.028, 0.245, 0.168, 0.248),

c = (0.705, 0.235, 0.972, 0.968, 0.719, 0.107, 1.484, 1.395, 0.493, 0.746, 1.584, 1.512, 0.07, 0.892,

1.255, 0.305, 1.941, 1.496, 0.643, 1.021, 1.975).

After we compute c/µ and sort it in descending order, the resulting indices in the sorted
order is

(3, 12, 17, 18, 8, 21, 7, 20, 11, 15, 1, 14, 5, 10, 4, 19, 9, 16, 2, 6, 13).
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Figure 2.6: The decision tree learned by OCT-H for the reentrant network with m = 7 and
|s| = 21.

Node split number Hyperplane

1 0.144x1 − 0.002x4 + 0.17x7 − 0.05x10 − 0.0005
2 −0.096x4 + 1.036x7

3
−732.7x1 − 34.84x2 − 5.311x3 − 1989.5x4 + 19.1x5

+14304.6x7 + 4.175x8 + 2939.7x10 + 33.72x11 + 62.25x12

−6.67x13 − 12.42x14 + 1.382x15 + 8.84x16 − 2.794x19 + 12.92x20

4 −2711.2x3 + 0.5262x12 − 0.0001

Table 2.3: Node split information on the decision tree in Figure 2.6.
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Node split number Hyperplane

1 −0.316x4 + 3.398x7

2 −0.034x1 − 0.103x4 + 0.753x7 + 0.152x10 + 0.0003x11

Table 2.4: Node split information on the decision tree in Figure 2.7.

Observations from Figure 2.6

• Class 3,7,12,17,21 jobs are always prioritized, regardless of the node. These job classes
are often the highest ranking classes within their respective server in terms of the value
in the vector c/µ. The only exception is Class 8, as Class 8 is not prioritized even
though it is ranked the highest in its server. This observation implies that the learned
policy for this network is to drain the “toughest" job classes from the system first.

• The only difference in the nodes is whether to process Class 4 jobs or idle Server 2. See
split 1 and 2, for example. If x4 is relatively large compared to a linear combination of
x1, x7, x10, and if x4 is again relatively large compared to x7, the decision is to process
Class 4 jobs instead of idling Server 2. However, after traversing the left edge in split
1, if x7 turns out to be too large compared to x4, Class 4 jobs are not processed. A
possible explanation is that as Class 4 jobs become Class 7 after processed, it might be
beneficial to idle Server 2 in case there are too many Class 7 jobs waiting in the queue.

• See split 3. If we focus on the terms associated with x4 and x7, again the decision is to
process Class 4 jobs if x4 is relatively large compared to x7. The same interpretation as
above can be applied to this decision.

2.4.4 OCT-H with sparsity

In this experiment, we apply OCT-H with sparsity instead of OCT-H in Algorithm 1 on a
subset of the problems solved in Section 2.4.2. As mentioned in Section 2.2.3, OCT-H with
sparsity often results in more interpretable decision trees compared to OCT-H. The purpose
of this experiment is to analyze the price we have to pay in order to gain more interpretability.
We vary the proportion of the total number of states allowed to be used for splits, denoted
by sparsity parameter. We analyze how the sparsity parameter affects the training time and
the classification accuracy on the test set. Table 2.5 provides the experiment results, where
the same notations as Table 2.2 are used. We summarize our findings in the following.

Observations from Table 2.5

• In general, classification accuracy slightly degrades as sparsity parameter gets smaller.
However, classification accuracy never gets below 94% in our experiment, suggesting
that OCT-H with sparsity can still learn high-quality policies.

• Training becomes faster as the sparsity parameter gets smaller. For the sparsity
parameter 0.25, training can be around 4 times faster than OCT-H.
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Figure 2.7: The decision tree learned by OCT-H with the sparsity parameter 0.25 for the
reentrant network with m = 7 and |s| = 21.

m |s| Sparsity Parameter Training Time (hours:minutes) Accuracy (%)

7 21 0.5 00:48 99.8
0.25 00:35 99.8

9 27 0.5 00:08 100
0.25 00:07 100

14 42 0.5 02:52 98.3
0.25 00:58 97

20 60 0.5 27:28 95.3
0.25 14:20 94

33 99 0.5 26:51 94
0.25 14:14 94

Table 2.5: Experiment results for the reentrant network using OCT-H with sparsity.

37



We provide the decision tree for the problem with m = 7, s = 21 and the sparsity
parameter 0.25 in Figure 2.7. We compare this tree with the tree in Figure 2.6, which is
learned by OCT-H on the same problem. Note that OCT-H with sparsity achieves 99.8 %
accuracy on this problem, which is only 0.2 % decrease compared to OCT-H. Node split
information is given in Table 2.4.

Observations from Figure 2.7

• The states used for the splits are a strict subset of the states used for the splits in
Figure 2.6.

• The learned policy is also qualitatively similar to the policy learned with OCT-H. For
example, in split 1, if x4 is relatively large compared to x7, the decision is to process
Class 4 jobs. In split 2, if we focus on the terms associated with x4 and x7, again the
decision is to process Class 4 jobs if x4 is relatively large compared to x7. Else, we idle
Server 2 so that the queue on Class 7 jobs do not increase.

2.5 Conclusions

We presented an approach to solve MFQNET control problems using OCT-H. We proved
that MFQNET control problems have piecewise constant optimal policy, where the segments
are separated by hyperplanes passing through the origin. Based on this result, we developed
an algorithm to use OCT-H to learn the optimal policy of MFQNET control problems.
Computational experiments demonstrate that OCT-H can learn empirically optimal policies
of MFQNET control problems with varying sizes. Once the policy is learned, we can solve
MFQNET control problems considerably faster than the state-of-the-art algorithm by [101].
Furthermore, we demonstrated that the simple decision tree structure enables us to develop
insights on large dimensional MFQNET control problems.
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Chapter 3

Optimal Control of Fluid Restless
Multi-armed Bandits: A Machine
Learning Approach

3.1 Introduction

We study the continuous-time deterministic formulation of restless multi-armed bandit
problems, referred to as fluid restless multi-armed bandit (FRMAB) problems. Restless multi-
armed bandits, introduced by [110], are stochastic control problems that model sequential
resource allocation problems across multiple projects, where each project’s state evolves
stochastically even when no effort is allocated to it. This model has numerous real-world
applications, including healthcare [78], machine maintenance [1], and wireless communication
[82], among many others. See also the recent survey [85].

To address the complexity of solving stochastic control problems, their deterministic
approximations are commonly explored. A notable example is in the control and analysis
of multiclass queueing networks. It has been shown that the stability of a fluid queueing
network implies the stability of its stochastic counterpart [43], [104]. Fluid queueing networks
also provide a useful framework for building control policies for their stochastic counterparts,
often demonstrating strong empirical performance and asymptotic optimality properties [31],
[76], [77]. See also the book by [27].

In the restless multi-armed bandit literature, [68] explores fluid approximations for a
specific class of problems. They demonstrate that the fluid policy shows strong empirical
performance for the associated stochastic problems. However, their analysis relies on strong
assumptions about the problem structure and the number of projects. They also relax the
coupling resource constraint, a fundamental aspect of restless bandits. Generally, solving
optimal control problems without such assumptions or relaxations is computationally challeng-
ing. This challenge is particularly relevant in the scenarios where optimal control problems
with varying initial states need to be solved repeatedly, a common situation in real-world
applications.

Recently, many learning-based approaches have been proposed to overcome the com-
plexity of solving optimal control problems. [64], [69], [75] develop reinforcement learning
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methods, while [29] propose using a decision tree algorithm, Optimal Classification Trees
with Hyperplane Splits (OCT-H) [20], to solve fluid queueing network control problems.

In this work, we propose a machine learning approach to solve FRMAB problems using
OCT-H. Classification tree algorithms are particularly appealing for learning optimal policies
in many continuous-time optimal control problems. These problems often have piecewise
constant optimal policies, which decision trees with hyperplane splits can effectively learn
[Chapters 4 & 8 in 29], [79].

Our approach is similar to the class of methods known as imitation learning in the
reinforcement learning literature. We generate multiple control instances and solve them
using numerical algorithms to generate training data. Then, we use supervised learning
algorithm, OCT-H, to imitate the state-control mapping in the optimal trajectories.

Notational Conventions Throughout this paper, we use boldface letters to denote vectors
and matrices. The ith entry of a vector x is denoted xi. We use 0 to denote the vector of
zeros. We use x(·) to denote a real-valued function, and x(·) to denote a vector whose entries
are real-valued functions. We use x instead of x(·) when it is clear from the context that x
is referring to a vector of functions.

3.1.1 Problem Formulation

We consider a FRMAB model with n projects with finite time horizon T <∞. Project i ∈ [n]
has state xi(t) at time t ⩾ 0, moving over the open state space Xi ≜ (0, Hi) with Hi ⩽∞.
We write the system state as x(t) = (xi(t))

n
i=1, which belongs to the state space X ≜

∏n
i=1Xi.

At each time t the system controller chooses a control u(t) = (ui(t))
n
i=1 ∈ [0, 1]n where

ui(t) ∈ [0, 1], which is required to be piecewise continuous, models the level of effort allocated
to project i. The values 1 and 0 represent “full effort” and “least effort” levels, respectively.
At most m < n projects can be set at each time t to the “full effort” level, so we have the
coupling resource constraints

∑n
i=1 ui(t) ⩽ m.

The state evolution of project i follows first-order autonomous ordinary differential
equation (ODE) referred to as the state equation: at all times t where u(·) is continuous, for
given continuously differentiable functions ϕ0,i(·) and ϕ1,i(·),

ẋi(t) = ui(t)ϕ1,i(xi(t)) + (1− ui(t))ϕ0,i(xi(t)).

ϕ1,i(·) and ϕ0,i(·) represent the state equations when ui(t) = 1 and ui(t) = 0, respectively.
Similarly, the instantaneous reward rate earned by project i at each time t depends on its
current state and control, and is given by ui(t)R1,i(xi(t)) + (1 − ui(t))R0,i(xi(t)) for given
continuously differentiable functions R0,i(·) and R1,i(·).

For a given initial state x0, the general FRMAB problem described above can be formulated
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as the following optimal control problem:

max
u(·),x(·)

∫ T

0

n∑
i=1

[
ui(t)R1,i(xi(t)) + (1− ui(t))R0,i(xi(t))

]
dt

s.t. ẋi(t) = ui(t)ϕ1,i(xi(t)) + (1− ui(t))ϕ0,i(xi(t)), ∀i ∈ [n],∀t ∈ [0, T ],

0 < xi(t) < Hi, ∀i ∈ [n], ∀t ∈ [0, T ],

x(0) = x0,

0 ⩽ ui(t) ⩽ 1, ∀i ∈ [n],∀t ∈ [0, T ],
n∑

i=1

ui(t) ⩽ m, ∀t ∈ [0, T ].

(3.1)

Specifically, in this work, we focus on two fundamental cases that capture many important
real-world problems. In the first case, we assume that both the state equations and the reward
functions are affine in the state variable: ϕu,i(x) = αu,i+βu,ix,Ru,i(x) = ru,ix−cu,i, u ∈ {0, 1},
In the second case, we assume that the state equations are quadratic (without the intercept)
and the reward functions are affine in the state variable: αu,ix + βu,ix

2, αu,i ̸= 0, βu,i ̸=
0, , Ru,i(x) = ru,ix− cu,i, u ∈ {0, 1}, i ∈ [n]. For ease of reference, we will term the first case
as the “affine system” and the second as the “quadratic system” throughout the remainder of
the paper.

Here, we assume that the state equations for the quadratic system do not include intercepts
in ϕu,i. Our derivation relies on closed-form expressions of state trajectories within intervals
where the control variable is fixed to a constant vector. This assumption simplifies these
expressions, allowing us to present the key ideas and results more concisely. However, the
principles of our approach can be extended to more general state equations. We also add the
following assumption:

Assumption 1. ϕu,i(·) is a concave function for all u ∈ {0, 1}, i ∈ [n].

Note that the affine system automatically satisifes this assumption. In the quadratic case, this
assumption requires βu,i < 0, u ∈ {0, 1}, i ∈ [n]. This condition ensures that the algorithm
developed in Section 3.3.2 finds optimal solutions for Problem 3.1.

In general, enforcing the state constraints such as 0 < xi(t) < Hi makes the problem
considerably more challenging to solve. Fortunately, many important problems automatically
satisfy these upper and lower bound constraints without explicit enforcement. This is because
the state equation often guarantees that the state trajectory remains within a bounded
interval, due to the existence of equilibrium points in dynamical systems [100, Chapter 5-11].
Therefore, we focus on the class of problems where we can treat the problem as if state
constraints do not exist.

A solution to Problem (3.1) is given by a pair of optimal state and control trajectories
x∗(·) and u∗(·) starting from a fixed initial state x0, where x∗(·) is piecewise continuously
differentiable and u∗(·) is piecewise continuous over [0, T ]. However, in practice, one often
needs to resolve Problem (3.1) with different initial states repeatedly. Therefore, the mapping
from any state x ∈ X to its associated optimal control u ∈ [0, 1]n is more useful than a
single pair of trajectories from a specific initial state. This mapping is referred to as a state
feedback policy, which is typically time-dependent because Problem (3.1) is a finite horizon
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problem and an optimal stationary policy usually does not exist. Computing such a policy,
however, is generally considered very challenging. The goal of this work is to propose using
OCT-H to learn a time-dependent state feedback policy

π : X × [0, T ] 7→ [0, 1]n.

3.1.2 Contributions

The contributions of the paper are as follows.

1. We initiate the study of fluid restless multi-armed bandits where the state equations
are either affine or quadratic in the state. We derive fundamental properties of these
systems and use them to efficiently implement a numerical solution algorithm known as
the shooting method [103].

2. We propose the use of the decision tree algorithm, OCT-H, to learn a state feedback
policy. To address potential nonlinearities in the training data, we leverage the structural
properties of FRMAB problems, developing an efficient technique for nonlinear feature
augmentation.

3. We test our approach on machine maintenance, epidemic control, and fisheries control
problems, demonstrating that it produces high-quality feedback policies for these
applications.

4. We show that once a policy is learned, it leads to a significant speed-up compared to
solving a problem from scratch using the shooting method.

3.1.3 Paper Structure

Section 3.2 provides the optimality conditions for general FRMAB problems and includes a
brief review of OCT-H. Section 3.3 analyzes affine and quadratic systems. The derived results
enable efficient implementation of the shooting method. In Section 3.4, we develop a learning
approach based on OCT-H. Section 3.5 reports the results of computational experiments,
analyzing the accuracy and speed of our approach. In Section 3.6, we include our conclusions.

3.2 Background

In this section, we review Pontryagin’s Maximum Principle [55, Theorem 3.4] to derive
the optimality conditions for Problem (3.1). Following this, we provide a brief overview of
OCT-H.

3.2.1 Optimality Conditions of FRMAB Problems

The Pontryagin’s Maximum Principle gives necessary optimality conditions for general optimal
control problems [55, Theorem 3.4]. Due to Assumption 1, these conditions also become
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sufficient [100, Chapter 2]. To apply Pontryagin’s maximum principle to Problem (3.1), we
formulate the Hamiltonian which involves the costate variable y(·), given by

H(x,u,y, t)

=
n∑

i=1

ui(t)R1,i(xi(t)) + (1− ui(t))R0,i(xi(t)) + yi(t)

[
ui(t)ϕ1,i(xi(t)) + (1− ui(t))ϕ0,i(xi(t))

]
.

The Pontryagin’s Maximum Principle applied to Problem (3.1) can be formulated as the
following lemma.

Lemma 5 (Pontryagin Maximum Principle [55], [89]). Under Assumption 1, x∗(·) and u∗(·)
are optimal state and control trajectories for Problem (3.1), if and only if there exists a
continuous and piecewise continously differentiable costate variable y(·), such that

a) For all i ∈ [n], at every time t where u(·) is continuous,

ẏi(t) = −Hxi
(x∗,u∗,y, t)

= −Ṙ0,i(x
∗
i (t))− yi(t)ϕ̇0,i(x

∗
i (t))

−
[
Ṙ1,i(x

∗
i (t))− Ṙ0,i(x

∗
i (t)) + yi(t)

(
ϕ̇1,i(x

∗
i (t))− ϕ̇0,i(x

∗
i (t))

)]
u∗
i (t)

(3.2)

b) The following transversality condition holds:

y(T ) = 0. (3.3)

c) At each time t,

H(x∗,u∗,y, t) ⩾ H(x∗,u,y, t) for all feasible controls u. (3.4)

By Lemma 5 (c), it is straightforward that at any time t, a control u∗(t) satisfying (3.4)
can be computed by solving the following linear optimization (LO) problem:

max
u

n∑
i=1

γ∗
i (t)ui

s.t. 0 ⩽ ui ⩽ 1, ∀i ∈ [n],
n∑

i=1

ui ⩽ m,

(3.5)

where γ∗
i (t) ≜ R1,i(x

∗
i (t))−R0,i(x

∗
i (t)) + yi(t)

[
ϕ1,i(x

∗
i (t))− ϕ0,i(x

∗
i (t))

]
. That is, the optimal

control at time t follows an index policy, determined by ranking the index functions γ∗
i (t).
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3.2.2 Optimal Classification Trees with Hyperplane Splits

Optimal Classification Trees (OCT) trains a near-optimal decision tree for classification tasks.
Unlike classical decision tree algorithms such as CART [34], which rely on a greedy algorithm,
OCT aims to learn a globally optimal decision tree using advanced optimization techniques.
OCT uses a single feature in the node splits, meaning it partitions the feature space with
hyperplanes that are perpendicular to the axis and assigns a prediction to each region. This
often results in improved accuracy, robustness to noise, and shallower trees compared to
CART.

OCT-H, introduced in [20], is a generalization of OCT, where arbitrary linear combinations
of the features are used for splits. Unlike OCT, OCT-H can partition the feature space with
arbitrary hyperplanes, enabling it to capture more complex patterns in the data and often
leading to better prediction accuracy. For more details on this technique, refer to [21].

3.3 Fluid Restless Multi-Armed Bandits

In this section, we first outline the basic properties of general FRMAB problems. Then, we
analyze two distinct cases: one where the state equations are affine in the state and another
where they are quadratic. Finally, we describe the shooting method [103], a classical numerical
algorithm used to solve optimal control problems. The version we present is tailored to solve
Problem (3.1) using the results we derive.

3.3.1 Basic Properties

The next result elucidates the structure of the optimal control u∗(·) to Problem (3.1) using
Lemma 5.

Proposition 1. There exists an optimal control u∗(·) that is piecewise constant in t, with
each entry being either 1 or 0.

Proof. As mentioned in Section 3.2.1, at each time t, the optimal control u∗(t) is determined
by solving Problem (3.5). u∗(t) is always binary, which follows straightforwardly from the
analysis of the dual LO for Problem (3.5):

min
v,w

mw +
n∑

i=1

vi

s.t. vi ⩾ 0, w ⩾ 0,

vi + w ⩾ γ∗
i (t), i ∈ [n].

Furthermore, the index function γ∗
i (t) is continuous in t in Lemma 5. As long as the rank

between the index functions does not change, the control vector remains constant. Therefore,
the optimal control u∗(t) is piecewise constant in t and always a binary vector.

Proposition 1 indicates that in the optimal trajectories of u∗(·) and x∗(·), the time interval
is divided into multiple subintervals. Within each subinterval, the optimal control u(·) is a
constant binary vector. In the subsequent sections, we derive the closed-form trajectories of
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the state and the costate variables in a subinterval with a constant control vector. These
closed-form expressions will be used to develop an efficient version of the shooting method,
as well as the machine learning approach.

For convenience, we introduce the following notations for the remainder of the paper,
defined for all i ∈ [n]:

αi(u) ≜ α0,i + u(α1,i − α0,i),

βi(u) ≜ β0,i + u(β1,i − β0,i),

ri(u) ≜ r0,i + u(r1,i − r0,i).

Affine Systems

We next apply the above framework to the case where both the state equations and reward
functions are affine in the state, given by ϕu,i(xi) = αu,i + βu,ixi and Ru,i(xi) = ru,ixi − cu,i
for u = 0, 1, i ∈ [n].

Suppose we are given a finite partition of the time interval [0, T ] that consists of S subin-
tervals [ts, ts+1), along with corresponding binary controls us ∈ {0, 1}n, for s = 0, 1, . . . , T −1,
with t0 = 0 and tS = T . Given an initial state x(0) = x0 and a costate y(0) = y0, we can
consider the resulting trajectories {(x(t),y(t)) : t ∈ [0, T ]} obtained by taking control us on
time interval [ts, ts+1) for each s. Recall that both the state and the costate trajectories are
continuous in t, which allows us to build the entire trajectory with the given information.
Hence, without loss of generality, we focus on an interval [ts, ts+1) with constant control.

The ODEs giving the state and costate evolution for project i are: for t ∈ [ts, ts+1),

ẋi(t) = αi(us,i) + βi(us,i)xi(t),

ẏi(t) = −ri(us,i)− βi(us,i)yi(t).
(3.6)

The solution to (3.6), given xi(ts) and yi(ts), can be obtained in closed form, as shown in the
next result. The proof is not included, as it is straightforward from elementary ODE theory.

xi(t) =

xi(ts) +

[
−αi(us,i)

βi(us,i)
− xi(ts)

] [
1− eβi(us,i)(t−ts)

]
, if βi(us,i) ̸= 0,

xi(ts) + αi(us,i)(t− ts), if βi(us,i) = 0,

yi(t) =

 yi(ts) +

[
− ri(us,i)

βi(us,i)
− yi(ts)

] [
1− e−βi(us,i)(t−ts)

]
, if βi(us,i) ̸= 0,

yi(ts)− ri(us,i)(t− ts), if βi(us,i) = 0.

(3.7)

Quadratic Systems

We proceed similarly to the case where the state equations and the reward functions are
quadratic and affine in the state, respectively. That is, the reward function for each project
i ∈ [n] is given by R1,i(xi) = ru,ixi − cu,i and the state equation is ϕu,i(xi) = αu,ixi +
βu,ix

2
i , βu,i ̸= 0, αu,i ̸= 0, for all u ∈ {0, 1}, i ∈ [n]. Although not addressed in this work,

generalizing the reward functions to quadratic forms is straightforward. Again, we focus
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on the fixed interval [ts, ts+1) with constant control u(t) = us. In this interval, the ODEs
governing the state and costate evolution for project i are:

ẋi(t) = αi(us,i)xi(t) + βi(us,i)x
2
i (t),

ẏi(t) = −ri(us,i)− yi(t)
[
αi(us,i) + 2βi(us,i)xi(t)

]
.

(3.8)

The solution to (3.8) is given as follows. Unlike the case of affine systems, we do not use
expressions involving the initial conditions in the subinterval xi(ts) and yi(ts), as this leads
to considerably more complicated expressions. Instead, we introduce constants K and G for
simplicity.

xi(t) =
Kαi(us,i)e

αi(us,i)t

1−Kβi(us,i)eαi(us,i)t
,

yi(t) = Ge−αi(us,i)t(1−Kβi(us,i)e
αi(us,i)t)2 − ri(us,i)

Kαi(us,i)βi(us,i)
(1−Kβi(us,i)e

αi(us,i)t)e−αi(us,i)t.

(3.9)

3.3.2 The Shooting Method

We use the results derived above to design an algorithm for computing the optimal trajectories
for Problem (3.1) with a fixed initial state x0. The algorithm is based on the well-known
shooting method, and further exploits the structure of the optimal trajectories identified
previously.

The algorithm aims to find an initial costate value y0 that achieves the terminal condition
y(T ) = 0. Once an initial state x0 and initial costate y0 are fixed, the associated trajectory
x(·),u(·),y(·) up to time T can be computed. This computation follows the index policy that
satisfies (3.4). Specifically, at each time t, given x(t) and y(t), we rank the index functions
γi(t) for all projects to determine the associated control vector. As long as the control vector
remains constant, we can roll out the trajectories using the expressions derived in Section
3.3.1. A change in the control vector indicates the start of a new subinterval. According
to Lemma 5, if the resulting trajectories also satisfy y(T ) = 0, they are guaranteed to be
optimal.

Formally, let g : Rn 7→ Rn be the function that takes an initial costate value y0 as an
input, and the resulting terminal costate value y(T ) as an output. The shooting method is
an iterative algorithm to solve the n× n root finding problem g(y) = 0 numerically.

In the kth iteration of the shooting method, the algorithm starts with a guess yk,0 for y(0),
computes corresponding state and costate trajectories x(·) and y(·) up to time T following
the index policy structure. This automatically partitions of the time interval [0, T ] into
subintervals [ts, ts+1) with a constant control us, for s = 0, . . . , S − 1, with t0 = 0 and tS = T ,
where the number S of intervals is also determined. Then, the algorithm checks whether
y(T ) ≈ 0 within a given tolerance level ϵ. If such is the case, the algorithm stops. Otherwise,
the initial costate value is updated and the process is repeated. The update follows Broyden’s
method [35], [52], a well-established derivative-free quasi-Newton’s method.

In the kth iteration, k ⩾ 1, Broyden’s method computes iterates yk,0 and Jk, a surrogate
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for the Jacobian of g, following

yk,0 = yk−1,0 −
(
Jk−1

)−1
g(yk−1,0),

Jk = Jk−1 +
g(yk,0)− g(yk−1,0)− Jk−1(yk,0 − yk−1,0)

∥yk,0 − yk−1,0∥2
(
yk,0 − yk−1,0

)′
.

(3.10)

Typically, the method starts with J0 = I, the identity matrix. Also, when we compute the
trajectory starting from t = 0, we choose a small step size δ and proceed by incrementally
adding δ to t until reaching T . The details of the algorithm are provided in Algorithm 2.
Remark. In general, shooting methods are known to be vulnerable to numerical instability,
primarily because they involve computing the trajectories of x(·),y(·), which often require
numerical approximations of the solutions to differential equations [46], [62], [103]. However,
for the affine and quadratic systems discussed in this work, no approximation is required
because closed-form expressions of x(·),y(·) exist, given some initial values. This advantage
reduces the risk of numerical errors and enhances the reliability and accuracy of the shooting
method.

Algorithm 2: Shooting Method
Input: ϵ, δ, R0

i (·), R1
i (·), ϕ0

i (·), ϕ1
i (·), T,m, n,x0

Output:
{(

x∗(t),u∗(t),y(t)
)
: t ∈ [0, T ],x(0) = x0

}
Initialization: y0,0 ∈ Rn,J0 = I, k = 0

repeat
Fix the initial state to x0 and the initial costate to yk,0.
Compute the trajectories of x(t),u(t),y(t) starting from t = 0 up to t = T .
k ← k + 1.
Update yk,0 and Jk as in (3.10).

until ∥g(yk−1,0)∥∞ ≤ ϵ;

Return
{(

x(t),u(t),y(t)
)
: t ∈ [0, T ],x(0) = x0

}
.

3.4 A Machine Learning Approach

In this section, we present a machine learning approach to learn a state feedback policy
for Problem (3.1). We begin by providing an overview of the algorithm, then introduce a
nonlinear feature augmentation technique to incorporate nonlinearity into the learned policy.
Finally, we present an example of our approach, focusing on the case of admission and routing
to parallel infinite-server queues.

3.4.1 Algorithm Overview

Our approach uses OCT-H to imitate the time-dependent state-control mappings in the
optimal trajectories. To achieve this, we generate multiple initial states for Problem (3.1)
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and solve each instance using Algorithm 2. For each instance with an initial state x0, we
obtain the optimal state and control trajectories

{
(x∗(t),u∗(t)) : t ∈ [0, T ],x(0) = x0

}
.

We select N ∈ N distinct time points t1, . . . , tN from the interval [0, T ], and extract the
corresponding state values x∗(t1), . . . ,x

∗(tN) and the control values u∗(t1), . . . ,u
∗(tN). The

training data extracted from this process consists of
{((

x∗(tℓ), tℓ
)
,u∗(tℓ)

)}N

ℓ=1

, where the

tuple
(
x∗(tℓ), tℓ

)
is the feature vector and u∗(tℓ) is the target for the ℓth data point. The

time tℓ is included as part of the feature vector to incorporate the time-dependency of the
state feedback policy.

As discussed in Section 3.2.2, OCT-H partitions the state space using hyperplanes and
assigns predictions to each region. Consequently, OCT-H may struggle to capture complex
nonlinear patterns in the data. One straightforward solution could be to use deep neural
networks, leveraging their strong approximation capabilities. However, deep neural networks
are black box algorithms that obscure how decisions are made, as they automatically learn
nonlinearities embedded in their layers. Moreover, simply feeding raw data into a deep neural
network makes it challenging to fully exploit the inherent structures of FRMAB problems.

Instead of using deep neural networks, we adhere to OCT-H and address potential
nonlinearity in the decision boundaries by augmenting the feature vector with nonlinear
transformations of the state variables. Specifically, for each feature vector

(
x∗(tℓ), tℓ

)
in

the training data, we add nonlinear transformations of the state vector x∗(tℓ) as additional
entries. Then, we apply OCT-H to the augmented data set. This approach ensures that the
resulting policy remains interpretable, maintaining the decision-making process within the
framework of decision trees.

3.4.2 Addressing Nonlinearity by Feature Augmentation

We propose a heuristic approach to choosing nonlinear transformations on the state variables.
As discussed in Section 3.2.1, the optimal control at time t is determined by the relative
ordering of the priority indices γi(t), i ∈ [n]. This implies that switches in effort (i.e., changes
in the control vector) occur either when γi(t) = γj(t) for some projects i ̸= j, or when
γi(t) = 0. At these points, it becomes indifferent whether we invest effort in project i or j,
or whether we invest effort in project i or idle, respectively. The set of points in the state
space where such switching of efforts occur are known as the switching curves in the optimal
control literature [100]. In other regions of the state space, there exists a unique constant
optimal control vector. Switching curves can be thought of as discriminating lines in the
feature space that separate data points with different labels in a supervised learning setting.
However, identifying switching curves or their functional forms is challenging. Switching
curves can be found by expressing the equalities γi(t) = γj(t) only with respect to the state
variables x(t). Since γi(t) involves the costate variable yi(t), we need a way to express yi(t)
in terms of x(t). We propose a heuristic to approximate the relation between yi(t) and x(t).
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Affine Systems

Consider an interval [ts, ts+1) with a constant control us. We first express the index function
γi(t) only in terms xi(t) in this specific interval.

Proposition 2. For affine systems, in an interval [ts, ts+1) with a constant control us, γi(t)
can be expressed as an affine combination of the terms

t, xi(t), x
2
i (t),

1

xi(t) +
α0,i

β0,i

,
1

xi(t) +
α1,i

β1,i

. (3.11)

Proof. Using the results in (3.7), the relation between xi(t) and yi(t) can be described as
follows:

yi(t) =



yi,1(t, us,i) ≜ −
ri(us,i)

βi(us,i)
+

(
xi(ts) +

αi(us,i)

βi(us,i)

)(
yi(ts) +

ri(us,i)

βi(us,i)

)
xi(t) +

αi(us,i)

βi(us,i)

,

if βi(us,i) ̸= 0,

yi,2(t, us,i) ≜ yi(ts)− ri(us,i)
xi(t)− xi(ts)

αi(us,i)
,

if βi(us,i) = 0, αi(us,i) ̸= 0, ri(us,i) ̸= 0,

yi,3(t, us,i) ≜ xi(t)− xi(ts) + yi(ts)− ri(us,i)(t− ts),

if βi(us,i) = αi(us,i) = 0, ri(us,i) ̸= 0,

yi,4(t, us,i) ≜ yi(ts),

if βi(us,i) = ri(us,i) = 0.

Given that the optimal control vector is always binary, as stated in Proposition 1, this relation
leads to the unified expression:

yi(t) =
4∑

j=1

(
C1,jyi,j(t, 1) + C0,jyi,j(t, 0)

)
, (3.12)

where only one of the coefficients Cu,j, u ∈ {0, 1}, j ∈ [4] is non-zero, depending on the values
of βi(us,i), αi(us,i), ri(us,i).

Subsequently, we substitute the expression (3.12) into the index function

γi(t) = r1,ixi(t)− c1,i − r0,ixi(t) + c0,i + yi(t)[α1,i + β1,ixi(t)− α0,i − β0,ixi(t)],

resulting in an expression for γi(t) that involves an affine combination of the terms only
with respect to xi(t) given in (3.11). Here, the terms 1

xi(t)+
α0,i
β0,i

and 1

xi(t)+
α1,i
β1,i

correspond

to yi,1(t, us,i), while x2
i (t) corresponds to yi,2(t, us,i) and yi,3(t, us,i), and t corresponds to

yi,3(t, us,i).

The initial values yi(ts) and xi(ts) that appear in the coefficients of the affine combination
in Proposition 2 should vary depending on the specific time interval and the initial state
x(0) that led to that interval. In other words, these coefficients remain constant only within
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the specific interval considered. Thus, these values should generally be treated as time and
state-dependent, and the relation between γi(t) and xi(t) described in Proposition 2 does not
globally apply across the entire state space.

We propose simply approximating γi(t) with the affine combination of the terms in (3.11),
regardless of time and state. This approach treats the coefficients of the affine combination
as constants to be learned, and allows us to approximate any switching curve using the affine
combination of the terms in (3.11), defined for all i ∈ [n]. Therefore, for each i ∈ [n], we
augment the original feature vectors with the terms in (3.11). Applying OCT-H to these
augmented feature vectors enables the learning of nonlinear switching curves within the state
space.

Note that while our approach assumes implicit time-dependence of switching curves
through the inclusion of time as part of the feature vector in each original data point, explicit
time dependencies are not separately modeled in the approximation of γi(t).

Quadratic Systems

For the quadratic case, we apply the same principle as in the affine systems, leading to the
following proposition.

Proposition 3. For quadratic systems, in an interval [ts, ts+1) with a constant control us,
γi(t) can be expressed as an affine combination of the terms

xi(t),
1

xi(t)
,

1

xi(t) +
α0
i

β0
i

,
1

xi(t) +
α1
i

β1
i

. (3.13)

Proof. The results in (3.9) lead to the following expression:

yi(t) =

(
K(αi(u) + xi(t)βi(u))

xi(t)
−Kβi(u)

)(
G−Gβi(u)

xi(t)

αi(u) + xβi(u)
− ri(u)

Kαi(u)βi(u)

)
We plug this expression into the index function

γi(t) = u(r1i xi(t)− c1i )+ (1−u)(r0i xi(t)− c0i )+yi(t)

(
u(α1

ixi+β1
i x

2
i )+ (1−u)(α0

ixi+β0
i x

2
i )

)
,

to get the results.

Following the approach used for affine systems, we augment the original feature vector in
each data point with the terms in (3.13), for all i ∈ [n].

Data-driven Feature Augmentation

In practice, not all of the terms listed above are needed, as the expression of yi(t) with respect
to xi(t) depends on the problem parameters βus,i,i, αus,i,i, rus,i,i and whether us,i is 1 or 0.
This means some of the expressions in (3.11) and (3.13) may not be used at all. After we
have generated the training data, we can augment the feature vector in a data-driven way,
by investigating the control variables that occurred in the generated data. For example, in
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the affine system, assume ui = 1 for all data points generated. If β1,i ̸= 0, then the terms
resulting from the cases yi,1(t, 0) and yi,j(t, ui), j = 2, 3, 4, are unnecessary because only C1,1

in (3.12) will be non-zero. Hence, we augment the feature vector only with 1

xi(t)+
α1,i
β1,i

. This

principle generalizes to data-driven feature augmentation process, provided in Algorithm 3.
We describe the entire proposed approach, beginning from data generation to decision tree
training, in Algorithm 4.

Algorithm 3: Data-Driven Feature Augmentation
Input: D,U , n
Output: Augmented feature vectors D′

Initialization: D′
= D

Identify vi = {ui ∈ R : u ∈ U}, ∀i ∈ [n].
Affine Systems
for i ∈ [n] do

for ui ∈ vi do
for

(
x, t
)
∈ D′ do

if βi(ui) ̸= 0 then
Add 1

xi+
αi(ui)

βi(ui)

as an additional entry to the feature vector
(
x, t
)
.

else if ri(ui) ̸= 0 then
Add x2

i as an additional entry to the feature vector
(
x, t
)
.

Quadratic Systems
for i ∈ [n] do

for
(
x, t
)
∈ D′ do

Add 1
xi

as an additional entry to the feature vector
(
x, t
)
.

for ui ∈ vi do
Add 1

xi+
αi(ui)

βi(ui)

as an additional entry to the feature vector
(
x, t
)
.

3.4.3 Example: Optimal Control of Admission and Routing to Par-
allel Infinite-Server Queues

We study the optimal control of admission and routing to parallel infinite-server queues as a
special case of the affine systems discussed above. Due to its simple structure, we can derive
closed-form expressions for the index functions γi(t), i ∈ [n]. For small n, this allows us to
obtain a simple closed-form optimal policy. Then, we use Algorithm 4 to learn a decision
tree policy and compare it with the closed-form optimal policy.
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Algorithm 4: OCT-H for Fluid Restless Multi-armed Bandits.
Input: M, {t1, . . . , tN}, ϵ, δ, R0

i (·), R1
i (·), ϕ0

i (·), ϕ1
i (·), T,m, n,x0

Output: π : X × [0, T ] 7→ [0, 1]n

Initialization: D = ∅,U = ∅, j = 1

1. Data Generation
for j = 1, . . . ,M do

Sample an initial state x0 from the state space X .
Solve Problem (3.1) with the initial state x0 using Algorithm 2.

D ← D ∪
{(

x∗(tℓ), tℓ
)}N

ℓ=1

U ← U ∪
{
u∗(tℓ)

}N

ℓ=1
j ← j + 1

2. Feature Augmentation
Use Algorithm 3 to augment the feature vectors in D and denote the augmented
feature vectors as D′ .

3. Training
Use OCT-H to train a classification tree. The feature vectors are D′ and the target
vectors are U .

Deriving the Closed-form Index Functions

Consider a system with n parallel fluid queues with infinite buffers. Fluid arrives to the
system at rate λ. The controller chooses the proportion ui(t) ∈ [0, 1] to be routed to each
queue i at each time t. The system equation for the buffer contents xi(t) of queue i is

ẋi(t) = λui(t)− µixi(t),

which corresponds to the fluid analog of an infinite-server queue. The remaining proportion,
1−

∑n
i=1 ui(t), is rejected, incurring a cost rate R. Note that

∑n
i=1 ui(t) ⩽ 1. Furthermore,

queue i incurs holding costs at rate Ci.
The goal is to minimize the following cost objective over a finite horizon [0, T ]:

min
u(·),x(·)

∫ T

0

[
Rλ(1−

∑
i

ui(t)) +
∑
i

Cixi(t)
]
dt,

which in turn is reformulated in maximization form as

max
u(·),x(·)

∫ T

0

∑
i

[Rλui(t)− Cixi(t)] dt.

The upper bound in the state space of each queue i is Hi ≜∞. We define the optimal control
of admission and routing to parallel infinite-server queues as the following:

52



max
u(·),x(·)

∫ T

0

n∑
i=1

[Rλui(t)− Cixi(t)] dt

s.t. ẋi(t) = λui(t)− µixi(t), ∀i ∈ [n],∀t ∈ [0, T ],

xi(t) > 0, ∀i ∈ [n],∀t ∈ [0, T ],

x(0) = x0,

0 ⩽ ui(t) ⩽ 1, ∀i ∈ [n],∀t ∈ [0, T ],
n∑

i=1

ui(t) ⩽ 1, ∀t ∈ [0, T ].

(3.14)

We first prove that the constraints xi(t) > 0,∀i ∈ [n], are automatically satisfied regardless
of the control trajectory.

Proposition 4. For Problem (3.14), if x0 > 0, then x(t) > 0,∀t ∈ [0, T ] regardless of the
control trajectory.

Proof. For t ∈ [ts, ts+1) with a constant control vector us ∈ [0, 1]n,

xi(t) = xi(ts) + [
λus,i

µi

− xi(ts)]
[
1− e−µi(t−ts)

]
=

λus,i

µi

(1− e−µi(t−ts)) + xi(ts)e
−µi(t−ts)

Assuming xi(ts) > 0, it is straightforward that xi(t) > 0 in the interval [ts, ts+1). It is also
clear that xi(ts+1) > 0, again implying xi(t) > 0 in the interval [ts+1, ts+2). Hence, due to
mathematical induction, x0 > 0 guarantees that x(t) > 0, ∀t ∈ [0, T ].

Now, we derive a closed-form expression for the index function.

Proposition 5. The index function for Problem (3.14) is

γi(t) = R− Ci
λ

µi

[
1− e−µi(T−t)

]
, i ∈ [n], t ∈ [0, T ]. (3.15)

Proof. First, note that the costate yi(t) satisfies the following ODE in this model:

ẏi(t) = Ci + µiyi(t), t ∈ [0, T ].

The index function derived from Lemma 5 is γi(t) = R + λyi(t).
For t ∈ [ts, ts+1),

xi(t) = xi(ts) + [
λus,i

µi

− xi(ts)]
[
1− e−µi(t−ts)

]
yi(t) = yi(ts) +

[
− Ci

µi

− yi(ts)
][
1− eµi(t−ts)

]
.

Applying the boundary condition yi(T ) = 0, yi(t) is given by

yi(t) = −
Ci

µi

[
1− e−µi(T−t)

]
, t ∈ [0, T ]. (3.16)
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Figure 3.1: The decision tree OCT-H learned for the infinite server routing problem with
n = 2.

Therefore, substituting (3.16) into the index function γi(t), we obtain the closed-form
index expression.

By Proposition 5, solving Problem (3.14) is significantly simplified. At each time t, we
compute the index functions for all projects and allocate efforts accordingly.

Learning Feedback Policy using OCT-H

In this section, we present a state feedback policy for Problem (3.14) learned by OCT-H. We
consider the problem with n = 2,m = 1. For this problem, at each time t, we only need to
compare γ1(t), γ2(t) and 0 to determine the optimal control. From the derivation above, it is
straightforward that the optimal feedback policy depends only on the time t and not on the
state variable. Given the parameters µ1 = 0.5, µ2 = 1, C1 = 1, C2 = 1.5, λ = 1, R = 3, T = 10,
the optimal feedback policy is:

π(x, t) =

{
(0, 1), if t < 10− log 9 ≈ 7.802,

(1, 0), if t ≥ 10− log 9 ≈ 7.802.
(3.17)

To generate a training data, we sample 1000 initial states uniformly from the interval (0, 10)2
and solve each instance. For each solved instance, we extract 10 feature vectors along with
their associated control vectors from each subinterval with constant control. The policy
learned by OCT-H is given in Figure 3.1. We observe that this policy is almost identical to
the optimal policy in (3.17), with only slight numerical differences.

3.5 Computational Experiments

In this section, we present the results of computational experiments. We conduct experiments
on three distinct problems with varying sizes and time horizons. The first problem, the
machine maintenance problem, belongs to affine systems. The other two problems, the
epidemic control and the fisheries control problems, belong to quadratic system. We evaluate
the quality of the policy learned using Algorithm 4, and also assess the relative speed-up
compared to Algorithm 2. For all problems considered, the state trajectories automatically
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satisfy the state constraints xi(t) ∈ (0, Hi),∀i ∈ [n], regardless of the control trajectories.
The proof is provided in the Appendix A.

3.5.1 Problem Description

Machine Maintenance

We consider the classic machine maintenance problem studied in [61]. In this problem,
the state variable xi(t), i ∈ [n] represents the cumulative probability that machine i has
failed by time t, while ui(t) represents the preventive maintenance rate at time t. The
natural failure rate, cost of maintenance, junk value, revenue of machine i are denoted as
hi, Ci, Li, Ri, respectively. The primary objective is to maximize the total profit generated
by the machines, adjusted for any junk values if a machine fails prematurely. The objective
is to maximize

∫ T

0

∑n
i=1

[
Ri − Cihiui(t) + Li(h(1− ui(t))(1− xi(t)))

]
dt subject to the state

equations ẋi(t) = h(1 − ui(t))(1 − xi(t)). To align this problem with the formulation in
Section 3.3.1, we can set the parameters as α1,i = β1,i = 0, and α0,i = hi, β0,i = −hi. In this
model, the state trajectory stays in (0, 1)n regardless of the control policy.

To generate a problem, we sample the parameters h,C,L,R uniformly at random from
the intervals [0, 0.5]n, [1, 3]n, [2, 4]n, [2, 4]n, respectively.

Epidemic Control

This problem is based on the SIS epidemic model studied in [88]. It has been shown that the
fraction of infected individuals in a stochastic version of the SIS epidemic model, following a
continuous-time Markov chain, converges in probability to the solution of a continuous-time
deterministic differential equation. The epidemic control problem we consider is derived from
this continuous-time deterministic differential equation.

In this problem, the state variable xi(t) represents the fraction of infected people in
subpopulation i and ui(t) represents the intervention effort for subpopulation i at time t. Let
Ci be the unit social cost per fraction of infected population, and Pi be the unit intervention
cost. The transmission rates λ1,i and λ0,i correspond to active and inactive intervention
cases in subpopulation i, respectively. Similarly, µ1,i and µ0,i denote the recovery rates under
active and inactive intervention, respectively. The objective is to minimize the total cost∫ T

0

∑n
i=1[Ci(t)xi(t)+Piui(t)] dt subject to the state equation ẋi(t) = ui(t)

[
λ1,ix(t)

(
1− µ1

λ1,i
−

xi(t)

)]
+ (1− ui(t))

[
λ0,ixi(t)

(
1− µ0

λ0,i
− x(t)

)]
. In this model, the state trajectory always

stays in (0, 1)n.
To generate a problem, we make two assumptions. First, we assume that in each

subpopulation i, the intervention cost is always lower than the cost of infection. Second,
λ1,i < µ1,i and λ0,i > µ0,i, to reflect the effects of active intervention. To implement these
assumptions, we first sample C uniformly at random from the interval [0, 1]n. We then
multiply C element-wise with another vector sampled uniformly at random from [0, 1]n to
compute P . Next, we sample λ1 and µ0 uniformly at random from [2, 4]n. Finally, we
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randomly sample two vectors uniformly from [0, 0.5]n and add them to λ1 and µ0 to obtain
µ1 and λ0, respectively.

Fisheries Control

This problem is based on the classic logistic model of population growth [8], extended to the
optimal control of fisheries studied by [97], [98]. In this example, xi(t) and ui(t) represent
the size of population i at time t and the fishing effort on population i at time t, respectively.
ri denotes the intrinsic growth rate of population i, and Hi is the maximum sustainable
population size. For each population i, its catchability coefficient, the unit price of landed
fish, and the unit cost of effort are denoted qi, pi, and Ci, respectively. The objective is to
maximize

∫ T

0

∑n
i=1(piqixi(t)− Ci)ui(t) dt subject to the state equation:

ẋi(t) = ri

(
1− xi(t)

Hi

)
xi(t)− qixi(t)ui(t).

To align this problem with the formulation in Section 3.3.1, we can set the parameters as
β0,i = β1,i = − ri

Hi
, α0,i = ri, and α1,i = ri − qi. In this model, the state trajectory always

stays in
∏n

i=1(0, Hi).
To generate a problem, we sample the parameters r,H , q,p,C uniformly at random from

the intervals [0, 0.15]n, [1, 6]n, [0, 0.15]n, [0, 2]n, [0, 0.1]n, respectively.

3.5.2 Experimental Setups

We randomly generate problem instances with varying initial states and solve them using
Algorithm 2 to generate training data. We sample 3000 initial states uniformly at random
from

∏n
i=1(0, Hi), where Hi represents the bounds specific to each problem. For each solved

instance, we divide each subinterval with constant control into 10 different time grids,
extracting the associated feature vectors and the control vectors. For Algorithm 2, we fix
m = ⌊0.3n⌋, ϵ = 0.00001, and δ = 0.0001.

We evaluate our approach in two different ways. First, we measure simply how well the
learned policy imitates the optimal trajectory generated by Algorithm 2. We evaluate the
out-of-sample test accuracy on 1000 data points consisting of state-control pairs that the
decision tree has not seen during training.

Second, to evaluate the ultimate quality of the learned policies, we apply them to problems
with varying initial states and compute the associated objective cost. We compare this cost
with the optimal objective cost acquired by Algorithm 2. To compute the objective cost
associated with a policy, we discretize the dynamics to approximate the continuous-time
trajectory and the integral objective values. We measure the suboptimality of a policy by
subtracting the associated objective cost from the optimal objective cost, and then dividing
the result by the absolute value of the associated objective cost. As the goal is maximization,
this value is guaranteed to be non-negative. We report the maximum of these values across
the test instances to analyze the potential suboptimality of the learned policies for unseen
problems. The number of test instances is 100.

When measuring the speed-up compared to the shooting method, we divide the time it
takes to solve an instance from scratch using Algorithm 2 by the time it takes for the trained
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n T Training Time (min:s) Speed-up Accuracy Max Suboptimality

5 1 2:23 47625 1.00 0.0000
10 4:50 93751 1.00 0.0000
5 5 6:49 4.90× 105 1.00 0.0000
10 19:27 3.23× 106 0.98 0.0181

Table 3.1: Experiment results for the machine maintenance problem.

decision tree to make an inference. The number of test instances is 100 for this. Finally, we
report the time required to train a decision tree using OCT-H, with training times reported
in minutes and seconds.

All experiments in this section were conducted on a MacBook Pro with an Apple M2 Pro
chip and 16GB of memory. Software for OCT-H is available at [60]. We tune the maximum
depth of the tree by grid searching over the list [5,10,15].

3.5.3 Experimental Results

In Tables 3.1, 3.2, and 3.3, we report the experimental results for the machine maintenance,
the epidemic control, and the fisheries control problems, respectively. We draw the following
conclusions.

Observations

• The out-of-sample classification accuracy is consistently high, never falling below 98%
and frequently achieving 100%. This indicates that the policy learned using Algorithm
4 imitates the optimal trajectory very well.

• Even when the out-of-sample test accuracy falls below 100%, the maximum subopti-
mality remains very low, never exceeding 1.8%.

• The proposed approach significantly outspeeds Algorithm 2, with speed-ups reaching
up to more than 26 million times. We also note that the relative speed-up increases
with larger n and T . This enhancement is attributed to the increased computational
demand of solving problems with larger number of projects and longer time horizons.

• The training times are typically short, up to several hours in a personal laptop. demon-
strating the practicality of our approach.

3.6 Conclusions

We have proposed a machine learning approach to learn a state feedback policy for fluid
restless multi-armed bandit problems with affine and quadratic state equations. Instead of
relying on black-box algorithms that automatically learn nonlinear patterns, we introduce a
feature augmentation technique and use OCT-H. Our computational experiments demonstrate
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n T Training Time (min:s) Speed-up Accuracy Max Suboptimality

5 1 7:33 2.10× 105 0.99 0.0011
10 12:33 1.08× 106 1.00 0.0000
5 5 7:04 8.60× 105 0.99 0.0000
10 18:07 2.65× 107 1.00 0.0000

Table 3.2: Experiment results for the epidemic control problem.

n T Training Time (min:s) Speed-up Accuracy Max Suboptimality

5 1 34:24 90653 0.98 0.0000
10 51:29 1.59× 105 0.99 0.0000
5 5 12:40 3.90× 105 0.99 0.0011
10 143:20 2.07× 106 0.98 0.0111

Table 3.3: Experiment results for the fisheries control problem.

that this approach effectively learns high-quality policies for a variety of problems across
different sizes and time horizons.
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Chapter 4

A Machine Learning Approach to
Two-Stage Adaptive Robust Optimization

4.1 Introduction

Robust optimization (RO) has become increasingly popular as a method to account for
parameter uncertainty. Compared to more conventional methods such as stochastic opti-
mization, which can be computationally intensive in high dimensions, RO offers a significant
computational advantage [17], [22].

Adaptive robust optimization (ARO) is an important extension of RO that allows certain
decision variables, referred to as the wait-and-see variables, to be determined after the
uncertainty is revealed. In ARO, the wait-and-see decisions are mathematically modeled
as functions of uncertain parameters, enabling them to adapt to the realization of those
parameters. ARO is particularly useful in multi-stage decision-making problems, where
decision-makers may be uncertain about future parameter values, and where decisions may
need to be made sequentially over time. Compared to RO, ARO provides greater modeling
flexibility and often results in superior solutions that are better able to adapt to changing
conditions [16]. Application areas include energy [23], [106], inventory management [5], [99],
portfolio management [50], machine scheduling [42] among many others.

Despite its many benefits, ARO poses significant computational challenges that distinguish
it from RO. One of the primary challenges arises from the fact that ARO consists of infinite-
dimensional optimization problems, as the wait-and-see variables are functional variables. To
overcome this issue, approximation methods have been proposed that restrict the wait-and-see
variables to a limited set of functions, such as affine functions [22, Section 7]. However,
while these methods may be able to reformulate ARO into RO, there is no guarantee that
the resulting approximation will be near-optimal or even feasible [111, Section 5]. Other
methods have been developed that can ensure near-optimal or even optimal solutions for
ARO, including Benders Decomposition [23], Column and Constraint Generation (CCG) [112],
scenario reduction [54], [108], branch-and-bound [70] and Fourier-Motzkin Elimination [114].
These methods, however, may not scale well in high dimensions or assume specific structure
on the uncertainties. Given the substantial computational burden of ARO, the application
of ARO may be limited particularly in real-time settings where time and computational
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resources are severely constrained. In these domains where decisions need to be made within
seconds or even milliseconds, opting for ARO can be often unviable.

To address this challenge, we propose a novel machine learning approach that can
significantly reduce the computational burden associated with ARO. To generate a training
set, we solve multiple ARO instances in advance using the CCG algorithm. Then, we train
machine learning models to predict high-quality strategies for ARO problems that can simplify
their solution process (exact definition of strategies will be presented in Section 4.3.1). To the
best of our knowledge, our work is the first to harness the power of machine learning to tackle
ARO. While our approach might involve heavy computational burden in the training phase,
this investment enables us to attain remarkable speed-ups once the training is completed,
outperforming state-of-the-art algorithms by several orders of magnitude. In practical terms,
this means that ARO can now be solved in a matter of milliseconds.

While previous work by [24], [25], [28] explored machine learning techniques for solving
mixed-integer convex optimization (MICO) problems, our work takes a leap by extending
these methods to ARO. Their approach is to train a machine learning model that predicts
the optimal strategy of a MICO problem, where the optimal strategy of a MICO instance is
defined as the set of tight constraints and the set of binary variables that are equal to one.

However, adapting these methods to the realm of ARO is not straightforward. ARO
presents distinct mathematical structures and computational challenges compared to MICO.
First, while MICO deals with finite-dimensional problems, ARO deals with infinite-dimensional
ones. Consequently, it requires a different definition of the optimal strategies to encode
the optimal solutions. Second, ARO, involving dynamic optimization problems, requires
a comprehensive solution including not only here-and-now decisions but also worst-case
scenarios associated with these decisions and subsequent wait-and-see decisions. Third,
the computational complexity of solving ARO is substantially higher than MICO, posing
challenges in training data generation. Finally, in the realm of ARO, the number of distinct
target classes can grow significantly depending on the sampling strategy and the size of the
uncertainty sets, making the prediction task difficult. Our proposed techniques effectively
address these challenges inherent in ARO. Furthermore, unlike previous approaches, the
machine learning models we train can handle problems with varying dimensions, thereby
enhancing their versatility.

Our contributions are summarized as follows.

1. We propose a machine learning approach to solve two-stage linear ARO with binary
here-and-now variables and polyhedral uncertainty sets. Our approach provides a com-
prehensive solution including high-quality here-and-now decisions, worst-case scenarios
associated with these decisions and subsequent wait-and-see decisions. Moreover, the
machine learning models can be applied to problems with varying dimensions.

2. We propose a method to expedite the training data generation process, enhancing our
approach’s adaptability to shifting environments.

3. We propose a method to reduce the number of distinct target classes the machine
learning model is trained on. This technique enables our approach to effectively address
high-dimensional problems and accommodate large uncertainty sets.
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4. We conduct a series of computational experiments involving both synthetic and real-
world problems. The examples we test on include the facility location, the multi-item
inventory control and the unit commitment problems. We demonstrate that we can
obtain high-quality solutions using the proposed method. Notably, despite potentially
lengthy training periods, the real-time application of our methodology dramatically
outspeeds the state-of-the-art algorithms. In our experiments, we demonstrate a
speed-up of more than 10 million times.

The structure of this paper is as follows. In Section 4.2, we briefly introduce ARO and
explain how we solve a two-stage linear ARO problem with polyhedral uncertainty sets.
We also demonstrate that this method may not scale to problems with high dimension. In
Section 4.3, we develop a machine learning approach to solve two-stage ARO with binary
here-and-now variables and polyhedral uncertainty sets. In Section 4.4, we present a technique
to accelerate training data generation. In Section 4.5, we present an algorithm to reduce
the number of different target classes. In Section 4.6, we present the results of numerical
experiments.

Notational Conventions Throughout this paper, we use boldface letters to denote vectors
and matrices. The ith entry of a vector x is denoted xi or [x]i, unless otherwise noted. For a
positive integer N , we use [N ] to denote the set {i ∈ Z : 1 ≤ i ≤ N}. We use x(·) to denote
a vector whose entries are real-valued functions.

4.2 Two-stage Linear Adaptive Robust Optimization

In this section, we review two-stage linear ARO. We describe how to obtain the optimal
here-and-now decisions, the worst-case scenarios associated with the optimal here-and-now
decisions, and the optimal wait-and-see decisions using the CCG algorithm. We demonstrate
numerically that this algorithm may not scale well with dimension. Additional computational
analysis of the algorithm, including the impact of tolerance parameters and the choice of
different initial points can be found in the Appendix B.

4.2.1 Problem Formulation

Consider the two-stage ARO

min
x,y(·)

(
max
d∈D

c(d)⊤x+ b⊤y(d)

)
(4.1)

s.t. A(d)x+By(d) ≤ g, ∀d ∈ D,

where d is a vector of uncertain parameters and D is a polyhedral uncertainty set. We also
use the term scenario to refer to a specific realization of the uncertain parameter. x is the
vector of here-and-now variables that represents the decisions that have to be made before
the uncertainty is revealed. y(·) is the vector of wait-and-see variables, which is a function of
d. A(d) and c(d) are affine in d. We assume B and b do not involve uncertainty, a condition
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commonly known as the fixed-recourse assumption. Without this assumption, solving an
ARO instance becomes considerably more challenging [22, Chapter 6&7].

The wait-and-see variables represent the decisions that can be made after the uncertainty
is revealed. This flexibility leads to less conservative and more realistic solutions compared
to RO. ARO results in better objective values because the wait-and-see variables can be
decided based on actual realizations of the uncertain parameters, whereas in RO, conservative
decisions must be made in advance. Moreover, ARO tolerates larger uncertainty levels than
RO. In some cases, a RO problem can be infeasible if the uncertainty set is too large. However,
by switching some of the decision variables to wait-and-see variables, the resulting ARO
problem may become feasible [16, Section 1&5].

As the wait-and-decision variable y(·) is an arbitrary function, it represents an infinite-
dimensional variable. To manage this challenge, a common approach is to constrain y(·) to a
family of parametric functions. Among the popular choices is the affine decision rule, where
we assume that y(d) = Pd+ z for some P and z. By substituting this expression back into
problem (4.1), P and z become finite vectors of decision variables alongside x.

Another approximation method is to consider only a limited number of key scenarios from
D. In this approach, D is replaced with its finite subset in problem (4.1). For each scenario
d in the subset, we define a wait-and-see variable yd, representing the action to be taken if
scenario d is realized. The CCG algorithm falls into this class of methods.

4.2.2 Column and Constraint Generation Algorithm

The CCG algorithm is an iterative algorithm to solve problem (4.1) to near optimality.
The first step of this algorithm is to reformulate the objective function as a function of
here-and-now variables. Problem (4.1) can be reformulated as

min
x

(
max
d∈D

min
y∈Ω(x,d)

c(d)⊤x+ b⊤y

)
, (4.2)

with Ω(x,d) = {y : A(d)x+By ≤ g}. We also define

Q(x) = max
d∈D

min
yd∈Ω(x,d)

c(d)⊤x+ b⊤yd, (4.3)

which is the objective value corresponding to a here-and-now decision x. The solution to the
outer maximization problem in (4.3) is the worst-case scenario associated with x.

Since a worst-case scenario is an extreme point of the uncertainty set, in the inner
maximization of problem (4.2), it suffices to optimize over the extreme points of D rather
than the entire set. Hence, problem (4.2) is equivalent to the following problem.

min
x,α,{yd}d∈E

α (4.4)

s.t. α ≥ c(d)⊤x+ b⊤yd, ∀d ∈ E ,
yd ∈ Ω(x,d), ∀d ∈ E ,

where E is the set of all extreme points of D and yd is the wait-and-see variable associated
with d.
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Without using the entire set E , CCG solves (4.4) by iteratively adding a new extreme
point d and the associated wait-and-see variable yd until a convergence criterion is met. In
the initial iteration, where no extreme point is identified yet (E0 = ∅), we solve (4.3) with
any initial here-and-now decision x0 to find the associated worst-case scenario and then add
this scenario to E0. Iteration i of the CCG algorithm involves i extreme points identified so
far. Denoting the set of extreme points at iteration i as Ei, the so-called restricted master
problem at iteration i is

min
x,α,{yd}d∈Ei

α (4.5)

s.t. α ≥ c(d)⊤x+ b⊤yd, ∀d ∈ Ei,
yd ∈ Ω(x,d), ∀d ∈ Ei.

The objective value of (4.5) is lower than the objective value of (4.4), as only a subset of the
constraints are imposed. Once we solve (4.5) and obtain its solution xi, we calculate Q(xi)
and also obtain the worst-case scenario di associated with xi. If the gap between Q(xi) and
the objective value of (4.5) is larger than a convergence criterion, di is added to Ei from the
next iteration.

In every iteration, we have to evaluate Q(xi), which is a non-convex max-min problem as
shown in (4.3). Several methods have been proposed to solve this problem, such as converting
it to a mixed integer linear optimization problem [105], [112]. In our implementation, we use
a heuristic called the Alternating Direction method due to its computational efficiency and
strong empirical performance.

Using the strong duality in linear optimization, the inner minimization problem in (4.3)
can be converted to a maximization problem. Now the problem (4.3) is recast into the
following maximization problem.

max
d,π

π⊤(A(d)x− g) + c(d)⊤x (4.6)

s.t. − π⊤B = b⊤,

π ≥ 0,

d ∈ D.

The Alternating Direction method to solve problem (4.6) is described in Algorithm 6. For
conciseness, we use T = {π | −π⊤B = b⊤,π ≥ 0} in the algorithm description. Theoretically,
CCG can output suboptimal solutions precisely because problem (4.3) is non-convex. Hence,
in each iteration, we are in fact computing an approximation of Q(xi), which we denote as
Q̃(xi). To ensure the quality of the solution, in our implementation we try three different
initial points for problem (4.3) and choose the best solution found. For more detail on CCG
method and the Alternating Direction method see [105], [106]. Algorithms 5 and 6 describe
the CCG and the Alternating Direction method, respectively.

4.2.3 Obtaining the solutions

Given problem (4.1) and a scenario d̄, we can find a near-optimal here-and-now decision x̃∗

and an associated worst-case scenario d̃∗ using Algorithm 5. We can find a near-optimal
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Algorithm 5: Column and Constraint Generation
Input: Problem (4.1), ϵ1
Output: x̃∗,d̃∗

Initialization: i = 0, x0, E0 = ∅, UB = ∞, LB = −∞
while UB -LB ≥ ϵ1 do

if i = 0 then
Evaluate Q(xi) to get Q̃(xi) and a solution di

Ei+1 ← Ei
⋃
{di}

i ← i+ 1

else
Solve (4.5) with the extreme points in Ei. Denote the solutions as xi and αi.
LB ← αi

Evaluate Q(xi) to get Q̃(xi) and a solution di.
UB ← Q̃(xi)
Ei+1 ← Ei

⋃
{di}

i ← i+ 1

x̃∗ ← xi

d̃∗ ← di

Algorithm 6: Alternating Direction Method
Input: Problem (4.3), xi, ϵ2
Output: Q̃(xi), di

Initialization: Some d0 ∈ D, t = 0, UB = ∞, LB = −∞
while UB -LB ≥ ϵ2 do

LB ← (a) maxπ∈T π⊤(A(dt)xi − g) + c(dt)
⊤xi

Denote the solution of (a) as πt.
UB ← (b) maxd∈D π⊤

t (A(d)xi − g) + c(d)⊤xi

Denote the solution of (b) as dt.
t ← t+ 1

Q̃(xi)← UB+LB
2

di ← dt
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wait-and-see decision ỹ∗(d̄) by fixing x = x̃∗, d = d̄ and solving the deterministic version of
(4.1), which is the following problem.

min
y

c(d̄)⊤x̃∗ + b⊤y

s.t. A(d̄)x̃∗ +By ≤ g.

Note that the decision variable y is no longer a functional variable but a finite vector of
decision variables, because the specific scenario d̄ has been realized.

4.2.4 Scalability

We demonstrate that solving ARO problems using Algorithm 5 can be computationally
demanding by considering the unit commitment problem from power systems literature. This
problem involves minimizing energy production costs while satisfying energy demand over m
time steps for a power system with n generators. We should decide which generators to start
up, shut down, and how much energy each generator should produce at each time. Whether
we should start up or shut down each generator at each time, referred to as the commitment
decisions, are modeled as binary variables. In the ARO version, these variables represent the
here-and-now decisions made before the demand is realized. The demand at each time is the
uncertain parameter. After the demand is realized, the wait-and-see decisions determine how
much energy each generator should produce. Appendix B provides the complete formulation
of the deterministic version, and the data used is from [37]. We use the budget uncertainty
set defined as D = {d |

∑
i

∣∣∣ di−d̄i
0.1×d̄i

∣∣∣ ≤ 2,
∣∣di − d̄i

∣∣ ≤ 0.1× d̄i}, where d̄ is from the data in [37].
For varying values of n, we compare the solve times of ARO and the deterministic version

of the unit commitment problem. We keep m = 24 fixed for all experiments. For each n, we
generate 100 deterministic instances and solve them with Gurobi [56] using the optimality
gap of 0.01. Then, we solve the ARO versions of these problems using Algorithm 5, with
tolerance set to ϵ1 = 0.01 for fair comparison. For Algorithm 6 implemented within Algorithm
5, three random initial points are used and the tolerance is set to ϵ2 = 0.01. The experiment
in this section was executed in Julia 1.4.1 on a MacBook Pro with 2.6 GHz Intel Core i7
CPU and 16GB of RAM.

We present the experiment results in Figure 4.1, where we report the mean solve times
for each n. It is evident that compared to solving the deterministic version of the unit
commitment problem, considerably more time is required to solve its ARO counterpart using
Algorithm 5. The solve time for ARO increases drastically at n = 5, while the solve time
for the deterministic version remains relatively consistent across all n values. This finding
suggests that solving ARO problems using Algorithm 5 can be computationally challenging,
especially for large scale problems.

4.3 A Machine Learning Approach to ARO

In this section, we develop a machine learning approach to two-stage ARO with binary
here-and-now variables and polyhedral uncertainty sets. In the context of MICO, [24], [25] use
classification algorithms, while [28] use a prescriptive machine learning algorithm, Optimal

65



Figure 4.1: Solve time for the unit commitment problem.

Policy Trees (OPT) [3]. [28] demonstrate that OPT has an edge over a classification algorithm,
particularly in its ability to avoid infeasible or highly suboptimal solutions. In our work,
we provide an integrated perspective by introducing both classification and prescriptive
approaches in the context of ARO. We begin by presenting a comprehensive explanation
of our foundational approach from Section 4.3.1 to 4.3.5. Following this, we introduce a
generalization that extends the applicability of machine learning models to problems with
varying dimensions in Section 4.3.6.

4.3.1 Optimal Strategy

We consider the following ARO problem, where θ is the key parameter used to generate
instances.

min
x,y(·)

(
max
d∈D,

c(d,θ)⊤x+ b(θ)⊤y

)
(4.7)

s.t. A(d,θ)x+B(θ)y(d) ≤ g(θ), ∀d ∈ D,
x is binary.

We denote the deterministic version of problem (4.7) with fixed x = x∗,d = d∗ as
Det(θ,x∗,d∗), which is the following problem.

min
y

c(d∗,θ)⊤x∗ + b(θ)⊤y (Det(θ,x∗,d∗))

s.t. A(d∗,θ)x∗ +B(θ)y ≤ g(θ).

We denote the optimal objective cost of Det(θ,x∗,d∗) as V (θ,x∗,d∗) and assume that
Det(θ,x∗,d∗) has m constraints.

Given the ARO instance (4.7) with a parameter θ̄ and a scenario d̄ ∈ D, we define the
optimal strategy for the here-and-now decisions, the worst-case scenarios associated with the
optimal here-and-now decisions, and the wait-and-see decisions associated with the scenario
d̄. We denote these strategies as sx(θ̄), sd(θ̄), sy(θ̄, d̄), respectively. We use sx, sd, sy instead
when we are not referring to a specific instance or scenario. These strategies serve as the
prediction targets for the trained machine learning models. In the following description, we
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use x∗,d∗ to denote the optimal here-and-now decision and the worst-case scenario associated
with the optimal here-and-now decision, respectively.

Here-and-now Decisions The here-and-now variables in problem (4.7) are binary. There-
fore, we define the optimal strategy for the here-and-now decisions as the optimal here-and-now
decision itself, meaning that sx(θ̄) = x∗. Once a machine learning model is trained, it can
directly predict a here-and-now decision given a new parameter θ̂.

Worst-case Scenarios In general, it is hard to define a single worst-case scenario of an
ARO instance. However, if we fix some here-and-now decision, the worst-case scenario that
corresponds to this specific decision can be defined. We define the optimal strategy for the
worst-case scenarios as sd(θ̄) = (x∗,d∗). Note that since a worst-case scenario is one of the
extreme points of D, there can only be a finite number of worst-case scenarios possible. Once
a machine learning model is trained, it can directly predict a here-and-now decision and a
worst-case scenario given a new parameter θ̂.

Wait-and-see Decisions Given x∗ and the scenario d̄, we solve Det(θ̄,x∗, d̄) to identify
the optimal solution y∗ and the set of constraints that are satisfied as equality at optimality.
These constraints are referred to as the tight constraints and are denoted as τy(θ̄, d̄). Formally,
they are defined as

τy(θ̄, d̄) = {j ∈ [m] | [A(d̄, θ̄)x∗ +B(θ̄)y∗]j = [g(θ̄)]j}.

Identifying the tight constraints simplifies the linear programming problem, as unnecessary
constraints can be removed. We define the optimal strategy as sy(θ̄, d̄) = (x∗, τy(θ̄, d̄)).
Given a new parameter θ̂ and a scenario d̂, a model predicts a here-and-now decision x̂ and
a set of tight constraints. A wait-and-see decision for the scenario d̂ can be computed by
solving Det(θ̂, x̂, d̂) imposing only the predicted tight constraints.

Notice that the optimal strategies for the worst-case-scenarios and the wait-and-see
decisions already contain the optimal here-and-now decisions. Therefore, it might seem
redundant to train a separate model to predict the optimal here-and-now decisions. However,
we demonstrate in Section 4.6 that the prediction accuracy for the here-and-now decisions
is generally higher than the other prediction targets. Hence, if one is only interested in
predicting the optimal here-and-now decisions, training a separate model might be beneficial.

4.3.2 Suboptimality and Infeasibility

We explain how we evaluate the quality of the strategies applied to an ARO instance
associated with θ̂ and a scenario d̂. We denote the strategies that we would like to evaluate
as x̂, (x̂, d̂

′
), (x̂, τ̂y), respectively.

Here-and-now Decisions Suboptimality and infeasibility of the strategy x̂ are measured
by comparing Q̃(x̂) and Q̃(x̃∗) of the instance associated with θ̂. We consider x̂ infeasible if
Q̃(x̂) =∞. If it is feasible, we define its suboptimality as

sub(x̂) = (Q̃(x̂)− Q̃(x̃∗))/
∣∣∣Q̃(x̃∗)

∣∣∣.
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Worst-Case Scenarios Measuring the quality of the strategy (x̂, d̂
′
) consists of two stages.

First, we evaluate the x̂ part following the procedure described above for the here-and-now
decisions. If x̂ is infeasible, the strategy (x̂, d̂

′
) is considered infeasible in the first place.

Otherwise, it is considered feasible. If it is feasible, then now we check if d̂′ is the worst-case
scenario for x̂. To do so, we solve Det(θ̂, x̂, d̂

′
) and compare the optimal cost with Q̃(x̂).

We define the suboptimality as

sub(x̂, d̂
′
) = max

{
sub(x̂),

(
Q̃(x̂)− V (θ̂, x̂, d̂

′
)

)
/
∣∣∣Q̃(x̂)∣∣∣}.

Wait-and-see Decisions Measuring the quality of the strategy (x̂, τ̂y) also consists of
two stages. First, we evaluate the x̂ part following the procedure described above for the
here-and-now decisions. If it is infeasible, then (x̂, τ̂y) is considered infeasible in the first
place. If it is feasible, then we evaluate the τ̂y part. We solve Det(θ̂, x̂, d̂) imposing only
the constraints included in τ̂y. If this leads to infeasibility, then again (x̂, τ̂y) is considered
infeasible. If a feasible solution ŷ is found, we compute the suboptimality of the τ̂y part
defined as

sub(τ̂y) =

((
c(d̂, θ̂)⊤x̂+ b(θ̂)⊤ŷ

)
− V (θ̂, x̂, d̂)

)
/V (θ̂, x̂, d̂),

For a feasible (x̂, τ̂y), we define its suboptimality as

sub(x̂, τ̂y) = max

{
sub(x̂), sub(τ̂y)

}
.

4.3.3 A Classification Approach

In this section, we develop an approach to solve ARO problems using classification algorithms.
The proposed approach consists of three phases. In Phase 1, we generate N ∈ N parameters
{θi}i∈[N ] and solve the associated ARO instances using Algorithm 5. For each θi, we also
sample a scenario di from the uncertainty set. Then, we identify near-optimal or slightly
suboptimal strategies for the here-and-now decisions, the worst-case scenarios associated with
the here-and-now decisions, and the wait-and-see decisions associated with the scenario di. In
Phase 2, we use classification algorithms to train three machine learning models that predict
each of these strategies. In Phase 3, given a new parameter θ̂ and a scenario d̂, we use the
predictions of these models to compute a here-and-now decision, a worst-case scenario, and a
wait-and-see decision associated with the scenario d̂. Algorithm 7 provides a comprehensive
overview of the entire procedure with detailed steps.

Remark 1 As mentioned in Section 4.2.2, solving ARO problems to exact optimality is
hard in general. Hence, we use the outputs of Algorithm 5 to compute near-optimal or slightly
suboptimal strategies instead in Phase 1. The suboptimalities of the strategies depend on
the tolerance ϵ1 in Algorithm 5.
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Remark 2 In this work, we sample parameters θi, i ∈ [N ], uniformly at random from
the ball with a predefined radius r. We sample scenarios di from the uncertainty set, also
uniformly at random. Depending on the application area or any prior knowledge, the sampling
scheme may vary.

Algorithm 7: Classification Approach to ARO
Input: θ̄, N , r, Problem (4.7), ϵ1, ϵ2

Phase 1
1.1 for i = 1, . . . , N do

Sample a point θi from the ball B(θ̄, r) uniformly at random.
Fix θ = θi and solve problem (4.7) with Algorithm 5 to obtain a here-and-now decision
x̃∗
i and an associated worst-case-scenario d̃∗

i . The tolerances for Algorithm 5 and 6 are
set to ϵ1 and ϵ2, respectively.

Sample a point di from D uniformly at random.
Solve Det(θi, x̃

∗
i ,di) to obtain τ̃y(θi,di).

sx(θi)← x̃∗
i

sd(θi)← (x̃∗
i , d̃

∗
i )

sy(θi,di)← (x̃∗
i , τ̃y(θi,di))

Phase 2
2.1 Train a machine learning model Lx using (θ1, . . . ,θN ) as the feature matrix and(

sx(θ1), . . . , sx(θN )
)

as the target vector.
2.2 Train a machine learning model Ld using (θ1, . . . ,θN ) as the feature matrix and(

sd(θ1), . . . , sd(θN )
)

as the target vector.

2.3 Train a machine learning model Ly using
(
(θ1,d1), . . . , (θN ,dN )

)
as the feature matrix

and
(
sy(θ1,d1), . . . , sy(θN ,dN )

)
as the target vector.

Phase 3
3.1 For a new instance θ̂, Lx predicts ŝx(θ̂) = x̂.
3.2 For a new instance θ̂, Ld predicts ŝd(θ̂) = (x̂, d̂

′
).

3.3.1 For a new instance θ̂ and d̂, Ly predicts ŝy(θ̂, d̂) = (x̂, τ̂y(θ̂, d̂)).
3.3.2 Solve Det(θ̂, x̂, d̂) using τ̂y(θ̂, d̂) to compute a wait-and-see decision.

4.3.4 A Prescriptive Approach

In this section, we present a prescriptive approach to ARO using OPT. We begin with a
baseline approach and then generalize it. In the following explanation, we focus on training a
machine learning model for the here-and-now variables, but the cases of worst-case scenarios
and the wait-and-see decisions are straightforward extensions.

The baseline approach is similar to the classification approach provided in Algorithm 7,
except for Phase 2. In Phase 2 of the prescriptive approach, we need to compute what we
refer to as the reward matrices.

Assume that after Phase 1 of Algorithm 7, we have solved N ∈ N ARO instances and
identified Q ∈ N different strategies in the training set. Note that Q ≤ N , as the optimal
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strategies of different instances might overlap. We let Sx = {sx,1, . . . , sx,Q} be the set of
optimal strategies identified, where sx,i ̸= sx,j if i ̸= j. The reward matrix Rx ∈ RN×Q is then
defined such that its entry in the ith row and jth column corresponds to the suboptimality
of the strategy sx,j applied to the ith ARO instance. If the strategy is infeasible, we assign
an arbitrary large number to its entry. Using the reward matrix, we train a decision tree by
solving the optimization problem

min
v(·),z

N∑
i=1

∑
ℓ

1{v(θi) = ℓ}·Rizℓ ,

where v(θi) is the leaf of the tree θi is assigned to, zℓ is the strategy assigned to the points in
leaf ℓ, and Rizℓ is the suboptimality of the instance i under the strategy zℓ. This optimization
problem determines the structure of the decision tree using the decision variable v(·) and
assigns strategies to each leaf using the decision variable z. The objective is to train a decision
tree that prescribes a strategy to an ARO instance, so that the resulting suboptimality is
minimized. Once a decision tree is trained, given a feature vector θ̂, we traverse the tree using
the feature until we reach the leaf node. The strategy assigned to this leaf is the prediction
for the instance θ̂. For a more detailed explanation, please refer to [3].

Now, we introduce a generalization of the baseline approach just explained. In our
computational experiments, we have observed that the number Q can get prohibitively large,
especially for large scale problems. While we propose a method to address this issue when
training a model for the wait-and-see decisions in Section 4.5, this method does not extend
to other prediction targets.

In the generalization we propose, we randomly select Q1 ≤ Q strategies from Sx, and
compute the corresponding reward matrix. Using this reward matrix, we train a decision
tree. Algorithm 8 outlines the entire procedure.

4.3.5 Example

In this section, we apply Algorithm 8 to a small sized example and present the actual decision
trees learned with OPT. We consider the following facility location problem formulated as an
ARO problem.

min
y(·),x

max
d∈D

n∑
i=1

m∑
j=1

cijyij(d) +
n∑

i=1

fixi

s.t.
n∑

i=1

yij(d) ≥ dj, ∀d ∈ D, ∀j ∈ [m],

m∑
j=1

yij(d) ≤ pixi, ∀d ∈ D, ∀i ∈ [n],

yij(d) ≥ 0, ∀d ∈ D, ∀i ∈ [n], ∀j ∈ [m],

x ∈ {0, 1}n.

Let i ∈ [n] denote a possible location to build facilities, and j ∈ [m] denote a delivery
destination. Let cij be the cost of transporting goods from location i to destination j and pi
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Algorithm 8: OPT for ARO
Input: θ̄, N , r, Problem (4.7), ϵ1, ϵ2, M,Q1, Q2, Q3

Phase 1
1.1 Identical to 1.1 of Algorithm 7.
1.2 Sx ←

{
sx(θ1), . . . , sx(θN )

}
Sd ←

{
sd(θ1), . . . , sd(θN )

}
Sy ←

{
sy(θ1,d1), . . . , sy(θN ,dN )

}
Phase 2
2.1.1 Choose Q1 distinct strategies from Sx at random and compute the reward matrix
Rx ∈ RN×Q1 using those strategies.

2.1.2 Train a decision tree Tx using Rx.
2.2.1 Choose Q2 distinct strategies from Sd at random and compute the reward matrix
Rd ∈ RN×Q2 using those strategies.

2.2.2 Train a decision tree Td using Rd.
2.3.1 Choose Q3 distinct strategies from Sy at random and compute the reward matrix
Ry ∈ RN×Q3 using those strategies.

2.3.2 Train a decision tree Ty using Ry.

Phase 3
3.1 For a new instance θ̂, Tx predicts ŝx(θ̂) = x̂.
3.2 For a new instance θ̂, Td predicts ŝd(θ̂) = (x̂, d̂

′
).

3.3.1 For a new instance θ̂ and d̂, Ty predicts ŝy(θ̂, d̂) = (x̂, τ̂y(θ̂, d̂)).
3.3.2 Solve Det(θ̂, x̂, d̂) using τ̂y(θ̂, d̂) to compute a wait-and-see decision.

be the capacity of the facility built on location i. The construction cost to build a facility
on location i is denoted as fi. The demand at destination j is denoted as dj, which is the
uncertain parameter. The demand is assumed to be realized after the construction decisions
and before the delivery decisions are made. Binary variable xi is the here-and-now variable
representing whether we build facility on location i or not. yij is the amount of goods to
transport from i to j, which is the wait-and-see variable.

The parameter we use to generate instances is the coefficient vector c of the cost function.
The vector c is sampled uniformly from the ball B(c̄, 1), where each entry of c̄ is drawn
from U(2, 4). Capacities pi are sampled from U(8, 18) and fi is sampled from U(3, 5). The

uncertainty set is defined as D =

{
d |
∑

i di ≤ 16, 4 ≤ di ≤ 6

}
.

For the purpose of illustration, we use a small sized example with n = m = 3. We set
Q1 = |Sx|, Q2 = |Sd| and Q3 = |Sy|. In other words, the entire set of strategies found is
used for training. The tolerances are set to ϵ1 = ϵ2 = 0.001, and the penalty for infeasible
predictions are set to M = 1000000. We limit the maximum depth of the tree to two in
order to develop intuition on the learned models. Furthermore, we assign a number to each
constraint in the deterministic version of the problem to clarify which constraint we are
referring to in the following description. The demand satisfaction constraint at destination
j, j ∈ [3], is denoted constraint j. The capacity constraint at location i, i ∈ [3], is denoted
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constraint i+ 3. The non-negativity constraint on the amount of goods to transport from i
to j is denoted constraint 6 + 3(i− 1) + j.

In Figure 4.2, we show the decision tree for the here-and-now decisions. Each node
contains the predicted here-and-now decision. We can observe how the the cost vector is used
to make a construction decision. For example, if c22 is smaller than 3.2 and c13 is smaller
than 2.8, we should build facility both on location 1 and 2 (Note that we always build facility
on location 3 regardless of the cost). This makes sense as small value of c22 and c13 indicates
that transporting goods from location 1 and 2 is generally cheap. Likewise, if c22 is smaller
than 3.2 and c13 is larger than 2.8, then we should build facility on location 2 but not on
location 1.

In Figure 4.3, we show the decision tree for the worst-case scenarios. Each node contains
the predicted here-and-now decision and the associated worst-case scenario. The cost vector
is used to make a construction decision, and also predict a worst-case demand that can
happen for the construction decision. For example, if c32 is larger than 2.662 and c12 is larger
than 3.411, the worst-case scenario is the scenario in which d2 gets as large as possible within
the uncertainty set. A possible interpretation is that large value of c32 and c12 indicates it is
costly to transport goods to destination 2.

Figure 4.2: Decision tree to predict the
optimal strategies for the here-and-now
decisions.

Figure 4.3: Decision tree to predict the
optimal strategies for the worst-case sce-
narios.

Figure 4.4: Decision tree to predict the optimal strategies for the wait-and-see decisions.

In Figure 4.4, we show the decision tree for the wait-and-see decisions. Each node contains
the predicted here-and-now decision and the indices of the tight constraints. The demand
satisfaction constraints are always tight, as we need to minimize cost while satisfying the
demand. If c13 is larger than 2.372 and c12 is larger than 2.614, we should not build facility
on location 1. This might be because transporting goods from location 1 is too expensive.
Then, constraint 4 is tight, as the right-hand-side of the capacity constraint on location 1 is
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zero. Constraints 7,8,9 are also tight, as y11 = y12 = y13 = 0. If c13 is larger than 2.372 and
c12 is smaller than 2.614, then we should build facility on location 1 but not on location 3.
Then, constraint 6 is tight, as the right-hand-side of the capacity constraint on location 3 is
zero. Likewise, constraints 13,14,15 are tight, as y31 = y32 = y33 = 0.

4.3.6 Machine Learning Model for Varying Dimensions

In the approach presented earlier, each model is trained for instances with a fixed number
of variables and constraints. Now, we introduce a generalized approach so that the trained
models can be applied to problems with varying dimensions.

In practice, decision-makers often anticipate encountering a number of contingencies.
A contingency refers to a situation where specific decision variables or constraints become
irrelevant at the time of here-and-now decision-making. To accommodate this setting, we
formally define contingency as a set of decision variables and constraints to be excluded.

Consider an ARO problem with n1 here-and-now variables, n2 wait-and-see variables,
and m constraints for its deterministic version. Then, a contingency can be represented as a
triplet (C1, C2, C3), where C1, C2, C3 are subsets of [n1], [n2], and [m], respectively. They contain
the indices of the here-and-now variables, the wait-and-see variables and the constraints to
be excluded. An ARO instance can now be associated with both a key parameter θ and a
contingency. Solving an ARO instance involves fixing the key parameter to θ and excluding
the here-and-now variables, the wait-and-see variables and the constraints whose indices are
in C1, C2, and C3, respectively. Then, we apply Algorithm 5.

To integrate this generalization into our framework, we assume that decision-makers
have a predefined list of contingencies they expect to encounter, which we refer to as the
contingency list. This list serves as an additional input for Algorithm 7 and 8. Given a
contingency list, several adjustments are required for these algorithms. In Phase 1, for each
contingency in the contingency list, we vary the key parameter to generate multiple instances.
This results in training data with diverse combinations of contingencies and key parameters.
In Phase 2, the contingencies are integrated into the feature matrix as categorical features.
This means that the type of contingency is included as part of the input features for the
machine learning models along with the key parameters θ. In Phase 3, given a new parameter
and a contingency, we remove the variables and constraints specified in the contingency, and
then apply the predictions of the machine learning models.

In Phase 2, encoding contingencies as categorical features can be done in various ways.
For instance, suppose one must consider all possible combinations of whether to remove or
retain ℓ different here-and-now variables xi, i ∈ [ℓ]. In this case, the contingency list can be
represented as

{
(C1, ∅, ∅)

}
C1∈2[ℓ]

. The simplest way to encode contingencies as categorical
features is to introduce a single categorical feature representing the type of contingency. Each
unique (C1, ∅, ∅) in the contingency list would then correspond to a distinct categorical value.
However, this method results in a categorical feature with 2ℓ distinct values, reflecting the
2ℓ different contingencies in the contingency list. In such cases, it may be more practical to
introduce ℓ categorical features. Here, each feature i ∈ ℓ indicates whether xi is removed or
not.
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4.4 Accelerating Training Data Generation

In this section, we introduce a method to expedite the process of generating training data
(Phase 1 in Algorithms 7 and 8). As demonstrated in Section 4.2.4, generating training
data in ARO can be computationally intensive. This computational demand may limit the
practical applicability of our approach, particularly when frequent retraining of models under
various parameter settings is necessary. We address this challenge by drawing inspiration from
the principles of online learning. The notation used in this section follows the descriptions
provided in Section 4.2.2.

4.4.1 Motivation

Conceptually, our work can be viewed as solving a sequence of ARO instances. From this
perspective, Algorithm 7 and 8 are divided two distinct phases: pure exploration (Phase 1)
and pure exploitation (Phase 3). In Phase 1, each ARO instance is solved independently from
scratch. We focus solely on collecting data on ARO instances and their solutions without
any learning component. Conversely, in Phase 3, we rely entirely on the learned model.
This workflow shares similarities with prior works such as [24], [28], as well as various other
learning-based methods to optimization algorithms [2], [12], [39], [83]. Our proposed method
enhances this process by introducing a more fine-grained approach. Instead of strict divisions
between exploration and exploitation, we update prediction models more frequently, gradually
reducing the level of exploration over time.

4.4.2 Algorithms

We partition Phase 1 into three subphases. The first subphase is the pure exploration stage
dedicated to data collection. Using this (potentially very small-sized) data, we train three
intermediate models, denoted as I1, I2 and I3 that are updated throughout Phase 1. These
models are utilized to expedite the solution process of Algorithm 5, and the specific manner
in which they are utilized distinguishes subphases two and three. First, we outline how
Algorithm 5 can be expedited using I1, I2, and I3, followed by a description of the training
process.

The goal of I1 is to expedite the solution process for Problem (4.5). In each iteration i of
Algorithm 5, given a set Ei, Problem (4.5) is solved to determine the optimal here-and-now
decision xi that is robust against the scenarios in Ei. Using the key parameter vector and
the latest scenario di added to Ei as inputs, I1 outputs a probability vector indicating the
likelihood of each entry of xi being one. The goal of I2 (I3) is to provide the initial point x0

(d0) for Algorithm 5 (6), respectively.
In the first subphase, we solve ARO instances independently from scratch. This stage

focuses solely on gathering data, using random initial points x0 for Algorithm 5 and three
random initial points d0 for Algorithm 6. We then train three intermediate models.

In the second subphase, given an ARO instance with the key parameter θ̂, we use the
predictions of I2 and I3 as initial points for Algorithm 5 and 6, respectively. In each iteration
of Algorithm 5, I1 predicts the probability of each entry of the here-and-now decision being one.
We then set a warm-starting point for the binary variables where the predicted probability is
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greater than a threshold p to be one, and smaller than 1− p to be zero. The threshold p is
set very close to 1, indicating certainty in the model’s predictions. This version of Algorithm
5 is denoted as Algorithm 9. The intermediate models and the value of p can be updated
multiple times as we gather more training data.

After the second subphase, with more training data, we anticipate improved accuracy in
the intermediate models. In the third subphase, we use the predictions of I1 to partially fix
(distinct from warm-starting) the here-and-now variables in each iteration of Algorithm 5.
Specifically, we fix variables where the predicted probability exceeds a threshold p or falls
below 1− p. By fully fixing certain binary variables, our aim is to further expedite Algorithm
9. I2 and I3 are utilized in the same manner as in Algorithm 9. This modified version of
Algorithm 5 is denoted as Algorithm 10.

The value of p must be chosen carefully, as it directly influences the trade-off between
prediction accuracy and the proportion of binary variables that can be fixed or warm-started.
A larger p leads to more accurate predictions, but at the expense of being able to fix or
warm-start a smaller portion of the binary variables. To determine the value of p, we
utilize a validation set consisting of 200 data points. We select the smallest p such that the
misclassification rate on the validation set, computed only on the entries with probability
outputs greater than p or smaller than 1− p, is less than 0.00001.

Now, we elaborate on the training process for I1, I2, and I3. Assume Algorithm 5, 9 or
10 has been applied to the ARO instance associated with a parameter θ̄, and it terminated
after J iterations. Then, the training data extracted from this single instance for I1 is(
(θ̄,dj),xj

)J
j=1

. The training data for I2 is
(
θ̄,xJ

)
, while for I3 it is

(
θ̄,dJ

)
. I1 and I2

are binary classifiers that predict whether each entry of the here-and-now decision is one,
while I3 is a multiclass classifier similar to the models in Algorithm 7. While the prediction
targets of I1 and I2 resemble those described in Algorithm 7 and 8, the models in those
algorithms predict the entire here-and-now decision vector as a unified bundle. On the
contrary, I1 and I2 are binary classifiers that predict whether each entry of the here-and-now
variable is zero or one individually. Hence, neural networks are specifically chosen due to the
high-dimensionality of the prediction target.

Remark In Section 4.6.7, we show that the solution quality of Algorithm 9 and 10 remains
practically identical to Algorithm 5. Even if solutions are of poor quality, however, it does
not pose a significant challenge to our main approach in Algorithm 8. This is because during
the computation of the reward matrix, entries associated with poor solutions will be assigned
high suboptimality.

4.5 Partitioning Algorithm

In this section, we propose an algorithm to reduce the number of distinct strategies for
the wait-and-see decisions in the training set. In the computational experiments, we have
observed that as the size of the uncertainty sets gets large, the number of distinct strategies
for the wait-and-see variables in the training set can get prohibitively large. While a similar
issue is discussed in [25], there is a subtle difference in our context. For MICO problems,
there is no notion of uncertainty set. Therefore, the number of distinct strategies is controlled
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Algorithm 9: Column and Constraint Generation with Warm Start
Input: Problem (4.1), I1, I2, I3, ϵ1, ϵ2, p
Output: x̃∗,d̃∗

Initialization: i = 0, E0 = ∅, UB = ∞, LB = −∞

I2 predicts x0 and I3 predicts d̂0

while UB -LB ≥ ϵ1 do
if i = 0 then

Evaluate Q(xi) using d̂0 as the initial point in Algorithm 6 to get Q̃(xi) and a
solution di.
Ei+1 ← Ei

⋃
{di}

i ← i+ 1

else
I1 outputs a probability vector.
Solve (4.5) with the extreme points in Ei. The binary variables whose corresponding
entries in the probability vector that are greater than p and smaller than 1− p are
warm-started at 1 and 0, respectively. Denote the solutions as xi and αi.

LB ← αi

Evaluate Q(xi) using d̂0 as the initial point in Algorithm 6 to get Q̃(xi) and a
solution di.

UB ← Q̃(xi)
Ei+1 ← Ei

⋃
{di}

i ← i+ 1

x̃∗ ← xi

d̃∗ ← di
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Algorithm 10: Column and Constraint Generation with Warm Start and Fixed
Variables

Input: Problem (4.1),I1, I2, I3, ϵ1, ϵ2, p
Output: x̃∗,d̃∗

Initialization: i = 0, x0, E0 = ∅, UB = ∞, LB = −∞

I2 predicts x0 and I3 predicts d̂0

while UB -LB ≥ ϵ1 do
if i = 0 then

Evaluate Q(xi) using d̂0 as the initial point in Algorithm 6 to get Q̃(xi) and a
solution di.
Ei+1 ← Ei

⋃
{di}

i ← i+ 1

else
I1 outputs a probability vector.
Solve (4.5) with the extreme points in Ei. The binary variables whose corresponding
entries in the probability vector that are greater than p and smaller than 1− p are
fixed at 1 and 0, respectively. Denote the solutions as xi and αi.

LB ← αi

Evaluate Q(xi) using d̂0 as the initial point in Algorithm 6 to get Q̃(xi) and a
solution di.

UB ← Q̃(xi)
Ei+1 ← Ei

⋃
{di}

i ← i+ 1

x̃∗ ← xi

d̃∗ ← di
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by the support of the training distribution. If the number becomes too large for a distribution
of interest, one can partition its support into multiple smaller regions and train a machine
learning model for each region. However, this approach does not directly translate to ARO,
as the number of distinct strategies depends on both the training distribution and the size of
the uncertainty set. We cannot simply reduce or partition the uncertainty set, because this
leads to less robust solutions. Moreover, the pruning algorithm described in [25, Section 4.3]
is often insufficient to handle the large number of strategies encountered in our numerical
experiments with large uncertainty sets. However, the algorithm we develop in this section
can reduce the number effectively.

The high-level idea is that instead of trying to identify the tight constraints, we try to
identify a subset of the redundant constraints. We can optimize excluding these constraints
and still get the optimal solution to the original problem.

Before giving a formal description of the algorithm, we first provide a small motivating
example. Consider the following hypothetical setting. We are given a deterministic continuous
optimization problem with four constraints, each denoted as constraint 1,2,3,4, respectively.
In Phase 1, we generate four training parameters, θi, i ∈ [4], and solve the associated instances
to optimality. The tight constraints (which also defines the optimal strategy as the problem
of interest is continuous) for each instance is τ(θi) = {i}. That is, the optimal strategies of
the training instances are all different, resulting in four distinct target classes. Learning in
this setting is challenging, as the number of distinct target classes is equal to the number of
training instances. Using τ to denote the set of tight constraints found in the training set,
we get τ =

{
{1}, {2}, {3}, {4}

}
.

In the algorithm we propose, we first need to define a partition of the set τ . In this

example, we define the partition as P =

{{
{1}, {2}

}
,
{
{3}, {4}

}}
. For each cell in P, we

compute the union of its elements. The unions are {1, 2} and {3, 4} under the partition we
defined. Then, for the parameters θ1 and θ2, we redefine their prediction targets as {1, 2}.
We can still compute the optimal solutions of the the parameters θ1 and θ2 by imposing
the constraints {1, 2} only. Likewise, for θ3 and θ4, we redefine their prediction targets
as {3, 4}. Once we redefine the prediction targets following this procedure, the number
of distinct prediction targets is reduced to two. A downside might be that given a new
instance, prediction of a trained model now contains two constraints instead of one. This
can undermine the computational efficiency we could have gained by imposing just a single
constraint. The partitioning algorithm we propose is a generalization of this procedure to
two-stage ARO with binary here-and-now variables.

Assume we have N ARO instances and the corresponding optimal strategies (s1, . . . , sN ),
where si = (x∗

i , τy,i), i ∈ [N ]. Let τ = {τy,1, τy,2, . . . , τy,N} be the set of tight constraints in our
training set. Without loss of generality, we assume τ = {τy,1, τy,2, . . . , τy,M}, where τy,i ̸= τy,j
if i ̸= j, and τ is sorted in the order such that if i < j, then τy,i occurred more frequently
than τy,j in the training set (ties are broken arbitrarily). Note that M ≤ N , since the optimal
strategies might overlap. We divide τ into K partitions P = {P1,P2, . . . ,PK} (K ≤M), and
compute the union of the elements in each cell. We use ui to denote the union of the elements
in the cell that τy,i originally belonged to. For the ith instance, we replace its prediction
target with (x∗

i , ui). Algorithm 11 provides a formal description.
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In our implementation in Section 4.6, we define the partition of τ the following way. We
let Pi = {τy,i}, i ∈ [K − 1], and PK = {τy,K , . . . , τy,M}. In other words, we let K − 1 most
frequently occurring tight constraints form their own partitions with a single element. We
combine the rest of the tight constraints to form the Kth cell, resulting in K cells in total.
We denote ū =

⋃
τy,j∈PK

τy,j as the union constraints.
As mentioned above, using the union of the tight constraints can undermine the compu-

tational efficiency that we could have gained by imposing only the exact tight constraints.
Another concern might be that as we are artificially redefining the prediction targets in
the data set, training an accurate prediction model might become challenging. However,
empirically, tight constraints of different instances mostly overlap. Hence, the cardinality of
the union constraints is in general similar to the cardinality of the individual tight constraints.
Furthermore, even after applying Algorithm 11 to the data set, accurate models can be
trained. We demonstrate these points in Section 4.6.

Algorithm 11: Partitioning Algorithm

Output:
{(

θi, (x
∗
i , ui)

)}N

i=1

Input:
{(

θi, (x
∗
i , τy,i)

)}N

i=1

, P = {P1,P2, . . . ,PK}

for Pi ∈ P do
τ̄y,i ←

⋃
τy,j∈Pi

τy,j

end
for i = 1 to N do

for j = 1 to K do
if τy,i ∈ Pj then

ui ← τ̄y,j
break

end
end

end

4.6 Computational Experiments

In this section, we provide the results of the computational experiments on synthetic and
real-world problems. We evaluate the quality of the predicted strategies and also analyze
the relative speed-up of our approach compared with Algorithm 5. We also demonstrate the
effectiveness of Algorithm 9, 10 and 11. In the Appendix B, we offer further insights into the
performance of our approach across a range of scenarios. This includes a report on the offline
computation time of our method, as well as an analysis of its performance under varying
sizes of uncertainty sets, training data, and distributional shifts. Identical to the experiment
in Section 4.2.4, the experiment in this section was executed in Julia 1.4.1 on a MacBook Pro
with 2.6 GHz Intel Core i7 CPU and 16GB of RAM. Likewise, all deterministic optimization
problems involved are solved with Gurobi. The software for OPT is available from [60].
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4.6.1 Problem Description

We describe the synthetic and real-world problems that we test our approach on. We also
provide sample generation details and the uncertainty sets used.

Facility Location We consider the facility location problem introduced in Section 4.3.5.
We use the polyhedral uncertainty set defined as D = {d |

∑
i di ≤ Γ, 4 ≤ di ≤ 6}. The

feature vector is f . For the case with n = 7, we sample f from the ball B(f̄ , 3), where f̄i is
sampled from U(2, 12) and fixed. For all other cases, we sample f from B(f̄ , 1.5), where f̄i
is sampled from U(2, 22) and fixed. We sample pi from U(8, 18) and ci from U(2, 4).

Inventory Control Consider the multi-item inventory control problem, where ordering
decisions can be partially made after the demand is realized. There are n different items to
order, with three different ways to order each item. For each item i, i ∈ [n], we can order a
fixed lot size of li at the unit cost of c1i or order a fixed lot size of li at the unit cost of c2i
before the demand is realized. After we see the demand, we can order any amount yi at the
unit cost of c3i . We must also pay storage and disposal cost of c4 for the remaining stock after
the demand is satisfied. We set c1i , c2i ≤ c3i ≤ c4i to avoid trivial solutions. The here-and-now
binary variables to decide whether we order fixed lot sizes with the cost c1i and c2i before
seeing the demand are denoted x1

i and x2
i , respectively. The wait-and-see variable is yi. The

exact formulation is as follows.

min
y(·),x1,x2

max
d∈D

n∑
i=1

c1i lix
1
i +

n∑
i=1

c2i lix
2
i+

n∑
i=1

c3i yi(d) + c4
n∑

i=1

[lix
1
i + lix

2
i + yi(d)− di]

s.t. lix
1
i + lix

2
i + yi(d)− di ≥ 0, ∀d ∈ D, ∀i ∈ [n],

yi(d) ≥ 0, ∀d ∈ D, ∀i ∈ [n],

x1,x2 ∈ {0, 1}n.

We use the uncertainty set defined as D = {d | ∥d− 50∥1 ≤ Γ}. For the problem with
n = 25, feature vectors are c2 and c3. We sample c2 from B(c̄2, 5), where c̄2i is sampled from
U(40, 60) and fixed. We sample c3 from B(c̄3, 5), where c̄3i is sampled from U(60, 80) and
fixed. For the larger problems, the feature vector is c3. We sample c3 from B(c̄3, 2), where
c̄3i is sampled from U(60, 80) and fixed. We sample li from U(20, 30), c1i from U(40, 60) and
fix c4 = 60.

Unit Commitment We consider the unit commitment problem described in Section
4.2.4. We give the complete formulation of the deterministic version in the Appendix B,
and the data is taken from [37]. This problem is analogous to the facility location problem,
but with more complicated constraints. We use the budget uncertainty set defined as
D = {d |

∑
i

∣∣∣ di−d̄i
0.1×d̄i

∣∣∣ ≤ Γ,
∣∣di − d̄i

∣∣ ≤ 0.1 × d̄i}, where d̄ is the original data. The feature
vector is the coefficient vector b of the production cost function. The parameters are sampled
from the ball with radius 1.5, and the center of the ball is the original data.
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4.6.2 Experimental Design

We conduct two sets of experiments. In the first set of experiments, we generate and
solve ARO instances to near-optimality in Phase 1 using tight tolerances for Algorithm 5
and 6. Then, we use XGBOOST [40] for the classification approach in Algorithm 7, and
compare its performance with OPT (Algorithm 8). There are two main reasons behind this
experimental design. First, we aim to demonstrate the effectiveness of our approach regardless
of the machine learning method used. Second, we aim to evaluate the trade-off between
interpretability and prediction accuracy. XGBOOST is known for its high performance on
various prediction tasks but lacks interpretability compared to OPT. In contrast, OPT is
highly interpretable due to its simple decision tree structure but may have weaker prediction
accuracy compared to XGBOOST. By comparing these two methods, we aim to analyze the
cost we have to pay to gain interpretability. We also analyze the effectiveness of Algorithm 11
and the generalization described in Section 4.3.6. We provide the results in Section 4.6.3,4.6.4
and 4.6.5.

In the second set of experiments, we generate suboptimal strategies in Phase 1 to solve
large scale unit commitment problems. As shown in Section 4.2.4, solving such problems can
be computationally challenging. As a result, generating a training set in Phase 1 can be a
significant computational burden. To overcome this issue, we use more relaxed tolerances for
Algorithm 5 and 6 to terminate earlier. In Section 4.6.6, we demonstrate that Algorithm 8
can still find high quality solutions for large scale unit commitment problems. In Section
4.6.7, we demonstrate the effectiveness of Algorithm 9 and 10 to further expedite training set
generation.

Furthermore, [24], [25] propose using multiple predictions of the trained model in Phase
3. Classification algorithms generate a likelihood vector where each entry represents the
likelihood of a particular label being the true label for a data point. Hence, multiple most
promising predictions can be identified using this vector. Similarly, OPT can output multiple
best strategies [28]. We can evaluate all of these predictions in parallel by computing their
infeasibilities and suboptimalities to choose the best one. The drawback of this approach is
that the evaluation process requires additional computation in Phase 3. For both experiments,
we use multiple predictions of OPT, only if using just a single prediction does not result
in perfect accuracy. In this case, we provide separate tables to analyze the performance
improvement and the additional computational burden. We use k to denote the number of
predictions we use in Phase 3.

4.6.3 Solving ARO with Near-Optimal Strategies

In this section, we generate and solve ARO instances to near-optimality in Phase 1. Through-
out the entire experiment, we set ϵ1 = 0.001 and ϵ2 = 0.001 for Algorithm 5 and 6, respectively.
The optimality gap of Gurobi is fixed at its default value of 0.0001. When using OPT, we use
the entire set of strategies found to ensure a fair comparison with XGBoost. In other words,
we set Q1 = |Sx|, Q2 = |Sd| and Q3 = |Sy|. For both XGBoost and OPT, we minimize the
hyperparameter tuning process and grid search over the maximum depths 5 and 10.

Table 4.1, 4.2, 4.3 contain the experiment results on the facility location, the inventory
control and the unit commitment problem, respectively. For the experiments reported in
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Target n m Γ Learner Accuracy Infeasibility submax |S| N tratio

sx
7 7 38 OPT

1.00 0 0.0070 2 20000 1666
sd 1.00 0 0.0000 4 20000 1538
sy 0.93 0 0.0070 23 20000 34
sx

7 7 38 XGB
1.00 0 0.0000 2 20000 34

sd 1.00 0 0.0000 4 20000 32
sy 0.97 0 0.0010 23 20000 17
sx

80 60 241 OPT
0.99 0 0.0004 10 20000 33333

sd 0.99 0 0.0004 10 20000 36363
sy 0.98 0 0.0004 22 20000 21
sx

80 60 241 XGB
1.00 0 0.0000 10 20000 276

sd 0.99 0 0.0004 10 20000 278
sy 0.95 0 0.0004 22 20000 21
sx

200 150 601 OPT
1.00 0 0.0002 10 25000 3.75× 105

sd 0.99 0 0.0002 10 25000 4.06× 105

sy 0.99 0 0.0002 10 25000 37
sx

200 150 601 XGB
1.00 0 0.0002 10 25000 1036

sd 0.98 0 0.0002 10 25000 880
sy 0.97 0 0.0002 10 25000 35
sx

200 150 751 OPT
1.00 0 0.0000 42 25000 3.09× 106

sd 1.00 0 0.0000 42 25000 3.37× 106

sy 1.00 0 0.0000 42 25000 186
sx

200 150 751 XGB
0.99 0 0.0020 42 25000 9568

sd 0.99 0 0.0020 42 25000 12783
sy 0.99 0 0.0020 42 25000 183

Table 4.1: Numerical results for the facility location problem with k = 1.

these tables, we only use a single prediction in Phase 3 (k = 1). Table 4.4, 4.5, 4.6 contain
the experiment results using multiple predictions of OPT in Phase 3 (k ≥ 1). As mentioned
above, we experiment with k ≥ 1 only if the prediction accuracy with k = 1 is not perfect.
We report how the performance changes as we increase k.

Table Notations Total N ARO instances are generated, which are randomly split into the
training set (70%) and the test set (30%). Columns n and m contain the parameters that
define the problem size and column Γ contains the parameter that determines the size of the
uncertainty sets. In the Accuracy column, we report the percentage of accurate predictions
on the test set, rounded up to the second decimal place. For all three prediction targets, we
consider a prediction accurate if it is feasible and the suboptimality is smaller than 0.0001.
In the Infeasibility column, we report the percentage of infeasible predictions on the test
set. We report the maximum suboptimality among the feasible predictions in the column
submax. In the |S| column, we report the number of distinct strategies found in the training
set. In case we used Algorithm 11 to reduce this number, we report the number we get by
applying Algorithm 11, not the original number. We provide the original number of strategies
and further analysis of Algorithm 11 in Section 4.6.4. In the tratio column, we report the
computation time it takes to obtain the solution from scratch using Algorithm 5, divided by
the computation time of our approach. It is rounded up to the nearest integer.
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Target n Γ Learner Accuracy Infeasibility submax |S| N tratio

sx
25 10 OPT

1.00 0 0.0004 12 40000 1220
sd 1.00 0 0.0004 28 40000 1126
sy 0.99 0 0.0004 30 40000 38
sx

25 10 XGB
1.00 0 0.0000 12 40000 13

sd 1.00 0 0.0000 28 40000 14
sy 0.99 0 0.0004 30 40000 8
sx

600 10 OPT
1.00 0 0.0000 17 60000 17241

sd 1.00 0 0.0000 30 60000 14589
sy 1.00 0 0.0000 48 60000 78
sx

600 10 XGB
1.00 0 0.0000 17 60000 21

sd 1.00 0 0.0000 30 60000 22
sy 1.00 0 0.0000 48 60000 14
sx

1000 10 OPT
1.00 0 0.0000 9 60000 12838

sd 1.00 0 0.0000 27 60000 11851
sy 1.00 0 0.0000 11 60000 84
sx

1000 10 XGB
1.00 0 0.0000 9 60000 13

sd 0.99 0 0.0000 27 60000 13
sy 1.00 0 0.0000 11 60000 13
sx

1000 45 OPT
1.00 0 0.0000 7 60000 25480

sd 1.00 0 0.0000 30 60000 23520
sy 1.00 0 0.0000 7 60000 94
sx

1000 45 XGB
1.00 0 0.0000 7 60000 21

sd 1.00 0 0.0000 30 60000 24
sy 1.00 0 0.0000 7 25000 17

Table 4.2: Numerical results for the inventory control problem with k = 1.

Target n m Γ Learner Accuracy Infeasibility submax |S| N tratio

sx
10 24 0.1 OPT

0.97 0 0.0010 17 20000 88137
sd 0.97 0 0.0010 24 20000 1.30× 105

sy 0.96 0 0.0010 32 20000 119
sx

10 24 0.1 XGB
1.00 0 0.0000 17 20000 5137

sd 0.98 0 0.0040 24 20000 6445
sy 0.93 0 0.0040 32 20000 277
sx

10 24 2 OPT
1.00 0 0.0000 9 15000 93318

sd 1.00 0 0.0000 9 15000 87228
sy 1.00 0 0.0000 9 15000 296
sx

10 24 2 XGB
1.00 0 0.0004 9 15000 5300

sd 1.00 0 0.0000 9 15000 6389
sy 1.00 0 0.0000 9 15000 293

Table 4.3: Numerical results for the unit commitment problem with k = 1.
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Target k n m Γ Accuracy Infeasibility submax |S| N tratio

sy

1
7 7 38

0.93 0 0.0070
23 20000

34
5 0.95 0 0.0070 6
10 1.00 0 0.0000 6

sx

1
80 60 241

0.99 0 0.0004
10 20000

33333
5 1.00 0 0.0002 10
10 1.00 0 0.0000 10

sd

1
80 60 241

0.99 0 0.0004
10 20000

36363
5 1.00 0 0.0000 10
10 1.00 0 0.0000 10

sy

1
80 60 241

0.98 0 0.0004
22 20000

21
5 1.00 0 0.0000 7
10 1.00 0 0.0000 7

sx

1
200 150 601

1.00 0 0.0002
10 25000

3.75× 105

5 1.00 0 0.0000 8
10 1.00 0 0.0000 8

sd

1
200 150 601

0.99 0 0.0002
10 25000

4.06× 105

5 1.00 0 0.0000 8
10 1.00 0 0.0000 8

sy

1
200 150 601

0.99 0 0.0002
10 25000

37
5 1.00 0 0.0000 7
10 1.00 0 0.0000 7

Table 4.4: Numerical results for the facility location problem with k ≥ 1 using OPT.

Target k n Γ Accuracy Infeasibility submax |S| N tratio

sx

1
25 10

1.00 0 0.0004
12 40000

1220
5 1.00 0 0.0000 7
10 1.00 0 0.0000 7

sd

1
25 10

1.00 0 0.0004
28 40000

1126
5 1.00 0 0.0000 7
10 1.00 0 0.0000 7

sy

1
25 10

0.99 0 0.0004
30 40000

38
5 0.99 0 0.0002 7
10 0.99 0 0.0002 7

Table 4.5: Numerical results for the inventory control problem with k ≥ 1 using OPT.

Target k n m Γ Accuracy Infeasibility submax |S| N tratio

sx

1
10 24 0.1

0.97 0 0.0010
17

20000 88137
5 0.98 0 0.0004 20000 27
10 1.00 0 0.0002 20000 27

sd

1
10 24 0.1

0.97 0 0.0010
24

20000 1.30× 105

5 0.98 0 0.0004 20000 25
10 0.99 0 0.0002 25000 25

sy

1
10 24 0.1

0.96 0 0.0010
32

20000 119
5 0.98 0 0.0004 20000 5
10 0.99 0 0.0002 25000 5

Table 4.6: Numerical results for the unit commitment problem with k ≥ 1 using OPT.
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Results

• Both OPT and XGBoost consistently demonstrate excellent accuracy, never falling
below 0.93 and often reaching 0.99 or 1.00. This performance holds true regardless
of the problem size or the size of the uncertainty sets. Even when the solutions are
not exactly accurate, the maximum suboptimalities remain exceptionally low, at most
0.001. This indicates the high quality of the solutions.

• The predictions are never infeasible for both OPT and XGBoost.

• In general, the prediction accuracy for the here-and-now decisions is the highest, followed
by the worst-case scenarios and the wait-and-see decisions.

• The solve times using OPT and XGBoost are significantly faster than Algorithm 5, at
times reaching up to 3.37 million times faster. Additionally, OPT tends to outperform
XGBoost in terms of speed. This is primarily because the time required for a decision
tree to compute its predictions is typically less than a millisecond, whereas XGBoost
generally takes slightly longer.

• The speed-up of our approach to compute the wait-and-see decisions is less drastic
compared to here-and-now decisions or worst-case scenarios, typically ranging from
tens to hundreds of times faster. To compute a here-and-now decision or a worst-case
scenario, the only computation needed is to determine the output of the trained model
on an input. In order to compute a wait-and-see decision, however, we still need to
solve a linear optimization problem, leading to longer computation time.

• OPT and XGBoost show very similar performance in general. This implies that we
often do not have to compromise performance too much to gain interpretability.

• As we increase k, the quality of the solutions improves monotonically. At the same
time, the relative speed-up of our approach decreases due to the evaluation process
required to choose the best strategy.

4.6.4 Analysis of Algorithm 11

In this section, we demonstrate the effectiveness of Algorithm 11. We apply Algorithm 11
in the previously described experiment, in case the number of distinct strategies for the
wait-and-see decisions is extremely large. Tables 4.7, 4.8, 4.9 contain the numerical results on
the facility location, the inventory control and the unit commitment problem, respectively.

Table Notations We use |τ | to denote the number of distinct tight constraints found in
the training set, before applying Algorithm 11. As before, K denotes the number it is reduced
to. We also report how many more constraints the union constraints contain compared to
individual tight constraints, denoted as |ū| − |τy|. Other columns are given to specify which
problem Algorithm 11 is applied to.
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n m Γ |τ | K |ū| − |τy|

7 7 38 22 1 9
80 60 241 65 13 9
200 150 751 17498 1 148
200 150 601 115 1 12

Table 4.7: Numerical results of Algorithm
11 applied to the facility location problem.

n Γ |τ | K |ū| − |τy|

25 10 47 7 9
600 10 90 13 13
1000 10 48 5 8
1000 45 5550 1 24

Table 4.8: Numerical results of Algorithm
11 applied to the inventory control prob-
lem.

n m Γ |τ | K |ū| − |τy|

10 24 0.1 1492 30 430
10 24 2 10482 1 446

Table 4.9: Numerical results of Algorithm 11 applied to the unit commitment problem.

Results

• When the number of distinct tight constraints found in the training instances is
excessively large, we can combine the entire tight constraints into a single union
constraints. In other words, the value of K is set to 1. See Table 4.7, for example. In
the facility location problem with n = 200,m = 150,Γ = 751, the entire set of 17498
tight constraints are combined to a single union constraints. Nevertheless, the increase
in the number of constraints is relatively small, regarding that the total number of
constraints in the deterministic version of this problem is 30350. This result applies
similarly to other examples with K = 1 as well. Therefore, Algorithm 11 may not add
too much additional computational burden even in extreme cases.

• We have shown in Section 4.6.3 that the prediction accuracy for the wait-and-see
decisions is very high, even after we apply Algorithm 11 to the training instances. This
result holds true regardless of the value of K. This implies that even after reassigning
the prediction targets of the training data, accurate machine learning models can still
be trained.

4.6.5 Solving ARO with Varying Dimensions

We evaluate the performance of the generalized approach discussed in Section 4.3.6 for
problems with varying dimensions. We conduct two experiments on the inventory control
problem with n = 25 and Γ = 10.

In the first experiment, we randomly generate five distinct contingencies, each removing a
certain portion of the here-and-now decision variables. These contingencies simulate situations
where specific ordering options are no longer available.

In the second experiment, we randomly generate five different contingencies, each removing
certain non-negativity constraints on the wait-and-see variables. These contingencies simulate
situations where certain orders can be canceled without incurring additional costs.
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Target k Accuracy Infeasibility submax |S|

sx

1 0.99 0 0.0005
195 1.00 0 0.0000

10 1.00 0 0.0000

sd

1 0.98 0 0.0005
655 0.99 0 0.0005

10 1.00 0 0.0003

sy

1 0.99 0 0.0005
195 1.00 0 0.0000

10 1.00 0 0.0000

Table 4.10: Numerical results for the inventory control problem with varying number of
decision variables.

Target k Accuracy Infeasibility submax |S|

sx

1 0.99 0 0.0004
195 1.00 0 0.0000

10 1.00 0 0.0000

sd

1 0.99 0 0.0004
615 0.99 0 0.0004

10 1.00 0 0.0004

sy

1 0.99 0 0.0004
195 1.00 0 0.0000

10 1.00 0 0.0000

Table 4.11: Numerical results for the inventory control problem with varying number of
constraints.

Other experimental setups are identical to the descriptions in Section 4.6.1 and 4.6.3. For
both experiments, we use a single categorical feature to encode the type of contingency. This
results in five distinct categorical values, each corresponding to a specific type of contingency.
Moreover, the number of strategies for the wait-and-see variables in these experiments is
substantially higher compared to the previous experiment on the same inventory control
problem: 90 and 102 for the two experiments, respectively. Therefore, we use Algorithm 11
with K = 1 in this section. The main results are presented in Tables 4.10 and 4.11.

Results

• The number of unique strategies identified in the training set is larger compared to the
previous experiment (refer to Table 4.2 for comparison). While the number of strategies
for the wait-and-see variables might seem smaller, this is due to the use of Algorithm
11, as mentioned earlier. This increased diversity results from the existence of multiple
contingencies.

• Our approach continues to achieve near-perfect performance, demonstrating its effec-
tiveness for problems with varying contingencies.
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Target k Γ Accuracy Infeasibility submax |S| N tratio

sx

1
2

0.18 0 0.0205
3341 10000

8.49× 107

5 0.18 0 0.0205 10
10 0.18 0 0.0205 10

sd

1
2

0.18 0 0.0205
3341 10000

7.07× 107

5 0.18 0 0.0205 10
10 0.18 0 0.0205 10

sy

1
2

0.18 0 0.0205
3341 10000

4871
5 0.18 0 0.0205 10
10 0.18 0 0.0205 10

Table 4.12: Numerical results for the unit commitment problem with n = 100,m = 24, k ≥ 1
using OPT.

4.6.6 Solving ARO with Suboptimal Strategies

In this section, we apply Algorithm 8 to solve large scale unit commitment problems using
suboptimal strategies. The size of the unit commitment problem we consider is n = 100 and
m = 24, which is much larger than the scale we considered in Section 4.6.3. Throughout
the experiment, we set the optimality gap of Gurobi to 0.005. When generating a training
set in Phase 1 by solving ARO instances, we set ϵ1 = 0.05 and ϵ2 = 0.01 for Algorithm 5
and Algorithm 6, respectively. When computing suboptimalities to generate reward matrices
and choose the best among k > 1 predictions, we set ϵ2 = 0.001. When evaluating the final
output of the decision trees to assess the ultimate effectiveness of our approach on the test
set, we set ϵ1 = 0.001, ϵ2 = 0.001, for precise assessment. Moreover, the number of unique
strategies in the training set is prohibitively large in this experiment, as we will demonstrate
below. Therefore, we set Q1 = Q2 = Q3 = 40. We perform a grid search over the maximum
depths 5 and 10 for OPT. Table 4.12 contains the main experiment results. The notations
are identical to the previous sections.

Results

• The accuracies are much lower compared to the previous results. However, the maximum
suboptimalities are still around 0.02, indicating that the predictions are of reasonable
quality. As in Section 4.6.3, the predictions are always feasible.

• When k = 1, the solve time using OPT can be more than 10 million times faster than
Algorithm 5 . This scale of speed-up is much more drastic than the previous results.
However, as k increases, the relative speed-up becomes similar to the previous results.

• The accuracies and maximum suboptimalities are identical across different prediction
targets, and the performances do not improve as we increase k.

• Overall, even if we use only 40 out of 3341 strategies found, Algorithm 8 can find
high-quality solutions.
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Algorithm N
′

Proportion submax tratio

Algorithm 9 1000 0.22 0.0000 2.89
Algorithm 10 0.0001 7.56
Algorithm 9 2000 0.51 0.0000 3.25
Algorithm 10 0.0001 8.95
Algorithm 9 3000 0.71 0.0000 3.45
Algorithm 10 0.0000 9.19
Algorithm 9 4000 0.88 0.0000 4.28
Algorithm 10 0.0000 11.72

Table 4.13: Numerical results of Algorithm 9 and 10 applied to the unit commitment problem.

4.6.7 Analysis of Algorithm 9 and 10

In this section, we assess the effectiveness of Algorithms 9 and 10 using the unit commitment
problem with n = 100 and m = 24. We implement I1, I2, and I3 as feedforward neural
networks with two hidden layers, each consisting of 32 neurons. These models are trained
using the Adam optimizer [65] with a learning rate of 0.001, implemented in PyTorch [86].
We set ϵ1 = 0.05 and ϵ2 = 0.01 for all algorithms. We compare the solution outputs and the
runtime of Algorithm 5 with those of Algorithm 9 and 10 on 200 test instances. Consistent
with our previous implementation, we use a random x0 for Algorithm 5 and three random
initial points for Algorithm 6. We vary the size of the training data for the intermediate
models I1, I2, and I3 to observe any performance changes. We use relatively smaller training
data compared to Algorithms 7 and 8 to demonstrate the effectiveness of Algorithms 9 and
10 even with a limited dataset. We report the experiment results in Table 4.13.

Table Notations In the columns Algorithm and N ′, we report the type of acceleration
algorithm used (Algorithms 9 or 10) and the number of training samples for I1, I2, and
I3, respectively. In the Proportion column, we report the proportion of binary variables in
the test set that are fixed or warm-started using the p values decided in the validation set
(recall that p is the threshold value for the probability output of I1 to decide which entries
of the output will be used). In the tratio column, we report the relative speed-up compared
to Algorithm 5, rounded to the second decimal place. In the submax column, we report
the maximum suboptimality of the solution output compared with the solution output of
Algorithm 5. Note that unlike the experiments in Section 4.6.3, the relative speed-up and the
suboptimality are computed with respect to Algorithm 5 and 6 with ϵ1 = 0.05 and ϵ2 = 0.01,
not the near-optimal version with very tight tolerances.

Results

• As expected, Algorithm 10 outperforms both Algorithm 9 and 5 in terms of speed.
Specifically, with just 4000 training data, Algorithm 10 achieves more than a 10-fold
speedup compared to Algorithm 5, while Algorithm 9 achieves more than a 4-fold
speedup.

• The maximum suboptimality of the solutions is practically negligible across all training

89



data sizes. This indicates that the solutions generated by Algorithm 9 and 10 are
virtually identical to those generated by Algorithm 5.

• As the number of training data increases, the proportion of variables that can be
fixed or warm-started also increases, indicating an improvement in the accuracy of
I1. For N

′
= 4000, approximately 88% of the binary variables can already be fixed or

warm-started on average. Naturally, as this proportion increases, the solution speed of
Algorithm 9 and 10 also improves.

4.7 Conclusions

Despite the theoretical advantages of ARO compared to RO, existing solution algorithms
generally suffer from heavy computational burden. We proposed a machine learning approach
to solve two-stage ARO with polyhedral uncertainty sets and binary here-and-now variables.
We generate multiple ARO instances by varying a key parameter of the problem, and solve
them with Algorithm 5. Using the parameters as features, we train a machine learning model
to predict high-quality strategies for the here-and-now decisions, the worst-case scenarios
associated with the here-and-now decisions, and the wait-and-see decisions. We also proposed
learning-based algorithms to expedite training data generation, and a partitioning algorithm
to reduce the number of distinct target classes to make the prediction task easier. Numerical
experiments on synthetic and real-world problems show that our approach can find high
quality solutions of ARO problems significantly faster than the state-of-the-art algorithms.
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Chapter 5

A Prescriptive Machine Learning
Approach to Mixed-Integer Convex
Optimization

5.1 Introduction

We propose a novel prescriptive machine learning approach to speed up the process of solving
mixed integer convex optimization (MICO) problems. MICO comprises those optimization
problems where the objective and constraint functions are convex in the decision variables,
and part of the decision variables are constrained to take integer values. Due to its expressive
power, MICO is used in numerous important domains, including auction theory [71], power
systems [37], hybrid vehicle control [107] and more [26], [84]. Even so, MICO remains a
difficult class of problems to be solved, and solving a large dimensional MICO problem is a
computationally demanding task.

Recently, there has been significant interest in the research community in solving chal-
lenging optimization problems using machine learning. [2], [63] propose learning efficient
branching rules for solving mixed integer optimization problems. [12], [59] use machine
learning to automatically tune hyperparameters in optimization algorithms. [39] propose
a specialized method to solve MICO problems with logical constraints using neural net-
works, inspired by robotics problems. On the more theoretical side, [11] analyze the sample
complexity of learning which cutting planes to use during the branch-and-cut algorithm of
integer optimization solvers. [9], [13] analyze the sample complexity of learning high-quality
hyperparameters in optimization algorithms. For a more comprehensive overview on the
topic, we refer readers to [18], [73].

Our work builds upon the approach proposed by [24], [25] to solve MICO problems using
machine learning. Their idea is to train a classification model that predicts an optimal
strategy of an optimization problem by solving multiple similar optimization instances off-line.
In the case of MICO problems with binary and continuous variables, the optimal strategy is
defined as the set of tight constraints and the set of binary variables that are equal to one.
By leveraging the predictions of this model, the process of solving a MICO problem gets
considerably simpler compared to solving it from scratch.
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However, previous works have given less emphasis on selecting the appropriate machine
learning algorithm to achieve better performance. Although the use of Optimal Classification
Trees (OCT) [20], [21] in [24] is a crucial part of their work, their focus is interpretability rather
than performance. We extend the approach of [24], [25], but propose using a prescriptive
instead of a predictive machine learning method.

Predictive machine learning methods aim to learn a model that predicts the ground-truth
target given a covariate vector. In this setting, each data point consists of a covariate vector
and a corresponding ground-truth target. Most standard supervised learning tasks fall into
this category, including classification and regression tasks.

On the other hand, prescriptive machine learning methods aim to learn a policy that
assigns a decision to a covariate vector in order to optimize certain outcome [58]. In a
prescriptive task, each data point consists of a covariate vector, a decision applied to this
point and a corresponding outcome. Unlike predictive machine learning tasks, there is
often no notion of a ground-truth target in prescriptive tasks. Application areas include
personalized medicine [113], revenue management [33] and hiring decisions [87] among many
others. One of the main challenges in prescriptive machine learning that distinguishes it from
predictive machine learning is that we often do not know the counterfactuals of applying
different decision options. This means that historical data is the only source of information,
and the goal is to learn the best policy possible from that data.

In the previous approaches to solve optimization using machine learning, predictive
algorithms are mainly used. [24] use OCT, a near globally optimal classification tree. They
show that OCT outputs high quality solutions, even comparable to black box models like
deep neural networks. We propose using a prescriptive algorithm instead and demonstrate
that the ground-truth counterfactuals can be calculated. The prescriptive algorithm we use
is Optimal Policy Trees (OPT) [3], which is also based upon the optimal-tree framework.
Given a data set where each data point is composed of a covariate vector, a decision applied
and a corresponding outcome, OPT learns a decision tree that maps a covariate vector to
the best decision. We also propose an extension of the approach that further improves the
quality of the predicted strategy.

The high-level idea of our approach is to first generate a collection of instances of a MICO
problem and find an optimal strategy for every instance. Then, on every instance, we apply all
the strategies we generated to evaluate the associated objective cost and assess feasibility. In
this way, we can evaluate the strength of each strategy from a cost and feasibility perspective.
Based on this evaluation, we train a decision tree that assigns the best strategy to a MICO
instance so that the associated objective cost is minimized.

We do not focus on the relative speed-up of our method compared to commercial off-the-
shelf solvers such as Gurobi [56]. The way we speed up the solve process of a MICO problem
is identical to the previous works by [24], [25], which is by using the strategy output by a
machine learning model. Extensive results on how much this approach can speed up the solve
process of MICO problems compared to Gurobi are available in these works. Rather, we
focus on comparing the quality of the strategies output by our approach versus the previous
approach.

The contributions of the paper are the following. First, we propose a novel approach to
use a prescriptive algorithm, OPT, instead of classification algorithms to speed up the process
of solving MICO problems. By using a prescriptive algorithm to a potential classification
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task, we can take into account the evaluations of all the available strategies for each data
point. Second, we propose an extension of the pure OPT approach, which further improves
on the suboptimality of the solutions. Finally, we demonstrate empirically that OPT-based
methods are much more likely to produce feasible solutions than OCT, and the advantage
of OPT-based methods increases as the number of distinct strategies grows. Thus, the
proposed approach makes OPT-based methods more appropriate than the previous approach
for various real-world scenarios in which avoiding infeasible solutions is crucial, while a slight
suboptimality is acceptable.

The structure of the paper is as follows. In Section 2, we briefly review previous works that
lay the foundation of our approach. We first review OPT, an optimal-tree based algorithm
to assign the best decision to a data point using historical data. Second, we briefly review
OCT, an optimal-tree based classification algorithm. Then, we review [24], [25], a machine
learning approach to solve MICO problems. In Section 3, we present the approach to use a
prescriptive algorithm, OPT(k), to speed up the process of solving MICO problems. We also
present an extension of this approach that improves on the suboptimality of the solution. In
Section 4, we present the results of computational experiments on synthetic data. The class
of problems we consider include linear optimization (LO), mixed integer linear optimization
(MILO), quadratic optimization (QO) and mixed integer quadratic optimization (MIQO). In
Section 5, we present the results of computational experiments on real-world MILO problems
taken from MIPLIB [53].

5.2 Foundations

In this section, we review previous works that serve as the basis of our approach. We review
OPT[3] and OCT [20], [21]. Then, we review [24], [25], a machine learning approach to
MICO.

5.2.1 Optimal Policy Trees

OPT is an optimal-tree based prescriptive method to learn a decision tree that assigns a
decision to a data point, either to maximize or minimize certain outcome. It separates
counterfactual estimation and policy learning, and utilizes near globally-optimal trees.

The OPT algorithm requires a training set {(θi, si, yi)}i∈[N ] consisting of N data points,
where θi represents the covariate vector, si represents the decision applied and yi represents
the outcome related to point i. Let S = {s1, . . . , sp} (p ≤ N) be the set of decision options
we have. Without loss of generality, we assume si ̸= sj if i ̸= j.

In OPT, we first estimate the outcome for each point i when decision s ∈ S is applied. As
the counterfactuals are usually unknown, we use causal inference methods, for example the
doubly robust algorithm [81]. The goal is to build what we call the reward matrix R ∈ RN×p,
where each entry Ri,j is the estimated outcome of applying decision sj ∈ S to point i.

Using the reward matrix, OPT learns a decision tree T that assigns θi to a leaf of the
tree and selects which decision to assign to each leaf. The optimization problem that we
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Table 5.1: First five rows of the reward matrix for the synthetic adverstisement assignment
problem.

Ad1 Ad2

1 409.407 1121.5
2 716.539 774.948
3 1019.76 351.229
4 652.254 726.154
5 391.693 1032.29

solve to learn T is the following.

min
v(·),s

N∑
i=1

∑
ℓ

1{v(θi) = ℓ}·Ri,sℓ , (5.1)

where v(θi) is the leaf of the tree θi is assigned to, sℓ is the decision assigned to the points
in leaf ℓ and Ri,sℓ is the estimated outcome for point i under the decision sℓ. For a more
detailed discussion on optimization methods for the optimal-tree framework, see [20], [21],
[38].

Given the policy tree T and a new data point, we traverse the policy tree according to its
features until we reach a leaf node. At the leaf node, we have assigned the optimal decision
based on the learned policy, which is then assigned to the new data point.

A generalization of OPT outputs a collection of k ≥ 1 decisions that are most likely to
be optimal [60]. Given a data point, we find the leaf of the tree containing this point and
then calculate the average outcome in this leaf under each decision. Then, we find k best
decisions, using the calculated outcomes. Note that the first best decision among the k best
decisions is simply the decision that this leaf is assigned to in T . Hence, setting k = 1 makes
this equivalent to OPT. We denote this generalization as OPT(k).

To illustrate OPT, we present an example using synthetic data. We generated customer
data composed of age, average monthly spending, the advertisement type exposed to each
customer in the last month and the resulting revenue in the last month. Here, age and
average monthly spending are the covariates, the advertisement type in the last month is the
historical decision and the revenue in the last month is the historical outcome. Our goal is to
use this historical data to assign an advertisement to the customers in order to maximize
revenue in the next month.

We generate the data set in a manner so that Advertisement 1 is better suited for people
who are older or spend less and Advertisement 2 is better suited for younger people or
people who spend more. We generate 1000 training samples. Ages are integers uniformly
sampled from 10 to 60. Spendings are uniformly sampled from 100 to 1100. Advertisement
is randomly assigned to each customer. If the assigned advertisement is Advertisement 1,
the historical outcome is computed as (age× 5) + (1100− spending) + ϵ, where ϵ ∼ N (0, 50).
If the assigned advertisement is Advertisement 2, the historical outcome is computed as
((60− age)× 5) + spending + ϵ, where ϵ ∼ N (0, 50).

First, the reward matrix is estimated using the doubly-robust estimation. The resulting

94



Figure 5.1: Decision tree obtained by OPT for the synthetic advertisement assignment
problem.

reward matrix is given in Table 5.1. Column names “Ad1" and “Ad2" are the advertisement
options. The (i, j)th entry, i ∈ [10], j ∈ [2] is the (estimated) outcome when applying
advertisement j to data point i. The trained tree is provided in Figure 5.1. We can see that
OPT assigns an optimal advertisement according to a customer’s age and spending.

5.2.2 Optimal Classification Trees

OCT is an optimal-tree based classification algorithm [20], [60]. Classification and regression
trees (CART) [34] use greedy algorithm to train decision trees. In contrast, OCT aims to
find a near globally optimal decision tree for classification tasks. OCT-H is a generalization
of OCT, which allows hyperplane splits instead using a single variable for splits. OCT shows
lower classification error compared to CART. It is also more interpretable as the resulting
tree is less complex than the tree produced by CART [20], [21].

Just like OPT, OCT can output a collection of k ≥ 1 predictions given a new data point.
OCT can output a vector where the ith entry of this vector represents the likelihood that
the ith class is the true class for this data point. Using this vector, we can identify multiple
most likely predictions. We denote this generalization of OCT as OCT(k), where OCT(1) is
equivalent to OCT.

5.2.3 A Machine Learning Approach to MICO

We review a machine learning approach to MICO proposed in [24], [25]. This approach stems
from the idea that, in practice, similar optimization problems are solved repeatedly with only
a slight variation in key parameters.
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We consider the following optimization problem.

min f(x,θ) (5.2)
s.t. g1(x,θ) ≤ 0,

...
gm(x,θ) ≤ 0,

xI ∈ {0, 1}d,

where x ∈ Rn is the vector of decision variables and θ ∈ Rℓ is the vector of key parameters
that will be used as covariates. The set of indices for the decision variables constrained
to take binary values is denoted I, where |I| = d. Functions f : Rn × Rℓ 7→ R and
gj : Rn × Rℓ 7→ R, j ∈ [m], are assumed to be convex in x.

The method consists of three phases. In Phase 1, we first generate N parameters {θi}i∈[N ].
For each θi, we solve problem (5.2) after fixing θ = θi. Convexity of f and g is important
in this phase, as we have to solve problem (5.2) to optimality which is in general harder for
nonconvex problems.

After solving the instance associated with θi and acquiring an optimal solution x∗(θi),
we extract the optimal strategy associated with the solution, denoted as s(θi). In order
to define the optimal strategy, we first define the tight constraints as τ(θi) = {j ∈ [m] |
gj(x

∗(θi),θi) = 0}. If I = ∅, the optimal strategy consists of the tight constraints, that is,
s(θi) = τ(θi). If I ̸= ∅, the optimal strategy consists of which variables are equal to one
as well as the tight constraints. In other words, s(θi) = (x∗

I(θi), τ(θi)) Solving an instance
becomes considerably simpler once we know its optimal strategy. For general MICO problems,
we can fix the integer variables to the values specified in the optimal strategy and impose
only the tight constraints. Then, we solve the resulting continuous optimization problem.
For MIQO problems, this procedure can be even simpler, which can be reduced to solving a
linear system based on Karush-Kuhn-Tucker (KKT) optimality conditions [25]. Hence, the
optimal strategies are the classes we will try to predict in Phase 3.

In Phase 2, we train a classification model that maps the generated parameters to the
optimal strategies of associated MICO instances. The training data is

{(
θi, s(θi)

)}
i∈[N ]

,

where θi is a covariate vector and s(θi) its corresponding target.
In Phase 3, given a new parameter θ0, we predict a strategy ŝ(θ0) using the classification

model trained in Phase 2. Then we apply ŝ(θ0) to the instance associated with θ0 to compute
a solution x̂(θ0).

To evaluate the quality of the predictions in the numerical experiments, the suboptimality
of the strategy ŝ(θ0) is defined as

sub
(
ŝ(θ0)

)
=

(
f
(
x̂(θ0),θ0

)
− f

(
x∗(θ0),θ0

))
/
∣∣∣f(x∗(θ0),θ0

)∣∣∣,
if x̂(θ0) is feasible.

[24] compare the performance of OCT, OCT-H, and neural networks under this framework.
They found that both OCT and OCT-H are highly accurate, comparable to neural networks.
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While neural networks are known for their accuracy in many domains, they are often considered
as black-box algorithms lacking interpretability. In contrast, OCT has a simple tree structure
that is by design interpretable, allowing users to understand how the algorithm made its
decision. This result suggests that the interpretability of OCT can be leveraged without
sacrificing accuracy. Furthermore, the study demonstrates that the solve time using this
approach can be up to three orders of magnitude faster than Gurobi.

Just as OCT, classification algorithms such as neural network output a vector where the
ith entry of this vector represents the likelihood that the ith label is the true label. Given
a new parameter θ0, we identify the k most likely optimal strategies using this vector. We
then evaluate the objective cost and the infeasibility associated with each strategy to choose
the best one. [25] demonstrate in detail that increasing k results in significantly better
performance, even when the number of distinct strategies in the training set is very large.

5.3 A Prescriptive Machine Learning Approach to MICO

This section outlines our novel approach for solving MICO problems using OPT(k). First,
we introduce the theoretical motivation of the approach and present the algorithm in detail.
Then, we provide an example to illustrate its application to the facility location problem.
To address one of the key weaknesses of the approach, we introduce an extension to the
algorithm as well.

5.3.1 Learning Objective: The Edge of Prescriptive over Predictive
Machine Learning

We introduce an abstract learning objective that formalizes our approach. We assume that a
key parameter θ belongs to a set Θ and is drawn from a fixed distribution Pr(Θ) over Θ. We
assume that an optimal strategy belongs to a set S. A policy h : Θ 7→ S, which belongs to a
hypothesis space H, is a mapping from a key parameter to a strategy. Let v : Θ× S 7→ R be
the objective cost that we get by applying a strategy to the optimization instance associated
with a parameter. Our ultimate learning objective can be expressed as

min
h∈H

Eθ∼Pr(Θ)

[
v(θ, h(θ))

]
.

Notice that OPT(k) optimizes an empirical version of this objective, where H is the space of
decision trees, expectation is replaced with summation and v(θ, h(θ)) is replaced with the
reward matrix in problem (5.1).

Classification algorithms, however, do not try to optimize the above learning objective.
Instead, a learning objective for classification algorithms can be expressed as

min
h∈H

Eθ∼Pr(Θ)

[
1{h(θ)̸=argmins∈S v(θ,s)}

]
.

In a sense, classification algorithms optimize a surrogate objective instead of optimizing
the actual objective. This observation implies that using prescriptive instead of predictive
algorithms might be better in the context of solving MICO problems.
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In Section 5.4 and 5.5, we compare the performance of OPT(k) and OCT(k) on various
MICO problems. OPT(k) and OCT(k) share the same hypothesis space H, which is the
space of decision trees. We believe this fact makes the comparison more informative, as
the approximation capabilities of the mappings that OPT(k) and OCT(k) learn are the
same. Hence, any performance gap can be attributed to the difference between the learning
objectives prescriptive and predictive algorithms try to optimize.

Remark Note that the above formalization of the learning objectives can be generalized to
other approaches to incorporate machine learning into optimization algorithms. For instance,
consider the setting where we want to learn the best hyperparameter of an optimization
algorithm to minimize the running time. Then S can simply be translated to the set of
hyperparameters, and v(θ, s) is the running time of the algorithm when we choose the
hyperparameter s on the instance associated with θ. Similar discussions can be found at [18].

5.3.2 The Prescriptive Algorithm

Algorithm 12: OPT(k) for MICO.
Input: θ̄, f(·), {gi(·)}i∈[m], I, N , r, M , k.
Output: Decision Tree T .

1. We generate parameters {θi}i∈[N ] uniformly from the Ball B(θ̄, r). For each θi, we
solve problem (5.2) after fixing θ = θi to get an optimal solution and obtain the
associated optimal strategy, s(θi). In the case of multiple optimal solutions, we
select arbitrarily one of them and obtain the associated optimal strategy. We denote
the set of strategies generated in this step as S = {s1, . . . , sℓ}, where sk ≠ sj if k ̸= j
(ℓ ≤ N because optimal strategies of different instances may overlap).
2. For each θi, we apply sj ∈ S, sj ̸= s(θi) to the instance associated with θi and
recover a solution x̂j. We compute f(x̂j,θi) and also assess feasibility. If x̂j is
infeasible, then f(x̂j,θi) := M , where M is a large number. In this step, we
compute the reward matrix R ∈ RN×ℓ, where Ri,j := f(x̂j,θi).

3. We construct an optimal tree T using the reward matrix R computed in step 2.
4. Given a new parameter θ0, we use the tree T to find the k-best strategies, and
apply all of them to select the best one.

Given problem (5.2), we provide the proposed prescriptive approach in Algorithm 12. A
key difference of Algorithm 12 from the OPT(k) described in Section 2.1 is that we do not
need to estimate the counterfactuals. Rather, we compute them directly by applying the
available set of strategies to each instance in the training set. The outcome of applying a
strategy to an instance is measured by the resulting objective cost and feasibility. The way
we apply a strategy to a MICO instance is identical to the general description in [24]. We
fix the integer variables to the values specified in the strategy and impose only the tight
constraints. We solve the resulting continuous optimization problem to recover a solution.
For the rest of the paper, we denote Algorithm 12 as OPT(k).
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5.3.3 Example

We present an example of the proposed approach applied to the facility location problem.
Facility location is a MILO problem that involves determining the optimal locations for
facilities and the optimal amount of goods to transport from each location to each destination.
The unit cost of delivering goods from location i ∈ [n] to destination j ∈ [m] is given by
cij, while the cost of building a facility at location i is represented by fi. The capacity of a
facility at location i is denoted by pi, and dj represents the demand from destination j. The
facility location problem involves two main decisions: selecting which facility to build among
the n possible locations, which is represented by the binary variable xi, and deciding the
optimal amount of goods to transport from each location i to each destination j, which is
represented by the continuous variable yij. The parameter vector (the covariate vector for
training) we choose is the demand vector. The exact model is

min
n∑

i=1

m∑
j=1

cijyij +
n∑

i=1

fixi

s.t.
n∑

i=1

yij ≥ dj, ∀j ∈ [m],

m∑
j=1

yij ≤ pixi, ∀i ∈ [n],

yij ≥ 0, ∀i ∈ [n], ∀j ∈ [m],

x ∈ {0, 1}n.

First, we describe the computation of the optimal strategies and the reward matrix
using a very small sized example with n = 2, m = 1. Let the indices of the constraints∑n

i=1 yi1 ≥ d1,
∑1

j=1 y1j ≤ p1x1,
∑1

j=1 y2j ≤ p2x2, y11 ≥ 0, y21 ≥ 0 be 1, 2, 3, 4, 5 respectively.
We fixed p1 = 10, p2 = 15, sampled ci from U(0, 10) and fij from U(0, 10). We consider only
two instances: d1 = 1 and d1 = 20. For the instance with d1 = 1, the optimal solution is
(x1, x2, y11, y21) = (0, 1, 0, 1) with the objective cost 8.76. That is, we only build the facility
on location 2 and satisfy the entire demand from this facility. The constraints that are tight
under this solution are

∑2
i=1 yi1 ≥ d1,

∑1
j=1 y1j ≤ p1x1 and y11 ≥ 0. Thus, the optimal

strategy (x∗, τ) (recall that τ is the indices of the tight constraints) is ((0, 1), {1, 2, 4}). We
denote this strategy as s1 for now. For the instance with d1 = 20, the optimal solution is
(x1, x2, y11, y21) = (1, 1, 5, 15) with the objective cost 87.02. In this solution, we build facilities
on both locations and the facility on location 2 reaches its full capacity to satisfy the demand.
The constraints that are tight under this solution are

∑2
i=1 yi1 ≥ d1 and

∑1
j=1 y2j ≤ p2x2.

The optimal strategy is (x∗, τ) = ((1, 1), {1, 3}). We denote this strategy as s2 for now. We
now have two different strategies in our data set. The next step is to apply s1 to the instance
associated with d1 = 20 and apply s2 to the instance associated with d1 = 1 to compute the
reward matrix. To apply s1 to the instance with d1 = 20, we fix d1 = 20, x1 = 0, x2 = 1 and
impose only the constraints {1, 2, 4}. The resulting solution (x1, x2, y11, y21) = (0, 1, 0, 20) is
infeasible to the original problem, as it violates the capacity constraint on location 2. Hence
we assign an arbitrary large number M to this case. Following the same procedure, we can
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Table 5.2: The reward matrix of the facility location problem with n = 2 and m = 1.

s1 s2

1 8.76 M
2 M 87.02

Table 5.3: First five rows of the reward matrix of the facility location problem with n = 10
and m = 20.

s1 s2 s3 s4 s5 s6 s7 s8

1 36.29 10000.0 37.84 37.26 10000.0 37.82 38.58 10000.0
2 34.67 10000.0 37.70 36.30 10000.0 35.25 35.68 10000.0
3 32.78 10000.0 37.20 37.46 10000.0 35.78 36.74 10000.0
4 36.32 10000.0 38.49 37.41 10000.0 33.39 33.85 10000.0
5 36.37 10000.0 37.47 37.59 10000.0 37.26 38.25 10000.0

find that applying s2 to the instance with d1 = 1 also leads to an infeasible solution. The
reward matrix that we get is given in Table 5.2.

Now, we demonstrate our approach on a bigger sized example with n = 10 and m = 20.
We skip the details on the computation in this part and provide the decision trees that
OPT(k) and OCT(k) learned. The maximum depth of the trees is limited to 3 for the sake of
simplicity. We sampled 7000 training instances uniformly from the ball of radius 2 and found
8 different strategies. Without loss of generality, let S = {s1, . . . , s8}. Table 5.3 depicts the
reward matrix that we computed. We use M = 10000 as the penalty to infeasibility.

In step 3, OPT(k) uses the reward matrix illustrated in Table 5.3 to construct a decision
tree by solving problem (5.1). As the cost of predicting infeasible solutions is very large, it
will try to avoid infeasible solutions.

Figures 5.2 and 5.3 are the decision trees learned with OCT(k) and OPT(k), respectively.
We can see that the resulting decision trees are actually very different, although the features
that contribute to the splits are identical. In particular, we observe that the number of splits
is larger for OCT(k), which might suggest overfitting.

5.3.4 An Extension of OPT(k)

In the computational experiments provided in Section 5.4, we have observed that OPT(k)
finds feasible solutions much more frequently than OCT(k). On the other hand, OCT(k)
finds slightly better solutions when they are feasible. We propose an extension of OPT(k)
that aims to improve on this slight suboptimality. Rather than using the top-k predictions
of decision tree learned with OPT, we only use the top-(k −Q) predictions. The remaining
Q strategies are replaced by the Q most frequently occurring strategies in the training set.
The exact algorithm is given in Algorithm 13. Note that setting Q = 0 makes Algorithm 13
equivalent to OPT(k). For the rest of the paper, we denote Algorithm 13 as OPT(k,Q).
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Figure 5.2: Decision tree learned with OCT(k) for the facility location problem. d9, d4, d2
are the demands from the destination 9,4,2, respectively.

Figure 5.3: Decision tree learned with OPT(k) for the facility location problem. d9, d4, d2
are the demands from the destination 9,4,2, respectively.

Algorithm 13: OPT(k,Q) for MICO.
Input: θ̄, f(·), {gi(·)}i∈[m], I, N , r, M , k, Q.
Output: Decision Tree T , SQ.

1. After step 1 of Algorithm 12, we identify the Q most frequently occurring
strategies and denote them as SQ.

2. We train an optimal tree T using only the strategies S \ SQ and the corresponding
reward matrix.

3. Given an instance θ0, we use the tree T to find the k −Q best strategies. We
apply all of them and also SQ to select the best.
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5.4 Computational Experiments on Synthetic Data

In this section, we first conduct a comprehensive analysis of the performance of OPT(1)
and OCT(1) on synthetic data. The synthetic examples we consider include LO, QO,
MILO, and MIQO problems. We also investigate the effect of the penalty M on the
performance of OPT(k) and the training time required to learn a decision tree in OPT(k).
Additionally, we compare the training times of OPT(k) and OCT(k), as well as the on-
line solve times of OPT(k) and Gurobi. The code for our implementation is available at
https://github.com/acwkim/ml_mico.

5.4.1 Experimental Settings and Problem Descriptions

Software for OPT and OCT is available at [60]. We used Gurobi to solve MICO problems and
the continuous optimization problems induced by the strategies. For decision tree training,
we minimized hyperparameter tuning process by grid searching over the maximum depths 5
and 10.

The number of training instances is 7000 and the number of test instances is 3000, unless
noted otherwise. We regard a prediction accurate if it is feasible and the suboptimality is
smaller than 0.001. We report the number of accurate, suboptimal, feasible and infeasible
predictions as well as the maximum suboptimality among the feasible predictions made on
the test set. By definition, the number of feasible predictions is the total of suboptimal and
accurate predictions. If the maximum suboptimality is smaller than 0.0001, we simply report
it as 0. The duration of the entire training process starting from the hyperparameter tuning
is measured to determine the training times. In the following tables, we use |S| to denote
the number of distinct strategies in the training set and submax to denote the maximum
suboptimality.

We now describe the synthetic problems considered in the experiments. We also provide
data generation details for the experiments in Section 5.4.2.

Transportation Optimization Transportation optimization is a LO problem to minimize
the total cost of transporting goods from warehouses i ∈ [n] to destinations j ∈ [m]. The
unit cost of delivering goods from warehouse i to destination j is denoted as cij , while pi and
dj denote the stock in warehouse i and the demand from destination j, respectively. The
decision variable xij denotes the quantity of goods shipped from warehouse i to a destination
j. The problem can be formulated as follows:

min
n∑

i=1

m∑
j=1

cijxij

s.t.
n∑

i=1

xij ≥ dj, ∀j ∈ [m],

m∑
j=1

xij ≤ pi, ∀i ∈ [n],

xij ≥ 0, ∀i ∈ [n], ∀j ∈ [m].
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The instances are generated using the key parameter vector d = (d1, . . . , dm), which is
drawn uniformly from B(d̄, 0.5). Here, each entry of d̄ is independently drawn from the
uniform distribution U(1, 6), and is fixed for all instances in the experiment. cij is drawn
from the uniform distribution U(0, 10), while pi is drawn from U(3, 13).

Portfolio Optimization
max µTx− γ(xTΣx)

s.t. eTx = 1,

x ≥ 0.

The instances are generated using the key parameter vector µ. The parameters are drawn
uniformly from B(µ̄, 0.15), where each entry of µ̄ is drawn from U(0, 3). The entries of F
are chosen to be nonzero with 50 % probability and nonzero entries are drawn from N(0, 1).
The entries of D are drawn from U(0,

√
m). The risk-aversion coefficient is fixed to 1. Since

this is a maximization problem, we assign M = 0 to an infeasible solution.

Facility Location We also test the approach on the facility location problem described in
Section 5.3.3. The key parameter vector is again d = (d1, . . . , dm). The parameters are drawn
uniformly from B(d̄, 0.4), where each entry of d̄ is drawn from the uniform distribution U(5, 6).
ci is drawn from U(0, 10), pi from U(10, 18) and fij from U(0, 10). We assign M = 10000 to
an infeasible solution.

Hybrid Vehicle Control We consider the hybrid vehicle control problem taken from [107].
Hybrid vehicle control is a MIQO problem to plan the battery and the engine power outputs
P batt
t and P eng

t at each time t ∈ {0}∪ [T −1] while satisfying the power demand. The internal
energy and the power demand at time t are represented by Et and P des

t , respectively. The
on-off state of engine, and the cost of turning on the engine at time t are represented by zt
and δ(zt − zt−1), respectively. The stage power cost f is defined as f(P, z) = αP 2 + βP + γz.
The problem can be formulated as follows:

min η(ET − Emax)2 +
T−1∑
t=0

f(P eng
t , zt) + δ(zt − zt−1)

s.t. Et+1 = Et − τP batt
t , ∀t ∈ {0} ∪ [T − 1],

0 ≤ Et ≤ Emax, ∀t ∈ {0} ∪ [T ],

E0 = Einit,

0 ≤ P eng
t ≤ Pmax, ∀t ∈ {0} ∪ [T − 1],

P batt
t + P eng

t ≥ P des
t , ∀t ∈ {0} ∪ [T − 1],

zt ∈ {0, 1}, ∀t ∈ {0} ∪ [T − 1].

The key parameter vector P des = (P des
0 , . . . , P des

T−1) is drawn from B(P̄ des
1:T , 0.5), where P̄ des

1:T
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Table 5.4: Transportation Optimization.

Learner n m Accurate Suboptimal Feasible Infeasible submax |S|

OPT(1) 20 10 3000 0 3000 0 0 12OCT(1) 2299 0 2299 701 0
OPT(1) 40 20 2991 0 2991 9 0 5OCT(1) 2639 0 2639 361 0
OPT(1) 60 30 3000 0 3000 0 0 3OCT(1) 3000 0 3000 0 0
OPT(1) 80 40 2988 0 2988 12 0 6OCT(1) 2913 0 2913 87 0

denotes the first T entries of the vector

P̄ des = (0.05, 0.30, 0.55, 0.80, 1.05, 1.30, 1.55, 1.80, 1.95, 1.70, 1.45, 1.20, 1.02,

1.12, 1.22, 1.32, 1.42, 1.52, 1.62, 1.72, 1.73, 1.38, 1.03, 0.68, 0.33,−0.02,−0.37,−0.72,
− 0.94,−0.64,−0.34,−0.04, 0.18, 0.08,−0.02,−0.12,−0.22,−0.32,−0.42,−0.52).

We let α = β = γ = 1, δ = 0.1, τ = 4, Emax = 50, Pmax = 1 and sample E0 uniformly from
B(40, 0.5). We assign M = 1000000 to an infeasible solution.

5.4.2 Comparison of OPT(1) and OCT(1)

We compare the performance of OPT(1) and OCT(1), which is the setting where the difference
between the two algorithms can be the most drastic. Tables 5.4, 5.6, 5.5, 5.7 contain the
experiment results on transportation optimization, portfolio optimization, facility location
and hybrid vehicle control, respectively.

We draw the following conclusions:

• OPT(1) outperforms OCT(1) in terms of finding feasible solutions, as OPT(1) finds
feasible solutions much more frequently than OCT(1).

• When the predicted solution is feasible, OPT(1) tends to have slightly larger subopti-
mality compared to OCT(1).

• Maximum suboptimalities of OPT(1) and OCT(1) are still similar.

• One possible explanation for the above observations is that OPT(1) is designed to place
more emphasis on avoiding infeasible solutions. In the reward matrix used for training
a policy, infeasible solutions are assigned very large penalty numbers as opposed to
only slightly suboptimal solutions. In contrast, OCT(1) is unable to utilize the varying
degrees of suboptimalities and infeasibilities of existing strategies.
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Table 5.5: Facility Location.

Learner n m Accurate Suboptimal Feasible Infeasible submax |S|

OPT(1) 20 10 3000 0 3000 0 0 3OCT(1) 2963 0 2963 37 0
OPT(1) 40 20 2992 0 2992 8 0 9OCT(1) 2790 0 2790 210 0
OPT(1) 60 60 2984 0 2984 16 0.0010 12OCT(1) 2814 0 2814 186 0.0007
OPT(1) 80 40 3000 0 3000 0 0 5OCT(1) 2917 0 2917 83 0

Table 5.6: Portfolio Optimization.

Learner n m Accurate Suboptimal Feasible Infeasible submax |S|

OPT(1) 100 10 3000 0 3000 0 0 10OCT(1) 2842 0 2842 158 0
OPT(1) 200 20 3000 0 3000 0 0 7OCT(1) 2618 0 2618 392 0
OPT(1) 300 30 3000 0 3000 0 0 13OCT(1) 2364 0 2364 636 0
OPT(1) 400 40 3000 0 3000 0 0 3OCT(1) 3000 0 3000 0 0

Table 5.7: Hybrid Vehicle Control.

Learner T Accurate Suboptimal Feasible Infeasible submax |S|

OPT(1) 10 3000 0 3000 0 0.0004 8OCT(1) 3000 0 3000 0 0
OPT(1) 20 2959 9 2968 32 0.0016 10OCT(1) 2937 0 2937 63 0.0002
OPT(1) 30 2986 0 2986 14 0.0003 8OCT(1) 2984 0 2984 16 0
OPT(1) 40 2988 1 2989 11 0.0011 12OCT(1) 2986 0 2986 14 0
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Table 5.8: The effect of the penalty M on the performance of OPT(1).

Accurate Suboptimal Feasible Infeasible submax M objmax

2799 156 2955 45 0.0231 3279

3278.2

2798 156 2954 46 0.0231 3500
2790 161 2951 49 0.0451 4500
2797 156 2953 47 0.0231 5000
2797 156 2953 47 0.0231 10000
2797 156 2953 47 0.0231 100000
2797 156 2953 47 0.0231 1000000

5.4.3 On the Choice of the Penalty M

We analyze how the size of the penalty M with respect to the largest objective cost found in
the training points affects the accuracy and the training time of OPT(k). In the following
tables, we use objmax to denote the largest objective cost found in the training points.

We consider the hybrid vehicle control with T = 10. The parameters are sampled uniformly
from B(P̄ des

1:10, 1) to generate a training set. For this single training set, we train multiple
decision trees with OPT(k), but using different values of M . We provide the experiment
results in Table 5.8. We observe that even though we vary M quite extensively, the resulting
trees show very similar results on the test set. This implies that tuning the number M to
control the behavior of OPT(k) might not be an effective approach.

Now, we analyze the effect of M on the training time of OPT(k). We vary the time horizon
T in the hybrid vehicle control problem and generate twenty different training sets for each
time horizon. The parameters are sampled uniformly from B(P̄ des

1:T , 0.5). For each training set,
we implement OPT(k) using varying values of M chosen with respect to the largest objective
cost found in the training set. Then we compute mean and standard deviation of the training
times for each choice of M . Table 5.9 contains the experiment results. In Table 5.9, avg and
std denote the rounded average and the rounded standard deviation of the training times
measured in seconds, respectively. We observe that there is no clear correlation between the
size of M and the training time. This observation, combined with the previous discussion,
suggests that OPT(k) is largely insensitive to the choice of M , as long as M is greater than
the largest objective cost in the training set.

5.4.4 Training Time

We analyze how the size of the reward matrix affects the training time of OPT(k), and
compare it with OCT(k). To vary the size of the reward matrix, we generate multiple training
sets using different values of r, the radius of the ball that we sample instances from. As r gets
larger, the number of distinct strategies in the training set will also likely get larger, leading
to a larger reward matrix. For each training set, we compare the training times in OPT(k)
and OCT(k). The problem we use for this experiment is the facility location problem with
fixed size n = 40,m = 20. Instance generation details are identical to the description in
Section 5.4.2 except for the choice of r.

The results of our experiments are presented in Table 5.10. One observation is that for
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Table 5.9: The effect of the penalty M on the training time of OPT(k), measured in seconds.

T M avg(s) std(s)

10

objmax 10 4
objmax × 2 13 2
objmax × 5 14 2
objmax × 10 13 2
objmax × 100 13 1
objmax × 1000 12 1

T M avg(s) std(s)

20

objmax 33 6
objmax × 2 35 5
objmax × 5 33 5
objmax × 10 30 6
objmax × 100 26 4
objmax × 1000 26 4

T M avg(s) std(s)

30

objmax 194 34
objmax × 2 226 53
objmax × 5 217 48
objmax × 10 203 39
objmax × 100 200 41
objmax × 1000 196 40

small reward matrices, OPT(k) outperforms OCT(k) in terms of training time. However,
as the size of the reward matrix increases, the training time of OPT(k) also increases and
eventually becomes slower than OCT(k). Another observation is that the training time of
OCT(k) is not always directly proportional to |S|, while for OPT(k) it is roughly proportional.
As a result, training in OCT(k) can be much slower when applied to training sets with a
small |S|.

Table 5.10: Comparison of the training times of OPT(k) and OCT(k), measured in seconds.

Learner r |S| Training time(s)

OPT(k) 0.1 3 4
OCT(k) 120
OPT(k) 0.25 5 3
OCT(k) 154
OPT(k) 0.5 8 7
OCT(k) 37
OPT(k) 0.75 11 21
OCT(k) 139

Learner r |S| Training time(s)

OPT(k) 1 23 161
OCT(k) 242
OPT(k) 1.5 26 293
OCT(k) 193
OPT(k) 2 37 361
OCT(k) 318
OPT(k) 3 127 1704
OCT(k) 460

5.4.5 On-line Solve Time

In the following experiments, we compare the average on-line solve time of OPT(k) with
that of Gurobi for solving the facility location and the hybrid vehicle control of varying sizes.
Specifically, we measure the time it takes to solve a MICO instance using the decision tree
trained with OPT(k), and compare it with the time it takes to solve the same instance from
scratch using Gurobi. When we apply a strategy to an instance to measure the solve time
using OPT(k), we fix the integer variables to the values specified in the strategy, and impose
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(a) Facility Location. (b) Hybrid Vehicle Control.

Figure 5.4: Comparison of the on-line solve times of OPT(k) and Gurobi, measured in
seconds.

only the tight constraints. Then, we solve the resulting continuous optimization problem
using Gurobi. This is a general method to solve MICO problems using strategies, proposed
in [24]. As mentioned in Section 5.2.3, for MIQO problems it is possible to solve a linear
system defined by the KKT conditions instead of using a solver. In our work, we do not
use this method but use the general method in order to evaluate the speed-up of OPT(k)
without exploiting the structural properties of MIQO. For more details on how exploiting the
structural properties of MIQO leads to even faster solve times, see [25].

We provide the experiment results in Figure 5.4. We observe that even without exploiting
the structural properties of MIQO, the solve time using OPT(k) can be hundreds of times
faster than using Gurobi from scratch. Additionally, as the problem size increases, the
speed-up achieved by our approach becomes even more significant.

5.5 Computational Experiments on Real-World Data

In this section, we present the results of the computational experiments on real-world MILO
problems taken from MIPLIB [53]. In Section 5.5.1, we compare OPT(1) and OCT(1). In
Section 5.5.2, we make the prediction task more challenging by increasing r, the radius of the
ball that we generate instances from. Then, we apply k ≥ 1 strategies to compare OPT(k),
OPT(k,Q), and OCT(k) as we increase k.

The models of the problems from MIPLIB are not available in exact form and in-
stead, they are given in generalized matrix formats. That is, MIPLIB provide the data
(Aeq, beq,Aineq, bineq, c, lb, ub, I), so that the objective is to minimize cTx over the feasible
set {x : Aineqx ≤ bineq,Aeqx = beq, lb ≤ x ≤ ub} and I is the set of indices for the decision
variables constrained to take integer values. This poses a challenge in selecting meaningful
key parameters for instance generation. Thus, the choice of key parameters for MIPLIB
examples is slightly arbitrary and is based upon a few general rules. First, θ̄, the center of
the ball is from the original data. Second, θ̄ should not contain zero in its entries. Finally,
the entries of θ̄ all have the same sign. Based upon these rules, we choose a part of beq, bineq,
or c. We denote the part of a vector b from the ith to the jth entry as bi:j.

As MIPLIB provides data in a generalized matrix, we simply report the size of the
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Table 5.11: MIPLIB problems.

Learner Problem Ncon |I| |C| Accurate Suboptimal Feasible Infeasible submax |S|

OPT(1) ns1830653 3274 1458 171 2955 44 2999 1 0.0428 15OCT(1) 2977 16 2993 7 0.0426
OPT(1) mas76 14 150 1 3000 0 3000 0 0 10OCT(1) 2991 0 2991 9 0
OPT(1) binkar10_1 3154 170 2128 2992 8 3000 0 0.0013 14OCT(1) 2997 0 2997 3 0.0002
OPT(1) markshare_4_0 4 30 4 2908 92 3000 0 0.2300 5OCT(1) 2932 68 3000 0 6.1100
OPT(1) beasleyC3 3000 1250 1250 3000 0 3000 0 0 44OCT(1) 3000 0 3000 0 0.0001
OPT(1) neos-827175 25341 21350 11154 3000 0 3000 0 0 15OCT(1) 3000 0 3000 0 0

constraint matrix and the composition of variables. We use |C|, |I|, Ncon to denote the
number of continuous variables, the number of integer variables and the number of constraints,
respectively. The number of constraints is the sum of the numbers of equality constraints,
inequality constraints, upper and lower bound constraints. The rest of the notations are
identical to Section 5.4.

5.5.1 Comparison of OPT(1) and OCT(1)

Table 5.11 presents the comparison between OPT(1) and OCT(1) on selected MIPLIB
problems. For the problem ns1830653, bineq577:676 is used as θ̄, and the parameters are drawn
from B(θ̄, 0.01). For mas76, bineq1:12 is used as θ̄ and the parameters are drawn from B(θ̄, 1).
For binkar10_1, the entire bineq is used as θ̄ and the parameters are drawn from B(θ̄, 0.5). For
markshare_4_0, c1:4 is used as θ̄ and the parameters are drawn from B(θ̄, 1). For beasleyC3,
c1251:1300 is used as θ̄ and the parameters are drawn from B(θ̄, 0.5). For neos-827175, bineq1:15
is used as θ̄ and the parameters are drawn from B(θ̄, 0.25). We assign M = 1000000 to an
infeasible solution for all problems.

We draw the following conclusions:

• OCT(1) outputs slightly more infeasible solutions compared to OPT(1).

• The maximum suboptimalities of OCT(1) and OPT(1) are generally similar in four
problems. In binkar10_1, OCT(1) has an edge and in markshare_4_0, OPT(1) has a
significant edge.

• On the number of suboptimal solutions, OCT(1) generally has a slight edge over
OPT(1).

• Consistent with our conclusions on synthetic data, OPT has an edge on finding feasible
solutions while OCT has a slight edge on the number of suboptimal solutions.
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5.5.2 Comparison of OPT(k), OPT(k,Q) and OCT(k)

In this section, we compare OPT(k), OPT(k,Q) and OCT(k) under varying k and r. We
test on two MIPLIB problems, binkar10_1 and mas76. Sizes of these problems are included
in Table 5.11. We fix Q to ⌊k/2⌋.

Table 5.12 and Table 5.13 contain the experiment results on binkar10_1 and mas76,
respectively. For binkar10_1, the entire right-hand-side vector b is used as θ̄ and the
parameters are drawn from B(θ̄, 1), B(θ̄, 3), B(θ̄, 4), respectively. For mas76, b2:end is used
as θ̄ and the parameters are drawn from B(θ̄, 2), B(θ̄, 4), B(θ̄, 15), respectively. We assign
M = 1000000 to an infeasible solution for both problems.

We draw the following conclusions:

• OPT-based algorithms have a significant edge on finding feasible solutions compared
with OCT(k). This edge widens as |S| increases. As k increases, this edge decreases.

• OCT(k) has an edge on the number of suboptimal solutions compared to OPT(k).
However, OPT(k, ⌊k/2⌋) decreases this gap.

• OCT(k) and OPT-based algorithms are similar in terms of the maximum suboptimality.

5.6 Conclusion

We introduced a prescriptive machine learning approach to accelerate the solve process of
MICO problems using OPT(k). Unlike classification algorithms, OPT(k) considers the quality
of all available strategies for each instance to learn a policy. Additionally, we can compute
the counterfactuals directly, which distinguishes our task from the usual prescriptive tasks.
This allows OPT(k) to distinguish between strategies with varying degrees of suboptimality
and infeasibility, resulting in improved solutions. We demonstrated that OPT(k) outperforms
OCT(k) especially in the sense that it is less likely to output infeasible solutions. We believe
this characteristic makes OPT(k) a safer algorithm to be deployed to real-world applications.
We also introduced OPT(k,Q), a generalization of OPT(k), which improves the quality of
the feasible solutions the algorithm outputs.

For future research directions, a theoretical explanation on why prescriptive methods
could be better than predictive methods at avoiding infeasible (or highly undesirable) outputs
will be insightful. Furthermore, in our approach, we assume that the problem size as well
as the number of parameters are fixed throughout the training and deployment phases. It
would be a fruitful research direction to extend our approach to the more general case, where
we have to solve problems with varying sizes in the deployment phase. Finally, comparison of
prescriptive and predictive methods in other learning-augmented optimization approaches
will be interesting.
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Table 5.12: binkar10_1.

Learner k Accurate Suboptimal Feasible Infeasible submax r |S|

OPT(k)
1

2271 729 3000 0 0.0020
1 50OCT(k) 2869 104 2973 27 0.0010

OPT(k,⌊k/2⌋) 2271 729 3000 0 0.0020
OPT(k)

5
2665 335 3000 0 0.0020

1 50OCT(k) 2896 101 2997 3 0.0010
OPT(k,⌊k/2⌋) 2665 335 3000 0 0.0020

OPT(k)
10

2723 277 3000 0 0.0020
1 50OCT(k) 2898 101 2999 1 0.0010

OPT(k,⌊k/2⌋) 2893 107 3000 0 0.0010
OPT(k)

30
2890 110 3000 0 0.0010

1 50OCT(k) 2899 100 2999 1 0.0003
OPT(k,⌊k/2⌋) 2899 101 3000 0 0.0010

OPT(k)
1

1089 1901 2990 10 0.0090
3 423OCT(k) 2535 28 2563 436 0.0080

OPT(k,⌊k/2⌋) 1089 1901 2990 10 0.0090
OPT(k)

5
1140 1855 2995 5 0.0090

3 423OCT(k) 2899 20 2919 81 0.0080
OPT(k,⌊k/2⌋) 1788 1207 2995 5 0.0080

OPT(k)
10

1215 1780 2995 5 0.0090
3 423OCT(k) 2940 22 2962 38 0.0080

OPT(k,⌊k/2⌋) 2578 417 2995 5 0.0080
OPT(k)

30
2479 520 2999 1 0.0080

3 423OCT(k) 2975 9 2984 16 0.0080
OPT(k,⌊k/2⌋) 2921 77 2998 2 0.0080

OPT(k)
60

2605 395 3000 0 0.0080
3 423OCT(k) 2984 9 2993 7 0.0080

OPT(k,⌊k/2⌋) 2954 46 3000 0 0.0080
OPT(k)

1
276 2618 2894 106 0.0100

4 1023OCT(k) 2179 169 2348 652 0.0080
OPT(k,⌊k/2⌋) 276 2618 2894 106 0.0100

OPT(k)
5

1006 1985 2991 9 0.0090
4 1023OCT(k) 2603 133 2736 264 0.0080

OPT(k,⌊k/2⌋) 1101 1844 2945 55 0.0100
OPT(k)

10
1011 1983 2994 6 0.0090

4 1023OCT(k) 2746 98 2844 156 0.0080
OPT(k,⌊k/2⌋) 2233 760 2993 7 0.0080

OPT(k)
30

2070 926 2996 4 0.0080
4 1023OCT(k) 2832 87 2919 81 0.0080

OPT(k,⌊k/2⌋) 2502 494 2996 4 0.0080
OPT(k)

60
2232 765 2997 3 0.0080

4 1023OCT(k) 2846 87 2933 67 0.0080
OPT(k,⌊k/2⌋) 2711 286 2997 3 0.0080
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Table 5.13: mas76.

Learner k Accurate Suboptimal Feasible Infeasible submax r |S|

OPT(k)
1

2911 88 2999 1 0.19
2 22OCT(k) 2965 0 2965 35 0

OPT(k,⌊k/2⌋) 2911 88 2999 1 0.19
OPT(k)

5
2912 88 3000 0 0.19

2 22OCT(k) 3000 0 3000 0 0
OPT(k,⌊k/2⌋) 2912 88 3000 0 0.19

OPT(k)
10

2912 88 3000 0 0.19
2 22OCT(k) 3000 0 3000 0 0

OPT(k,⌊k/2⌋) 2991 9 3000 0 0.19
OPT(k)

1
2893 106 2999 1 0.55

4 36OCT(k) 2924 6 2930 70 0.27
OPT(k,⌊k/2⌋) 2893 106 2999 1 0.55

OPT(k)
5

2896 104 3000 0 0.55
4 36OCT(k) 2993 7 3000 0 0.37

OPT(k,⌊k/2⌋) 2896 104 3000 0 0.55
OPT(k)

10
2896 104 3000 0 0.55

4 36OCT(k) 2996 4 3000 0 0.27
OPT(k,⌊k/2⌋) 2986 14 3000 0 0.55

OPT(k)
30

2969 31 3000 0 0.55
4 36OCT(k) 3000 0 3000 0 0

OPT(k,⌊k/2⌋) 2996 4 3000 0 0.27
OPT(k)

1
2383 613 2996 4 0.38

15 71OCT(k) 2904 14 2918 82 0.27
OPT(k,⌊k/2⌋) 2383 613 2996 4 0.38

OPT(k)
5

2435 563 2998 2 0.38
15 71OCT(k) 2994 4 2998 2 0.27

OPT(k,⌊k/2⌋) 2395 602 2997 3 0.38
OPT(k)

10
2437 563 3000 0 0.38

15 71OCT(k) 2994 4 2998 2 0.27
OPT(k,⌊k/2⌋) 2437 563 3000 0 0.38

OPT(k)
30

2437 563 3000 0 0.38
15 71OCT(k) 2998 2 3000 0 0.002

OPT(k,⌊k/2⌋) 3000 0 3000 0 0
OPT(k)

60
3000 0 3000 0 0

15 71OCT(k) 3000 0 3000 0 0
OPT(k,⌊k/2⌋) 3000 0 3000 0 0
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Chapter 6

Conclusions

In this thesis, we have developed and demonstrated methods to expedite the solution of a
wide array of optimization and control problems using decision tree algorithms. Each part
of this thesis has provided novel insights and methodologies that speeds up the process of
solving complex problems.

The first part of this thesis introduced a machine learning approach to the optimal control
of MFQNETs. We proved that OCT-H can learn an optimal policy for MFQNET control
problems. Computational experiments demonstrated the effectiveness of the proposed method
in learning the optimal policy.

In the second part, we focused on the control of FRMAB problems. We derived funda-
mental properties of FRMAB problems and designed an efficient numerical algorithm. By
introducing a feature augmentation technique and applying OCT-H to the augmented features,
we incorporated nonlinearities into the model. Computational experiments demonstrated
that the proposed method effectively learns high-quality feedback policies.

The third part studied two-stage linear adaptive robust optimization problems with binary
here-and-now variables and polyhedral uncertainty sets. We developed a method to encode
the optimal here-and-now decisions, the associated worst-case scenarios, and the optimal
wait-and-see decisions into optimal strategies. We trained machine learning models to predict
high-quality strategies for unseen instances. Additionally, we introduced novel methods to
expedite training data generation and reduce the number of different target classes required
for training. Using the proposed method, large-scale ARO problems can be solved more than
10 millions times faster compared to the state-of-the-art numerical algorithm.

Finally, the fourth part introduced a prescriptive machine learning approach for MICO
problems. We utilized OPT as a prescriptive algorithm and demonstrated that OPT-based
methods outperform classification algorithms like OCT in finding feasible solutions for various
MICO problems.

Looking ahead, the integration of learning components into real-world decision systems
presents ongoing challenges, particularly in ensuring robustness. Machine learning models are
typically designed to provide predictions that are accurate on average. However, a critical
question arises when confronted with predictions of extremely low quality. In such scenarios,
we risk encountering slow convergence or potentially even infeasible solutions, although the
outcome may vary based on the problem class or the specific prediction target. Addressing
these challenges requires further advancements in methodologies that ensure both speed and
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feasibility, even under low-quality predictions.
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Appendix A

Appendix to Chapter 3

We prove that for the problems considered in Section 3.5, the state constraints 0 < xi(t) <
Hi,∀i ∈ [n], are automatically satisfied. Similar to the logic in the proof of Proposition 4,
we prove that in each interval [ts, ts+1) with a constant control us, if xi(ts) ∈ (0, Hi), then
xi(t) ∈ (0, Hi),∀t ∈ [ts, ts+1). This implies that if x(0) ∈ (0, Hi), then x(t) ∈ (0, Hi),∀t ∈
[0, T ].

Proposition 6. For the machine maintenance problem described in Section 3.5, the state
trajectory stays within (0, 1)n regardless of the control trajectory.

Proof. We directly apply the results in (3.7). For the machine maintenance problem, βi(us,i) =
−αi(us,i). If βi(us,i) = 0, then xi(t) = xi(ts) ∈ (0, 1),∀t ∈ [ts, ts+1). If βi(us,i) ̸= 0, then

xi(t) = xi(ts) + (1− xi(ts))(1− e−hi(t−ts))

= 1− e−hi(t−ts)(1− x(ts)).

The first equality proves that xi(t) > 0, and the second equality proves that xi(t) <
1,∀t ∈ [ts, ts+1).

Proposition 7. For the epidemic control problem described in Section 3.5, the state trajectory
stays within (0, 1)n regardless of the control trajectory.

Proof. We directly apply the results in (3.9) that

xi(t) =
Kαi(us,i)e

αi(us,i)t

1−Kβi(us,i)eαi(us,i)t
.

From the above expression, xi(t) is a monotone function of t in this interval. If αi(us,i) > 0,
then

lim
t→∞

xi(t) = −
αi(us,i)

βi(us,i)

= 1− us,i(µ0 − µ1)− µ0

us,i(λ0 − λ1)− λ0
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Due to the assumption that αi(us,i) > 0,

us,i(µ0 − µ1)− µ0 > us,i(λ0 − λ1)− λ0,

where us,i(µ0 − µ1)− µ0 = µ0(us,i − 1)− us,iµ1 < 0. Hence, −αi(us,i)

βi(us,i)
∈ (0, 1).

If αi(us,i) < 0, limt→∞ xi(t) = 0. This guarantees that xi(t) ∈ (0, 1) in this interval.

Proposition 8. For the fisheries control problem described in Section 3.5, the state trajectory
stays within (0, Hi)

n regardless of the control trajectory.

Proof. The proof is almost identical to the case of epidemic control. Again, we directly apply
the results in (3.9) that

xi(t) =
Kαi(us,i)e

αi(us,i)t

1−Kβi(us,i)eαi(us,i)t
.

From the above expression, xi(t) is a monotone function of t in this interval. If αi(us,i) > 0,
then

lim
t→∞

xi(t) = −
αi(us,i)

βi(us,i)

=
Hi(ri − qius,i)

ri

Due to the assumption that αi(us,i) = ri − qius,i > 0, Hi(ri−qius,i)

ri
∈ (0, Hi).

If αi(us,i) < 0, limt→∞ xi(t) = 0. This guarantees that xi(t) ∈ (0, Hi) in this interval.
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Appendix B

Appendix to Chapter 4

A1 Analysis on Algorithm 5 and 6

In this section, we analyze the impact of varying tolerance parameters within the CCG
algorithm and the choice of different initial points utilized in its subroutine.

A1.1 Analysis on the Tolerance Parameters

We analyze the impact of different tolerance parameters ϵ1 and ϵ2 on the runtime of Algorithm
5. A smaller value for ϵ1 results in higher-quality here-and-now decisions, while a smaller ϵ2
results in more precise worst-case scenarios for a given here-and-now decision. By assessing
various combinations of these parameters, we analyze the trade-off between solution quality
and computational cost.

For this experiment, we solve 100 random instances of the unit commitment problem with
n = 100,m = 24. In Table A1, we report the mean runtime of Algorithm 5 for each choice of
ϵ1 and ϵ2. Naturally, smaller ϵ1 and ϵ2 leads to longer runtime.

ϵ1 ϵ2 Runtime (in seconds)

0.050
0.01

315.14

0.025 537.08

0.010 599.38

0.050
0.001

495.16

0.025 603.77

0.010 787.58

Table A1: Runtime of Algorithm 5 with different tolerance parameters.
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xi Q̃(xi) di Runtime

Near-optimal 0.002 1 1.000

Suboptimal 0.001 1.4 0.980

Ones 0.000 1 1.052

Table A2: Variability of Algorithm 6 under different initial points.

A1.2 Initial Point in Algorithm 6

We investigate the performance variability of Algorithm 6 under different initial points d0.
We use three distinct here-and-now decisions as inputs for Algorithm 6: near-optimal here-
and-now decision, suboptimal here-and-now decision, and the matrix of all ones. Initially, we
solve 100 random instances of the unit commitment problem with n = 100,m = 24. From
each instance, we extract one suboptimal and one near-optimal here-and-now decision. Then,
for each instance and each here-and-now decision, we randomly generate 10 different initial
points and evaluate the runtime and the outputs of Algorithm 6 with ϵ2 = 0.01. We measure
the difference between the maximum runtime and the minimum runtime, divided by the
mean runtime for scaling. Similarly, we measure the difference between the maximum and
the minimum of the objective values (Q̃(xi)) divided by the mean. Additionally, we record
the number of unique di obtained using the ten different initial points. The means of these
values across 100 instances are reported for analysis.

Table A2 presents the results of this experiment. In first column, we report the type of
here-and-now decision used. In the second and the third column, we report the variability of
the objective value and the number of unique scenarios, respectively. In the fourth column,
we report the variability of runtime. Our observations suggest that Algorithm 6 demonstrates
relatively low variability, as various initial points tend to produce consistent results overall.
The only source of variability appears to be in runtime, indicating that depending on the
initial points, it may require more iterations to converge. Nevertheless, the termination point
remains similar across different initializations.

A2 Additional Computational Experiments

A2.1 Testing Under Distributional Shift

In this section, we assess the robustness of our approach by evaluating its performance when
the test set is generated from a distribution different from the training set. This experiment
is conducted using the inventory control problem with n = 25.

Similar to the previous experiments, we sample c2 uniformly from B(c̄2, r1), where c̄2i
is sampled from U(40, 60) and remains fixed throughout the sample generation process.
Likewise, we sample c3 uniformly from B(c̄3, r2), where c̄3i is sampled from U(60, 80) and
fixed. We first generate a training set with r1 = r2 = 5 and then test the model on test sets
generated with varying r1 and r2. Each test set consists of 3000 instances. The analysis
focuses on understanding how the approach’s performance degrades as the testing distribution’
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radius increases. Results are provided in Table A3, with r1 and r2 in the table indicating the
radii used to generate the test set. For this training set, the number of distinct strategies for
the here-and-now decisions, the worst-case scenarios, and the wait-and-see decisions are 8, 6,
and 28, respectively.

Target k r1 r2 Accuracy Infeasibility submax

sx
1

7.5 7.5
0.93 0 0.0012

5 0.98 0 0.0009

sd

1
7.5 7.5

0.72 0 0.0010

5 0.94 0 0.0010

10 0.95 0 0.0010

sy

1
7.5 7.5

1.00 0 0.0012

5 1.00 0 0.0009

10 1.00 0 0.0009

sx
1

10 10
0.76 0 0.0025

5 0.88 0 0.0015

sd

1
10 10

0.54 0 0.0021

5 0.78 0 0.0021

10 0.80 0 0.0021

sy

1
10 10

1.00 0 0.0008

5 1.00 0 0.0008

10 1.00 0 0.0008

sx
1

15 15
0.38 0 0.0053

5 0.51 0 0.0047

sd

1
15 15

0.21 0 0.0051

5 0.38 0 0.0051

10 0.39 0 0.0051

sy

1
15 15

1.00 0 0.0008

5 1.00 0 0.0008

10 1.00 0 0.0008

Table A3: Numerical results under distributional shift.

Results

• Increasing the radius of the testing distribution results in a deterioration of overall
performance.

• Even under distributional shift, the predictions are consistently feasible.
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• When the testing distribution has double the radius of the training distribution, maxi-
mum suboptimalities still remain below 0.0053, despite a significant decrease in accuracy.

A2.2 Effect of Training Data Size

In this section, we explore the impact of varying the size of the training set. We use a fixed test
set consisting of 3000 instances. These experiments are conducted on the inventory control
problem with n = 25. Both the training and the test sets are generated with r1 = r2 = 5.
Results are presented in Table A4.

Results

• Despite the significantly smaller training size compared to previous experiments, pre-
diction accuracies consistently reach 1.00 or 0.99, with zero infeasibility.

• Increasing the training size leads to improved overall performance, characterized by
slightly lower accuracy and maximum suboptimality.

A2.3 Offline Computation Time

In this section, we analyze the computational burden associated with the offline phase (Phase
1 and 2) of our approach. We select two problems from previous experiments and report
the time required for generating a training set, computing a reward matrix and training a
decision tree using the reward matrix. For this experiment, we do not use Algorithm 9 and
10.

It is worth noting that training set generation and reward matrix computation can be
performed in parallel, which may result in varying total computation times depending on
available computational resources. Therefore, rather than providing the total time required,
we report the time needed to generate a single training instance and a single entry in the
reward matrix. In addition, note that the solve times for strategies sx and sd are identical
since they can be computed simultaneously using Algorithm 5. However, calculating sy
involves solving an additional linear programming problem.

We have chosen two problems for this analysis: the inventory control problem with
n = 1000,Γ = 45, and the unit commitment problem with n = 100,m = 24,Γ = 2. These
problems were selected for their distinct characteristics. The inventory control problem
exhibits the largest dimensionality in the feature vector θ, while the unit commitment
problem has the longest computation time to solve a single ARO instance. For the unit
commitment problem, we use the lenient tolerance as in Section 4.6.6.

Results are presented in Tables A5 and A6. For the inventory control problem, data
generation and reward matrix computation are fast, while the training process can take more
than two days. Conversely, for the unit commitment problem, data generation and reward
matrix computation may take days, but the training phase is relatively fast. This observation
underscores the fact that depending on the problem size and the choice of key parameters,
data generation and training times can range from hours to days in practical applications.
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Target k Training Size Accuracy Infeasibility submax

sx
1

3000
1.00 0 0.0005

5 1.00 0 0.0005

sd

1
3000

0.99 0 0.0005

5 0.99 0 0.0005

10 1.00 0 0.0005

sy

1
3000

1.00 0 0.0005

5 1.00 0 0.0002

10 1.00 0 0.0002

sx
1

5000
1.00 0 0.0005

5 1.00 0 0

sd

1
5000

0.99 0 0.0005

5 1.00 0 0.0005

10 1.00 0 0.0005

sy

1
5000

1.00 0 0.0005

5 1.00 0 0.0002

10 1.00 0 0.0002

sx
1

10000
1.00 0 0.0005

5 1.00 0 0

sd

1
10000

0.99 0 0.0005

5 1.00 0 0.0005

10 1.00 0 0.0005

sy

1
10000

1.00 0 0.0005

5 1.00 0 0

10 1.00 0 0

sx
1

15000
0.99 0 0.0005

5 1.00 0 0

sd

1
15000

1.00 0 0.0005

5 1.00 0 0.0005

10 1.00 0 0.0005

sy

1
15000

1.00 0 0.0005

5 1.00 0 0

10 1.00 0 0

Table A4: Numerical results under varying size of training set.
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Target Task Time (hr:min:s)

sx
Solve

00:00:0.15
sd 00:00:0.15
sy 00:00:0.20
sx

Reward Matrix
00:00:0.04

sd 00:00:0.08
sy 00:00:0.05
sx

Training
04:35:23

sd 48:52:25
sy 00:34:32

Table A5: Inventory control problem.

Target Task Time (hr:min:s)

sx
Solve

00:05:15
sd 00:05:15
sy 00:05:45
sx

Reward Matrix
00:00:48

sd 00:01:12
sy 00:01:02
sx

Training
00:00:21

sd 00:00:10
sy 00:00:15

Table A6: Unit commitment problem.

A2.4 Effect of the Size of the Uncertainty Sets

In this section, we analyze the performance of our approach under different sizes of uncertainty
sets. While previous experiments have already explored uncertainty sets of varying sizes, we fix
a single problem and vary the size of the uncertainty sets more extensively in this experiment.
The problem we choose is the inventory control problem with n = 25. Throughout this section,
we use Algorithm 11 with K = 1 to reduce the number of strategies for the wait-and-see
variables and the number of training data is fixed to 15000. The experiment settings remain
identical to Section A2.2.

We report the results in Table A7. We consistently observe very high-quality solutions
across all variations. The primary distinction arises in the number of distinct strategies for
the wait-and-see variables (denoted by the column |τ |). As expected, larger uncertainty sets
lead to higher number of strategies. However, leveraging Algorithm 11 mitigates any adverse
effects on the quality of our approach, similar to the findings in Section 4.6.4. This result
demonstrates the effectiveness of our approach regardless of the size of the uncertainty sets.

A3 Description of the Unit Commitment Problem

In this section, we describe the deterministic version of the unit commitment problem. The
original data from [37] is for 10 generators and 24 periods (n = 10 and m = 24). For larger
problems we adequately extended the original data, following [37].

Constants
• Aj : Coefficient of the piecewise linear production cost function of unit j
• aj, bj, cj : Coefficient of the quadratic production cost function of unit j
• ccj, hcj, t

cold
j : Coefficients of the startup cost function of unit

• Cj : Shutdown cost of unit j.
• D(k) : Load demand in period k
• DTj : Minimum downtime of unit j
• Flj : Slope of block l of the piecewise linear production cost function of unit j
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Target k Γ Accuracy Infeasibility submax |S| |τ |

sx
1 5 1.00 0 0.0003 8 NA5 1.00 0 0.0001

sd
1 5 1.00 0 0.0003 27 NA5 1.00 0 0.0003

sy
1 5 0.99 0 0.0003 8 265 1.00 0 0.0001

sx
1 10 1.00 0 0.0006 11 NA5 1.00 0 0.0000

sd

1
10

0.99 0 0.0005
33 NA5 1.00 0 0.0003

10 1.00 0 0.0003

sy
1 10 1.00 0 0.0003 11 1045 1.00 0 0.0000

sx
1 15 1.00 0 0.0005 9 NA5 1.00 0 0.0000

sd

1
15

0.99 0 0.0005
27 NA5 1.00 0 0.0005

10 1.00 0 0.0005

sy
1 15 1.00 0 0.0005 9 1245 1.00 0 0.0000

sx
1 20 0.99 0 0.0003 8 NA5 1.00 0 0.0002

sd

1
20

0.99 0 0.0009
26 NA5 0.99 0 0.0003

10 1.00 0 0.0003

sy
1 20 0.99 0 0.0002 8 1625 1.00 0 0.0205

sx
1 25 1.00 0 0.0005 9 NA5 1.00 0 0.0000

sd

1
25

0.99 0 0.0005
28 NA5 0.99 0 0.0005

10 1.00 0 0.0005

sy
1 25 1.00 0 0.0005 9 2115 1.00 0 0.0000

Table A7: Numerical results under varying size of uncertainty sets.
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• Gj : Number of periods unit j must be initially online due to its minimum up time
constraint.

• Kt
j : Cost of the interval t of the stairwise startup cost function of unit j.

• Lj : Number of periods unit j must be initially offline due to its minimum down time
constraint

• LDj : Number of intervals of the stairwise startup cost function of unit j
• NLj : Number of segments of the piecewise linear production cost function of unit j
• P̄j : Capacity of unit j
• Pj : Minimum power output of unit j
• R(k) : Spinning reserve requirement in period k
• RDj : Ramp down limit of unit j
• RUj : Ramp up limit of unit j
• Sj(0) : Number of periods unit j has been offline prior to the first period of the time

span (end of period 0)
• SDj : Shut down ramp limit of unit j
• SUj : Start-up ramp limit of unit j
• m : Number of periods of the time span
• Tlj : Upper limit of block l of the piecewise linear production cost function of unit j.
• U0

j : Number of periods unit j has been online prior to the first period of the time span
(end of period 0)

• UTj : Minimum up time of unit j
• Vj(0) : Initial commitment state of unit j (1 if it is online, 0 otherwise)

Variables
• cdj (k) : Shutdown cost of unit j in period k
• cpj(k) : Production cost of unit j in period k
• cuj (k) : Startup cost of unit j in period k
• pj(k) : Power output of unit j in period k
• p̄j(k) : Maximum available power output of unit j in period k

• toffj (k) : Number of periods unit j has been offline prior to the startup in period k.
• vj(k) : Binary variable that is equal to 1 if unit j is online in period k and 0 otherwise.
• δlj(k) : Power produced in block l of the piecewise linear production cost function of

unit j in period k.

Sets
• J : Set of indices of the generating units.
• K : Set of indices of time periods.

Model All constraints are defined ∀j ∈ J or ∀k ∈ K, unless otherwise noted.

min
∑
k∈K

∑
j∈J

cpj(k) + cuj (k) + cdj (k)

s.t.
∑
j∈J

pj(k) ≥ D(k) (B.1)
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∑
j∈J

p̄j(k) ≥ D(k) +R(k) (B.2)

cpj(k) = Ajvj(k) +

NLj∑
l=1

Fljδl(j, k) (B.3)

pj(k) =

NLj∑
l=1

δl(j, k) + Pjvj(k) (B.4)

δ1(j, k) ≤ T1j − Pj (B.5)
δl(j, k) ≤ Tlj − Tl−1j (B.6)
δNLj(j, k) ≤ P̄j − TNLj−1j (B.7)
δl(j, k) ≥ 0 ∀l = 1 . . . NLj (B.8)
Aj = aj + bjPj + cjP2

j (B.9)

cuj (k) ≥ Kt
j [vj(k)−

t∑
n=1

vj(k − n)] ∀t = 1 . . . NDj (B.10)

cuj (k) ≥ 0 (B.11)

cdj (k) ≥ Cj[vj(k − 1)− vj(k)] (B.12)

cdj (k) ≥ 0 (B.13)
Pjvj(k) ≤ pj(k) ≤ p̄j(k) (B.14)
0 ≤ p̄j(k) ≤ P̄jvj(k) (B.15)
p̄j(k) ≤ pj(k − 1) +RUjvj(k − 1) + SUj[vj(k)− vj(k − 1)] + P̄j[1− vj(k)] (B.16)
p̄j(k) ≤ P̄jvj(k + 1) + SDj[vj(k)− vj(k + 1)] (B.17)
pj(k − 1)− pj(k) ≤ RDjvj(k) + SDj[vj(k − 1)− vj(k)] + P̄j[1− vj(k − 1)] (B.18)
∀k = 1 . . .m− 1

p̄j(k) ≤ P̄jvj(k + 1) + SDj[vj(k)− vj(k + 1)] (B.19)
pj(k − 1)− pj(k) ≤ RDjvj(k) + SDj[vj(k − 1)− vj(k)] + P̄j[1− vj(k − 1)] (B.20)
Gj∑
k=1

[1− vj(k)] = 0 (B.21)

k+UTj−1∑
n=k

vj(n) ≥ UTj[vj(k)− vj(k − 1)] ∀k = Gj + 1 . . .m− UTj + 1 (B.22)

T∑
n=k

{vj(n)− [vj(k)− vj(k − 1)]} ≥ 0 ∀k = m− UTj + 2 . . .m (B.23)

Lj∑
k=1

vj(k) = 0 (B.24)

k+DTj−1∑
n=k

[1− vj(n)] ≥ DTj[vj(k − 1)− vj(k)] ∀k = Lj + 1 . . .m−DTj + 1 (B.25)
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m∑
n=k

{1− vj(n)− [vj(k − 1)− vj(k)]} ≥ 0 ∀k = m−DTj + 2 . . .m (B.26)

Constraint (B.1) and (B.2) represent the power balance constraint and the spinning reserve
margins, respectively. Constraints (B.3) - (B.9) represent the stepwise approximation of
production cost function, which is originally a quadratic function. (B.10)-(B.11) and (B.12) -
(B.13) represent the stepwise startup cost and the stepwise shutdown cost, respectively (every
time a generator is turned on or turned down, it incurs a cost). (B.14) - (B.15) represent the
power generation limits. (B.16) - (B.20) are ramp-up, startup ramp limits, shutdown ramp
limits and ramp-down limits, respectively. These constraints dictate that a generator can
only change its production level within a certain bound. (B.21) - (B.23) are minimum up
time constraints and (B.24) - (B.26) are minimum down time constraints. These constraints
represent the physical limit that if a generator is turned on at some point, it must remain on
for certain period. Likewise, if a generator is turned off, it must remain that way for certain
period.
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