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Abstract 

Colloidal nanocrystals (NCs), also known as quantum dots, are nanometer-sized semiconductor 

crystalline structures comprised of thousands to tens of thousands of atoms placing them in a world between 

the molecular-sized and the bulk-sized world, allowing them to harness unique qualities from both. 

Colloidal NCs are used in many applications including light-emitting diodes (LEDs), photovoltaics (solar 

cells), lasers, transistors, photocatalysis, and many more.  

In this thesis, I investigate the optical properties of colloidal NCs, specifically InP/ZnSe/ZnS, 

CdSe/CdS/ZnS, and ZnSe/ZnS NCs using a combination of ensemble and single NC photon correlation 

spectroscopic techniques. In the first chapter, I introduce the photophysical properties of colloidal NCs and 

spectroscopic techniques relevant to my studies. In the second chapter, I determine the dominant 

photoluminescent line shape broadening mechanisms in single InP/ZnSe/ZnS and CdSe/CdS/ZnS NCs 

using temperature dependent photoluminescent spectroscopic techniques. In the third chapter, I investigate 

the coherent emissive properties of single InP/ZnSe/ZnS and CdSe/CdS/ZnS at cryogenic temperatures, 

demonstrating the longest coherence time measured in a colloidal NC system to date. In the fourth chapter, 

I develop an ensemble third-order correlation technique to elucidate the average single ZnSe/ZnS NC 

triexciton efficiency and dynamics. Finally, I propose future directions in the fifth chapter, including a 

fourth order correlation technique to resolve absolute energy information on timescales faster than CCD-

base spectroscopic techniques, and an open-access photon correlation Monte Carlo toolkit with the aim of 

filling education gaps and provide the colloidal NC community with a database of analytical tools that will 

encourage a wider audience to engage with photon correlation spectroscopy 

 

Thesis Supervisor: Moungi G. Bawendi 

Title: Lester Wolfe Professor of Chemistry  
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Chapter 1 

Introduction 

1.1. A Little Background 

Colloidal nanocrystals (NCs), also known as quantum dots, are nanometer-sized semiconductor 

crystalline structures comprised of thousands to tens of thousands of atoms. Colloidal NCs exist between 

the molecular-sized and the bulk-sized world, allowing them to harness unique qualities from both. Bulk 

semiconductors have an intrinsic bandgap energy, the energy difference between the valence band (VB) 

and conduction band (CB), spanning across the ultraviolet (UV), visible, and infrared (IR) sections of the 

electromagnetic spectrum. The bandgap in semiconductors are utilized in many optical and electronic 

applications including light-emitting diodes (LEDs), photovoltaics (solar cells), lasers, transistors, 

photocatalysis, and many more.1 The bandgap energy differs depending on the semiconducting material, 

and can also be tuned by doping other semiconductor materials into the system.  

In 1982, Louis Brus sought to increase catalytic efficiencies using semiconductor particles by 

increasing the surface area – decreasing semiconductor particle size.2 Depending on the particular synthesis, 

Brus observed a change in color of the aqueous solution of semiconductor particles, and made the Nobel 

Prize-worthy speculation that the change in color was due to the quantum size effect. The quantum size 

effect is introduced in one of the first lessons taught in any undergraduate class on quantum mechanics or 

physical chemistry, through the example of the particle in a box.3 

The particle in a box is a thought experiment where a single particle is confined in an infinitely 

deep well. Given the mass of the particle 𝑚 and the length of the box 𝐿, the energy of the particle (Equation 

1.1) can be derived using the Schrödinger equation: 

𝐸𝑛 =
𝑛2ℎ2

8𝑚𝐿2           (1.1) 

where 𝑛 is the energy level and ℎ is Planck’s constant. This equation provides us with several interesting 

implications of the wave-particle duality of matter. For one, the energy of this system can never be zero 

because 𝑛 > 0. Also, 𝑛 being an integer indicates that the energy of the system is quantized. And lastly, the 

energy of the particle can change by tuning the length of the box. The smaller the box the particle is 

contained within, the higher the energy of the particle. The particle in a box is a fantastic introduction into 

the peculiarities of quantum mechanics that do not manifest in our macroscopic world experience.  
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 An exciton, an electron-hole pair, within a semiconductor behaves like particle in a box — or rather 

a particle in a sphere — if the semiconductor is small enough. In any given semiconductor, the exciton has 

a material-dependent radius referred to as the Bohr radius. If the semiconductor NC is smaller than twice 

the Bohr radius, the exciton will be quantum mechanically confined in a similar manner as the particle in a 

box. Taking into account the additional two dimensions and coulombic interactions of the electron and hole, 

Louis Brus developed the Brus Equation4  

𝐸𝑁𝐶(𝑅) = 𝐸𝑏𝑢𝑙𝑘 +
ℎ2

8𝑅2 (
1

𝑚𝑒
∗ +

1

𝑚ℎ
∗ ) −

1.8𝑒2

4𝜋𝜀0𝜀𝑟𝑅2        (1.2)  

where 𝐸𝑏𝑢𝑙𝑘 is the band gap energy of the bulk semiconductor, ℎ is Planck’s constant, 𝑅 is the radius of the 

NC (in place of 𝐿 in the 1D case), 𝑚𝑒
∗  is the effective mass of the excited electron, 𝑚ℎ

∗  is the effective mass 

of the excited hole, 𝜀0 is the permittivity of vacuum, and 𝜀𝑟 is the relative permittivity. The first term takes 

into account the bulk bandgap energy, the second term takes into account the quantum confinement effect, 

and the third term takes into account the coulombic interactions within the NC.5 Since the publication of 

the Brus Equation in 1984, there have been attempts at providing further detail to accurately describe the 

energy in a quantum confined NC system.6,7 Regardless of the Brus Equation’s ability to describe real NC 

systems accurately, the theoretical principle birthed a field that has just received the Nobel Prize in 2023.  

 Moungi Bawendi, who worked for Louis Brus as a postdoc, started his career as a professor at MIT 

with the goal of synthesizing semiconductor NCs with precise control. Moungi Bawendi, Chris Murray, 

and David Norris made an experimental breakthrough in 1993 demonstrating the synthesis of relatively 

monodisperse CdE (E = S, Se, Te) NCs – credited in the 2023 Nobel Prize in Chemistry.8 These colloidal 

NCs were synthesized using the hot-injection method which works in two phases. The first phase is the 

nucleation phase where one of the semiconductor precursors – in this case, the E = S, Se, Te precursor – is 

rapidly injected into a heated-up mixture containing the other semiconductor precursor – in this case, the 

Cd precursor. The small NC nuclei saturate the solution such that no new nuclei are made. The second 

phase is the growth phase where the injected precursors react with the NC nuclei to increase the size of the 

nuclei.9 The experimental realization of a quantum confined semiconductor system has led to decades of 

NC research contributing to several industries from the television display industry10 to the biomedical 

imaging industry11 to the solar cell industry, and continues to push into new fields like the quantum 

information sciences (QIS)12.  

To go from the initial inception of quantum confined NCs to their application in industry, a great 

deal of research was required. There were early challenges in NC synthesis and spectroscopy that limited 

their ability to perform in any industry. Semiconductor NCs were not photostable, they had low quantum 

yield (emission efficiency), and low color purity. There were issues beyond the ideal theoretical system that 



22 
 

had to be understood and controlled. Creative and intelligent people from all over the world took on the 

challenge and gathered a tremendous amount of knowledge on semiconductor NC photophysics. 

Researchers in the semiconductor NC field have become skillful nanoengineers pushing the bounds on what 

we can manipulate at the nanoscale. 

In my attempt to contribute to this field, my research focused on studying the electronic and 

photophysical properties of InP and ZnSe NCs investigated using a combination of ensemble and single-

NC spectroscopy techniques, and I aimed to contribute to advancements of the correlation spectroscopy 

techniques used in the Bawendi Lab. The rest of the Introduction serves to provide more background on 

colloidal NCs and the spectroscopic methods used to study them. Chapter 2 of my thesis seeks to investigate 

the line shape broadening mechanisms that reduce the color purity of InP NCs. Chapter 3 of my thesis 

explores the potential for single InP NCs as single photon emitters for QIS applications. Chapter 4 of my 

thesis extends a third-order correlation technique to characterize the ensemble-averaged ZnSe NC triexciton 

QY and dynamics in solution. Chapter 5 of my thesis explores two future directions: the first is the 

advancement of a Bawendi Lab technique, photon-correlation Fourier spectroscopy (PCFS), to resolve 

asymmetric line shapes using fourth-order correlations, and the second explores the development of the 

Photon Correlation Monte Carlo toolkit for the purpose of providing the semiconductor NC community 

with easy access simulated photon streams to aid in developing fundamental understanding of photon-

correlation experiments and to test analysis methods. I hope this chapter serves to spark the interest and 

direction of future graduate students. For whoever reads this thesis, thank you for taking the time to see a 

glimpse of the semiconductor NC field through my perspective. 

1.2.  Colloidal Nanocrystals 

In this section, I will cover the basics of colloidal NCs including their structure and relevant 

photophysical properties that were relevant to my research. This introduction into colloidal NCs will consist 

of general information relevant to most semiconductor NC systems; however, I will include interesting and 

relevant information about InP and ZnSe NCs specifically as they were the focus of my experimental 

research.  

1.2.1. Nanocrystal Structure 

Early demonstrations of colloidal NCs showed low emission efficiencies, were broad in their 

emission spectra, and were prone to permanent photobleaching.8 The surface was identified as playing a 

significant role in NC emission. As a semiconductor particle size decreases, the surface-to-volume ratio 

grows, meaning a high number of the atoms in colloidal NCs are on the surface. Colloidal NCs are never 

perfectly crystalline and as a result there will always be atoms that are not coordinated, particularly on the 

surface.13 These uncoordinated atoms have what are called dangling bonds. Organic ligands are 
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incorporated into the synthetic procedure because they play a crucial role in colloidal NC stability and 

solubility. Without organic ligands, inorganic NCs would not be able to be suspended in typical organic 

solvents. Common ligand groups are carboxyl, amino, thiol, and phosphate groups.13 These ligand types 

can be split into three categories: (1) L-type ligands are neutral donors that datively bond to the NC surface. 

These bonds are weak and will often lose their bonds to the NC surface when in the presence of other 

ligands.  (2) X-type ligands have strong electron affinity allowing them to bond strongly to the NC surface. 

These ligands form covalent bonds with metal surface orbitals. (3) Z-type ligands bind to surface anion 

sites acting as a Lewis acid.14 There is much work on developing new ligand structures to improve colloidal 

NCs for a variety of applications such as increasing charge carrier mobility in NC solar cells,15 

functionalization for biological applications,16 passivating defect sites,17,18 and increasing the coherent 

fraction of emission from single NCs.19 The versatility of organic ligands enables colloidal NCs to be 

functionalized for a wide range of applications.   

 

Figure 1.1. Core/shell/shell NC heterostructure diagram for a. InP/ZnSe/ZnS, b. CdSe/CdS/ZnS, and c. 

CdS/CdSe/CdS NCs, all with oleic acid (OA) ligands covering the outer surface of the NC. Below each NC structure 

is its respective band energy diagram displaying the electron and hole wavefunction spread across the NC.  

The use of organic ligands to cap the inorganic NC surface is crucial for NC stability and solubility, 

however it has proven to be an incomplete solution to optimize photophysical properties of colloidal NCs. 

The dynamic environment of NCs in solution makes it challenging to avoid ligand loss, leaving dangling 

bonds on the NC surface. Additionally, steric hindrance between these long carbon chain ligands leads to 

unideal surface coverage.18 In 1996, Margaret A. Hines and Philippe Guyot-Sionnest demonstrated the 

synthesis of CdSe NCs with an inorganic ZnS shell improving the QY of the NCs to 50%, attributing the 
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increased emission efficiency to a better passivation of the CdSe surface.20 Increasing the shell thickness 

acts to protect the exciton from the surface, further improving the emission efficiencies.21 The ability to 

synthesize core/shell heterostructures has opened up opportunities for colloidal NCs in many optical 

applications. The most commonly used NC heterostructures are designed to have a Type I or quasi-Type II 

band structure. These heterostructures are designed such that the electron and hole are confined within the 

center of the NC, away from the surface. Type I heterostructures such as InP/ZnSe/ZnS (core/shell/shell) 

confine both the electron and hole within the core material (Figure 1.1a). The large energy difference 

between the core and inner shell CB and VB prevents the electron and hole wavefunctions from tunneling 

into the inner shell material. On the other hand, quasi-Type II heterostructures like CdSe/CdS/ZnS have a 

much smaller energetic difference between the core and inner shell CB levels such that a significant degree 

of the electron wavefunction can tunnel into the inner shell. In quasi-Type II heterostructures, the electron 

delocalizes across the core and shell, but the hole remains confined within the core (Figure 1.1b). The hole 

is often heavier and as a result cannot tunnel as far, even with similar CB and VB energy differences 

between the core and shell.22,23 Many NC heterostructures include an additional outer shell to further 

passivate the surface and ensure the electron and hole wavefunctions are prevented from reaching the 

surface. 

 Over the years, chemists have harnessed the synthetic handles governing colloidal NC synthesis 

leading to creative systems such as the colloidal quantum shell where the active emitting layer is actually 

the inner shell rather than the core (Figure. 1.1c). The quantum shell has a unique electron and hole 

wavefunction that spreads across a much larger distance allowing the quantum shell NC to be pumped with 

higher fluxes useful for lasing applications.24,25 Additionally, NC structures are not restricted to the classic 

three-dimensional ‘quantum dot’ shape. There are NC two-dimensional platelets,26–28 one-dimensional 

rods,29,30 and all sorts of shapes with interesting and unique photophysical properties.23,31–34  

 Synthetic chemists in the colloidal NC field have opened up a world of opportunities to explore the 

underlying photophysics guiding NC emission. The next section will cover the colloidal NC properties 

relevant to my studies including exciton recombination, exciton fine structure, phonon coupling, 

photoluminescence (PL) intermittency, spectral diffusion, Auger recombination, and line shape broadening 

mechanisms.  

1.2.2. Photophysical Properties of Colloidal Nanocrystals 

As I am writing my thesis, I am reflecting on the fact that I wish I started writing years ago. There 

are so many important and interesting qualities of colloidal NC photophysics. It feels like I could talk 

endlessly on just the topics related to my work over the last five years. As a result, I will only scratch the 
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surface in this introduction and encourage anyone who reads this to explore the cited work and see for 

themselves the infinite depth that colloidal NC photophysics has to offer.  

1.2.2.1. Exciton Recombination 

Exciton (electron-hole) recombination in its simplest form depends on the interactions of the NC 

energetic states with the surrounding electromagnetic field. Building up from quantum mechanical 

principles – which we learned in 5.74, Introductory Quantum Mechanics II – we can describe the rate of 

exciton radiative recombination using the Weisskopf-Wigner Theorem (Equation 1.3).35 

kr =
𝜔3𝑛|𝜇12|3

3𝜋𝜀0ℏ𝑐3             (1.3) 

𝑘𝑟 is the radiative rate, 𝜔 is the emission frequency, 𝑛 is the refractive index, |𝜇12| is the exciton transition 

dipole moment, 𝜀0 is the vacuum permittivity, ℏ is the reduced Planck’s constant, and 𝑐 is the speed of 

light. When considering the radiative emission of a semiconductor material, we consider properties such as 

the absorption cross-section,36 the oscillator strength,37 and the electron hole overlap integral.38 

 In real systems, there is much more interacting with the excitons within the NC than just the 

surrounding electromagnetic field. Excitons interact with external charges and other excitons, they interact 

with the imperfections of the NC lattice, with vibrations through the NCs typically referred to as phonons, 

with other NCs, and many more.39 All of these additional interactions contribute to unideal radiative 

recombination, or even nonradiative recombination of the exciton. We can draw the relationship of the 

radiative rate kr and the nonradiative rate knr of emission and its impact on the overall quantum yield QY 

of NC emission through Equation 1.4. 

𝑄𝑌 =
𝑘𝑟

𝑘𝑟+𝑘𝑛𝑟
           (1.4) 

Descriptions of relevant unideal radiative and nonradiative recombination mechanisms will be described in 

following sections.  

1.2.2.2. Photoluminescence Intermittency 

 There are several optical properties of colloidal NCs that are averaged out, or clouded by ensemble 

emission effects, requiring single NC PL studies to elucidate the more subtle properties of NC photophysics. 

In 1996, Nirmal et al. showed the PL from single CdSe NCs appeared to turn “on” and “off” in a binary 

like process.40 For NC applications requiring efficient photon emission, this PL intermittency is obviously 

unideal. On the other hand, if an optical application requires photon absorption with negligible photon 

emission, it would be ideal to encourage NCs to permanently remain in the “off” state. This observation 

triggered a number of studies aimed at understanding and controlling PL intermittency in colloidal NCs.41–

44 It is conventionally understood that there are two types of PL intermittency: Type A and Type B. 
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Intermittency is identified as Type A blinking when the PL intensity is correlated with the PL lifetime. This 

kind of blinking is often times associated with charged emission referred to as trion emission, which is 

dimmer and has a faster lifetime.45 Type B intermittency has no correlation between the PL intensity and 

PL lifetime and arises from the reversible trapping of higher energy holes by surface states.46 PL 

intermittency arises in many other systems studied to this day such as InP (Figure 1.2),47 CsPbBr3,48 and 

PbS.49  

 

Figure 1.2. Intensity time trace of a single InP/ZnSe/ZnS NC at room temperature. Inset shows the intensity time trace 

from 0-240 seconds to see the PL intermittency more clearly. 

1.2.2.3. Exciton and Multiexciton Generation and Recombination 

Photon absorption in NCs follows a Poisson distribution, a discrete probability distribution that 

describes the likelihood of generating a number of events 𝑚 in a given interval, given a rate 𝑝 of occurring 

events. For NCs, given an average excitation rate (or excitation density) 𝑝, the probably of absorbing 𝑚 

photons is 

 𝑃𝑜𝑖(𝑚, 𝑝) =
𝑝𝑚𝑒−𝑝

𝑚!
.           (1.5)  

One of the major implications of the Poisson nature of photon absorption in semiconductor NCs is 

the fact that NCs can hold multiple excitons at once. When an NC absorbs two photons at once, the two 

excitons that are created are referred to as the biexciton. When three excitons are created, it is referred to 

as the triexciton, and so on. Multiexcitons are characterized in this way because the excitons see and feel 

each other in the small space within the NC and as a result, behave differently than single excitons. 
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Figure 1.3. Poisson distribution describing the probability of absorbing 𝑚 photons given a particular excitation density 

𝑛. 

For instance, in the example where the NC holds a single exciton (Figure 1.4a), the exciton can 

only radiatively recombine when the electron and hole have inverse spins. At room temperature these spins 

can flip up and down at a rate significantly faster than kr. Therefore, the electron-hole pair is in the correct 

spin orientation half of the time which leads to the exciton radiative rate kX =
1

2
kr. Now let’s consider the 

example where the NC holds two excitons, the biexciton (Figure 1.4b). In this case, there are two electron-

hole pairs, preventing individual charges from flipping their spins. For the biexciton, the overall radiative 

rate kBX = 2𝑘𝑟. This thought experiment describes the basic principle of statistical scaling of multiexciton 

emission. It is important to keep in mind that imperfect exciton-exciton interactions can lead to deviations 

from statistical scaling.  

 

Figure 1.4. a. Example of a single exciton where the electron flips spins from spin-up to spin-down. While spin-up, 

the electron-hole pair radiatively recombines with rate kr. While spin-down, the electron-hole pair cannot radiatively 

recombine. b. Example of a biexciton where the electrons and holes cannot flip spins. In this case, both electron-hole 

pairs radiatively recombine with rate kr.  

The ability for semiconductor NCs to hold multiple excitons at once allows NCs to have a higher 

photon output, making them great for light emitting applications, and also introduces interesting 
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photophysical interactions of excitons that can be explored for applications such as quantum entanglement 

of excitonic states.50 However excitons can interact in ways that lead to nonradiative recombination of 

multiexcitons. The dominant mechanism of nonradiative multiexciton recombination is Auger 

recombination, which occurs when the energy from an electron-hole recombination promotes another 

charge into a higher-lying energetic state instead of outputting as a photon (Figure 1.5a). The excess energy 

of the charge is then lost to thermal energy as the charge relaxes back to the band edge (Figure 1.5b), 

leaving a single exciton in the NC (Figure 1.5c). Figure 1.5 shows an example of negative Auger 

recombination, which promotes a second electron to a higher lying energetic state, however Auger 

recombination can occur by promoting the electron or hole to a higher lying state. An extensive amount of 

research has been produced to understand Auger recombination and learn how to prevent it.51–53 

 

Figure 1.5. a. Energy from the recombination of an electron-hole pair promotes another electron into a higher lying 

energetic state. b. Higher energy electron thermally relaxes back to the band edge. c. Single electron-hole pair 

radiatively recombines, emitting a photon. 

1.2.2.4. Fine-Structure Splitting in II-VI and III-V Semiconductor Nanocrystals  

 Fine-structure splitting (FSS) plays a significant role in exciton photophysics of colloidal NCs. In 

II-VI and III-V semiconductor NCs, the lowest lying excitonic state originates from the two-fold degenerate 

1Se ground electron level and the four-fold degenerate 1S3/2 ground hole level, resulting in an overall 

1S3/21Se excitonic state that is eight-fold degenerate. Due to the electron-hole exchange interaction, which 

is significant in small colloidal NCs,54 the eight-fold degenerate state splits into a five-fold degenerate state 

with total momentum 𝐹 = 2 and a three-fold degenerate state with total momentum 𝐹 = 1.55 The 𝐹 = 2 

state is optically forbidden and has been directly observed in systems like CdSe and InP at low 

temperature,47,56 and the 𝐹 = 1 state is optically allowed. The degeneracy of these states can be split even 

further by a combination of the crystal field and shape anisotropy interactions with the exciton. In both of 

these cases, deviation from perfect symmetry of the NC leads to the exciton “feeling” a unique axis within 

the NC. Depending on whether the asymmetry contributes negatively or positively, the 𝐹𝑧 = ±2 fine-
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structure state will increase in energy or decrease, respectively. The 𝐹𝑧 = 0 fine-structure state will have 

the opposite reaction to the anisotropy of the NC.57 

Fine-structure splitting impacts exciton dynamics and line shape broadening, affecting colloidal 

NC systems ability to be used in several applications including light-emitting and quantum optical 

applications, among many others. Many studies have attempted to understand and control fine-structure 

splitting in colloidal NCs, and will continue to be a topic of research for many years to come.47,54,57–61 

 

Figure 1.6. Adapted from Efros et al.62 Fine-structure splitting of the 8-fold 1S3/21Se exciton energetic state. 𝛥𝑠ℎ𝑖𝑓𝑡  

corresponds to an overall shift of the fine-structure manifold, 𝛥𝑒−ℎ corresponds to the splitting between the total 

momentum 𝐹 = 2 and 𝐹 = 1 energetic states resulting from the electron-hole exchange interaction, 𝛥 = 𝛥𝑖𝑛𝑡 + 𝛥𝑠ℎ 

is the splitting energy of the 𝐹 = 2 or 𝐹 = 1, where 𝛥𝑖𝑛𝑡 is the splitting energy from crystal field’s deviation from a 

symmetric cubic structure and 𝛥𝑠ℎ is the splitting energy from the overall NC shape asymmetry. The numbers 

associated with the fine-structure states correspond to the angular momentum projections total. Red colored states 

correspond to optically forbidden fine-structure states and green colored states correspond to optically allowed fine-

structure states. 

1.2.2.5. Coherence Time and Photon Indistinguishability  

The fundamental limit to the line width Γ of an emitter is referred to as the transform limit 

Γ =
ℏ

𝑇1
,            (1.6) 

where 𝑇1 is the radiative lifetime and ℏ is the reduced Planck’s constant. We can also rephrase the line 

width in units of time which we refer to as the coherence time 𝑇2. The fundamental relationship between 

the coherence time and radiative lifetime in the ideal transform limit is 
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1

𝑇2
=

1

2𝑇1
.           (1.7) 

The inverse relationship between Γ and 𝑇1 is related to the time-energy uncertainty principle. The faster the 

radiative process, the less certain – or broader – the energetic spectrum. In this ideal picture, one would 

think that emitters with long lifetimes would be ideal candidates to achieve the narrowest emitter line width 

possible. In reality there are many ways the exciton wavefunction loses its phase by interacting with the 

system surrounding it that leads to significant broadening of the line width.  

These dephasing mechanisms fit under the category of pure dephasing mechanisms. If a mechanism 

of dephasing interacts with the exciton prior to its radiative recombination and interferes with the phase of 

the exciton, but does not change the specific transition from one energetic state to another, then it is 

considered pure dephasing. Here is another situation where the time-energy uncertainty principle comes 

into play. The faster the interaction of the exciton with its surroundings, the more the exciton loses its phase 

and the more uncertain the energy becomes. We characterize the loss of coherence by the dephasing time 

𝑇2
∗ which affects the coherence time (line width) of the emitter according to Equation 1.8. 

1

𝑇2
=

1

2𝑇1
+

1

𝑇2
∗              (1.8) 

To achieve transform-limited emission, or indistinguishable photon emission, of colloidal NC 

systems, in depth studies of material optimization,63 fine-structure,58,64 exciton-phonon coupling,47 electric- 

and magnetic-field interactions,65,66 and integration into photonic devices67 must be performed to optimize 

these systems for quantum information science applications. 

1.2.2.6. Photoluminescence Line Shape Contributions 

 The PL line shape of an ensemble of colloidal NCs at room temperature can typically be fit with 

one or two Gaussians. The line shape is rather featureless, clouded by ensemble averaging and thermal 

broadening. If we take a closer look by isolating single NCs and cooling down the temperature, we can start 

to see the complex nature of the PL line shape. There is fine-structure, exciton-phonon coupling, spectral 

diffusion, and pure dephasing that push the NC line shape far from the transform-limited ideal. In this 

section, I aim to provide a brief conceptual picture of these various mechanisms of line shape broadening. 

Ensemble Broadening 

Ensemble broadening is a result of NC size and morphology polydispersity as well as a distribution 

in local chemical environments.68,69 The variations in NC structure and environment lead to variations in 

the energetic spectra of the NCs. By measuring the ensemble PL spectrum, we end up taking a look at the 

sum of all NC spectra together (Figure 1.7). Ensemble broadening can be one of the most significant 
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sources of broadening in NC systems, contributing hundreds of meV in some systems.68 It is a significant 

synthetic challenge to create monodisperse, uniform NCs colloidally. 

 

Figure 1.7. Variations in NC structure and environment lead to a distribution of PL spectra (colored spectra). Ensemble 

PL spectra (dotted black spectra) is the sum of all individual NC PL spectra.  

Fine-Structure Splitting 

The origin of fine-structure splitting has been discussed in Section 1.2.2.4. Depending on the 

system, fine-structure splitting can contribute anywhere from 1 meV to 30 meV to colloidal NC PL line 

shapes.27,47,70 In Figure 1.8, a second fine-structure state grows in at 30K, broadening the line shape by 

approximately 4 meV. 

 

Figure 1.8. Three single InP NC spectra at 4K, 15K, and 30K. 

Spectral Diffusion 

Local fluctuations in the electric field surrounding NCs results in a Stark effect that shifts the energy 

of the NC PL tens of 𝜇eV to tens of meV across timescales ranging from picoseconds to seconds.58,71,72 

Figure 1.9a shows a narrow Lorentzian PL spectra jumping to different center emission energies as a result 

of the local fluctuations of the electric field in the environment. If someone were to take a PL spectrum 
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with a long integration time, they would see a broad Gaussian-like spectrum (Figure 1.9a, dotted-black) 

instead of the narrow Lorentzian PL spectrum. Figure 1.9b shows a series of PL spectra taken of a single 

ZnSe NC at 4K. The spectrum appears to jump to different energies over time. If a single PL spectrum was 

taken over a long period of time, the sum spectra would appear as a number of different peaks, possibly 

suggesting the emission is coming from multiple NCs. However, taking a series of PL spectra helps 

elucidate that this spectrum is indeed coming from a single NC that is affected by spectral diffusion. We 

can isolate specific frames of this series of spectra where the NC was spectrally stable and take a closer 

look at the PL spectrum (Figure 1.9c). We can see that the PL spectrum of this single ZnSe NC is actually 

quite narrow, and that if these ZnSe NCs could become more spectrally stable, they could make good 

candidates for quantum emitter applications in the future. 

 

Figure 1.9. a. Narrow Lorentzian PL (red) spectrum hopping to different emission energies. Over time, the sum PL 

spectrum sums to a broader Gaussian (dotted black). b. A series of individual spectra of a single ZnSe/ZnS NC at 4K. 

The series of spectra show that the single NC energy jumps around due to spectral diffusion. The series of spectra 

from frames 43-60 (within the red lines) are summed together to show c. a narrow, stable PL spectrum of a single 

ZnSe/ZnS NC. 

Exciton-Phonon Coupling 

 Exciton-phonon coupling is a broad term to describe the effect of vibrations in the NC lattice on 

the exciton. Exciton-phonon coupling can arise through inelastic or elastic phonon scattering.  

Inelastic phonon scattering involves the real emission or absorption of phonons as a result of the 

exciton coupling to the lattice vibrations (Figure 1.9a,b), characterized by the Huang-Rhys parameter73 and 

gives rise to phonon sidebands (replicas of the zero-phonon line, ZPL) seen in many QD systems (Figure 

1.9c,d).61,74–77 In the single InP NC system at 4K shown in Figure 1.9a,c, the excited exciton recombines 

through the ZPL transition, or through processes involving the emission of a number of phonons. At low 

temperature, there is not enough energy in the system for the NC lattice to move, meaning there are no 

phonons accessible to absorb. All transitions at low temperature result from the ZPL or from transitions 
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lower than the ZPL. Once the temperature is raised to 30K in Figure 1.9b,d, the exciton is able to absorb 

phonons, resulting in radiative recombination transitions that are higher than the ZPL.  

 

 

Figure 1.10. Ground and excited electronic states are approximated to be harmonic oscillators. a. At 4K, the energy 

of the system is low such that the exciton does not have enough energy to transition into higher vibrational states 

within the excited electronic state. All radiative transitions occur at the ZPL (green), or lower in energy than the ZPL 

(yellow, red). b. At 30K, the energy of the system is sufficient such that the exciton can absorb a phonon to transition 

to a higher vibrational state within the excited electronic state. Radiative transitions can now occur at the ZPL (green), 

lower in energy than the ZPL (yellow, red), and higher in energy than the ZPL (blue). c. PL spectrum of a single InP 

NC at 4K, superimposed with the ZPL transition (green), one-phonon emission line transition (yellow), and two-

phonon emission line transition (red). d. PL spectrum of a single InP NC at 30K, superimposed with the ZPL transition 

(green), one-phonon emission line (yellow), two-phonon emission line (red), and one-phonon absorption line (blue). 

Elastic phonon scattering, a mechanism of pure dephasing, involves the virtual emission and 

absorption of phonons. This process randomizes the phase of the electronic wavefunction, causing a loss of 

coherence and a broadening of the ZPL, but does not change the central emission energy.78 In the absence 

of elastic phonon scattering, the exciton remains in the ground vibrational state of the excited electronic 

state, undisturbed prior to radiatively recombining (Figure 1.11a). The exciton wavefunction remains in 

phase, leading to a coherent radiative recombination process (Figure 1.11c) that is narrow in its PL 
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spectrum (Figure 1.11e, solid green spectrum). As the temperature increases, the exciton becomes more 

susceptible to interactions with phonons. After the generation of the exciton but prior to its radiative 

recombination, the exciton may interact with many phonons. It may absorb some, emit some, absorb some 

more, and so on until the exciton ends up back at the ground vibrational state of the excited electronic state 

(Figure 1.11b). These transitions are considered virtual transitions since they do not contribute to the 

change in energy of the exciton when it radiatively recombines. However, each time one of these virtual 

transitions occurs, the phase of the exciton wavefunction is randomized. The more virtual transitions occur, 

the further the coherence is lost in the electronic wavefunction of the exciton (Figure 1.11d), and the 

broader the line width of the transition (Figure 1.11e, rainbow spectrum). 

 

Figure 1.11. Ground and excited electronic states are approximated to be harmonic oscillators. a. In the absence of 

elastic phonon scattering, the exciton remains in the ground vibrational state of the excited electronic state. Radiative 

recombination occurs through one transition. b. In the presence of elastic phonon scattering, the exciton can absorb 

and emit phonons virtually prior to the recombination of the exciton. c. Electronic wavefunction (red) maintains a 

constant phase throughout the lifetime of the exciton, resulting in fully coherent emission (green). d. As a result of the 

interactions of the exciton with phonons prior to its radiative recombination, the electronic wavefunction (red) gets 

randomized each time it interacts with one of the phonons (signified by dotted black lines). Coherence is lost as a 

result (green). e. Lorentzian PL spectra of the example system without elastic phonon scattering (narrow green PL 

spectrum) and with elastic phonon scattering (broad rainbow PL spectrum). 

Elastic and inelastic phonon scattering contribute significantly to the PL spectrum of colloidal NCs, 

particularly at elevated temperatures. Inelastic phonon scattering contributes anywhere from 5-30 meV in 

colloidal NC systems, depending on the degree of the phonon coupling and the energy of the dominant 

phonon modes. Elastic phonon scattering can contribute anywhere from 20 meV to hundreds of meV, 

depending on the system.  
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Chapter 2 of my thesis investigates the various line shape broadening mechanisms of InP NCs, determining 

the dominant mechanisms. 

1.3. Spectroscopic Techniques 

The spectroscopy of colloidal NC systems began with ensemble measurements. As synthetic 

methods improved, NC stability improved such that single NC spectroscopy became feasible. The next 

section of my introduction will cover the ensemble and single NC spectroscopic techniques that were crucial 

to completing the studies in my thesis. The Bawendi lab uses a collection of photon correlation techniques, 

taking advantage of the many ways in which the ‘photon stream’ can be analyzed. The following section 

will be a survey of spectroscopic techniques, excluding many of the nitty gritty details, but will hopefully 

sufficiently cover the broader concepts underlying each technique.  

1.3.1. Intensity Binning 

The photon stream can be manipulated in a number of ways. It can be binned on a linear timescale 

to observe how the PL intensity changes over the course of an experiment (Figure 1.12a). Figure 1.12b 

shows an example of a single InP NC intensity trace, tacking the PL intensity for a little over four hours. 

The intensity appears to jump between several positions over the course of the experiment. The inset of 

Figure 1.12b shows a zoomed in look at the intensity trace over a ~5 minute period. The intensity trace 

shows that the NC emits in a binary-like fashion. To be a little more quantitative, we can take a histogram 

of the histogram in Figure 1.12b to get the graph in Figure 1.12c. This figure shows that intensity is 

centered around three different intensities: a bright state (centered around 150), a dark state (centered around 

20), and a third state (centered around 75). The presence of a third state suggests that there may be more 

that is happening inside the NC other than binary blinking “on” and “off”. These middle states are often 

referred to as a “grey” state – not quite bright but not quite dark, and often is attributed to trion emission.79 

 

Figure 1.12. a. Illustration of a photon stream that is placed into linearly spaced bins. T1, T2, etc. make up the x-axis 

of an intensity trace. b. Intensity trace of a single InP NC at room temperature. The single NC exhibits PL intermittency 

into a “grey” and “off” state. Inset show a zoomed in picture of the intensity trace within the red box. c. Histogram 

plot representing the number of bins in b that have a specific intensity. According to this plot, the intensity from the 

single InP NC jumps between three intensities. 
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1.3.2. Photoluminescence Lifetimes 

Photoluminescence (PL) lifetimes record the histogram of time differences between the generation 

of the exciton and the recombination of the exciton. In an experiment, the creation and recombination of 

the exciton are quantified by recording the laser excitation pulse time and the photon arrival time at a single 

photon detector, respectively. The lifetime is sometimes denoted as 𝑔(1)(𝜏). Complexity can be added to 

the post-processing analysis of the lifetime by parsing the photon stream based on how many photons are 

detected by a single excitation pulse. We can parse the photon stream into one-photon events (Figure 

1.13a), two-photon events (Figure 1.13b), and three-photon events (Figure 1.13c). We can take another 

step further and pick out the first photon in an event to measure the biexciton or triexciton lifetime in the 

case of a two-photon event or a three-photon event, respectively (Figure. 1.13b,c). This method is generally 

referred to as the photon number resolved lifetime method 𝑃𝑁𝑅𝐿(𝑛,𝑚,𝑙)(𝜏), where 𝑛 tells us that we are 

looking at the photon stream of 𝑛-photon events, and 𝑚 and 𝑙 correspond to the indices of the photons 

involved in the photon time difference 𝜏. Figure 1.13d shows a Monte Carlo simulation demonstrating the 

power of the 𝑃𝑁𝑅𝐿 method to isolate the contributions of the exciton (X), biexciton (BX), and triexciton 

(TX) in the recombination dynamics in NC systems. In this case we can see that the X lifetime is 

significantly longer than the BX and TX lifetime, as a result of statistical scaling of the BX and TX lifetimes. 

 

Figure 1.13. Pulsed photon streams can be parsed into a. one-photon events, b. two-photon events, c. three-photon 

events, and so on. Within an n-photon event, every photon time difference with the excitation contributes to 𝑔(1)(𝜏), 

the lifetime without any post-processing. The photon streams can be selectively organized in a method called photon 

number resolved lifetimes (PNRL). The 𝑃𝑁𝑅𝐿(𝑛,𝑚,𝑙)(𝜏) allows us to selectively look at the exciton, biexciton, or 

triexciton lifetime in a photon stream where 𝑛 corresponds to the number of photons involved in the excitation event, 

and 𝑚 and 𝑙 correspond to the indices of the photons involved in the photon time difference 𝜏. For instance, 
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𝑃𝑁𝑅𝐿(3,0,1)(𝜏) looks at the photon time difference between the excitation pulse and the first photon in the three-photon 

event. In another example 𝑃𝑁𝑅𝐿(2,1,2)(𝜏) looks at the photon time difference between the first photon in a two-photon 

event and the second photon in a two-photon event. d. Monte Carlo simulation showing the 𝑃𝑁𝑅𝐿(2,1,2)(𝜏) (exciton 

(X) lifetime, black), 𝑃𝑁𝑅𝐿(2,0,1)(𝜏) (biexciton (BX) lifetime, red), and 𝑃𝑁𝑅𝐿(3,0,1)(𝜏) (triexciton (TX) lifetime, 

green). 

The measured lifetime 𝑔(1)(𝜏) can be a complex quantity that includes the radiative recombination 

of the exciton, the radiative recombination of multiexcitons, the radiative recombination of charged states, 

and nonradiative recombination. We can combine multiple methods of photon stream post-processing 

analysis to isolate these contributions. Figure 1.14a,b shows the intensity trace of a single InP NC being 

parsed into three distinct photon streams: “on” (shaded green), “grey” (shaded yellow), and “off” (shaded 

red). Monte Carlo simulations in Figure 1.14c demonstrate that there can be a difference between the bright 

and grey state emission in terms of its PL decay dynamics. Trion emission has been observed in several NC 

systems and will show up with a faster PL lifetime and a lower intensity of photon emission than the bright 

state. The off state is purely nonradiative which is often times much faster than the instrument response 

function of the single photon detector. 

 

Figure 1.14. a. Photon stream parsed between on (green), grey (yellow) and off (red) to do further analysis on parsed 

photon streams. b. Another histogram plot to identify cut off values to isolate photon streams. Monte Carlo simulation 

showing the lifetime of the on, grey, and off state photon streams. In this case, the on state (green) has a long lifetime, 

the grey state – simulated to be trion emission – has a faster lifetime, and the off state – simulated to be nonradiative 

emission – has a lifetime so fast that it is limited by the instrument response function (IRF) of the detector. 

1.3.3. CCD-based Photoluminescence Spectra 

Standard CCD-based PL spectroscopy is a core tool of the Bawendi lab. The basics of the 

spectrometer is shown in Figure 1.15a where the photon stream reflects off a grating into the CCD detector. 

Photon emission will reflect at a specific angle off of the grating, depending on the wavelength of the light. 

The positions on the CCD camera are calibrated such that it recognizes the wavelength of light depending 

on where it hits on the camera. PL spectroscopy provides us with insight on the energetic distribution of 

photon emission from our NC samples. For instance, Figure 1.15b shows the ensemble InP PL spectrum 

(black) and the PL spectrum of three single InP NCs (red) at room temperature. The single InP NC PL 
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spectra are considerably narrower than the ensemble PL spectrum suggesting NC polydispersity contributes 

significantly to the ensemble PL spectrum.  

 

Figure 1.15. a. Basic concept of a CCD-based spectrometer. A photon stream, comprised of photons with a distribution 

of wavelengths, enter a spectrometer where they reflect off of a grating at different angles depending on the wavelength 

of light. A histogram of the reflected photon stream is recorded at a CCD camera (often times 1024 x 1024 or 512 x 

512 pixels), providing information on the energy distribution of the photon emission. b. PL spectra of three single InP 

NCs (red) and the ensemble InP PL spectrum (black). 

1.3.4. Single NC Multiexciton Correlations 

We touched on the dynamic information that can be gained by correlating photons through the 

𝑃𝑁𝑅𝐿 method in Section 1.3.2. In this section, we will look at how photon correlations can be utilized to 

explore the quantum yield of multiexcitons, specifically the biexciton and triexciton. If we set up an 

experiment where a pulsed laser excites a single NC, and we send the NC emission through a Hanbury 

Brown and Twiss (HBT) configuration (Figure 1.16a), we can measure all the photon time differences 

between photons arriving at Detector 1 and Detector 2 (Figure 1.16b). In terms of the 𝑃𝑁𝑅𝐿 method, we 

are recording the 𝑃𝑁𝑅𝐿2,1,2(𝜏). Figure 1.16c shows a single InP NC second-order cross-correlation 𝑔𝑥
(2)

(𝜏) 

for photon time differences ranging from -1500 ns to 1500 ns. In this experiment, the repetition rate of the 

laser was set to 1 MHz – in another words an excitation pulse is sent every 1000 ns. Correlation counts in 

the center peak originate from photon pairs that emit within the same excitation pulse. These photon pairs 

are interpreted to be the biexciton-exciton photon pairs. Correlation counts in the side peak are from two 

single exciton photons one excitation pulse separated from one another. By taking the ratio of the integrated 

area of the center peak (shaded in green) and the integrated area of the side peak, we can determine the 

biexciton quantum yield (BXQY) (Equation 1.9). Detailed explanations are given elsewhere.80,81 

𝑔𝑥
(2)

(0)

𝑔𝑥
(2)

(𝑇𝑟𝑒𝑝)
=

𝐵𝑋𝑄𝑌

𝑋𝑄𝑌
           (1.9) 
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Figure 1.16. a. Hanbury Brown-Twiss optical setup for second-order correlation measurements. Following the 

excitation of a NC sample using a pulsed laser, NC photons travel through a 50:50 beamsplitter, arriving at one of the 

two avalanche photodiode detectors (APDs). Photon streams are recorded and analyzed in post-processing software. 

b. Illustration of a set of photon streams. Second-order cross-correlations, 𝑔𝑥
(2)

(𝜏), are a histogram of photon time 

differences 𝜏 of photons arriving at Detector 1 and Detector 2. c. Pulsed-𝑔𝑥
(2)

(𝜏) of a single InP NC at room 

temperature. The biexciton quantum yield can be determined by taking the ratio of the integrated area of the center 

peak (green) and the integrated area of the side peak (red). 

A similar correlation technique can be applied to quantify the triexciton quantum yield of single 

NCs. Instead of second-order cross-correlations, we now have to measure third-order cross-correlations 

𝑔𝑥
(3)

(𝜏). This is not feasible with the optical setup in Figure 1.16a because each single photon detector is 

only able to measure the arrival time of a single photon per excitation pulse. A modified HBT with four 

detectors is required to perform this measurement (Figure 1.17a). The 𝑔𝑥
(3)(𝜏1, 𝜏2) looks at photon time 

differences 𝜏1 between photons at Detector 1 and Detector 2 while simultaneously looking at photon time 

differences 𝜏2 between photons at Detector 2 and Detector 3. Since there are now two separate time 

difference variables, the resulting 𝑔𝑥
(3)(𝜏1, 𝜏2) is two-dimensional (2D). To determine the triexciton 

quantum yield, we look at the ratio of the integrated area of the center peak 𝑔𝑥
(3)(0,0) and the integrated 

area of the side peak 𝑔𝑥
(3)

(0, 𝑇𝑟𝑒𝑝) where 𝑇𝑟𝑒𝑝 is repetition time of the laser excitation (Equation 1.10). 

Center peak contributions to the 𝑔𝑥
(3)(𝜏1, 𝜏2) originate from the correlations between photons from the 

exciton, biexciton, and triexciton recombination, and side peak contributions originate from the correlations 
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between photons from the biexciton and exciton recombination from the same pulse, and a photon from 

another exciton recombination from the next subsequent pulse. Detailed explanations are given elsewhere.82 

𝑔𝑥
(3)

(0,0)

𝑔𝑥
(3)

(0,𝑇𝑟𝑒𝑝)
=

𝑇𝑋𝑄𝑌

𝑋𝑄𝑌
                       (1.10) 

 

Figure 1.17. a. Hanbury Brown-Twiss optical setup for third-order correlation measurements. Following the excitation 

of a NC sample using a pulsed laser, NC photons travel through two 50:50 beamsplitters, arriving at one of the four 

avalanche photodiode detectors (APDs). Photon streams are recorded and analyzed in post-processing software. b. 

Illustration of a set of photon streams. Third-order cross-correlations 𝑔𝑥
(3)(𝜏1, 𝜏2) are a histogram of photon time 

differences of photons arriving at Detector 1 and Detector 2 (𝜏1) and photon time difference of photons arriving at 

Detector 2 and Detector 3 (𝜏2). c. Monte Carlo simulation of a pulsed-𝑔𝑥
(3)(𝜏1, 𝜏2)experiment. The triexciton quantum 

yield can be determined by taking the ratio of the integrated area of the center peak (green circle) and the integrated 

area of the side peak (red peak). 

1.3.5. Photon Correlation Fourier Spectroscopy 

Photon-correlation Fourier Spectroscopy (PCFS) is an interferometric second-order correlation 

technique that draws a relationship between time-correlations, measured by a HBT configuration, with the 

energy-dependent interference from a Michelson interferometer (Figure 1.18a). PCFS enables access to 

energy information well beyond the time resolution of a standard CCD-based spectrometer (sub-

microsecond vs. tens of milliseconds. I will cover the basics of the PCFS derivation to make the connection 

between the time correlations and energetic interferometry clear. We start with the definition of the second-

order cross-correlation: 
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𝑔𝑥
(2)

(𝛿0, 𝜏) =
⟨𝐼𝑎(𝑡)𝐼𝑏(𝑡+𝜏)⟩

⟨𝐼𝑎(𝑡) ⟩⟨𝐼𝑏(𝑡+𝜏)⟩
        (1.11) 

𝐼𝑎(𝑡) is the intensity at detector 𝑎 at time 𝑡, 𝐼𝑏(𝑡 + 𝜏) is the intensity at detector 𝑏 at time 𝑡 + 𝜏, and 〈… 〉 

denotes a time average. Since we know the NC emission travels through a Michelson interferometer, we 

can rephrase the intensities to take into account the constructive and destructive interference through the 

interferometer. 

𝐼𝑎/𝑏(𝑡) =  
1

2
𝐼(𝑡)(1 ± 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿(𝑡))          (1.12) 

𝐼(𝑡) is the total intensity of the NC emission, 𝑠(𝜔, 𝑡) is the spectrum of the emitter, and 𝛿(𝑡) is the time-

dependent stage position of the Michelson interferometer. Inserting Equation 1.12 into Equation 1.11, we 

get Equation 1.13. 

𝑔𝑥
(2)(𝛿0, 𝜏) =

⟨𝐼(𝑡)𝐼(𝑡+𝜏)(1+𝐹𝑐𝑜𝑠[𝑠(𝜔,𝑡)]𝛿(𝑡))(1−𝐹𝑐𝑜𝑠[𝑠(𝜔,𝑡+𝜏)]𝛿(𝑡+𝜏))⟩

⟨𝐼(𝑡)(1+𝐹𝑐𝑜𝑠[𝑠(𝜔,𝑡)]𝛿(𝑡))⟩⟨𝐼(𝑡+𝜏)(1−𝐹𝑐𝑜𝑠[𝑠(𝜔,𝑡+𝜏)]𝛿(𝑡+𝜏))⟩
      (1.13) 

We now have a second-order cross-correlation that is dependent on intensity terms and spectral terms. We 

now need to find a way to isolate terms related to the NC spectrum and find a method to reasonably interpret 

the spectral terms. First, we note that time averages of first-order terms can be cancelled out, simplifying 

our function. 

𝑔𝑥
(2)

(𝛿0, 𝜏) =
⟨𝐼(𝑡)𝐼(𝑡+𝜏)⟩−⟨𝐼(𝑡)𝐼(𝑡+𝜏)𝐹𝑐𝑜𝑠[𝑠(𝜔,𝑡)]𝛿(𝑡)𝐹𝑐𝑜𝑠[𝑠(𝜔,𝑡+𝜏)]𝛿(𝑡+𝜏)⟩

⟨𝐼(𝑡)⟩⟨𝐼(𝑡+𝜏)⟩
     (1.14) 

Next, we factor out the intensity terms by assuming that intensity fluctuations are independent of the 

spectral fluctuations.  

𝑔𝑥
(2)

(𝛿0, 𝜏) =
⟨𝐼(𝑡)𝐼(𝑡+𝜏)⟩

⟨𝐼(𝑡)⟩⟨𝐼(𝑡+𝜏)⟩
(1 − ⟨𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿(𝑡)𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏)]𝛿(𝑡+𝜏)⟩)     (1.15)  

Now that the intensity terms are separated from the spectral terms, we recognize that the intensity terms are 

simply the definition of the second-order cross-correlation 𝑔(𝜏). 

𝑔𝑥
(2)(𝛿0, 𝜏) = 𝑔(𝜏)(1 − ⟨𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿(𝑡)𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏)]𝛿(𝑡+𝜏)⟩      (1.16) 

Isolating for the spectral term we get  

1 −
𝑔𝑥

(2)
(𝛿0,𝜏)

𝑔(2)(𝜏)
= ⟨𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿(𝑡)𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏)]𝛿(𝑡+𝜏)⟩      (1.17) 
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where 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿(𝑡)𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏)]𝛿(𝑡+𝜏) can be interpreted as the spectral correlation term 𝑝(𝜁, 𝜏), 

where 𝜁 is a new energy variable that represents the energy difference, analogous to the time difference 

variable 𝜏. The spectral correlation can also be thought of as the auto-correlation of the spectrum. 

𝑝(𝜁, 𝜏) =  〈∫ 𝑠(𝜔, 𝑡)𝑠(𝜔 + 𝜁, 𝑡 + 𝜏) 𝑑𝜔〉      (1.18) 

The last thing we must do is remove the time-dependence out of the evaluation of the Fourier transform. In 

reality, this last step is most of the derivation, but I will skip that and encourage the reader to look into more 

detailed explanations elsewhere.81 

1 −
𝑔𝑥

(2)
(𝛿0,𝜏)

𝑔(2)(𝜏)
=

1

2
𝐹𝑐𝑜𝑠[𝑝(𝜁, 𝜏)]𝛿0

       (1.19) 

Equation 1.19 is the final result we were looking for! The spectral correlation term can be constructed by 

measuring the second-order auto- and cross-correlation at a series of stage positions 𝛿0. 

 

Figure 1.18. a. Interferometer schematic. BS = beamsplitter, RR = retroreflector, Obj. = microscope objective. b. 

Dynamic doublet model PL system. c. Second-order auto-correlation 𝑔(2)(𝜏) (black) and the second-order cross-

correlation 𝑔𝑥
(2)(𝛿0, 𝜏) measured at the first three stage positions 𝛿0 of the simulated PCFS experiment. First stage 

position 𝑔𝑥
(2)(𝛿0, 𝜏) is dark red (bottom) and third stage position 𝑔𝑥

(2)(𝛿0, 𝜏) is light red (top). Dotted blue line signifies 

where the PCFS interferogram is measured. d. PCFS interferogram of the simulated PL system. First three data points 

are constructed from the equation 
1−𝑔𝑥

(2)
(𝛿0,𝜏)

𝑔(2)(𝜏)
, where the value for 𝑔𝑥

(2)(𝛿0, 𝜏) is extracted for the first, second, and 

third data point at the black, red, and green circles, respectively. e. PCFS spectral correlation 𝑝(𝜁, 𝜏) with a fine-

structure splitting energy 𝛥𝐸.  
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Let’s model a doublet PL spectrum as an example system to demonstrate how to perform a PCFS 

experiment (Figure 1.18b). To run a PCFS experiment, 𝑔𝑥
(2)

(𝛿0𝜏) and 𝑔(2)(𝜏) are measured at a series of 

stage positions 𝛿0 on the Michelson interferometer (Figure 1.18c). To build up the PCFS interferogram in 

Figure 1.18d, we compute 
1−𝑔𝑥

(2)
(𝛿0,𝜏)

𝑔(2)(𝜏)
 at a specified 𝜏 at each stage position 𝛿0 of the Michelson 

interferometer, indicated by the dotted blue line in Figure 1.18c. The relationship between the PCFS 

interferogram and the 𝑔𝑥
(2)

(𝛿0, 𝜏) is shown by the black, red, and green circles for the first, second, and 

third data points, respectively. For a doublet PL spectrum, the PCFS interferogram will exponentially decay 

with periodic oscillations related to the energy difference between the fine-structure states (Figure 1.18d). 

The final step is to perform an inverse Fourier transform of the PCFS interferogram to get out the PCFS 

spectral correlation. The resulting spectral correlation of the doublet is a triplet, with a splitting between the 

peaks that is related to the fine-structure splitting in the PL spectrum. We will discuss the interpretation of 

this result in a few paragraphs. 

 

Figure 1.19. a. Second-order auto-correlation (black) and second-order cross-correlations (red) for the first three stage 

positions of a PCFS experiment of a dynamic doublet. Dotted blue lines represent the times in which PCFS 

interferograms are constructed. b. PCFS interferograms of the dynamic doublet system at three values of 𝜏. c. PCFS 

spectral correlations of the dynamic doublet system at three values of 𝜏. d. Second-order auto-correlation (black) and 

second-order cross-correlations (red) for the first three stage positions of a PCFS experiment of a static doublet. Dotted 

blue lines represent the times in which PCFS interferograms are constructed. b. PCFS interferograms of the static 

doublet system at three values of 𝜏. c. PCFS spectral correlations of the static doublet system at three values of 𝜏. 
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To appreciate the power of PCFS as a spectroscopic tool, let’s look at two doublet systems: the 

dynamic doublet and the static the doublet. The dynamic doublet emits from one fine-structure state for a 

period of time before switching to emission from the other fine-structure state. The switching frequency is 

set to 500 𝜇s in this example system. The static doublet has no switching frequency. Any given emission 

event has equal probability of emitting from either fine-structure state. We can track the dynamics of these 

two systems by measuring the photon correlations at difference photon time differences 𝜏. PCFS 

interferograms and spectral correlations are constructed from the auto- and cross-correlations for the 

dynamic doublet (Figure 1.19a-c) and static doublet (Figure 1.19d-f). The dynamic doublet PCFS 

interferogram decays exponentially at short 𝜏, and is the convolution of an exponential decay with a periodic 

oscillation at long 𝜏 (Figure 1.19b). The static doublet PCFS interferogram is the convolution of an 

exponential decay with a periodic oscillation at all 𝜏 (Figure 1.19e). Taking the Fourier transform of these 

PCFS interferograms, we observe the dynamic doublet PCFS spectral correlation evolve from mostly 

singlet character to mostly triplet character from short 𝜏 to long 𝜏 (Figure 1.19c). Again, we do not observe 

a change in the spectral correlation of the static doublet as a function of 𝜏 (Figure 1.19f).  

 

Figure 1.20. Illustration of a a. dynamic doublet and b. static doublet photon stream, and a cartoon construction of 

the spectral correlation at short and long 𝜏. 

A helpful way to interpret the PCFS spectral correlation is to frame it as a histogram of energy 

differences. I like to think of the spectral correlation by putting myself in the position of a photon in the 

photon stream and consider what photons I would see close in time to me versus what photons I would see 

far in time to me. For the dynamic doublet, the photon stream will look like a string of photons emitted 

from one energy, and then a string of photons from the other energy (Figure 1.20a). If I was a lower energy 

photon (dark green), I would only see similar energy photons close to me (short 𝜏), contributing a count to 
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the 0 meV peak. Similarly, if I was a higher energy photon, (light green), I would also only see similar 

energy photons close to me, contributing another count to the 0 meV peak. The resulting spectral correlation 

at short 𝜏 is a singlet. Now let’s consider photons separated further in time (long 𝜏). If I was a low energy 

photon, I will sometimes see photons with the same energy and sometimes see photons with an energy that 

is 5 meV higher (meaning the energy difference will be -5 meV). We observe a contribution to the spectral 

correlation at 0 meV and at -5 meV. Inversely, the high energy photon will see photons separated far in 

time that are similar in energy and 5 meV lower in energy, contributing counts to the 0 meV peak and the 

5 meV peak, respectively. The resulting spectral correlation at long 𝜏 is a triplet. We have successfully 

constructed the (very cartoonish) spectral correlation for the dynamic doublet. The static doublet will be 

similar to the dynamic doublet, but in this case, there is no dynamic switching frequency (Figure 1.20b). 

Every emission event has a 50% chance of being a lower energy photon and a 50% chance of being a high 

energy photon. That means that the spectral correlation will be a triplet across all 𝜏. PCFS is a powerful 

tool that allows us to probe the dynamic spectral information of NC systems with time resolution well-

beyond the capabilities of CCD-based spectroscopic techniques.  

The dynamic doublet versus static doublet is one simple example of the power of PCFS. PCFS can 

probe spectral dynamics including fine-structure switching frequencies and spectral diffusion.83 

Additionally, PCFS can measure spectral line widths with extremely high energy resolution and time 

resolution, quantifying a lower bound of the exciton coherence time – an important metric for quantum 

emitter applications.12,70 PCFS is a foundational technique to the Bawendi lab, mathematically intriguing 

and an amazing tool to probe the dynamic photophysical properties of NC systems. 

1.3.6. Average Single NC Correlations in Solution  

Single NC spectroscopy is a powerful tool that is capable of directly probing colloidal NCs systems 

while avoiding ensemble averaging of the photophysical properties. Single-NC spectroscopy also suffers 

from user selection bias, where the brightest and most stable NCs are investigated more than the NCs that 

are dimmer or intermittingly blinking on and off. Using photon correlations, we are able to disentangle 

correlation contributions from the ensemble – 𝑔𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒
(2)

(𝜏) – and correlation contributions from single 

NCs – 𝑔𝑠𝑖𝑛𝑔𝑙𝑒
(2)

(𝜏)) (Figure 1.21a). Colloidal NC diffusion through the excitation focal volume is on the 

order of single milliseconds. That means that photon pairs that are closer in time than the diffusion time 𝜏𝐷 

of the NC have a nonzero probability of coming from the same NC, contributing to 𝑔𝑠𝑖𝑛𝑔𝑙𝑒
(2)

(𝜏). The lower 

the concentration of the solution, the higher the ratio of 𝑔𝑠𝑖𝑛𝑔𝑙𝑒
(2)

(𝜏) to 𝑔𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒
(2)

(𝜏) contributions. Figure 

1.21b shows the second-order cross-correlation of three InP NC solutions with varying concentrations. We 
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typically refer to the second-order cross-correlation in solution as the “FCS trace”, where FCS stands for 

fluorescence correlation spectroscopy.  

 

Figure 1.21. a. There are two contributions to second-order correlations 𝑔(2)(𝜏) in solution: ensemble contributions 

𝑔𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒
(2)

(𝜏) and single-NC contributions 𝑔𝑠𝑖𝑛𝑔𝑙𝑒
(2)

(𝜏). 𝑔𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒
(2)

(𝜏) contributions occur by taking the photon time 

difference between two photons emitted by two separate NCs. 𝑔𝑠𝑖𝑛𝑔𝑙𝑒
(2)

(𝜏) contributions occur by taking the photon 

time difference between two photons emitted by the same NC. b. Three solution-𝑔(2)(𝜏) of InP solutions at different 

concentrations 〈𝑁〉, which is the average NC occupancy. At short 𝜏, the correlations are comprised of both 𝑔𝑠𝑖𝑛𝑔𝑙𝑒
(2)

(𝜏) 

and 𝑔𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒
(2)

(𝜏) contributions. At long 𝜏, the correlations are comprised of only 𝑔𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒
(2)

(𝜏) contributions. The 

lower the concentration of the solution sample, the higher 𝑔(2)(𝜏) will be at short 𝜏 because the 𝑔𝑠𝑖𝑛𝑔𝑙𝑒
(2)

(𝜏) to 

𝑔𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒
(2)

(𝜏) will be higher. c. Exciton (X) and biexciton (BX) lifetime in solution. Inset shows the 𝑃𝑁𝑅𝐿(2,0,1)(𝜏) 

(red) and the ensemble background 𝑃𝑁𝑅𝐿𝑏𝑔
(2,0,1)

(𝜏) (black) to isolate the single NC lifetime contributions. d. Solution 

biexciton quantum yield measurement of InP NCs. e. Solution triexciton quantum yield measurement of ZnSe NCs. f. 

Solution photon correlation Fourier spectroscopy (sPCFS) measurement of InP NCs showing a narrower average 

single NC line width (solid red) compare do the ensemble line width (black). 

The average occupancy 〈𝑁〉 can be determined by determining the height of the FCS trace. For instance, 

the height of the green curve is ~1.25, so we compute the average NC occupancy  〈𝑁〉 =
1

1.25−1
= 4. The 

higher the FCS trace, the lower the concentration of the sample, and the less the ensemble signal contributes 

at short 𝜏. As 𝜏 increases in the FCS traces in Figure 1.21b, the correlation slowly approaches a value of 

1, meaning the light is uncorrelated. At long 𝜏, we assume that correlation counts are only coming from 

𝑔𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒
(2)

(𝜏). In other words, it is extremely unlikely that a NC will emit a photon at some time, diffuse 
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away, and then one second later, re-enter the focal volume and emit another photon. This assumption is 

crucial to all of our single NC solution techniques. It allows us to subtract out the 𝑔𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒
(2)

(𝜏) at short 𝜏 

because we can isolate 𝑔𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒
(2)

(𝜏) at long 𝜏. 

 Because correlation experiments compile a photon stream over a long period of time, many NCs 

contribute to 𝑔𝑠𝑖𝑛𝑔𝑙𝑒
(2)

(𝜏). As a result, the single NC information from a solution correlation experiment is 

an average single NC result. This is advantageous when trying to learn about the sample as a whole, 

avoiding user selection bias. Additionally, single NC solution techniques are necessary if single NC stability 

is poor. The Bawendi Lab has developed and uses a number of solution correlation techniques. We are able 

to perform 𝑃𝑁𝑅𝐿s in solution, resolving the average single NC biexciton lifetime in solution by subtracting 

out the ensemble contributions (Figure 1.21c), We are able to measure the average single NC biexciton 

quantum yield (Figure 1.21d) and average single NC triexciton quantum yield in solution (Figure 1.21e), 

and we are able to measure the average single NC line width in solution (Figure 1.21f). All of these 

techniques were crucial to my research during my PhD. Detailed explanations for the solution 𝑃𝑁𝑅𝐿,84 

solution BXQY,85 solution TXQY (Chapter 4), and solution PCFS are given elsewhere.86  

1.4. Experimental Conditions 

I want to dedicate some space to my introduction to discuss some of the details of experimental 

work that do not necessarily get talked about in theses. Many details get passed down through hands-on 

mentorship, but sometimes that mentorship isn’t there. Sometimes certain information gets lost after many 

years of it getting passed down. I will try my best to write down all the small, and sometimes weird details 

that were important in my experimental work that hopefully can be helpful to some poor graduate student 

wondering how the hell they are supposed to do a certain measurement, or why something isn’t working. 

This is not a complete list, but hopefully can be the start of a comprehensive list of tips and tricks for future 

graduate students to expand on.  

1.4.1. Sample Preparation 

1.4.1.1. Water is Your Worst Enemy 

Water is your worst enemy!!! Before my time, the Bawendi Lab primarily studied CdSe NCs at the 

single NC level. CdSe NCs are extremely stable and resistant to a lot of atmospheric effects. Single NC 

samples could be prepared outside of the glovebox! I started my PhD trying to study single InP NCs. I, and 

many of my lab mates struggled to consistently prepare InP NC samples for long single NC studies. We 

continued to test sample conditions, prepping all samples in the glovebox. It took a little over a year before 

we really appreciated how much even the smallest amount of trace water affected InP NCs. We learned that 

even anhydrous solvents were too hydrated! We began adding molecular sieves to our solutions which 
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made a major difference in NC stability. Molecular sieves must be activated before adding to solutions. To 

activate, place a 20 mL vial’s worth of molecular sieves into a flask and pull vacuum on it for 24 hours at 

70 °C. After 24 hours, turn off the heat and pull vacuum for 48 hours. After 72 hours, pump the sealed flask 

of molecular sieves into the glovebox, and use as needed.  

1.4.1.2. Glovebox Health 

At a similar time as when I was struggling to prepare stable single InP NC samples, we had a major 

cleanup of the lab space, including the four-hand glovebox where all single NC sample preparation is done. 

At the same time, other members of the lab were working on preparing single CsPbBr3 and were having 

similar issues. There were many old samples, solvents, and precursors from past projects. We could identify 

some of the chemicals from old lab mates that had just graduated, but many of the chemical’s origins were 

unknown. After doing a major cleanout, and adding molecular sieves to our samples, single NC samples 

immediately started behaving well. Ensuring the glovebox space is well-maintained, removing unnecessary 

chemicals when possible, is more important than I initially thought. 

 Other glovebox practices were adopted throughout my time. We now make sure all chemicals are 

stored in Tupperware, and that chemicals always have electrical tape around the cap to prevent solvent 

leaks. We also routinely check for leaks in the glovebox, keeping an eye on the H2O and O2 ppm sensors 

and the glovebox pressure. If the glovebox pressure is abnormally high or low, it may be the result of a leak 

somewhere in the glovebox, maybe from the tubing, from a puncture in one of the gloves, or an imperfect 

seal on one of the antechamber doors.  

1.4.1.3. Sample Variation 

There have been moments in lab when single NC sample preparation is going so well. In these 

moments, we are able to synthesize new NC samples, prepare them for measurements, and routinely get 

stable single NCs. Then, out of nowhere, the procedure won’t work anymore. The same preparation that’s 

been working for months stops working and we can’t figure out what has changed. If the glovebox is 

functioning fine, it may be a result of new chemicals. If we are making NCs in the lab, we end up going 

through precursor chemicals fast. Each time chemicals are purchased from a company, expect there to be 

batch-to-batch variation. There may be some impurity introduced into the precursor that poorly affects the 

NC stability, or some impurity that isn’t there anymore that poorly affects the NC stability! Anytime things 

suddenly stop working, don’t be down on yourself, it’s probably not you. I wanted to add this little section 

so anyone who is struggling understands that some of the science around single NC sample preparation is 

beyond our control. Some of it really is just trial and error. Not all! But some of it.  
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1.4.2. Single Nanocrystal Measurements 

1.4.2.1. Cleaning Substrates 

Cleaning substrates is a necessary step to ensuring NC stability on solid substrates. I am going to 

include the cleaning procedure for glass and quartz substrates below: 

 Cleaning Glass Substrates: 

1. Place glass substrates to be cleaned into a Teflon substrate holder. Place the 

substrate holder into a beaker. 

2. Fill the beaker with toluene just above the point where all the glass substrates are 

submerged. Place the beaker in the sonicator and sonicate for 10 minutes. 

3. Pour out toluene in a liquid waste container. Repeat step 2, replacing toluene with 

acetone. 

4. Pour out acetone in a liquid waste container. Repeat step 2, replacing acetone with 

isopropyl alcohol. 

Cleaning Quartz Substrates: 

1. Place quartz substrates to be cleaned into a Teflon substrate holder. Place the 

substrate holder into a beaker. 

2. Fill the beaker with ethyl acetate just above the point where all the glass substrates 

are submerged. Place the beaker in the sonicator and sonicate for 10 minutes. 

3. Pour out ethyl acetate in a liquid waste container. Repeat step 2, replacing ethyl 

acetate with toluene. 

4. Pour out toluene in a liquid waste container. Repeat step 2, replacing toluene with 

acetone. 

5. Pour out acetone in a liquid waste container. Repeat step 2, replacing acetone with 

isopropyl alcohol. 
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1.4.2.2. Polymer 

Polymer helps to encapsulate single NC samples, partially preventing air exposure and contact with 

the substrate. The polymer I have predominantly used is poly(methyl methacrylate) (PMMA). Other 

polymers include polystyrene and cadmium oleate. Cadmium oleate is not necessarily a polymer but acts 

somewhat to encapsulate NCs within small cadmium oleate bubbles. 

1.4.2.3. Spin Conditions 

The way we prepare single NC samples on glass or quartz substrates is by spin casting a dilute film 

onto a substrate. In my experience, I have found that more concentrated samples are needed for quartz 

substrates compared to glass substrates to get a good single NC distribution. Something about the quartz 

substrate isn’t as “sticky” for InP NCs. I also found that using a slow ramp up speed before the fast spin 

casting speed is helpful for the quartz substrate samples. 

1.4.3. Solution Measurements  

1.4.3.1. Capillaries 

Capillaries are a great way to hold a small amount of dilute NC sample in solution. I have used 

capillaries from VitroCom (part #5012-50). The path length is 0.1 mm, the width is 2 mm, the wall is 0.1 

mm, and the length of the capillary is 50 mm. We have a capillary holder that was custom made by the 

Machine Shop at MIT designed to hold these particular capillaries.  

1.4.3.2. Polymer 

It is sometimes difficult to get the NC sample to diffuse well in solution. You may come across 

issues where there are very little counts within the capillary except in a very small focal plane of the 

capillary. I have found that adding polymer to the solution helps solve this issue. I’m not exactly sure what 

happens in this situation, but it’s almost as if all the NCs get stuck to the walls of the capillary. 

1.4.3.3. Background Emission 

Background emission is important to remove from any experiment. In solution correlation 

experiments, it lowers your FCS trace height, making it look like the sample is more concentrated than it 

really is. The sample will have the same number of single NC correlations, but the signal to noise ratio of 

the measurement will have to be stronger in order to get a reasonable dataset. Unique to solution 

measurements, Raman emission from the solvent becomes an issue if the sample is very dilute and the 

excitation power is relatively high. It’s good to perform a baseline scan of the Raman emission of your 

solvent (including polymer and any other additives) to see if there is any way to filter out the Raman 

emission through shortpass or longpass filters. For some reason, I have found that PMMA polymer 

enhances the Raman emission of toluene.  
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1.4.3.4. Pinhole  

Solution correlation measurements are very particular to the pinhole alignment. The pinhole can be 

tuned very slightly, such that the counts do not change, but the FCS trace height will change dramatically. 

When I am touching up the pinhole alignment with a dilute sample, I not only look for what pinhole 

alignment gives optimal counts, but also which alignment gives the highest fluctuating signal. Fluctuating 

signal indicates a more dilute solution. If I can find a pinhole position that has optimal counts AND optimal 

fluctuations, that will give me the best signal to noise ratio to the experiment at.  
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Chapter 2 

Narrow Intrinsic Line Widths and Electron-Phonon Coupling of 

InP Colloidal Nanocrystals 

 

This section is adapted and reproduced from 

⊥D. B. Berkinsky, ⊥A. H. Proppe, H. Utzat, C. J. Krajewska, W. Sun, T. Šverko, J. J. Yoo, H. Chung, Y. 

Won, T. Kim, E. Jang, M. G. Bawendi 

“Narrow Intrinsic Line Widths and Electron-Phonon Coupling of InP Colloidal Quantum Dots” 

ACS Nano 2023, 17, 3598-3609 

© 2023 American Chemical Society (ACS) 
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2.1. Abstract 

InP quantum dots (QDs) are the material of choice for QD display applications and have been used as active 

layers in QD light-emitting diodes (QDLEDs) with high efficiency and color purity. Optimizing the color 

purity of QDs requires understanding mechanisms of spectral broadening. While ensemble-level 

broadening can be minimized by synthetic tuning to yield monodisperse QD sizes, single QD line widths 

are broadened by exciton−phonon scattering and fine-structure splitting. Here, using photon-correlation 

Fourier spectroscopy, we extract average single QD line widths of 50 meV at 293 K for red-emitting 

InP/ZnSe/ZnS QDs, among the narrowest for colloidal QDs. We measure InP/ ZnSe/ZnS single QD 

emission line shapes at temperatures between 4 and 293 K and model the spectra using a modified 

independent boson model. We find that inelastic acoustic phonon scattering and fine-structure splitting are 
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the most prominent broadening mechanisms at low temperatures, whereas pure dephasing from elastic 

acoustic phonon scattering is the primary broadening mechanism at elevated temperatures, and optical 

phonon scattering contributes minimally across all temperatures. Conversely for CdSe/CdS/ZnS QDs, we 

find that optical phonon scattering is a larger contributor to the line shape at elevated temperatures, leading 

to intrinsically broader single-dot line widths than for InP/ZnSe/ZnS. We are able to reconcile narrow low-

temperature line widths and broad room-temperature line widths within a self-consistent model that enables 

parametrization of line width broadening, for different material classes. This can be used for the rational 

design of more spectrally narrow materials. Our findings reveal that red-emitting InP/ZnSe/ZnS QDs have 

intrinsically narrower line widths than typically synthesized CdSe QDs, suggesting that these materials 

could be used to realize QDLEDs with high color purity. 

2.2. Background 

Colloidal quantum dots (QDs) are solution-processable semiconductor nanocrystals that can exhibit 

high photoluminescence (PL) quantum yield,23,51 tunable emission energies,87,88 and narrow linewidths,89 

making them well suited for light-emitting applications such as biological imaging,90,91 LEDs,23,92 and 

lasers.93 InP QDs are the material of choice due to their perceived lower environmental toxicity compared 

to Cd- and Pb-based QDs like CdSe, PbS, and lead halide perovskites.94,95 Won et al. recently demonstrated 

the synthesis of highly symmetrical InP/ZnSe/ZnS (core/shell/shell)  QDs, using hydrofluoric acid to etch 

out oxidative surfaces of the InP, yielding near unity photoluminescence quantum yield (PLQY), 

electroluminescent LEDs with external quantum efficiencies nearing 21.4%, and operating lifetimes of a 

million hours.23 These dots also exhibit the narrowest reported full-width at half-maximum (FWHM) for 

InP QDLEDs of 35 nm (~110 meV), but this remains broader than for well-studied CdSe analogues.96 For 

light-emitting applications, narrow emission profiles are desirable to maximize color purity. 

The QD emission line shape is broadened at the single dot level and the ensemble level.71,83 Ensemble 

broadening typically results from QD size and morphology polydispersity as well as a distribution in local 

chemical environments, whereas single QD broadening results from phonon scattering68,74, fine-structure 

splitting between band-edge states,75,97,98 and spectral diffusion. Inelastic phonon scattering involves the 

real emission or absorption of phonons as a result of the exciton coupling to the lattice vibrations, 

characterized by the Huang-Rhys parameter,73 and gives rise to phonon sidebands (replicas of the zero-

phonon line, ZPL) seen in many QD systems.73–77,98 Elastic phonon scattering, a mechanism of pure 

dephasing, involves the virtual emission and absorption of phonons. This process randomizes the phase of 

the electronic wavefunction, causing a loss of coherence and broadening of the ZPL, but does not change 

the central emission energy.78 Fine-structure splitting of the electronic states within the QD occurs as a 

result of the electron-hole exchange and crystal field and shape anisotropies.55 Minimizing the spectral 
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linewidth of QDs requires understanding the contributions of these mechanisms to spectral broadening. 

Single QD broadening mechanisms are obfuscated at the ensemble level where dot-to-dot variations 

average out any single QD broadening effects. This can be overcome using nonlinear optical spectroscopy 

techniques,99,100 or by studying isolated single QDs. 

In this study, we sought to characterize the contributions of fine-structure splitting, phonon scattering, 

and ensemble broadening on the emission linewidth of InP/ZnSe/ZnS QDs using solution photon-

correlation Fourier spectroscopy, temperature-dependent single QD spectroscopy, and simulating the 

emission spectra with a model that accounts for acoustic and optical phonon inelastic/elastic phonon 

scattering and fine-structure splitting. 

 

Figure 2.1. (a) InP/ZnSe/ZnS (core/shell/shell) heterostructure. (b) Relative band energies and fine-structure splitting 

(𝛥𝐹𝑆𝑆) in the InP band structure. The states |𝐺⟩, |𝐹⟩, and |𝐴⟩ are ground, forbidden excited (𝐹 = ±2), and allowed 

excited (𝐹 = ±1), respectively. (c) ensemble absorption (dashed black) and emission (solid red) for three 

InP/ZnSe/ZnS QDs with varying ZnSe shell sizes. The 1R QDs have the thinnest ZnSe shell and the 3R QDs have the 

thickest shell. (d) X-ray diffraction (XRD) patterns of the 1R, 2R, and 3R QDs. 

Figure 2.1.  

The InP/ZnSe/ZnS QDs under investigation (synthesized as described in Won et al.) have a 3.3 nm 

InP core, varying ZnSe inner shell thicknesses, and a 0.15 nm ZnS outer shell (Figure 2.1a).23 These dots 

exhibit near unity PLQY, and narrow ensemble PL (PLmax of 625 nm, FWHM of 35 nm). Following the 

naming convention in Won et. al., we refer to QDs with ZnSe shell thicknesses of 1.8, 2.7, and 3.5 nm as 

1R, 2R, and 3R, respectively.23 These QDs are known to exhibit a type-I band alignment.101 In similar 

InP/ZnSe systems, it has been shown that the lowest energy exciton state is optically forbidden (𝐹 = ±2), 

with an optically allowed state (𝐹 = ±1) several meV above  (Figure 2.1b).98 
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Ensemble PL and absorption spectra are similar for the 1R, 2R, and 3R QDs (Figure 1c). Samples 

were prepared by diluting QDs by a factor of 100 in toluene. Absorption spectra were measured with an 

Agilent Technologies Cary 5000 UV-VIS-NIR spectrophotometer PL spectra were measured using a 

HORIBA Jobin Yvon Fluoromax 3 spectrofluorometer. The ensemble PL spectrum is not affected by the 

varying ZnSe shell sizes, and the PL linewidths are consistent for all three QD sizes — summarized in 

Table 2.1. To investigate any differences in strain or crystal structure between 1R – 3R QDs, we collected 

X-ray diffraction (XRD) patterns. XRD patterns were obtained using a multipurpose diffractometer 

(PANalytical X'Pert Pro) equipped with a 1.8 kW Cu-Kα X-ray source aligned in a Bragg-Brentano 

geometry. For sample preparation, a concentrated solution of QDs was dropcast onto a zero-diffraction 

plate (MTI Corp., Si crystal, P-type B-doped). The peaks in the XRD patterns for the 1R – 3R QDs are 

highly similar, showing no obvious shifts or changes in relative amplitude, except for the 1R pattern 

sometimes exhibiting an additional peak depending on the sample preparation, identified as a ZnO 

contaminant (Figure 2.1d).  

 

Figure 2.2. Room temperature intensity traces of single QDs for the (a, b) 1R (c, d) 2R, and (e, f) 3R. Insets of (b, 

d, f) expand a smaller region of each intensity trace to show more clearly the on-off times. 
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This oxidation contaminant was consistent with the fact that the 1R QDs proved to generally be less stable 

— single QD emission from 1R QDs exhibited more fluorescence intermittency (blinking) compared to 2R 

and 3R QDs — see Figure 2.2.  

Since we observed no obvious optical or structural differences between the 1R – 3R QDs, and due to 

the greater stability of the 3R QDs, the data shown in the main text is for 3R QDs, and similar results from 

1R and 2R QDs can be found in the Supporting Information. 

2.3. Room Temperature Characterization of the InP QD Line Shape 
We next assessed the ensemble linewidth and average single QD linewidth using solution photon-

correlation Fourier spectroscopy (sPCFS) at room temperature (RT). sPCFS uses interferometric second-

order intensity correlations (denoted as 𝑔(2)(𝜏) and 𝑔×(𝛿, 𝜏) for the auto-correlation and cross-correlation, 

respectively, where 𝜏 is the difference in arrival times between photon pairs) to draw a relationship between 

time-correlations, measured by a Hanbury-Brown and Twiss (HBT) interferometer, with the energy-

dependent interference from a Michelson interferometer (Figure 2.3d).  

In this solution-phase experiment, a small number of QDs are probed in the microscope focal volume 

(typically between 5–20 dots). These QDs will diffuse out of this volume on the order of µs or ms with a 

characteristic diffusion time 𝜏𝑑𝑖𝑓𝑓. Photon pairs with 𝜏 < 𝜏𝑑𝑖𝑓𝑓 have a higher probability of emitting from 

the same QD. By measuring how 𝑔×(𝛿, 𝜏) changes with respect to 𝑔(2)(𝜏) as a function of the 

interferometer stage position (Figure 2.3a), an interferogram is constructed. The PCFS interferogram is 

proportional to the Fourier transform of the autocorrelation of the QD emission spectrum.102 If we assume 

two things: (1) there are no single QD contributions to correlations when 𝜏 >> 𝜏𝑑𝑖𝑓𝑓 and (2) the ensemble 

correlations are independent of 𝜏, then we can isolate the single QD contributions to the correlations at short 

𝜏 by subtracting out the ensemble contributions, which we determine from long 𝜏. In this way, two 

interferograms are constructed, one for the ensemble component at long 𝜏, and one for the average single 

QD component at short 𝜏. The single QD interferogram is an average of all QDs diffusing in and out of the 

focal volume, avoiding user selection bias affecting typical single QD measurements. Detailed explanations 

of sPCFS are given elsewhere.68,102  

sPCFS was performed using a home-built confocal microscope. Samples were prepared by diluting 

QDs by a factor of 20,000 in toluene with poly(methyl methacrylate) (PMMA) (1% wt/wt, Sigma) and 

trioctylphosphine (TOP) (0.01% v/v, Sigma) and adding the solution to a capillary. The solution sample 

was excited with a continuous wave laser source (center wavelength 488 nm, Coherent) for sPCFS 

experiments. The excitation laser was focused onto the solution sample using a water immersion objective 

(Nikon 60x, NA 1.2), and the sample emission was directed to a 1:1 telescope (8 cm focal length with a 
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100 µm pinhole), and laser light was filtered using a tunable longpass filter (Semrock Versachrome TLP01-

628). The filtered emission was directed to a Michelson interferometer with a 50/50 beamsplitter. The path 

length difference was controlled by a nanopositioning linear stage (Aerotech). The path length difference 

was adjusted to discrete stage positions (81 stage positions) using step increments of ~620 nm, and the 

center stage position being at maximum coherence. At each stage position, the path length difference is 

dithered with a triangle wave-from over 600 nm with a frequency of 0.05 Hz. Sample photon emission was 

detected using silicon avalanche photo diodes (APDs) (SPCM CD 3764 H, Excelitas) and recorded using a 

Time Tagger 20 with a 34 ps jitter (Swabian). We calculated the second-order cross- and auto-correlations 

using home-built software (MATLAB) at each stage position to determine the ensemble and single QD 

spectral correlations. We refer to previous publications for detailed descriptions of sPCFS and data analysis. 

Experimental sPCFS results for a solution of 3R QDs are shown in Figure 2.3b. We observe the 

single QD interferogram decays at longer interferometer path differences than the ensemble, indicative of 

a longer coherence time, or narrower linewidth. To fit the experimental interferograms, we assumed the 

underlying ensemble PL spectrum to be a single Gaussian, whereas the underlying single QD PL spectrum 

is better fit with the sum of two Gaussians that have the same center emission energy. The ensemble and 

single QD interferograms are fit to Equations 2.2 and 2.4, respectively. Reconstructed PL spectra, extracted 

from the interferogram fits, are plotted in Figure 2.3c.  

The spectral correlation 𝑝(ζ, τ) is equivalent to the autocorrelation of the QD spectrum in the 

absence of spectral dynamics. We assume the ensemble PL spectrum fits reasonably to a single Gaussian 

(Equation 2.1) with a center frequency 𝜔0, an amplitude 𝐴, and width 𝑐. The resulting interferogram 

(Equation 2.2) is also a single Gaussian related to the ensemble spectrum.  

𝐴𝑒
−

(𝜔−𝜔0)2

2𝑐2           (2.1) 

2𝜋𝐴2𝑐2𝑒−4𝜋2𝑐2𝛿2
         (2.2) 

We assume the single QD PL spectrum fits to a sum of two Gaussians (Equation 2.3) with center frequency 

𝜔0, amplitudes 𝐴 and 𝐵, and widths 𝑐 and 𝑑. The resulting single QD interferogram is the sum of three 

Gaussians related to the properties of the single QD spectrum.  

𝐴𝑒
−

(𝜔−𝜔0)2

2𝑐2 + 𝐵𝑒
−

(𝜔−𝜔0)2

2𝑑2         (2.3) 

2𝜋(𝐴2𝑐2𝑒−4𝜋2𝑐2𝛿2
+ 𝐵2𝑑2𝑒−4𝜋2𝑑2𝛿2

+ 2𝐴𝐵𝑐𝑑𝑒−2𝜋2𝛿2(𝑐2+𝑑2))                  (2.4) 
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We can fit the experimental ensemble and single QD interferograms to Equations 2.2 and 2.4, respectively, 

reconstructing their PL spectra using the parameters from the fit. 

 

Figure 2.3. (a) The auto-correlation (𝑔(2)(𝜏), dashed black line) and the cross-correlation (𝑔×(𝛿, 𝜏), solid blue) at 

different stage positions (dark-to-light blue corresponds to early-to-later stage positions). (b) Solution interferogram 

composed of a series of auto- and cross-correlations at a photon time difference τ=10 μs. The ensemble interferogram 

fit assumes a single Gaussian for the underlying PL spectrum, and the single QD interferogram fit assumes a sum of 

two Gaussians. (c) Reconstructed spectra for the ensemble (solid black), average single QD (solid red), and 

components of the single QD fit (Comp. 1 and 2) based on the fit to the experimental interferograms. (d) Interferometer 

schematic. BS = beamsplitter, RR = retroreflector, Obj. = microscope objective. (e) Three 3R single QD spectra at 

room temperature (red) compared to the ensemble spectrum (black). 

Interferograms and reconstructed PL spectra for the 1R and 2R QDs are plotted in Figure 2.11. 

Average single QD linewidths are summarized in Table 2.1. The ensemble and average single QD 

linewidths extracted from sPCFS are 115 and 50 meV, respectively (𝜏 = 10 µs). The observed ensemble 

FWHM (𝜎𝑜𝑏𝑠), the single QD FWHM (𝜎𝑆), and the FWHM of the (assumed to be Gaussian) energy 

distribution due to ensemble broadening (𝜎𝐸) are related by 𝜎𝑜𝑏𝑠 = √𝜎𝐸
2 + 𝜎𝑆

2, which gives 𝜎𝐸 of 104 

meV, indicating a wide size and energy distribution of QDs. The 1R and 2R ensemble broadening is 

summarized in Table 2.1. This suggests that optimization of the synthetic procedure to achieve a narrower 

size distribution can further increase the color purity of InP/ZnSe/ZnS QD devices. Following the 

production of this work, another study was published suggesting the ensemble broadening can also arise 

from core-shell interface inhomogeneity. 69 
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The narrow average single QD linewidth from sPCFS were corroborated by PL spectra of single QDs. 

The QDs were highly diluted and spin-coated onto glass coverslips for RT measurements in a protective 

poly(methyl methacrylate) matrix — see below paragraphs for detailed sample preparation and 

measurement details. Representative spectra are shown in Figure 2.3e, where we measured values of 

FWHM ranging from 38 - 63 meV. The single QD PL consistently exhibit an additional lower amplitude 

shoulder at lower energies, resulting in asymmetric line shapes. Single QD PL for 1R and 2R QDs are 

shown in Figure 2.12. These lower amplitude shoulders are consistent with the additional broad base we 

observe in the spectra generated by fitting the single dot interferogram in sPCFS. Note that the fitted spectra 

from sPCFS are symmetric, since they are derived from the Fourier transform of the autocorrelation of the 

single dot spectrum, which is by definition symmetric. 

No. 0 coverslips (Goldseal) were cleaned in four steps: (1) coverslips were sonicated for 15 minutes in 

Hellmanex detergent solution (2% v/v in DI water), (2) sonicated for 15 minutes in pure DI water, (3) 

sonicated for 15 minutes in acetone, and (4) immersed in boiling isopropanol for 15 minutes and dried 

under N2 flow before being transferred into an N2 glovebox with <0.1 ppm H2O and O2. In the same 

glovebox, InP/ZnSe/ZnS QDs were diluted 50,000-fold in anhydrous toluene (Sigma) with PMMA (1% 

wt/wt, Sigma) and TOP (0.1% v/v, Sigma). 40 µL of the diluted sample was spin-coated at 8,000-rpm with 

1000 rpm/s acceleration for 60s onto previously mentioned clean No. 0 coverslips. The spun samples were 

then encapsulated against 25x75x1 mm microscope slides using epoxy (Devcon 5-minute epoxy, VWR). 

The encapsulated coverslips were allowed to cure for at least 2 hours before removed from the glovebox, 

ready for experiments.  

Room temperature single QD spectroscopy was performed using a home-built confocal microscope. A 

pulsed laser source (center wavelength 532nm, repetition rate 1 MHz, 100 ps pulse duration, Picoquant 

LDH-P-F-A-530-B) was directed into an oil-immersion objective (Nikon 100x, NA 1.45) and the sample 

emission was directed to a 1:1 telescope (8 cm focal length with a 100 µm pinhole), and laser light was 

filtered using a tunable longpass filter (Versachrome TLP01-628, Semrock). The sample was mounted 

below the objective, and the galvo mirror angles were adjusted electronically for confocal raster scans. For 

intensity trace measurements, the filtered sample emission was directed to a 50:50 plate beamsplitter 

(BSW10, Thorlabs), and each output is reflected off a cold mirror with a cut-off above 700 nm (M254C00, 

Thorlabs) before being focused onto two APDs (SPCM CD 3764 H, Excelitas). Photon arrival times were 

then recorded using a Time Tagger 20 with a 34 ps jitter (Swabian). For single QD spectrum measurements, 

the filtered sample emission was directed to a spectrometer setup where a monochromator (sp2500i with a 

150 g/mm grating, Princeton Instruments) diffracts the light. Spectra were recorded with a CCD camera 

(ProEM512B, Princeton Instruments). 
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2.4. Temperature-Dependent InP Line Shape 

It is challenging to identify which line shape broadening mechanisms contribute to the asymmetry in 

the single QD line shape at RT, as there are several mechanisms that convolve with one another at elevated 

temperatures. To gain insight into the asymmetry and single QD broadening contributions to the emission 

line shape, we measured the PL spectra of several single InP/ZnSe/ZnS QDs at temperatures ranging from 

4K to 293K. The PL spectra for 3 different single 3R QDs from 4K – 220K are shown in Figure 2.4a-c. 

Low temperature spectra from 4K – 30K for the 1R – 3R QDs are shown in Figure 2.4d-f to show the fine-

structure splitting more clearly. 

Quartz substrates (MTI corp, optical grade) were cleaned in a similar process as the No. 0 coverslips 

for room temperature single QD sample preparation. Samples were diluted 50,000-fold in anhydrous 

toluene (Sigma) with PMMA (5% wt/wt, Sigma) and TOP (0.1% v/v, Sigma). 20 µL of the diluted sample 

was spin-coated in a three-spin speed process: (1) 500-rpm with 100 rpm/s acceleration for 5s, (2) 1,000-

rpm with 200 rpm/s acceleration for 5s, and (3) 6,000-rpm with 1000 rpm/s for 60s. To avoid extended 

exposure to atmosphere, the samples were quickly transferred from an inert atmosphere container onto the 

platform of a 4K closed cycle liquid helium cryostat (Cryostation, Montana Instruments), which was 

immediately placed under vacuum. 

Cryogenic temperature single QD spectroscopy was performed using a home-built confocal 

microscope. A continuous wave laser source was used (center wavelength 532nm, Laser Quantum Ventus-

MPC6000) for single QD spectrum measurements and a pulsed laser source (center wavelength 532nm, 

repetition rate 0.125 MHz, 100 ps pulse duration, Picoquant LDH-P-FA-530B) for PL lifetime 

measurements. Excitation laser was focused onto the sample using an air-immersion objective (Zeiss 

Epiplan-Neofluar 100x, NA 0.90) and the sample emission was directed to a 1:1 telescope (8 cm focal 

length with a 50 µm pinhole), and laser light was filtered using a tunable longpass filter (Versachrome 

TLP01-628, Semrock). For single QD spectra, filtered single QD emission was directed to a spectrometer 

setup were a monochromator (spi2500i with a 300g/mm grating, Princeton Instruments) diffracts the light. 

Spectra were recorded with an EMCCD camera (ProEM512B, Princeton Instruments). Resolution of the 

spectrometer-camera setup was 0.9 meV. For single QD PL lifetimes, filtered single QD emission was 

directed to a Michelson interferometer where the variable path was set beyond the coherence length of the 

emitter to ensure interference would not affect the measurement. Photon streams were detected by two 

APDs (AQRH-16, Excelitas) and recorded in a time-tagged mode (T3 mode) using a HydraHarp400 

(Picoquant). 
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Figure 2.4. (a-c) Three single 3R QD spectra from 4K – 220K. The higher energy peak growing in at 15K and 30K is 

identified as the allowed state transition. Fringes on the lower energy side of the spectra (between ~1920 and 1970 

meV) result from EM gain applied across the CCD camera used to collect the spectra. (d-f) 4K – 30K spectra expanded 

for the 3R QDs to show fine-structure more clearly. 

At 4K, these spectra show a sharp zero-phonon line (ZPL) accompanied by a pronounced lower energy 

shoulder, which is identified as the acoustic phonon sideband from the inelastic acoustic phonon scattering 

occurring due to the deformation potential;73,103 similar line shapes have been observed in other QD 

systems.77,104–108 PL spectra as a function of temperature for 1R and 2R QDs are shown in Figure 2.16. 

Similar measurements were performed for CdSe/CdS/ZnS QDs in Figure 2.18. Contributions from the 

acoustic phonon sideband extend out to ~20 meV from the ZPL in some QDs.  The broader and lower 

amplitude peaks ~42 meV and ~39 meV lower in energy than the ZPL corresponds to the inelastic scattering 

of the exciton with two optical phonon modes: the longitudinal optical (LO) and transverse optical (TO) 

phonons of the InP core.74 We assign the remaining peak centered ~28 meV lower in energy than the ZPL 

to the inelastic scattering of the LO and TO ZnSe phonons. Inelastic optical phonon scattering is attributed 

to the Fröhlich coupling mechanism, where an LO phonon creates an electric field that the atoms within the 

crystal lattice respond to. The more polar the nature of the lattice, the stronger the Fröhlich coupling.109,110 

The optical deformation potential is another coupling mechanism responsible for the smaller TO phonon 

sideband in InP QDs.111 However, we will focus our discussions on the Fröhlich coupling mechanism as 

the LO phonons contribute more significantly to the inelastic optical phonon scattering. The phonon replicas 
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take the shape of the ZPL, with an intensity that reflects the strength of the exciton-phonon coupling 

(Huang-Rhys parameter) and the phonon occupation number at the given temperature. 

Inelastic scattering of phonons involves the real emission or absorption of phonons, resulting in a 

phonon sideband on the lower energy side of the ZPL (phonon emission) or the higher energy side of the 

ZPL (phonon absorption).73 In the case of phonon emission, the exciton gives some of its energy to the 

lattice, emitting a phonon, leaving the radiative recombination of the exciton at a lower energy than the 

ZPL. In phonon absorption, an existing phonon within the QD interacts with the exciton promoting the 

exciton to a higher vibrational state. The exciton radiatively recombines in this higher vibrational state 

meaning the emission is at a higher energy than the ZPL. At 4K, the acoustic phonon sideband is only 

visible on the lower energy side of the ZPL, corresponding to the real emission of acoustic phonons during 

radiative recombination. There is a small probability of phonon occupation of these modes at low 

temperatures, and so phonon absorption is suppressed, causing the higher energy side of the ZPL to instead 

be narrow. With increasing temperature, we observe a growth of the higher energy shoulder of the ZPL, 

consistent with increasing acoustic phonon occupation and phonon absorption. As the temperature increases 

above 30K, the ZPL and phonon replicas broaden and overlap as a result of elastic phonon scattering (pure 

dephasing). As the temperature increases, so does the phonon occupation and therefore the elastic scattering 

processes which leads to a broadening of the ZPL and phonon replicas. 

2.5. Fine Structure 

At 4K, single 3R QD emission proved to be spectrally stable, exhibiting minimal blinking and spectral 

diffusion over many minutes (Figure 2.5a), suggesting that spectral diffusion on the seconds to minutes 

timescale contributes minimally to the observed linewidths. Spectral diffusion contributions on faster 

timescales (sub-ms) can be investigated using single QD PCFS, and will be the subject of future studies — 

see Chapter 3. The PL of the 1R QDs was more likely to diffuse or blink off entirely under excitation, 

suggesting the additional ZnSe shell thickness of the 2R and 3R helps to increase emissive and spectral 

stability (Figure 2.14).  

Upon increasing the temperature to 15K and 30K, a second peak grows in at higher energy, which we 

identified as the 𝐹 = ±1  allowed state (A), indicating the ZPL at 4K arises from the 𝐹 = ±2  forbidden 

state (F). The higher energy peak grows in intensity with higher temperatures as A becomes thermally 

populated. This direct observation of both the A and F states has been observed previously for CdSe QDs 

at similar temperatures.97 
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Figure 2.5. (a) Spectral stability of the ZPL at 4K as a function of time. (b) Temperature-dependent lifetimes in a 

dilute film of QDs. (c) Long component of the lifetimes in (b) as a function of temperature fit to Eq. 2.5 to extract the 

average fine-structure state energy splitting. 

These observations suggest a band-edge electronic structure highly similar to that of CdSe QDs, a 3-

level system (Figure 2.5c inset) wherein above bandgap excitation creates an exciton that can thermalize 

into the A or F state. Excitons in the A state can undergo allowed radiative recombination into the ground 

state, or enter the F state. The A state can be thermally repopulated from F, introducing a set of coupled 

rate equations that can be rearranged to express the overall temperature-dependent PL lifetime as:  

𝛤𝑡𝑜𝑡 =
1

𝜏𝑡𝑜𝑡
=

1

𝜏𝐹
(

1

1+𝑒

−∆𝐸
𝑘𝐵𝑇

) +
1

𝜏𝐴
(

1

1+𝑒

∆𝐸
𝑘𝐵𝑇

)                    (2.5) 

where 𝜏𝐹 and 𝜏𝐴 are the lifetimes of the forbidden and allowed state, respectively, ∆𝐸 is the energy splitting 

between the two states,  𝑘𝐵 is the Boltzmann constant, 𝜏𝑡𝑜𝑡 is the long component of the measured lifetime, 

and 𝛤𝑡𝑜𝑡 is the decay rate of the system. Such a 3-level model has been verified by Brodu et al. for InP/ZnSe 

QDs using the above equation.98 We perform a similar analysis here, at the ensemble level, for the 

InP/ZnSe/ZnS QDs.  Ensemble PL lifetimes from thin films of QDs at 4K – 293K were measured (Figure 

2.5b) and fit (Figure 2.5c) to Equation 2.5, yielding average fine-structure splitting energies of 4 meV for 

the 3R QDs. Similar measurements were performed on the 1R and 2R QDs (Fig. S7). Results are 

summarized in Table 2.1. This energy splitting is consistent with the energy splitting we observe in single 

QD low temperature PL spectra, which supports our assignment of the higher energy ZPL as the allowed 

𝐹 = ±1 state. 

2.6. Independent Boson Model 

From these spectra, we can identify several mechanism that contribute to broadening of the single QD 

line shape: pure dephasing from elastic phonon scattering that gives rise to a Lorentzian ZPL; spectral 

diffusion that adds Gaussian broadening to the ZPL;112 fine-structure splitting; and inelastic scattering with 

acoustic and optical phonons. We sought to model the emission line shapes in order to characterize the 
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magnitude of each single QD broadening contribution to the overall linewidth as a function of temperature. 

The influence of phonons on the absorption and emission line shapes of chromophores can be described in 

the time- or frequency-domain by assuming a model for the two-time correlation function that describes 

the fluctuations of the electronic energy gap – typically a correlation function corresponding to a phonon 

bath comprised of a discrete set of a harmonic oscillators.112 Through the fluctuation-dissipation theorem, 

this can be cast into a frequency-domain spectral density, 𝐽(𝜔), which describes the coupling strength 

between the optical transition and a given phonon mode of frequency 𝜔𝑖.  

In order to account for phonon scattering in the spectral lineshape, we model the PL spectra in the 

frequency-domain using a modified independent boson model (IBM) 73. IBMs have been used previously 

to describe acoustic phonon coupling in QD systems,77,105,106 and we extend the model here to also account 

for coupling to optical phonons and both the A and F  fine-structure states simultaneously. To ensure the 

generality of our model to other QD systems, we additionally measured temperature-dependent single QD 

spectra for CdSe/CdS/ZnS (core/shell/shell) QDs. 

While analytical solutions of the emission line shape in the frequency domain are typically intractable 

for a given 𝐽(𝜔), we can instead discretize 𝐽(𝜔) and treat the acoustic phonon sideband and optical phonon 

sideband as a series of replicas of the ZPL, whose coupling strengths (i.e. the amplitudes of these replicas 

in the spectrum) are determined by 𝐽(𝜔). We use the following spectral densities 𝐽(𝜔): 

𝐽(𝜔)𝐼𝑛𝑃 = 𝐽𝑎1
(𝜔) + 𝐽𝑎2

(𝜔) + 𝐽𝐼𝑛𝑃−𝐿𝑂(𝜔) + 𝐽𝐼𝑛𝑃−𝑇𝑂(𝜔) + 𝐽𝑍𝑛𝑆𝑒−𝐿𝑂/𝑇𝑂(𝜔)        (2.6) 

    𝐽(𝜔)𝐶𝑑𝑆𝑒 = 𝐽𝑎3
(𝜔) + +𝐽𝐶𝑑𝑆𝑒−𝐿𝑂/𝑇𝑂(𝜔) + 𝐽𝐶𝑑𝑆−𝐿𝑂/𝑇𝑂(𝜔)                    (2.7) 

The InP/ZnSe/ZnS total spectral density is described by two acoustic spectral densities — 𝐽𝑎1
(𝜔) and 

𝐽𝑎2
(𝜔) — and by three optical spectral densities — 𝐽𝐼𝑛𝑃−𝐿𝑂(𝜔), 𝐽𝐼𝑛𝑃−𝑇𝑂(𝜔), 𝐽𝑍𝑛𝑆𝑒−𝐿𝑂/𝑇𝑂(𝜔) 

corresponding to the InP longitudinal optical (LO) phonon, the InP transverse optical (TO) phonon, and the 

ZnSe LO/TO phonon modes, respectively. The CdSe/CdS/ZnS total spectral density is described by one 

acoustic spectral density — 𝐽𝑎3
(𝜔) — and two optical spectral densities — 𝐽𝐶𝑑𝑆𝑒−𝐿𝑂/𝑇𝑂(𝜔), 𝐽𝐶𝑑𝑆−𝐿𝑂/𝑇𝑂(𝜔) 

corresponding to the CdSe LO/TO phonon modes and the CdS LO/TO phonon modes, respectively. The 

acoustic spectral densities are described by Equation 2.8  

𝐽𝑎𝑗
(𝜔) = ∑ 𝛿(𝜔𝑖 − 𝜔)𝑁

𝑖=1 𝜆𝑗𝜔𝑖𝑒
−𝜔𝑖/𝜔𝑐𝑗          (2.8) 

where 𝜆𝑗 and 𝜔𝑐𝑗
 are the coupling strength and the cutoff frequency of the jth acoustic spectral density. The 

InP/ZnSe/ZnS QDs the acoustic phonon sideband is fit to two spectral densities since, in contrast to other 

QD systems,73 we found that one spectral density alone could not account for the entire acoustic band. The 

InP acoustic spectral density is broad and contains many phonon modes that can add or subtract from one 
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another to create even more phonon modes.113 The CdSe/CdS/ZnS acoustic phonon sidebands were fit to a 

single spectral density. We found Ohmic spectral densities to be suitable to obtain good fits to our data.114 

In the InP/ZnSe/ZnS QD spectra, we observe that the optical phonon replicas are broader than the 

ZPL, suggesting a distribution of the optical phonon energies, which has been observed in GaAs single 

QDs.115 To account for this, we modelled the optical phonons for the InP/ZnSe/ZnS and CdSe/CdS/ZnS 

QDs as Gaussian distributions, rather than as single discrete ZPL replicas, using the following form: 

𝐽𝑜(𝜔) = ∑ 𝛿(𝜔𝑖 − 𝜔)𝑁
𝑖=1 𝑆𝑜𝑒

−
(𝜔𝑖−𝜔𝑜)

2

𝜎𝑜               (2.9) 

where 𝑆𝑜, 𝜔𝑜, and 𝜎𝑜 are the coupling strength (Huang-Rhys parameter), phonon energy, and the Gaussian 

FWHM of optical phonon 𝑜, respectively. We use three different phonon modes in the model for 

InP/ZnSe/ZnS: InP-LO at 42 meV, InP-TO at 38.5 meV, and a single peak to account for the mixed ZnSe-

LO and ZnSe-TO phonons at 28 meV. We use two different optical modes in the model for CdSe/CdS/ZnS: 

CdSe-LO/TO at 26 meV, CdS-LO/TO at 36 meV. 

Using a discretized vector of frequencies 𝜔 that spans ±60 meV, the IBM model creates phonon 

replicas (initially as delta functions) at each frequency whose amplitudes are determined by 𝐽(𝜔) and 

weighted by Bose-Einstein statistics that account for phonon occupation and phonon number (multi-phonon 

processes) (eq. M8), creating the asymmetry between higher and lower energy replicas around the ZPL, 

corresponding to phonon absorption and emission.  

𝑊𝑝,𝑖 = (
𝑛𝑖+1

𝑛𝑖
)

𝑝

2
𝑒−𝐽𝑖(2𝑛+1)𝐼𝑝[2𝐽𝑖√𝑛𝑖(𝑛𝑖 + 1)]       (2.10) 

where 𝑛𝑖 = [𝑒
ћ𝜔𝑖
𝑘𝑏𝑇 − 1]

−1

is the Bose-Einstein distribution and 𝐼𝑝[𝑧] is the imaginary argument Bessel 

function. The A and F  ZPLs are then generated as Voigt lineshapes116 – a product of a Lorentzian to account 

for pure dephasing from elastic phonon scattering, and a Gaussian to account for any spectral diffusion – 

where the amplitude of the higher energy A state is also weighted by a temperature-dependent Bose-Einstein 

distribution. Both ZPLs are convolved with their own acoustic phonon sidebands, and then finally 

convolved with their own optical phonon sidebands to obtain the spectrum (Equation 2.11) 

∑ 𝑊𝑝1
… 𝑊𝑝𝑁

𝛿(ℎ𝑣 − 𝐸0 + 𝑝1ћ𝜔1 + ⋯ + 𝑝𝑁ћ𝜔𝑁)∞
𝑝1…𝑝2

                   (2.11) 

We measured emission spectra as a function of temperature and fit the line shapes to the modified 

IBM using a gradient-descent least-squares fitting algorithm. We first fit the spectra at 4K using floating 

parameters for 𝜆𝑗 and 𝜔𝑐𝑗
 of the acoustic phonons, and for 𝑆𝑜 and 𝜎𝑜 of the optical phonons. The parameters 

are then tightly constrained except for the Lorentzian linewidth of the ZPL, assuming no temperature 
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dependence in the Huang-Rhys parameters for the acoustic and optical phonons. The remaining 

temperature-dependent growth of the acoustic and optical phonon sidebands in the fit enters only through 

Bose-Einstein statistics (Equation 2.10). 

 

Figure 2.6. (a, d) Spectral density of phonon modes for representative InP/ZnSe/ZnS and CdSe/CdS/ZnS single QDs, 

respectively. The acoustic (red) and optical (blue) phonon modes can be summed together into an overall spectral 

density 𝐽(𝜔) (black line). (b, e) Single QD PL spectra for the same QDs and fits from the IBM separated into the 

individual components contributing to the overall line shape at 4K and (c, f) 30K. 

Examples of 𝐽(𝜔) generated from fits to spectra of single InP/ZnSe/ZnS and CdSe/CdS/ZnS QDs are shown 

in Figure 2.6a,d, highlighting the individual constituent spectral densities for the acoustic and optical 

phonons. The Huang-Rhys parameter is calculated as the overall integrated area for each spectral density. 

Since our modified IBM separately generates each component of the emission lineshape, we can isolate 

each contribution to the total FWHM including the forbidden and allowed state ZPLs, their respective 

acoustic phonon sidebands, the optical phonon sidebands, and contributions from pure dephasing. The 

overall PL spectra, the isolated ZPL, acoustic sideband, and optical phonon components of a single 3R InP 

QD and a CdSe/CdS/ZnS QD are shown in Figure 2.6b,c and Figure 2.6e,f at 4K and 30K, respectively. 

We can clearly resolve the individual components of both 𝐹 and 𝐴 states in the InP 3R QD (Figure 2.6c), 

but only see one ZPL in the CdSe/CdS/ZnS QD (Figure 2.6e,f). The fine-structure splitting is expected to 

be similar for similarly sized InP and CdSe cores since the II-VI and III-V electronic structure is the same.55 

We posit that the lack of fine structure in CdSe/CdS/ZnS QD emission indicates we are observing emission 

from the trion state, which has no exchange interaction to split the excited state.117,118  
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2.7. Deconvoluting the Temperature Dependent InP QD Line Shape  

Spectra at temperatures ranging from 4K to 220K, and fits using the modified IBM, are shown in Figure 

2.7e,f. Single 1R, 2R, and 3R QD spectra with fits are plotted in Figure 2.16, and single CdSe/CdS/ZnS 

QD spectra with fits are plotted in Figure 2.18. We find that our model is able to generate excellent fits to 

the spectra across the entire temperature range, and we track the contributions to the full FWHM from the 

acoustic phonon sideband, the fine-structure splitting, the optical phonon sideband, and the ZPL as a 

function of T (Figure 2.8a-d).  

 

Figure 2.7. Line shape of a 3R QD at 15K separated into the individual components. (a) contribution from the 

forbidden F state ZPL (shaded black). (b) contribution from the forbidden F state ZPL and acoustic phonon sideband 

(PSB) (shaded red). (c) contribution from the forbidden F state ZPL, acoustic PSB, and the optical PSB (shaded blue). 

(d) contribution from the forbidden F state ZPL, acoustic PSB, optical PSB, and the allowed A state ZPL, acoustic 

PSB, and optical PSB. (e) Overall line shape at 15K broken down into all the individual components from the F and 

A states. 

We chose to quantify the contributions from each individual component of the line shape in an iterative 

process. First, we calculated the FWHM of the forbidden F state (𝐹𝑊𝐻𝑀𝑍𝑃𝐿) in Figure 2.7a. Next, we 

calculated the FWHM of the F state acoustic phonon sideband (PSB) convolved with the ZPL 

(𝐹𝑊𝐻𝑀𝑍𝑃𝐿+𝐴𝑐) in Figure 2.7b. Next, we calculated the FWHM of the F state acoustic PSB and optical 

PSB convolved with the ZPL (𝐹𝑊𝐻𝑀𝑍𝑃𝐿+𝐴𝑐+𝑂𝑝) in Figure 2.7c. Finally, we calculate the FWHM of the 

F state acoustic PSB and optical PSB convolved with the ZPL plus the allowed A state acoustic PSB and 

optical PSB convolved with the ZPL, or in other words, the full line shape FWM (𝐹𝑊𝐻𝑀𝑓𝑢𝑙𝑙) in Figure 
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2.7d. We assigned the contributions to the overall line shape from the pure dephasing, the acoustic PSB, 

the optical PSB, and fine structure in equations (2.12)-(2.15): 

𝑃𝑢𝑟𝑒 𝐷𝑒𝑝ℎ𝑎𝑠𝑖𝑛𝑔 = 𝐹𝑊𝐻𝑀𝑍𝑃𝐿                     (2.12) 

𝐴𝑐𝑜𝑢𝑠𝑡𝑖𝑐 𝑃𝑆𝐵 =  𝐹𝑊𝐻𝑀𝑍𝑃𝐿+𝐴𝑐 − 𝐹𝑊𝐻𝑀𝑍𝑃𝐿       (2.13) 

        𝑂𝑝𝑡𝑖𝑐𝑎𝑙 𝑃𝑆𝐵 = 𝐹𝑊𝐻𝑀𝑍𝑃𝐿+𝐴𝑐+𝑂𝑝 − 𝐹𝑊𝐻𝑀𝑍𝑃𝐿+𝐴𝑐        (2.14) 

          𝐹𝑖𝑛𝑒 𝑆𝑡𝑟𝑢𝑐𝑢𝑟𝑒 𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔 = 𝐹𝑊𝐻𝑀𝑓𝑢𝑙𝑙 − 𝐹𝑊𝐻𝑀𝑍𝑃𝐿+𝐴𝑐+𝑂𝑝       (2.15) 

We note the FWHM of the ZPL at 4K is limited by the resolution of the spectrometer (~0.9 meV). For 

the 3R InP QD, inelastic acoustic phonon scattering, fine-structure splitting, and the ZPL contribute similar 

amounts to the linewidth at low temperature (Figure 2.8a,b). Inelastic acoustic phonon scattering 

contributions to the linewidth increase and saturate at 65K, contributing less than 5 meV to the linewidth at 

elevated temperatures. A sudden jump in the overall linewidth around 15K to 30K can be attributed to the 

growth of the A fine-structure state. There is negligible contribution from inelastic optical phonon scattering 

across all temperatures, likely a result of the type-I heterostructure of InP/ZnSe/ZnS and the less polar 

nature of the III-V InP. Elastic phonon scattering contributions to the linewidth increases with temperature 

according to Equation 2.16 

Γ(𝑇) = Γ0 + γ (e
ℏ𝜔𝑐

𝑘𝑏𝑇⁄
− 1)

−1

       (2.16) 

where Γ0 is the zero-temperature linewidth, 𝜔𝑐 is the energy of the phonon mode, and γ is the coupling 

strength to the phonon mode. The ZPL is the largest contributor to the spectral linewidth in the 3R QDs at 

elevated temperatures, and since Equation 2.16 fits well to the ZPL linewidth as a function of temperature, 

we conclude that elastic phonon scattering is the dominant line broadening mechanism for the 3R QDs at 

elevated temperatures.119 The energy of the phonon mode contributing to elastic phonon scattering in the 

QD in Figure 2.8a is 𝜔𝑐 = 2.3 meV suggesting pure dephasing of the ZPL occurs only through acoustic 

phonons. The LO/TOInP phonons are high in energy and therefore require higher temperatures for the elastic 

optical phonon scattering process to become thermally active. Additional 1R, 2R, and 3R QD FWHM vs. 

temperature plots are shown in Figure 2.17. The strength of the inelastic phonon scattering is determined 

by the Huang-Rhys parameter, 𝑆, which for our discretized spectral densities is simply calculated by 

summing over the spectral densities for each component, 𝑆 = ∑ 𝐽𝑖
𝑁
𝑖=1 . For this representative 3R dot, we 

observe the acoustic phonons have higher inelastic scattering strengths than the optical phonons with 𝑆 = 

0.96, 0.11, and 0.06 for the acoustic phonons, LO/TOInP, and LO/TOZnSe, respectively. Values of 𝑆 are 

summarized for the 1R, 2R, and 3R QDs in Table 2.2.  From these extracted values, we observe some small 
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differences between the 1R, 2R, and 3R QDs, where the 1R QDs appear to have the strongest coupling to 

phonons. 

 

Figure 2.8. FWHM as a function of temperature of (a) 3R and (b) CdSe/CdS/ZnS single QDs separated into the 

contributions from inelastic acoustic phonon coupling, inelastic optical phonon coupling, fine-structure splitting 

(FSS), ZPL and the fit to the pure dephasing within the ZPL– (a) 𝛾 = 3.2, 𝜔𝑐 = 2.3, 𝛤0 = 2.05 (b) 𝛾1 = 0.67, 𝜔𝑐1
 = 0.5, 

𝛾2 = 100.0, 𝜔2 = 26.9, 𝛤0 = 2.55. Fraction of the full line shape contributed from acoustic phonons, optical phonons, 

and the ZPL of a (c) 3R and (d) CdSe/CdS/ZnS QD. Single QD PL spectra (solid lines) as a function of temperature 

with IBM fits (dotted black) for a (e) 3R QD and (f) CdSe/CdS/ZnS QD. 

Tracking the line shape of CdSe/CdS/ZnS as a function of temperature, the ZPL linewidth 

dominates across all temperatures. The largest difference between InP/ZnSe/ZnS and CdSe/CdS/ZnS QDs 

comes from the optical phonon scattering: for the CdSe/CdS/ZnS QDs, optical phonons contributes 

significantly through both inelastic and elastic scattering (Figure 2.8c,d,f). Additional CdSe FWHM vs. 

temperature plots are shown in Figure 2.19. The larger optical phonon scattering due to the more polar 

nature of CdSe and the quasi-Type II heterostructure in CdSe/CdS/ZnS causes the inelastic optical phonon 

sideband to contribute ~20 meV to the overall linewidth at elevated temperatures. We posit that the sharp 

increase in the ZPL component of the linewidth at 180K results from elastic scattering of the LO/TOCdSe 

phonons, whose occupation numbers are sufficiently high at these temperatures, in addition to the elastic 

scattering of acoustic phonons that arises at lower temperatures.120  

For this representative CdSe/CdS/ZnS dot, we observe the inelastic phonon scattering of the 

acoustic and optical phonons are similar with 𝑆 = 0.63, 0.39, and 0.10 for the acoustic phonons, LO/TOCdSe, 

and LO/TOCdS, respectively. The LO/TOCdSe and LO/TOCdS phonon sidebands are similar to those observed 
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in other studies of CdSe/CdS QDs.121,122 Compared to 𝑆 extracted from the InP dot, we observe that the 

inelastic scattering strength for acoustic phonons is ~0.5x lower in CdSe, whereas for optical phonons it is 

~1.6 - 3.5x stronger (by comparing LO/TOCdSe and LO/TOCdS with LO/TOInP and LO/TOZnSe). Overall, the 

less polar nature of III-V InP QDs compared to CdSe, and the lesser electron-hole wavefunction spatial 

difference in the Type-I InP/ZnSe/ZnS QDs compared to the quasi-type II CdSe/CdS/ZnS QDs, results in 

less inelastic optical phonon scattering via Fröhlich coupling. This makes InP/ZnSe/ZnS the material of 

choice for light-emitting applications with narrow emission linewidths. The difference in acoustic coupling 

strength between these two materials is still under investigation and will be the topic of future works. 

 

Figure 2.9. PL spectra of 3Rdot1 as a function of temperature. The spectra are separated into its individual components 

including the ZPL, the acoustic phonon side band, and the optical phonon side band and for temperatures of (a) 4K, 

(b) 15K (c) 30K, (d) 65K, (e) 100K, and (f) 170K 

 For both the InP/ZnSe/ZnS QD in Figure 2.9 and the CdSe/CdS/ZnS QD in Figure 2.10, emission 

is dominated by the inelastic scattering of acoustic and optical phonons at elevated temperatures. It is 

important to note that although emission is dominated by inelastic phonon scattering, the linewidth is 

dominated by elastic phonon scattering. If there was minimal elastic phonon scattering, then the linewidth 

would be effectively limited by the energy of the phonon. For instance, the CdSe and CdS optical phonons 

are roughly 30 meV away from the ZPL. As the temperature increases so does the phonon occupation 

number. As long as the ZPL stays relatively narrow — under the assumption of minimal elastic phonon 
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scattering — the phonon sidebands will also remain relatively narrow because they are phonon replicas of 

the ZPL. When we observe a broadening phonon sideband like we see in both the InP and CdSe systems at 

elevated temperatures in Figure 2.9 and Figure 2.10, we should interpret the broadening as the ZPL itself 

broadening and the phonon sidebands reacting accordingly.  

 

Figure 2.10. PL spectra of CdSe/CdS DotI as a function of temperature. The spectra are separated into its individual 

components including the ZPL, the acoustic phonon side band, and the optical phonon side band and for temperatures 

of (a) 4K, (b) 30K, (c) 60K, (d) 100K, and (e) 180K. 

In CdSe systems, strain engineering has been used to synthesize QDs with RT single dot linewidths 

of ~36 meV for biaxially strained QDs,123 and as low as ~20 meV for asymmetrically compressed cores in 

CdSe/CdxZn1-xSe QDs.124 In both cases, straining the emissive cores of these QDs modifies the fine-

structure of the excitonic band-edge and reduces exciton-phonon interactions to yield a narrower linewidth. 

Our results demonstrate that InP-based QDs do not require additional strain engineering in order to achieve 

comparably narrow linewidths, and suggests that a similar growth technique applied to these systems could 

further reduce single QD broadening by possibly reducing phonon interactions, and reducing fine-structure 

splitting between F and A states. 

2.8. Conclusions 

In conclusion, we examined the sources of broad ensemble emission linewidths and narrow single 

QD linewidths in InP/ZnSe/ZnS QDs. Single InP/ZnSe/ZnS QD linewidths were measured to be as narrow 
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as 38 meV at RT. Using sPCFS, we find an average single QD linewidth of ~50 meV in solution, compared 

to an ensemble linewidth of 115 meV, indicating a large QD size polydispersity that results in an energy 

distribution of 104 meV. Additionally, we have developed a self-consistent model that allows us to 

reconcile low temperature to RT single QD linewidths for different material classes. We show that pure 

dephasing of the ZPL from elastic acoustic phonon scattering is the dominant contributor to the FWHM of 

the single QD lineshape of InP/ZnSe/ZnS QDs at elevated temperatures, with minor contributions from 

fine-structure splitting, inelastic acoustic phonon scattering, and inelastic/elastic optical phonon scattering. 

Average fine-structure splitting energies were 4 meV between the forbidden 𝐹 = ±2 state and the allowed 

𝐹 = ±1 state. We further find that for CdSe/CdS/ZnS QDs pure dephasing also dominates the single QD 

linewidth, however contributions from both optical and acoustic phonon scattering contribute to pure 

dephasing in this QD system. We also find the more polar nature of CdSe/CdS/ZnS compared to 

InP/ZnSe/ZnS leads to significant contributions from inelastic optical phonon scattering to the linewidth. 

Our results indicate that highly luminescent InP/ZnSe/ZnS QDs can exhibit narrow single QD linewidths 

without requiring strain engineering strategies that mitigate contributions from phonons or fine-structure 

splitting, further exemplifying them as ideal QD materials for light-emitting display applications. 

Optimization of synthetic conditions to reduce size polydispersity can further reduce the emission lineshape 

FWHM at the ensemble level. Exploring similar strain engineering strategies as used for CdSe QDs could 

possibly yield InP QDs with even narrower single QD spectra, making them exemplary color-pure light 

emitters. 
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2.10. Supplementary Information   
𝜞𝒆𝒏𝒔𝒆𝒎𝒃𝒍𝒆 (meV)  𝜞𝒔𝒊𝒏𝒈𝒍𝒆 (meV)  𝝈𝑬 (meV) FSS (meV) 

1R 122 47 111 3.6 

2R 119 50 108 3.7 

3R 115 50 104 4.0 

Table 2.1. Ensemble FWHM, average single QD FWHM, ensemble broadening, and fine-structure splitting (FSS) of 

the 1R, 2R, and 3R InP QDs. 

 

 

 

Table 2.2. Acoustic phonon sideband (PSB) Huang Rhys Parameter (HRP), the core material (InP or CdSe) optical 

PSB HRP, the shell material (ZnSe or CdS) optical PSB HRP, acoustic spectral density intensity 𝜆, acoustic phonon 

energy 𝜔𝑐, optical phonon gaussian broadening 𝝈, optical phonon spectral density intensity 𝜆, optical phonon energy 

𝜔𝑐, and dephasing rate of the ZPL for the 1R, 2R, 3R QDs and CdSe/CdS dotI. 

 
Acoustic 

HRP 

Core 

Optical 

HRP 

Shell 

Optical 

HRP 

A1  𝝀 A1 𝝎𝒄 

(meV) 

A2  𝝀 A2 𝝎𝒄 

(meV) 

O1 𝝈 

(meV) 

O2 𝝈 

(meV) 

O3 𝝈 

(meV) 

1R 1.33 

± 0.49  

0.11 

± 0.04 

0.06 

± 0.04 

0.0048 

± 0.0013 

9.69 

± 0.59 

0.033 

± 0.011 

3.41 

± 0.36 

1.54 

± 0.34 

0.98 

± 0.43 

1.91 

± 0.53 

2R 0.91 

± 0.26 

0.09 

± 0.02 

0.05 

± 0.02 

0.0040 

± 0.0013 

8.96 

± 0.59 

0.028 

± 0.011 

3.20 

± 0.36 

1.92 

± 0.34 

1.05 

± 0.43 

1.71 

± 0.53 

3R 0.96 

± 0.47 

0.11 

± 0.04 

0.06 

± 0.04 

0.0037 

± 0.0013 

9.23 

± 0.59 

0.024 

± 0.011 

3.53 

± 0.36 

1.34 

± 0.34 

1.04 

± 0.43 

1.72 

± 0.53 

CdSe/CdS 

dotI 

0.63  0.39  0.10  0.0039 

± 0.0013 

3.10 

± 0.59 

- - 0.01 

± 0.34 

0.01 

± 0.43 

- 

           

 O1  𝝀 

(InP-LO/ 

CdSe) 

O1 𝝎𝒄 

(meV) 

 

O2  𝝀 

(InP-TO/ 

CdS) 

O2 𝝎𝒄 

(meV) 

O3  𝝀 

(ZnSe) 

O3 𝝎𝒄 

(meV) 

Dephasing 

Rate 

(𝝁eV/K) 

   

1R 0.010 

± 0.0007 

43.79 

± 0.24 

0.0019 

± 0.0009 

39.15 

± 0.37 

0.0042 

± 0.003 

27.77 

± 0.09 

131 

± 16 

   

2R 0.0056 

± 0.0007 

43.91 

± 0.24 

0.001 

± 0.0009 

39.02 

± 0.37 

0.0032 

± 0.003  

28.72 

± 0.09 

98 

± 5 

   

3R 0.012 

± 0.0007 

44.19 

± 0.24 

0.0022 

± 0.0009 

38.99 

± 0.37 

0.0044 

± 0.003 

28.91 

± 0.09 

102 

± 14 

   

CdSe/CdS 

dotI 

0.25 

± 0.015 

25.9 

± 0.24 

0.073 

± 0.009 

36.0  

± 0.37 

-  -  -     
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Figure 2.11. (a),(b) Solution interferograms composed of a series of auto- and cross-correlations at a photon time 

difference τ=10 μs for the 1R (left) and 2R (right) QDs. Ensemble interferogram fit assumes a single Gaussian 

underlying PL spectrum and the single QD interferogram fit assumes a sum of two Gaussians underlying PL spectrum. 

(c),(d) Reconstructed spectra for the ensemble (solid black) and average single QD (solid red) based on the fit to the 

experimental interferograms for the 1R (left) and 2R (right) QDs. Linewidths are summarized in table 

 

Figure 2.12. Three single QD spectra at room temperature (red) compared to the ensemble spectrum (black) for the 

(a) 1R QDs and (b) 2R QDs. 
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Figure 2.13. Three single QD spectra at 4K, 15K, and 30K for the (a)-(c) 1R QDs and (d)-(f) 2R QDs, and (g)-(i) 3R 

QDs 

 

 

Figure 2.14. Spectral stability of the ZPL as a function of time for the (a),(d) 1R QDs, (b),(e) 2R QDs, and (c),(f) 3R 

QDs. 
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Figure 2.15. Temperature-dependent lifetimes in a dilute film of (a) 1R QDs and (b) 2R QDs. Long component of the 

lifetimes in (a), (b) as a function of temperature fit to eq. 1 to extract the average fine-structure state energy splitting 

for the (c) 1R QDs and (d) 2R QDs.  
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Figure 2.16. Single QD PL spectra (solid lines) as a function of temperature with IBM fits (dotted black) overlaid for 

(a),(d),(g),(j) 1R QDs, (b),(e),(h),(k) 2R QDs, and (c),(f),(i),(l) 3R QDs. 
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Figure 2.17. Single QD FWHM as a function of temperature broken down into the contributions from the acoustic 

phonon sideband, optical phonon sideband, the fine-structure splitting (FSS), the zero-phonon line (ZPL), and the pure 

dephasing fit to the ZPL. (a) 1Rdot10: 𝛾 = 61.0, 𝜔𝑐 = 18.2, 𝛤0 = 2.7 (b) 2Rdot2: 𝛾 = 7.9, 𝜔𝑐 = 4.6, 𝛤0 = 1.5 (c) 3Rdot1 𝛾 

= 3.2, 𝜔𝑐 = 2.3, 𝛤0 = 2.1 (d) 1Rdot11: 𝛾 = 11.6, 𝜔𝑐 = 6.3, 𝛤0 = 2.1 (e) 2Rdot3: 𝛾 = 3.8, 𝜔𝑐 = 2.6, 𝛤0 = 1.5 (f) 3Rdot2: 𝛾 

= 33.4, 𝜔𝑐 = 17.3, 𝛤0 = 2.2 (g) 1Rdot14: 𝛾 = 6.3, 𝜔𝑐 = 2.9, 𝛤0 = 1.8 (h) 2Rdot4: 𝛾 = 3.4, 𝜔𝑐 = 2.4, 𝛤0 = 1.5 (i) 3Rdot6: 𝛾 

= 6.3, 𝜔𝑐 = 4.0, 𝛤0 = 2.1 (j) 1Rdot16: 𝛾 = 5.7, 𝜔𝑐 = 2.7, 𝛤0 = 1.4 (k) 2Rdot6: 𝛾 = 3.4, 𝜔𝑐 = 2.4, 𝛤0 = 1.5 (l) 3Rdot7  𝛾 

= 8.5, 𝜔𝑐 = 5.7, 𝛤0 = 2.2. 
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Figure 2.18. Single CdSe/CdS/ZnS QD PL spectra (solid lines) as a function of temperature with IBM fits (dotted 

black) superimposed for (a) CdSe DotC, (b) CdSe DotI, (c) CdSe DotQ. 

 

 

 

Figure 2.19. Single QD FWHM as a function of temperature broken down into the contributions from the acoustic 

phonon sideband, optical phonon sideband, the fine-structure splitting (FSS), the zero-phonon line (ZPL), and the pure 

dephasing fit to the ZPL. (a) CdSe dotC: 𝛾1 = 0.5, 𝜔𝑐1
 = 4.0, 𝛾2 = 192.2, 𝜔2 = 30.0, 𝛤0 = 5.2 (b) CdSe dotI: 𝛾1 = 0.67, 

𝜔𝑐1
 = 0.5, 𝛾2 = 100.0, 𝜔2 = 26.9, 𝛤0 = 2.55 (c) CdSe dotQ: 𝛾1 = 0.7, 𝜔𝑐1

 = 0.5, 𝛾2 = 176.2, 𝜔2 = 32.1, 𝛤0 = 2.6. 
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Chapter 3 
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3.1. Abstract 

Quantum photonic technologies like quantum communication, sensing, or computation require efficient, 

stable, and pure single-photon sources. Epitaxial quantum dots (QDs) have been made capable of on-

demand photon generation with high purity, indistinguishability, and brightness – but require precise 

fabrication and face challenges in scalability. In contrast, colloidal QDs are batch synthesized in solution 

but typically have broader linewidths, low single-photon purities, and unstable emission. Here, we 

demonstrate spectrally stable, pure, and narrow linewidth single-photon emission from InP/ZnSe/ZnS 

colloidal QDs. Using photon correlation Fourier spectroscopy, we observe single dot linewidths as narrow 

as ~5 µeV at 4K, giving a lower-bounded optical coherence time, 𝑇2, of ~250 ps. These dots exhibit minimal 

spectral diffusion on timescales of µs to minutes, and narrow linewidths are maintained on timescales up 

to 50 ms, orders of magnitude longer than other colloidal systems. Moreover, these InP/ZnSe/ZnS dots have 



83 
 

single-photon purities 𝑔(2)(𝜏 = 0) of 0.077 – 0.086 in the absence of spectral filtering. This work 

demonstrates the potential of heavy-metal-free InP-based QDs as spectrally stable sources of single-

photons. 

3.2. Background 

Quantum photonic technologies use quantum light – single-photons – to enable applications like 

quantum communication,125 quantum sensing,126 or quantum computation.127,128 The most widely used 

sources of single-photons are spontaneous parametric down conversion and four-wave mixing, but these 

nonlinear processes are probabilistic. Solid-state single-photon emitters (SPEs) are a promising platform 

for deterministic quantum light generation, combining atom-like optical properties with scalable and mature 

fabrication technologies.129 Among solid-state SPEs – including crystal color centres and quantum defects 

in 2D materials130–133 – self-assembled semiconductor quantum dots (QDs) are particularly outstanding, 

capable of on-demand photon generation with near-unity indistinguishability and single-photon purity.134,135 

QDs embedded in photonic structures can be manipulated by electrical contacts, and electrically-driven 

single- and entangled-photon emission has been demonstrated.135,136 

Indistinguishable single-photons are generated when the SPE’s optical coherence time, 𝑇2, is equal 

to twice the radiative lifetime, 𝑇1, in the transform-limit of 𝑇2 = 2𝑇1. Narrow emission linewidths 

correspond to longer coherence times by the relation 𝑇2 = 2π/Γ, where Γ is the full width at half maximum 

(FWHM) of the (Lorentzian) emission peak. In solid-state emitters like QDs, the exciton couples to its 

surrounding environment, and coherence of the excited state is deteriorated by interactions with phonons, 

spin-noise,137 and charge-noise, which may increase Γ and reduce 𝑇2.70 Epitaxial QDs attain photon 

indistinguishability using photonic cavity structures that decrease 𝑇1 to several hundred ps,138–140 and longer 

𝑇2 times are enabled by well-optimized QD growth conditions. These strict and precise fabrication methods 

pose challenges for scalability and reproducibility of epitaxial QD SPEs. 

In comparison, colloidal QDs have been less explored for quantum photonic applications, as they 

exhibit long 𝑇1 due to dark lowest energy excited states62,141,142 and short 𝑇2 due to broader linewidths 

resulting from charge noise: spectral diffusion due to local field fluctuations randomly shifts the optical 

transitions on the order of 10s of µeV to several meV.143–145 For epitaxial dots, charge noise broadening can 

be as small as sub-µeV.139,146 

The discovery of fast radiative recombination (𝑇1 ≈ 200 ps) for CsPbBr3 perovskite QDs at 4K 

prompted interest in colloidal QDs as single-photon sources.147 Subsequent work by Utzat et al. on the same 

materials measured 𝑇2 = 78 ps (𝛤 = 17 µeV) and a 𝑇2/2𝑇1 ratio of ~0.19, far exceeding any other colloidal 

QD.70 More recently, Hong-Ou-Mandel (HOM) two-photon interference was demonstrated for CsPbBr3 

nanocrystals with visibilities up to 0.55.12 These results highlight the as-yet untapped potential application 
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of colloidal QDs as solid-state quantum emitters. Recently, Won et al. reported the synthesis of 

core/shell/shell InP/ZnSe/ZnS QDs with unity quantum yield, and used these dots to fabricate QD light-

emitting diodes with optimal external quantum efficiency and million hour operating lifetimes.148 Free of 

heavy metals, InP-based QDs are ideal for scalable light-emission applications. So far, InP/ZnSe/ZnS QDs 

have remained unexplored for quantum light generation, and herein we examine their single-photon 

emission properties. 

3.3. Structure and Emission Spectra of InP/ZnSe/ZnS QDs and CdSe/CdS/ZnS 

QDs 

A schematic illustration and TEM image of the InP/ZnSe/ZnS QDs are shown in Figure 3.1a,b. A 

3.3 nm diameter InP core is surrounded by a 3.5 nm shell of ZnSe, over which is grown another thin (0.2 

nm) shell of ZnS. Hexanoic acid (OA) ligands bind to the dot surface, enabling colloidal stability in 

solution.148 Conduction and valence band offsets between the InP core and ZnSe shell depend on the degree 

of quantum confinement and interfacial strain, with reported values widely varying: 0.5 – 1.0 eV for valence 

band offsets,149 and 0.41 – 0.8 eV for the conduction band.150,151 We have previously used effective mass 

approximations to calculate a conduction band offset of ~0.8 eV between InP and ZnSe, which would 

impose a type-I band alignment (Figure 3.1c) and localize the electron to the InP core.101,152 This contrasts 

CdSe/CdS QDs, which form a type-II band alignment that delocalizes the electron wavefunction over the 

CdS shell (Figure 3.2). 

InP/ZnSe/ZnS QDs were synthesized according to Won et. al. 148. Regarding CdSe synthesis, First, 

CdSe core QDs were synthesized by a hot-injection method as previously reported.21 The synthesis of 

CdSe/CdS/ZnS core-shell QDs was based on similar procedures with minor modifications.153 Briefly, 200 

nmol of CdSe cores were loaded into a 250 mL 3-neck flask with a solvent mixture of 1 mL ODE and 1 

mL OAm. The reaction mixture was degassed under vacuum at room temperature for 1 hour and 120 °C 

for 10 min. Then the reaction mixture was heated to 310 °C under nitrogen for shell growth. When 

temperature reached 240 °C, a desired amount of Cd-oleate (0.1 M in ODE) and 1.2 equivalent of 1-

octanethiol (0.12 M in ODE) were injected slowly into the reaction mixture simultaneously using a syringe 

pump with a rate of two monolayers of CdS shell per hour. 1 mL of OLA was injected every hour during 

growth. After the desired shell thickness has been reached (4ML CdS shell), The reaction was stopped by 

removing the heating mantle and cooling down to room temperature. The synthesized CdSe/CdS QDs were 

purified by three rounds of precipitation and redispersion using acetone/methanol and hexane. The purified 

CdSe/CdS QDs were then used to further grow ZnS shell. The ZnS shell growth follows the similar 

procedure as previous discussed, except the growth temperature was raised to 330 °C, and Zn-oleate (0.1 

M in ODE) and 1-dodecanethiol (0.1 M in ODE) were used as precursors. After the desired shell thickness 
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has been reached (4ML ZnS shell), the synthesized CdSe/CdS/ZnS QDs were purified by three rounds of 

precipitation and redispersion using acetone/methanol and hexane. 

 

Figure 3.1. InP/ZnSe/ZnS QD structure and energy levels. (a) Schematic structure and (b) TEM image of colloidal 

InP/ZnSe/ZnS QDs with hexanoic acid (HA) surface ligands. (c) Band diagram of the core, shells, and surface ligands, 

illustrating the type-I band alignment in these heterostructures. Note the bandgaps of InP, ZnSe, and ZnS used here 

(from ref 148) are values for bulk semiconductors. The HOMO-LUMO gap for HA was taken from ref 154. CB: 

conduction band, VB: valence band (d) Jablonski diagram for emission from the band-edge exciton of the InP core. 

Red (wavy) arrows represent radiative (nonradiative) transitions between states. LO/TO: longitudinal optical and 

torsional optical phonons, 𝛥: splitting between |𝑑⟩ and |𝑏⟩ states, 𝛺: splitting between |𝑋⟩ and |𝑌⟩ state. (e) Spectrum 

of an InP QD at 4K and fit from an independent boson model (see Chapter 2.6).47 ZPL: zero-phonon line. (f) Spectra 

of the same QD at 4, 15, and 30K, showing the emergence of the bright 𝐹 = ±1 state via thermal population. The 

spectra are shifted by their maxima to line up at 0 meV for clarity. (g) High resolution spectrum of a QD at 4K that 

shows the further splitting of |𝑑⟩ into superpositions |𝑋⟩ and |𝑌⟩ of its ±2 transitions. Unless otherwise stated, dots 

were photoexcited with a 532 nm CW laser with a power density of 50 - 100 W/cm2. 

Figure 3.1d illustrates the exciton fine-structure. Electron-hole exchange separates the band-edge 

exciton states by their total angular momentum projection, 𝐹, along the nanocrystal axis. The lowest energy 

states are the dark (|𝑑⟩) 𝐹 = ±2 and bright (|𝑏⟩) 𝐹 = ±1 states.47 The energy separation, Δ, of ~4 meV 

between states |𝑏⟩ and |𝑑⟩ is referred to as the fine-structure splitting. The degeneracy of these two states 

can be further lifted due to crystal field splitting and shape anisotropy,62 resulting in two states |𝑋⟩ and |𝑌⟩ 

that are superpositions of the 𝐹 = ±1 or ±2 states, separated by Ω. 

The emission spectrum of a single InP/ZnSe/ZnS QD at 4K is shown in Figure 3.1e. Excitons in 

these QDs have weak coupling to optical phonons, evidenced by two small amplitude peaks ~25 and ~45 

meV lower in energy than the zero-phonon line (ZPL).155 Coupling to acoustic phonons is much stronger, 

evidenced by the broad acoustic sideband that extends ~20 meV away from the ZPL. 𝛾0 is the spin-flip 
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relaxation rate from |𝑏⟩ to |𝑑⟩, and 𝛾th is the thermalization rate between these states, mediated by emission 

or absorption of acoustic phonons.156 Thermalization from |𝑑⟩ to |𝑏⟩ by absorption of acoustic phonons is 

observed with increasing temperature, whereby a second ZPL corresponding to state |𝑏⟩ grows in (Figure 

3.1f). Similar spectra for four other QDs are shown in Figure 3.10. A higher resolution spectrum of a 

different QD at 4K is shown in Figure 3.1g, showing further splitting of |𝑑⟩ into |𝑋⟩ and |𝑌⟩. We attribute 

this splitting to shape anisotropy of the QD (Figure 3.1b). 

 

Figure 3.2. Band-structure and fine-structure of CdSe/CdS/ZnS QDs. (a) Schematic structure and (b) TEM image of 

colloidal CdSe/CdS/ZnS QDs with oleic acid (OA) surface ligands. (c) Band diagram of the core, shells, and surface 

ligands, illustrating the type-II band alignment in these heterostructures. The bandgaps of CdSe, CdS, and ZnS are 

taken from ref 157. The HOMO-LUMO gap for OA was taken from ref 154. CB: conduction band, VB: valence band 

(d) Jablonski diagram for emission from the band-edge exciton of the CdSe core. Red (wavy) arrows represent 

radiative (nonradiative) transitions between states. LO: longitudinal optical phonons, 𝛥: splitting between |𝑑⟩ and |𝑏⟩ 
states, 𝛺: splitting between |𝑋⟩ and |𝑌⟩ state. 

3.4. Spectral Stability on Timescales of Seconds-Minutes 

We first assessed the spectral stability of single QDs by collecting sequences of photoluminescence 

emission spectra. Figure 2a shows a series of 600 spectra with a 1s acquisition time and a spectral resolution 

of ~1.1 meV. The emission remains stable without any significant shifting or fluorescence intermittency 

(blinking). Figure 3.3b and Figure 3.3c show series of higher resolution spectra (1s each, 60 frames) with 

a spectral resolution of ~0.08 meV, where only sub-meV shifting can be observed. We also collected 

intensity traces of the total number of single-photon counts emitted from single QDs on a pair of single-

photon avalanche diodes (SPADs), showing stable, blinking-free emission over a period of 10 minutes in 

Figure 3.3d, and no apparent fluctuations on a smaller time interval of 10s (Figure 3.3d inset). Similar 

intensity plots for other dots are shown in Figure 3.11. These results show that on the timescale of seconds 

– minutes, there is minimal spectral diffusion of the emission line shape. 
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Figure 3.3. Tracking spectral stability on a timescale of seconds – minutes. (a) (left) Sequentially collected spectra of 

a single InP/ZnSe/ZnS QD using a 300gr/mm grating with a 0.5m spectrometer (spectral resolution ~1.1 meV). The 

acquisition time for each frame was 1s with a total of 600 frames. (right) The sum of all collected spectra with 

normalized intensity. (b, c) Spectral trajectory for two different QDs using a 2400gr/mm grating (spectral resolution 

~0.08 meV). (d) Intensity trace of total counts in 50 ms bins over a period of 600s and (inset) 10s. 

Despite this spectral stability and lack of reversible blinking, the dots were prone to apparent 

photobleaching, irreversibly entering an ‘off’ state even under mild excitation conditions. A subsequent 

series of spectra for the same dot as in Figure 3.3a is shown in Figure 3.4, where after another ~300s of 

illumination, the dot turns off and does not recover. This limitation in photostability often resulted in us 

being unable to perform multiple different measurements on the same dot. While some QDs were able to 

survive up to 3 hours of continuous excitation without blinking, many dots turned off after 5 – 10 minutes. 

Consequently, many of the different measurements shown below do not correspond to the same set of QDs.  

InP/ZnSe QDs are known to be especially prone to water-induced oxidation of the oxyphilic InP 

surface.158 The synthesis developed by Won et al. used HF to etch oxidative sites on the InP core during 

growth of the ZnSe shell and achieved PLQYs of 100%, suggesting oxidation-free interfaces. However, 

other reports, for example by Cossairt et al. have found that thoroughly degassed synthesis of InP/Zn(Se,S) 

QDs still resulted in up to 85% phosphorous oxidation.159 Vikram et al. found that aminolytic reactions 

between oleylamine and carboxylates used in QD synthesis introduce oxidative defects during the shelling 

process, and note that carboxylic acids (like hexanoic acid, our QD ligand) promotes oxidation by the 

formation of water as a ketonization reaction byproduct.  
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Figure 3.4. Sequential spectra (left) and sum (right) collected over a period of ~300s for the same QD as shown in 

Fig. 2a. The acquisition time for each frame was 5s. The white arrow indicates where the dot irreversibly entered an 

off state. 

Given the above reports, and the fact that our dots used a carboxylic acid as ligands, we speculate 

that a low density of oxidative defects may still be present in the QDs that can lead to charge trapping and 

ultimately irreversible photobleaching. Though we thoroughly dried our solvents, PMMA solutions, and 

baked our quartz slides for preparing single dot cryostat samples, there is an unavoidable exposure to air 

when we transfer the samples to the cold platform before pumping down. In other experiments on room-

temperature single InP/ZnSe/ZnS dot experiments, we have observed that baking cover slips in a nitrogen 

glovebox before spin-coating and encapsulating samples can result in better photostability of the dots, 

which supports our hypothesis. 

Finally, it is likely that the combination of shape anisotropy, size polydispersity, and thin (~0.2 nm) 

ZnS results in a large variety of surface conditions from dot-to-dot, which would also point to an oxidative 

degradation process that originates at the dot surface.  

It is also noted that these same QDs exhibited exceptional stability in the QD-LED devices reported 

by Won et al.148 The key differences are the excitation flux and the ligands. In single dot experiments, we 

typically employ laser powers that do not exceed a ~0.10 probability of generating an exciton per pulse. At 

the ensemble level in electrically-driven LEDs, the average excitation flux experienced by any given QD 

is much lower. In the QD-LEDs reported by Won et al., the dots undergo a ligand exchange with thiol 

ligands, removing the potentially oxidative hexanoic acid. 

3.5. Spectral Stability on Timescales of Microseconds-Milliseconds 

To observe spectral diffusion on sub-ms timescales, we used photon correlation Fourier 

spectroscopy (PCFS). Single photons were transmitted through a Michelson interferometer onto two 

SPADs, and second-order photon correlation (𝑔(2)(𝜏)) functions are measured for different interferometer 

delay times, 𝛿. The 𝑔(2)(𝜏) provides temporal resolution, whereas scanning the interferometer across 𝛿 
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provides energetic resolution, and the resulting interferogram is a function of both 𝜏 and 𝛿. The Fourier 

transform of the interferogram for a given 𝜏 yields the spectral correlation, 𝑝(𝜁, 𝜏), which is the 

autocorrelation of the emission spectrum. 𝑝(𝜁, 𝜏) is a function of 𝜁, the energy differences between the 

photon pairs that comprise the 𝑔(2)(𝜏), and of 𝜏. A detailed explanation of this technique can be found in 

references 70,160,161. 

Interferograms and 𝑝(𝜁, 𝜏) for three different InP/ZnSe/ZnS QDs and one CdSe/CdS/ZnS QD 

(hereafter named dots InP-1, InP-2, InP-3, and CdSe-1, respectively) are shown in Figure 3.5a,d,g,j. We 

show interferograms for 𝜏 spanning three different windows: 𝜏0→1 = 0.1 – 0.5 ms, 𝜏2→3 = 1 – 5 ms, and 

𝜏4→5 = 10 – 50 ms. For the InP dots, we observe clear beating patterns in the interferograms, consistent 

with emission from a doublet. For CdSe-1, no beating is observed, consistent with a single emission peak 

as observed in previous PCFS measurements on low-temperature CdSe QDs.162 Fourier transformation of 

these interferograms into 𝑝(𝜁, 𝜏) reveals the triplet for dots InP-1-3 (which corresponds to doublet emission 

spectra) and a singlet for CdSe-1. The splittings Ω between the 𝐹 = ±2 superposition states for these InP 

dots are ~150, 310, and 840 µeV, which results in the different oscillation periods of the interferograms. 

The decay of these interferograms is determined by the linewidth of the emission spectra: narrower 

(broader) peaks correspond to longer (shorter) coherence times, 𝑇2. We fit these interferograms by 

generating a spectrum consisting of a 1 or 2 Lorentzian peaks with an acoustic sideband (Equation 3.1), and 

taking its autocorrelation and Fourier transform. 

𝑠(𝜔) = 𝑎1

1
2

Γ

(𝜔)2+(1
2

Γ)
2 + 𝑎2

1
2

Γ

(𝜔−𝛺)2+(1
2

Γ)
2 + 𝜆𝜔𝑝𝑒−𝜔/𝜔𝑐 + 𝑦0        (3.1) 

The first two terms correspond to the Lorentzian peaks with amplitudes 𝑎1 and 𝑎2 and with the same Γ, and 

Ω is the energy separation between them. The third term is a spectral density used to approximate the 

acoustic sideband, where 𝜆 is the coupling strength (i.e. amplitude), 𝑝 is the power acting on 𝜔 to create an 

Ohmic (𝑝=1), sub-Ohmic (𝑝 < 1) or super-Ohmic (𝑝 > 1) spectral density, and 𝜔𝑐 is the cut-off 

frequency.115,163 𝑦0 is a constant to account for a broad, flat background in the spectra. To perform the fits, 

the equation is used to generate a spectrum, 𝑠(𝜔), which is autocorrelated to make 𝑝(𝜁, 𝜏) and finally 

Fourier transformed into an interferogram.  
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Figure 3.5. Using PCFS to track spectral diffusion on µs – ms timescales. (a) Interferograms built from photon pairs 

with time separations 𝜏 between 𝜏0→1 = 0.1 – 0.5 µs, 𝜏2→3 = 1 – 5 ms, and 𝜏4→5 = 10 – 50 ms. For clarity, the 

interferograms are normalized to a maximum of 1 and given an offset. The oscillatory-like features for dot CdSe-1 

result from QD blinking, which affects the underlying 𝑔(2)(𝜏) at these stage positions. Fourier transforming these 

interferograms gives (b) the spectral correlations, 𝑝(𝜁, 𝜏). (c) Spectra, 𝑠(𝜔) generated using optimized parameters to 

fit the interferograms. (a – c) are fitted interferograms, 𝑝(𝜁, 𝜏), and spectra for InP/ZnSe/ZnS dots InP-1, (d-f) InP-2, 

(g-i) InP-3, and (j-l) CdSe/CdS/ZnS dot CdSe-1. The values of 𝑇2 shown with the interferogram fits are calculated 

from the FWHM of the Lorentzian spectra, 𝑇2 = 2𝜋/𝛤. The fitted exponential coherence decay follows 𝑒−2/𝑇2𝛿 , where 

the factor of 2 arises due to the autocorrelation of the Lorentzian spectrum. Uncertainties are omitted for clarity. cf = 

coherent fraction. 

This model assumes a purely Lorentzian line shape for the emission peaks from these QDs. We 

found that this approach, which was used for PCFS interferograms of CsPbBr3 QDs by Utzat,70 yielded 

good fits to the interferograms. A more appropriate model would be to generate transform-limited 

Lorentzian peaks whose spectral correlation is convolved with a Gaussian peak that has a 𝜏-dependent 

FWHM, which simulates Wiener or Poisson spectral diffusion.162 In our case, we found that this approach 

hardly affected the fits, and so did not pursue it. Our gradient descent algorithm uses Python’s SciPy 
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package164 with Powell’s conjugate direction method165 and does not output uncertainties; instead, we 

performed each fit 20 times starting with randomized initial guesses for each parameter (within user defined 

bounds) to obtain means (𝜇) and standard deviations (𝜎), which are given in Table 3.1.  

Fits are plotted with the raw interferograms in Figure 3.5, along with the corresponding 𝑝(𝜁, 𝜏) 

and underlying 𝑠(𝜔). We extract mean values of Γ and 𝑇2 for InP-1 - 3, which range from as narrow as 

~5.1 (±0.14) µeV and as broad as 14.4 (±0.49) µeV. These are among the narrowest linewidths reported for 

colloidal QD materials, with corresponding values of 𝑇2 that exceed the best reported for CsPbBr3 QDs and 

commensurate with epitaxial QDs.65,166–168 Moreover, we obtain these 𝑇2 values for 𝜏 as high as 50 ms. As 

a comparison, 𝑇2 values of 35 – 78 ps reported for CsPbBr3 QDs were evaluated for photons within <100 

µs of each other,64,70 meaning these InP/ZnSe/ZnS dots maintain narrower linewidths over two orders of 

magnitude longer timescales. Fitted interferograms, 𝑝(𝜁, 𝜏), and 𝑠(𝜔) for two more dots are shown in 

Figure 3.12, which also show limited spectral diffusion. 

 

Figure 3.6. 𝛤 extracted from interferogram fits at different 𝜏 for dots InP-1 – 3 and CdSe-1. The values of 𝛤 shown 

above correspond to the mean (𝜇) and one standard deviation (𝜎) which are generated from 20 different fits for each 

point, with randomized and bounded initial guesses. These values are given in Table 3.2.  

Similar spectral stability has been observed in some CdSe/CdS QDs, with linewidths as low as 5 

µeV at short 𝜏 that broaden to >10 µeV on ms timescales;160,169 whereas other reports found linewidths that 

exceed 100 µeV.162 We measured a PCFS interferogram for a single CdSe/CdS/ZnS QD, and found the 

emission to be more unstable than for the InP QDs, exhibiting blinking and larger degree greater spectral 

diffusion, with a fitted Γ that increases from an initial 18.4 µeV to 32.4 µeV. Figure 3.6 shows a comparison 

of the evolution of Γ(𝜏), demonstrating both the smaller linewidths of these InP/ZnSe/ZnS dots compared 

to CdSe, and the lesser extent of spectral diffusion. 
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Figure 3.7. Influence of exciton-phonon coupling on PCFS interferograms. (a) Increasing parameter 𝜆 (the coupling 

strength between the exciton and acoustic phonons) gives higher amplitude phonon sidebands, which when auto-

correlated and Fourier transformed into an interferogram (b) results in a reduced coherent fraction. (c) Increasing 

parameter 𝛤, the Lorentzian FWHM, results in lower coherence lengths for corresponding interferograms shown in 

(d), but does not reduce the coherent fraction. 

Taken together, these results indicate that, compared to other colloidal QD materials, excitons in 

InP/ZnSe/ZnS QDs can be highly robust against spectral diffusion. We posit that low defect densities 

afforded by HF etching and high reaction temperatures during ZnSe shell growth,148 combined with a type-

I band alignment that localizes the exciton to the InP core, helps protect the exciton against spectral 

diffusion and decoherence. For well-engineered CdSe/CdS dots, low defect densities can be achieved, but 

type-II band alignment facilitates surface interactions which will lead to spectral diffusion.170,171  To achieve 

instead a type-I band alignment, CdSe/CdS/ZnS structures can be used, but strain due to lattice mismatch 

can create dangling bonds at the interface, which could be deleterious to both spectral stability and quantum 

yield.157 Such a compromise between interfacial defects and type-I band alignment is not necessary for 

InP/ZnSe/ZnS QDs, highlighting another intrinsic advantage of this material over Cd-based QDs for 

quantum light-emission. CsPbBr3 dots have no shell,172 and so greater coupling of the exciton with the 

surrounding environment is expected, leading to spectral diffusion. Other solid-state quantum emitters like 

defects in two-dimensional hexagonal boron nitride (hBN) flakes also suffer from strong coupling to their 

environment, experiencing spectral diffusion that broadens the ZPL up to 50 µeV on similar timescales as 

in our experiments,131 and up to 1 meV in steady-state.130 
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PCFS interferograms also measure the coherent fraction of the emission. Phonon sidebands arising 

from inelastic (real) exciton-phonon coupling lowers the coherent fraction, whereas elastic (virtual) exciton-

phonon scattering causes dephasing of the excited state, lowering 𝑇2 (Figure 3.7). The initial rapid drop-

off in interference amplitudes due to loss of coherence are more clearly shown in Figure 3.8. We observe 

coherent fractions of 0.31, 0.36, and 0.40 for dots InP-1-3, attributed to the large acoustic sideband (Fig. 

1d).  

 

Figure 3.8. Full interferograms that show the rapid initial drop-off in coherence for (a-d) dots P1 – P4, respectively. 

Coherent fractions are calculated as the square-root of the value of the fitted exponential coherence decay at 𝛿 = 0. 

3.6. Radiative Lifetime and Single-Photon Purity 

Lastly, we characterize the single-photon lifetime and purity. The photoluminescence lifetime for 

dot InP-4 is shown in Figure 3.9a,b, which was fit using biexponential decays. Lifetimes and fits for two 

other dots are shown in Figure 3.13 and Table 3.3, which show similar amplitudes and lifetimes. The 

observed lifetimes are consistent with other II-VI semiconductor QDs at 4K – including CdSe/ZnS, which 

exhibits highly similar fine-structure.62,142 At 4K, carriers that are photogenerated above the band-edge will 

rapidly relax to the lowest energy excited states. Excitons in state |𝑏⟩ will rapidly relax to |𝑑⟩ with rate 𝛾0, 

which accounts for the fast lifetime component 𝜏1, and the slow component 𝜏2 arises from phonon-assisted 

radiative recombination from state |𝑑⟩ with rate 𝛤𝑑. Emission from |𝑏⟩ with rate 𝛤𝑏 accounts for a negligible 

percentage of the emission, owing to the faster relaxation rate 𝛾0. 
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Figure 3.9. Single-photon emission properties of colloidal InP/ZnSe/ZnS QDs. (a) Lifetime plotted on a linear time 

axis. Inset of a shows a zoomed-in look at the fast component of the lifetime. (b) 𝑔(2)(𝜏) of a single QD (dot InP-4). 

Periods of 4 µs between laser pulses were required to allow QDs to fully decay to the ground state in between excitation 

events. This resulted in low counts rates and noisy 𝑔(2)(𝜏) functions whose acquisition time was limited by the 

photostability of the QDs. We performed fits following the methodology of reference 173 using a Poisson likelihood 

for the data.174 (c) Solution 𝑔(2)(𝜏) measurement, fit, and ensemble-averaged 𝑔(2)(0). 

Following the methodology of Labeau et al., we fit temperature-dependent lifetimes of an ensemble 

of InP/ZnSe/ZnS QDs between 4 – 295K using the three-level system depicted (see Section 2.5). We obtain 

values of Δ on the order of 4 meV (similar to Brodu et al.),155 and estimate the radiative rate of the bright 

state, 𝛤𝑏 = 0.06 ns-1, corresponding to a lifetime of 16.7 ns. These values are similar to 𝛤𝑏 = 0.1 ns-1 for 

CdSe/ZnS QDs.156 

Single-photon purity is evaluated from the normalized value of 𝑔(2)(0), fit with a maximum 

likelihood estimation (MLE) method.134,173,175 MLE with normal and Poisson likelihoods was implemented 

with SciPy library for Python using scipy.optimize.minimize. For MLE with a normal likelihood, Powell’s 

conjugate direction method (previously determined to be the most well-suited subroutine for this 

problem)174 is used as the optimization subroutine to minimize the following objective function: 

1

2
∑ (𝑛𝑖 − 𝑦𝑖(𝜃))

2
𝑖            (3.2) 

Where 𝑛𝑖 and 𝑦𝑖(𝜃) are the values of the data and the reconstruction at time bin 𝑖, respectively, and 𝜃 is the 

array of variables used to parameterize 𝑦. For MLE with a Poisson likelihood, Cortes et al. showed that the 

following objective function can be used:174 

∑ (𝑛𝑖 log 𝑦𝑖(𝜃) − 𝑦𝑖(𝜃))𝑖           (3.3) 

Randomized initial guesses for each parameter were drawn from within the bounds in Supplementary Table 

1, and the same bounds were used to constrain the fitting. 

 

The 𝑔(2)(𝜏) for the same dot InP-4 is shown in Figure 3.9b, where a biexponential fit173 gives 

0.071 for 𝑔(2)(0). These single-photon purities are obtained without any spectral filtering, in contrast to 

CsPbBr3 QDs which have near unity 𝑔(2)(𝜏 = 0) at 4K and require significant filtering to remove BX 
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emission and observe antibunching.70 This is consistent with the small (~3.3 nm) and strongly-confined InP 

core, whose exciton Bohr radius is 10 nm,176 which leads to increased spatial overlap of the exciton 

wavefunctions to favor Auger recombination of multiexcitons.101,177,178 In contrast, large (~14-15 nm edge 

length) weakly-confined CsPbBr3 nanocrystals with faster radiative lifetimes favor efficient emission from 

multiexciton states. 

At room-temperature in solution, the ensemble-average single-photon purity can be evaluated by 

collecting the same 𝑔(2)(𝜏) for a highly dilute solution of QDs in a fluorescence correlation spectroscopy 

(FCS) experiment. We used a pulsed excitation source in a Hanbury-Brown-Twiss setup to collect the QD 

emission. This technique is also known as Fluorescence Correlation Spectroscopy (FCS). In a dilute 

solution of QDs, photon pairs close in time to one another (short τ) are more likely to emit from the same 

QD giving rise to a higher degree of correlation in the 𝑔(2)(𝜏). Photon pairs far apart in time to one another 

(long τ) are highly unlikely to arise from the same QD resulting in low degree of correlation in the 𝑔(2)(𝜏) 

at τ. Photon pairs within the same pulse (τ = 0) either are a result of biexciton emission from the same QD 

or exciton emission from two different QDs in the focal volume.  We can calculate the BX/X QY by taking 

the ratio of the center to side peak subtracted by the ensemble background: 
𝑔(2)(0)−1

𝑔(2)(τrep)−1
, where 𝜏𝑟𝑒𝑝 is the 

repetition rate of the laser. The side peak, 𝑔(2)(𝜏𝑟𝑒𝑝), is determined by fitting correlations across all 

timescales to a diffusion model (Equation 3.4). Measurements were performed under low excitation flux 

(〈𝑛〉 ≪ 1) to ensure negligible correlation contributions from higher order excitons. We also use a repetition 

rate of the laser that is well beyond the lifetime of the emitter.  

To fit the FCS traces, we used the following equation:  

(1 +
1

𝑁
) [

(1−𝐵∗𝜏2−𝑚)

(1+
𝜏

𝜏𝐷
)

]                   (3.4) 

Where 𝑁 is the average number of particles being probed in the confocal volume, 𝐵 and 𝑚 are a coefficient 

and exponent, respectively, that describe the power-law distribution of on- and off-times for blinking dots 

(this accounts for the tilt of the 𝑔(2)(𝜏) at early 𝜏),179 and 𝜏𝐷 is the diffusion time of the particles. Similar 

fitting equations for FCS curves often include a term to account for antibunching – we omit this term here, 

since the spacing between pulses 𝜏𝑟𝑒𝑝 exceeds the antibunching time. We perform this measurement for 

the InP/ZnSe/ZnS QDs and fit the FCS curve (Figure 3.9c), measuring an average 𝑔(2)(0) of 0.13±0.03, 

in agreement with our low-temperature single dot measurements. 
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3.7. Conclusions 

We have shown that colloidal InP/ZnSe/ZnS can exhibit linewidths as narrow as 5 - 15 µeV, and 

undergo minimal spectral diffusion over timescales as long as 50 ms. This spectral stability is on par with 

or superior to CdSe/CdS QD systems, and orders of magnitude longer than for CsPbBr3 perovskite dots. 

The demonstrated spectral stability and single-photon purity of these InP/ZnSe/ZnS dots make them 

potential candidates as solid-state SPEs, exhibiting narrower linewidths and higher single-photon purities 

than all other colloidal QD systems and quantum defect emitters in 2D hBN and TMDCs.130,131,133 See Table 

S5 for a comparison of 𝑔(2)(0), 𝑇1, and 𝑇2 for different material SPE systems. 

To leverage these promising quantum optical properties and use InP/ZnSe/ZnS dots as solid-state 

SPEs, they could be integrated in a cavity structure that, via Purcell enhancement, would decrease 𝑇1 and 

increase the fraction of photons emitted into the ZPL. An 880-fold enhancement of 𝑇1 for CdSe/ZnS QDs 

has been demonstrated using plasmonic nanoantennas.180 Increasing the radiative rate of the bright state, 

𝛤𝑏, would be required to outcompete the bright-to-dark relaxation. Given the bright state lifetime on the 

order of 15 ns for these InP/ZnSe/ZnS QDs, an enhancement of 120 would result in 𝑇1 of ~125 ps. With a 

𝑇2 of ~250 ps, this would achieve transform-limited emission. PCFS measures an upper-bound for 𝑇2 at a 

given photon separation time 𝜏, and this value will only further increase with decreasing 𝜏, e.g. for 2 ns 

pulse separations commonly used in Hong-Ou-Mandel experiments for single QDs. Spectral filtering could 

then be used to further diminish photons emitted from phonon sidebands and multiexciton recombination,101 

increasing single-photon purity. Synthetic strategies may also be used to reduce electron-phonon coupling 

via strain engineering, as has been done for CdSe/CdS123 and alloyed CdSe/CdxZn1-xSe dots,124 and to tune 

Auger rates to reduce biexciton quantum yield.101,177 Asymmetrically strained CdSe/CdxZn1-xSe dots have 

also been shown to emit six times more light from the bright exciton state.181 Altering surface ligands to 

rigidify the shell surface could reduce acoustic phonon coupling, further improving the coherent fraction. 

Implementation of these strategies could help realize InP/ZnSe/ZnS QDs as a scalable material for coherent 

and stable single-photon generation. 
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3.9. Supplementary Information 

 

Figure 3.10. Temperature-dependent spectra for four different InP/ZnSe/ZnS QDs, which shows the population of 

the bright 𝐹 = ±1 state with increasing temperature. The visibility of the higher energy bright ZPL peak depends 

on its energy separation from the dark ZPL; for dot10, a second peak is clearly visible, whereas for dot12, the 

second peak is more overlapped with the dark ZPL. Oscillations at lower energies (~1850 – 1925 meV), and the 

sharp dip at ~1980 meV, are a result of the Electron-Multiplying (EM) gain applied across the CCD camera and 

imperfect background subtraction. 

 

Figure 3.11. Intensity traces for 5 different InP/ZnSe/ZnS dots. Panels a and b are for the same dot, with panel b 

zoomed in on 40 – 80s to more clearly observe blinking. 
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Figure 3.12. Fitted interferograms, spectral correlations, and spectra for two more dots, P5 (a-c) and P6 (d-f). 

 

 

Figure 3.13. Fitted lifetimes and 𝑔(2)(𝜏) functions for dots L1 – L3. Fitted parameters are in Table 3.3 and Table 3.4. 



99 
 

 𝝉 𝜞 (µeV) 𝝎𝒄 (meV) 𝒂𝟏 𝒂𝟐 𝝀 (meV) 𝛀 (meV) 𝒑 𝒚𝟎 

P1 𝜇 

𝝉𝟎→𝟏 11.321 2.881 1.005 0.852 8.1E-04 0.151 3.018 0.783 

𝝉𝟐→𝟑 14.064 2.880 1.009 0.850 8.1E-04 0.156 3.000 0.833 

𝝉𝟒→𝟓 14.428 2.880 1.010 0.850 8.1E-04 0.156 3.000 0.838 

P1 𝜎 

𝝉𝟎→𝟏 0.700 0.002 0.007 0.002 2.9E-15 0.002 0.053 0.012 

𝝉𝟐→𝟑 0.711 0.000 0.002 0.000 4.5E-09 0.000 0.000 0.004 

𝝉𝟒→𝟓 0.489 0.000 0.001 0.000 5.5E-10 0.000 0.000 0.007 

P2 𝜇 

𝝉𝟎→𝟏 5.232 0.765 1.005 0.214 8.1E-04 0.304 6.869 0.237 

𝝉𝟐→𝟑 5.807 0.749 1.004 0.245 8.4E-04 0.305 6.772 0.234 

𝝉𝟒→𝟓 6.105 0.770 0.996 0.232 9.1E-04 0.306 6.375 0.235 

P2 𝜎 

𝝉𝟎→𝟏 1.232 0.109 0.008 0.029 1.2E-04 0.002 1.315 0.026 

𝝉𝟐→𝟑 1.375 0.082 0.007 0.030 1.2E-04 0.003 0.800 0.027 

𝝉𝟒→𝟓 1.017 0.094 0.008 0.036 7.2E-05 0.003 0.571 0.022 

P3 𝜇 

𝝉𝟎→𝟏 5.216 0.354 1.010 0.853 5.6E-05 0.856 3.600 0.501 

𝝉𝟐→𝟑 6.418 0.366 0.994 0.906 1.4E-04 0.856 3.600 0.516 

𝝉𝟒→𝟓 6.918 0.368 0.994 0.913 5.4E-05 0.855 3.600 0.524 

P3 𝜎 

𝝉𝟎→𝟏 0.136 0.008 0.000 0.004 6.8E-14 0.000 0.000 0.003 

𝝉𝟐→𝟑 0.608 0.008 0.008 0.023 2.7E-04 0.001 0.000 0.020 

𝝉𝟒→𝟓 0.810 0.006 0.008 0.021 6.8E-06 0.001 0.000 0.021 

P4 

(CdSe) 

𝜇 

𝝉𝟎→𝟏 18.359 0.299 1.008 0.000 9.5E+00 0.154 3.689 0.120 

𝝉𝟐→𝟑 23.314 0.292 1.000 0.000 9.1E+00 0.154 3.809 0.117 

𝝉𝟒→𝟓 31.944 0.292 0.999 0.000 9.0E+00 0.154 3.771 0.121 

P4 

(CdSe) 

𝜎 

𝝉𝟎→𝟏 0.649 0.010 0.002 0.000 3.2E-01 0.000 0.139 0.005 

𝝉𝟐→𝟑 0.604 0.011 0.006 0.000 5.5E-01 0.000 0.084 0.006 

𝝉𝟒→𝟓 0.801 0.007 0.007 0.000 4.0E-01 0.000 0.036 0.004 

 

Table 3.1. Fitted parameters for PCFS interferograms. 𝜏0→1 corresponds to photons arriving with time difference 𝜏 

between 100 – 500 µs; 𝜏2→3 for 1 – 5 ms; and 𝜏4→5 for 10 – 50 ms. Mean values and standard deviations were obtained 

by performing each fit 20 times starting with randomized (within user defined bounds) initial guesses. 
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dot P1 dot P2 dot P3 dot P4 

𝜏 (ms) 𝜇 ± 𝜎 𝜇 ± 𝜎 𝜇 ± 𝜎 𝜇 ± 𝜎 

0.1 - 0.33 10.8 ± 0.7 5.1 ± 1.0 5.2 ± 0.3 18.2 ± 1.0 

0.33 - 0.66 12.1 ± 0.2 4.2 ± 0.7 5.6 ± 0.4 20.2 ± 0.7 

0.66 - 0.99 9.4 ± 0.5 5.9 ± 1.7 5.8 ± 0.4 20.8 ± 0.6 

1 - 3.3 14.3 ± 0.5 5.5 ± 1.2 6.2 ± 0.6 23.2 ± 1.1 

3.3 - 6.6 14.7 ± 0.9 5.4 ± 1.7 6.8 ± 0.6 25.6 ± 0.6 

6.6 - 9.9 14.7 ± 1.5 5.5 ± 1.3 7.0 ± 0.5 27.2 ± 0.3 

10 - 33 14.9 ± 0.3 6.1 ± 1.2 6.8 ± 0.7 31.1 ± 0.4 

33 - 66 15.3 ± 0.8 5.5 ± 1.5 7.2 ± 0.6 34.1 ± 0.1 

66 - 99 16.6 ± 1.3 5.8 ± 2.3 7.7 ± 0.7 34.2 ± 0.0 

 

Table 3.2. Means 𝜇 and standard deviations 𝜎 of the value of 𝛤 for fitted interferograms at different 𝜏 windows 

spanning 100 µs to ~100 ms. 

 

 

Variable 𝑎1 𝜏1 (µs) 𝛼2 𝜏2 (µs) 𝑦0 

dot L1 0.91 3.2e-3 0.09 0.36 2.0e-3 

dot L2 0.92 2.6e-3 0.08 0.36 2.3e-3 

dot L3 0.95 4.5e-3 0.05 0.32 1.4-3 

Table 3.3. Fitted parameters for lifetimes of dots L1 – L3. The fitted amplitudes are scaled to sum to 1, i.e. 𝑎1/(𝑎1 +
𝑎2) and 𝑎2/(𝑎1 + 𝑎2). 

 

 

Variable 𝑎1 𝜏1 (µs) 𝛼2 𝜏2 (µs) 𝑅 𝑦0 Λ (µs) 

dot L1 0.43 3.5e-3 0.45 0.39 0.077 2.3e-2 4.0 

dot L2 0.18 3.5e-3 0.41 0.37 0.087 2.8e-2 4.0 

dot L3 1.04 3.5e-3 0.22 0.37 0.086 2.4e-2 4.0 

Table 3.4. Fitted parameters for 𝑔(2)(𝜏) of dots L1 – L3. 
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Material system 
𝝀 

(nm) 

Linewidth 

(µeV) 
𝒈𝟐(𝟎) 

𝑻𝟏 

(𝐧𝐬) 
Ref. 

CdSe/CdS QD 

(colloidal) 

585 
6.5 for 𝜏 < 20 µs, 

10 for 𝜏 > 1 ms 
0.60 

𝜏𝑏 = 10,182 

𝜏𝑑 = 150169 
169,182 

626 ~10 μeV (at 2K) 0.8 – 1.0 

𝜏1 = 1, 

 𝜏2 = 18,  

𝜏3 = 220 

162,183 

CsPbBr3 QD 

(colloidal) 

530 
17 -  27 for 𝜏 < 100 

µs 

1 (unfiltered) 

0 (filtered) 
0.21 – 0.27 70 

510 - 520 20.8 for 𝜏 < 100 ms - 0.19 – 0.24 19 

2D hBN defect 

573 – 821 45 0.41 - 0.42 -(c)  

575 
5 for 𝜏 < 10 µ𝑠, 

50 for 𝜏 > 10 m𝑠 
0.35 ± 0.05 1.7 ± 0.2 131 

2D WSe2 defect 730 130 0.14 – 0.21 1.79 133 

2D MoS2 

defect 
700 248 0.23 1730 ± 150 184 

InGaAs 

(epitaxial)(a) 

925 Lifetime-limited(b)
 0.024 – 0.047 0.15 138 

915 1.25(b) 0.021 0.05 185 

InP/ZnSe/ZnS 

QD 

(colloidal) 

610 

5 for 𝝉 = 100 – 500 

µs 

7 for 𝝉 = 10 – 50 ms 

0.071 – 0.086 
𝝉𝒃 = 16.747 

𝝉𝒅 = 360 

This 

work 

 

Table 3.5. Comparison of center wavelength, linewidth, and unfiltered 𝑔(2)(𝜏 = 0) for various solid-state single-

photon emitter systems. PL = photoluminescence, μ-PL = micro-photoluminescence. (a) = dot in cavity structure, (b) = 

radiatively limited linewidth, (c) = value not found in reference. 
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Chapter 4 

Third-Order Photon Correlation Technique Reveals High Average 

Multiexciton Quantum Yields in ZnSe Nanocrystals 

4.1. Abstract 

Colloidal nanocrystals (NCs) are used in several high excitation flux applications such as the active layer 

in light-emitting diodes. One property that makes them particularly good for high flux applications is their 

ability to hold multiple excitons at once enabling higher photon output compared to molecular systems. 

However, nonradiative Auger recombination can severely hinder the multiexciton quantum efficiency in 

many colloidal NCs. Here, we use a second-order cross-correlation technique to show ZnSe/ZnS NCs have 

a high average biexciton quantum yield ratio of 84% ± 2%, making these NCs a great candidate for high 

flux optical applications. To generalize the multiexciton properties, we advance the correlation technique 

to the third-order to measure the average triexciton quantum yield ratio. Additionally, we extend the photon 

number resolved lifetime analytical method to determine the triexciton lifetime in addition to the biexciton 

lifetime of these ZnSe/ZnS NCs in solution. We find the biexciton lifetime to be 2.4 ns and the triexciton 

lifetime to be 1.9 ns. The faster triexciton lifetime suggests a lower triexciton quantum yield ratio compared 

to the biexciton quantum yield ratio. Our findings show that the multiexciton efficiency and dynamics of 

colloidal NCs can be routinely probed in solution, and that ZnSe/ZnS NCs are a promising material for high 

flux optical applications.  

4.2. Background 

Colloidal nanocrystals (NCs) are a material of interest in several high excitation flux applications 

such as lasing,186 light-emitting diodes (LEDs),92,148 and quantum emission for quantum information 

sciences.12,58 Colloidal NCs are solution-processable and have been proven to exhibit high 

photoluminescence (PL) quantum yields (QYs),148,171 narrow linewidths,47,89,124 and tunable emission 

energies.87,88 For materials that can only hold a single exciton at once, light output is limited by the PL 

lifetime. NC emission output is limited by the exciton lifetime, but can partially overcome this limitation 

by sustaining multiple excitons at once. Multiexciton efficiency becomes a more significant factor in overall 

efficiency of NCs in high flux applications, and is known to be primarily reduced by nonradiative Auger 

recombination where the energy from recombination of an electron-hole pair transfers to another electron 

or hole, promoting the charge to a higher energetic state, rather than emitting as a photon.  
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Multiexciton and Auger recombination have been studied using primarily two spectroscopic 

methods: ultrafast spectroscopy and single-NC spectroscopy. Ultrafast techniques such as transient 

absorption and transient photoluminescence have the power to measure average multiexciton and Auger 

lifetimes on the ensemble level.101,187 However, these ultrafast techniques require high excitation fluxes, 

limiting control over the number of excitons generated,188 and require precise modelling of the NC system 

to extract significant physical properties. Single-NC spectroscopy avoids ensemble averaging of the 

interrogated system which allows for greater control of the number of excitons generated and 

straightforward interpretation of the emission properties. Biexciton dynamics and QY have been 

investigated at the single-NC level in several systems including CdSe,80,82,189 InP,58 CsPbBr3,12,70,190 and 

InAs191 by measuring second-order photon correlations, 𝑔(2)(𝜏), using a Hanbury Brown and Twiss 

configuration.192 Low excitation fluxes were used in all of these studies to ensure higher-order multiexciton 

generation (𝑛 ≥ 3) was negligible. Shulenberger et al. extended the single-NC correlation technique by 

measuring third-order photon correlations, 𝑔(3)(𝜏1, 𝜏2), in a modified Hanbury Brown and Twiss 

configuration to resolve the triexciton dynamics and QY of single CdSe NCs.82,193  

Single-NC photon correlation spectroscopy can unambiguously measure fundamental properties of 

colloidal NCs important for high flux optical applications, however these measurements are time intensive 

making it challenging to gather statistically significant numbers on the material of interest. Single-NC 

spectroscopy also suffers from user selection bias, where the brightest and most stable NCs are investigated 

more than the NCs that are dimmer or intermittingly blinking on and off. Beyler et al.85 and Bischof et al.84 

acknowledged a need to adapt the single-NC 𝑔(2)(𝜏) technique to measure average single-NC biexciton 

QYs and lifetimes in an ensemble of NCs.84,85 This solution-phase 𝑔(2)(𝜏) technique combines the useful 

information from single-NC measurements with the increased stability and consistency of ensemble-level 

measurements, and has been used for routine characterization of many colloidal NC materials.24,25,29,58,194,195  

An analogous solution-phase 𝑔(3)(𝜏1, 𝜏2) technique must be developed to measure triexciton properties 

with statistical significance.  

In this study, we develop a solution-phase 𝑔(3)(𝜏1, 𝜏2) technique to characterize the average single-

NC triexciton dynamics and QY in colloidal NC systems, gaining statistically significant quantities and 

avoiding user selection bias. We extend the solution-phase 𝑔(2)(𝜏) theory to incorporate triexction emission 

and create a series of Monte Carlo simulations to corroborate the theory. Finally, we measure ZnSe QDs 

demonstrating their high multiexciton QYs and their efficient multiexciton radiative recombination 

dynamics. 
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4.3. High Exciton and Average Biexciton Quantum Yield in ZnSe/ZnS QDs 

The ZnSe/ZnS NCs under investigation have an 8 nm ZnSe core and a 1 nm ZnS outer shell. The 

surface of the inorganic heterostructure is capped with oleic acid (OA) organic ligand to promote colloidal 

stability in solution. A schematic illustration and transmission electron microscopy image with energy 

dispersive X-ray analysis (TEM-EDX) of the ZnSe/ZnS NCs is shown Figure 4.1a,b, respectively.  These 

NCs have near-unity PLQY and narrow ensemble PL with a PLmax of ~442 nm and a full-width at half-

maximum of 11 nm (Figure 4.1c). ZnSe NCs are within the II-VI semiconductor group exhibiting similar 

electronic structure as CdSe NCs.62 ZnSe/ZnS NCs have shown to exhibit both Type I  and quasi-Type II 

heterostructure behavior. Depending on the study, ZnSe NCs optical properties indicate confinement of the 

electron wavefunction within the ZnSe core (Type I), or a delocalization of the electron wavefunction into 

the ZnS shell (quasi-Type II).196–200  

We measured the average biexciton quantum yield to exciton quantum yield ratio of these ZnSe 

NCs in solution using a second-order cross-correlation 𝑔(2)(𝜏) technique where 𝜏 is the time difference 

between NC photon emission times.84 By exciting a dilute solution of ZnSe NCs with a pulsed excitation 

source, we can measure the combination of single NC correlation contributions 𝑔𝑠𝑖𝑛𝑔𝑙𝑒
(2)

(𝜏) and ensemble 

correlation contributions 𝑔𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒
(2)

(𝜏) at short 𝜏, and ensemble correlation contributions at long 𝜏. If we 

assume ensemble contributions are consistent across all 𝜏, we can subtract the ensemble contributions out 

at short 𝜏 to isolate the single NC correlation contributions. The biexciton quantum yield to exciton quantum 

yield ratio is determined by measuring the ratio of the ensemble subtracted correlations occurring within 

the same excitation pulse 𝑔(2)(0) and the correlations occurring one pulse separated 𝑔(2)(𝑇𝑟𝑒𝑝) (Equation 

4.1).  

𝑄𝑌𝐵𝑋

𝑄𝑌𝑋
=

𝑔(2)(0)−1

𝑔(2)(𝑇𝑟𝑒𝑝)−1
           (4.1) 

We measure an average 
𝑄𝑌𝐵𝑋

𝑄𝑌𝑋
 of 86% ± 2%. This high biexciton quantum yield ratio suggests a very slow 

Auger recombination rate, potentially a result of the large volume of the ZnSe NC and a gradient-like 

interface between the ZnSe core and the ZnS shell.201  
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Figure 4.1. a. ZnSe/ZnS (core/shell) heterostructure schematic. b. ZnSe/ZnS NC TEM images. Inset shows a larger 

window TEM image with a 50 nm scale bar. c. Ensemble ZnSe/ZnS absorption (black) and emission (blue). d. Solution 

𝑔(2)(𝜏) measurement, fitting, and ensemble-averaged biexciton quantum yield ratio. 

 Measuring the biexciton efficiency is not sufficient to generalize multiexciton behavior in when 

considering ZnSe/ZnS NCs for high flux optical applications as many higher order multiexcitons are 

generated. We propose an analogous solution third-order cross-correlation 𝑔(3)(𝜏1, 𝜏2) technique to 

measure average triexciton quantum yield ratio of these ZnSe NCs. Additionally, we propose to extend the 

photon number resolved lifetime (𝑃𝑁𝑅𝐿) analysis to measure the biexciton and triexciton lifetimes in 

solution. By extending these solution multiexciton techniques to the triexciton, we attempt to begin to 

generalize the multiexciton behavior in ZnSe/ZnS NCs.  

4.4. Derivation of Solution Third-Order Correlation Technique  

We start the derivation by defining all necessary terms and important assumptions necessary to 

work through the mathematical framework. We develop the relationship between the third-order cross-
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correlations and the triexciton quantum yield (TXQY) through a series of cases: (1) A single-stationary dot, 

(2) a single-diffusing dot, (3) 𝑁0 diffusing QDs, and (4) Poisson distribution of diffusing particles. 

Definitions 

• 𝑎 : the absorption cross-section, assumed to be constant in time and the same for all transitions 

from the (n-1)X to nX excitonic state 

• 𝛾𝑛(𝑡) : the time-dependent quantum yield of the nX excitonic state radiatively relaxing to the (n-

1)X state. For simplicity, we will write 𝛾𝑛(𝑡) simply as 𝛾𝑛   

• 𝑝(𝑡) : rate of excitation, which depends on the particle’s absorption cross-section 𝑎 and its position 

within the reference volume, as well as laser intensity 

• 𝜏𝐷 : characteristic diffusion time of emissive particle as governed by Brownian motion 

• 𝑇rep : the period of the pulsed laser excitation 

• 𝑉0 : an arbitrarily large reference volume containing the focal volume 

• 𝑁0 : the number of particles within 𝑉0 at a given point in time 

• Poi(𝑚, 𝑝) : a Poisson distribution with average value p, evaluated for some integer m 

• 𝑃(𝑛, 𝑝(𝑡)) : the probability of exactly 𝑛 photon emissions following a laser pulse, originating from 

a single QD with a time-dependent excitation flux 𝑝(𝑡) 

• 𝑃𝑇(𝑛, 𝑁0, {𝑝𝑖(𝑡)}) : the total probability of exactly 𝑛 photon emissions arising from 𝑁0 QDs with 

time-dependent excitation fluxes {𝑝𝑖(𝑡)} following an excitation pulse 

• 𝐺(3)(𝜏1, 𝜏2, 𝑡) : instantaneous probability at time 𝑡 of a correlation count at (𝜏1, 𝜏2) for a single 

particle 

• 𝐺(3)(𝜏1, 𝜏2, 𝑡) : probability of a correlation count at (𝜏1, 𝜏2) averaged over the course of the 

experiment, for a single particle 

• 𝐺(3)(𝜏1, 𝜏2, 𝑁0) : probability of a correlation count at (𝜏1, 𝜏2) averaged over the course of the 

experiment for 𝑁0 particles 

• 〈 ⋯ 〉 : time average over the experiment’s integration time 

Starting Assumptions 

1. Low excitation flux: We assume that the excitation flux is sufficiently small such that, under 

Poisson absorption statistics, we are generating a negligible number of fourth-order excitations, 

both in an individual QD and across the ensemble of QDs. This assumption greatly simplifies the 

following derivation.  
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2. Uniform and constant absorption cross-sections: We assume that all nX excitonic states have 

the same absorption cross section. This approximation should hold given that the laser excitation 

is well above the material’s band gap. Moreover, for convenience we assume that the absorption 

cross-section is constant over the course of the experiment. Although it is challenging to rigorously 

verify this claim, a similar assumption was made in Beyler et al.85 and did not apparently lead to 

any issues in the solution 𝐺(2) experiment. 
 

3. Pulsed laser period is significantly longer than emitter lifetime: This assumption ensures that 

emission events are binned properly. If emission events from one excitation pulse overlaps with 

emission events from another excitation pulse, the measured multiexciton QYs would be artificially 

inflated. 
 

4. Focal volume population obeys Poisson statistics: For convenience we assume that, when we 

have a large number of freely diffusing QDs, the occupation number of the focal volume follows a 

Poisson distribution. For a solution of QDs, this assumption should hold true unless we have 

significant sample aggregation. In this case, the diffusion of distinct emitters is correlated, 

invalidating this assumption. Fortunately, the presence of aggregation can be inferred 

experimentally through the shape of the FCS and solution conditions can be optimized to favor 

Poisson behavior. 

 

Derivation 

This derivation is an extension of the solution BXQY derivation found in Beyler et al.85 The key 

difference in this derivation is the assumption that third-order terms contribute significantly to the overall 

emission, allowing us to track triexciton emission statistics. The derivation will be broken into a set of cases 

of increasing complexity. We will build up the relevant equations from the case of a single, stationary QD 

to the “real-life” scenario of a fluctuating number of unique QDs freely diffusing in and out of the focal 

volume. Ultimately, we will identify analytical expressions for key points in the 𝐺(3)(𝜏1, 𝜏2) correlation 

function, the experimental observable. 

Case 1: A single, stationary QD 

We’ll first consider the case of a single, static QD experiencing a time-independent excitation rate 

𝑝(𝑡) = 𝑝. Under the assumption that all excitonic states have the same absorption cross-section, we can 

reasonably model absorption statistics with a Poisson distribution, with an average probability of absorbing 
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a photon given by the excitation rate 𝑝. In other words, the probability of a single QD absorbing 𝑚 photons, 

is given by 

 
Poi(𝑚, 𝑝) =

𝑝𝑚𝑒−𝑝

𝑚!
=

𝑝𝑚

𝑚!
(1 − 𝑝 +

𝑝2

2!
−

𝑝3

3!
+ ⋯ ) . (4.2) 

As a result, the probability of a single QD emitting 𝑛 photons is 

 
𝑃(𝑛, 𝑝) =  ∑ Poi(𝑚, 𝑝) × 𝐸(𝑛, 𝑚)

∞

𝑚=0

, (4.3) 

where 𝐸(𝑛, 𝑚) describes the probability of the QD, having absorbed 𝑚 photons, emitting 𝑛. As such, 

𝐸(𝑛, 𝑚) can be written exclusively in terms of the QD’s quantum yields for the relevant excitonic states. 

For example, the probability of a QD to emit 0 photons after absorbing 1 photon is 

 𝐸(0,1) = 1 − 𝛾1 (4.4) 

Expanding the Poisson distributions, substituting in appropriate expressions for the 𝐸(𝑛, 𝑚), and truncating 

to the third order in 𝑝 yields 

 
𝑃(0, 𝑝) ≈ 1 − 𝛾1 × 𝑝 +

1

2
(𝛾1 − 𝛾2 + 𝛾1𝛾2) × 𝑝2

+
1

6
(−𝛾1 + 2𝛾2 − 2𝛾1𝛾2 − 𝛾3 + 𝛾1𝛾3 + 𝛾2𝛾3 − 𝛾1𝛾2𝛾3) × 𝑝3 

(4.5) 

 

 
𝑃(1, 𝑝) ≈ 𝛾1 × 𝑝 +

1

2
(−𝛾1 + 𝛾2 − 2𝛾1𝛾2) × 𝑝2

+
1

2
(𝛾1 + 𝛾3 − 2𝛾1𝛾3 − 2𝛾2𝛾3 + 3𝛾1𝛾2𝛾3) × 𝑝3 

(4.6) 

 

 
𝑃(2, 𝑝) ≈

1

2
𝛾1𝛾2 × 𝑝2 +

1

6
(−2𝛾1𝛾2 + 𝛾1𝛾3 + 𝛾2𝛾3 − 3𝛾1𝛾2𝛾3) × 𝑝3 (4.7) 

 

 
𝑃(3, 𝑝) ≈

1

6
𝛾1𝛾2𝛾3 × 𝑝3 (4.8) 

 

Lastly, under our assumptions we set 
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 𝑃(𝑛 ≥ 4, 𝑝) = 0 (4.9) 

 

These probabilities are not directly measured, however. Instead, we record third-order cross-correlations, 

𝐺(3). The next step is to write the 𝐺(3) in terms of emission probabilities. 

First, we have to account for the fact that when multiple emissions occur within the same excitation 

pulse, 𝐺(3)counts may arise from either “positive” or “negative” time separations. To account for the 

additional opportunities for contributions to a given 𝐺(3) peak when emissions occur in the same excitation 

pulse, we add pre-factors to obtain proper values of 𝐺(3)(𝜏1, 𝜏2, 𝑡). For three simultaneous events there is a 

multiplicity of 6, for two simultaneous events a multiplicity of 2, and for a single event a multiplicity of 1. 

Therefore 

 𝐺(3)(0,0, 𝑡) = 6𝑃(3, 𝑝) = 𝛾1 𝛾2 𝛾3 × 𝑝3, (4.10) 

 

 𝐺(3)(0, 𝑇rep, 𝑡) = 2𝑃(2, 𝑝)𝑃(1, 𝑝)

= 𝛾1
2 𝛾2 × 𝑝3, 

(4.11) 

 

   𝐺(3)(𝑇rep, 𝑇rep, 𝑡) = 𝑃(1, 𝑝)3 = 𝛾1
3 × 𝑝3. (4.12) 

 

Thus, when we average the 𝐺(3) over the full course of the experiment, we obtain 

 𝐺(3)(0, 0) = 〈𝛾1𝛾2𝛾3〉 × 𝑝3 (4.13) 

 

 𝐺(3)(0, 𝑇rep) = 〈𝛾1
2𝛾2〉 × 𝑝3 (4.14) 

 

 𝐺(3)(𝑇rep, 𝑇rep) = 〈𝛾1
3〉 × 𝑝3 (4.15) 

 

Note that, in the case where the quantum yields change negligibly over time, the ratio of the center peak to 

the on-axis side peak yields the relative TXQY of a single particle: 
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 𝐺(3)(0, 0)

𝐺(3)(0, 𝑇rep)
=

𝛾3

𝛾1
 

 

(4.16) 

This is the result obtained for the single-QD 𝐺(3) measurement derived in Shulenberger et al.,13 verifying 

our treatment up to this point. 

Case 2: A single, diffusing QD 

 Now consider a single particle which freely diffuses within an arbitrarily large reference volume 

𝑉0. The identity of the particle may change, but the occupation of 𝑉0 is always one. Due to QD diffusion, 

the excitation rate 𝑝(𝑡) felt by the particle changes with time. Since these changes are uncorrelated with 

time-dependent variations in quantum yields {𝛾𝑛(𝑡)}, we now have that 

 𝐺(3)(0, 0) = 6〈𝑃(3, 𝑝(𝑡))〉 = 〈𝛾1𝛾2𝛾3〉 × 〈𝑝(𝑡)3〉 (4.17) 

 

 𝐺(3)(0, 𝑇rep) = 2〈𝑃(2, 𝑝(𝑡))𝑃(1, 𝑝, 𝑡)〉 = 〈𝛾1
2𝛾2〉 × 〈𝑝(𝑡)3〉 (4.18) 

 

 𝐺(3)(𝑇rep, 𝑇rep) = 〈𝑃(1, 𝑝(𝑡))3〉 = 〈𝛾1
3〉 × 〈𝑝(𝑡)3〉 (4.19) 

 

Implicit in these equations is the assumption that the QD does not feel a difference in the excitation rate 

between one excitation pulse and the subsequent pulse, or 𝑝(𝑡) ≈ 𝑝(𝑡 + 𝑇rep). 

Case 3: 𝑁0 diffusing QDs 

Now assume that there are exactly N0 diffusing particles in the reference volume at all times, 

although their identities may change. We allow each particle i to have its own {𝛾𝑛}𝑖  and 𝑝𝑖(𝑡). Since we 

now have multiple dots potentially emitting during the same excitation pulse, our probabilities will reflect 

the possibility of photon emission from multiple dots. Consequently, 

 

𝑃𝑇(0, 𝑁0, {𝑝𝑖(𝑡)}) = ∏ 𝑃𝑖(0, 𝑝𝑖(𝑡)),

𝑁0

𝑖=1

 (4.20) 
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𝑃𝑇(1, 𝑁0, {𝑝𝑖(𝑡)}) = ∑ 𝑃𝑖(1, 𝑝𝑖(𝑡))

𝑁0

𝑖=1

∏ 𝑃𝑗 (0, 𝑝𝑗(𝑡)) ,

𝑁0

𝑗≠𝑖

 (4.21) 

 

 𝑃𝑇(2, 𝑁0, {𝑝𝑖(𝑡)})

= ∑ 𝑃𝑖(2, 𝑝𝑖(𝑡))

𝑁0

𝑖=1

∏ 𝑃𝑗 (0, 𝑝𝑗(𝑡))

𝑁0

𝑗≠𝑖

+ ∑ ∑ 𝑃𝑖(1, 𝑝𝑖(𝑡))

𝑁0

𝑗=𝑖+1

𝑃𝑗 (1, 𝑝𝑗(𝑡))

𝑁0−1

𝑖=1

∏ 𝑃𝑘(0, 𝑝𝑘(𝑡))

𝑁0

𝑘≠𝑖,𝑗

, 
(4.22) 

 

 𝑃𝑇(3, 𝑁0, {𝑝𝑖(𝑡)})

= ∑ 𝑃𝑖(3, 𝑝𝑖(𝑡))

𝑁0

𝑖=1

∏ 𝑃𝑗 (0, 𝑝𝑗(𝑡))

𝑁0

𝑗≠𝑖

+ ∑ ∑ 𝑃𝑖(2, 𝑝𝑖(𝑡))

𝑁0

𝑗≠𝑖

𝑃𝑗 (1, 𝑝𝑗(𝑡))

𝑁0

𝑖=1

∏ 𝑃𝑘(0, 𝑝𝑘(𝑡))

𝑁0

𝑘≠𝑖,𝑗

+ ∑ ∑ ∑ 𝑃𝑖(1, 𝑝𝑖(𝑡))𝑃𝑗 (1, 𝑝𝑗(𝑡)) 𝑃𝑘(1, 𝑝𝑘(𝑡)) ∏ 𝑃𝑙(0, 𝑝𝑙(𝑡)).

𝑁0

𝑙≠𝑖,𝑗,𝑘

𝑁0

𝑘=𝑗+1

𝑁0−1

𝑗=𝑖+1

𝑁0−2

𝑖=1

 

(4.23) 

 

Now we use these probabilities to write expressions for correlation peaks. This requires simplifying the 

products of the above probabilities and applying a time average. For the center peak we obtain 

 𝐺(3)(0,0, 𝑁0) = 6 × 〈𝑃𝑇(3, 𝑁0, {𝑝𝑖(𝑡)})〉. (4.24) 

 

We next apply the time average, bearing in mind that emissions from separate particles are uncorrelated. 

Therefore 
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𝐺(3)(0,0, 𝑁0) = 6 ∑〈𝑃(3, 𝑝(𝑡))〉 ∏〈𝑃(0, 𝑝(𝑡))〉

𝑁0

𝑗≠𝑖

𝑁0

𝑖=1

+ 6 ∑ ∑〈𝑃(2, 𝑝(𝑡))〉

𝑁0

𝑗≠𝑖

〈𝑃(1, 𝑝(𝑡))〉

𝑁0

𝑖=1

∏ 〈𝑃(0, 𝑝(𝑡))〉

𝑁0

𝑘≠𝑖,𝑗

+ 6 ∑ ∑ ∑ 〈𝑃(1, 𝑝(𝑡))〉3 ∏ 〈𝑃(0, 𝑝(𝑡))〉

𝑁0

𝑙≠𝑖,𝑗,𝑘

𝑁0

𝑘=𝑗+1

𝑁0−1

𝑗=𝑖+1

𝑁0−2

𝑖=1

= 6𝑁0 × 〈𝑃(3, 𝑝(𝑡))〉〈𝑃(0, 𝑝(𝑡))〉𝑁0−1

+ 6𝑁0(𝑁0 − 1) × 〈𝑃(2, 𝑝(𝑡))〉〈𝑃(1, 𝑝(𝑡))〉〈𝑃(0, 𝑝(𝑡))〉𝑁0−2

+ 𝑁0(𝑁0 − 1)(𝑁0 − 2) × 〈𝑃(1, 𝑝(𝑡))〉3〈𝑃(0, 𝑝(𝑡))〉𝑁0−3. (4.25) 

 

For the on-axis side peak,  

 𝐺(3)(0, 𝑇𝑟𝑒𝑝, 𝑁0) = 2 × 〈𝑃𝑇(2, 𝑁0, {𝑝𝑖(𝑡)}) × 𝑃𝑇(1, 𝑁0, {𝑝𝑖(𝑡)})〉. (4.26) 

 

We next simplify the sum products and apply the time average 
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 𝐺(3)(0, 𝑇𝑟𝑒𝑝, 𝑁0)

= 2 ∑〈𝑃(2, 𝑝(𝑡))𝑃(1, 𝑝(𝑡))〉

𝑁0

𝑖=1

∏ 〈𝑃(0, 𝑝(𝑡))
2

〉

𝑁0

𝑗≠𝑖

+ 2 ∑ ∑〈𝑃(2, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))〉〈𝑃(1, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))〉

𝑁0

𝑗≠𝑖

𝑁0

𝑖=1

∏ 〈𝑃(0, 𝑝(𝑡))
2

〉

𝑁0

𝑘≠𝑖,𝑗

+ 2 ∑ ∑ 〈𝑃(1, 𝑝(𝑡))
2

〉 〈𝑃(1, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))〉

𝑁0

𝑗≠𝑖

𝑁0

𝑖=1

∏ 〈𝑃(0, 𝑝(𝑡))
2

〉

𝑁0

𝑘≠𝑖,𝑗

+ 6 ∑ ∑ ∑ 〈𝑃(1, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))〉3

𝑁0

𝑘=𝑗+1

𝑁0−1

𝑗=𝑖+1

𝑁0−2

𝑖=1

∏ 〈𝑃(0, 𝑝(𝑡))
2

〉

𝑁0

𝑙≠𝑖,𝑗,𝑘

= 2𝑁0 × 〈𝑃(2, 𝑝(𝑡))𝑃(1, 𝑝(𝑡))〉 〈𝑃(0, 𝑝(𝑡))
2

〉𝑁0−1

+ 2𝑁0(𝑁0 − 1)

× 〈𝑃(2, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))〉〈𝑃(1, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))〉 〈𝑃(0, 𝑝(𝑡))
2

〉𝑁0−2

+ 2𝑁0(𝑁0 − 1) × 〈𝑃(1, 𝑝(𝑡))
2

〉 〈𝑃(1, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))〉 〈𝑃(0, 𝑝(𝑡))
2

〉𝑁0−2

+ 𝑁0(𝑁0 − 1)(𝑁0 − 2) × 〈𝑃(1, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))〉3 〈𝑃(0, 𝑝(𝑡))
2

〉𝑁0−3. (4.27) 

 

Similarly for the diagonal side peak,  

 𝐺(3)(𝑇rep, 𝑇rep, 𝑁0) = 〈𝑃𝑇(1, 𝑁0, {𝑝𝑖(𝑡)})3〉. (4.28) 

Then 
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 𝐺(3)(𝑇rep, 𝑇rep, 𝑁0)

= ∑ 〈𝑃(1, 𝑝(𝑡))
3

〉

𝑁0

𝑖=1

∏ 〈𝑃(0, 𝑝(𝑡))
3

〉

𝑁0

𝑗≠𝑖

+ 3 ∑ ∑ 〈𝑃(1, 𝑝(𝑡))
2

𝑃(0, 𝑝(𝑡))〉 〈𝑃(1, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))
2

〉

𝑁0

𝑗≠𝑖

𝑁0

𝑖=1

∏ 〈𝑃(0, 𝑝(𝑡))
3

〉

𝑁0

𝑘≠𝑖,𝑗

+ 6 ∑ ∑ ∑ 〈𝑃(1, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))
2

〉3 ∏ 〈𝑃(0, 𝑝(𝑡))
3

〉

𝑁0

𝑙≠𝑖,𝑗,𝑘

𝑁0

𝑘=𝑗+1

𝑁0−1

𝑗=𝑖+1

𝑁0−2

𝑖=1

= 𝑁0 × 〈𝑃(1, 𝑝(𝑡))
3

〉 〈𝑃(0, 𝑝(𝑡))
3

〉𝑁0−1

+ 3𝑁0(𝑁0 − 1)

× 〈𝑃(1, 𝑝(𝑡))
2

𝑃(0, 𝑝(𝑡))〉 〈𝑃(1, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))
2

〉 〈𝑃(0, 𝑝(𝑡))
3

〉𝑁0−2

+ 𝑁0(𝑁0 − 1)(𝑁0 − 2) × 〈𝑃(1, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))
2

〉3 〈𝑃(0, 𝑝(𝑡))
3

〉𝑁0−3. (4.29) 

 

The expressions above now contain terms originating from single QDs as well as multiple QDs 

(“the ensemble”). In order to determine the average TXQY, a single-dot property, we will need to subtract 

out these ensemble terms. To this end, we will derive expressions for correlation peaks at long-time 

separations such that we can safely assume that they exclusively originate from distinct particles. As we 

will see, these peaks will correspond to ensemble terms above, allowing us to recover single-particle 

information from an ensemble solution measurement. 

 To begin, we make the reasonable assumption that, in the limit of infinitely long-time separations, 

the likelihoods of emission events are uncorrelated. In other words, 

 𝐺(3)(𝜏1 → ∞, 𝜏2 → ∞, 𝑁0)

= 〈 lim
𝜏1,𝜏2→∞

𝐼(𝑡, 𝑁0)𝐼(𝑡 + 𝜏1, 𝑁0)𝐼(𝑡 + 𝜏1 + 𝜏2, 𝑁0)〉, 

= 〈𝐼(𝑡, 𝑁0)〉3  (4.30) 

 

 𝐺(3)(0, 𝜏2 → ∞, 𝑁0) = 〈 lim
𝜏2→∞

𝐼(𝑡, 𝑁0)𝐼(𝑡, 𝑁0)𝐼(𝑡 + 𝜏2, 𝑁0)〉 

= 〈𝐼(𝑡, 𝑁0)〉 × 𝐺(2)(0, 𝑁0) (4.31) 
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= 〈𝐼(𝑡, 𝑁0)〉 × [2𝑁0 × 〈𝑃(2, 𝑝(𝑡))〉〈𝑃(0, 𝑝(𝑡))〉𝑁0−1

+ 𝑁0(𝑁0

− 1)〈𝑃(1, 𝑝(𝑡))〉2〈𝑃(0, 𝑝(𝑡))〉𝑁0−2], 

and 

 𝐺(3)(𝑇rep, 𝜏2 → ∞, 𝑁0) = 〈 lim
𝜏2→∞

𝐼(𝑡, 𝑁0)𝐼(𝑡 + 𝑇rep, 𝑁0)𝐼(𝑡 + 𝜏2, 𝑁0)〉 

= 〈𝐼(𝑡, 𝑁0)〉 × 𝐺(2)(𝑇rep, 𝑁0) 

= 〈𝐼(𝑡, 𝑁0)〉 × [𝑁0 × 〈𝑃(1, 𝑝(𝑡))2〉〈𝑃(0, 𝑝(𝑡))2〉𝑁0−1

+ 𝑁0(𝑁0

− 1)〈𝑃(1, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))〉2〈𝑃(0, 𝑝(𝑡))2〉𝑁0−2]. (4.32) 

 

Here, 〈𝐼(𝑡, 𝑁0)〉 gives the average number of photon counts at a point in time. It can be expressed as 

 〈𝐼(𝑡, 𝑁0)〉 = 〈1 × 𝑃𝑇(1, 𝑁0, {𝑝𝑖(𝑡)}) + 2 × 𝑃𝑇(2, 𝑁0, {𝑝𝑖(𝑡)})

+ 3 × 𝑃𝑇(3, 𝑁0, {𝑝𝑖(𝑡)}) + ⋯ 〉. (4.33) 

 

Derivations for 𝐺(2)(0, 𝑁0) and 𝐺(2)(𝑇rep, 𝑁0), which also appear above, may be found in Beyler et al.14  

Case 4: Poisson Distribution of Diffusing Particles 

Finally, we reach the “real-world” case, in which we let the number of particles in the reference 

volume vary according to a Poisson distribution centered on some average occupancy 〈𝑁0〉. For the 𝐺(3) 

peaks at short 𝜏, we make the reasonable approximation that the occupation number doesn’t significantly 

change on the timescale of the laser period. Consequently, when 𝜏1, 𝜏2 ≪ 𝜏𝐷 

 
𝐺(3)(𝜏1, 𝜏2, 〈𝑁0〉) = ∑ Poi(𝑛, 〈𝑁0〉) × 𝐺(3)(𝜏1, 𝜏2, 𝑛).

∞

𝑛=0

 (4.34) 

Then by simplifying, substituting in previously determined values for 〈𝑃(𝑛, 𝑝(𝑡))〉, and truncating at third 

order in 𝑝, we find that 
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𝐺(3)(0,0, 〈𝑁0〉) = ∑ Poi(𝑛, 〈𝑁0〉) × 𝐺(3)(0,0, 𝑛)

∞

𝑛=0

= ∑
〈𝑁0〉𝑛𝑒−〈𝑁0〉

𝑛!
𝐺(3)(0,0, 𝑛).

∞

𝑛=0

 

(4.35) 

 

We can rearrange the above expression to obtain 

 𝐺(3)(0,0, 〈𝑁0〉)

= 6〈𝑁0〉〈𝑃(3, 𝑝(𝑡))〉𝑒−〈𝑁0〉 ∑
〈𝑁0〉𝑛−1〈𝑃(0, 𝑝(𝑡))〉𝑛−1

(𝑛 − 1)!

∞

𝑛=1

+ 6〈𝑁0〉2〈𝑃(2, 𝑝(𝑡))〉〈𝑃(1, 𝑝(𝑡))〉𝑒−〈𝑁0〉 ∑
〈𝑁0〉𝑛−2〈𝑃(0, 𝑝(𝑡))〉𝑛−2

(𝑛 − 2)!

∞

𝑛=2

+ 〈𝑁0〉3〈𝑃(1, 𝑝(𝑡))〉3𝑒−〈𝑁0〉 ∑
〈𝑁0〉𝑛−3〈𝑃(0, 𝑝(𝑡))〉𝑛−3

(𝑛 − 3)!
.

∞

𝑛=3

 
(4.36) 

 

Note that the sum factors are simply Taylor expansions of an exponential. Thus 

 𝐺(3)(0,0, 〈𝑁0〉) = [6〈𝑁0〉〈𝑃(3, 𝑝(𝑡))〉 + 6〈𝑁0〉2〈𝑃(2, 𝑝(𝑡))〉〈𝑃(1, 𝑝(𝑡))〉 + 〈𝑁0〉3〈𝑃(1, 𝑝(𝑡))〉3] × 𝑒(〈𝑃(0,𝑝(𝑡)〉−1)〈𝑁0〉. (4.37) 
1 

Finally, truncating at third order in 𝑝 we find 

 𝐺(3)(0,0, 〈𝑁0〉) ≈ 〈𝑁0〉〈𝛾1𝛾2𝛾3〉〈𝑝(𝑡)3〉 + 3〈𝑁0〉2〈𝛾1𝛾2〉〈𝛾1〉〈𝑝(𝑡)3〉〈𝑝(𝑡)〉 + 〈𝑁0〉3〈𝛾1〉3〈𝑝(𝑡)〉3. (4.38) 
 

Intuitively, the first term in the above expression corresponds to the probability of a TX event, the second 

term corresponds to one QD emitting a BX and another QD emitting an X, and the final term corresponds 

to the emission of three Xs from three separate QDs. By a similar process, it can be shown that 
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 𝐺(3)(0, 𝑇rep, 〈𝑁0〉)

= [2〈𝑁0〉〈𝑃(2, 𝑝(𝑡))𝑃(1, 𝑝(𝑡))〉

+ 2〈𝑁0〉2〈𝑃(2, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))〉〈𝑃(1, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))〉

+ 2〈𝑁0〉2 〈𝑃(1, 𝑝(𝑡))
2

〉 〈𝑃(1, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))〉

+ 〈𝑁0〉3〈𝑃(1, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))〉3] × 𝑒(〈𝑃(0,𝑝(𝑡))
2

〉−1)〈𝑁0〉

≈ 〈𝑁0〉〈𝛾1
2𝛾2〉〈𝑝(𝑡)3〉 + 〈𝑁0〉2〈𝛾1𝛾2〉〈𝛾1〉〈𝑝(𝑡)2〉〈𝑝(𝑡)〉

+ 2〈𝑁0〉2〈𝛾1
2〉〈𝛾1〉〈𝑝(𝑡)2〉〈𝑝(𝑡)〉 + 〈𝑁0〉3〈𝛾1〉3〈𝑝(𝑡)〉3. (4.39) 

 

Now the first term in the above equation describes the probability of a single QD emitting a BX followed 

by an X; the second term describes the probability of one QD emitting a BX followed by another QD 

emitting an X; the third term describes the probability of two X emissions from two separate QDs within a 

single excitation pulse, followed by another X from one of the QDs that emitted an X in the previous 

excitation pulse; and the fourth term describes the probability of, again, three separate X emissions from 

three separate QDs. The difference in the fourth term in Equation 37 compared to the third term in Equation 

36 is that the three separate X emissions occur between two separate excitation pulses in Equation 37. The 

three separate X emissions all occur within the same excitation pulse in Equation 36. Likewise, 

 𝐺(3)(𝑇rep, 𝑇rep, 〈𝑁0〉)

= [〈𝑁0〉〈𝑃(1, 𝑝(𝑡))3〉

+ 3〈𝑁0〉2〈𝑃(1, 𝑝(𝑡))2𝑃(0, 𝑝(𝑡))〉〈𝑃(1, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))2〉  

+ 〈𝑁0〉3 〈𝑃(1, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))2〉3] × 𝑒(〈𝑃(0,𝑝(𝑡))3〉−1)〈𝑁0〉

≈ 〈𝛾1
3〉〈𝑝(𝑡)3〉〈𝑁0〉 + 3〈𝛾1

2〉〈𝛾1〉〈𝑝(𝑡)2〉〈𝑝(𝑡)〉〈𝑁0
2〉

+ 〈𝛾1〉3〈𝑝(𝑡)〉3〈𝑁0
3〉. (4.40) 

 

Conceptually, the first term gives the likelihood of a single QD emitting three Xs after three 

sequential excitation pulses, the second that of a single QD emitting two Xs followed by a second QD 

emitting a third X after three sequential excitation pulses, and the third that of three QDs emitting three Xs 

after three sequential excitation pulses. 

When the time interval separating emission events is long relative to the diffusion time τD, the 

occupancy of the reference volume is liable to change in between these events. Therefore, for probabilities 

spaced at long time separations, we must apply separate Poisson distributions. In other words, 
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𝐺(3)(𝜏1 → ∞, 𝜏2 → ∞, 〈𝑁0〉) = [∑ Poi(𝑛, 〈𝑁0〉)

∞

𝑛=0

× 〈𝐼(𝑡, 𝑛)〉]

3

 (4.41) 

 

Plugging in our expression for 〈𝐼(𝑡, 𝑛)〉 and factoring out the resulting exponential Taylor expansion, we 

arrive at  

  

𝐺(3)(𝜏1 → ∞, 𝜏2 → ∞, 〈𝑁0〉)

≈ 〈𝑁0〉3〈𝑃(1, 𝑝(𝑡))〉3𝑒−3〈𝑁0〉(𝑃(0,𝑝(𝑡))−1) ≈ 〈𝑁0〉3〈𝛾1〉3〈𝑝(𝑡)〉3. (4.42) 
 

Next, we have that 

 𝐺(3)(0, 𝜏2 → ∞, 〈𝑁0〉)

= [∑ Poi(𝑛, 〈𝑁0〉)[2𝑛 × 〈𝑃(2, 𝑝(𝑡))〉〈𝑃(0, 𝑝(𝑡))〉𝑛−1

∞

𝑛=0

+ 𝑛(𝑛 − 1)〈𝑃(1, 𝑝(𝑡))〉2〈𝑃(0, 𝑝(𝑡))〉𝑛−2]]

× [∑ Poi(𝑛, 〈𝑁0〉)

∞

𝑛=0

× 〈𝐼(𝑡, 𝑛)〉], 
(4.43) 

 

and simplifying yields 

 𝐺(3)(0, 𝜏2 → ∞, 〈𝑁0〉)

≈ [2〈𝑁0〉2〈𝑃(2, 𝑝(𝑡))〉〈𝑃(1, 𝑝(𝑡))〉 + 〈𝑁0〉3〈𝑃(1, 𝑝(𝑡))〉3]

× 𝑒2〈𝑁0〉(〈𝑃(0,𝑝(𝑡))〉−1) 

                           ≈ 〈𝑁0〉2〈𝛾1𝛾2〉〈𝛾1〉〈𝑝(𝑡)2〉〈𝑝(𝑡)〉 + 〈𝑁0〉3〈𝛾1〉3〈𝑝(𝑡)〉3. (4.44) 

 

Applying the same process to 𝐺(3)(𝑇rep, 𝜏2 → ∞, 〈𝑁0〉) gives us that 



120 
 

 𝐺(3)(𝑇rep, 𝜏2 → ∞, 〈𝑁0〉)

= [∑ Poi(𝑛, 〈𝑁0〉)[𝑛 × 〈𝑃(1, 𝑝(𝑡))2〉〈𝑃(0, 𝑝(𝑡))2〉𝑛−1

∞

𝑛=0

+ 𝑛(𝑛 − 1)〈𝑃(1, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))〉2〈𝑃(0, 𝑝(𝑡))2〉𝑛−2]]

× [∑ Poi(𝑛, 〈𝑁0〉)

∞

𝑛=0

× 〈𝐼(𝑡, 𝑛)〉]

≈ [〈𝑁0〉2 〈𝑃(1, 𝑝(𝑡))
2

〉 〈𝑃(1, 𝑝(𝑡))〉

+ 〈𝑁0〉3〈𝑃(1, 𝑝(𝑡))𝑃(0, 𝑝(𝑡))〉2〈𝑃(1, 𝑝(𝑡))〉]

× 𝑒
〈𝑁0〉(〈𝑃(0,𝑝(𝑡))〉+〈𝑃(0,𝑝(𝑡))

2
〉−2)

≈ 〈𝑁0〉2〈𝛾1
2〉〈𝛾1〉〈𝑝(𝑡)2〉〈𝑝(𝑡)〉 + 〈𝑁0〉3〈𝛾1〉3〈𝑝(𝑡)〉3. (4.45) 

 

At last, we have obtained analytical expressions for a sufficient set of peaks in the 𝐺(3) function to back 

out physically meaningful single-particle information. 

Determining multiexciton quantum yields 

With the above values of 𝐺(3)(𝜏1 → ∞, 𝜏2 → ∞, 〈𝑁0〉), we may subtract the “ensemble” 

contributions from the center and on-axis side peak and take their ratio: 

 𝐺(3)(0,0, 〈𝑁0〉) − 3𝐺(3)(0, 𝜏2 → ∞, 〈𝑁0〉) + 2𝐺(3)(𝜏1 → ∞, 𝜏2 → ∞, 〈𝑁0〉)

𝐺(3)(0, 𝑇rep , 〈𝑁0〉) − 𝐺(3)(0, 𝜏2 → ∞, 〈𝑁0〉)  − 2𝐺(3)(𝑇rep, 𝜏2 → ∞, 〈𝑁0〉)  + 2𝐺(3)(𝜏1 → ∞, 𝜏2 → ∞, 〈𝑁0〉)
=

〈𝛾1𝛾2𝛾3〉

〈𝛾1
2𝛾2〉

. (4.46) 

 

We interpret this quantity as the TXQY relative to the XQY, averaged across the sample and weighted by 

the brightness of individual emitters. We can also verify our 𝐺(3) measurement by using it to calculate the 

relative, brightness-weighted BXQY: 

 𝐺(3)(0, 𝑇rep , 〈𝑁0〉) − 𝐺(3)(0, 𝜏2 → ∞, 〈𝑁0〉)  − 2𝐺(3)(𝑇rep, 𝜏2 → ∞, 〈𝑁0〉) + 2𝐺(3)(𝜏1 → ∞, 𝜏2 → ∞, 〈𝑁0〉)

𝐺(3)(𝑇rep, 𝑇rep, 〈𝑁0〉) − 𝐺(3)(𝑇rep, 𝜏2 → ∞, 〈𝑁0〉)  + 2𝐺(3)(𝜏1 → ∞, 𝜏2 → ∞, 〈𝑁0〉)
=

〈𝛾1
2 𝛾2〉

〈𝛾1
3〉

. (4.47) 

 

To measure the third-order correlations, we modify the HBT configuration to split the photon 

stream into four paths. The modified HBT in Figure 4.2a shows a pulsed excitation source excite a solution 

NC sample. The emission is sent to 50:50 beamsplitter where it has a 50% chance to travel towards detectors 

1 and 2 or towards detectors 3 and 4. After the NC emission travels through the first beamsplitter, it will 
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continue to another beamsplitter, making it such that there is a 25% of the NC emission to travel to any of 

the detectors. The third-order cross-correlations are computed by recording the histogram of all photon time 

differences 𝜏1 of photons at Detector A with photons at Detector B, while simultaneously recording the 

histogram of all photon time differences 𝜏2 of photons at Detector B with photons at Detector C (Figure 

4.2b). 

Figure 4.2. a. Modified Hanbury Brown and Twiss (HBT) setup to measure third-order cross-correlations g(3)(τ1, τ2) 

b. g(3)(τ1, τ2) between Detector A, Detector B, and Detector C. c. Single NC (red, green) and ensemble (blue) 

contributions to g(3)(τ1, τ2). d. Center peak contributions G(3)(0,0) (top equation) and side peak contributions to 

G(3)(0, Trep) (bottom equation). Numbered ensemble contributions highlighted in blue correspond to ensemble 

correlation peaks in c. 

To verify the validity of the above derivation, we simulated the third-order correlation experiment with 

varying biexciton and triexciton quantum yields in the next section.  

4.5. Monte Carlo Simulations of Third-Order Correlation Experiment 

Monte Carlo (MC) simulations of the solution triexciton quantum yield experiment is developed 

through three steps: (1) modelling the Brownian motion of diffusing NCs, (2) modelling the Poisson nature 

of photon emission, and (3) performing the third-order cross-correlation analysis and photon number 

resolved lifetime analysis on simulated photon streams.  

4.5.1. Modelling Brownian Motion of Diffusing Nanocrystals 

We begin by modelling the diffusion of individual NCs in solution. We use a Brownian diffusion 

model that tracks the movement of a NC in the 𝑥-, 𝑦-, and 𝑧-direction every excitation pulse. For instance, 
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if the repetition rate of the excitation source is 1 MHz, the NC position will be stored every 1000 ns. The 

magnitude of the displacement of the NC in all directions is determined by the diffusion constant  

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑎
         (4.48) 

where 𝑘𝐵 is the Boltzmann constant, 𝑇 is temperature, 𝜂 is the viscosity of the solvent, and 𝑎 is the NC 

radius. The diffusion constant 𝐷 is scaled by a constant 𝑘 in order to consider the dimension 𝑑 of the 

Brownian motion and the step size in time 𝜏. 

𝑘 = 𝐷 ∗ 𝑑 ∗ 𝜏         (4.49) 

We show the three-dimensional Brownian motion of 50 NCs in solution in Figure 4.3a. Diffusion 

is modelled at room temperature (𝑇 = 293 K) in toluene (𝜂 = 5.54 × 10−4 Pascal∙seconds), and the NC 

radius 𝑎 is set to 5 nm. The black sphere in Figure 4.3a,b represents the focal volume of the laser excitation. 

The focal volume is modelled using a point spread function (Equation 4.48) to appropriately simulate the 

Gaussian excitation volume (Figure 4.3c).  Only NC position and time data within the focal volume is 

stored for photon stream generation. (Figure 4.3b). 

 

Figure 4.3. a. Simulated Brownian motion of 50 NCs in a 1 𝜇𝑚 × 1 𝜇𝑚 × 2 𝜇𝑚 box. b. NC diffusion (colored traces) 

within the excitation focal volume (black sphere). c. Point spread function representing the distribution of excitation 

densities following Equation 4.48. 

𝑃𝑆𝐹(𝑥, 𝑦, 𝑧) = 𝑒
−

2𝑟2

𝑤𝑥𝑦
2

𝑒
−

2𝑧2

𝑤𝑧
2
        (4.50) 

4.5.2. Modelling Photon Emission  

We now have a dataset of NC excitation times. The next step is to generate the photon stream from 

these NCs. To do this, we model the absorption process, the emission process, and the optical path each 

photon travels to a single photon detector.  

We model the absorption process using a Poisson model. For any NC excitation event, there is 

some probability for the NC to absorb 0, 1, 2, …, m photons, given an excitation density 〈𝑛〉.  
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𝑃𝑜𝑖(𝑚, 〈𝑛〉) =
〈𝑛〉𝑚𝑒−〈𝑛〉

𝑚!
         (4.51) 

Figure 4.4 shows the probability of an NC to absorb 𝑚 photons with an excitation density 〈𝑛〉 = 0.1, 0.5, 

1, 5, 10. The higher the excitation density, the higher the probability of the NC to absorb several photons 

at once. Necessary to the assumptions of these solution multiexciton experiments, we operate at a low 

excitation density (〈𝑛〉 ≤ 0.1) so that there are negligible contributions from absorption processes of 𝑚 ≥

4. 

 

Figure 4.4. Poisson distribution describing the probability of absorbing 𝑚 photons given a particular excitation density 
〈𝑛〉. 

Successful photon emission is determined by the randomly generating a number and comparing it 

to exciton, biexciton, or triexciton quantum yield. For instance, let’s say three photons were absorbed in an 

excitation event, and the exciton, biexciton, and triexciton quantum yields are 100%, 50%, and 20%, 

respectively. We first generate a random number from 0 to 1 for the triexciton. If the number is between 0 

and 0.2, we say the triexciton radiatively recombines. Otherwise, it nonradiatively recombines and we 

remove the triexciton from the photon stream. Similarly, we generate random numbers from 0 to 1 for the 

biexciton and exciton. If the random number for the biexciton is between 0 and 0.5, the biexciton radiatively 

recombines. If the random number for the exciton is between 0 and 1, the exciton radiatively recombines. 

For successful radiative recombination events, we store the excitation time for further processing of the 

photon stream. 

To determine the arrival time of the photon, we must simulate the lifetime of the exciton, biexciton, 

or triexciton. Let’s continue with our example of the three-photon absorption event, and say that the exciton, 

biexciton, and triexciton all successfully radiatively recombine. Let’s also say that the exciton radiative 

lifetime is 30 ns, and the biexciton and triexciton radiative lifetimes are both 7.5 ns. We randomly generate 
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exponential decay numbers related to the exciton, biexciton, or triexciton lifetime, add that number to the 

excitation time, and store it in the array of photon arrival times.  

The final step is to simulate the detector number for each photon arrival time. Each photon has a 

25% chance of arriving at one of the four detectors in the modified HBT setup. We have taken into account 

the dead time of detectors, so two photons cannot arrive at the same detector within the same pulse. If the 

triexciton photon arrives at detector 1 and then the biexciton photon also arrives at detector 1, the biexciton 

photon will be discarded from the photon stream.  

4.5.3. Third-Order Cross-Correlation and Photon Number Resolved Lifetime Analysis 

We extend the correlation algorithm developed to compute fast second-order correlations to now 

correlate in the third-order.202 To do so, we first compute the second-order cross-correlation at Detector B 

with photons at Detector C. However, we do not compute the cumulative correlation of every photon, but 

instead store the correlation of every individual photon at Detector B with photons at Detector C. Figure 

4.5 shows an example of how the first two photon correlations in the Detector B photon stream are stored. 

Then, we compute the cumulative correlation of the photons at Detector A with photons at Detector B. 

Figure 4.6 demonstrates how the first two Detector B second-order correlations are stored within the 

columns of the first Detector A photon third-order correlation. The final step is to normalize the total 

number of counts according to the bin width. The reason the bin widths exponentially increase is to speed 

up the algorithm. 

 

Figure 4.5. Individual photon second-order cross-correlations for the a. first photon and b. second photon in the 

Detector B photon stream 
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Figure 4.6. Frist two Detector B photon second-order cross-correlations added to the column of the first Detector A 

photon third-order cross-correlation. The column the correlation is added to depends on which bin the Detector B 

photon sits within. 

Regarding the 𝑃𝑁𝑅𝐿𝑠, we measure the arrival time of the first photon in a two-photon event 

𝑃𝑁𝑅𝐿(2,0,1)(𝜏) to determine the biexciton lifetime, and the first photon in a three-photon event 

𝑃𝑁𝑅𝐿(3,0,1)(𝜏) to determine the triexciton lifetime. Since we are in solution, we have to consider a number 

of ensemble emission events that can contribute to the 𝑃𝑁𝑅𝐿(2,0,1)(𝜏) and 𝑃𝑁𝑅𝐿(3,0,1)(𝜏). The dominant 

ensemble background emission event that affects the 𝑃𝑁𝑅𝐿(2,0,1)(𝜏) is the detection of two excitons from 

two separate NCs (Equation 4.52). The two dominant ensemble background emission events that affect 

the 𝑃𝑁𝑅𝐿(3,0,1)(𝜏) are the detection of three excitons from three separate NCs and the detection of a 

biexciton from one NC and an exciton from another NC (Equation 4.53). 

 

 
𝑃𝑁𝑅𝐿𝑏𝑘𝑔

(2,0,1)(𝜏) = (
𝑑 − 1

𝑑
) 𝑔(1)(𝜏) (∫ 𝑔(1)(𝑡)𝑑𝑡

𝑇𝑟𝑒𝑝

0

) (4.52) 

 

 
𝑃𝑁𝑅𝐿𝑏𝑘𝑔

(3,0,1)
(𝜏) = (

𝑑 − 1

𝑑
) (

𝑑 − 2

𝑑
) [𝑔(1)(𝜏) (∫ ∫ 𝑔(1)(𝑡2)𝑑𝑡2𝑑𝑡1

𝑇𝑟𝑒𝑝

𝑡1

𝑇𝑟𝑒𝑝

𝜏

) + 𝑃𝑁𝑅𝐿(2,0,1)(𝜏) (∫ 𝑔(1)(𝑡)𝑑𝑡
𝑇𝑟𝑒𝑝

0

)] (4.53) 

 

The biexciton lifetime and triexciton lifetimes are therefore 

 𝐵𝑋(𝜏) = 𝑃𝑁𝑅𝐿(2,0,1)(𝜏) − 𝑃𝑁𝑅𝐿𝑏𝑔
(2,0,1)

(𝜏) (4.54) 
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 𝑇𝑋(𝜏) = 𝑃𝑁𝑅𝐿(3,0,1)(𝜏) − 𝑃𝑁𝑅𝐿𝑏𝑔
(3,0,1)

(𝜏). (4.55) 

To perform the analysis, we uploaded the photon streams to the MIT SuperCloud and parallelized the 

code to speed up the computations. 

4.5.4. Monte Carlo Simulation Results  

To validate the triexciton quantum yield derivation in Section 4.4, we sought to quantify the average single 

NC triexciton quantum yield of a series of Monte Carlo simulations. Each simulation consisted of the 

following parameters: 

• Number of NCs 𝑵𝑪 = 10000  

• Box dimensions 𝑳 × 𝑾 × 𝑯 = 19 𝜇𝑚 × 19 𝜇𝑚 × 19 𝜇𝑚  

• Duration of experiment 𝑻𝒊𝒎𝒆 = 3600 𝑠 

• NC radius 𝒂 = 5 𝑛𝑚  

• Solvent viscosity 𝜼 = 5.54 × 10−4𝑃𝑎 ∗ 𝑠  

• Temperature 𝑻 = 293 𝐾 

• Repetition Rate 𝒓𝒆𝒑𝒓𝒂𝒕𝒆 = 1 𝑀𝐻𝑧 

• Excitation focal volume dimensions 𝒘𝒛 = 1500 𝑛𝑚 and 𝒘𝒙𝒚 = 500 𝑛𝑚 

• Exciton lifetime 𝝉𝑿 = 30 𝑛𝑠 

• Biexciton lifetime 𝝉𝑩𝑿 = 7.5 𝑛𝑠 

• Triexciton lifetime 𝝉𝑻𝑿 = 30 𝑛𝑠 and 𝝉𝑻𝑿 = 7.5 𝑛𝑠 

• Exciton quantum yield 𝑸𝒀𝑿 = 100% 

Prior to running our newly developed third-order cross-correlation analysis on the MC datasets, we tested 

the physical reasonability of the simulations by measuring the second-order cross-correlation, used to 

determine the biexciton quantum yield. Figure 4.7a shows the second-order cross-correlation of a MC 

simulation with 75% biexciton quantum yield. We determined the shape and values to be reasonable, within 

1% of the expected biexciton quantum yield value. Additionally, we ran an MC simulation of NCs diffusing 

in two-dimensions, rather than three-dimensions, and measured the second-order cross-correlation (Figure 

4.7b). The value of the biexciton quantum yield is within 2% of the expected value, however the shape of 

the correlation at short tau does not plateau. 
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Figure 4.7. Second-order cross-correlation of MC simulation in a. 3D and b. 2D.  

Figure 4.9 shows the results of the 15 third-order cross-correlation Monte Carlo simulations. The 

biexciton and triexciton quantum yields ranged from 5% to 100%. Qualitatively, we observe a dip in the 

center peak of the third-order cross-correlation as the triexciton quantum yield decreases. Additionally, the 

trace of the third-order cross-correlation where 𝜏1 or 𝜏2 is equal to 0 dips as the biexciton quantum yield 

decreases. Quantitatively, we find the analysis of the third-order cross-correlations in Figure 4.9 using 

Equation 4.46 are in good agreement with the set parameters of the simulations (Figure 4.8) 

 

Figure 4.8. Figure 4.8. Measured triexciton quantum yield compared to the set triexciton quantum yield in MC 

simulations in Figure 4.9. 
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Figure 4.9. Monte Carlo Simulations of the 10,000 QDs diffusing in a 19 𝜇𝑚 × 19 𝜇𝑚 × 19 𝜇𝑚 box for 3600 

seconds. The QDs have a 30 ns exciton lifetime, a 7.5 ns biexciton lifetime, and a 7.5 ns triexciton lifetime The exciton 

quantum yield was set to 100% for all experiments, and the BX/TXQYs varied depending on the experiment. The 

QDs were excited by a 1 MHz repetition laser at a 0.1 excitation density, and the focal volume shape was set such that 

𝑤𝑧 = 3𝑤𝑥𝑦 . a-o. BX and TX quantum yields vary depending on the simulation, specified within the figure. 
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To test the 𝑃𝑁𝑅𝐿 method and background subtraction, we simulated two potentially physical 

systems. The first one is a system where the statistical scaling of the triexciton is set to 1 compared to the 

exciton lifetime. This would occur in a system where the triexciton solely recombines through p-state 

emission (CITE). The second system has a statistical scaling factor of the triexciton set to 4 compared to 

the exciton lifetime. This would occur in a system where the triexciton solely recombines through s-state 

emission and behaves similarly to the biexciton. Figure 4.10a shows the system with a statistical scaling 

factor of 1 for the triexciton. We find that the method reasonably isolates the biexciton and triexciton 

emission from the background ensemble for the biexciton and triexciton lifetimes (Figure 4.10b,c). 

Similarly, Figure 4.10d shows the system with a statistical scaling factor of 4 for the triexciton. We find 

again that the method reasonably isolates the biexciton and triexciton lifetimes from the ensemble 

background (Figure 4.10e,f). 

 

Figure 4.10. a. Exciton (black), biexciton (red), and triexciton lifetime extracted from the 𝑃𝑁𝑅𝐿𝑠 of a Monte Carlo 

simulated dataset where the triexciton lifetime was set to be equal to the exciton lifetime (statistical scaling = 1). b. 

𝑃𝑁𝑅𝐿(2,0,1)(𝜏) and 𝑃𝑁𝑅𝐿𝑏𝑔
(2,0,1)

(𝜏) calculated to determine the biexciton lifetime in a. c. 𝑃𝑁𝑅𝐿(3,0,1)(𝜏) and 

𝑃𝑁𝑅𝐿𝑏𝑔
(3,0,1)

(𝜏) calculated to determine the triexciton lifetime in a. d. Exciton (black), biexciton (red), and triexciton 

lifetime extracted from the 𝑃𝑁𝑅𝐿𝑠 of a Monte Carlo simulated dataset where the triexciton lifetime was set to be four 

times faster than the exciton lifetime (statistical scaling = 4). c. 𝑃𝑁𝑅𝐿(2,0,1)(𝜏) and 𝑃𝑁𝑅𝐿𝑏𝑔
(2,0,1)

(𝜏) calculated to 

determine the biexciton lifetime in d. f. 𝑃𝑁𝑅𝐿(3,0,1)(𝜏) and 𝑃𝑁𝑅𝐿𝑏𝑔
(3,0,1)

(𝜏) calculated to determine the triexciton 

lifetime in d. 
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Now that we have validated the merits of the triexciton lifetime and quantum yield analysis, we look at 

experimental ZnSe/ZnS NC data. 

4.6. Measuring Average Triexciton Quantum Yield and Triexciton Lifetime of 

ZnSe/ZnS QDs 

We perform the third-order cross-correlation method on a series of ZnSe/ZnS NC solution samples 

and find that the experimental data qualitatively resembles the simulated data (Figure 4.11). However, we 

are running into issues extracting the triexciton quantum yield using Equation 4.46. The correlations 

systematically have an abnormally low side peak relative to the center peak, indicating a potential issue in 

the analysis code or the experimental setup that will give rise to errors in the quantitative analysis. We plan 

to investigate this issue prior to publishing this data. 

 

Figure 4.11. Experimental ZnSe/ZnS NC 𝑔(3)(𝜏1, 𝜏2) from a series of solution measurements. 

Additionally, we perform the 𝑃𝑁𝑅𝐿 method on the ZnSe/ZnS NC solution samples and find the 

analysis gives rise to reasonable biexciton and triexciton lifetime in Figure 4.12a. The biexciton and 

triexciton lifetime are fit to monoexponential decay functions and are 2.4 ns and 1.8 ns, respectively (Figure 

4.12cd). Meanwhile, the exciton lifetime is fit to a biexponential decay function and has lifetime parameters 

of 5.7 ns and 30.5 ns for 𝜏1 and 𝜏2, respectively with amplitudes of 0.8 and 0.2 for 𝐴1 and 𝐴2, respectively. 

Given the high biexciton quantum yield, the value of 2.4 ns seems reasonable given a statistical scaling 

factor of 4 for the biexciton lifetime. The slightly faster triexciton lifetime suggests the triexciton quantum 
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yield is slightly lower, potentially a result of the greater Auger recombination rate due to the greater exciton 

overlap when there are three excitons in the NC compared to two in the biexciton system. 

 

Figure 4.12. a. Exciton (black), biexciton (red), and triexciton lifetime extracted from the 𝑃𝑁𝑅𝐿𝑠 of a solution 

ZnSe/ZnS NC experimental dataset. b. 𝑃𝑁𝑅𝐿(2,0,1)(𝜏) and 𝑃𝑁𝑅𝐿𝑏𝑔
(2,0,1)

(𝜏) calculated to determine the biexciton 

lifetime in a. c. 𝑃𝑁𝑅𝐿(3,0,1)(𝜏) and 𝑃𝑁𝑅𝐿𝑏𝑔
(3,0,1)

(𝜏) calculated to determine the triexciton lifetime in a. d. Exciton 

lifetime (black) fit to a biexponential decay (dotted blue) with constants in the top right of the figure. e. Biexciton 

lifetime (red) fit to a monoexponential decay (dotted black) with the lifetime displayed in the top right of the figure. 

f. Triexciton lifetime (green) fit to a monoexponential decay (dotted black) with the lifetime displayed in the top 

right of the figure. 

4.7. Conclusions 

We have shown that colloidal ZnSe/ZnS NCs have a high biexciton quantum yield ratio of 86% ± 2% in 

solution. This high biexciton quantum efficiency is amongst the highest in colloidal NC systems without 

intentional optimization of the NC structure for minimal Auger recombination, making these NCs 

promising candidates for high flux optical applications.  

To begin to generalize the multiexciton behavior in these ZnSe/ZnS NCs, we developed a third-order cross-

correlation technique and derived the necessary mathematical framework to quantify the average triexciton 

quantum yield ratio in solution. The derivation was validated by a series of Monte Carlo simulations. 
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Additionally, we extend the photon number resolved lifetime analytical method to measure the triexciton 

lifetime in solution, and validate the extension using Monte Carlo simulations. We show that the biexciton 

lifetime is 2.4 ns and the triexciton lifetime is 1.9 ns, suggesting the triexciton quantum yield ratio might 

be slightly lower than the biexciton quantum yield ratio. Regardless, we have shown that these ZnSe/ZnS 

NCs have high multiexciton efficiencies and should be incorporated into device structures for high flux 

optical applications.  

The next step is to continue to process the third-order cross-correlations to quantify the average triexciton 

quantum yield ratio. 
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Chapter 5 

Future Directions 

I will use this section to discuss two projects that I have explored in my PhD work, and wish I had 

more time to work on.  

The first project is on developing a fourth-order correlation technique to resolve asymmetric line 

shape information with similar energy and time resolution as PCFS. I will expand on Andrew Beyler’s 

Future Direction Section 9.3 on this topic. I make amendments to the derivation and I show Monte Carlo 

simulation results that work towards achieving the correct results, but are not quite there yet. 

The second project is a Monte Carlo photon correlation toolkit. I used Monte Carlo simulations in 

a lot of my work. I found them to be extremely helpful for gaining intuition of the photon correlations used 

in the Bawendi Lab. They were also helpful testing code, making sure there were no errors in my analysis 

before applying it to experimental data. I propose the development of a toolkit that would be made available 

to the public to make the photon correlation techniques we use in the Bawendi Lab more accessible around 

the world.  

5.1. Resolving Asymmetric Line Shapes with High Time and Energy Resolution 

using Absolute Photon Energy Correlation Spectroscopy 

5.1.1. Introduction 

Photon-correlation Fourier spectroscopy (PCFS) is a powerful tool to gain insight into the energetic 

distribution of NC photon emission with greater time and energy resolution than a standard CCD-based 

spectrometer.203 One drawback of the technique is its inability to determine asymmetric information in the 

emitter’s PL spectrum. The spectral correlation will always be symmetric no matter the line shape 𝑠(𝜔). 

Andrew Beyler has a great, succinct explanation for why the spectral correlation is always symmetric in 

Section 3.7 of his thesis.81 To recap: 

𝐹[𝑝(𝜁, 𝜏 → 0)]𝛿 = 𝐹[𝑠(𝜔) ∘ 𝑠(𝜔)]𝛿             (5.1) 

 = 𝐹[𝑠(𝜔)]𝛿
∗ 𝐹[𝑠(𝜔)]𝛿          (5.2) 

= |𝐹[𝑠(𝜔)]𝛿|2               (5.3) 

When we take the square root of a Fourier transform to isolate 𝑠(𝜔), we get the expression 

𝑠(𝜔) = 𝐹−1[(𝑎(𝛿) + 𝑏(𝛿)𝑖)√𝐹[𝑝(𝜁, 𝜏 → 0)]𝛿]         (5.4) 
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which is true spectral line shape for any real 𝑎(𝛿) and 𝑏(𝛿) that result in a physically reasonable line shape. 

Values for 𝑎(𝛿) and 𝑏(𝛿) must also satisfy 𝑎(𝛿)2 + 𝑏(𝛿)2 = 1. We lose all phase information in Equation 

5.3. As a result, there are many spectral line shapes that can produce the same spectral correlation. This is 

a fundamental limit of using second-order correlations. When we use PCFS to probe photophysical 

properties of NC systems, we are careful to discuss the spectral information in relation to the line width, 

not the line shape. We can identify fine-structure splitting in NC systems at low temperature, but we do not 

have the insight on how each fine-structure state behaves. We have no ability to identify if one fine-structure 

state is more susceptible to spectral diffusion or another, or if one fine-structure state dominates the 

emission. 

Andrew Beyler proposed in Section 9.3 of his thesis a fourth-order correlation technique that is 

capable of resolving asymmetric information, and at the same time, maintain the high time and energy 

resolution of PCFS. Andrew Beyler referred to this technique as “Heterodyne-Detection Photon-Correlation 

Fourier Spectroscopy”. I am going to refer to this technique as Absolute Photon Energy Correlation 

Spectroscopy (APECS). APECS requires the correlation of sample emission, similar to PCFS, but 

additionally requires the correlation of that sample emission with a reference light source with a known 

energy. For now, we will say that the known light source is the excitation laser.  

Figure 5.1a shows the optical setup for APECS. A continuous wave laser reflects off a 90:10 

beamsplitter (90% transmission, 10% reflection) to excite the NC sample. Typically, the laser light is 

filtered out of the optical setup, but we choose to keep it as the reference light source. Both the laser and 

sample light enter a 50:50 beamsplitter, splitting the path into two Michelson interferometers. Each 

Michelson interferometer has an independently controlled stage that can change the path length difference 

𝛿. At the end of each Michelson interferometer are to single photon detectors, where one detector filters to 

accept only sample light and the other filters to accept only laser light. Overall, the single photon arrival 

times are recorded in four photon streams. Detector A and Detector C accept sample light and Detector B, 

and Detector D accept laser light.  

Let’s say we have a NC spectrum that is a asymmetric doublet with a fine-structure splitting of 0.6 

meV (Figure 5.1b). We can excite the NC sample with a laser that is 0.5 meV away from the higher energy 

fine-structure state, and send the collective light through the APECS setup in Figure 5.1a. We can correlate 

the laser light with the sample light twice. Once at the first Michelson interferometer and another time at 

the second Michelson interferometer. These isolated correlations are effectively the spectral correlation that 

we observe in a PCFS experiment. However, since the system involves two interacting Michelson 

interferometers, we can also correlate these two spectral correlations – a product of two correlations. We 

refer to this two-dimensional spectral correlation as the APECS spectrum (Figure 5.1c), where we can see 
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the asymmetric information of the spectrum in the third quadrant of the figure. The energy values 

correspond to the energy difference between the fine-structure state and the reference laser light. Since we 

know the energy of the laser, we can simply add that value to Figure 5.1c to determine the absolute energy 

of the spectrum. In a PCFS or APECS experiment, we cannot directly measure the spectral correlation or 

the APECS spectrum, but the interferogram. We can take the double cosine transform of the APECS 

spectrum to visualize how the APECS interferogram looks (Figure 5.1d). We can see the APECS 

interferogram has a complex oscillatory motion in both dimensions, and decays according to the coherence 

time (or line width) of the NC emission.   

 

Figure 5.1. APECS optical setup. b. Asymmetric doublet NC sample spectrum (blue) and reference laser spectrum 

(green). c. Fourth-order cross-correlation is constructed by the photon time differences of the photons at Channel A 

with photons at Channel B (𝜏1), Channel C (𝜏2), and Channel D (𝜏3) d. Theoretical APECS interferogram of the 

system in b. e. Theoretical APECS spectral correlation displaying asymmetric doublet spectrum. 

 The goal of this project is to develop the mathematical framework to measure the APECS spectrum. 

Additionally, I sought to validate the APECS derivation by developing a Monte Carlo model that simulates 

this experiment to reproduce Figure 5.1d,e. 

5.1.2. Derivation 

We will begin by restating Equations. (9.36-9.40) of Andrew Beyler’s (AB’s) thesis. We have 2 laser 

channels and 2 sample channels whose intensity is given by  

 𝐼𝐴(𝛿1(𝑡), 𝑡) = 𝐼(𝑡)(1 + 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡)) (5.1) 
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 𝐼𝐵(𝛿1(𝑡), 𝑡) = 𝐼𝐿(𝑡)(1 − cos(𝜔𝐿𝛿1(𝑡))) (5.2) 

 𝐼𝐶(𝛿2(𝑡), 𝑡) = 𝐼(𝑡)(1 + 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿2(𝑡)) (5.3) 

 𝐼𝐷(𝛿2(𝑡), 𝑡) = 𝐼𝐿(𝑡)(1 − cos(𝜔𝐿𝛿2(𝑡))) (5.4) 

where 𝐼(𝑡) is the total intensity of the sample signal, 𝐼𝐿(𝑡)is the total intensity of the laser signal, 𝑠(𝜔, 𝑡) 

is the normalized sample spectrum, and 𝜔𝐿 is the laser energy.  

We then want to operate on the fourth-order cross-correlation function 

 𝑔𝐴𝐵𝐶𝐷
(4)

(𝛿01, 𝛿02, 𝜏1, 𝜏2, 𝜏3)

=
〈𝐼𝐴(𝛿1(𝑡), 𝑡) 𝐼𝐵(𝛿1(𝑡 + 𝜏1), 𝑡 + 𝜏1) 𝐼𝐶(𝛿2(𝑡 + 𝜏2), 𝑡 + 𝜏2) 𝐼𝐷(𝛿2(𝑡 + 𝜏3), 𝑡 + 𝜏3)〉

〈𝐼𝐴(𝛿1(𝑡), 𝑡)〉〈 𝐼𝐵(𝛿1(𝑡 + 𝜏1), 𝑡 + 𝜏1)〉〈 𝐼𝐶(𝛿2(𝑡 + 𝜏2), 𝑡 + 𝜏2)〉〈 𝐼𝐷(𝛿2(𝑡 + 𝜏3), 𝑡 + 𝜏3)〉
 

 

(5.5) 

Assuming the spectral and intensity fluctuations are independent, we can expand each intensity and 

separate out terms, writing  

 𝑔𝐴𝐵𝐶𝐷
(4)

(𝛿01, 𝛿02, 𝜏1, 𝜏2, 𝜏3)

=
〈𝐼(𝑡) 𝐼𝐿(𝑡 + 𝜏1) 𝐼(𝑡 + 𝜏2)𝐼𝐿(𝑡 + 𝜏3)〉

〈𝐼(𝑡)〉〈𝐼𝐿(𝑡 + 𝜏1)〉〈𝐼(𝑡 + 𝜏2)〉〈𝐼𝐿(𝑡 + 𝜏3)〉

×
〈(1 + 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡))(1 − cos(𝜔𝐿𝛿1(𝑡)))(1 + 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡))(1 − cos(𝜔𝐿𝛿2(𝑡)))〉

〈1 + 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡)〉〈1 − cos(𝜔𝐿𝛿1(𝑡))〉〈1 + 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡)〉〈1 − cos(𝜔𝐿𝛿2(𝑡))〉
  

 

(5.6) 

AB’s thesis notes that the “time-dependence of the path-length difference, given by the dither form… has 

been chosen to average equally over the interference fringes of the time-averaged spectrum.” This is 

equivalent to saying 

 〈𝐼𝐴(𝑡)〉 = 〈𝐼𝐶(𝑡)〉 = 〈𝐼(𝑡)〉 (5.7) 

 〈𝐼𝐵(𝑡)〉 = 〈𝐼𝐷(𝑡)〉 = 〈𝐼𝐿(𝑡)〉 (5.8) 

 

Which is a clearly desirable property for our choice of dither.  

Assuming the laser intensity does not drift over time, we can cancel it out as a constant, noting the intensity 

term in Equation 5.6 is simply the second-order auto-correlation of the sample 𝑔(2)(𝜏2). Expanding the 

numerator of Equation 5.6, we obtain Equation 9.44 of AB’s thesis.  

 𝑔𝐴𝐵𝐶𝐷
(4) (𝛿01, 𝛿02, 𝜏1, 𝜏2, 𝜏3) = 

𝑔(2)(𝜏2) ⟨1 − cos(𝜔𝐿𝛿(𝑡 + 𝜏1)) 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡) + 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡)𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2) (5.9) 
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− cos(𝜔𝐿𝛿2(𝑡 + 𝜏3))𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡) − cos(𝑤𝐿𝛿1(𝑡 + 𝜏1)) 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2) 

+ cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)) cos(𝜔𝐿𝛿2(𝑡 + 𝜏3)) − cos(𝜔𝐿𝛿2(𝑡 + 𝜏3)) 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿2(𝑡+𝜏2) 

+cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)) cos(𝜔𝐿𝛿2(𝑡 + 𝜏3))𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡)𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2)⟩ 

 

Note that the expression is missing all terms in the expansion of Equation 5.6 which contain an odd number 

of spectral products. Based on the discussion in Equations 5.7 and 5.8, and if we assume spectral 

fluctuations are independent of intensity fluctuations, it is clear why terms with a single Fourier transform 

average to 0, e.g. 

 〈𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡)〉 = 0 (5.10) 

However, it is less clear on what assumption is required to ensure that third-order terms average to 0, e.g. 

 〈𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡) cos(𝜔𝐿𝛿1(𝑡 + 𝜏1))  𝐹𝑐𝑜𝑠 [𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2)〉 = 0 (5.11) 

 

For now, we will assume that we cannot say third-order terms go to zero. We incorporate third order terms 

into Equation 5.9, 

 𝑔𝐴𝐵𝐶𝐷
(4) (𝛿01, 𝛿02, 𝜏1, 𝜏2, 𝜏3) = 

𝑔(2)(𝜏2) ⟨1 − 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡) cos(𝜔𝐿𝛿(𝑡 + 𝜏1)) + 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡)𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2) 

− 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡)cos(𝜔𝐿𝛿2(𝑡 + 𝜏3)) − 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2)cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)) 

+ cos(𝑤𝐿𝛿1(𝑡 + 𝜏1)) cos(𝜔𝐿𝛿2(𝑡 + 𝜏3)) − 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2)cos(𝜔𝐿𝛿2(𝑡 + 𝜏3)) 

−𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡) 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2)cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)) 

−𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡)𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2) cos(𝜔𝐿𝛿2(𝑡 + 𝜏3)) 

+𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡)cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)) cos(𝜔𝐿𝛿2(𝑡 + 𝜏3)) 

+𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2)cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)) cos(𝜔𝐿𝛿2(𝑡 + 𝜏3)) 

+cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)) cos(𝜔𝐿𝛿2(𝑡 + 𝜏3))𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡)𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2)⟩ (5.12) 

 

We can re-transform each second-order product back into correlations through a similar process used in 

Section 3.1. of AB’s thesis. To walk through 2 examples: 

 
𝑔𝐴𝐵

(2)(𝛿01, 𝜏1) =
〈𝐼𝐴(𝑡)𝐼𝐵(𝑡 + 𝜏1)〉

〈𝐼𝐴(𝑡)〉〈𝐼𝐵(𝑡 + 𝜏1)〉
 

 

 

(5.13) 
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=
〈𝐼(𝑡)〉〈𝐼𝐿(𝑡 + 𝜏1))〉〈(1 + 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡))(1 − cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)))〉

〈𝐼(𝑡)〉〈𝐼𝐿(𝑡 + 𝜏1))〉〈(1 + 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡))〉〈(1 − cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)))〉
 

 

= 〈(1 + 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡))(1 − cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)))〉 

 

= 1 − 〈𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡) cos(𝜔𝐿𝛿1(𝑡 + 𝜏1))〉 

 

Thus, we can replace  

 −〈𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡) cos(𝜔𝐿𝛿1(𝑡 + 𝜏1))〉 (5.14) 

In Equation 5.12 with  

 𝑔
𝐴𝐵

(2)(𝛿01, 𝜏1) − 1 (5.15) 

   

We can do a similar transformation to a positive term, e.g.  

 
𝑔𝐵𝐷

(2)
(𝛿01, 𝛿02, 𝜏3 − 𝜏1) =

〈𝐼𝐵(𝑡 + 𝜏1)𝐼𝐷(𝑡 + 𝜏3)〉

〈𝐼𝐵(𝑡 + 𝜏1)〉〈𝐼𝐷(𝑡 + 𝜏3)〉
 

 

=
〈𝐼(𝑡 + 𝜏1)〉〈𝐼𝐿(𝑡 + 𝜏3))〉〈(1 − cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)))(1 − cos(𝜔𝐿𝛿2(𝑡 + 𝜏3)))〉

〈𝐼(𝑡 + 𝜏1)〉〈𝐼𝐿(𝑡 + 𝜏3))〉〈(1 − cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)))〉〈(1 − cos(𝜔𝐿𝛿2(𝑡 + 𝜏3)))〉
 

 

= 〈(1 − cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)))(1 − cos(𝜔𝐿𝛿2(𝑡 + 𝜏3)))〉 

 

𝑔𝐵𝐷
(2)(𝛿01, 𝛿02, 𝜏3 − 𝜏1) = 1 + 〈cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)) cos(𝜔𝐿𝛿2(𝑡 + 𝜏3))〉 (5.16) 

 

Thus, we can similarly replace the product of cosines with 𝑔𝐵𝐷
(2)

(𝛿01, 𝛿02, 𝜏3 − 𝜏1) − 1.  

We can do similar transformations to the third-order products. For instance,  

 
𝑔𝐴𝐵𝐶

(3) (𝛿01, 𝛿02, 𝜏1, 𝜏2) =
〈𝐼𝐴(𝑡)𝐼𝐵(𝑡 + 𝜏1)𝐼𝐶(𝑡 + 𝜏2)〉

〈𝐼𝐴(𝑡)〉〈𝐼𝐵(𝑡 + 𝜏1)〉〈𝐼𝐶(𝑡 + 𝜏2)〉
 

 

=
〈𝐼𝐿(𝑡 + 𝜏1))〉〈𝐼(𝑡)𝐼(𝑡 + 𝜏2))〉

〈𝐼(𝑡)〉〈𝐼𝐿(𝑡 + 𝜏1))〉〈𝐼(𝑡 + 𝜏2)〉
 

(5.17) 
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×
〈(1 + 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡))(1 − cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)))(1 + 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2))〉

〈(1 + 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡))〉〈(1 − cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)))〉〈(1 + 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2))〉
 

 

=
〈𝐼(𝑡)𝐼(𝑡 + 𝜏2))〉

〈𝐼(𝑡)〉〈𝐼(𝑡 + 𝜏2)〉
(1 + ⟨𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡)𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2) 

−𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡) cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)) − 𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2) cos(𝜔𝐿𝛿1(𝑡 + 𝜏1)) 

−𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡)𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2) cos(𝜔𝐿𝛿1(𝑡 + 𝜏1))⟩ 

 

We recall from earlier transformations that we can rephrase second-order products in terms of various 

second-order cross-correlations  

 
〈𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡)𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2)〉 =

𝑔𝐴𝐶
(2)(𝛿01, 𝛿02, 𝜏2)

𝑔(2)(𝜏2)
− 1 

(5.18) 

 〈𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡) cos(𝜔𝐿𝛿1(𝑡 + 𝜏1))〉 = 1 − 𝑔𝐴𝐵
(2)(𝛿01, 𝜏1) (5.19) 

 〈𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2) cos(𝜔𝐿𝛿1(𝑡 + 𝜏1))〉 = 1 − 𝑔
𝐵𝐶
(2)

(𝛿01, 𝛿02, 𝜏2 − 𝜏1) (5.20) 

 

Inserting Equations 5.18-5.20 into Equation 5.17, we get 

 𝑔𝐴𝐵𝐶
(3) (𝛿01, 𝛿02, 𝜏1, 𝜏2) 

= 𝑔(2)(𝜏2) (−2 + 𝑔𝐴𝐵
(2)(𝛿01, 𝜏1) +

𝑔𝐴𝐶
(2)(𝛿01, 𝛿02, 𝜏2)

𝑔(2)(𝜏2)
+ 𝑔𝐵𝐶

(2)
(𝛿01, 𝛿02, 𝜏2 − 𝜏1) − 〈𝑇. 𝑂. 𝑇𝐴𝐵𝐶 〉) 

(5.21) 

where  

 〈𝑇. 𝑂. 𝑇𝐴𝐵𝐶〉 = 〈𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡)𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2) cos(𝜔𝐿𝛿1(𝑡 + 𝜏1))〉 (5.22) 

 

Isolating for the third-order term 𝑇. 𝑂. 𝑇𝐴𝐵𝐶 

 
𝑇. 𝑂. 𝑇𝐴𝐵𝐶 = −

𝑔𝐴𝐵𝐶
(3) (𝛿01, 𝛿02, 𝜏1, 𝜏2)

𝑔(2)(𝜏2)
+ 𝑔𝐴𝐵

(2)
(𝛿01, 𝜏1) +

𝑔𝐴𝐶
(2)(𝛿01, 𝛿02, 𝜏2)

𝑔(2)(𝜏2)
+ 𝑔𝐵𝐶

(2)
(𝛿01, 𝛿02, 𝜏2 − 𝜏1) − 2 

(5.23) 

 

Similarly,  

 𝑇. 𝑂. 𝑇𝐴𝐵𝐷 = 𝑔𝐴𝐵𝐷
(3) (𝛿01, 𝛿02, 𝜏1, 𝜏3) − 𝑔𝐴𝐵

(2)(𝛿01, 𝜏1) − 𝑔𝐴𝐷
(2)(𝛿01, 𝛿02, 𝜏3) − 𝑔𝐵𝐷

(2)(𝛿01, 𝛿02, 𝜏3 − 𝜏1) + 2 (5.24) 
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𝑇. 𝑂. 𝑇𝐴𝐶𝐷 = −

𝑔𝐴𝐶𝐷
(3) (𝛿01, 𝛿02, 𝜏1, 𝜏2)

𝑔(2)(𝜏2)
+

𝑔𝐴𝐶
(2)(𝛿01, 𝛿02, 𝜏2)

𝑔(2)(𝜏2)
+ 𝑔𝐴𝐷

(2)
(𝛿01, 𝛿02, 𝜏3) + 𝑔𝐶𝐷

(2)
(𝛿02, 𝜏3 − 𝜏2) − 2 

(5.25) 

 𝑇. 𝑂. 𝑇𝐵𝐶𝐷 = 𝑔𝐵𝐶𝐷
(3)

(𝛿01, 𝛿02, 𝜏1, 𝜏2) − 𝑔𝐵𝐷
(2)

(𝛿01, 𝛿02, 𝜏3 − 𝜏1) − 𝑔𝐵𝐶
(2)

(𝛿01, 𝛿02, 𝜏2 − 𝜏1) − 𝑔𝐶𝐷
(2)

(𝛿02, 𝜏3 − 𝜏2) + 2 (5.26) 

  

Putting transformation of second-order and third-order products into Equation 5.12.4, we obtain  

 𝑔𝐴𝐵𝐶𝐷
(4) (𝛿01, 𝛿02, 𝜏1, 𝜏2, 𝜏3) 

= 𝑔(2)(𝜏2) ⟨𝐹. 𝑂. 𝑇𝐴𝐵𝐶𝐷 +  
𝑔𝐴𝐵𝐶

(3) (𝛿01, 𝛿02, 𝜏1, 𝜏2)

𝑔(2)(𝜏2)
+

𝑔𝐴𝐶𝐷
(3) (𝛿01, 𝛿02, 𝜏1, 𝜏2)

𝑔(2)(𝜏2)
+ 𝑔𝐴𝐵𝐷

(3) (𝛿01, 𝛿02, 𝜏1, 𝜏3) 

+𝑔𝐵𝐶𝐷
(3) (𝛿01, 𝛿02, 𝜏1, 𝜏2) − 𝑔𝐴𝐵

(2)(𝛿01, 𝜏1) −
𝑔𝐴𝐶

(2)(𝛿01, 𝛿02, 𝜏2)

𝑔(2)(𝜏2)
− 𝑔𝐴𝐷

(2)(𝛿01, 𝛿02, 𝜏3) 

−𝑔𝐵𝐶
(2)(𝛿01, 𝛿02, 𝜏2 − 𝜏1) − 𝑔𝐵𝐷

(2)(𝛿01, 𝛿02, 𝜏3 − 𝜏1) − 𝑔𝐶𝐷
(2)(𝛿02, 𝜏3 − 𝜏2) + 3⟩ (5.27) 

 

Note that this result differs from Equation 9.45 in AB’s thesis in three ways: we have included third-order 

cross-correlations, all signs are negative on the second-order cross correlations, and the constant at the end 

is a 3 instead of a 1.  

Now we want to simplify the fourth-order term 𝐹. 𝑂. 𝑇𝐴𝐵𝐶𝐷, which we write 

 𝐹. 𝑂. 𝑇𝐴𝐵𝐶𝐷 = 〈𝐹𝑐𝑜𝑠[𝐿(𝜔𝐿 − 𝜔)]𝛿1(𝑡+𝜏1)𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡)]𝛿1(𝑡)〉 

× 〈𝐹𝑐𝑜𝑠[𝐿(𝜔𝐿 − 𝜔)]𝛿2(𝑡+𝜏3)𝐹𝑐𝑜𝑠[𝑠(𝜔, 𝑡 + 𝜏2)]𝛿2(𝑡+𝜏2)〉  (5.28) 

 

This is a simple restatement of Equation 9.46 of AB’s thesis. The cosine transform of cosine terms are 

rephrased as cosine transforms of Dirac delta functions 𝐿(𝜔𝐿 − 𝜔). AB notes that the synchronized dither 

of the two stages force the dependence between the correlation terms in Equation 5.28. We operate on each 

pair of terms as in Chapter 3 (al la Equation 3.30) of AB’s thesis.  

 
𝐹. 𝑂. 𝑇𝐴𝐵𝐶𝐷 = ⟨

1

2
(𝐹𝑐𝑜𝑠 [∫ 𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 + 𝜁, 𝑡) cos(𝜔𝑥(𝑡) − (𝜔 + 𝜁)𝑥(𝑡 + 𝜏1)) 𝑑𝜔

∞

−∞ 

]

𝛿01

 

+ 𝐹𝑐𝑜𝑠 [∫ 𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 − 𝜁, 𝑡) cos(𝜔𝑥(𝑡) + (𝜔 − 𝜁)𝑥(𝑡 + 𝜏1)) 𝑑𝜔
∞

−∞ 

]
𝛿01

 

+ 𝐹𝑠𝑖𝑛 [∫ 𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 + 𝜁, 𝑡) sin(𝜔𝑥(𝑡) − (𝜔 + 𝜁)𝑥(𝑡 + 𝜏1)) 𝑑𝜔
∞

−∞ 

]
𝛿01

 

− 𝐹𝑠𝑖𝑛 [∫ 𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 − 𝜁, 𝑡) sin(𝜔𝑥(𝑡) + (𝜔 − 𝜁)𝑥(𝑡 + 𝜏1)) 𝑑𝜔
∞

−∞ 

]
𝛿01

) 
(5.29) 
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×    
1

2
(𝐹𝑐𝑜𝑠 [∫ 𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 + 𝜁, 𝑡 + 𝜏2) cos(𝜔𝑥(𝑡 + 𝜏2) − (𝜔 + 𝜁)𝑥(𝑡 + 𝜏3)) 𝑑𝜔

∞

−∞ 

]
𝛿02

 

+ 𝐹𝑐𝑜𝑠 [∫ 𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 − 𝜁, 𝑡 + 𝜏2) cos(𝜔𝑥(𝑡 + 𝜏2) + (𝜔 − 𝜁)𝑥(𝑡 + 𝜏3)) 𝑑𝜔
∞

−∞ 

]
𝛿02

 

+ 𝐹𝑠𝑖𝑛 [∫ 𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 + 𝜁, 𝑡 + 𝜏2) sin(𝜔𝑥(𝑡 + 𝜏2) − (𝜔 + 𝜁)𝑥(𝑡 + 𝜏3)) 𝑑𝜔
∞

−∞ 

]
𝛿02

 

− 𝐹𝑠𝑖𝑛 [∫ 𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 − 𝜁, 𝑡 + 𝜏2) sin(𝜔𝑥(𝑡 + 𝜏2) + (𝜔 − 𝜁)𝑥(𝑡 + 𝜏3)) 𝑑𝜔
∞

−∞ 

]
𝛿02

)⟩ 

 

Every odd line contains the spectral correlation terms that we’re interested in, and the even lines 

describe spectral convolutions.  

The next steps are not fully clear to me. The next step is to distribute the time average to each term 

in the sum; unfortunately, we cannot do that here. The outer-most operation in this time average is a product, 

and we cannot pass the average through it. This differs from the regime in Chapter 3 in AB’s thesis, where 

we are operating on a single pair of spectral terms, not four.  

Equation 9.47 of AB’s thesis claims that the convolution terms are dithered away, but it seems to 

me additional assumptions are necessary for that to be the case, as we cannot apply the results of Chapter 

3 of AB’s thesis directly. What ensures that products of convolution terms with correlation terms/other 

convolution terms time average to 0? 

Assuming we do get to drop these terms, we obtain the fourth-order spectral correlation term 

 
 𝐹. 𝑂. 𝑇𝐴𝐵𝐶𝐷 = ⟨

1

2
(𝐹𝑐𝑜𝑠 [∫ 𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 + 𝜁, 𝑡) cos(𝜔𝑥(𝑡) − (𝜔 + 𝜁)𝑥(𝑡 + 𝜏1)) 𝑑𝜔

∞

−∞ 

]

𝛿01

 

+ 𝐹𝑠𝑖𝑛 [∫ 𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 + 𝜁, 𝑡) sin(𝜔𝑥(𝑡) − (𝜔 + 𝜁)𝑥(𝑡 + 𝜏1)) 𝑑𝜔
∞

−∞ 

]
𝛿01

) 

×    
1

2
(𝐹𝑐𝑜𝑠 [∫ 𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 + 𝜁, 𝑡 + 𝜏2) cos(𝜔𝑥(𝑡 + 𝜏2) − (𝜔 + 𝜁)𝑥(𝑡 + 𝜏3)) 𝑑𝜔

∞

−∞ 

]
𝛿02

 

+  𝐹𝑠𝑖𝑛 [∫ 𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 + 𝜁, 𝑡 + 𝜏2) sin(𝜔𝑥(𝑡 + 𝜏2) − (𝜔 + 𝜁)𝑥(𝑡 + 𝜏3)) 𝑑𝜔
∞

−∞ 

]
𝛿02

)⟩ 
(5.30) 

 

The derivation then argues that the cosine terms reduce to unity and sine terms vanish as they do 

in Section 3.2.2 of AB’s thesis. However, this is achieved in Section 3.2.2 by pulling in the time average 

(and then using the independence of intensity and spectral fluctuations to have low-level time averages of 
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only cosine and sine terms). Similar to how the convolutions are discarded, I am confused by the 

applicability of these assumptions. If we do drop those terms, we obtain 

 
 𝐹. 𝑂. 𝑇𝐴𝐵𝐶𝐷 = ⟨

1

2
(𝐹𝑐𝑜𝑠 [∫ 𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 + 𝜁, 𝑡)𝑑𝜔

∞

−∞ 

]

𝛿01

 

× 𝐹𝑐𝑜𝑠 [∫ 𝐿(𝜔𝐿 − 𝜔)𝑠(𝜔 + 𝜁, 𝑡 + 𝜏2)𝑑𝜔
∞

−∞ 

]
𝛿02

⟩ 

= ⟨
1

2
𝐹𝑐𝑜𝑠 [𝐿(𝜔𝐿 − 𝜔) ∘ 𝑠(𝜔, 𝑡)]𝛿01

𝐹𝑐𝑜𝑠 [𝐿(𝜔𝐿 − 𝜔) ∘ 𝑠(𝜔, 𝑡 + 𝜏2)]𝛿02
  

= ∫ ∫ 〈𝑝𝐿(𝜁1, 𝑡)𝑝𝐿(𝜁2, 𝑡 + 𝜏2)〉 cos(𝜁1𝛿01) cos(𝜁2𝛿02) 𝑑𝜁1𝑑𝜁2

∞

−∞

∞

−∞

 
(5.31) 

 

where 𝑝𝐿(𝜁1, 𝑡) represents the spectral correlation of each sample photon on Detector A with laser photons 

on Detector B,  𝑝𝐿(𝜁2, 𝑡 + 𝜏2) represents the spectral correlation of each signal photon on Detector C with 

laser photons on channel D, for all signal photons that arrived 𝜏2 after the corresponding count on Detector 

A. Equation 5.31 is the double cosine transform of the APECS spectrum 

 𝑝𝐴𝑃𝐸𝐶𝑆(𝜁1, 𝜁2, 𝜏2) = 𝑝𝐿(𝜁1, 𝑡)𝑝𝐿(𝜁2, 𝑡 + 𝜏2) (5.32) 

 

which is the probability distribution function for a pair of sample photons with temporal spacing 𝜏2. The 

energy difference 𝜁1 is the energy difference between the first photon and the laser photon, and 𝜁1 is the 

energy difference between the second photon and the laser photon. The APECS spectrum is two-

dimensional and provides us with absolute energy information on timescales down to reasonable signal to 

noise in the correlations at 𝜏2. 

The heavy lifting of the mathematical framework was completed by Andrew Beyler, with some 

minor tweaks and comments added in this section. The next step is to verify the derivation is correct. Before 

we jump straight to building the setup in the Bawendi Lab, we can simulate a NC system and hopefully 

gain insights and intuition for how this technique should be built and what kind of interesting physical 

questions we can probe with this technique. 

5.1.3. APECS Monte Carlo Simulations 

Monte Carlo (MC) simulations of the APECS experiment is developed through four steps: (1) 

generation of photon stream of sample and laser photons, (2) energy assignments for each photon in the 
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photon stream, (3) determining which detector each photon arrives at, and (4) performing the fourth-order 

cross-correlation analysis on simulated photon streams.  

The APECS experiment consists of a series of short photon streams. The number of photon streams 

is determined by the number of stage positions in the experiment, and the photon stream length is 

determined by the number of seconds set per stage position.  

5.1.3.1. Photon Stream Generation 

APECS MC simulations begin by simulating the photon stream arrival times. Inputs for photon 

stream time generate are laser power, absorption probability, NC quantum yield, NC lifetime, and number 

of seconds per stage position. The laser photon times are generated by a random flat distribution with an 

intensity determined by the laser power. Next, a random number is generated for each laser photon time 

and referenced off of the absorption probability to determine if the laser photon resulted in a successful NC 

absorption. Then, a random number is generated for each successful absorption event and referenced off of 

the NC quantum yield to determine if the successful absorption results in the emission of a sample photon. 

If an emission event is successful, the emission time is set by randomly generating the lifetime of the NC 

exciton, shifting the emission time such that the emission time is equal to the excitation time plus the 

lifetime. A photon stream containing laser photons and sample photons is generated for each stage position 

in the APECS experiment. A filter is applied to the laser photon stream to set the laser photon stream 

approximately to the same length as the sample photon stream. This is simply to reduce the computational 

time. In theory, a large laser photon stream is beneficial for signal to noise reasons.  

5.1.3.2. Photon Stream Energy Assignments – Asymmetric Doublet 

The next step in the APECS MC simulations is to assign a photon energy to each photon such that 

we have a Lorentzian laser spectrum and an asymmetric doublet sample spectrum that is comprised of two 

Lorentzian spectra (Figure 5.1b).  For the laser spectrum, we randomly generate Lorentzian numbers 

centered around 2330.52994 meV (532 nm) for each laser photon with a narrow line width. For the sample 

spectrum, we randomly generate a number for each sample photon to determine which fine-structure state 

it emits from. Similar to the laser spectrum, we then generate Lorentzian numbers centered around its fine-

structure state energy.  

5.1.3.3. Detector Determination 

The last step in generating the photon streams for the four single photon detectors is to determine 

the path of each photon through the optical setup (Figure 5.1a). To start, we generate random numbers for 

each photon (laser and sample photon) to determine which Michelson interferometer the photon travels to 

(50/50 probability). Then we need to determine how each photon travels through the Michelson 
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interferometer. Depending on the stage position 𝛿0 and the dither position 𝛿(𝑡), each photon will have some 

probability 𝑝𝑖𝑛𝑡(𝑡) of traveling through one path of the interferometer and probability 1 − 𝑝𝑖𝑛𝑡(𝑡) of 

traveling through the other path of the interferometer.  

𝑝𝑖𝑛𝑡(𝑡) = 0.5 + 0.5𝑒
−Δ(𝑡)

𝑇2 sin(2𝜋𝛥(𝑡)𝜈)        (5.33) 

where Δ(𝑡) = 𝛿0 + 𝛿(𝑡), 𝑇2 is the coherence time, and 𝜈 is the photon emission frequency. Once the 

probability is assigned to each photon, a random number is generated to determine which detector in the 

interferometer the photon goes to. Finally, depending on the photon energy, the photon time will be assigned 

to the detector or will be filtered out (removed from the photon stream).  

5.1.3.4. Fourth-Order Cross-Correlation Analysis 

We developed an algorithm to compute fourth-order cross-correlations across many orders of 

magnitude in time, extending the method in Laurence et al.202 and the method discussed in Section 4.5.3 to 

compute third-order cross-correlations. The main difference between the algorithm for the third-order and 

the fourth-order correlations is the addition of an extra photon stream. In the case of the fourth-order 

correlations, individual second-order cross-correlations and individual third-order cross-correlations are 

stored for every photon, and only the cumulative sum of the fourth-order cross-correlations are computed.  

One thing I will note that might unfortunately throw a wrench in folks understanding of this 

technique is that I switched the Channel A and Channel B filters. The mathematical framework is set up 

such that Channel A filters to only accept sample photons and Channel B filters to only accept laser photons. 

I switched them early on in my work because I had a misunderstanding of how the correlation algorithm 

would work and I did not have a chance to switch it back. In the next steps of this investigation, I plan to 

switch it back to the original framework to make the simulations more consistent with the math.  

5.1.4. APECS Monte Carlo Simulation Results 

The goal of the Monte Carlo simulations is to show that we have built up the mathematical 

foundation and analysis methodology to get a similar APECS interferogram and APECS spectrum that we 

have shown is possible in Figure 5.1d,e. I have run the simulations with the following inputs: 

• 𝑆𝑡𝑎𝑔𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = 99 × 100 = 4950 

o I only measure the upper triangular and reflect it across the lower triangular, similar to 

reflecting the PCFS interferogram across the white-fringe in single NC PCFS experiments  

• 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑆𝑡𝑎𝑔𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 20 𝑚𝑚 

• 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝑆𝑡𝑎𝑔𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 40 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

• 𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.1 
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• 𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝑌𝑖𝑒𝑙𝑑 = 100% 

• 𝐷𝑖𝑡ℎ𝑒𝑟 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 500 𝑛𝑚 

• 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑖𝑡ℎ𝑒𝑟 𝐶𝑦𝑐𝑙𝑒𝑠 = 4 

• 𝐹𝑖𝑛𝑒 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒 #1 𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ = 532.11416 𝑛𝑚 

• 𝐹𝑖𝑛𝑒 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒 #2 𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ = 532.2471 𝑛𝑚 

• 𝐿𝑎𝑠𝑒𝑟 𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ = 532 𝑛𝑚 

• 𝐿𝑖𝑛𝑒 𝑊𝑖𝑑𝑡ℎ = 50 𝜇𝑒𝑉 

Figure 5.2 shows the results of the Monte Carlo simulations using the above inputs. The APECS 

interferogram in Figure 5.2a has a significantly reduced coherence time compared the one in Figure 5.1d. 

Taking the double inverse cosine transform, the resulting APECS spectrum appears to have multiple peaks 

at seemingly random energy differences relative to the laser. The data is inconclusive and should just be 

considered noise. At this point in time as I am writing my thesis, this project is unfortunately not finished 

and will require more work to investigate the source of the inconclusive data. To start, we can take a look 

at all the individual second-order, third-order, and fourth-order cross-correlations, interferograms, and 

spectral correlations to hopefully begin to get insight into where the simulations are going wrong. For all 

correlations, I plot the first stage position correlations. For all interferograms, I extract the average value of 

the correlations across stage positions from approximately 𝜏1, 𝜏2, 𝜏3 = 109 − 1010 𝑝𝑠. For all spectral 

correlations, I performed the double inverse cosine transform of the interferogram. This is strictly necessary 

for the APECS term, but I am not sure if it is strictly necessary for the other terms below.  

 

Figure 5.2. Monte Carlo Simulation results of the a. APECS interferogram and b. APECS spectrum. 
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5.1.4.1. Second-Order Correlations, Interferograms, and Spectral Correlations 

Let’s begin by looking at all the individual second-order cross-correlations. I have plotted the correlations 

for the first stage position in Figure 5.3. In order to add and subtract second-order cross-correlations from 

the fourth-order cross-correlation, we must broadcast the second-order cross-correlation into multiple 

dimensions. For instance, 𝑔𝐴𝐵
(2)

(𝜏1) is a one-dimensional function with respect to 𝜏1. We therefore, have to 

broadcast it into the 𝜏2 and 𝜏3 dimension to allow it to interact with the three-dimensional fourth-order 

cross-correlation. This is similar as multiplying a constant to a multi-dimensional array. I’ll also note that 

all these correlation figures only show two dimensions, even though the overall correlation is three 

dimensions. We can’t really visualize the plots in three dimensions so we just have to be aware which 

dimensions we are plotting in. 

 

Figure 5.3. Monte Carlo Simulation results for the second-order cross-correlations including a. 𝑔𝑎𝑢𝑡𝑜
(2)

, b. 𝑔𝐴𝐵
(2)

, c. 𝑔𝐴𝐶
(2)

, 

d. 𝑔𝐴𝐷
(2)

, e. 𝑔𝐵𝐶
(2)

, f. 𝑔𝐵𝐷
(2)

, and g. 𝑔𝐶𝐷
(2)

. Note that 𝑔𝐵𝐷
(2)

 and 𝑔𝐶𝐷
(2)

 are projected in the 𝜏2 and the 𝜏3 dimensions while the rest 

of the correlations are projected in the 𝜏1 and the 𝜏2 dimensions. 

The second-order cross-correlations appear as expected. Because some of the correlations are a 

function of multiple dimensions, they are broadcasted diagonally across two dimensions (Figure 5.3c,f) or 

three dimensions (Figure 5.3d) 
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Figure 5.4. Monte Carlo Simulation results for the second-order interferograms including a. 𝐼𝑛𝑡𝑎𝑢𝑡𝑜,b. 𝐼𝑛𝑡𝐴𝐵, c. 

𝐼𝑛𝑡𝐴𝐶 , d. 𝐼𝑛𝑡𝐴𝐷, e. 𝐼𝑛𝑡𝐵𝐶, f. 𝐼𝑛𝑡𝐵𝐷, and g. 𝐼𝑛𝑡𝐶𝐷. 

 As a whole, the second-order interferograms appear to behave appropriately. I will note that it 

appears that 𝐼𝑛𝑡𝐶𝐷 in Figure 5.4g looks like it has a lower coherence time than the other second-order 

interferograms which is interesting. There theoretically should be no difference in the interactions between 

the sample and laser photons at Channels A and B and the interactions between sample and laser photons 

at Channels C and D. 

 

Figure 5.5. Monte Carlo Simulation results for the second-order spectral correlations including a. 𝑝𝑎𝑢𝑡𝑜,b. 𝑝𝐴𝐵, c. 

𝑝𝐴𝐶 , d. 𝑝𝐴𝐷, e. 𝑝𝐵𝐶 , f. 𝑝𝐵𝐷 , and g. 𝑝𝐶𝐷 . 

 The spectral correlations are definitely interesting and a little hard to interpret initially when 

broadcasting the second order correlations into multiple dimensions. First off, I don’t think there is much 

to draw from the auto-correlation in Figure 5.5a. What’s interesting in the correlations of Channel A and 
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Channel B, we can see the proper energy difference of the sample photons with the laser, however one of 

the doublet states has a positive difference and one of them has a negative difference (Figure 5.5b). Spectral 

correlations of Channel A and Channel D (laser-laser correlations) is expectedly a singlet centered around 

0 meV (Figure 5.5d). Some of the spectral correlations like 𝑝𝐴𝐶  and 𝑝𝐵𝐷 are a little harder to interpret what 

is going on. Maybe this is because we are correlating sample to laser correlations across multiple 

interferometers. One more observation I want to make is that I would have expected 𝑝𝐴𝐵 and 𝑝𝐶𝐷 to be 

similar, but this does not seem to be the case. This may be an indication that something is still wrong in my 

simulations. 

5.1.4.2. Third-Order Correlations, Interferograms, and Spectral Correlations 

For the third-order correlations, I will look at both the raw correlations and the total third-order correlations 

that are defined in Equations 5.23-5.26.  

 

Figure 5.6. Monte Carlo Simulation results for the third-order cross-correlations including a. 𝑔𝐴𝐵𝐶
(3)

, b. 𝑔𝐴𝐵𝐷
(3)

, c. 𝑔𝐴𝐶𝐷
(3)

, 

d. 𝑔𝐵𝐶𝐷
(3)

. 

Nothing seems out of the norm for the third-order correlations in Figure 5.6. The difference in 

noise of the various third-order cross-correlations does not make a ton of sense to me.  
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Figure 5.7. Monte Carlo Simulation results for the third-order interferograms including a. 𝐼𝑛𝑡𝐴𝐵𝐶 , b. 𝐼𝑛𝑡𝐴𝐵𝐷, c. 

𝐼𝑛𝑡𝐴𝐶𝐷, d. 𝐼𝑛𝑡𝐵𝐶𝐷. 

Looking at the third-order interferograms is where things go obviously wrong. 𝐼𝑛𝑡𝐴𝐶𝐷 and 𝐼𝑛𝑡𝐵𝐶𝐷 in Figure 

5.7c,d appear to just be noise. There may be an issue with the Channel C-Channel D correlations that are 

affecting the overall results.  
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Figure 5.8. Monte Carlo Simulation results for the third-order spectral correlations including a. 𝑝𝐴𝐵𝐶 , b. 𝑝𝐴𝐵𝐷 , c. 

𝑝𝐴𝐶𝐷 , d. 𝑝𝐵𝐶𝐷 . 

Looking at the spectral correlations of the third-order correlations, we see potential signatures of 

the asymmetric doublet again in 𝑝𝐴𝐵𝐶  and 𝑝𝐴𝐵𝐷 in Figure 5.8ab. We also see that the noise interferograms 

transform into noise spectral correlations for 𝑝𝐴𝐶𝐷 and 𝑝𝐵𝐶𝐷 in Figure 5.8c,d. 

I am particularly interested in the total third-order cross-correlations because Andrew Beyler claims 

these should average to zero and therefore do not have to take them into account. Looking at the 

interferograms for the total third-order cross-correlations in Figure 5.9, it appears that might not be the 

case. Interestingly, the coherence of these interferograms drops to zero very sharply everywhere except 

along the axes where one of the stages remains at the white fringe where the interference is the most 

intense.Taking the double inverse cosine transform, we see seemingly random peaks in the spectral 

correlations (Figure 1.11). I’ll note that these peaks are extremely low in magnitude and should just be 

considered noise.  

 

Figure 5.9. Monte Carlo Simulation results for the total third-order interferograms including a. 𝐼𝑛𝑡𝐴𝐵𝐶_𝑇𝑂𝑇 , b. 

𝐼𝑛𝑡𝐴𝐵𝐷_𝑇𝑂𝑇 , c. 𝐼𝑛𝑡𝐴𝐶𝐷_𝑇𝑂𝑇, d. 𝐼𝑛𝑡𝐵𝐶𝐷_𝑇𝑂𝑇 . 
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Figure 5.10. Monte Carlo Simulation results for the third-order spectral correlations including a. 𝑝𝐴𝐵𝐶_𝑇𝑂𝑇 , b. 

𝑝𝐴𝐵𝐷_𝑇𝑂𝑇 , c. 𝑝𝐴𝐶𝐷_𝑇𝑂𝑇 , d. 𝑝𝐵𝐶𝐷_𝑇𝑂𝑇. 

5.1.4.3. Fourth-Order Correlations, Interferograms, and Spectral Correlations 

Finally, nothing particularly stands out as abnormal in the fourth-order correlations, interferograms or 

spectral correlations in Figure 5.11. The coherence of the interferogram seems reasonable in Figure 5.11b. 

The spectral correlation has the same potential asymmetric signature as the third order spectral correlation 

𝑝𝐴𝐵𝐶  and 𝑝𝐴𝐵𝐷 (Figure 5.11c). Additionally, the spectral correlation has additional peaks that are more 

within the two-dimensional plots, however they are small and hard to resolve. It’s possible these are the 

features we are interested in, and that the axis features are the ones that are supposed to be subtracted out 

to isolate the APECS spectrum.  

 

Figure 5.11. Monte Carlo Simulation results for the fourth-order a. cross-correlation 𝑔𝐴𝐵𝐶𝐷
(4)

, b. interferogram 𝐼𝑛𝑡𝐴𝐵𝐶𝐷 , 

and c. spectral correlation 𝑝𝐴𝐵𝐶𝐷  
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5.1.5. Conclusions 

There is still much that is unclear about these simulations. What is clear is that I will need to revisit 

the simulations to ensure that the correlations between C and D are behaving normally. I also might try to 

switch Channels A and B so that sample photons arrive at Channel A and laser photons arrive at Channel 

B to make it more consistent with the derivation. There is more work to do, and likely many more 

simulations to run, but its becoming more clear that the asymmetric information is there, but the question 

remains how to precisely extract it from the fourth-order correlations. 
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5.2. Photon Correlation Monte Carlo Simulations as a Learning Tool 

5.2.1. Introduction 

The Bawendi Lab has been at the forefront of the colloidal NC spectroscopy field for several 

decades contributing to single NC spectroscopic studies of many materials including CdSe,68,82,162,193 

InP,47,58 CsPbBr3,58,63,64,70,72 InAs191, and hexagonal boron nitride.204 The group has contributed to significant 

experimental discoveries including electric field dependent single NC measurements144 and the first 

observation of Hong-Ou-Mandel (HOM) interference in a colloidal NC system.12 Additionally, the Bawendi 

Lab has contributed to the field by developing novel spectroscopic techniques such as photon correlation 

techniques that can extract average single NC information in solution,84,86,205 photon number resolved 

techniques to extract multiexciton dynamics,82,84,193 and a photon correlation technique that extracts the 

single NC emission line width with high time and energy resolution known as photon correlation Fourier 

spectroscopy (PCFS).203   

The Bawendi Lab has a large bank of knowledge that allows new graduate students to build off of 

past discoveries, pushing the envelope on what is possible with something as simple as a photon stream. 

Unfortunately, these techniques are omitted from undergraduate and even graduate coursework because of 

their complex nature. Our objective is to provide the scientific community with an easy-to-use toolkit to 

explore fundamental photophysical questions and to aid spectroscopic technique development. We propose 

to develop a series of photon correlation Monte Carlo (PCMC) simulations to explore prominent correlation 

techniques in the NC spectroscopy field. The PCMC toolkit will be open-access and will aim to fill 

educational gaps and provide the research community with a database of analytical tools that would 

encourage a wider audience to engage with photon correlation spectroscopy. 

5.2.2. Toolkit Simulations 

The PCMC toolkit will consist of a series of simulations that will allow members of the NC 

spectroscopic community to interact with simulated NC system photon streams. Simulated photon streams 

will exist for pulsed excitation and continuous wave excitation experiments. The PCMC toolkit will also 

include analysis code, built by the Bawendi Lab to aid the user to understand how to work up the photon 

streams. Experiments and analysis code will be included for the following systems: 

1. Single NC pulsed-𝑔(2)(𝜏) to quantify the biexciton quantum yield – Figure 5.12a 

2. Single NC pulsed-𝑔(3)(𝜏1, 𝜏2) to quantify the triexciton quantum yield – Figure 5.12b 

3. Solution NC pulsed-𝑔(2)(𝜏) to quantify the average biexciton quantum yield – Figure 5.12c 

4. Solution NC pulsed-𝑔(3)(𝜏1, 𝜏2) to quantify the average triexciton quantum yield – Figure 5.12d 
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5. Photon number resolved lifetime (PNRL) analysis code to measure multiexciton lifetimes of 

single NCs and solutions of NCs – Figure 5.12e 

6. Single NC photon correlation Fourier spectroscopy (PCFS) to extract spectral dynamics and line 

widths – Figure 5.13a-c 

7. Solution NC photon correlation Fourier spectroscopy (PCFS) to extract average single NC line 

widths in an ensemble sample – Figure 5.13d-f 

 

Figure 5.12. Monte Carlo simulations of pulsed correlation experiments to understand the multiexciton dynamics and 

efficiency of emissive systems. Techniques include the a. single NC pulsed-𝑔(2)(𝜏), b. single NC pulsed-𝑔(3)(𝜏1, 𝜏2), 

c. solution NC pulsed-𝑔(2)(𝜏), d. solution NC pulsed-𝑔(3)(𝜏1, 𝜏2), and e. photon number resolved lifetime 

experiments. 
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Figure 5.13. Monte Carlo simulations of a-c. single NC photon correlation Fourier spectroscopy and d-f. solution NC 

photon correlation Fourier spectroscopy experiments. Note that the solution figures in d-f are real measurements, not 

Monte Carlo simulations of InP NCs in solution. These Monte Carlo simulations have not been developed yet. a,d 

show the second order auto- and cross-correlations, b,e show the interferograms, and c,f show the spectral correlations. 
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