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Abstract

This study presents an analytical tool for characterizing a wide swath of the design-
space for time-variant electrodialysis reversal brackish water desalination (TEDR)
while avoiding the computation time oft required by mechanistic models of electro-
dialysis reversal (EDR) and time-variant processes. In place of explicit computation,
this paper proposes a simplifying assumptions to simulate desalination power and
production rate of a TEDR process without explicit computation, enabling rapid
year-long simulation and system optimization. The output of the model is compared
to experimental data from a pilot TEDR system and found to have good agreement
between desalination power and production rate. Disagreement between the modeled
and experimental pressure losses suggesting additional losses in the experiment which
may be accounted for in future work. Two case studies, one case for potable water in
the American Southwest and another case for irrigation water in the Middle-East and
North Africa (MENA) region, compare the results from 54 optimized systems. The
results illustrate the complexity of system design and selection, elucidating trade-
offs between different models of electrodialysis (EDR) stacks, operating modes, and
system configurations. The output of this model will enable system designers to con-
fidently design and implement cost-effective TEDR systems to combat rising global
freshwater scarcity.
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Title: Associate Professor
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Roman Symbols Unit Variable

𝐶𝑐,𝑠 [mol/m3] concentrate concentration at the sth pass

𝐶𝑑,𝑠 [mol/m3] diluate concentration at the sth pass

𝐶𝑓𝑒𝑒𝑑 [mol/m3] feedwater concentration

𝑐𝑝 [ - ] pressure drop coefficient

𝐶𝑑,𝑝𝑟𝑜𝑑 [mol/m3] product water concentration

𝑐𝑟𝑓 [ - ] capital recoverty factor

𝐹 [C/mol] Faraday constant

𝑓 [ - ] friction factor

𝐺
𝑜𝑝𝑒𝑥
𝑏𝑟𝑖𝑛𝑒

[USD/yr] operating cost associated with brine disposal

𝐺𝑒𝑙 [USD] capital cost associated with electrodes

𝐺𝑚𝑒𝑚 [USD] capital cost associated with membranes

𝐺𝑝𝑐 [USD] capital cost associated with a pump controller

𝐺𝑃𝑆 [USD] capital cost associated with a power supply

𝐺𝑝𝑢𝑚𝑝 [USD] capital cost associated with a pump

𝐺𝑃𝑉 [USD] capital cost associated with a PV panel

𝐺𝑠𝑝 [USD] capital cost associated with flow spacers

𝐺𝑠𝑡𝑎𝑐𝑘 [USD] capital cost associated with a stack

𝐺𝑐𝑎𝑝𝑒𝑥
𝑠𝑦𝑠 [USD] CAPEX of the system

𝐺𝑜𝑝𝑒𝑥
𝑠𝑦𝑠 [USD] OPEX of the system

𝐺𝑡𝑘 [USD] capital cost associated with a tank

𝐺
𝑐𝑎𝑝𝑒𝑥
𝑊𝑇𝑃

[USD] CAPEX of the WTP

𝐺
𝑜𝑝𝑒𝑥
𝑊𝑇𝑃

[USD] OPEX of the WTP

𝐺𝐻𝐼(𝑡) [W/m2] historical irradiance at time-step t

𝐺𝐻𝐼𝑑𝑒𝑠𝑖𝑔𝑛 [W/m2] design irradiance level

𝐺𝐻𝐼𝑚𝑎𝑥 [W/m2] maximum historical irradiance level

ℎ [m] flow channel height

𝑖 [A/m2] current density

𝐼 [A] electrical current

𝑖𝑗 [A/m2] current density of the jth stack

𝐼𝑗 [W] electrical current of the jth stack

𝑖+
𝑗,𝑙𝑖𝑚

[A/m2] limiting current density of the jth stack

𝑖𝑙𝑖𝑚 [A/m2] limiting current density

𝑗 [ - ] stack

𝐽 [ - ] last serialized stack in the system

𝑘 [m/s] boundary layer mass transfer coefficient

𝑘𝑑 [ - ] interest rate

𝐿 [m] flow path length

𝐿𝐶𝑂𝑊𝑊𝑇𝑃 [USD/m3] levelized cost of water of the WTP

𝑚 [yr] system lifetime

𝑚𝑙𝑜𝑤𝑒𝑟
𝑝𝑢𝑚𝑝 [ - ] slope of pump penalty in the lower regime

𝑏𝑙𝑜𝑤𝑒𝑟
𝑝𝑢𝑚𝑝 [ - ] intercept of pump penalty in the lower regime

𝑚𝑢𝑝𝑝𝑒𝑟
𝑝𝑢𝑚𝑝 [ - ] slope of pump penalty in the upper regime

𝑏𝑢𝑝𝑝𝑒𝑟
𝑝𝑢𝑚𝑝 [ - ] intercept of pump penalty in the upper regime

𝑁 [ - ] number of cell pairs

𝑁𝑎𝑏𝑏𝑃𝑉 [ - ] number of PV panels

𝑁𝑠𝑦𝑠 [ - ] systems in the WTP

𝑃𝑐,ℎ𝑦𝑑 [W] concentrate hydraulic power

𝑃𝑑,ℎ𝑦𝑑 [W] diluate hydraulic power

𝑃ℎ𝑦𝑑 [W] hydraulic power

𝑃𝑗,𝑑𝑒𝑠𝑎𝑙 [W] desalination power of the jth stack

Table 1: Roman Symbols
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Roman Symbols Unit Variable

𝑃𝑟𝑎𝑡𝑒𝑑
𝑃𝑉 [W] PV panel rated power

𝑃𝑜𝑢𝑡
𝑃𝑉 [W] PV array power output at time-step t

𝑃𝑠𝑦𝑠 [W] system power consumption

𝑃𝑚𝑎𝑥
𝑠𝑦𝑠 [W] maximum system power consumption

𝑃𝑚𝑖𝑛
𝑠𝑦𝑠 [W] minimum system power consumption

𝑄 [m3/s] volumetric flow rate

𝑄𝑐 [m3/s] concentrate volumetric flow rate

𝑄𝑑 [m3/s] diluate volumetric flow rate

𝑄𝐵𝐸𝑃
𝑑,𝑠𝑦𝑠 [ - ] diluate flow rate at BEP

𝑄𝑚𝑎𝑥
𝑑,𝑠𝑦𝑠 [m3/s] maximum system diluate flow rate

𝑄𝑚𝑎𝑥
𝑑,𝑎𝑟𝑐ℎ [m3/s] maximum architecture diluate flow rate

𝑄𝑚𝑖𝑛
𝑑,𝑠𝑦𝑠 [m3/s] minimum system diluate flow rate

𝑄𝑚𝑖𝑛
𝑑,𝑎𝑟𝑐ℎ [m3/s] minimum architecture diluate flow rate

𝑄𝑝 [m3/s] time-average water production rate

𝑅𝐴𝐸𝑀 [Ωm2] AEM area resistance

𝑅𝐵𝐿 [Ωm2] area resistance of boundary layer

𝑅𝐶𝐸𝑀 ) [Ωm2] CEM area resistance

𝑟0 [ - ] current safety factor

𝑅𝑏
𝑐,𝑠 [Ωm2] area restistance of bulk concentrate solution

𝑅𝑏
𝑑,𝑠 [Ωm2] area restistance of bulk diluate solution

𝑠 [ - ] pass

𝑆 [ - ] total required number of passes

𝑡+ [ - ] transport number of cations in solution

𝑡𝑚𝑒𝑚 [ - ] counterion transport number of ions in IEMs

𝑢𝑚𝑖𝑛
𝑐ℎ [m/s] minimum channel velocity

𝑢𝑣 [m/s] void channel velocity

𝑉 [V] voltage

𝑉 𝑒𝑙 [V] electrode potential

𝑉𝑗 [W] voltage of the jth stack

𝑉 𝐴𝐸𝑀
𝑗 [V] AEM potential

𝑉 𝐶𝐸𝑀
𝑗 [V] CEM potential

𝑉– 𝑝
𝜈,𝑠𝑦𝑠, [m3] reliable daily system water production

𝑉– 𝑝
𝜈,𝑊𝑇𝑃,𝑡𝑎𝑟𝑔𝑒𝑡

[m3] water treatment plant reliable daily production target

𝑉– 𝑝
𝑠𝑦𝑠,𝑖 [m3] system water production on the ith day of the year

𝑊 [m] flow path width

𝑥𝑏𝑒𝑝 [ - ] design variable, pump best efficieny point

𝑥𝑔ℎ𝑖 [ - ] design variable, target irradiance level

𝑥𝑜𝑤𝑙 [ - ] design variable, lower operating window

𝑥𝑜𝑤𝑢 [ - ] design variable, upper operating window

𝑧 [ - ] ion charge number

Table 2: Roman Symbols, cont.
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Greek Symbols Unit Variable

Δ𝑝𝑡𝑜𝑡𝑎𝑙 [Pa] total pressure drop

Δ𝑝𝑗 [Pa] pressure drop of the jth stack

Δ𝑝𝑙𝑜𝑠𝑠 [Pa] other pressure losses

Δ𝑡 [s] time-step duration of historical irradiance dataset

𝜖 [ - ] flow spacer void fraction

𝜂𝑃𝑆 [ - ] power supply efficiency

𝜂𝑝𝑢𝑚𝑝 [ - ] pump efficiency

𝜂𝑚𝑎𝑥
𝑝𝑢𝑚𝑝 [ - ] maximum pump efficiency

𝜂𝑄𝑚𝑎𝑥
𝑝𝑢𝑚𝑝 [ - ] pump efficiency at maximum system flow rate

𝜂𝑄𝑚𝑖𝑛
𝑝𝑢𝑚𝑝 [ - ] pump efficiency at minimum system flow rate

𝜈 [ - ] reliabililty

𝜑𝑎 [ - ] flow spacer open-area porosity

𝜓 [ - ] architecture specific salt cut

𝜓0 [ - ] stack independent salt cut

𝜓𝑗 [ - ] salt cut of the jth stack

𝜉 [ - ] recovery ratio

Table 3: Greek Symbols.

Symbol Meaning

AEM anion exchange membrane

ASR aquifer storage and recovery

BEP pump best efficiency point

BGNDRF Brackish Groundwater National Desalination Research Facility

CAPEX capital cost

CEM cation exchange membrane

DWI deep well injection

EDR electrodialysis reversal

GHI global horizontal irradiance

IEM ion exchange membrane

LCOW levelized cost of water

MENA Middle East and North Africa

NREL National Renewable Energy Laboratory

NSRDB National Solar Radiation Database

OPEX operating cost

PV photovoltaic

RO reverse osmosis

SAWS San Antonio Water System

SEC specific energy consumption

TEDR time-variant Electrodialysis reversal

TWDB Texas Water Development Board

TX Texas

WPC water production characteristic

WTP water treatment plant

Table 4: Abbreviations.
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Chapter 1

Introduction

Brackish water desalination is increasingly being studied for its potential to allevi-

ate worsening global freshwater scarcity caused by climate change, urbanization, and

rapid population growth [2]. Electrodialysis reversal (EDR) desalination is a particu-

lar area of interest for EDR’s high water recovery and low specific energy consumption

(SEC) at brackish water salinities when compared to the more common reverse osmo-

sis (RO) desalination [3, 4, 5]. Previous studies have found EDR desalination to have

lower levelized cost of water (LCOW), measured in USD/m3, for multiple applications

including the production of potable water [6] and water for irrigation [7].

Within the context of climate change, there is increased interest to deliver de-

salinated water without reliance on fossil fuel-based energy sources, which lead to

increased greenhouse gas emissions. This has contributed to increasing interest in

photovoltaic- (PV) powered desalination [8]. PV-powered desalination is also being

studied for its ability to serve resource-constrained communities with limited or un-

reliable access to grid power [9, 10]. Adapting existing desalination technologies to

PV power requires costly energy storage to provide a consistent power level despite

daily fluctuations and seasonal variations in irradiance [6].

Time-variant EDR desalination (TEDR) addresses this challenge by combining

the water and energy efficient operation of EDR with its ability to closely match the

power consumption of the system with the available power from a PV array, reducing

or eliminating the need for an energy buffer, typically batteries [11, 12, 13]. Previous
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studies have found the cost of water for a TEDR to be lower than a conventional PV-

EDR systems with energy buffers and on-grid RO [11, 7]. In spite of TEDR’s poise

as a cost-effective, water-and-energy-efficient technology, one barrier to its adoption

has been the identification and selection of cost-optimal TEDR systems.

Time-variant operation relies on changing the system’s operating parameters to

match the power consumption of the system with the availability of power from the

PV array. Simulation models are used to predict the performance of TEDR systems,

optimize their design characteristics, and thereby minimize the LCOW. Simulations

iterate over small time steps to account for changes in the amount of power available

and changes in the internal state of the system throughout the day. During each

simulated time step, the mass balance of ions and water in the EDR stack must

be evaluated using information from the previous time step. This is an explicit

calculation and is solved sequentially in a for-loop within the computer code. One

year of simulated performance requires 10s-of-millions of sequential computations

often taking hours of computation time even on state-of-the-art computer hardware.

The long computation time severely limits a system designer’s ability to simulate

various systems, evaluate the cost of alternative designs, and optimize to select the

cost-optimal design.

To more efficiently and rapidly evaluate the broad TEDR design space, a model

is required that is capable of predicting time-variant performance without explicit

computation. The model does not need to be as accurate as previously reported

models but should retain enough accuracy to identify the optimal system among

many variations. Once the cost-optimial system is selected, a higher fidelity model

could later be used to accurately predict system performance and cost.

This study first proposes number of model simplifications which will reduce com-

putation time from hours of explicit computations to only 10s-of-milliseconds of par-

allel computations on the same computer hardware. The simplified model is then

validated against experimental data from a small scale pilot EDR system. A second

objective of the study is to establish a design methodology which quickly identifies

viable TEDR architectures and use optimization to identify cost-optimal system char-
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acteristics. The final objective is to use demonstrate the utility of the model in a series

of case studies of interest. These case studies cover different applications of TEDR,

feed and product water salinities, different daily and seasonal irradiance profiles, and

two different size scales.

The resulting simplified TEDR model will enable system designers to make in-

formed design decisions more quickly compared to previously reported models while

retaining sufficient accuracy. The fast computation will allow for more systems to be

simulated over year-long irradiance datasets enabling a more comprehensive search

of the TEDR design space. This model can facilitate the use TEDR to create cost-

effective solutions for brackish water desalination, facilitating the dissemination of

this technology across multiple applications and markets, and help to combat global

freshwater scarcity.
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Chapter 2

Model description

This section presents a simplified model of TEDR performance as well as an opti-

mization strategy that will enable a system designer to rapidly asses key trade-offs

between multiple diverse system configurations and architectures. Multiple mech-

anistic models for the EDR process have been proposed and validated by previous

studies, as reviewed by Campione et al. [3]. However, these models do not take into

account time-variant operation and have not been designed to increase computational

efficiency. The simplified model proposed here takes as its foundation a recent model

of EDR performance proposed by Wright et al. [14] and a model of time-variant

EDR performance proposed by He et al. [12]. Both the Wright et al. and He et

al. models have been validated with experimental data collected from bench-top and

pilot-scale EDR systems [14, 13, 15] and have been used to design cost-optimized

EDR or TEDR systems [16, 17, 13]. However, due to the computation time required

of these models they can not readily be used to design cost-optimal TEDR systems

across the wide range of different configurations and architectures that might be of

interest to a system designer be used to simulate a year of TEDR performance using

historical irradiance.
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2.0.1 Theory framework and definitions

EDR relies on an electrical field to move charged ions from a desalinated “diluate”

solution to a concentrated “concentrate” solution by drawing ions across a series of

alternating cation exchange membranes (CEM), which pass only cations, and anion

exchange membranes (AEM), which pass only anions. The membranes are separated

by mesh flow spacers that define the active flow path of water within the EDR unit,

maintain the height of the flow channel, and promote water mixing. Each alternating

series of AEM and CEM forms a “cell pair” and the stack of cell pairs between the

electrodes form the EDR “stack.”

Each EDR system is comprised of a number of individual EDR stacks in series.

The system architecture is defined by the number of stacks in series, the stack model,

the number of cell pairs in each stack, and the water recovery ratio. The recovery

ratio is defined as the volume of product water per unit volume of feed water. The

stack model prescribes factors such as the width and length of the membranes, flow

channel height, electrode material, membrane material properties and other stack-

specific properties.

In addition to architecture, each EDR system has a unique system configuration

that is defined by four design variables, described fully in Section 2.0.5. A TEDR

WTP is comprised of a specified number of TEDR “systems,” each with a specified

architecture and system configuration. The system configuration variables are opti-

mized to design a TEDR water treatment plant (WTP) with the lowest LCOW that

meets a set of performance targets. These performance targets include the concentra-

tion of the feed water, 𝐶𝑓𝑒𝑒𝑑 [mol/m3], the desired concentration of the product water

in the diluate, 𝐶𝑑,𝑝𝑟𝑜𝑑 [mol/m3], fluid properties for the target solution (viscosity, den-

sity, etc.), a predefined system reliability, 𝜈, and a targeted reliable daily production

volume of product water for the WTP, 𝑉– 𝑝
𝜈,𝑊𝑇𝑃,𝑡𝑎𝑟𝑔𝑒𝑡 [m3]. The variable 𝜈 defines the

number of days in a year that the system delivers a minimum volume of 𝑉– 𝑝
𝜈,𝑊𝑇𝑃,𝑡𝑎𝑟𝑔𝑒𝑡.

An EDR system can be operated in either batch or continuous mode. A system

operating in batch mode recirculates water, held in recirculation tanks, through the
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stack(s) multiple times until the desired concentration is reached. A system operating

in continuous mode achieves the desired product water concentration within a single

pass through the series of EDR stacks in the system.

Each stack in an EDR system is numbered sequentially following the direction

of flow of diluate using the variable 𝑗, where 𝑗 = 1 is the first stack in series and

𝑗 = 𝐽 is the last stack in series. This sequencing is illustrated in Figure 2-1 for both

a batch and continuous system. The length of an individual stack is denoted as a

single “pass.” Each time the diluate completes a single pass, it becomes progressively

less saline. The progressive number of passes, first through each individual stack 𝑗

and then back through the series of stacks from the beginning, is denoted by 𝑠, with

𝑠 = 0 denoting the inlet of the first stack. Within this framework, the outlet of stack

𝑗 = 1 is denoted 𝑠 = 1, as indicated in Figure 2-1. The bulk concentration for the

diluate and concentrate channel associated with each pass is 𝐶𝑑,𝑠 and 𝐶𝑐,𝑠 [mol/m3],

respectively, and is evaluated at the outlet of the associated stack for the designated

pass. 𝑆 is defined as the total number of passes required to desalinate the diluate

from the bulk feed water concentration at the start of the first pass, 𝐶𝑑,0 = 𝐶𝑓𝑒𝑒𝑑,

to the desired bulk product water concentration at the end of the last pass, 𝐶𝑑,𝑆 =

𝐶𝑑,𝑝𝑟𝑜𝑑.

Within these definitions, a system operates in batch mode when the required

number passes to achieve the desired product concentration is greater than the number

of serialized stacks, or 𝑆/𝐽 > 1. A system operates in continuous mode when the

number of passes is equal to the number of serialized stacks, 𝑆/𝐽 = 1. In some cases,

a fractional number of passes is required to achieved the desired concentration.
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Figure 2-1: Schematic demonstrating two modes of operation, (a) batch and (b)

continuous for a TEDR. Each EDR stack is numbered sequential from 𝑗 to 𝐽 following

the direction of diluate flow. Passes 𝑠 through 𝑆 are ordered sequentially at the inlet

and outlet of each stack. 𝑆 is the total number of passes required to fully desalinate

from the feed water concentration to the product water concentration. A system

operates in batch mode when the total number of passes is greater than the number

of serialized stacks, or 𝑆/𝐽 > 1, and requires recirculation tanks. A system operates

in continuous mode when the number of passes equals the number of serialized stacks,

or 𝑆/𝐽 = 1.
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2.0.2 Simulating time-variant operation for a TEDR system

2.0.2.1 Time-variant framework

A TEDR simultaneously maximizes both the desalination rate and utilization of the

PV power system during EDR operation with a variable power source [13]. It maxi-

mizes the desalination rate by maintaining a current density, 𝑖 (defined as the current

per unit membrane area), within the system that is as close as possible to the sys-

tem’s operating limit. This limit is defined by a limiting current density, 𝑖𝑙𝑖𝑚, which

is the current density at which water dissociation begins to occur. The TEDR sys-

tem maximizes utilization of the PV power system by modulating pumping power

and desalination power to match the available power from the PV array or another

variable power source in real time. He et al. [13] demonstrated that two degrees of

operational freedom - the system operating voltage, 𝑉 [V], and volumetric flow rate,

𝑄 [m3/s] - can be adjusted in real time to achieve both of these aims. A subsequent

novel control scheme has been proposed and applied to a TEDR pilot system that

controls the current applied, 𝐼, rather than voltage to achieve the same effect [15].

This study focuses on current-controlled TEDR because of computational simplicity

and ease of implementation on real hardware. In contrast to TEDR operation, a

fixed EDR system operates at a single operating flow rate. He et al. [13] details the

many cost and performance benefits of time-variant operation over conventional fixed

operation.

Conventional models of TEDR require prediction of the diluate and concentrate

concentrations as well as power consumption at each iterative time step to predict

the value of 𝐼 and 𝑄 demanded by time-variant theory. To enable faster simulations

and trade-off analysis, the simplified model proposed here constructs a system water

production characteristic (WPC) that facilitates the selection of 𝐼 and 𝑄 at each

time step based only on the power available to the system. The system WPC relates

the system power consumption to an average rate of water production following time-

variant theory for a given architecture, system configuration, and performance targets.

The WPC can be created at the start of a simulation and used as a lookup table to
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assign a value of 𝑄 for each time step based on the available power, which is equal to

the system power consumption in a TEDR system.

The TEDR theory outlined by He et al. can be applied to a system operated with

any variable or constant power source, including a PV power source that incorporates

energy storage through batteries. However, as a preliminary application, this study

considers only TEDR system that directly utilize the available power source power

with no energy buffer. This eliminates energy storage, which is typically one of

the most expensive components of the power system. This scheme has been called

“batteryless” or “direct-drive” TEDR in prior work [11]. Future work may incorporate

energy storage, which is discussed in Sections 4 and 5.

2.0.2.2 Creation of a WPC for a TEDR system

The WPC relates the system power consumption to the average water production

rate for an associated architecture, system configuration, and performance targets

(i.e., feed and product water concentration). The flow rate of a real TEDR desalina-

tion process varies based on the instantaneous solar irradiance, as outlined in Section

2.0.2.1, making the average water production rate of a specific process difficult to

predict. To estimate the WPC relationship, a simplification is made. For each po-

tential flow rate that the system might operate, the average production rate of an

equivalent batch process is used that operates at a constant flow rate and conforms

to the current requirements of TEDR theory. This approach has been applied and

validated in prior work [11]. In addition, the validity of this assumption is tested in

Section 3.

The following sections outline the prediction of system power consumption as a

function of the average water production rate for an equivalent batch process oper-

ating at a constant flow rate operating under TEDR constraints. This generates the

WPC relationship for a specified architecture and performance targets that can be

used to predict the total volume of desalinated water produced by a TEDR system

over a year.
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2.0.2.2.1 System power consumption

The system power consumption, 𝑃𝑠𝑦𝑠 [W], is the sum of the the total power consumed

by the system for desalination and the power consumed for pumping. The total

power for a system with hydraulic power consumption, 𝑃ℎ𝑦𝑑, and desalination power

consumption of each individual stack, 𝑃𝑗,𝑑𝑒𝑠𝑎𝑙 is

𝑃𝑠𝑦𝑠 =
𝑃ℎ𝑦𝑑

𝜂𝑝𝑢𝑚𝑝

+
1

𝜂𝑃𝑆

(︃
𝐽∑︁

𝑗=1

𝑃𝑗,𝑑𝑒𝑠𝑎𝑙

)︃
, (2.1)

where 𝜂𝑝𝑢𝑚𝑝 is the efficiency of the pumps used to recirculate water and 𝜂𝑃𝑆 is the

efficiency of the power supply used to power the EDR desalination process. The

following sections outline methods to estimate each of these values for a given stack

architecture, system configuration, and performance targets.

2.0.2.2.2 Desalination power for an EDR stack

The power required for desalination for each serialized stack 𝑗 is

𝑃𝑗,𝑑𝑒𝑠𝑎𝑙 = 𝐼𝑗𝑉𝑗 , (2.2)

where 𝑉𝑗 [V] is the voltage applied to each stack 𝑗 and 𝐼𝑗 [A] is the electrical current

applied to each stack 𝑗. The current applied to each stack is related to the current

density and the available membrane area:

𝐼𝑗 = 𝑊𝐿𝜑𝑎𝑖𝑗 , (2.3)

where 𝐿 [m] is length of the flow path set by the flow spacer, 𝜑𝑎 is the open-area

porosity of the flow spacer, and 𝑖𝑗 [A/m2] is the current density applied to stack 𝑗.

The open-area porosity is a property of the mesh used to construct the flow spacer

and is typically provided by the stack manufacturer.

For current-controlled TEDR processes, the applied current density is determined

by 𝑖+𝑗,𝑙𝑖𝑚, which is the limiting current density of stack 𝑗 for positively charged ions in
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solution, as

𝑖𝑗 = 𝑟0𝑖
+
𝑗,𝑙𝑖𝑚 , (2.4)

where 𝑟0 is user-defined safety factor corresponding to a proportion of limiting current

density. This safety factor protects against accidentally exceeding the limiting current

density in the stack. Typically, 𝑟0 is set to 0.7 and should not exceed 1 [18, 11]. For

sodium chloride solutions, the limiting current density is estimated following Wright

et al. [14] as

𝑖+𝑗,𝑙𝑖𝑚 =
𝑧𝐹𝑘𝐶𝑑,𝑠

𝑡𝑚𝑒𝑚 − 𝑡+
, (2.5)

where 𝑧 is the ion charge number; 𝐹 [C/mol] is the Faraday constant, set to 96,485;

𝑡𝑚𝑒𝑚 is the counterion transport number for ions in the AEM and CEM; 𝑡+ is the

transport number of cations in solution; and 𝑘 [m/s] is the boundary layer mass

transfer coefficient. For sodium chloride solutions, 𝑧 = 1, and this analysis follows

Wright et al. to set 𝑡𝑚𝑒𝑚 = 1, and 𝑡+ = 0.39 for sodium ions. These assumptions were

validated against experimental data of EDR performance in natural groundwater [14].

We similarly adopt the derivation of Wright et al. [14] for 𝑘. Within this for-

mulation, 𝑘 ∝ 𝑄0.5
𝑑 , where 𝑄𝑑 is the flow rate in the diluate channel. This scaling

relationship for 𝑘 relies on several empirically derived coefficients and exponents that

depend on spacer and stack characteristics. These values were derived for one of the

stack models used in this analysis, the Veolia Mark IV (MkIV) (discussed in Section

4).

The voltage applied to each stack 𝑉𝑗, is defined by an equivalent circuit analysis

outlined in Wright et al. [14] as
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𝑉𝑗 = 𝑉 𝑒𝑙 (2.6)

+𝑁(𝑉 𝐴𝐸𝑀
𝑗 + 𝑉 𝐶𝐸𝑀

𝑗 )

+

(︂
𝑁𝐼𝑗
𝑊𝐿𝜑𝑎

)︂
(𝑅𝑏

𝑑,𝑠 +𝑅𝑏
𝑐,𝑠 +𝑅𝐵𝐿 +𝑅𝐴𝐸𝑀 +𝑅𝐶𝐸𝑀) ,

where 𝑉𝑒𝑙 is the electrode potential (caused by the reduction of hydrogen ions at the

cathode and oxidation of chloride ions at the anode for a sodium chloride); 𝑁 is

the number of cell pairs in the stack; 𝑉 𝐴𝐸𝑀
𝑗 and 𝑉 𝐶𝐸𝑀

𝑗 [V] are the AEM and CEM

membrane potentials for stack 𝑗, respectively; 𝑅𝑏
𝑑,𝑠 and 𝑅𝑏

𝑐,𝑠 [Ωm2] are the bulk area

resistances of the diluate and concentrate for pass 𝑠, respectively; 𝑅𝐵𝐿 is the area

resistance of the boundary layers at the membrane surfaces; and 𝑅𝐴𝐸𝑀 and 𝑅𝐶𝐸𝑀 are

the area resistances of the AEM and CEM, respectively, which are typically provided

by the stack or membrane manufacturer. For this analysis, 𝑅𝐵𝐿 is assumed to be

negligible. Wright et al. breaks the length of a single stack into a discrete number

of segments for analysis; for the purpose of this simplified analysis, the number of

segments is assumed to be 1 [14].

Functional forms of 𝑉 𝐴𝐸𝑀
𝑗 , 𝑉 𝐶𝐸𝑀

𝑗 , 𝑅𝑏
𝑑,𝑠, and 𝑅𝑏

𝑐,𝑠 are derived in Wright et al. for a

single EDR stack based on stack-specific factors and the bulk concentration of diluate

and concentrate channels at the start and end of each pass, 𝐶𝑑,𝑠 and 𝐶𝑑,𝑠+1 for the

diluate, and 𝐶𝑐,𝑠 and 𝐶𝑐,𝑠+1 for the concentrate [14]. To estimate these values, this

model proposes a simplification based on the “first pass” of desalination for each stack.

This first pass occurs for all 𝑠 = 𝑗. The simplification proposes that the desalination

power of the first pass through each stack provides a reasonable first approximation

of the total magnitude of stack power for all passes. With this simplification, only

the values of 𝐶𝑑,𝑠, and 𝐶𝑐,𝑠 for 𝑠 = 0 and 𝑠 = 𝑗 need to be estimated.

To calculate the bulk concentrations of the first pass, the model first defines a

salt cut, 𝜓𝑗, for stack 𝑗 that characterizes the change in inlet and outlet bulk diluate

concentration for the first pass (𝑠 = 𝑗):
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𝜓𝑗 = 1− (𝐶𝑑,𝑠)/(𝐶𝑑,𝑠−1) . (2.7)

From Wright et al., the change in diluate concentration across a single segment in

a single stack depends on the rate of charged ion movement across the membranes,

characterized by 𝐼𝑗, and factors that reduce the efficiency of the stack at translating

current into salt removal, or stack efficiency factors. These stack efficiency factors are

caused by effects such as back diffusion across the membranes due to the difference

in concentration and fluid transport along the stack. This simplified model assumes

a stack efficiency of 100%, enabling the concentration change in the stack to be

characterized by

𝐶𝑑,𝑠−1 =
𝐼𝑗𝑁

𝑄𝑑𝐹𝑧
+ 𝐶𝑑,𝑠 . (2.8)

By substituting Equations 2.3, 2.4, 2.5, and 2.8 into Equation 2.7, the salt cut is

expressed as

𝜓𝑗 = 1− 1/

(︂
𝑊𝐿𝑁𝜑𝑎𝑟0𝑘

0.61 *𝑄𝑑

+ 1

)︂
for all 𝑗 , (2.9)

where 0.61 is the value for 𝑡𝑚𝑒𝑚 - 𝑡+, adopting values for sodium chloride described

above. Within this formulation, the salt cut is no longer a function of concentration,

depending only on 𝑄𝑑 and architecture-specific parameters. In addition, the salt cut

is the same for all 𝑗 stacks in series within a single system. Therefore, 𝜓𝑗 is renamed

to exclude dependence on 𝑗 as 𝜓0.

Within this formulation for the first pass (𝑠 = 𝑗), the concentration 𝐶𝑑,𝑠 is related

to initial feed concentration, 𝐶𝑑,0 = 𝐶𝑓𝑒𝑒𝑑, through

𝐶𝑑,𝑠 = 𝐶𝑓𝑒𝑒𝑑(1− 𝜓0)
𝑗 for all 𝑠 = 𝑗 . (2.10)

The concentration of the concentrate channel, 𝐶𝑐,𝑠, for pass 𝑠 is assumed to the

same as the feed water concentration during the first pass, or
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𝐶𝑐,𝑠 = 𝐶𝑓𝑒𝑒𝑑 for all 𝑠 = 𝑗 . (2.11)

This assumption presumes that the change in concentration for the concentrate chan-

nel in the first pass is small as a first-order estimation. Although this assumption

is not likely to hold true, it will result in an underestimation of the concentration

in the concentrate channel, which will increase steadily through the first pass. This

underestimation will result in an underestimation of the area resistance in the con-

centrate channel, 𝑅𝑏
𝑐,𝑠, resulting in an overestimation of 𝑉𝑗 through equation 2.6 and

a conservative overestimation of the desalination power via equation 2.2.

A special consideration is made for systems for which the final attainable product

diluate concentration in the last pass, 𝐶𝑓𝑒𝑒𝑑(1− 𝜓0)
𝐽 = 𝐶𝑑,𝑆, is less than the desired

product water concentration, 𝐶𝑑,𝑝𝑟𝑜𝑑. In this special case, a new salt cut is defined

for each stack, 𝜓, that is adjusted to match and not exceed the required salt cut that

would produce exactly the desired product concentration from the whole system. In

this case, where 𝐶𝑑,𝑆 ≤ 𝐶𝑑,𝑝𝑟𝑜𝑑, the system achieves its desired product concentration

in one pass or less and the system is operating in continuous mode rather than batch

mode. This is expressed as

𝜓 =

⎧⎪⎨⎪⎩𝜓0 if (1− 𝜓0)
𝐽 < (𝐶𝑑,𝑝𝑟𝑜𝑑/𝐶𝑓𝑒𝑒𝑑) Batch Operation

1− (𝐶𝑑,𝑝𝑟𝑜𝑑/𝐶𝑓𝑒𝑒𝑑)
1/𝐽 if (1− 𝜓0)

𝐽 ≥ (𝐶𝑑,𝑝𝑟𝑜𝑑/𝐶𝑓𝑒𝑒𝑑) Continuous Operation
.

(2.12)

With equation 2.12, 𝜓 is a function that depends only on architecture-specific

parameters, performance targets (e.g., 𝐶𝑓𝑒𝑒𝑑, 𝐶𝑑,𝑝𝑟𝑜𝑑), and the flow rate in the diluate

channel, 𝑄𝑑. The concentrations at the inlet and outlet of each serialized stack during

the first pass of operation are determined via equations 2.10 and 2.11, which are used

to determine 𝑉 𝐴𝐸𝑀
𝑗 , 𝑉 𝐶𝐸𝑀

𝑗 , 𝑅𝑏
𝑑,𝑠, and 𝑅𝑏

𝑐,𝑠 of equation 2.6 for 𝑠 = 𝑗. The voltage

determined in equation 2.6 is combined with the current of equation 2.3 via equation

2.2 to estimate a value for 𝑃𝑗,𝑑𝑒𝑠𝑎𝑙. This calculation is analytical and does not require

a time-series iteration.
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2.0.2.2.3 Hydraulic power for an EDR system

The dominant hydraulic power requirement in an EDR stack is required to propel

water through the diluate and concentrate channels at a flow rate of 𝑄𝑑 and 𝑄𝑐 in

the diluate and concentrate channels, respectively. These flow rates are the same for

each stack in series within a single system. To minimize pressure differentials across

the membranes, EDR systems are typically operated such that the flow rate in each

channel is equal, or 𝑄𝑑 = 𝑄𝑐. The majority of the power requirement is needed to

overcome pressure losses in the mesh spacers that fill the flow channels.

The total hydraulic power for the system, 𝑃ℎ𝑦𝑑 [W], is the sum the hydraulic power

required for the diluate, 𝑃𝑑,ℎ𝑦𝑑 [W], and concentrate, 𝑃𝑐,ℎ𝑦𝑑 [W], channels:

𝑃ℎ𝑦𝑑 = 𝑃𝑑,ℎ𝑦𝑑 + 𝑃𝑐,ℎ𝑦𝑑 . (2.13)

The power required to sustain the flow of diluate and concentrate is determined

by the flow rate and the total pressure drop across the system, ∆𝑝𝑡𝑜𝑡𝑎𝑙 [Pa]:

𝑃𝑑,ℎ𝑦𝑑 = 𝑄𝑑(∆𝑝𝑡𝑜𝑡𝑎𝑙) , and (2.14)

𝑃𝑐,ℎ𝑦𝑑 = 𝑄𝑐(∆𝑝𝑡𝑜𝑡𝑎𝑙) . (2.15)

The total pressure drop across the system considers the pressure drop across each

stack in series, ∆𝑝𝑗 [Pa], which is assumed to be equal for all stacks, as well as an

additional term to account for pipe losses, tank head, and other sources of hydraulic

loss in the system, ∆𝑝𝑙𝑜𝑠𝑠 [Pa], such that

∆𝑝𝑡𝑜𝑡𝑎𝑙 = 𝐽(∆𝑝𝑗) + ∆𝑝𝑙𝑜𝑠𝑠 . (2.16)

The proposed simplified model follows Wright et al. [14] in adopting a model of pres-

sure losses across a single EDR stack proposed by Ponzio et al. [19]. This model

has been experimentally validated for commercial stacks by Wright et al., where the

measured pressure drop was found to deviate from predictions by approximately 37%
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[14]. Despite the relatively large discrepancy, the Ponzio et al. model reproduced

the expected behavior better than other considered models. Following this formula-

tion, the pressure drop across each serialized stack is related to the Darcy-Weisbach

prediction for flow between two parallel flat plates,

∆𝑝𝑗 = 𝑐𝑝
𝜌𝑎𝑞𝑓𝐿𝑢

2
𝑣

4ℎ
, (2.17)

where 𝜌𝑎𝑞 [kg/m3] is the density of the aqueous solution; 𝜇 [Pa-s] is the viscosity of

the aqueous solution; 𝑢𝑣 [m/s] is the linear flow velocity for a flow channel devoid

of a flow spacer [14]; 𝑓 is the correlated friction factor from Ponzio et al. [19]; ℎ is

the height the flow channel; and 𝑐𝑝 is a unique empirical coefficient adopted for this

study. This empirical coefficient is set to 𝑐𝑝 = 1.59 to reduce the 37% discrepancy

between the experimental data and predicted pressure drop reported by Wright et al.

[14]. The channel height, ℎ, is assumed to be the equivalent to the thickness of the

flow spacer, ℎ = ℎ𝑠𝑝. The linear flow velocity, 𝑢𝑣, is proportional to 𝑄𝑑 as outlined

in Wright et al., depending linearly on 𝑄𝑑 and other architecture-specific geometric

factors. Using these equations, 𝑃ℎ𝑦𝑑 for an EDR system can be predicted as a function

of architecture-specific parameters, fluid-specific parameters, and 𝑄𝑑.

2.0.2.2.4 Average water production rate

To complete the WPC relationship, the instantaneous diluate flow rate, 𝑄𝑑, is con-

verted to the average water production rate for an equivalent batch operating at

constant flow rate. The time-average water production rate, 𝑄𝑝 [m3/s], for the equiv-

alent batch process is

𝑄𝑝 = 𝑄𝑑
𝐽

𝑆
, (2.18)

where 𝑆 is a measure of the total number of passes required for the equivalent batch

process to achieve the desired product water concentration, 𝐶𝑑,𝑝𝑟𝑜𝑑. This number is

related to the single stack salt cut, 𝜓, as
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𝑆 =
ln(𝐶𝑑,𝑝𝑟𝑜𝑑)− ln(𝐶𝑓𝑒𝑒𝑑)

ln(1− 𝜓)
. (2.19)

This estimated total number of passes is expected to be a lower bound due to factors

that have not been considered in this analysis, such as inefficiencies of the stack,

mixing within the recirculation tanks, water transport, and other factors. For a

continuous system, 𝑆/𝐽=1. The formulation of equation 2.18 allows for the equivalent

batch process to be represented as a continuous process with a flow rate of 𝑄𝑝.

2.0.2.2.5 Architecture limitations and system configuration parameters

As noted in Section 2.0.2, each TEDR system is defined by an architecture (com-

prised of stack model, number of cell pairs per stack, number of stacks in series, and

recovery ratio) and a system configuration. The system configuration is defined by

four design variables or degrees of freedom that a system architecture has to deliver

the desired performance targets, outlined in this section. These variables are opti-

mized to design TEDR WTPs with the lowest LCOW in Section 2.0.5. These design

variables are constrained by hardware limitations set by the system architecture.

There are a number of hardware limitations imposed by the system architecture.

Each architecture has a minimum diluate flow rate determined by the stack model,

𝑄𝑚𝑖𝑛
𝑑,𝑎𝑟𝑐ℎ [m3/s]. The minimum diluate flow rate is defined by the minimum manufac-

turer recommended channel velocity, 𝑢𝑚𝑖𝑛
𝑐ℎ [m/s], which is related to the minimum

diluate flow rate of the architecture by

𝑄𝑚𝑖𝑛
𝑑,𝑎𝑟𝑐ℎ = 𝑢𝑚𝑖𝑛

𝑐ℎ 𝜖𝑊ℎ𝑁 , (2.20)

where 𝜖 is the void fraction of the mesh used to construct the flow spacer. The

minimum channel velocity used by this model is 7 cm/s, which is recommended

by the stack manufacturer [14]. The void fraction is also provided by the stack

manufacturer. This minimum flow velocity ensures the solution in the flow channel

well-mixed by turbulent flow, promoting ion exchange and reducing the risk of fouling

38



[20]. In addition, each stack model has a maximum diluate flow rate, 𝑄𝑚𝑎𝑥
𝑑,𝑎𝑟𝑐ℎ [m3/s],

imposed by pressure limitations on the spacers or voltage capacity of the particular

stack set by the manufacturer. High pressure can cause internal leakage within the

stack, external stack leakage, or stack instability which can cause the membranes or

flow spacers to shift relative to the electrodes. The hardware limits of stacks used in

this study are reported in Section 4.

On top of these hardware constraints, the first two degrees of freedom that define

the system configuration further constrain the system flow rate to operate within

a narrower range. Choosing to operate over a narrower flow rate range allows the

system to consider known trade-offs between the SEC of the desalination process and

the power consumption level of the TEDR system. The first degree of freedom is the

lower operating window, 𝑥𝑜𝑤𝑙. This is defined as a fraction (reported as a percentage)

of the operating window determined by the hardware constraints, setting a more

constrained minimum volumetric flow rate of the system, 𝑄𝑚𝑖𝑛
𝑑,𝑠𝑦𝑠 [m3/s], as opposed to

the hardware constraint of the architecture, 𝑄𝑚𝑖𝑛
𝑑,𝑎𝑟𝑐ℎ. Similarly, the upper operating

window, 𝑥𝑜𝑤𝑢, is a fraction (reported as a percentage) of the architecture-constrained

operating window that sets the maximum volumetric flow rate of the system, 𝑄𝑚𝑎𝑥
𝑑,𝑠𝑦𝑠,

which may be more constrained than the maximum flow rate limit of the architecture,

𝑄𝑚𝑎𝑥
𝑑,𝑎𝑟𝑐ℎ. These system configuration variables are related to the diluate flow rates of

the architecture and system by

𝑄𝑚𝑖𝑛
𝑑,𝑠𝑦𝑠 = 𝑥𝑜𝑤𝑙(𝑄

𝑚𝑎𝑥
𝑑,𝑎𝑟𝑐ℎ −𝑄𝑚𝑖𝑛

𝑑,𝑎𝑟𝑐ℎ) +𝑄𝑚𝑖𝑛
𝑑,𝑎𝑟𝑐ℎ provided 𝑥𝑜𝑤𝑙 ≤ 𝑥𝑜𝑤𝑢 , and (2.21)

𝑄𝑚𝑎𝑥
𝑑,𝑠𝑦𝑠 = 𝑥𝑜𝑤𝑢(𝑄

𝑚𝑎𝑥
𝑑,𝑎𝑟𝑐ℎ −𝑄𝑚𝑖𝑛

𝑑,𝑎𝑟𝑐ℎ) +𝑄𝑚𝑖𝑛
𝑑,𝑎𝑟𝑐ℎ provided 𝑥𝑜𝑤𝑢 ≥ 𝑥𝑜𝑤𝑙 . (2.22)

The time-variant system operates within the constraints 𝑄𝑚𝑖𝑛
𝑑,𝑠𝑦𝑠 ≤ 𝑄𝑑 ≤ 𝑄𝑚𝑎𝑥

𝑑,𝑠𝑦𝑠. If

the lower and upper operating windows are the same, or 𝑥𝑜𝑤𝑙 = 𝑥𝑜𝑤𝑢, the system

operates at a fixed flow rate rather than as a time-variant system. The maximum
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system power consumption, 𝑃𝑚𝑎𝑥
𝑠𝑦𝑠 [W], and minimum system power consumption,

𝑃𝑚𝑖𝑛
𝑠𝑦𝑠 [W], are determined from 𝑄𝑚𝑎𝑥

𝑑,𝑠𝑦𝑠 and 𝑄𝑚𝑖𝑛
𝑑,𝑠𝑦𝑠, respectively, according to equations

2.1 - 2.30.

The third degree of freedom in the system configuration is the pump best efficiency

point (BEP), defined by the variable 𝑥𝑏𝑒𝑝. This value reflects that a centrifugal pump,

commonly used in desalination systems, does not operate at a uniform efficiency over

its entire range of operation. The variation in efficiency is particularly pronounced

when the pump’s speed is controlled by a variable frequency drive or motor controller.

A pump which is least efficient at the maximum system flow rate, 𝑄𝑚𝑎𝑥
𝑑,𝑠𝑦𝑠, results in

the highest power consumption. A higher power consumption increases the size and

capital cost of the required PV power system as well as the size and capital cost

of the pump. The trade-off between pump operating point and efficiency depends

sensitively on the specific make and model of the selected pump. To capture this

trade-off without pre-defining or pre-selecting a pump with a specific make and model,

this simplified model incorporates a double-linear penalty on pump efficiency relative

to the best efficiency point. This penalty is expected to capture the first-order effects

of a realistic pump efficiency curve.

The 𝑥𝑏𝑒𝑝 variable is defined as a fraction (reported as a percentage) of the system

flow rate operating window. This value determines the flow rate at which the pump

will be most efficient, 𝑄𝐵𝐸𝑃
𝑑,𝑠𝑦𝑠, which is defined as

𝑄𝐵𝐸𝑃
𝑑,𝑠𝑦𝑠 = 𝑥𝑏𝑒𝑝(𝑄

𝑚𝑎𝑥
𝑑,𝑠𝑦𝑠 −𝑄𝑚𝑖𝑛

𝑑,𝑠𝑦𝑠) +𝑄𝑚𝑖𝑛
𝑑,𝑠𝑦𝑠 . (2.23)

This value is then used to define the efficiency penalty as the flow rate deviates

from 𝑄𝐵𝐸𝑃
𝑑,𝑠𝑦𝑠. The efficiencies of the pump at the minimum and maximum system flow

rate, 𝜂𝑄𝑚𝑖𝑛
𝑝𝑢𝑚𝑝 and 𝜂𝑄𝑚𝑎𝑥

𝑝𝑢𝑚𝑝 respectively, are defined by

𝜂𝑄𝑚𝑖𝑛
𝑝𝑢𝑚𝑝 = 𝜂𝑚𝑎𝑥

𝑝𝑢𝑚𝑝

(︃
𝑥𝑏𝑒𝑝 *𝑄𝑚𝑖𝑛

𝑑,𝑎𝑟𝑐ℎ

𝑄𝑚𝑎𝑥
𝑑,𝑎𝑟𝑐ℎ

− 𝑥𝑏𝑒𝑝 + 1

)︃
, and (2.24)

𝜂𝑄𝑚𝑎𝑥
𝑝𝑢𝑚𝑝 = 𝜂𝑚𝑎𝑥

𝑝𝑢𝑚𝑝

(︃
−
𝑥𝑏𝑒𝑝 *𝑄𝑚𝑖𝑛

𝑑,𝑎𝑟𝑐ℎ

𝑄𝑚𝑎𝑥
𝑑,𝑎𝑟𝑐ℎ

+ 𝑥𝑏𝑒𝑝 +
𝑄𝑚𝑖𝑛

𝑑,𝑎𝑟𝑐ℎ

𝑄𝑚𝑎𝑥
𝑑,𝑎𝑟𝑐ℎ

)︃
, (2.25)
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where 𝜂𝑚𝑎𝑥
𝑝𝑢𝑚𝑝 is the maximum pump efficiency. The slopes of the double-linear penalty

are calculated separately for flow rates lower than 𝑄𝐵𝐸𝑃
𝑑,𝑠𝑦𝑠, the lower flow regime, and

flow rates greater than 𝑄𝐵𝐸𝑃
𝑑,𝑠𝑦𝑠, the upper flow regime. The slopes 𝑚𝑙𝑜𝑤𝑒𝑟

𝑝𝑢𝑚𝑝 and 𝑚𝑢𝑝𝑝𝑒𝑟
𝑝𝑢𝑚𝑝

of the lower and upper regimes, respectively, are defined by

𝑚𝑙𝑜𝑤𝑒𝑟
𝑝𝑢𝑚𝑝 =

𝜂𝑚𝑎𝑥
𝑝𝑢𝑚𝑝 − 𝜂𝑄𝑚𝑖𝑛

𝑝𝑢𝑚𝑝

𝑄𝐵𝐸𝑃
𝑑,𝑠𝑦𝑠 −𝑄𝑚𝑖𝑛

𝑑,𝑠𝑦𝑠

, and (2.26)

𝑚𝑢𝑝𝑝𝑒𝑟
𝑝𝑢𝑚𝑝 =

𝜂𝑄𝑚𝑎𝑥
𝑝𝑢𝑚𝑝 − 𝜂𝑚𝑎𝑥

𝑝𝑢𝑚𝑝

𝑄𝑚𝑎𝑥
𝑑,𝑠𝑦𝑠 −𝑄𝐵𝐸𝑃

𝑑,𝑠𝑦𝑠

. (2.27)

The intercepts of the double-linear penalty for the lower and upper flow regimes, 𝑏𝑙𝑜𝑤𝑒𝑟
𝑝𝑢𝑚𝑝

and 𝑏𝑢𝑝𝑝𝑒𝑟𝑝𝑢𝑚𝑝 , respectively, are defined by

𝑏𝑙𝑜𝑤𝑒𝑟
𝑝𝑢𝑚𝑝 = 𝜂𝑚𝑎𝑥

𝑝𝑢𝑚𝑝 −𝑚𝑙𝑜𝑤𝑒𝑟
𝑝𝑢𝑚𝑝

(︀
𝑄𝐵𝐸𝑃

𝑑,𝑠𝑦𝑠

)︀
, and (2.28)

𝑏𝑢𝑝𝑝𝑒𝑟𝑝𝑢𝑚𝑝 = 𝜂𝑚𝑎𝑥
𝑝𝑢𝑚𝑝 −𝑚𝑢𝑝𝑝𝑒𝑟

𝑝𝑢𝑚𝑝

(︀
𝑄𝐵𝐸𝑃

𝑑,𝑠𝑦𝑠

)︀
. (2.29)

This results in the following general expression for the pump efficiency at any flow

rate,

𝜂𝑝𝑢𝑚𝑝 =

⎧⎪⎨⎪⎩𝑚
𝑙𝑜𝑤𝑒𝑟
𝑝𝑢𝑚𝑝 (𝑄𝑑) + 𝑏𝑙𝑜𝑤𝑒𝑟

𝑝𝑢𝑚𝑝 for 𝑄𝑑 s.t. 𝑄𝑚𝑖𝑛
𝑑,𝑠𝑦𝑠 ≤ 𝑄𝑑 < 𝑄𝐵𝐸𝑃

𝑑,𝑠𝑦𝑠

𝑚𝑢𝑝𝑝𝑒𝑟
𝑝𝑢𝑚𝑝 (𝑄𝑑) + 𝑏𝑢𝑝𝑝𝑒𝑟𝑝𝑢𝑚𝑝 for 𝑄𝑑 s.t. 𝑄𝐵𝐸𝑃

𝑑,𝑠𝑦𝑠 ≤ 𝑄𝑑 ≤ 𝑄𝑚𝑎𝑥
𝑑,𝑠𝑦𝑠

. (2.30)

This pump efficiency is used in equation 2.1.

This formulation of the pump efficiency leads to two notable effects. First, the

magnitude of the pump efficiency penalty is affected by the magnitude of the max-

imum system flow rate relative to the minimum system flow rate, or 𝑄𝑚𝑎𝑥
𝑑,𝑠𝑦𝑠/𝑄

𝑚𝑖𝑛
𝑑,𝑠𝑦𝑠.

This reflects the realistic efficiency performance penalty of operating over a wider

range of flow rates with a single pump. Second, the magnitude of the penalty at

the minimum and maximum system flow rate depends on the value of 𝑥𝑏𝑒𝑝. As an
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example, a 𝑥𝑏𝑒𝑝 of 30% applies 30% of the total penalty to the minimum flow rate

and 70% of the total penalty to the maximum flow rate. This reflects that the pump

efficiency typically reduces in magnitude as the flow rate deviates farther from the

BEP.

The final degree of freedom in the system configuration defines a target irradiance,

𝑥𝑔ℎ𝑖. This value sets a design irradiance level, 𝐺𝐻𝐼𝑑𝑒𝑠𝑖𝑔𝑛 [W/m2], as the solar irra-

diance at which the power output from the PV array matches the maximum power

consumption of the system, based on the rated power of the solar panels. Power gen-

erated at an irradiance in excess of the design irradiance level cannot be utilized by

the system. The variable 𝑥𝑔ℎ𝑖 is defined as a fraction of the maximum solar irradiance

(reported as a percentage) in the year of historical weather data used to benchmark

TEDR performance, defined as 𝐺𝐻𝐼𝑚𝑎𝑥. Thus

𝐺𝐻𝐼𝑑𝑒𝑠𝑖𝑔𝑛 = 𝑥𝑔ℎ𝑖𝐺𝐻𝐼
𝑚𝑎𝑥 . (2.31)

From this value, the required number of PV panels, 𝑁𝑃𝑉 , necessary to generate the

maximum system power requirement, 𝑃𝑚𝑎𝑥
𝑠𝑦𝑠 , is defined as

𝑁𝑃𝑉 = 𝑃𝑚𝑎𝑥
𝑠𝑦𝑠 /

(︂
𝐺𝐻𝐼𝑑𝑒𝑠𝑖𝑔𝑛𝑃

𝑟𝑎𝑡𝑒𝑑
𝑃𝑉

1000

)︂
, (2.32)

where 𝑃 𝑟𝑎𝑡𝑒𝑑
𝑃𝑉 [W] is the manufacturer rated power of the solar panel at 25∘C and 1000

W/m2 irradiance. The output of the PV array is assumed to scale linearly with the

available irradiance [21].

The four degrees of freedom that make up the system configuration are sum-

marized in Table 2.1, along with the bounds and resolution applied to the system

optimization, described in Section 2.0.5.
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Variable Symbol Bounds Resolution

Lower Operating Window Threshold 𝑥𝑜𝑤𝑙 0-100% 0.1%

Upper Operating Window Threshold 𝑥𝑜𝑤𝑢 0-100% 0.1%

Pump Best Efficiency Point 𝑥𝑏𝑒𝑝 0-100% 0.1%

Target Irradiance Level 𝑥𝑔ℎ𝑖 0-100% 0.1%

Table 2.1: The four degrees of freedom, or design variables, that determine the TEDR

system configuration. The bounds of each variable are reported along with the reso-

lution applied during system optimization.

2.0.3 Water treatment plant performance outcomes

The equations outlined in Section 2.0.2.2 define a WPC that relates the system power

consumption to the average water production rate for a TEDR system with a speci-

fied architecture, system configuration, and performance targets (𝐶𝑓𝑒𝑒𝑑, 𝐶𝑑,𝑝𝑟𝑜𝑑, fluid

properties, 𝜈, 𝑉– 𝑝
𝜈,𝑊𝑇𝑃,𝑡𝑎𝑟𝑔𝑒𝑡). This WPC is then combined with a year of historical

solar irradiance data to determine the total volume of desalinated water produced by

a TEDR that meets the performance targets over the year.

To determine the annual volume of water delivered by the TEDR system, the WPC

is combined with a dataset of yearly irradiance particular to a geographic location.

The solar irradiance dataset is converted to the power output of a PV array, 𝑃 𝑃𝑉
𝑜𝑢𝑡 ,

that is divided into time steps with resolution ∆𝑡. The power output of the PV array

is defined as

𝑃 𝑃𝑉
𝑜𝑢𝑡 =

𝑁𝑃𝑉 𝑃
𝑟𝑎𝑡𝑒𝑑
𝑃𝑉 𝐺𝐻𝐼(𝑡)

1000
, (2.33)

where 𝐺𝐻𝐼(𝑡) is the historical irradiance for each time step of the solar irradiance

dataset. For each time step, if 𝑃 𝑃𝑉
𝑜𝑢𝑡 is less than 𝑃𝑚𝑖𝑛

𝑠𝑦𝑠 , the system remains off during

that time step and generates no desalinated water. If 𝑃 𝑃𝑉
𝑜𝑢𝑡 is greater than 𝑃𝑚𝑎𝑥

𝑠𝑦𝑠 ,

the system power consumption is assumed to be 𝑃𝑚𝑎𝑥
𝑠𝑦𝑠 . For output power levels

𝑃𝑚𝑖𝑛
𝑠𝑦𝑠 ≤ 𝑃 𝑃𝑉

𝑜𝑢𝑡 ≤ 𝑃𝑚𝑎𝑥
𝑠𝑦𝑠 , then 𝑃 𝑃𝑉

𝑜𝑢𝑡 is set to be equal to 𝑃𝑠𝑦𝑠 of equation 2.1. The

WPC relationship defined in Section 2.0.2.2 is then used to determine 𝑄𝑝 associated
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with each power level 𝑃 𝑃𝑉
𝑜𝑢𝑡 and an incremental volume of water ∆𝑡𝑄𝑝 is added to

the volume of water produced by the TEDR system for each time step. The volume

of water produced by the system each day, 𝑖, is 𝑉– 𝑝
𝑠𝑦𝑠,𝑖 [m3], which is the sum of

the incremental volumes of water produced during each time step over each day of

historical weather data.

After evaluating the set of data 𝑉– 𝑝
𝑠𝑦𝑠,𝑖, the reliable daily water production of the

system, 𝑉– 𝑝
𝜈,𝑠𝑦𝑠 [m3], is evaluated at the percentile 1 − 𝜈 within the dataset, where 𝜈

is the desired system reliability set by the performance targets.

The desired reliable daily production of the WTP, 𝑉– 𝑝
𝜈,𝑊𝑇𝑃,𝑡𝑎𝑟𝑔𝑒𝑡, is set by the

performance requirements outlined in Section 2.0.2. If 𝑉– 𝑝
𝜈,𝑠𝑦𝑠 < 𝑉– 𝑝

𝜈,𝑊𝑇𝑃,𝑡𝑎𝑟𝑔𝑒𝑡, the

required number of systems necessary to meet the WTP target, 𝑁𝑠𝑦𝑠, is defined by

𝑁𝑠𝑦𝑠 =

⌈︃
𝑉– 𝑝

𝜈,𝑊𝑇𝑃,𝑡𝑎𝑟𝑔𝑒𝑡

𝑉– 𝑝
𝜈,𝑠𝑦𝑠

⌉︃
, (2.34)

where the brackets indicate that the result must be rounded up to the nearest integer

value.

The final performance outcome is the mode of operation. At any time step, a

TEDR system and WTP may operate in batch or continuous mode, based on the

value of 𝑆/𝐽 , where 𝑆 is defined in equation 2.19. As noted in Section 2.0.2, a value

of 𝑆/𝐽 > 1 indicates batch mode and 𝑆/𝐽 = 1 indicates continuous mode. If the

system WPC switches between operating modes, depending on its flow rate and,

thereby, its power consumption, it is considered to be a mixed mode system.

2.0.4 Cost model

The cost model defines an LCOW based on component cost inputs particular to a

given geographic location and the performance outcomes determined in Section 2.0.3.

The LCOW calculation for the WTP, 𝐿𝐶𝑂𝑊𝑊𝑇𝑃 [USD/m3], follows Lienhard et al.

[22], and is defined as

𝐿𝐶𝑂𝑊𝑊𝑇𝑃 =
𝑐𝑟𝑓𝐺𝑐𝑎𝑝𝑒𝑥

𝑊𝑇𝑃 +𝐺𝑜𝑝𝑒𝑥
𝑊𝑇𝑃

365𝑉– 𝑝
𝜈,𝑊𝑇𝑃,𝑡𝑎𝑟𝑔𝑒𝑡

, (2.35)
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where where 𝑐𝑟𝑓 is a capital recovery factor; 𝐺𝑐𝑎𝑝𝑒𝑥
𝑊𝑇𝑃 [USD] is the total capital cost of

the WTP; and 𝐺𝑜𝑝𝑒𝑥
𝑊𝑇𝑃 [USD/year] is the total operating cost over one year of operation.

The 𝑐𝑟𝑓 is an amortization factor on the capital cost

𝑐𝑟𝑓 =
𝑘𝑑(1 + 𝑘𝑑)

𝑚

(1 + 𝑘𝑑)𝑚 − 1
, (2.36)

where 𝑘𝑑 is the annual interest rate; and 𝑚 is the depreciation period, which is set to

be the expected system lifetime.

The system capital cost, 𝐺𝑐𝑎𝑝𝑒𝑥
𝑠𝑦𝑠 [USD], is defined as

𝐺𝑐𝑎𝑝𝑒𝑥
𝑠𝑦𝑠 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐽𝐺𝑠𝑡𝑎𝑐𝑘 +

𝐽∑︀
𝑗=1

𝐺𝑗,𝑃𝑆 + 2(𝐺𝑝𝑢𝑚𝑝 +𝐺𝑝𝑐 +𝐺𝑡𝑘) +𝑁𝑃𝑉𝐺𝑃𝑉 if Batch or Mixed

𝐽𝐺𝑠𝑡𝑎𝑐𝑘 +
𝐽∑︀

𝑗=1

𝐺𝑗,𝑃𝑆 + 2(𝐺𝑝𝑢𝑚𝑝 +𝐺𝑝𝑐) +𝑁𝑃𝑉𝐺𝑃𝑉 if Continuous
,

(2.37)

provided the cost of the stack, 𝐺𝑠𝑡𝑎𝑐𝑘, is

𝐺𝑠𝑡𝑎𝑐𝑘 = 2𝑁(𝐺𝑠𝑝 +𝐺𝑚𝑒𝑚) + 2𝐺𝑒𝑙 . (2.38)

𝐺𝑗,𝑃𝑆 is the cost of the stack power supply for the jth stack; 𝐺𝑝𝑢𝑚𝑝 is the cost of the

pump; 𝐺𝑝𝑐 is the cost of pump controller; 𝐺𝑡𝑘 is the cost of the tank; 𝐺𝑃𝑉 is the cost

of a single solar panel; 𝐺𝑠𝑝 is the cost of a single spacer; 𝐺𝑚𝑒𝑚 is the capital cost of

a single membrane; and 𝐺𝑒𝑙 is the capital cost of a single electrode. Each system is

comprised of two pumps, each with a pump controller; a power supply appropriately

rated for the power requirements of the jth stack; and an PV array comprised of 𝑁𝑃𝑉

panels. The capital cost of two recirculation tanks is only included for system that

which operate in batch or mixed mode. The cost of tanks are not included for systems

that operate in continuous mode. For the calculation of stack cost, each cell pair, 𝑁 ,

requires one AEM, one CEM, one flow spacer for the diluate flow channel, and one

flow spacer for the concentrate flow channel, or 2𝑁 of each component. Each stack

requires two electrodes. The capital cost of the WTP is the sum of the capital cost

of 𝑁𝑠𝑦𝑠 systems, or 𝐺𝑐𝑎𝑝𝑒𝑥
𝑊𝑇𝑃 = 𝑁𝑠𝑦𝑠𝐺

𝑐𝑎𝑝𝑒𝑥
𝑠𝑦𝑠 .
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Component capital costs scale in different ways: electrode, membrane, and spacer

costs scale with stack area [m2]; power supply costs scale with maximum power output

[W]; pump costs and pump controller costs scale with rated maximum pump power

[W]; and PVpanel costs scale with the number of required solar panels [W]. The

specific functional form of the scaling and coefficients depend on the local cost of

products available in the geographic location of interest. Component cost models

used for this study are presented in Section 4. Storage tanks for batch recirculation

are assumed to be a fixed cost applied to each batch or mixed mode system; each

batch or mixed system requires 2 tanks of 1 𝑚3 each, which are sufficient to meet the

needs of all system scales considered in this study (each tank costs $880).

The yearly operating cost for the WTP, 𝐺𝑜𝑝𝑒𝑥
𝑊𝑇𝑃 [USD/yr], is defined as

𝐺𝑜𝑝𝑒𝑥
𝑊𝑇𝑃 = 𝑁𝑠𝑦𝑠𝐺

𝑜𝑝𝑒𝑥
𝑠𝑦𝑠 , (2.39)

where 𝐺𝑜𝑝𝑒𝑥
𝑠𝑦𝑠 is the yearly operating expense of each TEDR system. For this study,

the only operating cost considered is the cost of brine disposal:

𝐺𝑜𝑝𝑒𝑥
𝑠𝑦𝑠 = 𝐺𝑏𝑟𝑖𝑛𝑒 , (2.40)

where 𝐺𝑏𝑟𝑖𝑛𝑒 [USD/yr] and is the cost of brine disposal per unit volume of brine

generated. This cost scales with the volume of brine produced per day, 𝑉– 𝑏
𝜈,𝑠𝑦𝑠. The

volume of brine generated can be calculated using mass balance and the recovery

ratio, 𝜉, as

𝑉– 𝑏
𝜈,𝑠𝑦𝑠 = 𝑉– 𝑝

𝜈,𝑠𝑦𝑠

(︂
1

𝜉
− 1

)︂
. (2.41)

The case-specific cost of brine disposal is covered in Section 4.

2.0.5 Architecture identification and System Optimization

An optimization is performed to identify values of the four design variables described

in Section 2.0.2.2.5 that meet the defined performance requirements with a minimum
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𝐿𝐶𝑂𝑊𝑊𝑇𝑃 . A genetic algorithm (GA) was applied in MATLAB.

Replicate results tended to converge on a value for the WTP LCOW. The algo-

rithm was replicated 15 times with the conditions outlined in Section 4.1, resulting in

system designs with a standard deviation of the WTP LCOW of $0.0076 USD/m3.

This value was adopted as a measure of uncertainty due to the stochastic output ex-

pected for GA. The algorithm considered systems with a limited number of stacks in

series, based on the architecture and system configuration. Starting with one stack,

the number of stacks was incremented until the system could achieve continuous op-

eration over the entire range of diluate flow rates defined by the upper and lower

system flow rate limits, as defined in Section 2.0.2.2.5.
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Chapter 3

Model validation

The simplified model of TEDR performance outlined in Section 2 makes a number

of strategic simplifying assumptions to promote computational efficiency. To under-

stand the impact that these assumptions could make on prediction accuracy, model

predictions were compared to experimental measurements collected during operation

of a pilot-scale, PV-powered, direct-drive, TEDR system deployed in the summer of

2022 in Alamogordo, New Mexico [15].

The pilot system was comprised of a single commercial Veolia model V20 EDR

stack with 150 cell pairs operated in batch mode. The system was operated over

157 days fed with real brackish groundwater from Well 1 at the Brackish Ground-

water National Desalination Research Facility (BGNDRF). The average feed water

conductivity during the experiments was 1800 𝜇S/cm. The target product water

conductivity was 1000 𝜇S/cm, with an average measured product water conductivity

throughout the trial of 966 𝜇S/cm. Full details of system specifications, experimental

methodology, and performance targets are reported previously [15].

49



3.0.0.1 Comparison of desalination power

Figure 3-1: Modeled versus experimental desalination power for one day of operation

of a pilot TEDR system. The first pass occurs during the filling state, distinguished

as red triangles. During the first pass, the experiment was drawing water in from

the feed source through the stack and into the recirculation tanks. The modeled

desalination power has good agreement first pass power.

Day First Pass Last Pass Batch Recirc. All Data

Avg Diff Avg Diff Avg Diff Avg Diff

August 8, 2022 -3.7% 83% 49% 47

August 18, 2022 -3.7% 82% 49% 41

August 23, 2022 -3.9% 77% 47% 36

August 25, 2022 -2.1% 73% 44% 34

Table 3.1: Average difference between modeled and experimental data for desalination

power. The average difference is the fraction (reported as a percent) which the model

over- or under-predicts the experimental desalination power.

The measured power consumption as a function of diluate volumetric flow rate for

the pilot desalination unit on a representative day (August 8, 2022) is presented in
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Figure 3-1. Power consumption is reported during the first pass, last pass, and dur-

ing batch recirculation. The comparison demonstrates good agreement between the

model-predicted desalination power for the first pass and the experimentally mea-

sured desalination power. The average difference between model predictions and

experimental data for four of the operating days is presented in Table 3.1. The agree-

ment during the first pass is quite high, with an average difference of 2.1 - 3.7%.

When the modeled power is compared with the last pass and batch recirculation, the

average difference ranges from 73% to 83% and 44 to 49% respectively. The modeled

predicted consumption when considering all data ranging from 34 - 47%. As noted

in Section 2.0.2.2.2, the simplifying assumptions made in the model were expected to

overestimate the power consumption of the desalination process during batch recir-

culation, the last pass, or when considering all data. The output of the model has

the intended behavior.

The impact of conservative estimate of stack power consumption for the entire

desalination process suggest the model will overestimate the LCOW due to stack

power, providing a conservative estimate. Additional days of comparison are provided

in the Appendix, Section A, all with similar levels of agreement.
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3.0.0.2 Comparison of hydraulic power

Figure 3-2: Modeled versus experimental hydraulic power versus diluate flow rate

for one day of operation for a pilot TEDR system. The experimental data has one

correction factor to account for higher-than-expected filtration losses. As volumetric

flow rate increases, the modeled hydraulic power is less accurate suggest there are

other losses in the system not accounted for in the model. Positive values indicate

the over-prediction by the model.

Day Avg. Diff.

August 8, 2022 -20%

August 18, 2022 -24%

August 23, 2022 -21%

August 25, 2022 -28%

Table 3.2: Average difference between modeled and experimental data for hydraulic

power. The average difference is the fraction (reported as a percent) which the model

over- or under-predicts the experimental hydraulic power. Positive values indicate

the over-prediction by the model.
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Figure 3-2 compares the diluate volumetric flow rate to the hydraulic power required

to achieve that flow rate, as measured in the pilot EDR system. A correction was

made to account for higher than expected pre-filtration pressure losses in pilot system.

This was due to an undersized filter for the purpose. The correction was made by

measuring the pressure drop across the pre-filter alone while the pilot system was

operated without desalinating over a range of flow rates. This pressure drop was

converted to a hydraulic power and subtracted from the measured data.

The model tends to underestimate total hydraulic power, particularly at higher

flow rates. This is consistent with prior work, which found a similar discrepancy

between modeled hydraulic power and measured hydraulic power in a pilot-scale EDR

system [14]. The discrepancy suggests that other pressure losses exist in the system

that are not accounted for in the model. Future research can consider adding a major

pipe loss model to account for the piping connecting the pumps, stack, and tanks.

A comparison between model predictions and data on four other representative days

was consistent (Table A.3), resulting in a model underestimate of 20 - 28%.

Due to this discrepancy, the model is likely to underestimate LCOW compared

to real desalination systems, particularly systems with a large maximum system flow

rate. A real system will have to incorporate larger than modeled pumps and PV

arrays to accommodate the higher hydraulic power. However, there is very good

agreement between the model and experimental data at lower flow rates.
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3.0.0.3 Water production rate validation

Figure 3-3: Modeled and experimental cumulative water production versus time for

one day of operation of a pilot TEDR system.

Day Experiment [m3] Model [m3] Difference

August 8, 2022 6.46 7.21 12%

August 18, 2022 5.99 5.97 -0.3%

August 23, 2022 4.46 4.99 12%

August 25, 2022 7.1 7.81 10%

Table 3.3: The difference in the modeled total product volume versus experimental

total product volume.

Figure 3-3 demonstrates good agreement between the model-predicted total volume

of water produced and measured volume of water produced in the pilot system. The

trend of water production over time is also reproduced. Additional comparisons of

the daily total volume of water produced are presented in Table 3.3, which also

demonstrate good agreement. This level of agreement suggests that the model may

be able to capture key performance trends despite the simplifications, enabling it to

distinguish the performance of difference system architectures.
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The tendency of the model to predict a slightly higher daily water production

volume compared to experiment reflects the assumption in the model of a 100% stack

efficiency, described in Section 2.0.2.2.2. This assumption will cause the model to

underestimate the power requirement to desalinate, predicting that more water can

be produced at the same power level relative to the experiment. The impact of an

over-prediction in daily production will be an under-prediction of LCOW, as each

system will be able to amortize its own cost by producing more water, requiring

fewer systems to meet the WTP target production.
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Chapter 4

Case studies

Two case studies of interest have been defined to demonstrate the capability of this

model to select cost-optimal a TEDR system from a number of alternative designs.

The diversity of needs in each case illustrate the need for a robust methodology for

optimization and trade-off analysis. The first case focuses on the application of TEDR

desalination to supply potable water for Elmendorf, Texas. The second case focused

on desalination for irrigation in Qena, Eygpt. Results from sensitivity analysis for

Elmendorf, Texas will also be presented.

Abbreviation Manufacturer Model No. Cell Pairs

MkIVx600 Veolia MkIV-2 600

MkIVx400 Veolia MkIV-2 400

MkIVx200 Veolia MkIV-2 200

V20x300 Veolia V20 300

V20x150 Veolia V20 150

V20x100 Veolia V20 100

Table 4.1: The list of commercially available EDR stacks explored in this study, lim-

ited to those manufactured by Veolia Water Technologies [1]. Each stack is configured

with a different number of cell pairs. The V20 is a smaller EDR stack with a flow

path length that is 30% of the MkIV flow path.
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Parameter MkIV V20 Unit

Flow Path Length, 𝐿 1.68 0.508 [m]

Flow Path Width, 𝑊 0.197 0.2032 [m]

Membrane Length, 𝐿𝑚𝑒𝑚 1.016 0.75 [m]

Membrane Width, 𝑊𝑚𝑒𝑚 0.4699 0.35 [m]

Electrode Potential, 𝑉𝑒𝑙 1.4 1.4 [V]

Mininum Channel Velocity, 𝑢𝑚𝑖𝑛
𝑐ℎ 0.07 0.07 [m/s]

Maximum Inlet Pressure, ∆𝑃𝑚𝑎𝑥 344738 344738 [Pa]

CEM Veolia, CR67E Veolia, CR67T [ - ]

AEM Veolia, AR204E Veolia, AR204T [ - ]

CEM Area Resistance, 𝑅𝐶𝐸𝑀 0.00055 0.00025 [Ohm-m2]

AEM Area Resistance, 𝑅𝐶𝐸𝑀 0.00032 0.00017 [Ohm-m2]

Flow Spacer Void Fraction, 𝜖 0.83 0.83 [ - ]

Flow Spacer Open Area Porosity, 𝜑𝑎 0.7 0.7 [ - ]

Flow Spacer Thickness, ℎ𝑠𝑝 0.00071 0.00078 [m]

Table 4.2: List of stack-specific parameters used to calculate the performance of each

stack.

For these two cases, two models of commercially available EDR stacks produced

by Veolia Water Technologies were considered, the MkIV and V20 [1]. Stack specific

parameters, such as dimensions of the flow path and thickness of the flow spacers are

tabulated in Table 4.2. The MkIV is a larger stack that can be configured with up

to 600 cell pairs. The V20 is a smaller, cheaper stack that can be configured with up

to 300 cell pairs. For each stack, three commercially-available configurations of cells

pairs were selected to evaluate the impact of cell pairs on the WTP LCOW. Stacks

with fewer cell pairs have a lower capital cost but reach their maximum rated inlet

pressure at lower flow rates, limiting their range of operation. Valid architectures

were defined for each of the six models of stack presented in Table 4.1 abiding by

the constraints for valid architecture set in Section 2.0.5. Each valid architecture
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was then optimized, using the design variables in Table 2.1, resulting in alternative

designs for a cost-optimized WTP.

In both cases, the targeted reliability was 95%. At higher reliabilities, the cost

of water increases sharply as a fewer, low-irradiance days disproportionately effect

number of systems required to meet the targeted daily production of the WTP.

Cost Model Type Value

Pump CAPEX, USD 𝐺𝑝𝑢𝑚𝑝 = −5705.3 + 1084.1𝑙𝑛
(︁

𝑃𝑚𝑎𝑥ℎ𝑦𝑑

1000𝜂𝑄𝑚𝑎𝑥𝑝𝑢𝑚𝑝

)︁

Pump Controller CAPEX, USD 𝐺𝑝𝑐 = 0.0961
(︁

𝑃𝑚𝑎𝑥ℎ𝑦𝑑

1000𝜂𝑄𝑚𝑎𝑥𝑝𝑢𝑚𝑝

)︁
+ 345.42

Stack Power Supply CAPEX, USD 𝐺𝐽,𝑃𝑆 = 0.5015
(︁

𝑃𝑚𝑎𝑥𝑗,𝑑𝑒𝑠𝑎𝑙

1000𝜂𝑃𝑆

)︁
+ 49.282

Membrane CAPEX, USD 𝐺𝑚𝑒𝑚 = 75𝐿𝑚𝑒𝑚𝑊𝑚𝑒𝑚

Electrode CAPEX, USD 𝐺𝑒𝑙 = 1200𝐿𝑊

Spacer CAPEX, USD 𝐺𝑠𝑝 = 23𝐿𝑚𝑒𝑚𝑊𝑚𝑒𝑚

Tank CAPEX, USD 𝐺𝑡𝑘 = 880

PV Panel CAPEX, USD 𝐺𝑃𝑉 = 500

Table 4.3: The capital cost model used to determined the component costs of the

system and WTP.

The component capital cost models utilized for both cases is presented in Table

4.3. These component costs contribute to the LCOW as outlined in Section 2.0.4.

The cost of brine disposal was determined by the most cost-effective brine disposal

method available in each geographic region, reported in Sections 4.1 and 4.2 for each
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case study. The cost of the membranes are calculated from the actual membrane

length and width. The additional membrane area is required on the perimeter of

the flow path to create a fluid-tight seal with the flow spacer. The flow spacer has

the same dimensions as the membrane. The electrode area is calculated from the

length and width of the flow path. The cost of the pump, pump controller, and stack

power supply are calculated by the maximum power consumption of each respective

component.

The capital costs used for the pump, pump controller, stack power supply, and

tanks were aggregated from several online resources. For each cost function, a curve

of best fit was applied with either a logarithmic fit or polynomial fit up to the 3rd

degree. The best fit function, logarithmic or polynomial, was selected according to

the highest R2 value. The capital cost of the pumps were extracted from the online

supplier, Grainger, using their catalog of three-phase, centrifugal pumps from the

supplier Goulds. The pumps ranged in rated electrical power from 0.3 kw to 15

kW [23]. WEG variable frequency drives ranging from 0.2 to 83 kW supplied by

Automation Direct were used to model the cost of the pump controller [24]. The

cost of AC/DC power converters from Digikey ranging from 2 to 17 kW were used

to estimate the cost of the stack power supply [25]. The cost of a 1 m3 tank was

estimated using US Plastic Corporation’s selection of IBC tote tanks ranging from

0.1 to 1.3 m3 [26]. The solar panel cost was $550 for one 550 W panel from Renogy

(model RSP550D-144x2-US) [27].

The membrane cost, spacer cost, and electrode cost were $75 USD/m2, $23

USD/m2, and $1200 USD/m2 [28]. Using this cost model, the capital costs provided

predicted a stack cost of $57,000 USD for a MkIVx600 and $16,000 for a V20x300.

Both stacks are estimated to cost less than the total quoted price for an individual

stack. The MkIVx600 quoted cost was $65,000; 14% greater than modeled. The

V20x300 quoted cost was $21,000; 31% greater than modeled [28]. This discrepancy

in cost suggests additional overhead costs associated with the fabrication and as-

sembly of each stack. Although the discrepancy in cost was not uniform between the

MkIV and V20, the cost model was adopted. Case study findings presented in Section
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4.1 and 4.2 showed the cost advantage of the V20 did not result in lower LCOW.

The following sections adopt an abbreviation to refer to each optimized system

and selected operational mode with the following convention: WJ-XY-Z where

• W is the number of serialized stacks.

• X is the operating type; TV for time-variant and F for fixed.

• Y is the operating mode; B for batch, C for continuous, M for mixed.

• Z is the model of stack.

As an example, a specific system that has 3 serialized V20x150 stacks and operates

in time-variant, batch mode will have the system abbreviation 3J-TVB-V20x150.
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4.1 Potable water in Elmendorf, Texas

The state of Texas has been rapidly increasing desalination capacity over the past

several decades. Desalination plants in Texas accounted for 9% of all installed plants

in the USA in 2010 rising to 13% of installed plants in 2017 [29]. Increasing de-

salination capacity is part of the decades-long Texas State Water plan which seeks

to combat increasing water scarcity caused by statewide drought and population

growth [30]. The 2022 Texas State Water Plan estimates municipal freshwater short-

ages for each decade through the 2070s. Municipal shortages are expected to grow

from 214,613 acre-ft/year (725,000 m3/day) in the 2020s to 3,144,304 acre-ft/year

(10,600,000 m3/day) in the 2070s. Municipal shortages are estimated to overtake

shortages in the irrigation, manufacturing, steam electric power, livestock, and min-

ing sectors in the 2070s [30]. To combat this shortage, Texas plans to employ water

reuse, demand reduction, and increased desalination capacity, among other water

conservation strategies [30]. 30 new groundwater desalination projects for municipal

use are planned across Texas in the 2030s, including new installations and expansions

[30], demonstrating Texas’ commitment to new desalination infrastructure.

The San Antonio Water System (SAWS) is a municipal water supply with a

demonstrated focus on new and expanded desalination capacity, illustrated by the

SAWS H2Oaks Center, completed in 2016. The H2Oaks Center is a modern brackish

water RO desalination plant with a design capacity of 45,000 m3/day. The reported

utilization in 2020 was 28,000 m3/day [31]. The facility integrates desalination with

aquifer storage and recovery (ASR) as a product water reservoir and deep well injec-

tion (DWI) for brine disposal. In February 2021, Winter Storm Uri caused state-wide

power outages, including at the H2Oaks Center. SAWS now plans to install backup

natural-gas powered backup generators at H2Oaks Center to mitigate the impact of

future power outages [32]. Simultaneously, SAWS is working with the local energy

utility to evaluate the feasibility to install 80-125 MW of new solar capacity on the

land surrounding the H2Oaks Center to reduce the grid reliance and increase energy

resilience [32]. These features make the SAWS site an excellent case to explore the
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potential for TEDR systems to complement the projected need for desalination in the

SAWS municipal water supply, as well as address the need for a desalination tech-

nology that pairs well with renewable power sources. This case therefore focuses on

Elmendorf, TX where the H2Oaks Center is located.

Case Parameter Value Unit

Target Plant Production Rate, 𝑉– 𝑝
𝜈,𝑊𝑇𝑃,𝑡𝑎𝑟𝑔𝑒𝑡 5520 [m3/day]

Reliability, 𝜈 95 [%]

Feed Concentration, 𝐶𝑑,0 1400 [ppm NaCl]

Target Concentration 𝐶𝑑,𝑆 300 [ppm NaCl]

Recovery Ratio, 𝜉 90 [%]

System Life, 𝑚 10 [years]

Interest Rate, 𝑘𝑑 5 [%]

Maximum Pump Efficiency, 𝜂𝑚𝑎𝑥
𝑝𝑢𝑚𝑝 40 [%]

Rated PV Panel Output, 𝑃 𝑟𝑎𝑡𝑒𝑑
𝑃𝑉 550 [W]

Stack Power Supply Efficiency, 𝜂𝑃𝑆 80 [%]

Static Pressure Losses, ∆𝑝𝑙𝑜𝑠𝑠 69,000 [Pa]

Table 4.4: Case parameters used in the formulation of the Elmendorf, TX case study.

Functional requirements and case parameters for Elmendorf were derived from

the 2022 Texas State Water Plan, the Texas Water Development Board (TWDB)

desalination plant database, and insight from stakeholder interviews. Several semi-

structured interviews in Texas were conducted in Summer 2023 with a senior analyst

at SAWS and two TWDB employees working in the TWDB Innovative Water Tech-

nologies department including a Manager and Desalination and Reuse Engineering

Specialist. The interviews included questions designed to ascertain the operating re-

quirements of current and future proposed desalination systems as well as pain points

of current desalination processes. Key functional requirements of the case derived in

part from these interviews are included in Table 4.4.

The average plant size in Texas was 5,300 m3 when surveyed in 2017 [33]. Twenty

of the thirty municipal desalination plants planned in 2030s have a capacity of 6,000
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m3/day or less [30]. The representative WTP capacity for this study was chosen to be

5,520 m3/day, which is 20% of the actual H2Oaks Center’s reported 2020 utilization.

The smaller size of this plant reflects a trend toward smaller plants sizes for new

desalination plants installed in the 2030s [30]. The feed concentration, product con-

centration, and recovery ratio were chosen based on the performance of the H2Oaks

Center [31]. This reflects a desire to understand whether a TEDR architecture could

be beneficial compared to the existing plant, which is based on RO. An irradiance

profile for Elmendorf was selected from the National Renewable Energy Laboratory

(NREL) National Solar Radiation Database (NSRDB) [34]. The dataset includes the

GHI for 2022 near Elmendorf, Texas (Latitude 29.14, Longitude -98.41).

Cost Model Type Value

Brine Disposal OPEX, USD/yr 𝐺𝑏𝑟𝑖𝑛𝑒 = 365(1.1243𝑉– 𝑏
𝜈,𝑠𝑦𝑠)

Table 4.5: The brine disposal cost for Elmendorf, Texas used in the calculation of

yearly operating expenses. The 365 multiplier reflects the conversion from daily to

yearly cost.

The cost of brine disposal, presented in Table 4.5, was set to the 2024 SAWS

monthly wholesale sewer rate [35]. The H2Oaks Center utilizes DWI as it primary

brine disposal method. Costs for DWI vary greatly according to the drilling depth and

quantity of brine disposed [36]. It was not possible to attain an accurate brine disposal

cost for the H2Oaks center for this study. The SAWS municipal sewer rate was

selected instead. Although sewer disposal is less prevalent in Texas, it is a common

practice in California and Texas, where the greatest proportion of desalination plants

in the USA are located [29, 36].
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Figure 4-1: Optimization results for potable water in Texas. Each point on the

figure represents a cost-optimal WTP system defined by a unique architecture and

system configuration. The resulting operating mode and lowest LCOW are indicated.

Omitted from this figure is the system type, and mode of operation (fixed or time-

variant). All optimal systems were time-variant.

Figure 4-1 presents the WTP LCOW for 30 optimized architectures designed to

deliver potable water in Elmendorf, Texas, each capable of meeting the identified

needs in Table 4.4. The results are also tabulated in the Appendix in Table A.1.

Nine systems utilize MkIV stacks and 21 systems utilize V20 stacks. In addition,

the design and performance outcomes of the optimized architectures are presented

in Table A.1. The least-cost optimized WTP contains 59 optimized TEDR systems

within the WTP. Each system is comprised of one Veolia MkIVx600 EDR stack and
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was found to operate in a time-variant batch configuration (1J-TVB-MkIVx600).

These results are explored in depth in the following sections.

Figure 4-2: Elmendorf, TX 1J-TVB-MkIVx600 daily production for 2022 historical

irradiance.

4.1.0.1 Utilization of time-variance

In addition to the least-cost architecture, all of the cost-optimized architectures utilize

time-variance (𝑥𝑜𝑤𝑙 < 𝑥𝑜𝑤𝑢). The model must consider several key trade-offs to deter-

mine that time variance is the most optimal configuration. A time-variant system can

utilize a larger fraction of solar energy to desalinate water compared to a fixed system

but it typically has a higher capital cost to support a power system that is capable

of delivering a higher power for desalination and pumping. In addition, the system

must weigh the cost of operating at a higher SEC at higher powers. The selection

of time-variant operation in every case suggests that the additional water produced

by each time-variant system reduced the total number of the systems required to

meet the target demand, outweighing the increase in capital cost per system. This
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reinforces the net benefits of TEDR operation originally proposed by He et al. [13].

4.1.0.2 Comparison with existing RO

From Table 4.4, the LCOW for the optimized WTP is $0.7349 USD/m3. This is

less than the reported LCOW for the H2Oaks Center, which is $0.92/m3 [37]. Al-

though the LCOW produced by the model is an estimate, this favorable comparison

between a plant designed with TEDR systems and the existing RO systems at the

H2Oaks Center is promising and suggests that further analysis would be worthwhile

to compare these costs in greater detail. Both the optimized LCOW and the reported

LCOW of the H2Oaks center are higher than the current residential cost of water

in the San Antonio Water System, which is $0.24 USD/m3[35]. This suggests that

the cost of water for a TEDR system would likely need to be subsidized, similar to

the existing H2Oaks facility. It also suggests that the subsidies would be similar in

magnitude to existing subsidies.

The model-predicted capital cost of the optimal WTP was $9,500,000, equivalent

to $1,700 USD per m3/day of production capacity. In comparison, the reported capital

cost of the H2Oaks Center is $192,000,000, equivalent to $4,200 USD per m3/day of

production capacity [37]. This difference in capital cost is likely due in part to costs

that are included in the H2Oaks Center cost but not considered in the TEDR model,

such as the cost of infrastructure, labor, and other capital costs. However, EDR

systems are typically reported to have significantly higher capital costs compared to

RO, though the LCOW may be lower. The lower projected capital cost suggests that

the cost-reducing benefits of TEDR operation may be weighing favorably against RO

for this use case.

4.1.0.3 Potential flexibility benefits of TEDR

The daily production volume of the most optimal system, 1J-TVB-MkIVx600, is

presented in Figure 4-2. This demonstrates that on most days, the TEDR WTP is

delivering significantly more water than the minimum reliable volume of product wa-

ter. The minimum volume of water delivered in a single day by the WTP is 2,000 m3
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in November, 2022 and the maximum volume is 11,000 m3 in June, 2022. As a result

of this excess capacity, the total annual water production of the optimized TEDR

WTP in the modeled year was 3,200,000 m3, compared to 2,000,000 m3 required to

meet the minimum reliable product water volume target. This extra capacity can

significantly impact the LCOW. The optimized LCOW considers only the minimum

reliable product water volume target (Equation 2.35), which effectively assumes that

any excess production is not valued. Considering the actual annual production rate,

the LCOW for the cost-optimal TEDR WTP is $0.5069 USD/m3, which is 31% less

that the LCOW considering only the minimum reliable product volume. Water pro-

duced in excess of demand could feasibly be stored in a holding tank, reservoir, or

ASR, which is the current practice of the H2Oaks Center. The water produced in ex-

cess could also be used to supplant water production on low irradiance days, reducing

the number of systems in the WTP required to achieve the target production rate.

This flexibility suggests that the LCOW in practice would be less than the model

estimate, making the technology even more favorable compared to the existing RO

plant.

4.1.0.4 Architecture trade-offs

Figure 4-1 reveals key trade-offs between different architectures for the Elmendorf,

Texas potable water case. The number of cell pairs impacts the WTP LCOW signif-

icantly; systems based on the same stack model with fewer cell pairs show a higher

LCOW. When the number of cell pairs is lower, the cost per stack cost is reduced

because each stack contains less membrane area. However, a consequence of the lower

membrane area is an increased flow constriction, a higher pressure drop, and a lower

average production rate per stack. The results suggest that stacks with larger num-

ber of cell pairs were favored for the Texas case, where the WTP was comprised of

10s-of-systems. This indicates that the cost savings per stack with a lower number

of cell pairs does not outweigh the reduced production capacity compared to stacks

with more cell pairs.
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4.1.0.5 Influence of operating mode

The ratio of total number of passes and the number of stacks in series, 𝑆/𝐽 , determines

whether the operating mode of the system is batch or continuous. The most optimal

system of Figure 4-1, 1J-TVB-MkIVx600, has a ratio 𝑆/𝐽 which ranged from 1.9

at the lowest flow rate to 2.5 at the highest flow rate, indicating that it operates

entirely in batch mode. The next lowest cost system, 2J-TVM-MkIVx600, had mixed

operation, with a ratio 𝑆/𝐽 from 1.0 to 1.1, operating in continuous mode for the

lowest 40% of its operating range. This outcome is also demonstrated in Figure 4-

3, which compares the total attainable salt cut in three cost-optimal MkIV systems

to the required salt cut to achieve the desired product water concentration (in this

case, 78.5%). The least cost architecture operates in batch mode over its entire

operating range, and the second least-cost system operates in batch mode over 40%

of its operating range. These results demonstrate that the model is favoring batch

operation for the Texas potable water case.

A batch system can vary its power consumption over a wider range to more closely

match the available power from the PV array compared to mixed or continuous sys-

tems. From Table A.1, the optimal batch system in Elmendorf utilized 57% of the

available solar from its PV array, a higher utilization than the next eight lowest cost

systems. This reduces the capital cost of a PV system and allows the batch system

to benefit more from time-variance than a continuous system. These results suggest

that the wide range of power consumption, and flexible operation of the batch system,

outweighs other penalties, such as the higher SEC when operating at higher power

levels. These results, presented in the Appendix in Table A.1, also suggest that higher

solar utilization is favorable in terms of LCOW.
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Figure 4-3: The attainble salt cut is a measure of the total salt removed by all

stacks during the first pass of operation, or for all 𝑠 = 𝑗. When the attainable salt

cut is equivalent to the salt cut required to desalinate from the feed to the target

concentration, the system operation is continuous. Any system which operates with

an attainable salt cut less than salt cut required for continuous operation operates

in batch mode. Here, 2 Series MkIVx600 has mixed operation, transitioning from

continuous operation to batch operation dependent on the diluate flow rate.

During continuous operation, there is a 1:1 relationship between diluate flow rate

and water production rate. A WTP comprised of systems that operate in mixed mode

can achieve the same productivity for a similar cost as a batch system, indicated by the

small difference in LCOW between the plants comprised of 1J-TVB-MkIVx600 versus

2J-TVM-MkIVx600. The subtlety in this trade-off highlights the need for system

designer to be able to consider multiple architectures and system configurations to

design cost-optimized systems.
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4.1.0.6 Influence of stack model

From Figure 4-1, the larger MkIV stack was favored, generally, over the smaller V20.

The shorter flow path of the V20 removes less salt per pass compared to the MkIV.

Although the V20 is lower cost, the low product concentration required for potable

water favors the MkIV. In addition, the MkIV can be configured with more cell pairs

compared to a V20. These results demonstrate that the increase in active membrane

area in the MkIV is beneficial for a large, municipal WTP attempting to achieve

potable water quality in Texas.

Additional model-specific stack costs such as the number of fittings, the size of

length of pipe, or other hardware costs are not considered in the model, though they

may affect the trade-off in cost between a MkIV and V20. This analysis demonstrates

that a WTP that utilizes V20s may have a higher number of stacks in the WTP

compared to the MkIV. The larger number of stacks required for V20 systems will

require more fittings and model-specific costs, but the small footprint and light weight

of a V20 may also prove valuable if the cost of infrastructure is considered. The model

provides a framework that would allow a designer to consider these additional costs.

The number of serialized stacks and the operating mode (batch, mixed, continu-

ous) are closely linked. For the MkIV, fewer serialized stacks operating in batch or

mixed modes, tended to be the lowest cost. However, for V20 stacks, the LCOW was

highest for the fewest number of serialized stacks, suggesting that the added capital

cost of adding more serialized stacks was worthwhile to achieve the higher daily pro-

duction volume. For the Texas case, the impact of this outcome is that lowest cost

systems always selected a number of serialized stacks that resulted in batch operation,

as opposed to mixed or continuous. This supports the conclusion that batch systems

are favored for time-variant operation when the desired product water concentration

is low, as in the potable water Texas case.
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4.1.0.7 System configuration trade-offs - lower operating window

Clear trade-offs and trends are apparent for each of the four system configuration

design variables - lower operating window, upper operating window, design irradiance

level, and BEP. The lower operating window of the most cost optimal system was

set at 1.2%. For all 30 optimized systems, the range of the lower operating window

was very low - 0.0% to 4.6%. The selection of the lower operating window directly

impacts the minimum system power level required to start operation. Regardless of

system architecture or operating mode, these results demonstrate that the optimizer

favors lower values for the lower operating window. This outcome is consistent with

the understanding that TEDR operates with the lowest specific energy consumption

(SEC) at the lowest power levels [11]. In addition, when the operating window is low,

the minimum system power, 𝑃𝑚𝑖𝑛
𝑠𝑦𝑠 , is correspondingly low. This allows the system to

operate for a greater portion of the day, reducing the cost of the system by producing

more water during the day. The consistent selection of a low lower operating window

suggests that systems capable of operating reliably on low irradiance days are favored

when the daily and seasonal variation in irradiance is relatively high, as it is in

Elmendorf.

4.1.0.8 System configuration trade-offs - upper operating window

There was more variation in the upper operating window across the 30 optimized

architectures. This value ranged from 24% to 99%. The least-cost optimal system

selected an upper operating window of 77.8%, indicating that the system is making

use of the majority of the architecture-constrained operating window. The variation in

the upper operating window suggests that the optimizer is considering two competing

design strategies to achieve a low LCOW. One strategy selects a smaller value for the

upper operating window, causing the WTP to be comprised of more lower power,

lower cost systems. The other strategy selects a larger value for the upper operating

window causing the WTP to be comprised of fewer, higher power, higher cost systems.

The inconsistency of upper operating window selection suggests that the choice may
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depend on the stochastic nature of the GA, reflecting multiple local minima for the

optimization. The optimized upper operating window for the top three lowest cost

systems were 77.8%, 82%, and 96.6%, respectively. This suggests that the optimizer

prioritized fewer, higher-power, higher-cost systems when configuring the large WTP

designed for Elmendorf.

This selection highlights a benefit of time variant operation. WTPs which have

large required production rates and relatively low product concentration targets are

able to use time-variant operation to increase the utilization of solar power, mak-

ing use of the higher power portion of the system’s operation at the expense of a

increased SEC. The selection of a large upper operating window in the least-cost

systems suggests that this benefit outweighs the penalty caused by a higher SEC.

4.1.0.9 System configuration trade-offs - target solar irradiance level

From Table A.1, the least cost optimal system had a PV array with 157 panels and

was designed to deliver its maximum system power (30 kW) at a target irradiance

level of 349 W/m2. When the solar irradiance exceeds 349 W/m2, the system cannot

utilize the additional power made by the PV array to desalinate water. The 157, 550

W panels used in the least-cost optimal system are nominally rated for 86 kW at 1000

W/m2 - this is 2.9 times greater than the maximum system power consumption. A

conventionally-designed PV array would require only 55, 550 W panels to output 30

kW at the conventional design target of 1000 W/m2. All of the optimized systems

in this study selected arrays with a rated power output significantly higher than the

maximum power consumption, with arrays rated 2.1 to 6.9 times higher that their

power rating. This result may reflect the high frequency of lower irradiance days in

the winter and fall in Elmendorf, with the optimizer selecting for systems that can

be more productive on lower irradiance days.

System designers must also consider the cost of land and installation for large PV

arrays when selecting the optimal system design. Future iterations of the model could

incorporate a land cost, or incorporate battery energy storage, to reduce the size of

the required PV arrays and consider these trade-offs. If the cost of battery storage is
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low, the cost savings of a smaller array size may reduce the LCOW.

4.1.0.10 System configuration trade-offs - BEP

The BEP was placed at 19% system operating window for the least cost optimized

system. Over the 30 optimized architectures, the BEP ranged from 0.8% to 70%. The

selection of the best efficiency point reflects several key trade-offs. The first trade off is

between the capital cost of the pump and the minimum power required to operate the

system. The capital cost of the pump is based on the maximum required pumping

power. A pump that is most efficient at 0% of the system operating window will

contribute to the largest increase in LCOW due to its high power consumption at the

high end of the flow rate operating range. However, the minimum power consumption

of the system will be low, enabling operation at lower irradiance levels over a longer

portion of the day. In contrast, a pump that is most efficient at 100% of the system

operating window will have the lowest power consumption and contribute the least

to the LCOW, but at the expense of an increase in the minimum power required to

operate the system. The increase in minimum required power will cause the system

to operate for a shorter portion of the day, ultimately producing less water.

In Elmendorf, the top 23 optimized architectures selected a BEP of 45.2% or less.

This suggests that the optimizer is prioritizing more efficient low-power operation for

this case. The higher pump cost was amortized by the additional water produced

throughout the day, particularly during periods of low irradiance. This trade-off

suggests that the irradiance profile of Elmendorf allowed the optimizer to leverage

low-power operation.

4.1.0.11 Plant performance considerations

All of the system configuration design variables are constrained by Equation 2.34,

which requires the WTP to be comprised of an integer number of systems. In addition,

the WTP LCOW is based on delivering only the minimum reliable product water

target, set by the functional requirements of the case. If the required daily production

of the WTP is not evenly divisible by the reliable daily production of the system, the
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net effect is that the WTP must purchase additional capital equipment without the

ability to amortize additional production capacity to minimize the LCOW. Any of the

four design variables may be tuned, to varying degrees, to achieve a system design

which is very close to an integer divisor of the plant demand. In the case of the

cost-optimal system in Elmendorf, the daily demand of the WTP is met exactly with

58.98 systems, requiring 59 systems to be installed. This results in 0.3% of the capital

cost of the WTP contributing to excess capacity that is not considered in the LCOW.

For large WTPs, such as the Elmendorf case, the optimizer can select from a larger

array of system configurations that result in an integer number of systems in the

WTP, minimizing excess capital cost. This behavior suggests that, as the number of

systems in the WTP decreases, the optimizer compromises the performance of the

individual systems to favor including an integer number of systems that exactly meet

the required production target.

4.1.0.12 Demonstrated utility of the simplified design tool

The findings in Elmendorf illustrate the complexity of the considered trade-offs, par-

ticularly for WTPs comprised of 10s-of-systems. These trade-offs are often subtle and

related to multiple interacting parameters that would be difficult to assess using a

more computationally intensive tool. In the Elmendorf case, the optimizer identified

multiple low-cost designs with nearly identical LCOW values (the second least-cost

system has an LCOW just 0.11% greater than the least-cost optimal system). Given

an array of similarly performing architectures, a system designer could have addi-

tional flexibility to select a system based on factors that are not explicitly included

in this simplified model. For example, the different total number of stacks among the

similar selected architectures may have different maintenance requirements or infras-

tructure costs. The simplified model enables a designer to understand and consider

these nuanced trade-offs.
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4.2 Irrigation water in Qena, Egypt

Qena, Egypt is located in the MENA region, the most water-stressed region of the

world [38]. The existing supply of freshwater cannot meet rising demand [39] and as

a result, most food must be imported [40, 41]. Water sources in the MENA region are

rapidly becoming more saline [39, 42, 43, 44] and climate change is expected increase

the risk of drought and volatility of the water supply [39, 40]. Egypt is at especially

high risk due to its severe water scarcity [45], rapidly increasing population [46],

and almost complete reliance on the Nile [47]. An interdisciplinary solution to the

increasing water scarcity and food insecurity combines water-efficient, drip irrigation

with desalination [7]. This case study focuses on the value proposition of desalination

for irrigation but will not consider the impact of co-optimization with a drip irrigation

system or controller.

Case Parameter Value Unit

Target Plant Production Rate, 𝑉– 𝑝
𝜈,𝑊𝑇𝑃,𝑡𝑎𝑟𝑔𝑒𝑡 68.5 [m3/day]

Reliability, 𝜈 95 [%]

Feed Concentration, 𝐶𝑏
𝑑,0 2500 [ppm NaCl]

Target Concentration, 𝐶𝑏
𝑑,𝑆 750 [ppm NaCl]

Recovery Ratio, 𝜉 80 [%]

System Life, 𝑚 10 [years]

Interest Rate, 𝑘𝑑 5 [%]

Maximum Pump Efficiency, 𝜂𝑚𝑎𝑥
𝑝𝑢𝑚𝑝 40 [%]

Rated PV Panel Output, 𝑃 𝑟𝑎𝑡𝑒𝑑
𝑃𝑉 550 [W]

Stack Power Supply Efficiency, 𝜂𝑃𝑆 80 [%]

Static Pressure Losses, ∆𝑝𝑙𝑜𝑠𝑠 69,000 [Pa]

Table 4.6: Case parameters used in the formulation of the Qena, Egypt case study
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Cost Model Type Value

Brine Disposal OPEX, USD/m3 𝐺𝑏𝑟𝑖𝑛𝑒 = 365(0.4𝑉– 𝑏
𝜈,𝑠𝑦𝑠)

Table 4.7: The brine disposal cost for Qena, Egypt used in the calculation of yearly

operating expenses. The 365 multiplier reflects the conversion from daily to yearly

cost.

The relevant case parameters are presented in Table 4.6 and the cost model for

brine disposal is presented in Table 4.7. The brine disposal rate was set based on

the commercial waste water management rate in Egypt [48]. The targeted daily

production was selected based on the maximum crop water requirement for a 5 hectare

crop of onions in Qena, Egypt, calculated following methodology outlined by Grant

et al. [49]. This region is in near brackish groundwater reserves, but south of the

Nile Delta. The calculated maximum daily crop water requirement results in a daily

production of 68.5 m3/day of water. The irradiance profile profile used was selected

from the NSRDB for 2019 near Qena, Egypt (Latitude 26.16, Longitude 32.72) [34].
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Figure 4-4: Optimization results for irrigation water in Qena, Egypt. Each point on

the figure represents a cost-optimal WTP system defined by a unique architecture and

system configuration. The resulting operating mode and lowest LCOW are indicated.

Omitted from this figure is the system type, and mode of operation (fixed or time-

variant). All systems were time-variant, except 2J-FC-MkIVx600 whose operation

was fixed.

Figure 4-4 presents the WTP LCOW for 24 optimized architectures designed to

deliver desalinated irrigation water in Qena, each capable of meeting the identified

needs in Table 4.6.The results are also tabulated in the Appendix in Table A.2. The

design and performance outcomes of the optimized architectures are presented in

Table A.2. The relatively small size of the WTP and lower desired product water

concentration reveal new trade-offs compared to the Elmendorf, Texas case. The
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least-cost optimized WTP is comprised of one batch system and has a LCOW of

$0.5402 USD/m3. The optimized WTP is constructed from one Veolia MkIVx400

which operates in time-variant batch mode (1J-TVB-MkIVx400). The day of lowest

production occurred in January, producing 0 m3. On that day, there was insufficient

irradiance to generate the power required to operate the system. The day of highest

production occurred in July, producing 125 m3.

4.2.0.1 Impact of additional water production

The modeled WTP production (based on historical irradiance data from 2019) was

36,700 m3. Similar to the Elmendorf case, this was far in excess of the 25,000 m3/year

required for reliable operation. If the WTP could amortize its cost based on the full

volume of water produced, the resulting WTP LCOW would be $0.4000 USD/m3,

a 26% cost reduction. This impact on LCOW is similar to Elmendorf, which has a

much larger target production volume compared to the Qena case.

The irrigation case offers additional avenues to create value from the excess water

production enabled by a time variant system. For example, a farmer might choose

to grow an additional crop, allowing them to profit from the additional production

capacity.

4.2.0.2 Influence of required salt cut

In the Elmendorf case study, the operating mode and number of serialized stacks was

a strong predictor of WTP LCOW. In that case, batch systems comprised of fewer

stacks tended to be favorable. The least-cost optimal WTP for the Qena case was

consistent with this finding. The ratio 𝑆/𝐽 for the least-cost optimal system ranged

from 1.5 at low powers to 1.8 at higher powers, indicating that the optimal WTP

operates in batch mode. However, unlike in Elmendorf, the next lowest LCOW ar-

chitecture operates as a pure continuous system. This system - 2J-TVC-MkIVx200 -

included one system in the WTP, with an LCOW just 1.3% higher than the least-cost

optimal WTP. This difference in preferred operating mode likely reflects the lower

total required salt cut necessary to achieve the desired product water concentration in
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the Qena case. This benefits continuous systems, which have a production rate that

scales linearly with the diluate flow rate. This result suggests that the lower pressure

drop, lower power requirement, and wider operating range of two MkIV stacks oper-

ating continuously is more favorable for small farm irrigation applications compared

to the less favorable configuration of three MkIV stacks operating continuously for

potable water in Elmendorf.

4.2.0.3 Influence of number of systems in the WTP

Each of the system configuration design variables demonstrated a greater variation

between architectures in the Qena case compared to the Elmendorf case. The results

from the Elmendorf case suggest that the selection of these design variables may be

influenced by the constraint to contain an integer number of systems in the WTP.

The optimizer may sacrifice the optimal performance of individual systems to achieve

an integer number of systems in the WTP. The higher variation in design variables

and the small size of the WTP in Qena suggests the optimizer prioritized the design

of the WTP over the optimal performance of the systems within the WTP.

4.2.0.4 System configuration trade-offs - operating window

The operating window of the least-cost optimal system was configured to use 10.2%

to 57.1% of the available architecture operating window. The lower operating win-

dow ranged from 0.0% to 10.7% for all 24 optimized systems. The upper operating

window ranged from 0.0% to 98% for all 24 optimized systems. The large variation

suggests the optimizer selected upper and lower bounds on the operating window

that balanced low power and high power production to achieve the required WTP

production required by the small plant.

4.2.0.5 System configuration trade-offs - BEP

The BEP for the least-cost optimal WTP was 27% of the system operating window.

This value reflects similar trade-offs to those demonstrated in the Elmendorf case,

suggesting efficient, low power operation benefits the system in spite of its higher
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capital cost. The range of BEP was 7.5% to 99.5% for all 24 optimizations. This

demonstrated much more variation than the Elmendorf case. This result suggests the

BEP is more closely linked to the capital cost and daily production of the individual

system compared to Elmendorf. In the Elmendorf case, the BEP value primarily

affected the total number of systems installed in the plant. Twenty of the 24 optimized

results resulted in a WTP that was comprised of just one or two systems, contributing

to the large variation between systems. Other optimal architectures selected pumps

that were more efficient near the maximum system power level, reducing the power

consumption of the system and capital cost at the expense of operating for a shorter

period of the day.

4.2.0.6 System configuration trade-offs - target solar irradiance level

The least-cost optimized system has a PV array with 59 panels designed to deliver

the maximum system power, 17 kW, at a target irradiance level of 517 W/m2. The

59, 550 W panels are nominally rated to deliver 32 kW at 1000 W/m2, 1.9 times

greater than the maximum system power consumption. The ratio of rated PV power

to maximum system power consumption ranged from 1.4 to 4.5 for all 24 optimiza-

tions. As in Elmendorf, the oversized PV arrays are largely influenced by reliability.

The oversized arrays allows the system to operate more reliably on days with low

irradiance. Compared to Elmendorf, this ratio was smaller, suggesting the daytime

fluctuations and seasonal variations in irradiance in Qena were lower, had a smaller

impact on the reliability, and lower impact on the WTP LCOW.

4.2.0.7 Influence of reliability

The reliability requirement demands that the optimized system can produce the de-

sired volume of product water on most days of the year. In reality, crop water demand

varies with the solar irradiance. Crops require more irrigation on days with higher

irradiance. A more comprehensive reliability metric would evaluate each day’s water

production against the day’s crop water demand. The use of a product water holding

reservoir, such as a pond or tank, may also be considered. This would allow the
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system to generate water on high irradiance days and utilize on lower irradiance days

or in the evening, when the desalination system is inoperable. Incorporating these

elements would likely result in a smaller system with a lower LCOW.

4.2.0.8 Influence of system utilization

PV power system utilization plays a key role in determining the WTP LCOW. A

typical crop only requires irrigation for a few months of the year prior to harvest.

If the desalination system sits idle while no crop is planted, or the water from the

desalination system could not otherwise be sold, the WTP LCOW increases. The

required size of the system to depends on the highest targeted daily production but

the cost of the system is only amortized over the volume of water produced when

crops require irrigation. This suggests that the increase in cost could scale with the

inverse of utilization.

4.2.0.9 Selection of fixed operation

Unlike Elmendorf, one system out of the 24 optimized systems tabulated in Table

4.6 demonstrates fixed operation rather than time-variant operation. This system -

2J-FC-MkIVx600 - has the highest capital cost and LCOW of all 24 systems. The

upper and lower operating range are both set to 0%, suggesting that the optimizer

was trying to reduce the capital cost of pumps and pump controllers to compensate

for the very high stack cost. Despite its fixed operation, the system produced 46,500

m3 of water (based on historical irradiance data from 2019), 86% more than required

to meet the reliable demand of the WTP (the most of any system). This outcome

suggests that the cost of two MkIVx600s cannot be easily amortized for the low WTP

production volume found in the Qena case. Although the system is adequately sized

to meet the production rate of the WTP, the quantity of membrane area in two

MkIVx600 is better applied to larger WTPs. This is further explained by the lower

cost of systems which utilize MkIVx400 and MkIVx200 stacks compared to MkIVx600

stacks. The other 23 systems were time-variant which is consistent with prior work

that demonstrated the benefits of time-variant systems for irrigation applications [7].
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4.2.0.10 Influence of brine management cost

The brine management options and costs for small farmers using desalination sys-

tems for irrigation water are not well understood. Prior work suggests that brine

management costs can range from $0.40 USD/m3 to $1.80 USD per m3 of concen-

trate produced [50, 51, 52]. Considering this wide range of costs, brine disposal could

account for between $2,500 USD/year to $11,300 USD/year for the least-cost architec-

ture. That amounts to between 4.3% - 19.4% of the WTP capital cost. Incorporating

this into the LCOW adjusts the range from $0.5402 USD/m3 to $0.8902 USD/m3. In

Qena, access to wastewater management is less common and the cost of brine disposal

may be on the higher end of the range, resulting in a 65% increase in WTP LCOW.

This illustrates the need for high-recovery solutions to reduce the volume and cost of

brine management.
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4.3 Parameter sensitivity

Figure 4-5: Sensitivity to ±20% change in select parameters for the one stack,

MkIVx600 system in Elmendorf, Texas. The resulting change in WTP LCOW is

reported as a percent of the cost-optimal WTP LCOW from the Elemendorf case

study. The standard deviation adopted in Section 2.0.5 is plotted as error bars, in-

dicating change in LCOW that may be attributed to the stochastic nature of the

optimizer.

To better identify the cost drivers that result in the greatest change in WTP LCOW,

a parameter sensitivity study was conducted, focused on the Elmendorf, Texas case

study. Results are presented in Figure 4-5 for the least-cost optimal system - 1J-

TVB-MkIV600. The system lifetime, feed concentration, product concentration, PV

panel cost, membrane cost, interest rate, brine disposal cost, pressure losses, plant
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production rate, pump cost, CEM area resistance, and AEM area resistance were

individually varied by ±20% of their nominal values, then the architecture was re-

optimized. A sensitivity analysis was also conducted for the least-cost optimal system

in the Qena case study - the 1J-TVB-MkIV400. The results for Qena are presented

in the Appendix, Section A.

4.3.0.1 Sensitivity to system lifetime and interest rate

System lifetime has the greatest impact WTP LCOW. As the system lifetime in-

creases, the capital cost of the system is amortized over a longer payback period,

reflected in a lower capital recovery factor. The LCOW increases as system lifetime

decreases for the opposite reason. The interest rate also affects the capital recovery

factor. The cost of yearly payments increases with higher interest rates, increasing

the LCOW. The impact of interest rate is lower than system lifetime, but illustrates

a clear incentive to find the lowest interest loan possible, assuming the capital cost of

the system is borrowed from a lender. This finding is consistent for both the Elmen-

dorf and Qena case studies, suggesting that this trade-off holds over a range of size

scales and applications.

4.3.0.2 Sensitivity to water concentration

The feed and product water concentration were the two most influential parameters

on the LCOW after system lifetime. As the feed water concentration increases, the

required number of passes increases, lowering the water production rate of the sys-

tem. This requires more systems or more powerful systems to be installed in the

WTP to achieve the same production. The opposite trend is true for lower feed con-

centrations. As the desired product water concentration decreases, more passes are

required, lowering production rate, and requiring more system or more powerful sys-

tems. As the product water concentration increases, the opposite trend occurs. For

systems such as in the Elemendorf case, which require high salt removal to achieve

the targeted potable water concentration, the impact on LCOW due to changes in

concentration is lower. For systems which lower total salt removal, as in the Qena
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case, the the impact on LCOW due to changing feed and product concentrations is

more pronounced. This suggests that system designers should consider a range of

feed and product concentrations that reflect the seasonal fluctuation and years-long

variations caused by seasonal changes in the water table due to water extraction,

drought, and climate change.

4.3.0.3 Sensitivity to cost model inputs

The capital cost of the PV model for the panels and membranes were the fourth- and

fifth-most sensitive parameters. This is consistent with expectations, as these are the

two highest-cost components of the system. For systems that have more serialized

stacks (not shown in this analysis) the cost of membranes may overtake the cost of

PV panels. The cost of the power system, which is due primarily to the PV panels,

is a smaller fraction of the LCOW when more serialized stacks are considered. For

systems that utilize fewer stacks in series, this suggests that increased emphasis should

be placed on the accuracy of the PV cost model inputs. For systems comprised of

more stacks in series, the accuracy of the membrane cost model should be emphasized.

The capital cost of the pump has a relatively small impact on the LCOW. This

suggests that pump cost is not a major cost driver of LCOW. This impact is likely

sensitive to the logarithmic pump cost model adopted for this study.

The sensitivity of LCOW due to changes in brine disposal cost is as expected.

The volume of brine produced by the WTP is a function of the WTP production

volume and recovery ratio. Nominally, yearly brine disposal costs were only 2.7% of

the capital cost of the optimal WTP in Elmendorf, suggesting a low sensitivity to

these costs. The slight variation in brine cost did not drastically change the outcome

of the optimization.

4.3.0.4 Sensitivity to pressure losses

Pressure losses, ∆𝑝𝑙𝑜𝑠𝑠, had a small but significant effect on LCOW. The impact of

higher and lower pressure losses led to higher and lower LCOW, respectively. This

slight increase in LCOW illustrates the need for a more accurate hydraulic loss model
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due to the impact that pressure drop has on LCOW.

4.3.0.5 Sensitivity to membrane area resistance

AEM and CEM area resistances both had a negligible effect on LCOW. This suggests

that significant changes to these values would be required to impact the design of a

TEDR system.

4.3.0.6 Sensitivity to reliability

System 95% Reliability 93% Reliability 97% Reliability

MkIVx600, 1 Stack $0.7387 [USD/m3] % $0.6926 [USD/m3] -6% $0.8375 [USD/m3] 13%

Table 4.8: Sensitivity to ±2% change in reliability for the one stack, MkIVx600

system in Elmendorf, Texas. The resulting change in WTP LCOW is reported as a

both an absolute change and a percent change of the nominal LCOW reported for

the cost-optimal system from the Elemendorf case study - 1J-TVB-MkIVx600.

The 13th parameter considered in the sensitivity analysis is system reliability. This

parameter was modulated by ±2%. The resulting change in LCOW is tabulated in

4.8. The change in LCOW ranged from -6% to 13% of the nominal value for a -2%

to 2% change in reliability. Reliability is the only parameter whose impact on the

LCOW exceeded variation in the parameter, suggesting its effect on LCOW is very

significant. This result is consistent with the findings of Bian et al. [6] who found

that the cost of optimized EDR systems rose sharply when an increased reliability was

demanded. This suggests that system designers should consider the lowest feasible

reliability value capable of meeting the functional requirements of the system during

design. Future work could consider the impact of adjusting reliability according to

demand, enabling a greater portion of the water produced by the system to be used

to amortize the capital cost of the system. Future work could also consider whether

a target reliability can be achieved through design changes that are not currently

considered in this model, such as the inclusion of energy storage or water reservoirs,

requiring fewer systems in the WTP.
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Chapter 5

Discussion

The model presented in this study proposed simplifications to existing parametric

models of TEDR performance. These strategic simplifications resulted in reasonable

computation time while still encapsulating key scaling relationships of real systems.

System simulations required 10s-of-milliseconds of computation. System optimiza-

tions required 60 to 120 seconds per optimized system on consumer-grade computer

hardware, satisfying the first objective of the study. The modeled desalination rate

and power consumption were found to be in relatively good agreement with exper-

imental data from a real TEDR pilot study. A discrepancy was found between the

model predicted hydraulic power and experimental data. This suggests future research

could focus on the development of an improved pressure drop model that accounts

for additional sources of hydraulic power loss. An improved prediction of pressure

drop could improve the predicted hydraulic power requirement of the modeled sys-

tem, allowing the model to better estimate the production rate and cost of a TEDR

system. Any modifications designed to increase accuracy of the modeled performance

will have to weigh those changes against potential costs to computational efficiency.

The simplified and computationally efficient model was used to create a system

optimization and design tool for TEDR WTPs. This tool utilized four system con-

figuration degrees of freedom to enable the design of TEDR WTPs with the lowest

LCOW, satisfying the second objective of the study. The utility of the design tool

was then demonstrated across two diverse case studies. Thirty unique architectures
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were optimized for a case to desalinate potable water in Elmendorf, Texas. Results of

the optimization were compared to against an existing municipal scale RO plant to

consider the cost of TEDR as an alternative technology to RO with the potential to

meet the rising desalination demand in the American Southwest. Twenty-four TEDR

systems were optimized to determine the least-cost optimal system for desalination

of irrigation water in Qena, Egypt. This case considered TEDR as a potential so-

lution to address the MENA region’s rising water scarcity and food insecurity. The

outcomes the cases studies were contextualized with local costs, demonstrating clear

advantages of TEDR to reliably deliver water at a comparable cost to existing solu-

tions, such as on-grid RO. The findings suggest that TEDR could be cost-competitive

in both applications.

In both cases, the lowest-cost, direct-drive, PV-powered EDR systems were found

to be time-variant, consistent with previously published studies [13]. The flexible

operation of TEDR enables the production of more water, outweighing the costs of

the power system required to power the pumps and desalination. This illustrates the

utility of a robust, renewable-powered desalination solution.

Numerous nuanced trade-offs were identified that contribute to the system ar-

chitecture. The trade-off between smaller V20 EDR stacks and larger MkIV EDR

stacks is clearer at high production volumes, when a WTP is comprised of 10s-of-

systems. Although the larger MkIV represents a higher cost than a V20, the increase

in production from its longer flow path and greater number of cell pairs outweighs the

added cost. The utility of serialized stacks and continuous operating modes depends

greatly on the amount of salt to be removed, the variability in historical irradiance,

and targeted WTP reliability. In both cases studies, an alternate design, comprised

of multiple stacks in series was identified, allowing the system designer freedom to

choose which system to install based on other design factors like the total number of

system and stacks, the capital cost of individual systems, or the infrastructure cost

of larger PV arrays.

The selection of the system WPC paired with each architecture followed a number

of trends. The optimizer tended to select the lower operating window near the lower
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bound of the architecture, enabling a system to operate at lower irradiance levels, for a

longer portion of the day, at lower SECs. The selection of the upper operating window

reflects the trade-off between the capital cost of individual systems and the number

of systems in the WTP. When the upper operating window is low, the optimizer is

selecting more, low power, low capital cost systems for the WTP. When the upper

operating window is high, the optimizer is selecting fewer, high power, high capital

cost systems. The target irradiance level is largely influenced by the reliability of

the system and the daily and seasonable variation in irradiance. Most often, the

lowest-cost system is paired with a PV array which is rated for at least twice the

maximum rated power of the system to achieve reliable operation. The selection

of the BEP demonstrates the non-trivial trade-off between the high cost of pumps

and the impact on system power level. Pumps which are most efficient at low flow

rates also minimize the lower power threshold of the system, allowing the system to

operate at lower irradiance levels for a longer portion of the day. However, pumps

which are most efficient at their lowest flow rate also have the highest capital cost.

The optimizer selects the BEP according to the competing goals of efficient low power

operation and pumps which are low capital cost.

The validation of this model is limited to experimental data from a pilot system

comprised of one EDR stack operating on a low salinity well. The assumptions utilized

in this model, particularly for the efficiency of the stack, will likely limit the range of

feed and product concentrations that can be accurately simulated by the model. The

addition of multiple stacks in series may compound model inaccuracies. Future work

may adopt new model simplifications that improve the accuracy of the predictions

made by this model.

Future work is recommended to consider the impact of demand, water holding

reservoirs, energy storage, and grid power. A model which incorporates the daily

fluctuation and seasonal variation of demand may find the additional water produced

by the WTP suffices to meet demand reliably with fewer or lower-cost systems. If

demand is met through water held in a reservoir, water generated using energy stored

in battery buffer, or using a grid-power interconnect, reliable production would likely
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be achieved with fewer systems and lower LCOW than reported in this study. These

potential cost-savings warrant additional study.

The system cost model may also be amended to include other factors such as

infrastructure cost, the cost of valves and piping, the cost of consumables such as

antiscalant, or the added cost to the consumer when considering for-profit operation.

Provisions for these added costs could are easily integrated into future iterations of

the model.
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Chapter 6

Conclusion

This novel TEDR model was demonstrated to be a powerful tool capable of capturing

a wide range of applications for TEDR. This tool can enable more robust decision

making and reveal non-trivial trade-offs between competing designs. With this model,

TEDR system designers can quantify year-long system performance for diverse archi-

tectures with minimal computation. This model can help facilitate the dissemination

of renewable-powered brackish water desalination, enabling system designers to lever-

age the unique ability of TEDR systems to adapt to diverse environmental conditions.

This design tool can aid in the creation of cost-effective desalination solution that can

help address global water scarcity.
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Appendix A

Tables

A.0.1 Tabulated optimization results

95



A
.0

.1
.1

E
lm

en
d
or

f,
T
ex

as
op

ti
m

iz
at

io
n

re
su

lt
s

R
an

k
S
y
st

em
C

o
d
e

𝑉–
𝑝 𝜈
,𝑠

𝑦
𝑠

𝐿
𝐶
𝑂
𝑊

𝑊
𝑇

𝑃
𝐿
𝐶
𝑂
𝑊

𝑊
𝑇

𝑃
D

iff
er

en
ce

𝑁
𝑠
𝑦
𝑠

𝐺
𝐶

𝐴
𝑃

𝐸
𝑋

𝑊
𝑇

𝑃
𝑥
𝑜
𝑤

𝑙
𝑃

𝑚
𝑖
𝑛

𝑠
𝑦
𝑠

𝑥
𝑜
𝑤

𝑢
𝑃

𝑚
𝑎
𝑥

𝑠
𝑦
𝑠

𝑥
𝑔
ℎ
𝑖

𝐺
𝐻
𝐼
𝑑
𝑒
𝑠
𝑖
𝑔
𝑛

P
V

R
at

in
g

P
V

S
iz

e
𝑥
𝑏
𝑒
𝑝

[m
3
/d

ay
]

[U
S
D

/m
3
]

[U
S
D

/m
3
,
%

]
[U

S
D

]
[k

W
]

[k
W

]
[W

/m
2
]

[k
W

]
[%

𝑃
𝑚

𝑎
𝑥

𝑠
𝑦
𝑠

]

1
1J

-T
V

B
-M

k
IV

x
60

0
93

.6
$0

.7
34

9/
m

3
$0

.0
00

0/
m

3
,
0.

0%
59

$9
,4

89
,6

73
1.

2%
6.

45
77

.8
%

30
33

.6
%

34
9

86
.4

29
0%

19
%

2
2J

-T
V

M
-M

k
IV

x
60

0
14

5
$0

.7
35

7/
m

3
$0

.0
00

8/
m

3
,
0.

1%
38

$9
,5

01
,9

25
0.

3%
12

82
%

26
.7

21
.6

%
22

4
11

9
45

0%
19

.3
%

3
2J

-T
V

M
-M

k
IV

x
40

0
98

.6
$0

.7
45

4/
m

3
$0

.0
10

6/
m

3
,
1.

4%
56

$9
,6

53
,8

62
0.

5%
8.

21
96

.6
%

19
.7

23
.3

%
24

2
81

.4
41

0%
31

.2
%

4
1J

-T
V

B
-M

k
IV

x
40

0
53

.6
$0

.7
59

9/
m

3
$0

.0
25

0/
m

3
,
3.

4%
10

3
$9

,8
79

,2
00

2.
5%

4.
52

60
.2

%
13

.4
28

.7
%

29
8

45
.1

34
0%

34
.4

%

5
2J

-T
V

M
-M

k
IV

x
20

0
49

.3
$0

.7
81

4/
m

3
$0

.0
46

5/
m

3
,
6.

3%
11

2
$1

0,
21

3,
47

0
1.

2%
4.

14
88

.7
%

9.
19

21
.3

%
22

1
41

.8
45

0%
32

.2
%

6
1J

-T
V

B
-M

k
IV

x
20

0
25

.8
$0

.8
07

2/
m

3
$0

.0
72

3/
m

3
,
9.

8%
21

4
$1

0,
61

4,
32

5
1.

3%
2.

13
45

.7
%

5.
28

23
.7

%
24

6
21

.5
41

0%
24

.1
%

7
4J

-T
V

B
-V

20
x
30

0
64

.2
$0

.8
55

4/
m

3
$0

.1
20

5/
m

3
,
16

.4
%

86
$1

1,
36

4,
80

5
3.

3%
5.

43
78

.3
%

17
.5

30
.7

%
31

9
55

31
0%

34
.2

%

8
5J

-T
V

B
-V

20
x
30

0
78

.9
$0

.8
59

7/
m

3
$0

.1
24

8/
m

3
,
17

.0
%

70
$1

1,
43

1,
34

9
0.

3%
6.

96
89

.5
%

19
.1

26
.4

%
27

4
69

.9
37

0%
45

.2
%

9
6J

-T
V

M
-V

20
x
30

0
93

.6
$0

.8
61

2/
m

3
$0

.1
26

3/
m

3
,
17

.2
%

59
$1

1,
45

4,
36

9
1.

2%
7.

35
94

.6
%

22
.3

25
.5

%
26

5
84

.2
38

0%
19

%

10
3J

-T
V

B
-V

20
x
30

0
56

.9
$0

.8
61

9/
m

3
$0

.1
27

0/
m

3
,
17

.3
%

97
$1

1,
46

5,
60

4
0.

7%
4.

07
93

.3
%

26
.3

46
.6

%
48

4
54

.5
21

0%
30

.1
%

11
4J

-T
V

B
-V

20
x
20

0
52

.6
$0

.8
63

8/
m

3
$0

.1
28

9/
m

3
,
17

.5
%

10
5

$1
1,

49
5,

41
5

0%
3.

4
97

.5
%

17
.1

30
.9

%
32

1
53

.4
31

0%
23

.7
%

12
6J

-T
V

M
-V

20
x
20

0
71

.7
$0

.8
75

9/
m

3
$0

.1
41

1/
m

3
,
19

.2
%

77
$1

1,
68

4,
14

1
0.

6%
4.

77
98

.6
%

16
.4

21
.2

%
22

0
74

.8
46

0%
6.

2%

13
5J

-T
V

B
-V

20
x
20

0
52

.1
$0

.8
79

5/
m

3
$0

.1
44

6/
m

3
,
19

.7
%

10
6

$1
1,

73
9,

79
1

0.
6%

4.
58

86
.3

%
12

.6
26

.6
%

27
6

45
.7

36
0%

37
.8

%

14
7J

-T
V

C
-V

20
x
30

0
11

3
$0

.8
87

8/
m

3
$0

.1
52

9/
m

3
,
20

.8
%

49
$1

1,
86

9,
12

3
4.

6%
7.

58
94

.9
%

21
.3

17
.3

%
18

0
11

9
56

0%
20

.8
%

15
4J

-T
V

B
-V

20
x
15

0
37

.8
$0

.8
88

9/
m

3
$0

.1
54

0/
m

3
,
21

.0
%

14
6

$1
1,

88
5,

98
9

0.
1%

2.
45

75
.9

%
9.

52
23

.9
%

24
8

38
.5

40
0%

9.
3%

16
7J

-T
V

C
-V

20
x
20

0
73

.6
$0

.8
92

4/
m

3
$0

.1
57

5/
m

3
,
21

.4
%

75
$1

1,
93

9,
60

0
1.

3%
4.

72
92

.8
%

14
.8

19
.3

%
20

1
74

.3
50

0%
0.

8%

17
7J

-T
V

C
-V

20
x
15

0
55

.8
$0

.8
96

2/
m

3
$0

.1
61

3/
m

3
,
22

.0
%

99
$1

1,
99

9,
83

4
0%

3.
49

96
.9

%
11

.7
20

.3
%

21
1

55
.6

48
0%

1.
6%

18
3J

-T
V

B
-V

20
x
20

0
40

.9
$0

.8
97

5/
m

3
$0

.1
62

6/
m

3
,
22

.1
%

13
5

$1
2,

01
9,

34
4

0.
9%

2.
8

95
.2

%
17

.3
38

.7
%

40
2

43
.5

25
0%

36
.2

%

19
6J

-T
V

M
-V

20
x
15

0
52

.1
$0

.8
99

0/
m

3
$0

.1
64

1/
m

3
,
22

.3
%

10
6

$1
2,

04
2,

71
0

0.
4%

3.
6

88
.8

%
10

.7
19

%
19

7
54

.5
51

0%
12

.7
%

20
5J

-T
V

B
-V

20
x
15

0
38

.1
$0

.9
05

9/
m

3
$0

.1
71

0/
m

3
,
23

.3
%

14
5

$1
2,

15
0,

01
8

2%
3.

28
77

.3
%

9.
53

28
%

29
1

33
35

0%
1.

5%

21
3J

-T
V

B
-V

20
x
15

0
29

.8
$0

.9
12

8/
m

3
$0

.1
77

9/
m

3
,
24

.2
%

18
5

$1
2,

25
7,

35
6

1.
2%

1.
99

74
.4

%
9.

4
29

.1
%

30
2

31
.4

33
0%

23
.3

%

22
2J

-T
V

B
-V

20
x
30

0
37

.8
$0

.9
14

5/
m

3
$0

.1
79

6/
m

3
,
24

.4
%

14
6

$1
2,

28
3,

65
5

0.
3%

2.
93

58
.9

%
14

.7
35

.8
%

37
2

39
.6

27
0%

28
.8

%

23
3J

-T
V

C
-M

k
IV

x
60

0
13

1
$0

.9
35

9/
m

3
$0

.2
01

0/
m

3
,
27

.4
%

42
$1

2,
61

7,
05

7
1.

3%
11

.9
95

.6
%

19
.1

15
.7

%
16

3
11

7
61

0%
25

.6
%

24
3J

-T
V

C
-M

k
IV

x
40

0
89

$0
.9

54
7/

m
3

$0
.2

19
8/

m
3
,
29

.9
%

62
$1

2,
90

9,
22

5
2.

5%
8.

38
97

%
12

.1
14

%
14

5
83

.6
69

0%
69

.7
%

25
2J

-T
V

B
-V

20
x
20

0
25

.4
$0

.9
57

0/
m

3
$0

.2
22

1/
m

3
,
30

.2
%

21
7

$1
2,

94
4,

56
2

0%
1.

84
39

.8
%

6.
29

20
.9

%
21

7
29

.2
46

0%
12

.3
%

26
3J

-T
V

C
-M

k
IV

x
20

0
44

.2
$0

.9
64

0/
m

3
$0

.2
29

1/
m

3
,
31

.2
%

12
5

$1
3,

05
3,

71
4

0.
2%

3.
86

95
.3

%
6.

58
16

.5
%

17
1

38
.5

58
0%

2.
5%

27
2J

-T
V

B
-V

20
x
15

0
19

.3
$0

.9
81

3/
m

3
$0

.2
46

4/
m

3
,
33

.5
%

28
6

$1
3,

32
2,

61
7

0.
1%

1.
39

42
.4

%
5.

06
22

.2
%

23
1

22
43

0%
13

.4
%

28
1J

-T
V

B
-V

20
x
30

0
17

.8
$1

.1
10

1/
m

3
$0

.3
75

2/
m

3
,
51

.1
%

31
0

$1
5,

32
7,

71
5

0.
2%

2.
11

30
%

6.
52

26
%

27
0

24
.2

37
0%

67
.7

%

29
1J

-T
V

B
-V

20
x
20

0
11

.3
$1

.1
64

7/
m

3
$0

.4
29

8/
m

3
,
58

.5
%

49
0

$1
6,

17
6,

60
3

0%
1.

29
23

.5
%

3.
68

23
.9

%
24

8
14

.9
40

0%
31

.3
%

30
1J

-T
V

B
-V

20
x
15

0
9.

91
$1

.2
10

3/
m

3
$0

.4
75

4/
m

3
,
64

.7
%

55
7

$1
6,

88
5,

66
0

0%
1.

05
36

.9
%

4.
18

28
.2

%
29

3
14

.3
34

0%
58

.1
%

Ta
bl

e
A

.1
:

O
pt

im
iz

at
io

n
re

su
lt

s
fo

r
po

ta
bl

e
w

at
er

pr
od

uc
ti

on
in

E
lm

en
do

rf
,T

X
.

96



A
.0

.1
.2

Q
en

a,
E
gy

p
t

op
ti

m
iz

at
io

n
re

su
lt

s

R
an

k
S
y
st

em
C

o
d
e

𝑉–
𝑝 𝜈
,𝑠

𝑦
𝑠

𝐿
𝐶
𝑂
𝑊

𝑊
𝑇

𝑃
𝐿
𝐶
𝑂
𝑊

𝑊
𝑇

𝑃
D

iff
er

en
ce

𝑁
𝑠
𝑦
𝑠

𝐺
𝐶

𝐴
𝑃

𝐸
𝑋

𝑊
𝑇

𝑃
𝑥
𝑜
𝑤

𝑙
𝑃

𝑚
𝑖
𝑛

𝑠
𝑦
𝑠

𝑥
𝑜
𝑤

𝑢
𝑃

𝑚
𝑎
𝑥

𝑠
𝑦
𝑠

𝑥
𝑔
ℎ
𝑖

𝐺
𝐻
𝐼
𝑑
𝑒
𝑠
𝑖
𝑔
𝑛

P
V

R
at

in
g

P
V

S
iz

e
𝑥
𝑏
𝑒
𝑝

[m
3
/d

ay
]

[U
S
D

/m
3
]

[U
S
D

/m
3
,
%

]
[U

S
D

]
[k

W
]

[k
W

]
[W

/m
2
]

[k
W

]
[%

𝑃
𝑚

𝑎
𝑥

𝑠
𝑦
𝑠

]

1
1J

-T
V

B
-M

k
IV

x
40

0
68

.5
$0

.5
40

2/
3

$0
.0

00
0/

m
3
,
0%

1
$8

4,
97

6
10

.2
%

7.
55

57
.1

%
16

.7
48

.3
%

51
7

32
.5

19
4%

27
%

2
2J

-T
V

C
-M

k
IV

x
20

0
68

.5
$0

.5
47

1/
3

$0
.0

07
0/

m
3
,
1.

29
%

1
$8

6,
32

3
1.

5%
4.

75
94

.4
%

11
.2

27
.6

%
29

5
38

34
0%

51
.4

%

3
1J

-T
V

B
-M

k
IV

x
20

0
34

.2
$0

.5
57

4/
3

$0
.0

17
2/

m
3
,
3.

19
%

2
$8

8,
30

1
1%

3.
16

41
.9

%
6.

72
41

.5
%

44
4

15
.4

22
9%

21
.9

%

4
1J

-T
V

B
-M

k
IV

x
60

0
68

.5
$0

.6
18

/3
$0

.0
77

9/
m

3
,
14

.4
%

1
$1

00
,0

10
0.

8%
9.

45
13

.4
%

11
.6

35
.2

%
37

7
31

.4
27

0%
94

.8
%

5
4J

-T
V

B
-V

20
x
20

0
68

.5
$0

.6
21

9/
3

$0
.0

81
8/

m
3
,
15

.1
%

1
$1

00
,7

62
2.

9%
6.

28
82

.1
%

17
.2

36
.7

%
39

3
44

25
6%

40
%

6
5J

-T
V

M
-V

20
x
20

0
68

.5
$0

.6
24

9/
3

$0
.0

84
8/

m
3
,
15

.7
%

1
$1

01
,3

41
3.

4%
6.

59
53

.8
%

13
.2

33
.7

%
36

1
36

.9
27

8%
90

.5
%

7
6J

-T
V

C
-V

20
x
15

0
68

.5
$0

.6
36

3/
3

$0
.0

96
2/

m
3
,
17

.8
%

1
$1

03
,5

43
9.

1%
5.

11
97

.6
%

13
.8

28
.6

%
30

6
45

.1
32

7%
61

.7
%

8
3J

-T
V

B
-V

20
x
30

0
68

.5
$0

.6
40

4/
3

$0
.1

00
3/

m
3
,
18

.6
%

1
$1

04
,3

33
5.

2%
7.

14
39

.9
%

12
.8

27
%

28
9

44
.6

34
8%

64
.6

%

9
2J

-T
V

B
-V

20
x
20

0
34

.2
$0

.6
62

3/
3

$0
.1

22
1/

m
3
,
22

.6
%

2
$1

08
,5

55
0%

2.
87

43
.4

%
9.

44
40

.7
%

43
5

22
23

3%
7.

5%

10
2J

-T
V

B
-V

20
x
30

0
68

.5
$0

.6
62

7/
3

$0
.1

22
5/

m
3
,
22

.7
%

1
$1

08
,6

28
0.

6%
4.

8
82

.2
%

29
.1

46
.9

%
50

2
58

.3
20

1%
40

.8
%

11
6J

-T
V

C
-V

20
x
20

0
68

.5
$0

.6
62

7/
3

$0
.1

22
5/

m
3
,
22

.7
%

1
$1

08
,6

31
0.

5%
6.

26
77

%
14

.2
38

.6
%

41
3

34
.7

24
4%

97
.4

%

12
3J

-T
V

B
-V

20
x
15

0
34

.2
$0

.6
65

/3
$0

.1
24

9/
m

3
,
23

.1
%

2
$1

09
,0

85
10

.1
%

3.
94

48
.8

%
7.

45
33

.5
%

35
8

20
.9

28
1%

53
.5

%

13
5J

-T
V

M
-V

20
x
15

0
68

.5
$0

.6
68

5/
3

$0
.1

28
3/

m
3
,
23

.8
%

1
$1

09
,7

54
0.

3%
4.

7
81

.1
%

13
21

.1
%

22
6

57
.8

44
4%

60
.7

%

14
2J

-T
V

B
-V

20
x
15

0
22

.8
$0

.6
94

1/
3

$0
.1

53
9/

m
3
,
28

.5
%

3
$1

14
,6

87
1.

9%
2.

29
32

.7
%

5.
38

36
.6

%
39

2
13

.8
25

6%
9%

15
3J

-T
V

B
-V

20
x
20

0
34

.2
$0

.6
96

4/
3

$0
.1

56
2/

m
3
,
28

.9
%

2
$1

15
,1

34
1%

4.
27

24
.4

%
6.

66
36

.9
%

39
5

17
.1

25
6%

49
.3

%

16
2J

-T
V

C
-M

k
IV

x
40

0
68

.5
$0

.7
00

4/
3

$0
.1

60
2/

m
3
,
29

.7
%

1
$1

15
,9

05
10

.7
%

9.
82

48
.9

%
14

.7
48

.3
%

51
7

28
.6

19
5%

28
.4

%

17
4J

-T
V

B
-V

20
x
30

0
68

.5
$0

.7
02

2/
3

$0
.1

62
1/

m
3
,
30

%
1

$1
16

,2
64

5%
9.

97
86

.3
%

25
.8

68
.6

%
73

4
35

.2
13

6%
55

.6
%

18
4J

-T
V

B
-V

20
x
15

0
34

.2
$0

.7
10

8/
3

$0
.1

70
6/

m
3
,
31

.6
%

2
$1

17
,9

12
4.

7%
4.

73
30

.7
%

6.
58

33
.2

%
35

5
18

.7
28

4%
65

.6
%

19
5J

-T
V

C
-V

20
x
30

0
68

.5
$0

.7
47

4/
3

$0
.2

07
3/

m
3
,
38

.4
%

1
$1

24
,9

95
10

.4
%

10
.6

35
.8

%
16

42
.7

%
45

7
35

.2
22

0%
54

.4
%

20
1J

-T
V

B
-V

20
x
30

0
22

.8
$0

.7
92

7/
3

$0
.2

52
6/

m
3
,
46

.8
%

3
$1

33
,7

41
1.

3%
2.

96
12

.4
%

4.
61

20
.6

%
22

0
20

.9
45

4%
99

.5
%

21
1J

-T
V

B
-V

20
x
20

0
17

.1
$0

.7
98

4/
3

$0
.2

58
2/

m
3
,
47

.8
%

4
$1

34
,8

23
3.

2%
2.

12
23

.5
%

4.
83

30
.6

%
32

7
14

.9
30

8%
25

.8
%

22
6J

-T
V

C
-V

20
x
30

0
68

.5
$0

.8
08

5/
3

$0
.2

68
3/

m
3
,
49

.7
%

1
$1

36
,7

81
4.

8%
9.

26
59

.4
%

18
55

.6
%

59
5

30
.3

16
8%

72
.6

%

23
1J

-T
V

B
-V

20
x
15

0
13

.7
$0

.8
15

8/
3

$0
.2

75
6/

m
3
,
51

%
5

$1
38

,1
83

1.
1%

1.
45

29
.8

%
4.

51
36

.7
%

39
3

11
.6

25
6%

29
.4

%

24
2J

-F
C

-M
k
IV

x
60

0
68

.5
$0

.9
12

7/
3

$0
.3

72
6/

m
3
,
69

%
1

$1
56

,9
03

0%
12

.9
0%

12
.9

36
.9

%
39

5
33

25
6%

80
.4

%

Ta
bl

e
A

.2
:

O
pt

im
iz

at
io

n
re

su
lt

s
fo

r
ir

ri
ga

ti
on

w
at

er
pr

od
uc

ti
on

in
Q

en
a,

E
gy

pt
.

97



A.0.2 Additional validation figures

Figure A-1 contains validation plots whose data is for first pass desalination power,

complementing Section 3.

(a) (b)

(c)

Figure A-1: Modeled versus experimental desalination power for multiple days of

operation of a pilot TEDR system. The first pass occurs during the filling state,

distinguished as red triangles. During the first pass, the experiment was drawing

water in from the feed source through the stack and into the recirculation tanks. The

modeled desalination power has good agreement first pass power.
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Figure A-2 contains validation plots whose data is for hydraulic power, comple-

menting Section 3.

(a) (b)

(c)

Figure A-2: Modeled versus experimental hydraulic power versus diluate flow rate for

multiple days of operation for a pilot TEDR system. The experimental data has one

correction factor to account for higher-than-expected filtration losses. As volumetric

flow rate increases, the modeled hydraulic power is less accurate suggest there are

other losses in the system not accounted for in the model.
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Figure A-3 contains validation plots whose data is for product volume, comple-

menting Section 3.

(a) (b)

(c)

Figure A-3: Modeled and experimental cumulative water production versus time for

multiple days of operation of a pilot TEDR system.
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A.0.3 Parameter sensitivity for Qena

Figure A-4: Sensitivity to ±20% change in select parameters for the one stack,

MkIVx400 system in Qena, Egypt. The resulting change in WTP LCOW is re-

ported as a percent of the nominal LCOW reported for the cost-optimal system from

the Qena case study, 1J-TVB-MkIVx400. The standard deviation adopted in Section

2.0.5 is plotted as error bars, indicating the change in LCOW that may be attributed

to the stochastic nature of the optimizer.

• Feedwater Concentration

Higher feed water concentration require more passes the remove additional salt,

resulting in less daily production, and higher LCOWS. For Qena, which did not

require a high level of salt removal for the irrigation of crops, the impact of

feed concentration on the LCOW was higherst, among the other 11 parameters
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presented in Figure A-4.

• System Lifetime

The capital recovery factor, 𝑐𝑟𝑓 , increases for shorter system lifetimes, resulting

in higher LCOW. The opposite is true for longer system lifetime. In Qena, this

trend was found to match the Elmendorf case, suggesting the size of the WTP

or the required salt cut does not significantly influence the sensitivity to system

lifetime.

• Product Water Concentration

Higher product water concentrations relax the requirement for the quantity

of salt removed, resulting in fewer passes, higher daily production, and a lower

levelized cost of water. For Qena, where the initial salt cut was low of irrigation,

the resulting change in LCOW reflect the large impact on the LCOW. The

opposite trend is true for higher product water concentrations.

• Plant Production Rate

In both cases, whether the plant production rate increased or decreased, the

LCOW was found to increase slightly. When the WTP is small, comprised

of just one or two systems, as in Qena, the optimizer may struggle to find a

system configuration whose reliable daily production is an integer divisor of the

production rate. This impact is less for WTPs which are comprised of more

systems. System designers may consider increasing or decreasing the number

of cell pairs in the stack to better align the produtivity of the system with the

productivity of the WTP.

• PV Panel Cost

As the cost of PV panels rises and falls, the LCOW has a corresponding increase

and decrease, matching the trend of Elmendorf. This suggest the impact of PV

panel cost is the same trend across size scales and required salt removal rates.

• Membrane Cost

Membranes and PV panels typically incur the highest cost in the CAPEX of the
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system. As in Elmendorf, the LCOW increases and decreases corresponding to

the increase and decrease in membrane cost, suggesting the trend is the same

across size scales and required salt removal rates.

• Interest Rate

Interest rates affect the payments required to amortize the capital cost of the

system. Increased interest rates result in higher LCOW. This trend matches

expectations in both case studies.

• CEM Area Resistance

The area resistance of the CEM was found to have little effect when decreased,

within one standard deviation of the nominal case. The sharper increase in

LCOW for increasing CEM area resistance suggests the increased power re-

quirements had an unexpectedly high impact on the LCOW. Future work is

recommended to verify this result.

• Pump Cost Model

The impact on LCOW from changes in the pump cost model were insignifi-

cant for reduced pump costs. The increase in LCOW for increased pump cost

was noteworthy. This, again, bears verification with additional analysis, which

has not been covered in this study. The results suggest smaller systems are

disproportionately affected by higher pump costs.

• Brine Disposal Cost

For a WTP with a fixed production, the increase and decrease in brine disposal

cost has a corresponding increase and decrease in LCOW, matching the EL-

mendorf case. This suggests the trend holds across size scales and salt removal

rates.

• Pressure Losses

Decreasing pressure losses resulted in a notable change in LCOW, approximately

to the same degree as in Elmendorf. Across size scales, there is incentive to
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reduce pressure losses in the system which reduce the cost of the power system

and correspondingly reduce the LCOW.

• AEM Area Resistance

The area resistance of the AEM was not found to significantly impact the

LCOW.

System 95% Reliability, Nominal 93% Reliability 97% Reliability

MkIVx400, 1 Stack $0.5276 [USD/3] 0% $0.5154 [USD/3] -2% $0.5534 [USD/3] 5%

Table A.3: Sensitivity to ±2% change in reliability for the one stack, MkIVx400

system in Qena, Egypt. The resulting change in WTP LCOW is reported as a both

an absolute change and a percent change of the nominal LCOW reported for the

cost-optimal system from the Qena case study - 1J-TVB-MkIVx400.

• Reliability

Similar to the Elmendorf case, the magnitude of change in LCOW, -2% to

5%, exceeded the magnitude of the change in reliability, -2% to 2%. However,

compared to Elmendorf, the impact was less. This result suggest the smaller

WTP is impacted less by the change in reliability, generally. Or, the result

suggest the lower variation in the historical irradiance data in Qena was less,

resulting fewer days of unreliable operation within the bounds of 93% and 97%

reliability, resulting in a smaller impact on LCOW.
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A.0.4 “Last Pass” mathematics

Throughout this study, the “first pass” is used to estimate the desalination power

required for the TEDR process, first in the preparation of the WPC, then again as

part of the simulation of TEDR performance. The first pass following the convection

𝑠 = 𝑗. The “last pass” was also considered for this study as an estimation for stack

power. The last pass is derived as 𝑠 = 𝑗+(𝑆−𝐽). One may also consider the “average

pass” which considers the average desalination power of the first and last pass for each

flow rate, 𝑄𝑑.

It is possible to evaluate each equation presented in this model which has a de-

pendence 𝑠 and 𝑗 for either the first pass, 𝑠 = 𝑗, or the last pass, 𝑠 = 𝑗 + (𝑆 − 𝐽).

The only equation with an exclusive dependence on the last pass is the calculation of

stack inlet and outlet salinities

𝐶𝑑,𝑠−1 =
𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑡

(1− 𝜓0)𝑗
for all 𝑠 = 𝑗 + (𝑆 − 𝐽) (A.1)

The complement to this is Equation 2.10. In Equation 2.10, the concentrations at

the inlet and outlet of each stack are related by salt cut and the feed water concen-

tration. Equation A.1 relates the inlet and outlet concentration to the product water

concentration.
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(a) (b)

(c) (d)

Figure A-5: Modeled versus experimental desalination power for multiple days of

operation of a pilot TEDR system. The first pass occurs during the filling state,

distinguished as red triangles. During the first pass, the experiment was drawing

water in from the feed source through the stack and into the recirculation tanks. The

last pass occurs during the draining state, distinguished by blue squares. During the

last pass, the experiment was dispensing through the stack and to the product outlet .

The modeled first pass desalination power has good agreement. The modeled last pass

desalination has somewhat worse agreement which suggest the model inaccuracies

caused by the assumed stack efficiency of 100% are greatest toward the end of batch

operation. This trend matches expectations.
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