INTERACTIVE MAINTENANCE TERMINAL
FAULT ISOLATION PROGRAM
by
Michael Henry Bulat
SUBMITTED TO THE DEPARTMENT OF
ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE IN PARTIAL
FULFILLMENT OF THE
REQUIREMENTS FOR THE
DEGREE OF
BACHELOR OF SCIENCE
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1981
@ Michael Henry Bulat 1981

The author hereby grants to G.E. and M.1.T. parmission to reproduce and
to distribute copies of this thesis document in whole or in part.

Signature of Author S LA L T LA L
Department of Electrical Engineering and Computer Science
January 28, 1981

Certified by v — by e
Albert Vezza

, Thesis Supervisor

Archives
Accepted by aanc - ' v

Arin
MASSACHUSETTS INSTITUGE

OF TECHNOLOGY

AUG 25 1981
LIBRARIES

Chairman, Department Committee

Abstract

INTERACTIVE MAINTENANCE TERMINAL
FAULT ISOLATION PROGRAM

by
MICHAEL HENRY BULAT

Submitted to the Department of Electrical Engineering
and Computer Science on January 28, 1981 in partial fulfillment
of the requirements for the Degree of Bachelor of Scier:ce in
Computer Science

An interactive maintenance terminal is a stand-alone minicomputer capable of directing an
operator through a fault isolation tree. In order to assess the feasibility and complexity of building
such a terminal a simulation of its operating characteristics was implemented on a General
Electric Training System. The study was done to obtain an appreciation of desireable display
characteristics and machine response times and to refine preconceptions of how the
maintenance data base should be implemented. A language called TL was developed to
automate the traversing of fault isolation graphs. An interpreter and editor for TL was developed
in a String Processing Oriented Machine Language (SPOML). It was found that a graph structure
was capable of modelling the widest variety of fault isolation graphs. The editor facilitated the
entry of the fault-isolation procedures. The project demonstrates that the interactive
maintenance terminal is a feasible idea but a machine with more capability than the GE Training

System would be needed to implement it effectively.

Thesis Supervisor: Mr. Albert Vezza
Title: Sentor Research Scientist

Table of Contents

1. Introduction
1.1. Purpose
1.2. Related Work
1.3. System Overview
2. Control Structures
2.1. Generalization of Test Operations
2.2. Generalization of Test Sequences to Control Structures
2.3. Classifications of Control Structures
2.3.1. Trees and Graphs
2.4. Modifications to Control Structure Operation
3. Implementation
3.1. General Electric Training System2
3.1.1. General Features
3.1.2. String Processing Oriented Machine Language
3.1.3. Architecture
3.2. TL Interpreter
3.2.1. TL Interpreter Function
3.2.2. Instruction Set
3.2.3. Instruction Addressing
3.2.4. Execution Order
3.2.5. Paging
3.2.6. Man-Machine Interface
3.2.7. Sub-graphs
3.2.8. State Variables
3.3. TL Interpreter Structure
3.4. Editor
4. Example TL Program
5. Results and Conclusions
|. TL Interpreter Flowchart

2GETS 1s a GE patented minicomputer

© OO~ WW

10
11
11

13

16

i6
17
17
17
17
18
19
20
21
22
24
26
26
26
29

42

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:

List of Figures

Manual Fault Isolation System Configuration and Interactions
System Configurat:on with Independant Editting Facility
Maintenance Terminal Configuration used for this Work
Test Sequence Generalization

Dynamic Test Sequence

Static Test Structure

Binary Tree

Directed Graph

Equivalent Sub-graphs in a Control Structure
Instruction Format

Instruction Groupirg

Sample Instruction Node

Memory Map

Display Management

Linkages between Control and Data Structures
Sub-graph Implementation

TL Interpreter Flow Chart

Editor Display Format

Figure 3-10: Alternative Display Format

Fiqure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:

Radio Manual
Radio Manual (Continued)
Control Structure
Screen 1

Screen 2

Screen 3
Flowchart (page 1)
Flowchart (page 2)
Flowchart (page 3)
Flowchart (page 4)
Flowchart (page 5)
Flowchart (page 6)
Flowchart (page 7)

B8R

Table 3-1:
Table 3-2:
Table 3-3:
Table 3-4:
Table 4-1:
Table 4-2:
Table 4-3:

List of Tables

Condition Codes
Operation Codes
Interpreter Commands
Editor Commands
Nodes0-7

Nodes 8 - 15

Nodes 16 - 17

19
19
24

BLED

Acknowledgements

| would like to thank Albert Vezza (MIT) and Jack Francis (GE), for their suggestions and

preperation of this report. | would also like to thank Doran Moirison for providing valuable

assistance and information.

1. Introduction

1.1. Purpose

A prime requirement of many computer systems is availability, i.e.. the percentage of time that
the system is functional. In many applications availability is critical. While the system is being
designed a variety of approaches can be taken to maximize reliability and maintainability, but
regardless of the precautions taken part of any system will fail at times. When part of the system

fails it must be repaired as soon as possible in order to return to its full functionality.

This thesis considers the problem of isolating faults in systems and repairing them in a minimal
amount of time. An enormous variety of approaches can be taken to isolate and repair fauits.
Fault isolation procedures can be iaformal, written down, stored in softwere, or implemented in
special equipment such as Automatic Test Equipment (ATE) [1] and/or Built In Test Equipment
(BITE) [9.5]. ATE may be connected ‘to a system at any time in order to repair it. BITE is

designed into a given system for the purposes of maintenance and fault isolation.

It was decided by General Electric that a control system designed and built at GE would have
BITE to reduce down time. GE required that the BITE primarily be an automated version of the
existing repair manuals. The system was conceived with the assumption that the skill level of the
operators was low enough to prohibit great flexibility in test selection. The volume and complexity
of the tests leave little room for the operator to design his own test sequence. After a fault is

detected the BITE will have main responsiblity for isolating it and directing repairs.

At present, all failures in the General Electric Control System (GECS) must be diagnosed and
repaired by an operator who uses predefined fault isolation and correction procedures. The fault
isolation/correction procedures (FICP) are contained in large volumes of written records. An
operator must spend an excessive amount of time searching for and executing FICPs. The
operator can easily commit errors while following the FICPs. In order to reduce the diagnosis and
repair time and decrease operator error, it was proposed that the FICPs be automated in the form

of an Interactive Maintenance Terminal (IMT).

The IMT is designed to completely replace the written FICPs and is designed to provide
additional functions. The IMT is designed to be totally responsible for guiding an operator
through the FICPs. It is designed to be a graphics computer terminal capable of displaying
diagrams, text, and pictures related to the GECS. |t is also capable of inspecting various busses
in the GECS and asserting data on them. In short. the IMT is designed 1o use data in a variety of

forms (text, diagrams. pictures, digital) to interactively guide an operator in repairing the GECS.

in order to better understand the hardware and software necesary to perform the IMT's
function an attempt was made to simulate its function on the General Electric Training System
(GETS). The GETSisa stand-alone minicomputer featuring; plasma panel, floppy disk, keyboard,
and sonic pen. Emphasis was put on the user interface and optimum modelling of the FICPs. In
the course of modelling the FICPs, a Test Language (TL) was developed to allow their easy
automation. A TL interpreter was written to execute TL programs and an editor was developed to
aid in creating them. The interpreter and editor were written in SPOML (String Processing
Oriented Machine Language), a language available on the GETS. Several programs were written

in TL to demonstrate the proposed functioning of the IMT.

1.2. Related Work
Much work in the area of fault isolation and repair has been done. Many artificial intelligence
programs have been written to localize failures in a variety of systems and many systems exist

which employ BITE or ATE. Some of these programs and systems will be described below.

One example of a system with BITE capabilities is the AEGIS system [1]. An integral part of
AEGIS is the Operational Readiness Test System (ORTS). ORTS is an on-line integrated test
system. It can conduct on-line tests, evaluate status in the primary system, control AEGIS system
initialization, and coordinate all diagnostic and maintenance activity. Tests run on the ORTS can
be initiated by the operator or by a program. Once they are initiated tests run to completion under
program control. If a fault is isolated the operator is referred to maintenance procedures on

microfiche. There is little emphasis on manual testing in this system.

On the other hand, some systems are designed with a large number of manual operations in
mind. This is usually done when operations are too costly to automate. Raytheon developed a
system that guides an operator through a series of tests with its AN/DPM-22 missle test station
[5]. This system uses an automated optical viewer to display drawings and diagrams to the
operator. The system performs automatic diagnosis to the limits of its capabilities; then if it has

not isolated the fault, it guides the operator through manual fault isolation procedures.

Much research has been done on the man/machine interface in automatic and semi-automatic
testing systems. The degree of operator control over the testing procedure is important. The
operator can be restricted to button pushing, or he can completely specify all tests and the order
in which they are to be executed. Depending on the skill level of the operator, varying degrees of
flexibility will be appropriate. One study done at a military repair shop with automatic testing

capability gives a good indication of what functions are required for a useful man-machine

interface [9]. It was found that options allowing the operator to alter the normal sequence of tests
were desirable. In this system all tests are set up and interpreted by the computer. Human
intervention is allowed between tests only. Little emphasis is placed on computer direction of

manual tests.

While not specifically designed for BITE or ATE systems. many programs have been written to
isolate faults using heuristic techniques. These programs take a different approach to fault
isolation and diagnosis than the IMT, but their purpose is ultimately the same. Programs desgned
for debugging and diagnosis include Sussman’s HACKER [13], Goldstein's MYCROFT [71,
Shortliffe’s MYCIN [12], Brown's $3OPHIE [3], De Kleer's trouble shooting program [6], and
Sussman’s LOCAL [14]. Most of these programs are designed to isolate faults in a small well

defined system. Some interesting fe atures of theses programs are outlined below.

HACKER tries to solve block stac ing problems by debugging old programs so that they can be

applied to new problems. Bugs are explained in terms of predefined classes.

MYCROFT is designed to debug a subset of LOGO programs. Models of the intended result
together with the program in question are used to infer the user’s intent. MYCROFT concentrates

on the interfaces of plan steps, a major source of errors.

MYCIN bases a system of rules to diagnose patients with symptoms of bacterial infection. The
program questions the operator on the patient’s symptoms until it is reasonably sure of the cause.
It can answer questions about its decisions to any level of detail. Rules are represented

hierarchally in the system and can be modified by the operator.

SOPHIE is designed to teach trouble shooting of power supplies. The program is geared to
supporting a natural language interface. "SOPHIE’s methodology is based on converting
qualitative questions to quantitative ones and predicting the resuits on the power supply in

question.

De Kleer's trouble shooting program is designed to analyze DC circuits by looking only at the
individual properties of the parts in question. Information gained from measurements and
Kirchoff's laws is propagated through a circuit until multiple results are given for a point.
Depending on the agreement of the results deductions can be made on the functioning of the

circuit.

LOCAL is designed to isolate faults in radio receivers. LOCAL is based on a hierarchal system

of experts which contain information on the radios design. Experts are called with symptoms

which they attempt to explain in terms of faults in their domain. Experts call other experts until the

problem cannot be explained in terms of faults lower in the hierarchy.

A large knowledge base of detailed fault isolation procedures already exist for the GECS. It
was thought that transferring these procedures to the IMT in some manner would perform as well.
On this assumption a simple strategy was developed to facilitate modelling the FICPs in software.
The approach taken in this work was of more modest proportions and less sophistication than the
foregoing Al programs. However the program will explicitly guide the human trouble shooter in

measurement taking and decision making.

1.3. System Overview

The maintenance terminal is only one part of a system including; a comp-iter to be tested by the
maintenance terminal, an operator, a set of programs to run on the terminal, and possibly a third
computer for editting and maintaining the maintenance data base. Figure 1-1 shows the system

configured for troubieshooting.

GETS
TL PROGRAM(S) TESTSETUP
TL INTERPRETER INSTRUCTIONS COMPUTER
UNDER
MAINTENANCE
COMPUTER TEST
TERMINAL
STATE
", - T I
. 'x.. N !
JNTERPRETED CORREETIVE i
REFAIR/TEST "'\,\ “\T..FST RESULTS SETAUP " coMPUTER
INSTRUCTIONS ™. N ACTIONS " STATE
o, . ., 7 ,
“ i . -
=~ g

Figure 1:1: Manual Fault Isolation System Configuration and Interactions

In this system the maintenance terminal monitors the computer for faults and informs the

operator if any occur. It has the ability to perform some testing automatically but its primary

purpose is to guide an operator threugh manual testing and fault isolation procedures. The
manual FIPs require the operator to perform manual operations on the computer and interpret

test results, functions the MT cannot perform by itself.

For the simulation described in this thesis only the interactions between the operator and the
MT are considered. The computer under test is not simulated in any fashion. The programs
developed completely ignore any interaction between the computer under test and the MT. The
operator makes up his own test results for any demonstration programs. During a simulated fault
isolation procedure the GETS is running a TL interpreter which in turn is runnig a TL program
which guides the operator through a specific set of tests. The majority of this thesis is concerned

with the TL interpreter and the execution of TL programs.

The MT can also be considered to be part of a system for editting the TL programs. All editting
can be done on the MT but another computer can be used to create and edit the TL programs.
Figure 1-2 shows this configuration. For the simulation done in this thesis there is no editting
computer. All editting facilities are editted on the GETS. A structured TL editor was programmed
in addition to the GETS general text editor. The configuration of hardware and software
developed in this thesis is shown in figure 1-3. SPOML is the language in which the TL editor,
interpreter, and utility programs are written. Before these programs are described a system for

descrbing the fault isolation procedures will be developed.

GETS
T T, TL PROGRAM(S)

e N, -

/! & - TL INTERPRETER
/ OPERATOR %=~ :

| \ L TL EDITOR

! ! " [T SPOML INTERPRETER

. AUTHOR A

MAINTENANC 2
. - TERMINAL

Figure 1-3: Maintenance Terminal Configuration used for this Work

GETS

TL PROGRAM(S)

TL INTERPRETER

MAINTENANCE
TERMINAL

TL PROG. EDITOR

EDITTING
COMPUTER

PROGRAM
AUTHOR

Figure 1-2: System Configuration with independant Editting Facility

2. Control Structures

Given the existence of a collection of tests designed to isolate a fault in a machine it is useful to
be able to model them. A collection of tests designed to isolate faults is termed a fault isolation
tree. A fault isolation tree will be modelled by a control structure with every node representing a
test and arrows representing the relationships between the tests. As information is gained in the
form of test results the next test to be performed is usually chosen on the basis of these results. In
the case of manual fault isolation trees this information will be represented as predefined answers
to questions about the test results. The static control structure represents all the tests known and
their relationships to each other. \vhen the control structure is interprete d a sequence of tests
will be performed which will hopefully find the cause of a certain problem. When a given test is
being performed it will be said to be: in the state corresponding to that test. A control structure is

an abstract model of a set of tests designed to isolate faults in a given machine.

2.1. Generalization of Test Operations

The majority of the tests that were to be automated can be modelled by the format depicted in
Figure 2-1. All of the examined tests fit the following sequence of operations. First, the machine
under test is forced into some state necessary for the test to be correctly performed. This is done

in one of two ways:
1. Electricaily altering the machines state.

2. Instructing an operator to perform certain operations on the machine to acheive the
desired state.

Because the tests are primarily manual in nature the second type of test set-up action would be
more prevalent. The second phase of any test requires the operator to interpret the results of the
test. This interpretation usually requires inspecting some part of the machine under test and
answering a question about its state. In automatic cases, the resuits of the test would be availahle
to the terminal as digital data. Third and last, the results of the test are used to decide which test
to perform next. In the case of predefined test sequences the decision is made based on a
predefined map of user inputs to next tests. In the automatic case this mapping is far more
complicated. The machine may have to interpret values which may be acceptable over a broad

range, for instance.

The machine can be forced into a state in two different ways. The first way, previously
described. is to change some setting on the machine’s controls or to verify that the machine is in

a certain state. The second way involves taking action that can be termed "manual action” such

10

i Y
(" SETUP " PERFORM
. TEST \ MANUAL

'“‘*———::j\' _RACTION P

\ . /—_-_ _,_-:'
N\
+~ ASK QUESTION
.; CONCERNING
N RESULTS OF
S TEST)
S -
Mg
.rf.—
" START OF
SIMILAR
‘~..\<fROCEDUIil§/*

Figure 2-1: Test Sequence Generalization

as replacing or altering hardware or pushing buttons.

2.2. Generalization of Test Sequences to Control Structures

One test is rarely sufficient to isolate a fault or repair a nonfunctioning machine. Usually a
series of tests is required where the results of one test determine which test is to be performed
next. The series of tests taken when isolating any one fault can be represented as a linear

sequence as in Figure 2-2.

The complete set of tests necessary to cover all cases of a symptom could be represented by
the structure of Figure 2-3. Each test sequence, as defined above, is represented as a circle. The

mapping between results and next tests is shown as «n arrow labelled with a result and pointing at

1

i ., .f 5, K . (., ,
.'.‘. g I“' "f. .." "“ I."| -". \'l
‘II e | AREWRES) o wug;): NDEOCQS [))
| SCREWED i 1 comectepr [) - 7 FIXE
3 IN? / \, , BULBLIGHT? \
", j; KN e ", / ., Y,

Figure 2-2: Dynamic Test Sequence

the next test. The test structure wil be termed a control structure. Itis statically similar to the
mathematical concept of the graph. A graph is defined as a set of points and a set of point pairs
corresponding to links between the points. Dynamically it is similar to the finite state machine
(FSM), with each each test corresponding to a state. Performing a given test will be considered

equivalent to being in that test state in the control structure.

Each control structure will have two types of states which will be considered different from the
rest. First, each control structure will have a set of states designated as starting states. These will
be defined as the only states where a test procedure can be validly started. Second, each controi
structure will have a set of terminating states. At the terminating states the next test is not
specified in the normal manner because by definition there are no more tests to perform. What

happens will be explained later.

2.3. Classifications of Control Structures

Based upon the topology of the control structure it is possible to classify them in the same
manner as graphs. The relative usefulness of several classifications as models of test procedures
will be looked at. In addition several changes in the dynamic control structure operation will be

examined.

2.3.1. Trees and Graphs

Initially it was thought that a binary tree control structure as depicted in Figure 2-4 would be
useful for modelling test procedures. The motivation for using binary trees was the great body of
knowledge existing about them. However. binary trees were ruled out because the existing test

procedures frequently contained topologies similar to the one in Figure 2-5.

This type of structure could represent retrying all tests after some corrective action had been

——,
- - ™~
f'f IS BULB
1 SCREWED
\, IN?
“. YES NO ¢/
\\' »
.s/-\"‘-_ _r-"J
/
""‘".‘-—.—-.‘.'“L{' - . 'Tij' ,.;—'- .-“\\
‘)'.' ..\\ '\‘ l'r.l .
/ AREWRES % /' SCREWIN
| CONNECTE:)') \| \ ! BULB.DOES
5, . ," \ \, ITLIGHT?
'.I
N ¢ \ “_NO YES /
e "\\ \ -
/ N
Y~ N—
I-‘-_'- -\:' a — -,
Ve ~ 7
") /
{ I1SPOWER Y CONNECT
| WIRES. DOES
|} BULBLIGHT?

ON?
!

/./'
!
¢ \ |
(oo V| {m,)
¢ N ..
' FAULT 2/" L% UGHT? f >
. / \ ~_ NO YES
*\‘ﬁu_,—'/ d \ ~ -
N A FIXED

Figure 2-3: Static Test Structure

taken. Multibranch trees were ruled out for the same reason as binary trees.
directed graph. Directed implies that the
he results of one test imply the
GE the directed

The control structure of Figure 2-5 is best termed a
transitions between states are one way. This reflects the idea that t
next test and not the inverse. For the set of fault isolation trees examined at

graph was found to be the most suitable control structure for the modelling task.

N

¢
e (L\U
O O

N

Figure 2-4: Binary Tree

--.l"/ x‘\
S, Cound N
(N
.?‘). .\l \
‘f__..j‘-:'_. .;:\,L__\\
¢ 5 r" \))
.«-‘L ~, ..c’" . s _,./"'I
/_.— J,-‘--' N .;,_.-d_\ 3
P - - l":/ :»"I Z)

O O

Figure 2-5: Directed Graph

2.4. Modifications to Controi Structure Operation

in order to make the implementation of the control structure more efficient it was found useful
to add the concepts of sub-graphs and state variables. Sub-graphs are equivalent to control
structures in all ways. They can be inserted into another control structure during its operation

and act exactly like a part of the other control structure. The motivation for adding this feature

14

was the appearance of equivalent sub-graphs at various points in a typical test procedure as in

Figure 2-6.

(L
__'_,-"- — - ‘N_
______ e -
| e | N
| l‘>~..-~2 | | 3
| VAN |
4 N
ot vl 1
R S o YN R U
| b x__\ 3 ~ | [h 5 |
l ,11 - f’t’:«:‘*-;l l l [, - _,-*,)\ |
)) RN |
'l' \,
1 ’7"/ | 4 A~ |
! '
-7 L)
\ I ’I |
(< () () |
S e % l

Figure 2-6: Equivalent Sub-graphs in a Control Structure

Normally all transfers from one state to another are immediately specified by the test results.
When sub-graphs are entered and exited the procedure is altered. The transfer into a sub-graph
is equivalent to any other transfer but information must be stored as to where to transfer control
when the subgraph is exited. This information takes the form of a map from results in the sub-
graph terminal states to states in the calling structure. This information is stored on a stack and

used to determine return states when the sub-graph is exited.

15

Another change designed to reduce the size of a control structure is the addition of state
variables. In the course of gathering infromation on the machine under test it was found
convienent to be able to store data in variables which could be accesed from anywhere in the
structure. Without these variables all information gained from the tests is represented only by the
state of the control structure. At a point where a state variable can take on n values it could only
be replaced by duplicating the control structure n times. This is where the savings in space

occurs.

Normally the flow through the control structure proceeds forward following the direction of the
arrows. Under ideal circumstance:: forward flow would be totally suffici2nt to follow the test
sequence. But occasionally it may be useful to back up to a previous test to repeat it or
reinterpret the results. Given a coantrol structure with sub-graphs and state variables many
implementation problems arise. One problem occurs when backing into sub-graphs. The correct

map from terminating states to external states must be determined and pust.ed on the stack.

A more serious problem arises when previous assignments of variables must be determined.

The path taken to any state must be recorded so any previous assignments can be located.

Tha control structures described in this chapter are similar to Wood's [15] Augmented
Transition Networks (ATN). Each has the capability of calling sub-graphs, performing arbitrary
operations on registers, and conditionally changing states. In control structures arbitrary
operations and tests are executed at the states. In ATNs arbitrary operations are attached to the
transitions. In ATNs sub-graphs are specified on transitions as conditions which must be satisfied
to reach the next state. In control structures sub-ri~aphs may have numerous terminating states
each of which can return to a different node in th. 'ing structure. In ATNs only one return state
is specified. ATNs and control structures differ fu. ionally. ATNs are used primarily for parsing
languages while control structures are used to direct human operators through a sequence of

actions.

16

3. Implementation

As stated in the introduction, the problem this thesis addresses is automatic fault isolation. The
specific objective is to automate "tree" type trouble shooting procedures. If a system of
programs can be developed to perform this task, the following would be accomplished:

1. The complexity and feasibility of automating the maintenance data base on an
interactive display terminal would be better understood.

2. A better understandng of desireable display characteristcs and machine latencies
would be gained.

3. A general data base structure for automating the mairtenance data base on a
minicomputer based maintenance terminal would be developed.
The General Electric training System (GETS) was selected for this task because it is a
minicomputer based terminal similar to the proposed maintenance terminal and it was readily

accessible for use.

3.1. General Electric Training System1

3.1.1. General Features

The GETS is a stand-alone microprocessor based minicomputer. The GETS features a plasma
panel, slide projector, sonic pen. keyboard, and floppy disk drive. The plasma panel measures 8.5
by 8.5 inches and has a vertical and horizontal resolution of 512 peints. The plasma panel is
transparent allowing slides to be rear projected onto it. The projector can randomly access up to
80 slides under program control. A sonic pen is used to interact directly with the display. The
sonic pen simultaneously emits a spark and an electrical signal when touched to the screen. The
sound of the spark is detected by two bar microphones located above and to the left of the
screen. The signals from the microphones and the pen are used to determine the pen’s location
on the screen. The floppy drive is a single sided, single density device with a capacity of 340K
words. The only high level language implemented on the GETS is String Processng Oriented

Machine Language.

1GETS is a GE patented minicomputer

17

3.1.2. String Processing Oriented Machine Language

All programs were written in String Processing Oriented Machine Language (SPOML) because
it was more powerful than the underlying machine language. As the name implies SPOML is
designed primarily for text processing. Most text processing takes place in 3 stacks. SPOML
features; a nested control structur2, macro subroutine capability, and the capablty of calling

subroutines written in machine language.

3.1.3. Architecture

The architecture of the GETS played an important role in many of the implementation details.
Processing is centered around thre« stacks of 256 words each, the left, right, and match stacks.
SPOML programs are executed from a 2K program memory. A 2K word buffer and a 256x(11 bit)

stack are also available but not ideal y suited for use by SPOML programs.

3.2. TL Interpreter

3.2.1. TL Interpreter Function

The TL interpreter is responsible for recognizing a set of instructions, translating them into
SPOML, and executng them. The interpreter is responsible for maintaining the display in an
orderly state and processing operator inputs. In addition the interpreter recognizes certain
operator inputs as commands. The interpreter also manages the transfer of instructions from the
floppy disk to the stacks. When the TL interpreter is executing it resides in a 2K program memory.
TL programs reside on the floppy disk. When a particular node is to be executed it is transferred
from the floppy disk into the right and left stacks. Only the instruction fields at the top of the right
or left stacks are accesible to the TL interpreter. The match stack is used to store characters
input by the operator through the keyboard ar sonic pen. The transfer of input characters to the
match stack is performed by the GETS independant of the TL interpreter. A 256x11 Working File
Buffer (WFB) stack is used to store node names during sub-graph calls. The WFB stack is used in
conjunction with the WFB for editting and is free during the execution of SPOML programs. The
high and low words of the return node name are stored in 2 consecutive locations on the stack.
The WFB is a 2K memory used for editting. When the TL interpreter is executing the WFB is used
to keep a record of all the nodes executed in a given program run. There are 64 registers
available to SPOML programs. The TL interpreter reserves 26 of these, named 'a’ to 'z’, for use by

TL programs.

18

3.2.2. Instruction Set
Each instruction is represented by five 8-bit words. The five words correspond to the five fields;
CONDITION. COMPARE, OPERATION, DATA 1, and DATA 2 as shown in Figure 3-1.

CONDITION
COMPARE

OPERATION
DATA 1

| DATA 2

Figure 3-1: Instruction Format

The condition field together with the compare field control execution cf the cpzration. The
operation field specifies what action is to be performed. The 2 DATA fields are used for direct
addressing of picture files, slides, and instructions. The DATA 2 field is used for indirect
addressing of registers. The data fields can represent 2 independant integers or one twos

complement integer wth a range of -32768 to + 32767.

The condition codes are listed in Table 3-1. Three conditional and one unconditional type were
implemented. Code 128 causes the instruction to be executed when any character is received as
input. Code 129 causes the instruction to be executed immediately and unconditionally. Code
130 executes the instruction if the contents of D2 are equal to the variable addressed by D1.
Code 131 executes the instruction if the contents of D1 are equai to the current input character.
The current input character is created when the operator makes an entry through the keybaord or
sonic pen. The current input charcter is consumed if it satisfies a condition code 131 or 128 or it
fails to satisfy any of the .conditional instructions in a ncde. The operation codes are listed in
Table 3-2. It can be seen that the operation and condition fields are much larger than necessary.
This is because SPOML is primarily a string processing language with few bit operations. Thus
any space saved by using smaller fields would not be worth the extra time and space needed to

implement these operations.

19

CONDITIONCODE ~ MEANING

128 Execute instruction when any input is received
129 Execute instruction immediately unconditionally
130 Execute if <K<D1>> = <D2>

131 Execute if <D2> equals current input character

Table 3-1: Condition Codes

OPERATION CODE ~ MEANING

132 Display slide <D2>

133 Display picture file <D2>

134 Push <D2> on control stack

135 Return - POP next control number from stack and GOTO it
136 PUSH current control number + 10n stack and GOTO<KD2>
137 GOTO control number <D2>

138 <D2> =><D1>

139 Clear screen

140 Simulate keyboard input of <D2>

141 PUSH control number on stack and GOTO <D2>

142 GOTO control number <<D2>>

143 Equivalent to instruction 140 followed by 135

144 DUSH current control number + 10n stack and GOTO <KD1>>
145 Turn projector bulb off

Table 3-2: Operation Codes

3.2.3. Instruction Addressing

The previous section outlined all instructions recognized by the interpreter. These instructions
are intended to perform all the operations needed to automate manual fault isolation procedures.
A method for addressing sets of instructions together was developed. Each set corresponds to a
complete indivisible test of the type described in section 22 |t also corresponds to the abstract
idea of a node in a control structure. In practice such sets of instructions are delimited by a
special character followed by a double word integer uniquely indentifying that set. The format is
shown in Figure 3-2. All instructions following a node delimiter up to the next delimiter are
addressed as a single unit. From this point on these sets of instructions will be referred to as
nodes. Nodes are addressed by the immediate data fields D1 and D2. Control transfers are also

specified by the control stack when returning from sub-graph cails. No other addressing modes

20

CCNTROL DELIMITER

NODE NAME

INSTRUCTION 1

INSTRUCTION 2

CONTROL DELIMITER

NODE NAME

Figure 3-2: Instruction Grouping

were implemented. The effect of this addressing scheme on execution order will be discussed in

the next section.

3.2.4.Execution Order

Within a node instructions are executed sequentially starting with the first instruction after the
control delimiter. There is one restriction on what instructions must appear in a node. Control
must be transferred to another node before the next control delimiter is encountered. |If this
doesn’t happen an error results. When the transfer is conditional upon an operator input the
interpreter will not error out if the input isn’t valid instead it will read inputs until a valid one is
detected. A valid input is cefined as a character that matches one o: the compare fields in any of
the input conditional jump commands. Control can only be transferred to another node as the
result of the execution of a valid instruction. When control is transferred it is always to the first
instruction in a node. There is no mechanism for jumping to any other point within the node.
Figure 3-3 lists the instructions of a sample node. When this node is entered the screen will be
cleared and picture # 320 will be displayed (10 is the vertical height of picture 320 in characters).
When the interpreter encounters the second instruction it will wait for an operator input. When an

input is received it will be compared to the compare field. If it equals 'A’ then control will be

21

CONDITION COMPARE OPERATION DATA1 DATA 2
UNCOND. ---- CLR/DSPLY 10 320
KEY COND. A GOTOu 2

KEY COND. B GOTO 3

Figure 3-3: Sampie Instruction Node

transferred to node #2. If it does not equal 'A’ then the input is saved. The saved input is
compared to 'B' in the third instructi>n. If the input isn't equal to 'B’ then the input is thrown away
and the interpreter returns to the first conditional jump instruction and waits for a new input. Any
instructions after the first conditional jump will be executed multiple time:s if invalid inputs are

received.

3.2.5. Paging
For programs of even moderate size a great quantity of memory would be required.

Specifically, the total space required is given by the formula:
Total space = 3(# control nodes) + 5(total instructions)

Since the amount of memory available for processing is 256 words it is necessary to store
programs on floppy disk and to transfer them to the stacks when needed. Stack sizes restricted
the block size to 256 words. Since references to control nodes are by name it is necesary to
provide a mechanism for mapping node names to physical locations on the disk. Ideally a map
like the one shown in Figure 3-4 would be implemented for flexiblity. instead a more rigid scheme
was adapted. Arbitrarily 8 nodes, contigous in value, were assigned to every block. Given thata
control structure started in block n then nodes 0 through 7 would be in block n, nodes 8 through
15 would be in block n+1, etc. When a node is addressed by name its block number can be

computed by the formula:
BLOCK NUMBER = N + [NODE NAME/ 8]

This method was used because the control node location could be computed as a function of the
control node value. This avoided an extra disk access which would have been required to retreive
a memory map. The map would have to be stored on disk because lack of main memory.
Because of the interactive nature of the system the fiexibility ganed by the use of a map couldn’t

be justified in view of the time required fer an extra disk access.

22

PAGE
PrGE DISK BLOCK #
ol 10 0
1] =0 1
NODE - “
NAME 7 2 2 ; 2
3| 40 3
4| 49 4

Figure 3-4: Memory Map

3.2.6. Man-Machine Interface

In addition to executng the instructions of a control structure the interpreter also maintains the
display, provides visual feedback to operator inputs, and processes high level commands. As
seen in section 3.2.2 there are several instructions to display picture files. These files contain
information which is interpreted by the GETS to produce line drawings and text on the screen.
The files are prepared independantly of the control structures and are stored on disk. Picture files
are represented by an indentifying number which is mapped into a physical location on disk.
Typically the picture files would contain instructions for replacing parts or setting up tests and a
diagnostic question. When the question is answered an arrow is displayed below the selected
response and any picture file from the next control node is displayed. When the display cannot
hold the next picture the screen is cleared, the picture occupying the lowest portion on the screen
is redisplayed at the top of the screen, and the next picture is displayed below it. See Figure 3-5
for an illustration of this sequence. The vertical height of each picture is given in the DATA 1 field
of the display instruction. Witlﬁ ths information the interpreter knows when a picture will overflow
the screen. In addition to the visual information in the picture file there are also sensitized areas.

Portions of the text in the picture file are activated so that when they are touched by the sonic pen

23

Figure 3-5: Display Management

they generate a character in a manner equivalent to a keyboard input. Any portion of text can be
sensitized to generate' any character. The characters generated by sonic pen hits must
correspond to the compare characters in the nodes referencing the picture. Figure 3-6 shows all
the linkages between the picture files and the TL program referencing them that must be filled in

by the programmer.

A certain set of inputs are treated in a special way. Whenever the interpreter is wating for an

operator input these commands can be entered. They are listed in Table 3-3.

24

CONTROL _DATA
_——-—__————-——.’ -h-"'—.
NODE # #_____-_:::f3—-"“_ PICTURE 320 e
1 = ._'__,..-P" \
DISPLAY PICT 320(10) - | S BULB \
GOTO2IFINPUT = A ————_ HEIGHT
.~ GCTOBIFINPUT =B ~—— ™. | SCREWED IN? =10
e
S e YES | NO
.\,.__\ -"M___‘__ A 5
L I —— 7
3 " “‘*—»\
DISPLAY PICTURE 350 (8) ~.
GOTC 4 IF INPUT = Y —— N
GOTOSIFINPUT =N ——=—_ | \ T
‘\\ \ " PICTURE 350
\\| \ SCREW IN BULB
}\ ";\ DOES IT LIGHT? HEIGHT
li‘ \'\ YES NO =8
| NN
\-.‘_ T—— Y N
| T —~

Figure 3-6: Linkages between Control and Data Structures

INPUT OPERATION

ESCAPE Terminate TL interpreter

NUL Review path taken through control structure (replay function)
RETURN Restart currently running TL program

Table 3-3: Interpreter Commands

3.2.7. Sub-graphs

Because of limitations in memory a very restricted form of sub-graph capability was
implemented. When entering a sub-graph the name of return node would be pushed on a stack.
The name of this node was restricted to be equal to the value of the current name pius one. This

meant that all paths out of a sub-graph went to only one.node, the one popped off the stack.

25

Some way had to be devised to transfer the results of any testing done in the sub-graph to the
calling procedure. In the sub-graph a terminating state is made for all possible results of the sub-
graph testing. In each of these terminating states there is an instruction to pop the control stack
and obtain the next node’s name. There is also a special kludge instruction which takes
advantage of the GETS' ability to simulate input to its own keyboard. Thus each terminatng state
would act like a unique operator input corresponding to the sub-graph’s results. In figure 3-7
node Y simulates the dummy character 'D’ causing node A to be entered after the subgraph is
exited. After transfer was made to next node it would use the simulated input to transfer to other

nodes representative of the terminating nodes in the sub-graph.

W |
]
) (z) |
, G
. v
/
IPN +
/5“ =\ c
f‘["’/</ \‘“\l""‘\
(B
(ki/] "._./)

Figure 3-7: Sub-graph implementation

1 4

In Figure 3-7 node n is the calling node, node n+1 is the return node, and nodes X, y, and z
form the sub-graph. When an 'A’ s received in node n the value n+1is pushed on the control
stack and control is transferred to node x. Depending on whether the operator enters a 'Y’ or an
'N' control will be transferred to ncde y or node z, respectively. Given that node y was selected

then the next node name is popped off the stack, the character ‘D’ is simulated as input, and

26

control is transferred to node n+1. The equivalent happens at node z with 'E’ being simulated
instead of 'D’. Once at node n+ 1 the character 'E' or 'D’ is received and used to select the next

node.

Notice that transfers from the terminatng nodes to the return nodes are not driven by operator
inputs as in the general case. It should be clear that with this mechanism a sub-graph can be

called from multiple points within the control structure.

3.2.8. State Variables

The implementation of state variat les was very limited. One was implemented. The operations
on this variable were; assigning an immediate value to it, transferring control to the node named
by it value, and transferring control t3 its vaiue and pushing the current control name plus one on

the control stack. This restricted set cf variables was forced by memory and time limitations.

3.3. TL Interpreter Structure

The TL interpreter’s operation can be modelled by the flow chart in Figure 3-8. A complete flow
chart of the TL interpreter is given in Appendix |. The interpreter is initialized with the name of the
first control node to be executed. The interpreter then gets the block containing the desired
control node into the right and left stacks. Once the desired block is in the stacks a linear search
for the control delimiter - control name pair is initiated. When the desired control name is
found it is stored in the WFB as a record of program execution order. The interpreter then
executes the instructions in the node. For each instruction the condition code is evaluated to
determine if the operation is to be performed or not. if the instruction is not executed because a
condition 130 was not satisfied then the next instruction is executed. If an instruction is not
executed because a conditon 131 is not satisfied then the current input character is saved until it
satisfies a code 128 or 131 or the last instruction in the node is execued. When an incorrect
operator input is received it fails to satisfy any of the code 131 instructions. In this case the
interpreter throws the character away and goes to the first code 131 instruction and waits for an
input. If the interpreter reaches the end of a node without transferring control to another node

and there are no code 131 instructions in the node then an error results.

)

3.4. Editor

The editor was created as an aid to writng and changing the control structures. Before it was
put into use all control structures were created and altered by an independant text editiing facilty.
With the independent faclity all the operations needed to create the control structures were

available. The problem was that the programmmer had to remember which characters

27

| START |

rd
w17

GET DESIRED
NODE IN
MAIN MEMORY

J7

FETCH
NEXT
INSTRUCTION

T

/ \\
CONDITION S
<‘\.

\

SATISFIED? e
___/,

/ CONTROL

~f\ TRANSFER —
oy
. OPERATION ? /"

~ -~

e,

- —

e

EXECUTE
OPERATION

corresponded to which values and which values corresponded to which operations. For a person
unfamiliar with these codes that task was virtually impossible. The editor allowed an author to
create or delete nodes and create, delete, or alter individual instructions. Any field of an

instruction can be altered. The complete list of editor commands is given in Table 3-4.

The feature of the editor which justified its existence was its ability to translate the fields in the

instructions to english descriptions of the codes and numeric values. A sample display is given in

Z
0
(g
par

RN =0Z>» "0ODO ‘

ESCAPE

28

OPERATION

Input control number and instruction number
input instruction number of current control number
Delete current instruction

Insert instruction before current instruction
Change conditon code of current instruction
Change compare character of current instruction
Change operation code of current instruction
Change DATA 1 of current instruction

Change DATA 2 of current instruction

Save all changes made on current biock

Exit editor

Table 3-4: Editor Commands

Figure 3-9. The corresponding representation as seen with the older method is shown in Figure

3-10. When entering values for condition or operation codes the editor does not make any

attempt to filter out values which have no meaning to the interpreter. On the whole, the editor was

simple, easy to use, and greatly eased the programming task.

CONTRGL

=

NUMBER

1

CONDITION COMPARE OPERATION DATA1 DATA2
CODE CODE

NONE DISPLAY SLD ---- 10
NONE DISPLAY PICT 10 201

Figure 3-9: Editor Display Format

XRC! # BFG$ # %YGFRJ& * ~09.7";

Figure 3-10: Alternative Display Format

29

4.Example TL Program

In order to clarify the information presented in the previous chapters an example TL program
will be developed. Details on the program’s internal representation and a sample 'run’ will be
given. For this example a receiver has been selected as the machine to be troubleshooted. The
direct links between the MT and the device it is testing will be ignored in this example, as in the
rest of this thesis. Before a set of FIPs can be implemented as a TL program thay must be created
or borrowed from some existing service manual. The source service manual should explicitly
specify all diagnostic and repair procedures to be undertaken by the operator. The fault isolation
procedures in figures 4-1 and 4-2 we re created for this example. The effectiveness and accuracy
of this procedure are not critical to the understanding of this example. The impiementation of this

procedure as a TL program is the cetral issue.

The fault isolation manual is re resented by the control structure of figure 4-3. For the
implementation of the subgraph the numbers of the calling and returning nodes must be
consecutive, in this case they are 0 and 1. The rest of the node number assignments are arbitrary.
17 consecutive numbers were chosen to minimize storage requirements and reduce disk
accesses.With the exception of nodes 1, 6, and 7 all nodes display textual information to the
operator. Each node in figure 4-3 has the name of the picture file it references shown next to it.
To better delimit each test they are enclosed by boxes. One letter inputs are shown in
parentheses next to the legal responses. An operator can gither type the one letter input or touch
the desired box with the sonic pen to frigger the desired response. Tables 4-1, 4-2, and 4-3 show
the TL program code. All of the terminating nodes are linked to the start nodes so the oprator can

easily restart the program. Each table gives all the code for nodes found in one block.

NODE COND COMP OPER DATA 1 DATA2COMMENTS

16 129 133 10 14 display picture 14

128 137 0 goto node O for any input
17 129 133 12 15 display picture 15

128 137 0 goto node 0 for any input

Table 4-3: Nodes 16 - 17

The next sequence of figures shows the display as the operator proceeds through the program.

Each picture has its number and the control node number shown next to it. The TL interpreter

30

Figure 4-1: Radio Manual

WHAT SECTION
OF THE RECEIVER IS
THE PROBLEM IN?

am(a) [im() |audio(u)

| I

'\\.{,7 \ 7

N

TURN ON POWER AND
MEASURE B + VOLTAGE
AT AMP. IS IT EQUAL

TO30V +15%?

YES(Y) | NO(N)

2 3
AM RECEIVER FM RECEIVER
TROUBLE SHOOTING TROUBLE SHOOTING
SECTION SECTION
RESTART RESTART
N
TURN ON POWER AND 5

MEASURE B- VOLTAGE
AT AMP. IS IT EQUAL
TO -30V + 15%7?
YES(Y) | NO(N)

1

/
TURN ON POWER AND 6
SUPPLY A 1000 HZ
100mV SIGNAL TO THE
AMP. CAN ANY SIGNAL
BE MEASURED AT THE
AMP'S OUTPUT ?

YES(Y) | NO(N)

A B

Pee.

l/ N

POWER SUPPLY
TROUBLE SHOOTING
SECTION

RESTART

31

Figure 4-2: Radio Manual (Continued)

,/"‘_”\ ("-‘-"x
“E/) B/
MEASURE OUTPUT 8
VOLTAGE WITH OSC. L
INCREASE INPUT SIGNAL [CAN ANY SIGNAL BE
UNTIL QUTPUT EQUALS MEASURED AT THE
15V.1S THERE DIST- BASE OF THE INPUT
DRTION OF THE SIGNAL? TRANSISTOR?
RESTART YES(Y) | NO(N)

]

CAN ANY SIGNAL BE 10 CHECK CIRCUIT "
MEASURED AT THE BETWEEN INPUT
EMITTER OF THE TRANSISTOR BASE
INPUT TRANSISTOR? AND INPUT TERMINAL
YES(Y) | NO(N) RESTART
.\.[/ , _4[Ve
MEASURE THE 12 IS THE VOLTAGE 13
SIGNAL AT Q2'S BASE AT THE INPUT
IS IT EQUAL TO TRANSISTOR EQUAL
Q1'SOUTPUT? TO 20V + 15%?
RESTART YES(Y) | NO(N)
b L
14 15
CHECK THEB +
TAKE THE TRANSISTOR CIRCLIT FROM THE
OUT AND TEST IT POWER SUPPLY TO
THE TRANSISTOR
RESTART RESTART

32

Figure 4-3: Contro! Structure

NODE COND COMP OPER DATA 1 DATA 2 COMMENTS

0 129 139 clear screen
129 133 8 1 display picture 1
131 A 137 - 2 goto node 2if Ais input
131 F 137 3 goto node 3if F is input
131 U 136 4 call sub-graph starting at node 4
1 131 P 137 8 goto node 8if P is input
131 F 137 9 goto node 9if F is input
2 129 133 8 2 display picture 2
128 137 0 goto node 0 for any input
3 129 133 8 3 display picture 3
129 -- 137 0 goto node 0 for any input
4 129 133 14 4 display picture 4
131 Y 137 - 5 goto node 5if Y is input
131 N 137 7 goto node 7 if N is input
5 129 133 12 5 display picture 5
131 Y 137 6 goto node 6 if Y is input
131 N 137 7 goto node 7 if N is input
6 129 143 P} simulate input of 'P’ then return to node on stack
7 129 143 (F) simulate input of 'F’ then return to node on stack

Table 4-1: Nodes 0 -7

starts executing at a predefined node , in this case node 0. Execution of node 0 causes the
screen to be cleared and picture 1 to be displayed. If the oprator types an "M’ or touches the box
labelled 'AUDIO (U)' control will be transferred to node 4. As soon as the input is processed an
arrow appears helow the 'AMP (M)’ box. When node 4 is entered picture 4 will be displayed below
picture 1. Entry into the sub-graph is completely transparent to the operator. Responding "Y' to
picture 4 causes node 5 to be entered and picture 5 to be displayed. At this point the screen
appears exactly as in figure 4-4. Assuming the operator answers 'Y’ to node 5 several things
occur. First, control is transferred to node 6 which does not display a picture. Node 6 generates
a'P’ (PASS) input, pops the return node number off the control stack , equal to 1, and transfers
control to it. Node 1 does not alter the display. It receives the 'P' immediately and transfers

control to node 8. When node 8 attempts to display picture 6 the interpreter realizes it will not fit

NODE COND COMP OPER DATA 1 DATA 2 COMMENTS

8 129 133 16 6 display picture 6

131 Y 137 10 goto node 10 if Y is input

131 N 137 11 goto node 11 if N is input
9 129 133 8 7 display picture 7

128 137 0 goto node 0 for any input
10 129 .- 133 16 8 display picture 8

128 137 0 goto node 0 for any input
11 129 133 10 9 display picture 9

131 Y 137 12 goto node 12if Y is input

131 N 137 13 goto node 13 if N is input
12 129 133 10 10 display picture 10

131 Y 137 14 goto node 14 if Y is input

131 N 137 15 goto node 15 if N is input
13 129 133 10 11 display picture 11

128 137 0 goto node 0O for any input
14 129 133 12 12 display picture 12

128 137 0 goto node 0 for any input
15 129 133 10 13 display picture 13

131 Y 137 16 goto node 16 if Y is input

131 N 137 17 goto node 17 if N is input

Table 4-2: Nodes 8- 15

on the screen. When this happens the screen is cleared, picture 5 is redisplayed and picture 6 is
displayed below it. The screen now appears as figure 4-5. If the operator answers 'NO' in node
11 he will be transferred to node 13 and the screen will appear as in figure 4-6. At this point the
end of one branch of the fault isolation procedure has been reached. Any input will cause control

to be transferred to node 0.

Several cap.bilities of the TL interpreter that were not shown in the example should be
mentioned. Though no diagrams were shown they could be used with any of the text. The
pictures also need not follow the general format of those in the example. They may be any size or

shape. Slides can also be used at any time by themselves or with text.

WHAT SECTION
OF THE RECEIVER IS
THE PROBLEM IN?

am(a) | fm(f) |audio(u)

L,

.

TURN ON POWER AND
MEASURE B + VOLTAGE
AT AMP. IS IT EQUAL

TO30V +15%?

" YES(Y) NO(N)

S0/

TURN ON POWER AND
MEASURE B- VOLTAGE
AT AMP. IS IT EQUAL
7030V + 15%2

YES(Y) NO(N)

Figure 4-4: Screen 1

36

TURN ON POWER AND
MEASURE B- VOLTAGE
AT AMP. IS IT EQUAL

TO -30V + 15%?

YES(Y) NO(N)

\\ y

TURN ON POWER AND
SUPPLY A 1000 HZ
100mV SIGNAL TO THE
AMP. CAN ANY SIGNAL
BE MEASURED AT THE

AMP'S OUTPUT ?

YES(Y) NO(N)

Figure 4-5: Screen 2

37

11

13

CAN ANY SIGNAL BE

MEASURED AT THE

BASE OF THE INPUT
TRANSISTOR?

YES{Y) NO(N)

S

CHECK CIRCUIT
BETWEEN INPUT

TRANSISTOR BASE
AND INPUT TERMINAL

RESTART

Figure 4-6: Screen 3

5. Results and Conclusions

Based on the work described in this thesis several conclusions can be drawn about the
attributes which would be desireable in a maintenance terminal. In many cases it was found
desireable to be able to review all the tests and their results from the first test to the most recently
executed test. The replay function performed this task. Two versions of this function should be
provided, one would allow the operator to only inspect the path taken through the tree, the other
would allow the operatar to stop inspection and take a previously unexecuted branch at any point.
The inspect only replay function is useful when accidental alterations of the test sequence are
undesireable. The alterable replay function can be useful in the just the oppusite situations, the
opera;tor may want to perform tests that would not normally be executed. The inspect only replay
function can be implemented by ke 3ping a record of the tests executed during a run and then
executing only the display instructions from these tests when the replay function is applied. This
type of replay function was implemented on the GETS. The alterable replay function can be
implemented by recording the tests and their results. When the function is called the maintenece
terminal and the computer under test are initialized, then the tests and their results are applied
automatically until the operator intervenes and enters his own results. This function would be

easier to implement than the general back-up function and it would be almost as useful.

Some conclusions were reached on the general features of the user interface. The sonic pen
was quick and easy to use but sometimes unreliable. In some cases it would take an operator
several tries to hit a sensitized area because of misuse of the pen and electronic misadjustments.
In case of such a difficulty the proper response characters were displayerd on the screen so the
operator could type them in. Keyboard entry is slower but more reliable. In order to show the
operator that the termianl has correctly interpreted his response some visual feedback is
necessary. In this project the feedback took the form of an arrow from the selected response to
the resulting next test. For displaying a large quantity of information a color CRT would be
preferable 1o the plasma panel; the resolution can reach 1024 x 1024, color can represent more
information, and video mass storage techniques can be used for the test data base. Diplaying a
maximum amount of information on the screen can be useful to an operator. Video disk and video
tape technology can be used to store the pictures, diagrams, and text making up the test picture

files.

In addition to the interpreter a structured editor is needed. Both a facility for making quick
small changes and a facility for entering large quantities of data into the control and data

structures are needed. A data base of picture files and a facility for entering, altering, and

39

deleting these files would be needed. The picture should be addressable by name and they
should contain information on their size and resporises. The acceptable responses displayed in a
given picture are needed when the control structure is created and linked together. Another
editor for the control structure would be necessary. This editor would translate from the
underlying representation to a readable format. This editor should provide: functions for linking
picture files, responses, and next control nodes. The two editors just described can be resident in
tthe maintenance termina! or they could reside in another computer. Much work on the

configuration of the data bases and their editors needs to be done.

From the programs that were de' eloped some general conclusions car be drawn about the
software and hardware requirement:; of the maintenance terminal. A very simple instruction set
appears to be adequate for implementing the maintenence terminal’s functions but the simulated
terminal was not required to interact with a computer under test. A more coinplete simulation with
a computer would seem to be necessary. The general approach of raodelling the control
structures as finite state machines could be transferred to a microcoded sequencing approch.
The terminal’s functions could be implemented in bit slices for speed. Such an approach should

be considered for further research.

iy

2]

3]

(4]

5]

(6]

(7]

(8l

l

40

Bibliography

Bannister, R. J.
ORTS-A Shipboard Automatic Test System.
In Autotestcon. \EEE, 1977.

Bergen, J. K.
A User Oriented Man/Machine Interface.
In Automatic Support Systems. |EEE, 1974.

Brown, J. S.; Burton, R. R.; Bell, A. G.

SOPHIE: A Sophisticated Instructional Environment for Teaching Electronic
Troubleshooting.

Technical Report 2970, Bolt, Beranek, and Newman, 1974.

Bulat, M. H. and Francis, J. E.
Interactive Maintenance Terminal Fault Isolation Concept Demonstration.
Technical Information Series 79-POD-3, GE, 1979.

Colgan, J.
Automated Operator Manual for Automatic Test Systems.
In Autotestcon. \EEE, 1977.

deKleer, J.
Steps Toward a Theoretical Foundation for Complex Knowledge Based CAl.
Technical Report, Bolt, Beranek, and Newman, 1975.

Goldstein, |. P.
Understanding Simple Picture Programs.
Al Lab Tech Report 294, MIT, 1974.

Kaiser, G. E.
Automatic Extension of an Augmented Transition Network Grammar for Morse Code

Conversations.
LCS Tech Report 233, MIT, 1980.

Rowe, G. L.
Autotest User Needs at a Base Shop.
In Automatic Support Systems. |EEE, 1974.

[10]

[11]

[12]

[13]

[14]

(18]

41

Rupp, C. R.
A Stand-alone CAl System Based on Procedural Grammars.
International Learning Technology Syimposium/Exposition Washington D.C., GE, 1976.

Scully, J. K.
The Harmonization of Prime Fquipment BITE with ATE.
In Autotestcon. |EEE, 1977.

Shortliffe, E. H.

MYCIN: A Rule-based Compu er Program for Advising Physicians Regarding Antimicrobial
Therapy Selection.

Al Lab Memo 251, Stanford, 1974.

Sussman, G. J. and Brown, A. L.
Localization of Failures in Ra:Jio Circuits A Study in Causal and Teleological Reasoning.
Al Lab Memo 319, MIT, Dec., 1974.

Sussman, G. J. and Staliman, R. M.

Heuristic Techniques in Computer Aided Circuit Analysis.

In Transactions on Circuits and Systems, pages 857-865. |EEE, 1975.
CAS-22

Woods, W. A.

Transition Network Grammars for Natural Language Analysis.
In Communications of the ACM, pages 591-606. ACM, 1970.
Volume 13, Number 10

42

|. TL Interpreter Flowchart

COMPUTE MEMORY
LOCATION OF BLOCK

CONTAINING CONTROL
NODEN

AT ACCESS DISK
< BLOCKIN = "4 AND PUT BLOCK

"-._,_\?TACK?; -~ IN RIGHT STACK

'\‘. -

L

MOVE LEFT
STACK INTO

RIGHT STACK

‘ﬁ\ e

.,
\,

SEARCH LINERLY UNTIL
{CONTROL DELIMITER>XNODE #>
IS FOUND

N i
-'f
- IS PROPER

e SN
CHAR. FOLLOWING s
- ~

e NODE#?

) N -
0

S

Figure 5-1: Flowchart (page 1)

43

Figure 5-2: Flowchart (page 2)

.'"‘-‘-..-‘
4
ISENDOF ERROF:
NODE JN LEFT T NOINSTRUCTIONS
STACK? 7 IN NODE
. P
N
i
RECORD NODE
NUMBER IN
WFB MEMORY
I
s
- : N,
ISENDOF ™ y SEARCH FOR
NODE ON LEFT > BEGINNING
-~
o) d
~ stack? OF NODE
N
\,.. ,/
SEARCH LINEARLY
UNTIL INPUT
CONDITIONAL

INSTR. IS FOUND

44

Figure 5-3: Flowchart (page 3)

READ <COND>
{COMP><OPER>
<DATA1>XDATA2>

POSITION STACK
AT NEXT INSTR.

s
e L———-‘\‘\\
o~ .
P -~ {CONDITION> "-_ Y .
< rd
~._ =ANYINPUT?
. ____//

WAIT FOR

INPUT

./'
- <CONDITION>

= NOIr:li’l;_/

= INDIRECT?

KD = <D2?

\\
/ CCONDITION> \\Y N /’/ \\
N . /

45

Figure 5-4: Flowchart (page 4)

ERROR:
L <COND> = “.. N .
< Y UNDEFINED
“~. INPUT COMPARE / ‘
/ <COND>
\~.
Y
"'*. :'/
WAIT FOR
INPUT
A\ V4
/.f -~ k-‘
o \'\
" KEYBOARD INPUT .Y . SAVE INPUT
. 4
e = <COMP>? - ’ CHARACTER
o
N
_ s
SAVE
iINPUT DISPLAY VISUAL
FEEDBACK
AN
SET INPUT
RECEIVED
FLAG
5

\B

46

Figure 5-5: Flowchart (page 5)

.
DISPLAY .Y DISPLAY
—
PICTURE? - : PICTURE
-~
- e
N l
\‘. :
DISPLAY LY DISPLAY
S1.IDE? o 4 SLIDE
o, /'/
N l
)
e PUSH <DATA>
PUSH Y
—— ON CONTROL
<DATA? P -
-~ STACK
S, ___//
N
N
fe_—-_—L_\
~ ¥ ‘ POP NODE #
RETURN? Ce——— FROM STACK
7 AND GOTOIT
" e
N
sl .,

®

SRR

47

Figure 5-6: Flowchart (page 6)

f.‘ﬂ_h-'.
{5)
N
o \'\ /
4“’ ~
J_f,f’ \ y PUSHN + 10N
\:\ CALL + 1? “s— 4 STACK AND GOTO
- - <DATA 2>
a,.\ p /‘

l

Y .| TRANSFER CONTROL

| \ “1 TONODE<DATA2
-

i

/

Y
< ASSIGN?]

. ~

_\“__—/

-~
N
\\
e s

Y
CLEAR? \;——“»{ B

-,

48

Figure 5-7: Flowchart (page 7)

(o)
.

N
" SIMULATE ey N
< KEYBOARD — % B)
.. /"- \"—-
- INPUT? .
" \" / Vs
N
) '." K
P \‘\
o . S
e -~ Y i
< CALL? ™ = A
. - S
N
N

STOP

