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Abstract

Fueled by technological breakthroughs, advancements in our understanding of infectious agents offer

unprecedented potential for their early detection, intervention, and ultimately, eradication. This disser-

tation focuses on combining cutting-edge immunological, diagnostic, and computational approaches to

confront infectious diseases more effectively, with a particular emphasis on SARS-CoV-2.

The first two chapters delve into the immunological aspects of SARS-CoV-2, exploring the dynamics

of antibody responses during primary infection and reinfection. First, we explore the dynamics of anti-

body responses during primary infection, revealing a “switch-like” relationship between antibody titer and

function. Next, we investigate the humoral immune response following reinfection, identifying specific

biomarkers that differentiate between primary infection and reinfection, offering potential tools for moni-

toring disease spread and understanding immunity.

The subsequent chapter shifts focus towards technological innovation in diagnostics, presenting a novel

bead-based method for CRISPR diagnostics that leverages a split-luciferase reporter system for enhanced

sensitivity and a highly deployable bead-based platform for multiplexed pathogen detection. This work

represents a significant advancement in rapid, scalable, and portable diagnostic tools.

Finally, the dissertation culminates with a leap into computational biology, introducing ’Janus,’ a sub-

quadratic state space model designed to efficiently handle large biological sequences. Janus demonstrates

superior performance in genomics and proteomics tasks, outperforming existing models with significantly

fewer parameters, thus paving the way for more efficient and accurate modeling of protein behavior and

other biological processes.

Collectively, these works contribute to the broader field of infectious disease research with new im-

munological insights paired with advances in technological and computational solutions.
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0
Introduction

In 2019, I helped write a grant which talked about the importance of pandemic preparedness. In 2024, I’ll

spare you most of the details, and simply say: Covid-19 could have been much worse. The Black Death and

the Plague of Justinian each killed about a fourth of Europe’s population, and the Spanish Flu killed 1% of

the global population1,2, compared to 0.2% of the global population during Covid-193. Infectious diseases

continue to cause immense suffering worldwide, but the recent development of new tools to diagnose,

understand, and combat these diseases offers new hope to lessen the impacts of disease.

The work in this dissertation uses and advances innovative technologies that have the potential to ad-

vance infectious disease understanding, diagnostics, and potentially treatment. Through my PhD, I have

probed various tenets of the immune response in humans to SARS-COV-2, developed new molecular di-

13

https://paperpile.com/c/KHdmtg/aMR0+9ylL
https://paperpile.com/c/KHdmtg/MvTb


agnostics for improved diagnosis of infection, and designed new machine learning models to better predict

patterns in biological sequences, including related to infectious disease. Before delving deeper into these

topics, it is crucial to establish a broad understanding of the field.

In this introduction, I have chosen to focus on four key aspects of infectious disease control to give a

broad overview of the field: diagnostics, host-pathogen interactions, interventions, and prediction. These

areas represent important facets of efforts to combat infectious diseases and represent some of the focus of

my research.

0.1 High level overview of areas within infectious disease

0.1.1 Diagnostics

Accurate and timely diagnosis is crucial for the effective management and control of infectious diseases4.

Early detection allows for prompt treatment, isolation of infected individuals, and the implementation of

preventive measures to curb the spread of the disease4,5. Advancements in diagnostic technologies, includ-

ing point-of-need and point-of-care methods, have revolutionized our ability to identify pathogens and

track disease outbreaks. These advancements were most visible during the Covid-19 pandemic, where the

terms “PCR testing” and “antigen testing” became commonplace out of necessity and as a testament to

these technologies’ utility6,7.

One of the gold standards in molecular diagnostics is quantitative polymerase chain reaction (qPCR).

This technique amplifies and quantifies specific genetic sequences of pathogens, enabling highly sensitive

and specific detection8,9. qPCR has been widely used for diagnosing various infectious diseases, including

COVID-19, by detecting the presence of viral RNA in patient samples10. The ability to quantify the viral

load also helps in monitoring disease progression and treatment efficacy. However, qPCR requires spe-

cialized equipment and trained personnel, which can limit its accessibility in resource-limited settings. As

such, qPCR is generally referred to as a point-of-care diagnostic, where the use of the modality is limited to

larger facilities focused on patient care10.

To address the limitations of qPCR and expand the accessibility of diagnostic testing, researchers have

developed alternative methods that prioritize speed, simplicity, and cost-effectiveness7,10. Antigen tests, a
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faster and simpler alternative to molecular diagnostics, have emerged as a valuable tool for rapid screening

and point-of-care testing7,11. These tests detect specific pathogen antigens using antibodies suspended in

a liquid mixture. This mixture flows through a lateral flow strip, where the target antigen and antibodies

bind to specific locations. The antibodies are conjugated with markers such as gold nanoparticles, ren-

dering the results visible to the naked eye within 15-20 minutes in commercial kits12. The ease of use and

rapid turnaround time have made antigen tests, often referred to as ”rapid tests,” indispensable for at-home

diagnostics and point-of-need testing. Notably, during the COVID-19 pandemic, governments worldwide

distributed rapid antigen tests for SARS-CoV-2 to facilitate widespread testing and outbreak control13.

However, antigen tests generally exhibit lower sensitivity than molecular methods like qPCR, potentially

missing infections in the early stages or in asymptomatic individuals7. This limitation highlights the im-

portance of using antigen tests judiciously and considering confirmatory testing with more sensitive meth-

ods when necessary.

While qPCR and antigen tests have been the workhorses of infectious disease diagnostics, the develop-

ment of novel technologies, such as CRISPR-based assays, offers the potential to combine the best aspects

of both approaches10. One of the most promising advancements in this field is the development of Cas13-

based assays. Cas13 is a CRISPR-associated protein that possesses programmable RNA-guided RNase

activity. This unique property allows Cas13 to be harnessed for the specific detection of target RNA se-

quences, making it a powerful tool for diagnosing viral infections. Cas13-based diagnostics offer several

advantages over traditional methods, such as high sensitivity, specificity, and the ability to detect multiple

targets simultaneously10,14,15. In the third study of this dissertation, ”Bead-based approaches to CRISPR

diagnostics,” we introduce two novel bead-based platforms that (1) enhance the sensitivity of of Cas13

assays by using luminescence- instead of fluorescence-based reporters and (2) enhance multiplexing capa-

bilities using bead-based barcoding. These advancements increase the sensitivity of Cas13 diagnostics by

a factor of 10x-100x and enable a reduction of equipment requirements for multiplexing, paving the way

for rapid and accurate pathogen detection, crucial for timely interventions in outbreak scenarios. More-

over, the programmable nature of Cas13 allows for the rapid development of assays targeting emerging

pathogens, making it a versatile tool for pandemic preparedness and response16.

Sequencing technologies, such as next-generation sequencing (NGS), offer the most comprehensive
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approach to pathogen detection and characterization5,17. By sequencing the entire genome of a pathogen,

NGS provides detailed information about its genetic makeup, enabling the identification of novel variants,

mutations, and even previously unknown pathogens. This information is crucial for understanding the

evolution and spread of infectious diseases, as well as for developing targeted therapies and vaccines.

NGS can be applied in two distinct ways for infectious disease diagnostics: shotgun metagenomic se-

quencing and amplicon sequencing18–20. Shotgun metagenomic sequencing involves the sequencing of

all genetic material present in a sample, without prior knowledge of the pathogens present19,21. This ap-

proach enables the detection and characterization of both known and novel pathogens, making it partic-

ularly useful for the discovery of emerging infectious agents. By sampling the entire genetic content of a

sample, metagenomic sequencing provides a full view of the microbial agents in a sample, including bacte-

ria, viruses, and fungi21.

On the other hand, amplicon sequencing focuses on the targeted sequencing of specific genomic re-

gions amplified by PCR. This approach is particularly useful when the pathogen of interest is known, and

specific genomic regions can be targeted for sequencing18,19. Amplicon sequencing allows for the rapid

and cost-effective sequencing of multiple samples, making it particularly useful for outbreak investigations

and surveillance of known pathogen families. This approach has been extensively used during the COVID-

19 pandemic to monitor the emergence and spread of new SARS-CoV-2 variants, enabling public health

authorities to adapt their strategies accordingly20,22.

While shotgun metagenomic sequencing and amplicon sequencing provide valuable information, se-

quencing is the slowest and most expensive diagnostic method, requiring advanced equipment and bioin-

formatics expertise14,16. As a result, sequencing is often used for research and surveillance purposes rather

than routine diagnostics, complementing the more rapid and accessible methods like qPCR, antigen tests,

and CRISPR-based assays. Because CRISPR-based assays are the newest in this family, I decided to spend

time during my thesis to explore these further.

Reporters for CRISPR diagnostic systems Of note, CRISPR diagnostics assays have tradition-

ally used fluorescence-based reporters, primarily consisting of a fluorescein dye linked via a short oligonu-

cleotide sequence to a quencher, generally Iowa Black23–26. While these reporters have performed ad-
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mirably, fluorescence-based technologies are known to have relatively high background signal and lower

sensitivity compared to bioluminescence technologies27, especially compared to the low background

and sub-attomolar detection capabilities of NanoLuc, a derivative of the luciferase protein of a deep-sea

shrimp28,29.

This discrepancy in signal and background performance in fluorescence and luminescence stems from a

variety of biophysical properties related to the chemical mechanisms of each respective technology. Specif-

ically, in fluorescence, a fluorescent molecule is stimulated into an excitation state by a high energy photon

and then re-emits energy in the form of a lower frequency photon as the molecule reverts to its ground

state. This process requires a high-energy light source and a photodetector, both calibrated to the appro-

priate excitation and emission frequencies, respectively. Because the excitation and emission frequencies

can have overlapping frequencies, some background noise inherently emerges from the convolution of ex-

citation and emission frequencies30. Furthermore, both qPCR (with TaqMan probes) and CRISPR-dx

rely on reporters with fluorescence quenchers to block the fluorescence signal before cleavage by DNA

polymerase or Cas12/13. This quenching process has two primary mechanisms – Förster resonance en-

ergy transfer (FRET), in which the quencher re-absorbs the energy released by the fluorophore, and static

quenching, where the quencher physically interacts with a fluorophore to inhibit fluorescence. Both of

these processes are highly dynamic and result in imperfect quenching of signal, with quenching rates be-

tween 31%-98% for a variety of quencher-fluorophore pairs, including 80-94% for fluorescein30,31.

In contrast, bioluminescence does not rely on excitation from an external light source and thereby does

not require quenchers to reduce light emission. Instead, enzymes known as luciferases catalyze the oxida-

tion of molecules categorized as luciferins, which as a by-product of oxidation release light. Because light

emission is linked to enzymatic reaction, background signal is constrained to photodetector noise and lu-

ciferin stability. As such, luciferase systems with stable substrates can show remarkably low background

signal and high dynamic range, with linear signal responses over 8 orders of magnitude with respect to

enzyme concentration in the NanoLuc assay, as compared to less than 2 orders of magnitude response

observed in fluorescence29,30.

Similarly to how fluorescence reporters are paired with quenchers, some luciferase enzymes can be split

into two components, each independently inactive, but when complemented, forming an active luciferase
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enzyme. As such, a split-luciferase system may be used as a highly sensitive detector in a complementation

assay with potentially sub-attomolar detection capabilities and high dynamic range. In the bead-based

chapter of this thesis, we investigate such a system for Cas13-based diagnostics.

0.1.2 Host-pathogen interactions

Understanding the complex interplay between pathogens and their hosts is fundamental to the develop-

ment of effective interventions. This includes studying the mechanisms of pathogen entry, replication, and

immune evasion, as well as the host's innate and adaptive immune responses. Insights into host-pathogen

interactions guide the design of targeted therapies, vaccine design, and public health response32–34.

Host-pathogen interactions cover an extensive amount of topics; I will first discuss immunology in

more depth; next, I will highlight more broadly the importance of structural studies of host-pathogen

complexes and viral replication and pathogen evolution and evasion.

Immunology

Immunology plays a crucial role in understanding how the body responds to foreign pathogens. A

deeper understanding of immune mechanisms can lead to the development of effective therapeutics, such

as vaccines. By elucidating the specific immune pathways and components involved in conferring pro-

tection against a pathogen, researchers can design targeted interventions to enhance the body's natural

defenses. Immunology also helps us understand why some people develop robust protection against a

pathogen while others remain susceptible to infection, informing personalized approaches to vaccination

and treatment. Furthermore, characterizing the immune response, including the duration of immunity,

likelihood of reinfection, and the potential for maternal transfer of antibodies, is crucial for predicting the

long-term effectiveness of vaccines and guiding public health strategies35,36.

The immune system can be divided into two main branches: (A) innate immunity and (B) adaptive

immunity37. Innate immunity is the first line of defense against pathogens and includes physical barriers,

such as skin and mucous membranes, as well as cells such as macrophages, neutrophils, and natural killer

cells, and cellular components such as toll-like receptors (TLR). Critically, the innate immune system is

not specific to particular pathogens, but instead depends on conserved features across various types of

pathogens. This allows a broad and rapid protection from pathogens previously unseen by the immune
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system37.

Adaptive immunity, on the other hand, is a more specific and targeted response to pathogens. It can be

further subdivided into cell-mediated immunity, driven by T cells, and humoral immunity, mediated by

B cells and antibodies. T cells can be classified as CD8+ cytotoxic T cells, which directly kill infected cells,

and CD4+ helper T cells, which orchestrate the overall adaptive immune response. B cells are responsible

for producing antibodies, which are one of the mainstays of the biological response against pathogens37.

The first two studies of this dissertation are focused on antibody-related aspects of immunity to SARS-

CoV2.

B cells can produce different classes of antibodies through a process called class switching. Antibodies

consist of two main regions: the antigen-binding region (Fab) and the constant region (Fc)37. The Fab

region is responsible for recognizing and binding to specific antigens, while the Fc region interacts with

various immune system components and plays a role in determining antibody class38. The main antibody

classes are IgM, IgG, IgA, IgE, and IgD, each with distinct functions and locations in the body37.

IgM is the first antibody class to emerge during an immune response. It forms pentamers, which in-

crease its avidity for antigens and makes it more effective at activating the complement system. However,

after class switching, IgG becomes the most abundant antibody class in blood and extracellular fluid, rep-

resenting around 75% of all antibodies in circulation37,39. IgG plays a crucial role in neutralizing pathogens

by binding to specific antigens through its Fab region, thereby preventing the pathogen from entering cells

or performing critical functions. This neutralization mechanism is particularly important for preventing

infection or disease progression, and many therapeutic antibodies against infectious agents, such as those

developed in the early stages of the Covid-19 pandemic, operate through this principle40,41.

In addition to neutralization, antibodies can also engage in effector functions through their Fc re-

gion37. The Fc region interacts with Fc receptors on various immune cells, such as natural killer cells and

macrophages, triggering functions like antibody-dependent cellular cytotoxicity (ADCC)37,42. In ADCC,

the antibody binds to the target cell through its Fab region, while its Fc region recruits immune cells to

destroy the bound cell. The Fc region can also activate the complement system, a cascade of proteins that

leads to the formation of the membrane attack complex, which can directly lyse targeted cells43.

The other antibody types, IgA, IgE, and IgD, also play important roles in the immune response. IgA is
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the principal isotype in secretions, specifically in mucosal layers, and functions primarily through neutral-

ization. IgA provides a first line of defense against pathogens that enter the body through mucosal surfaces

by preventing their attachment to epithelial cells37. IgE antibodies are mostly bound to mast cells and ba-

sophils and are associated with allergic responses to antigens. When an allergen binds to IgE on the surface

of mast cells, it triggers the release of histamine and other inflammatory agents, leading to the symptoms of

an allergic reaction. IgD, on the other hand, is the least understood antibody class. It is primarily found on

the surface of B cells, where it acts as a receptor for antigens, but its role in the secreted form is still largely

unknown37.

Systems serology is an emerging field that aims to comprehensively profile the antibody response using

high-throughput technologies44,45. By measuring multiple antibody features, such as antigen specificity,

isotype, subclass, glycosylation, and effector functions, systems serology provides a detailed picture of the

humoral immune response. This approach can help identify correlates of protection, predict vaccine ef-

ficacy, and guide the development of targeted antibody therapies. One of the key technologies used in

systems serology is the Luminex bead-based assay46. In this method, different antigens or antibodies are

coupled to color-coded beads, allowing for the simultaneous measurement of multiple analytes in a single

sample. The beads are then analyzed using a flow cytometer, which can detect the fluorescent signal asso-

ciated with each bead, providing a quantitative readout of antibody levels and functions46,47. Luminex

assays have been widely used to profile the antibody response to various pathogens, including SARS-CoV-

2, and have provided valuable insights into the complex interplay between antibody quantity, quality, and

function44,48–50. Systems serology has been particularly useful in understanding the complex antibody

response to SARS-CoV-2 infection and vaccination, as demonstrated in the first two studies of this disser-

tation51–53.

The emergence of the COVID-19 pandemic during the second year of my PhD underscored the impor-

tance of using tools such as systems serology to understand the immune response to novel pathogens51–53.

At the outset, knowledge regarding the infection dynamics and immune response to SARS-CoV-2 was

limited. While other colleagues focused on topics including maternal antibody transfer and vaccine-related

response51–54, my research employed systems serology to investigate the immune response to SARS-CoV-2

in protective immunity and in reinfection.
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Studies of Host-Pathogen Complexes and viral replication

Studies of host-pathogen complexes provide essential insights into the molecular mechanisms of pathogen

entry and replication55–57. By elucidating the interactions of key viral proteins with host cell proteins, in-

cluding assessing three-dimensional structures, researchers can identify potential targets for therapeutic

interventions and vaccine development55,58.

One notable example is the study of the SARS-CoV-2 spike protein and its interaction with the human

ACE2 receptor57. Structural analyses have revealed that the spike protein binds to ACE2 with high affinity,

facilitating viral entry into host cells57. This has informed the development of neutralizing antibodies that

block the spike-ACE2 interaction, thus preventing viral entry40,59. Similarly, structural studies of other

viral proteins, such as the influenza hemagglutinin and neuraminidase, have guided the design of antiviral

drugs and vaccines60,61.

Understanding the mechanisms of viral replication is crucial for identifying potential targets for an-

tiviral therapies. Many viruses, such as HIV and hepatitis C virusHCV), rely on specific viral enzymes in-

cluding proteases and polymerases for replication62–65. Structural studies of these enzymes have led to the

development of highly effective antiviral drugs that inhibit their activity. For example, protease inhibitors

and reverse transcriptase inhibitors have revolutionized the treatment of HIV, while antiviral targeting

the HCV protease and polymerase have significantly improved the outcomes for patients with chronic

hepatitis C66,67. In the context of SARS-CoV-2, structural studies have also informed the development of

antiviral therapies. The viral main protease (Mpro) and the RNA-dependent RNA polymerase (RdRp)

have been identified as promising drug targets, with Nirmatrelvir and Remdesivir, respectively, blocking

Mpro and the RdRp68,69.

Pathogen evolution and evasion

Pathogens, particularly viruses, are constantly evolving to evade host immune responses and antiviral

therapies. Understanding the mechanisms of pathogen evolution and immune evasion is crucial for devel-

oping effective and long-lasting interventions.

One well-known example of pathogen evolution is the seasonal influenza virus70. Influenza viruses

undergo antigenic drift, whereby point mutations in the viral surface proteins, hemagglutinin (HA) and

neuraminidase (NA), lead to the emergence of new strains that can escape pre-existing immunity70–72.
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This necessitates the annual updating of influenza vaccines to match the circulating strains. In addition,

influenza viruses can also undergo antigenic shift, which occurs when two different influenza strains co-

infect the same host cell and exchange genetic material, resulting in the emergence of a novel virus with

pandemic potential70–72.

The ongoing SARS-CoV-2 pandemic has also highlighted the importance of monitoring pathogen evo-

lution4,73,74. The emergence of SARS-CoV-2 variants with increased transmissibility and potential for

immune escape, such as the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) variants, has posed sig-

nificant challenges for disease control and vaccine efficacy74–76, even negating the effectiveness of certain

antibody treatments such as Regeneron’s REGN-COV277. Studying the molecular basis of these variants,

particularly the mutations in the spike protein, is essential for adapting vaccination strategies and develop-

ing broadly neutralizing antibodies.

Another example of pathogen evolution and immune evasion is HIV. The high mutation rate of HIV,

coupled with its ability to establish latent reservoirs in infected cells, has made it challenging to develop an

effective vaccine78,79. HIV evolves rapidly within infected individuals, leading to the emergence of diverse

viral quasispecies that can escape the host immune response. This highlights the need for a deeper under-

standing of HIV evolution and the development of novel strategies, such as broadly neutralizing antibodies

and T cell-based vaccines, to overcome immune evasion79,80.

0.1.3 Intervention

Effective interventions are essential to prevent, treat, and control infectious diseases. This encompasses a

wide range of strategies, including public behavior norms such as social distancing and masking, and efforts

including contact tracing, vaccination, and therapeutics81–84.

One of the first lines of defense against disease is behavioral. During outbreaks of ebola and Lassa virus

–both transmitted via rats– public health initiatives advocated for a behavioral change: less hunting and

consumption of rats85, otherwise considered a delicacy. During the Covid-19 pandemic, masking and so-

cial distancing were crucial public health measures during the Covid-19 pandemic. In outbreaks, much

research is dedicated to understanding the spread of disease to inform these interventions, such as on

the spreading distance of respiratory droplets during Covid-19 or the transmission pathways of a recent
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mumps outbreak86.

Building upon the understanding of host-pathogen interactions discussed previously, vaccine devel-

opment is another critical intervention strategy87. Designing effective vaccines requires identifying the

most immunogenic regions of the pathogen and eliciting a robust and long-lasting immune response87,88.

This involves studying the neutralizing capacity of antibodies, as well as their ability to confer protection

through mechanisms like ADCC and ADNP89. In this development process, preclinical studies in ani-

mal models are essential to assess the efficacy and response of vaccine candidates, often by using systems

serology to get a broad understanding of the robustness of the antibody-based response against a vaccine

candidate90,91. In addition to traditional vaccine approaches, novel strategies such as T-cell vaccines are

being explored to harness the power of cellular immunity in combating infectious diseases92.

On the treatment side of clinical intervention, small molecule drugs are an important class of interven-

tions that target either pathogen or host machinery to disrupt some part of the pathogen life cycle. For

example, in the case of COVID-19, two small molecule drugs, remdesivir and molnupiravir, have shown

efficacy in reducing the severity and duration of illness93,94. Remdesivir targets the viral RNA-dependent

RNA polymerase95, while molnupiravir introduces errors in the viral genome during replication96. Sim-

ilarly, antimalarial drugs like artemisinin and chloroquine interfere with the parasite's metabolism and

heme detoxification pathway97,98. Understanding the precise mechanisms of action of these drugs requires

a deep knowledge of the host-pathogen interaction at the molecular level.

Monoclonal antibodies are also a promising therapeutic intervention for infectious diseases99,100. The

development of monoclonal antibodies follows a similar approach to vaccine design, focusing on identi-

fying and targeting the most effective neutralizing antibodies59. By understanding the specific epitopes

recognized by these antibodies and their mechanisms of action, researchers can engineer monoclonal anti-

bodies with enhanced potency and breadth of protection, such as Regeneron’s REGN-COV2 for SARS-

CoV-277.

Notably, as discussed previously, therapeutic development must be done with an eye towards manag-

ing pathogenic evolution and evasion101–103. Antibiotic resistance is a significant challenge, exemplified

by penicillin-resistant Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA)104.

Tamiflu (oseltamivir), initially effective against influenza, has seen resistance due to mutations in the neu-
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raminidase enzyme105. In malaria, Plasmodium falciparum has developed resistance to drugs like chloro-

quine, necessitating continuous development of new treatments98,106. These examples highlight the criti-

cal need for adaptive strategies in therapeutic development to manage and counteract resistance.

0.1.4 Prediction

The ability to predict and anticipate infectious disease characteristics is vital for proactive preparedness

and response4,107. Traditional prediction methods in infectious diseases have often relied on observational

data. For example, in the case of influenza, the severity of the flu season in Australia is often used as an

indicator of how it will unfold in North America108. This approach leverages the fact that the flu season

in the southern hemisphere precedes that of the northern hemisphere, allowing for early preparedness and

resource allocation108.

More recently, computational advances have enabled researchers to predict future mutations101 that

may arise, to identify which emerging lineages are more likely to spread109, to create vaccines designed to

avoid future escape mutations103, and to generate new drug candidates110,111.

On one end of viral response, computational tools like PyR0 have been developed to predict emerging

lineages of pathogens, such as SARS-CoV-2109. These tools use Bayesian methods to identify mutations

that contribute to increased transmissibility, not only in the Spike protein but also in other viral proteins.

By prioritizing lineages as they emerge, public health authorities can focus their efforts on the most con-

cerning variants109,112.

Machine learning holds tremendous potential to revolutionize the field of drug discovery, enabling

the identification of novel therapeutics for a wide range of diseases, including infections caused by drug-

resistant pathogens110,111,113. For example, using a machine learning model trained on antibiotic perfor-

mance of a range of compounds, halicin was identified from a molecular library as a promising candidate

antibiotic, and then experimentally validated as a new antibiotic that is effective against a wide range of

drug-resistant bacteria110. Beyond antibiotics, machine learning is also being applied to the design of new

proteins with desired structures and functions. The RFDiffusion model, for instance, uses a diffusion-

based generative modeling approach to create novel protein sequences that fold into specific structures and

perform targeted functions111.
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Another aspect of prediction in infectious disease has been to predict the performance of various diag-

nostics assays, including Cas13-based assays114,115. Recent advances have demonstrated the potential of

machine learning and combinatorial optimization methods in enhancing the sensitivity and specificity of

CRISPR-based diagnostics. For instance, ADAPT (Activity-informed Design with All-inclusive Patrolling

of Targets) combines deep learning models with combinatorial optimization to design viral diagnostics

that are maximally active across a virus's genomic variation. This system has been successfully applied to

design sensitive and specific diagnostics for 1,933 vertebrate-infecting viral species114. Furthermore, gener-

ative machine learning models have been developed to predict the enzymatic activity of CRISPR-Cas13a,

improving the detection of diverse viral targets by integrating viral variation into the diagnostic design115.

These approaches have shown superior performance in detecting viral diversity and enhancing diagnostic

sensitivity compared to traditional heuristic methods, paving the way for more effective and rapid diagnos-

tic assay development in response to emerging infectious diseases

Most of the above machine learning approaches utilize common architectural frameworks, which I will

describe below. Fundamental computational methods, such as linear and logistic regression116,117, have

been used for decades to model the relationship between variables and outcomes. These methods often

have closed-form mathematical solutions, and had been the mainstay of computational biology for many

years, for example in genome-wide association studies118.

In recent years, artificial neural networks have become increasingly prevalent in computational biology,

particularly since the late 2000s119. These algorithms have been applied to a wide range of problems in the

field, from genomics to drug discovery and infectious disease modeling114,120–122.

In the realm of genomics, convolutional neural networks (CNNs) have proven to be particularly ef-

fective for analyzing sequence data. Biological sequences, such as DNA or amino acid sequences, can be

represented as two-dimensional images using a technique called one-hot encoding. In one-hot encoding,

each nucleotide or amino acid is represented as a binary vector, where a single element is set to 1 and all

others are 0. For example, in DNA sequences, A, C, G, and T would be represented as [1,0,0,0], [0,1,0,0],

[0,0,1,0], and [0,0,0,1], respectively123. This encoding allows the sequence to be treated as an image, en-

abling the application of CNNs. CNNs can then learn hierarchical features directly from the encoded se-

quence data, making them well-suited for tasks such as identifying pathogen sequences in diagnostic assays,
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as exemplified by the ADAPT platform114.

Graph neural networks (GNNs) have emerged as powerful tools for modeling complex relationships

between biological entities, such as the interactions between drugs and proteins110,124. In a graph represen-

tation, nodes represent biological entities (e.g., drugs, proteins), and edges represent the relationships or

interactions between them. GNNs operate on these graph structures, learning to propagate and aggregate

information from neighboring nodes to capture the inherent relationships125. This makes GNNs applica-

ble to problems like predicting drug-target interactions, where the goal is to determine whether a specific

drug is likely to bind to a target protein or have an overarching effect110,124. GNNs have shown promis-

ing results in these areas, with the potential to accelerate drug discovery and repurposing efforts110,126,127.

GNNs, for example, were used in the discovery of the antibiotic halicin discussed above110.

Transformers, a class of neural networks originally developed for natural language processing128, have

been adapted for various tasks in computational biology, including as a part of the backbone of AlphaFold122.

Transformers are characterized by their use of self-attention mechanisms, which allow them to weigh the

importance of different parts of the input sequence when making predictions. In the context of biological

sequences, such as proteins, transformers can capture long-range dependencies between amino acids that

may be far apart in the linear sequence but close together in the 3D structure. This makes transformers

well-suited for problems like protein structure prediction, where the goal is to determine the 3D structure

of a protein based on its amino acid sequence, and protein design, where the aim is to create novel proteins

with desired structures and functions122,128.

State space models, including hidden Markov models (HMMs) and recurrent neural networks (RNNs),

have proven valuable for modeling dynamics in biological systems129–131. However, these models often

struggle with capturing long-term dependencies and efficiently processing very long sequences132,133. To

address these limitations, new state space models, such as the Structured State Space sequence model (S4)

and its extension, S4D, have been developed132,134.

S4 is a state space model that leverages the properties of structured matrices, specifically the HiPPO

(High-order Polynomial Projection Operator) matrix, to efficiently capture long-range dependencies in

sequences132,135. HiPPO matrices are a class of structured matrices that exhibit desirable properties for

modeling long-term dependencies. They are constructed using orthogonal polynomials, such as Legen-
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dre or Chebyshev polynomials, which allows them to capture a wide range of temporal dynamics. The use

of HiPPO matrices in S4 enables the model to efficiently capture long-range dependencies without the

need for expensive computations or large numbers of parameters132,135. By using a special parameteriza-

tion of the state space matrices, S4 can model complex temporal dynamics while being computationally

efficient and stable. The key idea behind S4 is to represent the state space matrices using a combination of

structured matrices, including HiPPO matrices and diagonal matrices. This parameterization allows S4 to

efficiently compute the state transitions and capture long-term dependencies, even for very long sequences

132,135.

S4D is an extension of S4 that further simplifies the computation of the state space kernel. In S4D, the

state space matrices are represented using diagonal matrices, which makes the kernel computation simpler

compared to the original S4 model. Despite this simplification, S4D has been shown to achieve comparable

performance to S4 on various tasks, making it an attractive alternative when a simplified parameterization

is a priority134. These advanced state space models have shown impressive results in various domains, in-

cluding speech recognition, time series forecasting, and natural language processing132,136–138.

Despite their potential, state space models like S4 and S4D have not been widely explored in the context

of biological sequence modeling. Given their ability to capture long-range dependencies and efficiently

process lengthy sequences, we hypothesized that these models could provide valuable insights into the

dynamics of protein interactions (for antibody binding prediction) and of CRISPR guide-target behavior

(for Cas13 activity predictions) and enhance our ability to make accurate predictions. By exploring the

use of state space models in biology in the fourth chapter of this thesis, we sought to expand the toolkit

available for predicting and understanding infectious diseases, ultimately contributing to the development

of more effective strategies for prevention, detection, and treatment

0.2 Overview of my research contributions

I conducted research across a broad spectrum of areas within the fields of infectious diseases and biology.

This interdisciplinary approach has expanded our understanding in three main sub-fields: (1) systems

serology, (2) CRISPR-based diagnostics, and (3) machine learning for biological sequences.
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The first study, “Discrete SARS-CoV-2 antibody titers track with functional humoral stability,” delves

into the nuanced relationship between antibody levels and their functional implications in providing pro-

tection against SARS-CoV-2. The findings highlight the significance of specific antibody level thresholds

to ensure robust immune responses, which is critical for understanding protection, reinfection dynamics,

and vaccine efficacy.

Building on this foundation, the second study, “Serological Markers of SARS-CoV-2 Reinfection,”

identifies key immune biomarkers that can efficiently detect reinfections. These markers offer an approach

to monitoring and understanding COVID-19 reinfections, thereby informing public health strategies and

vaccine booster campaigns.

The third study, “Bead-based approaches to CRISPR diagnostics,” introduces advanced diagnostic

platforms that enhance the sensitivity and multiplexing capabilities of CRISPR-based assays. In one arm

of this study, by using luminescence instead of fluorescence, we increase Cas13 diagnostic sensitivity by a

factor of 10x-100x. In another arm of the study, we develop bead-based diagnostics systems that can detect

multiple viral targets simultaneously, paving the way for rapid and accurate pathogen detection, which is

crucial for timely interventions in outbreak scenarios.

Finally, the fourth study, “Janus: An Efficient and Expressive Subquadratic Architecture for Modeling

Biological Sequences,” presents a novel computational framework for biological sequence analysis. By in-

tegrating projected gated convolutions and structured state spaces, Janus achieves superior performance in

genomics and proteomics tasks with significantly fewer parameters compared to transformer-based archi-

tectures. This architecture not only has the potential to accelerate basic biology research, but also enables

the development of more effective diagnostic and therapeutic tools.

Together, these studies represent a comprehensive effort to leverage cutting-edge technologies and

methodologies to combat infectious diseases. By addressing critical challenges in antibody stability, rein-

fection detection, diagnostic sensitivity, and computational efficiency, this dissertation contributes to the

broader goal of enhancing our preparedness and response to current and future infectious disease threats.
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1.1 Abstract

Antibodies serve as biomarkers of infection, but if sustained can also confer long-term immunity. Yet,

for most clinically approved vaccines, binding antibody titers only serve as a surrogate of protection. In-

stead, the ability of vaccine induced antibodies to neutralize or mediate Fc-effector functions is mechanis-

tically linked to protection. While evidence has begun to point to persisting antibody responses among

SARS-CoV-2 infected individuals, cases of reinfection have begun to emerge, calling the protective nature

of humoral immunity against this highly infectious pathogen into question. Using a community-based

surveillance study, here we aimed to define the relationship between titers and functional antibody activ-

ity to SARS-CoV-2 over time. Significant heterogeneity, but limited decay, was observed across antibody

titers amongst 120 identified seroconverters, most of whom had asymptomatic infection. Notably, neu-

tralization, Fc-function, and SARS-CoV-2 specific T cell responses were only observed in subjects that

elicited RBD-specific antibody titers above a threshold. The findings point to “switch-like” relationship

between observed antibody titer and function, where a distinct threshold of activity – defined by the level

of antibodies – is required to elicit vigorous humoral and cellular response. This response activity level may

be essential for durable protection, potentially explaining why reinfections occur with SARS-CoV-2 and

other common coronaviruses.

1.2 Introduction

Following most infections, the persistence of humoral immune responses not only provides a record of

infection, but also confers protective immunity upon re-exposure. Emerging data point to sustained hu-

moral immune responses in at least a subset of SARS-CoV-2 infected individuals1,2, yet cases of reinfection

have begun to emerge3,4. Whether persisting antibodies retain neutralizing or other protective antiviral

effector functions, remains unclear, but may provide critical clues related to the nature of long-term pro-

tection from re-infection. Importantly, higher SARS-CoV-2 antibody levels are consistently observed

among severely ill individuals and the elderly, suggesting that enhanced immunity may arise in the presence
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of more aggressive disease5. Nonetheless, the majority of adults experience asymptomatic to mild disease6,

typically resulting in the generation of lower antibody titers7.

Importantly, beyond binding, antibodies confer protection against re-infection or disease via their abil-

ity to functionally interfere with infection, either by blocking infection (neutralization) or by recruiting the

innate immune system to clear and control disease8, both of which have emerged as correlates of immunity

against SARS-CoV-2 in vaccine studies in animal models9,10. However, the relationship between bind-

ing titers and antibody effector function, particularly in individuals with mild-to-asymptomatic disease,

is poorly understood. Moreover, how antibody function relates to T cell immunity, proposed as an alter-

nate correlate of immunity, is unclear. Collectively, defining the nature of T and B cell immunity is key to

defining the nature of long-lived protection from re-infection.

Here we comprehensively probed the functional humoral immune response in a cohort of 120 seropos-

itive individuals, identified through a community based prospective seroprevalence study, to gain deeper

insights into the spectrum and heterogeneity of functional humoral immunity to SARS-CoV-2 over time.

As previously observed, striking heterogeneity in antibody titers were observed across the infected popula-

tion, positively correlated with the number of symptoms experienced by each individual. Limited antibody

waning was noted over the study period, but a discrete titer threshold was observed across the population

that discriminated individuals who evolved neutralizing and antibody-effector functions, as well as T cell

immunity. These data suggest that a threshold of protective immunity may exist among naturally infected

individuals, related to the functional potential of the humoral immune response.

1.3 Results

1.3.1 Baseline antibody levels track with symptomatology

In this study we included 4300 volunteers all of whom were employees at Space Exploration Technologies

Corp. (SpaceX) that were followed from April 2020, including SARS-CoV-2 receptor binding domain

(RBD) antibody testing, and detailed symptomatology. There were no exclusion criteria and all volun-
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teers were included across all analyses. Following blinded performance of this SARS-CoV-2 quantitative

enzyme-linked immunosorbent assay (ELISA) to the receptor binding domain (RBD), with a specificity of

>99.5%11, a total of 120 seroconverters were enrolled. Strikingly, 73 (61%) of the seroconverters reported

no COVID-19 related symptoms (including loss of smell, loss of taste, cough, fever and chills). We ob-

served antibody titers at baseline (T0; first seropositive timepoint) between 1 ng/ml to 11 μg/ml (Figure

1A and Suppl. Figure 1). While no single symptom was associated with higher titers, particular symp-

toms were observed more frequently in the cohort (Figure 1A and B). Titers were distributed broadly,

with a substantial proportion exhibiting levels comparable to subjects who reported multiple COVID-19

related symptoms (Figure 1C and Figure 1D). Along these lines, PCR confirmed cases appeared to have

higher titers most likely because individuals with COVID-19 related symptoms were more likely to get

tested (Figure 1E). Thus, highly specific SARS-CoV-2 antibodies were readily found in both symptomatic

and asymptomatic infection cases, albeit with distributions favoring higher titers in more symptomatic

disease.

1.3.2 Antibody titer kinetics

Among the seroconverters, additional longitudinal samples for comprehensive antibody profiling were

available for 87 that were included in the study, sampled with a mean interval sampling time of 39.7 days

(standard deviation 13.8 days) (Figure 1C). Forty-eight of the seroconverters had at least one additional

follow-up test, and 44 (91.6 %) remained seropositive, whereas four individuals lost their antibody re-

sponses (Figure 1C). As RBD IgG titers were evaluated by ELISA over multiple time points across the

48 subjects, diverse trajectories were observed, with limited evidence of uniform decay. Twenty-one indi-

viduals showed increased titer trajectories at their second time point (T1) whereas 27 individuals exhibited

lower SARS-CoV-2 IgG levels at T1 (Figure 2A). The length of timing between sampling timepoints did

not appear to influence T0 antibody titers (Suppl. Figure 1B) or trajectory to the next timepoint (Suppl.

Figure 1C).

The heterogeneous early humoral trajectories were potentially representative of differences in the tim-

ing of sampling during the induction of the humoral immune response (Figure 2B). To test this hy-

pothesis, Individuals were grouped based on whether they exhibited increasing or decreasing antibody
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Figure 1.1: A IgG‐RBD titer by reported symptom (values for individuals with multiple symptoms are shown for each symptom
individually; LOS loss of smell, LOT loss of taste) (box extends from 25th to 75th percentile, whiskers show min and max, and
vertical line indicates the median). B Donut plots with the proportion of individuals who reported the individual symptom in
(A), the number in the donut hole indicates the absolute number of individuals (from a total of 116 individuals with symptom
data). C The line plot shows the trajectory of SARS‐CoV‐2 RBD‐specific antibody titers following seroconversion in 120 individ‐
uals (colors and symbols indicate the number of reported symptoms). D The whisker box plots show study maximum observed
RBD titers grouped by individuals reporting 0–5 symptoms (box extends from 25th to 75th percentile, whiskers show min and
max, and the horizontal line indicates the median; n0  = 73, n1  = 8, n2  = 12, n3  = 7, n4  = 9, n5  = 7). E The dot plot shows RBD‐specific
IgG titers in individuals that tested PCR+ (n = 32) prior to developing antibody responses or that did not have a PCR test at the
time or within 2 weeks prior to seroconversion (n = 88; colors indicate the number of reported symptoms as in (C) and (D)).
Statistical differences in (D) were assessed with the Kruskal–Wallis test followed by a post hoc Dunn’s correction for multiple
testing. Source data are provided as a Source Data file.
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titers. Subjects with increasing titers tended (p=0.05) to have lower early titers; potentially pointing to a

slight upward trajectory from seroconversion to study maximum observed titers, indicating a maturation

of the response. Conversely, individuals with waning titers exhibited higher titer at the first timepoint

(Figure 2B), pointing to an expected loss of antibodies from study maximum observed immunity, due to

a loss of plasmablasts. These data point to an expected rise, peak, and early waning profile observed with

other viral infections12 and emphasize the need for repeat testing to ascertain the level of waning across a

population13,14.

Importantly, timepoints were also available for a subset of individuals at additional timepoints. Remark-

able stability for up to more than 60 days was observed in these individuals, pointing to a stabilization of

the response (Figure 2C). Although we cannot exclude possible re-exposure and natural boosting of these

immune responses, these data argue for some early waning, that stabilizes at later time points resulting in

persistent seropositivity across this broad titer range. Whether these persisting binding antibodies possess

additional antiviral functions, critical for protection against infection/disease, remains unclear.

1.3.3 Functional implications of titer heterogeneity

Common cold causing coronaviruses cause seasonal infections, despite the presence of detectable antibody

levels across the population15,16. However, why some individuals continue to get re-infected, despite the

presence of antibody-titers is unclear. Beyond binding, the ability of antibodies to neutralize and leverage

innate immune effector functions is key to protection across many clinically approved vaccines8 as well as

against SARS-CoV-2 in animal models9,10. Whereas some literature points to a relationship between RBD-

binding titers and neutralization17, the overall relationship between binding and humoral function is not

well established.

To begin to address the relationship between antibody titer and function, the 120 positive individu-

als were split in a simple unbiased manner by the median study maximum observed titers and examined

through multiple functional assays (Figure 3A). Remarkable differences in antibody effector function

were observed across the median-split (Figure 3B): detectable neutralization, antibody-mediated com-

plement deposition (ADCD), and antibody-dependent neutrophil phagocytosis (ADNP) were observed

almost exclusively in individuals possessing higher maximum observed RBD-specific antibody titers. Fur-
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Figure 1.2: A The line graph shows the trajectory of the humoral immune response after the first antibody‐positive timepoint
(red lines show individuals that experience an increase in their antibody titers and gray shows individuals that exhibit stable or
low‐level waning) (n = 48). B The violin plots show the T0 and T1 RBD‐specific IgG titers across individuals that experience an
increase (reds) or experience stable or decreasing (grays). C The line plot shows the overall decay profiles once all samples were
aligned based on study maximum observed titer (highest titer per individual observed in this study) (n = 32). The shades of blue
show the individuals with the higher study maximum titers in the deep blue or lower observed titers in the light blue. Statistical
differences between T0 and T1 within a group in (A) and (B) were assessed with a paired Wilcoxon‐test and differences across
groups and timepoints were assessed with the Kruskal–Wallis test followed by a post hoc Dunn’s correction for multiple testing.
****p < 0.0001 or exact p‐values for not significant comparisons. Source data are provided as a Source Data file.
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thermore, these functions remained stable in individuals with repeat timepoints (Figure 3C).

We next probed the functional humoral profile across additional SARS-CoV-2 antigens, aimed at defin-

ing whether additional humoral specificities may compensate for poor RBD-functional immunity. Con-

sistent coordination of humoral titers across RBD-, nucleocapsid (N), and full spike (S) were observed

(Figure 3D), albeit the correlations were stronger in the high titer group. Accordingly, despite the corre-

lated nature of RBD-, N-, and S-humoral responses across both groups, only individuals with high IgG

titers exhibited broad and robust RBD-, N-, and S-humoral immune responses of different subclasses, iso-

types, and with additional innate immune effector functions both at the first (Figure 4A, Suppl. Figure

2) and second timepoints (Figure 4B). In contrast, limited humoral immune responses across all 3 anti-

gens were observed in individuals with low RBD-titers. Beyond the median split (0.45 μg/ml), more dis-

crete titers were noted that tracked with individual antibody functions where neutralization emerged at a

cut off of 0.1 μg/ml, ADNP only appeared at 0.25 μg/ml, and complement appeared in some individuals at

concentrations of IgG as low as 0.1 μg/ml (Figure 4C-E). These differences may reflect the distinct num-

bers of antibody molecules required to drive each function, representing unique functional needs to cross-

link viral spikes, Fc-receptors, or deposit complement, respectively. Yet these distinct thresholds point to

opportunities to define discrete titer thresholds for each antibody effector function that may ultimately de-

fine quantitative antibody functional correlates of immunity in future large scale sero-surveillance cohorts.

Together, these data indicate that antibodies to other SARS-CoV-2 antigen specificities may not compen-

sate for low RBD-specific functional antibody levels. Rather, it appears that a distinct titer threshold may

track with durable functional humoral immune responses to RBD and other SARS-CoV-2 antigens.

Absence of high binding, neutralization, or antibody effector function does not ultimately rule out

protection from reinfection, and speculation has emerged about the potential role of T cells, rather than

antibodies, as critical correlates of immunity in COVID-19, particularly in asymptomatic/mild disease18.

Thus, given the emerging data pointing to a presence of T cell immunity both in infected and uninfected

populations18,19, we next assessed the presence of SARS-CoV-2 specific T cell responses in our cohort.

Following T-cell expansion culture, responses to either SARS-CoV-2 spike protein (S) or nucleocapsids

protein (N) overlapping peptide pools were quantified by IFNγ ELISpot in 12 high and 10 low RBD anti-

body titer individuals.
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Figure 1.3: A The dot plot shows the distribution of study maximum observed antibody titers (highest titer per individual ob‐
served in this study) across the cohort, split based on median titers. Dark blue shading indicates all individuals above the median
and the light blue shows all the individuals below the median (ntotal  = 120; nlow  = 60, nhigh  = 60). B The violin plots show the distri‐
bution of neutralizing antibody titers (dilution factor, left), antibody‐dependent complement deposition (ADCD, mean fluores‐
cence intensity, middle), and antibody‐dependent neutrophil phagocytosis (ADNP, phagocytosis score, right)(nlow  = 60, nhigh  = 60)
against SARS‐CoV‐2 S. C The violin plots show the neutralization levels, ADCD, and ADNP (n = 15) from the maximum observed
titers to the next timepoint (P + 1) in a subset of individuals in the high titer group. D The correlation heat maps (Spearman‐
correlation) show significant correlations (p < 0.05) between RBD, Spike (S), and Nucleocapsid (N) titers in the high titer
(right; n = 15) and low titer (left; n = 26) groups. Statistical differences between two groups were assessed with a two‐sided
non‐parametric Mann–Whitney test in (B) and paired Wilcoxon‐test in (C). ****p < 0.0001 or exact p‐values for not significant
comparisons. Source data are provided as a Source Data file.
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We observed SARS-CoV-2 specific T cells in 83 % (10 of 12) of the individuals in the high titer group

against at least one of the tested peptide pools, and only 10% (1 of 10) of the individuals in the low titer

group had detectable T cell reactivity against the S and N pools (Figure 4 F and G). Conversely, S and N-

specific T cells were readily detectable in hospitalized SARS-CoV-2 infected individuals or symptomatic

convalescent individuals (Suppl. Figure 3), while only 1 of 14 seronegative and 1 of the 16 pre-pandemic

controls also possessed presumably cross-reactive T cells18. Finally, while individuals with asymptomatic

infection harbored low T cell numbers, a non-significant inverse trend was observed between symptom and

T cell numbers, pointing to a potential role for T cells in disease attenuation (Supplemental Figure 3).

These findings demonstrate that SARS-CoV-2 specific T cells are not detectable in all infected individuals,

and are not selectively enhanced among individuals with less robust humoral immune responses. Instead,

the data suggest that both T and B cells evolve in a coordinated manner. A discrete titer cut off marked the

generation of persistent diverse functional humoral and cellular immune responses in a subset of SARS-

CoV-2 infected individuals that may collectively contribute to protection upon re-exposure.

1.4 Discussion

The recent SARS-CoV-2 pandemic has left parts of the world paralyzed. Our lack of understanding the

predictors of disease severity has overwhelmed our hospital systems. Waning antibody titers7,14 and new

cases of re-infection suggest that immunity may only be transient and incomplete4,20. However, for many

pathogens and vaccines, specific antibody levels or functions represent the critical protective threshold

of immunity21. While emerging data have begun to show that antibodies represent vital biomarkers that

capture infection rates more comprehensively than nucleic acid based testing13, the precise levels of anti-

bodies associated with protection from reinfection remain unclear. Probing the evolution of the humoral

immune responses in a community based serosurveillance study, here we observed that while the SARS-

CoV-2 specific humoral immune response is largely stable for several months, the presence of antibodies

does not automatically track with sustained functional cellular or humoral immunity to SARS-CoV-2 that

may be required for long-term protection against reinfection. Coupled to large reinfection serosurveillance

cohorts, able to also capture viral loads and inflammatory status, the precise cut-off of this titer may be
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Figure 1.4: A, B, The flower plots summarize titer and functional data against SARS‐CoV‐2 RBD, S or N antigen in high or low
titer group at maximum observed titers (A) and the following timepoint (B) (the petal color corresponds to features as indicated;
the univariate data are also shown in Fig. 3 and Supplementary Fig. 2). C–E Antibody‐dependent virus neutralization (C), ADCD
(D) or ADNP (E) by ELISA RBD titer. The black dotted line indicates the median split (0.45 μg/ml) and the red dashed line the
threshold titer for the individual functions. F, G The violin plots show the number of spots forming cells (SFC) of interferon‐
gamma (IFNγ) secreting T cells after overnight stimulation with either an overlapping peptide pool covering SARS‐CoV‐2 S (F) or
N (G) in individuals with low titers (light blue, n = 10), high titers (dark blue, n = 12) or negative controls (white, n = 14). Statistical
differences between two groups were assessed with a two‐sided non‐parametric Mann–Whitney test (in (F) *:p = 0.039, in (G)
*:p = 0.018). Source data are provided as a Source Data file.

51



ascertained and used to guide vaccine prioritization.

Antibody titers have been linked intimately to disease severity5, leading some to argue that antibodies

are less critical for disease control. However, emerging data point to the functional quality, rather than

the quantity of the humoral immune response, as a correlate of immunity22,23. For example, vaccine-

induced antibodies lacking the ability to recruit NK cells or monocytes fail to protect against malaria

challenge24. While previous studies have noted a robust correlation between RBD-specific antibodies and

neutralization17, not all antibodies against the RBD are neutralizing25. Furthermore, neutralization also

accrues with SARS-CoV-2 disease severity26. Thus, low titer antibodies emerging following asymptomatic

or mild disease may not necessarily possess the key footprints required to block viral infection. Likewise,

innate immune recruiting antibodies were also only observed at titers above 0.1 μg/ml (Figure 4), likely

due to the requirement of sufficient antibodies to form immune complexes that cluster Fc-receptors and

drive cellular activation27. Thus, a minimal titer may mark the evolution of a sufficiently broad neutraliza-

tion footprint and the generation of sufficient antibodies to recruit antibody effector function.

The immune decision to generate robust or weak humoral immune response may occur at the time of

the host-pathogen interaction, dependent on the level of viral challenge, or inflammatory cues. Low level

challenge may elicit only weak, poorly functional antibodies. Conversely, high-burden challenge may lead

to the generation of a potent and functionally robust humoral immune response, programmed to respond

aggressively upon re-encounter with the pathogen. The immune decision may also occur at the level of

host genetics or gender, where human leukocyte-antigens (HLA) alleles and sex have been clearly linked

with differential response to vaccination28,29. While we were underpowered to probe these differences,

and lacked qPCR viral load levels early in the pandemic, future large-scale re-infection studies will have the

potential to probe the demographic, inflammatory, and viral modulators of immunity to SARS-CoV-2,

beyond force of exposure or symptomatology.

The presence of cross-reactive T cell immunity across both pre-pandemic and otherwise healthy in-

dividuals have raised the possibility that antibodies raised against endemic common coronaviruses may

confer complementary or compensatory immunity in individuals that experience asymptomatic or mild

infection30. However, using a highly sensitive T cell expansion analysis, SARS-CoV-2 specific T cell re-

sponses were solely observed in individuals that elicited broad functional humoral immune responses.
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These data point to limited evidence for a compensatory T cell signature in asymptomatic/mild disease.

Conversely, given that robust T cell immune responses were observed in convalescent subjects with symp-

tomatic infection, these data suggest that T and B cell responses likely evolve synchronously, driven by

symptomatic infection (Suppl. Figure 3). However, whether additional tissue resident cells may exist and

persist in the respiratory tract of asymptomatic individuals that generate lower antibody responses remains

unclear.

Unlike natural asymptomatic/mild infection, SARS-CoV-2 vaccines appear to drive robust humoral im-

mune responses, nearly all eliciting neutralization at levels observed in symptomatic convalescents after two

rounds of immunization31-34 and some able to drive the co-evolution of Fc-effector function10, both linked

to protection from SARS-CoV-2 challenge20. The need for multiple rounds of immunization suggest that

more antigen or boosting may be required to push the immune system to generate functional immunity

that may be required for protection. Thus, vaccine boosting, unlike mild/asymptomatic natural infection,

is likely to result in the induction of broad robust protective immunity. Moreover, several vaccine plat-

forms also induce T cell immunity, which may not be necessary for vaccine induced sterilizing protection

but may cooperate with antibodies to drive control and clearance should infection occur. The data pre-

sented here point to a critical functional immunologic threshold – simply captured at the level of antibody

titers - that may exist in natural infection, that may guide surveillance efforts and provide insights for the

prioritization of vaccine campaign efforts to immunize those most vulnerable to re-infection.

1.5 Methods

1.5.1 Cohort

The parent cohort study was launched in mid-April 2020, providing an opportunity for industry em-

ployees to volunteer for COVID-19 testing and surveillance (Space Exploration Technologies Corp.). All

employees were invited to participate by email, there were no exclusion criteria. Following consent pro-

cedures, blood samples were collected approximately every 39.7 days (standard deviation 13.8 days) and
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participants completed a study survey at initiation of the study and thereafter, including the collection of

COVID-19 related symptoms. The median age of the seropositive population was 31 years (range 22 - 71

years) and 92% were males with an average BMI of 28.0 kg/m2 (range 18.5 – 42.4 kg/m2) resembling the

characteristics of the parent cohort (median age: 32 years, range: 18-71 years, 84.3 % male (3582/4245 in-

dividuals with reported gender) and BMI of 27.0 kg/m2 (range 15.7 – 60.9 kg/m2). The study protocol

was approved by the Western Institutional Review Board. The use of de-identified data and biological sam-

ples was approved by the Mass General Brigham Healthcare (previously Partners Healthcare) Institutional

Review Board.

1.5.2 Assays

RBD-IgG ELISA

Serological analyses were performed using an in-house enzyme-linked immunosorbent assay that de-

tects IgG against the receptor binding domain (RBD) of the SARS-CoV-2 spike glycoprotein (provided

by Aaron Schmidt) using a previously described method35. The assay was further evaluated in a blinded

proficiency study against several EUA approved ELISAs, demonstrating >99.5% specificity11,35. Briefly,

384-well plates were coated with 0.5ug/ml of RBD for 1h at 37°C in bi-carbonate buffer. The plates were

then washed and plasma samples were added at a 1:100 dilution in duplicate for 1h at 37°C, washed and

then detected with a secondary anti-IgG (Bethyl Laboratories). The secondary was washed away after 1h,

and the colorimetric detector was added (TMB; Thermo Fisher) for 5 mins, the reaction was stopped and

the absorbance was acquired at 450/570nm. In order to convert raw OD values into concentration (μg/ml)

a 12 two-fold dilution curve (starting at 625 ng/ml) of a SARS-CoV-2 RBD specific monoclonal IgG1

(clone: CR3022) was included onto every ELISA plate. The sample concentration was interpolated from

the resulting standard curve, as previously described35. A positive cutoff was equal to the mean of the OD-

converted μg/ml values of the negative control wells on the respective plate plus five times the standard

deviation of the concentration from negative plasma samples. The background-corrected concentrations

were divided by the cutoff to generate signal-to-cutoff (S/CO) ratios. Assay performance has been exter-

nally validated in a blinded fashion at 99.6% specific, and benchmarked against commercial EUA approved

assays11.
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Antigen biotinylation

For all antibody-based assays, SARS2-CoV2-nucleocapsid (N) (Aalto Bio Reagents Ltd) and SARS2-

CoV2-Spike (S) (provided by Eric Fisher) antigen were biotinylated using Sulfo-NHS LCLC biotin (Thermo

Fisher) and excessive biotin removed with ZebaSpin desalting columns (7KDa cut-off, Thermo Fisher).

IgG subclass, isotype and FcγR binding

SARS-CoV-2 specific antibody subclass and isotypes, and FcγR binding was analyzed using a custom

Luminex multiplexed assay36. SARS2-CoV2-RBD, SARS2-CoV2-N and SARS2-CoV2-S were coupled

to magnetic Luminex beads (Luminex Corp, TX, USA) by carbodiimide-NHS ester-coupling (Thermo

Fisher). Dilution curves were performed on pooled samples from the cohort to determine dilutions in the

linear range for each detection reagent. Coupled beads were then incubated with different plasma dilutions

(between 1:100 and 1:1,000 depending on the secondary reagent) for 2 hours at room temperature in 384

well plates (Greiner Bio-One, Germany). Unbound antibodies were washed away and IgG1, IgG3, IgM or

IgA1 were detected with their respective PE-conjugated antibody (all polyclonal, Southern Biotech, AL,

USA). For the FcγR3b binding, a PE-Streptavidin (Agilent Technologies, CA, USA) coupled recombinant

biotinylated human FcγR3b protein (Duke Protein Production Facility) was used as a secondary probe.

After 1 h incubation, excessive secondary reagent was washed away and the relative antibody concentration

per antigen determined on an IQue analyzer (IntelliCyt, NM, USA). Samples with signals 5-times the

standard deviation of the PBS-control well were considered as positive.

ADCD

Antibody-Dependent-Complement-Deposition was assessed as described previously37. In brief, bi-

otinylated antigens were coupled to fluorescent Neutravidin beads (Thermo Fisher). Plasma antibodies

were diluted 1:10 in 0.1% BSA and incubated with the coupled antigen beads for 2 h at 37°C. Beads were

washed and incubated with complement factors from guinea pig for 20 minutes at 37°C. The comple-

ment reaction was then stopped by washing with 15mM EDTA in PBS. C3 deposition on the beads was

detected with a FITC conjugated anti-guinea pig C3 antibody and relative C3 deposition was analyzed by

flow cytometry.

ADNP

Antibody-Dependent Neutrophil Phagocytosis was analyzed as described previously38. Briefly, biotiny-

55



lated antigens were coupled to Neutravidin beads and immune complexes were formed by incubating a

1:100 plasma dilution with the beads for 2h at 37°C in 96 well plates (Greiner Bio-One). Human neu-

trophils were isolated by ACK lysed blood from healthy donor whole blood and 2 x 105 cells were incu-

bated with the formed immune complexes. After 1h, cells were washed, and surface stained for CD66b

expression. Neutrophil phagocytosis was analyzed by flow cytometry and a phagocytosis score was calcu-

lated as the product of frequency of bead positive CD66b neutrophils and the mean fluorescence of the

bead positive cells (Suppl. Figure 4).

SARS-CoV2 antibody mediated virus neutralization

The ability of antibodies to neutralize virus was assessed on a 2019-nCoV pseudovirus neutralization

assay, as described previously 39. In brief, HEK293T cells were transfected with pcDNA3.1(-)-hACE2

(Addgene). 12 hours post transfection; the HEK293T/hACE2 cells were seeded in 96-well plates (2 x 104

cells/well) and incubated overnight. Heat (56°C, 30 min) inactivated plasma samples were serially diluted

and mixed with 50μl of pseudoviruses, incubated at 37°C for 1 hour and added to the HEK293T/hACE2

cells. Forty-eight hours after infection, cells were lysed in Steady-Glo Luciferase Assay detection (Promega).

A standard quantity of cell lysate was used in the luciferase assay with luciferase assay reagent (Promega)

according to the manufacturer’s protocol.

PBMC isolation and T cell expansion

PBMCs were isolated and frozen from EDTA blood within 24 hours after collection using Sepmate

tubes (Stemcell Technology). Before the ELISPOT assay, PBMC samples were thawed and cultured in

R10-50 media (RPMI media supplemented with 10% FCS, penicillin/streptavidin, 2mM L-Glutamine,

10mM HEPES buffer, and 50 U/ml IL-2) containing 0.1 μg/ml anti-human CD3 (clone: 12F6). Cells

were inspected daily and R10-50 (w/o anti-CD3) media was added/replaced as needed. After 8 days, R10-

50 media was replaced with R10 media (no IL-2 or anti-CD3) and cells were rested overnight.

ELISPOT

PVDV membrane plates (Millipore, MA, USA) were coated with anti-human IFNγ antibody (clone: 1-

DK1 , conc.: 2 μg/ml) overnight. Expanded and overnight rested PBMC samples (see above) were counted

and 3 x 105 PBMCs were added per well with S or N overlapping peptide pools (both Miltenyi, Germany)

at 1.25 μg/ml peptide, overnight. Medium alone was used as a negative control. Pools of 23 MHC-I re-
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stricted peptides from human Cytomegalovirus, Eppstein Barr virus and Influenza virus (CEF, Anaspec

Inc.) and 35 MHC-II restricted peptides from human Cytomegalovirus, Epstein Barr virus, Influenza

virus, Tetanus toxin and Adenovirus 5 (CEFTA, Mabtech Inc.) were used as positive controls. IFNγ se-

cretion was detected with a biotinylated anti-human IFNγ antibody (clone: 7 B6-1) and ALP conjugated-

Streptavidin. Spots were developed with 1-Step BCIP/NBT-plus reagent (Mabtech Inc.) for 20 minutes.

Membranes were dried and spots were analyzed and counted on a ImmunoSpot CTL analyzer. A response

was considered positive only if there were > 50 SFCs/106 PBMC after subtracting the value of the matched

negative control.

Statistics

Violin plots, bar graphs and x-y plots were generated in Graph Pad Prism V.8. Statistical differences

between two groups were calculated using a two-sided Mann Whitney test or Wilcoxon test for paired

comparisons. To compare multiple groups, a Kruskal-Wallis test was used with a Dunnett test correcting

for multiple comparisons in Graph Pad Prism V.8 (significance levels: *:p<0.05, **:p<0.01, ***:p<0.001,

****:p<=0.0001). Flower plots were visualized with the ggplot package (v.0.7) in R (v.4.0.1) and RStudio

(v.1.3) using Z-scored values.
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1.6 Supplement

Supplemental Figure 1. Antibody profiles broken up over time. (A) The dot plot shows RBD-specific

antibody titers at seroconversion and then at maximum observed immunogenicity for the cohort. (B) The

line plot shows the timing of antibody increase from last seronegative to first seropositive. (C) The line plot

shows the rates of antibody decline over several time points.

Supplemental Figure 2. SARS-CoV-2 specific antibody features in low high titer individuals at

maximum observed titers or following (P+1) timepoint. (A-B) S- and N-specific ADCD (A) or ADNP

(B). (C-G) RBD-, S- or N-specific IgG1 (C), IgG3 (D), IgM (E), IgA1 (F) titer, or FcγR3b binding (G).

Supplemental Figure 3. Robust SARS-CoV-2 specific T cell immune responses in acutely infected

and symptomatic convalescent subjects. A) and B) The violin plots show the N- and S-specific T cell
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Figure 1.5: Supplementary Figure 1. Antibody profiles broken up over time. (A) The dot plot shows RBD‐specific antibody titers
at seroconversion and then at maximum observed immunogenicity for the cohort (n =120, error bar represents the standard
deviation). (B) The line plot shows the timing of antibody increase from last seronegative to first seropositive (n=45). (C) The line
plot shows the rates of antibody decline over several time points (n=19). Source data are provided as a Source Data file.

immune responses across a group of acutely infected and symptomatic convalescent samples that were run

in parallel with the low and high titer asymptomatic/mildly-infected subjects. Pre-pandemic blood donors

served as healthy controls. C) and D) N- and S-specific T cell immune responses in Figure 2G+H were

stratified by reported symptoms (values for individuals with multiple symptoms are shown for each symp-

tom individually; LOS= loss of smell, LOT = loss of taste). No statistically significant difference was ob-

served. E) Spearman correlation of S and N pool specific T cells by number of reported symptoms. S and

N pool specific SFC/106 PBMCs were summed up for this analysis. Statistical differences across groups in

A-D were assessed with a non-parametric Kruskal-Wallis test followed by a post-hoc Dunn’s correction for

multiple testing. *p<0.05, **p<0.001, ns: not significant

Supplemental Figure 4. Gating strategy for Antibody Dependent Neutrophil Phagocytosis (ADNP).

The graphs show the gating strategy used to assess neutrophil phagocytic activity.
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Figure 1.6: Supplementary Figure 2. SARS‐CoV‐2 specific antibody features in low high titer individuals at maximum observed
titers or following (P+1) timepoint. (A‐B) S‐ and Nspecific ADCD (A) or ADNP (B) (max: nlow=60, nhigh=60; P+1: (nlow=16,
nhigh=15). (C‐G) RBD‐, S‐ or N‐specific IgG1 (C), IgG3 (D), IgM (E), IgA1 (F) titer, or FcγR3b binding (G) (max: nlow=26,
nhigh=15; P+1: (nlow=11, nhigh=7). Source data are provided as a Source Data file.
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Figure 1.7: Supplementary Figure 3. Robust SARS‐CoV‐2 specific T cell immune responses in acutely infected and symptomatic
convalescent subjects. A) and B) The violin plots show spot forming cells (SFC) of interferon‐gamma (IFNγ) secreting T cells after
the stimulation with N or S peptide pools across a group of acutely infected (n=7) and symptomatic convalescent (n=21) sam‐
ples that were run in parallel with the low and high titer asymptomatic/mildlyinfected subjects (Figure 4). Pre‐pandemic blood
donors served as healthy controls (n=16). C) and D) N‐ and S‐specific T cell immune responses in Figure 4F+G were stratified by
reported symptoms (values for individuals with multiple symptoms are shown for each symptom individually; LOS= loss of smell,
LOT = loss of taste). No statistically significant difference was observed n0=8, n1=2, n2=5, n3=3, n4=1, n5=2). E) Spearman cor‐
relation of S and N pool specific T cells by number of reported symptoms. S and N pool specific SFC/106 PBMCs were summed
up for this analysis. Statistical differences across groups in A‐D were assessed with a nonparametric Kruskal‐Wallis test followed
by a post‐hoc Dunn’s correction for multiple testing: in A) *:p=0.038 , **:p=0.002; in B) *:p=0.036; ns: not significant. Source
data are provided as a Source Data file
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Figure 1.8: Supplementary Figure 4. Gating strategy for Antibody Dependent Neutrophil Phagocytosis (ADNP). The graphs
show the gating strategy used to assess neutrophil phagocytic activity presented in Figure 3B+C, Figure 4E and Suppl. Figure
2B.
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2
Serological markers of SARS-CoV-2

reinfection

Preface
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2.1 Abstract

As public health and social distancing guidelines loosen in the setting of waning global natural and vac-

cine immunity, a deeper understanding of the immunological response to re-exposure and reinfection to

this highly contagious pathogen is necessary to maintain public health. Viral sequencing analysis provides

a robust but unrealistic means to monitor reinfection globally. The identification of scalable pathogen-

specific biomarkers of re-exposure and reinfection, however, could significantly accelerate our capacity to

monitor the spread of the virus through naïve and experienced hosts, providing key insights into mecha-

nisms of disease attenuation. Using a non-human primate model of controlled SARS-CoV-2 re-exposure,

we deeply probed the humoral immune response following rechallenge with varying doses of viral inocula.

We identified virus-specific humoral biomarkers of reinfection, with significant increases in antibody titer

and function upon rechallenge across a range of humoral features, including IgG1 to the receptor binding

domain of the Spike protein of SARS-CoV-2 (RBD), IgG3 to the Nucleocapsid protein (N), and FcγR2A

receptor binding to anti-RBD antibodies. These features not only differentiated primary infection from

re-exposure and re-infection in monkeys, but were also recapitulated in a sequencing-confirmed reinfec-

tion patient and in a cohort of putatively re-infected humans that evolved a PCR-positive test in spite of

pre-existing seropositivity. As such, this cross-species analysis using a controlled primate model and human
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cohorts reveals increases in antibody titers as promising cross-validated serological markers of reinfection

and re-exposure.

Keywords: SARS-CoV-2, reinfection, antibodies, humoral immunity, diagnostics, biomarkers

Importance

As public health guidelines throughout the world have relaxed in response to vaccination campaigns

against SARS-CoV-2, it is likely that SARS-CoV-2 will remain endemic, fueled by the rise of more in-

fectious SARS-CoV-2 variants. Moreover, in the setting of waning natural and vaccine immunity, re-

infections have emerged across the globe, even amongst previously infected and vaccinated individuals.

As such, the ability to detect re-exposure to and reinfection by SARS-CoV-2 is a key component for global

protection against this virus, and more importantly against the potential emergence of vaccine escape mu-

tations. Accordingly, there is a strong and continued need for the development and deployment of simple

methods to detect emerging hotspots of reinfection to inform targeted pandemic response and contain-

ment, including targeted and specific deployment of vaccine booster campaigns. In this study, we iden-

tify simple, rapid immune biomarkers of reinfection in rhesus macaques --including IgG3 antibody levels

against Nucleocapsid and FcγR2A receptor binding activity of anti-RBD antibodies-- that are recapitu-

lated in human re-infection cases. As such, this cross-species analysis underscores the potential utility of

simple antibody titers and function as price-effective and scalable markers of reinfection to provide in-

creased resolution and resilience against new outbreaks.

2.2 Introduction

In the setting of waning natural and vaccine induced immunity, SARS-CoV-2 re-infections are on the rise

across the globe [1,2,3,4]. These new waves of infections have been accompanied by accumulating reports

of viral evolution and the selection of more infectious variants. Typically, reinfections have been docu-

mented by the identification of distinct viral genomic sequences in nasopharyngeal swabs collected at pri-

mary and secondary infection to differentiate authentic reinfection from transient nucleic acid positivity or

persistent viral shedding. However, in the setting of declining antibody titers, reinfection has been noted

even with matched strains, offering the virus an opportunity to begin to evolve around immunity. Thus,
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determining the immunologic markers of authentic SARS-CoV-2 reinfection, with both novel and recir-

culating strains, as well as the immunologic mechanism(s) associated with disease attenuation is necessary

for informed public health decisions regarding social distancing, societal reopening, vaccine development,

and vaccine deployment.

Due to the transient nature of immunological memory to many human coronaviruses, the risks of re-

infection are considerable [6]. Given the unpredictable nature of SARS-CoV-2 disease severity and our

emerging appreciation of secondary organ complications [7], there is an urgent need to define correlates

of attenuated disease against SARS-CoV-2. While great effort is currently being invested into defining

correlates of immunity in animal models [8], efforts to define natural correlates of infection in humans,

linked to reduced severity following reinfection, may profoundly accelerate the identification of immune

mechanisms involved in limiting viral replication and disease and may aid in the identification of immuno-

logic gaps in response that may permit breakthrough infections to occur. These findings have implications

for both rational vaccine design and vaccine deployment in large populations, particularly in the wake of

emerging variants of concern.

The number of reinfections globally has likely been vastly underestimated, partly due to the fact that

confirmation of reinfection requires identification of distinct SARS-CoV-2 strains at primary and sec-

ondary infection via viral genome sequencing. While this method is a gold standard for minimizing false

positives in identifying reinfection cases, viral sequencing is technically challenging at a large scale, cannot

identify cases of reinfection with the same viral strain, and provides limited insights into the immunolog-

ical mechanism of anti-viral control or the need to boost to prevent the spread and potential evolution of

novel vaccine-escape mutations. In addition, implementation relies on sequencing capabilities not available

in many areas. In the setting of these challenges, the true frequency of reinfection remains unclear. On the

other hand, SARS-CoV-2 reinfection models based on historical data from seasonal coronavirus infections,

recent direct evidence of declining antibody responses, and increased transmissibility of recent variant of

concerns, suggest the possibility of continued increases in rates of reinfection despite acquired immunity

[9,10,11,12]. As such, a tool to provide better resolution to the demographics of reinfection may signif-

icantly inform future health policy, including testing or focused vaccine boosting campaigns. Thus, our

ability to monitor and control both infection and reinfection hinges on the development of simple, im-
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munologically sound screening strategies capable of reliably monitoring reinfection with both novel and

recirculating strains.

Rise in pathogen-specific antibody titers has been used as a biomarker of response to therapy or infec-

tion [13]. Given the ease and specificity of antibody diagnostics, here we deeply profiled the changes in the

humoral immune response in a tightly controlled non-human primate study (NHP), where animals were

infected and challenged with different innocula, allowing the identification of challenge-dose independent

biomarkers of re-exposure to SARS-CoV-2. Strikingly, the same immunologic signatures were validated

in an individual with sequencing-confirmed reinfection, and in an independent cohort of putatively re-

infected humans, drawn from a large community based sero-surveillance study, that were serologically-

positive with a subsequent PCR-positive test. Here we identify a minimal set of SARS-CoV-2 specific

markers of reinfection with robust discriminatory cross-validating power across both primates and hu-

mans. Thus, simple serological analytes may support the identification of SARS-CoV-2 reinfections at a

global level.

2.3 Results

2.3.1 Rhesus macaque SARS-CoV-2 reinfection is associated with robust antibody

boosting

Mounting evidence points to the utility of SARS-CoV-2 infection in rhesus macaques as an informative

model for human infection, with an observable spectrum of clinical disease severity following infection

accompanied by striking pathological similarities to those observed in humans deep within the lungs [14].

In a previous study to define whether primary SARS-CoV-2 challenge confers protection upon rechal-

lenge, 9 adult rhesus macaques were challenged and rechallenged with SARS-CoV-2 [15]. Macaques were

challenged with 1.1x106 plaque-forming units (PFU) (high dose, N=3), 1.1x105 PFU (medium dose,

N=3), and 1.1x104 PFU (low dose, N=3) administered intranasally and intratracheally. At week 5, the

same dosages were used for rechallenge as the initial week 0 challenge (Figure 1A). Importantly, while an-

imals exhibited some viral replication in nasal swabs, they exhibited marginal viral replication in the lungs

and little to no lung pathology following rechallenge, suggesting that primary infection may elicit protec-
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tive immunity for at least 1 month. However, critically, rechallenge was performed with the same strain

of SARS-CoV-2, and as such, although viral replication was detectable in the nasal tract, viral sequencing

would not in this case have been able to define reinfection. Using this highly controlled study, we aimed

to determine whether virus-specific immunological biomarkers could be defined to profile the response to

rechallenge.

While the previous study noted the induction of humoral immunity across all animals five weeks after

primary infection [15], here we comprehensively profiled the humoral immune response before and af-

ter both primary challenge and rechallenge. Low, but positive IgG responses were observed in all animals

following primary infection (week 5) (Figure 1B). However, following reinfection, a dose-dependent in-

crease in SARS-Cov-2-specific IgG was observed (week 7) (Figure 1C), with significantly higher responses

in the medium- and high- dose rechallenge groups than in the low-dose rechallenge group. IgM responses

increased as expected at the primary response and remained largely stable or slightly increased at rechal-

lenge (Figure 1B and C). Conversely, Fc-receptor binding activity of SARS-Cov-2-specific antibodies

increased significantly after primary infection and also increased significantly across all animal groups

following rechallenge (Figure 1B and C). Notably, the increase in Fc-receptor was more pronounced at

rechallenge (Figure 1C), even in the low dose challenge, suggesting that qualitative changes in the inflam-

matory profile of SARS-CoV-2-specific IgG may represent a highly sensitive biomarker of viral re-exposure

to the virus.

To examine the trajectory of the overall humoral immune response in an unbiased manner, the multi-

variate trajectory of the humoral immune response was profiled across all animals. Interestingly, despite

differences in the magnitude of the response across different dosage groups, similar trajectories were ob-

served across all animals (Figure 1D). Notably, all animals exhibited increases in both principal component

1 and principal component 2 (PC2), together marking primary infection increases in acute IgG3, IgG1,

Fcγ-receptor, and functional humoral immunity (Figure 1E and Supplemental 1A), although these

changes during primary infection were more attenuated than those observed at re-challenge (Figure 1D

and E). Upon reinfection, a burst of functional and humoral immunity was observed across all animals,

including subclass, isotype, and Fc-receptor binding antibodies, including notable bursts in IgG1 titers

to SARS-CoV-2 broadly across nucleocapsid (N) and spike (S) (Figure 1E). More variable but consistent
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Figure 2.1: Figure 1: Immune response to primary infection and re‐exposure in rhesus macaques.
(A) Pictogram of rhesus macaque study design. Nine rhesus macaques were challenged on week 0 and week 5, with sample
collections on week 0 (prior to first challenge), week 2, week 5 (prior to rechallenge), week 6, and week 7.
(B) IgG1, IgM, and FcR3A titers to RBD antigen as a function of week, categorized by challenge and rechallenge titer (beige:
1.1e4 PFU, mauve: 1.1e5 PFU, purple: 1.1e6 PFU).
(C) IgG1, IgM, and FcR3A titers to RBD antigen in weeks 5 (primary infection) and week 6 (reinfection). A two‐sided Mann‐
Whitney U test was used to calculate p values comparing response in the low challenge groups versus that in the medium and
high challenge group. After multiple hypothesis correction, no significant differences were found.
(D) Principal component analysis (PCA) plot of monkey trajectories, with week indicated by color and challenge group indicated
by arrow color [beige arrows – low challenge, mauve arrows– medium challenge, indigo arrows – high challenge]. We note that
the color gradient from light to dark reflects the timeline, with sera samples at week 0 marked by light blue and samples at week
7 marked by dark blue.
(E) Principal component analysis loading heatmap in rhesus macaques, with 77.7% and 6.1% of variance explained by PC1 and
PC2. Feature loadings represented by color from dark blue (loading = ‐1) to dark red (loading = +1), with features not collected
for analysis colored in dark grey. 73



increases were also observed for spike receptor binding domain (RBD) and the S1-domain of spike, with

FcγR2A-3 and FcγR3A binding to RBD, S, and S1 exhibiting the largest mean functional increase (Figure

2A and Supplemental 1A), highlighting particular specificities and FcR profiles as the best discrimina-

tors/indicators of rechallenge. These data point to significant changes in antibody boosting following

reinfection, suggesting a potential utility of serological-boosting as an antigen-specific biomarker of reinfec-

tion.

2.3.2 Defining minimal markers of reinfection in the rhesus macaque model of SARS-

CoV-2 infection

To further track the kinetics of humoral evolution across the individual features, we compared the humoral

immune response across the S, RBD, S1, S2-domain of spike, and N (Figure 2A). A striking evolution

of S, RBD, S2, and N-specific immunity was observed across all animals, most dramatically in IgG1 titer

to Spike, RBD, and Nucleocapsid, and FcγR2A receptor binding to S1, Spike, and RBD, with mean in-

creases of 31.3-fold and 7.6-fold, respectively, upon reinfection (Figure 2B, Supplemental 3A). Notably,

increased functional activity in parallel to the robust induction of Fc-receptor binding antibodies was also

observed, with average increases of 2.1-fold, 1.7-fold, and 2.6-fold upon rechallenge in antibody-dependent

cellular phagocytosis (ADCP), antibody-dependent complement deposition (ADCD), and antibody-

dependent neutrophil phagocytosis (ADNP).

Due to the consistencies in PCA trajectories and notable changes in titer upon re-exposure, we hypoth-

esized that certain immune features or trends could be used to identify reinfection or re-exposure in pri-

mates. First, we identified simple binary thresholds which could be used to identify individual samples as

primary infection or as re-exposure. We observed that levels of FcγR2A-1, Fcγ2A-2, and Fcγ2A-3 binding

antibodies to S2 and IgG1, IgG2, IgG3, and IgG4 to S2 served as strong binary thresholds to identify indi-

vidual samples, with true positive rates of 1.0 and 1.0, false positive rates of 0.11 and 0.17, f1 scores of 0.95

and 0.92, and classification accuracies of 94% and 91% in the FcR and IgG classifiers, respectively (Figure

2C and Supplementary Table S1). Binary thresholds to many other features also performed well, with

more than half of all features, including all anti-RBD IgG titers and all anti-RBD FcR binding titers, per-

forming with f1 score > 0.85 and classification accuracy > 86%. However, we noted that IgM antibodies
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Figure 2.2:
(A) Heatmap of collected Luminex and functional features across weeks 0, 2, 5, and 6. *indicates differential expression between
week 5 and week 6 with a false discovery rate of 5%.
(B) Per‐sample change in relative titer of the 25 features with maximal relative change in macaques between primary infection
(week 5) and reinfection (week 6).
(C‐D) F1 scores of all sample binary threshold classifiers (C) and relative change‐based binary classifiers (D) in rhesus macaques,
with labels colored by antigen.
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were consistently the worst set of predictors, with an average f1 score of 0.63 and an average classification

accuracy of 59% among the different targeted antigens.

While the performance of most of these thresholds is promising, models accounting for immune profile

changes across timepoints may confer an additional degree of robustness to varying immune responses,

specifically as noted across varying inoculum sizes (Figure 1A). As such, we created simple univariate clas-

sifiers to determine if the difference in macaque immune response between any two collected timepoints

was associated with reinfection or simply reflected a continued response to initial exposure (Figure 2D,

Supplementary Table S2). Interestingly, while a majority of features performed very well (f1 score >0.90,

classification accuracy >88%), the 8 best features were all Fc-receptor binding quantities, performing with

f1 scores above 0.94 and classification accuracy >92%. Amongst antibody titer-based predictors, IgGs to

Spike, IgA to S1 and S2, and IgG1, IgG2, IgG3, and IgG4 to RBD served as the best predictors, with each

predictor correctly differentiating 92% of all pairs of responses (f1 score = 0.94) as re-exposure or continued

response with thresholds of 3.3, 1.4, 1.6, and 1.6 for changes in anti-RBD IgG1, IgG2, IgG3, and IgG4

titer, respectively. While classifiers using Nucleocapsid responses were slightly less effective, their thresh-

olds (1.2 for IgG1, 1.1 for IgG2, 1.7 for IgG3, 1.2 for IgG4) were similar to the 1.4 ratio for IgG-N used by

Edridge et al. for detection of reinfection by other coronaviruses [16]. Collectively, these data demonstrate

a clear and predictable increase in the expression of a broad range of humoral features upon reinfection in

rhesus macaques, suggesting a potential biomarker-based approach to identifying reinfection in humans.

2.3.3 Antibody profiles following reinfection in humans

Like primates, which were recolonized in the upper respiratory tract by the same viral strain (Figure 1), the

rise of re-infections globally clearly highlights the susceptibility in humans to emerging variants [12,17,18,19].

In the setting of waning immunity and emergence of new variants, reinfections are on a dramatic rise glob-

ally [11,17,18,20]. To begin to examine whether reinfection in humans is also associated with specific

humoral changes, we performed humoral immune profiling of longitudinal serum samples from 3 indi-

viduals with suspected reinfection based on recurrent PCR positivity with recurrent symptoms, greater

than 45 days from initial date of positive PCR, per CDC investigative guidance [21]. Concurrent viral

sequencing from nasopharyngeal swabs at the time of initial symptom onset and subsequent symptom
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Figure 2.3:
(A) Maximal likelihood phylogenetic tree with 500 global sequences randomly sampled from GISAID, with patient viral lineage
B.1.2 and B.1.429 demarcated with red nodes.
(B) Heatmap of collected Luminex and functional features across the respective timepoints in the patient, corresponding to 34,
70, 126, 159, and 208 days after onset of symptoms during primary infection. Of note, reinfection was identified and confirmed
with sequencing between timepoints 2 and 3.

onset with repeat PCR positivity identified one individual with sequence-confirmed SARS-CoV-2 rein-

fection by a distinct viral lineage. Virus sampled at the time of initial infection belonged to B.1.2 lineage,

the current dominant lineage in the United States for some time. The second virus, collected 85 days af-

ter initial swab, belonged to B.1.429, one of the initial lineages of concern originally found in California

(Figure 3A). Longitudinal biophysical antibody profiling demonstrated increased titers of all antibody

titers previously tested except IgM to Nucleocapsid, recapitulating the observed patterns of reinfection in

the rhesus macaques (Figure 3B). Notably, the largest increases in titer in this patient were of IgG4 against

Nucleocapsid, Spike, and S1, with increases of 8.56, 8.46, and 7.30- fold, respectively, and of IgG3 against

Nucleocapsid, which increased by a factor of 6.16.

To further characterize transmission and infection of SARS-CoV-2 outside of hospital settings, a community-

based sero-surveillance cohort was established at Space Exploration Technologies Corp. (SpaceX) as previ-

ously described [22]. As a part of this program, regular antibody and PCR-based follow-up was conducted
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on a cohort of 4469 volunteers since May 2020, with 2130 volunteers participating in serum collection at

least twice, with a mean time of approximately 39 days between sample collections. This led to the identi-

fication of 324 seropositive individuals by November 2020 (Figure 4A). However, 9 individuals that were

persistently seropositive became PCR+ 15 to 55 days (mean 39 days) following a seropositive test result.

While viral sequencing was not available within this study, we aimed to examine whether this renewed

PCR+ result was evidence of potential reinfection.

In the absence of the viral sequence, we aimed to determine whether similar increases in antibodies,

compared to the animal model, were observed in these 9 individuals, marking potential re-exposure. Anti-

body titers increased in eight out of nine individuals after the positive PCR-test with a mean change of 3.0-

fold increase in titer (Figure 4B), indicating an antibody boost in humans similar to observations in pri-

mates (Figure 1). To assess whether these 9 PCR-positive samples were cases of authentic reinfection/re-

exposure, comprehensive antibody profiling was performed. As observed in the primates, antibody re-

sponses were low early in the study, although all individuals were antibody positive per our highly specific

RBD-specific antibody ELISA [23]. Importantly, in a general cohort of 31 seropositive individuals who re-

mained PCR-negative over the study period, and thus were not suspected to be reinfected, we noted more

limited changes in ELISA titer and distinct differences in patterns of antibody profile in the general cohort

as compared to the reinfection cohort (Supplemental Figure 4).

As observed in macaques, antibody titers for most features increased upon reinfection, with different

amounts of change observed across individuals (Figure 4C). A significant increase in antibody levels was

noted across antibodies and functions to N, S1, S2, S, and RBD, but a more limited increase to IgG titers

in NTD was observed across the cohort (Figure 4E). Notably, while titers of IgM to N decreased upon

reinfection in most individuals with a mean change of -11%, levels of IgM to NTD, RBD, S2, S, and S1

rose in most individuals by mean fold changes of 2.2-, 5.1-, 5.6-, 12.8-, and 13.8-fold.

Interestingly, as seen in macaques, multivariate profiles highlighted the same directional increase in an-

tibody quality across principal component 1 (PC1) in all of the potentially reinfected individuals (Figure

4D, Supplemental Figure 1B); these changes included increases in titer and function selectively upon

reinfection (Supplemental Figures 2B, 3B), again supporting the identification of predictors to identify

reinfection based on antibody profile. When testing humoral features as predictors on a combined cohort
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Figure 2.4:
Cases identified through a community‐based surveillance survey with R0 defined as the serum sample associated most closely
to time of putative reinfection, R‐1, R‐2, R‐3 defined as the first, second, and third serum samples preceding reinfection, and
R1 defined as the serum sample immediately after R0; for each subject, the earliest included timepoint is the first recorded
seropositive sample.
(A) Pictogram of community‐based serological surveillance.
(B) ELISA titers to IgG RBD in each PCR‐confirmed subject collected at different timepoints between May 12, 2020 and Au‐
gust 19, 2020, with timepoints of first recorded seropositivity and observed reinfection denoted by purple and gold markers,
respectively.
(C) IgG1, Ig2, IgG3, IgG4, IgGA1, IgM, FcR2A, FcR3A, and FcR2B, titers to RBD antigen as a function of collected timepoint in
each subject.
(D) Principal component analysis (PCA) plot of human trajectories, with trajectories of different subjects indicated with
differently‐colored arrows. We note that the color gradient of markers from light blue to dark blue reflects the timeline, with
sera samples at R‐2 marked by light blue and samples at R1 marked by dark blue
(E) Heatmap of collected Luminex and functional features across the respective timepoints in each subject. *indicates differential
expression between week R‐1 and R0 with a false discovery rate of 5%.
(F) Confusion matrix of two‐feature logistic regression models trained and tested in humans and [left] trained in rhesus
macaques and tested in humans [right].
(G) F1 scores of all relative change‐based binary predictors trained and tested in humans, with labels colored by antigen.
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of the 9 putative reinfection subjects and of the 31 seropositive, non-reinfection-identified subjects, we

found that simple binary thresholds of univariate features were not sufficient to produce robust predictors

of reinfection, perhaps due to varied immune responses and inoculum in the individuals. However, several

models comparing the relative difference of titer between subsequent samples were effective, with 24 out

of 60 features performing with f1 scores ≥ 0.80 and classification accuracies above 89% (Figure 4G, Sup-

plemental Table 3). Interestingly, IgG1 and IgG3 antibodies to RBD, S, S1, and S2, and N were the most

effective antibody predictors, all with f1 scores > 0.83 and classification accuracies > 90%, whereas 9 out

of 10 NTD-based features were amongst the 20 worst predictors, performing with a mean with f-score of

0.49 and a mean classification accuracy of 60%.

We next generated multivariate models by training logistic regression models to predict reinfection given

the relative difference in titer across two timepoints of any two features. As before, we observed a variety

of effective models: out of the 50 top models chosen post-cross validation (comparing 780 total models

trained), 49 performed with f1 scores ≥ 0.80 and classification accuracies ≥ 92%, with 39 models including

IgG3 antibody titer against Nucleocapsid (Supplemental Table 4). The top 14 models performed equally,

with identical confusion matrices, f1 scores = 0.91 and classification accuracies = 96% (Figure 4F).

To examine the human putative reinfection findings based on the controlled monkey reinfection data,

we trained logistic regression models on primate data and tested these against our human cohort. Specifi-

cally, we trained two-feature models on the relative change in titer between timepoints in rhesus macaques,

performed cross validation on these models using our human data, and tested the top 50 resulting mod-

els in a hold-out test set in humans. Interestingly, out of these 50 final models, 43 models included one

immunoglobulin titer feature and one Fcγ-binding titer feature, 39 models included Fcγ-2A binding to

Spike RBD, and 22 models included an IgG3 antibody (Supplemental Table 5). As in the human-trained

models, the top monkey-trained models performed equally with the top 46 models having identical con-

fusion matrices, f1 scores = 0.85 and classification accuracies = 92% (Figure 4F), demonstrating the direct

applicability of the primate reinfection signatures on suspected human reinfections.

Collectively, using a highly controlled NHP model of reinfection coupled to a large sero-surveillance

study in industry workers, we demonstrate a specific set of SARS-CoV-2-specific humoral features, in-

cluding Spike RBD-specific IgG1 titers, Nucleocapsid-specific IgG3 titers, and anti-Spike RBD FcγR2A
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binding activity as robust biomarkers of reinfection that translate across species. Notably, while models

created using these features perform well to predict reinfection when tested in the same species, the models

also perform well to predict reinfection in humans even when trained on patterns of reinfection in NHP,

pointing to the highly conserved nature of these humoral changes upon re-exposure to virus. Crucially,

these patterns of immune boosting were also observed in a sequencing-confirmed case of reinfection in a

human patient. Thus, when reinfection cannot be confirmed by viral sequence, due to limited access to the

technology or due to limited variation of circulating strains within a geographic region, changes in SARS-

CoV-2 humoral immune responses may offer cheap, reliable, and effective measures to track reinfection

with SARS-CoV-2.

2.4 Discussion

Concerns over the durability of the immune response to SARS-CoV-2 have emerged in tandem with

emerging viral variants [18,20,24] and cases of reinfection [3,10,18,20,24]. For other common coron-

aviruses, immunologic memory appears to be transient, with rapidly declining antibody titers over just a

few months [25,26]. Moreover, significant heterogeneity has been noted in antibody levels across conva-

lescent populations [27], with highest levels of antibodies noted in cases of greatest disease severity [28],

pointing to the possibility that not all convalescents may be equally protected following the resolution of

infection. Whether differences in antibody levels or waning immunity renders individuals vulnerable to

reinfection remains unclear, but the development of simple biomarkers able to identify re-exposure or rein-

fection could dramatically improve our ability to identify susceptible individuals and to adjust our public

health response accordingly.

In the absence of reinfection with a novel SARS-CoV-2 strain, sequence-based diagnosis of reinfection

will be difficult. However, with waning vaccine immunity [29,30], variants such as the Delta variant may

continue to cause new cycles of reinfections across the globe, providing fertile ground for sub-variants

to emerge. Because PCR testing is not available globally and lower-sensitivity antigen-testing may miss

cases of reinfection, the development of tools able to rapidly identify clusters of reinfections may guide the

identification of novel variants caused by viruses able to circumvent vaccine-induced immunity. The need
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to contain these vaccine-escape variants is critical.

Because of the strikingly heterogeneous levels of antibodies that evolve following infection, longitudinal

observations of fold increases in antibody titers have shown limited promise in the identification of poten-

tial reinfections, as serial serum samples are often not available. Thus, defining the immunologic signatures

of reinfection provides an ancillary axis, that, in addition to more expensive viral genetic sequencing, pro-

vides a simple approach to prospectively surveil for the presence of reinfection in a community. From a

public health perspective, the use of humoral biomarkers offers advantages of scalability, and, unlike viral

sequencing, is not limited in cases of reinfection with the same viral strain. Ultimately, owing to inevitable

variability in appropriate sample and resource availability, adoption of a multipronged approach using a

mix of clinical data, viral sequencing, and humoral signatures of reinfection will strengthen our ability to

identify reinfections rapidly, with the potential to identify hotspots of reinfection associated with new and

emerging variants of concern. Moreover, it is plausible that while we are unable to define a precise window

of time when a serologic approach can effectively identify reinfection, more frequent sampling in the fu-

ture may define precise FcR binding:IgG level ratios that may even point to timing of reinfection. Thus,

further studies on the kinetics of these immunologic signatures of reinfection will be helpful to further

refine and expand the utility of these markers for maximal public health impact.

While limited re-infections were observed early in the pandemic [9,31], reinfections are on the rise in

the setting of variants of concern [11,17], and waning immunity [29,30,32,33], resulting in waves of viral

evolution in both previously naturally immune and vaccinated populations [3,34,35,36]. Reinfections

have been linked to a wide range of symptom profiles, ranging from asymptomatic infection to severe

disease/hospitalization [3,19,27]. Thus, here we aimed to use this robust and highly controlled animal

challenge model, capturing even mild cases of reinfection. The use of this animal model coupled to a large

sero-surveillance study allowed us to determine whether non-sequence-based biomarkers may exist that

can detect re-exposure/reinfection. We observed a clear rise in SARS-CoV-2 antibodies across all rechal-

lenged animals with a dose dependent rise in titers, most significantly of IgG1s and of Fc-receptor binding.

Moreover, human data from 9 sero-positive individuals that developed a PCR-positive test largely mirrored

primate antibody changes, highlighting the conservation of antibody biomarkers of reinfection across

species.
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Our data showed that models using IgG differences alone performed comparably to models using an-

tibody binding differences to Fc-receptors in both primates and humans. However, the increases in Fc-

receptor binding activity following reinfection were found to be generally larger in magnitude in humans,

and were less challenge dose-dependent in macaques, compared to IgG titers, pointing to the utility of

these qualitative changes on antigen-specific antibodies as more sensitive biomarkers of re-exposure. This

disconnect between titers and Fc-receptor binding relates to the difference in quantity and quality of an-

tibodies that are induced following infection and rechallenge, where the inflammatory state of an anti-

body often increases disproportionately to the titer under inflammatory conditions. This reinforces the

paradigm that, soon after rechallenge, copious amounts of antibodies, with enhanced functions, are gener-

ated to rapidly clear pathogens [37,38]. This early production of more functional antibodies is generated

by large numbers of expanding plasmablasts, our body’s antibody factories, poised to respond within days

of infection and drive a rapid rise of protective antibodies. Recent data suggest that the detection of highly

functional antigen-specific antibodies can predict autoimmune flares [39], predict tumor relapse [40], and

infectious disease progression [41]. Likewise, the inclusion of metrics that can pick up both quantitative

and qualitative alterations in SARS-CoV-2 antibodies may provide a more sensitive, holistic, and perhaps

earlier marker, of SARS-CoV-2 reinfection.

As evidence of waning immunity accumulates and the number of breakthrough infections and reinfec-

tions continue to accrue globally in highly vaccinated and immune populations [10,11,17], the need for

boosting in specific populations has become evident. However, in the absence of a threshold of antibodies

that predict protection, the need to monitor for reinfection is likely to be key to guiding future boosting

timelines and to identify clusters of vaccine-breakthrough infections to prevent evolution of the virus to

evade vaccine induced immunity. As such, the ability to detect both symptomatic and asymptomatic rein-

fections, even with genetically matched strains is likely to be key to identify clusters of reinfections, provid-

ing information on specific vulnerable populations, as well as an opportunity to prevent evolution around

immunity. An increased emphasis on serology-based diagnostics can help address this problem, providing

tools to rapidly monitor the spread and trajectory of the epidemic across large populations of individuals

potentially re-exposed to re-circulating strains. As re-infection complicates the trajectory of this pandemic,

a shift in diagnostic practices implemented in conjunction with the findings of this study can offer criti-
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cal insights both into defining immunological hallmarks of reinfection caused by this unpredictable and

highly infectious virus and into reducing its further spread by identifying areas for targeted pandemic re-

sponse, characterized by high rates of reinfection.

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled

by the Lead Contact, Galit Alter (galter@mgh.harvard.edu) and Douglas Lauffenburger (lauffen@mit.edu)

2.5 Materials and Methods

Material Availability

This study did not generate new unique reagents.

2.5.1 Luminex Isotype and FcR Binding Assay

To determine relative concentrations of antigen-specific antibody isotypes and Fc receptor binding activity,

a Luminex isotype assay was performed [42]. Antigens (SARS-CoV-2 spike, RBD, N, S1, and S2) (note

antigen sources) were covalently coupled to different Luminex microplex carboxylated bead regions (Lu-

minex Corporation) using NHS-ester linkages by utilizing EDC and NHS (Thermo Scientific) according

to manufacturer recommendations. Immune complexes were formed by incubating antigen-coupled beads

with diluted samples. Mouse-anti-rhesus antibody detectors were then added for each antibody isotype

(IgG1, IgG2, IgG3, IgG4, IgA, NIH Nonhuman Primate Reagent Resource supported by AI126683 and

OD010976). Tertiary anti-mouse-IgG detector antibodies conjugated to PE were then added. FcR bind-

ing was quantified similarly by using recombinant NHP FcRs (FcγR2A-1, FcγR2A-2, FcγR3A, courtesy

of Duke Protein Production Facility) conjugated to PE as secondary detectors. Flow cytometry was per-

formed using a 3-laser BD LSR II Flow Cytometer. Analysis of the flow cytometry data was performed

using FlowJo software.
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2.5.2 Systems serology

To quantify antibody functionality of plasma samples, bead-based assays were used to measure antibody-

dependent cellular phagocytosis (ADCP), antibody-dependent neutrophil phagocytosis (ADNP) and

antibody-dependent complement deposition (ADCD), as previously described [43]. Protein antigens

included prefusion stabilized spike ectodomain (S; courtesy of Bing Chen, Children’s Hospital and Mass-

CPR), SARS-CoV2 receptor binding domain (RBD; courtesy of Aaron Schmidt, Ragon Institute and

MassCPR), and nucleocapsid (N; Aalto Bio Reagents). Biotinylated antigens S, RBD, and N were coupled

to fluorescent streptavidin beads (Thermo Fisher) and incubated with plasma samples to allow antibody

binding to occur. For ADCP, cultured human monocytes (THP-1 cell line) were incubated with immune

complexes, during which phagocytosis occurred. For ADNP, primary neutrophils were isolated from

whole blood using an ammonium-chloride-potassium (ACK) lysis buffer. After phagocytosis of immune

complexes, neutrophils were stained with an anti-CD66b Pacific Blue detection antibody (Biolegend) prior

to flow cytometry. For ADCD, lyophilized guinea pig complement (Cedarlane) was reconstituted accord-

ing to manufacturer’s instructions and diluted in a gelatin veronal buffer with calcium and magnesium

(Boston BioProducts). After antibody-dependent complement deposition occurred, C3 bound to im-

mune complexes was detected with FITC-Conjugated Goat IgG Fraction to Guinea Pig Complement C3

(MP Biomedicals). For quantification of antibody-dependent NK cell activation, diluted plasma samples

were incubated in ELISA plates coated with antigen. Human NK cells were isolated the evening before us-

ing RosetteSep (STEMCELL Technologies) from healthy buffy coat donors and incubated overnight with

human recombinant Interleukin 15 (STEMCELL Technologies). NK cells were incubated with immune

complexes and then stained with CD107a PE-Cy5 (BD), Golgi stop (BD) and Brefeldin A (BFA, Sigma-

Aldrich). After incubation, cells were fixed (Perm A, Life Tech) and stained using anti-CD16 APC-Cy7

(BD), anti-CD56 PE-Cy7 (BD) and anti-CD3 Pacific Blue (BD). Intracellular staining using anti-IFNγ

FITC (BD) and anti-MIP-1β PE (BD) was performed after permeabilizing the NK cells using Perm B

(Thermo Fisher). Flow cytometry acquisition of all assays was performed using an iQue (Intellicyt) and an

S-LAB robot (PAA). For ADCP, phagocytosis events were gated on bead-positive cells. For ADNP, neu-

trophils were identified by gating on CD3-, CD14-, CD66b+ cells. Neutrophil phagocytosis was identified
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by gating on bead-positive cells. A phagocytosis score for ADCP and ADNP was calculated as (percentage

of bead-positive cells) x (MFI of bead-positive cells) divided by 10,000. ADCD quantification was reported

as MFI of FITC-anti-C3. For antibody-dependent NK activation, cells were identified by gating on CD3-,

CD16+ and CD56+ cells. Data were reported as the percentage of cells positive for CD107a, IFNγ, and

MIP-1β.

2.5.3 Viral Genome Amplification and Sequencing

Viral RNA was extracted from nasopharyngeal specimens utilizing the QIAamp Viral RNA Minikit (Qi-

agen). cDNA synthesis was performed with SuperScript IV First Strand Synthesis Kit (Thermo) using

random hexamer primers according to manufacturer’s specifications. A multiplex primer sequence set,

comprised of two non-overlapping primer pools, was created using Primal Scheme and provided by the Ar-

tic Network (v3). Amplification of the viral genome cDNA was performed in multiplexed PCR reactions

to generate ~400 base pair tiled amplicons across the genome. PCR amplification was carried out using Q5

Hot Start HF Taq Polymerase (NEB) and validated by agarose gel electrophoresis.

Amplicons from both primer pools were combined and purified with a 1x volume of AmpureXP beads

(Beckman Coulter). DNA was treated with KAPA HyperPrep End Prep Enzyme mix (KAPA prior to

barcoding with NEXTflex barcodes and KAPA HyperPrep DNA Ligase (KAPA) for simultaneous se-

quencing. Samples were pooled and purified with a 0.8x volume of AmpureXP beads; and library ampli-

fication was performed using KAPA HiFi HotStart with KAPA Library Amp Primers. Amplicons were

purified with a 0.8x volume of AmpureXP beads and normalized to 5 nM and pooled. The pooled li-

brary was denatured and loaded onto a MiSeq v2 500 cycle flow cell (Illumina). Viral genome consensus

sequences were determined from sequencing reads as previously described (PMID: 30621750). Sequenc-

ing reads were aligned to the reference SARS-CoV-2 genome sequence MN908947.3 using bwa version

0.7.15. Pileups were generated from the alignment using samtools v1.9. Barcode sequences were trimmed

from aligned reads and consensus sequence determined using iVar v1.2.2 (PMID: 30621750) using a min-

imum alignment depth of 10 reads, a minimum base quality of 20, and a consensus frequency thresh-

old of 0 (i.e. majority base as the consensus). Consensus sequences with ≥ 10% missing bases were dis-

carded. Pango lineages were assigned to consensus sequences using pangolin software (PMID: 32669681,
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https://github.com/cov-lineages/pangolin).

2.5.4 Phylogenetic analysis

Consensus sequences obtained from the patient and 500 randomly selected sequences from GISAID

database uploaded before February 18th, 2021, were aligned using MAFFT v7.453 software and man-

ually edited using MEGA v6.06. Using these aligned sequences, we inferred a Maximum Likelihood

(ML) phylogeny with IQ-Tree v2.0.5 using its ModelFinder function to estimate the nucleotide sub-

stitution model best-fitted for the dataset by means of Bayesian information criterion (Best-fit model:

GTR+F+R2). We assessed the tree topology for each phylogeny both with the Shimodaira–Hasegawa

approximate likelihood-ratio test (SH-aLRT) and with ultrafast bootstrap (UFboot) with 1000 replicates

each. The two patient sequences clustered in different lineages of the tree with strong statistical support

(SH-aLRT>90 and UFboot =100).

2.5.5 Analysis

Seropositive individuals were identified through a community-based sero-surveillance program, wherein

ELISA was performed to detect IgG against the receptor binding domain (RBD) of the SARS-CoV-2 spike

glycoprotein in 4469 subjects. A concentration-based cutoff was established to determine positivity as a

concentration value five standard deviations above the mean ug/mL in negative control samples. This assay

performance has previously been externally validated in a blinded study as 99.6% specific [44].

The Wilcoxon signed-rank test was used to identify significance of antibody feature changes between

week 5 and week 6 in macaques and R-1 and R0 in humans. The Python package statsmodel (version

0.11.1) [45] was used to adjust the p-values generated from the Wilcoxon test, filtering using the Ben-

jamini/Yekutieli method for false discovery rate of 5%.

Individuals were marked as potentially reinfected if they were tested as PCR positive more than fifteen

days after an initial seropositive result. 11 individuals meeting these criteria were identified, out of which

we had access to serum samples post-PCR testing for nine. Out of these nine, six individuals had a PCR+

result more than 40 days after initial seropositivity, with all but one individual testing positive more than

87



25 days after seropositivity. Systems serology was then performed for these nine individuals.

Two types of one antibody feature models were generated (1) using a simple threshold/cutoff to iden-

tify reinfections status based on one immunological feature from one serum sample (2) using the relative

difference between luminex titer in subsequent weeks to assess a “delta” of one feature between two time-

points. Differences in luminex titer between consecutive weeks were computed based on raw titer for use

in univariate predictor generation. Thresholds were identified by maximizing the difference between the

true positive rate and false positive rate. We note due to the simple nature of these predictors, thresholds

were trained on all available samples, with all applicable predictors tabulated and available as supplemen-

tal tables. Models containing two antibody features were constructed as delta models, where the relative

difference between two timepoints was computed. Models trained and tested on humans were trained

using logistic regression and cross-validated with 4-fold cross validation, along with an 80%-20% split of

training/cross validation and test sets. All chronologically ordered pairs of sera samples were assembled to

define the training set. For example, given primate sera samples for week 2, week 5, week 6, and week 7,

{week 2, week 5}, {week 6, week 7} were labeled as ‘non-associated with reinfection’ whereas {week 2, week

6}, {week 2, week 7}, {week 5, week 6}, and {week 5, week 7} were labeled as ‘associated with reinfection.’

We note that for both primates and humans, sera samples prior to the first identified infection event were

not included in the training set, so as to constrain our model prediction to identifying reinfection given

primary infection, as compared to without a priori information. Classification accuracies were then com-

puted as the percentage of correct predictions. For cross-species analysis, logistic regression models were

trained using all available primate data and cross-validated and tested in humans with a 50-50 split in data.

We note that our primate assays included FcγR2A subtypes 1, 2, 3, and 4, whereas our human assays were

pan-FcγR2A. As such, cross-species models trained on FcγR2A subtypes were directly mapped to FcγR2A

parameter values in humans. Finally, we note that due to the similarity of performance of various models

in the cross validation steps, we opted to report test set performance on numerous (50) high-performing

models from the cross validation step as an alternative to implying unique importance of the features of

only the best-performing model. As a final validation step, we compared our reported logistic regression

models to those created by different random initializations states to ensure that reported results were con-

sistent with results from different states.
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Bar graphs, x-y plots, and heatmaps were generated using Python version 3.7.3 (Python Software Foun-

dation, www.python.org). Study overview diagrams were generated in part using BioRender, a cloud-based

platform for figure design. Principal component analysis, logistic regression, and receiver operating charac-

teristic curves were performed using scikit-learn version 0.23.2 [46].
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Figure 2.5: Principal component analysis loading plots in (A) rhesus macaques, with 77.7% and 6.1% of variance explained by
PC1 and PC2, respectively, and (B) humans, with 49.1% and 12.2% of variance explained by PC1 and PC2, respectively. We note
that (A) is a barplot representation of the information conveyed via heatmap in Figure 1E.
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Figure 2.6: Per‐sample change in relative titer of the 25 features with maximal relative change in humans between the serum
sample closest to identified reinfection and its immediately preceding sample.
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Figure 2.7: Plot of (A) anti‐RBD IgG1 and anti‐RBD FcR2A‐1 titer in each macaque timepoint and of (B) anti‐RBD IgG1 and
anti‐RBD FcR2A titer in each human timepoint, highlighting reinfection‐associated changes in titer.
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Figure 2.8: (A) Comparison of ELISA titer increases in the general (N=31) and PCR‐identified reinfections (N=9). 8 out of 9
samples in the reinfection cohort increased in ELISA titer between primary and reinfection by more than 1.2x, compared to 7
out of 31 samples in the general cohort. (B‐F) Antibody profiles in the reinfection cohort and the 7 general cohort samples with
ELISA titer change > 1.2x. Titers in the reinfection cohort (colored from cyan to purple between timepoints R‐3 to R1) are seen
to increase at the timepoint of identified infection, whereas in the general cohort (colored from red to green), only one sample
(GC2) displays antibody profile similar to reinfected individuals. We note that this individual did not volunteer for a PCR test, and
as such, their reinfection status was unable to be verified.

2.6.1 Supplementary tables

Table S1: Binary threshold-based predictors in rhesus macaques, based on titer value from one serum sam-

ple.
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Table 2.1: Binary threshold‐based predictors in rhesus macaques, based on titer value from one serum sample.

Feature Threshold Confusion matrix F1 score Classification Accuracy

FcR 2A-1 - S2 1820071 [16, 2, 0, 18] 0.947368 0.944444

FcR 2A-2 - S2 1452192 [16, 2, 0, 18] 0.947368 0.944444

FcR 2A-4 - S2 1339581 [16, 2, 0, 18] 0.947368 0.944444

ADNP - Spike 48 [15, 3, 0, 18] 0.923077 0.916667

IgG1 - S2 239806 [15, 3, 0, 18] 0.923077 0.916667

IgG2 - S2 15368 [15, 3, 0, 18] 0.923077 0.916667

IgG3 - S2 18281 [15, 3, 0, 18] 0.923077 0.916667

IgG4 - S2 17307 [15, 3, 0, 18] 0.923077 0.916667

IgA - S2 39018 [17, 1, 2, 16] 0.914286 0.916667

NKD: MIP-1β - Spike 30.8 [18, 0, 3, 15] 0.909091 0.916667

ADCP - Spike RBD 508.4 [18, 0, 3, 15] 0.909091 0.916667

IgA - S1 4213 [18, 0, 3, 15] 0.909091 0.916667

FcR 2A-4 - Spike 397633 [14, 4, 0, 18] 0.9 0.888889

FcR 2A-1 - S1 82752 [14, 4, 0, 18] 0.9 0.888889

FcR 2A-2 - S1 82614 [14, 4, 0, 18] 0.9 0.888889

FcR 2A-4 - S1 66689 [14, 4, 0, 18] 0.9 0.888889

FcR 3A - S1 13440 [14, 4, 0, 18] 0.9 0.888889

FcR 3A - S2 13440 [14, 4, 0, 18] 0.9 0.888889

FcR 2A-3 - S2 1135025 [15, 3, 1, 17] 0.894737 0.888889

FcR 2A-1 - Spike RBD 777350 [16, 2, 2, 16] 0.888889 0.888889

FcR 2A-2 - Spike RBD 697907 [16, 2, 2, 16] 0.888889 0.888889

FcR 2A-3 - Spike RBD 344096 [16, 2, 2, 16] 0.888889 0.888889

FcR 2A-4 - Spike RBD 654825 [16, 2, 2, 16] 0.888889 0.888889

FcR 3A - Spike RBD 179908 [16, 2, 2, 16] 0.888889 0.888889

IgG1 - Spike RBD 14067 [16, 2, 2, 16] 0.888889 0.888889

IgG2 - Spike RBD 5452 [16, 2, 2, 16] 0.888889 0.888889

IgG3 - Spike RBD 6090 [16, 2, 2, 16] 0.888889 0.888889

IgG4 - Spike RBD 6055 [16, 2, 2, 16] 0.888889 0.888889

ADCD - Spike 12.65 [16, 2, 2, 16] 0.888889 0.888889

Continued on next page
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Table 2.1 continued from previous page

Feature Threshold Confusion matrix F1 score Classification Accuracy

FcR 2A-2 - Spike 751648 [17, 1, 3, 15] 0.882353 0.888889

FcR 2A-3 - Spike 178783 [13, 5, 0, 18] 0.878049 0.861111

FcR 2A-3 - S1 16511 [14, 4, 1, 17] 0.871795 0.861111

IgG1 - S1 3236 [14, 4, 1, 17] 0.871795 0.861111

IgG3 - S1 3012 [14, 4, 1, 17] 0.871795 0.861111

ADCP - Spike 624.4 [15, 3, 2, 16] 0.864865 0.861111

IgA - Spike 14224 [15, 3, 2, 16] 0.864865 0.861111

IgG3 - Nucleocapsid 7902 [15, 3, 2, 16] 0.864865 0.861111

IgG4 - Nucleocapsid 7240 [15, 3, 2, 16] 0.864865 0.861111

NKD: CD107a - Nucleocapsid 11.075 [16, 2, 3, 15] 0.857143 0.861111

NKD: MIP-1β - Nucleocapsid 20.325 [16, 2, 3, 15] 0.857143 0.861111

FcR 2A-1 - Spike 875676 [16, 2, 3, 15] 0.857143 0.861111

FcR 3A - Spike 246407 [16, 2, 3, 15] 0.857143 0.861111

IgG1 - Spike 77254 [16, 2, 3, 15] 0.857143 0.861111

IgG2 - Spike 8694 [16, 2, 3, 15] 0.857143 0.861111

IgG3 - Spike 9544 [16, 2, 3, 15] 0.857143 0.861111

IgG4 - Spike 9529 [16, 2, 3, 15] 0.857143 0.861111

FcR 2A-1 - Nucleocapsid 1718029 [14, 4, 2, 16] 0.842105 0.833333

IgG4 - S1 3041 [14, 4, 2, 16] 0.842105 0.833333

ADCP - Nucleocapsid 544.7 [18, 0, 5, 13] 0.83871 0.861111

ADNP - Nucleocapsid 38.3 [18, 0, 5, 13] 0.83871 0.861111

IgA - Spike RBD 10698 [15, 3, 3, 15] 0.833333 0.833333

IgG1 - Nucleocapsid 63841 [15, 3, 3, 15] 0.833333 0.833333

IgG2 - Nucleocapsid 7583 [15, 3, 3, 15] 0.833333 0.833333

IgA - Nucleocapsid 15161 [12, 6, 1, 17] 0.829268 0.805556

NKD: IFNγ - Nucleocapsid 4.685 [16, 2, 4, 14] 0.823529 0.833333

FcR 2A-2 - Nucleocapsid 1126957 [13, 5, 2, 16] 0.820513 0.805556

FcR 2A-4 - Nucleocapsid 918281 [13, 5, 2, 16] 0.820513 0.805556

IgG2 - S1 3006 [11, 7, 1, 17] 0.809524 0.777778

ADNP - Spike RBD 37.7 [18, 0, 6, 12] 0.8 0.833333

Continued on next page
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Table 2.1 continued from previous page

Feature Threshold Confusion matrix F1 score Classification Accuracy

ADCD - Nucleocapsid 10.85 [15, 3, 4, 14] 0.8 0.805556

FcR 2A-3 - Nucleocapsid 615344 [12, 6, 3, 15] 0.769231 0.75

NKD: CD107a - Spike 7.05 [13, 5, 4, 14] 0.756757 0.75

FcR 3A - Nucleocapsid 775830 [12, 6, 4, 14] 0.736842 0.722222

ADCD - Spike RBD 7.6 [11, 7, 4, 14] 0.717949 0.694444

IgM - Nucleocapsid 74220 [14, 4, 8, 10] 0.625 0.666667

IgM - Spike 28551 [12, 6, 8, 10] 0.588235 0.611111

IgM - S1 9849 [6, 12, 3, 15] 0.666667 0.583333

NKD: IFNγ - Spike 9.05 [9, 9, 6, 12] 0.615385 0.583333

IgM - Spike RBD 38510 [10, 8, 7, 11] 0.594595 0.583333

IgM - S2 46096 [2, 16, 1, 17] 0.666667 0.527778

Table S2: Binary threshold-based predictors in rhesus macaques, based on relative change in titer be-

tween chronologically-paired serum samples.

Table 2.2: Relative change binary thresholds ‐ Rhesus macaques.

Feature Rel. Change Threshold Confusion matrix F1 score Class. Acc.

FcR 2A-1 - Nucleocapsid 1.12981 [17, 1, 0, 36] 0.986301 0.981481

FcR 2A-4 - Nucleocapsid 1.238427 [17, 1, 1, 35] 0.972222 0.962963

FcR 2A-2 - S1 1.779055 [18, 0, 2, 34] 0.971429 0.962963

FcR 2A-4 - S1 2.06621 [18, 0, 2, 34] 0.971429 0.962963

FcR 2A-3 - S1 1.790393 [18, 0, 3, 33] 0.956522 0.944444

FcR 3A - S1 2.170993 [18, 0, 3, 33] 0.956522 0.944444

FcR 3A - S2 2.170993 [18, 0, 3, 33] 0.956522 0.944444

FcR 2A-2 - Spike 1.429132 [15, 3, 1, 35] 0.945946 0.925926

FcR 2A-2 - Spike RBD 1.570753 [16, 2, 2, 34] 0.944444 0.925926

FcR 2A-3 - Spike RBD 1.490208 [16, 2, 2, 34] 0.944444 0.925926

FcR 2A-4 - Spike RBD 1.593694 [16, 2, 2, 34] 0.944444 0.925926

IgG1 - Spike 2.991054 [16, 2, 2, 34] 0.944444 0.925926

Continued on next page
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Table 2.2 continued from previous page

Feature Rel. Change Threshold Confusion matrix F1 score Class. Acc.

IgA - S2 1.780237 [17, 1, 3, 33] 0.942857 0.925926

IgG1 - Spike RBD 3.291296 [18, 0, 4, 32] 0.941176 0.925926

IgG2 - Spike RBD 1.449614 [18, 0, 4, 32] 0.941176 0.925926

IgG3 - Spike RBD 1.609408 [18, 0, 4, 32] 0.941176 0.925926

IgG4 - Spike RBD 1.581766 [18, 0, 4, 32] 0.941176 0.925926

FcR 2A-1 - S1 2.464924 [18, 0, 4, 32] 0.941176 0.925926

IgG2 - Spike 1.613678 [18, 0, 4, 32] 0.941176 0.925926

IgG3 - Spike 1.793926 [18, 0, 4, 32] 0.941176 0.925926

IgG4 - Spike 1.729808 [18, 0, 4, 32] 0.941176 0.925926

IgA - S1 1.159046 [18, 0, 4, 32] 0.941176 0.925926

FcR 2A-1 - Spike RBD 1.603569 [15, 3, 2, 34] 0.931507 0.907407

IgG1 - Nucleocapsid 1.196767 [15, 3, 2, 34] 0.931507 0.907407

FcR 3A - Spike RBD 2.290717 [16, 2, 3, 33] 0.929577 0.907407

IgG4 - S1 1.032659 [16, 2, 3, 33] 0.929577 0.907407

FcR 2A-2 - Nucleocapsid 1.330141 [17, 1, 4, 32] 0.927536 0.907407

IgG1 - S1 1.151691 [18, 0, 5, 31] 0.925373 0.907407

FcR 2A-3 - Spike 1.623147 [14, 4, 2, 34] 0.918919 0.888889

FcR 2A-4 - Spike 1.689984 [15, 3, 3, 33] 0.916667 0.888889

FcR 3A - Spike 2.128778 [15, 3, 3, 33] 0.916667 0.888889

NKD: MIP-1β - Spike 1.17474 [17, 1, 5, 31] 0.911765 0.888889

IgG2 - Nucleocapsid 1.147738 [17, 1, 5, 31] 0.911765 0.888889

IgA - Spike RBD 1.286979 [18, 0, 6, 30] 0.909091 0.888889

IgA - Spike 1.345988 [18, 0, 6, 30] 0.909091 0.888889

FcR 2A-4 - S2 1.083253 [10, 8, 0, 36] 0.9 0.851852

IgG4 - Nucleocapsid 1.232757 [17, 1, 6, 30] 0.895522 0.87037

IgM - Nucleocapsid 1.078787 [17, 1, 6, 30] 0.895522 0.87037

FcR 2A-1 - S2 1.135635 [9, 9, 0, 36] 0.888889 0.833333

FcR 2A-2 - S2 1.373317 [11, 7, 2, 34] 0.883117 0.833333

FcR 2A-1 - Spike 2.382568 [16, 2, 6, 30] 0.882353 0.851852

IgA - Nucleocapsid 1.235307 [16, 2, 6, 30] 0.882353 0.851852

Continued on next page
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Table 2.2 continued from previous page

Feature Rel. Change Threshold Confusion matrix F1 score Class. Acc.

IgG3 - Nucleocapsid 1.670012 [17, 1, 7, 29] 0.878788 0.851852

IgG3 - S1 1.054874 [17, 1, 7, 29] 0.878788 0.851852

IgG1 - S2 1.499318 [10, 8, 2, 34] 0.871795 0.814815

ADCP - Spike 0.986242 [8, 10, 1, 35] 0.864198 0.796296

NKD: MIP-1β - Nucleocapsid 1.491905 [17, 1, 8, 28] 0.861538 0.833333

FcR 2A-3 - S2 1.40331 [11, 7, 4, 32] 0.853333 0.796296

ADCP - Spike RBD 1.958678 [16, 2, 8, 28] 0.848485 0.814815

NKD: CD107a - Nucleocapsid 1.667565 [16, 2, 8, 28] 0.848485 0.814815

ADNP - Nucleocapsid 1.411111 [16, 2, 8, 28] 0.848485 0.814815

FcR 3A - Nucleocapsid 1.125407 [15, 3, 8, 28] 0.835821 0.796296

IgG3 - S2 2.817839 [17, 1, 10, 26] 0.825397 0.796296

IgG4 - S2 2.939364 [17, 1, 10, 26] 0.825397 0.796296

IgG2 - S1 1.069704 [18, 0, 11, 25] 0.819672 0.796296

ADCP - Nucleocapsid 1.391448 [15, 3, 9, 27] 0.818182 0.777778

IgG2 - S2 2.144871 [15, 3, 9, 27] 0.818182 0.777778

FcR 2A-3 - Nucleocapsid 1.398743 [16, 2, 10, 26] 0.8125 0.777778

NKD: IFNγ - Nucleocapsid 1.787962 [18, 0, 12, 24] 0.8 0.777778

ADCD - Nucleocapsid 1.22093 [12, 6, 8, 28] 0.8 0.740741

ADNP - Spike 3.352159 [18, 0, 13, 23] 0.779661 0.759259

ADNP - Spike RBD 1.633891 [16, 2, 13, 23] 0.754098 0.722222

ADCD - Spike 2.263158 [18, 0, 15, 21] 0.736842 0.722222

IgM - Spike 1.221859 [18, 0, 18, 18] 0.666667 0.666667

IgM - S1 1.018779 [16, 2, 17, 19] 0.666667 0.648148

NKD: IFNγ - Spike 1.011173 [10, 8, 14, 22] 0.666667 0.592593

ADCD - Spike RBD 1.053977 [10, 8, 14, 22] 0.666667 0.592593

NKD: CD107a - Spike 1.38961 [14, 4, 17, 19] 0.644068 0.611111

IgM - S2 1.099723 [17, 1, 20, 16] 0.603774 0.611111

IgM - Spike RBD 1.095038 [17, 1, 22, 14] 0.54902 0.574074

Tables S3-S5 omitted from manuscript due to length, but available upon request and online in

the source publication.
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Table S3: Binary threshold-based predictors in humans, based on relative change in titer between

chronologically-paired serum samples. Overall cohort is drawn from 9 PCR-identified reinfection cases

and from 31 general cases.

Table S4: Logistic regression predictors trained and tested on humans, based on relative change in

titer between chronologically-paired serum samples of two humoral features. Models trained and cross-

validated by 4-fold cross validation, and split 80-20 for training/cross validation and testing. Confusion

matrix displayed as [True negative, False positive, False negative, True positive].

Table S5: Logistic regression predictors trained in macaques and directly tested in humans, based on

relative change in titer between chronologically-paired serum samples of two humoral features. Models

trained in monkeys, applied in humans with a 50/50 split between cross validation and testing sets. Confu-

sion matrix displayed as [True negative, False positive, False negative, True positive].
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3
Bead-based approaches to CRISPR

diagnostics

Preface This chapter of the thesis is reproduced with minor edits from a published paper in which I was

a co-first author. I note that this work was done in two major parts: bead-based luciferase and bead-based

CARMEN. bead-based luciferase was spearheaded by myself, whereas bead-based CARMEN was led pri-

marily by Tien Nguyen and Nicole Welch.
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3.1 Abstract

CRISPR-based diagnostics have emerged as a promising tool for fast, accurate, and portable pathogen de-

tection. There has been rapid progress in areas such as pre-amplification processes and CRISPR-related

enzymes, but the development of reporter systems and reaction platforms has lagged behind. In this paper,

we develop new bead-based techniques that can help fill both gaps. First, we develop a novel bead-based

split-luciferase reporter system with up to 20x sensitivity compared to standard fluorescence-based reporter
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design in CRISPR diagnostics. Second, we develop a highly deployable, bead-based platform capable of

detecting nine distinct viral targets in parallelized, droplet-based reactions, with sensitivity reaching as low

as 2.5 copies/µL of input RNA. We demonstrate the enhanced performance of both approaches on syn-

thetic and clinical samples. Together, these systems represent new modalities in CRISPR diagnostics with

increased sensitivity, speed, multiplexing, and deployability.

3.2 Introduction

The COVID-19 pandemic has highlighted the need for rapidly deployable diagnostic technologies able to

respond to new pathogens and emergent variants anywhere in the world (Liu et al. 2021). However, no

current technology uniquely meets the sensitivity, specificity, deployability, speed, and multiplexing needs

required for a broad and robust response to infectious disease outbreaks. Quantitative polymerase chain re-

action (qPCR), widely considered a gold standard due to its sensitivity and specificity, cannot be deployed

readily, and remains limited in multiplexing ability (Eckbo et al. 2021; Center for Devices and Radiological

Health n.d.; Knox and Beddoe 2021). Next generation sequencing (NGS) is similarly sensitive, specific,

and able to detect many pathogens and variants; however, it is expensive, has a long turnaround time, and

requires significant technical expertise to deploy for viral surveillance (Goodwin, McPherson, and Mc-

Combie 2016). On the other hand, antigen capture tests are readily deployable and affordable, but are less

sensitive and specific than nucleic acid tests and are not rapidly adaptable for new pathogens (Arizti-Sanz et

al. 2020; Chu et al. 2022).

CRISPR-based systems offer an alternative approach that is well-poised to address pathogen diagnostic

needs. Specifically, CRISPR effectors Cas12 and Cas13 exhibit collateral cleavage activity upon recognition

of their target DNA or RNA, respectively, enabling these enzymes to act as target-specific sensors (Chen

et al. 2018; Liu et al. 2021; Gootenberg et al. 2017; East-Seletsky et al. 2016). Since their introduction,

there has been substantial work in developing CRISPR-based diagnostic systems, with assays for diverse

pathogens such as influenza, Zika virus, and SARS-CoV-2 developed across different combinations of

CRISPR effectors, amplification modalities, imaging tools, and reaction platforms (Pardee et al. 2016; Liu

et al. 2021; Park et al. 2021; Fozouni et al. 2021). Much of this effort has been limited to fluorescence and
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lateral flow strip readouts, leaving room for orthogonal advances in reporter design and reaction barcoding

to improve deployability, sensitivity, and multiplexing capability (Myhrvold et al. 2018; Barnes et al. 2020;

Welch et al. 2022; Arizti-Sanz et al. 2020; Ackerman et al. 2020; Arizti-Sanz et al. 2022; Liu et al. 2021).

New bead-based systems, such as AlphaLISA (Ullman et al. 1994; Bielefeld-Sevigny 2009), have led to

recent advances in protein detection due to their ability to compartmentalize reaction components and

may serve as a basis to advance CRISPR-based nucleic acid detection. For example, separating reaction

components onto different bead types could create a highly sensitive split luciferase reporter for Cas13

diagnostics. Separately for multiplex detection, Luminex consists of fluorescently color-coded beads that

are coupled to different antibodies, enabling pooled identification of separate targets in a single reaction

(Fulton et al. 1997; Anderson et al. 2011). This technology suggests that color-coded beads could lend

themselves well to having different targets for Cas13 detection on each bead. We explored both technologi-

cal approaches to expand the breadth of CRISPR-based diagnostic platforms.

We first considered how bead-based readouts could improve sensitivity in point-of-need CRISPR-

based diagnostic assays. When a sample is used as input in CRISPR-Cas13 diagnostic assays, the target

genetic material is first amplified using amplification methods such as RT-PCR (typically involving 30-40

cycles) or recombinase polymerase amplification (RPA), either prior to or in the same reaction as Cas13

detection. Assays such as Streamlined Highlighting of Infections to Navigate Epidemics (SHINE), which

couple isothermal amplification with Cas13 detection in the same reaction (“one-pot”) are well-suited for

point-of-need deployment due to their ease of use (Arizti-Sanz et al. 2022, 2020). These assays have tra-

ditionally used fluorescence-based reporters, primarily consisting of a fluorescein (FAM) dye linked by a

short oligonucleotide sequence to a quencher (Arizti-Sanz et al. 2020; Chen et al. 2018; Liu et al. 2021;

Myhrvold et al. 2018). While these assays have performed well, fluorescence-based technologies are known

to have high background signal and low sensitivity compared to bioluminescence technologies (Arizti-Sanz

et al. 2020; Tung et al. 2016).

A bead-based luminescent split reporter system which links nucleic acid detection with NanoLuciferase

(NanoLuc) complementation could provide an attractive alternative to fluorescent reporters, enabling

rapid attomolar detection with a high dynamic range (Dixon et al. 2016; Schwinn et al. 2018; Fan and

Wood 2007). A two-bead system with a large protein subunit (LgBiT) and a smaller peptide subunit (Hi-
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BiT) each coupled to separate bead type may serve as a basis for a Cas13 cleavage reporter if at least one of

the protein subunits is coupled via a Cas13-cleavable RNA linker. By virtue of being coupled to separate

beads, LgBiT and HiBiT can be largely separated from each other and kept catalytically inactive. In the

presence of the target, Cas13 collateral cleavage of the bead RNA linkers could reverse this separation and

allow the formation of complemented NanoLuc. Therefore, for point-of-need use, a new split-luciferase-

based reporter system could be well-poised to improve sensitivity while simultaneously removing the re-

quirement of a light source as in fluorescence-based systems.

We next considered how a bead-based system could improve multiplexed diagnostic testing at point

of care. We previously developed the CRISPR-based Combinatorial Arrayed Reactions for Multiplexed

Evaluation of Nucleic acids (CARMEN) and microfluidic CARMEN (mCARMEN) (Welch et al. 2022;

Ackerman et al. 2020), and demonstrated their unprecedented multiplexing and sensitivity across samples

and pathogens. These platforms, however, require high technical expertise and costly equipment to achieve

sample or patient barcoding, restricting their deployability in resource-limited settings (Ackerman et al.

2020; Welch et al. 2022). This constraint leaves an opportunity to replace barcoding with a less resource-

intensive, bead-based approach.

A color-coded bead-based approach that couples beads to distinct crRNAs could be used to create a

localized separation of crRNA, enabling an assay with multiplexed nucleic acid targets. Given previous

work in microparticle-based dropletization, such color-coded beads could allow equipment-free nanoliter

droplet generation (Clark et al. 2023), with each droplet containing Cas13 detection master mix and ap-

proximately one color-coded crRNA bead. With crRNA-specific detection reactions occurring in parallel

across different droplets, this could in turn enable a highly parallelized reaction which could be imaged

in a fluorescent microscope or imaging plate reader to determine bead target-specific detection. Thus, for

point-of-care use, a bead-based, low-cost platform capable of parallelized, dropletized detection of multiple

targets may enable a sensitive, robust, and highly multiplexed solution for resource-limited settings.

Here we explore the applicability of novel bead-based approaches to increasing sensitivity, multiplexing,

and deployability in CRISPR-diagnostics. First, we designed a bead-based split luciferase reporter (bbLuc)

and examined this readout modality in an amplification-free reaction and in the amplification-coupled

SHINE diagnostic platform. Next, we developed and validated a bead-based deployable multiplexed diag-
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nostics platform (bbCARMEN) and further investigated its performance in an implementation of a panel

of nine respiratory viruses (Welch et al. 2022).

3.3 Results

3.3.1 Bead-based strategy to couple Cas-13 activity with a split NanoLuciferase-

based readout

We developed a bead-based Luciferase reporter (bbLuc) to couple Cas13 activity with a split Nanoluciferase-

based readout (Figure 1A). As a first step, we probed whether it is possible to couple HiBiT and LgBIT to

beads using a Cas13-cleavable RNA-based linker. We attached HiBiT and LgBiT to biotinylated oligonu-

cleotides using HaloLigand-HaloTag-based covalent linking, thereby enabling coupling to streptavidin

coated beads (Figure 1B) (Los et al. 2008). Notably, this coupling enabled target-mediated Cas13 cleav-

age of HiBiT-linked nanoparticles (Figure 1C). However, we did not observe significant Cas13 cleavage of

LgBiT-linked nanoparticles, most likely due to increased steric hindrance of Cas13 cleavage in proximity

with the larger LgBiT enzyme compared to the HiBiT peptide. As such, we focused our subsequent design

efforts on cleavable HiBiT-nanoparticles.

Having demonstrated the ability to couple HiBiT to beads using a Cas13-cleavable RNA-based linker,

we next designed improved linkers to optimize and enable more efficient cleavage. We found through a

side-by-side comparison of Cas13-based and RNase A-based cleavage that the initial Cas13 cleavage of

HaloTag-based linkers was inefficient (Figure 1C). We hypothesized that this inefficiency may have been

caused again by steric hindrance between the beads and HaloTag-HiBiT complex, reducing accessibility of

Cas13 to cleavage sites. We therefore increased the linker length (Supplementary Table 1) and changed the

linkage chemistry by using Strain-promoted Azide - Alkyne Click Chemistry reaction (SPAAC) to connect

the HiBiT peptide to the oligonucleotide linker. This design enabled significantly more efficient Cas13

cleavage compared to the HaloTag-HiBiT designs, showing equivalent cleavage of the HiBiT linker from

Cas13 and RNase A (Figure 1C).

Next, we characterized and further optimized the performance of an amplification-free assay with both

HiBiT and LgBiT beads in solution. Using 80nM HiBiT peptide coupled to nanoparticles in solution, we
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Figure 3.1: a, Schematic of split‐luciferase reporter system. HiBiT and LgBiT are initially separated on different beads. Cas13
cleavage of the RNA linker releases HiBiT, allowing it to bind to LgBiT and reconstitute active luciferase. b, Beads bound with 80
nM HiBiT or 80 nM LgBiT show durable coupling through storage and wash cycles. c, One‐bead luminescent assay to compare
different RNA linkers used to couple HiBiT to beads (21U 33dnTP HaloLigand‐HaloTag based, 21U SPAAC‐based, 9U SPAAC‐
based linkers). RNase A or Cas13/target mixes were added to coupled beads to enable cleavage, with the resulting cleaved
products separated from the beads magnetically and added to LgBiT in solution. d, Luminescent kinetics of full assay, prior to
bead optimization (80 nM HiBiT, 80 nM LgBiT). The normalized signal is lower than in previous reactions due to differences in
on‐bead versus in‐solution reaction kinetics. Luminescence values normalized to the average no template control (NTC) signal
at the first collected timepoint. e, Optimization of HiBiT bead concentrations in amplification‐free luminescent assay, with LgBiT
concentration maintained at 80 nM. f, Optimized luminescent amplification‐free assay kinetics compared to fluorescent assay on
varied synthetic RNA target, 90 minutes (80nM LgBiT, 300nM HiBiT, 200uM furimazine). 95% confidence intervals displayed as
error bars.
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were able to achieve detection down to 107 copies/µL of input RNA with an unoptimized design (Figure

1D). While this was similar to a fluorescence-based amplification-free assay, we observed further improve-

ments in sensitivity when the surface density of HiBiT peptides on nanoparticles was increased to a con-

centration of 300nM (Figure 1E). HiBiT concentrations above 300nM and LgBiT concentrations above

80nM resulted in more inconsistency and lower sensitivity (Supplementary Figure 2), possibly due to an

increased viscosity of the solution caused by a higher peptidic charge on the beads.

We compared the performance of bbLuc to a conventional fluorescent reporter in the amplification-free

assay. Within 60 minutes, our luminescent reporter detected down to between 5×105 copies/µL of the

input target compared to 1×107 copies/µL for the fluorescent reporter. We were thus able to achieve a 20x

increase in sensitivity using the luminescent reporter within 90 minutes (Figure 1F, Supplementary Figure

3).

3.3.2 Integration of luminescent reporter into SHINE

Having optimized bbLuc in an amplification-free setting, we then assessed its performance in the one-pot,

amplification-coupled SHINE platform. At first, we found that the luminescent reporter did not perform

better than the conventional fluorescent reporter in the SHINE setting, compared to the 20x enhancement

we achieved in the amplification-free setting (Figure 2A). We hypothesized that the increased complexity

of the SHINE reaction, compared to the amplification-free reactions, may have introduced inhibitory

interactions between the bead complexes and the reaction components, leading to the observed decrease in

relative sensitivity.

We explored the potential causes of reduced sensitivity of our luminescent reporter in the SHINE con-

text by testing different concentrations of a molecular crowding reagent and assessing if individually spik-

ing in SHINE components to amplification-free reactions interfered with detection. We first examined

possible molecular crowding effects caused by bead addition to the assay by modifying polyethylene glycol

(PEG) concentration and molecular weight in the SHINE reaction buffer, but found the PEG parame-

ters in fluorescent SHINE were optimal with the luminescent system (Supplementary Figure 4). We then

probed possible inhibitory effects on the beads from the constituent SHINE proteins by individually spik-

ing reaction components into separate amplification-free reactions, finding a 1000-fold reduction in per-
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Figure 3.2: a, Luminescence comparison of SHINE and amplification‐free systems prior to optimization; Initial luminescence
comparison of SHINE and amplification‐free systems. Without optimization, the 20x sensitivity advantage of bbLuc in the
amplification‐free setting was not maintained in SHINE. b, In amplification‐free experiments across three different Luminescent
bead linker types (54ntp DNA‐RNA linkers, 21 uracil linkers, and 9 uracil linkers), different linker types are affected differentially
by the addition of recombinase polymerase amplification (RPA) reagents, necessary for downstream SHINE. In particular our
original linker with 54ntps, used in Figure1D‐F and 2A, showed significantly reduced Cas13‐based cleavage and signal (data
shown after 26 minutes) c, Luminescent SHINE performance of 7 tested RNA linkers after 3h, (All 21 linker types tested shown
in Supplementary Figure 6) d, Final optimized reaction kinetics with bbLuc SHINE (80 nM LgBiT, 300 nM HiBiT, 2‐hexapeg
14U linker, 150µM furimazine, 60nM RPA primers) e, SARS CoV‐2 detection using bbLuc using RNA from patient samples,
displayed as ratio of NTC to patient sample bbLuc signal at 90 minutes. Threshold line plotted as 1.35, determined empirically.
f, Confusion matrices of SARS CoV‐2 detection of patient samples using bbLuc SHINE and fluorescent SHINE compared to
side‐by‐side RT‐qPCR results. 95% confidence intervals displayed as error bars.

117



formance upon addition of recombinase polymerase amplification (RPA) pellets (Figure 2B, Supplemen-

tary Figure 5). We found that this reduction in sensitivity was largely caused by single-stranded binding

(SSB) protein reducing Cas13 cleavage of the beads (Supplementary Figure 6).

Based on the observation that the SSB used in RPA was inhibiting our bead linkers, we tested a series of

new linkers to find designs that improved detection in SHINE. We hypothesized that our original HiBiT-

bead linker design, consisting of 54 nucleotides (21 uracils and 33 dNTPs) may have served as a binding

site for SSB, thereby sterically interfering with Cas13 cleavage of the linker. We first tested shorter linker

designs without any dNTPs, finding reduced inhibition of detection by 21U and 9U linkers in the pres-

ence of RPA components compared to our original design (Figure 2B). We went on to test 27 different

linker designs (Figure 2C, Supplementary Figures 7-8, Supplementary Table 1), finding that a 2-hexapeg

14U linker provided the highest sensitivity amongst our reporters.

In our first set of optimizations to the luminescent SHINE assay, we varied the concentrations of furi-

mazine, RPA primers, and magnesium acetate, setting concentrations of 50µM, 140nM, and 14nM, re-

spectively (Supplementary Figures 9-11). We found that this initial version of the assay, bbLucV0 SHINE,

had an analytical sensitivity of 32 copies/µL of input RNA in 75 minutes (Supplementary Figure 12).

We compared bbLucV0 SHINE and fluorescent SHINE to the gold-standard RT-qPCR test for COVID-

19. Out of 59 usable samples, bbLucV0 SHINE accurately identified 26 out of 29 positive cases (89.7%),

while fluorescent SHINE only identified 23 out of 29 cases (79.3%) (Supplementary figure 13). Notably,

bbLucV0 SHINE detected all the positive cases identified by fluorescent SHINE, plus three additional

cases with low viral loads. Both methods correctly identified all negative cases. This demonstrates the su-

perior sensitivity of bbLucV0 SHINE in detecting COVID-19, especially in cases with low viral loads.

Critically, the luminescent reporter is used in SHINE as a drop-in replacement for fluorescent reporters,

enabling enhanced sensitivity while still maintaining one-pot reaction chemistry.

3.3.3 Single Time Point Luminescent Readout in SHINE

To increase the deployability of bbLucV0 SHINE, we modified the reaction chemistry to enable a simpli-

fied readout process using a single end-point measurement instead of a multi-time point plate reader. We

hypothesized that increasing the concentration of furimazine, the substrate for NanoLuc, would enable a
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Figure 3.3: a, Comparison of kinetic and single time point measurements of bbLuc SHINE using synthetic SARS‐CoV‐2 RNA with
a dilution series and NTC, demonstrating compatibility with both plate readers and portable luminometers. b, Demonstration
of bbLuc SHINE's sensitivity using cellphone‐based imaging of synthetic SARS‐CoV‐2 RNA at 103 copies/µL after 60 and 120
minutes incubation, with a positive signal visible to the naked eye in some instances. Side‐by‐side comparison with plate reader
data shown at the bottom. c, Comparison of bbLuc and fluorescent SHINE assays in Nigeria using synthetic SARS‐CoV‐2 RNA,
demonstrating improved sensitivity and speed of bbLuc SHINE versus fluorescence SHINE. d, Patient sample testing data in
Nigeria, showing 80 minute readout for bbLuc SHINE assay, with raw sample signal normalized by NTC value. e, Confusion
matrices comparing bbLuc SHINE and fluorescent SHINE in Nigeria with 12 RT‐qPCR positive and 6 RT‐qPCR negative patient
samples. Results shown for 80 minute timepoints, with other time points shown in Supplementary Figure 15. 95% confidence
intervals displayed as error bars.
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longer-lasting luminescent signal, thereby allowing for a single time point measurement on a portable lumi-

nometer. By increasing the furimazine concentration from 50 nM to 150 nM and delaying its addition to

the master mix to prevent salting out, we extended the duration and sensitivity of the luminescent signal,

enabling 20x sensitivity for luminescent SHINE compared to fluorescence SHINE (Figure 2D). To con-

firm that the observed signal was due to specific Cas13 cleavage of our luciferase reporter, we performed a

no-Cas13 control reaction, which showed no detectable signal above background (Supplementary Figure

14), further validating the assay. We refer to this assay as bbLucV1 SHINE, or simply, bbLuc SHINE.

In clinical samples, bbLuc SHINE method demonstrated exceptional accuracy in detecting both pos-

itive and negative cases within 90 minutes, outperforming the fluorescent SHINE method. The bbLuc

SHINE method successfully identified 20 out of 23 positive cases and achieved a perfect 10 out of 10 ac-

curacy in identifying negative cases (Figure 2E-F). In contrast, the fluorescent SHINE method detected

18 out of 23 positive cases and also achieved a perfect 10 out of 10 accuracy in identifying negative cases

(Figure 2F).

The extended luminescence signal in bbLuc SHINE, compared to the rapid signal decay observed in

bbLucv0 SHINE, eliminates the need for kinetic time points or continuous readout. This advancement

enables the use of low-cost plate readers, which lack the built-in heating functionality of more expensive

models, for accurate single-time point measurements. The robust luminescent signal also allows for de-

tection using a portable, handheld luminometer with a single time point reader instead of a continuous

readout (Figure 3A).

To push the boundaries of bbLuc's field deployability, we conducted additional experiments using sim-

ple cellphone-based imaging. We were able to detect as few as 103 copies/µL of SARS-CoV-2 RNA using

only a smartphone camera for imaging (Figure 3B). This signal was often visible to the naked eye, under-

scoring the assay's exceptional sensitivity and potential for deployment in extremely resource-limited set-

tings where specialized equipment may not be available.

3.3.4 Enhanced Sensitivity and Field Validation in Nigeria

To assess the performance of our optimized bbLuc assay in a low-resource country, we conducted a field

validation study in Nigeria. We first performed a dilution series of synthetic SARS-CoV-2 RNA and ob-
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served a 10-fold increase in sensitivity for the SHINE reaction within 75 minutes when using the lumi-

nescent bbLuc reporter compared to the traditional fluorescent reporter (Figure 3C), consistent with our

earlier experiments. Next, we tested 18 patient samples (12 RT-qPCR positive and 6 RT-qPCR negative)

using both the luminescent and fluorescent SHINE assays. The luminescent assay correctly identified all

12 positive samples within 60 minutes (Figure 3D), compared to 3 out of 12 samples within 60 minutes, 7

out of 12 samples within 80 minutes, and 9 out of 12 samples after 3 hours with fluorescence (Figure 3E,

Supplementary Figure 15). All RT-qPCR-negative samples were negative by bbLuc; however, one replicate

of a negative sample in fluorescent SHINE displayed a false-positive after about 100 minutes, potentially

indicating a contamination or other technical error in that replicate. In aggregate, the improved speed and

sensitivity shown in these results highlight the strengths of luminescent assay, particularly useful for de-

ployable, point-of-need diagnostic modalities.

3.3.5 Equipment-free bead-based droplet generation for multiplexed fluorescent

Cas13 detection

Next, we developed a bead-based approach to reduce cost and increase deployability of CRISPR-based

multiplexed testing. To enable bead-based multiplexing of target detection, we first attached target-specific

biotinylated crRNAs to color-coded, streptavidin-coated beads, examining results when crRNA was at-

tached to beads via either 3’ end biotinylation or via 5’ end biotinylation (Figure 4A, Supplementary Figure

16). With 3’ end biotinylation, we found significant Cas13 cleavage in target compared to no target control

(NTC) down to 1 copy/uL of input. In comparison, with 5’ end biotinylation, Cas13 cleavage was not

able to distinguish an input of 104 copies/µL from NTC (Supplementary Figure 17). As such, we used 3’

biotinylated crRNA beads moving forward.

To show that our bead-based CARMEN (bbCARMEN) approach would work in the context of mul-

tiple targets, we developed assays for SARS-CoV-2 and a human internal control (RNAse P) both indi-

vidually and in combination (Figures 4B-E, Supplementary Figure 18). We added color-coded beads to a

solution containing Cas13 and additional detection components with amplified patient samples. For each

reaction, we combined the detection master mix with oil, shaking to form miniature droplets containing

the master mix and one color-coded bead (Figure 4B, Supplementary Figure 17). We then loaded samples
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Figure 3.4: a, Schematic of bbCARMEN workflow. b,Merged fluorescent images of color‐coded crRNA beads in droplets at 500
um. SARS‐CoV‐2: AF546 shown as yellow; RNase P: AF647 shown as blue; FAM reporter: shown as green. c, Fluorescence
from droplets from individual crRNA bead solutions and pooled bead solutions at 30 min post‐reaction initiation. Individual
points represent fluorescence from individual droplets. Median fluorescence with 95% confidence intervals (CIs). d, Fluores‐
cence kinetics of amplified SARS‐CoV‐2 synthetic gene fragment at 106 copies/uL and RNase P in pooled crRNA bead solution
from b & c. Red: SARS‐CoV‐2, Dark Gray: RNase P; Light Gray: NTC. Median fluorescence with 95% confidence intervals (CIs).
e, Heatmap showing SARS‐CoV‐2, RNase P, and NTC median fluorescence values at 30 min post‐reaction initiation in single and
pooled crRNA bead solutions from b & c, conducted at 106 copies/uL.
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on custom, prefabricated flow cells for readout using fluorescence microscopy and automated image anal-

ysis to track both the color-coded crRNA beads and the signal from Cas13 activity (Figure 4C-D, Figure

5A, Supplementary Figures 17-18). By 30 minutes, we were successfully able to detect fluorescence inten-

sity in droplets above background for all conditions (Figures 4D-E, Supplementary Figure 18).

3.3.6 Respiratory virus panel implementation on bbCARMEN

We next tested the performance of a larger multiplexed bbCARMEN by implementing a 9-target Respi-

ratory Virus Panel (RVP) previously characterized on the mCARMEN platform (Figure 5A) (Welch et al.

2022). We conjugated human RNase P crRNA (as an internal control) and each crRNA from the RVP to

beads with target-specific color-codes and added the beads to the reaction along with patient sample (Sup-

plementary Figure 19). We used fluorescence microscopy to track patient sample signals over time and map

crRNA/color-code combinations (Supplementary Figure 19). With the RVP, bbCARMEN successfully

distinguished all bead color-codes from one another across replicates, while simultaneously observing on-

target signal with minimal-to-no off-target signal for each panel member (Figures 5B-C, Supplementary

Figure 19).

We verified the accuracy of these results by conducting LOD studies for all respiratory virus panel mem-

bers (Figure 5B, Supplementary Figures 20-21). Overall, we found the LOD for each virus (SARS-CoV-2

and HCoV-HKU1: 2.5 copies/µL: FLUBV and HPIV3: 5 copies/µL: FLUAV and HRSV: 10 copies/µL,

HMPV: 20 copies/µL; HCoV-NL63 and HCoV-OC43: 40 copies/µL) to be in line with or slightly higher

than the LOD of the RVP on mCARMEN.

To more rigorously validate sensitivity, we tested 47 freshly collected (Delta and Omicron) SARS-CoV-

2 specimens and 9 negatives based on RT-qPCR and NGS results (Figure 5D-E). All but one positive spec-

imen (97.9%) was deemed virus-positive by bbCARMEN within 60 minutes, and all negative samples were

correctly deemed negative. To further assess the sensitivity of this assay, we also tested bbCARMEN on

two cohorts of virus-positive samples previously characterized with mCARMEN and clinically-validated

comparator assays and stored in -80C (Supplementary Figure 22). Of the 60 positive samples tested (30

SARS-CoV-2 positive and 30 HSRV positive), bbCARMEN detected 56 (93.33%) within 60 minutes,

exhibiting robust sensitivity even in samples subjected to a freeze-thaw cycle.
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Figure 3.5: a, Schematic of multiplexed RVP assay with each of the 9 viruses on panel differentiated by distinct color‐codes. b,
Fluorescence across SARS‐CoV‐2 dilution series from 106‐101 copies/uL and corresponding NTC fluorescence in a pooled bead
solution containing all 10 RVP crRNAs. Green: SARS‐CoV‐2; Gray: NTC. Bar at median fluorescence 30 min post‐reaction initi‐
ation. c, Fluorescence at 104 copies/uL for all 9 viruses on RVP. Fluorescence shown as the median value across 20 replicates
at 30 min post‐reaction initiation. d, Scatter plot comparison of SARS‐CoV‐detection at 0, 30, and 60 min time points using bb‐
CARMEN and RT‐qPCR. e, Concordance of RT‐qPCR and NGS results compared to CARMEN v2. Right, RT‐qPCR results. Left,
NGS results.
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Figure 3.6: a, Schematic of plate‐reader platform, including comparison of bbCARMEN detection kinetics on the two readout
platforms. b, bbCARMEN SARS‐CoV‐2 positive hit call at time 0, 30, and 60 mins. Green: positive only by microscope. Blue:
positive by plate reader only. Black: positive by both. c, Comparison of fluorescent signal using synthetic targets. Thresholds for
positivity shown as dashed lines. d, SARS‐CoV‐2 Patient sample detection compared between readout platforms.

3.3.7 Automated readout of bbCARMEN using commercially available consum-

ables and equipment

To further simplify deployment of this assay in low-resource settings, we reconfigured bead loading and

imaging steps to use a standard well plate and a lab plate reader instead of our previous custom flow cells

and fluorescent microscope setup (Figure 6A). We found that 96-well plates loaded with a thin layer of

droplets contained too many overlapping droplets of each color code for statistical significance in the final

diagnostic calls. However, loading onto 48 well plates enabled the droplets to be spread out over a larger

area, enabling us to distinguish between different color codes.

We compared concordance of assay results between the custom microscopy setup and the imaging plate

reader and found 100% concordance between the two readout platforms across synthetic material and

patient specimens (Figures 6B-D, Supplementary Figure 23). Moreover, the plate reader method showed

earlier discrimination between target conditions and NTC than our previous microscopy approach, sug-

gesting an improvement in both assay workflow and performance (Supplementary Figure 23). As such, the

125



changes to bead loading and imaging reduce equipment requirements, labor intensity, and data analysis

expertise while maintaining sensitivity and sensitivity of bbCARMEN.

3.4 Discussion

In this study, we employ novel bead-based approaches to achieve point-of-need and point-of-care uses in

CRISPR diagnostics. These technologies increase sensitivity and deployability in resource-constrained

point-of-care settings.

Our luminescent bead-based approach, bbLuc, provides an attractive alternative to traditional fluorescence-

based diagnostics, showing increased sensitivity in synthetic and clinical specimens. Critically, enhanced

sensitivity also has upstream effects on assay adaptation to new or emerging pathogens by reducing the

optimization time required to meet a target LOD. Furthermore, a luminescent assay reduces equipment

requirements in conventional assays by removing the need for a light source for fluorescence excitation.

By utilizing a multiplexed bead-based system for point-of-care diagnostics, bbCARMEN addresses

the significant equipment and expertise requirements of other multiplexed systems (Welch et al. 2022;

Ackerman et al. 2020). bbCARMEN maintains excellent multiplexing ability and sensitivity by using

beads as an operationally simple, inexpensive modality to perform multiplexed reactions with high speci-

ficity as shown in our clinical sample testing. Implementation of our viral respiratory panel assay further

demonstrates the ease of adaptability and its potential to dramatically increase deployability in resource-

constrained settings.

There are numerous avenues to enhance both bead-based technologies. For example, in bbLuc, we fo-

cused on the cleavage of HiBiT-nanoparticles instead of LgBiT-nanoparticles. Due to manufacturing con-

straints, we were not able to consistently manufacture an RNA linker long enough for Cas13 cleavage of

LgBiT nanoparticles, but future work may incorporate new technologies in RNA synthesis or protein-

oligo conjugation. Furthermore, we anticipate that future work may incorporate the use of cleavable

on-bead LgBiT inhibitors (“DrkBiT”) to reduce background signal from HiBiT-LgBiT interactions (Ya-

mamoto et al. 2019). In bbCARMEN, we were able to successfully resolve 9 different crRNA color-codes,

giving resolution to discriminate against different viral infections in a point-of-care setting. However, fu-
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ture work can be undertaken to improve the number of simultaneously assayable viruses by iterating on

color code technology, either through the use of new fluorescent dyes, a different combinatorial barcoding

strategy, or novel multicolor bead approaches.

bbLuc and bbCARMEN, as independent advancements in singleplexed and multiplexed assays, respec-

tively, highlight the potential of new platforms to address diverse diagnostic needs – from bridging the gap

between antigen tests and qPCR, to reducing the cost of multiplexed diagnostics. These technologies pave

the way for a new generation of diagnostic tools that can be tailored to specific applications and resource

constraints. Ultimately, these platforms represent a step forward in CRISPR diagnostics, pushing the

boundaries of sensitivity, portability, and accessibility, and opening new avenues for the rapid and accurate

detection of biological molecules in various settings.

3.5 Methods

3.5.1 Clinical samples and ethics statement

The use of excess human specimens, including nasopharyngeal swabs from Boca Biolistics, for use by the

Broad Institute were reviewed and approved by the MIT Institutional Review Board under protocol no.

1612793224. Human specimens from patients with SARS-CoV-2, HCoV-HKU1, HCoV-NL63, FLUAV,

FLUBV, HRSV and HMPV were obtained under a waiver of consent from the Mass General Brigham IRB

protocol no. 2019P003305.

3.5.2 Oligonucleotide Sequence Information

All nucleic acid sequences, including gBlocks, primers, crRNA, fluorescent oligos, and linkers, are avail-

able for bbLuc and bbCARMEN in Supplementary Table 1 and Supplementary Table 2, respectively. All

oligonucleotides used in this study were ordered from Integrated DNA Technologies (IDT). For ease of

replicability, the sequences in the supplementary tables are provided in a format compatible with IDT’s

ordering system.
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3.5.3 Sample collection and extraction

Patient samples were collected and stored in universal transport medium (UTM) or viral transport medium

(VTM) and stored at -80C. Samples for luciferase reporter testing were extracted using automatic nucleic

acid extraction on the KingFisher Flex Magnetic Particle Processor with 96 Deep Well Head (Thermo

Fisher Scientific) using MagMAX™ mirVana™ Total RNA Isolation Kit (Thermo Fisher A27828) or

MagMAX™ Prime Viral/Pathogen NA Isolation Kit (Thermo Fisher A58145), followed by an optional

DNA cleanup using TURBO™ DNase (Thermo Fisher AM2238). For bbLuc, RNA was extracted from

100μL of input volume and eluted into a final volume of 16uL water and stored at -80C. For bbCAR-

MEN, RNA was extracted from 140μL of input volume and eluted into a final volume of 50uL water and

stored at -80C.

3.5.4 Bead preparation and coupling for bbLuc

HiBiT peptides were ordered from Promega as HaloTag protein conjugates (Promega # N3010), or custom-

ordered through GenScript Inc. as a peptide with a leading glycine-serine linker (GSSGGSSG-VSGWRLFKKIS)

with either an N-terminal azido-lysine modification (for SPAAC) or with an N-terminal maleimide modi-

fication (for maleimide-thiol reactions). Biotinylated RNA linkers (Supplementary table 1) were attached

to the HiBiT peptides using either SPAAC or maleimide-thiol coupling. In some cases (Supplementary fig-

ures 7 and 8), PEG spacers (BroadPharm BP-25731, BP-25730) were used with Maleimide-thiol coupling

to extend the length of the linkers. SPAAC coupling was done at room temperature overnight with a 3:1

ratio of azide-conjugated peptide to DBCO-conjugated oligo; maleimide-thiol coupling was done using a

20:1 ratio of maleimide-conjugated peptide to thiolated oligo left at room temperature for two hours, with

an additional overnight incubation at 4C.

For bead coupling, M270 Dynabeads were removed from stock and washed using magnetic separa-

tion three times with 1 minute incubations in 1x BW with Tween (5 mM Tris-HCl (pH 7.5), 0.5 mM

EDTA, 1 M NaCl, 0.0125% Tween-20). After washing, beads were resuspended in twice the volume of 2x

Wash Buffer with Tween (10 mM Tris-HCl (pH 7.5), 1 mM EDTA, 2 M NaCl, 0.025% Tween-20). Beads

were then combined in 1X PBS with HaloTag-LgBiT protein (Promega, #CS1967B01) and HaloLigand-
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Biotin (Promega #G8281) at a 1:1.5 stoichiometric ratio (with HaloTag-LgBiT protein concentration of

80nM unless otherwise noted). Following a 30 minute incubation period on a rotation and another round

of bead washing as above, LgBiT-beads were resuspended in Tween buffer (1000uL PBS/.05% Tween

20/0.1% BSA) and HiBiT-beads were resuspended in 1x TEL buffer (0.0125% Tween: 5 mM Tris-HCl

(pH 7.5), 0.5 mM EDTA, 10 mM NaCl, 0.0125% Tween-20), followed by storage at 4C.

3.5.5 Fluorescence and luciferase-based Cas13 assays for bbLuc development

Fluorescence-based reactions were conducted as previously described in (Myhrvold et al. 2018; Barnes et

al. 2020; Welch et al. 2022; Arizti-Sanz et al. 2020; Ackerman et al. 2020; Arizti-Sanz et al. 2022) as a point

of comparison for luminescent-based reactions and used a polyU FAM reporter. RPA primers and crRNa

were designed and selected as described previously ((Myhrvold et al. 2018; Barnes et al. 2020; Welch et al.

2022; Arizti-Sanz et al. 2020; Ackerman et al. 2020; Arizti-Sanz et al. 2022)).

For amplification-free assays, Leptotrichia wadei Cas13a (LwaCas13a) protein was first resuspended to

465.7nM in 1X SB (50mM Tris-HCl pH 7.5, 600mM NaCl, 2mM DTT, 5% glycerol). A master mix was

created with the following reagents: 1X CB buffer (40mM Tris-HCl (pH 7.5), 1mM DTT, 22.5nM cr-

RNA, 2U/uL RNase Inhibitor Murine (NEB #M0314), 46.6nM LwaCas13a (GenScript), and 40mM of

polyU FAM or 20ug/uL LgBiT and 20ug/uL HiBiT beads. In luciferase reactions, beads were washed in

1x TEL buffer using a process similar to that outlined above (1x TEL buffer: 5 mM Tris-HCl (pH 7.5), 0.5

mM EDTA, 10 mM NaCl, 0.0125% Tween) before being added to the final mix. While the final reaction

concentrations of bead bound LgBiT and HiBiT were 80nM and 300nM, respectively, these concentra-

tions were varied in experiments as described above to identify these optimal conditions. Fluorescent or

luminescent kinetics were measured at 37° C on a Biotek Cytation 5 plate reader using a 384-well Low

Flange White Flat Bottom Polystyrene NBS Microplate (3574) or Corning® 384 well microplate (3821),

respectively.

For amplification reactions (SHINE), the reaction was done as previously shown in (Myhrvold et al.

2018; Barnes et al. 2020; Welch et al. 2022; Arizti-Sanz et al. 2020; Ackerman et al. 2020; Arizti-Sanz et al.

2022). LwaCas13a protein was first resuspended to 2250nM in 1X SB (50mM Tris-HCl pH 7.5, 600mM

NaCl, 2mM DTT, 5% glycerol). The master mix was created in 1X SHINE buffer (20mM HEPES pH
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8.0, 60mM KCl, 5% PEG-8000) included 45nM LwaCas13a protein, 1U/uL RNase Inhibitor Murine

(NEB #M0314), 2 mM of each rNTP (NEB #N0450), 1 U/uL NextGen T7 RNA polymerase, 2U/uL

Invitrogen SuperScript IV (SSIV) reverse transcriptase (Thermo Fisher Scientific #18090010), 0.1 U/uL

RNase H (NEB #M0297S), 14nM magnesium acetate (Millipore Sigma #63052), 140nM RPA primers for

bbLucV0 and 60mM primers for bbLucV1 (and comparator fluorescence assays), 22.5nM crRNA, and for

fluorescence SHINE, 40nM polyU FAM reporter. The reaction was created in reaction units of 107.5uL,

with one RPA pellet (TwistDx #TABAS03KIT) per reaction unit.

In the case of luciferase reactions, beads were washed as above in 1x TEL buffer then resuspended to a

4X concentration in 5mM HEPES buffer, pH 8.0. Final reaction concentration was 5µg/µL beads each

for HiBiT and LgBiT beads. Furimazine was added as described, with a final concentration of 50µM in

bbLucV0 and 150µM in bbLucV1 SHINE. Critically, in bbLucV0 we added furimazine to the 4X bead

resuspension prior to addition to the mastermix, but in bbLucV1, we added the furimazine directly to the

master mix to prevent salting out at the higher furimazine concentration. Finally, 5% by volume target or

sample was added to the reaction before measurement for three hours at 37° C in a Biotek Cytation 5 for

continuous readouts. For single time point readouts in Nigeria and where described, the Luminescence

96 by Byonoy was used as an imaging modality, with a standard 37° C incubator or thermal cycler set at

37° C (to simulate an isothermal heat block) used for reaction incubation and reactions incubated in low-

volume white 96-well plates (Revvity #66PL96025). Fluorescent data was collected in Nigeria using the

BioRad CFX96 machine, with fluorescence values background-subtracted using the first timepoint for

each well and overall baseline adjusted to the lowest collected fluorescence value, as recommended by the

manufacturer. For smartphone-based detection, the same overall reactions were used as described above

for bbLuc, scaled up to 100uL. Reactions were conducted in a thermal cycler set at 37° C (to simulate an

isothermal heat block), and imaged in a dark room using the default camera application in an iPhone 14.

Iterative optimization of the reaction was done via modification of reagent and bead concentration as

described in each experiment. Optimal conditions that produced the lowest limit of detection were incor-

porated into the final protocol as described. In each optimization experiment, the reaction component

that was changed is outlined in the results or figures above. The following conditions remained constant

across experiments: 45nM LwaCas13a protein resuspended in 1x SB (such that resuspended protein is at
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2.26uM), 1 U/uL murine RNase inhibitor, and 2mM of each rNTP.

For fluorescent data shown using kinetic timepoint-based readouts, fluorescence values were normalized

across condition by dividing time point data by the mean NTC signal at the first collected time point. Sig-

nal was deemed positive if a replicate signal was over 3 standard deviations away from the mean NTC. For

luminescence data for amplification-free conditions (including curves) and time point curves for SHINE,

luminescence values were normalized across condition by dividing time point data by the mean NTC sig-

nal at the first collected time point. For luminesce SHINE data, the larger kinetic complexity precluded

the use of a single time point to determine a positive/negative call. As such, calls were shown as lumines-

cence ratios, an overall measure of signal across the time point curve was determined. This was done by

first aligning experimental and NTC condition slopes (as computed between the time point nearest to 12

minutes and its subsequent time point) by dividing experimental condition by the NTC slope, and next

by finding the ratio of the sum of intensities across the experimental and NTC conditions. Patient samples

were determined positive with a signal threshold > 1.35. For both luminescent SHINE and fluorescent

SHINE data compared at single timepoints, signal was normalized to the average NTC of the time point;

and in luminescent SHINE, a signal was determined as positive if it exceeded 1.35x the average NTC and

3x the standard deviation of the NTCs at that time point.

3.5.6 Bead preparation and coupling for bbCARMEN

Streptavidin-coated polystyrene beads (Spherotech, no. SVP-200-4) were washed and stored in a binding

and washing buffer (2X BW Buffer: 10 mM Tris-HCL pH 7.5, 1 mM EDTA, and 2 M NaCl). To pre-

pare beads for BSA coating, 1mL of beads was washed with 1 mL of 1X BW Buffer three times before be-

ing resuspended in 2mL of 2X buffer and 2mL BSA (4mg/mL) (NEB #B9000). Beads were BSA blocked

for 3 hours on a rotating stand at room temperature before washing with 1X BW Buffer twice and resus-

pended in twice the original volume of 2X BW Buffer. BSA blocked beads were stored at 4C until use at a

2.5 ug/uL bead concentration.

crRNA and dye coupling were split into two separate steps. First, 32nM of desired crRNA was mixed

with BSA blocked beads in a 1:1 ratio and incubated at room temperature for 15 minutes. After the cou-

pling incubation, crRNA beads were washed with 1X BW Buffer once before resuspending in the original
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volume of beads with 2X BW Buffer. An equal volume of pre-mixed color-coding dyes (see “color code

construction and validation” methods for ratios) were added to the corresponding crRNA bead and incu-

bated at room temperature for 15 minutes. Color-coded crRNA beads were washed six times with 1X BW

buffer and then resuspended in 1X TEL buffer (5mM Tris-HCl pH 7.5, 0.5mM EDTA, 10mM NaCl) to

have a final bead concentration of 25 ug/uL. crRNA beads were stored at 4C until use and washed twice

prior to pooling for each experiment. Equal volumes of beads were pooled together the day of an exper-

iment and incubated in a bbCARMEN Wash Buffer (Cas13 detection master mix without Cas13, 10X

Cleavage Buffer, and viral target) for 60 minutes and washed twice with 1X BW Buffer. All washes were

accomplished by spinning at 15000 rcf on a tabletop centrifuge and discarding the supernatant. Non-BSA

blocked beads required spin times of 3.5 minutes while BSA blocked beads required 1.5 minutes.

3.5.7 Flow cell design and fabrication for bbCARMEN

Flow cell dimensions were designed in AutoCAD (AutoDesk) and optimized by empirical testing to in-

crease sample size and loading speed. In order to be compatible with existing imaging instruments, the size

of a standard microscope slide (25x75mm) was selected. The optimal lane geometry was achieved by maxi-

mizing the number of droplets captured in a single lane image field of view. To allow for easy loading, eight

10.5x5.8mm lanes were spaced out on the 75 mm long flow cell with inlet spacing of 9 mm for compatibil-

ity with 8-channel multichannel pipettes. Standard size flow cells contain two rows of eight for 16 samples

per device. Increasing flow cell dimensions to 50x75 mm enabled 32 lane imaging per device.

All flow cells were fabricated with acrylic, a single layer of double sided clear film tape, and hydrophobic

treated glass slides. In brief, 12 inch × 12 inch cast acrylic sheets (1⁄4 inch or 1/8 inch, clear) were purchased

from Amazon (Small Parts, no. B004N1JLI4) and were cut using an Epilog Fusion M2 laser cutter (60W),

producing an acrylic cover with inlets and outlets. Sheets of clear film tape were cut on the laser cutter

to provide the geometry of the lanes. Untreated glass slides were treated with Aqualpel from Amazon

(Aquapel, no.  2PACK_A) to create a hydrophobic surface. For assembly of the both the 16 and 32 lane

flow cells, the clear tape was first adhered to the Aquapel treated glass slide and then to the acrylic cover.

Flow cells were stored in plastic bags at room temperature until use.
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3.5.8 Single-step amplification for bbCARMEN

All targets for RVP2.0 were amplified in a multiplexed PCR reaction using the QIAGEN OneStep RT-

PCR Mix. A total reaction volume of 50 μl was used with some modifications to the manufacturer’s rec-

ommended reagent volumes, specifically a 1.25× final concentration of OneStep RT–PCR buffer, 2×

more QIAGEN enzyme mix and 20% RNA input. For optimal amplification, final viral primer concen-

trations varied, with SARS-CoV2, HCoV_NL63, HCoV_OC43, HPIV3, and HMPV primer concentra-

tions at 300nM, HCoV_HKU1 and HRSV at 600nM, FluA and FluB at 480nM, and RNase P at 100nM.

The following thermal cycling conditions were used: (1) reverse transcription at 50 °C for 30 min; (2) ini-

tial PCR activation at 95 °C for 15 min; and (3) 40 cycles at 94 °C for 30 s, 56 °C for 30 s and 72 °C for 30

s.

3.5.9 Cas13 detection in bbCARMEN

Detection assays were performed with 45nM purified LwaCas13a, 0.5 ug/uL of pooled crRNA beads,

500nM quenched fluorescent RNA reporter, 1 μl murine 40,000 units/mL RNase inhibitor (New Eng-

land Biolabs) in nuclease assay buffer (40 mM Tris-HCl, 60 mM NaCl, pH 7.3) with 1mM ATP, 1mM

GTP, 1mM UTP, 1mM CTP and 0.6μl T7 polymerase mix (Lucigen).

3.5.10 Emulsification, loading, and imaging in bbCARMEN flow cells.

For emulsification, detection samples (10 uL) were mixed with 2% 008-fluorosurfactant (RAN Biotech-

nologies) in fluorous oil (3M 7500, 35 μl) in a 96 well plate. Plates were sealed and physically shaken verti-

cally for up to 30 seconds and then spun down for 15 seconds.

For loading, 30 uL of excess oil was removed from each emulsion before 9 uL of droplets were loaded

into a 16 or 32 lane bbCARMEN flow cell. The background negative control was computed by analyzing

fluorescence signals from droplets containing a scrambled crRNA sequence attached to a color-coded bead.

Flow cells were sealed with a PCR film to prevent evaporation of samples.

All bbCARMEN flow cells were imaged on a Nikon TI2 microscope equipped with an automated

stage (Ludl Electronics, Bio Precision 3 LM), LED light source (Lumencor, Sola), and camera (Hama-
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matsu, Orca Flash4.0, C11440, sCMOS) using a 2× objective (Nikon, MRD00025). The following filter

cubes were used for imaging: Alexa Fluor 405: Semrock LED-DAPI-A-000; Alexa Fluor 555: Semrock

SpGold-B; Alexa Fluor 594: Semrock 3FF03-575/25-25 + FF01-615/24-25; and Alexa Fluor 647: Semrock

LF635-B. During imaging, the microscope condenser was tilted back to reduce background fluorescence

in the 488 chan- nel. Unless otherwise specified, all flow cells were imaged three times over the course of 60

minutes, with an incubation at 37° C between T30 and T60.

3.5.11 Automated bbCARMEN data analysis

CellProfiler (Stirling et al. 2021) and a custom Jupyter notebook were used to automate image analysis

for bbCARMEN (Lamprecht, Sabatini, and Carpenter 2007). First, beads were identified and measured

in red, yellow, green, and blue channels using a CellProfiler pipeline. Briefly, images were illumination

corrected by subtracting an approximation of image background from each channel. Then, bleedthrough

between color channels was computationally compensated for by image subtraction. The corrected images

were then masked to exclude the edges of the wells where droplets piled up. Beads were filtered by shape

(solidity, eccentricity) to exclude debris and by number of neighbors to exclude beads that were very close

to other beads.Beads were also associated with droplets and excluded if a droplet contained multiple beads.

The object mask for each accepted bead was expanded 5 pixels and the original bead area subtracted from

this to form a ‘donut’ shape in which intensity in the droplet blue channel was measured. For each bead,

we calculated normalized intensity measurements for each (red, yellow, green) channel by dividing the

mean intensity measurement for each channel by the sum of mean intensities across all 3 channels. Finally,

beads were also tracked across images taken at different time points using linear assignment problem (LAP)

framework (Jaqaman et al. 2008).

CellProfiler measurements were used for bead classification and FAM fluorescence measurement in a

separate downstream analysis jupyter notebook. Beads were clustered using normalized red, green, and yel-

low intensity measurements for each bead using k-means clustering. Results are displayed in a ternary plot

showing each bead’s intensity in green, yellow, and red channels and beads are colored by cluster (Supple-

mentary Figure 14). Each cluster was then associated with a virus from the panel by measuring the distance

from its measured centroid to the default centroid locations (provided by an external file) and selecting
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the label of the closest default cluster centroid. In this process, additional QC plots and metrics are also

generated and used to assess data quality. Finally, bead donut median blue channel intensities were used

to classify samples as positive or negative for each virus in the virus panel using a threshold based on either

fold difference from negative control beads (in the same well) and/or exceeding a number of standard de-

viations above the median intensity of negative control beads. Tracked bead blue channel fluorescence was

also plotted over time to observe kinetics of FAM fluorescence. The code for this pipeline is available at

https://github.com/sameedsid/bbCARMEN_analysis .

3.5.12 SCoV2 RT-qPCR protocol

To detect the presence of SARS-CoV-2 RNA, the extracted RNA samples underwent testing using the

CDC's SARS-CoV-2 RT-qPCR assay (2019-nCoV CDC EUA kit, IDT, TaqPath™ 1-Step RT-qPCR

Master Mix, CG) targeting the N1 and RP regions. The cycling conditions for the RT-qPCR were as fol-

lows: an initial hold at 25 °C for 2 min, followed by reverse transcription at 50 °C for 15 min, polymerase

activation at 95 °C for 2 min, and 45 cycles of denaturation at 95 °C for 3s, and annealing/elongation at

55 °C for 30s. The RT-qPCR analysis was performed using a QuantStudio 6 instrument from Applied

Biosystems, and the data were analyzed using the Standard Curve module of the Applied Biosystems analy-

sis software.

3.5.13 Data availability

The data, code, and detailed methods used in the design of primers and crRNAs are available at adapt.sabetilab.org.

Any other relevant data are available from the authors upon reasonable request.

3.5.14 Code availability

The code for the analysis of bbCARMEN data is available at https://github.com/sameedsid/bbCARMEN_analysis

.
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Table 3.1: Detailed Oligonucleotide Sequences

Oligo name Sequence

HaloLigand-based linker, 7U /5Biosg/rUrUrU rUrUrU rU/HaloLigand/

HaloLigand-based linker, 14U /5Biosg/rUrUrU rUrUrU rUrUrU rUrUrU rUrU/HaloLigand/

HaloLigand-based linker, 21U /5Biosg/rUrUrU rUrUrU rUrUrU rUrUrU rUrUrU rUrUrU rUrUrU/HaloLigand/

SPAAC linker, 21U, 33 dNTPs /5Biosg/rUrUrU rUrUrU rUrUrU rUrUrU rUrUrU rUrUrU rUrUrU TTA TTA TTA TTA TTA TTA GGA GGA GCA CGA GGA/3DBCO/

Thiol 21U 7-hexapeg /5Biosg/rUrU rUrUrU rUrUrU rUrUrU rUrUrU rUrUrU rUrUrU rU/iSp18//iSp18/ /iSp18//iSp18//iSp18/ /iSp18//iSp18//3ThioMC3-D/

Continued on next page
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Thiol 2-hexapeg 14 U /5Biosg//iSp18//iSp18//rUrUrU rUrUrU rUrUrU rUrUrU rUrU/3ThioMC3-D/

Thiol 3-hexapeg 10 U /5Biosg//iSp18//iSp18//iSp18//rUrUrU rUrUrU rUrUrU rU/3ThioMC3-D/

Thiol 4-hexapeg 6U /5Biosg//iSp18//iSp18//iSp18//iSp18//rUrUrU rUrUrU/3ThioMC3-D/

SPAAC 2-hexapeg 14 U /5Biosg//iSp18//iSp18/rUrUrU rUrUrU rUrUrU rUrUrU rUrU/3DBCON/

SPAAC 3-hexapeg 10 U /5Biosg//iSp18//iSp18//iSp18/rUrUrU rUrUrU rUrUrU rU/3DBCON/

SPAAC 4-hexapeg 6U /5Biosg//iSp18//iSp18//iSp18//iSp18/rUrUrU rUrUrU/3DBCON/

SPAAC 4-hexapeg 14 U /5Biosg//iSp18//iSp18//iSp18//iSp18/rUrUrU rUrUrU rUrUrU rUrUrU rUrU/3DBCON/

Thiol 2-hexapeg 21 U /5Biosg//iSp18//iSp18//rUrUrU rUrUrU rUrUrU rUrUrU rUrUrU rUrUrU rUrUrU/3ThioMC3-D/

Thiol 4-hexapeg 21 U /5Biosg//iSp18//iSp18//iSp18//iSp18//rUrUrU rUrUrU rUrUrU rUrUrU rUrUrU rUrUrU rUrUrU/3ThioMC3-D/

Spike 69/70 gBlock gaaatTAATACGACTCACTATAggTGACAAAGTTTTCAGATCCTCAGTTTTACATTCAACTCAGGACTTGTTCTTACCTTT

CTTTTCCAATGTTACTTGGTTCCATGCTATACATGTCTCTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGTCCTACC

ATTTAATGATGGTGTTTATTTTGCTTCCACTGAGAAGTCTAACATAATAAGAGGCTGGATTTTTGGTACTACTTTAGATTC

GAAGACCCAGTCCCTACTTATTGTTAATAACGCTACTAATGTTGTTATTAAAGTCTGTGAATTTC

Spike RPA primer forward gaaatTAATACGACTCACTATAgggCAACTCAGGACTTGTTCTTACCTTTCTTTTCC

Spike RPA primer reverse AAGCAAAATAAACACCATCATTAAAT

Spike crRNA 69/70 rGrArUrUrUrArGrArCrUrArCrCrCrCrArArArArArCrGrArArGrGrGrGrArCrUrArArArArCrArCrArGrGrGrUrUrArUrCrArArArCrCrUrCr

UrUrArGrUrArCrCrArU

FAM_7U_Reprter /56-FAM/rUrUrUrUrUrUrU/3IABkFQ/

SARS-CoV-2 crRNA GAUUUAGACUACCCCAAAAACGAAGGGGACUAAAACCUAAAACUAUUCACUUCAAUAGUCUGAA/3Bio/

HCoV-HKU1 crRNA GAUUUAGACUACCCCAAAAACGAAGGGGACUAAAACAAUAUGAUUACCAUUACCACAAAAAUUA/3Bio/

HCoV-NL63 crRNA GAUUUAGACUACCCCAAAAACGAAGGGGACUAAAACUUAAUAGUUUCAGCCGCAAAGAGUCUAA/3Bio/

HCoV-OC43 (BetaCoV) crRNA GAUUUAGACUACCCCAAAAACGAAGGGGACUAAAACUGUUGUAACGCCCUUAUAAUAGACCUUA/3Bio/

HPIV3 crRNA GAUUUAGACUACCCCAAAAACGAAGGGGACUAAAACGUCGCAUUUUCCCCUCAAUAGAGUCCUU/3Bio/

FluA crRNA GAUUUAGACUACCCCAAAAACGAAGGGGACUAAAACAAAAAGCUUGUGAAUUCAAAUGUCCCUG/3Bio/

FluB crRNA GAUUUAGACUACCCCAAAAACGAAGGGGACUAAAACACUAAACAGAUCAGGACAAGGUAUUUGG/3Bio/

HMPV crRNA GAUUUAGACUACCCCAAAAACGAAGGGGACUAAAACGUCGCAAAAGACAUGGUCUCCUCUUGUU/3Bio/

HRSV crRNA GAUUUAGACUACCCCAAAAACGAAGGGGACUAAAACGUCUUUUUCUAGGACAUUGUAUUGAACA/3Bio/

RNaseP crRNA GAUUUAGACUACCCCAAAAACGAAGGGGACUAAAACUCCGAGUCAGUGGCUCCCGUGUGUCGGU/3Bio/

Scrambled 1 crRNA GAUUUAGACUACCCCAAAAACGAAGGGGACUAAAACACGUCUAAUACGAUACAUCAUUACAUAU/3Bio/

Scrambled 2 crRNA GAUUUAGACUACCCCAAAAACGAAGGGGACUAAAACGUGCGCCGUUGGCUCGUGUAGCAGUUCC/3Bio/

SARS-CoV-2 forward primer gaaatTAATACGACTCACTATAgggCAATTAGAGATGGAACTTACACC

HCoV-HKU1 forward primer gaaatTAATACGACTCACTATAgggGTGTGTTAAAAGTCAATCTCCTCG

HCoV-NL63 forward primer gaaatTAATACGACTCACTATAgggACTTGCTAATGATGTTAAAGATACAC

HCoV-OC43 (BetaCoV) forward primer gaaatTAATACGACTCACTATAgggGCTAAGAATGAGAGTAGTTCATTG

HPIV3 forward primer gaaatTAATACGACTCACTATAgggTGATCTCAATGAAATTAGAAAGATGG

FluA forward primer gaaatTAATACGACTCACTATAgggGAGCAAAAAGAAGTCCTATATAAATAAG

FluB forward primer gaaatTAATACGACTCACTATAgggCAAGCAAAACAAAAAGACTAAAGGC

HMPV forward primer gaaatTAATACGACTCACTATAgggACCCAAATGAGAAAGACTGTG

HRSV forward primer gaaatTAATACGACTCACTATAgggCTTCACGAAGGCTCCACATA

RNaseP forward primer gaaatTAATACGACTCACTATAgggTTGATGAGCTGGAGCCA

SARS-CoV-2 reverse primer CTTTTTAGCTTCTTCCACAATGTC

HCoV-HKU1 reverse primer AACCATAAGGAGCATTTTGAAC

HCoV-NL63 reverse primer GACTTAACACTCTCTTCTTTAGCT

HCoV-OC43 (BetaCoV) reverse primer ATTTACAGCACTAGAACTTTCATG

HPIV3 reverse primer CTGATATCTCGCTTGGAACATCTGCAG

FluA reverse primer AATTAGCCACAAATCCATAGCG

FluB reverse primer TGTTTCTTCATTATATCTTTCTAATGGTAT

HMPV reverse primer GCAACATTAATTCCTGCTGCT

HRSV reverse primer CCCATATTGTTAGTGATGCAGG

Continued on next page

137



Table 3.1 continued from previous page

Oligo name Sequence

RNaseP reverse primer ATGTGGATGGCTGAGTTGTT

SARS-CoV-2 gBlock GCACCCATATTGTTAGTG

HCoV-HKU1 gBlock gaaatTAATACGACTCACTATAgggATGCTCTTCTTTCTATTCAGAATGGTTTTAGTGCTACCAACTCTGCACTTGCTAAA

ATACAAAGTGTTGTTAATTCTAATGCTCAAGCACTTAATAGTTTGTTACAGCAATTATTTAATAAATTTGGTGCAATTAGTT

CTTCTTTACAAGAAATTTTATCTCGTCTCGATGCTTTAGAGGCTCAGGTTCAGATTGATAGGCTTATTAATGGTCGTTTAAC

TGCTTTAAATGCTTATGTCTCTCAACAGCTTAGTGATATTTCTCTTGTAAAATTTGGTGCTGCTTTAGCTATGGAGAAGGTT

AATGAGTGTGTTAAAAGTCAATCTCCTCGTATTAATTTTTGTGGTAATGGTAATCATATTTTGTCATTAGTTCAAAATGCTC

CTTATGGTTTGTTGTTTATGCATTTTAGTTATAAACCTATTTCTTTTAAAACTGTTTTAGTAAGTCCTGGTTTGTGTATATC

AGGTGATGTAGGTATTGCACCTAAACAAGGGTAT

HCoV-NL63 gBlock gaaatTAATACGACTCACTATAgggACGTTATGTGTCTTTAGCTATTGATGCATACCCTCTTTCAAAACACCCTAATTCTGA

ATATCGTAAGGTTTTTTACGTATTACTTGATTGGGTTAAGCATCTTAACAAAAATTTGAATGAGGGTGTTCTTGAATCTTTT

TCTGTTACACTTCTTGATAATCAAGAAGATAAGTTTTGGTGTGAAGATTTTTATGCTAGTATGTATGAAAATTCTACAATAT

TGCAAGCTGCTGGTTTATGTGTTGTTTGTGGTTCACAAACTGTACTTCGTTGTGGTGATTGTCTGCGTAAGCCTATGTTGTG

CACTAAATGCGCATATGATCATGTATTTGGTACCGACCACAAGTTTATTTTGGCTATAACACCGTATGTATGTAATGCATCA

GGTTGTGGTGTTAGTGATGTCAAAAAATTGTATCTTGGTGGTTTGAATTACTATTGTACAAATCATAAACCACAGTTGTCTT

TTCCATTATGTTCAGCTGGTAATATATTTGGTTTATATAAAAATTCAGCAACTGGTTCCTTAGATGTTGAAGTTTTTAATAG

GCTTGCAACGTCTGATTGGACTGATGTTAGGGACTATAAACTTGCTAATGATGTTAAAGATACACTTAGACTCTTTGCGGCT

GAAACTATTAAAGCTAAAGAAGAGAGTGTTAAGTCTTCTTATGCTTTTG

HCoV-OC43 (BetaCoV) gBlock gaaatTAATACGACTCACTATAgggGTTGTAGATGAAGTTAGCATGCTTACCAATTATGAGCTTTCTGTTATTAATGCTCGT

ATTCGTGCTAAGCATTATGTTTATATTGGTGATCCTGCTCAATTGCCAGCACCACGTGTGTTATTGAGCAAGGGTACACTTG

AACCTAAATATTTTAACACTGTTACTAAGCTCATGTGTTGCTTAGGGCCAGACATTTTTCTTGGTACATGTTATAGATGTCC

TAAGGAAATTGTTGATACAGTGTCCGCCTTGGTTTATGAAAATAAGCTTAAGGCTAAGAATGAGAGTAGTTCATTGTGTTTT

AAGGTCTATTATAAGGGCGTTACAACACATGAAAGTTCTAGTGCTGTAAATATGCAGCAGATTTATTTGATTAATAAGTTTT

TGAAGGCTAACCCTTTGTGGCATAAAGCTGTTTTTATTAGCCCATATAATAGTCAGAACTTTGCAGCTAAGCGTGTTTTGGG

TTTACAAACCCAAACCGTGGATTCTGCTCAAGG

HPIV3 gBlock gaaatTAATACGACTCACTATAgggACCATCTGTCAACCAGAAATCAAACCAACAGAAACAAGTGAAAAAGATAGTGGATCA

ACTGACAAAAATAGACAGTCTGGGTCATCACACGAATGTACAACAGAAGCAAAAGATAGAAATATTGATCAGGAAACTGTAC

AGAGAGGACCTGGGAGAAGAGGCAGCTCAGATAGTAGAGCTGAGACTGTGGTCTCTGGAGGAATCTCCAGAAGCATCACAGA

TTCTAAAAATGGAACCCAAAACACGGAGAATATTGATCTCAATGAAATTAGAAAGATGGATAAGGACTCTATTGAGGGGAAA

ATGCGACAATCTGCAGATGTTCCAAGCGAGATATCAGGAAGTGATGGCATATTTACAACAGAACAAAGTAGAAACAGTGATC

ATGGAAGAAGCTTGGAATCTATCGGTACACCTGATACAAGATCAATAAGTGTTGTTACTGCTGCAACACCAGATGATGAAGA

AGAAATACTAATGAGAAATAGTAGGATGAAGAA

FluA gBlock gaaatTAATACGACTCACTATAgggTGAATCAACAAGGAAGAAAATTGAGAAGATAAGGCCTCTTTTAATGGATGGCACAGC

ATCACTGAGTCCTGGGATGATGATGGGCATGTTCAACATGCTAAGTACAGTCTTGGGAGTCTCGATACTGAATCTTGGACAA

AAGAAATACACCAAGACAACATACTGGTGGGATGGGCTCCAATCATCCGACGATTTTGCTCTCATAGTGAATGCACCAAACC

ATGAAGGAATACAAGCAGGAGTGGACAGATTCTACAGGACCTGCAAATTAGTGGGAATCAACATGAGCAAAAAGAAGTCCTA

TATAAATAAGACAGGGACATTTGAATTCACAAGCTTTTTTTATCGCTATGGATTTGTGGCTAATTTTAGCATGGAGCTACCC

AGCTTTGGAGTGTCTGGAGTAAATGAATCAGCTGACATGAGTATTGGAGTAACAGTGATAAAGAACAACATGATAAACAATG

ACCTTGGACCTGCAACGGCTCAGATGGCTCTTC

FluB gBlock gaaatTAATACGACTCACTATAgggCAAGCAAAACAAAAAGACTAAAGGCCCAAATACCTTGTCCTGATCTGTTTAGTATAC

CATTAGAAAGATATAATGAAGAAACAAGGGCAAAATTGAAGAAGCTAAAACCATTCTTCAATGAAGAAGGAACTGCATCTTT

GTCACCTGGGATGATGATGGGAATGTTTAATATGCTATCTACCGTGTTGGGAGTAGCTGCACTAGGTATCAAGAACATTGGA

AACAAAGAATACCTATGGGATGGACTGCAATCTTCTGATGATTTTGCTCTATTTGTTAATGCAAAGGATGAAGAAACATGTA

TGGAAGGAATAAACGACTTTTACCGAACATGTAAATTATTGGGAATAAACATGAGCAAAAAGAAAAGTTACTGTAATGAGAC

TGGAATGTTTGAATTTACAAGCATGTTCTACAGAGATGGATTTGTATCTAATTTTGCAATGGAACTCCCTTCGTTTGGGGTT

GCTGGAGTAAATGAATCAGCAGATATGGCAATA

HMPV gBlock gaaatTAATACGACTCACTATAgggGAGAAGACCAAGGGTGGTATTGTCAGAATGCAGGGTCAACTGTTTACTACCCAAATG

AGAAAGACTGTGAAACAAGAGGAGACCATGTCTTTTGCGACACAGCAGCAGGAATTAATGTTGCTGAGCAATCAAAGGAGTG

CAACATCAACATATCCACTACAAATTACCCATGCAAAGTCAGCACAGGAAGACATCCTATCA

Continued on next page
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HRSV gBlock gaaatTAATACGACTCACTATAgggGGGGCAAATATGGAAACATACGTGAACAAACTTCACGAAGGCTCCACATACACAGCT

GCTGTTCAATACAATGTCCTAGAAAAAGACGATGATCCTGCATCACTTACAATATGGGTGCCCATGTTCCAATCATCCATGC

CAGCAGATTTACTTATAAAAGAACTAGCTAATGTCAACATACTAGTGAAACAAATATCCACA

RNaseP gBlock gaaatTAATACGACTCACTATAgggTCCTTGCAGGTGGCTGCCAATACCTCCACCGTGGAGCTTGTTGATGAGCTGGAGCCA

GAGACCGACACACGGGAGCCACTGACTCGGATCCGCAACAACTCAGCCATCCACATCCGAGTCTTCAGGGTCACACCCAAGT

AATTGAAAAGACACTCCTCCACTTATCCCCTCCGTGATATGGCTCTTCGCATGCTGAGTACTGGACCTCGGACCAGAGCCAT

GTAAGAAAAGGCCTGTTCCCTGGAAGCCCAAAGGACTCTGCATTGAGGGTGGGGGTAATTGTCTCTTGGTGGCCCAGTTAGT

GGGCCTTCCTGA
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Figure 3.7: Supplementary Figure 1: Schematic of (a) quenched fluorescence vs (b) split luciferase‐based reporter systems.
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Figure 3.8: Supplementary Figure 2: Detection‐only luminescent reaction with different concentrations of LgBiT (40 nM, 80
nM, 300 nM, and 1000 nM) and 300 nM HiBiT after 3h on varied synthetic RNA target; NTC, no target control. 80nM and
40nM LgBiT concentrations showed similar detection efficiencies, with 1000nM LgBiT‐np showing heavily reduced detection,
likely due to saturation of LgBiT‐np and HiBiT‐np bead‐bead interactions. 80nM LgBiT was ultimately chosen as it demonstrated
a higher SNR of any of the conditions tested.
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Figure 3.9: Supplementary Figure 3: Optimized luminescent amplification‐free assay kinetics compared to fluorescent assay on
varied synthetic RNA target, 3 hours (80nM LgBiT, 300nM HiBiT, 200uM furimazine).
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Figure 3.10: Supplementary Figure 4: Luminescent SHINE was performed with varying makeup of PEG buffer, specifically 5%
PEG‐8000, 2.5% PEG‐8000, 0.5% PEG‐8000, and 5% PEG‐1500 on synthetic RNA target; NTC, no target control. Optimal
performance was observed with 5% PEG‐8000, with other concentrations severely limiting performance.
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Figure 3.11: Supplementary Figure 5: Amplification‐free reactions in SHINE buffer, with RPA pellets, RNase H, reverse transcrip‐
tase, and T7 RNA polymerase spiked in separately in different conditions. RNase H, reverse transcriptase, T7 RNA polymerase
additions show little relative inhibition to detection in SHINE buffer. In contrast, addition of RPA pellets significantly degrades
detection‐only performance. Experiments done on varied synthetic RNA target; NTC, no target control.

Figure 3.12: Supplementary Figure 6: Luminescent amplification‐free assays, with optimized CB buffer substituted with SHINE
buffer. Differing conditions with RPA pellets spiked in, and with constituent enzymes of RPA (SSB, USVX, USVY) added in RPA
concentrations.
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Figure 3.13: Supplementary Figure 7: We tested several different designs of oligos with different types of conjugation (SPAAC,
MT, DBCO‐PEG‐MT) and 8 types of oligos. Five different base oligos were used (Maleimide‐thiol 21U Thiol, Thiol 21U 7‐
hexapeg, 2‐hexapeg 14U, 3‐hexapeg 10U, 4‐hexapeg 6U). Three different conjugation methods were also used (Maleimide‐Thiol
and Maleiemide‐Thiol‐PEG‐DBCO). We found that the following had the best detection. The bars are ordered as descending
ratios of 102 copies/µL target to NTC signal.
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Figure 3.14: Supplementary Figure 8: We tested several different designs of oligos with different types of conjugation (SPAAC,
MT, DBCO‐PEG‐MT) and 8 types of oligos. The bars are ordered as descending ratios of 102 copies/µL target to NTC signal.
Peg0 oligos refer to oligos where DBCO‐PEGX‐maleimide moiety attached to relevant linkers have X = 0, i.e. no peg.
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Figure 3.15: Supplementary Figure 9: Luminescent SHINE assay showing different concentrations of furimazine (1x, 2x, 4x, 6x).
1X is 26µM furimazine
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Figure 3.16: Supplementary Figure 10: Luminescent SHINE assay showing different concentrations of RPA primers (100 nM,
140 nM, 180 nM, 260 nM).
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Figure 3.17: Supplementary Figure 11: We tested different concentrations of magnesium acetate. We found that 14 nM of
MgOAc has the best signal‐to‐noise ratio at low sensitivity, however 18‐26 nM had better speed (faster detection prior to 40
minutes).
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Figure 3.18: Supplementary Figure 12: Luminescent SHINE assay results for a dilution series of synthetic SARS‐CoV‐2 RNA,
ranging from 106 to 31.25 copies/µL, using concentrations of furimazine (50 µM), RPA primers (140 nM), and magnesium ac‐
etate (14 nM). The assay demonstrates an analytical sensitivity of 32 copies/µL within 75 minutes.
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Figure 3.19: Supplementary Figure 13: We compared the performance of bbLucV0 SHINE and fluorescent SHINE to a gold‐
standard RT‐qPCR on RNA extracted from 63 clinical swabs from suspected COVID‐19 patients. Four out of 63 samples were
negative for RNase P, a control gene that confirms adequate sample collection. Among the remaining 59 samples, 29 were
RT‐qPCR confirmed COVID‐19 positive and 30 were confirmed COVID‐19 negative. The remaining four were ruled inconclu‐
sive as they were negative for the Rnase P control test. bbLuc SHINE detected SARS‐CoV‐2 in 26 of the 29 positive samples
(89.6% concurrence) compared to 23 of the 29 positive samples (79.3%) in fluorescent SHINE. Every positive sample detected
by fluorescent SHINE was also detected as positive by our luminescent system, which additionally detected 3 high Ct (Ct > 28.5)
samples that the fluorescent SHINE did not. Both fluorescent and luminescent SHINE correctly identified all 30 RT‐qPCR nega‐
tive samples as negative. (A) bbLucV0 SHINE scores for each patient sample (B) Comparison of bbLucV0 score and Ct value; (C)
Confusion matrix comparing performance of bbLucV0 SHINE and fluorescence SHINE.
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Figure 3.20: Supplementary Figure 14: Luminescent SHINE reactions (a) with and (b) without Cas13 were conducted to confirm
that signal was due to Cas13‐based cleavage of bbLuc reporter and not due to other effects such as contamination. Mastermixes
were created in parallel with the same reagents and identical composition, except the replacement of Cas13 with excess water
in (B).
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Figure 3.21: Supplementary Figure 15: We tested 18 patient samples (12 RT‐qPCR positive and 6 RT‐qPCR negative) using both
the luminescent and fluorescent SHINE assays. (A) bbLuc readout after 60 minutes, showing 12 out of 12 RT‐qPCR determined
positive samples as positive and 6 out of 6 RT‐qPCR samples as negative. (B‐E) Confusion matrix comparisons of bbLuc and
Fluorescent SHINE at 60, 80, 120, and 180 minutes. We note that because we used a portable luminometer for bbLuc test‐
ing in Nigeria, the bbLuc assay was moved from a 37° C incubator to the portable luminometer, and back, for each time point
collected.

153

http://paperpile.com/b/XUQpem/blR4
http://paperpile.com/b/XUQpem/blR4


Figure 3.22: Supplementary Figure 16: a, Kinetics of SARS‐CoV‐2 at 106 and 103 copies/uL with SARS‐CoV‐2 crRNA either
bound or not bound to a biotinylated bead. Fluorescence measured on the Cytation 5 plate reader. b, Image of flow cell with 5.8
x 10.5 mm lane dimensions that can be loaded using a multichannel pipette. Flow cells fabricated with 16 lanes, 25 x 75 mm,
or 32 lanes, 50 x 75 mm. Shown as 16 lanes in b. c, Fluorescent images of droplets in the absence of beads (left) or presence of
crRNA‐beads (right) SARS‐CoV‐2 at 106 copies/uL. d, Fluorescence kinetics of SARS‐CoV‐2 crRNA in droplets with or without
bead attachment and compared to signal from a no droplet control.
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Figure 3.23: Supplementary Figure 17: a, Fluorescence across amplified SARS‐CoV‐2 dilution series from 104‐100 copies/uL at
0, 30, and 60 min post‐reaction initiation. Top: 5’ biotinylated crRNA‐bead pools; Bottom: 3’ biotinylated crRNA‐bead pools;
Green: SARS‐CoV‐2; Gray: NTC. Bar at median fluorescence. b, Fluorescence kinetics of SARS‐CoV‐2 at 106 copies/uL from 3’
and 5’ biotinylated crRNA‐bead pools. Green: SARS‐CoV‐2; Black: NTC; Closed points: 3’ biotinylated crRNA; Open points: 5’
biotinylated crRNA. c, Heatmap of median SARS‐CoV‐2 and NTC fluorescence at 60 min post‐reaction initiation from a. Asterisk
(*) represents positive signal detected above threshold.
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Figure 3.24: Supplementary Figure 18: a, Schematic of bbCARMEN flow cell imaging up to 60 min post‐reaction initiation. b,
Fluorescent images at 0, 30, and 60 min post‐reaction in 4 different fluorescent channels. Synthetic SARS‐CoV‐2 RNA at 106

copies/uL was spiked into RNase P. Blue: AF647; Red: AF594; Yellow: AF564; Green: FAM. AF647: Semrock LF635‐B; AF594:
Semrock 3FF03‐575/25‐25 and FF01‐615/24‐25; AF546: Semrock SpGold‐B; FAM: Semrock GFP‐1828A. Scale bar: 500 µm.
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Figure 3.25: Supplementary Figure 19: a, Schematic of bbCARMEN flow cell imaging up to 60 min post‐reaction initiation. b,
Fluorescent images at 0, 30, and 60 min post‐reaction in 4 different fluorescent channels. Synthetic SARS‐CoV‐2 RNA at 106

copies/uL was spiked into RNase P. Blue: AF647; Red: AF594; Yellow: AF564; Green: FAM. AF647: Semrock LF635‐B; AF594:
Semrock 3FF03‐575/25‐25 and FF01‐615/24‐25; AF546: Semrock SpGold‐B; FAM: Semrock GFP‐1828A. Scale bar: 500 µm.
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Figure 3.26: Supplementary Figure 20: a, Schematic of fluorescence values derived from signals within the donuts formed
around a bead within a droplet. b, FAM fluorescence within donuts of each color‐coded crRNA bead population that make
up RVP at 0, 30, and 60 min post‐reaction initiation. Bar at median fluorescence. Thresholds shown as dashed lines at each time
point calculated as 3x the standard deviation of the NTC. c‐e, Tukey box and whiskers plot of fluorescence values across lane
replicates at 0, 30, and 60 min post‐reaction initiation. Outliers represented as single points. c, NTC fluorescence. d, SARS‐CoV‐
2 fluorescence. e, RNase P fluorescence.
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Figure 3.27: Supplementary Figure 21: a, Schematic of LOD testing with bbCARMEN. b, Fluorescence of SARS‐CoV‐2, 2.5
copies/uL, and NTC for each of the 20 technical replicates. Individual points represent signal from a single droplet with a bar
at median fluorescence. Green: SARS‐CoV‐2; Black: NTC. c, Median fluorescence (n=20) at the LOD for each of the 9 viruses
on RVP as established by spiking synthetic RNA into negative control RNA. Green: virus; Gray: RNase P; Dashed line: Thresh‐
old derived from NTC. d, Comparison of RVP LODs across the CARMEN technologies. Green: CARMEN v2 RVP assay; Teal:
CARMEN v2 RVP assay detectable by mCARMEN; Blue: mCARMEN RVP assay
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Figure 3.28: Supplementary Figure 22: a, Schematic of patient sample testing, with 79 patient samples tested, including 45
SARS‐CoV‐2 samples (30 positive, 15 negative) and 34 HRSV samples (30 positive, 4 negative). b, Concordance of bbCARMEN
and bbCARMEN for 79 patient samples. c, Scatter plot of scaled normalized fluorescent values compared to viral Ct values
detected by RT‐qPCR at 0 min, 30 min, and 60 min timepoints for the positive SARS‐CoV‐2 samples.
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Figure 3.29: Supplementary Figure 23: a, Heatmaps at 60 min post‐reaction initiation. b, Tukey box and whisker plots at 103

copies/uL 60 min post‐reaction initiation; dashed line: 3 std dev above the median NTC. c, Kinetic curves of runs with 104 and
103 copies of SARS‐CoV‐2 on the microscope and plate reader‐based platforms, including scrambled crRNA NTC values for each
input sample.
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4.1 Abstract

Deep learning tools such as convolutional neural networks (CNNs) and transformers have spurred great

advancements in computational biology. However, existing methods are constrained architecturally in

context length, computational complexity, and model size. This paper introduces Janus, a sub-quadratic

architecture for sequence modeling, which combines projected gated convolutions and structured state

spaces to achieve local and global context with single-nucleotide resolution. Janus outperforms CNN-,

GPT-, BERT-, and long convolution-based models in many tested genomics tasks without pre-training

and with 4x-781x fewer parameters. In the proteimics domain, Janus similarly outperforms pre-trained

attention-based models, including ESM-1B and TAPE-BERT, on remote homology prediction without

pre-training and while using 3,308x-23,636x fewer parameters.

4.2 Introduction

Increasingly sophisticated deep learning models are used to understand biological systems, with emer-

gent work relying on larger pre-trained models to capture the underlying sequence-function relationships

hidden in the genomic and proteomic landscapes. While these techniques have shown promise, they still

possess inherent limitations that hinder efficient modeling of sequences at scale, a challenge particularly rel-

evant in fields such as genomics with large datasets and complex chemical relationships between sequences.

Two architectural paradigms have dominated in computational biology: convolutional neural networks

(CNNs), and more recently, transformers. Convolutions are highly parallelizable primitives which demon-

strate strong performance on determining localized patterns, like motifs in DNA sequences 34,32. However,

CNNs are constrained by an inherently low receptive field, a consequence of fixed-length kernels that are

typically smaller than the sequence length. This limitation makes it challenging to capture relationships
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over extensive distances such as tens of thousands of base pairs, a task that remains difficult even when

employing multiple filters and dilated convolutions 2. On the other hand, transformers excel in modeling

global pairwise relationships and have demonstrated remarkable success in generative and classification

tasks 20,2. However, transformers are limited by their quadratic complexity in computing attention, con-

straining context size and sequence representation.

Integrating both local and global contexts is crucial for maximizing performance in biological tasks,

which involve a complex interplay of short- and long-range interactions between sequence elements. While

transformers excel in capturing global context, they face challenges in effectively integrating local sequence

details, leading to a reliance on combining them with CNNs for a more comprehensive understanding.

This underscores the need for architectures that can inherently balance and integrate both local and global

contexts efficiently.

Current efforts in model development are directed towards refining attention mechanisms in transform-

ers to maintain input-dependent interactions while balancing efficiency with the global and local trade-

off. In response to these limitations, a new generation of models, namely the State Spaces Sequence-to-

Sequence model (S4) and Hyena, have emerged 15,25. These models pivot towards enhancing convolutions

by leveraging state space theory and multi-layer perceptrons to implicitly create dynamic, input-dependent

long convolution kernels.

While state space and long convolution models have pushed the boundaries in reasoning and context

length in computational biology, certain challenges in modelling remain to be addressed 23. While S4 and

its variants produce input-dependent filters for convolutions, they struggle with in-context learning and

associative recall tasks 1. Furthermore, while expanding the context window in the biological variant of

Hyena, HyenaDNA 23, has proven beneficial for certain genomic tasks, it paradoxically diminishes perfor-

mance on tasks involving shorter sequences. These issues suggests a deeper, foundational problem: how

to effectively model sequences akin to transformers while still supporting extensive in-context learning for

long sequences 1.

A key to understanding this problem lies in the mechanics of attention in transformers. Specifically,

the attention mechanism enables a selection of key features in the data using an input-dependent gating

strategy, in contrast to S4 which only has learnable filters without an input-dependent selection. This leads
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Figure 4.1: The architecture employs a Projected Gated Convolution (PGC) to encode one‐hot encoded (OHE) protein se‐
quences into a rich feature representation, capturing local interaction patterns within the protein backbone. These PGC em‐
beddings are further processed through an S4D layer, which integrates both local and global sequence information. The model
effectively combines local structural insights with global contextual relationships, enabling accurate prediction of protein proper‐
ties.

to poor performance in associative recall and in tasks which require an understanding of sequence interac-

tions, as the modelling is dictated by static model parameters. To imbue convolutions with a similar level

of adaptability and responsiveness found in attention mechanisms, there is a need for both gating mecha-

nisms and input-dependent filters.

Guided by this understanding, we develop Janus, a new architecture that combines projected gated

convolutions and subsequent S4 layers to address the need of both gating and input-dependent filters. By

introducing gating, we enable the model to modulate the flow of information based on the input, akin to

how attention mechanisms in transformers selectively weigh different parts of the input. Subsequently,

the input-dependent nature of the convolution filters in S4 allows for a dynamic, data-responsive kernel,

echoing the adaptability seen in attention.

Specifically, we extend the data modulation concept introduced by BaseConv 1 by adding a learnable

linear projection layer followed by root mean square normalization (RMSNorm) 33 normalization before

and after the depth-wise one dimensional (1D) convolution. The pre-convolution projection layer facili-

tates learning by embedding the input into an intermediate space while the post-convolution linear layer

decodes the gated convolution outputs back to the original hidden state dimension. The convolution be-

tween these projection layers efficiently extracts local sequence features. In parallel, we use an additional
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learnable linear projection to capture global sequence features. We then compute an element-wise product

between the local convolution features and global linear features, enabling a comprehensive sequence anal-

ysis that accounts for both local and global context. The gated output is then projected and passed into the

structured state space sequence model (S4D), which incorporates long-range dependencies.

The result is a model that not only mimics the sub-sequence interaction capabilities of transformers

but does so with increased efficiency and scalability. This is particularly vital for biological tasks, where

sequences are long and the relationships within the data are complex. By leveraging the input-dependent

nature of both gating and convolution filters, our architecture offers a nuanced balance between the ex-

pressiveness of attention mechanisms and the efficiency of convolutions, potentially setting a new standard

for sequence modeling in computational biology.

We evaluate Janus on a broad array of biological tasks, achieving state-of-the-art (SOTA) performance in

most tasks while using significantly fewer parameters than competing models. Across chromatin profiling,

gene regulation, and clustered regularly interspaced short palindromic repeats (CRISPR)- related tasks,

Janus outperforms CNN-, BERT-, GPT-, and long convolution-based models while using 4-30x fewer

parameters. In protein-related sequence modelling tasks, a 55 thousand parameter Janus model outper-

formed models ESM-1B 27 and TAPE-BERT 26, which are 650 million and 91 million parameter pretrained

models, respectively, using a 55 thousand parameter Janus model without pre-training.

We highlight three main contributions of this work.

• First, we introduce a new model architecture, Janus, that is highly expressive, lightweight, and

straightforward to implement.

• Second, this study demonstrates the broadest application of efficient convolutions and state spaces

to biological tasks, including the first application to protein-related tasks.

• Third, by outperforming existing state of the art models with significantly smaller Janus models,

our model establishes a new promising subfamily of compact and easy to implement subquadratic

architectures.
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4.3 Preliminaries and Related Work

Deep learning applications in biological phenomena revolve around learning underlying representations

or motifs in biological sequences. As highlighted above, CNNs and transformers have been used in the last

decade with great success. Along with this, new architectures have recently emerged that enable low com-

plexity and long-range sequence modeling, potentially enabling the path to more expressive subquadratic

models for biological sequence modeling.

4.3.1 CNNs for Sequence Modeling

CNNs have shown robust performance across a wide array of biological sequence modeling tasks, from

CRISPR enzyme activity prediction to DNA architecture prediction. These networks excel in capturing

local patterns such as DNA-binding sequences (motifs), thanks to their high parallelizability and specialize

in local feature extraction 10,12. Foundation models in biology frequently employ CNNs for tasks such

as encoding to a classification head or as a downsampling and implicit tokenization mechanism, thereby

integrating CNNs with transformer blocks. This integration highlights CNN strengths in local feature

extraction and positional information preservation, crucial for understanding biological functions 2,10,20.

In a 1D CNN, a causal convolution operation is performed on a discrete input sequence u[n] of length

N and a kernel k[m] of length M. This process involves sliding the kernel k[m] across the input sequence

u[n] and calculating a weighted sum at each position, expressed as 1,25:

(u ∗ k)[n] =
M∑

m=0
u[n−m] · k[m] (4.1)

While this operation typically has a computational complexity of O(N2), the Fast Fourier Transform

(FFT) allows for a more efficient computation at O(N logN). By transforming both the input and the

kernel into the frequency domain using FFT, performing an element-wise multiplication, and then apply-

ing the inverse FFT, the convolution can be computed as (u ∗ k)[n] = F−1{F{u} · F{k}}, where F

represents the Fourier transform and F−1 is its inverse.

A key feature of convolutions is shift equivariance, which enables convolutions to respond to patterns
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regardless of their position in a sequence; this is critical in biological contexts, where the function of se-

quences such as protein-binding sites depends on the pattern of elements rather than their absolute po-

sitions. However, the inherent limitations of CNNs, particularly their low receptive fields, restrict their

effectiveness in modeling long-range sequence interactions, necessitating their combination with attention-

based architectures like transformers to model such interactions.

4.3.2 Transformers

One of the most prevalent architectures for biological sequence analysis is the transformer, which uses an

internal attention mechanism to compute pairwise interactions at all positions in a given sequence. This

attention mechanism is defined using projections of the input u to a query matrix Q, key matrix K, and

value matrix V, along with the internal dimension dk of the key projections 29:

A = softmax
(
QKT
√
dk

)
V (4.2)

This attention mechanism enables a controlled, gated flow of data through the softmax function, enabling

a propagation of the most relevant pairwise interactions in a particular sequence. The pairwise nature of

attention is suited particularly well for biological tasks, which often consist of pairwise interactions, for

example in enhancer-promoter relationships in gene expression or amino-acid interactions in protein fold-

ing. While this mechanism has been central to recent innovations such as AlphaFold 18, ESM-Fold 27, and

Enformer 2, transformers struggle with capturing local motifs and are constrained by a quadratic O(N2)

complexity with sequence length N.

4.3.3 Heterogeneous and Hierarchical Architectures

Heterogeneous architectures have been developed in an attempt to leverage the localized strengths of con-

volutions with global pairwise relationships of transformers. For instance, ProteinBERT 3, a foundation

model for protein sequences, employs CNNs for input sequences and linear layers for annotations, with

the outputs fed into a global attention layer. This architecture underscores the interdependency between

local representations, captured by convolutions, and global representations, captured by transformers.
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However, the scale of these models can pose significant computational and resource challenges for local

deployment, with even the distilled variant of ProteinBERT 9 consisting of 230 million parameters.

Hierarchical architectures are another approach for leveraging both local and global contexts in a given

sequence. To capture local features typically extracted by CNNs, hierarchical attention models like Shift-

ing Window Attention (Swin) transformers utilize different types of attention blocks across different con-

text lengths 20. Specifically, these models utilize multi-head attention blocks for local processing, followed

by shifting window attention for cross-window global attention. ProtFlash 30 represents another approach,

employing mixed chunk attention that combines quadratic attention for local chunks with linear atten-

tion for global context. While both of these models have demonstrated excellent performance, they are still

limited by a quadratic complexity as window or chunk length approaches the length of the sequence.

4.3.4 Enabling Long Range Sequence Modeling with Structured State Spaces Mod-

els

A new family of sequence models based on state space has recently been introduced to address the limita-

tions of transformers and convolutions 15,16. This family models sequences based on a linear mapping of

input sequence u(t) ∈ RM to output signal y(t) ∈ RM through a latent representation x(t) ∈ RN:

x′(t) = A(t)x(t) + B(t)u(t)

y(t) =C(t) x(t) where A(t) ∈ RN×N,B(t) ∈ RN×M,C(t) ∈ RM×N.

Structured state space models, namely S4 and Mamba 15,13, have been shown to efficiently approximate

and memorize long sequences. This efficiency comes from their unique ability to dynamically represent a

sequence. In S4, the learning process involves updating the parameters A, B, C to effectively map an input

sequence u to an output y15. This formalizes the earlier notion of input-dependent convolutions where the

learnable filter are a result of the dynamics of the state space for a given input. 1

S4D 14, a variant of S4, enhances this process through an efficient diagonalization of the state spaces.

This diagonalization allows S4D to retain the fundamental properties of S4 but simplifies the computa-

tion by focusing on the essential components of state space matrices. The S4D model uses these matrices to

compute an implicit convolutional kernel K, which captures the temporal dynamics of the sequence. This

kernel is represented as a discretized version of a continuous convolution, typically using a bilinear dis-
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cretization approach. The linear ordinary differential equations (ODE) representation given by equations

4.3.4 and 4.3.4 can be constructed as a convolution by 16,8:

K(t) = CetAB

y(t) =(K * u)(t) (4.3)

Here, the convolutional kernel K(t) in S4D is a linear combination of basis functions Kn(t), each repre-

senting a different aspect of the sequence dynamics 12,14. The coefficients C control this combination:

K(t) =
N−1∑
n=0

CnKn(t) Kn(t) := e⊤n etAB (4.4)

This representation shows how S4D captures temporal dependencies in sequences, simplifying the compu-

tational process while maintaining the core strengths of the S4 model.

4.3.5 Gating and Data Modulation Strategies for convolution models

One of the driving factors that makes attention so expressive is its data modulation of inputs by applying

the softmax non-linearity. To achieve comparable data modulation, efficient long convolution models like

H3 7 and Hyena 25 rely on attention-esque gating of these efficient convolution blocks or on dense activa-

tions, respectively. Most recently, a measurement study on associative recall performance of these highly

efficient convolution models proposed an efficient gating strategy called BaseConv 1, which takes an input

sequence u and provides it to both a depthwise convolution and a linear layer. This extends convolutions

with input-dependent mixing to evaluate subsequence interactions. The output of the convolution and

linear layer are then gated with the whole operation calculated sub quadratically.

4.4 Methods

The Janus architecture integrates two distinct stages for enhanced sequence processing: (1) first, a pro-

jected gated convolution module, which builds upon the BaseConv 1 model of Arora et al. by incorpo-

rating linear projections coupled with RMSNorm at the input, gating, and output stages; and (2) next, a
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second stage diagonalized state space model, S4D, which leverages the mixed input tokens from the first

stage. This setup facilitates the learning of both local and global context within sequences, capitalizing on

the strengths of the S4D architecture to address complex dependencies in the data.

4.4.1 Projected BaseConv Module

At the first stage of our model, a projected biological sequence represented by u ∈ RN×d, where N is the

sequence length and d is the projected feature dimensionality, undergoes two primary transformations.

First, in each layer ℓ the sequence u is linearly projected using a weight matrix Wℓ
in ∈ Rd×d′ and a bias

vector bℓin ∈ RN×d′ , where d′ is the internal projection dimension. This linear projection, followed by

RMS normalization, transforms the sequence to emphasize its global context. This output u′proj is then

processed through a depthwise 1D convolutional layer, applying a set of d′ learnable filters hℓ ∈ RN′ to the

sequence, where N′ < N, and the addition of another bias vector bℓ2 ∈ RN×d′ . This convolution, adept

at extracting local features, maintains shift equivariance, ensuring sensitivity to the relative positioning of

features within u and capturing local dependencies. In parallel, a linear projection of u′proj computes global

features using a weight matrix Wℓ ∈ Rd′×d′ and a bias vector bℓ1 ∈ RN×d′ . The resulting vectors of the

convolution and projection of u′proj are then element-wise multiplied to form u′conv. This is then further

mixed via a subsequent projection using weight matrix Wℓ
out ∈ Rd′×d and a bias vector bℓout ∈ RN×d,

and followed by an RMS normalization step. This process ensures a thorough integration of both local and

global features, crucial for effective modeling of biological sequences.

The projected BaseConv Module can be formulated as: u’proj = RMSNorm
(
u ·Wℓ

in + bℓin
)

u′conv = RMSNorm
(
u′proj ·Wℓ + bℓ1

)
⊙
(
hℓ ∗ u′proj + bℓ2

)
y’ = RMSNorm

(
u′conv ·Wℓ

out + bℓout
)

4.4.2 S4D for Long Range Sequence Modeling

A key insight of our work is to use our first stage projected and gated convolution results as an input to a

structured state space model with diagonalized state spaces (S4D) 14. As such, the combined architecture

leverages both local and global context provided by the first stage to enhance its capacity for modeling long-
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range dependencies. The Janus model outputs, enriched by the gating mechanism, are projected back to

the hidden state size compatible with S4D. This integration allows S4D to operate on a more expressive

latent space informed by the nuanced representations captured by projected BaseConv.

By integrating the outputs from the projected BaseConv into S4D, Janus benefits from the first stage’s

ability to capture both local and global context. This enhanced representation, fed into the S4D model,

allows for a more comprehensive understanding of the sequence dynamics. The structural basis functions

of S4D effectively process these enriched representations, enabling the model to capture complex, long-

range dependencies inherent in sequential data. This integration not only boosts the expressive power of

the latent space but also ensures that the model is well-equipped to handle the intricacies of various tasks,

be it classification or regression, in the realm of computational biology.

4.4.3 Biological Domain Explorations

To benchmark performance and generalization, we evaluate Janus across diverse biological prediction tasks

without any pretraining. These encompass major genomic and proteomic challenges including chromatin

profiles, gene regulation, CRISPR activity, and protein fitness landscapes. This selection tests intrinsic

model capacity to tackle distinct learning objectives pertinent to key areas of computational biology.

Table 4.1: Model performance on GenomicBenchmark Datasets on Top‐1 (%) accuracy

Models Janus (ours) Gpt HyenaDna HyenaDNA DNABERT

Pretrained no yes no yes yes

Model Parameters 106K 529k 436k 436k 110M

Mouse Enhancers 80.9 79.3 84.7 85.1 66.9
Coding vs Intergenomic 94.0 91.2 90.9 91.3 92.5
Human vs Worm 96.6 96.6 96.4 96.6 96.5
Human Enhancers Cohn 73.4 72.9 72.9 74.2 74.0
Human Enhancers Ensembl 86.8 88.3 85.7 89.2 85.7
Human Regulatory 93.3 91.8 90.4 93.8 88.1
Human Nontata Promoters 96.7 90.1 93.3 96.6 85.6
Human OCR Ensemble 79.9 79.9 78.8 80.9 75.1
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4.5 Experiments

We assess Janus on tasks spanning major biological domains without specialized tuning or pretraining. In

genomics, we predict chromatin profiling of DNA sequence 34 and performance in gene regulation on

the GenomicBenchmark 11 dateset. We also predict CRISPR editing efficacy 21,6 and in proteomics, we

model fitness landscapes 5, enzymatic activities, and complex structural properties using the Tasks Assess-

ing Protein Embeddings (TAPE) dataset 26. We compare off-the-shelf Janus performance to state-of-the-art

models to elucidate the tradeoffs between specialized inductive biases and generalization capacity. This

comprehensive evaluation probes intrinsic versatility to tackle varied regression and classification objectives

with Janus.

4.5.1 Genomics tasks

Chromatin profiling: Given the pivotal role of epigenetic regulatory activity in controlling gene expres-

sion, we next tested Janus in this domain. The DeepSEA dataset 34 is employed for this evaluation, as it

extensively profiles human genomic epigenetic regulatory activity using DNase-seq and ChIP-seq assays.

This dataset annotates 919 chromatin accessibility and histone modification features at single nucleotide

resolution, posing a 919-way multilabel classification challenge essential for evaluating a model’s capac-

ity to decode the regulatory DNA language and comprehend long-range chromosomal grammar. In tests

involving 1,000 nucleotides long genomics sequences (Table 4.2), a Janus model with 678k parameters

achieves an SOTA AUC-ROC of 93.1 on DNase I-hypersensitive sites (DHS). However, we note that

while Janus performs competitively with competing models with a 1,000 sequence length, there is a persis-

tent 3-4% performance gap for histone mark classification compared to models evaluated on sequences of

length 8,000.

GenomicBenchmarks: In a standardized suite of genomics benchmarks, which includes a variety of

classification tasks targeting key gene-regulating regions (Table 4.1), the Janus model achieves notably bet-

ter performance against SOTA baselines, despite being significantly more compact. Janus is approximately

four times smaller than any other model in this comparison, yet it consistently surpasses larger models.

These benchmarks evaluate Janus’s ability to process sequences ranging from 200 to 4,776 bases. Remark-
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Table 4.2: Comparative Analysis on Chromatin Profile 919‐way classification: AUC‐ROC for prediction in transcription factor
(TF), DNase I‐hypersensitive sites (DHS), and histone markers (HM)

AUC-ROC
Model Params Len TF DHS HM

DeepSEA 40M 1k 95.8 92.3 85.6
BigBird 110M 8k 96.1 92.1 88.7
HyenaDNA 7M 1k 96.4 93.0 86.3
HyenaDNA 3.5M 8k 95.5 91.7 89.3
Janus 678K 1k 95.9 93.1 86.1

ably, without any pre-training, Janus outperforms the pre-trained DNABERT 17 in 7 of 8 tasks. It also ex-

ceeds the performance of a pre-trained GPT-based DNA model in 6 out of 8 tasks, with equal performance

in another task. When compared to the long convolution-based HyenaDNA, Janus demonstrates supe-

rior results in 7 out of 8 tasks when both models are not pre-trained. Even in scenarios where HyenaDNA

is pre-trained and Janus is not, Janus still outperforms HyenaDNA in 3 out of 8 tasks. This highlights

Janus’s efficiency and robustness, especially notable given its significantly smaller size and ability to handle

complex genomic sequences without extensive pre-training.

4.5.2 CRISPR Tasks

In CRISPR technologies, we rigorously evaluate Janus models across two applications: viral diagnostics

using Cas13 and gene edit targeting with Cas9. CRISPR enzymes can be programmed using a “guide”

RNA sequence to find and respond to a specific target sequence, with the strength of response differeing

with respect to the specific guide-target sequence pair.

Cas13 diagnostics: We find that Janus demonstrates SOTA performance in Cas13-related tasks (Table

4.3) with 31.6x fewer parameters than the CNN-based ADAPT model. Specifically, in classification tasks,

Janus has an AUC-ROC and AUPR of 0.939 and 0.990, respectively, compared to 0.866 and 0.972 for

the ADAPT model. In regression tasks, Janus again outperforms the CNN-based model, with Spearman’s

correlation coefficients of 0.856 and 0.810, compared to 0.774 and 0.686 for the ADAPT models looking

at all guide-target pairs and only positive-identified guide-target pairs, respectively. Highlighting the effi-

ciency and expressivity of Janus, these performance gains were achieved with a model comprising only 3.8k
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parameters, in contrast to the ADAPT model’s 120k parameters.

Cas9 genome editing: Janus exhibits similarly promising performance in the Cas9 genome editing

domain, beating pre-established models for Cas9 performance in almost all tested datasets. Across all 9

tested datasets (Table 4.4), Janus achieves an average Spearman’s correlation of 0.51, compared to 0.45 and

0.36 for CRISPRon 32 and DeepSpCas9 19, both highly-used CNN-based models. Impressively, in the

Behan2019 dataset, Janus more than doubled the correlation score of CRISPRon 32 and DeepSpCas9 19,

with a coefficient of 0.439 compared to 0.219 and 0.198, respectively.

Table 4.3: Comparative Analysis on Cas13a: AUC‐ROC, AUPR, Spearman’s Correlations, and Model Parameters

Adapt CNN Janus (Ours)

Model Parameters 120k 3.8k

AUC-ROC 0.866 0.939
AUPR 0.972 0.990
All Guide-Targets Spearman’s 0.774 0.856
Positive Only Spearman’s 0.686 0.810

Table 4.4: Comparative Analysis on Cas9: 5‐fold Spearman’s Correlations, and Model Parameters

Dataset Janus (Ours) CRISPRon DeepSpCas9

Model Parameters 13.3k 420k 320k

Doench2014_mouse 0.508 0.445 0.432
Doench2014_human 0.513 0.457 0.454
Doench2016 0.416 0.386 0.389
Wang2014 0.421 0.359 0.050
Munoz2016 0.474 0.317 0.085
Behan2019 0.439 0.219 0.198
Kim2019 0.747 0.896 0.773
Aguirre216 0.562 0.538 0.525

4.5.3 Protein Tasks

Proteins are complex biomolecules whose sequence directly determines structure and function. A key chal-

lenge is modeling higher-order epistatic effects, wherein amino acids interact nonlinearly and at varying

distances to alter protein properties 4. As such, protein-related tasks serve as ideal tests for the Janus archi-

tecture, which was specifically designed to evaluate interactions at varying distances.
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Protein Fitness: We first test Janus on a group of three protein datasets exhibiting epistasis: the Gif-

ford antibody enrichment dataset, which shows sequence viability over selection rounds; the GB1 dataset,

which combines stability and binding affinity to define fitness across a mutational landscape; and the GFP

fluorescence dataset, which directly quantifies mutant functionality. Each dataset consists of protein se-

quences ranging in length from 20 to 237 amino acids as inputs and either log_fluoroence or CRD3 en-

richment regression targets. We compare our model against the SOTA Regularized Latent Space Opti-

mization (ReLSO) model 5 which is comprised of a series of 10 transformer encoder layers and 4 decoding

heads that simultaneously predict the protein sequence and assess the fitness of the encoded embeddings

derived from the sequence. In these tests (Table 4.5), Janus outperforms three ReLSO variants on all three

datasets, and surpasses the other two variants (ReLSO-Interp and ReLSO-α = 0.5) in two datasets while

matching performance on a third dataset. Notably, Janus achieves these SOTA performances with a model

size of 55,000 parameters, compared to the 7-8.3 million parameters in the ReLSO decoder blocks alone.

Table 4.5: Spearman correlation scores for different models on protein fitness datasets for antibody binding (Gifford dataset),
antibody fitness (GB1 dataset), and green fluorescent protein (GFP) brightness

Model Gifford GB1 GFP
(Ab Binding) (Ab Fitness)

ReLSO (interp) 0.48 0.43 0.86
ReLSO (neg) 0.47 0.42 0.77
ReLSO α = 0.1 0.35 0.53 0.84
ReLSO α = 0.5 0.50 0.45 0.85
ReLSO 0.48 0.44 0.70
Janus (ours) 0.49 0.61 0.86

TAPE Protein Benchmarks: We next test Janus against a larger family of attention-based protein

models across Tasks Assessing Protein Embeddings (TAPE) 26, (Table 4.6) a well-established suite of pro-

teomic benchmarking datasets. Specifically, we evaluate our model on predicting remote homology, flu-

orescence, and protein stability. We compete against DistilProteinBert 9 (230M parameters), ESM-1b 27

(650M parameters), ProtFlash 30 (174M parameters) — all models that have been pre-trained on millions

of protein sequences from pFam 22 and Uniref90 28. Janus achieves SOTA performance on two out of the

three (fluorescence and super-family top-1 remote homology) benchmarks with a 55,000 parameters model
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without pretraining — reducing parameter count by up to 11,818x while increasing performance. Al-

though Janus reached SOTA performance in two out of three tasks, it struggled on the stability regression

task. We determined that this was due to overfitting, which was still present in smaller Janus models with as

few as 4,000 parameters.

Table 4.6: Model Performance on TAPE Datasets; including fluorescence prediction (fluor), protein stability prediction, and
remote homology super‐family (RH)

Model # Params Fluor stability RH

TAPE-Bert 91M 0.64 0.73 0.34
DistilProtBert 230M 0.67 0.74 0.52
ESM-1b 650M 0.47 0.77 0.50
ProtFlash-base 174M 0.68 0.79 0.50
Janus (ours) 55k 0.62 0.43 0.59

4.6 Discussion

Janus introduces a new sequence modeling architecture that achieves SOTA performance across diverse

biological challenges, including beating established protein models while using 127x-11,818x fewer param-

eters. The effectiveness of Janus stems from two key innovations working in tandem: RMS-normalized

projected gated convolutions and a diagonalized state space model, S4D. The projected convolutions,

extending BaseConv, enable efficient mixing of local features without quadratic scaling complexity. By

feeding these representations into an S4D layer, Janus captures contextualized global interactions critical

for modeling complex biochemical phenomena. Together, this combination provides a versatile modeling

approach without any pretraining requirements.

By testing Janus on a comprehensive set of biological tasks, we find that it excels in generalizability and

effectiveness in many aspects of biological sequence modelling. From genomics, to CRISPR, and to pro-

teomics, we find that Janus improves upon SOTA results in some tasks in every domain, with subquadratic

efficiency and significantly smaller model sizes. We note that the most dramatic improvements in perfor-

mance versus model size occur in protein modelling tasks. This result is especially significant as proteins

are complex chemical structures with both short- and long-distance interactions between groups of amino
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acids. This supports the architectural choices made in Janus’s design, which was engineered to capture

both local and global interactions in sequences.

While Janus demonstrates consistent gains over prior specialized models, limitations point to open chal-

lenges in some complex prediction tasks. Notably, Janus achieves SOTA performance in DNase I hyper-

sensitive site classification, but falls 3-4% short in histone mark classification compared to other models.

This parallels empirical findings from Notin et al. in proteomics, where they find that pre-training is re-

quired in certain tasks to make meaningful predictions 24. Future work is planned to explore these issues

via pre-training and further model scaling for chromatin-related tasks, particularly investigating the efficacy

of increased hidden size, layer count, and pre-training on a singular, complete human genome.

In this study, Janus has shown promising results in generalized sequence modeling, sparking our inter-

est in further exploring its capabilities. Building upon these initial findings, we envision exciting future

directions, such as evaluating Janus’s integration as the sequence encoder within generative models like

RFDiffusion 31for advanced structure generation and protein design. Exploring Janus’s scalability as the

backbone for both score-based diffusion and broadly autoregressive tasks could position it as a versatile

alternative to traditional transformers in computational biology.

Impact Statement: This paper presents work whose goal is to advance the field of Machine Learning

and Computational Biology. There are many potential societal consequences of our work, none which we

feel must be specifically highlighted here.
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4.A1 Experimental Details

In the following section, we provide details the Janus model instantiation and training procedures for all

tasks. All tasks were evaluated on Nvidia GPUs either an A100-40GB or H100-80GB.

4.A1.1 Genomic Tasks

Chromatin Profiling

Table 4.7: Janus Model Configuration for Chromatin Profiling

Parameter 678,183

d_model 256
n_layers 2
dropout 0.2
d_input 4
d_output 919
prenorm True

PGC Block 1 16 hidden dim, 0.2 dropout
PGC Block 2 128 hidden dim, 0.2 dropout

Experiment Details: The DeepSEA dataset 34 aggregated 919 attributes including 690 transcription

factor (TF) binding profiles spanning 160 distinct TFs, alongside 125 DNase I hypersensitive sites (DHS)

and 104 histone modification (HM) profiles. The dataset is constructed from 1,000 base pair sequences

extracted from the hg19 human reference genome, with each sequence linked to a 919-dimensional tar-

get vector indicating the presence or absence of a chromatin feature peak within the central 200 bp. The

adjacent 400 bp regions provide extended context, crucial for accurate feature prediction. Strict non-

overlapping training and testing sets are partitioned by chromosome, featuring 2.2 million training samples

and 227. Each of these sequences was one-hot-encoded and trained using binary cross entropy loss with

the AdamW optimizer with 0.001 learning rate and 0.01 weight decay. Janus was trained over 200 epochs,

aligning with the methodology delineated in HyenaDNA 23 and evaluated the median AUC-ROC, for

each of the 919 classes within the subset of DHS, TF, and HM profiles.
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GenomicsBenchmark

Table 4.8: Janus Model Configuration for GenomicBenchmark

Parameter 106,434

d_model 128
n_layers 1
dropout 0.2
d_input 4
d_output 2
prenorm True

PGC Block 1 16 hidden dim, 0.2 dropout
PGC Block 2 128 hidden dim, 0.2 dropout

Experimental Details: In our investigation utilizing the GenomicsBenchmark 11 suite, we focused

on eight binary classification tasks related to regulatory genomic elements. The datasets within this suite

presented a diverse range of sequence lengths, varying from 200 to approximately 4800 base pairs. To stan-

dardize the input, we employed one-hot encoding for the sequences, padding them to the maximum length

specific to each dataset. In cases of absent sequences, padding was implemented using the ’N’ token, rep-

resented by [0,0,0,0]. Our training protocol involved a consistent 500 epochs for each dataset, optimizing

the model with AdamW, a learning rate of 0.001, and a weight decay of 0.01, under the guidance of cross-

entropy loss. We evaluated each dataset on top-1% accuracy metric for each dataset.

4.A1.2 CRISPR Tasks

ADAPT Cas13

Experiment Details: For the CRISPR Cas13 dataset 21, we encoded guide-target pairs using a one-hot en-

coding scheme with a dimensionality of 4 for each guide and target. These were then concatenated to form

a stacked representation with an 8-dimensional one-hot-encoded vector for sequences of 48 base pairs. The

log fluorsence threshold to distinguish active from non-active pairs was set at a value of -4.00. Our model

underwent 5-fold cross-validation across three distinct tasks. In the first task, binary classification of guide-

target pairs was performed, assessing the model’s performance through AUC-ROC and AUPR metrics,
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Table 4.9: Janus Model Configuration for Cas13a classification and regression tasks

Parameter 3,793 - 3,810

d_model 16
n_layers 1
dropout 0.2
d_input 8
d_output 1,2
prenorm True

PGC Block 1 16 hidden dim, 0.2 dropout

with each fold being trained for 75 epochs. The following two tasks involved regression analyses: the first

was a positive-only regression targeting values above the activity threshold, and the second encompassed

a comprehensive regression across all guide-target pairs, both positive and negative. Both regression tasks

were evaluated using Spearman’s coefficient, following the same 75-epoch, 5-fold cross-validation struc-

ture.

Cas9

Table 4.10: Janus Model Configuration for Cas9 classification and regression tasks

Parameter 13,361

d_model 48
n_layers 1
dropout 0.2
d_input 4
d_output 1
prenorm True

PGC Block 1 16 hidden dim, 0.2 dropout

Experimental Details: We utilized a composite of seven CRISPR Cas9 datasets—Kim2019_train,

Doench2014_mouse, Doench2014_human, Doench2016, Wang2014, Xiang2021, and Munoz2016—

comprising 46,526 unique context sequences. These sequences were characterized by a 20 nucleotide

spacer sequence flanked by four nucleotides upstream and a PAM sequence plus three nucleotide con-
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texts downstream, with 45% of sequences incorporating the Chen tracrRNA variant. Each sequence was

one-hot encoded to capture the nucleotide arrangement intricately. For the purposes of model training

and validation, we adhered to a 5-fold cross-validation procedure, meticulously applied to both training

and test sets. Each fold was trained for 150 epochs of training, and evaluated using Spearman’s correlation

for regression enzymatic activity based on a sequence.

4.A1.3 Protein Tasks

Model Configuration: We use the same architecture for both the protein fitness datasets as well as the

TAPE evaluations.

Table 4.11: Janus Model Configuration for all protein tasks

Parameter 55,169

d_model 64
n_layers 1
dropout 0.2
d_input 20
d_output 1
prenorm True

PGC Block 1 16 hidden dim, 0.2 dropout
PGC Block 2 128 hidden dim, 0.2 dropout

Protein Fitness Prediction Tasks

Experiment Details: For the protein fitness prediction tasks, the Janus was trained across three fitness

prediction datasets GB1, Gifford, and GFP. Each dataset contained amino acid sequences of the same

length which were one-hot-encoded, input dimension of 20, with the stability and affinity, enrichment, or

fluorescence respectively values serving as regression labels . The training was performed for 500 epochs,

utilizing the AdamW optimizer with a learning rate of 0.001 and a weight decay of 0.01. The evaluation

metric was Spearman’s rank correlation coefficient on the validation set, and Mean Squared Error Loss

(MSELoss) was used as the loss function.
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TAPE Evaluations

Experimental Details: Our evaluation of Janus on TAPE spanned three distinct datasets, addressing flu-

orescence prediction based on sequence mutations, top-1 accuracy for remote homology detection within

super-families, and predictions of structural stability. We adhered to a one-hot encoding scheme for all

sequences. For the fluorescence and structural stability tasks, models were trained and subsequently evalu-

ated based on their Spearman regression performance against the training set. Both regression tasks utilized

Mean Squared Error (MSE) as the loss criterion, with the AdamW optimizer set to a learning rate of 0.001

and a weight decay of 0.01. The remote homology task, classified as a 7-way classification challenge, fol-

lowed the same training regimen of 500 epochs evaluated by top-1 accuracy on the testset. Here, cross en-

tropy loss was employed, factoring in class sample distributions to inform the loss function, and the same

AdamW optimizer settings were maintained.

4.A2 Ablation Studies

We present a preliminary investigation of model substitutions in proteomic tasks and intend on extending

this investigation to genomic tasks.

4.A2.1 Investigation of Hyena vs BaseConv on ReLSO tasks

In order to discern the impact of the projected gated convolution (PGC) backbone within our model, we

conducted a series of ablation studies on the Protein fitness landscape tasks, adhering to the training regi-

men delineated in Appendix A. These studies were designed to evaluate the effect of substituting the PGC

with a Hyena layer and to assess the implications of omitting the backbone entirely to test the S4D com-

ponent in isolation. Our findings revealed that while replacing the PGC with a Hyena layer did result in

a decline in performance, the removal of the backbone to evaluate the S4D alone demonstrated a more

pronounced drop across all tasks. This suggests the critical role of the PGC backbone in our model’s archi-

tecture for maintaining superior performance in protein fitness landscape tasks.

189



Table 4.12: Spearman correlation scores for different models on protein fitness datasets for antibody binding (Gifford dataset),
antibody fitness (GB1 dataset), and green fluorescent protein (GFP) brightness

Model Gifford GB1 GFP
(Ab Binding) (Ab Fitness)

Janus (ours) 0.50 0.61 0.86
Hyena + S4D 0.48 0.60 0.85
S4D 0.48 0.57 0.85
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5
Conclusion and Future Directions

In this dissertation, I have explored the landscape of infectious disease research, focusing on three pivotal

areas: systems serology, CRISPR-based diagnostics, and machine learning for biological sequence analysis.

While each of these works is distinct, they collectively contribute unique insights and tools to the common

goal of combating infectious disease threats.

The power of systems serology in understanding immune responses is clear. Our findings highlight the

discrete link between the quantity and the functional quality of the humoral immune response in deter-

mining protection against SARS-CoV-2. The identification of serological markers, such as IgG levels and

Fc receptor binding, as potential indicators of reinfection could guide public health strategies and surveil-

lance efforts. Moreover, the evidence of a functional immunologic threshold, captured by antibody titers,
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may inform vaccination strategies and help prioritize vulnerable populations for intervention. However,

this work was not without its challenges. In some of our serology work in other projects, we found that

inherent variability of ELISA assays presented a considerable challenge. We observed substantial day-to-

day fluctuations in our control samples, necessitating rigorous quality control measures and careful data

normalization to improve result consistency. Furthermore, comparing data across different laboratories

revealed significant intersite variability, highlighting the need for standardized protocols (such as very spe-

cific incubation times) and assay optimization to achieve more consistent and reproducible findings. While

we were also able to use computational approaches to mitigate these fluctuations, this underscores the im-

portance of meticulous experimental design and consistent reagent and consumables usage when working

with ELISAs. Future work in this area, potentially focusing on the development of protocols with less

protein adsorption or on identifying reagents and reactions with less temperature and timing sensitivity,

would likely be fruitful to the field.

Continuing on some of my computational and analysis work above, I plan to integrate more machine

learning techniques to any foundational scientific and engineering work I do in the future. One possible

exciting application related to immunology is the prediction of adjuvant performance, which plays a cru-

cial role in enhancing vaccine efficacy. By training models on datasets that capture the immunostimulatory

properties of different adjuvants and their effects on immune responses, we can identify promising adju-

vant candidates and optimize their formulation. This approach could streamline the adjuvant selection

process and accelerate the development of more potent and targeted vaccines.

While the tools and approaches discussed above focus on understanding the immune response at a sys-

tems level, advancements in diagnostic technologies also represent a critical pillar in infectious disease re-

sponse. The development of CRISPR-based diagnostics, particularly with the introduction of bead-based

platforms like bbLuc and bbCARMEN, represents an exciting advancement in pathogen detection. The

enhanced sensitivity, multiplexing capabilities, and portability of these platforms promise to improve ac-

cess to diagnostics in both laboratory and resource-limited settings. Our luminescent bead-based approach,

bbLuc, provides an attractive alternative to traditional fluorescence-based diagnostics, showing increased

sensitivity in synthetic and clinical specimens. Critically, enhanced sensitivity also has upstream effects

on assay adaptation to new or emerging pathogens by reducing the optimization time required to meet
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a target limit of detection (LOD). Furthermore, a luminescent assay reduces equipment requirements in

conventional assays by removing the need for a light source for fluorescence excitation.

By utilizing a multiplexed bead-based system for point-of-care diagnostics, bbCARMEN addresses the

significant equipment and expertise requirements of other multiplexed systems. bbCARMEN maintains

excellent multiplexing ability and sensitivity by using beads as an operationally simple, inexpensive modal-

ity to perform multiplexed reactions with high specificity, as demonstrated in our clinical sample testing.

Implementation of our viral respiratory panel assay further demonstrates the ease of adaptability and its

potential to dramatically increase deployability in resource-constrained settings.

However, challenges remain in optimizing enzyme activity for room temperature performance and

developing more robust isothermal amplification methods. Enzymatic reactions, particularly RPA amplifi-

cation processes, are very sensitive to minor changes in buffer composition, including magnesium content.

This sensitivity poses significant challenges for point-of-care tests designed to be as user-friendly as rapid

antigen tests. Inconsistencies in sample volume due to non-standardized application, such as using drop-

pers by untrained individuals, can lead to variations that significantly affect test results. To address these

issues, there is a crucial need to engineer low-cost amplification modalities that not only have improved

performance at lower room temperatures, but also display enhanced robustness against such variabilities in

test conditions. Ultimately, the evolution of Cas13 diagnostics—or any other low-temperature molecular

diagnostic technology—represents a promising future with high-sensitivity testing that operates with the

simplicity and ease of use required for point-of-care settings, much like rapid antigen tests. Lyophilization

of reaction components for bead-based SHINE and bead-based CARMEN into single-use pellets could

greatly simplify the workflow and increase the ease of use for these tests. Addressing these challenges and

considerations could pave the way for truly point-of-need diagnostics that are as simple and effective as

rapid antigen tests, yet with the enhanced sensitivity and specificity of CRISPR-based assays.

Loop-mediated isothermal amplification (LAMP) is another exciting avenue for point-of-care diagnos-

tics, offering the advantages of isothermal amplification and reduced equipment requirements. Future

work on primer design for LAMP assays could further improve their sensitivity and specificity. Specifi-

cally, our lab has recently unlocked the ability to conduct extremely high-throughput LAMP assays, test-

ing thousands of primer combinations per experiment. It is my next scientific goal to be able to take these
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data to uncover new information for LAMP primer functionality, and to use machine learning modeling

approaches to design improved primer design tools for LAMP.

In the realm of computational biology, the introduction of the Janus architecture represents a promis-

ing step forward in biological sequence analysis. By combining efficient projected gated convolutions with

a diagonalized state space model (S4D), Janus has demonstrated superior performance in various tasks

compared to traditional transformer-based models. The projected convolutions, extending the BaseConv

model, enable efficient mixing of local features without quadratic scaling complexity. By feeding these

representations into an S4D layer, Janus captures contextualized global interactions critical for modeling

complex biochemical phenomena. Together, this combination provides a versatile modeling approach

without any pretraining requirements.

By testing Janus on a comprehensive set of biological tasks, we find that it excels in generalizability

and effectiveness in many aspects of biological sequence modeling. From genomics to CRISPR and pro-

teomics, Janus improves upon state-of-the-art results in some tasks in every domain, with subquadratic

efficiency and significantly smaller model sizes. The most dramatic improvements in performance versus

model size occur in protein modeling tasks, which is especially significant as proteins are complex chemical

structures with both short- and long-distance interactions between groups of amino acids. This supports

the architectural choices made in Janus’s design, which was engineered to capture both local and global

interactions in sequences.

While Janus holds great potential for accelerating research and improving the accuracy of predictions,

further exploration is needed to fully understand its strengths and weaknesses in different biological con-

texts. Notably, Janus achieves state-of-the-art performance in DNase I hypersensitive site classification

but falls short in histone mark classification compared to other models. This limitation parallels empirical

findings from other studies in proteomics, where Janus sets new state of the art performance in remote ho-

mology prediction but struggles in protein stability prediction. Future research may focus on scaling Janus

for larger datasets, such as complete human genomes, and integrating it into models for structure predic-

tion. Additionally, continued investigation into the interpretability of Janus’s performance across different

tasks could reveal new insights into the underlying principles of biological sequence modeling.

Collectively, the findings of this dissertation underscore the importance of integrating multidisciplinary
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approaches to tackle the complex challenges posed by infectious diseases. By combining the strengths of

systems serology, cutting-edge diagnostics, and machine learning, we can advance our understanding of

host-pathogen interactions, develop more effective diagnostic and therapeutic tools, and ultimately en-

hance our preparedness and response to current and future infectious disease threats.

195



This thesis was typeset using LATEX,
originally developed by Leslie Lamport
and based on Donald Knuth’s TEX. The

body text is set in 11 point Egenolff-Berner
Garamond, a revival of Claude Garamont’s
humanist typeface. A template that can be
used to format a PhD thesis with this look
and feel has been released under the permis-
sive mit (x11) license, and can be found
online at github.com/suchow/Dissertate
or from its author, Jordan Suchow, at su-
chow@post.harvard.edu.

196

https://github.com/suchow/Dissertate
mailto:suchow@post.harvard.edu
mailto:suchow@post.harvard.edu

	Introduction
	High level overview of areas within infectious disease
	Diagnostics
	Host-pathogen interactions
	Intervention
	Prediction

	Overview of my research contributions
	References

	Discrete SARS-CoV-2 antibody titers track with functional humoral stability
	Abstract
	Introduction
	Results
	Baseline antibody levels track with symptomatology
	Antibody titer kinetics
	Functional implications of titer heterogeneity

	Discussion
	Methods
	Cohort
	Assays

	Supplement
	References


	Serological markers of SARS-CoV-2 reinfection
	Abstract
	Introduction
	Results
	Rhesus macaque SARS-CoV-2 reinfection is associated with robust antibody boosting
	Defining minimal markers of reinfection in the rhesus macaque model of SARS-CoV-2 infection
	Antibody profiles following reinfection in humans

	Discussion
	Materials and Methods
	Luminex Isotype and FcR Binding Assay
	Systems serology
	Viral Genome Amplification and Sequencing
	Phylogenetic analysis
	Analysis

	Supplemental
	Supplementary tables
	References


	Bead-based approaches to CRISPR diagnostics
	Abstract
	Introduction
	Results
	Bead-based strategy to couple Cas-13 activity with a split NanoLuciferase-based readout
	Integration of luminescent reporter into SHINE
	Single Time Point Luminescent Readout in SHINE 
	Enhanced Sensitivity and Field Validation in Nigeria
	Equipment-free bead-based droplet generation for multiplexed fluorescent Cas13 detection
	Respiratory virus panel implementation on bbCARMEN
	Automated readout of bbCARMEN using commercially available consumables and equipment

	Discussion
	Methods
	Clinical samples and ethics statement
	Oligonucleotide Sequence Information
	Sample collection and extraction
	Bead preparation and coupling for bbLuc
	Fluorescence and luciferase-based Cas13 assays for bbLuc development
	Bead preparation and coupling for bbCARMEN
	Flow cell design and fabrication for bbCARMEN
	Single-step amplification for bbCARMEN
	Cas13 detection in bbCARMEN
	Emulsification, loading, and imaging in bbCARMEN flow cells.
	Automated bbCARMEN data analysis
	SCoV2 RT-qPCR protocol
	Data availability
	Code availability
	Acknowledgements
	Conflict of Interest

	References

	Janus: An Efficient Architecture for Biological Sequence Modeling
	Abstract
	Introduction
	Preliminaries and Related Work
	CNNs for Sequence Modeling
	Transformers
	Heterogeneous and Hierarchical Architectures
	Enabling Long Range Sequence Modeling with Structured State Spaces Models
	Gating and Data Modulation Strategies for convolution models

	Methods
	Projected BaseConv Module
	S4D for Long Range Sequence Modeling
	Biological Domain Explorations

	Experiments
	Genomics tasks
	CRISPR Tasks
	Protein Tasks

	Discussion
	References
	Appendix Experimental Details
	Genomic Tasks
	CRISPR Tasks
	Protein Tasks

	Appendix Ablation Studies
	Investigation of Hyena vs BaseConv on ReLSO tasks


	Conclusion and Future Directions

