
Advances in Sparse and Low Rank Matrix Optimization
for Machine Learning Applications

by

Nicholas André G Johnson
B. S. E. Operations Research and Financial Engineering, Princeton University (2020)

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN OPERATIONS RESEARCH

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2024

© 2024 Nicholas André G Johnson. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Signature of Author ...
Sloan School of Management

August 9, 2024

Certified by ..
Dimitris J. Bertsimas

Boeing Leaders for Global Operations Professor of Management
Associate Dean for Business Analytics

Professor, Operations Research
Thesis Supervisor

Accepted by ...
Georgia Perakis

John C Head III Dean (Interim), MIT Sloan School of Management
Professor, Operations Management, Operations Research & Statistics

CoDirector, Operations Research Center

2

Advances in Sparse and Low Rank Matrix Optimization for
Machine Learning Applications

by

Nicholas André G Johnson

Submitted to the Sloan School of Management
on August 9, 2024 in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN OPERATIONS RESEARCH

ABSTRACT

Numerous fundamental problems in operations research, machine learning, and statis-
tics exhibit natural formulations as cardinality or rank constrained optimization problems.
Sparse solutions are desirable for their interpretability and storage benefits. Moreover, in
the machine learning setting, sparse solutions exhibit superior model generalization and have
a natural interpretation as conducting feature extraction in high-dimensional datasets. On
the other hand, since the rank of a matrix is equivalent to the cardinality of the matrix’s
vector of singular values, rank can be interpreted as the matrix generalization of sparsity.
Accordingly, low rank solutions inherit similar desirables properties as sparse solutions while
allowing for very flexible modelling capability. Unfortunately, optimizing over cardinality
and rank constraints is non-convex and NP-Hard in general which has led to strong reliance
on convex relaxations and heuristic methods which yield sub-optimal solutions.

This thesis advances both the theory and application of sparse and low rank matrix
optimization, focusing on problems that arise in statistics and machine learning. We develop
algorithmic approaches to problems exhibiting cardinality and rank constraints by leveraging
techniques from mixed-integer and mixed-projection optimization. The proposed algorithms
outperform existing convex relaxations and heuristics. Our rigorous analysis and empirical
validation aim to contribute to both the theoretical foundations of optimization and the
development of practical tools for complex challenges in statistics and machine learning.

Chapter 2 studies the Sparse Plus Low Rank Matrix Decomposition problem. We present
an alternating minimization algorithm that computes high quality feasible solutions and out-
performs benchmark methods, scaling to dimension n = 10000 in minutes. We additionally
design a custom branch and bound algorithm to globally solve problem instances of dimen-
sion up to n = 25 in minutes. Chapter 3 examines the Compressed Sensing problem, for
which we present a custom branch and bound algorithm that can compute globally opti-
mal solutions. Our approach produces solutions that are on average 6.22% more sparse on
synthetic data and 9.95% more sparse on real world ECG data when compared to state of
the art benchmark approaches. Moreover, our approach outperforms benchmark methods
when used as part of a multi-label learning algorithm. Chapter 4 explores the problem of
learning a partially observed matrix that is predictive of fully observed side information,
which consists of an important generalization of the Matrix Completion problem. We refor-
mulate this problem as a mixed-projection optimization problem and present an alternating

3

direction method of multipliers algorithm that can solve problems with n = 10000 rows and
m = 10000 columns in less than a minute. On large scale real world data, our algorithm
produces solutions that achieves 67% lower out of sample error than benchmark methods in
97% less execution time.

Thesis supervisor: Dimitris J. Bertsimas
Title: Boeing Leaders for Global Operations Professor of Management
Associate Dean for Business Analytics
Professor, Operations Research

4

Acknowledgments

I would like to first express immense thanks to my adviser Dimitris Bertsimas. I initially

met Dimitris during February 2020 before I knew if I had been admitted to MIT. Ever since

that first encounter, Dimitris has continually inspired me through his incredible passion for

research and through his use of mathematical optimization to solve problems that matter

in the world. He has fundamentally shaped my approach to research and challenged me to

consistently push myself to grow by exploring new frontiers. I would like to thank Dimitris

for providing me with ample research flexibility over the course of my doctorate to explore

problem areas of interest (many of which did not lead to positive research results). Beyond

research, Dimitris also meaningfully shaped my approach to technology entrepreneurship by

distilling key lessons learned from his numerous entrepreneurial pursuits through countless

conversations. Most importantly, I would like to express sincere thanks to Dimitris for his

steadfast, unwavering support over the course of serious health complications I experienced

during my doctoral studies.

I would like to express thanks to Rahul Mazumder and Andy Sun for serving on my

thesis committee. It has been a pleasure to work with both of you. Thank you also to Bart

Van Parys for serving on my general exam committee. I am deeply appreciative of Georgia

Perakis and Patrick Jaillet for their leadership as co-directors of the ORC over the course of

my 4 years at MIT, and I am grateful that Laura Rose and Andrew Carvalho always kept the

ORC running seamlessly. Thank you to Dimitris, Patrick, Pablo Parrilo, David Gamarnik,

Alexandre Jacquillat, Lorenzo Rosasco, Tomaso Poggio, Dick den Hertog, Martin Wainright

5

and Sasha Rakhlin for engaging coursework.

During my time at MIT, I have been fortunate to collaborate with exceptional peers who

significantly influenced my PhD experience. Accordingly, I would like to express thanks in

particular to Ryan Cory-Wright, Michael Li, Alex Paskov and Wes Gurnee. I am moreover

immensely grateful for the many great conversations, laughs and friendship shared with other

students at the ORC. Among many others, my time at the ORC was made better by Prem

Talwai, El Ghali Zerhouni, Ivan Paskov, Arthur Delarue, Kim Villalobos Carballo, Vassilis

Digalakis Jr., Angelos Koulouras and Baptiste Rossi.

I would also like to express deep thanks to my friends from outside of the ORC who

have supported and inspired me through these past 4 years. I am particularly grateful

for Jadal Williams, Aaron Michael West Jr., Junior Pena, Myles Sampson, Clyde-Blaise

Niba, Menelik Graham, William Pugh, Todd Baldwin Jr., Oluwatomi Lawal, Angel Onuoha,

Milliam Gehrer, Yiwen Li, Jesse Thibodeau, Alexander Sinora, Perry Chuinkam and Jean-

Pierre Ngezigihe.

My undergraduate advisers and mentors were instrumental in preparing me for my MIT

journey and beyond. I would like to express special thanks to William Massey for encouraging

me to pursue PhD studies in OR and to Miklos Racz for providing me with exceptional

guidance during my undergraduate thesis work. Ronnie Sircar, Ludovic Tangpi, Amir Ali

Ahmadi and Jianqing Fan were also instrumental in cultivating my interest in the field of

OR. I would also like to thank several important people from my time at Princeton outside of

the ORFE department: Momo Wolapaye, Martin Semelhack, Ilhan Aksay, Dannelle Gutarra

Cordero, Alexis Andres and Sandra Bermann.

My 12 years at Selwyn House School in Montreal were unforgettable and instrumen-

tal in preparing me for life. I am immensely grateful to the entirety of the Selwyn House

community. Special thanks to Hal Hannaford, Michael Downey, Carol Manning and Kathy

Funamoto for their leadership during my tenure. Special thanks also to David Grier, Cather-

ine Lumsden, Samara Sayegh and Pat Shannon for cultivating my interest in math, science

6

and the arts. Thanks to George Levtchouk and Lefong Hua for helping me explore my pas-

sion for chess, and thank you to Mrs. Edelmera Harrison for pushing me to compete in math

competitions.

Finally, I would like to express my deepest thanks for my family, to whom I am dedicat-

ing this thesis. To my late maternal grandmother Gloria and maternal grandfather Cyril,

thank you for instilling in me the value of education and the importance of ownership. To

my paternal grandparents Mavis and George, thank you for continually reminding me that

through Christ all things are possible and to remain disciplined. To my sister Anastasia,

thank you for instilling in me the confidence to unapologetically pursue my passions and

strive for excellence in all that I do. To my parents Anita and Dexter, thank you for im-

parting the values of hard work, perseverance and accountability onto me. Thank you both

for trusting and supporting me on this 8 year adventure in a foreign country. Words cannot

express how grateful I am for everything that you have given me.

7

8

Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 15

List of Tables 19

1 Introduction 23

1.1 Thesis Structure and Contributions . 25

1.2 Notation . 30

2 Sparse Plus Low Rank Matrix Decomposition: A Discrete Optimization

Approach 31

2.1 Introduction . 32

2.1.1 Contribution and Structure . 33

2.1.2 Applications . 34

2.2 Literature Review and SLR Formulation Properties 35

2.2.1 Literature Review . 36

2.2.2 Objective Function Properties . 39

2.2.3 Equivalence Between Regularization and Robustness 41

9

2.2.4 Connection to Matrix Completion . 42

2.3 An Alternating Minimization Heuristic . 43

2.3.1 Two Natural Subproblems . 44

2.3.2 An Alternating Minimization Algorithm 46

2.3.3 Optimality of Algorithm 1 for a Fixed Sparsity Pattern 48

2.4 A Convex Relaxation . 53

2.4.1 Hidden Convexity in the Low Rank Subproblem 55

2.4.2 Comparison With the Relaxation of Lee and Zou 55

2.4.3 Penalty Interpretation of Relaxation 59

2.5 Branch and Bound . 60

2.5.1 Subproblems . 61

2.5.2 Branch and Bound Algorithm . 64

2.6 Computational Results . 67

2.6.1 Synthetic Data Generation . 68

2.6.2 Hyperparameter Tuning . 68

2.6.3 A Comparison Between the Performance of Algorithm 1, GoDec, S-

PCP, AccAltProj, fRPCA and ScaledGD 69

2.6.4 An Accelerated Implementation of Algorithm 1 and its Performance . 70

2.6.5 Scalability of Algorithm 1 . 71

2.6.6 Sensitivity to Noise . 73

2.6.7 Sensitivity to Rank . 76

2.6.8 Sensitivity to Sparsity . 77

2.6.9 Performance of Algorithm 2 . 79

2.6.10 Summary of Findings From Numerical Experiments 81

2.7 Concluding Remarks . 83

2.8 Appendix: SLR Formulation Properties Omitted

Proofs . 84

10

2.9 Appendix: Alternative Proof of Proposition 6 89

2.10 Appendix: Proof of Convexity in the Low-Rank Subproblem 91

2.11 Appendix: Alternative Proof of Proposition 8 93

2.12 Appendix: Supplemental Computational Results 94

3 Compressed Sensing: A Discrete Optimization Approach 99

3.1 Introduction . 100

3.1.1 Contributions and Structure . 101

3.2 Literature Review . 103

3.2.1 Basis Pursuit Denoising . 103

3.2.2 Iterative Reweighted L1 . 105

3.2.3 Orthogonal Matching Pursuit . 106

3.3 Formulation Properties . 108

3.4 An Exact Reformulation and Convex Relaxations 112

3.4.1 A Second Order Cone Relaxation . 113

3.4.2 A Positive Semidefinite Cone Relaxation 118

3.5 Branch and Bound . 122

3.5.1 Subproblems . 122

3.5.2 Branch and Bound Algorithm . 126

3.6 Computational Results . 130

3.6.1 Synthetic Data Experiments . 131

3.6.2 Electrocardiogram Signal Acquisition 139

3.6.3 Multi-Label Classification . 144

3.6.4 Summary of Findings . 148

3.7 Concluding Remarks . 149

4 Predictive Low Rank Matrix Learning under Partial Observations: Mixed-

Projection ADMM 151

11

4.1 Introduction . 152

4.1.1 Contribution and Structure . 153

4.2 Literature Review . 154

4.2.1 Matrix Completion Methods . 155

4.2.2 Low Rank Optimization Methods . 157

4.2.3 Alternating Direction Method of Multipliers 159

4.3 Formulation Properties . 160

4.3.1 Equivalence Between Regularization and Robustness 160

4.3.2 A Partial Minimization . 162

4.4 An Exact Mixed-Projection Formulation . 165

4.4.1 A Positive Semidefinite Cone Relaxation 170

4.5 Mixed-Projection ADMM . 173

4.5.1 Subproblem in U . 174

4.5.2 Subproblem in V . 176

4.5.3 Subproblem in P . 178

4.5.4 Subproblem in Z . 181

4.5.5 An ADMM Algorithm . 183

4.6 Computational Results . 188

4.6.1 Synthetic Data Generation . 189

4.6.2 Sensitivity to Row Dimension . 190

4.6.3 Sensitivity to Column Dimension . 194

4.6.4 Sensitivity to Side Information Dimension 197

4.6.5 Sensitivity to Target Rank . 200

4.6.6 Real World Data Experiments . 202

4.6.7 Summary of Findings . 207

4.7 Concluding Remarks . 207

4.8 Appendix: Supplemental Computational Results 208

12

5 Conclusion 219

13

14

List of Figures

2.1 Low-rank matrix reconstruction error (top left), sparse matrix reconstruction

error (top right), sparse support discovery rate (bottom left) and execution

time (bottom right) versus n with k0 = 5, k1 = 500 and σ = 10. Averaged

over 50 trials for each parameter configuration. 72

2.2 Low-rank matrix reconstruction error (top left), sparse matrix reconstruction

error (top right), sparse support discovery rate (bottom left) and execution

time (bottom right) versus n with k0 = 2, k1 = 500 and σ = 10. Averaged

over 5 trials for each parameter configuration. 74

2.3 Low-rank matrix reconstruction error (top left), sparse matrix reconstruction

error (top right), sparse support discovery rate (bottom left) and execution

time (bottom right) versus σ with n = 100, k0 = 5 and k1 = 500. Averaged

over 50 trials for each parameter configuration. 75

2.4 Low-rank matrix reconstruction error (top left), sparse matrix reconstruction

error (top right), sparse support discovery rate (bottom left) and execution

time (bottom right) versus k0 with n = 100, k1 = 500 and σ = 10. Averaged

over 50 trials for each parameter configuration. 77

2.5 Low-rank matrix reconstruction error (top left), sparse matrix reconstruction

error (top right), sparse support discovery rate (bottom left) and execution

time (bottom right) versus k1 with n = 100, k0 = 5 and σ = 10. Averaged

over 50 trials for each parameter configuration. 78

15

2.6 Algorithm 2 upper and lower bound evolution (for a single instance) for σ = 5

(top left), σ = 10 (top right), σ = 15 (bottom left) and σ = 20 (bottom right)

with n = 15, k0 = 1, k1 = 22 and ϵ = 0.01. 80

2.7 Algorithm 2 root node upper and lower bound (top left), root node optimality

gap (top right), number of nodes explored (bottom left) and execution time

(bottom right) versus σ with n = 15, k0 = 1, k1 = 50 and ϵ = 0.01. 81

2.8 Low-rank matrix reconstruction error (top left), sparse matrix reconstruction

error (top right), sparse support discovery rate (bottom left) and execution

time (bottom right) versus σ with n = 100, k0 = 5 and k1 = 500. Averaged

over 50 trials for each parameter configuration. 94

3.1 Sparsity (top left), accuracy (top right), true positive rate (bottom left) and

true negative rate (bottom right) versus n with k = 10, and α = 0.2. Averaged

over 100 trials for each parameter configuration. 134

3.2 Sparsity (top left), accuracy (top right), true positive rate (bottom left) and

true negative rate (bottom right) versus k with N = 200 and α = 0.2. Aver-

aged over 100 trials for each parameter configuration. 137

3.3 Sparsity (top left), accuracy (top right), true positive rate (bottom left) and

true negative rate (bottom right) versus α with n = 200 and k = 10. Averaged

over 100 trials for each parameter configuration. 140

3.4 Problem (3.3) lower bound (left) produced by Problem (3.13) (SOC) and

Problem (3.21) (SOS) with d = 1. Percent improvement of Problem (3.3)

lower bound of compared to (right). n = 25,m = 100 and k = 10. 144

3.5 Problem (3.3) lower bound (left) produced by Problem (3.13) (SOC) and

Problem (3.21) (SOS) with d = 1. Percent improvement of Problem (3.3)

lower bound of compared to (right). n = 50,m = 25 and k = 10. 145

3.6 Ground truth ECG signal (left) and perturbed signal (right) for ECG record

31. 145

16

3.7 ℓ1 reconstruction error (left) and ℓ2 reconstruction error (right) versus ℓ0 norm

(Sparsity) for ECG reconstructions obtained using OMP, BPD, IRWL1 and

Algorithm 4 for varying values of γ. n = 2000 and m = 40. 146

3.8 Test set prediction accuracy obtained using OMP, BPD, IRWL1 and Algo-

rithm 4 as the label reconstruction algorithm. 148

4.1 Objective value (top left), ℓ2 reconstruction error (top right), side infor-

mation R2 (bottom left) and execution time (bottom right) versus n with

m = 100, k = 5 and d = 150. Averaged over 20 trials for each parameter

configuration. 191

4.2 Cumulative time spent solving each subproblem of Algorithm 5 versus n with

m = 100, k = 5 and d = 150. Averaged over 20 trials for each parameter

configuration. 193

4.3 Objective value (top left), ℓ2 reconstruction error (top right), fitted rank (bot-

tom left) and execution time (bottom right) versus m with n = 1000, k = 5

and d = 150. Averaged over 20 trials for each parameter configuration. . . . 194

4.4 Cumulative time spent solving each subproblem of Algorithm 5 versus m with

n = 1000, k = 5 and d = 150. Averaged over 20 trials for each parameter

configuration. 196

4.5 Objective value (top left), ℓ2 reconstruction error (top right), side infor-

mation R2 (bottom left) and execution time (bottom right) versus d with

n = 1000,m = 100 and k = 5. Averaged over 20 trials for each parameter

configuration. 197

4.6 Cumulative time spent solving each subproblem of Algorithm 5 versus d with

n = 1000,m = 100 and k = 5. Averaged over 20 trials for each parameter

configuration. 199

17

4.7 Objective value (top left), ℓ2 reconstruction error (top right), fitted rank (bot-

tom left) and execution time (bottom right) versus k with n = 1000,m = 100

and d = 150. Averaged over 20 trials for each parameter configuration. . . . 200

4.8 Cumulative time spent solving each subproblem of Algorithm 5 versus k with

n = 1000,m = 100 and d = 150. Averaged over 20 trials for each parameter

configuration. 202

4.9 In sample ℓ2 reconstruction error (top left), out of sample ℓ2 reconstruction

error (top right), execution time (bottom left) and subproblem execution time

(bottom right) versus k on Netflix Prize Dataset 1. Averaged over 5 trials. . 204

4.10 In sample ℓ2 reconstruction error (top left), out of sample ℓ2 reconstruction

error (top right), execution time (bottom left) and subproblem execution time

(bottom right) versus k on Netflix Prize Dataset 2. Averaged over 5 trials. . 205

4.11 Algorithm 5 side information R2 on Netflix Prize Dataset 1 (left) and Dataset

2 (right) versus k. Averaged over 5 trials. 206

18

List of Tables

2.1 Performance of Algorithm 2 for ϵ = 0.05. Reported root node gap is a per-

centage. 79

2.2 Comparison of average low-rank matrix reconstruction error generated by S-

PCP, GoDec, ScaledGD, AccAltProj, fRPCA, and Algorithm 1. Results are

reported for the exact SVD implementation of GoDec. Averaged over 10 trials

for each parameter configuration. 95

2.3 Bound gap of Algorithm 1 derived using (2.20). Averaged over 10 trials for

each parameter configuration. 96

2.4 Running time of the exact implementation of Algorithm 1 and the accelerated

implementation of Algorithm 1. In the exact implementation, the SVD step is

computed exactly, whereas in the accelerated implementation, a randomized

SVD is employed in all but the final SVD step. Averaged over 10 trials for

each parameter configuration. 97

2.5 Low-rank matrix reconstruction error, sparse matrix reconstruction error and

execution time of Algorithm 1, GoDec and ScaledGD. 98

3.1 Comparison of the sparsity of solutions returned by (4), OMP, IRWL1 and

BPD for different values of n. Averaged over 100 trials for each parameter

configuration. 135

19

3.2 Comparison of the accuracy of solutions returned by (4), OMP, IRWL1 and

BPD for different values of n. Averaged over 100 trials for each parameter

configuration. 135

3.3 Comparison of the execution time of solutions returned by (4), OMP, IRWL1

and BPD for different values of n. Averaged over 100 trials for each parameter

configuration. 136

3.4 Comparison of the sparsity of solutions returned by (4), OMP, IRWL1 and

BPD for different values of k. Averaged over 100 trials for each parameter

configuration. 136

3.5 Comparison of the accuracy of solutions returned by (4), OMP, IRWL1 and

BPD for different values of k. Averaged over 100 trials for each parameter

configuration. 138

3.6 Comparison of the execution time of solutions returned by (4), OMP, IRWL1

and BPD for different values of k. Averaged over 100 trials for each parameter

configuration. 139

3.7 Comparison of the sparsity of solutions returned by (4), OMP, IRWL1 and

BPD for different values of α. Averaged over 100 trials for each parameter

configuration. 141

3.8 Comparison of the accuracy of solutions returned by (4), OMP, IRWL1 and

BPD for different values of α. Averaged over 100 trials for each parameter

configuration. 142

3.9 Comparison of the execution time of solutions returned by (4), OMP, IRWL1

and BPD for different values of α. Averaged over 100 trials for each parameter

configuration. 143

3.10 Comparison of the accuracy of solutions returned by (4), OMP, IRWL1 and

BPD for different values of α. Averaged over 100 trials for each parameter

configuration. 149

20

4.1 Comparison of the objective value of ScaledGD, Algorithm 5, Fast-Impute,

Soft-Impute and SVD versus n with m = 100, k = 5 and d = 150. Averaged

over 20 trials for each parameter configuration. 209

4.2 Comparison of the reconstruction error of ScaledGD, Algorithm 5, Fast-Impute,

Soft-Impute and SVD versus n with m = 100, k = 5 and d = 150. Averaged

over 20 trials for each parameter configuration. 209

4.3 Comparison of the side information R2 of ScaledGD, Algorithm 5, Fast-

Impute, Soft-Impute and SVD versus n with m = 100, k = 5 and d = 150.

Averaged over 20 trials for each parameter configuration. 210

4.4 Comparison of the execution time of ScaledGD, Algorithm 5, Fast-Impute,

Soft-Impute and SVD versus n with m = 100, k = 5 and d = 150. Averaged

over 20 trials for each parameter configuration. 210

4.5 Comparison of the objective value of ScaledGD, Algorithm 5, Fast-Impute,

Soft-Impute and SVD versus m with n = 1000, k = 5 and d = 150. Averaged

over 20 trials for each parameter configuration. 211

4.6 Comparison of the reconstruction error of ScaledGD, Algorithm 5, Fast-Impute,

Soft-Impute and SVD versus m with n = 1000, k = 5 and d = 150. Averaged

over 20 trials for each parameter configuration. 211

4.7 Comparison of the execution time of ScaledGD, Algorithm 5, Fast-Impute,

Soft-Impute and SVD versus m with n = 1000, k = 5 and d = 150. Averaged

over 20 trials for each parameter configuration. 212

4.8 Comparison of the objective value of ScaledGD, Algorithm 5, Fast-Impute,

Soft-Impute and SVD versus d with n = 1000,m = 100 and k = 5. Averaged

over 20 trials for each parameter configuration. 212

4.9 Comparison of the reconstruction error of ScaledGD, Algorithm 5, Fast-Impute,

Soft-Impute and SVD versus d with n = 1000,m = 100 and k = 5. Averaged

over 20 trials for each parameter configuration. 213

21

4.10 Comparison of the side information R2 of ScaledGD, Algorithm 5, Fast-

Impute, Soft-Impute and SVD versus d with n = 1000,m = 100 and k = 5.

Averaged over 20 trials for each parameter configuration. 213

4.11 Comparison of the execution time of ScaledGD, Algorithm 5, Fast-Impute,

Soft-Impute and SVD versus d with n = 1000,m = 100 and k = 5. Averaged

over 20 trials for each parameter configuration. 214

4.12 Comparison of the objective value of ScaledGD, Algorithm 5, Fast-Impute,

Soft-Impute and SVD versus k with n = 1000,m = 100 and d = 150. Averaged

over 20 trials for each parameter configuration. 214

4.13 Comparison of the reconstruction error of ScaledGD, Algorithm 5, Fast-Impute,

Soft-Impute and SVD versus k with n = 1000,m = 100 and d = 150. Aver-

aged over 20 trials for each parameter configuration. 215

4.14 Comparison of the execution time of ScaledGD, Algorithm 5, Fast-Impute,

Soft-Impute and SVD versus k with n = 1000,m = 100 and d = 150. Averaged

over 20 trials for each parameter configuration. 215

4.15 Comparison of the in sample ℓ2 reconstruction error, out of sample ℓ2 recon-

struction error and execution time of Algorithm 5 and Fast-Impute versus k

on Netflix Prize Dataset 1. Averaged over 5 trials. 216

4.16 In sample ℓ2 reconstruction error, out of sample ℓ2 reconstruction error and

execution time of Algorithm 5 versus k on Netflix Prize Dataset 2. Averaged

over 5 trials. 216

4.17 Algorithm 5 side information R2 on Netflix Prize Dataset 1. Averaged over 5

trials. 216

4.18 Algorithm 5 side information R2 on Netflix Prize Dataset 2. Averaged over 5

trials. 217

22

Chapter 1

Introduction

Numerous central problems from the operations research, machine learning, and statistics

literatures exhibit natural formulations as cardinality and/or rank constrained optimization

problems. Among others, sparse regression/classification, sparse principal component anal-

ysis and sparse inverse covariance matrix estimation are canonical statistics and machine

learning problems that exhibit cardinality constraints to reflect model parsimony. Further-

more, fundamental problems such as factor analysis, low rank kernel learning and optimal

control contain explicit rank constraints to enforce low complexity or low dimensionality.

Sparse solutions to optimization problems are desirable due to their increased inter-

pretability and storage benefits. Moreover, in the machine learning setting, sparse solutions

exhibit superior model generalization properties and have a natural interpretation as con-

ducting feature extraction for high-dimensional datasets. On the other hand, since the rank

of a matrix is equivalent to the cardinality of the matrix’s vector of singular values, rank

can be interpreted as the matrix generalization of sparsity. Accordingly, low rank solutions

inherit the previously mentioned desirable properties of sparse solutions. Furthermore, rank

constraints allow for very flexible modelling power. For example, any non-convex quadratic

optimization problem can be equivalently reformulated as a convex optimization problem

intersected with a rank 1 constraint. This framework captures all binary quadratic opti-

23

mization problems [72] as well as problems that involve optimizing the dynamics of certain

physicals systems like power grids through the alternating current optimal power flow prob-

lem [96].

Techniques for sparse optimization have been well studied by the mixed-integer optimiza-

tion community. Most approaches reformulate cardinality constrained optimization problems

as binary optimization problems with "big-M" constraints and obtain globally optimal so-

lutions via branch and bound, branch and cut or a similar algorithmic framework. Despite

recent efforts [22], the machine learning community has yet to widely adopt such approaches

due to poor scaling of their worst case asymptotic computational complexity. This, however,

is a poor reason to discount these methods, since average case wall clock runtime is in general

a far more relevant measure of computational complexity than worst case asymptotic scaling.

On the other hand, although rank constrained optimization has previously been regarded

as intractable by the optimization and machine learning communities in part because it

cannot be modelled using mixed-integer convex optimization [100], recent efforts have made

substantial progress in obtaining tractable reformulations of rank constraints [16, 19, 20].

In this thesis, we make theoretical and applied contributions to further the state of sparse

and low rank matrix optimization with a specific focus on statistics and machine learning

problems. We continue to bridge the gap between the mixed-integer optimization literature

and the machine learning literature by leveraging techniques from binary optimization to

tackle machine learning problems that previously have been solved using approximate tech-

niques. Whereas cardinality constraints and rank constraints have previously been treated

independently by the global optimization community, we tackle problems that simultaneous

enforce both constraints and develop methods that outperform existing convex relaxations

and heuristics. Through rigorous analysis and empirical validation, the proposed work aims

to contribute not only to the theoretical foundations of optimization but also to the devel-

opment of practical tools that can be applied to address complex challenges in statistics and

machine learning.

24

In the remainder of this chapter, we provide an overview of the structure of this thesis

while highlighting the core contributions of each chapter. We also introduce the notation we

use throughout this thesis.

1.1 Thesis Structure and Contributions

Chapter 2 In this chapter, we consider the Sparse Plus Low Rank (SLR) decomposition

problem which is the problem of approximately decomposing a corrupted data matrix D ∈

Rn×n into a sparse matrix Y that models the data corruptions of D plus a low-rank matrix

X that models the uncorrupted principal components of D.

Formally, given a target rank k0 and a target sparsity level k1, we solve:

min
X,Y ∈Rn×n

∥D −X − Y ∥2F + λ∥X∥2F + µ∥Y ∥2F s.t. Rank(X) ≤ k0, ∥Y ∥0 ≤ k1, (1.1)

where λ, µ > 0 are parameters that control sensitivity to noise and are to be cross-validated

by minimizing a validation metric to obtain strong out-of-sample performance. Our formula-

tion (1.1) is well-justified from an information-theoretic perspective. Indeed, several authors

[2, 67] have demonstrated that, for special cases of Problem (1.1), when the ground truth is

sparse and/or low-rank, exact sparse and/or low-rank formulations recover the ground truth

at least as accurately as any polynomial time method, and indeed there is a gap between

the amount of data required for an “exact” sparse plus low-rank formulation to recover the

ground truth, and the amount of data required for a polynomial time approach [67].

A key characteristic of Problem (1.1) is that it directly employs a sparsity constraint

on Y and a rank constraint on X. These constraints are non-convex, which make (1.1) a

difficult problem to solve exactly, both in practice—where the best-known exact algorithms

cannot certify optimality beyond n = 10 [97]—and in theory, where the problem is NP-hard

by reduction from low-rank matrix approximation [70].

In this chapter, we present three main contributions.

25

• First, we introduce a novel formulation (1.1) for the SLR decomposition problem that

directly exploits the underlying discreteness of the problem. Our formulation is inspired

by incorporating robustness against adversarial perturbations in the input data in SLR,

which is useful in noisy settings.

• Our second main contribution is the development of a heuristic that obtains high

quality feasible solutions to Problem (1.1) and the derivation of a convex relaxation

of (1.1) that provides high quality bounds for the solutions returned by our heuristic.

Our relaxation can be interpreted as a novel reverse Huber penalty which penalizes

the sparse and low-rank matrices in a convex manner. Moreover, we present a branch

and bound framework that solves (1.1) to certifiable near-optimality for small problem

instances.

• Third, we extensively benchmark our proposed algorithms and demonstrate that they

outperform state-of-the-art methods by obtaining sparser and lower rank matrices with

a lower mean-squared error than via prior attempts, in a comparable amount of com-

putational time. Moreover, our approach scales to successfully solve problem instances

with 10000× 10000 matrices.

The work in this chapter is based on the paper “Sparse Plus Low Rank Matrix Decompo-

sition: A Discrete Optimization Approach" [15], which is joint work with Dimitris Bertsimas

and Ryan Cory-Wright.

Chapter 3 We consider the Compressed Sensing (CS) problem in this chapter, a funda-

mental problem in statistics and machine learning which arises in numerous applications

such as medical resonance imaging, holography, climate monitoring, natural resource mining

and electrocardiogram signal acquisition among many others. CS seeks to find the sparsest

vector x ∈ Rn that is consistent with a collection of m linear equalities.

26

Formally, given a matrix A ∈ Rm×n and a vector b ∈ Rm, CS is given by [62]:

min
x∈Rn

∥x∥0 s.t. Ax = b. (1.2)

In the presence of noisy measurements, it is necessary to relax the equality constraint in

(1.2), leading to the following formulation for ϵ > 0:

min
x∈Rn

∥x∥0 s.t. ∥Ax− b∥22 ≤ ϵ. (1.3)

The vast majority of existing approaches to CS either rely on ℓ1 based convex approximations

to (1.3) or are greedy heuristics whereas the use of integer optimization techniques has gone

relatively unexplored. In this chapter, we formulate CS as:

min
x∈Rn

∥x∥0 +
1

γ
∥x∥22 s.t. ∥Ax− b∥22 ≤ ϵ, (1.4)

where γ > 0 is a regularization parameter that in practice can either take a default value

(e.g.
√
n) or be cross-validated by minimizing a validation metric to obtain strong out-of-

sample performance. A defining characteristic of the approach we present in this work is

that we leverage techniques from mixed-integer second order cone optimization to exploit

the inherent discreteness of formulation (1.4) rather than relying on more commonly studied

approximate methods.

In this chapter, we present three main contributions.

• First, we derive a second order cone relaxation of (1.4) and show that under mild

conditions on the regularization parameter, the resulting relaxation is equivalent to

the well studied basis pursuit denoising problem and the closely related Lasso problem

[131].

• Second, we present a semidefinite relaxation that strengthens our second order cone

relaxation and develop a custom branch and bound algorithm that leverages our second

27

order cone relaxation to solve instances of CS to certifiable optimality.

• Third, we benchmark our approach extensively on both synthetic and real world data.

When compared against solutions produced by three state of the art benchmark meth-

ods on synthetic data, our numerical results show that our approach produces solutions

that are on average 6.22% more sparse. On real world ECG data, for a given ℓ2 recon-

struction error our approach produces solutions that are on average 9.95% more sparse

than benchmark methods, while for a given sparsity level our approach produces solu-

tions that have on average 10.77% lower reconstruction error than benchmark meth-

ods. When used as a component of a multi-label classification algorithm, our approach

achieves greater classification accuracy than benchmark compressed sensing methods.

The work in this chapter is based on the paper “Compressed Sensing: A Discrete Opti-

mization Approach" [24], authored with Dimitris Bertsimas.

Chapter 4 In this Chapter, we study the problem of learning a partially observed matrix

under the low rank assumption in the presence of fully observed side information that depends

linearly on the true underlying matrix. This problem consists of an important generaliza-

tion of the Matrix Completion problem that arises in applications such as recommendation

systems, signal processing, system identification and image denoising. We formalize this

problem as an optimization problem with an objective that balances the strength of the fit

of the reconstruction to the observed entries with the ability of the reconstruction to be

predictive of the side information.

Formally, let Ω ⊆ [n]× [m] denote a collection of revealed entries of a partially observed

matrix A ∈ Rn×m, let Y ∈ Rn×d denote a matrix of side information and let k denote a

specified target rank. We consider the problem given by

min
X∈Rn×m,α∈Rm×d

∑
(i,j)∈Ω

(Xij − Aij)
2 + λ∥Y −Xα∥2F + γ∥X∥⋆ s.t. rank(X) ≤ k, (1.5)

28

where λ, γ > 0 are hyperparameters that in practice can either take a default value or can

be cross-validated by minimizing a validation metric [114] to obtain strong out-of-sample

performance [34]. We assume that the ground truth matrix A has low rank and that the

side information can be well approximated as Y = Aα +N for some weighting matrix α

and noise matrix N .

In this chapter, we present three main contributions.

• First, we derive a mixed-projection reformulation of (1.5) and present a strong semidef-

inite cone relaxation.

• Second, we design an efficient, scalable alternating direction method of multipliers

algorithm that produces high quality feasible solutions to (1.5).

• Third, we benchmark our approach extensively on synthetic and real world data. Our

numerical results demonstrate that on synthetic data in the small rank regime (k ≤ 15),

our algorithm outputs solutions that achieve on average 79% lower objective value and

90.1% lower ℓ2 reconstruction error than the solutions returned by the best performing

benchmark method on a per experiment basis. The runtime of our algorithm is com-

petitive with and often superior to that of the benchmark methods. Our algorithm is

able to solve problems with n = 10000 rows and m = 10000 columns in less than a

minute. On large scale real world data, our algorithm produces solutions that achieves

67% lower out of sample error than benchmark methods in 97% less execution time.

The work in this chapter is based on the preprint “Predictive Low Rank Matrix Learn-

ing under Partial Observations: Mixed-Projection ADMM" [25], authored with Dimitris

Bertsimas.

29

1.2 Notation

We let nonbold face characters such as b denote scalars, lowercase bold faced characters

such as x denote vectors, uppercase bold faced characters such as X denote matrices, and

calligraphic uppercase characters such as Z denote sets. We let [n] denote the set of running

indices {1, ..., n} and ⟨·, ·⟩ denote the Euclidean (Frobenius) inner product between two

vectors (matrices) of the same dimension. We let 0n denote an n-dimensional vector of all

0’s, 0n×m denote an n ×m-dimensional matrix of all 0’s, and In denote the n × n identity

matrix. We let Sn denote the cone of n× n symmetric matrices and Sn
+ denote the cone of

n× n positive semidefinite matrices.

30

Chapter 2

Sparse Plus Low Rank Matrix

Decomposition: A Discrete Optimization

Approach

The work in this chapter is based on [15] which is joint work with Dimitris Bertsimas and

Ryan Cory-Wright.

31

2.1 Introduction

The Sparse Plus Low Rank (SLR) decomposition problem, or the problem of approximately

decomposing a data matrix D ∈ Rn×n into a sparse matrix Y plus a low-rank matrix X,

arises throughout many fundamental applications in Operations Research, Machine Learning,

and Statistics, including collaborative filtering [122], medical resonance imaging [51], and

economic modeling [8] among others. Formally, given a target rank k0 and a target sparsity

k1, we solve:

min
X,Y ∈Rn×n

∥D −X − Y ∥2F + λ∥X∥2F + µ∥Y ∥2F s.t. Rank(X) ≤ k0, ∥Y ∥0 ≤ k1, (2.1)

where λ, µ > 0 are parameters that control sensitivity to noise and are to be cross-validated

by minimizing a validation metric [see, e.g., 114] to obtain strong out-of-sample performance

in theory and practice [34].

In SLR decomposition problems, the sparse matrix Y accounts for a small number of

potentially large corruptions in D, while X models the leading principal components of

D after this corruption is removed. This is well justified, because SLR robustifies Princi-

pal Component Analysis (PCA), a leading technique for finding low-rank approximations

of noiseless datasets [116], which performs poorly in high-dimensional settings and in the

presence of noise [108]. In an opposite direction, SLR robustly accounts for noise via the

sparse matrix Y , while X recovers the uncorrupted principal component directions of D.

Correspondingly, SLR decomposition schemes, which are also called Robust PCA since at

least the work of [44], are widely regarded as state-of-the-art approaches for high-dimensional

matrix estimation problems [50, 108].

Our formulation (2.1) is also well-justified from an information-theoretic perspective.

Indeed, several authors [2, 67] have demonstrated for special cases of Problem (2.1) that

when the ground truth is sparse and/or low-rank, exact sparse and/or low-rank formulations

32

recover the ground truth at least as accurately as any polynomial time method, and indeed

there is a gap between the amount of data required for an “exact” sparse plus low-rank

formulation to recover the ground truth, and the amount of data required for a polynomial

time approach [67].

A key characteristic of Problem (2.1) is that it directly employs a sparsity constraint

on Y and a rank constraint on X. These constraints are non-convex, which make (2.1) a

difficult problem to solve exactly, both in practice—where the best-known exact algorithms

cannot certify optimality beyond n = 10 [97]—and in theory, where the problem is NP-hard

by reduction from low-rank matrix approximation [70].

In this chapter, we develop an alternating minimization heuristic and convex relaxation

which collectively provide very small bound gaps for (2.1) and scale to high-dimensional

settings. Our heuristic scales to n = 10000 in minutes and our convex relaxation scales

to n = 200 in hours. A key feature of the approach is that it leverages the underlying

discreteness of the problem to obtain tight yet computationally cheap lower bounds. We

further demonstrate that the alternating minimization heuristic and convex relaxation can

be embedded within a branch and bound tree to solve (2.1) to certifiable near-optimality for

instances of size up to n = 25.

2.1.1 Contribution and Structure

The key contributions of this chapter are threefold:

• First, from a methodological perspective, we introduce a novel formulation (2.1) for the

SLR decomposition problem that directly exploits the underlying discreteness of the

problem. Our formulation is inspired by incorporating robustness against adversarial

perturbations in the input data in SLR, which is useful in noisy settings.

• Second, from an algorithmic perspective, we develop a heuristic that obtains high

quality feasible solutions to Problem (2.1) in Section 2.3 and derive a convex relaxation

33

of (2.1) that provides high quality bounds for the solutions returned by our heuristic in

Section 2.4. We also interpret the convex relaxation as a novel reverse Huber penalty

which penalizes the sparse and low-rank matrices in a convex manner. Further, we

present a branch and bound framework that solves (2.1) to certifiable near-optimality

for small problem instances in Section 2.5.

• Third, from a computational perspective, we extensively benchmark our proposed ap-

proach. Across a suite of numerical experiments, we demonstrate in Section 2.6 that

our approach outperforms state-of-the-art non-convex methods like AccAltProj, GoDec

and ScaledGD by obtaining sparser and lower rank matrices with a lower mean-squared

error than via prior attempts, in a comparable amount of computational time. More-

over, our approach scales to successfully solve problem instances with 10000 × 10000

matrices.

2.1.2 Applications

We briefly overview several applications of the SLR matrix decomposition problem.

Medical Imaging Medical Resonance Imaging (MRI) is a medical imaging technique

in which images of structures and organs in the human body are obtained using strong

magnetic fields and radio waves. Dynamic MRI is a technique that allows for the imaging of

functional changes of structures in the body over time, for instance the beating of a heart.

A dynamic MRI is performed by repeatedly sampling spatial frequencies and reconstructing

the final output through a Fourier Transform. It has been shown that SLR decomposition

can facilitate the reconstruction process where output low rank matrix consists of the static

background of the structure being imaged and the sparse matrix consists of time varying

features [51] [112]. Having high quality, scalable algorithms for SLR is then helpful to reduce

the number of spatial frequencies needed to be sampled, thereby reducing imaging time, and

to improve image resolution.

34

Economic Modeling Many problems in economics and finance require modeling high

dimensional time series for the purposes of forecasting and policy making. When vector

autoregression is employed to this end and causal interactions are sought to be made between

observed time series, it has been shown that SLR can effectively approximate the transition

matrix of the model in the presence of a small number of unobserved latent factors [8].

Video Surveillance When performing video surveillance, the static background of a sur-

veyed area must be separated from the fluid foreground. Given a series of frames, if we

stack the flattened frames into a matrix and perform SLR, the returned low rank matrix

will correspond to the background while the sparse matrix will correspond to objects that

dynamically move along the background.

Facial Recognition It has been shown that the set of all images of a Lambertian surface

under varying illuminations spans a low dimensional subspace [7]. In particular, this implies

that the set of images of an individual’s face under varying sources of lightning can be

approximated by a low dimensional subspace. Accordingly, given a series of images of an

individual’s face, the images can be flattened and stacked into a matrix. Applying SLR, the

output sparse matrix would consist of the image by image variations resulting from different

sources of lightning while the output low rank matrix would extract the underlying features

on the individual’s face.

2.2 Literature Review and SLR Formulation Properties

In this section, we judiciously characterize Problem (2.1) and state-of-the-art approaches for

addressing it. First, in Section 2.2.1, we cast a deliberate eye over existing attempts at solving

Problem (2.1) that are currently considered to be state-of-the-art and establish that these

approaches are either heuristics that do not provide performance guarantees or branch and

bound methods that do not scale to even moderate problem sizes. Next, in Section 2.2.2,

35

we establish several key properties of Problem (2.1)’s objective function that we invoke

throughout this chapter. Further, in Section 2.2.3, we justify the regularization terms in

our formulation by interpreting our formulation through the lens of robust optimization.

Finally, in Section 2.2.4, we characterize the conditions under which Problem (2.1) admits

a reduction to matrix completion, a famous and frequently studied cousin of Problem (2.1)

which is notoriously computationally challenging [45].

2.2.1 Literature Review

In this section, we selectively review several formulations from the literature that have been

employed to solve the sparse plus low-rank decomposition problem and are currently con-

sidered to be state-of-the-art. Most of these approaches are heuristic in nature and do not

provide valid lower bounds to certify the (sub) optimality of the output solution.

Stable Principal Component Pursuit

Optimizing over low-rank matrices is notoriously computationally challenging in both theory

and practice [19, 122]. Accordingly, a popular approach is to replace the rank and sparsity

terms with their nuclear norm and ℓ1 norm surrogates, as advocated by [44, 50] among

others. In the presence of noise, this substitution leads to the following formulation, which

was originally proposed by [155] and is called Stable Principal Component Pursuit (S-PCP):

min
X,Y ∈Rn×n

∥X∥∗ +
1√
n
∥Y ∥1 +

1

2µ
∥D −X − Y ∥2F . (2.2)

Problem (2.2) can either be reformulated as a semidefinite problem over a 2n×2n matrix

as advocated by [44], solved in the original space using a nonsymmetric interior point method

as proposed by [128] or solved in a semidefinite free fashion using an augmented Lagrangian

approach as advocated by Yuan und Yang [151]. Unfortunately, all three approaches require

repeatedly performing operations such as a singular value decomposition or a Newton step,

36

which has an O(n3) or higher time/memory cost. Correspondingly, all such semidefinite opti-

mization approaches require too much memory to be successfully implemented in a standard

computational environment when n = 200, at least with current technology [see 103, for

a review of the state-of-the-art in semidefinite optimization]. Moreover, these methods are

usually only guaranteed to recover a ground truth model under a mutual incoherence condi-

tion (or similar) on the ground truth [see 132, for a review], which implies that performance

guarantees for such semidefinite methods are challenging to obtain indeed.

GoDec

Many existing formulations for SLR employ convex relaxations of the rank function and

the ℓ0 norm function rather than exploiting the inherent discreteness of the problem. An

exception to this pattern is the work of [154], who leverage discreteness to obtain higher

quality solutions to SLR. Their formulation is given by:

min
X,Y ∈Rn×n

∥D −X − Y ∥2F s.t. Rank(X) ≤ k0, ∥Y ∥0 ≤ k1. (2.3)

Note that (2.3) differs from (2.1) by the absence of regularization terms on X and Y . [154]

obtain a feasible solution to (2.3) by performing alternating minimization on X, Y . Their

algorithm, called GoDec, is similar in structure to the algorithm we develop in Section 2.3

to obtain high quality solutions to Problem (2.1). In a related direction, [149] adopt a

similar approach to GoDec in the special case where their design matrix is taken to be the

identity. [91] adopt a similar formulation as GoDec, however, they instead minimize the

reconstruction error between an observation vector and a vector-valued linear map of the

sum of the low-rank and sparse matrices. In a somewhat different vein, [152] consider an

explicit rank constraint but not a sparsity constraint and proceed by leveraging manifold

optimization techniques.

37

Low Rank Matrix Parameterization

An extensively studied family of methods parameterizes the low-rank matrix X as X =

UV T where U ,V ∈ Rn×k0 , and performs alternating minimization on U ,V . Originally

proposed in the context of low-rank semidefinite optimization by [39, 40] [see also 84], it

has since evolved into an extensively used and practical approach for SLR problems [41,

56, 75, 110]. This approach eliminates the rank constraint and can substantially reduce

the number of variables when n ≪ k0 at the expense of introducing non-convexity in the

objective. Remarkably, in many circumstances, the induced non-convexity is benign and the

resulting Burer-Monteiro reformulation can be solved efficiently from both a theoretical and

a practical perspective. We refer readers to [57] for a detailed overview.

Two important parametrization-based approaches to SLR are Fast RPCA [150] and

Scaled Gradient Descent [133]. In Fast RPCA, after parametrizing the low-rank matrix, [150]

augment the objective with a regularization term on the norm of (UTU − V TV) ∈ Rk0×k0

before performing alternating minimization on U and V . In an alternate direction, [133]

performs iterative gradient descent updates on U and V in Scaled Gradient Descent after

designing an effective gradient preconditioner that results in desirable convergence behav-

ior even for ill-conditioned problems. However, existing performance guarantees for these

approaches rely on assumptions on the structure of the ground truth, such as mutual inco-

herence, that are difficult to verify without independent access to the ground truth or on

being initialized within a “basin of attraction” which similarly is difficult to verify. We point

out, however, that one could either use the dual bounds derived in this chapter, or side

information such as scoring by humans (e.g., in video background separation applications)

to provide performance guarantees when the ground truth is not known.

Branch and Bound

To our knowledge, the only existing work that provides guarantees on the quality of solutions

to Problem (2.1) is [97], who propose a branch and bound algorithm for solving Problem

38

(2.1) to near-optimality. Specifically, they assume that the spectral norm of X is bounded

from above by β, i.e., β ≥ ∥X∥σ, and invoke the following inequality to obtain valid lower

bounds for each partially specified sparsity pattern [see also 66]:

γ

α
∥Y ∥1 +

1

β
∥X∥∗ ≤ γ∥Y ∥0 +Rank(X), (2.4)

where α ≥ ∥Y ∥∞ is a bound on the ℓ∞ norm of Y , which can either be taken to be

equal to some large fixed constant M [71] or treated as a regularization parameter [17].

Unfortunately, while Lee und Zou [97]’s bound is often reasonable, it was not developed by

taking the convex envelope of an appropriate substructure of Problem (2.1), and therefore is

not strong enough to solve Problem (2.1) to optimality at even small problem sizes [see also

31, for a related discussion on the weakness of big-M bounds]. Indeed, the authors reported

bound gaps but not optimal solutions for SLR problems when n = 10. Nonetheless, this

lower bound is potentially interesting in its own right, since it demonstrates that the PCP

formulation supplies a valid lower bound on Problem (2.1) if one is willing to either make a

big-M assumption on the spectral norm of the low-rank matrix or compute a valid M [c.f.

19, Section 3.5].

2.2.2 Objective Function Properties

We now derive several key properties of Problem (2.1) that we leverage throughout this

chapter and present a probabilistic interpretation of (2.1) which is motivated by Bayesian

inference. Specifically, we establish that (2.1)’s objective is strongly convex, Lipschitz con-

tinuous, and the Maximum A Posteriori (MAP) estimator of a suitably defined probabilistic

model under a Gaussian prior. Recall that a function f(Z) is said to be strongly convex

with parameter m (m-strongly convex) if the function f(Z)− m
2
∥Z∥2F is convex. Similarly, a

function f(Z) is said to be Lipschitz continuous with constant L (L-Lipschitz) if the function

L
2
∥Z∥2F −f(Z) is convex. Formally, we have the following results (proofs deferred to Section

39

2.8):

Proposition 1 The function f(X,Y) = ∥D −X −Y ∥2F + λ∥X∥2F + µ∥Y ∥2F is jointly m-

strongly convex in (X,Y) over Rn×n×Rn×n, i.e., g(X,Y) = f(X,Y)− m
2
(∥X∥2F + ∥Y ∥2F)

is jointly convex in (X,Y), for m = 2 ·min(λ, µ).

Proposition 2 The function f(X,Y) = ∥D−X−Y ∥2F +λ∥X∥2F +µ∥Y ∥2F is L-Lipschitz

continuous in (X,Y) over Rn×n × Rn×n for L = 2 ·max(λ, µ) + 6.

Note that Propositions 1–2 collectively imply that the condition number κ of f(X,Y) is

κ =
L

m
=

2 ·max(λ, µ) + 6

2 ·min(λ, µ)
. (2.5)

We now provide a probabilistic interpretation of f(X,Y). Suppose the data D ∈ Rn×n

are sampled from

D = X + Y + ϵ, (2.6)

where X,Y ∈ Rn×n are unknown parameters to be estimated and ϵ ∈ Rn×n, ϵij ∼ N(0, σ2) is

i.i.d Gaussian noise with variance σ2. If we adopt independent Gaussian prior beliefs Xij ∼

N(0, σ
2

λ
) and Yij ∼ N(0, σ

2

µ
) over the parameters X,Y , then the Maximum A Posteriori

(MAP) estimate of X,Y after observing D is given by argminX,Y f(X,Y).

To see this, note that the posterior probability after observing D is given by

P(X,Y |D) =
P (D|X,Y)P(X)P(Y)

P(D)
∝ P (D|X,Y)P(X)P(Y). (2.7)

We can now obtain the MAP estimate by maximizing the posterior probability as follows

argmax
X,Y

P (D|X,Y)P(X)P(Y) = argmax
X,Y

∏
1≤i,j≤n

e
−(Dij−Xij−Yij)

2

2σ2

σ
√
2π

·
√
λe

−λX2
ij

2σ2

σ
√
2π

·
√
µe

−µY 2
ij

2σ2

σ
√
2π

= argmin
X,Y

∥D −X − Y ∥2F + λ∥X∥2F + µ∥Y ∥2F = argmin
X,Y

f(X,Y)

40

where the second equality follows by taking a log transformation and multiplying by −2σ2.

2.2.3 Equivalence Between Regularization and Robustness

Real-world datasets are replete with inaccurate and missing data values, which prevents

machine-learning models that do not account for these inconsistencies from generalizing

well to unseen data. Accordingly, robustness is a highly desirable attribute for machine

learning models, in both theory and practice [23, 145]. In this section, we demonstrate that

our regularized problem (2.1) is equivalent to a robust optimization (RO) problem. This

result motivates the inclusion of the Frobenius regularization terms within (2.1) and verifies

that (assuming the hyperparameters in (2.1) are correctly cross-validated), regularization

improves (2.1)’s out-of-sample performance.

We remark that our results should not be too surprising to readers familiar with the RO

literature. Indeed, [13] have already derived a similar result for regularized linear regression

problems. However, our main result is strictly more general. Indeed, [13] prove that aug-

menting an ℓ2 loss function with an ℓ2 regularization penalty is equivalent to solving a RO

problem, and conjecture (but do not prove) that their result can be extended to ordinary

least squares regression and ridge regularization (with ℓ22 rather than ℓ2 penalties). On the

other hand, we prove a matrix analog of their result and generalize their result to the matrix

analog of ℓ22 regularization. Accordingly, this section may be of independent interest to the

RO community.

We now connect our work with the work of [13] by deriving a conceptually simple ana-

log of their characterization of the equivalence of regularization and robustness for sparse

plus low-rank problems. This result sheds insight into the nature of regularization as a

robustifying force in Problem (2.1). Subsequently, we derive an (admittedly more opaque)

characterization of Problem (2.1) itself as a RO problem.

Formally, we have the following results (proofs deferred to Section 2.8):

41

Proposition 3 Let Uλ(X) = {∆ ∈ Rn×n : ∥∆∥F ≤ λ∥X∥F} for X ∈ Rn×n, λ > 0.

Consider the robust optimization problem:

min
X,Y ∈Rn×n

max
∆1∈Uλ(X)
∆2∈Uµ(Y)

∥D +∆1 +∆2 −X − Y ∥F s.t. X ∈ V ,Y ∈ W , (2.8)

where V and W are arbitrary subsets of Rn×n. Then, (2.8) is equivalent to (2.9).

min
X,Y ∈Rn×n

∥D −X − Y ∥F + λ∥X∥F + µ∥Y ∥F s.t. X ∈ V ,Y ∈ W . (2.9)

Proposition 4 Problem (2.1) is equivalent to the following robust optimization problem:

min
X,Y ∈Rn×n

max
∆1,∆2

∥D −X − Y ∥2F + ⟨X,∆1⟩+ ⟨Y ,∆2⟩ −
1

4λ
∥∆1∥2F −

1

4µ
∥∆2∥2F

s.t. X ∈ V ,Y ∈ W .

(2.10)

Taking V to be the set of matrices with rank at most k0 and W to be the set of matrices

with ℓ0 norm at most k1, Proposition 3 implies that performing SLR decomposition with

Frobenius regularization is equivalent to solving a RO problem that allows for adversarial

errors in the input data matrix D. Moreover, Proposition 4 implies that solving Problem

(2.1) is equivalent to solving a RO problem with a soft robust penalty term in the objective,

rather than a hard constraint on the size of the uncertainty set, as such robust equivalent

problems usually consist of. This result is perhaps unsurprising in retrospect, since dual

problems to quadratically constrained quadratic problems involve quadratic terms in the

objective [see also 124, Section 6.3].

2.2.4 Connection to Matrix Completion

Low-rank matrix completion is a canonical problem in the Statistics and Machine Learning

communities that has been employed in control theory [36], computer vision [45], and signal

processing [85] among other applications. Given a partially observed matrix D ∈ Rn×n

where Ω ⊂ {(i, j) : 1 ≤ i, j ≤ n} denotes the set of indices of the revealed entries, the

42

low-rank matrix completion problem is to compute a low-rank matrix X that approximates

D. Low-rank matrix completion solves

min
X∈Rn×n

∑
(i,j)∈Ω

(Dij −Xij)
2 s.t. Rank(X) ≤ k0, (2.11)

where k0 is a predefined target rank.

Although we require λ, µ > 0 in our formulation of SLR given by (2.1), we now show that

if we take µ = 0 and also fix a sparsity pattern for the sparse matrix Y , then (2.1) reduces to

regularized matrix completion. Let Z ∈ {0, 1}n×n be a matrix such that if Zij = 0, we must

have Yij = 0. We refer to Z as a valid sparsity pattern for (2.1) if
∑

ij Zij ≤ k1. Formally,

we have (proof deferred to Section 2.8):

Proposition 5 Given a valid sparsity pattern Z, if we take µ = 0 then (2.1) reduces to

regularized matrix completion with Ω = {(i, j) : Zij = 0}.

2.3 An Alternating Minimization Heuristic

In this section, we propose an alternating minimization algorithm that obtains high qual-

ity feasible solutions to (2.1) in Section 2.3.2, by iteratively fixing the sparse or low-rank

matrix and optimizing the remaining matrix. This is a reasonable strategy, because alter-

nating minimization (AM) strategies are known to obtain high quality solutions to low-rank

problems [84] and, as we demonstrate in Section 2.3.1, when one matrix is fixed the other

matrix can be optimized in closed form. Consequently, Problem (2.1) is amenable to AM

techniques. Further, in Section 2.3.2, we bound the number of iterations required for AM

to converge. Finally, in Section 2.3.3, we establish that for a fixed sparsity pattern and a

sufficiently large amount of regularization, AM yields a globally optimal solution to (2.1).

This result provides the basis for the branch and bound algorithm we develop in Section 2.5.

43

2.3.1 Two Natural Subproblems

In this subsection, we derive two subproblems of (2.1) by fixing either the sparse matrix Y

(to obtain a low-rank subproblem) or the low-rank matrix Y (to obtain a sparse subproblem).

Further, we establish that both subproblems admit closed-form solutions.

Low-Rank Subproblem: First, suppose that we fix a sparse matrix Y ∗ in Problem (2.1).

Then, (2.1) becomes:

min
X∈Rn×n

∥D̄ −X∥2F + λ∥X∥2F s.t. Rank(X) ≤ k0, (2.12)

where D̄ = D − Y ∗ and we omit the regularization term on Y since it does not depend on

X. We refer to Problem (2.12) as the low-rank subproblem. We now demonstrate that this

problem admits a closed-form solution, via the following result:

Proposition 6 Let X∗ be a matrix such that

X∗ =
1

1 + λ
D̄k0 ,

where D̄k0 is a top-k0 SVD approximation of D̄, i.e., D̄k0 = Uk0Σk0V
T
k0

where D̄ = UΣV T

is a singular value decomposition of D̄. Then, X⋆ is an optimal solution to Problem (2.12).

Proof It is well known that the solution of the problem

min
X∈Rn×n

∥A−X∥2F s.t. Rank(X) ≤ k0

is given by X∗ = Ak0 , a projection of A onto its first k0 principal components [144]. More-

over, since

∥D̄ −X∥2F + λ∥X∥2F −
λ

1 + λ
∥D̄∥2F = (1 + λ)

∥∥∥∥ 1

1 + λ
D̄ −X

∥∥∥∥2
F

,

44

it follows that Problem (2.12) is equivalent to (has the same optimal solution set as) solving

min
X∈Rn×n

∥∥∥∥ 1

1 + λ
D̄ −X

∥∥∥∥2
F

s.t. Rank(X) ≤ k0. (2.13)

In Section 2.9, we provide an alternate proof of Proposition 6 via strong duality which reveals

that (2.12) exhibits hidden convexity in the sense of [10].

Remark 7 Observe that X⋆ can be computed exactly in O(n2k) time, since we need not

compute a full SVD of D̄. Alternatively, it can be computed approximately using randomized

SVD in O(n2 log k) time [80].

Sparse Subproblem: Now, suppose we fix a low-rank matrix X∗ in Problem (2.1). Then,

(2.1) problem becomes:

min
Y ∈Rn×n

∥D̃ − Y ∥2F + µ∥Y ∥2F s.t. ∥Y ∥0 ≤ k1, (2.14)

where D̃ = D−X∗ and we have omitted the regularization term on the low-rank matrix be-

cause it does not depend on Y . We refer to Problem (2.14) as the sparse matrix subproblem.

We now demonstrate that this problem also admits a closed-form solution:

Proposition 8 Let Y ∗ be a matrix such that

Y ∗ = S∗ ◦
(

D̃

1 + µ

)
,

where S∗ is a n×n binary matrix with k1 entries S⋆
ij = 1 such that S⋆

i,j ≥ S⋆
k,l if |D̃i,j| ≥ |D̃k,l|

and ◦ denotes the Hadamard product operation ((A ◦B)ij = Aij × Bij). Then, Y ⋆ solves

Problem (2.14).

45

Proof It is straightforward to show that the solution of:

min
Y ∈Rn×n

∥B − Y ∥2F s.t. ∥Y ∥0 ≤ k1

is given by Y ∗ = T ∗ ◦B where T ∗ is a n×n binary matrix with k1 entries T ⋆
ij = 1 such that

T ⋆
i,j ≥ T ⋆

k,l if |Bi,j| ≥ |Bk,l|. Moreover, since

∥D̃ − Y ∥2F + µ∥Y ∥2F −
µ

1 + µ
∥D̃∥2F = (1 + µ)

∥∥∥∥ 1

1 + µ
D̃ − Y

∥∥∥∥2
F

,

it follows that Problem (2.14) is equivalent to (i.e., has the same optimal solution set as):

min
Y ∈Rn×n

∥∥∥∥ 1

1 + µ
D̃ − Y

∥∥∥∥2
F

s.t. ∥Y ∥0 ≤ k1. (2.15)

In Section 2.11, we provide an alternative proof of Proposition 8 via strong second-order cone

duality which may be of independent interest as it reveals that Problem (2.15) is equivalent

to a convex optimization problem.

Remark 9 Observe that Y ⋆ can be computed in O(n2) time, by forming D̃ and partitioning

around its kth largest absolute element via quicksort. Correspondingly, this step is compu-

tationally cheaper than computing an optimal low-rank matrix. Moreover, since D̃ ∈ Rn×n,

this operation is linear in the number of entries of D̃.

2.3.2 An Alternating Minimization Algorithm

By iteratively solving the sparse matrix subproblem and the low-rank matrix subproblem

until we either converge to a stationary point or exceed a prespecified number of iterations,

we arrive at a feasible solution to (2.1). We formalize this iterative procedure in Algorithm

46

1, and let

f(X,Y) = ∥D −X − Y ∥2F + λ∥X∥2F + µ∥Y ∥2F ,

be our overall objective function and V = {X ∈ Rn×n : Rank(X) ≤ k0}, W = {Y ∈ Rn×n :∑
ij 1{Yij ̸= 0} ≤ k1} denote our respective feasible regions.

Algorithm 1: Alternating Minimization Heuristic
Data: D ∈ Rn×n, λ, µ > 0, k0, k1 ∈ Z+, tolerance parameter ϵ > 0.
Result: (X̄, Ȳ) feasible and stationary for Problem (2.31)
X0 ←− 0; Y0 ←− 0;
f0 ←− f(X0,Y0);
t←− 0;
do

t←− t+ 1;
Yt ←− argminY ∈W f(Xt−1,Y);
Xt ←− argminX∈V f(X,Yt);
ft ←− f(Xt,Yt);

while ft > 0 and ft−1−ft
ft
≥ ϵ;

return X̄ = Xt, Ȳ = Yt

We note that the initialization strategy X0 ←− 0 and Y0 ←− 0 is arbitrary and any

initialization strategy could equivalently be employed. For instance, one could employ a

greedy rounding of the solution to the semidefinite relaxation we derive in Section 2.4 as an

initialization [see also 19, Section 4.3]. Moreover, Algorithm 1 can be executed multiple times

for different initializations of X0 and Y0 to obtain an even higher quality feasible solution to

(2.31). This could be performed in parallel to avoid significantly increasing computational

time.

It is well-documented in the optimization and machine learning literature that alternat-

ing minimization schemes such as Algorithm 1 produce a sequence of non-increasing iterates

that converge to a local minimum; for Algorithm 1, this can be shown as a straightforward

corollary of [154, Theorem 1]. Building upon this, we now demonstrate that, for a given

relative improvement tolerance ϵ, Algorithm 1 terminates in a finite number of iterations.

Indeed, Algorithm 1 terminates at iteration t if either ft = 0 or ft >
(

1
1+ϵ

)
ft−1. For any iter-

47

ation t, the update rules for Xt+1 and Yt+1 imply that ft+1 = f(Xt+1,Yt+1) ≤ f(Xt,Yt+1) ≤

f(Xt,Yt) = ft. This implies that the sequence {ft} is strictly non-increasing.

Proposition 10 Algorithm 1 terminates after at most
log µ+λ+µλ

µλ

log 1+ϵ
iterations.

Proof Assume that D ̸= 0. The case when D = 0 is trivial as in this setting, Algorithm

1 terminates immediately because f0 = 0. Suppose Algorithm 1 has yet to terminate after

iteration t. This implies that

0 < ft ≤
(

1

1 + ϵ

)
ft−1 ≤

(
1

1 + ϵ

)t

f0.

Recall that f0 = f(0,0) = ∥D∥2F . Moreover, for all t we must have

ft ≥ min
X∈V,Y ∈W

f(X,Y) ≥ min
X,Y ∈Rn×n

f(X,Y).

Simple unconstrained minimization gives minX,Y ∈Rn×n f(X,Y) = µλ
µ+λ+µλ

∥D∥2F . Combining

the above inequalities, we obtain

µλ

µ+ λ+ µλ
∥D∥2F ≤ ft ≤

(
1

1 + ϵ

)t

∥D∥2F .

The result follows by noting that the above inequality is violated if t >
log µ+λ+µλ

µλ

log 1+ϵ
.

In Section 2.4, we complement this result by introducing a lower bound that can be used

to certify the quality of the solution returned by Algorithm 1. Moreover, in Section 2.6, we

demonstrate numerically that Algorithm 1 produces high-quality solutions to (2.31).

2.3.3 Optimality of Algorithm 1 for a Fixed Sparsity Pattern

In this section, we establish the optimality of Algorithm 1 for a fixed sparsity pattern

under certain easy-to-verify conditions that often hold in practice. Accordingly, here and

48

throughout this section, we assume we are given a collection of indices I0 ⊂ {(i, j) : 1 ≤

i, j ≤ n}, ∥I0∥ = n2 − k1 that correspond to entries of the sparse matrix Y that must take

value 0, and that S⋆ is a binary matrix that encodes this sparsity pattern. The collection

I0 specifies a complete feasible sparsity pattern for the matrix Y .

Given the sparsity pattern specified by I0, Problem (2.1) reduces to

min
X,Y ∈Rn×n

∥D −X − Y ∥2F + λ · ∥X∥2F + µ · ∥Y ∥2F

s.t. Rank(X) ≤ k0, Yij = 0 ∀(i, j) ∈ I0.
(2.16)

Algorithm 1 can be easily adapted to produce a feasible solution to Problem (2.16). Indeed,

by Proposition 8, an optimal binary matrix Y ⋆ in (2.16) is given by

Y ∗ = S∗ ◦
(
D −X

1 + µ

)
.

Moreover, applying Algorithm 1 with a fixed sparsity pattern and fixed low-rank matrix

recovers this sparse matrix automatically. Thus, applying Algorithm 1 to Problem (2.16) is

equivalent to solving the following non-convex optimization problem:

min
X∈Rn×n

∥∥∥∥D −X − S∗ ◦
(
D −X

1 + µ

)∥∥∥∥2
F

+ λ · ∥X∥2F + µ ·
∥∥∥∥S∗ ◦

(
D −X

1 + µ

)∥∥∥∥2
F

s.t. Rank(X) ≤ k0.

(2.17)

Let us now define some additional notation: let g(X) denote the objective value function

of (2.17), Ω = {X ∈ Rn×n : Rank(X) ≤ k0} denote the set of n-by-n matrices with rank

at most k0, PX (·) denote the projection operator onto a set X ⊆ Rn×n, i.e., PX (Y) =

argminX∈X ∥Y −X∥2F , and let γk(X) = σk+1(X)

σk(X)
≤ 1 denote the ratio between the (k+1)th

and the kth singular values of X.

We have the following result (proof deferred to Section 2.8):

49

Proposition 11 Given a full sparsity pattern I0 ⊂ {(i, j) : 1 ≤ i, j ≤ n}, ∥I0∥ = n2 − k1,

if we constrain the binary matrix S∗ in the solution of the sparse matrix subproblem (2.14)

to satisfy S∗
ij = 0 ⇐⇒ (i, j) ∈ I0, then Algorithm 1 is equivalent to performing Projected

Gradient Descent on (2.17) given by Xt+1 = PΩ(Xt − η∇g(Xt)) with step size η = 1
2(1+λ)

.

By equivalent, we mean that the two algorithms produce the same sequence of feasible low-

rank iterates Xt and that we have f(Xt,Yt) = g(Xt) for all iterations t where Yt denotes

the sparse matrix iterates produced by Algorithm 1.

We are now ready to establish the main result. We have:

Theorem 12 Given a full sparsity pattern I0 ⊂ {(i, j) : 1 ≤ i, j ≤ n}, ∥I0∥ = n2 − k1, let

S⋆ be the binary matrix satisfying S⋆
ij = 0 ⇐⇒ (i, j) ∈ I0. Let X⋆ denote the optimal

low-rank matrix for (2.17) and define D̃ =

(
1

1+λ

[
D − S∗ ◦

(
D−X⋆

1+µ

)])
.

Assume Rank(X⋆) = k0 and suppose that the following two conditions hold:

1. λ+ 2µ
1+µ
− 1 > 0;

2. γk0(D̃) < 1
1+λ

(
λ+ 2µ

1+µ
− 1.

)
.

Alternatively, assume Rank(X⋆) < k0 and suppose only the first condition listed above holds.

In both of these two settings, Algorithm 1 converges linearly to the unique optimal solution

of Problem (2.16) (where we constrain the binary matrix S∗ in the solution of the sparse

subproblem (2.14) to satisfy S∗
ij = 0 ⇐⇒ (i, j) ∈ I0). Specifically, letting {(Xt,Yt)}∞t=1

denote the sequence of iterates generated by Algorithm 1 and (X∗,Y ∗) denote the optimal

solution of (2.16), we have

f(Xt+1,Yt+1)− f(X∗,Y ∗)

f(Xt,Yt)− f(X∗,Y ∗)
≤ 1

(2λ+ 1)(1 + µ) + µ
∀ t.

Note that the first condition on the regularization parameters λ and µ in Theorem 12 is

equivalent to requiring that the objective function of (2.17) has a small condition number.

50

The second condition is a more technical one that requires that the gradient of the objective

function at the optimal solution of (2.17) is never too large.

Remark 13 Theorem 12 implies that there is a phase transition in Problem (2.1)’s difficulty

as the amount of regularization increases. Indeed, when µ = 0 and the sparsity pattern is

fixed, Problem (2.1) is equivalent to matrix completion (Proposition 5), which is a problem

that may admit multiple local minima [19], and this may cause Algorithm 1 to converge

to a non-global local optimum. On the other hand, our main result implies that, with a

sufficiently large regularization term, Problem (2.1) can be solved to certifiable optimality

by enumerating the sparsity patterns and running alternating minimization on each fixed

sparsity pattern. Thus, regularization partially controls the complexity of (2.1).

Proof We establish the result by invoking Theorem 3.3 from [79]. We prove the result for

the more involved case where Rank(X⋆) = k0. The proof for the case where Rank(X⋆) < k0

follows similar reasoning by combining Proposition 11 with [79, Theorem 3.3]. We observe

that the objective function g(X) of (2.17) is m-strongly convex and L-Lipschitz continuous

with m = 2λ+ 2µ
1+µ

and L = 2λ+ 2. To see this, note that we have

g(X)− m

2
∥X∥2F =

(
λ− m

2

)
∥X∥2F +

∑
(i,j)∈I0

(Dij −Xij)
2 +

∑
(i,j)/∈I0

(Dij −Xij)
2 · µ

1 + µ
,

which is convex when m = 2λ+ 2µ
1+µ

. Similarly, we have

L

2
∥X∥2F − g(X) =

(L
2
− λ
)
∥X∥2F −

∑
(i,j)∈I0

(Dij −Xij)
2 −

∑
(i,j)/∈I0

(Dij −Xij)
2 · µ

1 + µ
,

which is convex when L = 2λ + 2. Suppose that X⋆ is a global minimizer of (2.17). We

claim that gradient of g(X) at X⋆ satisfies:

∥∇g(X⋆)∥σ = 2(1 + λ)γk0(D̃)σk0(X
⋆),

51

where ∥X∥σ = σ1(X) denotes the spectral norm of X. To see this, note that since X⋆ is

an optimal solution, it must be a fixed point of (2.37). Thus, we have

∥∇g(X⋆)∥σ = 2(1 + λ)

∥∥∥∥X⋆ − 1

1 + λ

(
D − S∗ ◦

(
D −X⋆

1 + µ

))∥∥∥∥
σ

= 2(1 + λ)∥X⋆ − D̃∥σ

= 2(1 + λ)σk0+1(D̃)

= 2(1 + λ)γk0(D̃)σk0(D̃)

= 2(1 + λ)γk0(D̃)σk0(X
⋆),

where the third and fifth equalities follow from X⋆ being a fixed point of (2.37) and the

fourth equality follows from the definition of γk0(D̃). It is easy to verify that when the

first condition of Theorem 12 holds, the condition number κ = L
m

of g(X) satisfies κ < 2.

Moreover, when the second condition of Theorem 12 holds, it can similarly be verified that

the gradient of g(X) at X⋆ satisfies ∥∇g(X⋆)∥σ < (2m − L)σk0(X
⋆). Invoking the result

of Theorem 3.3 from [79], X⋆ is the unique fixed point of Projected Gradient Descent with

step size η = 1
2(1+λ)

. Invoking Proposition 11, this immediately implies that Algorithm 1

converges to X⋆.

Finally, it is known that Projected Gradient Descent converges linearly with rate κ−1
κ+1

for

strongly convex functions [121]. Combining this with Proposition 11, we have

g(Xt+1)− g(X∗)

g(Xt)− g(X∗)
=

f(Xt+1,Yt+1)− f(X∗,Y ∗)

f(Xt,Yt)− f(X∗,Y ∗)
≤ κ− 1

κ+ 1
=

1

(2λ+ 1)(1 + µ) + µ
,

which holds for all t. This completes the proof.

52

2.4 A Convex Relaxation

In this section, we reformulate (2.1) as a mixed-integer, mixed-projection optimization prob-

lem. We then employ the (matrix) perspective relaxation [19, 20, 77] to construct a convex

relaxation of (2.1). We illustrate the power of our convex relaxation in Section 2.4.1, by

demonstrating that it reflects the hidden convexity of the low-rank subproblem we derived

in the previous section and allows this subproblem to be solved via convex optimization.

Further, we compare our convex relaxation to the previously derived relaxation of [97] in

Section 2.4.2 and demonstrate that when both relaxations make the same assumptions, our

relaxation is at least as powerful, and sometimes strictly more powerful. Finally, in Section

2.4.3, we interpret (a slightly modified version of, where the sparsity and rank are penalized

rather than constrained) our convex relaxation as a convex penalty.

To model the sparsity pattern of the sparse matrix Y , we introduce binary variables

Z ∈ {0, 1}n×n and require that Yij = 0 if Zi,j = 0 by imposing the nonlinear constraint

Yi,j = Yi,jZi,j, and also require that
∑

ij Zij ≤ k1. To model the column space of X, we

introduce an orthogonal projection matrix P ∈ P and require that tr(P) ≤ k0 and X =

PX. Let Zk1 = {Z ∈ {0, 1}n×n :
∑

ij Zij ≤ k1} and Pk0 = {P ∈ Sn : P 2 = P , tr(P) ≤ k0}.

This gives the following reformulation of (2.1):

min
Z∈Zk1

,P∈Pk0

min
X,Y ∈Rn×n

∥D −X − Y ∥2F + λ · ∥X∥2F + µ · ∥Y ∥2F

s.t. X = PX,Y = Z ◦ Y .

(2.18)

We now have the following result (proof deferred to Section 2.8):

Proposition 14 Problem (2.18) is a valid reformulation of Problem (2.1).

The constraints X = PX and Y = Z ◦ Y in (2.18) are complicating because they are

non-convex in the decision variables (Z,P ,X,Y). Accordingly, to model these constraints in

a convex manner, we invoke the (matrix) perspective reformulation [19, 20, 77]. Specifically,

53

to model the sparse matrix Y , we introduce variables α ∈ Rn×n where αij models Y 2
ij , and

the constraint αijZij ≥ Y 2
ij , which is second-order cone representable. To model the low-

rank matrix X, we introduce a variable Θ ∈ Rn×n that models XTX, and the constraint(
Θ X
XT P

)
⪰ 0.

This yields the following reformulation of (2.18):

min
Z∈Z,P∈P

min
X,Y ∈Rn×n

∥D −X − Y ∥2F + λ · tr(Θ) + µ · ⟨E,α⟩

s.t. Y ◦ Y ≤ α ◦Z,

 Θ X

XT P

 ⪰ 0,

(2.19)

where E denotes a matrix of all ones of appropriate dimension.

Problem (2.19) is a reformulation of Problem (2.1) where the problem’s non-convexity is

entirely captured by the non-convex sets Zk1 and Pk0 . We now obtain a convex relaxation

of (2.1) by solving (2.19) with Z ∈ conv(Zk1) and P ∈ conv(Pk0) where conv(X) denotes

the convex hull of the set X . It is straightforward to see that conv(Zk1) = {Z ∈ [0, 1]n×n :∑
ij Zij ≤ k1}. Moreover, we have conv(Pk0) = {P ∈ Sn

+ : I−P ⪰ 0, tr(P) ≤ k0}[113]. This

gives the following convex optimization problem:

min
X,Y ,Z,P ,Θ,α∈Rn×n

∥D −X − Y ∥2F + λ · tr(Θ) + µ · ⟨E,α⟩

s.t. Y ◦ Y ≤ α ◦Z, ⟨E,Z⟩ ≤ k1, 0 ≤ Z ≤ E,

P ⪰ 0, I− P ⪰ 0, tr(P) ≤ k0,

 Θ X

XT P

 ⪰ 0.

(2.20)

We now have the following result (proof deferred to Section 2.8):

Theorem 15 Problem (2.20) is a valid convex relaxation of (2.1).

Note that Problem (2.20) only produces a nontrivial lower bound to (2.1) when the

regularization parameters satisfy λ, µ > 0. If either λ = 0 or µ = 0, it can easily be shown

54

that the optimal value of (2.20) is 0. In Section 2.6, we employ this convex relaxation to

produce bounds for feasible solutions returned by Algorithm 1. Moreover, we show that

(2.20) can be embedded within a branch and bound framework.

2.4.1 Hidden Convexity in the Low Rank Subproblem

In this section, we demonstrate that the low-rank subproblem derived in the previous

section exhibits hidden convexity in the sense of [10]. This result allows us to establish the

strength of our overall convex relaxation in the next section. Formally, we have the following

result (proof deferred to Section 2.10):

Theorem 16 Consider the semidefinite optimization problem:

min
P ,Θ∈Sn

+,X∈Sn
∥D̄∥2F + (1 + λ) · tr(Θ)− 2 · ⟨X, D̄⟩

s.t. tr(P) ≤ k0, I− P ⪰ 0,

 Θ X

XT P

 ⪰ 0.

(2.21)

Solving Problem (2.12) is equivalent to solving Problem (2.21) in that both problems have

the same optimal objective value and given an optimal solution to either problem, an optimal

solution to the other problem can be constructed efficiently.

2.4.2 Comparison With the Relaxation of Lee and Zou

To illustrate the power of our convex relaxation, we now present a formal comparison

between (2.20) and the relaxation proposed by [97] and demonstrate that our relaxation is at

least as powerful and sometimes strictly more powerful. Accordingly, here and throughout

this subsection, we assume that the spectral norm of the low-rank matrix X and the infinity

norm of the sparse matrix Y are bounded as otherwise the relaxation proposed by [97]

yields a lower bound of zero. Explicitly, we assume that ∥X∥σ = maxi σi(X) ≤ β and

∥Y ∥∞ = maxij |Yij| ≤ γ where σi(X) denotes the ith singular value of X for β, γ ∈ R+.

55

[97] obtain their relaxation by noting that under the spectral and infinity norm bounded-

ness assumptions, convex lower bounds of the non-convex rank and ℓ0 norm functions can be

obtained as Rank(X) ≥ 1
β
∥X∥⋆ and ∥Y ∥0 ≥ 1

γ
∥Y ∥1 respectively. Noting that the ℓ1 norm

can be trivially linearized and that the nuclear norm of a matrix X admits a well-known

semidefinite characterization given by

min
W1,W2∈Sn

1

2
tr(W1 +W2) s.t.

W1 X

XT W2

 ⪰ 0,

we can express [97]’s relaxation of (2.1) as follows:

min
X,Y ,V ,W1,W2∈Rn×n

∥D −X − Y ∥2F + λ · ∥X∥2F + µ · ∥Y ∥2F

s.t. − V ≤ Y ≤ V ,
1

γ
⟨E,V ⟩ ≤ k1,

1

2β
tr(W1) +

1

2β
tr(W2) ≤ k0,

W1 X

XT W2

 ⪰ 0.

(2.22)

To allow for a fair comparison between our relaxation and that given by (2.22), we note

that under the assumptions ∥X∥σ ≤ β and ∥Y ∥∞ ≤ γ, we can strengthen (2.20) as follows:

min
X,Y ,Z,Pc,Pr,Θ,α∈Rn×n

∥D −X − Y ∥2F + λ · tr(Θ) + µ · ⟨E,α⟩

s.t. Y ◦ Y ≤ α ◦Z, ⟨E,Z⟩ ≤ k1, 0 ≤ Z ≤ E, −γZ ≤ Y ≤ γZ,

Pc ⪰ 0, I− Pc ⪰ 0, tr(Pc) ≤ k0,

Pr ⪰ 0, I− Pr ⪰ 0, tr(Pr) ≤ k0, Θ X

XT Pc

 ⪰ 0,

βPr X

XT βPc

 ⪰ 0.

(2.23)

The constraint −γZij ≤ Yij ≤ γZij in (2.23) emerges immediately from the bound on

56

the infinity norm of the sparse matrix. The last four constraints in (2.23) follow from the

bound on the spectral norm of the low-rank matrix. The variable Pc plays the role of P

in (2.20) and models the k0 dimensional column space of X as before while the variable Pr

models the k0 dimensional row space of X. To see that these four constraints are valid,

consider any matrix X̄ satisfying ∥X̄∥⋆ ≤ β and Rank(X̄) ≤ k0, and let X̄ = UΣV T be

its singular value decomposition. Define P̄c = UUT and P̄r = V V T . We have β2P̄r ⪰

P̄rX̄
TX̄ = X̄T P̄cX̄ = X̄T P̄ †

c X̄ so we have

βP̄r X̄

X̄T βP̄c

 ⪰ 0. Feasibility of P̄c and P̄r for

the remaining constraints follows the same reasoning employed in Theorem 15. Note that

if we restrict X to be symmetric, we can take Pr = Pc in (2.23) as the row space and the

column space of X will be the same.

Proposition 17 For any input data D, k0, k1 and hyperparameters λ, µ, the optimal value

of (2.23) is no less than the optimal value of (2.22).

Proof To establish the proposition, we show that for any feasible solution to (2.23) we can

construct a feasible solution to (2.22) that achieves the same or lower objective value.

Fix any input data D ∈ Rn×n, k0, k1 ∈ N+ and any hyperparameters λ, µ > 0. Consider

an arbitrary feasible solution S1 = (X̄, Ȳ , Z̄, P̄c, P̄r, Θ̄, ᾱ) to (2.23). Let V̄ = γZ̄, W̄1 =

βP̄c and W̄2 = βP̄r. We will show that the solution S2 = (X̄, Ȳ , V̄ , W̄1, W̄2) is feasible to

(2.22) and achieves an objective value that is no larger than the objective value achieves by S2

in (2.23). From feasibility of S1 in (2.23), we have −γZ̄ij ≤ Ȳij ≤ γZ̄ij =⇒ −V̄ij ≤ Ȳij ≤ V̄ij

and ⟨E, Z̄⟩ ≤ k1 =⇒ 1
γ
⟨E, V̄ij⟩ ≤ k1. Moreover, we have

1

2β
tr(W̄1 + W̄2) =

1

2β
tr(βP̄c + βP̄r) =

1

2
tr(P̄c) +

1

2
tr(P̄c) ≤

k0
2

+
k0
2

= k0

We conclude that S2 is feasible to (2.22) by noting that the last constraint in (2.22) reduces

to the fourth from last constraint in (2.23) after substituting the definitions of W̄1 and W̄2.

We observe that S2 achieves an objective value in (2.22) no greater than that achieved by S1

in (2.23) by noting that feasibility of S1 implies that tr(Θ̄) ≥ ∥X̄∥2F and ⟨E, ᾱ⟩ ≥ ∥Ȳ ∥2F .

57

Since this construction holds for every feasible solution to (2.23), it must hold for any opti-

mal solution, which implies that the optimal value of (2.22) is no greater than the optimal

value of (2.23). This completes the proof.

Proposition 17 establishes that our relaxation is at least as strong as (2.22), but does not

in and of itself demonstrate its utility since it does not preclude the possibility of the optimal

value of (2.23) always coinciding with the optimal value of (2.22). To address this, Proposi-

tion 18 which establishes the existence of problem instances for which the optimal value of

(2.23) is strictly greater than the optimal value of (2.22). Taken together, Propositions 17

and 18 show that (2.23) is a (strictly) stronger convex relaxation to (2.1) than (2.22).

Proposition 18 There exists input data D, k0, k1 and hyperparameters λ, µ such that the

optimal value of (2.23) is strictly greater than the optimal value of (2.22).

Proof We establish the result constructively. Let n = 2,D = I2, k0 = 1, k1 = 0, λ = 1 and

µ = 1. With these values, (2.1) reduces to

min
X∈R2×2

∥I2 −X∥2F + ∥X∥2F s.t. Rank(X) ≤ 1. (2.24)

It follows immediately from Proposition 6 that the optimal solution to (2.24) is X⋆ =0.5 0

0 0

 and the optimal objective value is 3
2
. Let β = 2 and γ = 1. Note that γ can be

chosen arbitrarily since the optimal sparse matrix is Y ⋆ = 0. Consider solving (2.23) and

(2.22) for this problem data. From Theorem 16, it follows that the optimal value of (2.23)

coincides with the optimal value of (2.24). Next, note that if we ignore the rank constraint,

it can easily be verified that the unconstrained minimum of (2.24) is given by X̃ = 1
2
I and

achieves an objective value of 1. Finally, observe that taking Ỹ = Ṽ = 0, W̃1 = W̃2 = I,

the solution (X̃, Ỹ , Ṽ , W̃1, W̃2) is feasible to (2.22) and achieves an objective value of 1.

This completes the proof.

58

2.4.3 Penalty Interpretation of Relaxation

We now consider instances where the sparsity and rank of the matrices are penalized

in the objective rather than constrained and interpret the resulting relaxation as a penalty

function in the tradition of [19, 66, 118, 122] among others. Formally, we have the following

result1, which can be deduced by combining [118, Corollary 3] with [19, Lemma 6]:

Proposition 19 The following two optimization problems are equivalent:

min
X,Y ,Z,P ,Θ,α∈Rn×n

∥D −X − Y ∥2F + λ · tr(Θ) + µ · ⟨E,α⟩+ ρ1 · tr(P) + ρ2 · ⟨E,Z⟩

s.t. Y ◦ Y ≤ α ◦Z, 0 ≤ Z ≤ E, P ⪰ 0, I− P ⪰ 0,

 Θ X

XT P

 ⪰ 0.

(2.25)

min
X,Y

∥D −X − Y ∥2F +
∑
i∈[n]

min
(√

ρ1λσi(X), ρ1 + λσi(X)2
)

+
∑
i,j∈[n]

min
(√

µρ2Yi,j, ρ2 + µY 2
i,j

)
.

(2.26)

The above result demonstrates that our regularized relaxation generalizes the reverse

Huber penalty [c.f. 118] to sparse plus low-rank optimization problems. This is quite different

from unregularized low-rank problems. Indeed, it follows directly from [19, Lemma 7] that

under a standard big-M assumption on the ℓ∞ norm of the sparse matrix and the spectral
1Note that the statement of our result is slightly different to the statement in [118], because, as noted by

Dong u. a. [61], the original result contains some minor typos.

59

norm of the low-rank matrix, an unregularized relaxation of the form

min
X,Y ,Z,P∈Rn×n

∥D −X − Y ∥2F + ρ1tr(P) + ρ2⟨E,Z⟩

s.t. |Yij| ≤ mZij ∀i, j ∈ [n], 0 ≤ Z ≤ E,

P ⪰ 0, I− P ⪰ 0,

MP X

XT MP

 ⪰ 0

(2.27)

is equivalent to the Lasso and nuclear norm regularized problem

min
X,Y ,Z,P∈Rn×n

∥D −X − Y ∥2F +
ρ1
M
∥X∥∗ +

ρ2
m
∥Y ∥1. (2.28)

Moreover, as demonstrated by [28, 118] among others, reverse Huber penalties outperform

Lasso penalties for sparse regression problems both theoretically—by requiring fewer data to

recover the ground truth under a restricted isometry model [118], and empirically—by pro-

viding a significantly lower false discovery rate and comparable accuracy rate after observing

the same amount of data [29]. This is because Lasso-type penalties are robust estimators

but not sparse estimators [13], while reverse Huber penalties are sparse estimators that re-

cover the ground truth after observing slightly more data than via an exact approach [c.f.

4]. Since SLR decomposition is a generalization of sparse regression, this partially explains

the superior numerical performance of our alternating minimization method compared to

GoDec, as reflected in Section 2.6.

2.5 Branch and Bound

In this section, we propose a branch and bound algorithm in the sense of [92, 98] that

computes certifiably (near) optimal solutions to Problem (2.1) in a practical amount of time.

Specifically, we state explicitly our subproblem strategy in Section 2.5.1, before stating our

overall algorithmic approach in Section 2.5.2. We also provide a sufficient condition for

60

branch and bound to obtain a globally optimal solution in Section 2.5.2. We remark that

branch and bound strategies have previously been leveraged for matrix optimization problems

[14, 97].

Let h(Z,P) denote the optimal value of the inner minimization problem in (2.18), i.e.:

h(Z,P) := min
X,Y ∈Rn×n

∥D −X − Y ∥2F + λ · ∥X∥2F + µ · ∥Y ∥2F

s.t. X = PX,Y = Z ◦ Y .

Proposition 14 established that solving (2.1) is equivalent to solving minZ∈Zk1
,P∈Pk0

h(Z,P).

In Section 2.4, we illustrated how to obtain a lower bound for the optimal value of (2.1) by

solving minZ∈conv(Zk1
),P∈conv(Pk0

) h(Z,P) which we formulated as a semidefinite program in

(2.20). Suppose we wanted to compute a stronger lower bound for (2.1). Two natural

Lagrangean relaxations to consider are:

min
Z∈conv(Zk1

),P∈Pk0

h(Z,P), (2.29)

min
Z∈Zk1

,P∈conv(Pk0
)
h(Z,P). (2.30)

It is not immediately clear which of these two problems produces a stronger lower bound

for (2.1). However, as there does not yet exist an efficient method to branch over the set of n×

n orthogonal projection matrices with trace at most k0 [19], we focus on developing a branch

and bound algorithm that can solve the second problem, (2.30). Moreover, Theorem 12

provides sufficient conditions under which we can exactly compute minP∈Pk0
h(Z0,P) for any

fixed Z0 ∈ Zk1 . Thus, provided these conditions hold, we can solve minZ∈Zk1
,P∈Pk0

h(Z,P)

to optimality by branching over the set Zk1 .

2.5.1 Subproblems

We construct an enumeration tree that branches on the entries of the binary matrix Z, which

models the sparsity pattern of the sparse matrix Y . Each node in the tree is defined by a

61

(partial or complete) sparsity pattern, described by collections I0, I1 ⊂ {(i, j) : 1 ≤ i, j ≤ n}

where we have |I0| ≤ n2−k1, |I1| ≤ k1 and I0∩I1 = ∅, and has an accompanying subproblem.

We note that [11] use a similar notion of partially-determined support when developing a

custom branch and bound algorithm for the Sparse Principal Component Analysis problem.

For indices (i, j) ∈ I0, we constrain Zij = 0 and for indices (i, j) ∈ I1, we constrain Zij = 1.

We say that I0 and I1 define a complete sparsity pattern if either |I0| = n2−k1 or |I1| = k1,

otherwise we say that I0 and I1 define a partial sparsity pattern. A terminal node is a node

in the tree that can be described by a complete sparsity pattern.

At any given node in the enumeration defined by collections I0 and I1, we consider the

subproblem given by:

min
X,Y ∈Rn×n

∥D −X − Y ∥2F + λ · ∥X∥2F + µ · ∥Y ∥2F

s.t. Rank(X) ≤ k0,
∑

(i,j) ̸∈ I0∪I1

1{Yij ̸= 0} ≤ k1 − |I1|, Yij = 0 ∀(i, j) ∈ I0.
(2.31)

This subproblem can equivalently be expressed as

min
Z∈Zk1

,P∈Pk0

h(Z,P) s.t. Zij = 0 ∀(i, j) ∈ I0, Zij = 1 ∀(i, j) ∈ I1. (2.32)

Note that if I0 = I1 = ∅, (2.31) and (2.32) are equivalent to (2.1).

Subproblem Upper Bound

We adapt Algorithm 1 to compute feasible solutions to (2.31). Suppose that we fix a sparse

matrix Y ∗ in Problem (2.31). Then, the problem exactly reduces to (2.12), which we know

how to solve by Proposition 6. Suppose we fix a low-rank matrix X∗ in Problem (2.31).

62

Then, the problem becomes:

min
Y ∈Rn×n

∥D̃ − Y ∥2F + µ · ∥Y ∥2F

s.t.
∑

(i,j) ̸∈ I0∪I1

1{Yij ̸= 0} ≤ k1 − |I1|, Yij = 0 ∀(i, j) ∈ I0.
(2.33)

where D̃ = D −X∗ and we have omitted the regularization term on the low-rank matrix

because it does not depend on Y . Similarly to (2.14), (2.33) admits a closed-form solution:

Proposition 20 Let Y ∗ be a matrix such that

Y ∗ = S∗ ◦
(

D̃

1 + µ

)
,

where S∗ is a n × n binary matrix with k1 entries S⋆
ij = 1 such that S⋆

ij = 0 ∀ (i, j) ∈

I0, S⋆
ij = 1 ∀ (i, j) ∈ I1 and S⋆

i,j ≥ S⋆
k,l if |D̃i,j| ≥ |D̃k,l| ∀ (i, j), (k, l) /∈ I0 ∪ I1. Then, Y ⋆

solves Problem (2.33).

Thus, by replacing the update Yt ←− argminY ∈W f(Xt−1,Y) in Algorithm 1 by the update

Yt ←− argminY ∈W̄ f(Xt−1,Y) where W̄ = {Y ∈ Rn×n :
∑

ij 1{Yij ̸= 0} ≤ k1 − |I1|, Yij =

0 ∀ (i, j) ∈ I0} using the result of Proposition 20, Algorithm 1 can be readily adapted to

obtain high quality feasible solutions to (2.31).

Subproblem Lower Bound

To obtain a lower bound for the objective value of a subproblem given by (2.32), we solve

the relaxation given by

min
Z∈Conv(Zk1

), P∈Conv(Pk0
)

h(Z,P) s.t. Zij = 0 ∀(i, j) ∈ I0, Zij = 1 ∀(i, j) ∈ I1. (2.34)

63

From Section 2.4, it follows that (2.34) can be expressed as the following semidefinite prob-

lem:

min
X,Y ,Z,P ,Θ,α∈Rn×n

∥D −X − Y ∥2F + λ · tr(Θ) + µ · tr⟨E,α⟩

s.t. Y ◦ Y ≤ α ◦Z, ⟨E,Z⟩ ≤ k1, 0 ≤ Z ≤ E,

P ⪰ 0, I− P ⪰ 0, tr(P) ≤ k0,

 Θ X

XT P

 ⪰ 0,

Zij = 0 ∀(i, j) ∈ I0, Zij = 1 ∀(i, j) ∈ I1.

(2.35)

2.5.2 Branch and Bound Algorithm

Having specified the subproblem we consider at each node in the tree and how we compute

upper bounds (feasible solutions) and lower bounds by leveraging Algorithm 1 and the convex

relaxation given by (2.35), it remains to specify the branching rule and the node selection

rule. Algorithm 2 describes our approach. Branching and node selection rules for branch

and bound form a rich literature [106]. In our current implementation of Algorithm 2, we

employ the most fractional branching rule. Specifically, for an arbitrary non-terminal node p,

let Z∗ be the optimal matrix Z of the node’s convex relaxation given by (2.35). We branch

on entry (i∗, j∗) = argmin(i,j)/∈I0∪I1 |Zij − 0.5|. When selecting which node to investigate in

the tree, we choose a node having a lower bound equal to the current global lower bound.

Let {(X̄i, Ȳi)}i denote the collection of feasible solutions produced by Algorithm 1 across

all nodes that are visited during the execution of Algorithm 2 and let g(I0, I1) denote the

optimal value of Problem (2.35). The final upper bound returned by Algorithm 2 is given

by mini f(X̄i, Ȳi), the smallest objective value achieved by the feasible solution returned by

Algorithm 1 for any subproblem explored during the execution of Algorithm 2. The final

lower bound returned by Algorithm 2 is given by min(I0,I1)∈N g(I0, I1) where N denotes the

set of nodes that have not been discarded upon the termination of Algorithm 2.

64

Theorem 21 Algorithm 2 terminates in a finite number of iterations and either returns an

ϵ globally optimal solution to (2.1) or returns the solution of (2.30).

Proof To see that Algorithm 2 terminates in a finite number of iterations, it suffices to note

that Algorithm 2 can never visit a node more than once and that there is a finite number of

partial and complete sparsity patterns (each corresponding to a possible tree node) because

the set Zk1 is discrete.

Upon termination, we must have either ub−lb
ub
≤ ϵ or |N | = 0 (or both). Suppose that

ub−lb
ub
≤ ϵ. Then, by definition, the output solution (X̄, Ȳ) is ϵ globally optimal to problem

(2.1) since lb consists of a global lower bound and (X̄, Ȳ) is feasible to (2.1). Suppose

instead that |N | = 0. Algorithm 2 partitions the space of feasible solutions to (2.30) and

only discards elements of the partition that are guaranteed not to contain the globally optimal

solution. If |N | = 0 upon termination, then Algorithm 2 has explored (or pruned) the entire

space of feasible solutions so the output value lb is the optimal objective of (2.30).

Theorem 22 Suppose λ+ 2µ
1+µ
− 1 > 0 and for every full sparsity pattern I0 ⊂ {(i, j) : 1 ≤

i, j ≤ n}, ∥I0∥ = n2 − k1, we have

γk0(D̃) <
1

1 + λ

(
λ+

2µ

1 + µ
− 1
)
,

where D̃ is defined in Theorem 12. Then Algorithm 2 returns an ϵ-optimal solution to (2.1).

Proof Upon termination of Algorithm 2, we must have either ub−lb
ub
≤ ϵ or |N | = 0 (or

both). Suppose that ub−lb
ub
≤ ϵ. Then, by definition, the output solution (X̄, Ȳ) is ϵ globally

optimal to problem (2.1). Suppose instead that |N | = 0. Then it must be the case that

ub = lb. To see this, note that Algorithm 2 partitions the space of feasible solutions to (2.1)

and only discards elements of the partition that are guaranteed not to contain the optimal

solution. Moreover, at nodes that correspond to complete sparsity patterns, Theorem 12

65

guarantees that Algorithm 2 computes the exact solution of (2.16). Thus, if |N | = 0 upon

termination, Algorithm 2 has explored (or pruned) the entire space of feasible solutions so

the output value lb is equal to ub and is the optimal objective of (2.1).

Algorithm 2: Near-Optimal SLR Decomposition
Data: D ∈ Rn×n, λ, µ ∈ R+, k0, k1 ∈ Z+ . Tolerance parameter ϵ ≥ 0.
Result: (X̄, Ȳ) that solves (2.1) within the optimality tolerance ϵ.
p0 ←− (I0, I1) = (∅, ∅);
N ←− {p0};
(X̄, Ȳ)←− solution returned by Algorithm 1;
ub←− f(X̄, Ȳ) ;
lb←− optimal value of (2.20);
while ub−lb

ub
> ϵ and |N | > 0 do

select (I0, I1) ∈ N ;
select some element (i, j) ̸∈ I0 ∪ I1;
for k = 0, 1 do

l←− (k + 1) mod 2;

newnode ←−
((
Ik ∪ (i, j)

)
, Il
)
;

upper ←− upperBound(newnode) with feasible point (X∗,Y ∗);
lower ←− lowerBound(newnode);
if upper < ub then

ub←− upper ;
(X̄, Ȳ)←− (X∗,Y ∗) ;
remove any node in N with lower ≥ ub;

end
if lower < ub then

add newnode to N
end

end
remove (I0, I1) from N ;
update lb to be the lowest value of lower over N ;

end
return (X̄, Ȳ), lb

66

2.6 Computational Results

In this section, we evaluate the performance of our alternating minimization heuristic (Al-

gorithm 1) and our branch and bound method (Algorithm 2) implemented in Julia 1.5.2

using the JuMP.jl package version 0.21.7 and solved using Mosek version 9.2 for the semidef-

inite subproblems (2.20). We compare our methods against GoDec given by (2.3), Stable

Principal Component Pursuit (S-PCP) given by (2.2), Fast RPCA (fRPCA) [150] , Acceler-

ated Alternating Projections (AccAltProj) [41] and Scaled Gradient Descent (ScaledGD)

[133]. All experiments were performed using synthetic data, and run on MIT’s Super-

cloud Cluster [123], which hosts Intel Xeon Platinum 8260 processors. The maximum RAM

used across all trials was 192GB. To bridge the gap between theory and practice, we have

made our code freely available on GitHub at https://github.com/NicholasJohnson2020/

SparseLowRankSoftware. For experiments involving AccAltProj, we employ the MAT-

LAB implementation of the method written by [41] which is available publicly at https:

//github.com/caesarcai/AccAltProj_for_RPCA/tree/master.

We aim to answer the following questions:

1. How does the performance of Algorithm 1 compare to state-of-the-art convex and non-

convex methods such as GoDec, S-PCP, AccAltProj, fRPCA and ScaledGD?

2. How does the performance of the accelerated implementation of Algorithm 1 (described

in Section 2.6.4) compare to its exact implementation?

3. How is the performance of Algorithm 1 affected by the dimension of the data matrix D,

the signal-to-noise level, the rank of the underlying low-rank matrix, and the sparsity

of the underlying sparse matrix?

4. How does the performance of Algorithm 2 compare to Algorithm 1?

67

GitHub
https://github.com/NicholasJohnson2020/SparseLowRankSoftware
https://github.com/NicholasJohnson2020/SparseLowRankSoftware
https://github.com/caesarcai/AccAltProj_for_RPCA/tree/master
https://github.com/caesarcai/AccAltProj_for_RPCA/tree/master

2.6.1 Synthetic Data Generation

All experiments were performed using synthetic data. To generate a synthetic data matrix

D, we first fix a problem dimension n, a desired rank for the low-rank matrix k0, a desired

sparsity for the sparse matrix k1 and a value σ > 0 that controls the signal to noise ratio.

Next, we generate a random rank k0 matrix and k1 sparse matrix. To generate the low-rank

matrix L ∈ Rn×n, we set L = V V T where V ∈ Rn×k0 and Vij ∼ N(0, σ
2

n
). To generate the

sparse matrix S ∈ Rn×n, we randomly select a symmetric set of indices S ⊂ {(i, j) : 1 ≤

i, j ≤ n} with cardinality |S| = k1 and let Sij ∼ U(−5, 5) if (i, j) ∈ S and Sij = 0 otherwise.

Finally, we set D = L+ S +N where Nij = Nji ∼ N(0, 1). Note that this data generation

process is similar to that employed by [44].

2.6.2 Hyperparameter Tuning

We tune the hyperparameters of Algorithm 1, fRPCA, and ScaledGD using 30-fold cross-

validation, as proposed by [114]. For each fold, we randomly sample l columns and rows

from the input data matrix D and permute the columns and rows of D to obtain D̃ =Dval DUR

DLL Dtrain

 where Dval ∈ Rl×l is the submatrix corresponding to the randomly sampled

rows and columns of D, Dtrain ∈ R(n−l)×(n−l), and DUR,D
T
LL ∈ Rl×(n−l). We set l =

⌊n · (1 −
√
0.7)⌋ so that the training set Dtrain contains at least 70% of the input data.

For a given choice of hyperparameters, we perform a SLR decomposition on Dtrain. Letting

X̂ denote the estimated low-rank matrix, we compute the validation score for a single fold

as ∥Dval−DURX̂†DLL∥F 2

∥Dval∥F 2 . The final validation score for a given set of hyperparameters is the

average over 30 folds.

For experiments reported in Section 2.6.3 and Section 2.6.4, we tune the hyperparam-

eters (λ, µ) for Algorithm 1 from the collection
(

10−2
√
n
, 10

−1
√
n
, 10

0
√
n
, 10

1
√
n

)
×
(

10−2
√
n
, 10

−1
√
n
, 10

0
√
n
, 10

1
√
n

)
and we set the hyperparameter γ = α k1

n2 for fRPCA and ScaledGD where α is tuned (in-

68

dependently for each method) from the collection (0.01, 0.05, 0.1, 0.5, 1, 2, 4, 6, 8, 10). For

subsequent experiments in Section 2.6.1 and beyond, the hyperparameters of Algorithm

1, fRPCA, and ScaledGD are fixed respectively to the best-performing hyperparameters

selected via cross-validation in Section 2.6.3 and Section 2.6.4. For experiments employing

Algorithm 2, we set λ = µ = 1√
n
. We terminate Algorithm 1, GoDec, fRPCA, and ScaledGD

when ft−1−ft
ft

< 0.001 where ft denotes the objective value achieved by the estimate of the

low-rank matrix X and the sparse matrix Y at iteration t.

2.6.3 A Comparison Between the Performance of Algorithm 1, GoDec,

S-PCP, AccAltProj, fRPCA and ScaledGD

We present a comparison of Algorithm 1, GoDec, S-PCP, AccAltProj, fRPCA, and

ScaledGD as we vary the dimension n of the input data matrix D, the rank k0 of the

underlying low-rank matrix L and the sparsity level k1 of the underlying sparse matrix S.

We report results for the exact implementations of Algorithm 1 (“Alg 1 Exact") and GoDec

where the singular value decomposition is computed exactly at each step. We fix σ = 10

across all trials. For each value of (n, k0, k1), we perform 10 trials.

In Table 2.2, we report the low-rank matrix reconstruction error (L Error) of each method

and the rank and sparsity of the solution returned by S-PCP. Let L̂ denote the low-rank

matrix returned by one of the five methods. We define the low-rank matrix reconstruction

error to be ∥L̂−L∥2F
∥L∥2F

. Let L̂ and Ŝ denote the low-rank and sparse matrices returned by S-

PCP. We define the rank of a solution returned by S-PCP to be
∑n

i=1 1{σi(L̂) > 10−2}, the

number of singular values of L̂ that are greater than 10−2. Similarly, we define the sparsity

of a solution returned by S-PCP to be
∑

ij 1{Ŝij > 10−2}, the number of entries of Ŝ that

are greater than 10−2.

For every parameter configuration explored, Algorithm 1 outperforms all benchmark

methods by producing a solution that has a comparable although slightly lower low-rank

matrix reconstruction error and a lower sparse matrix reconstruction error. Moreover, the

69

solutions returned by S-PCP always have an average rank that is far greater than the target

rank k0 and a sparsity level that is far greater than the target sparsity level k1. Further,

the numerical threshold used to compute the rank and sparsity of S-PCP solutions, 10−2,

is quite generous. Indeed, using a more common, more restrictive threshold for numerical

tolerance would further amplify this discrepancy.

In Table 2.3, we report the low-rank matrix reconstruction error of each method, the

bound gap between the solution returned by Algorithm 1 and the solution of (2.20), and the

time required to solve (2.20). Letting f̂ denote the objective value achieved by the solution

returned by Algorithm 1 and letting f ∗ denote the optimal value of (2.20), we define the

bound gap as f̂−f∗

f̂
. Thus, not only does Algorithm 1 outperform S-PCP, GoDec, fRPCA and

ScaledGD, but, by using the relaxation given by (2.20), we obtain a certificate of Algorithm

1’s instance-wise quality.

2.6.4 An Accelerated Implementation of Algorithm 1 and its Per-

formance

As noted in Section 2.3, the main bottleneck in our implementation of Algorithm 1 is the

singular value decomposition step that must be performed at each iteration. One commonly

proposed technique in the literature to circumvent this difficulty is to employ a randomized

SVD [c.f. 80], which computes a low-rank matrix less accurately but in significantly less time

than via an exact SVD. Accordingly, in this section, we investigate the use of a randomized

SVD in Algorithm 1 (“Alg 1 Acc”) against an exact SVD step (“Alg 1 Exact”). In the

accelerated implementation of Algorithm 1, we compute a randomized SVD at every iteration

except the final one, where we employ an exact SVD.

We now present a comparison of the exact and accelerated implementations of Algorithm

1 as we vary the dimension n of the input data matrix D, the rank k0 of the underlying

low-rank matrix L and the sparsity level k1 of the underlying sparse matrix S. We fix σ = 10

across all trials. For each value of (n, k0, k1), we performed 10 trials.

70

In Table 2.4, we report the low-rank matrix reconstruction error and the execution time

of the exact and accelerated implementations of Algorithm 1. The execution time reported

is the average total runtime of each method which includes the time required to perform

cross-validation for the hyperparameters λ and µ. The exact implementation of Algorithm

1 produces a lower reconstruction error than the accelerated implementation across all tri-

als. This behavior is expected given that at each iteration, the exact implementation of

Algorithm 1 solves the low-rank subproblem (2.12) to optimality, whereas the accelerated

implementation only computes a high quality solution to this subproblem (except at the

last step). Further, across all trials, the accelerated implementation of Algorithm 1 has a

faster average execution time than the exact implementation, which is consistent with the

O(n2 log k) complexity of the low-rank update in the accelerated implementation compared

to the O(n2k) complexity in the exact implementation.

2.6.5 Scalability of Algorithm 1

We present a comparison of Algorithm 1 with GoDec, AccAltProj and ScaledGD as we

vary the dimension of the input data matrix D ∈ Rn×n. We report results for the exact

implementations of Algorithm 1 and GoDec. For the first experiment, we fixed k0 = 5,

k1 = 500, σ = 10 across all trials, considered values of n ∈ {200, 250, 300, ..., 1000}, and

performed 50 trials for each n. For the second experiment, we fixed k0 = 2, k1 = 500,

σ = 10, considered values of n ∈ {2000, 4000, ..., 10000}, and performed 5 trials for each n.

We fixed the hyperparameters (λ, µ) =
(

0.1√
n
, 10√

n

)
(resp. γ = k1

2n2) for Algorithm 1 (resp.

ScaledGD) for these and all subsequent experiments.

We report the low-rank matrix reconstruction error, the sparse matrix reconstruction

error, the sparse support discovery rate, and the execution time for each method in Figures

2.1–2.2. We additionally report the low-rank matrix reconstruction error, the sparse matrix

reconstruction error and the execution time for Algorithm 1, GoDec and ScaledGD in Table

2.5 of Section 2.11. Let Ŝ denote the sparse matrix returned by either Algorithm 1 or

GoDec. We define the sparse matrix reconstruction error analogously to the low-rank matrix

71

reconstruction error as ∥Ŝ−S∥2F
∥S∥2F

. Let I(S) = {(i, j) : Sij ̸= 0} denote the support of the sparse

matrix S, i.e., the set of indices for which the matrix S takes non zero values. Then, we define

the sparse support discovery rate to be 1
k1

∑
(i,j)∈I(S) 1(Ŝij ̸= 0). The execution time reported

is the average runtime for a single trial of a given method. We note that if AccAltProj were

implemented in Julia, it would very likely exhibit more favorable runtimes than its publicly

available MATLAB implementation [30]. The performance metric of greatest interest is the

low-rank matrix reconstruction error followed by the sparse matrix reconstruction error.

200 400 600 800 1000
Matrix Dimension

0.1

0.2

0.3

0.4

L
 E

rr
or

Low Rank Matrix Error

200 400 600 800 1000
Matrix Dimension

0

50

100

150

200

S
E

rr
or

Sparse Matrix Error

200 400 600 800 1000
Matrix Dimension

0.2

0.4

0.6

0.8

1.0

T
ru

e
D

is
co

ve
ry

 R
at

e

Sparse Support Discovery Rate

200 400 600 800 1000
Matrix Dimension

0

1

2

3

T
im

e
(s

)

Execution Time

GoDec
Alg 1 Exact
ScaledGD
AccAltProj

Figure 2.1: Low-rank matrix reconstruction error (top left), sparse matrix reconstruction
error (top right), sparse support discovery rate (bottom left) and execution time (bottom
right) versus n with k0 = 5, k1 = 500 and σ = 10. Averaged over 50 trials for each parameter
configuration.

Our main findings from this set of experiments are:

1. Algorithm 1 outperforms GoDec, AccAltProj and ScaledGD across most trials by ob-

taining lower sparse and low-rank reconstruction errors, while having a comparable

72

execution time.

2. The low-rank matrix reconstruction error scales linearly with matrix dimension for

Algorithm 1, AccAltProj, ScaledGD, and GoDec. It can be shown that for our data

generation process, limn→∞ E[∥L∥2F] = C(k0, σ) where C(k0, σ) is a constant that de-

pends only on the rank of L and the signal-to-noise level. This implies that for all

methods, E[∥L̂−L∥2F] is Θ(n).

3. The sparse matrix reconstruction error appears to scale linearly with matrix dimension

for Algorithm 1, ScaledGD, and GoDec, while scaling superlinearly with the matrix

dimension for AccAltProj. Note that AccAltProj does not allow the cardinality of the

sparse matrix to be explicitly constrained. Accordingly, AccAltProj tends to return

a sparse matrix that is considerably denser than the desired level. This produces a

high sparse support discovery rate (true positive rate) at the expense of a high false

discovery rate.. The sparse support discovery rate declines as the matrix dimension

increases for GoDec and Algorithm 1in the regime investigated in Figure 2.1. ScaledGD

underperforms GoDec and Algorithm 1 with respect to sparse support discovery rate

in low-dimensional settings (Figure 2.1) but outperforms in high-dimensional settings

(Figure 2.2). This is to be expected as with increasing matrix dimension while k1 is

held fixed, it becomes increasingly difficult to identify the underlying sparsity pattern.

2.6.6 Sensitivity to Noise

We present a comparison of Algorithm 1 with GoDec, AccAltProj and ScaledGD as we vary

the signal to noise level σ of the input data matrix D. Large values of σ correspond to a

greater signal in the low-rank matrix L compared to the perturbation matrix N . We report

results for the exact implementations of Algorithm 1 and GoDec that exactly compute the

singular value decomposition step. We fixed n = 100, k0 = 5, k1 = 500 across all trials and

considered values of σ ∈ {1, 2, 3, ..., 30}. For each value of σ, we performed 50 trials.

73

2000 4000 6000 8000 10000
Matrix Dimension

1

2

3

4

5

6
L

 E
rr

or

Low Rank Matrix Error

2000 4000 6000 8000 10000
Matrix Dimension

0

5.00×103

1.00×104

1.50×104

2.00×104

2.50×104

S
E

rr
or

Sparse Matrix Error

GoDec
Alg 1 Exact
ScaledGD
AccAltProj

2000 4000 6000 8000 10000
Matrix Dimension

0.2

0.4

0.6

0.8

1.0

T
ru

e
D

is
co

ve
ry

 R
at

e

Sparse Support Discovery Rate

2000 4000 6000 8000 10000
Matrix Dimension

0

50

100

150

200

250

T
im

e
(s

)

Execution Time

Figure 2.2: Low-rank matrix reconstruction error (top left), sparse matrix reconstruction
error (top right), sparse support discovery rate (bottom left) and execution time (bottom
right) versus n with k0 = 2, k1 = 500 and σ = 10. Averaged over 5 trials for each parameter
configuration.

We report the low-rank matrix reconstruction error, the sparse matrix reconstruction

error, the sparse support discovery rate, and the execution time for each method in Figure

2.3. Figure 2.3 includes only results for values of σ ∈ [10, 30] to aid visualization due to

significant differences in scale between these results and those for σ ∈ [1, 10]. We report the

results for the full range σ ∈ [1, 30] in Figure 2.8 of Section 2.11.

Our main findings from this set of experiments are:

1. Consistent with previous experiments, Algorithm 1 outperforms GoDec, AccAltProj

and ScaledGD across most trials by obtaining a lower sparse and low-rank matrix

reconstruction error while maintaining a comparable execution time and exhibiting

superior sparse support discovery rates (compared to GoDec and ScaledGD). The su-

74

10 15 20 25 30
sigma

0.00

0.01

0.02

0.03

0.04
L

 E
rr

or

Low Rank Matrix Error

10 15 20 25 30
sigma

0

10

20

30

S
E

rr
or

Sparse Matrix Error

GoDec
Alg 1 Exact
ScaledGD
AccAltProj

10 15 20 25 30
sigma

0.2

0.4

0.6

0.8

1.0

T
ru

e
D

is
co

ve
ry

 R
at

e

Sparse Support Discovery Rate

10 15 20 25 30
sigma

0.00

0.05

0.10

0.15

0.20

0.25

T
im

e
(s

)

Execution Time

Figure 2.3: Low-rank matrix reconstruction error (top left), sparse matrix reconstruction
error (top right), sparse support discovery rate (bottom left) and execution time (bottom
right) versus σ with n = 100, k0 = 5 and k1 = 500. Averaged over 50 trials for each parameter
configuration.

perior performance of Algorithm 1 relative to GoDec becomes more extreme as the

signal-to-noise ratio increases.

2. The low-rank reconstruction error of Algorithm 1 decreases as σ increases. This is

consistent with the intuition that larger values of σ correspond to easier problem in-

stances, so it should be easier to recover the low-rank matrix. Further, the plotted

trend suggests that should σ be further increased, Algorithm 1 would exactly recover

L. Somewhat surprisingly, the performance of GoDec appears to break down at higher

levels of σ. The sparse matrix reconstruction error of Algorithm 1 also declines as σ

increases, whereas that of GoDec again breaks down. ScaledGD exhibits a poor sparse

recovery rate in these experiments.

75

3. The sparse support discovery rate of Algorithm 1 slightly declines as σ increases,

whereas that of GoDec drops sharply. Though one might expect the sparse support

discovery rate to increase with the signal-to-noise level, recall that σ controls the signal-

to-noise level of the low-rank matrix compared to the noise matrix and not that of the

sparse matrix. Consequently, as σ increases, it should become easier to recover the

low-rank matrix but more difficult to recover the sparse matrix.

2.6.7 Sensitivity to Rank

We present a comparison of Algorithm 1 with GoDec, AccAltProj and ScaledGD as we

vary the rank k0 of the underlying low-rank matrix L. We report results for the exact

implementations of Algorithm 1 and GoDec that exactly compute the singular value decom-

position step. We fixed n = 100, k1 = 500, σ = 10 across all trials and considered values of

k0 ∈ {2, 4, 6, ..., 50}. For each value of k0, we performed 50 trials.

We report the low-rank matrix reconstruction error, the sparse matrix reconstruction

error, the sparse support discovery rate, and the runtime for each method in Figure 2.4.

Our main findings from this set of experiments are:

1. Consistent with previous experiments, Algorithm 1 outperforms GoDec, AccAltProj

and ScaledGD across all trials by obtaining a lower low-rank matrix reconstruction er-

ror and sparse matrix reconstruction error while having a lesser (in the case of GoDec

and AccAltProj) or comparable (in the case of ScaledGD) execution time and exhibit-

ing superior sparse support discovery rates than GoDec and ScaledGD. The superior

performance of Algorithm 1 becomes more extreme as the rank increases.

2. The low-rank reconstruction error of Algorithm 1 and that of AccAltProj decrease as k0

increases whereas the low-rank reconstruction error of GoDec increases with increasing

k0 and that of ScaledGD remains roughly constant.

76

10 20 30 40 50
Rank

0.03

0.04

0.05

0.06
L

 E
rr

or

Low Rank Matrix Error

GoDec
Alg 1 Exact
ScaledGD
AccAltProj

10 20 30 40 50
Rank

1

2

3

4

5

6

S
E

rr
or

Sparse Matrix Error

10 20 30 40 50
Rank

0.2

0.4

0.6

0.8

1.0

T
ru

e
D

is
co

ve
ry

 R
at

e

Sparse Support Discovery Rate

10 20 30 40 50
Rank

0.0

0.1

0.2

0.3

0.4

0.5

T
im

e
(s

)

Execution Time

Figure 2.4: Low-rank matrix reconstruction error (top left), sparse matrix reconstruction
error (top right), sparse support discovery rate (bottom left) and execution time (bottom
right) versus k0 with n = 100, k1 = 500 and σ = 10. Averaged over 50 trials for each
parameter configuration.

3. Algorithm 1’s and ScaledGD’s sparse matrix reconstruction error increases slightly,

while GoDec’s error increases significantly and AccAltProj’s decreases slightly.

2.6.8 Sensitivity to Sparsity

We present a comparison of Algorithm 1 with GoDec, AccAltProj and ScaledGD as we

vary the sparsity level k1 of the underlying sparse matrix S. We report results for the

exact implementations of Algorithm 1 and GoDec that exactly compute the singular value

decomposition step. We fixed n = 100, k0 = 5, σ = 10 across all trials and considered values

of k1 ∈ {50, 100, 150, ..., 1000}. For each value of k1, we performed 50 trials.

We report the low-rank matrix reconstruction error, the sparse matrix reconstruction

77

error, the sparse support discovery rate, and the runtime for each method in Figure 2.5.

200 400 600 800 1000
Sparsity

0.020

0.025

0.030

0.035

0.040

0.045

L
 E

rr
or

Low Rank Matrix Error

200 400 600 800 1000
Sparsity

0

5

10

15

20

25

S
E

rr
or

Sparse Matrix Error

GoDec
Alg 1 Exact
ScaledGD
AccAltProj

200 400 600 800 1000
Sparsity

0.2

0.4

0.6

0.8

1.0

D
is

co
ve

ry
 R

at
e

Sparse Support Discovery Rate

200 400 600 800 1000
Sparsity

0.00

0.05

0.10

0.15

0.20

T
im

e
(s

)

Execution Time

Figure 2.5: Low-rank matrix reconstruction error (top left), sparse matrix reconstruction
error (top right), sparse support discovery rate (bottom left) and execution time (bottom
right) versus k1 with n = 100, k0 = 5 and σ = 10. Averaged over 50 trials for each parameter
configuration.

Our main findings from this set of experiments are:

1. Consistent with previous experiments, Algorithm 1 outperforms GoDec, AccAltProj

and ScaledGD across all trials by obtaining a lower low-rank matrix reconstruction

error and sparse matrix reconstruction error while having a lesser execution time.

Algorithm 1 also exhibits a superior accuracy rate than GoDec and ScaledGD.

2. The low-rank reconstruction error of Algorithm 1, GoDec, AccAltProj and ScaledGD

increase as k1 increases. This is consistent with the intuition that as the sparsity of

the underlying spare matrix increases, it becomes more difficult to identify the true

low-rank matrix.

78

Table 2.1: Performance of Algorithm 2 for ϵ = 0.05. Reported root node gap is a percentage.

N k0 k1 Root Node Gap Nodes Explored Time (s)

10 1 10 5.66 3 41
10 1 15 2.94 1 43
10 2 20 2.37 1 43
15 1 22 7.34 33 58
15 2 33 5.08 3 47
15 3 45 3.26 1 40
20 1 20 5.48 5 44
20 2 40 6.44 123 126
20 3 60 4.33 1 40
20 4 80 4.15 1 41
25 1 31 7.43 205 479
25 2 62 8.30 14709 28977
25 3 93 6.60 1053 2485
25 5 125 7.50 653 1631

3. The sparse matrix reconstruction error of Algorithm 1, ScaledGD, AccAltProj and

GoDec decline as k1 increases.

2.6.9 Performance of Algorithm 2

We report the performance of Algorithm 2 on several problem instances. In these ex-

periments, calls that Algorithm 2 make to Algorithm 1 employ the exact implementation

of Algorithm 1. We fix σ = 10 and set ϵ = 0.05, meaning that Algorithm 1 terminates

when it has computed a solution to (2.1) that is certifiably within 5% of the globally optimal

solution. We report the optimality gap between the root node upper bound and the root

node lower bound, the total number of nodes explored, and the execution time of Algorithm

2 for 14 problem instances in Table 2.1.

As expected, when the root node optimality gap is less than ϵ, no additional nodes are

explored. The total number of possible terminal nodes in any branch and bound instance

is equal to the number of distinct sparsity patterns, given by
(
n2

k1

)
. This implies that the

total number of possible nodes in any branch and bound instance is given by 2 ·
(
n2

k1

)
− 1. In

79

the case of the last instance given in Table 2.1, this quantity is roughly equal to 5.3× 10134.

Thus, the results of Table 2.1 indicate that Algorithm 2 is able to prune the vast majority

of possible nodes in the branch and bound tree. We note that the execution time explodes

as the number of nodes explored increases. One of the main limitations of the current

implementation of Algorithm 2 is that it requires solving (2.35), a semidefinite optimization

problem, at every node that is explored. This becomes a computational bottleneck as the

most efficient interior point solvers for SDPs exhibit poor scaling.

61121
Nodes Explored

410

420

430

440

O
bj

ec
tiv

e

sigma = 5

11631
Nodes Explored

1100
1110
1120
1130
1140
1150

O
bj

ec
tiv

e

sigma = 10

1177
Nodes Explored

2980

3000

3020

3040

3060

O
bj

ec
tiv

e

sigma = 15

275
Nodes Explored

11550
11600
11650
11700
11750
11800

O
bj

ec
tiv

e

sigma = 20

Figure 2.6: Algorithm 2 upper and lower bound evolution (for a single instance) for σ = 5
(top left), σ = 10 (top right), σ = 15 (bottom left) and σ = 20 (bottom right) with n = 15,
k0 = 1, k1 = 22 and ϵ = 0.01.

Figure 2.6 illustrates that Algorithm 2 only occasionally updates the global upper bound

and that the vast majority of computational time is spent certifying optimality. This behavior

is consistent across all problem instances in which the root node upper bound is not already

ϵ optimal. Moreover, Figure 2.7 illustrates that Algorithm 2 successfully solves instances

where n = 15 for all values of σ, and is fastest when there is the least amount of noise.

80

5 10 15 20 25 30
sigma

0

2.50×104

5.00×104

7.50×104

1.00×105

O
bj

ec
tiv

e

5 10 15 20 25 30
sigma

0.02

0.04

0.06

0.08

0.10

R
oo

t N
od

e
G

ap
 (

%
)

5 10 15 20 25 30
sigma

0
1.0×104
2.0×104
3.0×104
4.0×104
5.0×104
6.0×104

N
od

es
 E

xp
lo

re
d

5 10 15 20 25 30
sigma

0

100

200

300

E
xe

cu
tio

n
T

im
e

(m
in

s)

Figure 2.7: Algorithm 2 root node upper and lower bound (top left), root node optimality
gap (top right), number of nodes explored (bottom left) and execution time (bottom right)
versus σ with n = 15, k0 = 1, k1 = 50 and ϵ = 0.01.

2.6.10 Summary of Findings From Numerical Experiments

We are now in a position to answer the four questions introduced at the start of this section.

Our findings are as follows:

1. Algorithm 1 outperforms GoDec across all trials by obtaining a lower low-rank ma-

trix reconstruction error and sparse matrix reconstruction error while having a lesser

execution time and exhibiting superior sparse support discovery rates. The superior

performance of Algorithm 1 is most extreme in regimes where the signal-to-noise level

σ is high and separately when the rank k0 of the underlying low-rank matrix is high.

Further, Algorithm 1 outperforms S-PCP, AccAltProj and fRPCA across all trials

by obtaining lower low-rank and sparse matrix reconstruction errors. With cross-

validation, Algorithm 1 obtains low-rank matrices with a lower rank and a comparable

81

reconstruction error than ScaledGD, and with a rank constraint on both methods it

obtains a lower low-rank error that ScaledGD on all but 3 trials. Moreover, it always

achieves a lesser sparse matrix reconstruction error than ScaledGD.

2. The exact implementation of Algorithm 1 outperforms the accelerated implementation

by achieving a lower reconstruction error across all trials. However, across all trials, the

accelerated implementation of Algorithm 1 has a faster average execution time than

the exact implementation.

3. (a) Increasing the matrix dimension n results in linear increases in the low-rank matrix

reconstruction error and the sparse matrix reconstruction error for Algorithm

1, GoDec and ScaledGD. Increasing the matrix dimension n results in a linear

increase in the low-rank matrix reconstruction error and a superlinear increase

in the sparse matrix reconstruction error for AccAltProj. The sparse support

discovery rate decreases with n for Algorithm 1 and GoDec while the execution

time of each method scales superlinearly with n.

(b) The low-rank matrix and sparse matrix reconstruction errors of Algorithm 1,

AccAltProj and ScaledGD decrease with increasing values of σ and that of Al-

gorithm 1 appears to converge towards 0. The sparse support discovery rate of

Algorithm 1 decreases slightly with σ while its execution time remains roughly

constant. Conversely, the low-rank matrix and sparse matrix reconstruction er-

rors of GoDec explode for large values of σ. GoDec’s sparse support discovery

rate declines sharply in the high signal-to-noise level regime. ScaledGD generally

has poor sparse support discovery.AccAltProj tends to exhibit high sparse sup-

port discovery rate because the sparse matrix selected by AccAltProj is in general

substantially more dense than the ground truth sparse matrix.

(c) Increasing the rank of the low-rank matrix results in a slight decrease in the

low-rank matrix reconstruction error and a slight increase in the sparse matrix

82

reconstruction error for Algorithm 1 and ScaledGD. In contrast, the low-rank

matrix and sparse matrix reconstruction errors grow superlinearly for GoDec with

increasing rank. The sparse support discovery rate , of Algorithm 1, GoDec and

ScaledGD, and the execution time of all methods grow with increasing rank.

(d) Algorithm 1, ScaledGD and GoDec exhibit similar behaviour as a function of

sparsity k1. As the sparsity level of the underlying sparse matrix increases, the

low-rank matrix reconstruction error, sparse support discovery rate, and execution

time of each of these methods increase while the sparse matrix reconstruction error

decreases.

4. Algorithm 2 solves (2.1) to certifiable optimality for small problem instances (up to

n = 25) in reasonable wall clock time. The majority of Algorithm 2’s execution time is

spent certifying optimality. This implies that the final solution returned by Algorithm

2 is, in general, only marginally better than the solution returned by Algorithm 1.

2.7 Concluding Remarks

In this chapter, we introduced a novel formulation (2.1) for SLR that exploits discreteness and

leverages regularization. We presented Algorithm 1, an alternating minimization heuristic

that can compute high quality feasible solutions to (2.1) and can scale to n = 10000 in

minutes. We developed a strong semidefinite relaxation (2.20) that can certify the quality

of the solutions returned by Algorithm 1. Finally, we presented Algorithm 2, a branch

and bound method that solves (2.1) to certifiable near-optimality and scales to n = 25 in

minutes. Moreover, we established sufficient conditions under which Algorithm 2 is optimal.

Further work could focus on increasing the scalability of our branch and bound method.

When executing Algorithm 2, a semidefinite optimization problem must be solved at every

node in the branch and bound tree to compute a lower bound. This computation is quite

costly. A possible extension would be to compute a second-order cone lower bound at each

83

node which would be more scalable at the expense of being less tight. Algorithm 2 can also

potentially be further improved by adopting an alternate branching rule.

2.8 Appendix: SLR Formulation Properties Omitted

Proofs

Recall that Proposition 1 states that f(X,Y) = ∥D −X − Y ∥2F + λ∥X∥2F + µ∥Y ∥2F is

jointly m-strongly convex in (X,Y). We prove this fact below:

Proof Consider any two points (X1,Y1), (X2,Y2) ∈ Rn×n × Rn×n and any t ∈ [0, 1]. We

have

g(tX1 + (1− t)X2, tY1 + (1− t)Y2) = ∥D − tX1 + (1− t)X2 − tY1 + (1− t)Y2∥2F+

(λ−min(λ, µ))∥tX1 + (1− t)X2∥2F + (µ−min(λ, µ))∥tY1 + (1− t)Y2∥2F

(λ−min(λ, µ))∥tX1 + (1− t)X2∥2F + (µ−min(λ, µ))∥tY1 + (1− t)Y2∥2F

≤ t ·
[
∥D −X1 − Y1∥2F + (λ−min(λ, µ))∥X1∥2F + (µ−min(λ, µ))∥Y1∥2F

]
+

(1− t)

[
∥D −X2 − Y2∥2F + (λ−min(λ, µ))∥X2∥2F + (µ−min(λ, µ))∥Y2∥2F

]
= t · g(X1, Y1) + (1− t) · g(X2, Y2).

Recall that Proposition 2 states that f(X,Y) = ∥D −X − Y ∥2F + λ∥X∥2F + µ∥Y ∥2F is

L-Lipschitz continuous in (X,Y). We prove this fact below:

Proof To establish Proposition 2, it suffices to show that h(X,Y) = L
2
(∥X∥2F + ∥Y ∥2F)−

84

f(X,Y) is convex for L = 2 ·max(λ, µ) + 6. We have

h(X, Y) =
L

2
(∥X∥2F + ∥Y ∥2F)− λ∥X∥2F − µ∥Y ∥2F − ∥D −X − Y ∥2F

=

(
L

2
− λ− 1

)
∥X∥2F +

(
L

2
− µ− 1

)
∥Y ∥2F + 2

(
⟨D,X⟩+ ⟨D,Y ⟩ − ⟨X,Y ⟩

)
− ∥D∥2F

=

(
L

2
− λ− 2

)
∥X∥2F +

(
L

2
− µ− 2

)
∥Y ∥2F + ∥X − Y ∥2F+

2
(
⟨D,X⟩+ ⟨D,Y ⟩+ ∥D∥2F

)
− 3∥D∥2F

=

(
L

2
− λ− 3

)
∥X∥2F +

(
L

2
− µ− 3

)
∥Y ∥2F + ∥X − Y ∥2F+

∥X −D∥2F + ∥Y −D∥2F − 3∥D∥2F .

Taking L = 2 · max(λ, µ) + 6, we have L
2
− λ − 3 = max(λ, µ) − λ ≥ 0 and L

2
− µ − 3 =

max(λ, µ)−µ ≥ 0. Thus, we have written h(X,Y) as the sum of convex quadratic functions

of (X,Y) which immediately implies h(X,Y)’s joint convexity.

Recall that Proposition 3 states if we let Uλ(X) = {∆ ∈ Rn×n : ∥∆∥F ≤ λ∥X∥F} for

X ∈ Rn×n, λ > 0, then (2.8) is equivalent to (2.9). We prove this result below:

Proof Consider the inner maximization problem in (2.8) and first note that by applying

the triangle inequality for the Frobenius norm, we have

max
∆1∈Uλ(X)
∆2∈Uµ(Y)

∥D +∆1 +∆2 −X − Y ∥F ≤ ∥D −X − Y ∥F + λ∥X∥F + µ∥Y ∥F .

Next, note that by taking

∆∗
1 =

D −X − Y

∥D −X − Y ∥F
· λ∥X∥F , and

∆∗
2 =

D −X − Y

∥D −X − Y ∥F
· µ∥Y ∥F ,

85

the upper bound on the maximization problem is attained:

∥D +∆∗
1 +∆∗

2 −X − Y ∥F =

∣∣∣∣∣∣∣∣(D −X − Y) ·
(
1 +

λ∥X∥F + µ∥Y ∥F
∥D −X − Y ∥F

)∣∣∣∣∣∣∣∣
F

= ∥D −X − Y ∥F + λ∥X∥F + µ∥Y ∥F .

The proof is concluded by noting that we have ∆∗
1 ∈ Uλ(X) and ∆∗

2 ∈ Uµ(Y).

We now provide a formal proof of Proposition 4:

Proof Let us rewrite Problem (2.1) as

min
X,Y ,U ,V

∥D −X − Y ∥2F + λ∥U∥2F + µ∥V ∥2F

s.t. Rank(X) ≤ k0, ∥Y ∥0 ≤ k1,X = U ,Y = V ,

and associate matrices of dual multipliers α,β with the linear constraints X = U and

Y = V respectively. Then, this problem can be rewritten as

min
X,Y

min
U ,V

max
α,β

∥D −X − Y ∥2F + λ∥U∥2F + µ∥V ∥2F + ⟨α,X −U⟩+ ⟨β,Y − V ⟩

s.t. Rank(X) ≤ k0, ∥Y ∥0 ≤ k1.

Therefore, let us fix X,Y and use a standard minimax theorem [see, e.g., 12, Chap. 6]

to exchange the order of minimizing U ,V and maximizing α,β. This gives the following

subproblem in U ,V for a fixed α,β:

min
U ,V

λ∥U∥2F + µ∥V ∥2F + ⟨α,−U⟩+ ⟨β,−V ⟩.

By differentiating and setting the gradient to zero, it is not too hard to see that this sub-

problem takes the value −1
4λ
∥α∥2F − 1

4µ
∥β∥2F . This implies the result.

86

Recall that Proposition 5 establishes that (2.1) reduces to regularized matrix completion

with Ω = {(i, j) : Zij = 0} where Z denotes a valid sparsity pattern and we take µ = 0. We

prove this result below:

Proof Given a valid sparsity pattern Z and letting Ω = {(i, j) : Zij = 0}, Problem (2.1)

can be expressed as

min
X,Y ∈Rn×n

λ∥X∥2F +
∑

(i,j)∈Ω

(Dij −Xij − Yij)
2 + µY 2

ij +
∑

(i,j)/∈Ω

(Dij −Xij − Yij)
2 + µY 2

ij

s.t. Rank(X) ≤ k0, Yij = 0 ∀ (i, j) ∈ Ω.

Simple unconstrained minimization gives Yij =
Dij−Xij

1+µ
for (i, j) /∈ Ω. Using this relationship,

Problem (2.1) can be further simplified to

min
X∈Rn×n

λ · ∥X∥2F +
∑

(i,j)∈Ω

(Dij −Xij)
2 +

µ

1 + µ
·
∑

(i,j)/∈Ω

(Dij −Xij)
2·

s.t. Rank(X) ≤ k0.

(2.36)

The result then follows by observing that the last term in the objective function of (2.36)

disappears when µ = 0. Moreover, if we take λ = 0, then (2.36) exactly becomes (2.11).

We now provide a formal proof of Proposition 11:

Proof First, note that given the full sparsity pattern, the iterates (XAM
t ,Y AM

t) produced

by Algorithm 1 satisfy Y AM
t+1 = S∗ ◦

(
D−XAM

t

1+µ

)
and XAM

t+1 = 1
1+λ
PΩ(D−Y AM

t+1). This implies

that

XAM
t+1 = PΩ

(
1

1 + λ

[
D − S∗ ◦

(
D −XAM

t

1 + µ

)])
. (2.37)

Next, note that the gradient of g(Xt) is given by

∇g(Xt) = 2

(
(1 + λ)Xt −D + S∗ ◦

(
D −Xt

1 + µ

))
.

87

The result follows by noting that the Projected Gradient Descent update Xt+1 = PΩ(Xt −

η∇g(Xt)) is the same as the update given by (2.37) when η = 1
2(1+λ)

.

We now provide a formal proof of Proposition 14:

Proof We show that given a feasible solution to (2.18), we can construct a feasible solution

to (2.1) that achieves the same objective value and vice versa.

Consider an arbitrary feasible solution (X̄, Ȳ , Z̄, P̄) to (2.18). Since Z̄ ∈ Zk1 and

Ȳ = Z̄ ◦ Ȳ , we have ∥Ȳ ∥0 ≤ k1. Moreover, since P̄ ∈ Pk0 and X̄ = P̄ X̄, we have

Rank(X̄) ≤ k0. Thus, (X̄, Ȳ) is feasible to (2.1). Since both (2.18) and (2.1) have the

same objective function, (X̄, Ȳ) achieves the same objective in (2.1) as (X̄, Ȳ , Z̄, P̄) does

in (2.18).

Consider an arbitrary feasible solution (X̄, Ȳ) to (2.1). Let Z̄ ∈ {0, 1}n×n be the binary

matrix such that Z̄ij = 1 if Ȳij ̸= 0 and Z̄ij = 0 otherwise. Further, let P̄ = UUT where

X̄ = UΣV T is a singular value decomposition of X̄. By construction, we have Z̄ ∈ Zk1

and P̄ ∈ Pk0 since ∥Ȳ ∥0 ≤ k1 and Rank(X̄) ≤ k0. Thus, (X̄, Ȳ , Z̄, P̄) is feasible to (2.18)

and achieves the same objective as (X̄, Ȳ) does in (2.1). This completes the proof.

We now provide a formal proof of Theorem 15:

Proof Clearly Problem (2.20) is a convex optimization problem. We will show that given

any feasible solution to Problem (2.1), we can construct a feasible solution to (2.20) that

achieves the same objective value.

Consider an arbitrary feasible solution (X̄, Ȳ) to (2.1). Let Z̄ ∈ {0, 1}n×n be the binary

matrix such that Z̄ij = 1 if Ȳij ̸= 0 and Z̄ij = 0 otherwise and let ᾱ ∈ Rn×n be the matrix such

that ᾱij = Ȳ 2
ij . Further, let P̄ = UUT where X̄ = UΣV T is a singular value decomposition

of X̄ and let Θ̄ = X̄TX̄. By construction, we have Z̄ ∈ Zk1 and P̄ ∈ Pk0 since ∥Ȳ ∥0 ≤ k1

and Rank(X̄) ≤ k0 which implies that tr(EZ̄) ≤ k1, 0 ≤ Z̄ ≤ 1, P̄ ⪰ 0, I − P̄ ⪰ 0 and

tr(P̄) ≤ k0. It is straightforward to see that we have Ȳ 2
ij ≤ ᾱijZ̄ij ∀ (i, j). Finally, we have

88

Θ̄ = X̄TX̄ = X̄T P̄ X̄ = X̄T P̄ †X̄ so we have

 Θ̄ X̄

X̄T P̄

 ⪰ 0. Thus, we have shown that

(X̄, Ȳ , Z̄, P̄ , Θ̄, ᾱ) is feasible to (2.20). This achieves an objective of

∥D − X̄ − Ȳ ∥2F + λtr(Θ̄) + µtr(Eᾱ) = ∥D − X̄ − Ȳ ∥2F + λtr(X̄TX̄) + µ
∑
ij

Ȳ 2
ij

= ∥D − X̄ − Ȳ ∥2F + λ∥X̄∥2F + µ∥Ȳ ∥2F .

which is the same objective achieved by (X̄, Ȳ) in (2.1). This completes the proof.

2.9 Appendix: Alternative Proof of Proposition 6

Proof Clearly, X∗ is feasible for (2.12). Let P ∗ = Uk0U
T
k0

and Θ∗ = X∗TX∗. As

established in the proof of Theorem 16, (X∗,P ∗,Θ∗) is feasible to (2.21) and achieves

the same objective as X∗ does in (2.12). We prove Proposition 6 by deriving the dual of

(2.21) and constructing a dual feasible solution that achieves the same objective value as

(X∗,P ∗,Θ∗) achieves in (2.21). By duality, this then implies that (X∗,P ∗,Θ∗) is optimal

for (2.21) which in turn implies that X∗ is optimal for (2.12).

The dual of (2.21) is given by

max
A,B∈Sn

+,σ≥0
∥D̄∥2F + σ(n− k0)− tr(B)

s.t. (1 + λ)I ⪰ A, B ⪰ σI,

 A D̄

D̄T B

 ⪰ 0.

(2.38)

Let {ϕi}ni=1 denote the collection of singular values of D̄ in non-increasing order (so that

ϕi ≥ ϕi+1 ∀ i). Let σ∗ = 1
1+λ

ϕ2
k0

. Let ν∗
i = 1

1+λ
ϕ2
i ∀ i < k0 and let ν∗

i = σ∗ ∀ k0 ≤ i ≤ n. Let

A∗ = (1 + λ)I and B∗ = UDiag(ν)UT where D̄ = UΦUT is a spectral decomposition of

89

D̄ and Diag(ν) denotes the n×n diagonal matrix with diagonal entries given by the entries

of ν. Note that the solution (A∗,B∗, σ∗) is feasible to (2.38). To see this, observe that by

construction, we have A∗,B∗ ∈ Sn
+, σ

∗ ≥ 0, and (1 + λ)I ⪰ A∗. Moreover, since {ϕi}ni=1

are in non-increasing order, we have mini νi ≥ σ∗ which implies B∗ ⪰ σI. Finally, we have

νi ≥ 1
1+λ

ϕ2
i ∀ i which implies that B∗ ⪰ D̄TA∗−1D̄ and

A∗ D̄

D̄T B∗

 ⪰ 0. The feasible

solution (A∗,B∗, σ∗) achieves an objective of:

∥D̄∥2F + σ∗(n− k0)− tr(B∗) =
n∑

i=1

ϕ2
i +

n− k0
1 + λ

ϕ2
k0
− 1

1 + λ

k0−1∑
i=1

ϕ2
i −

1

1 + λ

n∑
i=k0

ϕ2
k0

=
λ

1 + λ

k0∑
i=1

ϕ2
i +

n∑
i=k0+1

ϕ2
i

in (2.38). Moreover, the solution (X∗,P ∗,Θ∗) achieves the same objective in (2.21):

∥D̄∥2F + (1 + λ)tr(Θ̄∗)− 2 · tr(X̄∗D̄) =
n∑

i=1

ϕ2
i +

1

1 + λ

k0∑
i+1

ϕ2
i −

2

1 + λ

k0∑
i=1

ϕ2
i

=
λ

1 + λ

k0∑
i=1

ϕ2
i +

n∑
i=k0+1

ϕ2
i .

By duality, the objective value of any feasible solution to (2.38) provides a lower bound on

the objective of (2.21). Since (X∗,P ∗,Θ∗) is primal feasible and achieves the same objective

as a feasible dual solution, it must be optimal for (2.21). This in turn implies that X∗ is

optimal to (2.12) by Theorem 16. This completes the proof.

90

2.10 Appendix: Proof of Convexity in the Low-Rank

Subproblem

Proof We prove the equivalence in two steps. First, we show that given a feasible solution to

(2.12), we can construct a feasible solution to (2.21) that achieves the same objective value.

Second, we show that given a feasible solution to (2.21), we can construct a feasible solution

to (2.12) that achieves the same or lower objective. Given an arbitrary feasible solution to

(2.21), we construct a linear optimization problem in which feasible solutions correspond to

feasible solutions to (2.21) and extreme points of the feasible set of the linear optimization

problem correspond to feasible solutions to (2.12). The initial feasible solution to (2.21) is

feasible to this linear optimization problem, so there is an extreme point corresponding to a

feasible solution to (2.12) that achieves an equal or lower objective value.

Consider an arbitrary feasible solution X̄ to Problem (2.12). Since D is symmetric, we

can restrict ourselves to considering symmetric feasible solutions. Since we have Rank(X̄) ≤

k and X̄ is symmetric, we can factor X̄ as X̄ = UΣUT where U ∈ Rn×k0 , UTU = Ik0 ,

Σ ∈ Rk0×k0 and Σ is diagonal. Let P̄ = UUT . P̄ is the orthogonal projection matrix onto

the k0 dimensional column space of U . This implies that P̄ ⪰ 0, I− P̄ ⪰ 0 and tr(P̄) ≤ k0.

Let Θ̄ = X̄TX̄ ⪰ 0. Note that P̄ X̄ = X̄ and P̄ = P̄ †, where P̄ † denotes the pseudo-inverse

of P̄ , since P̄ is an orthogonal projection matrix. Thus, we have Θ̄ − X̄T P̄ †X̄ = 0 =⇒ Θ̄ X̄

X̄T P̄

 ⪰ 0. We have shown that (X̄, P̄ , Θ̄) is feasible to (2.21). To see that this

solution achieves the same objective as X̄ achieves in (2.12), note that

∥D̄ − X̄∥2F + λ∥X̄∥2F = ∥D̄∥2F + (1 + λ)∥X̄∥2F − 2 · tr(X̄D̄)

= ∥D̄∥2F + (1 + λ)tr(Θ̄)− 2 · tr(X̄D̄).

Now, consider an arbitrary feasible solution (X̄, P̄ , Θ̄) to (2.21). Since the objective

function of (2.21) includes the term tr(Θ) and feasibility requires Θ ⪰ XTP †X, we can

91

take Θ′ = X̄T P̄ †X̄ and the solution (X̄, P̄ ,Θ′) will be feasible to (2.21) with an objective

value no greater than that of the original feasible solution. Since P̄ is PSD, it can be written

as P̄ =
∑n

i=1 ϕiuiu
T
i where uT

i ui = 1 for all i, uT
i uj = 0 for all i ̸= j and the feasibility of

P̄ implies 0 ≤ ϕi ≤ 1 for all i. Moreover, we have P̄ † =
∑

i:ϕi ̸=0
1
ϕi
uiu

T
i . Further, since the

feasibility condition

Θ′ X̄

X̄T P̄

 ⪰ 0 implies that X̄ = P̄ †P̄ X̄ by the generalized Schur

complement lemma (see Boyd et al. 1994, Equation 2.41) and X̄ is symmetric, without loss

of generality it can be written as X̄ =
∑n

i=1 σiuiu
T
i . The solution (X̄, P̄ ,Θ′) achieves an

objective of

h(X̄, P̄ ,Θ′) = ∥D̄∥2F + (1 + λ)tr(Θ′)− 2 · tr(X̄D̄)

= ∥D̄∥2F +
∑
i:ϕi ̸=0

[
1 + λ

ϕi

σ2
i − 2 · σitr(uiu

T
i D̄)

]
.

Note that if we view the above as a function of σi and ϕi (denoted f(ϕ, σ)), then this

expression corresponds to the objective value achieved by some feasible solution to (2.21)

provided we constrain 0 ≤ ϕi ≤ 1 and
∑

i ϕi ≤ k0. h(ϕ, σ) is a convex quadratic in σi.

It is minimized when ∇σi
h(ϕ, σ) = 2(1+λ)

ϕi
σi − 2tr(uiu

T
i D̄) = 0 =⇒ σi =

ϕi

1+λ
tr(uiu

T
i D̄).

Substituting the optimal value of σi into h(ϕ, σ), we obtain

h(ϕ) = min
σ

f(ϕ, σ) = ∥D̄∥2F −
∑
i:ϕi ̸=0

ϕi

1 + λ
[tr(uiu

T
i D̄)]2 = ∥D̄∥2F −

n∑
i=1

ϕi

1 + λ
[tr(uiu

T
i D

∗)]2.

h(ϕ) is a linear function of ϕ. Therefore, the minimum of h(ϕ) over the set 0 ≤ ϕi ≤ 1

for all i,
∑

i ϕi ≤ k0 is achieved at some ϕ∗ ∈ {0, 1}n×n. Let P ∗ =
∑n

i=1 ϕ
∗
iuiu

T
i , X∗ =∑n

i=1 ϕ
∗
i tr(uiu

T
i D̄)uiu

T
i and Θ∗ = X∗TP ∗X. Then (X∗,P ∗,Θ∗) is feasible to (2.21) and

achieves objective h(ϕ∗). By construction, we have

h(ϕ∗) ≤ h(X̄, P̄ ,Θ′) ≤ h(X̄, P̄ , Θ̄).

92

Further, since ϕ∗ ∈ {0, 1}n×n and
∑

i ϕ
∗
i ≤ k0, we have Rank(X∗) ≤ k0 which means that

X∗ is feasible to (2.12) and achieves objective h(ϕ∗). This completes the proof.

2.11 Appendix: Alternative Proof of Proposition 8

Proof Let f(Y) = ∥D̃−Y ∥2F + µ∥Y ∥2F , the objective function of Problem (2.14). We can

rewrite f(Y) as:

f(Y) = ∥D̃ − Y ∥2F + µ∥Y ∥2F =
∑
ij

(d̃ij − yij)
2 + µ

∑
ij

y2ij

=
∑
ij

[
(d̃ij − yij)

2 + y2ij

]
=
∑
ij

fij(y),

where we define fij(y) = (d̃ij − y)2 + y2. We have shown that the objective function is

separable, so Problem (2.14) can be solved by minimizing each function fij(y). fij(y) is

a convex quadratic function, and simple univariate calculus allows us to conclude that it

achieves its minimum when y∗ =
d̃ij
1+µ

. The minimum value of fij is therefore fij(y∗) = µ
1+µ

d̃2ij.

However, due to the sparsity constraint on Y , at most k1 entries of Y can be non-zero. By

introducing binary variables sij and noting that fij(0) = d̃2ij, we can rewrite the objective of

problem 2 as a function of the binary matrix S:

f(S) =
∑
ij

[
sij ·

µ

1 + µ
d̃2ij + (1− sij) · d̃2ij

]
.

Due to the sparsity constraint, at most k1 of the variables sij can be 1 while all others must

be 0. If sij = 0, the objective increases by d̃2ij whereas if sij = 1, the objective only increases

by µ
1+µ

d̃2ij. It follows immediately that the objective will be minimized when sij = 1 if and

only if d̃ij is one of the k1 largest entries in absolute value of the matrix D̃. Note that in the

case that the kth
1 largest entry in absolute value and the (k1 + 1)th largest entry in absolute

93

value are not distinct, the tie can be broken arbitrarily. Letting S∗ represent the binary ma-

trix formed by an optimal choice of the binary variables sij, the solution to Problem (2.14)

is given by Y ∗ = S∗ ◦
(

D̃
1+µ

)
.

2.12 Appendix: Supplemental Computational Results

5 10 15 20 25 30
sigma

0

100

200

300

400

500

L
 E

rr
or

Low Rank Matrix Error

5 10 15 20 25 30
sigma

0

10

20

30

S
E

rr
or

Sparse Matrix Error

GoDec
Alg 1 Exact
ScaledGD
AccAltProj

5 10 15 20 25 30
sigma

0.2

0.4

0.6

0.8

1.0

T
ru

e
D

is
co

ve
ry

 R
at

e

Sparse Support Discovery Rate

5 10 15 20 25 30
sigma

0.00

0.05

0.10

0.15

0.20

0.25

T
im

e
(s

)

Execution Time

Figure 2.8: Low-rank matrix reconstruction error (top left), sparse matrix reconstruction
error (top right), sparse support discovery rate (bottom left) and execution time (bottom
right) versus σ with n = 100, k0 = 5 and k1 = 500. Averaged over 50 trials for each parameter
configuration.

94

Ta
bl

e
2.

2:
C

om
pa

ri
so

n
of

av
er

ag
e

lo
w

-r
an

k
m

at
ri

x
re

co
ns

tr
uc

ti
on

er
ro

r
ge

ne
ra

te
d

by
S-

P
C

P,
G

oD
ec

,
Sc

al
ed

G
D

,
A

cc
A

lt
P

ro
j,

fR
P

C
A

,a
nd

A
lg

or
it

hm
1.

R
es

ul
ts

ar
e

re
po

rt
ed

fo
r

th
e

ex
ac

t
SV

D
im

pl
em

en
ta

ti
on

of
G

oD
ec

.
Av

er
ag

ed
ov

er
10

tr
ia

ls
fo

r
ea

ch
pa

ra
m

et
er

co
nfi

gu
ra

ti
on

.

L
E

rr
or

N
k
0

k
1

S-
P

C
P

R
an

k
S-

P
C

P
Sp

ar
si

ty
S-

P
C

P
G

oD
ec

Sc
al

ed
G

D
A

cc
A

lt
P

ro
j

fR
P

C
A

A
lg

1
E

xa
ct

20
1

20
5.

7
95

.6
0.

01
76

0.
01

01
0.

00
82

0.
01

11
0.

00
88

0.
00

72
20

2
40

12
.0

19
7.

4
0.

01
78

0.
04

30
0.

00
62

0.
00

74
0.

00
68

0.
00

57
20

3
60

15
.3

27
5.

3
0.

11
23

0.
11

36
0.

00
84

0.
00

83
0.

00
77

0.
00

75
20

4
80

17
.5

34
1.

1
0.

15
10

0.
32

47
0.

00
87

0.
00

92
0.

00
88

0.
00

79
40

2
80

5.
4

28
6.

6
0.

02
33

0.
01

21
0.

01
47

0.
01

68
0.

01
74

0.
01

10
40

4
16

0
16

.4
41

7.
2

0.
02

72
0.

01
89

0.
01

22
0.

01
43

0.
01

36
0.

01
13

40
6

24
0

27
.3

73
1.

3
0.

03
34

0.
09

96
0.

01
59

0.
01

71
0.

01
65

0.
01

45
40

8
32

0
36

.7
13

65
.1

0.
04

53
0.

32
25

0.
01

70
0.

01
78

0.
01

57
0.

01
49

60
3

18
0

7.
8

63
1.

6
0.

03
11

0.
01

58
0.

01
82

0.
02

31
0.

01
97

0.
01

49
60

6
36

0
13

.0
77

7.
6

0.
03

28
0.

02
47

0.
01

71
0.

02
22

0.
01

77
0.

01
50

60
9

54
0

36
.3

11
81

.1
0.

04
39

0.
05

20
0.

02
36

0.
02

51
0.

02
26

0.
02

02
60

12
72

0
55

.9
29

30
.5

0.
05

77
0.

26
96

0.
02

36
0.

03
16

0.
02

42
0.

02
09

80
4

32
0

10
.9

11
28

.5
0.

03
45

0.
01

76
0.

02
30

0.
02

72
0.

02
38

0.
01

66
80

8
64

0
15

.4
13

80
.1

0.
04

48
0.

02
93

0.
02

40
0.

03
14

0.
02

48
0.

02
23

80
12

96
0

34
.0

16
34

.6
0.

05
69

0.
05

37
0.

02
71

0.
03

07
0.

02
69

0.
02

46
80

16
12

80
62

.7
33

16
.8

0.
07

37
0.

29
89

0.
03

39
0.

03
78

0.
03

39
0.

03
00

10
0

5
50

0
13

.8
17

71
.6

0.
04

43
0.

02
55

0.
02

88
0.

03
83

0.
02

67
0.

02
39

10
0

10
10

00
19

.2
21

39
.9

0.
05

31
0.

03
57

0.
03

18
0.

03
85

0.
03

45
0.

02
71

10
0

15
15

00
36

.4
25

25
.9

0.
06

40
0.

06
79

0.
03

56
0.

03
92

0.
03

30
0.

03
04

10
0

20
20

00
63

.4
31

45
.1

0.
08

40
0.

36
75

0.
03

99
0.

04
71

0.
03

95
0.

03
81

12
0

12
14

40
21

.3
30

67
.7

0.
06

44
0.

04
23

0.
03

68
0.

04
74

0.
04

00
0.

03
33

12
0

18
21

60
38

.8
36

28
.4

0.
07

89
0.

08
58

0.
04

40
0.

04
97

0.
04

24
0.

03
88

12
0

24
28

80
72

.0
42

88
.3

0.
09

68
0.

38
38

0.
05

12
0.

05
70

0.
04

98
0.

04
64

14
0

7
98

0
19

.3
34

36
.0

0.
06

13
0.

03
65

0.
03

86
0.

05
53

0.
03

75
0.

03
31

14
0

21
29

40
37

.9
49

11
.8

0.
08

68
0.

09
10

0.
05

06
0.

05
73

0.
04

79
0.

04
42

14
0

28
39

20
76

.7
57

90
.9

0.
10

85
0.

41
56

0.
06

07
0.

06
95

0.
05

98
0.

05
66

95

Ta
bl

e
2.

3:
B

ou
nd

ga
p

of
A

lg
or

it
hm

1
de

ri
ve

d
us

in
g

(2
.2

0)
.

Av
er

ag
ed

ov
er

10
tr

ia
ls

fo
r

ea
ch

pa
ra

m
et

er
co

nfi
gu

ra
ti

on
.

L
E

rr
or

N
k
0

k
1

S-
P

C
P

G
oD

ec
Sc

al
ed

G
D

A
cc

A
lt

P
ro

j
fR

P
C

A
A

lg
1

E
xa

ct
A

lg
1

B
ou

nd
G

ap
B

ou
nd

T
im

e
(s

)

20
1

20
.0

17
6

.0
10

1
0.

00
82

0.
01

11
0.

00
88

0.
00

72
0.

70
52

3.
72

00
60

6
36

0
.0

32
8

.0
24

7
0.

01
71

0.
02

22
0.

01
77

0.
01

50
0.

85
43

18
9.

19
00

60
9

54
0

.0
43

9
.0

52
0.

02
36

0.
02

51
0.

02
26

0.
02

02
0.

86
01

18
4.

95
00

60
12

72
0

.0
57

7
.2

69
6

0.
02

36
0.

03
16

0.
02

42
0.

02
09

0.
77

09
15

5.
28

00
80

4
32

0
.0

34
5

.0
17

6
0.

02
30

0.
02

72
0.

02
38

0.
01

66
0.

91
80

57
7.

84
00

80
8

64
0

.0
44

8
.0

29
3

0.
02

40
0.

03
14

0.
02

48
0.

02
23

0.
92

67
76

5.
91

00
80

12
96

0
.0

56
9

.0
53

7
0.

02
71

0.
03

07
0.

02
69

0.
02

46
0.

79
44

69
1.

55
00

80
16

12
80

.0
73

7
.2

98
9

0.
03

39
0.

03
78

0.
03

39
0.

03
00

0.
78

03
61

1.
47

00
10

0
5

50
0

.0
44

3
.0

25
5

0.
02

88
0.

03
83

0.
02

67
0.

02
39

0.
95

92
19

36
.2

60
0

10
0

10
10

00
.0

53
1

.0
35

7
0.

03
18

0.
03

85
0.

03
45

0.
02

71
0.

93
82

29
87

.0
80

0
10

0
15

15
00

.0
64

.0
67

9
0.

03
56

0.
03

92
0.

03
30

0.
03

04
0.

90
62

22
24

.6
10

0
20

2
40

.0
17

8
.0

43
0.

00
62

0.
00

74
0.

00
68

0.
00

57
0.

59
35

3.
82

00
10

0
20

20
00

.0
84

.3
67

5
0.

03
99

0.
04

71
0.

03
95

0.
03

81
0.

81
45

21
88

.6
60

0
12

0
12

14
40

.0
64

4
.0

42
3

0.
03

68
0.

04
74

0.
04

00
0.

03
33

0.
89

51
67

59
.9

20
0

12
0

18
21

60
.0

78
9

.0
85

8
0.

04
40

0.
04

97
0.

04
24

0.
03

88
0.

89
68

68
78

.3
60

0
12

0
24

28
80

.0
96

8
.3

83
8

0.
05

12
0.

05
70

0.
04

98
0.

04
64

0.
78

77
53

10
.5

80
0

14
0

7
98

0
.0

61
3

.0
36

5
0.

03
86

0.
05

53
0.

03
75

0.
03

31
0.

90
14

14
73

1.
25

00
14

0
21

29
40

.0
86

8
.0

91
0.

05
06

0.
05

73
0.

04
79

0.
04

42
0.

88
54

11
26

0.
52

00
14

0
28

39
20

.1
08

5
.4

15
6

0.
06

07
0.

06
95

0.
05

98
0.

05
66

0.
81

16
11

84
0.

30
00

20
3

60
.1

12
3

.1
13

6
0.

00
84

0.
00

83
0.

00
77

0.
00

75
0.

54
43

3.
96

00
20

4
80

.1
51

.3
24

7
0.

00
87

0.
00

92
0.

00
88

0.
00

79
0.

71
46

4.
05

00
40

2
80

.0
23

3
.0

12
1

0.
01

47
0.

01
68

0.
01

74
0.

01
10

0.
82

14
30

.6
20

0
40

4
16

0
.0

27
2

.0
18

9
0.

01
22

0.
01

43
0.

01
36

0.
01

13
0.

88
04

27
.9

20
0

40
6

24
0

.0
33

4
.0

99
6

0.
01

59
0.

01
71

0.
01

65
0.

01
45

0.
79

37
28

.4
70

0
40

8
32

0
.0

45
3

.3
22

5
0.

01
70

0.
01

78
0.

01
57

0.
01

49
0.

70
51

23
.8

70
0

60
3

18
0

.0
31

1
.0

15
8

0.
01

82
0.

02
31

0.
01

97
0.

01
49

0.
80

75
15

4.
90

00

96

Ta
bl

e
2.

4:
R

un
ni

ng
ti

m
e

of
th

e
ex

ac
t

im
pl

em
en

ta
ti

on
of

A
lg

or
it

hm
1

an
d

th
e

ac
ce

le
ra

te
d

im
pl

em
en

ta
ti

on
of

A
lg

or
it

hm
1.

In
th

e
ex

ac
t

im
pl

em
en

ta
ti

on
,
th

e
SV

D
st

ep
is

co
m

pu
te

d
ex

ac
tl

y,
w

he
re

as
in

th
e

ac
ce

le
ra

te
d

im
pl

em
en

ta
ti

on
,
a

ra
nd

om
iz

ed
SV

D
is

em
pl

oy
ed

in
al

lb
ut

th
e

fin
al

SV
D

st
ep

.
Av

er
ag

ed
ov

er
10

tr
ia

ls
fo

r
ea

ch
pa

ra
m

et
er

co
nfi

gu
ra

ti
on

.

L
E

rr
or

T
im

e
(s

)

N
k
0

k
1

A
lg

1
E

xa
ct

A
lg

1
A

cc
A

lg
1

E
xa

ct
A

lg
1

A
cc

T
im

e
D

ec
re

as
e

(%
)

20
1

20
0.

00
72

0.
00

94
0.

13
51

0.
09

86
27

.0
6

20
2

40
0.

00
57

0.
00

84
0.

23
42

0.
10

71
54

.2
7

20
3

60
0.

00
75

0.
00

84
0.

57
13

0.
13

94
75

.5
9

20
4

80
0.

00
79

0.
00

85
0.

81
26

0.
15

19
81

.3
1

40
2

80
0.

01
10

0.
01

23
0.

41
57

0.
19

82
52

.3
1

40
4

16
0

0.
01

13
0.

01
39

0.
92

50
0.

25
36

72
.5

9
40

6
24

0
0.

01
45

0.
01

83
2.

00
46

0.
35

74
82

.1
7

40
8

32
0

0.
01

49
0.

01
92

2.
82

81
0.

43
09

84
.7

6
60

3
18

0
0.

01
49

0.
01

78
0.

74
07

0.
39

64
46

.4
7

60
6

36
0

0.
01

50
0.

01
98

2.
25

47
0.

51
03

77
.3

7
60

9
54

0
0.

02
02

0.
02

86
4.

42
60

0.
69

30
84

.3
4

60
12

72
0

0.
02

09
0.

03
00

7.
21

43
0.

87
24

87
.9

1
80

4
32

0
0.

01
66

0.
01

99
1.

21
56

0.
62

14
48

.8
8

80
8

64
0

0.
02

23
0.

03
31

4.
15

13
0.

85
43

79
.4

2
80

12
96

0
0.

02
46

0.
03

99
8.

03
93

1.
11

53
86

.1
3

80
16

12
80

0.
03

00
0.

04
88

13
.5

34
8

1.
29

70
90

.4
2

10
0

5
50

0
0.

02
39

0.
02

89
1.

56
69

0.
97

22
37

.9
5

10
0

10
10

00
0.

02
71

0.
04

39
6.

40
84

1.
21

11
81

.1
0

10
0

15
15

00
0.

03
04

0.
05

40
12

.8
52

0
1.

56
14

87
.8

5
10

0
20

20
00

0.
03

81
0.

06
71

13
.5

61
9

1.
47

67
89

.1
1

12
0

12
14

40
0.

03
33

0.
05

64
9.

28
97

1.
69

30
81

.7
8

12
0

18
21

60
0.

03
88

0.
07

52
18

.0
82

4
2.

11
87

88
.2

8
12

0
24

28
80

0.
04

64
0.

09
32

19
.8

07
9

1.
99

67
89

.9
2

14
0

7
98

0
0.

03
31

0.
04

28
2.

61
52

1.
60

39
38

.6
7

14
0

21
29

40
0.

04
42

0.
09

22
18

.1
72

9
2.

16
53

88
.0

8
14

0
28

39
20

0.
05

66
0.

12
96

29
.6

37
0

2.
63

52
91

.1
1

97

Ta
bl

e
2.

5:
Lo

w
-r

an
k

m
at

ri
x

re
co

ns
tr

uc
ti

on
er

ro
r,

sp
ar

se
m

at
ri

x
re

co
ns

tr
uc

ti
on

er
ro

r
an

d
ex

ec
ut

io
n

ti
m

e
of

A
lg

or
it

hm
1,

G
oD

ec
an

d
Sc

al
ed

G
D

.

L
E

rr
or

S
E

rr
or

T
im

e
(s

)

N
k
0

k
1

A
lg

1
E

xa
ct

G
oD

ec
Sc

al
ed

G
D

A
lg

1
E

xa
ct

G
oD

ec
Sc

al
ed

G
D

A
lg

1
E

xa
ct

G
oD

ec
Sc

al
ed

G
D

20
0

5
50

0
0.

04
42

0.
04

58
0.

04
49

0.
56

77
0.

92
46

0.
73

79
0.

01
85

0.
01

87
0.

01
34

25
0

5
50

0
0.

05
38

0.
05

53
0.

05
44

0.
61

76
1.

02
08

0.
74

17
0.

01
91

0.
02

50
0.

02
25

30
0

5
50

0
0.

06
41

0.
06

54
0.

06
44

0.
67

25
1.

10
36

0.
77

41
0.

03
14

0.
02

90
0.

03
21

35
0

5
50

0
0.

07
55

0.
07

66
0.

07
57

0.
73

07
1.

19
55

0.
82

59
0.

04
36

0.
04

11
0.

04
54

40
0

5
50

0
0.

08
52

0.
08

63
0.

08
54

0.
77

16
1.

24
83

0.
85

78
0.

05
74

0.
05

17
0.

05
62

45
0

5
50

0
0.

09
70

0.
09

80
0.

09
72

0.
80

38
1.

29
18

0.
91

34
0.

07
92

0.
07

12
0.

07
51

50
0

5
50

0
0.

10
83

0.
10

93
0.

10
85

0.
85

30
1.

35
85

0.
97

46
0.

09
06

0.
09

18
0.

08
95

55
0

5
50

0
0.

12
13

0.
12

22
0.

12
15

0.
89

18
1.

40
21

1.
05

18
0.

11
38

0.
10

49
0.

10
83

60
0

5
50

0
0.

13
22

0.
13

31
0.

13
24

0.
93

77
1.

45
93

1.
12

10
0.

13
57

0.
13

84
0.

12
28

65
0

5
50

0
0.

14
30

0.
14

38
0.

14
33

0.
96

24
1.

48
42

1.
18

81
0.

15
38

0.
16

93
0.

15
90

70
0

5
50

0
0.

15
54

0.
15

62
0.

15
56

1.
01

26
1.

55
24

1.
27

12
0.

18
10

0.
20

22
0.

15
87

75
0

5
50

0
0.

16
81

0.
16

89
0.

16
82

1.
02

44
1.

55
87

1.
33

32
0.

36
68

0.
56

69
0.

57
34

80
0

5
50

0
0.

18
12

0.
18

20
0.

18
12

1.
06

76
1.

60
62

1.
41

05
0.

33
95

0.
50

00
1.

12
44

85
0

5
50

0
0.

19
18

0.
19

25
0.

19
17

1.
09

67
1.

63
72

1.
49

58
0.

93
37

1.
03

95
1.

30
67

90
0

5
50

0
0.

20
57

0.
20

64
0.

20
56

1.
13

48
1.

68
52

1.
58

47
1.

75
87

1.
58

53
1.

15
20

95
0

5
50

0
0.

21
74

0.
21

81
0.

21
75

1.
15

43
1.

69
42

1.
66

08
0.

77
49

0.
74

94
2.

03
45

10
00

5
50

0
0.

23
06

0.
23

13
0.

23
05

1.
17

83
1.

72
07

1.
74

17
3.

21
04

3.
16

00
3.

39
16

20
00

2
50

0
0.

51
71

0.
51

77
0.

51
73

1.
57

07
2.

10
98

3.
61

81
1.

31
95

1.
31

55
1.

06
48

40
00

2
50

0
1.

30
13

1.
30

19
1.

30
18

2.
12

07
2.

64
38

7.
97

75
35

.1
14

8
36

.9
39

7
19

.1
20

2
60

00
2

50
0

2.
36

94
2.

37
00

2.
37

04
2.

30
58

2.
77

42
11

.9
13

3
84

.7
05

8
87

.7
33

0
64

.5
78

2
80

00
2

50
0

3.
53

65
3.

53
73

3.
53

65
2.

58
80

3.
04

63
16

.8
83

7
15

8.
57

85
16

0.
02

02
13

2.
80

05
10

00
0

2
50

0
4.

84
65

4.
84

72
4.

84
86

2.
75

86
3.

19
67

21
.5

33
2

13
3.

32
38

14
5.

81
02

24
9.

28
82

98

Chapter 3

Compressed Sensing: A Discrete

Optimization Approach

The work in this chapter is based on [24] which is joint work with Dimitris Bertsimas.

99

3.1 Introduction

The Compressed Sensing (CS) problem seeks to find a most sparse vector x ∈ Rn that

is consistent with a set of m linear equalities. CS is a fundamental problem in Statistics,

Operations Research and Machine Learning which arises in numerous applications such as

multi-label learning [82], medical resonance imaging [101], holography [38], climate monitor-

ing [81], natural resource mining [139] and electrocardiogram signal acquisition [52] among

many others. Formally, given a matrix A ∈ Rm×n and a vector b ∈ Rm, CS is given by [62]:

min
x∈Rn

∥x∥0 s.t. Ax = b. (3.1)

In the presence of noisy measurements, it is necessary to relax the equality constraint in

(3.1), leading to the following formulation for ϵ > 0:

min
x∈Rn

∥x∥0 s.t. ∥Ax− b∥22 ≤ ϵ. (3.2)

This problem is sometimes referred to as sparse approximation in the literature [135] and

trivially reduces to (3.1) for ϵ = 0. CS allows signals to be reconstructed surprisingly well

after sampling at a rate far below the Nyquist sampling rate by leveraging the inherent

sparsity of most signals, either in the signal’s latent space or in an appropriately defined

transform space. For example, natural images tend to have a sparse representation in the

wavelet domain, speech can be represented using a small number of coefficients in the Fourier

transform domain and medical images can be represented sparsely in the Radon transform

domain [120].

In Section 3.2, we will see that the vast majority of existing approaches to CS either

rely on ℓ1 based convex approximations to (3.2) or are greedy heuristics whereas the use of

integer optimization techniques has gone relatively unexplored. In this work, we formulate

100

CS as:

min
x∈Rn

∥x∥0 +
1

γ
∥x∥22 s.t. ∥Ax− b∥22 ≤ ϵ, (3.3)

where γ > 0 is a regularization parameter that in practice can either take a default value

(e.g.
√
n) or be cross-validated by minimizing a validation metric [see, e.g., 114] to obtain

strong out-of-sample performance [34]. A defining characteristic of the approach we present

in this work is that we leverage techniques from integer optimization to exploit the inherent

discreteness of formulation (3.3) rather than relying on more commonly studied approximate

methods. Note that Problem (3.3) is a special case of the formulation given by:

min
x∈Rn

∥x∥0 +
1

γ
∥Wx∥22 s.t. ∥Ax− b∥22 ≤ ϵ. (3.4)

where W ∈ Rn×n is a diagonal matrix with nonnegative diagonal entries that should be

interpreted as coordinate weights on the vector x. Indeed, (3.4) reduces to (3.3) when we

take W = I.

3.1.1 Contributions and Structure

In this chapter, we approach CS using mixed-integer second order cone optimization. We

derive a second order cone relaxation of this problem and show that under mild conditions on

the regularization parameter, the resulting relaxation is equivalent to the well studied basis

pursuit denoising problem. We present a semidefinite relaxation that strengthens the second

order cone relaxation and develop a custom branch and bound algorithm that leverages our

second order cone relaxation to solve instances of CS to certifiable optimality. Our numerical

results show that our approach produces solutions that are on average 6.22% more sparse

than solutions returned by three state of the art benchmark methods on synthetic data

in minutes. If we restrict the comparison to the best performing benchmark method on

each problem instance, our approach produces solutions that are on average 3.10% more

sparse. On real world ECG data, for a given ℓ2 reconstruction error our approach produces

101

solutions that are on average 9.95% more sparse than benchmark methods (3.88% more

sparse if only compared against the best performing benchmark), while for a given sparsity

level our approach produces solutions that have on average 10.77% lower reconstruction

error than benchmark methods in minutes (1.42% lower error if only compared against the

best performing benchmark). On a real world multi-label classification task, our approach

outperforms existing approaches in terms of accuracy, precision and recall. This increase

in accuracy, precision and recall comes at the expense of a significant increase in running

time of several orders of magnitude. Thus, for applications where runtime is not of critical

importance, leveraging integer optimization can yield sparser and lower error solutions to

CS than existing benchmarks.

The rest of this chapter is structured as follows. In Section 3.2, we review existing

formulations and solution methods of the CS problem. In Section 3.3, we study how our

regularized formulation of CS (3.3) connects to the commonly used formulation (3.2). We

reformulate (3.3) exactly as a mixed-integer second order cone problem in Section 3.4 and

present a second order cone relaxation in Section 3.4.1 and a stronger but more computa-

tionally expensive semidefinite cone relaxation in Section 3.4.2. We show that our second

order cone relaxation is equivalent to the Basis Pursuit Denoising problem under mild condi-

tions offering a new interpretation of this well studied method as a convex relaxation of our

mixed-integer second order cone reformulation of (3.3). We leverage our second order cone

relaxation to develop a custom branch and bound algorithm in Section 3.5 that can solve

instances of (3.3) to certifiable optimality. In Section 3.6, we investigate the performance of

our branch and bound algorithm against state of the art benchmark methods on synthetic

data, real world ECG signal acquisition and real world multi-label classification

102

3.2 Literature Review

In this section, we review several key approaches from the literature that have been employed

to solve the CS problem. As an exhaustive literature review is outside of the scope of this

chapter, we focus our review on a handful of well studied approaches which will be used as

benchmarks in this work. For a more detailed CS literature review, we refer the reader to

[135].

The majority of existing approaches to the CS problem are heuristic in nature and gen-

erally can be classified as either convex approximations or greedy methods as we will see in

this section. For these methods, associated performance guarantees require making strong

statistical assumptions on the underlying problem data. Integer optimization has been given

little attention in the CS literature despite its powerful modelling capabilities. [89] and

[33] explore formulating Problem (3.2) as a mixed-integer linear program for the case when

ϵ = 0. However this approach relies on using the big-M method which requires estimating

reasonable values for M and cannot immediately generalize to the setting where ϵ > 0.

3.2.1 Basis Pursuit Denoising

A common class of CS methods rely on solving convex approximations of (3.2) rather than

attempting to solve (3.2) directly. A popular approach is to use the ℓ1 norm as a convex

surrogate for the ℓ0 norm [47, 53, 54, 62, 69]. This approximation is typically motivated by

the observation that the unit ℓ1 ball given by Bℓ1 = {x ∈ Rn : ∥x∥1 ≤ 1} is the convex hull

of the non-convex set X = {x ∈ Rn : ∥x∥0 ≤ 1, ∥x∥∞ ≤ 1}. Replacing the ℓ0 norm by the

ℓ1 norm in (3.2), we obtain:

min
x∈Rn

∥x∥1 s.t. ∥Ax− b∥22 ≤ ϵ. (3.5)

103

Problem (3.5) is referred to as Basis Pursuit Denoising and is a quadratically constrained

convex optimization problem which can be solved efficiently using one of several off the

shelf optimization packages. Basis Pursuit Denoising produces an approximate solution to

Problem (3.2) by either directly returning the solution of (3.5) or by post-processing the

solution of (3.5) to further sparsify the result. One such post-processing technique is a

greedy rounding mechanism where columns of the matrix A are iteratively selected in the

order corresponding to decreasing magnitude of the entries of the optimal solution of (3.5)

until the selected column set of A is sufficiently large to produce a feasible solution to (3.2).

Basis Pursuit Denoising is very closely related to the Lasso problem which is given by:

min
x∈Rn

∥Ax− b∥22 + λ∥x∥1, (3.6)

where λ > 0 is a tunable hyperparameter. Lasso is a statistical estimator commonly used

for sparse regression as empirically, the optimal solution of Problem (3.6) tends to be sparse

[131]. More recently, strong connections between Lasso and robust optimization have been

established [13]. Basis Pursuit Denoising and Lasso are equivalent in that Lasso is obtained

by relaxing the hard constraint in (3.5) and instead introducing a penalty term in the ob-

jective function. It is straightforward to show that for given input data A, b and ϵ in (3.5),

there exists a value λ⋆ > 0 such that there exists a solution x⋆ that is both optimal for (3.5)

and (3.6) when the tunable parameter takes value λ = λ⋆.

Note that by taking ϵ = 0, Problem (3.5) reduces to the well studied Basis Pursuit

problem where the equality constraint Ax = b is enforced. A large body of work studies

conditions under which the optimal solution of the Basis Pursuit problem is also an optimal

solution of (3.1). For example, see [65], [63], [74], and [134]. One of the most well studied

conditions under which this equivalence holds is when the input matrix A satisfies the

Restricted Isometry Property (RIP). Formally, a matrix A ∈ Rm×n is said to satisfy RIP of

104

order s and parameter δs ∈ (0, 1) if for every vector x ∈ Rn such that ∥x∥0 ≤ s, we have

(1− δs)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δs)∥x∥22.

It has been established that if A satisfies RIP of order 2s and parameter δ2s < 1/3, then

the optimal solution of the Basis Pursuit problem is also an optimal solution of (3.1) where

s denotes the cardinality of this optimal solution [46]. While it has been shown that certain

random matrices satisfy this desired RIP property with high probability [6, 76], RIP in

general is not tractable to verify on arbitrary real world data.

3.2.2 Iterative Reweighted L1

Iterative Reweighted ℓ1 minimization is an iterative method that can generate an approxi-

mate solution to (3.2) by solving a sequence of convex optimization problems that are very

closely related to the Basis Pursuit Denoising problem given by (3.5) [3, 49, 107]. This ap-

proach falls in the class of convex approximation based methods for solving CS. The approach

considers the weighted ℓ1 minimization problem given by:

min
x∈Rn

∥Wx∥1 s.t.∥Ax− b∥22 ≤ ϵ, (3.7)

where W ∈ Rn×n is a diagonal matrix with nonnegative diagonal entries. Each diagonal

entry Wii = wi of W can be interpreted as a weighting of the ith coordinate of the vector x.

Interpreting the ℓ1 norm as a convex surrogate for the ℓ0 norm, Problem (3.7) can be viewed

as a relaxation of the non-convex problem given by

min
x∈Rn

∥Wx∥0 s.t.∥Ax− b∥22 ≤ ϵ. (3.8)

It is trivial to verify that when W = αI, where α > 0 and I is the n-by-n identity matrix,

(3.8) and (3.7) reduce exactly to (3.2) and (3.5) respectively. Assuming the weights never

105

vanish, the non-convex Problems (3.2) and (3.8) have the same optimal solution, yet their

convex relaxations (3.5) and (3.7) will generally have very different solutions. In this regard,

the weights can be regarded as parameters that if chosen correctly can produce a better

solution than (3.5). Iterative Reweighted ℓ1 minimization proceeds as follows [49]:

1. Initialize the iteration count t←− 0 and the weights w
(0)
i ←− 1.

2. Solve (3.7) with W = W (t). Let x(t) denote the optimal solution.

3. Update the weights as w(t+1)
i ←− 1

|x(t)
i |+δ

where δ > 0 is a fixed parameter for numerical

stability.

4. Terminate if t reaches a maximum number of iterations or if the iterates x(t) have

converged. Otherwise, increment t and return to Step 2.

It has been shown empirically that in many settings the solution returned by Iterated

Reweighted ℓ1 minimization outperforms the solution returned by Basis Pursuit Denois-

ing by recovering the true underlying signal while requiring fewer measurements to be taken

[49]. We note that this approach is an instance of a broader class of sparsifying iterative

reweighted methods [55, 140, 141].

3.2.3 Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) is a canonical greedy algorithm for obtaining heuristic

solutions to (3.2) [104, 115]. Solving Problem (3.2) can be interpreted as determining the

minimum number of columns from the input matrix A that must be selected such that the

residual of the projection of the input vector b onto the span of the selected columns has ℓ2

norm equal to at most
√
ϵ. The OMP algorithm proceeds by first selecting the column of

A that is most collinear with b and subsequently iteratively adding the column of A that

is most collinear with the residual of the projection of b onto the subspace spanned by the

selected columns until the norm of this residual is at most
√
ϵ. Concretely, OMP proceeds

106

as follows where for an arbitrary collection of indices It ⊆ [n], we let A(It) ∈ Rm×|It| denote

the matrix obtained by stacking the |It| columns of A corresponding to the indices in the

set It:

1. Initialize the iteration count t←− 0, the residual r0 ←− b and the index set I0 ←− ∅.

2. Select the column that is most collinear with the residual it ←− argmaxi∈[n]\It |aT
i rt|

and update the index set It+1 ←− It ∪ it.

3. Compute the projection of b onto the current set of columns

xt+1 ←−
[
A(It+1)

TA(It+1)
]†
A(It+1)

Tb,

and update the residual rt+1 ←− b−A(It+1)xt+1.

4. Terminate if ∥rt+1∥22 ≤ ϵ, otherwise increment t and return to Step 2.

Conditions under which the solution returned by OMP is the optimal solution of (3.2)

(either with high probability or with certainty) have been studied extensively [42, 134, 142].

Unfortunately, these conditions suffer from the same limitation as RIP in that in general

they are not tractable to verify on real world data. A closely related method to OMP is

Subspace Pursuit (SP) which is another greedy algorithm for obtaining a heuristic solution

to (3.2) in the ϵ = 0 setting but has the additional requirement that a target sparsity value

K must be specified in advance [59]. SP is initialized by selecting the K columns of A that

are most collinear with the vector b. At each iteration, SP first computes the residual of

the projection of b onto the current column set and then greedily updates up to K elements

of the column set, repeating this process until doing so no longer decreases the norm of the

residual.

107

3.3 Formulation Properties

In this section, we rigorously investigate connections between formulations (3.3) and (3.2)

for the CS problem in the noisy setting. The only difference between formulations (3.2) and

(3.3) is the inclusion of a ℓ2 regularization term in the objective function in (3.3). We will see

in Section 3.4 that the presence of this regularization term facilitates useful reformulations.

Moreover, in the case of regression, [13] show that augmenting the ordinary least squares

objective function with a ℓ2 regularization penalty produces regression vectors that are robust

against data perturbations which suggests the presence of such a regularization term may

result in a similar benefit in (3.3). A natural question to ask is: under what conditions do

problems (3.2) and (3.3) have the same solution? We answer this question in Theorem 23.

Theorem 23 There exists a finite value γ0 < ∞ such that for all γ̄ ≥ γ0, there exists a

vector x⋆ such that x⋆ is an optimal solution of (3.2) and also an optimal solution of (3.3)

where we set γ = γ̄. Letting x̃ denote a minimum norm solution to (3.2), we can take

γ0 = ∥x̃∥22 and x⋆ = x̃.

Phrased simply, Theorem 23 establishes that there exists a finite value γ0 such that if the

regularization parameter γ in problem (3.3) is at least as large as γ0, then there is a vector x⋆

that is optimal to both problems (3.2) and (3.3). We note that this finite value γ0 depends

on the input data A, b and ϵ.

Proof Consider any matrix A ∈ Rm×n, vector b ∈ Rm and scalar ϵ > 0. Let Ω denote the

set of optimal solutions to (3.2) and let X denote the feasible set of (3.2) and (3.3). We have

X = {x : ∥Ax − b∥22 ≤ ϵ} and Ω ⊆ X . Let x̃ ∈ argminx∈Ω ∥x∥22 and let γ0 = ∥x̃∥22. Since

x̃ ∈ Ω, x̃ is an optimal solution to (3.2). It remains to show that x̃ is optimal to (3.3) for

all γ ≥ γ0.

Fix any γ ≥ γ0. To show that x̃ is an optimal solution of (3.3), we will show that for all

108

x̄ ∈ X , we have

∥x̃∥0 +
1

γ
∥x̃∥22 ≤ ∥x̄∥0 +

1

γ
∥x̄∥22.

Fix an arbitrary x̄ ∈ X . Either x̄ ∈ X \ Ω or x̄ ∈ Ω. Suppose x̄ ∈ X \ Ω. The definition of

Ω and the fact that x̃ ∈ Ω implies

∥x̃∥0 < ∥x̄∥0 =⇒ ∥x̃∥0 + 1 ≤ ∥x̄∥0.

Next, note that since γ ≥ γ0 = ∥x̃∥22, we have

∥x̃∥0 +
1

γ
∥x̃∥22 ≤ ∥x̃∥0 + 1 ≤ ∥x̄∥0 ≤ ∥x̄∥0 +

1

γ
∥x̄∥22.

Suppose instead that x̄ ∈ Ω. The definition of Ω and x̃ imply ∥x̃∥0 = ∥x̄∥0 and ∥x̃∥22 ≤ ∥x̄∥22.

It then follows immediately that ∥x̃∥0+ 1
γ
∥x̃∥22 ≤ ∥x̄∥0+ 1

γ
∥x̄∥22. Thus, x̃ is optimal to (3.3).

This completes the proof.

Though Theorem 23 is useful in establishing conditions for the equivalence of problems (3.2)

and (3.3), it is important to note that computing the value of γ0 specified in the Theorem

requires solving (3.2) which is difficult in general. Suppose we are solving problem (3.3) with

some regularization parameter γ in the regime where 0 < γ < γ0. A natural question to ask

is: how well does the solution of (3.3) approximate the solution of (3.2). We answer this

question in Theorem 24.

Theorem 24 Let x̃ and γ0 be as defined in Theorem 23, and let X denote the feasible set

of (3.2) and (3.3). Specifically, x̃ denotes a minimum norm solution to (3.2), γ0 = ∥x̃∥22

and X = {x : ∥Ax− b∥22 ≤ ϵ}. Let λϵ > 0 be a value such that

argmin
x∈X

∥x∥22 = argmin
x
∥Ax− b∥22 + λϵ∥x∥22.

109

Fix any value γ with 0 < γ < γ0. Suppose x̄ is an optimal solution to (3.3). Then we have

∥x̃∥0 ≤ ∥x̄∥0 ≤ ∥x̃∥0 +
1

γ

(
∥x̃∥22 −

∥∥∥(1

λϵ

I +ATA
)−1

ATb
∥∥∥2
2

)
.

Proof Fix any value γ with 0 < γ < γ0 and consider any optimal solution x̄ to (3.3).

The inequality ∥x̃∥0 ≤ ∥x̄∥0 follows immediately from the optimality of x̃ in (3.2). By the

optimality of x̄, we must have

∥x̄∥0 +
1

γ
∥x̄∥22 ≤ ∥x̃∥0 +

1

γ
∥x̃∥22 =⇒ ∥x̄∥0 ≤ ∥x̃∥0 +

1

γ
(∥x̃∥22 − ∥x̄∥22).

Thus, to establish the result we need only derive an upper bound for the term (∥x̃∥22−∥x̄∥22),

or equivalently to derive a lower bound for the term ∥x̄∥22. Since x̄ ∈ X , such a lower bound

can be obtained by solving the optimization problem given by

min
x∈Rn

∥x∥22 s.t. x ∈ X = {x : ∥Ax− b∥22 ≤ ϵ}. (3.9)

This optimization problem has the same optimal solution as the ridge regression problem

given by

min
x∈Rn

∥Ax− b∥22 + λϵ∥x∥22. (3.10)

for some value λϵ > 0. To see this, we form the Lagrangian for (3.9) L(x, µ) = ∥x∥22 +

µ(∥Ax− b∥22 − ϵ) and observe that the KKT conditions for (x, µ) ∈ Rn × R are given by

1. ∥Ax− b∥22 ≤ ϵ;

2. µ ≥ 0;

3. µ(∥Ax− b∥22 − ϵ) = 0 =⇒ µ = 0 or ∥Ax− b∥22 = ϵ;

4. ∇xL(x, µ) = 0 =⇒ x = (1
µ
I +ATA)−1ATb if µ ̸= 0 and x = 0 if µ = 0.

We note that if 0 ∈ X , then 0 is trivially an optimal solution to (3.9) with optimal value

110

given by 0. This corresponds to the degenerate case. In the nondegenerate case, we have

0 /∈ X . This condition, coupled with the first and fourth KKT conditions implies that at

optimality, we have µ ̸= 0 and x = (1
µ
I+ATA)−1ATb. Next, we note that the unconstrained

quadratic optimization problem given by (3.10) has an optimal solution x⋆ given by x⋆ =

(λϵI + ATA)−1ATb. Finally, we observe that the two preceding expressions are the same

when λϵ =
1
µ
> 0. Thus, we have

∥x̄∥22 ≥ min
x∈X
∥x∥22 =

∥∥∥(1

λϵ

I +ATA
)−1

ATb
∥∥∥2
2
,

which implies that

∥x̄∥0 ≤ ∥x̃∥0 +
1

γ

(
∥x̃∥22 −

∥∥∥(1

λϵ

I +ATA
)−1

ATb
∥∥∥2
2

)
.

This completes the proof.

Remark 25 Though the statement of Theorem 24 is made for any fixed γ satisfying 0 <

γ < γ0 with γ0 given by Theorem 23, we note that the proof of Theorem 24 in fact generalizes

to any γ > 0. This implies that the result of Theorem 23 holds for any γ′
0 satisfying γ′

0 >(
∥x̃∥22 −

∥∥∥(1
λϵ
I + ATA

)−1

ATb
∥∥∥2
2

)
. This is a stronger condition than the one established

by Theorem 23 but has the drawback of depending on the value λϵ which in general cannot

be computed easily.

Theorem 24 provides a worst case guarantee on the sparsity of the solution of (3.3) when

the regularization parameter γ satisfies 0 < γ < γ0.

111

3.4 An Exact Reformulation and Convex Relaxations

In this section, we reformulate (3.4) as a mixed-integer second order cone optimization

problem. We then employ the perspective relaxation [77] to construct a second order cone

relaxation for (3.4) and demonstrate that under certain conditions on the regularization

parameter γ, the resulting relaxation is equivalent to the Weighted Basis Pursuit Denoising

problem given by (3.7). As a special case, we obtain a convex relaxation for (3.3) and

demonstrate that it is equivalent to (3.5) under the same conditions on γ. Finally, we present

a family of semidefinite relaxations to (3.4) using techniques from polynomial optimization.

To model the sparsity of the vector x in (3.4), we introduce binary variables z ∈ {0, 1}n

and require that xi = zixi. This gives the following reformulation of (3.4):

min
z,x∈Rn

n∑
i=1

zi +
1

γ

n∑
i=1

w2
i x

2
i s.t. ∥Ax− b∥22 ≤ ϵ, xi = zixi ∀ i, zi ∈ {0, 1} ∀ i. (3.11)

The constraints xi = zixi in (3.11) are non-convex in the decision variables (x, z). To deal

with these constraints, we make use of the perspective reformulation [77]. Specifically, we

introduce non-negative variables θ ∈ Rn
+ where θi models x2

i and introduce the constraints

θizi ≥ x2
i , which are second order cone representable. Thus, if zi = 0, we will have xi = 0.

This results in the following reformulation of (3.11):

min
z,x,θ∈Rn

n∑
i=1

zi +
1

γ

n∑
i=1

w2
i θi

s.t. ∥Ax− b∥22 ≤ ϵ, x2
i ≤ ziθi ∀ i,

zi ∈ {0, 1} ∀ i, θi ≥ 0 ∀ i.

(3.12)

Theorem 26 The mixed-integer second order cone problem given by (3.12) is an exact re-

formulation of (3.4).

Proof We show that given a feasible solution to (3.4), we can construct a feasible solution

112

to (3.12) that achieves the same objective value and vice versa.

Consider an arbitrary solution x̄ to (3.4). Let z̄ ∈ Rn be the binary vector obtained by

setting z̄i = 1{x̄i ̸= 0} and let θ̄ ∈ Rn be the vector obtained by setting θ̄i = x̄2
i . We have

∥Ax̄− b∥22 ≤ ϵ, z̄iθ̄i = 1{x̄i ̸= 0} · x̄2
i = x̄2

i , z̄ ∈ {0, 1}n and θ̄i ≥ 0 so the solution (x̄, z̄, θ̄) is

feasible to (3.12). Lastly, notice that we have

n∑
i=1

z̄i +
1

γ

n∑
i=1

w2
i θ̄i =

n∑
i=1

1{x̄i ̸= 0}+ 1

γ

n∑
i=1

w2
i x̄

2
i = ∥x̄∥0 +

1

γ
∥Wx̄∥22,

where W = diag(w1, . . . , wn). Thus, the solution (x̄, z̄, θ̄) is a feasible solution to (3.12)

that achieves the same objective value as x̄ does in (3.4).

Consider now an arbitrary solution (x̄, z̄, θ̄) to (3.12). Since we have ∥Ax̄− b∥22 ≤ ϵ, x̄

is feasible to (3.4). Next, we note that the constraints x2
i ≤ ziθi and zi ∈ {0, 1} imply that

z̄i ≥ 1{x̄i ̸= 0} and θ̄i ≥ x̄2
i . Finally, we observe that

∥x̄∥0 +
1

γ
∥Wx̄∥22 =

n∑
i=1

1{x̄i ̸= 0}+ 1

γ

n∑
i=1

w2
i x̄

2
i ≤

n∑
i=1

z̄i +
1

γ

n∑
i=1

w2
i θ̄i.

Thus, the solution x̄ is a feasible solution to (3.4) that achieves an objective value equal to

or less than the objective value that (x̄, z̄, θ̄) achieves in (3.12). This completes the proof.

3.4.1 A Second Order Cone Relaxation

Problem (3.12) is a reformulation of Problem (3.4) where the problem’s non-convexity is

entirely captured by the binary variables z. We now obtain a convex relaxation of (3.4) by

solving (3.12) with z ∈ conv({0, 1}n) = [0, 1]n. This gives the following convex optimization

problem:

113

min
z,x,θ∈Rn

n∑
i=1

zi +
1

γ

n∑
i=1

w2
i θi

s.t. ∥Ax− b∥22 ≤ ϵ, x2
i ≤ ziθi ∀ i,

0 ≤ zi ≤ 1 ∀ i, θi ≥ 0 ∀ i.

(3.13)

A natural question to ask is how problem (3.13) compares to the Weighted Basis Pursuit

Denoising problem given by (3.7), a common convex approximation for CS in the noisy

setting. Surprisingly, under mild conditions on the regularization parameter γ, it can be

shown that solving (3.13) is exactly equivalent to solving (3.7). This implies that though

Basis Pursuit Denoising is typically motivated as a convex approximation to CS in the

presence of noise, it can alternatively be understood as the natural convex relaxation of the

mixed-integer second order cone problem given by (3.12) for appropriately chosen values of

γ. We formalize this statement in Theorem 27.

Theorem 27 There exists a finite value γ0 < ∞ such that for all γ̄ ≥ γ0, any vector x⋆

that is an optimal solution of (3.7) is also an optimal solution of (3.13). Let X = {x :

∥Ax − b∥22 ≤ ϵ}, the feasible set of (3.7). We can take γ0 = maxx∈X ∥Wx∥2∞, where

W = diag(w1, . . . , wn).

Proof Rewrite (3.13) as the two stage optimization problem given by (3.14).

min
x∈X

min
z,θ∈Rn

n∑
i=1

zi +
1

γ

n∑
i=1

w2
i θi s.t. x2

i ≤ ziθi ∀ i, 0 ≤ zi ≤ 1 ∀ i, θi ≥ 0 ∀ i. (3.14)

Let γ0 = maxx∈X ∥x∥2∞. To establish the result, we will show that for any x ∈ X the optimal

value of the inner minimization problem in (3.14) is a scalar multiple of the ℓ1 norm of Wx

provided that γ ≥ γ0.

Fix γ ≥ γ0 and consider any x̄ ∈ X . We make three observations that allow us to

reformulate the inner minimization problem in (3.14):

114

1. The objective function of the inner minimization problem is separable.

2. For any i such that x̄i = 0, it is optimal to set zi = θi = 0 which results in no

contribution to the objective function.

3. For any i such that x̄i ̸= 0, we must have zi > 0 and it is optimal to take θi =
x̄2
i

zi
.

We can therefore equivalently express the inner minimization problem of (3.14) as:

min
z∈Rn

∑
i:xi ̸=0

[
zi +

w2
i

γ
· x̄

2
i

zi

]
s.t. 0 < zi ≤ 1 ∀ i. (3.15)

Let fi(z) = z+
w2

i

γ
· x̄

2
i

z
. We want to minimize the function fi(z) over the interval (0, 1] for all

i such that x̄i ̸= 0. Fix an arbitrary i satisfying x̄i ̸= 0. We have d
dz
fi(z) = 1 − w2

i

γ
· x̄

2
i

z2i
and

d
dz
fi(z

⋆) = 0 ⇐⇒ z⋆ = ± wi√
γ
|x̄i|. The condition γ ≥ γ0 = maxx∈X ∥Wx∥2∞ and the fact

that x̄ ∈ X implies that 1 ≥ w2
i x̄

2
i

γ
for all i. Thus, we have 0 < wi√

γ
|x̄i| ≤ 1. Let z̄ = wi√

γ
|x̄i|.

Noting that limz−→0+ fi(z) = ∞, the minimum of fi(z) over the interval (0, 1] must occur

either at 1 or z̄. We have

(
wi√
γ
|x̄i| − 1

)2

≥ 0 =⇒ fi(1) =
w2

i x̄
2
i

γ
+ 1 ≥ 2wi√

γ
|x̄i| = fi(z̄).

Therefore, the minimum of fi(z) on (0, 1] occurs at z̄ = wi√
γ
|x̄i| and is equal to fi(z̄) =

2√
γ
|x̄i|.

This allows us to conclude that the optimal value of (3.14) is given by:

∑
i:xi ̸=0

2wi√
γ
|x̄i| =

n∑
i=1

2wi√
γ
|x̄i| =

2
√
γ
∥Wx̄∥1.

We have shown that for fixed x ∈ X , the optimal value of the inner minimization problem

of (3.14) is a scalar multiple of the ℓ1 norm of Wx. We can rewrite (3.14) as

min
x∈X

2
√
γ
∥Wx̄∥1, (3.16)

which has the same set of optimal solutions as (3.7) because this set is invariant under scaling

115

of the objective function. This completes the proof.

Remark 28 Note that by taking W = I, it immediately follows from Theorem 27 that any

vector x⋆ that is an optimal solution of (3.5) is also an optimal solution of (3.13) when we

set γ ≥ γ0 = maxx∈X ∥x∥2∞.

Convex relaxations of non-convex optimization problems are helpful for two reasons. Firstly,

a convex relaxation provides a lower (upper) bound to a minimization (maximization) prob-

lem which given a feasible solution to the non-convex optimization problem provides a certifi-

cate of worst case suboptimality. Secondly, convex relaxations can often be used as building

blocks in the construction of global optimization algorithms or heuristics for non-convex op-

timization problems. Strong convex relaxations are desirable because they produce tighter

bounds on the optimal value of the problem of interest (stronger certificates of worst case

suboptimality) and generally lead to more performant global optimization algorithms and

heuristics. Let X1 = {(z,x,θ) ∈ Rn × Rn × Rn : ∥Ax − b∥22 ≤ ϵ, x2
i ≤ ziθi ∀ i, θi ≥ 0 ∀ i}

and X1 = {(z,x,θ) ∈ Rn × Rn × Rn : z ∈ {0, 1}n}. We can equivalently write (3.12) as:

min
(z,x,θ)∈X1∩X2

n∑
i=1

zi +
1

γ

n∑
i=1

w2
i θi.

The strongest possible convex relaxation to (3.12) would be obtained by minimizing the

objective function in (3.12) subject to the constraint that (z,x,θ) ∈ conv(X1 ∩ X2). Since

the objective function is linear in the decision variables, solving over conv(X1 ∩ X2) would

produce an optimal solution to (3.12) since the objective would be minimized at an extreme

point of conv(X1∩X2) which by definition must be an element of X1∩X2. Unfortunately, in

general it is hard to represent conv(X1∩X2) explicitly. The relaxation given by (3.13) consists

of minimizing the objective function of (3.12) subject to the constraint that (z,x,θ) ∈

(conv(X1) ∩ conv(X2)) = X1 ∩ conv(X2) ⊇ conv(X1 ∩ X2).

116

Stronger convex relaxations to (3.12) can be obtained by introducing additional valid

inequalities to (3.12) and then relaxing the integrality constraint on z. For example, suppose

we know a value M ≥ γ0 = maxx∈X ∥Wx∥2∞. We can use this value to introduce Big-M

constraints similar in flavour to the formulation proposed by [89]. Under this assumption,

it follows immediately that any feasible solution to (3.12) satisfies −Mzi ≤ wixi ≤Mzi ∀ i.

Thus, we can obtain another convex relaxtion of (3.12) by minimizing its objective function

subject to the constraint (z,x,θ) ∈ X̄1 ∩ conv(X2) ⊇ conv(X1 ∩ X2) where we define X̄1 =

X1 ∩ {(z,x,θ) ∈ Rn × Rn × Rn : −Mzi ≤ wixi ≤ Mzi ∀ i}. Explicitly, with knowledge of

such a value M we can solve

min
z,x,θ∈Rn

n∑
i=1

zi +
1

γ

n∑
i=1

w2
i θi

s.t. ∥Ax− b∥22 ≤ ϵ, x2
i ≤ ziθi ∀ i,

−Mzi ≤ wixi ≤Mzi ∀ i, 0 ≤ zi ≤ 1 ∀ i, θi ≥ 0 ∀ i.

(3.17)

Remark 29 Given any input data A, b, ϵ, if M satisfies M ≥ γ0 = maxx∈X ∥Wx∥2∞,

then the optimal value of (3.17) is no less than the optimal value of (3.13). This follows

immediately by noting that under the condition on M , the feasible set of (3.17) is contained

in the feasible set of (3.13).

The mixed-integer second order cone reformulation and convex relaxation introduced

in this section lead to two approaches for solving (3.4) to certifiable optimality. On the

one hand, solvers like Gurobi contain direct support for solving mixed-integer second order

cone problems so problem (3.4) can be solved directly. On the other hand, it is possible

to develop a custom branch and bound routine that leverages a modification of (3.7) to

compute lower bounds. We illustrate this in Section 3.5. This custom, problem specific

approach outperforms Gurobi because (3.5) is a more tractable problem than (3.13) due in

part to the presence of fewer second order cone constraints which decreases the computational

time spent computing lower bounds.

117

3.4.2 A Positive Semidefinite Cone Relaxation

In this section, we formulate (3.4) as a polynomial optimization problem and present a

semidefinite relaxation using the sum of squares (SOS) hierarchy [93]. We show that this

semidefinite relaxation is tighter than the second order cone relaxation presented previously.

Let f(z,x) =
∑n

i=1 zi +
1
γ

∑n
i=1 w

2
i θi denote the objective function of (3.12). Notice that

the constraint z ∈ {0, 1}n in (3.12) is equivalent to the constraint z ◦z = z (where ◦ denotes

the element wise product). With this observation, we can express the feasible set of (3.12)

as the semialgebraic set given by:

Ω = {(z,x) ∈ Rn × Rn : ϵ− ∥Ax− b∥22 ≥ 0, xizi − xi = 0 ∀ i, z2i − zi = 0 ∀ i}.

Thus, we can equivalently write (3.12) as min(z,x)∈Ω f(z,x). It is not difficult to see that

the preceding optimization problem has the same optimal value as the problem given by

max
λ∈R

λ s.t. f(z,x)− λ ≥ 0 ∀ (z,x) ∈ Ω. (3.18)

Problem (3.18) is a polynomial optimization problem that has the same optimal value as

(3.4).

We can obtain tractable lower bounds for (3.18) by leveraging techniques from sum of

squares (SOS) optimization [94, 95]. A polynomial g ∈ R[x] is said to be sum of squares

(SOS) if for some K ∈ N there exists polynomials {gk}Kk=1 ⊂ R[x] such that g =
∑K

k=1 g
2
k. We

denote the set of all SOS polynomials as Σ2[x]. Moreover, we denote the set of polynomials

of degree at most d as Rd[x] ⊂ R[x] and we denote the set of SOS polynomials of degree at

most 2d as Σ2
d[x] ⊂ Σ2[x]. It is trivial to see that any polynomial that is SOS is globally

non-negative. More generally, SOS polynomials can be utilized to model polynomial non-

negativity over arbitrary semialgebraic sets. The quadratic module associated with the

118

semialgebraic set Ω is defined as:

QM(Ω) =

{
s0(z,x) + s1(z,x)(ϵ− ∥Ax− b∥22) +

n∑
i=1

ti(z,x)(xizi − xi)

+
n∑

i=1

ri(z,x)(z
2
i − zi) : s0, s1 ∈ Σ2[z,x], ti, ri ∈ R[z,x] ∀ i

}
.

(3.19)

It is straightforward to see that if a function h(z,x) is an element of QM(Ω), then h(z,x)

is non-negative on Ω (since for points in Ω, h(z,x) takes the form of the sum of two SOS

polynomials). Thus, membership in QM(Ω) is a sufficient condition for non-negativity on

Ω. We further define the restriction of QM(Ω) to polynomials of degree at most 2d as:

QMd(Ω) =

{
s0(z,x) + s1(z,x)(ϵ− ∥Ax− b∥22) +

n∑
i=1

ti(z,x)(xizi − xi)

+
n∑

i=1

ri(z,x)(z
2
i − zi) : s0 ∈ Σ2

d[z,x], s1 ∈ Σ2
d−1[z,x], ti, ri ∈ R2d−2[z,x] ∀ i

}
.

(3.20)

It is immediate that QMd(Ω) ⊂ QM(Ω) and membership in QMd(Ω) provides a certificate

of non-negativity on Ω. Importantly, given an arbitrary polynomial h(z,x) it is possible to

verify membership in QMd(Ω) by checking feasibility of a semidefinite program. Thus, for

any d ∈ N, we obtain a semidefinite relaxation of (3.4) by solving:

max
λ∈R

λ s.t. f(z,x)− λ ∈ QMd(Ω). (3.21)

Since QMd(Ω) ⊂ QMd+1(Ω), (3.21) produces an increasingly strong lower bound with in-

creasing values of d. A natural question to ask is how the relaxation given by (3.21) compares

to that given by (3.13). We answer this question in Theorem 30.

Theorem 30 For every d ≥ 1, the optimal value of (3.21) is no less than the optimal value

of (3.13).

Proof Without loss of generality, we take W = I. We prove the result for γ ≥ γ0 =

119

maxx∈X ∥x∥2∞ though the result extends naturally to the case of arbitrary γ. Fix any ϵ > 0,

A ∈ Rm×n and b ∈ Rm. By Theorem 27, (3.13) has the same optimal value as (3.7). Consider

the dual of (3.7) which for W = I is given by

max
ν∈Rm

bTν −
√
ϵ∥ν∥2 s.t. |νTAi| ≤

2
√
γ
∀ i, (3.22)

where Ai denotes the ith column of A. Strong duality holds between (3.22) and (3.7)

since ν = 0 is always a strictly feasible point in (3.22) [35]. Fix d = 1. We will show

that for any feasible solution to (3.22), we can construct a feasible solution to (3.21) that

achieves the same objective value. Let ν̄ ∈ Rm denote an arbitrary feasible solution

to (3.22). Define r̄i(z,x) = −1, t̄i(z,x) = AT
i ν̄ for all i, s̄1(z,x) = ∥ν̄∥2

2
√
ϵ

and define

s̄0(z,x) = monomial(z,x, 1)T S̄monomial(z,x, 1) where monomial(x, z, 1) ∈ R[z,x]2n+1 is

the vector of monomials in R[z,x] of degree at most 1 and S̄ ∈ R2n+1×2n+1 is given by

S̄ =


1
γ
In +

∥ν̄∥2
2
√
ϵ
ATA diag

(
−AT ν̄

2

)
1
2
AT
(
ν̄ − ∥ν̄∥2√

ϵ
b
)

diag
(

−AT ν̄
2

)
In 0n

1
2

(
ν̄T − ∥ν̄∥2√

ϵ
bT
)
A 0T

n

(
bT b
2
√
ϵ
+

√
ϵ
2

)
∥ν̄∥2 − ν̄Tb

 .

Clearly, we have t̄i, r̄i ∈ R0[z,x] for all i and s̄1 ∈ Σ2
0[z,x] because ∥ν̄∥2

2
√
ϵ
≥ 0. We claim that

s̄0 ∈ Σ2
1[z,x]. To see this, note that by the generalized Schur complement lemma (see Boyd

et al. 1994, Equation 2.41), S̄ ⪰ 0 if and only if

In 0n

0T
n σ

 ⪰ 0 and 1
γ
In + ∥ν̄∥2

2
√
ϵ
ATA −

diag
(

−AT ν̄
2

)2
− 1

4σ
AT
(
ν̄− ∥ν̄∥2√

ϵ
b
)(

ν̄− ∥ν̄∥2√
ϵ
b
)T

A ⪰ 0 where we let σ =
(

bT b
2
√
ϵ
+

√
ϵ
2

)
∥ν̄∥2−ν̄Tb.

The first condition is satisfied if σ ≥ 0. To see that this is always the case, notice that we

can equivalently express σ as

σ =

(
bTb+ ϵ

2
√
ϵ∥b∥2

)
∥b∥2∥ν̄∥2 − ν̄Tb.

120

By Cauchy-Schwarz, we have |ν̄Tb| ≤ ∥b∥2∥ν̄∥2. Moreover, we have 0 ≤ (∥b∥2 −
√
ϵ)2 =⇒

bT b+ϵ
2
√
ϵ∥b∥2 ≥ 1. It follows immediately that σ ≥ 0.

To establish the second condition, we first rewrite the Schur complement of S̄ as the sum

of two matrices:

[
1

γ
In − diag

(−AT ν̄

2

)2]
+

[
∥ν̄∥2
2
√
ϵ
ATA− 1

4σ
AT
(
ν̄ − ∥ν̄∥2√

ϵ
b
)(

ν̄ − ∥ν̄∥2√
ϵ
b
)T

A

]
,

where we let Φ denote the first matrix in the sum and we let Ψ denote the second matrix.

It suffices to show that Φ and Ψ are both positive semidefinite. The eigenvalues of Φ are

given by { 1
γ
− (ν̄TAi)

2

4
}ni=1. Thus, Φ is positive semidefinite as long as |ν̄TAi| ≤ 2√

γ
for all i

which is guaranteed by the feasibility of ν̄ in (3.22). To see that Ψ ⪰ 0, note that we can

write Ψ as

Ψ = AT

(
∥ν̄∥2
2
√
ϵ
Im −

1

4σ

(
ν̄ − ∥ν̄∥2√

ϵ
b
)(

ν̄ − ∥ν̄∥2√
ϵ
b
)T)

A.

Since any matrix of the form XTY X is positive semidefinite provided that Y is positive

semidefinite, it suffices to show that ∥ν̄∥2
2
√
ϵ
Im ⪰ 1

4σ

(
ν̄ − ∥ν̄∥2√

ϵ
b
)(

ν̄ − ∥ν̄∥2√
ϵ
b
)T

. Notice that the

left hand side term of the matrix inequality has m eigenvalues of the form ∥ν̄∥2
2
√
ϵ

while the

right hand side term of the inequality is a rank 1 matrix with 1
4σ

(
ν̄ − ∥ν̄∥2√

ϵ
b
)T(

ν̄ − ∥ν̄∥2√
ϵ
b
)

as its only non-zero eigenvalue. Recalling the definition of σ, it can be easily verified that(
ν̄ − ∥ν̄∥2√

ϵ
b
)T(

ν̄ − ∥ν̄∥2√
ϵ
b
)
= 2σ∥ν̄∥2√

ϵ
by simple algebraic manipulation. Accordingly, we have

∥ν̄∥2
2
√
ϵ
Im ⪰ 1

4σ

(
ν̄ − ∥ν̄∥2√

ϵ
b
)(

ν̄ − ∥ν̄∥2√
ϵ
b
)T

=⇒ Ψ ⪰ 0. Thus, we have established that

S̄ ⪰ 0 =⇒ s̄0 ∈ Σ2
1[z,x]. Finally, we note that

s̄0 + s̄1(ϵ− ∥Ax− b∥22) +
n∑

i=1

t̄i(xizi − xi) +
n∑

i=1

r̄i(z
2
i − zi) = f(z,x)− bT ν̄ +

√
ϵ∥ν̄∥2.

We have shown that given an arbitrary feasible solution to (3.22), we can construct a solution

that is feasible to (3.21) that achieves the same objective value. Note that this construction

holds for any d ≥ 1. Thus, for any d ∈ N the optimal value of (3.21) is at least as high as

121

the optimal value of (3.13).

We have shown that for any value of d, (3.21) produces a lower bound on the optimal

value of (3.4) at least as strong as the bound given by (3.13). Unfortunately, (3.21) suffers

from scalability challenges as it requires solving a positive semidefinite program with PSD

constraints on matrices with dimension
(
2n+d

d

)
×
(
2n+d

d

)
. We further discuss the scalability of

(3.21) in Section 3.6. Note that since (3.21) is a maximization problem, any feasible solution

(in particular a nearly optimal one) still consists of a valid lower bound on the optimal value

of (3.4).

3.5 Branch and Bound

In this section, we propose a branch and bound algorithm in the sense of [92, 98] that

computes certifiably optimal solutions to Problem (3.3) by solving the mixed-integer second

order cone reformulation given by (3.12). We state explicitly our subproblem strategy in

Section 3.5.1, before stating our overall algorithmic approach in Section 3.5.2.

3.5.1 Subproblems

Henceforth, for simplicity we will assume the weights wi take value 1 for all i. What fol-

lows generalizes immediately to the setting where this assumption does not hold. Notice

that (3.12) can be equivalently written as the two stage optimization problem given by

minz∈{0,1}n h(z) where we define h(z) as:

h(z) = min
x,θ∈Rn

n∑
i=1

zi +
1

γ

n∑
i=1

θi

s.t. ∥Ax− b∥22 ≤ ϵ, x2
i ≤ ziθi ∀ i, θi ≥ 0 ∀i.

(3.23)

122

Note that in general, there exist binary vectors z̄ ∈ {0, 1}n such that the optimization

problem in (3.23) is infeasible. For any such z̄, we define h(z̄) = ∞. We construct an

enumeration tree that branches on the entries of the binary vector z which models the

support of x. A (partial or complete) sparsity pattern is associated with each node in the

tree and is defined by disjoint collections I0, I1 ⊆ [n]. For indices i ∈ I0, we constrain zi = 0

and for indices j ∈ I1, we constrain zj = 1. We say that I0 and I1 define a complete sparsity

pattern if |I0|+ |I1| = n, otherwise we say that I0 and I1 define a partial sparsity pattern.

A node in the tree is said to be terminal if its associated sparsity pattern is complete.

Each node in the enumeration tree has an associated subproblem, defined by the collec-

tions I0 and I1, which is given by:

min
z∈{0,1}n

h(z), s.t. zi = 0 ∀ i ∈ I0, zj = 1 ∀ j ∈ I1. (3.24)

Note that if I0 = I1 = ∅, (3.24) is equivalent to (3.12) (under the assumetion that wi = 1

for all i).

Subproblem Lower Bound

Let I = I0 ∪ I1. We obtain a lower bound for (3.24) by relaxing the binary variables that

are not fixed (zi such that i /∈ I) to take values within the interval [0, 1]. The resulting lower

bound is given by

min
z,x,θ∈Rn

n∑
i=1

zi +
1

γ

n∑
i=1

θi

s.t. ∥Ax− b∥22 ≤ ϵ, x2
i ≤ ziθi ∀ i, 0 ≤ zi ≤ 1 ∀ i /∈ I,

zi = 0 ∀ i ∈ I0, zi = 1 ∀ i ∈ I1, θi ≥ 0 ∀ i.

(3.25)

Notice that for an arbitrary set Ī0 ⊆ [n], problems (3.24) and (3.25) are infeasible if and

only if the set {x : ∥Ax − b∥22 ≤ ϵ, xi = 0 ∀ i ∈ Ī0} is empty. Moreover, observe it

immediately follows that if (3.24) and (3.25) are infeasible for Ī0, then they are also infeasible

123

for any set Î0 ⊆ [n] satisfying Ī0 ⊆ Î0. We use this observation in section 3.5.2 to generate

feasibility cuts whenever an infeasible subproblem is encountered in the branch and bound

tree. Using a similar argument as in the proof of Theorem 27, it can be shown that when

γ ≥ γ0 = maxx∈X ∥x∥2∞, (3.25) is equivalent to the convex optimization problem given by

(3.26):

min
x∈Rn

|I1|+
1

γ

∑
i∈I1

x2
i +

2
√
γ

∑
i/∈I

|xi| s.t. ∥Ax− b∥22 ≤ ϵ, xi = 0 ∀ i ∈ I0, (3.26)

where if x⋆ is optimal to (3.26), then (z⋆,x⋆,θ⋆) is optimal to (3.25) taking z⋆i = |xi|⋆√
γ

and

θ⋆i = x⋆2
i . Problem (3.26) is a second order cone problem that emits the following dual:

max
ν∈Rm

|I1|+ bTν −
√
ϵ∥ν∥2 −

γ

4
νT
∑
i∈I1

(AiA
T
i)ν s.t. |νTAi| ≤

2
√
γ
∀ i /∈ I. (3.27)

Strong duality holds between (3.26) and (3.27) since ν = 0 is always a strictly feasible point

in (3.27) for any collections I0, I1 [35]. In our branch and bound implementation described

in 3.5.2, we compute lower bounds by solving (3.26) using Gurobi. We note that depending

on the solver employed, it may be beneficial to compute lower bounds using (3.27) in place

of (3.26).

Subproblem Upper Bound

Recall that solving Problem (3.2) can be interpreted as determining the minimum number

of columns from the input matrix A that must be selected such that the residual of the

projection of the input vector b onto the span of the selected columns has ℓ2 norm equal to

at most
√
ϵ. The same interpretation holds for Problem (3.3) under the assumption that the

ℓ2 regularization term in the objective is negligible.

Consider an arbitrary node in the branch and bound algorithm and let x⋆ denote an

optimal solution to (3.26). To obtain an upper bound to (3.24), we define an ordering on

the columns of A and iteratively select columns from this ordering from largest to smallest

124

until the ℓ2 norm of the residual of the projection of b onto the selected columns is less than
√
ϵ. The ordering of the columns of A corresponds to sorting the entries of x⋆ in decreasing

absolute value. Specifically, we have Ai ⪰ Aj ⇐⇒ |x⋆
i | ≥ |x⋆

j |. Algorithm 3 outlines this

approach. For an arbitrary collection of indices It ⊆ [n], we let A(It) ∈ Rm×|It| denote the

matrix obtained by stacking the |It| columns of A corresponding to the indices in the set

It. Specifically, if ik denotes the kth entry of It, then the kth column of A(It) is Ai. Let xub

denote the output of Algorithm 3. The objective value achieved by xub in (3.3) is the upper

bound.

Algorithm 3: branch and bound Upper Bound
Data: A ∈ Rm×n, b ∈ Rm, ϵ > 0. An optimal solution x⋆ of (3.26).
Result: x̄ is feasible to (3.3).
I0 ←− ∅;
r0 ←− b;
t←− 0;
δ0 ←− ∥r0∥22;
while δt > ϵ do

it ←− argmaxi∈[n]\It |x⋆
i |;

It+1 ←− It ∪ it;
xt+1 ←−

[
A(It+1)

TA(It+1)
]†
A(It+1)

Tb;
rt+1 ←− b−A(It+1)xt+1;
δt+1 ←− ∥rt+1∥22;
t←− t+ 1;

end
Define x̄ ∈ Rn as x̄(ik) = xt(k) for ik ∈ It and x̄(ik) = 0 otherwise;
return x̄.

The computational bottleneck of Algorithm 3 is computing the matrix inverse of

A(It)TA(It) ∈ R|It|×|It| at each iteration. Doing so explicitly at each iteration t would

require O(|It|3) operations. Letting k⋆ = ∥xub∥0 where xub is the output of Algorithm 3, the

total cost of executing these matrix inversions is

k⋆∑
t=1

|It|3 =
k⋆∑
t=1

t3 =

[
k⋆(k⋆ + 1)

2

]2
= O(k⋆4)

However, it is possible to accelerate the computation of these matrix inverses by leveraging

125

the fact that A(It) and A(It+1) differ only by the addition of one column and leveraging block

matrix inversion which states that for matrices C ∈ Rn1×n1 ,D ∈ Rn2×n2 and U ,V ∈ Rn1×n2 ,

we have:

 C U

V T D


†

=

 C† +C†U(D − V TC†U)−1V TC† −C†U(D − V TC†U)−1

−(D − V TC†U)−1V TC† (D − V TC†U)−1


where it is assumed that the matrix (D−V TC†U) is invertible [117]. Letting n1 = |It|, n2 =

1,C = A(It)TA(It),U = V = A(It)Tait , and D = aTitait , we can compute the matrix

inverse of A(It+1)
TA(It+1) using O(|It|2 + m|It|) operations. With this implementation,

the total cost of executing matrix inversions in Algorithm 3 becomes

k⋆∑
t=1

|It|2 +m|It| =
k⋆∑
t=1

t2 +m
k⋆∑
t=1

t = O(k⋆3 +mk⋆2)

which is a significant improvement over the naive O(k⋆4) approach.

3.5.2 Branch and Bound Algorithm

Having stated how we can compute upper and lower bounds to (3.23) at each node in

the enumeration tree, we are now ready to present the branch and bound algorithm in its

entirety. Algorithm 4 describes our approach which is based on the implementation by [15].

Though branching rules and node selection rules for branch and bound algorithms form a

rich literature [106], we follow the design of [15] and employ the most fractional branching

rule and least lower bound node selection rule.

Explicitly, for an arbitrary non-terminal node p, let z∗ be the optimal vector z of the node

relaxation given by (3.25). We branch on entry i⋆ = argmini/∈I0∪I1 |zi−0.5|. When selecting a

node to investigate, we select the node whose lower bound is equal to the global lower bound.

If multiple such nodes exist, we choose arbitrarily from the collection of nodes satisfying this

126

condition. Suppose that a given node produces a subproblem (3.26) that is infeasible where

we let Ī0 correspond to the zero index set of this node. Note that this implies that all

child nodes of this node will also produce infeasible subproblems. Accordingly, to prune this

region of the parameter space entirely, we introduce the feasibility cut
∑

i∈Ī0 zi ≥ 1. Let

f(x) = ∥x∥0 + 1
γ
∥x∥22, the objective function of (3.3) and let g(I0, I1) denote the optimal

value of (3.26) for any collections I0, I1 ⊆ [n], I0∩I1 = ∅. The final objective value returned

by Algorithm 4 is given by mini f(xi) where {xi}i denotes the collection of feasible solutions

produced by Algorithm 3 at any point during the execution of Algorithm 4. The output

lower bound of Algorithm 4 is given by min(I0,I1)∈N g(I0, I1) where N denotes the set of

non-discarded nodes upon the termination of Algorithm 4.

Let lb denote a lower bound to a given arbitrary minimization problem and let ub denote

the objective value achieved by a feasible solution x̄ to the minimization problem. We call

the solution x̄ a δ globally optimal solution to the given minimization problem if we have

lb ≤ ub ≤ (1 + δ)lb.

Theorem 31 Algorithm 4 terminates in a finite number of iterations and returns a δ globally

optimal solution to (3.2).

Proof The proof follows the proof of Theorem 21 in [15]. Note that Algorithm 4 can

never visit a node more than once and that there is a finite number of partial and complete

sparsity patterns (each corresponding to a possible node in the tree) because the set {0, 1}n

is discrete. Thus, Algorithm 4 terminates in a finite number of iterations. Moreover, upon

termination we must have ub−lb
ub
≤ δ, therefore the output solution x̄ is δ globally optimal

to problem (3.3) by definition since lb consists of a global lower bound and x̄ is feasible to

(3.3).

We conclude the discussion of Algorithm 4 by describing two modifications that accelerate

its execution time (or equivalently, improve its scalability) at the expense of sacrificing the

127

Algorithm 4: Optimal Compressed Sensing
Data: A ∈ Rm×n, b ∈ Rm, ϵ, γ ∈ R+. Tolerance parameter δ ≥ 0
Result: x̄ solves (3.3) within the optimality tolerance δ.
if ∥(I −A

[
ATA

]†
AT)b∥22 > ϵ then

return ∅
end
if ∥b∥22 ≤ ϵ then

return 0
end
p0 ←− (I0, I1) = (∅, ∅);
N ←− {p0};
lb←− optimal value of (3.26);
x̄←− solution returned by Algorithm 3;
ub←− f(x̄);
while ub−lb

ub
> ϵ do

Select (I0, I1) ∈ N according to the node selection rule;
Select an index i /∈ I0 ∪ I1 according to the branching rule;
for k = 0, 1 do

l←− (k + 1) mod 2;

newnode ←−
((
Ik ∪ i

)
, Il
)
;

if newnode violates an existing feasibility cut then
Continue;

end
if newnode is infeasible then

Add the feasibility cut
∑

i∈I0 zi ≥ 1;
end
lower ←− lowerBound(newnode);
upper ←− upperBound(newnode) with feasible point x⋆;
if upper < ub then

ub←− upper ;
x̄←− x⋆;
Remove any node in N with lower ≥ ub;

end
if lower < ub then

Add newnode to N ;
end

end
Remove (I0, I1) from N ;
Update lb to be the lowest value of lower over N ;

end
return x̄, lb.

128

universal optimality guarantee by drawing on techniques from the high dimensional sparse

machine learning literature [21] and the deep learning literature [73].

Backbone Optimization

Note that the total number of terminal nodes in the branch and bound tree is at most∑n
k=1

(
n
k

)
= 2n in the worst case so the total number of nodes can be upper bounded by

2n+1 − 1. Since the runtime of Algorithm 4 (and the feasible space) is proportional to the

number of nodes explored which grows exponentially in n, reducing n leads to reduced run

time. Observe that if we knew in advance that the support of the optimal solution to (3.3)

was contained within a set of cardinality less than n, then we could run Algorithm (4) on the

corresponding reduced feature set which would result in improving the runtime of (4) while

preserving its optimality guarantee. Formally, let x⋆ denote an optimal solution to (3.3).

If we know a priori that support(x⋆) ⊆ I ⊂ [n], then we can pass A(I) to Algorithm 4 in

place of A without discarding x⋆ from the feasible set. The speed up can be quite significant

when |I| ≪ n.

Knowing with certainty that support(x⋆) ⊆ I ⊂ [n] a priori is too strong an assumption,

however a more reasonable assumption is knowing a priori that with high probability there

exists a good solution x̄ with support(x̄) ⊆ I ⊂ [n]. In this setting, we can still pass A(I) to

Algorithm 4 and benefit from an improved runtime at the expense of sacrificing optimality

guarantees. In this setting, the columns of A(I) can be interpreted as a backbone for (3.3)

[21]. In practice, I can be taken to be the set of features selected by some heuristic method.

In Section 3.6, we take I = {i : |x̄i| ≥ 10−6} where x̄ is an optimal solution to (3.5).

Early Stopping

A common property of branch and bound algorithms is that the algorithm quickly arrives at

an optimal (or near-optimal) solution early during the optimization procedure and spends the

majority of its execution time improving the lower bound to obtain a certificate of optimality.

129

Accordingly, this motivates halting Algorithm 4 before it terminates and taking its upper

bound at the time of termination to be its output. Doing so is likely to still yield a high quality

solution while reducing the Algorithm’s runtime. In Section 3.6, we place an explicit time

limit on Algorithm 4 and return the current upper bound if the Algorithm has not already

terminated before reaching the time limit. Note that this approach shares strong connections

with early stopping in the training of neural networks [73]. A well studied property of over-

parameterized neural networks is that as the optimization procedure progresses, the error on

the training data continues to decrease though the validation error plateaus and sometimes

even increases. Given that the validation error is the metric of greater import, a common

network training technique is to stop the optimization procedure after the validation error has

not decreased for a prespecified number of iterations. To illustrate the connection in the case

of Algorithm 4, the upper bound loosely plays the role of the validation error while the lower

bound loosely plays the role of the training error. Note that the neural network literature

suggests an alternate approach to early stopping Algorithm 4 (instead of an explicit time

limit) by terminating the algorithm after the upper bound has remained unchanged after

visiting some prespecified number of nodes in the enumeration tree.

3.6 Computational Results

We evaluate the performance of our branch and bound algorithm (Algorithm 4, with γ =

√
n), our second order cone lower bound (3.13) (with γ =

√
n) and our semidefinite lower

bound (3.21) (with γ =
√
n and d = 1) implemented in Julia 1.5.2 using the JuMP.jl

package version 0.21.7, using Gurobi version 9.0.3 to solve all second order cone optimization

(sub)problems and using Mosek version 9.3 to solve all semidefinite optimization problems.

We compare our methods against Basis Pursuit Denoising (BPD) given by (3.5), Iterative

Reweighted ℓ1 Minimizaton (IRWL1) described in Section 3.2.2 and Orthogonal Matching

Pursuit (OMP) described in Section 3.2.3. We perform experiments using synthetic data

130

and two real world data sets. We conduct our experiments on MIT’s Supercloud Cluster

[123], which hosts Intel Xeon Platinum 8260 processors and cores with 4GB RAM. To bridge

the gap between theory and practice, we have made our code freely available on GitHub at

https://github.com/NicholasJohnson2020/DiscreteCompressedSensing.jl.

3.6.1 Synthetic Data Experiments

To evaluate the performance of Algorithm 4, BPD, IRWL1 and OMP on synthetic data,

we consider the sparsity of the solution returned by each method, its accuracy (ACC), true

positive rate (TPR) and true negative rate (TNR). Let xtrue ∈ Rn denote the ground truth

and consider an arbitrary vector x̂ ∈ Rn. Let Itrue = {i : |xtrue
i | > 10−4}, Î = {i : |x̂i| >

10−4}. The sparsity of x̂ is given by |Î|. We define the accuracy of x̂ as

ACC(x̂) =

∑
i∈Itrue 1{|x̂i| > 10−4}+

∑
i/∈Itrue 1{|x̂i| ≤ 10−4}

n
.

Similarly, we define the true positive rate of x̂ as

TPR(x̂) =

∑
i∈Itrue 1{|x̂i| > 10−4}

|Î|
,

and we define the true negative rate of x̂ as

TNR(x̂) =

∑
i/∈Itrue 1{|x̂i| ≤ 10−4}

n− |Î|
.

To evaluate the performance of (3.13) and (3.21), we consider the strength of the lower

bound and execution time of each method. We seek to answer the following questions:

1. How does the performance of Algorithm 4 compare to state-of-the-art methods such

as BPD, IRWL1 and OMP on synthetic data?

2. How is the performance of Algorithm 4 affected by the number of features n, the

131

GitHub
https://github.com/NicholasJohnson2020/DiscreteCompressedSensing.jl

underlying sparsity k of the ground truth, and the tolerance parameter ϵ?

3. How does the strength of the lower bound produced by (3.21) compare to that produced

by (3.13)?

Synthetic Data Generation

To generate synthetic data x ∈ Rn,A ∈ Rm×n and b ∈ Rm, we first select a random subset

of indices Itrue ⊂ [n] that has cardinality k (|Itrue| = k) and sample xi ∼ N(0, σ
2

n
) for

i ∈ Itrue (for i /∈ Itrue, we fix xi = 0). Next, we sample Aij ∼ N(0, σ
2

n
) where σ > 0 is a

parameter that controls the signal to noise ratio. We fix σ = 10 and m = 100 throughout

all experiments unless stated otherwise. Next, we set b = Ax + n where nj ∼ N(0, σ2).

Finally, we set ϵ = α∥b∥22. α ∈ [0, 1] is a parameter that can be thought of as controlling the

proportion of observations that are allowed to go unexplained by a solution to (3.3).

Sensitivity to n

We present a comparison of Algorithm 4 with BPD, IRWL1 and OMP as we vary the

number of features n. In these experiments, we fixed k = 10, and α = 0.2 across all

trials. We varied n ∈ {100, 200, 300, 400, 500, 600, 700, 800} and we performed 100 trials

for each value of n. We give Algorithm 4 a cutoff time of 10 minutes. For IRWL1, we

terminate the algorithm after the 50th iteration or after two subsequent iterates are equal up

to numerical tolerance. Formally, letting x̄t denote the iterate after iteration t of IRWL1,

we terminate the algorithm if either t > 50 or if ∥x̄t − x̄t−1∥2 ≤ 10−6. Additionally, we

further sparsify the solutions returned by BPD (respectively IRWL1) by performing a greedy

rounding following the procedure defined by Algorithm 3 where we pass the solution returned

by BPD (respectively IRWL1) as input to the algorithm in place of an optimal solution to

(3.26).

We report the sparsity, accuracy (ACC), true positive rate (TPR) and true negative

rate (TNR) for each method in Figure 3.1. We additionally report the sparsity accuracy

132

and execution time for each method in Tables 3.1, 3.2 and 3.3. The performance metric of

greatest interest is the sparsity. Our main findings from this set of experiments are:

1. Algorithm 4 systematically produces sparser solutions than OMP, IRWL1 and BPD.

This trend holds in all but one trial (see Table 3.1). Algorithm 4 on average produces

solutions that are 2.71% more sparse than OMP, 16.62% more sparse than BPD and

6.04% more sparse than IRWL1. BPD is the poorest performing method in terms of

sparsity of the fitted solutions. We remind the reader that sparsity is computed only

after a greedy rounding of the BPD (respectively IRWL1) solution. The sparsity of the

BPD (respectively IRWL1) solution prior to rounding is much greater. Indeed, before

further sparsifying the BPD (respectively IRWL1) solution, the solution returned by

Algorithm 4 is on average 66.33% (respectively 6.21%) more sparse than the BPD

(respectively IRWL1) solution. The sparsity of solutions returned by all methods

increases as the number of features n increases.

2. Algorithm 4 marginally outperforms the benchmark methods on accuracy with the

exception of the first two parameter configurations (n = 100 and n = 200, see Table

3.2). The accuracy of all methods tends to trend upwards with increasing n.

3. The TPR and TNR of all methods are roughly comparable across these experiments.

The TPR of all methods decreases while the TNR increases as the number of features

n is increased. The sharp drop off in the TPR of all methods as n increases from 100

to 400 is consistent with the number of features selected by each method increasing

sharply as n increases from 100 to 400. The latter results in the denominator used in

the TPR computation to grow sharply which produces the observed behavior.

Sensitivity to k

We present a comparison of Algorithm 4 with BPD, IRWL1 and OMP as we vary k the

sparsity of the underlying ground truth signal. In these experiments, we fixed n = 200 and

133

200 400 600 800
N

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5
Sp

ar
si

ty

Sparsity vs N

BnB_Primal
OMP
BPD_rounded
IRWL1_rounded

200 400 600 800
N

0.940

0.945

0.950

0.955

0.960

0.965

0.970

A
cc

ur
ac

y

Accuracy vs N

200 400 600 800
N

0.2

0.4

0.6

0.8

1.0

TP
R

TPR vs N

200 400 600 800
N

0.95

0.96

0.97

0.98

0.99

TN
R

TNR vs N

Figure 3.1: Sparsity (top left), accuracy (top right), true positive rate (bottom left) and true
negative rate (bottom right) versus n with k = 10, and α = 0.2. Averaged over 100 trials for
each parameter configuration.

α = 0.2 across all trials. We varied k ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50, 55} and we performed

100 trials for each value of k. We give Algorithm 4 a cutoff time of 10 minutes.

We report the sparsity, accuracy (ACC), true positive rate (TPR) and true negative rate

(TNR) for each method in Figure 3.2. We additionally report the sparsity, accuracy and

execution time for each method in Tables 3.4, 3.5 and 3.6. Our main findings from this set

of experiments are:

1. Consistent with the results in the previous section, Algorithm 4 systematically produces

sparser solutions than OMP, IRWL1 and BPD. This trend holds across trials (see Table

3.4. Algorithm 4 on average produces solutions that are 4.78% more sparse than OMP,

134

Table 3.1: Comparison of the sparsity of solutions returned by (4), OMP, IRWL1 and BPD
for different values of n. Averaged over 100 trials for each parameter configuration.

Sparsity

N Algorithm 4 OMP IRWL1 BPD

100 5.0 5.0 5.0 5.0
200 11.9 12.3 12.5 13.6
300 15.5 16.2 16.6 18.8
400 17.1 17.9 18.5 21.3
500 17.5 17.9 18.7 21.9
600 17.3 17.7 18.4 21.6
700 16.9 17.2 18.3 21.1
800 16.7 17.0 18.1 21.0

Table 3.2: Comparison of the accuracy of solutions returned by (4), OMP, IRWL1 and BPD
for different values of n. Averaged over 100 trials for each parameter configuration.

Accuracy

N Algorithm 4 OMP IRWL1 BPD

100 0.944 0.947 0.946 0.945
200 0.949 0.948 0.948 0.944
300 0.944 0.942 0.943 0.938
400 0.948 0.945 0.946 0.941
500 0.955 0.954 0.954 0.949
600 0.960 0.959 0.960 0.955
700 0.965 0.964 0.963 0.960
800 0.969 0.969 0.967 0.964

10.73% more sparse than BPD and 4.20% more sparse than IRWL1. Before further

sparsifying the BPD (respectively IRWL1) solution, the solution returned by Algorithm

4 is on average 62.97% (respectively 4.29%) more sparse than the BPD (respectively

IRWL1) solution. BPD is again the poorest performing method in terms of sparsity

of the fitted solutions. IRWL1 and OMP produce comparably sparse solutions. The

sparsity of solutions returned by all methods initially decreases than subsequently

increases as the sparsity level k of the ground truth signal increases.

2. Algorithm 4 is competitive with OMP and IRWL1 on accuracy and slightly outperforms

135

Table 3.3: Comparison of the execution time of solutions returned by (4), OMP, IRWL1 and
BPD for different values of n. Averaged over 100 trials for each parameter configuration.

Execution Time (milliseconds)

N Algorithm 4 OMP IRWL1 BPD

100 2048.646 5.717 463.636 146.111
200 334804.020 13.212 1109.263 234.263
300 574501.859 25.141 1630.212 297.849
400 601792.939 42.919 2181.636 351.717
500 601424.020 72.535 2435.141 405.131
600 601451.838 110.364 3118.465 433.626
700 601572.848 166.525 3674.980 504.626
800 601716.929 231.980 3865.788 540.859

BPD on accuracy for larger values of k The accuracy of all methods trends downwards

with increasing k, suggesting that the feature identification problem becomes more

challenging for larger values of k in this regime.

3. The TPR and TNR of Algorithm 4, OMP, and IRWL1 are comparable across these

experiments. The TPR and TNR of BPD is competitive with the other methods for

small values of k, but slightly deteriorates for larger values of k.

Table 3.4: Comparison of the sparsity of solutions returned by (4), OMP, IRWL1 and BPD
for different values of k. Averaged over 100 trials for each parameter configuration.

Sparsity

K Algorithm 4 OMP IRWL1 BPD

10 11.7 12.2 12.3 13.4
15 10.4 10.7 11.0 11.7
20 10.4 10.8 10.7 11.3
25 11.3 11.8 11.8 12.5
30 11.5 12.0 11.9 12.8
35 12.1 12.8 12.6 13.5
40 12.4 13.2 13.0 13.9
45 13.4 14.3 14.1 15.2
50 13.8 14.8 14.4 15.6
55 14.6 15.6 15.4 16.8

136

10 20 30 40 50
K

11

12

13

14

15

16

17

Sp
ar

si
ty

Sparsity vs K
BnB_Primal
OMP
BPD_rounded
IRWL1_rounded

10 20 30 40 50
K

0.80

0.85

0.90

0.95

A
cc

ur
ac

y

Accuracy vs K

10 20 30 40 50
K

0.6

0.7

0.8

0.9

TP
R

TPR vs K

10 20 30 40 50
K

0.80

0.85

0.90

0.95

TN
R

TNR vs K

Figure 3.2: Sparsity (top left), accuracy (top right), true positive rate (bottom left) and true
negative rate (bottom right) versus k with N = 200 and α = 0.2. Averaged over 100 trials
for each parameter configuration.

Sensitivity to ϵ

We present a comparison of Algorithm 4 with BPD, IRWL1 and OMP as we vary α which

controls the value of the parameter ϵ. Recall we have ϵ = α∥b∥22, so α can loosely be

interpreted as the fraction of the measurements b that can be unexplained by the returned

solution to (3.3). In these experiments, we fixed n = 200 and k = 10 across all trials. We

varied α ∈ {0.05, 0.1, 0.15, . . . , 0.9} and we performed 100 trials for each value of α. We give

Algorithm 4 a cutoff time of 10 minutes.

We report the sparsity, accuracy (ACC), true positive rate (TPR) and true negative rate

(TNR) for each method in Figure 3.3, and we report the sparsity, accuracy and execution time

137

Table 3.5: Comparison of the accuracy of solutions returned by (4), OMP, IRWL1 and BPD
for different values of k. Averaged over 100 trials for each parameter configuration.

Accuracy

K Algorithm 4 OMP IRWL1 BPD

10 0.948 0.948 0.947 0.943
15 0.945 0.944 0.945 0.942
20 0.935 0.934 0.936 0.933
25 0.915 0.911 0.917 0.915
30 0.893 0.887 0.896 0.895
35 0.872 0.866 0.875 0.873
40 0.851 0.840 0.852 0.850
45 0.825 0.815 0.827 0.827
50 0.801 0.791 0.803 0.804
55 0.772 0.764 0.777 0.780

for each method in Tables 3.7, 3.8 and 3.9. Consistent with previous experiments, Algorithm

4 outperforms the benchmark methods in terms of sparsity of the returned solution while

having comparable performance on accuracy, TPR and TNR. Here, Algorithm 4 on average

produces solutions that are 2.40% more sparse than OMP, 5.92% more sparse than BPD and

2.54% more sparse than IRWL1. Before further sparsifying the BPD (respectively IRWL1)

solution, the solution returned by Algorithm 4 is on average 59.23% (respectively 2.62%)

more sparse than the BPD (respectively IRWL1) solution.

Lower Bound Performance

In Section 3.4, we reformulated (3.3) exactly as a mixed-integer second order cone problem

and illustrated multiple approaches to obtain lower bounds on the optimal value of the

reformulation. In this Section, we compare the strength of the second order cone relaxation

given by (3.13) and the semidefinite cone relaxation given by (3.21). We fixed k = 10 and

we varied α ∈ {0.05, 0.1, 0.15, . . . , 0.9}. We report results for (n,m) = (25, 100) in Figure

3.4 and (n,m) = (50, 25) in Figure 3.5. We performed 100 trials for each value of α. Letting

lbSOC denote the optimal value of (3.13) and lbSOS denote the optimal value of (3.21), we

define the SOS lower bound improvement to be lbSOS−lbSOC

lbSOC .

138

Table 3.6: Comparison of the execution time of solutions returned by (4), OMP, IRWL1 and
BPD for different values of k. Averaged over 100 trials for each parameter configuration.

Execution Time (milliseconds)

K Algorithm 4 OMP IRWL1 BPD

10 305993.475 13.182 1270.000 341.454
15 199128.374 12.556 1144.818 284.071
20 119282.667 12.646 1080.535 278.596
25 139224.525 13.263 1081.202 327.151
30 171844.485 12.909 1169.798 314.192
35 193257.535 12.798 1163.121 361.485
40 231721.737 13.404 1151.455 277.647
45 314269.394 13.495 1142.374 308.919
50 351790.071 13.727 1219.707 315.081
55 412429.717 14.010 1260.899 289.616

Consistent with the Theorem 30, Problem (3.21) produces a stronger lower bound than

Problem (3.13) at the expense of being more computationally intensive to compute due to

the presence of positive semidefinite constraints. On average, the bound produced by (3.21)

is 8.92% greater than the bound produced by (3.13). These results suggests that if Problem

(3.21) can be solved to optimality or near optimality efficiently at scale, it could potentially

be used to accelerate Algorithm 4 by producing stronger lower bounds than the current

approach, thereby allowing for a more aggressive pruning of the feasible space. Off the

shelf interior point methods suffer from scalability challenges for semidefinite optimization

problems.

3.6.2 Electrocardiogram Signal Acquisition

We seek to answer the following question: how does the performance of Algorithm 4

compare to state-of-the-art methods such as BPD, IRWL1 and OMP on signal processing

using real world data? To evaluate performance, we consider the problem of compressed

sensing for electrocardiogram (ECG) acquisition [52]. We obtain real ECG recording samples

from the MIT-BIH Arrhythmia Database (https://www.physionet.org/content/mitdb/1.0.

139

https://www.physionet.org/content/mitdb/1.0.0/
https://www.physionet.org/content/mitdb/1.0.0/

0.2 0.4 0.6 0.8
0

10

20

30
Sp

ar
si

ty

Sparsity vs

BnB_Primal
OMP
BPD_rounded
IRWL1_rounded

0.2 0.4 0.6 0.8

0.84

0.86

0.88

0.90

0.92

0.94

0.96

A
cc

ur
ac

y

Accuracy vs

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1.0

TP
R

TPR vs

0.2 0.4 0.6 0.8

0.955

0.960

0.965

0.970

0.975

0.980

0.985

TN
R

TNR vs

Figure 3.3: Sparsity (top left), accuracy (top right), true positive rate (bottom left) and true
negative rate (bottom right) versus α with n = 200 and k = 10. Averaged over 100 trials for
each parameter configuration.

0/) and consider the performance of the methods in terms of sparsity of the returned signal

and reconstruction error between the returned signal and the true signal.

ECG Experiment Setup

We employ the same 100 ECG recordings sampled at 360 Hz from the MIT-BIH Arrhyth-

mia Database that are used in [52]. These recordings collectively originate from 10 distinct

patients (each contributing 10 independent recordings) and the recording length of an indi-

vidual record is 1024. In keeping with [52], we use 30 ECG recordings as a training set to

fit an overcomplete dictionary D via the K-SVD method [1]. We fit a dictionary with 2000

atoms, meaning that D ∈ R1024×2000 and X train ≈DΘ where X train ∈ R1024×30 is a matrix

140

https://www.physionet.org/content/mitdb/1.0.0/
https://www.physionet.org/content/mitdb/1.0.0/

Table 3.7: Comparison of the sparsity of solutions returned by (4), OMP, IRWL1 and BPD
for different values of α. Averaged over 100 trials for each parameter configuration.

Sparsity

α Algorithm 4 OMP IRWL1 BPD

0.05 31.6 32.8 33.2 37.4
0.10 21.9 22.9 23.3 26.2
0.15 15.6 16.1 16.5 18.3
0.20 12.2 12.7 12.8 14.1
0.25 8.8 9.1 9.1 9.7
0.30 6.6 6.9 6.9 7.2
0.35 5.8 5.9 6.0 6.2
0.40 4.6 4.7 4.7 4.8
0.45 3.8 3.9 3.9 3.9
0.50 3.2 3.3 3.3 3.4
0.55 2.8 2.8 2.8 2.8
0.60 2.2 2.2 2.2 2.2
0.65 2.0 2.1 2.1 2.1
0.70 1.7 1.8 1.8 1.8
0.75 1.5 1.5 1.5 1.5
0.80 1.2 1.3 1.2 1.2
0.85 1.1 1.1 1.1 1.1
0.90 1.0 1.0 1.0 1.0

whose columns are the training ECG signals and Θ ∈ R2000×30 is a sparse matrix. Each

column of Θ should be thought of as a (sparse) representation of the corresponding column

of X train in the dictionary given by D (∥Θ∥0 ≪ ∥X train∥0). We employ the Bernouilli

sensing matrix B ∈ R40×1024 considered by [52]. Given an ECG signal xtest ∈ R1024, we

consider the perturbed observations s = B(xtest + η) where η ∈ R1024 is a vector of mean 0

normal perturbations with variance
(

∥xtest∥1
4·1024

)2
I. Figure 3.6 illustrates the ECG signal and

perturbed ECG signal for record 31 of the dataset. With these preliminaries, we consider

the reconstruction problem given by

min
θ∈R2000

∥θ∥0 +
1

γ
∥θ∥22

s.t. ∥BDθ − s∥22 ≤ ϵ.

(3.28)

141

Table 3.8: Comparison of the accuracy of solutions returned by (4), OMP, IRWL1 and BPD
for different values of α. Averaged over 100 trials for each parameter configuration.

Accuracy

α Algorithm 4 OMP IRWL1 BPD

0.05 0.858 0.856 0.855 0.838
0.10 0.901 0.898 0.898 0.887
0.15 0.933 0.932 0.932 0.925
0.20 0.946 0.944 0.946 0.940
0.25 0.959 0.958 0.959 0.957
0.30 0.964 0.964 0.965 0.963
0.35 0.962 0.964 0.965 0.964
0.40 0.963 0.963 0.964 0.964
0.45 0.963 0.963 0.965 0.964
0.50 0.962 0.963 0.963 0.963
0.55 0.961 0.962 0.962 0.962
0.60 0.959 0.960 0.960 0.960
0.65 0.959 0.959 0.959 0.959
0.70 0.958 0.959 0.958 0.958
0.75 0.956 0.957 0.957 0.957
0.80 0.956 0.956 0.956 0.956
0.85 0.955 0.955 0.955 0.955
0.90 0.955 0.955 0.955 0.955

where we set ϵ = 1.05·∥s−Bxtest∥22. Note that (3.28) is equivalent to (3.3) where (θ,BD, s)

play the role of (x,A, b) and we have (n,m) = (2000, 40). Letting θ̂ denote a feasible solution

to (3.28) returned by one of the solution methods, we employ 10−4 as the numerical threshold

to compute the sparsity ∥θ̂∥0 of θ̂ and we define the ℓq reconstruction error of θ̂ as ∥Dθ̂−xtest∥qq
∥xtest∥qq

for q ∈ {1, 2}.

ECG Computational Results

We present a comparison of BPD, IRWL1, OMP and Algorithm 4 as we vary the regular-

ization parameter γ in (3.28). We considered values of γ in the set

Γ = {(8a+ 0.01)f(n) : a ∈ [14], f(n) ∈ {
√
n, n, n2}},

142

Table 3.9: Comparison of the execution time of solutions returned by (4), OMP, IRWL1 and
BPD for different values of α. Averaged over 100 trials for each parameter configuration.

Execution Time (milliseconds)

α Algorithm 4 OMP IRWL1 BPD

0.05 603205.808 22.798 5164.919 934.717
0.10 577124.980 18.061 2158.465 522.212
0.15 454366.242 15.535 1801.596 636.172
0.20 343487.778 14.636 2013.323 967.657
0.25 181672.232 13.970 1477.374 654.091
0.30 81074.212 14.253 1087.737 510.162
0.35 61929.838 13.475 1503.990 904.788
0.40 41775.950 13.838 1213.343 684.101
0.45 15927.495 18.939 1056.717 531.091
0.50 10387.101 13.687 1384.343 872.040
0.55 7032.818 18.091 1001.253 530.556
0.60 858.253 13.212 1118.929 640.242
0.65 1012.121 18.404 1280.869 926.727
0.70 494.808 18.333 783.697 514.081
0.75 499.677 19.899 696.495 511.717
0.80 749.626 20.283 965.010 910.485
0.85 479.091 20.606 539.768 537.869
0.90 462.808 13.394 485.869 514.566

and we evaluate performance on the 70 ECG recordings that are not part of the training set

used to fit the overcomplete dictionary D. We give Algorithm 4 a cutoff time of 5 minutes.

As in the synthetic experiments, we terminate IRWL1 after the 50th iteration or after two

subsequent iterates are equal up to numerical tolerance. Moreover, we sparsify the solutions

returned by BPD and IRWL1 using the procedure given by Algorithm 3 as done in the

synthetic experiments.

Figure 3.7 illustrates the average ℓ1 error (left) and average ℓ2 error (right) versus the

average sparsity of solutions returned by each method. Each red dot corresponds to the

performance of Algorithm 4 for a fixed value of γ ∈ Γ. Given that more sparse solutions and

solutions with lesser ℓ1 (respectively ℓ2) error are desirable, Figure 3.7 demonstrates that as

we vary γ, the solutions returned by Algorithm 4 trace out an efficient frontier that dominates

the solutions returned by BPD, IRWL1 and OMP. Indeed, for all benchmark methods (BPD,

143

0.2 0.4 0.6 0.8
0

2

4

6

8

10

12
Lo

w
er

 B
ou

nd
Lower Bound vs

SOC
SOS

0.2 0.4 0.6 0.8

10.0

12.5

15.0

17.5

20.0

22.5

Im
pr

ov
em

en
t (

%
)

SOS Lower
Bound Improvement

Figure 3.4: Problem (3.3) lower bound (left) produced by Problem (3.13) (SOC) and Problem
(3.21) (SOS) with d = 1. Percent improvement of Problem (3.3) lower bound of compared
to (right). n = 25,m = 100 and k = 10.

IRWL1 and OMP), there is a value of γ such that Algorithm 4 finds solutions that achieve

lower sparsity and lower reconstruction error than the solution returned by the benchmark

method. For the same ℓ2 reconstruction error, Algorithm 4 can produce solutions that are

on average 3.88% more sparse than IRWL1, 6.29% more sparse than BPD and 19.70% more

sparse than OMP. For the same sparsity level, Algorithm 4 can produce solutions that have

on average 1.42% lower ℓ2 error than IRWL1, 2.66% lower ℓ2 error than BPD and 28.23%

lower ℓ2 error than OMP. Thus, Algorithm 4 outperforms BPD, IRWL1 and OMP on this

real world dataset.

3.6.3 Multi-Label Classification

We seek to answer the following question: how does the performance of Algorithm 4 compare

to state-of-the-art methods such as BPD, IRWL1 and OMP when used as part of a learning

task on real world data? To evaluate the performance of the aforementioned algorithms in

this setting, we consider the problem of multi-label classification (MLC) [82]. In MLC, given

a dataset {(xi,yi)}ni=1 where xi ∈ Rm denotes a feature vector and yi ∈ {0, 1}d denotes a

label vector, we seek to learn a function f : Rm → {0, 1}d that can correctly classify unseen

144

0.2 0.4 0.6 0.8
0

1

2

3

4

5

6
Lo

w
er

 B
ou

nd
Lower Bound vs

SOC
SOS

0.2 0.4 0.6 0.8
4

6

8

10

12

14

Im
pr

ov
em

en
t (

%
)

SOS Lower
Bound Improvement

Figure 3.5: Problem (3.3) lower bound (left) produced by Problem (3.13) (SOC) and Problem
(3.21) (SOS) with d = 1. Percent improvement of Problem (3.3) lower bound of compared
to (right). n = 50,m = 25 and k = 10.

0 200 400 600 800 1000

1.5

1.0

0.5

0.0

0.5

1.0

True Signal

0 200 400 600 800 1000
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Perturbed Signal

Figure 3.6: Ground truth ECG signal (left) and perturbed signal (right) for ECG record 31.

examples. Note that this is a more general problem than a typical multi-class classification

problem with d classes since in this setting each example can be a member of multiple classes

simultaneously. When the number of classes d is very large, training d individual classifiers

in a one-against-all approach becomes prohibitively expensive. In this regime, if the label

vectors tend to be sparse relative to the size of the latent dimension d, one approach is

to project the labels into a smaller dimension k ≪ d using a linear compression function

and then to learn k predictors mapping the feature space to the projected label space.

Predictions can then be made by applying the k learned predictors on a given example and

145

10 11 12 13 14
Sparsity

0.80

0.85

0.90

0.95

1.00
1

er
ro

r

OMP
BPD_rounded
IRWL1_rounded
BnB_Primal

10 11 12 13 14
Sparsity

0.9

1.0

1.1

1.2

2
er

ro
r

Figure 3.7: ℓ1 reconstruction error (left) and ℓ2 reconstruction error (right) versus ℓ0 norm
(Sparsity) for ECG reconstructions obtained using OMP, BPD, IRWL1 and Algorithm 4 for
varying values of γ. n = 2000 and m = 40.

subsequently using a compressed sensing based reconstruction algorithm to transform the

prediction from projected label space to the latent label space [82, 87, 88, 129]. Explicitly,

given a linear map P ∈ Rk×d where k ≪ d, we form a transformed dataset {(xi,Pyi)}ni=1

and for each j ∈ {1, . . . , k} learn a regression function hj : Rm → R using the data given

by {(xi, [Pyi]j)}ni=1. Given a reconstruction function g : Rk×d × Rk → Rd that outputs a

sparse vector such that P [g(P , l)] ≈ l, we make predictions on a test point xtest by returning

g(P , [h1(xtest), . . . , hk(xtest)]). In Sections 3.6.3 and 3.6.3, we evaluate the performance of

this approach when Algorithm 4, BPD, IRWL1 and OMP are used as the reconstruction

function g.

MLC Experiment Setup

We obtain a text data set consisting of web pages and descriptive textual tags from the

former social bookmarking service del.icio.us that was originally collected by [137]. The

dataset consists of roughly 16000 web pages having d = 983 unique labels. Each web page

on average is associated with 19 labels. The web pages are each represented as a bag-of-

words feature vector. Further details can be found in [137]. We use 80% of the data for

training and withhold 20% for testing. We fix k = 100 during our experiments. We fix the

146

linear map P = 1√
k
H where H ∈ Rk×d is a matrix obtained by choosing k random rows

from the d× d Hadamard matrix in keeping with the approach taken by [82]. We use ridge

regression as our base learning algorithm for the regression functions {hj}kj=1 and tune the

ridge parameter via leave one out cross validation over the training set. Given a test data

point xtest ∈ Rm, we output a predicted label ŷ ∈ Rd by solving

min
y∈Rd
∥y∥0 +

5√
d
∥y∥22 s.t. ∥Py − h(xtest)∥22 ≤ ϵ. (3.29)

where [h(xtest)]j = hj(xtest) and we set ϵ = 0.25 · ∥h(xtest)∥22. Letting ŷ denote a feasible

solution to (3.29) returned by one of the solution methods, we are interested in measuring

the accuracy, precision and recall of the support of ŷ relative to the true label ytest. Let

Itrue = {i : [ytest]i = 1} and Î = {i : |ŷi| > 10−4}. We define the accuracy of ŷ as

ACC(ŷ) =

∑
i∈Itrue 1{|ŷi| > 10−4}+

∑
i/∈Itrue 1{|ŷi| ≤ 10−4}

d
.

Similarly, we define the precision of ŷ as

Precision(ŷ) =

∑
i∈Itrue 1{|ŷi| > 10−4}

|Itrue|
,

and we define the recall (true positive rate) of ŷ as

TPR(ŷ) =

∑
i∈Itrue 1{|ŷi| > 10−4}

|Î|
.

MLC Computational Results

We present a comparison of test set classification performance when each of BPD, IRWL1,

OMP and Algorithm 4 are used as the reconstruction algorithm g. We give Algorithm

4 a cutoff time of 10 minutes. As in the synthetic and ECG experiments, we terminate

IRWL1 after the 50th iteration or after two subsequent iterates are equal up to numerical

147

tolerance. Moreover, we sparsify the solutions returned by BPD and IRWL1 using the

procedure given by Algorithm 3 as done in the synthetic and ECG experiments. Figure

3.8 illustrates the average accuracy achieved by each method on the test set. We see that

that Algorithm 2 achieves slightly greater average accuracy than the benchmark methods.

Moreover, Table 3.10 illustrates the percentage of test examples on which each method has

the best performance for accuracy, precision and recall. We see that Algorithm 2 exhibits

superior performance than the baseline methods across all metrics of interest.

Algorithm 4 OMP BPD IRWL1

0.97225

0.97250

0.97275

0.97300

0.97325

0.97350

0.97375

0.97400

0.97425

A
cc

ur
ac

y

Figure 3.8: Test set prediction accuracy obtained using OMP, BPD, IRWL1 and Algorithm
4 as the label reconstruction algorithm.

3.6.4 Summary of Findings

We now summarize our findings from our numerical experiments. In Sections 3.6.1-3.6.1, we

see that across all experiments using synthetic data, Algorithm 4 produces solutions that

148

Table 3.10: Comparison of the accuracy of solutions returned by (4), OMP, IRWL1 and BPD
for different values of α. Averaged over 100 trials for each parameter configuration.

Top Performing Algorithm Frequency (%)

Metric Algorithm 4 OMP IRWL1 BPD

Accuracy 53.47 28.78 11.66 6.09
Precision 49.39 21.42 15.26 13.93
Recall 54.90 14.14 3.20 27.76

are on average 6.22% more sparse than the solutions returned by state of the art benchmark

methods after they are further sparsified by greedy rounding. If we omit greedy rounding,

Algorithm 4 produces solutions that are on average 17.17% more sparse in our synthetic

experiments. In Section 3.6.1, we find that the bound produced by (3.21) is on average

8.92% greater than the bound produced by (3.13). In Section 3.6.2, we see that for a given

level of ℓ2 reconstruction error, Algorithm 4 produces solutions that are on average 9.95%

more sparse than the solutions returned by state of the art benchmark methods after they

are further sparsified by greedy rounding on the real world ECG dataset we experiment with.

Furthermore, for a given sparsity level, Algorithm 4 produces solutions that have on average

10.77% lower ℓ2 reconstruction error than benchmark methods. Finally, in Section 3.6.3,

we see that Algorithm 4 outperforms benchmark methods when used as the reconstruction

algorithm for compressed sensing multi-label classification in terms of accuracy, precision

and recall.

3.7 Concluding Remarks

In this chapter, we introduced an ℓ2 regularized formulation (3.3) for CS which emits a

natural reformulation as a mixed-integer second order cone program (3.12). We presented

a second order cone relaxation (3.13) and a stronger but more expensive semidefinite cone

relaxation (3.21) to (3.12). We presented Algorithm 4, a custom branch and bound algorithm

that can compute globally optimal solution for (3.3). We find that our approach produces

149

solutions that are on average 6.22% more sparse on synthetic data and 9.95% more sparse on

real world ECG data when compared to three state of the art benchmark approaches. This

improvement in accuracy comes at the cost of an increase in computation time by several

orders of magnitude. When comparing only against the experiment-wise best performing

benchmark method, our approach produces solutions that are on average 3.10% more sparse

on synthetic data and 3.88% more sparse on real world ECG data. Moreover, our approach

outperforms benchmark methods when used as part of a multi-label learning algorithm.

Further work might focus on strengthening our convex relaxations by deriving additional

valid inequalities for (3.12) or increasing the scalability of our branch and bound method.

Algorithm 4 currently uses our second order cone relaxation to compute lower bounds. If

fast problem specific solution methods could be derived for our positive semidefinite cone

relaxation, employing the latter for lower bounds in Algorithm 4 could potentially lead to

important scalability gains.

150

Chapter 4

Predictive Low Rank Matrix Learning

under Partial Observations:

Mixed-Projection ADMM

The work in this chapter is based on the preprint [25] which is joint work with Dimitris

Bertsimas.

151

4.1 Introduction

In many real world applications, we are faced with the problem of recovering a (often large)

matrix from a (often small) subset of its entries. This problem, known as Matrix Completion

(MC), has gained significant attention due to its broad range of applications in areas such as

signal processing [45], system identification [99] and image denoising [85]. The fundamental

task in MC is to accurately reconstruct the missing entries of a matrix given a limited number

of observed entries. The challenge is particularly pronounced when the number of observed

entries is small relatively to the dimension of the matrix, yet this is the common scenario in

practice.

One of the most prominent uses of MC is in recommendation systems, where the goal is

to predict user preferences for items (e.g., movies, products) based on a partially observed

user-item rating matrix [119]. The Netflix Prize competition highlighted the potential of

MC techniques, where the objective was to predict missing ratings in a user-movie matrix to

improve recommendation accuracy [9]. The success of such systems hinges on the assumption

that the underlying rating matrix is low rank, meaning that the preferences of users can be

well-approximated by a small number of factors. Indeed, it has been well studied that many

real world datasets are low rank [138].

In many practical applications, in addition to a collection of observed matrix entries we

additionally have access to auxiliary side information that can be leveraged when performing

the reconstruction. For example, in a recommendation system, side information might consist

of social network data or item attributes. The vast majority of existing approaches to MC

in the presence of side information incorporate the side information by making additional

structural restrictions on the reconstructed matrix beyond the usual low rank assumption

(see, for example, [26, 58, 146]). In this work, we take an alternate approach by assuming

that the side information can be well modelled as a linear function of the underlying full

matrix. In this setting, the side information can be thought of as labels for a regression

152

problem where the unobserved matrix consists of the regression features. This assumption is

in keeping with ideas from the predictive low rank kernel learning literature [5] (note however

that low rank kernel learning assumes a fully observed input matrix).

Formally, let Ω ⊆ [n]× [m] denote a collection of revealed entries of a partially observed

matrix A ∈ Rn×m, let Y ∈ Rn×d denote a matrix of side information and let k denote a

specified target rank. We consider the problem given by

min
X∈Rn×m,α∈Rm×d

∑
(i,j)∈Ω

(Xij − Aij)
2 + λ∥Y −Xα∥2F + γ∥X∥⋆ s.t. rank(X) ≤ k, (4.1)

where λ, γ > 0 are hyperparameters that in practice can either take a default value or can

be cross-validated by minimizing a validation metric [114] to obtain strong out-of-sample

performance [34]. We assume that the ground truth matrix A has low rank and that the

side information can be well approximated as Y = Aα +N for some weighting matrix α

and noise matrix N . The first term in the objective function of (4.1) measures how well

the observed entries of the unknown matrix are fit by the estimated matrix X, the second

term of the objective function measures how well the side information Y can be represented

as a linear function of the estimated matrix X and the final term of the objective is a

regularization term. To the best of our knowledge, Problem (4.1) has not previously been

directly studied despite its very natural motivation.

4.1.1 Contribution and Structure

In this chapter, we tackle (4.1) by developing novel mixed-projection optimization tech-

niques [19]. We show that solving (4.1) is equivalent to solving an appropriately defined

robust optimization problem. We develop an exact reformulation of (4.1) by combining a

parametrization of the X decision variable as the product of two low rank factors with the in-

troduction of a projection matrix to model the column space of X. We derive a semidefinite

cone convex relaxation for our mixed-projection reformulation and we present an efficient,

153

scalable alternating direction method of multipliers (ADMM) algorithm that produces high

quality feasible solutions to (4.1). Our numerical results show that across all synthetic data

experiments in the small rank regime (k ≤ 15), our algorithm outputs solutions that achieve

on average 79% lower objective value in (4.1) and 90.1% lower ℓ2 reconstruction error than

the solutions returned by the best performing benchmark method on a per experiment ba-

sis. For the 5 synthetic data experiments with k > 15, the only benchmark that returns a

solution with superior quality than that returned by our algorithm takes on average 3 times

as long to execute. The runtime of our algorithm is competitive with and often superior to

that of the benchmark methods. Our algorithm is able to solve problems with n = 10000

rows and m = 10000 columns in less than a minute. On large scale real world data, our

algorithm produces solutions that achieve 67% lower out of sample error than benchmark

methods in 97% less execution time.

The rest of the chapter is laid out as follows. In Section 4.2, we review previous work that

is closely related to (4.1). In Section 4.3, we study (4.1) under a robust optimization lens

and investigate formulating (4.1) as a two stage optimization problem where the inner stage

is a regression problem that can be solved in closed form. We formulate (4.1) as a mixed-

projection optimization problem in Section 4.4 and present a natural convex relaxation. In

Section 4.5, we present and rigorously study our ADMM algorithm. Finally, in Section 4.6

we investigate the performance of our algorithm against benchmark methods on synthetic

and real world data.

4.2 Literature Review

In this section, we review a handful of notable approaches from the literature that have been

employed to solve MC and to solve general low rank optimization problems. As an exhaustive

literature review of MC methods is outside of the scope of this chapter, we focus our review

on a handful of well studied approaches which we will employ as benchmark methods in this

154

work. We additionally give an overview of the ADMM algorithmic framework which is of

central relevance to this work. For a more detailed review of the MC literature, we refer the

reader to [119] and [111].

4.2.1 Matrix Completion Methods

Iterative-SVD

Iterative-SVD is an expectation maximization style algorithm [60] that generates a solution

to the MC problem by iteratively computing a singular value decomposition (SVD) of the

current iterate and estimating the missing values by performing a regression against the low

rank factors returned by SVD [136]. This is one of a handful of methods in the literature

that leverage the SVD as their primary algorithmic workhorse [32, 126]. Concretely, given

a partially observed matrix {Xij}(i,j)∈Ω where Ω ⊆ [n] × [m] and a target rank k ∈ N+,

Iterative-SVD proceeds as follows:

1. Initialize the iteration count t← 0 and initialize missing entries of Xij, (i, j) /∈ Ω with

the row average Xij =
∑

l:(i,l)∈Ω Xil

|{l:(i,l)∈Ω}| .

2. Compute a rank k SVD Xt = UtΣtV
T
t of the current iterate where Ut ∈ Rn×k,Σt ∈

Rk×k,Vt ∈ Rm×k.

3. For each (i, j) /∈ Ω, estimate the missing value (Xt+1)ij by regressing all other entries

in row i against all except the jth row of Vt. Concretely, letting x̃ = (Xt)i,⋆\j ∈ Rm−1

denote the column vector consisting of the ith row of Xt excluding the jth entry, letting

Ṽ = (Vt)⋆\j,⋆ ∈ R(m−1)×k denote the matrix formed by eliminating the jth row from Vt

and letting v̂ = (Vt)j,⋆ ∈ Rk denote the column vector consisting of the jth row of Vt,

we set (Xt+1)ij = v̂T (Ṽ T Ṽ)−1Ṽ T x̃.

4. Terminate if the total change between Xt and Xt+1 is less than 0.01. Otherwise,

increment t and return to Step 2.

155

Soft-Impute

Soft-Impute is a convex relaxation inspired algorithm that leverages the nuclear norm as a

low rank inducing regularizer [105]. This approach is one of a broad class of methods that

tackle MC from a nuclear norm minimization lens [43, 48, 66]. Seeking a reconstruction

with minimum nuclear norm is typically motivated by the observation that the nuclear norm

ball given by B = {X ∈ Rn×n : ∥X∥⋆ ≤ k} is the convex hull of the non-convex set

X = {X ∈ Rn×n : rank(X) ≤ k, ∥X∥σ ≤ 1}, where ∥ · ∥σ denotes the spectral norm.

Moreover, several conditions have been established under which nuclear norm minimization

methods are guaranteed to return the ground truth matrix [43, 48] though such conditions

tend to be strong and hard to verify in practice. Soft-Impute proceeds by iteratively replacing

the missing elements of the matrix with those obtained from a soft thresholded low rank

singular value decomposition. Accordingly, similarly to Iterative-SVD, Soft-Impute relies on

the computation of a low rank SVD as the primary algorithmic workhorse. The approach

relies on the result that for an arbitrary matrix X, the solution of the problem minZ
1
2
∥X−

Z∥2F + λ∥Z∥⋆ is given by Ẑ = Sλ(X) where Sλ(·) denotes the soft-thresholding operation

[64]. Explicitly, Soft-Impute proceeds as follows for a given regularization parameter λ > 0

and termination threshold ϵ > 0:

1. Initialize the iteration count t← 0 and initialize Zt = 0n×m.

2. Compute Zt+1 = Sλ(PΩ(X)+P⊥
Ω (Zt)) where PΩ(·) denotes the operation that projects

onto the revealed entries of X while P⊥
Ω (·) denotes the operation that projects onto

the missing entries of X.

3. Terminate if ∥Zt−Zt+1∥2F
∥Zt∥2F

. Otherwise, increment t and return to Step 2.

Fast-Impute

Fast-Impute is a projected gradient descent approach to MC that has desirable global con-

vergence properties [26]. Fast-Impute belongs to the broad class of methods that solve MC

156

by factorizing the target matrix as X = UV T where U ∈ Rn×k,V ∈ Rm×k and performing

some variant of gradient descent (or alternating minimization) on the matrices U and V

[83, 86, 90, 153]. We note that we leverage this common factorization in the approach to (4.1)

presented in this work. Gradient descent based methods have shown great success. Despite

the non-convexity of the factorization, it has been shown that in many cases gradient descent

and its variants will nevertheless converge to a globally optimal solution [26, 56, 68, 102, 130].

Fast-Impute takes the approach of expressing U as a closed form function of V after per-

forming the facorization and directly performs projected gradient descent updates on V with

classic Nesterov acceleration [109]. Moreover, to enhance scalability of their method, [26]

design a stochastic gradient extension of Fast-Impute that estimates the gradient at each

update step by only considering a sub sample of the rows and columns of the target matrix.

4.2.2 Low Rank Optimization Methods

ScaledGD

ScaledGD is a highly performant method to obtain strong solutions to low rank matrix

estimation problems that take the following form:

min
X∈Rn×m

f(X) =
1

2
∥A(X)− y∥22 s.t. rank(X) ≤ k,

where A(·) : Rn×m → Rl models some measurement process and we have y ∈ Rl [133].

ScaledGD proceeds by factorizing the target matrix as X = UV T and iteratively performing

gradient updates on the low rank factors U ,V after preconditioning the gradients with an

adaptive matrix that is efficient to compute. Doing so yields a linear convergence rate that is

notably independent of the condition number of the low rank matrix. In so doing, ScaledGD

combines the desirable convergence rate of alternating minimization with the desirable low

per-iteration cost of gradient descent. Explicitly, letting L(U ,V) = f(UV T), ScaledGD

157

updates the low rank factors as:

Ut+1 ← Ut − η∇UL(Ut,Vt)(V
TV)−1,

Vt+1 ← Vt − η∇V L(Ut,Vt)(U
TU)−1,

where η > 0 denotes the step size.

Mixed-Projection Conic Optimization

Mixed-projection conic optimization is a recently proposed modelling and algorithmic frame-

work designed to tackle a broad class of matrix optimization problems [19, 20]. Specifically,

this approach considers problems that have the following form:

min
X∈Rn×m

⟨C,X⟩+ λ · rank(X) + Ω(X) s.t. AX = B, rank(X) ≤ k, X ∈ K, (4.2)

where C ∈ Rn×m is a cost matrix, λ > 0, k ∈ N+, A ∈ Rl×n,B ∈ Rl×m,K denotes a proper

cone in the sense of [35] and Ω(·) is a Frobenius norm regularization function or a spectral

norm regularization function of the input matrix. The main workhorse of mixed-projection

conic optimization is the use of a projection matrix to cleverly model the rank terms in

(4.2). This can be viewed as the matrix generalization of using binary variables to model the

sparsity of a vector in mixed-integer optimization. [19] show that for an arbitrary matrix

X ∈ Rn×m, we have

rank(X) ≤ k ⇐⇒ ∃P ∈ Sn : P 2 = P ,Tr(P) ≤ k,X = PX.

Introducing projection matrices allows the rank functions to be eliminated from (4.2) at the

expense of introducing non-convex quadratic equality constraints. From here, most existing

works that leverage mixed-projection conic optimization have either focused on obtaining

158

strong semidefinite based convex relaxations [19, 20] or have focused on obtaining certifiably

optimal solutions for small and moderately sized problem instances [15, 16]. In this work, we

leverage the mixed-projection framework to scalably obtain high quality solutions to large

problem instances.

4.2.3 Alternating Direction Method of Multipliers

Alternating direction method of multipliers (ADMM) is an algorithm that was originally

designed to solve linearly constrained convex optimization problems of the form

min
x∈Rn,z∈Rm

f(x) + g(z) s.t. Ax+Bz = c, (4.3)

where we have A ∈ Rl×n,B ∈ Rl×m, c ∈ Rl and the functions f and g are assumed to be

convex [37]. The main benefit of ADMM is that it can combine the decomposition benefits of

dual ascent with the desirable convergence properties of the method of multipliers. Letting

y ∈ Rl denote the dual variable, the augmented Lagrangian of (4.3) is given by

LA(x, z,y) = f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2
∥Ax+Bz − c∥22,

where ρ > 0 is the augmented Lagrangian parameter. ADMM then proceeds by iteratively

updating the primal variable x, updating the primal variable z and taking a gradient ascent

step on the dual variable y. Explicitly, ADMM consists of the following updates:

1. xt+1 ← argminx LA(x, zt,yt),

2. zt+1 ← argminz LA(xt+1, z,yt),

3. yt+1 ← yt + ρ(Axt+1 +Bzt+1 − c).

Under very mild regularity conditions on f, g and LA, it is well known that ADMM is

guaranteed to produce a sequence of primal iterates that converges to the optimal value of

159

(4.3) and a sequence of dual iterates that converge to the optimal dual variable (note that

there is no guarantee of primal variable convergence) [37]. Importantly, although ADMM was

originally designed for linearly constrained convex optimization, it has often been applied

to non-convex optimization problems and yielded empirically strong results [148]. This

observation has motivated work to explore the theoretical convergence behavior of ADMM

and its variants on specific classes of non-convex optimization problems [78, 141, 143].

4.3 Formulation Properties

In this section, we rigorously investigate certain key features of (4.1). Specifically, we estab-

lish an equivalence between (4.1) and an appropriately defined robust optimization problem.

Moreover, we illustrate that (4.1) can be reduced to an optimization problem over only X and

establish that the resulting objective function is not convex, not concave and non-smooth.

Finally, we study how efficient evaluations of the reduced problem objective function can be

performed.

4.3.1 Equivalence Between Regularization and Robustness

Real-world datasets frequently contain inaccuracies and missing values, which hinder the

ability of machine learning models to generalize effectively to new data when these incon-

sistencies are not appropriately modelled. Consequently, robustness is a crucial quality for

machine learning models, both in theory and application [23, 145]. In this section, we show

that our regularized problem (4.1) can be viewed as a robust optimization (RO) problem.

This finding justifies the inclusion of the nuclear norm regularization term in (4.1) and is in

a similar flavor as known results from the robust optimization literature in the case of vector

[13] and matrix [15] problems.

160

Proposition 32 Problem (4.1) is equivalent to the following robust optimization problem:

min
X∈Rn×m,α∈Rm×d

max
∆∈U

∑
(i,j)∈Ω

(Xij − Aij)
2 + λ∥Y −Xα∥2F + ⟨X,∆⟩ s.t. rank(X) ≤ k0,

(4.4)

where U = {∆ ∈ Rn×m : ∥∆∥σ ≤ γ}.

Proof To establish this result, it suffices to argue that max∆∈U⟨X,∆⟩ = γ∥X∥⋆. This

equivalence follows immediately from the fact that the nuclear norm is dual to the spectral

norm. So as to keep this manuscript self contained, we present a proof of this equivalence

below.

Consider any matrix ∆̄ ∈ Rn×m such that ∥∆̄∥σ ≤ γ. Let X = UΣV T be a singular

value decomposition of X where we let r = rank(X) and we have U ∈ Rn×r,Σ ∈ Rr×r,V ∈

Rm×r. We have

⟨X, ∆̄⟩ = Tr(∆̄TUΣV T) = Tr(V T∆̄TUΣ) = ⟨UT∆̄V ,Σ⟩ =
r∑

i=1

Σii(U
T∆̄V)ii

=
r∑

i=1

ΣiiU
T
i ∆̄Vi ≤

r∑
i=1

Σiiσ1(∆̄) ≤ γ
r∑

i=1

Σii = γ∥X∥⋆,

where we have used the fact that Σ is a diagonal matrix and the columns of U and V have

unit length. Thus, we have shown that γ∥X∥⋆ is an upper bound for max∆∈U⟨X,∆⟩. To

show that the upper bound is always achieved, consider the matrix ∆̃ = γUV T ∈ Rn×m

where U and V are taken from a singular value decomposition of X. Observe that

∥∆̃∥σ = γ∥UV T∥σ ≤ γ =⇒ ∆̃ ∈ U .

We conclude by noting that

⟨X, ∆̃⟩ = Tr(V ΣUTγUV T) = γTr(V TV ΣUTU) = γTr(IΣI) = γ∥X∥⋆.

161

Proposition 32 implies that solving the nuclear norm regularized (4.1) is equivalent to solving

an unregularized robust optimization problem that protects against adversarial perturbations

that are bounded in spectral norm. This result is not surprising given the duality of norms,

yet is nevertheless insightful.

4.3.2 A Partial Minimization

Let g(X,α) denote the objective function of (4.1). Note that g(X,α) is bi-convex in

(X,α) but is not jointly convex due to the product Xα. Observe that we can simplify

(4.1) by performing a partial minimization in α. For any X, the problem in α requires

finding the unconstrained minimum of a convex quadratic function. The gradient of g with

respect to α is given by ∇αg(X,α) = 2λXT (Xα − Y). Setting ∇αg(X,α) to 0 yields

α⋆ = (XTX)†XTY as a minimizer of g over α. Note that M † denotes the pseudo-inverse

of a (possibly rank deficient) square matrix M ∈ Rl×l. Specifically, letting r = rank(M)

and M = UΣV T be a singular value decomposition of M with U ,V ∈ Rl×r and Σ ∈ Rl×l,

we have M † = UΣ−1V T . Letting f(X) correspond to the partially minimized objective

function of (4.1), we have

f(X) = min
α

g(X,α) =
∑

(i,j)∈Ω

(Xij − Aij)
2 + λ∥(In −X(XTX)†XT)Y ∥2F + γ∥X∥⋆

=
∑

(i,j)∈Ω

(Xij − Aij)
2 + λTr

(
Y T (In −X(XTX)†XT)Y

)
+ γ∥X∥⋆.

We note that α⋆ corresponds to the well studied ordinary least squares solution. When XTX

has full rank, α is the unique minimizer of g. If XTX is rank deficient, α⋆ corresponds to

the minimizer with minimum norm.

Though we have simplified the objective function of (4.1), f(X) is not a particularly well

behaved function. We formalize this statement in Proposition (33).

Proposition 33 The function f(X) is in general neither convex nor concave and is non-

162

smooth.

Proof To illustrate that f(X) is in general neither convex nor concave, suppose that Ω = ∅,

n = 2 and m = d = λ = γ = 1. In this setting, we have x,y ∈ R2×1. Assuming that x ̸= 02,

we can write the objective function as

f(x) = Tr(yT (I2 − x(xTx)−1xT)y) + ∥x∥⋆

= yTy − yTxxTy

xTx
+ ∥x∥2

= yTy − (yTx)2

xTx
+
√
xTx.

For x = 02, the objective value f(02) is equal to yTy. Let y = 12 and consider the line in

R2 defined by X = {x ∈ R2 : x2 = x1 +1}. The restriction of f(x) to the line defined by X

is a univariate function given by

fX (t) = 2− (2t+ 1)2

2t2 + 2t+ 1
+
√
2t2 + 2t+ 1,

where t ∈ R is a dummy variable. Observe that we have fX (−1) = fX (0) = 2, fX (−0.5) =

2 +
√
2
2

and fX (−4) = fX (3) = 5.04. Thus, the point (−0.5, fX (0.5)) lies above the chord

connecting (−1, fX (−1)) and (0, fX (0)), so fX (t) is not a convex function. Moreover, the

point (−1, fX (−1)) lies below the chord connecting (−4, fX (−4)) and (−0.5, fX (−0.5)), so

fX (t) is not a concave function. Since a function is convex (respectively concave) if and

only if its restriction to every line is convex (respectively concave), we have established that

f(X) is neither convex nor concave since fX (t) is neither convex nor concave. To conclude

the proof of Proposition 33, note that the non-smooth property of f(X) follows immediately

from the non-smooth property of the nuclear norm function.

Although the above closed form partial minimization in α eliminates m × d variables

form (4.1), this comes at the expense of introducing a m × m matrix pseudo-inverse term

163

into the objective function which can be computationally expensive to evaluate. Efficient

evaluation of an objective function is crucial in many optimization problems to quickly

measure solution quality. A plethora of modern optimization techniques require iterative

objective function evaluations. As a result, the computational cost of evaluating an objective

function can quickly become the bottleneck of an algorithm’s complexity. Directly evaluating

f(X) naively requires O(|Ω|) operations for the first term, O(m2n+m3+n2d) for the second

term (forming the matrix XTX is O(m2n), taking the pseudo-inverse is O(m3), computing

the products involving Y is O(n2d)) and requires O(mnmin(m,n)) for the third term (the

nuclear norm can be evaluated by computing a singular value decomposition of X). We

observe that computing the second term of f(X) involving the pseudo-inverse dominates

the complexity calculation. Indeed, the overall complexity of evaluating f(X) naively is

O(m2n+m3 + n2d).

Fortunately, it is possible to make evaluations of f(X) without explicitly forming the

product XTX or taking a pseudo-inverse. Proposition 34 illustrates that it suffices (in terms

of computational complexity) to take a singular value decomposition of X. Moreover, a large

class of optimization algorithms require only function evaluations for feasible solutions. If

we consider only those values of X that are feasible to (4.1), it is sufficient (in terms of

computational complexity) to take a rank k truncated singular value decomposition of X to

make functions evaluations of f(X).

Proposition 34 The function f(X) can equivalently be written as

f(X) =
∑

(i,j)∈Ω

(Xij − Aij)
2 + λTr

(
Y T (In −UUT)Y

)
+ γ∥X∥⋆,

where X = UΣV T is a singular value decomposition of X where we let r = rank(X) and

we have U ∈ Rn×r,Σ ∈ Rr×r,V ∈ Rm×r.

164

Proof To establish the result, it suffices to show that

Tr
(
Y TX(XTX)†XTY

)
= Tr

(
Y TUUTY

)
.

Let X = UΣV T be a singular value decomposition of X where r = rank(X) and U ∈

Rn×r,Σ ∈ Rr×r,V ∈ Rm×r. Observe that

Tr
(
Y TX(XTX)†XTY

)
= Tr

(
Y TUΣV T (V ΣUTUΣV T)†V ΣUTY

)
= Tr

(
Y TUΣV T (V Σ2V T)†V ΣUTY

)
= Tr

(
Y TUΣV TV Σ−2V TV ΣUTY

)
= Tr

(
Y TUΣΣ−2ΣUTY

)
= Tr

(
Y TUUTY

)
,

where we have repeatedly invoked the property that UTU = V TV = Ir.

In light of Proposition 34, evaluating f(X) for feasible solutions still requires O(|Ω|) oper-

ations for the first term, but the second term can be evaluated using O(kn(m + d)) opera-

tions (performing a truncated singular value decomposition is O(knm) and computing the

products involving Y is O(knd)) and the third term can be evaluated using O(knm) opera-

tions (by performing a truncated singular value decomposition) for an overall complexity of

O(kn(m+ d)). This is significantly less expensive than the O(m2n+m3 + n2d) complexity

of naive direct evaluation of f(X) introduced previously.

4.4 An Exact Mixed-Projection Formulation

In this section, we reformulate (4.1) as a mixed-projection optimization problem and further

reduce the dimension of the resulting problem in a commonly studied manner by parame-

terizing X as the matrix product of two low dimensional matrices. Thereafter, we illustrate

how to employ the matrix generalization of the perspective relaxation [15, 19, 20, 77] to

165

construct a convex relaxation of (4.1).

We first note that given the result of Section 4.3.2, we can rewrite (4.1) as an optimization

problem only over X as follows:

min
X∈Rn×m

∑
(i,j)∈Ω

(Xij − Aij)
2 + λTr

(
Y T (In −X(XTX)†XT)Y

)
+ γ∥X∥⋆

s.t. rank(X) ≤ k.

(4.5)

Observe that the matrix X(XTX)†XT is the linear transformation that projects vectors

onto the subspace spanned by the columns of the matrix X. Drawing on ideas presented

in [15, 19, 20], we introduce an orthogonal projection matrix P ∈ Pk to model the column

space of X where Pη = {P ∈ Sn : P 2 = P , tr(P) ≤ η} for η ≥ 0. We can express the

desired relationship between P and X as X = PX since projecting a matrix onto its own

column space leaves the matrix unchanged. This gives the following reformulation of (4.1):

min
X∈Rn×m,P∈Rn×n

∑
(i,j)∈Ω

(Xij − Aij)
2 + λTr

(
Y T (In − P)Y

)
+ γ∥X∥⋆

s.t. (In − P)X = 0n×m, P ∈ Pmin(k,rank(X)).

(4.6)

Observe that the matrix pseudo-inverse term has been eliminated from the objective function,

however we have introduced the bilinear constraint X = PX which is non-convex in the

optimization variables as well as the non-convex constraint P ∈ Pmin(k,rank(X)). We now have

the following result:

Proposition 35 Problem (4.6) is a valid reformulation of (4.5).

Proof We show that given a feasible solution to (4.6), we can construct a feasible solution

to (4.5) that achieves the same objective value and vice versa.

Consider an arbitrary feasible solution (X̄, P̄) to (4.6). Since P̄ X̄ = X̄ and P̄ ∈

Pmin(k,rank(X̄)), we have rank(X̄) ≤ k. We claim that X̄ achieves the same objective value

166

in (4.5) as (X̄, P̄) achieves in (4.6). To show this, it suffices to illustrate that for all (X̄, P̄)

feasible to (4.6) we have H(X̄) := X̄(X̄TX̄)†X̄T = P̄ . The matrix P̄ is an orthogonal

projection matrix since it is symmetric and satisfies P̄ 2 = P̄ . Moreover, since rank(P̄) =

rank(X̄) and P̄ X̄ = X̄ we know that P̄ is an orthogonal projection onto the subspace

spanned by the columns of X̄. Similarly, it can easily be verified that H(X̄) is symmetric

and satisfies H(X̄)2 = H(X̄), rank(H(X̄)) = rank(X̄) and H(X̄)X̄ = X̄. Thus, H(X̄) is

also an orthogonal projection matrix onto the subspace spanned by the columns of X̄. To

conclude, we invoke the property that given a subspace V ⊂ Rn the orthogonal projection

onto V is uniquely defined. To see this, suppose P1 and P2 are two orthogonal projections

onto V . Let l = dim(V). Let {ei}li=1 be an orthogonal basis for V and let {ei}nl+1 be an

orthogonal basis for V⊥. Since P1 is an orthogonal projection onto V , we have P1ei = ei for

all 1 ≤ i ≤ l and P1ei = 0n for all l+1 ≤ i ≤ n. However, the same must hold for P2 which

implies that P1 = P2.

Consider an arbitrary feasible solution X̄ to (4.5). Let r = rank(X̄) and X̄ = ŪΣ̄V̄ T

be a singular value decomposition of X̄ where we have Ū ∈ Rn×r, Σ̄ ∈ Rr×r, V̄ ∈ Rm×r.

Define P̄ = ŪŪT . By construction, we have P̄ ∈ Pmin(k,rank(X̄)) since r ≤ k. Moreover, it is

easy to verify that

P̄ X̄ = ŪŪT ŪΣ̄V̄ T = ŪΣ̄V̄ T = X̄,

where we have used the property ŪT Ū = Ir. Finally, Proposition 34 immediately implies

that (X̄, P̄) achieves the same objective in (4.6) as X̄ achieves in (4.5). This completes the

proof.

Optimizing explicitly over the space of n × m matrices can rapidly become prohibitively

costly in terms of runtime and memory requirements. Accordingly, we adopt the common

approach of factorizing X ∈ Rn×m as UV T for U ∈ Rn×k,V ∈ Rm×k. This leads to the

following formulation:

167

min
U∈Rn×k,V ∈Rm×k,

P∈Rn×n

∑
(i,j)∈Ω

((UV T)ij − Aij)
2 + λTr

(
Y T (In − P)Y

)
+

γ

2
(∥U∥2F + ∥V ∥2F)

s.t. (In − P)U = 0n×k, P ∈ Pmin(k,rank(UV T)).

(4.7)

Notice that we have replaced n ×m optimization variables with k × (n +m) optimization

variables, an often significant dimension reduction in practice. Attentive readers may object

that though this is true, we have introduced n2 decision variables through the introduction

of the projection matrix variable P which nullifies any savings introduced through the fac-

torization of X. Note, however, that it is possible to factor any feasible projection matrix as

P = MMT for some M ∈ Rn×k. In Section 4.5, we leverage this fact so that the presence

of the projection matrix incurs a cost of n× k additional variables rather than n2 variables.

We have the following result:

Proposition 36 Problem (4.7) is a valid reformulation of (4.6).

Proof We show that given a feasible solution to (4.7), we can construct a feasible solution

to (4.6) that achieves the same or lesser objective value and vice versa.

Consider an arbitrary feasible solution (Ū , V̄ , P̄) to (4.7). Let X̄ = Ū V̄ T . We will show

that (X̄, P̄) is feasible to (4.6) and achieves the same or lesser objective as (Ū , V̄ , P̄) does

in (4.7). Feasibility of (4.7) implies that P̄ ∈ Pmin(k,rank(ŪV̄ T)) = Pmin(k,rank(X̄)) and also that

(In − P̄)X̄ = (In − P̄)Ū V̄ T = 0n×kV̄
T = 0n×m,

thus the solution (X̄, P̄) is certainly feasible for (4.6). To see that (X̄, P̄) achieves the same

or lesser objective value, it suffices to argue that ∥X̄∥⋆ ≤ 1
2
(∥Ū∥2F + ∥V̄ ∥2F). This follows

immediately from the following lemma established by [105] (see Appendix A.5 in their paper

for a proof):

168

Lemma 37 For any matrix Z, the following holds:

∥Z∥⋆ = min
U ,V :Z=UV T

1

2
(∥U∥2F + ∥V ∥2F).

If rank(Z) = k ≤ min(m,n), then the minimum above is attained at a factor decomposition

Un×kV
T
m×k. Letting Zn×m = Ln×kΣk×kR

T
m×k denote a singular value decomposition of Z,

the minimum above is attained at Un×k = Ln×kΣ
1
2
k×k,Vm×k = Rm×kΣ

1
2
k×k.

Consider now an arbitrary feasible solution (X̄, P̄) to (4.6). Let X̄ = LΣRT be a

singular value decomposition of X̄ where L ∈ Rn×k,Σ ∈ Rk×k,R ∈ Rm×k and define

Ū = LΣ
1
2 , V̄ = RΣ

1
2 . Feasibility of (X̄, P̄) in (4.6) implies that P̄ ∈ Pmin(k,rank(X̄)) =

Pmin(k,rank(ŪV̄ T)). Moreover, since the columns of L form an orthogonal basis for the columns

space of X̄, the condition (In − P̄)X̄ = 0n×m implies that

(In − P̄)Ū = (In − P̄)LΣ
1
2 = 0n×kΣ

1
2 = 0n×k.

Thus, the solution (Ū , V̄ , P̄) is feasible to (4.7). Moreover, by Lemma 37 we have 1
2
(∥Ū∥2F +

∥V̄ ∥2F) = ∥X̄∥⋆ so (Ū , V̄ , P̄) achieves the same objective in (4.7) as (X̄, P̄) does in (4.6).

This completes the proof.

In the remainder of the chapter, we will relax the constraint P ∈ Pmin(k,rank(UV T)) to

P ∈ Pk and develop a scalable algorithm to obtain high quality feasible solutions. Explicitly,

we consider the problem given by:

169

min
U∈Rn×k,V ∈Rm×k,

P∈Rn×n

∑
(i,j)∈Ω

((UV T)ij − Aij)
2 + λTr

(
Y T (In − P)Y

)
+

γ

2
(∥U∥2F + ∥V ∥2F)

s.t. (In − P)U = 0n×k, P ∈ Pk.

(4.8)

It is straightforward to see that the optimal value of (4.8) is no greater than the optimal

value of (4.7). Unfortunately, the converse does not necessarily hold. To see why the optimal

value of (4.8) can be strictly less than that of (4.7) in certain pathological cases, suppose

we had k = n = m, Ω = ∅. In this setting, letting P̄ = In, U = 0n×k and V̄ = 0m×k, the

solution (Ū , V̄ , P̄) would be feasible to (4.8) and achieve an objective value of 0. However

the optimal value of (4.7) would be strictly greater than 0 in this setting as long as Y ̸= 0.

Although (4.8) is a relaxation of (4.1), we will see in Section 4.6 that the solutions we will

obtain to (4.8) will be high quality solutions for (4.1), the main problem of interest.

4.4.1 A Positive Semidefinite Cone Relaxation

Convex relaxations are useful in non-convex optimization primarily for two reasons. Firstly,

given the objective value achieved by an arbitrary feasible solution, strong convex relax-

ations can be used to upperbound the worst case suboptimality of said solution. Secondly,

convex relaxations can often be used as building blocks for global optimization procedures.

In this section, we present a natural convex relaxation of (4.8) that leverages the matrix

generalization of the perspective relaxation [15, 19, 20, 77].

Rather than working directly with (4.8), consider the equivalent formulation (4.6) with

Pmin(k,rank(X)) replaced by Pk. Before proceeding, we will assume knowledge of an upper

bound M ∈ R+ on the spectral norm of an optimal X to (4.6). Tighter bounds M are

desirable as they will lead to stronger convex relaxations of (4.6). We note that it is always

possible to specify such an upper bound M without prior knowledge of an optimal solution

to (4.6). To see this, note that setting X = 0n×m in (4.6) produces an objective value

170

of
∑

(i,j)∈Ω A2
ij + λ∥Y ∥2F . Thus, any X such that γ∥X∥⋆ >

∑
(i,j)∈ΩA2

ij + λ∥Y ∥2F cannot

possibly be optimal to (4.6). Finally, since the nuclear norm is an upper bound on the

spectral norm of a matrix, we must have

∥X∥σ ≤
∑

(i,j)∈Ω A2
ij + λ∥Y ∥2F
γ

,

for any matrix X that is optimal to (4.6). We can therefore take M =
∑

(i,j)∈Ω A2
ij+λ∥Y ∥2F
γ

.

Notice that the non-convexity in (4.6) is captured entirely by the bilinear constraint

(In − P)X = 0n×m and the quadratic constraint P 2 = P . In keeping with the approach

presented in [15, 20], we leverage the matrix perspective to convexify the bilinear term and

solve over the convex hull of the set Pk. Recalling that the nuclear norm is semidefinite

representable, we have the following formulation:

min
P ,W1∈Rn×n,

X∈Rn×m,W2∈Rm×m

∑
(i,j)∈Ω

(Xij − Aij)
2 + λTr

(
Y T (In − P)Y

)
+

γ

2
(Tr(W1) + Tr(W2))

s.t. In ⪰ P ⪰ 0, Tr(P) ≤ k,MP X

XT MIm

 ⪰ 0,

W1 X

XT W2

 ⪰ 0.

(4.9)

We now have the following result:

Proposition 38 Problem (4.9) is a valid convex relaxation of (4.8).

Proof Problem (4.9) is clearly a convex optimization problem. We will show that the

optimal value of (4.9) is a lower bound on the optimal value of (4.8) by showing that given

any optimal solution to (4.8), we can construct a feasible solution to (4.9) that achieves the

same objective value.

Consider any optimal solution (Ū , V̄ , P̄) to (4.8). From the proof of Proposition 36, we

know that the solution (X̄, P̄) where X̄ = Ū V̄ T is feasible to (4.6) (where we replace the

171

constraint P ∈ Pmin(k,rank(UV T)) with P ∈ Pk) and must also be optimal. Let X̄ = LΣRT

be a singular value decomposition of X̄ with L ∈ Rn×k,Σ ∈ Rk×k and R ∈ Rm×k. Let

W̄1 = LΣLT and W̄2 = RΣRT . We claim that (X̄, P̄ , W̄1, W̄2) is feasible to (4.9) and

achieves the same objective value as (X̄, P̄) does in (4.6).

From the feasibility of P̄ in (4.8), we know that P̄ ∈ Pk which implies In ⪰ P̄ ⪰ 0 and

Tr(P̄) ≤ k. By the generalized Schur complement lemma (see [36], Equation 2.41), we know

that MP̄ X̄

X̄T MIm

 ⪰ 0 ⇐⇒ MIm ⪰ 0, and MIm − X̄T (MP̄)†X̄ ⪰ 0.

We trivially have MIm ⪰ 0. To see that the second condition holds, note that since P̄

is a projection matrix and P̄ X̄ = X̄, we have X̄T (MP̄)†X̄ = 1
M
X̄T P̄ X̄ = 1

M
X̄TX̄.

Furthermore, since X̄ is optimal to (4.6), we have ∥X̄∥σ ≤ M by assumption. Thus, we

have

∥X̄∥σ ≤M =⇒ ∥X̄TX̄∥σ ≤M2 =⇒ M2Im ⪰ X̄TX̄ =⇒ MIm ⪰
1

M
X̄TX̄.

Finally, observe that

W̄1 X̄

X̄T W̄2

 =

LΣLT LΣRT

RΣLT RΣRT

 =

L

R

Σ

L

R


T

.

Since Σ is a diagonal matrix with non negative entries, the matrix

W̄1 X̄

X̄T W̄2

 is certainly

positive semidefinite. Thus we have shown that (X̄, P̄ , W̄1, W̄2) is indeed feasible to (4.9).

To conclude the proof, we note that

γ

2
(Tr(W̄1) + Tr(W̄2)) =

γ

2
(Tr(LΣLT) + Tr(RΣRT)) =

γ

2
(Tr(LTLΣ) + Tr(RTRΣ))

=
γ

2
(Tr(Σ) + Tr(Σ)) = γ∥X̄∥⋆,

172

thus (X̄, P̄ , W̄1, W̄2) achieves the same objective value in (4.9) as (X̄, P̄) achieves in (4.6).

In general, an optimal solution to (4.9) will have P /∈ Pk. We briefly note that to ob-

tain a stronger convex relaxation, one could leverage eigenvector disjunctions [16, 127] to

iteratively cut off solutions to (4.9) with P /∈ Pk and form increasingly tighter disjunctive

approximations to the set Pk.

4.5 Mixed-Projection ADMM

In this section, we present an alternating direction method of multipliers (ADMM) algorithm

that is scalable and obtains high quality solutions for (4.8) and we investigate its convergence

properties. Rather than forming the augmented Lagrangian directly for (4.8), we first modify

our problem formulation by introducing a dummy variable Z ∈ Rn×k that is an identical

copy of U . Additionally, rather than directly enforcing the constraint P ∈ Pk, we introduce

an indicator function penalty IPk
(P) into the objective function where IX (x) = 0 if x ∈ X ,

otherwise IX (x) =∞. Explicitly, we consider the following problem:

min
U ,Z∈Rn×k,
V ∈Rm×k,
P∈Rn×n

∑
(i,j)∈Ω

((UV T)ij − Aij)
2 + λTr

(
Y T (In − P)Y

)
+

γ

2
(∥U∥2F + ∥V ∥2F) + IPk

(P)

s.t. (In − P)U = 0n×k, U −Z = 0n×k.

(4.10)

It is trivial to see that (4.10) is equivalent to (4.8). We will see in this section that working

with formulation (4.10) leads to an ADMM algorithm with favorable decomposition prop-

erties. Introducing dual variables Φ,Ψ ∈ Rn×k for the constraints (In − P)U = 0n×k and

U −Z = 0n×k respectively, the augmented Lagrangian LA for (4.10) is given by:

173

LA(U ,V ,P ,Z,Φ,Ψ) =
∑

(i,j)∈Ω

((UV T)ij − Aij)
2 + λTr

(
Y T (In − P)Y

)
+

γ

2
(∥U∥2F + ∥V ∥2F) + IPk

(P) + Tr(ΦT (In − P)Z)

+ Tr(ΨT (Z −U)) +
ρ1
2
∥(In − P)Z∥2F +

ρ2
2
∥Z −U∥2F ,

(4.11)

where ρ1, ρ2 > 0 are non-negative penalty parameters. In what follows, we show that per-

forming a partial minimization of the augmented Lagrangian (4.11) over each of the primal

variables U ,V ,P ,Z yields a subproblem that can be solved efficiently. We present each

subproblem and investigate the complexity of computing the corresponding subproblem so-

lutions.

4.5.1 Subproblem in U

First, suppose we fix variables V ,P ,Z,Φ,Ψ and seek to minimize LA(U ,V ,P ,Z,Φ,Ψ)

over U . Eliminating terms that do not depend on U , the resulting subproblem is given by

min
U∈Rn×k

∑
(i,j)∈Ω

((UV T)ij − Aij)
2 +

γ

2
∥U∥2F − Tr(ΨTU) +

ρ2
2
∥Z −U∥2F . (4.12)

We now have the following result:

Proposition 39 The optimal solution Ū for (4.12) is given by

Ūi,⋆ = [2V TWiV + (γ + ρ2)Ik]
−1[2V TWiAi,⋆ +Ψi,⋆ + ρ2Zi,⋆], (4.13)

for each i ∈ {1, . . . , n} where each Wi ∈ Rm×m is a diagonal matrix satisfying (Wi)jj = 1

if (i, j) ∈ Ω, otherwise (Wi)jj = 0. Here, the column vectors Ūi,⋆ ∈ Rk, Ai,⋆ ∈ Rm,Ψi,⋆ ∈

Rk, Zi,⋆ ∈ Rk denote the ith row of the matrices Ū ,A,Ψ,Z respectively, where the unknown

entries of A are taken to be 0.

174

Proof Let f(U) denote the objective function of (4.12). With {Wi}ni=1 defined as in

Proposition 39, observe that we can write f(U) as

f(U) =
n∑

i=1

∥Wi(V Ui,⋆ − Ai,⋆)∥22 +
γ

2

n∑
i=1

∥Ui,⋆∥22 −
n∑

i=1

ΨT
i,⋆Ui,⋆ +

ρ2
2

n∑
i=1

∥Zi,⋆ − Ui,⋆∥22

=
n∑

i=1

[
∥Wi(V Ui,⋆ − Ai,⋆)∥22 +

γ

2
∥Ui,⋆∥22 −ΨT

i,⋆Ui,⋆ +
ρ2
2
∥Zi,⋆ − Ui,⋆∥22

]
=

n∑
i=1

gi(U),

where we define gi(U) = ∥Wi(V Ui,⋆ −Ai,⋆)∥22 +
γ
2
∥Ui,⋆∥22 −ΨT

i,⋆Ui,⋆ +
ρ2
2
∥Zi,⋆ −Ui,⋆∥22. Thus,

we have shown that f(U) is separable over the rows of the matrix U . Each function gi(U)

is a (strongly) convex quadratic. Thus, we can minimize gi(U) by setting its gradient to 0.

For any fixed row i ∈ {1, . . . , n}, we can differentiate and obtain

∇Ui,⋆
gi(U) = 2V TWi(V Ui,⋆ − Ai⋆) + γUi,⋆ −Ψi,⋆ − ρ2(Zi,⋆ − Ui,⋆).

By equating the gradient ∇Ui,⋆
gi(U) to 0 and rearranging, we obtain that the optimal vector

Ūi,⋆ is given by (4.13). This completes the proof.

Observe that since the matrix V TWiV is positive semidefinite and γ+ρ2 > 0, the matrix

inverse [2V TWiV +(γ+ρ2)Ik]
−1 is well defined for all i ∈ {1, . . . , n}. Computing the optimal

solution to (4.12) requires computing n different k × k matrix inverses (where in general

k ≪ min{m,n}). Computing a single k× k matrix inverse requires O(k3) time and forming

the matrix product V TWiV requires O(k2m) time for a given i. Thus, the complexity of

computing the optimal solution for a single column is O(k3+k2m). Notice that each column

of Ū can be computed independently of the other columns. We leverage this observation

by developing a multi-threaded implementation of the algorithm presented in this section.

Letting w denote the number of compute threads available, computing the optimal solution

Ū of (4.12) requires O
(

k3n+k2mn
min{w,n}

)
time (the term min{w, n} in the denominator reflects that

fact that increasing the number of available compute threads beyond the number of columns

175

of Ū does not yield additional reduction in compute complexity).

4.5.2 Subproblem in V

Now, suppose we fix variables U ,P ,Z,Φ,Ψ and seek to minimize LA(U ,V ,P ,Z,Φ,Ψ)

over V . Eliminating terms that do not depend on V , the resulting subproblem is given by

min
V ∈Rm×k

∑
(i,j)∈Ω

((UV T)ij − Aij)
2 +

γ

2
∥V ∥2F . (4.14)

We now have the following result:

Proposition 40 The optimal solution V̄ for (4.14) is given by

V̄j,⋆ = [2UTWjU + γIk]
−1[2UTWjA⋆,j], (4.15)

for each j ∈ {1, . . . ,m} where each Wj ∈ Rn×n is a diagonal matrix satisfying (Wj)ii = 1 if

(i, j) ∈ Ω, otherwise (Wj)ii = 0. Here, the column vector V̄j,⋆ ∈ Rk denotes the jth row of V̄

while the column vector A⋆,j ∈ Rn denotes the jth column of A where the unknown entries

of A are taken to be 0.

Proof This proof follows the proof of Proposition 39. Let f(V) denote the objective

function of (4.14). With {Wj}mj=1 defined as in Proposition 40, observe that we can write

f(V) as

f(V) =
m∑
j=1

∥Wj(UVj,⋆ − A⋆,j)∥22 +
γ

2

m∑
j=1

∥Vj,⋆∥22

=
m∑
j=1

[
∥Wj(UVj,⋆ − A⋆,j)∥22 +

γ

2
∥Vj,⋆∥22

]
=

m∑
j=1

gj(V),

where we define gj(V) = ∥Wj(UVj,⋆ − A⋆,j)∥22 +
γ
2
∥Vj,⋆∥22. Thus, we have shown that f(V)

is separable over the rows of the matrix V . Each function gj(V) is a (strongly) convex

quadratic. Thus, we can minimize gj(V) by setting its gradient to 0. For any fixed row

176

j ∈ {1, . . . ,m}, we can differentiate and obtain

∇Vj,⋆
gj(V) = 2UTWj(UVj,⋆ − A⋆,j) + γVj,⋆.

By equating the gradient ∇Vj,⋆
gj(V) to 0 and rearranging, we obtain that the optimal vector

Ūi,⋆ is given by (4.15). This completes the proof.

Observe that since the matrix UTWjU is positive semidefinite and γ > 0, the matrix

inverse [2UTWjU + γIk]
−1 is well defined for all j ∈ {1, . . . ,m}. Computing the optimal

solution to (4.14) requires computing m different k× k matrix inverses. Forming the matrix

product UTWjU requires O(k2n) time for a given j. Thus, the complexity of computing the

optimal solution for a single column is O(k3 + k2n). Notice that, similarly to the solution of

(4.12), each column of V̄ can be computed independently of the other columns. As before, we

leverage this observation in our multi-threaded implementation of the algorithm presented

in this section. Letting w denote the number of compute threads available, computing the

optimal solution V̄ of (4.14) requires O
(

k3m+k2mn
min{w,m}

)
time.

The optimal solution V̄ to (4.14) reveals that the Frobenius norm regularization term

on V in (4.8) (which emerges from the nuclear norm regularization term on X in (4.1)) has

computational benefits. Indeed, if we had γ = 0, it is possible that the matrix UTWjU

be singular at certain iterates of our ADMM algorithm, in which case the corresponding

matrix inverse would be undefined. This observation is in keeping with several recent works

in the statistics, machine learning and operations research literatures where the presence of

a regularization penalty in the objective function yields improved out of sample performance

as well as benefits in computational tractability (see for example [15, 18, 20, 24, 27]).

177

4.5.3 Subproblem in P

Now, suppose we fix variables U ,V ,Z,Φ,Ψ and seek to minimize LA(U ,V ,P ,Z,Φ,Ψ)

over P . Eliminating terms that do not depend on P , the resulting subproblem is given by

min
P∈Sn+

−λTr(Y TPY)− Tr(ΦTPZ) +
ρ1
2
∥(In − P)Z∥2F s.t. P 2 = P , Tr(P) ≤ k. (4.16)

We now have the following result:

Proposition 41 Let MΣMT be a rank k truncated singular value decomposition for the

matrix given by: (
λY Y T +

ρ1
2
ZZT +

1

2
(ΦZT +ZΦT)

)
,

where Σ ∈ Rk×k,M ∈ Rn×k,MTM = Ik.The optimal solution P̄ for (4.16) is given by

P̄ = MMT .

Proof Let f(P) denote the objective function of (4.16). Observe that for any P that is

feasible to (4.16), we can write f(P) as:

f(P) = −λTr(Y TPY)− Tr(ΦTPZ) +
ρ1
2
∥(In − P)Z∥2F

= −λTr(Y Y TP)− Tr(ZΦTP) +
ρ1
2

Tr(ZZT (In − P))

=
ρ1
2

Tr(ZZT)− ⟨λY Y T +ZΦT +
ρ1
2
ZZT ,P ⟩.

Thus, it is immediately clear that a solution will be optimal to (4.16) if and only if it is

optimal to the problem given by:

max
P∈Sn+
⟨C,P ⟩ s.t. P 2 = P , Tr(P) ≤ k, (4.17)

where we define the matrix C ∈ Rn×n as C = λY Y T +ZΦT + ρ1
2
ZZT . Let C̄ = 1

2
(C+CT)

denote the symmetric part of C. Observe that for any symmetric matrix P , we can consider

178

⟨C̄,P ⟩ in place of ⟨C,P ⟩ since we have

⟨C,P ⟩ =
n∑

i=1

n∑
j=1

PijCij =
n∑

i=1

PiiCii +
n−1∑
i=1

n∑
j=i+1

Pij(Cij + Cji)

=
n∑

i=1

PiiC̄ii + 2
n−1∑
i=1

n∑
j=i+1

PijC̄ij =
n∑

i=1

n∑
j=1

PijC̄ij = ⟨C̄,P ⟩.

Let C̄ = MΣMT be a full singular value decomposition of C̄ with M ,Σ ∈ Rn×n,MTM =

MMT = In. The matrix Σ is the diagonal matrix of (ordered) singular values of C̄ and

we let σi denote the ith singular value. Any feasible matrix P to (4.17) can be written as

P = LLT where L ∈ Rn×k,LTL = Ik. Thus, for any P feasible to (4.17) we express the

objective value as:

⟨C̄,P ⟩ = Tr(MΣMTLLT) = Tr(Σ(MTLLTM)) =
n∑

i=1

σi∥(MTL)i,⋆∥22.

Let N = MTL ∈ Rn×k. Note that we have NTN = LTMMTL = LTL = Ik, which

implies that the columns of N are orthonormal. This immediately implies that we have

NT
i,⋆Ni,⋆ = ∥(MTL)i,⋆∥22 ≤ 1. Moreover, we have

n∑
i=1

∥(MTL)i,⋆∥22 =
n∑

i=1

NT
i,⋆Ni,⋆ =

n∑
i=1

k∑
j=1

N2
ij =

k∑
j=1

n∑
i=1

N2
ij =

k∑
j=1

1 = k.

We can therefore upper bound the optimal objective value of (4.17) as

⟨C̄,P ⟩ =
n∑

i=1

σi∥(MTL)i,⋆∥22 ≤
k∑

i=1

σi.

To conclude the proof, notice that by taking P̄ = M̄M̄T where M̄ ∈ Rn×k is the matrix

that consists of the first k columns of M we can achieve the upper bound on (4.17):

⟨C̄, P̄ ⟩ = Tr(MΣMTM̄M̄T) = Tr(M̄TMΣMTM̄) =
k∑

i=1

σi.

179

To compute the optimal solution of (4.16), we need to compute a rank k singular value

decomposition of the matrix C̄ =
(
λY Y T + ρ1

2
ZZT + 1

2
(ΦZT + ZΦT)

)
which requires

O(kn2) time since C̄ ∈ Rn×n. Moreover, explicitly forming the matrix C̄ in memory from

its constituent matrices Y ,Z,Φ requires O(n2(d+ k)) operations. Thus, naively computing

the optimal solution to (4.16) has complexity O(n2(d + k)) where the bottleneck operation

from a complexity standpoint is explicitly forming the matrix C̄.

Fortunately, it is possible to compute the optimal solution to (4.16) more efficiently.

Observe that we can equivalently express the matrix C̄ as C̄ = F1F
T
2 where F1,F2 ∈

Rn×(d+3k) are defined as

F1 =

(
√
λY

√
ρ1
2
Z

√
1
2
Φ

√
1
2
Z

)
,

F2 =

(
√
λY

√
ρ1
2
Z

√
1
2
Z

√
1
2
Φ

)
.

Computing a truncated singular value decomposition requires only computing repeated ma-

trix vector products. Therefore, rather than explicitly forming the matrix C̄ in memory at

a cost of O(n2(d + k)) operations, in our implementation we design a custom matrix class

where matrix vector products between C̄ and arbitrary vectors x ∈ Rn are computed by

first evaluating the matrix vector product ν = F T
2 x and subsequently evaluating the matrix

vector product C̄x = F1ν. In so doing, we can evaluate matrix vector products C̄x in

O(n(d+ k)) time rather than O(n2) time (in general, we will have d+ k ≪ n). Computing

a truncated singular value decomposition of C̄ with this methodology of evaluating matrix

vector products requires only O(k2n + knd) operations. Thus, our custom matrix class im-

plementation avoids needing to explicitly for C̄ in memory and allows the optimal solution

to (4.16) to be computed in O(k2n+ knd) time.

180

4.5.4 Subproblem in Z

Now, suppose we fix variables U ,V ,P ,Φ,Ψ and seek to minimize LA(U ,V ,P ,Z,Φ,Ψ)

over Z. Eliminating terms that do not depend on Z, the resulting subproblem is given by

min
Z∈Rn×k

Tr(ΦT (In − P)Z) + Tr(ΨTZ) +
ρ1
2
∥(In − P)Z∥2F +

ρ2
2
∥Z −U∥2F . (4.18)

We now have the following result:

Proposition 42 The optimal solution Z̄ for (4.18) is given by

Z̄ =
1

ρ1 + ρ2

(
In +

ρ1
ρ2

P
)(

ρ2U − (In − P)Φ−Ψ
)

=
1

ρ1 + ρ2

(
ρ2U −Φ+ PΦ−Ψ+ ρ1PU − ρ1

ρ2
PΨ

)
.

(4.19)

Proof Let f(Z) denote the objective function of (4.18). The function f(Z) is a convex

quadratic, thus it can be minimized by setting its gradient to 0. Differentiating f(Z), we

obtain:

∇Zf(Z) = (In − P)TΦ+Ψ+ ρ1(In − P)T (In − P)Z + ρ2(Z −U).

Moreover, for any matrix P for which the augmented Lagrangian (4.11) takes finite value,

we will have P ∈ Pk which implies that P T = P and P 2 = P . We can therefore simplify

∇Zf(Z) as:

∇Zf(Z) = (In − P)Φ+Ψ+ ρ1(In − P)Z + ρ2(Z −U).

By equating the gradient ∇Zf(Z) to 0 and rearranging, we obtain that the optimal matrix

Z̄ is given by:

Z̄ =
(
ρ1(In − P) + ρ2In

)−1(
ρ2U − (In − P)Φ−Ψ

)

181

To conclude the proof, it remains to show that
(
ρ1(In − P) + ρ2In

)−1
= 1

ρ1+ρ2

(
In + ρ1

ρ2
P
)
.

Let P = MMT where M ∈ Rn×k,MTM = Ik. Such a matrix M is guaranteed to exist

for any P ∈ Pk. We have

ρ1(In − P) + ρ2In = ρ1(In −MMT) + ρ2In

= (ρ1 + ρ2)In +M (−ρ1In)MT

=
1

ρ1 + ρ2
In −

1

(ρ1 + ρ2)2
M

(
1

ρ1 + ρ2
MTM − 1

ρ1
Ik

)−1

MT

=
1

ρ1 + ρ2
In −

1

(ρ1 + ρ2)2
M

(
−ρ1(ρ1 + ρ2)

ρ2
Ik

)
MT

=
1

ρ1 + ρ2

(
In +

ρ1
ρ2

P
)
,

where the third equality follows from the Woodbury matrix inversion lemma (see [117], Sec-

tion 3.2.2). As a sanity check, one can verify that the product of
(
ρ1(In − P) + ρ2In

)
and

1
ρ1+ρ2

(
In +

ρ1
ρ2
P
)

is indeed the n dimensional identity matrix.

Evaluating the optimal solution to (4.18) requires only matrix-matrix multiplications.

Computing the products of PΦ,PU ,PΨ in the definition of Z̄ from (4.19) requires O(kn2)

operations. Thus, the naive cost of forming Z̄ is O(kn2). However, notice that if we had

a factored representation of the matrix P as P = MMT with M ∈ Rn×k, for any matrix

R ∈ Rn×k we could compute matrix-matrix products PR by first computing S = MTR

and thereafter computing PR = MS for a total complexity of O(k2n). One might object

that this ignores the time required to compute such a matrix M . However, observe that in

computing a matrix P that is optimal to (4.16), we in fact must already generate such a

matrix M (see proposition 41). In fact, in our implementation we never explicitly form a

n × n matrix P as it suffices to only store a copy of its low rank factorization matrix M .

Thus, the optimal solution to (4.18) can be evaluated in O(k2n) time.

182

4.5.5 An ADMM Algorithm

Having illustrated that the partial minimization of the Lagrangian (4.11) across each of the

primal variables (Problems (4.12), (4.14), (4.16), (4.18)) can be solved efficiently, we can

now present the overall approach Algorithm 5.

Algorithm 5: Mixed-Projection ADMM
Data: n,m, k ∈ Z+,Ω ⊂ [n]× [m], {Aij}(i,j)∈Ω, λ, γ ∈ R+. Tolerance parameter

ϵ > 0. Maximum iteration parameter T ∈ Z+

Result: (Ū , V̄ , P̄) that is feasible to (4.8).
(U0,P0,V0,Z0)←− (LΣ

1
2 ,LLT ,RΣ

1
2 ,LΣ

1
2) where LΣR is a rank k truncated SVD

of A and missing entries are filled in with 0;
(Φ0,Ψ0)←− (1n×k,1n×k);
t←− 0;
while t < T and max{∥(In − Pt)Zt∥2F , ∥Zt −Ut∥2F} > ϵ do

(Ut+1,Pt+1)←− argminU ,P LA(U ,Vt,P ,Zt,Φt,Ψt);
(Vt+1,Zt+1)←− argminV ,Z LA(Ut+1,V ,Pt+1,Z,Φt,Ψt);
Φt+1 ←− Φt + ρ1(I − Pt+1)Zt+1;
Ψt+1 ←− Ψt + ρ2(Zt+1 −Ut+1);
t←− t+ 1;

end
return (Ut,Vt,Pt)

We initialize primal iterates U0 = Z0 = LΣ
1
2 ,P0 = LLT ,V0 = RΣ

1
2 where LΣR

denotes a rank k truncated singular value decomposition of A (the missing entries of A

are filled in with 0s) and we initialize dual iterates Φ0 = Ψ0 = 1n×k. Observe that the

subproblems (4.12) and (4.16) can be solved simultaneously. Similarly, the subprobems

(4.14) and (4.18) can be solved simultaneously. At each iteration of Algorithm 5, we first

update the iterates Ut+1,Pt+1 by solving problems (4.12) and (4.16) with (Vt,Zt,Φt,Ψt)

fixed. Next, we update the iterates Vt+1,Zt+1 by solving problems (4.14) and (4.18) with

(Ut+1,Pt+1,Φt,Ψt) fixed. Finally, we update the dual iterates Φ,Ψ by taking a gradient

ascent step. The gradients of the augmented Lagrangian (4.11) with respect to Φ and Ψ are

given by the primal residuals (In − Pt+1)Zt+1 and Zt+1 −Ut+1 respectively. We use ρ1 and

ρ2 respectively as the step size. We proceed until the squared norm of each primal residual

183

is below a numerical tolerance parameter ϵ or until we reach an input maximum number of

iterations T . We know have the following result:

Proposition 43 Assume that the number of compute threads w is less than min{n,m}. The

per iteration complexity of Algorithm 5 is O
(
k2n+ knd+ k3(n+m)+k2nm

w

)
.

Proof The result follows from the complexity analysis of problems (4.12), (4.14), (4.16)

and (4.18).

Having presented Algorithm 5 in extensive detail, it is natural to consider what types of

guarantees can be made on the final output solution (UT ,VT ,PT). We explore this in the

following theorem:

Theorem 44 Let {(Ut,Vt,Pt,Zt,Φt,Ψt)} denote a sequence generated by Algorithm 5 (as-

suming we allow Algorithm 5 to iterate indefinitely). Suppose the dual variable sequence

{(Φt,Ψt)} is bounded and satisfies

∞∑
t=0

(∥Φt+1 −Φt∥2F + ∥Ψt+1 −Ψt∥2F) <∞. (4.20)

Let (Ū , V̄ , P̄ , Z̄, Φ̄, Ψ̄) denote any accumulation point of {(Ut,Vt,Pt,Zt,Φt,Ψt)}. If the

set of k leading eigenvectors of the matrix [λY Y T + 1
2
(Φ̄Z̄T + Z̄Φ̄T)] is the same as the

set of k leading eigenvectors of the matrix Z̄Z̄T , then (Ū , V̄ , P̄ , Z̄, Φ̄, Ψ̄) satisfies the first

order optimality conditions for (4.10).

Proof We leverage a proof technique similar to the technique used to establish Theorem 2.1

from [147]. Note that from (4.20), we immediately have Φt+1−Φt → 0 and Ψt+1−Ψt → 0.

We will first show that we also have Ut+1 −Ut → 0,Vt+1 − Vt → 0 and Zt+1 −Zt → 0.

Let LA(U ;V ,P ,Z,Φ,Ψ) denote the augmented Lagrangian (4.11) viewed as a func-

tion of U . Notice that LA(U ;V ,P ,Z,Φ,Ψ) − γ+ρ2
2
∥U∥2F is a convex function, which im-

plies that LA(U ;V ,P ,Z,Φ,Ψ) is a strongly convex function of U with parameter γ + ρ2.

184

Similarly, LA(V ;U ,P ,Z,Φ,Ψ) is a strongly convex function of V with parameter γ and

LA(Z;U ,V ,P ,Φ,Ψ) is a strongly convex function of Z with parameter ρ2. By strong

convexity, we know that for any matrices U ,∆U ,V ,P ,Z,Φ,Ψ we have

LA(U +∆U)− LA(U) ≥ ⟨∇ULA(U),∆U⟩+ (γ + ρ2)∥∆U∥2F , (4.21)

where the shorthand notation LA(U) is understood to denote the augmented Lagrangian

(4.11) viewed as a function only of U with the other variables held fixed. Letting U =

Ut+1,∆U = Ut − Ut+1, and noting that ⟨∇ULA(Ut+1),∆U⟩ ≥ 0 since Ut+1 minimizes

LA(U) at iteration t, from (4.21) we have LA(Ut) − LA(Ut+1) ≥ (γ + ρ2)∥Ut − Ut+1∥2F .

Similarly, we have LA(Vt)− LA(Vt+1) ≥ γ∥Vt − Vt+1∥2F and LA(Zt)− LA(Zt+1) ≥ ρ2∥Zt −

Zt+1∥2F . Moreover, since Pt+1 minimizes LA(P) at iteration t, we have LA(Pt)−LA(Pt+1) ≥

0. Observe that we can express the difference in the value of the augmented Lagrangian

between iteration t and iteration t+ 1 as

LA(Ut,Vt,Pt,Zt)− LA(Ut+1,Vt+1,Pt+1,Zt+1) =

LA(Ut)− LA(Ut+1) + LA(Vt)− LA(Vt+1) + LA(Pt)− LA(Pt+1)

+ LA(Zt)− LA(Zt+1) + LA(Φt)− LA(Φt+1) + LA(Ψt)− LA(Ψt+1).

(4.22)

Recognizing that we have LA(Φt) − LA(Φt+1) = −ρ1∥Φt − Φt+1∥2F ,LA(Ψt) − LA(Ψt+1) =

−ρ2∥Ψt −Ψt+1∥2F , (4.22) implies that

LA(Ut,Vt,Pt,Zt)− LA(Ut+1,Vt+1,Pt+1,Zt+1) ≥

(γ + ρ2)∥Ut −Ut+1∥2F + γ∥Vt − Vt+1∥2F + ρ2∥Zt −Zt+1∥2F

− ρ1∥Φt −Φt+1∥2F − ρ2∥Ψt −Ψt+1∥2F .

(4.23)

We claim that the augmented Lagrangian is bounded from below. To see this, note that LA

185

can equivalently be written as

LA(U ,V ,P ,Z,Φ,Ψ) =
∑

(i,j)∈Ω

((UV T)ij − Aij)
2 + λ∥(In − P)Y ∥2F

+
γ

2
(∥U∥2F + ∥V ∥2F) + IPk

(P) +
ρ1
2
∥(In − P)Z +

Φ

ρ1
∥2F

+
ρ2
2
∥Z −U +

Ψ

ρ2
∥2F −

1

2ρ1
∥Φ∥2F +

1

2ρ2
∥Ψ∥2F ,

(4.24)

and recall that by assumption the dual variables Φ and Ψ are bounded. Thus, the bounded-

ness of LA coupled with summing (4.23) over t implies that

∞∑
t=0

c1(∥Ut −Ut+1∥2F + ∥Vt − Vt+1∥2F + ∥Zt −Zt+1∥2F)

−
∞∑
t=0

c2(∥Φt −Φt+1∥2F + ∥Ψt −Ψt+1∥2F) <∞,

(4.25)

where c1 = min{γ, ρ2} and c2 = max{ρ1, ρ2}. By assumption, the second term of (4.25) is

finite which implies that the first term must also be finite. This immediately implies that

Ut+1 −Ut → 0,Vt+1 − Vt → 0 and Zt+1 −Zt → 0 as desired.

We are now ready to prove the main result of the theorem. The (unaugmented) La-

grangian L for (4.10) is given by

L(U ,V ,P ,Z,Φ,Ψ) =
∑

(i,j)∈Ω

((UV T)ij − Aij)
2 + λTr

(
Y T (In − P)Y

)
+

γ

2
(∥U∥2F + ∥V ∥2F) + IPk

(P) + Tr(ΦT (In − P)Z) + Tr(ΨT (Z −U)).

(4.26)

186

The corresponding first order optimality conditions can be expressed as

[2V TWiV + γIk]Ui,⋆ = 2V TWiAi,⋆ +Ψi,⋆ i ∈ [n], (4.27a)

[2UTWjU + γIk]Vj,⋆ = 2UTWjA⋆,j j ∈ [m], (4.27b)

P = MMTwhere MΣMT is a rank k SVD of λY Y T +
1

2
(ΦZT +ZΦT), (4.27c)

Φ+Ψ = PΦ, (4.27d)

Z = PZ, (4.27e)

Z = U , (4.27f)

where the diagonal matrices Wi,Wj are defined as in Propositions 39 and 40 respectively.

Let (Ū , V̄ , P̄ , Z̄, Φ̄, Ψ̄) denote any limit point of {(Ut,Vt,Pt,Zt,Φt,Ψt)}. Recalling the

Algorithm 5 updates for Φ and Ψ, the conditions Φt+1 − Φt → 0 and Ψt+1 − Ψt → 0

imply that (4.27e) and (4.27f) hold at (Ū , V̄ , P̄ , Z̄, Φ̄, Ψ̄). Moreover, when (4.27f) holds the

Algorithm 5 update for U given by Proposition 39 reduces to (4.27a) while the update for

V given by Proposition 40 enforces (4.27b). From the proof of Propsition (42), we know

that Algorithm 5 updates Z to satisfy the following

(
ρ1(In − P) + ρ2In

)
Z =

(
ρ2U − (In − P)Φ−Ψ

)
. (4.28)

Since (4.27e) and (4.27f) hold, (4.28) immediately implies (4.27d) is satisfied by (Ū , V̄ , P̄ , Z̄, Φ̄, Ψ̄).

It remains to verify that (Ū , V̄ , P̄ , Z̄, Φ̄, Ψ̄) satisfies (4.27c). By Proposition 41, we know

that we have P̄ = LLT where LΣLT is a rank k truncated SVD of the matrix [λY Y T +

ρ1
2
Z̄Z̄T + 1

2
(Φ̄Z̄T + Z̄Φ̄T)]. If the set of k leading eigenvectors of the matrix Z̄Z̄T is the

same as the set of k leading eigenvectors of [λY Y T + 1
2
(Φ̄Z̄T +Z̄Φ̄T)], it follows immediately

that LΣ′LT will be a rank k SVD of [λY Y T + 1
2
(Φ̄Z̄T + Z̄Φ̄T)] for some diagonal matrix

Σ′. Thus, in this setting, (Ū , V̄ , P̄ , Z̄, Φ̄, Ψ̄) satisfies (4.27c). this completes the proof.

187

In words, Theorem 44 states that if the sequence of dual variable iterates produced by

Algorithm 5 is bounded and the primal residuals converge to zero quickly enough (specifically,

it is required that the norm of successive dual variable differences is summable), then any

accumulation point (Ū , V̄ , P̄ , Z̄, Φ̄, Ψ̄) of the sequence of iterates produced by Algorithm

5 satisfies the first order optimality conditions of (4.10) if the rank k approximation of the

matrix [λY Y T + 1
2
(Φ̄Z̄T + Z̄Φ̄T)] shares the same column space as the matrix Z̄. We note

that this condition can only be verified upon termination of Algorithm 5 since it depends on

the algorithm output in addition to the problem data. Accordingly, Theorem 44 provides an

a posteriori convergence result. We note that this condition was satisfied in our numerical

experiments.

4.6 Computational Results

We evaluate the performance of Algorithm 5 implemented in Julia 1.7.3. Throughout, we fix

ρ1 = ρ2 = 10, set the maximum number of iterations T = 20 and set the number of compute

threads w = 24. Note that given the novelty of Problem (4.1), there are no pre-existing

specialized methods to benchmark against. Accordingly, we compare the performance of

Algorithm 5 against well studied methods for the very closely related MC problem as well

as a highly performant generic method for low rank matrix optimization problems. The MC

methods we consider are Fast-Impute [26], Soft-Impute [105] and Iterative-SVD [136] which

we introduced formally in Section 4.2.1. We utilize the implementation of Fast-Impute made

publicly available by [26] while we use the implementation of Soft-Impute and Iterative-SVD

from the python package fancyimpute 0.7.0 [125]. The matrix optimization method we con-

sider is ScaledGD (scaled gradient descent) [133] which we introduced formally in Section

4.2.2 and implement ourselves. We perform experiments using both synthetic data and real

world data on MIT’s Supercloud Cluster [123], which hosts Intel Xeon Platinum 8260 proces-

sors. To bridge the gap between theory and practice, we have made our code freely available

188

on GitHub at https://github.com/NicholasJohnson2020/LearningLowRankMatrices.

To evaluate the performance of Algorithm 5, Fast-Impute, Soft-Impute, Iterative-SVD

and ScaledGD on synthetic data, we consider the objective value achieved by a returned

solution in (4.1), the ℓ2 reconstruction error between a returned solution and the ground

truth, the coefficient of determination (R2) when the returned solution is used as a predictor

for the side information, the numerical rank of a returned solution and the execution time of

each algorithm. Explicitly, let X̂ ∈ Rn×m denote the solution returned by a given method

(where we define X̂ = Û V̂ T if the method outputs low rank factors Û , V̂) and let Atrue ∈

Rn×m denote the ground truth matrix. We define the the ℓ2 reconstruction error of X̂ as

ERRℓ2(X̂) =
∥X̂ −Atrue∥2F
∥Atrue∥2F

.

We compute the numerical rank of X̂ by calling the default rank function from the Julia

LinearAlgebra package. We aim to answer the following questions:

1. How does the performance of Algorithm 5 compare to existing methods such as Fast-

Impute, Soft-Impute, Iterative-SVD and ScaledGD on synthetic and real world data?

2. How is the performance of Algorithm 5 affected by the number of rows n, the number

of columns m, the dimension of the side information d and the underlying rank k of

the ground truth?

3. Empirically, which subproblem solution update is the computational bottleneck of

Algorithm 5?

4.6.1 Synthetic Data Generation

To generate synthetic data, we specify a number of rows n ∈ Z+, a number of columns

m ∈ Z+, a desired rank k ∈ Z+ with k < min{n,m}, the dimension of the side information

d ∈ Z+, a fraction of missing values α ∈ (0, 1) and a noise parameter σ ∈ R+ that controls

189

GitHub
https://github.com/NicholasJohnson2020/LearningLowRankMatrices

the signal to noise ratio. We sample matrices U ∈ Rn×k,V ∈ Rm×k,β ∈ Rm×d by drawing

each entry Uij, Vij, βij independently from the uniform distribution on the interval [0, 1].

Furthermore, we sample a noise matrix N ∈ Rn×d by drawing each entry Nij independently

from the univariate normal distribution with mean 0 and variance σ2. We let A = UV T

and we let Y = Aβ +N . Lastly, we sample ⌊α · n ·m⌋ indices uniformly at random from

the collection I = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m} to be the set of missing indices, which

we denote by Γ. The set of revealed entries can then be defined as Ω = I \ Γ. We fix

α = 0.9, σ = 2 throughout our experiments and report numerical results for various different

combinations of (n,m, d, k).

4.6.2 Sensitivity to Row Dimension

We present a comparison of Algorithm 5 with ScaledGD, Fast-Impute, Soft-Impute and

Iterative-SVD as we vary the number of rows n. In these experiments, we fixed m = 100, k =

5, and d = 150 across all trials. We varied n ∈ {100, 200, 400, 800, 1000, 2000, 5000, 10000}

and we performed 20 trials for each value of n. For ScaledGD, we set the step size to be

η = 1
10σ1(A)

where σ1(A) denotes the largest singular value of the input matrix A where we

fill the unobserved entries with the value 0. Letting f(Ut,Vt) denote the objective value

achieved after iteration t of ScaledGD, we terminate ScaledGD when either t > 1000 or
f(Ut−1,Vt−1)−f(Ut,Vt)

f(Ut−1,Vt−1)
< 10−3. In words, we terminate ScaledGD after 1000 iterations or after

the relative objective value improvement between two iterations is less than 0.1%.

We report the objective value, ℓ2 reconstruction error, side information R2 and execution

time for Algorithm 5, Fast-Impute, Soft-Impute and Iterative-SVD in Figure 4.1. We addi-

tionally report the objective value, reconstruction error, side information R2 and execution

time for ScaledGD, Algorithm 5, Fast-Impute, Soft-Impute and Iterative-SVD in Tables 4.1,

4.2, 4.3 and 4.4 of Section 4.8. In Figure 4.2, we plot the average cumulative time spent

solving subproblems (4.12), (4.14), (4.16), (4.18) during the execution of Algorithm 5 versus

n. Our main findings from this set of experiments are:

190

0 2000 4000 6000 8000 10000
n

0

100000

200000

300000

400000

500000

600000
O

bj
ec

tiv
e

Va
lu

e

Objective Value
Algorithm 5
fastImpute
softImpute
SVD

0 2000 4000 6000 8000 10000
n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

L2
 R

ec
on

st
ru

ct
io

n
Er

ro
r

L2 Reconstruction Error

0 2000 4000 6000 8000 10000
n

0.75

0.80

0.85

0.90

0.95

1.00

Si
de

 In
fo

rm
at

io
n

R
2

Side Information R2

0 2000 4000 6000 8000 10000
n

0

1000

2000

3000

4000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Execution Time (ms)

Figure 4.1: Objective value (top left), ℓ2 reconstruction error (top right), side information R2

(bottom left) and execution time (bottom right) versus n with m = 100, k = 5 and d = 150.
Averaged over 20 trials for each parameter configuration.

1. Algorithm 5 systematically produces higher quality solutions than ScaledGD, Fast-

Impute, Soft-Impute and Iterative-SVD (see Table 4.1), sometimes achieving an ob-

jective value that is an order of magnitude superior than the next best method. On

average, Algorithm 5 outputs a solution whose objective value is 86% lesser than the

objective value achieved by the best performing alternative method (Fast-Impute). We

remind the reader that Fast-Impute, Soft-Impute and Iterative-SVD are methods de-

signed for the generic MC problem and are not custom built to solve (4.1) so it should

not come as a surprise that Algorithm 5 significantly outperforms these 3 methods in

terms of objective value. ScaledGD however has explicit knowledge of the objective

191

function of (4.1) along with its gradient, yet surprisingly produces the weakest average

objective value across these experiments. We note that we use the default hyperpa-

rameters for ScaledGD recommended by the authors of this method [133]. We observe

that the objective value achieved by all methods increases linearly as the number of

rows n increases.

2. In terms of ℓ2 reconstruction error, Algorithm 5 again systematically produces solutions

that are of higher quality than ScaledGD, Fast-Impute, Soft-Impute and Iterative-SVD

(see Table 4.2), often achieving an error that is an order of magnitude superior than the

next best method. On average, Algorithm 5 outputs a solution whose ℓ2 reconstruc-

tion error is 92% lesser than the reconstruction error achieved by the best performing

alternative method (Soft-Impute in all but one parameter configuration). This is espe-

cially noteworthy since Algorithm 5 is not designed explicitly with reconstruction error

minimization as the objective, unlike Fast-Impute and Soft-Impute, and suggests that

the side information Y is instrumental in recovering high quality low rank estimates

of the partially observed data matrix.

3. With the exception of the experiments for which n = 100, Algorithm 5 always produced

solutions that achieved a superior R2 value when used as a predictor for the side

information compared to Fast-Impute, Soft-Impute, Iterative-SVD and ScaledGD. This

observation supports the notion that encouraging that the reconstructed matrix is a

good linear predictor of the side information is instrumental in producing higher quality

estimates of the partially observed matrix.

4. The runtime of Algorithm 5 is competitive with that of the other methods. The runtime

of Algorithm 5 is less than of Soft-Impute and Iterative-SVD but greater than that

of Fast-Impute. For experiments with n ≤ 2000, Table 4.4 illustrates that ScaledGD

was the method with the fastest execution time (however as previously mentioned the

returned solutions were of low quality). The runtime of Algorithm 5, Fast-Impute,

192

Soft-Impute and iterate SVD appear to grow linearly with n.

5. Figure 4.2 illustrates that the computation of the solution for (4.12) is the computa-

tional bottleneck in the execution of Algorithm 5 in this set of experiments, followed

next by the computation of the solution for (4.16). Empirically, we observe that the so-

lution time of (4.12), (4.14), (4.16) and (4.18) appear to scale linearly with the number

of rows n. This observation is consistent with the computational complexities derived

for each subproblem of Algorithm 5 in Section 4.5.

0 2000 4000 6000 8000 10000
N

0

200

400

600

800

1000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Algorithm 5 Update Execution Time
U
V
P
Z

Figure 4.2: Cumulative time spent solving each subproblem of Algorithm 5 versus n with
m = 100, k = 5 and d = 150. Averaged over 20 trials for each parameter configuration.

193

4.6.3 Sensitivity to Column Dimension

Here, we present a comparison of Algorithm 5 with ScaledGD, Fast-Impute, Soft-Impute

and Iterative-SVD as we vary the number of columns m. We fixed n = 1000, k = 5, and

d = 150 across all trials. We varied m ∈ {100, 200, 400, 800, 1000, 2000, 5000, 10000} and we

performed 20 trials for each value of m.

0 2000 4000 6000 8000 10000
m

0.0

0.2

0.4

0.6

0.8

1.0

O
bj

ec
tiv

e
Va

lu
e

1e6 Objective Value
Algorithm 5
fastImpute
softImpute

0 2000 4000 6000 8000 10000
m

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

L2
 R

ec
on

st
ru

ct
io

n
Er

ro
r

L2 Reconstruction Error

0 2000 4000 6000 8000 10000
m

0

200

400

600

800

1000

R
an

k
of

 R
et

ur
ne

d
So

lu
tio

n

Rank of Returned Solution

0 2000 4000 6000 8000 10000
m

0

25000

50000

75000

100000

125000

150000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Execution Time (ms)

Figure 4.3: Objective value (top left), ℓ2 reconstruction error (top right), fitted rank (bottom
left) and execution time (bottom right) versus m with n = 1000, k = 5 and d = 150. Averaged
over 20 trials for each parameter configuration.

We report the objective value, ℓ2 reconstruction error, fitted rank and execution time

for Algorithm 5, Fast-Impute and Soft-Impute in Figure 4.3. We additionally report the

objective value, reconstruction error and execution time for ScaledGD, Algorithm 5, Fast-

Impute, Soft-Impute and Iterative-SVD in Tables 4.5, 4.6 and 4.7 of Section 4.8. In Figure

194

4.4, we plot the average cumulative time spent solving subproblems (4.12), (4.14), (4.16),

(4.18) during the execution of Algorithm 5 versus m. Our main findings from this set of

experiments are a follows:

1. Here again, Algorithm 5 systematically produces higher quality solutions than ScaledGD,

Fast-Impute, Soft-Impute and Iterative-SVD (see Table 4.5). On average, Algorithm 5

outputs a solution whose objective value is 62% lesser than the objective value achieved

by the best performing alternative method (Fast-Impute). Here again, ScaledGD pro-

duces the weakest average objective value across these experiments. We observe that

the objective value achieved by each method appears to increase super-linearly as the

number of columns m increases.

2. In terms of ℓ2 reconstruction error, Algorithm 5 again systematically produces solutions

that are of higher quality than ScaledGD, Fast-Impute, Soft-Impute and Iterative-

SVD (see Table 4.6), often achieving an error that is an order of magnitude superior

than the next best method. On average, Algorithm 5 outputs a solution whose ℓ2

reconstruction error is 90% lesser than the reconstruction error achieved by the best

performing alternative method (Soft-Impute in all but one parameter configuration).

3. We observe that the fitted rank of the solutions returned by Algorithm 5, ScaledGD

and Fast-Impute always matched the specified target rank as would be expected, but

surprisingly the solutions returned by Soft-Impute and Iterative-SVD were always of

full rank despite the fact that these methods were provided with the target rank ex-

plicitly. This is potentially due to a numerical issues in the computation of the rank

due to presence of extremely small singular values.

4. The runtime of Algorithm 5 exhibits the most favorable scaling behavior among the

methods tested in these experiments. For instances with m ≥ 2000, Table 4.7 shows

that Algorithm 5 had the fastest runtime. For instances with m < 2000, ScaledGD

195

had the fastest execution time but produced low quality solutions. The runtime of all

methods tested grow super-linearly with m.

5. Figure 4.4 illustrates that the computation of the solution for (4.12) and (4.14) are the

computational bottlenecks in the execution of Algorithm 5 in this set of experiments

while the computation of the solution for (4.18) and (4.16) appear to be a constant

function of m. This observation is consistent with the complexity analysis performed

for each subproblem of Algorithm 5 in Section 4.5. Indeed, this analysis indicated that

solve times for (4.18) and (4.16) are independent of m while the solve times for (4.12)

and (4.14) scale linearly with m when the number of threads w satisfies w < m.

0 2000 4000 6000 8000 10000
M

0

2000

4000

6000

8000

10000

12000

14000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Algorithm 5 Update Execution Time
U
V
P
Z

Figure 4.4: Cumulative time spent solving each subproblem of Algorithm 5 versus m with
n = 1000, k = 5 and d = 150. Averaged over 20 trials for each parameter configuration.

196

4.6.4 Sensitivity to Side Information Dimension

We present a comparison of Algorithm 5 with ScaledGD, Fast-Impute, Soft-Impute and

Iterative-SVD as we vary the dimension of the side information d. In these experiments, we

fixed n = 1000,m = 100 and k = 5 across all trials. We varied d ∈ {10, 50, 100, 150, 200, 250, 500, 1000}

and we performed 20 trials for each value of d.

0 200 400 600 800 1000
d

0

100000

200000

300000

400000

500000

600000

700000

O
bj

ec
tiv

e
Va

lu
e

Objective Value
Algorithm 5
fastImpute
softImpute
SVD

0 200 400 600 800 1000
d

0.00

0.05

0.10

0.15

0.20

0.25

L2
 R

ec
on

st
ru

ct
io

n
Er

ro
r

L2 Reconstruction Error

0 200 400 600 800 1000
d

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Si
de

 In
fo

rm
at

io
n

R
2

Side Information R2

0 200 400 600 800 1000
d

200

250

300

350

400

450

500

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Execution Time (ms)

Figure 4.5: Objective value (top left), ℓ2 reconstruction error (top right), side information
R2 (bottom left) and execution time (bottom right) versus d with n = 1000,m = 100 and
k = 5. Averaged over 20 trials for each parameter configuration.

We report the objective value, ℓ2 reconstruction error, side information R2 and execution

time for Algorithm 5, Fast-Impute, Soft-Impute and Iterative-SVD in Figure 4.5. We addi-

tionally report the objective value, reconstruction error, side information R2 and execution

time for ScaledGD, Algorithm 5, Fast-Impute, Soft-Impute and Iterative-SVD in Tables 4.8,

197

4.9, 4.10 and 4.11 of Section 4.8. In Figure 4.6, we plot the average cumulative time spent

solving subproblems (4.12), (4.14), (4.16), (4.18) during the execution of Algorithm 5 versus

d. Our main findings from this set of experiments are:

1. Just as in Sections 4.6.2 and 4.6.3, Algorithm 5 systematically produces higher quality

solutions than ScaledGD, Fast-Impute, Soft-Impute and Iterative-SVD (see Table 4.8).

On average, Algorithm 5 outputs a solution whose objective value is 85% lesser than

the objective value achieved by the best performing alternative method (Fast-Impute).

ScaledGD produces the weakest average objective value across these experiments. The

objective value achieved by each method appears to increase linearly as the dimension

d of the side information increases.

2. In terms of ℓ2 reconstruction error, just as in Sections 4.6.2 and 4.6.3 Algorithm 5 pro-

duces solutions that are of higher quality than ScaledGD, Fast-Impute, Soft-Impute

and Iterative-SVD (see Table 4.9), often achieving an error that is an order of magni-

tude superior than the next best method. On average, Algorithm 5 outputs a solution

whose ℓ2 reconstruction error is 93% lesser than the reconstruction error achieved by

the best performing alternative method (Soft-Impute). The performance of Algorithm

5 improves as d increases, consistent with the intuition that recovering the partially

observed matrix A becomes easier as more side information becomes available.

3. Here, Algorithm 5 always produced solutions that achieved a strictly greater R2 value

when used as a predictor for the side information compared to the benchmark methods.

The R2 achieved by each method is roughly constant as the value of d increases.

4. The runtime of Algorithm 5 is competitive with that of the other methods. The runtime

of Algorithm 5 is less than of Soft-Impute and Iterative-SVD but greater than that of

Fast-Impute. Table 4.11 illustrates that ScaledGD was the fastest performing method,

however its solutions were of the lowest quality. The runtime of Algorithm 5 and

ScaledGD grows with d while Fast-Impute, Soft-Impute and iterate SVD are constant

198

with d which should be expected as these methods do not act on the side information

matrix Y .

5. Figure 4.6 illustrates that the computation of the solution for (4.16) is the computa-

tional bottleneck in the execution of Algorithm 5 in this set of experiments, followed

next by the computation of the solution to (4.12). The solution times for (4.12), (4.14)

and (4.18) appear constant as a function of d. This is consistent with the complexity

analysis from Section 4.5 which found that the solve time for (4.16) is linear in d while

the solve time for the 3 other subproblems are independent of d.

0 200 400 600 800 1000
D

0

50

100

150

200

250

300

350

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Algorithm 5 Update Execution Time
U
V
P
Z

Figure 4.6: Cumulative time spent solving each subproblem of Algorithm 5 versus d with
n = 1000,m = 100 and k = 5. Averaged over 20 trials for each parameter configuration.

199

4.6.5 Sensitivity to Target Rank

We present a comparison of Algorithm 5 with ScaledGD, Fast-Impute, Soft-Impute and

Iterative-SVD as we vary the rank of the underlying matrix k. In these experiments, we fixed

n = 1000,m = 100 and d = 150 across all trials. We varied k ∈ {5, 10, 15, 20, 25, 30, 35, 40}

and we performed 20 trials for each value of d.

5 10 15 20 25
k

0

2

4

6

O
bj

ec
tiv

e
Va

lu
e

1e6 Objective Value
Algorithm 5
fastImpute
softImpute
SVD

5 10 15 20 25
k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

L2
 R

ec
on

st
ru

ct
io

n
Er

ro
r

L2 Reconstruction Error

5 10 15 20 25
k

20

40

60

80

100

R
an

k
of

 R
et

ur
ne

d
So

lu
tio

n

Rank of Returned Solution

5 10 15 20 25
k

500

1000

1500

2000

2500

3000

3500

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Execution Time (ms)

Figure 4.7: Objective value (top left), ℓ2 reconstruction error (top right), fitted rank (bottom
left) and execution time (bottom right) versus k with n = 1000,m = 100 and d = 150.
Averaged over 20 trials for each parameter configuration.

We report the objective value, ℓ2 reconstruction error, fitted rank and execution time for

Algorithm 5, Fast-Impute, Soft-Impute and Iterative-SVD in Figure 4.7. We additionally

report the objective value, reconstruction error and execution time for ScaledGD, Algorithm

5, Fast-Impute, Soft-Impute and Iterative-SVD in Tables 4.12, 4.13 and 4.14 of Section 4.8.

200

In Figure 4.8, we plot the average cumulative time spent solving subproblems (4.12), (4.14),

(4.16), (4.18) during the execution of Algorithm 5 versus k. Our main findings from this set

of experiments are as follows:

1. Unlike in Sections 4.6.2, 4.6.3 and 4.6.4, Algorithm 5 only produced higher quality

solutions than all benchmark methods in 3 out of 8 of the tested parameter configura-

tions where k ≤ 15 (see Table 4.12). Fast-Impute was the best performing method in 3

configurations and Soft-Impute was best in the remaining 2 configurations. ScaledGD

produces the weakest average objective value across these experiments.

2. In terms of ℓ2 reconstruction error, Algorithm 5 again produced higher quality solutions

than all benchmark methods in 3 out of 8 of the tested parameter configurations where

k ≤ 15 (see Table 4.13). Fast-Impute produced solutions achieving the lowest error in

the other 5 parameter configurations.

3. The fitted rank of the solutions returned by Algorithm 5, ScaledGD and Fast-Impute

always matched the specified target rank, but the solutions returned by Soft-Impute

and Iterative-SVD were always of full rank despite the fact that these methods were

provided with the target rank explicitly.

4. The runtime of Algorithm 5 is competitive with that of the other methods. Table 4.14

illustrates that ScaledGD was the fastest performing method, however its solutions

were of the lowest quality. The runtime of Algorithm 5 is most competitive with

Soft-Impute and Iterative-SVD for small values of k. Though Fast-Impute is the best

performing method in terms of objective in 3 out of 8 configurations and the best in

terms of ℓ2 error in 5 out of 8 configurations, it takes on average 3 times as long as

Algorithm 5 to execute.

5. Figure 4.8 illustrates that the computation of the solution for (4.12) is the computa-

tional bottleneck in the execution of Algorithm 5 in this set of experiments, followed

next by the computation of the solution to (4.14) and (4.18).

201

5 10 15 20 25 30 35 40
K

0

200

400

600

800

1000

1200
Ex

ec
ut

io
n

Ti
m

e
(m

s)

Algorithm 5 Update Execution Time
U
V
P
Z

Figure 4.8: Cumulative time spent solving each subproblem of Algorithm 5 versus k with
n = 1000,m = 100 and d = 150. Averaged over 20 trials for each parameter configuration.

4.6.6 Real World Data Experiments

We seek to answer the following question: how does the performance of Algorithm 5 compare

to Fast-Impute on real world data? We consider the Netflix Prize Dataset augmented with

features from the TMDB Database.

The Netflix Prize Dataset consists of greater than 10 million user ratings of movies spread

across more than 450000 users and 17000 movies. To prepare data for our experiment, we

first pull the following numerical features from the TMDB database:

1. Total Budget;

202

2. Revenue;

3. Popularity;

4. Average Vote;

5. Vote Count;

6. Total Runtime.

Note that many movies did not have all 6 features available from TMDB. We constructed

two datasets for our experimentation. In Dataset 1, we restricted the dataset to movies that

had all 6 features present and to users who had given at least 5 ratings across those movies.

After performing this filtering, we were left with n = 3430 movies and m = 467364 users. In

Dataset 2, we considered the 4 most frequent features (popularity, average vote, vote count,

total runtime) and restricted the dataset to movies that had all 4 of these features present

and to users who had given at least 5 ratings to any of these movies. After performing this

filtering, we were left with n = 10574 movies and m = 470706 users. For each dataset, we

conducted experiments for values of the target rank k in the set k ∈ {3, 4, 5, 6, 7, 8, 9, 10}. For

each value of k, we conducted 5 trials where a given trial consisted of randomly withholding

20% of the data as test data, estimating a low rank matrix on the 80% training data and

evaluating the out of sample ℓ2 reconstruction error on the withheld data.

We report the in sample ℓ2 reconstruction error, out of sample ℓ2 reconstruction error and

execution time for Algorithm 5 and Fast-Impute in addition to the average cumulative time

spent solving subproblems (4.12), (4.14), (4.16), (4.18) during the execution of Algorithm 5

versus k on Dataset 1 and Dataset 2 in Figures 4.9 and 4.10 respectively. We additionally

report the in sample ℓ2 reconstruction error, out of sample ℓ2 reconstruction error and ex-

ecution time for Algorithm 5 and Fast-Impute on Dataset 1 and Dataset 2 in Tables 4.15

and 4.16 of Appendix 4.8 respectively. We report only results for Fast-Impute as a bench-

mark because Soft-Impute, Iterative-SVD and ScaledGD failed to terminate after a 20 hour

203

time limit across all experiments involving Dataset 1 and Dataset 2. Fast-Impute failed to

terminate after a 20 hour time limit across all experiments involving Dataset 2 and across

experiments involving Dataset 1 for which the target rank was greater than 6. Note that

Fast-Impute was the best performing benchmark method across the synthetic data experi-

ments so it consists of a reasonable method to compare against. In Figure 4.11, we report

the coefficient of determination (R2) achieved by Algorithm 5 on the side information both

overall and on individual features in Dataset 1 and Dataset 2. Our main findings from this

set of experiments are as follows:

4 6 8 10
K

0.044

0.046

0.048

0.050

0.052

In
 S

am
pl

e
Er

ro
r

In Sample Error
Algorithm 1
fastImpute

4 6 8 10
K

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

O
ut

 o
f S

am
pl

e
Er

ro
r

Out of Sample Error
Algorithm 1
fastImpute

4 6 8 10
K

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ex
ec

ut
io

n
Ti

m
e

(h
r)

Execution Time (hr)
Algorithm 1
fastImpute

4 6 8 10
K

0

10

20

30

Ex
ec

ut
io

n
Ti

m
e

(m
in

)

Algorithm 1 Update Execution Time (min)
U
V
P
Z

Figure 4.9: In sample ℓ2 reconstruction error (top left), out of sample ℓ2 reconstruction error
(top right), execution time (bottom left) and subproblem execution time (bottom right)
versus k on Netflix Prize Dataset 1. Averaged over 5 trials.

1. Fast-Impute in general produced solutions that achieved slightly lower in sample error

204

4 6 8 10
K

0.044

0.046

0.048

0.050

0.052

In
 S

am
pl

e
Er

ro
r

In Sample Error
Algorithm 1

4 6 8 10
K

0.060

0.065

0.070

0.075

0.080

O
ut

 o
f S

am
pl

e
Er

ro
r

Out of Sample Error
Algorithm 1

4 6 8 10
K

0.5

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
Ti

m
e

(h
r)

Execution Time (hr)
Algorithm 1

4 6 8 10
K

0

20

40

60

80

100

Ex
ec

ut
io

n
Ti

m
e

(m
in

)

Algorithm 1 Update Execution Time (min)
U
V
P
Z

Figure 4.10: In sample ℓ2 reconstruction error (top left), out of sample ℓ2 reconstruction
error (top right), execution time (bottom left) and subproblem execution time (bottom
right) versus k on Netflix Prize Dataset 2. Averaged over 5 trials.

but significantly higher out of sample error than the solutions produced by Algorithm

5. Out of sample error is a much more important metric than in sample error as out

of sample error captures the ability of a candidate solution to generalize to unseen

data. Across the experiments in which Fast-Impute terminated within the specified

time limit, Algorithm 5 produced solutions that on average achieved 68% lower out of

sample error than Fast-Impute. The high out of sample error (relative to in sample

error) of Fast-Impute suggests that this method is likely over-fitting the training data.

As is expected, in sample error decreased as the rank of the reconstruction increased.

In the case of Algorithm 5, out of sample error increased as the reconstruction rank

205

4 6 8 10
K

0.0

0.1

0.2

0.3

0.4

0.5

0.6
R

2

Dataset 1 Side Information R2
Overall
Popularity
Vote Average
Vote Count
Runtime
Budget
Revenue

4 6 8 10
K

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

R
2

Dataset 2 Side Information R2
Overall
Popularity
Vote Average
Vote Count
Runtime

Figure 4.11: Algorithm 5 side information R2 on Netflix Prize Dataset 1 (left) and Dataset
2 (right) versus k. Averaged over 5 trials.

increased, suggesting that Algorithm 5 was over-fitting the data as rank increased.

The out of sample error of Fast-Impute initially decreased before increasing as the

reconstruction rank increased.

2. Algorithm 5 exhibited significantly superior scalability than Fast-Impute. Across the

experiments in which Fast-Impute terminated within the specified time limit, Algo-

rithm 5 required on average 97% less time to execute than Fast-Impute. The execution

time of Algorithm 5 on the largest tested instance (Dataset 2, k = 10) was less than

the execution time of Fast-Impute on the smallest tested instance (Dataset 1, k = 3).

3. The computational bottleneck of Algorithm 5 is the solution time of subproblems (4.12)

and (4.14). Solving these two subproblems requires an order of magnitude more time

than solving subproblems (4.16) and (4.18)

4. Figure 4.11 illustrates that the reconstructed matrix produced by Algorithm 5 becomes

a better predictor of the side information as the value of k increases. This is to be

expected as increasing k increases model complexity. We see that popularity and run-

time are the most difficult features to predict as a linear function of the reconstructed

206

matrix while vote average and budget are the easiest features to predict.

4.6.7 Summary of Findings

We now summarize our findings from our numerical experiments. In Sections 4.6.2-4.6.5,

we see that across all experiments using synthetic data and target rank k ≤ 15, Algorithm

5 produces solutions that achieve on average 79% lower objective value and 90.1% lower ℓ2

reconstruction error than the solutions returned by the best performing benchmark method.

In the regime where k > 15, we see in Section 4.6.5 that Fast-Impute outperforms Algorithm

5. We see that the execution time of Algorithm 5 is competitive with and often notably

faster than the benchmark methods on synthetic data. Importantly, in the regime k > 15,

although Fast-Impute returns higher quality solutions than Algorithm 5, the former has an

execution time that is on average 3 times as long as our method. Our computational results

are consistent with the complexity analysis performed in Section 4.5 for Problems (4.12),

(4.14), (4.16) and (4.18). We observe that solution time for (4.16) becomes the bottleneck

as the target rank k scales, otherwise the solution time for (4.12) is the bottleneck. On real

world data comprised of the Netflix Prize Dataset augmented with features from the TMDB

Database, Algorithm 5 produces solutions that achieve 67% lower out of sample error than

Fast-Impute in 97% less execution time.

4.7 Concluding Remarks

In this chapter, we introduced Problem (4.1) which seeks to reconstruct a partially observed

matrix that is predictive of fully observed side information. We illustrate that (4.1) has a

natural interpretation as a robust optimization problem and can be reformulated as a mixed-

projection optimization problem. We derive a semidefinite cone relaxation (4.9) to (4.1)

and we present Algorithm 5, a mixed-projection alternating direction method of multipliers

algorithm that obtains scalable, high quality solutions to (4.1). We rigorously benchmark the

207

performance of Algorithm 5 on synthetic and real world data against benchmark methods

Fast-Impute, Soft-Impute, Iterative-SVD and ScaledGD. We find that across all synthetic

data experiments with k ≤ 15, Algorithm 5 outputs solutions that achieve on average 79%

lower objective value in (4.1) and 90.1% lower ℓ2 reconstruction error than the solutions

returned by the best performing benchmark method. For the 5 synthetic data experiments

with k > 15, Fast-Impute returns superior quality solutions than Algorithm 5, however the

former takes on average 3 times as long as Algorithm 5 to execute. The runtime of Algorithm

5 is competitive with and often superior to that of the benchmark methods. Algorithm 5 is

able to solve problems with n = 10000 rows and m = 10000 columns in less than a minute.

On real world data from the Netflix Prize competition, Algorithm 5 produces solutions that

achieve 67% lower out of sample error than benchmark methods in 97% less execution time.

Future work could expand the mixed-projection ADMM framework introduced in this work

to incorporate positive semidefinite constraints and general linear constraints. Additionally,

future work could empirically investigate the strength of the semidefinite relaxation (4.9)

and could explore how to leverage this lower bound to certify globally optimal solutions.

4.8 Appendix: Supplemental Computational Results

208

Table 4.1: Comparison of the objective value of ScaledGD, Algorithm 5, Fast-Impute, Soft-
Impute and SVD versus n with m = 100, k = 5 and d = 150. Averaged over 20 trials for
each parameter configuration.

Objective

N ScaledGD Algorithm 5 Fast-Impute Soft-Impute SVD

100 249262.99 655.46 5530.48 19893.08 28677.73
200 306738.68 1280.82 9756.14 24251.93 44054.89
400 417643.27 2483.49 14321.46 28932.85 61112.62
800 421032.49 4813.05 31520.96 41179.38 93119.34
1000 522586.08 6010.34 33557.75 47701.68 107851.28
2000 563033.20 11975.48 83669.84 76566.52 167458.68
5000 1226489.68 30060.61 273747.04 172093.66 364065.64
10000 1973665.62 60082.27 521189.88 319915.98 642759.84

Table 4.2: Comparison of the reconstruction error of ScaledGD, Algorithm 5, Fast-Impute,
Soft-Impute and SVD versus n with m = 100, k = 5 and d = 150. Averaged over 20 trials
for each parameter configuration.

ℓ2 Reconstruction Error

N ScaledGD Algorithm 5 Fast-Impute Soft-Impute SVD

100 100.22460 0.01520 0.07540 0.21330 0.30090
200 58.37210 0.00695 0.12800 0.11770 0.21050
400 33.92500 0.00412 0.08980 0.07390 0.15980
800 14.97890 0.00328 0.23990 0.05160 0.13010
1000 12.66500 0.00312 0.18600 0.04950 0.12620
2000 5.54420 0.00304 0.07990 0.04410 0.11670
5000 2.47260 0.00282 0.15040 0.03720 0.10550
10000 1.32070 0.00267 0.10920 0.03510 0.10240

209

Table 4.3: Comparison of the side information R2 of ScaledGD, Algorithm 5, Fast-Impute,
Soft-Impute and SVD versus n with m = 100, k = 5 and d = 150. Averaged over 20 trials
for each parameter configuration.

Side Information R2

N ScaledGD Algorithm 5 Fast-Impute Soft-Impute SVD

100 0.157 0.983 0.868 1.000 1.000
200 0.193 0.984 0.878 0.837 0.740
400 0.167 0.985 0.912 0.866 0.780
800 0.441 0.985 0.911 0.905 0.826
1000 0.328 0.985 0.896 0.906 0.829
2000 0.557 0.985 0.924 0.920 0.862
5000 0.525 0.985 0.889 0.928 0.879
10000 0.582 0.985 0.840 0.932 0.888

Table 4.4: Comparison of the execution time of ScaledGD, Algorithm 5, Fast-Impute, Soft-
Impute and SVD versus n with m = 100, k = 5 and d = 150. Averaged over 20 trials for
each parameter configuration.

Execution Time (ms)

N ScaledGD Algorithm 5 Fast-Impute Soft-Impute SVD

100 10.84 53.47 99.95 141.42 115.26
200 41.11 73.84 121.05 187.26 163.11
400 54.95 113.89 152.16 262.95 246.42
800 68.00 184.11 195.05 389.63 334.16
1000 44.11 241.16 211.63 442.05 366.53
2000 124.47 340.84 311.32 759.58 575.79
5000 813.53 770.11 484.58 1795.58 1298.63
10000 18828.21 1730.00 863.84 3871.53 2713.26

210

Table 4.5: Comparison of the objective value of ScaledGD, Algorithm 5, Fast-Impute, Soft-
Impute and SVD versus m with n = 1000, k = 5 and d = 150. Averaged over 20 trials for
each parameter configuration.

Objective

M ScaledGD Algorithm 5 Fast-Impute Soft-Impute SVD

100 530097.31 6014.93 44337.08 47334.20 103403.04
200 2483913.82 6131.52 12159.08 29560.77 114448.43
400 14226534.31 6361.90 13875.31 21942.31 90652.40
800 99356634.18 6800.63 22152.43 37924.99 87895.33
1000 105451997.06 7126.60 24435.40 46327.69 128499.51
2000 591164404.77 13964.62 44333.51 95044.30 815807.16
5000 4002087935.12 41679.23 96985.27 308044.93 11294104.83
10000 9826251365.01 117558.76 197362.37 968255.00 60913874.17

Table 4.6: Comparison of the reconstruction error of ScaledGD, Algorithm 5, Fast-Impute,
Soft-Impute and SVD versus m with n = 1000, k = 5 and d = 150. Averaged over 20 trials
for each parameter configuration.

ℓ2 Reconstruction Error

M ScaledGD Algorithm 5 Fast-Impute Soft-Impute SVD

100 13.68740 0.00322 0.14530 0.04960 0.12560
200 40.58900 0.00154 0.00590 0.01260 0.06640
400 127.71450 0.00075 0.00340 0.00340 0.02240
800 508.24550 0.00036 0.00340 0.00310 0.00460
1000 443.26620 0.00029 0.00310 0.00300 0.00350
2000 1292.61610 0.00012 0.00330 0.00290 0.00300
5000 3658.18810 0.00004 0.00310 0.00270 0.00540
10000 4559.27360 0.00002 0.00320 0.00270 0.00650

211

Table 4.7: Comparison of the execution time of ScaledGD, Algorithm 5, Fast-Impute, Soft-
Impute and SVD versus m with n = 1000, k = 5 and d = 150. Averaged over 20 trials for
each parameter configuration.

Execution Time (ms)

M ScaledGD Algorithm 5 Fast-Impute Soft-Impute SVD

100 44.16 222.21 193.16 444.89 365.74
200 54.32 237.37 223.32 953.32 760.11
400 80.95 311.32 315.47 1466.32 1511.79
800 121.37 637.53 360.53 2198.21 2564.00
1000 154.89 728.58 434.47 2611.58 3009.21
2000 4652.11 1181.47 5127.37 5308.16 6062.89
5000 28587.11 12645.16 40526.16 32824.79 35015.21
10000 108255.05 39569.37 156399.42 82361.37 86762.84

Table 4.8: Comparison of the objective value of ScaledGD, Algorithm 5, Fast-Impute, Soft-
Impute and SVD versus d with n = 1000,m = 100 and k = 5. Averaged over 20 trials for
each parameter configuration.

Objective

D ScaledGD Algorithm 5 Fast-Impute Soft-Impute SVD

10 11691.78 475.17 4222.64 3367.41 7710.45
50 96771.27 2067.20 14565.83 16511.97 37203.79
100 229740.41 4033.46 28967.06 31000.81 68634.31
150 532018.26 6057.23 37244.64 45581.92 106504.32
200 734648.30 7994.51 42289.45 64771.47 141252.05
250 1195065.81 9984.20 71433.91 83752.90 183720.00
500 4165782.61 20094.24 120114.14 158458.64 361740.57
1000 13578263.54 40191.29 230467.93 294273.13 668550.27

212

Table 4.9: Comparison of the reconstruction error of ScaledGD, Algorithm 5, Fast-Impute,
Soft-Impute and SVD versus d with n = 1000,m = 100 and k = 5. Averaged over 20 trials
for each parameter configuration.

ℓ2 Reconstruction Error

D ScaledGD Algorithm 5 Fast-Impute Soft-Impute SVD

10 0.60780 0.00690 0.15210 0.04840 0.12530
50 1.41600 0.00471 0.09780 0.05020 0.12730
100 5.03590 0.00382 0.24280 0.05130 0.12790
150 14.00330 0.00326 0.19790 0.05030 0.12650
200 22.26870 0.00276 0.08640 0.04840 0.12510
250 39.41630 0.00245 0.19210 0.04830 0.12580
500 177.68800 0.00165 0.15700 0.04860 0.12640
1000 679.11770 0.00104 0.09360 0.04990 0.12660

Table 4.10: Comparison of the side information R2 of ScaledGD, Algorithm 5, Fast-Impute,
Soft-Impute and SVD versus d with n = 1000,m = 100 and k = 5. Averaged over 20 trials
for each parameter configuration.

Side Information R2

D ScaledGD Algorithm 5 Fast-Impute Soft-Impute SVD

10 0.912 0.988 0.907 0.903 0.821
50 0.528 0.986 0.899 0.903 0.825
100 0.533 0.985 0.914 0.911 0.840
150 0.303 0.985 0.925 0.905 0.831
200 0.411 0.985 0.909 0.907 0.836
250 0.291 0.986 0.913 0.908 0.834
500 0.151 0.985 0.906 0.905 0.826
1000 0.292 0.984 0.891 0.909 0.838

213

Table 4.11: Comparison of the execution time of ScaledGD, Algorithm 5, Fast-Impute, Soft-
Impute and SVD versus d with n = 1000,m = 100 and k = 5. Averaged over 20 trials for
each parameter configuration.

Execution Time (ms)

D ScaledGD Algorithm 5 Fast-Impute Soft-Impute SVD

10 84.00 199.89 222.68 465.11 386.53
50 80.79 193.05 226.00 459.53 385.00
100 108.63 245.11 226.53 457.84 380.11
150 113.47 246.16 218.47 452.21 380.79
200 117.32 318.26 243.05 455.32 387.05
250 152.79 362.63 229.63 487.21 412.79
500 176.21 365.37 274.26 439.05 358.95
1000 138.74 449.42 255.32 467.95 392.00

Table 4.12: Comparison of the objective value of ScaledGD, Algorithm 5, Fast-Impute, Soft-
Impute and SVD versus k with n = 1000,m = 100 and d = 150. Averaged over 20 trials for
each parameter configuration.

Objective

K ScaledGD Algorithm 5 Fast-Impute Soft-Impute SVD

5 514330.09 6021.76 41376.50 45858.20 106390.58
10 1892278.99 7393.65 255228.60 318398.98 805396.86
15 5213393.44 14104.62 115383.43 1112396.97 2495972.46
20 10196279.89 328671.00 101812.52 2628073.04 4910386.51
25 16816442.74 1069103.04 116005.02 4526388.13 7541300.54
30 - 34567679.83 10695127.17 6864577.33 10634436.81
35 39536651.09 187701091.79 144464.25 9424715.13 14192827.60
40 - 723504611.03 191276652.97 12529277.05 18290215.22

214

Table 4.13: Comparison of the reconstruction error of ScaledGD, Algorithm 5, Fast-Impute,
Soft-Impute and SVD versus k with n = 1000,m = 100 and d = 150. Averaged over 20 trials
for each parameter configuration.

ℓ2 Reconstruction Error

K ScaledGD Algorithm 5 Fast-Impute Soft-Impute SVD

5 12.95500 0.00314 0.10940 0.05090 0.12900
10 5.41720 0.00288 0.24270 0.08970 0.22520
15 3.45210 0.00871 0.01940 0.14010 0.30200
20 2.34590 0.04900 0.00903 0.18270 0.34220
25 1.73610 0.11890 0.00678 0.21480 0.36130
30 - 0.20030 0.00562 0.23810 0.37240
35 1.16780 0.17330 0.00488 0.25260 0.37740
40 - 0.22320 0.00452 0.26550 0.38020

Table 4.14: Comparison of the execution time of ScaledGD, Algorithm 5, Fast-Impute, Soft-
Impute and SVD versus k with n = 1000,m = 100 and d = 150. Averaged over 20 trials for
each parameter configuration.

Execution Time (ms)

K ScaledGD Algorithm 5 Fast-Impute Soft-Impute SVD

5 55.79 227.47 205.16 460.11 374.79
10 80.79 298.63 823.21 477.95 361.95
15 107.89 502.21 1817.16 509.68 346.05
20 95.53 713.42 2420.89 533.79 324.79
25 111.53 1110.89 3586.05 569.68 297.58
30 - 1353.95 4435.63 591.21 280.37
35 107.21 1822.16 6212.63 640.05 271.00
40 - 2281.95 8168.68 645.11 263.37

215

Table 4.15: Comparison of the in sample ℓ2 reconstruction error, out of sample ℓ2 recon-
struction error and execution time of Algorithm 5 and Fast-Impute versus k on Netflix Prize
Dataset 1. Averaged over 5 trials.

In Sample Error Out of Sample Error Execution Time (hr)

K Algorithm 5 Fast-Impute Algorithm 5 Fast-Impute Algorithm 5 Fast-Impute

3 0.0507 0.0516 0.0573 0.2264 0.2512 6.4907
4 0.0490 0.0486 0.0604 0.1942 0.2760 8.8641
5 0.0476 0.0460 0.0651 0.1835 0.3136 11.8207
6 0.0463 0.0438 0.0676 0.1867 0.3654 17.4471
7 0.0451 - 0.0718 - 0.4637 -
8 0.0442 - 0.0759 - 0.4941 -
9 0.0434 - 0.0811 - 1.0262 -
10 0.0427 - 0.0839 - 0.8503 -

Table 4.16: In sample ℓ2 reconstruction error, out of sample ℓ2 reconstruction error and
execution time of Algorithm 5 versus k on Netflix Prize Dataset 2. Averaged over 5 trials.

K In Sample Error Out of Sample Error Execution Time (hr)

3 0.0518 0.0591 0.5773
4 0.0502 0.0607 0.6581
5 0.0488 0.0652 1.3482
6 0.0475 0.0680 1.9273
7 0.0463 0.0715 2.7246
8 0.0454 0.0718 2.8198
9 0.0446 0.0782 2.8945
10 0.0439 0.0812 2.3311

Table 4.17: Algorithm 5 side information R2 on Netflix Prize Dataset 1. Averaged over 5
trials.

K Overall Popularity Vote Average Vote Count Runtime Budget Revenue

3 0.136 0.003 0.413 0.005 0.134 0.192 0.064
4 0.142 0.02 0.41 0.007 0.137 0.221 0.055
5 0.299 0.144 0.561 0.234 0.209 0.406 0.227
6 0.335 0.167 0.598 0.302 0.245 0.398 0.295
7 0.336 0.163 0.599 0.302 0.252 0.403 0.291
8 0.382 0.248 0.63 0.384 0.257 0.421 0.36
9 0.388 0.248 0.636 0.379 0.277 0.441 0.355
10 0.398 0.25 0.64 0.385 0.287 0.462 0.37

216

Table 4.18: Algorithm 5 side information R2 on Netflix Prize Dataset 2. Averaged over 5
trials.

K Overall Popularity Vote Average Vote Count Runtime

3 0.072 0.018 0.227 0.016 0.03
4 0.069 0.019 0.194 0.026 0.036
5 0.187 0.177 0.312 0.213 0.047
6 0.198 0.19 0.319 0.231 0.059
7 0.206 0.187 0.344 0.223 0.07
8 0.259 0.298 0.361 0.302 0.074
9 0.264 0.3 0.37 0.304 0.086
10 0.271 0.304 0.367 0.317 0.095

217

218

Chapter 5

Conclusion

In this thesis, we considered a collection of fundamental statistics and machine learning prob-

lems that exhibit cardinality or rank constraints and designed algorithms that outperform

existing convex relaxations and heuristics by leveraging techniques from mixed-integer and

mixed-projection optimization. We make important theoretical and applied contributions.

Chapter 2 considered a novel formulation of the Sparse Plus Low Rank Matrix Decom-

position problem that exploits discreteness and leverages regularization. We designed an

alternating minimization heuristic that computes high quality feasible solutions and outper-

forms benchmark methods, scaling to dimension n = 10000 in minutes. We additionally

designed a custom branch and bound algorithm that leverages a strong semidefinite relax-

ation to globally solve problem instances of dimension up to n = 25 in minutes.

In Chapter 3, we introduced a ℓ2 regularized formulation of the Compressed Sensing

problem which we reformulated exactly as a mixed-integer second order cone problem. For

this problem, we presented a custom branch and bound algorithm that can compute globally

optimal solutions. We found that our approach produced solutions that were on average

6.22% more sparse on synthetic data and 9.95% more sparse on real world ECG data when

compared to state of the art benchmark approaches.

Chapter 4 studied an important generalization of the well known Matrix Completion

219

problem where we seek to reconstruct a partially observed matrix that is predictive of fully

observed side information. We reformulated this problem as a mixed-projection optimization

problem and presented an alternating direction method of multipliers algorithm that can

solve problems with n = 10000 rows and m = 10000 columns in less than a minute. We

found that in the low rank regime, this algorithm outputs solutions that achieve on average

79% lower objective value in and 90.1% lower ℓ2 reconstruction error than the solutions

returned by benchmark methods.

Together, our rigorous analysis of the algorithms presented across these chapters con-

tributes to advancing the theoretical foundations of optimization theory over cardinality and

rank constraints while our high performance open-source implementation of these algorithms

consists of a practical tool set that can be used by practitioners to tackle these problems in

the field.

220

Bibliography

[1] Aharon, Michal ; Elad, Michael ; Bruckstein, Alfred: K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation. In: IEEE Transactions
on signal processing 54 (2006), Nr. 11, S. 4311–4322

[2] Arous, Gérard Ben ; Wein, Alexander S. ; Zadik, Ilias: Free energy wells and overlap
gap property in sparse PCA. In: Conference on Learning Theory PMLR (Veranst.),
2020, S. 479–482

[3] Asif, M S. ; Romberg, Justin: Fast and Accurate Algorithms for Re-Weighted L1-
Norm Minimization. In: IEEE Transactions on Signal Processing 61 (2013), Nr. 23,
S. 5905–5916

[4] Askari, Armin ; d’Aspremont, Alexandre ; Ghaoui, Laurent E.: Approximation
bounds for sparse programs. In: SIAM Journal on Mathematics of Data Science 4
(2022), Nr. 2, S. 514–530

[5] Bach, Francis R. ; Jordan, Michael I.: Predictive low-rank decomposition for kernel
methods. In: Proceedings of the 22nd international conference on Machine learning,
2005, S. 33–40

[6] Baraniuk, Richard ; Davenport, Mark ; DeVore, Ronald ; Wakin, Michael: A
simple proof of the restricted isometry property for random matrices. In: Constructive
Approximation 28 (2008), Nr. 3, S. 253–263

[7] Basri, Ronen ; Jacobs, David W.: Lambertian reflectance and linear subspaces.
In: IEEE transactions on pattern analysis and machine intelligence 25 (2003), Nr. 2,
S. 218–233

[8] Basu, Sumanta ; Li, Xianqi ; Michailidis, George: Low Rank and Structured
Modeling of High-Dimensional Vector Autoregressions. In: IEEE Transactions on
Signal Processing 67 (2019), Nr. 5, S. 1207–1222

[9] Bell, Robert M. ; Koren, Yehuda: Lessons from the Netflix prize challenge. In:
Acm Sigkdd Explorations Newsletter 9 (2007), Nr. 2, S. 75–79

[10] Ben-Tal, Aharon ; Den Hertog, Dick: Hidden conic quadratic representation of
some nonconvex quadratic optimization problems. In: Mathematical Programming 143
(2014), Nr. 1, S. 1–29

221

[11] Berk, Lauren ; Bertsimas, Dimitris: Certifiably optimal sparse principal component
analysis. In: Mathematical Programming Computation 11 (2019), Nr. 3, S. 381–420

[12] Bertsekas, Dimitri P.: Nonlinear programming. 3rd. Athena Scientific Belmont MA,
2016

[13] Bertsimas, Dimitris ; Copenhaver, Martin S.: Characterization of the equivalence
of robustification and regularization in linear and matrix regression. In: European
Journal of Operational Research 270 (2018), Nr. 3, S. 931–942

[14] Bertsimas, Dimitris ; Copenhaver, Martin S. ; Mazumder, Rahul: Certifiably
optimal low rank factor analysis. In: Journal of Machine Learning Research 18 (2017),
Nr. 1, S. 907–959

[15] Bertsimas, Dimitris ; Cory-Wright, Ryan ; Johnson, Nicholas A. G.: Sparse Plus
Low Rank Matrix Decomposition: A Discrete Optimization Approach. In: Journal of
Machine Learning Research 24 (2023), Nr. 267, S. 1–51

[16] Bertsimas, Dimitris ; Cory-Wright, Ryan ; Lo, Sean ; Pauphilet, Jean: Optimal
Low-Rank Matrix Completion: Semidefinite Relaxations and Eigenvector Disjunctions.
2023

[17] Bertsimas, Dimitris ; Cory-Wright, Ryan ; Pauphilet, Jean: A unified approach
to mixed-integer optimization problems with logical constraints. In: SIAM Journal on
Optimization 31 (2021), Nr. 3, S. 2340–2367

[18] Bertsimas, Dimitris ; Cory-Wright, Ryan ; Pauphilet, Jean: A unified approach
to mixed-integer optimization problems with logical constraints. In: SIAM Journal on
Optimization 31 (2021), Nr. 3, S. 2340–2367

[19] Bertsimas, Dimitris ; Cory-Wright, Ryan ; Pauphilet, Jean: Mixed-projection
conic optimization: A new paradigm for modeling rank constraints. In: Operations
Research 70 (2022), Nr. 6, S. 3321–3344

[20] Bertsimas, Dimitris ; Cory-Wright, Ryan ; Pauphilet, Jean: A new perspective
on low-rank optimization. In: Mathematical Programming 202 (2023), Nr. 1, S. 47–92

[21] Bertsimas, Dimitris ; Digalakis Jr, Vassilis: The backbone method for ultra-
high dimensional sparse machine learning. In: Machine Learning 111 (2022), Nr. 6,
S. 2161–2212

[22] Bertsimas, Dimitris ; Dunn, Jack: Machine learning under a modern optimization
lens. Dynamic Ideas LLC Charlestown, MA, 2019

[23] Bertsimas, Dimitris ; Hertog, Dick den: Robust and adaptive optimization. Dy-
namic Ideas LLC, 2022

[24] Bertsimas, Dimitris ; Johnson, Nicholas A. G.: Compressed sensing: A discrete
optimization approach. In: Machine Learning (2024), S. 1–40

222

[25] Bertsimas, Dimitris ; Johnson, Nicholas A. G.: Predictive Low Rank Matrix
Learning under Partial Observations: Mixed-Projection ADMM. 2024. – URL
https://arxiv.org/abs/2407.13731

[26] Bertsimas, Dimitris ; Li, Michael L.: Fast exact matrix completion: A unified opti-
mization framework for matrix completion. In: Journal of Machine Learning Research
21 (2020), Nr. 231, S. 1–43

[27] Bertsimas, Dimitris ; Pauphilet, Jean ; Van Parys, Bart: Sparse regression. In:
Statistical Science 35 (2020), Nr. 4, S. 555–578

[28] Bertsimas, Dimitris ; Pauphilet, Jean ; Van Parys, Bart: Sparse regression:
Scalable algorithms and empirical performance. In: Statistical Science 35 (2020),
Nr. 4, S. 555–578

[29] Bertsimas, Dimitris ; Van Parys, Bart: Sparse high-dimensional regression: Exact
scalable algorithms and phase transitions. In: The Annals of Statistics 48 (2020),
Nr. 1, S. 300–323

[30] Bezanson, Jeff ; Edelman, Alan ; Karpinski, Stefan ; Shah, Viral B.: Julia: A
fresh approach to numerical computing. In: SIAM review 59 (2017), Nr. 1, S. 65–98

[31] Bienstock, Daniel: Eigenvalue techniques for convex objective, nonconvex optimiza-
tion problems. In: International Conference on Integer Programming and Combinato-
rial Optimization Springer (Veranst.), 2010, S. 29–42

[32] Billsus, Daniel ; Pazzani, Michael J. u. a.: Learning collaborative information filters.
In: Icml Bd. 98, 1998, S. 46–54

[33] Bourguignon, Sébastien ; Ninin, Jordan ; Carfantan, Hervé ; Mongeau, Marcel:
Exact sparse approximation problems via mixed-integer programming: Formulations
and computational performance. In: IEEE Transactions on Signal Processing 64
(2015), Nr. 6, S. 1405–1419

[34] Bousquet, Olivier ; Elisseeff, André: Stability and generalization. In: Journal of
Machine Learning Research 2 (2002), S. 499–526

[35] Boyd, Stephen ; Boyd, Stephen P. ; Vandenberghe, Lieven: Convex optimization.
USA : Cambridge university press, 2004

[36] Boyd, Stephen ; El Ghaoui, Laurent ; Feron, Eric ; Balakrishnan, Venkatara-
manan: Linear matrix inequalities in system and control theory. SIAM, 1994

[37] Boyd, Stephen ; Parikh, Neal ; Chu, Eric ; Peleato, Borja ; Eckstein, Jonathan
u. a.: Distributed optimization and statistical learning via the alternating direction
method of multipliers. In: Foundations and Trends® in Machine learning 3 (2011),
Nr. 1, S. 1–122

223

https://arxiv.org/abs/2407.13731

[38] Brady, David J. ; Choi, Kerkil ; Marks, Daniel L. ; Horisaki, Ryoichi ; Lim,
Sehoon: Compressive holography. In: Optics express 17 (2009), Nr. 15, S. 13040–
13049

[39] Burer, Samuel ; Monteiro, Renato D.: A nonlinear programming algorithm for
solving semidefinite programs via low-rank factorization. In: Mathematical Program-
ming 95 (2003), Nr. 2, S. 329–357

[40] Burer, Samuel ; Monteiro, Renato D.: Local minima and convergence in low-
rank semidefinite programming. In: Mathematical Programming 103 (2005), Nr. 3,
S. 427–444

[41] Cai, HanQin ; Cai, Jian-Feng ; Wei, Ke: Accelerated alternating projections for
robust principal component analysis. In: Journal of Machine Learning Research 20
(2019), Nr. 1, S. 685–717

[42] Cai, T T. ; Wang, Lie: Orthogonal matching pursuit for sparse signal recovery with
noise. In: IEEE Transactions on Information theory 57 (2011), Nr. 7, S. 4680–4688

[43] Candes, Emmanuel ; Recht, Benjamin: Exact matrix completion via convex opti-
mization. In: Communications of the ACM 55 (2012), Nr. 6, S. 111–119

[44] Candès, Emmanuel J. ; Li, Xiaodong ; Ma, Yi ; Wright, John: Robust principal
component analysis? In: Journal of the ACM 58 (2011), Nr. 3, S. 1–37

[45] Candes, Emmanuel J. ; Plan, Yaniv: Matrix completion with noise. In: Proceedings
of the IEEE 98 (2010), Nr. 6, S. 925–936

[46] Candes, Emmanuel J. ; Tao, Terence: Decoding by linear programming. In: IEEE
transactions on information theory 51 (2005), Nr. 12, S. 4203–4215

[47] Candes, Emmanuel J. ; Tao, Terence: Near-optimal signal recovery from random
projections: Universal encoding strategies? In: IEEE transactions on information
theory 52 (2006), Nr. 12, S. 5406–5425

[48] Candès, Emmanuel J. ; Tao, Terence: The power of convex relaxation: Near-optimal
matrix completion. In: IEEE transactions on information theory 56 (2010), Nr. 5,
S. 2053–2080

[49] Candes, Emmanuel J. ; Wakin, Michael B. ; Boyd, Stephen P.: Enhancing sparsity
by reweighted L1 minimization. In: Journal of Fourier analysis and applications 14
(2008), Nr. 5, S. 877–905

[50] Chandrasekaran, Venkat ; Sanghavi, Sujay ; Parrilo, Pablo A. ; Willsky,
Alan S.: Rank-sparsity incoherence for matrix decomposition. In: SIAM Journal on
Optimization 21 (2011), Nr. 2, S. 572–596

[51] Chen, Junbo ; Liu, Shouyin ; Huang, Min: Low-rank and sparse decomposition
model for accelerating dynamic MRI reconstruction. In: Journal of Healthcare Engi-
neering 2017 (2017)

224

[52] Chen, Junxin ; Xing, Jiazhu ; Zhang, Leo Y. ; Qi, Lin: Compressed sensing for
electrocardiogram acquisition in wireless body sensor network: A comparative anal-
ysis. In: International Journal of Distributed Sensor Networks 15 (2019), Nr. 7,
S. 1550147719864884

[53] Chen, Scott S. ; Donoho, David L. ; Saunders, Michael A.: Atomic decomposition
by basis pursuit. In: SIAM review 43 (2001), Nr. 1, S. 129–159

[54] Chen, Shaobing ; Donoho, David: Basis pursuit. In: Proceedings of 1994 28th
Asilomar Conference on Signals, Systems and Computers Bd. 1 IEEE (Veranst.),
1994, S. 41–44

[55] Chen, Xiaojun ; Zhou, Weijun: Convergence of reweighted l1 minimization algo-
rithms and unique solution of truncated lp minimization. In: Department of Applied
Mathematics, The Hong Kong Polytechnic University (2010)

[56] Chen, Yudong ; Wainwright, Martin J.: Fast low-rank estimation by projected
gradient descent: General statistical and algorithmic guarantees. In: arXiv preprint
arXiv:1509.03025 (2015)

[57] Chi, Yuejie ; Lu, Yue M. ; Chen, Yuxin: Nonconvex optimization meets low-rank
matrix factorization: An overview. In: IEEE Transactions on Signal Processing 67
(2019), Nr. 20, S. 5239–5269

[58] Chiang, Kai-Yang ; Hsieh, Cho-Jui ; Dhillon, Inderjit S.: Matrix completion with
noisy side information. In: Advances in neural information processing systems 28
(2015)

[59] Dai, Wei ; Milenkovic, Olgica: Subspace pursuit for compressive sensing signal re-
construction. In: IEEE transactions on Information Theory 55 (2009), Nr. 5, S. 2230–
2249

[60] Dempster, Arthur P. ; Laird, Nan M. ; Rubin, Donald B.: Maximum likelihood
from incomplete data via the EM algorithm. In: Journal of the royal statistical society:
series B (methodological) 39 (1977), Nr. 1, S. 1–22

[61] Dong, Hongbo ; Chen, Kun ; Linderoth, Jeff: Regularization vs. relaxation:
A conic optimization perspective of statistical variable selection. In: arXiv preprint
arXiv:1510.06083 (2015)

[62] Donoho, David L.: Compressed sensing. In: IEEE Transactions on information
theory 52 (2006), Nr. 4, S. 1289–1306

[63] Donoho, David L. ; Elad, Michael: Optimally sparse representation in general
(nonorthogonal) dictionaries via L1 minimization. In: Proceedings of the National
Academy of Sciences 100 (2003), Nr. 5, S. 2197–2202

225

[64] Donoho, David L. ; Johnstone, Iain M. ; Kerkyacharian, Gérard ; Picard,
Dominique: Wavelet shrinkage: asymptopia? In: Journal of the Royal Statistical
Society: Series B (Methodological) 57 (1995), Nr. 2, S. 301–337

[65] Elad, Michael ; Bruckstein, Alfred M.: A generalized uncertainty principle and
sparse representation in pairs of bases. In: IEEE Transactions on Information Theory
48 (2002), Nr. 9, S. 2558–2567

[66] Fazel, Maryam: Matrix rank minimization with applications, Stanford University,
Dissertation, 2002

[67] Gamarnik, David: The overlap gap property: A topological barrier to optimizing
over random structures. In: Proceedings of the National Academy of Sciences 118
(2021), Nr. 41, S. e2108492118

[68] Ge, Rong ; Huang, Furong ; Jin, Chi ; Yuan, Yang: Escaping from saddle
points—online stochastic gradient for tensor decomposition. In: Conference on learn-
ing theory PMLR (Veranst.), 2015, S. 797–842

[69] Gill, Patrick R. ; Wang, Albert ; Molnar, Alyosha: The in-crowd algorithm for
fast basis pursuit denoising. In: IEEE Transactions on Signal Processing 59 (2011),
Nr. 10, S. 4595–4605

[70] Gillis, Nicolas ; Glineur, François: Low-rank matrix approximation with weights
or missing data is NP-hard. In: SIAM Journal on Matrix Analysis and Applications
32 (2011), Nr. 4, S. 1149–1165

[71] Glover, Fred: Improved linear integer programming formulations of nonlinear integer
problems. In: Management Science 22 (1975), Nr. 4, S. 455–460

[72] Goemans, Michel X. ; Williamson, David P.: Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming. In:
Journal of the ACM (JACM) 42 (1995), Nr. 6, S. 1115–1145

[73] Goodfellow, Ian J. ; Bengio, Yoshua ; Courville, Aaron: Deep Learning. Cam-
bridge, MA, USA : MIT Press, 2016

[74] Gribonval, Rémi ; Nielsen, Morten: Sparse representations in unions of bases. In:
IEEE transactions on Information theory 49 (2003), Nr. 12, S. 3320–3325

[75] Gu, Quanquan ; Wang, Zhaoran W. ; Liu, Han: Low-rank and sparse structure
pursuit via alternating minimization. In: Artificial Intelligence and Statistics PMLR
(Veranst.), 2016, S. 600–609

[76] Guédon, Olivier ; Litvak, Alexander E. ; Pajor, Alain ; Tomczak-Jaegermann,
Nicole: Restricted isometry property for random matrices with heavy-tailed columns.
In: Comptes Rendus Mathematique 352 (2014), Nr. 5, S. 431–434

226

[77] Günlük, Oktay ; Linderoth, Jeff: Perspective reformulation and applications. In:
Mixed Integer Nonlinear Programming. Springer, 2012, S. 61–89

[78] Guo, Ke ; Han, Deren ; Wang, David Z. ; Wu, Tingting: Convergence of ADMM for
multi-block nonconvex separable optimization models. In: Frontiers of Mathematics
in China 12 (2017), S. 1139–1162

[79] Ha, Wooseok ; Liu, Haoyang ; Barber, Rina F.: An equivalence between criti-
cal points for rank constraints versus low-rank factorizations. In: SIAM Journal on
Optimization 30 (2020), Nr. 4, S. 2927–2955

[80] Halko, Nathan ; Martinsson, Per-Gunnar ; Tropp, Joel A.: Finding structure
with randomness: Probabilistic algorithms for constructing approximate matrix de-
compositions. In: SIAM Review 53 (2011), Nr. 2, S. 217–288

[81] Hashemi, Ali ; Rostami, Mohammad ; Cheung, Ngai-Man: Efficient environmen-
tal temperature monitoring using compressed sensing. In: 2016 Data Compression
Conference (DCC) IEEE Computer Society (Veranst.), 2016, S. 602–602

[82] Hsu, Daniel J. ; Kakade, Sham M. ; Langford, John ; Zhang, Tong: Multi-label
prediction via compressed sensing. In: Advances in neural information processing
systems 22 (2009)

[83] Jain, Prateek ; Netrapalli, Praneeth: Fast exact matrix completion with finite
samples. In: Conference on Learning Theory PMLR (Veranst.), 2015, S. 1007–1034

[84] Jain, Prateek ; Netrapalli, Praneeth ; Sanghavi, Sujay: Low-rank matrix com-
pletion using alternating minimization. In: Proceedings of the forty-fifth Annual ACM
Symposium on Theory of Computing, 2013, S. 665–674

[85] Ji, Hui ; Liu, Chaoqiang ; Shen, Zuowei ; Xu, Yuhong: Robust video denoising
using low rank matrix completion. In: 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition IEEE (Veranst.), 2010, S. 1791–1798

[86] Jin, Chi ; Kakade, Sham M. ; Netrapalli, Praneeth: Provable efficient online
matrix completion via non-convex stochastic gradient descent. In: Advances in Neural
Information Processing Systems 29 (2016)

[87] Kai, Wang ; Jingzhi, Liu ; Yanjun, Cai: Compressed Sensing based Multi-label Clas-
sification without Label Sparsity Level Prior. In: Proceedings of the 2017 International
Conference on Deep Learning Technologies, 2017, S. 66–69

[88] Kapoor, Ashish ; Viswanathan, Raajay ; Jain, Prateek: Multilabel classification
using bayesian compressed sensing. In: Advances in neural information processing
systems 25 (2012)

[89] Karahanoğlu, N B. ; Erdoğan, Hakan ; Birbil, Ş İlker: A mixed integer linear
programming formulation for the sparse recovery problem in compressed sensing. In:
2013 IEEE International Conference on Acoustics, Speech and Signal Processing IEEE
(Veranst.), 2013, S. 5870–5874

227

[90] Koren, Yehuda ; Bell, Robert ; Volinsky, Chris: Matrix factorization techniques
for recommender systems. In: Computer 42 (2009), Nr. 8, S. 30–37

[91] Kyrillidis, Anastasios ; Cevher, Volkan: Matrix ALPS: Accelerated low rank and
sparse matrix reconstruction. In: 2012 IEEE Statistical Signal Processing Workshop
(SSP) IEEE (Veranst.), 2012, S. 185–188

[92] Land, Ailsa H. ; Doig, Alison G.: An Automatic Method for Solving Discrete Pro-
gramming Problems. S. 105–132. In: 50 Years of Integer Programming 1958-2008:
From the Early Years to the State-of-the-Art. Berlin, Heidelberg : Springer Berlin
Heidelberg, 2010

[93] Lasserre, Jean B.: An explicit exact SDP relaxation for nonlinear 0-1 programs. In:
Integer Programming and Combinatorial Optimization: 8th International IPCO Con-
ference Utrecht, The Netherlands, June 13–15, 2001 Proceedings 8 Springer (Veranst.),
2001, S. 293–303

[94] Lasserre, Jean B.: Global optimization with polynomials and the problem of mo-
ments. In: SIAM Journal on optimization 11 (2001), Nr. 3, S. 796–817

[95] Lasserre, Jean B.: Moments, positive polynomials and their applications. Bd. 1.
France : World Scientific, 2009

[96] Lavaei, Javad ; Low, Steven H.: Zero duality gap in optimal power flow problem. In:
IEEE Transactions on Power systems 27 (2011), Nr. 1, S. 92–107

[97] Lee, Jon ; Zou, Bai: Optimal rank-sparsity decomposition. In: Journal of Global
Optimization 60 (2014), Nr. 2, S. 307–315

[98] Little, John D.: Branch and bound methods for combinatorial problems, MIT, Dis-
sertation, 1966

[99] Liu, Qi: Power Network System Identification and Recovery Based on the Matrix
Completion. In: Journal of Physics: Conference Series Bd. 1237 IOP Publishing
(Veranst.), 2019, S. 032059

[100] Lubin, Miles ; Zadik, Ilias ; Vielma, Juan P.: Mixed-integer convex representability.
In: International Conference on Integer Programming and Combinatorial Optimization
Springer (Veranst.), 2017, S. 392–404

[101] Lustig, Michael ; Donoho, David ; Pauly, John M.: Sparse MRI: The application
of compressed sensing for rapid MR imaging. In: Magnetic Resonance in Medicine:
An Official Journal of the International Society for Magnetic Resonance in Medicine
58 (2007), Nr. 6, S. 1182–1195

[102] Ma, Cong ; Wang, Kaizheng ; Chi, Yuejie ; Chen, Yuxin: Implicit regularization
in nonconvex statistical estimation: Gradient descent converges linearly for phase re-
trieval and matrix completion. In: International Conference on Machine Learning
PMLR (Veranst.), 2018, S. 3345–3354

228

[103] Majumdar, Anirudha ; Hall, Georgina ; Ahmadi, Amir A.: Recent scalability im-
provements for semidefinite programming with applications in machine learning, con-
trol, and robotics. In: Annual Review of Control, Robotics, and Autonomous Systems
3 (2020), S. 331–360

[104] Mallat, Stéphane G ; Zhang, Zhifeng: Matching pursuits with time-frequency
dictionaries. In: IEEE Transactions on signal processing 41 (1993), Nr. 12, S. 3397–
3415

[105] Mazumder, Rahul ; Hastie, Trevor ; Tibshirani, Robert: Spectral Regularization
Algorithms for Learning Large Incomplete Matrices. In: Journal of Machine Learn-
ing Research 11 (2010), Nr. 80, S. 2287–2322. – URL http://jmlr.org/papers/v11/
mazumder10a.html

[106] Morrison, David R. ; Jacobson, Sheldon H. ; Sauppe, Jason J. ; Sewell, Ed-
ward C.: Branch-and-bound algorithms: A survey of recent advances in searching,
branching, and pruning. In: Discrete Optimization 19 (2016), S. 79–102

[107] Needell, Deanna: Noisy signal recovery via iterative reweighted l1-minimization. In:
2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems
and Computers IEEE (Veranst.), 2009, S. 113–117

[108] Negahban, Sahand ; Wainwright, Martin J.: Estimation of (near) low-rank ma-
trices with noise and high-dimensional scaling. In: The Annals of Statistics (2011),
S. 1069–1097

[109] Nesterov, Yurii: A method for solving the convex programming problem with con-
vergence rate O (1/k2). In: Dokl akad nauk Sssr Bd. 269, 1983, S. 543

[110] Netrapalli, Praneeth ; Niranjan, UN ; Sanghavi, Sujay ; Anandkumar, Ani-
mashree ; Jain, Prateek: Non-convex robust PCA. In: arXiv preprint arXiv:1410.7660
(2014)

[111] Nguyen, Luong T. ; Kim, Junhan ; Shim, Byonghyo: Low-rank matrix completion:
A contemporary survey. In: IEEE Access 7 (2019), S. 94215–94237

[112] Otazo, Ricardo ; Candes, Emmanuel ; Sodickson, Daniel K.: Low-rank plus sparse
matrix decomposition for accelerated dynamic MRI with separation of background and
dynamic components. In: Magnetic resonance in medicine 73 (2015), Nr. 3, S. 1125–
1136

[113] Overton, Michael L. ; Womersley, Robert S.: On the sum of the largest eigenvalues
of a symmetric matrix. In: SIAM Journal on Matrix Analysis and Applications 13
(1992), Nr. 1, S. 41–45

[114] Owen, Art B. ; Perry, Patrick O.: Bi-cross-validation of the SVD and the nonnega-
tive matrix factorization. In: The Annals of Applied Statistics 3 (2009), Nr. 2, S. 564
– 594

229

http://jmlr.org/papers/v11/mazumder10a.html
http://jmlr.org/papers/v11/mazumder10a.html

[115] Pati, Yagyensh C. ; Rezaiifar, Ramin ; Krishnaprasad, Perinkulam S.: Orthogo-
nal matching pursuit: Recursive function approximation with applications to wavelet
decomposition. In: Proceedings of 27th Asilomar conference on signals, systems and
computers IEEE (Veranst.), 1993, S. 40–44

[116] Pearson, Karl: On lines and planes of closest fit to systems of points in space. In:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2
(1901), Nr. 11, S. 559–572

[117] Petersen, Kaare B. ; Pedersen, Michael S. u. a.: The matrix cookbook. In: Tech-
nical University of Denmark 7 (2008), Nr. 15, S. 510

[118] Pilanci, Mert ; Wainwright, Martin J. ; El Ghaoui, Laurent: Sparse learning via
Boolean relaxations. In: Mathematical Programming 151 (2015), Nr. 1, S. 63–87

[119] Ramlatchan, Andy ; Yang, Mengyun ; Liu, Quan ; Li, Min ; Wang, Jianxin ; Li,
Yaohang: A survey of matrix completion methods for recommendation systems. In:
Big Data Mining and Analytics 1 (2018), Nr. 4, S. 308–323

[120] Rani, Meenu ; Dhok, Sanjay B. ; Deshmukh, Raghavendra B.: A systematic review
of compressive sensing: Concepts, implementations and applications. In: IEEE access
6 (2018), S. 4875–4894

[121] Recht, Benjamin: Projected gradient methods. In: Course Notes (2012)

[122] Recht, Benjamin ; Fazel, Maryam ; Parrilo, Pablo A.: Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization. In: SIAM Review
52 (2010), Nr. 3, S. 471–501

[123] Reuther, Albert ; Kepner, Jeremy ; Byun, Chansup ; Samsi, Siddharth ; Arcand,
William ; Bestor, David ; Bergeron, Bill ; Gadepally, Vijay ; Houle, Michael ;
Hubbell, Matthew ; Jones, Michael ; Klein, Anna ; Milechin, Lauren ; Mullen,
Julia ; Prout, Andrew ; Rosa, Antonio ; Yee, Charles ; Michaleas, Peter: Interac-
tive supercomputing on 40,000 cores for machine learning and data analysis. In: 2018
IEEE High Performance extreme Computing Conference (HPEC) IEEE (Veranst.),
2018, S. 1–6

[124] Roos, Kees ; Balvert, Marleen ; Gorissen, Bram L. ; Hertog, Dick den: A
universal and structured way to derive dual optimization problem formulations. In:
INFORMS Journal on Optimization 2 (2020), Nr. 4, S. 229–255

[125] Rubinsteyn, Alex ; Feldman, Sergey: fancyimpute: An Imputation Library for
Python. 2016. – URL https://github.com/iskandr/fancyimpute

[126] Sarwar, Badrul ; Karypis, George ; Konstan, Joseph ; Riedl, John T.: Applica-
tion of dimensionality reduction in recommender system-a case study. (2000)

230

https://github.com/iskandr/fancyimpute

[127] Saxena, Anureet ; Bonami, Pierre ; Lee, Jon: Convex relaxations of non-convex
mixed integer quadratically constrained programs: extended formulations. In: Math-
ematical programming 124 (2010), Nr. 1, S. 383–411

[128] Skajaa, Anders ; Ye, Yinyu: A homogeneous interior-point algorithm for nonsym-
metric convex conic optimization. In: Mathematical Programming 150 (2015), Nr. 2,
S. 391–422

[129] Som, Subhojit: Learning label structure for compressed sensing based multilabel
classification. In: 2016 SAI Computing Conference (SAI) IEEE (Veranst.), 2016,
S. 54–60

[130] Sun, Ruoyu ; Luo, Zhi-Quan: Guaranteed matrix completion via non-convex factor-
ization. In: IEEE Transactions on Information Theory 62 (2016), Nr. 11, S. 6535–6579

[131] Tibshirani, Robert: Regression shrinkage and selection via the lasso. In: Journal of
the Royal Statistical Society: Series B (Methodological) 58 (1996), Nr. 1, S. 267–288

[132] Tillmann, Andreas M. ; Pfetsch, Marc E.: The computational complexity of the re-
stricted isometry property, the nullspace property, and related concepts in compressed
sensing. In: IEEE Transactions on Information Theory 60 (2013), Nr. 2, S. 1248–1259

[133] Tong, Tian ; Ma, Cong ; Chi, Yuejie: Accelerating ill-conditioned low-rank matrix
estimation via scaled gradient descent. In: Journal of Machine Learning Research 22
(2021), Nr. 1, S. 6639–6701

[134] Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. In: IEEE
Transactions on Information Theory 50 (2004), Nr. 10, S. 2231–2242

[135] Tropp, Joel A. ; Wright, Stephen J.: Computational methods for sparse solution
of linear inverse problems. In: Proceedings of the IEEE 98 (2010), Nr. 6, S. 948–958

[136] Troyanskaya, Olga ; Cantor, Michael ; Sherlock, Gavin ; Brown, Pat ; Hastie,
Trevor ; Tibshirani, Robert ; Botstein, David ; Altman, Russ B.: Missing value
estimation methods for DNA microarrays. In: Bioinformatics 17 (2001), Nr. 6, S. 520–
525

[137] Tsoumakas, Grigorios ; Katakis, Ioannis ; Vlahavas, Ioannis: Effective and ef-
ficient multilabel classification in domains with large number of labels. In: Proc.
ECML/PKDD 2008 Workshop on Mining Multidimensional Data (MMD’08) Bd. 21,
2008, S. 53–59

[138] Udell, Madeleine ; Townsend, Alex: Why are big data matrices approximately low
rank? In: SIAM Journal on Mathematics of Data Science 1 (2019), Nr. 1, S. 144–160

[139] Wang, Gang ; Zhao, Zhikai ; Ning, Yongjie: Design of compressed sensing algorithm
for coal mine IoT moving measurement data based on a multi-hop network and total
variation. In: Sensors 18 (2018), Nr. 6, S. 1732

231

[140] Wang, Hao ; Zeng, Hao ; Wang, Jiashan: An extrapolated iteratively reweighted L1
method with complexity analysis. In: Computational Optimization and Applications
(2022), S. 1–31

[141] Wang, Hao ; Zhang, Fan ; Shi, Yuanming ; Hu, Yaohua: Nonconvex and nonsmooth
sparse optimization via adaptively iterative reweighted methods. In: Journal of Global
Optimization 81 (2021), Nr. 3, S. 717–748

[142] Wang, Jian: Support recovery with orthogonal matching pursuit in the presence of
noise. In: IEEE Transactions on Signal processing 63 (2015), Nr. 21, S. 5868–5877

[143] Wang, Yu ; Yin, Wotao ; Zeng, Jinshan: Global convergence of ADMM in nonconvex
nonsmooth optimization. In: Journal of Scientific Computing 78 (2019), S. 29–63

[144] Wold, Svante ; Esbensen, Kim ; Geladi, Paul: Principal component analysis.
In: Chemometrics and Intelligent Laboratory Systems 2 (1987), Nr. 1, S. 37–52. –
Proceedings of the Multivariate Statistical Workshop for Geologists and Geochemists

[145] Xu, Huan ; Caramanis, Constantine ; Mannor, Shie: Robustness and Regular-
ization of Support Vector Machines. In: Journal of Machine Learning Research 10
(2009), Nr. 7

[146] Xu, Miao ; Jin, Rong ; Zhou, Zhi-Hua: Speedup matrix completion with side in-
formation: Application to multi-label learning. In: Advances in neural information
processing systems 26 (2013)

[147] Xu, Yangyang ; Yin, Wotao ; Wen, Zaiwen ; Zhang, Yin: An alternating direction
algorithm for matrix completion with nonnegative factors. In: Frontiers of Mathemat-
ics in China 7 (2012), S. 365–384

[148] Xu, Zheng ; De, Soham ; Figueiredo, Mario ; Studer, Christoph ; Goldstein,
Tom: An empirical study of ADMM for nonconvex problems. In: arXiv preprint
arXiv:1612.03349 (2016)

[149] Yan, Qi ; Ye, Jieping ; Shen, Xiaotong: Simultaneous pursuit of sparseness and rank
structures for matrix decomposition. In: Journal of Machine Learning Research 16
(2015), Nr. 1, S. 47–75

[150] Yi, Xinyang ; Park, Dohyung ; Chen, Yudong ; Caramanis, Constantine: Fast
algorithms for robust PCA via gradient descent. In: Advances in Neural Information
Processing Systems 29 (2016)

[151] Yuan, Xiaoming ; Yang, Junfeng: Sparse and low-rank matrix decomposition via
alternating direction methods. In: Pacific Journal of Optimization 9 (2013), Nr. 1,
S. 167–180

[152] Zhang, Teng ; Yang, Yi: Robust PCA by manifold optimization. In: The Journal
of Machine Learning Research 19 (2018), Nr. 1, S. 3101–3139

232

[153] Zheng, Qinqing ; Lafferty, John: Convergence analysis for rectangular matrix
completion using Burer-Monteiro factorization and gradient descent. In: arXiv preprint
arXiv:1605.07051 (2016)

[154] Zhou, Tianyi ; Tao, Dacheng: GoDec: Randomized Low-rank & Sparse Matrix
Decomposition in Noisy Case. In: Proceedings of the 28th International Conference on
Machine Learning 35 (2011), S. 33–40

[155] Zhou, Zihan ; Li, Xiaodong ; Wright, John ; Candès, Emmanuel ; Ma, Yi: Stable
Principal Component Pursuit. In: 2010 IEEE International Symposium on Informa-
tion Theory, 2010, S. 1518–1522

233

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis Structure and Contributions
	1.2 Notation

	2 Sparse Plus Low Rank Matrix Decomposition: A Discrete Optimization Approach
	2.1 Introduction
	2.1.1 Contribution and Structure
	2.1.2 Applications

	2.2 Literature Review and SLR Formulation Properties
	2.2.1 Literature Review
	2.2.2 Objective Function Properties
	2.2.3 Equivalence Between Regularization and Robustness
	2.2.4 Connection to Matrix Completion

	2.3 An Alternating Minimization Heuristic
	2.3.1 Two Natural Subproblems
	2.3.2 blackAn Alternating Minimization Algorithm
	2.3.3 Optimality of Algorithm 1 for a Fixed Sparsity Pattern

	2.4 A Convex Relaxation
	2.4.1 Hidden Convexity in the Low Rank Subproblem
	2.4.2 Comparison With the Relaxation of Lee and Zou
	2.4.3 Penalty Interpretation of Relaxation

	2.5 Branch and Bound
	2.5.1 Subproblems
	2.5.2 Branch and Bound Algorithm

	2.6 Computational Results
	2.6.1 Synthetic Data Generation
	2.6.2 Hyperparameter Tuning
	2.6.3 A Comparison Between the Performance of Algorithm 1, GoDec, S-PCPblack, black AccAltProj, fRPCA and ScaledGD
	2.6.4 An Accelerated Implementation of Algorithm 1 and its Performance
	2.6.5 Scalability of Algorithm 1
	2.6.6 Sensitivity to Noise
	2.6.7 Sensitivity to Rank
	2.6.8 Sensitivity to Sparsity
	2.6.9 Performance of Algorithm 2
	2.6.10 Summary of Findings From Numerical Experiments

	2.7 Concluding Remarks
	2.8 Appendix: SLR Formulation Properties Omitted Proofs
	2.9 Appendix: Alternative Proof of Proposition 6
	2.10 Appendix: Proof of Convexity in the Low-Rank Subproblem
	2.11 Appendix: Alternative Proof of Proposition 8
	2.12 Appendix: Supplemental Computational Results

	3 Compressed Sensing: A Discrete Optimization Approach
	3.1 Introduction
	3.1.1 Contributions and Structure

	3.2 Literature Review
	3.2.1 Basis Pursuit Denoising
	3.2.2 Iterative Reweighted L1
	3.2.3 Orthogonal Matching Pursuit

	3.3 Formulation Properties
	3.4 An Exact Reformulation and Convex Relaxations
	3.4.1 A Second Order Cone Relaxation
	3.4.2 A Positive Semidefinite Cone Relaxation

	3.5 Branch and Bound
	3.5.1 Subproblems
	3.5.2 Branch and Bound Algorithm

	3.6 Computational Results
	3.6.1 Synthetic Data Experiments
	3.6.2 Electrocardiogram Signal Acquisition
	3.6.3 Multi-Label Classification
	3.6.4 Summary of Findings

	3.7 Concluding Remarks

	4 Predictive Low Rank Matrix Learning under Partial Observations: Mixed-Projection ADMM
	4.1 Introduction
	4.1.1 Contribution and Structure

	4.2 Literature Review
	4.2.1 Matrix Completion Methods
	4.2.2 Low Rank Optimization Methods
	4.2.3 Alternating Direction Method of Multipliers

	4.3 Formulation Properties
	4.3.1 Equivalence Between Regularization and Robustness
	4.3.2 A Partial Minimization

	4.4 An Exact Mixed-Projection Formulation
	4.4.1 A Positive Semidefinite Cone Relaxation

	4.5 Mixed-Projection ADMM
	4.5.1 Subproblem in U
	4.5.2 Subproblem in V
	4.5.3 Subproblem in P
	4.5.4 Subproblem in Z
	4.5.5 An ADMM Algorithm

	4.6 Computational Results
	4.6.1 Synthetic Data Generation
	4.6.2 Sensitivity to Row Dimension
	4.6.3 Sensitivity to Column Dimension
	4.6.4 Sensitivity to Side Information Dimension
	4.6.5 Sensitivity to Target Rank
	4.6.6 Real World Data Experiments
	4.6.7 Summary of Findings

	4.7 Concluding Remarks
	4.8 Appendix: Supplemental Computational Results

	5 Conclusion

