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Abstract

Deep learning has demonstrated remarkable performance in a wide variety of
domains and is often leveraged for making high-stakes decisions. Parallel to its
growing and beneficial presence in other domains, deep learning is gaining a no-
table reputation for solving challenging problems in geophysics. A key problem
- given the escalating energy and geosequestration demands in present times - is
marine statics correction. The traditional workflow for correcting marine statics
has been based on a model-centric paradigm. This paradigm involves a series of
transformations between non-commensurate spaces: first, inversion from seismic
data space to velocity model space and second, forward modeling from velocity
model space to seismic data space. Statics correction within this paradigm has
severe drawbacks, mainly the high compute, time and labor cost, and inaccuracies
stemming from errors in velocity model inversion or from unmet assumptions about
subsurface structure. Overcoming these drawbacks was thus, the prime motivation
for our study - where we chose to leverage deep learning as the core algorithmic
tool to understand the limits of the model-centric paradigm and explore the per-
formance horizons of a different, data-centric, paradigm to statics correction. The
main feature of the data-centric paradigm is the direct mapping between commen-
surate data spaces, eliminating the need for intermediary transformations to and
from velocity model space. Initial benchmark tests on the model-centric approach
revealed the impact of inaccuracies in velocity model inversion as substantial non-
zero timeshifts - exceeding 0.01s, and reaching values as large as 0.04s - for most
arrivals in seismic data. These arrival time precision levels are unacceptable for
good seismic imaging and time-lapse analysis; underscoring the need for an im-
proved approach to marine statics correction. Consequently, we began our investi-
gations into the data-centric paradigm. With the focus of disentangling the effects
of varying seawater velocity from coherent subsurface geology in seismic records,
we implemented an autoencoder algorithm, named SymAE. Notably, SymAE lever-
ages the permutation symmetry of coherent subsurface information to perform the
separation of information from nuisance variations. Once trained, SymAE is able
to redatum selected subsurface and water velocity information in its latent space
to produce statics-corrected seismic records. Our results show that for training
datasets of increasing subsurface complexity, SymAE strongly converges all dy-
namic timeshifts to zero, aligning perturbed traces to reference traces. Crucially,
SymAE delivers the required timeshift precision of 0.01 seconds for all arrivals - an
achievement that the model-centric approach falls short of. This notable precision
improvement using SymAE highlights how a streamlined data-centric paradigm
outperforms the traditional model-centric paradigm of marine statics correction.
This finding is pivotal as it is the foundation that lays the groundwork and opens
the path towards the real-world deployment of SymAE for statics correction in
challenging deepwater environments.
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1 Introduction

Deep learning has demonstrated remarkable performance in a wide variety of domains

and is often leveraged for making high-stakes decisions. Some of the domains deep learn-

ing has excelled in include computer vision, natural language processing, autonomous

systems, drug discovery - and more recently, these domains have been stretched to in-

clude unknown and evolving classes, a concept referred to as open-world learning [Zhu

et al., 2024]. Similar to its beneficial presence in other domains, deep learning is gain-

ing a notable reputation for solving challenges and optimizing processes in geophysics

[Dramsch, 2020; Adler et al., 2021; Khosro Anjom et al., 2023]. With rapid advances in

technology - acquisition equipment and compute power - the amount of real and simu-

lated geophysical data is growing tremendously. This makes deep learning an especially

suited tool for working with geophysical data as it is a data-driven method, relying on

an abundance of data for training and predicting [Bergen et al., 2019; Yu and Ma, 2020,

2021]. Thus, my thesis studies the application of deep learning to a challenging problem

in geophysics, the marine statics correction problem. The outline of this thesis consists

of several parts: Chapter 1, an overview of key concepts in geophysics and deep learn-

ing pertaining to our study; Chapter 2, a benchmark test that tests the predominant

model-centric paradigm for marine statics correction using deep learning; Chapter 3, a

study that explores an alternative data-centric paradigm for marine statics correction;

Chapter 4, a study extending the results from Chapter 3 for a more intricate geological

scenario.

1.1 Motivation

Marine seismic data is used in a myriad of applications, such as the mapping of seafloor

faults and tectonic structure in offshore subduction zones, analyzing shelf structures in

hurricane-affected regions [Survey, 2023], oil and gas exploration, reservoir monitoring

and subsea carbon dioxide (CO2) capture and storage [International Environmental Law,

2023; Luo et al., 2023b; Obobi Ume Onwuka and Akinsola Adu, 2024], and measuring sea

level rise [Demirbağ et al., 1999; Foundation, 2012]. Carbon dioxide capture and storage
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(CCS) holds a particularly vital position in this array of applications as climate change

continues to reach unprecedented heights. Figure 1 shows the changes in global temper-

ature over the last 140 years, highlighting the accelerated rise of surface temperatures

over the last three decades. Understanding the severity of climate change and its po-

tentially catastrophic implications, various agreements and net-zero emission initiatives

have been set in place to restrain global warming to manageable levels - notably, the 2015

Paris Agreement, which has garnered a commitment from 196 countries in the pursuit of

limiting "the (global average) temperature increase to 1.5°C above pre-industrial levels"

[Nations, 2015].

Figure 1: Average global surface temperature change from 1880 to 2024. The bars
indicate the deviation from the 20th century average temperature, taken between 1901
to 2000. Blue bars show cooler than average temperature, and red bard indicate warmer
than average temperatures. The data shows a an accelerated warming trend in the 20th
centure, with the year 2023 being the warmest year since records began in 1850 at 1.18°C
above the 20th century average of 13.9°C. Image from [Administration and Atmospheric,
2023].

Hence, parallel to and in support of these commitments, carbon capture and seques-

tration (CCS or geosequestration) has emerged as a key solution. As of 2023, offshore

(marine) CCS is being advanced at a remarkable scale; companies and governments

have announced plans to construct more than fifty new offshore CCS projects through-

out the world. The fruition of these plans would result in a 200-fold increase in the

annual amount of CO2 injected beneath the seabed [International Environmental Law,
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2023]. The expansion of CCS at this scale will create new processes in energy and se-

questration pipelines. One such process that is extremely relevant to our study, is the

time-lapse monitoring of undersea CO2 storage sites, which aids in understanding fluid-

flow dynamics within geological formations. This knowledge is essential for detecting and

preventing CO2 leakage from these sites. Specifically, in the offshore context, subsurface

storage sites are situated beneath the seabed and use porous and permeable geological

strata, such as depleted oil and gas reservoirs, or deep saline aquifers [Luo et al., 2023a].

The suitability of these geological formations for carbon storage depends on factors such

as permeability, caprock integrity, and containment capacity [Obobi Ume Onwuka and

Akinsola Adu, 2024]. Therefore, thorough mapping and assessment of subsea subsurface

geology structure is vital to identify formations that possess true carbon sequestration

potential for safe long-term storage.

Marine seismic acquisition is the process used to explore and create maps of the subsur-

face structure beneath the ocean. The acquisition happens by sending seismic energy

from a source through the upper ocean layer into the subsurface, and recording the

waves that reflected back from the subsurface, at receivers that are usually placed on

the seafloor or towed on streamer cables attached to boats. The survey is typically con-

ducted along a series of predetermined paths known as sail-lines, which are strategically

followed by the survey vessel to cover the area of interest. The entire survey is usually

performed over an extend period of time, which can range between days to months apart.

In deepwater settings, these surveys are affected by changes in the acoustic velocity of

water layer, primarily due to tidal, salinity and temperature variations. The changing

water layer creates lateral discontinuities (jitters) on cross-line timestamp sections of the

3D seismic stack; these lateral discontinuities are known as statics in the geophysics com-

munity. The statics ultimately cause deterioration in the seismic stack and subsequent

3D imaging. Furthermore, these effects propagate into 4D processing, where timeshifts

between surveys lead to low repeatability in time-lapse seismic data[Lacombe et al.,

2006]. Thus, it is pivotal to remove the statics through a static correction procedure,

before subsequent processing steps of stacking, imaging and time-lapse analysis.

The conventional workflow for correcting deepwater statics is a labor-intensive and costly

process, often handled manually and susceptible to inaccuracies. This is the prime mo-
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tivation for our study: we seek to find a deep learning algorithm that can circumvent

the challenges tied to the conventional workflow for more effective statics correction.

Specifically, we are interested in using the symmetric autoencoder (SymAE) algorithm

to separate the effects of varying water velocity and coherent subsurface geology in the

trace data of a shot gather [Bharadwaj et al., 2020, 2022]. This entails performing offset

and depth dependent timeshifts on each trace of a seismic records. SymAE is a data-

driven algorithm, and therefore learns from a training dataset, how to disentangle and

encode the unseen latent variables of water velocity and subsurface geology, without

reliance on knowing the physics of the model. Through training, SymAE learns to sep-

arate symmetric from non-symmetric information, each representing information about

subsurface geology and water velocity, respectively; this ultimately creates meaningful

and useful latent spaces within the network that can be leveraged to produce new seismic

records free of statics.

1.2 A Summary on Time-Lapse Seismic Imaging

Statics correction is an essential prerequisite for accurate imaging of Earth’s subsurface,

because in the simplest form, an image is formed when the imaging operator F∗ acts

on the seismic data d, which represents the displacement u(x, t) of particles in the solid,

due to the propagating elastic wave. Imaging is indeed an inverse problem, that seeks

to solve for the velocity model m in the forward map d = F(m) [Demanet, 2021].

Refer to Section 1.5.3 for further details on the least-squares framework for finding m as

the solution of the minimization problem. In this framework, the imaging operator F ∗

emerges in the gradient of the least squares cost function J (again described in further

detail in Section 1.5.3), as dJ
dm

[m] = F ∗(F [m]− d). Mathematically, F ∗ is the adjoint of

the linearized forward modelling operator F = dF
dm

. In practical terms, F ∗ is called the

imaging operator because its application on seismic data d as F ∗(d − F [mo]) produces

a good image of scatterers within the subsurface model, given that mo is a smooth

background model reasonably close to the true solution m. Because the data d is crucial

to the imaging condition, any corruption from statics will result in distortions in the

final image. This often manifests as the incorrect positioning of subsurface reflectors.

For more information, the sensitivities of changes in reflector position due to timeshift

20



statics in d are discussed in detail in Section 1.4.1

Acquisition of the data d happens in a seismic survey; this survey is considered a three-

dimensional (3D) survey capable of producing 3D images - showing the length, width

and depth of geological features - if the source and receiver positions follow orthogonal

geometric configurations [Vermeer, 2003].Repeats of the 3D seismic survey, taken over

time, forms a fourth-dimensional (4D) time-lapse dataset. In recent times, the predom-

inant application of 4D analysis is in reservoir monitoring and management; allowing

the volumetric imaging of dynamic reservoir processes such as fluid movement, pressure

build-up, and heat flow. Information relayed by the 3D image however are the spatially

contrasting features in the subsurface that give rise to seismic reflections. These features,

taken at a snapshot in time, are a coupling of time-invariant static geology properties

(i.e.,lithology, porosity, and shale content of reservoir rock) and time-varying dynamic

fluid-flow properties (i.e., fluid saturation, pore pressure and temperature changes) [Lum-

ley and Behrens, 1998]. This is where 4D seismic shines - in its ability to decouple the

contributions of static geology and dynamic fluid-flow processes to the 3D image. By

taking the difference between 3D images, the static geology contributions cancel out,

leaving a new image of the time-varying changes caused by reservoir fluid-flow.

Understanding these dynamic reservoir processes are beneficial for a myriad of applica-

tions: mapping bypassed oil, monitoring injection fronts and contacts of fluids such as

water, steam and carbon dioxide, identifying pressure compartmentalization, and char-

acterizing the fluid-flow properties faults [Lumley and Behrens, 1998]. As described in

Section 1.1, with accelerated carbon capture and sequestration efforts in coming years

to curb global temperature rise, with the long-term storage of industrial carbon dioxide

in deep geological reservoirs - there will be a major demand for enduring geophysical

monitoring and verification of CO2 injection through the life of the CO2 storage project.

Specifically, as CO2 is injected into subsurface geological formations — such as depleted

oil and gas fields, deep saline aquifers, and unmineable coal beds — it will be necessary

to image and track the evolving CO2 plume. This will allow engineers to ensure that

the storage reservoir is filled efficiently as expected, that the CO2 does not migrate to
1In time-lapse seismic reservoir monitoring, which aims to detect subtle changes in fluid flow like

variations in reservoir pore pressure and fluid saturation, a spatial resolution of 15 meters is typically
required to accurately position reflectors [Lumley and Behrens, 1998]. This level of spatial resolution
corresponds to a time shift resolution of 0.01 seconds.
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other subsurface resources (such as groundwater and hydrocarbons), that it does not

flow toward high-risk areas such as major faults with uncertain seismic and flow prop-

erties, and that the CO2 remains sealed within the storage reservoir over time [Lumley,

2019]. In summary, it is crucial to develop accurate and efficient methods to remove

the statics corruption of seismic data, because inaccuracies at this foundational data

level will cascade into further processing steps of 3D imaging and 4D analysis. Both of

which are vital techniques for mapping the subsurface and its dynamic properties, which

are indispensable for critical applications of reservoir monitoring and management, to

address the needs of mankind and environmental concerns of the planet.

1.3 Paradigm Shift from a Model-Centric to a Data-Centric Ap-

proach

The conventional method for statics correction is a model-centric approach, meaning

that it requires velocity model information; specifically, pertaining to changes in its

velocity profile that would engender timeshifts. This approach can be decomposed into

two stages: first, inverting from seismic data space to velocity model space and second,

forward modeling from velocity model space to seismic data space. The inversion from

seismic data space to velocity model space enables the retrieval of measured velocity

profiles.2 The subsequent forward modeling from velocity model space to seismic data

space, allows for the replacement of measured velocity profile with a reference velocity

profile that would homogenize the effects of velocity variations between shot records.

For a more comprehensive description of the statics correction methodology, see Section

1.5.1.

Given this framework, the logical and natural response towards finding a deep learning

algorithm that replaces the functionality of the conventional method, would be to emulate

its two-stage process - inversion and forward modeling - that transform between model

space and data space domains. Figure 2 provides a visual representation of this concept,

outlined under the heading Model-Centric Deep Learning. In the context of marine
2In this thesis, the measured velocity profile refers to the real velocity profile, as used in Section

1.5.1. Hence both terms are used interchangeably and denote the initially unknown velocity model of
the perturbed geological area of interest.
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acquisition, it is the changes in water velocity that create statics. Hence, this is the

measured velocity model we intend to replace with the reference model. As the observed

seismic records holds information from both water (ocean) and subsurface layers, the

inversion must differentiate the seismic contributions of these two velocity models.

Figure 2: Summary of paradigm changes in geophysics research, with details pertaining
to our focus in marine statics correction. The arrows between the headers indicate the
direction for the shifting paradigms, from classical non deep-learning (DL), to model-
centric deep learning and lastly, to data-centric deep learning.

Previous studies have been done on inverting for entire subsurface models from seismic

data [Adler et al., 2019; Araya-polo et al., 2018; Gelboim et al., 2023], but to the best

of our knowledge, no research has specifically addressed inverting for a section of the

velocity model from seismic data. This will become the focus of Chapter 2 in this thesis.

Collectively, Figure 2 highlights the changing climate in geophysics research between

three paradigms: Classical (or Conventional) Non-Deep Learning, Model-Centric Deep

Learning and Data-Centric Deep Learning. Here, we briefly overview the three different

paradigms in the context of statics correction:

1. Classical Non-Deep Learning methodology consists of a two-step process of

deriving and applying statics. This two-step process is described in more details in

Section 1.5.1 and 3.1. Notably, this approach is premised on first defining measured

and reference subsurface velocity models, before deriving and applying statics. Due
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to additional steps of having to first define geological models, this approach incurs

added time, compute and labor cost. It is also prone to inaccuracies, which may

arise from inaccurate derivation of the measured model or unmet assumptions

applied onto subsurface models.

2. Model-Centric Deep Learning closely resembles the structure of Classical Non-

Deep Learning, where the statics correction process is centered around inverting

for the measured velocity model and establishing the reference velocity model.

The main difference lies in switching conventional inversion algorithms, such as

tomography and full-waveform inversion, for deep learning algorithms. This shift is

typically aimed at reducing the computational load of having to iteratively calculate

numerical solutions of the wave equation for the inferred model, till the simulated

data aligns reasonably well with measured data. Upon establishing the velocity

models, the final seismic record is generated by forward modeling with the wave

equation.

3. Data-Centric Deep Learning is a more streamlined approach for statics cor-

rection compared to the previous two paradigms, directly mapping the measured

seismic record, that is statics-corrupted, to the reference seismic record, that is

statics-free. This approach is guided by the seismic data - forming the basis of the

features and their interconnections that the network learns. Therefore, this ap-

proach operates independently of velocity model information, and hence achieves

model-independence when performing on in-distribution (ID) data.3 This model-

independence marks a substantial advancement over the previous two paradigms.

The Evolution from U-Net to SymAE

In the Data-Centric Deep Learning paradigm illustrated in Figure 2, two different deep

learning algorithms - U-Net and SymAE - are listed with their corresponding functional-

ity. While our primary focus is on SymAE, U-Net is also mentioned due to its previous

application in our research on marine statics correction. This interest began during my

internship at Shell [Mateeva, 2021], where the aim was to overcome the expensive and

error-prone Classical Non-Deep Learning workflow, currently used on their marine seis-
3For additional information on the requirements for creating an ID dataset and the network’s ro-

bustness to out-of-distribution data, refer to Section 4.6.
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mic acquisitions, with a new deep learning solution. The initial (and natural) idea was to

use the U-Net algorithm, which has shown exceptional performance in image processing

tasks [Ronneberger et al., 2021].

The 2D seismic record, before and after statics correction, can also be viewed as just a 2D

image. With this perspective, the U-Net’s inputs were seismic records arising from the

real (measured) deepwater environment, and the U-Net’s outputs were seismic records

derived from the reference velocity model. We had anticipated, that by training the U-

Net on such a dataset, the algorithm would learn the map from inputs to outputs, and

produce corresponding reference seismic records for unseen measured records. However,

the results of our experiments using U-Net revealed that despite being trained with

the presence of timeshifts (induced by seawater velocity variations) in the traces of the

reference output records as compared to the measured input records, when the network

made predictions, it was aligned to the foundational task of reconstructing seismic records

from extracted lower-resolution feature maps.

It is important to note that the timeshifts caused by changing velocities of the ocean

layer, are typically only a fraction of the dominant period of the seismic records,4 which is

determined by the peak frequency (most energetic component in the frequency spectrum)

of the source wavelet. A direct way to calculate the timeshift is by taking the difference,
d

vnew
− d

vold
= ∆t, where d is the distance traveled by the wave in the medium, vnew and

vold represent the new and old velocities of the changing medium, and ∆t, the resulting

timeshift.

This highlights that the reconstruction of reference seismic records is a compounded

task which involves indentifying features across various temporal-scales: the traveltime

gaps between all arrivals (direct arrival, primary reflections and multiples), the dominant

period which influences the shape of each arrival’s waveform, and the subtle timeshifts.5

Given the complexity of the task, it is not surprising that the U-Net was only able to

capture the first two temporal scales - arrival traveltime gaps and dominant period -
4The dominant period represents the difference in time between successive peaks or troughs of the

predominant wave in the seismic records. It is computed as τo = 1
fo

, where fo is the peak frequency of
the source wavelet and τo is the dominant period [Duarte et al., 2020].

5The subtle timeshifts which are typically a fraction of the dominant period, also changes the arrival
time of waves in either positive or negative directions based on the sign difference of vnew − vold, or
analogously, vreference − vmeasured
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which constitute the foundational temporal features needed to reconstruct the seismic

records. Thus, the U-Net reached its limits here, and was unable to transcend the larger

temporal scales to produce shifted traces at the subtlest temporal scale of changing

water-velocity induced timeshifts.

This insight catalyzed the search for a deep learning solution that would emphasize the

subtle statics timeshifts, without compromising the extraction of features from larger

temporal scales (which represent the foundational building blocks of the seismic record).

To this end, we recognized that information conveyed by the larger temporal scales

related to the large-scale geological profile of the medium, whereas information encoded

in the smaller scale timeshifts corresponded to small geological perturbations (the water

velocity variations). Another thing we noted, was that by nature of marine seismic

acquistions, which is taken repeatedly in the same area over a long duration of time

(between days and months), the large-scale geological profile can be reasonably assumed

to be unchanging, whereas the smaller ocean-layer profile perturbations vary within this

time period. This results in seismic records that feature subsurface geology coherence

but water velocity variations.

This distinction between the coherency of larger-scale temporal features and the comple-

mentary dis-coherency, or variation, of smaller-scale temporal features (timeshifts) that

occurs during the extended time period of a marine seismic survey, thus became the

insight guiding our search for an alternative deep learning algorithm post U-Net experi-

ments. Understanding that coherent information would be symmetric across all seismic

records collected in the particular survey on the geological region of interest, we could

directly embed this property of symmetry into the physical structure of the neural net-

work [Bharadwaj et al., 2020]. For this reason, we chose to focus our study on SymAE, a

symmetry-based autoencoder that separates symmetric and non-symmetric information

from data - allowing the separation (and emphasis) of both larger-scale temporal features

and subtle timeshifts - for the even more precise reconstruction of statics-free, reference

seismic records.
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1.4 Precisions Relating Velocity Model to Timeshifts

As described in Section 1.3, the timeshifts due to changes in the medium’s velocities

are computed as | d
vnew

− d
vold

| = ∆tperturbed. Considering the midway case (see Section

3.2.1) of water layer velocity perturbations, p, in the [−6,+6] range from the Hood’s

water velocity profile, we assume a uniform background water velocity layer of 1550m/s

(approximate water velocity at 0.4km depth of p = +6% profile) for the perturbed profile

and 1500m/s (approximate water velocity at 0.4km depth of the Hood’s profile) for the

reference profile.6 Using statics correction, our aim is to reduce ∆tperturbed to the smallest

value possible, ∆tcorrected, which ideally approaches zero.

To achieve a precision in timeshifts of ∆t, the level of precision required of the background

velocity ∆v and reflector location ∆z in the wave equation model is computed by,

|∆v| = z
∣∣∣∆(1

t

)∣∣∣ = z

t2
∣∣∆t∣∣ (1)

|∆z| = v
∣∣∆t∣∣ (2)

where v is the background velocity of the medium, z is the distance travelled by the

wave and t is the arrival time of the wave. The parameters v, z and t depend on

the chosen arrival, because the wave’s propagation path through the medium varies for

different arrivals; this means it may experience different velocity profiles v, travel through

different distances z and have varying traveltimes t from source to receiver.

We examine the precisions of four different wave arrivals: the direct arrival, where the

wave travels from the source at the sea surface through the water layer to the receivers on

the seafloor; the triplet and quintuplet which are multiples of the direct arrival through

the water layer; and lastly, the primary reflection where the wave similarly propagates

from the source at the sea surface, through the water layer, continues into the subsurface,

reflects of the first interface/reflector in the subsurface, and then reaches the receivers on

the seafloor. For more details and an illustration of a similar medium, refer to Section

3.2.1.
6Refer to Figure 14 to visually estimate the individual water velocities at 0.4km depth for the

perturbed and reference profiles.
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1. Direct Arrival

The zero-offset direct arrival’s ∆tperturbed is 0.04s ≈
∣∣∣ 2000m
1500m/s−

2000m
1550m/s

∣∣∣, where 2000m

is the distance from the sea surface to the seafloor. A 75% reduction in ∆tperturbed =

0.04s yields in ∆tcorrected = 0.01s. The direct arrival’s parameters are z = 2000m,

v = 1500m/s and t = 2000m
1500m/s = 1.33s. Substituting these values along with

∆tcorrected = 0.01s into Equations 1 and 2, yields ∆v = 11.31m/s and ∆z =

15.00m. Relative to the background velocity, ∆v represents a sensitivity of 0.75% =

11.31m/s
1500m/s × 100. Relative to the water layer depth (total distance travelled by the

wave), ∆z represents a sensitivity of 0.75% = 15m
2000m × 100. Thus, correcting the

statics of the direct arrival to 25% of its original value produces precision on the

velocity field of 11.31m/s, which corresponds to a sensitivity to velocity differentials

of 0.75%; and a precision on the interface position of 15.00m, corresponding to a

sensitivity to depth differentials of 0.75%.

2. Seafloor Triplet

The zero-offset seafloor triplet ∆tperturbed is 0.13s ≈
∣∣∣ 6000m
1500m/s − 6000m

1550m/s

∣∣∣, where

2000m is the distance from the sea surface to the seafloor. A 92.25% reduction

in ∆tperturbed = 0.13s yields in ∆tcorrected = 0.01s. The triplet’s parameters are

z = 6000m, v = 1500m/s and t = 6000m
1500m/s = 4.00s. Substituting these values

along with ∆tcorrected = 0.01s into Equations 1 and 2, yields ∆v = 3.75m/s and

∆z = 15.00m. Relative to the background velocity, ∆v represents a sensitivity of

0.25% = 3.75m/s
1500m/s × 100. Relative to the total distance travelled by the wave, ∆z

represents a sensitivity of 0.25% = 15m
6000m × 100. Thus, correcting the statics of

the triplet to 7.75% of its original value produces precision on the velocity field of

3.75m/s, which corresponds to a sensitivity to velocity differentials of 0.25%; and

a precision on the interface position of 15.00m, corresponding to a sensitivity to

depth differentials of 0.25%.

3. Seafloor Quintuplet

The zero-offset quintuplet’s ∆tperturbed is 0.22s ≈
∣∣∣ 10000m
1500m/s−

10000m
1550m/s

∣∣∣, where 2000m is

the distance from the sea surface to the seafloor. A 93.35% reduction in ∆tperturbed =

0.22s yields in ∆tcorrected = 0.01s. The direct arrival’s parameters are z = 10000m,

v = 1500m/s and t = 10000m
1500m/s = 6.67s. Substituting these values along with

∆tcorrected = 0.01s into Equations 1 and 2, yields ∆v = 2.25m/s and ∆z =
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15.00m. Relative to the background velocity, ∆v represents a sensitivity of 0.15% =

11.31m/s
1500m/s ×100. Relative to the total distance travelled by the wave, ∆z represents a

sensitivity of 0.15% = 15m
10000m × 100. Thus, correcting the statics of the quintuplet

to 4.65% of its original value produces precision on the velocity field of 2.25m/s,

which corresponds to a sensitivity to velocity differentials of 0.15%; and a preci-

sion on the interface position of 15.00m, corresponding to a sensitivity to depth

differentials of 0.15%.

4. Primary Reflection

For the zero-offset primary reflection, we select a reflector located 4000m below the

sea surface with a subsurface velocity of 2325m/s (midpoint velocity for a linearly

increasing velocity profile of 1800m/s at the 2000m seafloor depth to 2850m/s at

the 4000m reflector depth). The zero-offset direct arrival’s ∆tperturbed is 0.04s ≈∣∣∣( 2000m
1500m/s +

4000m
2325m/s

)
−

(
2000m
1550m/s +

4000m
2325m/s

)∣∣∣, where 2000m is the distance from the

sea surface to the seafloor and 4000m is the two-way reflection distance between

the seafloor and subsurface reflector. A 75% reduction in ∆tperturbed = 0.04s yields

∆tcorrected = 0.01s. The primary reflection’s parameters are z = 6000m, vrms =

2007m/s7 and t = 2000m
1500m/s +

4000m
2325m/s = 3.05s. Substituting these values and ∆t =

0.01s into Equations 1 and 2, yields ∆v = 6.45m/s and ∆z = 20.07m. Relative to

the background rms velocity, ∆v represents a sensitivity of 0.32% = 6.45m/s
2007m/s × 100.

Relative to the total distance travelled by the wave, ∆z represents a sensitivity

of 0.33% = 20.07m
6000m × 100. Thus, correcting the statics of the primary reflection

to 25% of its original value results in a precision on the velocity field of 6.45m/s,

corresponding to a sensitivity to velocity differentials of 0.32%, and a precision on

the interface position of 20.07m, corresponding to a sensitivity to depth differentials

of 0.33%.

For clarity, we base our conclusions on the precisions relating velocity model to timeshifts

for the rest of our study, using the direct arrival wave, which involves only a single velocity

layer without any reflections from an interface. In this context, the term "precision" can
7For consistency with the other parameters z and t of the primary reflection that encompass the

entire wave propagation path downwards from sea surface source to subsurface reflector and upwards
to the seafloor reflector, we use the vrms value for the parameter v as it is a weighted average of the
velocity layers (water layer and subsurface layer) of the propagation path, with the weights being the
traveltimes through each layer. For a more detailed description on vrms, see Section 2.3.
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be used interchangeably with "resolution," a term commonly found in 3D and 4D seismic

literature. By using the direct arrival as our reference, to achieve a timeshift resolution

of 0.01 seconds - representing 25% of the original timeshifts between perturbed and

reference seismic data - the required resolutions in the wave equation model are 15.00

meters for the interface/reflector position and 11.31m/s for the background velocity.

This corresponds to a sensitivity of 0.75% for both depth and velocity differentials.

Notably, because |∆z| = v|∆t|, the 15m depth resolution corresponding to 0.01s timeshift

resolution of the direct arrival, is also applicable to all seafloor multiples which propa-

gate through the same water velocity layer. For waves that travel through the subsurface

layer though (such as the reflector primary) and consequently through higher velocity

regions, the required timeshift resolution increases, to a value less than 0.01s. How-

ever, to standardize these resolutions towards a baseline quantity, which will serve as

a useful threshold value in assessing the performance of experiments in this thesis, we

approximate that all arrivals require a minimum timeshift precision of 0.01s.

Required Statics Correction Precision for Imaging

Acquired seismic data is either considered to be correct in the physical, unknown medium;

or incorrect in a hypothesized medium. Statics correction aims for the data to be a

better match with wave propagation in the reference medium. See Section 1.5.1 for a

more comprehensive description about the nature of the statics correction process.

To achieve a good seismic image in the reference medium, a spatial resolution of 15m

is required [Lumley and Behrens, 1998]. As previously explained, this spatial precision

require a time precision of at least 0.01 seconds for all wave arrivals. Uncorrected records

from velocity perturbations in the seawater layer generally exhibit traveltime inaccuracies

ranging from 0.02s to 0.22s, which is inadequate.8. Thus, the goal of marine statics

correction, as investigated in our thesis, is to provide the 0.01s level of time precision for

every wave arrival in the seismic record.
8This range of traveltime inaccuracies, from 0.02s to 0.22s, applies to seismic records that capture

arrivals up to the quintuplet wave (as demonstrated by the computations in this section) and for water
velocity perturbations within the [-6,+6] range (see Section 3.2.1 for more details on this range).
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1.5 Review of Core Concepts

Before embarking on the following chapters that describe our experiments in marine

statics correction, here we compile a companion of concepts that grounds the reader

with context and background information for smoothly understanding the ensuing ex-

periments. These core concepts are divided into three main domains: statics correction,

geophysics and deep learning. Within each domain, we explore more specialized topics

that pertain to our experiments.

1.5.1 Static Correction

An essential step in reflection seismic processing sequences is the correction of statics:

timeshifts that arise in pre-stack seismic traces due to velocity or topographic hetero-

geneities in the wave propagation path. Uncorrected for, these timeshifts induce lateral

discontinuities (jitters) in (3D) common-midpoint (CMP) gathers, which create stack de-

terioration and imaging artifacts [Lacombe and Shelf, 2009]. Furthermore, these errors

propagate into time-lapse (4D) interpretation methods - which are based on timeshifts

between baseline and monitor (a repeated seismic survey on the baseline area) stacks to

evaluate changes in the geological area of interest. Thus, accurate static correction is a

vital prerequisite for improved stack coherency, meaningful imaging and post-stack 4D

analysis.

Statics can arise in different seismic acquisition environments. In onshore seismic sur-

veys, precipitation-related changes in soil moisture is a key factor for altering the near-

surface velocity profile [Bergmann et al., 2014]; whereas in offshore (marine) seismic

surveys, changes in tides, weather and currents induce variations in sea surface eleva-

tion levels; and changes in pressure, salinity and temperature of the water layer create

variations in the water velocity profile. Additionally, production-related and injection-

related processes within reservoirs create large geomechanical changes to the reservoirs,

which consequently create considerable velocity changes to the overburden and traveltime

timeshifts. This effect is especially observed when monitoring hydrocarbon producing

or carbon dioxide storage reservoirs and their surroundings [Bergmann et al., 2014; Yan
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et al., 2023].

It is important to note that static correction is a dynamic process, which is a function

of reflector depth and source-to-receiver offset. Up till the 21st century, statics cor-

rection was based on the assumption of vertical raypaths - which is an especially poor

approximation when the near-surface possesses complex geology with depth-dependent

velocities - and was known as datum static correction. The vertical raypath assump-

tion for statics corrections (known as datum statics correction) leads to adjustments in

reflection times that simulate data recording vertically beneath or above, each surface

location (Figure 3). In reality however, ray paths between sources and receivers may

exist an an angle to the vertical; this angle affects the distance traveled by rays through

each velocity layer in a heterogeneous medium. Hence, the non-vertical angles of ray

propagation govern reflection arrival times - and these angles are determined by the off-

set distances between source and receiver sets, from which the rays emanate from and

arrive at respectively. Additionally, the movement of source and receiver positions to a

datum (the reference plane) changes the ray-path significantly, especially if the ray-path

is not vertical - adding further inaccuracies to the vertical ray-path assumption. Hence,

the simplification of vertical ray-paths is chiefly inaccurate: the drawbacks of which are

thoroughly discussed in Statics Corrections for Seismic Reflection Surveys by Cox [1999],

and the remedial case for dynamic statics correction presented in it as well. Figures 5

illustrates the limitations of datum statics correction, by showing how the travel path

lengths vary for different source and receiver offsets, in a two-layer near-surface velocity

model, as shown in Figure 4.
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Figure 3: Standard static correction till the 21st century: most near-surface timeshifts
are removed by applying datum static correction. The datum in this case is the horizontal
plane, which functions as a reference plane, on which a pseudo source and receiver are
positioned vertically below the original source and receiver located on the surface of the
weathered layer. Image from [Cox, 2000].

Figure 4: Two-layer velocity model used to show the variations in distance traveled
by the ray propagating from a source and arriving at a receiver, with offset distance x.
Consider the case where the near-surface layer has a depth, Z1, of 500m, and a reflector
depth, Z1 + Z2 of 1500m. The travel path length in the near surface layer is labeled as
d. Image from [Cox, 1999].
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Figure 5: Different travel path lengths as a function of source-receiver offset, x, and
velocity ratio between the deeper layer V1 and near-surface V0, V1

V0
, whereby the near-

surface is assumed to be a water layer with velocity of 1500m/s. Notice that the travel
path length d increases with increasing offset x, from approximately 95m to 205m, in
correspondence to velocity ratios ranging between 3.00 to 1.25. Larger velocity ratios
lead to smaller angles of incidence at the interface between near-surface and deeper layer,
hence a smaller distance traveled in the near-surface layer. In conclusion, deviations in
ray path distance and in velocity structure of the traveled region exist in practical seismic
recordings, which ultimately result in travel time perturbations that are different from
the vertical raypath assumption of datum statics correction. Thus, statics correction is
a dynamic process that is offset and depth dependent. Image from [Cox, 1999].
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The computation of statics correction consists of a two-step workflow of: First, deriving

statics. Second, applying static corrections to the seismic measurements. When deriving

statics, it is important to understand that statics arise primarily due to elevation or

velocity heterogeneities in the ray propagation path between source and receiver. Thus,

the total static correction Tx,t applied to a trace at offset x and arrival time t can

be decomposed as Tx,t = T V
x,t + TE

x,t, where T V
x,t is the velocity correction and TE

x,t is

the elevation correction. In order these statics correction values, parameters for the

changing velocity layer and/or elevation need to be acquired. These parameters are

usually obtained by direct measurement made during seismic surveys. For example, it

is typical for surface elevation is obtained from survey information of the shot line, and

layer velocity measurements obtained from uphole surveys at discrete locations along the

line. Ultimately, the goal is to construct - from measurements - a geological model of

the perturbed region (whether due to velocity and/or elevation heterogeneities).

In contrast to the real geological model of the perturbed region, is the datum model of the

region. Traditionally, the datum was defined by Sheriff (1991) as "An arbitrary reference

surface, reduction to which minimizes local topographic and near-surface effects. Seismic

times and velocity determinations are referred to the datum plane as if sources and

geophones had been located on the datum plane and as if no low-velocity layer existed."

In a broader sense, the usage of the term datum is for a reference model - which includes

adjustments to the velocity or elevation heterogeneities of the real model - to which

measurements are corrected. Thus the datum model possesses replacement velocity and

elevation profiles, that are known and chosen.

Once the reference datum model has been chose, the next steps for statics correction

is the derivation and application of dynamic timeshifts (offset and depth dependent)

to the seismic measurements. The timeshifts are the traveltime differences of raypaths,

between source and receiver pairs, within the velocity structure of the real model and

reference model. Calculating these timeshifts through the ray-tracing method composes

the derivation step of statics correction. Once the timeshifts are computed, the appli-

cation step of statics correction consists of applying the timeshifts to arrivals in the

pre-stack seismic traces. In the specific case of horizontal and flat reflectors bounding

homogenous velocity layers, the normal move-out (NMO) correction can be utilized. In
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this case, leveraging the knowledge of the hyperbolic relationship for two-way reflection

times, the measured prestack traces of a CMP seismic record (from the real model)

can be NMO corrected to transform the reflection hyperbola into a straight horizontal

line; essentially, transforming the entire source-receiver offset range into a zero-offset

setting. Thus, for primary reflections, the timeshifts between NMO corrected real and

NMO corrected reference models (with different velocities but same elevation levels) is

simply
∣∣T V

x,t′

∣∣ = ∣∣2d( 1
v0

− 1
v1
)
∣∣ , where t′ is the arrival time of the primary reflection of

the real model, vo the reference model, and v1 the real model. The application of these

timeshifts to the NMO corrected real model data moves the primary reflections such that

they had arisen by wave propagation in the velocity structure of the reference model.

Subsequently, this new timeshifted record (redatumed record) can be reverse NMO cor-

rected using the reference model velocity to produce the corrected seismic record, with

primary reflections aligned to a new and known reference velocity. This NMO-based

static correction was utilized by Celine Lacombe when correcting for water column - tide

level and velocity - variations in 4D United Kingdom Continental Sheld (UKCS) marine

seismic data. The result being, a reduction in timeshifts and a narrowing of the timeshift

distribution between baseline and monitor stack volumes [Lacombe and Shelf, 2009].

When the assumption of horizontal and flat reflectors - bounding homogenous velocity

layers - are not met. and when performing statics correction on multiples; the NMO-

based static correction method described above breaks down. Instead, the fundamental

concept of raypaths should be returned to - specifically, the (arrival) raypaths’ angles,

which encode the velocity structure of the model, and distances, which encode the el-

evation information of the model [C. Henley, 2009]. Thus, the computation of these

ray-traces require knowledge of the real and reference geological models, their velocity

profiles and topographies. Once both models have been defined, certain techniques may

be employed to ease the computation of the ray-traced timeshifts: notably, transform-

ing the data into the horizontal ray parameter p and intercept time τ (contribution to

the travel time from the vertical component of propagation) domain so that dynamic

corrections become simple time and offset shifts [Cox, 1999]; or transforming the data

into the radial trace domain (in which, the near-surface raypath angle is the princi-

ple parameter), sorting the radial traces into common-raypath-parameter gathers, and

implementing statics correction on these gathers using interferometric methods [Deere,
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2009; C. Henley, 2009; Henley, 2014].

Overall, statics correction has been a model-centric process, which relies on first, defining

real and reference geological models (with velocity and elevation profiles) before deriv-

ing and applying statics. Due to the additional steps of defining models, this process

incurs added compute and time cost. Moreover, if the real model is inaccurately derived

from measurements (typically, geological regions can be undersampled, and interpreta-

tive decisions are taken to interpolate values between observational points) or the field

data itself is of compromised quality (for instance, low signal-to-noise ratio), this leads

to further errors in the derivation of statics, and to the final velocity derivation of the

region [Cox, 1999]. In an effort to overcome the high cost and potential inaccuracies and

subjectivity ubiquitous to the model-centric appoach, data-centric approaches for statics

correction have been more recently explored.

One such data-centric approach was implemented by Bergmann et al. [2014] on the

4D data from the Ketzin carbon dioxide storage site in Germany. First, trace-to-trace

timeshifts of the data from different seismic records were estimated by crosscorrelations.

Then, the timeshifts were decomposed in a surface-consistent manner into its compo-

nents: source, receiver, and the stress-induced reservoir velocity 4D static differences.

By doing so, the spatial distribution of decomposed statics in the geographical region

was realized, and was applied on further monitor post-stacks without needing to invert

for velocities from from each monitor seismic record (a requirement for the model-centric

statics correction). They found the time-lapse difference (TLD) method enhanced signal

to noise ratio in the 4D difference stacks, in addition to significantly reducing the time

and labor intensity required to perform the correction, when compared to model-centric

method.

1.5.2 Forward Model

Wave Equations

Elastic waves are propagating disturbances in solids. This disturbance causes the par-

ticles in the solid to experience displacement u(x, t), a time-dependent vector field; and

velocity v = du
dt

, a time-dependent vector field. The linear elastic wave equations in an
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isotropic medium is:

ρ
d2u

dt2
= (λ+ 2µ)∇(∇ · u)− µ∇×∇× u (3)

where λ, is the compression stiffness of the sample when it is compressed in one axis

and constrained in other two axes [Lowe, 2001]; and µ, shear modulus, are the material-

dependent Lamé parameters; and ρ is the density of the medium.

Taking the Helmholtz decomposition of the general vector field u as the sum of indepen-

dent parts of the longitudinal scalar field ϕ and transverse vector field ψ, u = ∇ϕ+∇×ψ,

and noting the vector identities that the curl of a gradient is zero, and the divergence of

a curl is zero,

∇× u = ∇×∇× ψ = −∆ψ (4)

∇ · u = ∆ϕ (5)

Inserting these equivalences into the elastic wave equation, we get

∇
[
ρ
δ2ϕ

δt2
− (λ+ 2µ)∆ϕ

]
+∇×

[
ρ
δ2ψ

δt2
− µ∆ψ

]
= 0 (6)

Taking the divergence and curl of Equation 3, we respectively obtain each field solving

their own wave equation in isolation:

ρ
δ2ϕ

δt2
− (λ+ 2µ)∆ϕ = 0 (7)

ρ
δ2ψ

δt2
− µ∆ψ = 0 (8)

As such, ϕ are the longitudinal, pressure waves (P-waves) and ψ are the transverse, shear
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waves (S-waves). From Equations 7, we derive the P wave speed as
√

λ+2µ
ρ

and S wave

speed as
√

µ
ρ
.

Fluid-Solid Interface Mode Conversion

As discussed in the previous section, a key difference between P-waves and S-waves

is that S-waves propagate with a velocity that is dependent on the material having a

non-zero shear modulus. A water layer has a shear modulus of zero and no resistance to

shear stress, thus only allowing for the propagation of P-waves. In the marine acquisition

case, an incident P-wave that has traveled through the water layer to reach the seafloor

(water bottom) is reflected, transmitted or converted to S-wave in the underlying solid.

Specifically, the conversion to S-wave happen if the P-wave strikes the seafloor at an

oblique incidence. This is known as a mode-converted wave [El Allouche et al., 2008].

The degree of mode conversion is influenced by the angle of incidence, the P-wave ve-

locity, S-wave velocity, and the densities of the mediums. Smaller angles of incidence

cause the reflected and transmitted P-wave to carry larger amounts of energy, whereas

larger angles of incidence cause the mode conversion to S-wave to become more efficient

[Nanda, 2016]. The conversion coefficients at the fluid-solid interface are premised on the

continuity of traction τ = σ · n̂, where n̂ denotes the unit normal to the interface; and

the continuity of the normal component of velocity u̇ · n̂ [Komatitsch et al., 2000]. The

conversion transmission coefficient TPS, the amplitude ratio of the transmitted S-wave

and incident P-wave is,

TPS =
2 cos θ1[

cos θ1

(
A1 − A2

ρ2α2

ρ1α1
cos(2φ2)

)
− A2 cos(2θ2) + sin(φ2)

] (9)

with

A1 =
ρ2α2/(ρ1α1)

α2/β2
sin(2φ2) and A2 =

α2 cos(2φ2)

β2 sin(2θ2)
(10)
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where α, β and ρ denote the P-wave velocity, the S-wave velocity and medium density; θ

is the angle between the normal of the fluid-solid interface and the transmitted P-wave,

and φ is the angle between the normal of the fluid-solid interface and the transmitted

S-wave [El Allouche et al., 2008].

1.5.3 Inverse Model

Seismic velocity inversion computes the velocity model of a certain target area, from the

recorded seismic data dr and can be summarized as :

m̂ = F−1(dr) (11)

where F−1 is the inversion operator. The prevalent framework of solving for m is least-

squares, whereby m is the solution of the minimization framework:

min
m
J [m], where J [m] =

1

2
||d− F [m]||2 (12)

where ||d||22 =
∑

r,s

∫ T

0
|dr,s(t)|2 is the L2 norm squared of the recorded seismic data

indexed by receiver r, source s and time t; and J is the objective function we seek to

minimize.

The minimization is typically performed using iterative methods based on variations of

J at a base point m0. The variations of J is primarily expressed through its functional

gradient δJ
δm

[m0] and functional Hessian δ2J
δm2 [m0]. These variations appear in the two main

methods used for the minimization process: gradient descent and the Gauss-Newton

Iteration.

In gradient descent, the model update m(k+1) is computed as m(k+1) = m(k) − α δJ
δm

[mk],

where α is a user-chosen parameter affecting the speed and stability of convergence.

In contrast, in the Gauss-Newton method, the model update is computed as m(k+1) =
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m(k) −
(
δ2J
δm2 [mk]

)−1 δJ
δm

[mk], where
(
δ2J
δm2 [mk]

)−1 is the inverse of the functional Hessian.

Both methods have pros and cons, namely gradient descend typically converges slowly

whereas the the Gauss-Newton method involves the Hessian of J which is a big matrix

that incurs high inversion and storage cost.

In general, seismic inversion is an ill-posed problem. This is chiefly caused by: (a) the

existence of too many local minima in the landscape of J [m] hindering the search for the

global minimum, and (b) directions at m1 where J [m] has zero (or near-zero) curvature

in the vicinity of the solution m*; in this case, the solution is unstable that small noise

variations of the data cause big movements of the global minimum in mistaken directions

[Demanet, 2021; Gelboim et al., 2023].

1.5.4 Deep Learning

Representation learning is a range of methods that allows a machine to be fed with raw

data and automatically discover the representations needed for classification or detection.

In our study, we focus on deep learning, a form of representation learning implemented

through deep neural networks (DNNs). These networks consist of simple yet non-linear

modules that transform data representations across multiple layers, achieving higher

levels of abstraction. Through this process, the network identifies significant features

within the dataset, which can then be used for a myriad of tasks, including prediction,

classification, regression, and generative modeling. These applications span a variety

of domains such as image recognition, natural language understanding, and biological

system predictions.

The foundational form of a deep neural network is the multilayer node (MLP) network,

which consists of an input layer, several hidden layers, and an output layer [Goodfellow

et al., 2016]. Figure 6 illustrates an example of an MLP network. This network com-

prises discrete node units (nodes) arranged vertically in layers and connected by weights

(directed edges) between nodes of different layers. The input layer, on the left, receives

the input data. The three middle layers are the hidden layers, and the output layer, on

the right, contains the final computed values.
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Figure 6: A diagrammatic representation of the Multilayer Perceptron (MLP) network.
This network possesses an input layer with nine nodes, three hidden layers each con-
taining 13 nodes, and an output layer with five nodes. The arrows between the nodes
indicate the weights connecting nodes from one layer to the next layer. The transparency
of these arrow signifies the strength of the weight.

To understand how the model learns representations, each node in the network can

be thought of representing an element within a set of features unique to that layer.

Expanding on this, each layer organizes nodes into hierarchical levels of abstraction.

The input layer contains the raw features. As data progresses through each layer, the

feature set from the previous layer is transformed into a more abstract feature set in

the current layer through a series of nonlinear transformations: weighted connections

and activation functions. Therefore, the feature set in the current layer is composed of

elemental building blocks from the preceding layer; forming a more abstract depiction

of the data. This representation captures intricate patterns and relationships within the

dataset. By extracting significant features from the input dataset, the model learns the

hierarchical mapping from input data to target outputs [Bengio et al., 2014; Lecun et al.,

2015].

Processes

The explanation in this section is primarily based on the works of Lecun et al. [2015],

who has clearly delineated several key deep learning concepts. The first concept to

understand is the purpose of the nodes within neural networks. The node can be viewed
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as a processor that generates a real-valued activation output. Note that the superscripts

l and m refer to the nodal units of the network. Each calculates a weighted sum, netl,

from the activations of the previous layer, ym, and applies a differentiable activation

function, f , to this sum. Typically, an additional term, a scalar bias b, is added to netl

before applying f , giving yl = f(netl + bl). This bias shifts the input of the activation

function vertically from the origin. However, for clarity in understanding the learning

algorithm, we will ignore the bias term for the remainder of this study.

The activation function f is usually a non-linear real valued function such as tanh,

sigmoid ot elu, which compresses the weighted sum into a smaller range and has a non-

zero derivative within this range. This property is crucial for computing gradients during

the backward pass of the learning algorithm.

Now that we understand the node computes the activation function applied to a weighted

sum of previous activations, we can move on towards understanding the objective func-

tion. The objective function measures the error between the network’s output predictions

and the actual desired outputs. To minimize this error, the network adjusts its weights

(and biases), each by a unique amount and direction. This adjustment is guided by the

gradient vector, which indicates how much the objective error would increase or decrease

if each weight were slightly altered. By using this gradient vector, the weights are up-

dated in the opposite direction to the gradient, thereby reducing the objective error in

subsequent computations.

The objective error function can be conceptualized as a surface in a high dimensional

space of, whereby the vertical axis is the error value and the horizontal axes, the weight

values. Intuitively, this forms a hilly landscape; with regions of hills (high error) in-

dicating poor network performance and regions of valleys (low error) indicating good

performance. This landscape can consists of several local minima, and a global min-

imum where the set of weights yield the lowest error and optimal performance. The

landscape can also have other features like saddle points, sharp ridges and plateaus,

which may pose as challenges when finding the lowest possible error.

The process of finding the lowest error entails training the network. During training, the

network uses an iterative optimization algorithm to find the local minimum of the error
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landscape. This can be visualized as a ball rolling down the hills and valleys, moving in

the direction of steepest descent, as determined by the gradient of the error function with

respect to the weights. Stochastic gradient descent (SGD) is the most commonly used

optimization algorithm used in practice. It calculates the objective error on a few samples

(a batch) of training data, computes the average gradient vector for these samples, and

adjusts the weights accordingly. This process is iterated with different batches till the

average objective error stabilizes and stops decreasing. The stochasticity in this method

arises because each batch of randomly-chosen samples, gives a noisy estimate of the

average gradient over all samples. Despite the navigation path being noisy, it is effective

in its convergence, often reaching good weight configurations faster than more elaborate

optimization techniques. Once the network has found its point of lowest error in the

landscape, its performance is evaluated by applying it to an unseen dataset, known as

the test dataset. This measures the generalization ability of the network; how well it is

able to produce accurate outputs for new, previously unseen inputs.

Autoencoder

The autoencoder is an unsupervised deep learning algorithm that specializes in reducing

input data from a high-dimensional feature space to a lower-dimensional representation,

know as the latent space; and subsequent reconstruction of the the input data from the

low-dimensional latent space [Wang et al., 2016; Bank et al., 2021]. Thus, the latent

codes in the latent space is a compressed representations of non-linear features extracted

from the input data. This compression is ensured by constraining the number of latent

nodes to be lower than the number of nodes defining the input layer - thus, achieving the

desired low dimensional representation of the input data. The architectural backbone of

the autoencoder consists of three components: the encoder, the decoder, and the latent

space. Figure 7 illustrates how the three components are connected to each other: the

encoder downsamples input data X to the latent space, and the decoder upsamples the

latent codes to reconstructed input (output layer) X ′.

The objective error function of the autoencoder, which guides the adjustment of weights

during training via the gradient vector of the function, is simply the reconstruction error

between input X and output X’ [Berahmand et al., 2024], defined as:
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Figure 7: Architectural overview of the autoencoder algorithm. X represents the input
data of the input layer, Z represents the extracted codes in the latent space, and X
represents the reconstructed output data of the output layer. The encoder performs the
non-linear downsampling of data from X to Z, and the decoder performs the nonlinear
upsampling of latent codes from Z to X’. Image edited from [Berahmand et al., 2024]

L(X,X ′) =
n∑

i=1

||Xi −X
′||2
i (13)

Thus, during training, the network minimizes the reconstruction error L by adjusting

the weights of the encoder and the decoder, to obtain the final latent code. The latent

code is consequentially, a meaningful low-dimensional feature representation of the data.

We highlight the fundamentals of the autoencoder algorithm here because this will form

the basis for the innovative design of SymAE, that seeks to attain a disentangled latent

representations of symmetric and non-symmetric information from the input data - using

two encoders, instead of one. For a more elaborate explanation on SymAE, see section

3.2.2 and [Bharadwaj et al., 2022].
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2 Model-Centric Benchmark Test

In this chapter we investigate the limits of the model-centric deep learning paradigm for

marine statics correction. As depicted in Figure 2, this approach is primarily based on

replacing classic seismic inversion methods, such as full-waveform inversion (FWI) and

traveltime tomography, with deep learning algorithms. When embedded in the marine

statics correction workflow, this replacement will significantly reduce the high compute

time and cost required by the iterative nature of classic inversion methods that seek to fit

the inferred model to the observed seismic data. Instead of having to generate repeated

seismic simulations from model updates, deep learning will allow for the direct inversion

of the measured velocity model - the real velocity profile of the geological area of interest.

As mentioned in Section 1.5.1, it is vital to first establish this measured model before

performing subsequent computations of deriving and applying statics.

Our study begins with designing a unique and novel deep learning algorithm that maps

seismic records to their corresponding water velocity models. We then analyse the model

predictions of the algorithm to determine their viability for usage in the (model-centric)

marine statics correction workflow. The numerical results of the tests in this chapter thus

becomes the benchmark quantities that we aim to supersede in the following chapters;

which will focus on a more direct, data-centric approach, for marine statics correction.

2.1 Deep Learning Approach

We design a neural network to perform the task of inverting for the water velocity model

from a seismic record. The deep learning algorithm is generally perceived as a hierarchical

composition of non-linear functions (that are assembled in parallel as a layer). Our

network extends the notion of hierarchical compositions to the deep learning algorithms

themselves, each with their own hierarchical composition of non-linear functions. Thus,

our network comprises various components from different deep learning algorithms and

layers, all interconnected to create a unified network.

The deep learning algorithms we employed were inspired from previous research in seis-
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mic inversion using deep learning; specifically, the works of Mauricio Araya-Polo in

Deep Learning Tomography [2018], Deep Recurrent Architectures for Seismic Tomogra-

phy [2019] and Encoder-Decoder Architecture for 3D Seismic Inversion [2023]. In Deep

Learning Tomography, it was shown that a multilayer feedfoward network was capable

of mapping from the semblance space of a stack of shot records to the velocity model

space. Here, the input to the neural network was the semblance cube, a pre-engineered

feature of the seismic data, encompassing patterns that correlate with reflector position

and velocity. In Deep Recurrent Architectures for Seismic Tomography, it was demon-

strated that recurrent neural networks, which are adept at processing sequential data

by retaining previous states (a memory-like capability), achieved greater accuracy in

velocity model inversion from seismic records compared to convolutional networks. This

superiority arises from the fact that seismic records represent spatially sampled time

series of propagating waves, exhibiting both short-term and long-term dependencies. In

Encoder-Decoder Architecture for 3D Seismic Inversion, it was shown that the U-Net

style architecture (with skip-connections that replicated and conveyed encoder feature

maps to the decoder) was able to effectively reconstruct 3D velocity models from seismic

records, even in the presence of white noise or field noise seismic contamination. Keeping

these algorithms in consideration for potential integration, we developed a novel neural

network designed to infer a partial velocity model from a seismic record registering a

wave propagating throughout the complete velocity model.

The reason we aim to infer a partial velocity model from the complete model is because we

want to invert for just the water velocity profile from the total model, which encapsulates

an upper water column layer and lower geological subsurface layer. The water velocity

profile is depth-dependent and isotropic - forming a horizontally layered medium in the

2D model. With the depth of the water column and granularity of its velocity profile

(across the depth-axis) kept constant across different models, the water velocity profile

can be represented as a 1D series of velocity values changing with depth. In contrast,

the seismic record capturing wave propagation through the entire model (water column

and geological subsurface) is 2D, with time and receiver location axes. Therefore, the

mapping from seismic record to water profile involves transitioning from 2D data space to

1D model space; where the 2D seismic record serves as the input to the neural network,

while the 1D profile is the output.
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Our network’s complete architecture is illustrated in Figure 8, and its specifics are out-

lined in Table 1. The algorithms mentioned earlier were integrated into our network;

where the U-Net segment handles feature extraction and retention; and the Flattening

and Multilayer Feedforward segment converts 2D tensors into 1D vectors, fusing and fur-

ther modifying the extracted feature maps. The Gated Recurrent Unit (GRU) segment

specializes in learning long-term and short-term sequential dependencies within the data,

and the Smoothing segment employs convolution by sliding weighted kernels across the

entire 1D vector.

Figure 8: A simplified overview of the neural network architecture designed to infer the
water velocity profile from the seismic record of a wave propagating through the upper
water layer and geological subsurface beneath. This architecture is an amalgamation of
various deep learning algorithms. These algorithms - namely U-NET, MLP, GRU and
CNN - have previously shown their capability in successfully performing the inversion
from seismic data space to velocity model space [Araya-polo et al., 2018; Adler et al.,
2019; Gelboim et al., 2023].

2.2 Data Preparation and Implementation

We generated 1000 velocity models using the GeoPhyInv software, which produces 2D

geologically feasible models with a realistic mix of features. Each model had dimensions

of 6.5km width and 6km depth, represented by a 2D tensor grid of 1301x1201 points.
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Block Layer Unit

Input 0 Seismic Record (100 x 544 x 1 grid points)
Enc1, U-NET 1 Conv2D (64, (3 x 3), elu)

2 Conv2D (64, (3 x 3), elu)
3 MaxPool

Enc2, U-NET 4-6 Enc1 (128)
Enc3, U-NET 7-9 Enc1 (256)
Enc4, U-NET 10 Conv2D (512, (3 x 3), elu)

11 Conv2D (512, (3 x 3), elu)
Intermediary Layers 12 BatchNormalization

13 Dropout (0.5)
Dec1, U-NET 14 UpSampling2D

15 Conv2D (256, (2 x 2), relu)
16 Concatenate
17 Conv2D (256, (3 x 3), relu)
18 Conv2D (256, (3 x 3), relu)

Dec2, U-NET 19-23 Dec1 (128)
Dec3, U-NET 24-28 Dec1 (64)

Intermediary Layers 29 Conv2D (2, (3 x 3), relu)
31 Conv2D (1, (3 x 3), relu)
32 Reshape (100 x 544)
33 Permute (2,1)
34 BatchNormalization
35 Dropout (0.5)
36 Flatten

MLP 37 Dense (800, relu)
38 Dense (400, linear)

Intermediary Layers 39 Reshape (400 x 1)
40 BatchNormalization

GRU 41 GRU (400, linear)
Interewediary Layer 42 Reshape (400 x 1)
CNN, Smoothing 43 Conv1D (2, (5), linear)

44 Conv1D (1, (5), linear)
45 BiasLayer

Output 46 Velocity Model (400 x 1 gridpoints)

Table 1: Detailed neural network architecture desgined to infer the water velocity model
from a seismic shot record.
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The water layer in each model was 2km deep, spanning the sea surface to seafloor;

and the underlying subsurface extended a 4km depth from the seafloor to the base of

the medium. As this dataset is identical to the [-6,6] perturbation horizontal reflector

dataset of Chapter 3, we refer the reader to Section 3.2.1 for a detailed description of the

subsurface geology and water velocity profile of the 1000 velocity models. Additionally,

to minimize reflections from boundaries, we applied perfectly matched layer boundaries

on the right, left, and bottom edges of the medium.

To simulate seismic data, we used forward modeling via an acoustic wave equation solver

in GeoPhyInv, using a 6.78Hz peak frequency Ricker wavelet as a source. Each velocity

model had a source placed at the top of the sea surface, halfway across the model’s

width at 3.25km, and 100 Ocean Bottom Node (OBN) receivers evenly spaced along the

seafloor at 2km depth.

The 1000 velocity models were divided into separate training, testing, and validation sets

using a 7:2:1 ratio respectively. Each 2D shot record, which served as the network input,

was paired with its corresponding 1D water velocity profile, the network output/target.

The neural network was designed using TensorFlow and trained for 400 epochs with a

mini-batch size of 100. Training was performed using the Adam optimizer and included

early stopping regularization, to minimize the MSE loss function and prevent over-fitting.

2.3 Results

We trained our network, detailed in Section 2.1, on OBN-acquired seismic records as

input and their corresponding water velocity profiles as output. After training, the

network was tested on unseen seismic records from the held-out test dataset, and its

water velocity predictions analyzed. Figure 9 presents the predictions generated by our

neural network for a subset of 12 unseen shot records, each arising from a distinct velocity

profile of the water layer and geological subsurface beneath it. The predicted water

velocity profile of each seismic record was compared to its ground truth profile using the

root mean square error (RMSE) metric. The RMSE was 0.40894 on 100 unseen velocity

models, indicating a close similarity between the predicted water velocity profiles and

their corresponding ground truths profiles.
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Figure 9: Inversion results using our specially designed neural network, described in
Section 2.1 The network inverts for water velocity profiles of the 2000m deep ocean
layer, utilizing shot records from Ocean Bottom Nodes located on the seafloor. The
annotated percentage value indicate the relative amplitude modulations (perturbations)
to a Reference Hood’s water velocity profile, which is detailed further in Section 3.2.1.
The network successfully captures the curvature of various perturbed profiles in the top
1000m of the ocean, and the overlapping monotonically increasing profiles with depth,in
the lower 1000m. Overall, the network predictions have a RMSE of 0.40894 compared
to ground truth velocity profiles.

In Figure 9, from depths of 1000m to 2000m (seafloor), the predictions for all models are

superimposed on one another and are aligned well with their ground truth. From depths

of 0m to 1000m, where the water velocity profile exhibits a more curved structure, most

predicted points closely follow the curves of the ground truth profile lines. However,

there are a few points that deviate from their respective ground truth lines; notably, the

upper-most points (between 0m to 250m) of the −6.00% perturbation profile and the

upper to mid-length points (between 0m to 700m) of the −5.39% perturbation profile.

Despite these deviations, the overall results show that the neural network is capable of

generating satisfactory water velocity profiles from seismic shot records.

To evaluate the performance of the inferred water velocity profiles in seismic data space,

we aim to forward model these profiles to their corresponding seismic records, with the

acquisition parameters outlined in Section 2.2. Since the inversion process we focused
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on maps seismic records to water velocity models (which comprise our dataset), we do

not have access to the true subsurface geology information pertaining to each seismic

record. Instead, we recognized that the subsurface geology information essential for the

forward model is encoded within the features of a seismic record itself : the reflection

pattern - which includes the amplitude and arrival times of the propagating waves -

that is influenced by the jump in acoustic impedance between different subsurface layers

[Demanet, 2021]. With this understanding, we proceed to forward model the water

velocity profiles, despite it being the partial velocity model of the complete model (upper

water layer and underlying geological subsurface), using the processing method described

below.

To obtain the seismic record of the inferred water velocity profiles without explicit knowl-

edge of their subsurface velocity profiles, we refer to the conventional statics correction

methodology, which replaces the measured water velocity profiles with a constant water

velocity profile known as the reference velocity, to perform the traveltime shifts on the

seismic data. In our study, the measured velocity represents the ground truth profile, and

the reference velocity represents inferred (neural network predicted) profile. This statics

correction methodology is based on the Normal Moveout (NMO) correction procedure,

which is fitting for our study as our subsurface velocity models feature flat and horizon-

tal, seafloors and reflectors, bounding homogeneous velocity layers - assumed conditions

for implementing NMO-based correction.

Fundamentally, the NMO correction uses the hyperbolic assumption to compute the

velocity required to flatten the hyperbolic curve observed in seismic reflection data. The

assumption is grounded in the knowledge that the travel time of seismic wave reflecting

off a flat, horizontal interface follows a hyperbolic trajectory as a function of offset

distance from the source [Castle, 1994],

t(x)2 = t2o +
x2

V 2
rms

(14)

where x is the source-receiver offset; t0, the vertical (zero-offset) two-way travel time;
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t(x), the non-zero offset two-way travel time; and Vrms, the rms medium velocity,

Vrms =

√∑N
k=1 ∆τkV

2
k∑N

k=1 ∆τk
(15)

where Vk is the interval velocity of the kth layer and ∆τk is the vertical travel time in

the kth layer. By applying this correction and adjusting for the hyperbolic shape, the

velocity is estimated. By shifting each trace forward in time by t(x)− to, the reflection is

flattened from its original hyperbolic shape, such that its arrival time is to for all offsets

[Stein and Wysession, 2003].

To forward model our inferred water velocity profiles, using the input dataset of corre-

sponding seismic records of ground truth velocity (complete geological model consisting

of water and subsurface layers), we perform an NMO-based procedure, which consists of

the following steps 9:

1. NMO Correction with Estimated Velocity Profiles: Perform NMO cor-

rection on the seismic records with their measured (or estimated) water velocity

profiles to flatten the hyperbolic reflection curve.

2. Static Timeshift Application: Apply a static timeshift across the entire shot

record. This timeshift is based on the zero-offset arrival time difference between

the measured (ground truth, in our case) and reference (predicted, in our case) rms

water velocity profiles.

3. Reverse NMO Correction: Conduct a reverse NMO correction on the seismic

records using the rms reference velocity to account for the dynamic nature of

timeshifts with offset, and thereby recreate the hyperbolic-shaped reflection curve

once more.

Figure 10 shows the result of applying the NMO-based forward model procedure to three

randomly selected seismic samples from our test dataset. In the first column, the ground

truth and predicted velocity profiles are displayed, with their respective rms velocity
9This NMO-based forward model process is analogous to that detailed in Lacombe et al. [2006] for

the specific function of deriving and applying statics on seismic records in deepwater statics correction.
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values indicated as dashed lines. The second column shows the ground truth seismic

record, which is input into the neural network to infer the predicted velocity profile.

The third column presents the NMO-based forward modeled seismic record; created by

passing the ground truth seismic record from the second column through the three step

process described above, replacing its measured velocity profile Vrms with its reference

velocity profile V̂rms. Finally, the fourth column depicts the difference of the seismic

records: predicted - ground truth.

Overall, these samples show a discrepancy between the predicted and ground truth seis-

mic records. This discrepancy is measured by the normalized residual norm of the two

records (for more details on this metric, see Section 4.4), annotated at the top of the

difference records in Figure 10. The normalized residual norms for the three samples

range from 0.251 to 0.723, increasing as the difference between V̂rms and Vrms becomes

larger. By nature of the NMO-based forward modeling procedure, the predicted inferred

water velocity profiles, which are noisily scattered about the smooth ground truth pro-

files, are averaged to a single scalar value V̂rms which is only slightly different from Vrms.

Therefore, although the water velocity predictions are noisy, this noise is does not appear

in the predicted seismic records, as it translates only the scalar difference, V̂rms − Vrms.

Consequentially, the reflection pattern in the predicted seismic records preserves the ar-

rival features of the ground truth records, but experiences slight timeshifts, resulting

in amplitude differences - at corresponding timestamps and traces - between the two

records.

To understand the difference between V̂rms and Vrms, we take its Mean Absolute Percent-

age Error (MAPE) to measure the average proportion of error across 100 test data points

and the R2 score to evaluate the goodness of fit of V̂rms to Vrms. The MAPE was 0.26%

and the R2 was 0.91954, indicating a a high degree of accuracy and strong fit between

V̂rms and Vrms. Additionally, we calculated the average normalized residual norm (refer

to Section 4.4 for more details on this metric) for the 100 test seismic records (from

which Vrms was derived) and the corresponding predictions (forward modeled records

using V̂rms): this value was 0.25750. This indicates that on average, the residuals (differ-

ences between ground truth seismic and predicted seismic values) are 25.7% of the range

of the ground truth seismic values.
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To gain a deeper understanding on the discrepancy between predicted and ground truth

seismic records, we closely examined their traces to calculate their arrival timeshifts. The

timeshifts were computed using the Moving Window Cross-Correlation method, which

is described in detail in Section 3.3. Figure 11 below shows the timeshifts for a 5.987%

water velocity perturbation sample from the test dataset for the zero offset and far offset

case, at 3.25km. The predicted trace of the zero offset case achieves better accuracy

than the far offset case with its direct arrival reaching at the same time as its ground

truth counterpart (∆t1 = 0s); and the timeshifts of the other arrivals (∆t2 and ∆t3)

ranging from 0.0225s to 0.0449s. In contrast, the direct arrivals of the far offset case are

misaligned with a timeshift ∆t1 of 0.0225s, and the other arrivals have timeshifts (∆t2,

∆t3 and ∆t4) ranging from 0.0337s to 0.0449s. Overall, most timeshifts for the traces

are non-zero and larger than the precision requirement of 0.01s described in Section 1.4,

highlighting the impact of inversion inaccuracies in the velocity model towards forward

modeled seismic data.10

2.4 Discussion

Our study was focused on inverting for water velocity profiles from marine seismic records

using a uniquely designed deep learning network. Accurate inversion results would indi-

cate that this model-centric approach to statics correction via deep learning is potentially

viable. We obtained inversion results of our water velocity profiles, which closely resem-

bled the ground truth curves - although the predicted values were slightly scattered

about the ground truth, yielding an RMSE of 0.40894.

The model-centric framework for statics correction requires accurate inversion for the

water velocity profile, which constitutes the measured profile, for replacement with a

selected reference velocity profile that would homogenize the timeshifts due to water

velocity perturbations. Thus, the predicted and ground truth velocity profiles both
10Further data-centric experiments in this thesis involve similar timeshift computations between re-

datumed (predicted) and reference (ground truth) seismic traces. To compare the timeshifts from our
model-centric benchmark test with subsequent experiments, refer to Figures18, 19, 28, and 29. Our
benchmark test indicates that, except for specific cases (such as the direct arrival of the zero offset
trace) where a timeshift precision of 0.01 seconds is achieved, most arrivals exhibit larger timeshifts,
reaching up to 0.04 seconds. In contrast, our subsequent data-centric SymAE experiments show that
the 0.01s level of time precision can be consistently achieved for every wave arrival.
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represent the measured velocity profiles. To assess the impact of the deviations between

the predicted water velocity and ground truth profiles, we forward modeled the predicted

water velocity profiles to their corresponding seismic records. This was done following

the procedure outlined for NMO-based static correction as we did not have explicit access

to their true subsurface velocity profiles.

The nature of the NMO-based static correction method requires that the 1D vector

of predicted and ground truth depth-dependent velocity profiles first be averaged to

their corresponding scalar rms velocity, before subsequent processing. The rms velocity

influences the shape of the hyperbolic curvature and timeshifts applied to all arrivals of

the seismic record, making it a vital quantity. The rms velocity MAPE of 0.26% and

R2 score of 0.91954 indicated a high accuracy between predicted and ground truth rms

velocity values. Despite this high accuracy, the forward-modeled seismic records from

predicted water velocity values were moderately accurate, with an average normalized

residual norm of 0.25750, when compared to the ground truth seismic records from

ground truth water velocity values.

Thus, the error in the predicted seismic record values is about a quarter of the range

of values seen in the ground truth records. Given that our dataset’s seismic records

featured relatively simple subsurface geology profiles—single horizontal and flat reflectors

located between two homogeneous velocity layers—we expect the seismic error would be

exacerbated when applied to a dataset with more complex subsurface geology profiles.

Furthermore, as described in Section 1.5.1, when the assumption of horizontal and flat

reflectors are not met, the fundamental concept of raypaths - their angles and distances

traversed through the medium - should be revisited to compute the ray-traced timeshifts

for static correction. As such, in addition to the increased water velocity inversion error

arising from seismic records of complex subsurface geology profiles, a raypath-based static

correction method (that is not NMO-based) will be less forgiving towards observed noise

in the inverted profiles, as it explicitly computes the traveltime of the ray through each

value in the water velocity profile, representing a layer of a certain depth (dependent on

the granularity of the profile) in the ocean layer.

The numerical results of the tests in this chapter which becomes the benchmark quanti-

ties we aim to supersede in following chapters begin with the predicted seismic records
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showing an error margin of about 25% compared to the ground truth records. Closer ex-

amination of the records, as illustrated in Figure 11, reveals that obtaining a 0.01s level

of timeshift precision happens in very limited cases such as the zero offset , direct ar-

rival. For other arrivals, the resulting timeshifts exceed 0.01s, reaching as large as 0.04s.

Based on precision computations detailed in Section 1.4, a timeshift of 0.02s corresponds

to depth resolution of 30m and a timeshift of 0.04s corresponds to a depth resolution

of 60m. As time-lapse reservoir seismic monitoring requires a spatial resolution of 15m

to image dynamic fluid flow processes within the reservoir [Lumley and Behrens, 1998],

timeshifts larger than 0.01s are not precise enough for good imaging as they could result

in spatial inaccuracies between 30m to 60m in migrated images. Thus, we conclude that

inaccuracies in the velocity model inversion process in traditional statics correction lead

to reduced time resolution in seismic data, potentially causing severe reflector position-

ing errors; in our case, these errors could be as large as 60m. This conclusion therefore

indicates the need for further improvement of the current inversion process, based in the

traditional model-centric paradigm for statics correction.

2.5 Conclusion

Traditionally, statics correction is a model-centric process that relies on the accurate in-

version of geological velocity models as a prerequisite for its subsequent steps, of deriving

and applying statics. For marine seismic data, this corresponds to the accurate inversion

of the depth-dependent water velocity profile from the seismic record. Generally, statics

correction for marine data is then implemented by NMO processing the data using the

traveltime difference between the physical, unknown medium and hypothesized medium.

For a deeper understanding of the limitations of this model-centric paradigm for stat-

ics correction, we performed benchmark testing using deep learning for inversion from

data space to model space. Specifically, we developed an innovative neural network by

combining in sequence, various deep learning algorithms to transform 2D marine seismic

records into 1D depth-dependent water velocity profiles of the ocean layer. The neural

network was successful in producing good water velocity predictions that aligned well

with ground truth profiles. However, the predictions were not entirely free from inaccu-
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racies. Accordingly, when the predicted profiles were NMO-processed to seismic records,

they yielded sub-optimal results when compared to ground truth seismic, only achieving

the 0.01s precision level only in very limited cases (such as the zero offset, direct arrival),

while other arrivals exhibited timeshifts as large as 0.04s, which is unacceptable for good

imaging. Thus, there is a compelling need for further improvement in the accuracy of

the predicted water velocity profiles.

This realization paves the way towards two approaches: first, enhancing the inversion

algorithm for improved velocity model predictions making them viable for better time

resolution in statics-corrected records; and second, investigating alternatives to the pre-

dominant model-centric framework for statics correction. We chose to pursue the second

approach, and the remainder of this thesis focuses on examining a different paradigm of

statics correction, which is based on a data-centric framework instead.

58



Figure 10: NMO-based forward model results for seismic records with distinct velocity
models, consisting of the water layer and underlying subsurface geology. To evaluate the
water velocity predictions, we NMO-processed the predicted profiles to seismic records,
and calculated the difference between the predicted and ground truth records. Column
1: Ground truth and predicted depth-dependent water velocity profiles for three different
velocity perturbations, with their respective RMS velocity values indicated by dashed
lines. Column 2: Ground truth seismic records, from which the predicted water velocity
profiles in Column 1 are inverted from. Column 3: NMO-based forward modeled seismic
records. Column 4: Predicted minus ground truth seismic records (their difference).
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Figure 11: Timeshifts measured on ground truth vs predicted traces of the 5.987%
perturbed water velocity sample from the test dataset. The traces shown are for the
zero offset and far offset (3.25km) cases. Although the zero offset traces show better
alignment than the far offset traces, most timeshifts for the trace pairs are non-zero and
substantial, reaching values as large as 0.04s. This highlights the impact of inversion
inaccuracies in the velocity model, which create traveltime inaccuracies in the forward
modeled seismic data.
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3 Single Horizontal Reflector

3.1 Introduction

Deepwater marine seismic measurements undergo statics that arise from tidal and sea-

water velocity variations that are spatio-temporal in nature. These statics corrupt the

seismic data acquired from such surveys, leading to inaccuracies in 3D imaging and

non-repeatability in 4D time-lapse monitoring of the subsurface. As outlined briefly in

Section 1.3, the classical method for statics correction consists of a two-step workflow:

First, deriving statics. Second, applying static corrections to the seismic measurements.

The problem with this workflow is that there are complications inherent to both steps of

deriving and applying statics. The derivation of statics require an estimation of the time-

variant acoustic (pressure) velocity though the seawater column (hereafter referred to as

water velocity for simplification) which is obtained from either NMO-based evaluation

of the direct arrival’s traveltime curve [Lacombe et al., 2006], or direct measurement

with a specific instrument such as the Pressure Inverted Echo Sounder (PIES) [Wang

et al., 2012]. The application of offset-dependent (dynamic) statics correction requires

applying a timeshift calculated from the difference between measured velocity water

bottom arrival time and a known reference velocity water bottom arrival time on NMO

corrected data (using the real water velocity), and subsequent reverse NMO correction

(using the reference water velocity) [Lacombe et al., 2006]. This method works for simple

subsurface geology that assumes a flat reflector or a known geological target, but require

more intricate procedures such as a TauP inversion when complexities, such as a salt

body, exist in the overburden [Huang et al., 2016]. These methods however, are not full-

proof (significantly, dynamic statics correction and TauP inversion are only theoretically

accurate when correcting for the primary reflection that has traveled through the water

column once); thus, the derived and applied statics often have compromised accuracies.

Furthermore, the workflow is computationally expensive and time consuming - especially

because water velocities are constantly changing and require a separate static correction

process for each velocity variation in a seismic stack.
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The purpose of this chapter is to determine if the classic two-step workflow for deep-

water statics correction can be replaced by a data-centric approach that bypasses the

need to transform between the non-commensurate spaces of seismic data and velocity

model space. Specifically, we implement the symmetric autoencoder (SymAE) algorithm

to disentangle the effects of varying water velocity and coherent subsurface geology in

seismic records - and subsequently, create statics-corrected seismic records, which are

standardized with a reference water velocity profile of choice [Bharadwaj et al., 2020,

2022].

3.1.1 SymAE and Marine Seismic Survey Non-Repeatability

SymAE was designed to solve poorly controlled scientific experiments where acquired

measurements suffer from corruption by unmodelled and uncontrollable nuisance vari-

ations [Bharadwaj et al., 2022]. A sub-class of such experiments involve variations in

measurements, that occur across two different time scales: a slower scale and a faster

scale. On the slower scale, the coherent information intrinsically tied to the physical

state, varies. On the faster scale, the nuisance information that corrupts measurements

of the physical state, varies. The separation of scales and associated information is

expressed in Figure 12. For SymAE to effectively disentangle coherent and nuisance

information within this experimental context, a certain time period is fixed in which

the coherent information is assumed to be unvarying, and only the nuisance informa-

tion varies on the fast time scale. Additionally, during this time period, multiple noisy

(nuisance-corrupted) measurements of the coherent physical state can be acquired - these

are called instances of a datapoint.

In practice, this contrast in scales is seen during deepwater marine seismic acquisition.

Typically, a complete marine seismic survey using towed streamers containing sources

and/or receivers takes within the order of weeks or months to complete [Mateeva, 2021].

This time-scale aligns with the emerging trend over the last decade and a half of frequent

4D reservoir monitoring,11 with surveys repeated on-demand over weeks to months. This
11Prior to the last decade and half, 4D offshore monitoring focused on longer timescales, with sur-

veys conducted several years apart, typically every 3 to 5 years. These surveys were mainly aimed at
optimizing field development strategies and ensuring the operational licensing of exploration companies
[Carpenter, 2014; Mateeva et al., 2015].
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Figure 12: Separation of time-scales and associated information. Coherent information
(marker shapes) tied to the physical state varies on a much slower scale compared to the
nuisance information (marker distance from the baseline) which corrupts measurements
of the physical state. Each measurement taken is represented as a marker in the diagram,
and its disentanglement of coherent and nuisance information is the aim of SymAE. Image
from [Bharadwaj et al., 2022].

frequency matches shorter reservoir dynamic timescales, providing critical information

for optimizing reservoir injection and production processes, and ensuring the operational

safety of these activities [Carpenter, 2014; Mateeva et al., 2015]. In contrast to the slower

time-scale of reservoir changes, faster time-scale acoustic velocity variations - in the order

of hours to days - are experienced by the water layer through which the seismic wave

travels downwards from the sea surface (where the seismic source is located) towards the

offshore reservoir. These variations are driven by waves and tides, which are influenced

by the temperature, pressure, and salinity fields of the sea [Lynch et al., 1996] (See

Section 3.2.1 for more information on the water velocity profile and the variations it

undergoes).

If we break the survey into smaller time windows of about twelve hours, a source can

be fired from the same position multiple times for the acquisition of multiple seismic

measurements. Within this time period, it is reasonable to assume that the subsurface

geology is unvarying whereas the overhead water velocity is varying. Thus, subsurface

is represented as coherent information, and water velocity as nuisance information. The

removal of water velocity nuisance information from the seismic measurements will signif-

icantly reduce the non-repeatability issues that propagate into time-lapse (4D) analysis

from corrupted three-dimensional (3D) imaging. This is because water velocity varia-

tions introduce timeshifts into seismic traces, that if uncorrected, invert as inaccurate
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velocity structures in the 3D image.

In order to correct for water velocity variation, we intend to map all water velocity profiles

in the seismic measurements to a single water velocity profile, known as a reference

profile. This will homogenize the effects of water velocity across instances. Consequently,

differences in seismic measurements, acquired within a time window, is solely attributed

to differences in the physical state of the subsurface geology.

3.2 Data and Methods

3.2.1 Data

The dataset used in the training and testing of SymAE consists of synthetic data gener-

ated by the GeoPhyInv toolbox, an acoustic and elastic wave equation solver for high-

performance computations. A two-dimensional model of rectangular shape was used as

our physical domain. It has 1301 gridpoints on the x-axis spanning a length of 6500m,

and 1201 gridpoints on the x-axis spanning a depth of 6000m. The sea surface is posi-

tioned at a depth 0m, which is the top of the physical domain. The model is divided

into an upper layer consisting of a water column and a bottom layer of bedrock; the

subsurface we are interested in imaging.

The dataset is composed of seismic measurements from 1000 different subsurface models,

which constitute the datapoints {Xi}i=1,...,1000. Each datapoint has 11 different water

velocity models, which constitute the instances {τk}k=1,...,11.
12 This results in a total of

11,000 models in the entire seismic dataset. Figure 13 shows an example of a model

generated. The following sections describe the specifics of the subsurface bedrock and

water column structure.

Subsurface structure

The subsurface extends from the seafloor, at a depth of 2000m, to the bottom of the
12For each datapoint, one instance within {τk}k=1,...,11 is modeled as a reference instance, τref, that

follows a reference velocity profile (described in Section 3.2.1). The remaining 10 instances are variations
from the reference velocity profile.
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Figure 13: Visualization of a model used to create synthetic shot gather data. Vp
here refers to the acoustic wave propagation velocity through the domain. The source,
marked with a red x, is positioned in the water column at a depth of 10m. An array of
equally-spaced receivers, marked with blue triangles, are positioned on the seafloor at
a depth of 2000m. The seawater column appears to be vertically homogenous because
the depth-dependent water velocity profile does not vary drastically enough for a visible
change in the plot. However, as shown in Section 3.2.1, the modeled water velocity does
indeed change with depth through the domain.

physical domain, at 6000m. Around the halfway point of total subsurface depth, a

horizontal reflector is placed through the length of the domain. A slower seismic velocity

is assigned for the region above the reflector (upper-layer), and a larger seismic velocity is

assigned for the region below the reflector (lower-layer). Across datapoints, the position

of the horizontal reflector is uniformly distributed between 3300m to 4900m; the values

for the upper-layer velocity and lower-layer velocity is uniformly distributed between

1800ms−1 to 2850ms−1; and 2850ms−1 to 5700ms−1 respectively.

Water column structure

The water column has a depth-dependent velocity function, that consists of two states:

reference and perturbed. The reference water velocity follows the Hood’s model, a 6th-

order polynomial expressing velocity as a function of water depth, for temperate and

65



tropical ocean basins:

VH(z) =1541.30− 0.18026z + 2.12895 ∗ 10−4z2 − 1.15430 ∗ 10−7z3 (16)

+ 3.28150 ∗ 10−11z4 − 4.62212 ∗ 10−15z5 + 2.52598 ∗ 10−19z6,

where VH(z) is the Hood’s water velocity as a function of depth, z. The Hood’s model

was derived by Advocate and Hood [1993] by combining the results of 14 velocimeter

surveys across different locations in the northwest Gulf of Mexico, during the years

1988 to 1990. The velocimeter surveys provided measurements of the acoustic velocity

profile in that location. Notably, the resulting Hood’s water velocity profile varies non-

linearly with depth. This profile is strongly dependent on the interaction of temperature,

salinity and pressure (depth) [Del Grosso, 1974]. Besides these variables, the profile is

also influenced by the presence of impurities (i.e., gas bubbles), and organic and inorganic

matter [Advocate and Hood, 1993].

Additionally, water velocity is subject to other spatio-temporally varying factors such

as tide, season, location and ocean current [Han et al., 2012]. To account for these

variations, we create a perturbed water velocity profile, that takes the form of a cosine

square modulation on the amplitude of the Hood’s model (reference profile) for depths

of 0m to 1000m:

Vm(z) = cos

(
z

1000
∗ π
2

)2
p

100
VH(z) (17)

Vp(z) =VH(z) + Vm(z), (18)

Vm(z) represents the modulation of the reference velocity VH(z), p is the percentage of

cosine squared modulation applied, and Vp(z) is the resulting perturbed water velocity

from the sum of modulated and Hood’s velocities. Based on discussions with scientists

from Shell [Mateeva, 2021], p realistically ranges from −2% to +2%. These limits are

shown in Figure 14, with the Hood’s velocity profile for comparison purpose. Perturba-

tions to the Hood’s velocity cease to exist below 1000m as this region has nearly constant

temperature and pressure profiles, and is thus largely unaffected by seasonal variations.

This stratum of the oceanic body is known as the deep isothermal layer, where water
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velocity increases with depth primarily due to increasing pressure [Advocate and Hood,

1993].

Figure 14: Top-left: Acoustic velocity profile of water column in the Gulf Of Mexico
derived from remotely operated vehicle (ROV) temperature-pressure-conductivity mea-
surements - from September 2011 to January 2012. Image from Wang et al. [2012].
Top-right: Hood’s velocity (reference) profile and limits of realistic perturbations. The
minimum and maximum velocities corresponds to p values (see Equation 17) of −2% and
+2% respectively. Bottom panel: Supplementary perturbation ranges of the Hood’s
velocity profile used for testing of SymAE: −6% ≤ p ≤ +6% and −25% ≤ p ≤ +50%.

Although the velocity perturbation p is realistically limited to [−2,+2], to test the perfor-

mance of SymAE on larger timeshifts, the perturbation range was expanded by creating

additional datasets with p of [−6,+6] and [−25,+50] (Figure 14).

Shot gather simulations. From the physical models described, shot gather data is

generated with the following specifications:

Finite difference simulations. The 2D acoustic wave equation solved with a sec-

ond order in space and second order in time finite-difference modeling. Perfectly

67



matched layers (PML) used at all model boundaries, except the z= 0 free surface,

which has a Dirchlet boundary condition of 0. Simulations ran for a time range of

8.8456s, with 0.00062s time steps; with grid-spacing of 5m in x and z directions.

Acquisition geometry. Single source at a depth of 10m from the top of the domain

(within the water column). 100 receivers, equally spaced, positioned at seafloor

depth of 2000m.

Source signature. Ricker wavelet with peak frequency of 6.78Hz and maximum fre-

quency of 20.23Hz.

3.2.2 Method

As described in detail in Section 1.5.4, the autoencoder can be viewed as a dimensionality-

reduction method as it maps high-feature data to a low-feature latent space. This latent

space serves as a bottleneck, offering a compressed embedding of the datapoints [Wang

et al., 2016; Spinner et al.]. The SymAE deep learning algorithm is based on the autoen-

coder but has the unique functionality of disentangling nuisance variations and coherent

information, from a group of measurements, in the latent space. This separation is

achieved by passing the input data into two encoders: the first encoder (CEnc), decodes

coherent information; the second encoder (NEnc), decodes nuisance information. CEnc

leverages the permutation symmetry of the coherent information across all instances in a

vector (datapoint), by summing across the transformed data on the instance dimension

- thereby constraining the encoder to only extract coherent information. NEnc however,

does not sum across the transformed data, but extracts and retains instance-specific

nuisance information. The ability of the nuisance encoder to exclude any coherent infor-

mation is enforced by adding noise to the output of the nuisance encoder by Gaussian

dropout.13 In addition to being an integral part of SymAE’s design, Gaussian dropout

also acts as a regularizer that reduces the generalization error of SymAE and prevents

over-fitting. Figure 15 illustrates the complete SymAE model with the two encoders

described.
13The Gaussian dropout method multiplies a random variable, rq ∼ N(1, q

1−q ), with the output of
the activation function, ai of a hidden node i, with probability (rate) q. The resulting activation, rqai
is thus perturbed from ai [Srivastava et al., 2014].
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Figure 15: Macro-view of the SymAE learning algorithm network architecture. Total
information content of instances of a datapoint are represented as solid coloured arrows.
The summation function in the Symmetric Encoder extracts coherent information (solid
black arrow) and the Dropout Masks applied to the output of the Nuisance Encoder
(NEnc) enforces the extraction of remaining nuisance information (dotted colored ar-
rows). The disentangled information is combined and decoded (via Fuse) to reproduce
the input datapoint. Image from [Bharadwaj et al., 2022].

Remember that each datapoint Xi, SymAE is trained on, is a vector of instances {τk}.

A datapoint exists in a high-feature space, and is represented by low-feature coherent

information that is symmetric across all instances, and low-feature nuisance information

that is varying across instances. Once the latent codes are produced, the decoder fuses

the instance-specific nuisance code with the vector-extensive coherent code, and non-

linearly upsamples the fused latent code to reconstruct the original datapoint. SymAE

is trained to minimize a loss function of the form

L(θEnc, θDec) =
1

n

n∑
i=1

(
Xi − Dec[Enc(Xi; θEnc); θDec]

)2

, (19)

where θEnc and θDec denote the parameters (weights) of SymAE encoders and decoder;

and n, the number of datapoints. This loss function is equivalent to the Mean Squared

Error (MSE) function.

Redatuming

SymAE’s ability to disentangle information in the latent space can be leveraged to gener-

ate hybrid datapoints from chosen coherent and nuisance codes. Once SymAE has been
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trained on a dataset to extract coherent and nuisance codes, the coherent code from any

datapoint can be combined with the nuisance code from any instance (of any datapoint)

of a similar dataset. Redatuming is pivotal for our purpose of fusing the coherent code of

the subsurface geology, with the nuisance code of the reference water velocity to produce

corrected shot gathers. Subsequently, applying SymAE’s decoder (Fuse) to this hybrid

latent code will yield a hybrid instance - a shot gather of a wavefield that has traveled

through the new medium with the chosen subsurface geology and water velocity profile

- as expressed in equation (20).

Xi→j[τ ] = Fuse[Cenc(Xj);Nenc(Xi[τ ])] (20)

Xi and Xj are two different datapoints. Cenc(Xj) represents the coherent code from

Xj, which is symmetric across instances. Nenc(Xi)[τ ] represents the nuisance code from

Xj[τ ], which is instance-specific. The fusion and decoding of these codes, generate the

redatumed datapoint, Xi→j[τ ].

3.2.3 Training SymAE

To summarize, we created three datasets with different p, percentage perturbation,

ranges: [-2,+2], [-6,+6], [-25,+50]. Each dataset consists of 1000 datapoints Xi; each

datapoint consists of ten perturbed instances and one reference water velocity instance,

τi. From each dataset, 700 datapoints were allocated for training, 200 datapoints for

validating and 100 datapoints for testing SymAE.

SymAE was trained on datapoints that only contained perturbed instances. Thus, the

inputs and outputs to SymAE consisted of Xi for i = 1, ..., 700 and τk for k = 1, ..., 10.

Additionally, training was performed with a batch size of 2 datapoints (primarily to

fit GPU memory requirements) and an Adam optimizer with an initial learning rate of

0.001. During validation, the expressivity of encoders was observed to have the most

impact on results. Hence, this was the hyperparameter we focused on for tuning.

Controlling and balancing expressivity

Expressivity is understood as how the architectural properties of a neural network affect
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the functions it is able to compute, and ensuing performance [Raghu et al., 2017]. The

expressivity of the encoders is largely influenced by the dimensionality of their latent

spaces. Additionally, for the nuisance encoder, the Gaussian dropout applied to its

latent output also significantly influences its expressivity. One way to gauge expressivity

is to examine the training and validation curves for signs of overfitting or underfitting.

Naturally, a network that is more expressive will tend to overfit the data; as more

parameters (activation units) enable the computation of more complex functions [Raghu

et al., 2017].

For SymAE, tuning expressivity comprises not only in finding the right latent space

dimensionality of the individual coherent and nuisance encoder, but also in balancing

the expressivity of coherent and nuisance encoders. If the nuisance encoder were to

have a much larger expressivity compared to the coherent encoder, this would drown the

ability of the coherent encoder to capture any information. As a result, SymAE would

behave more like an autoencoder as its ability to capture and disentangle symmetric

and coherent information is compromised, and there would effectively only be one latent

space.

There is no formulaic method to tune expressivity (or any other hyperparamter), and

often a tuning strategy is found by trial and error. The tuning strategy that worked for

us was:

Step 1: Finding a latent space dimensionality for the coherent encoder, that is

balanced, with respect to the nuisance encoder. This can be ensured by checking

that a redatumed instance has the right coherent information from one datapoint,

and nuisance information from an instance of another datapoint.

Step 2: Fixing the dimensionality of the coherent encoder.

Step 3: Fine-tuning the expressivity of the nuisance encoder by adjusting its

latent dimension and dropout rate, in tandem. More latent dimensions increase

expressivity, whereas fewer latent dimensions reduce expressivity. We inspected the

training curve to ensure it does not overfit or underfit the data, whilst producing

the least MSE loss.
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This tuning strategy had to be applied individually for each training dataset of different p

ranges. The final hyperparameters chosen are compiled in Table 2. As alluded to before,

large p ranges require more expressivity, and thus more nuisance latent dimensions.

Dataset Range NEnc Dimension Dropout Rate
[-2, +2] 15 0.5

[-6, +6] 22 0.65

[-25, +50] 100 0.5

Table 2: When tuning hyperparameters of SymAE, we focused on fine-tuning the nui-
sance encoder (NEnc) latent dimension and the Gaussian dropout rate. The chosen
values, which yield best validation and test results, are shown here.

3.3 Results

Having trained and tuned SymAE on three different datasets with water velocity per-

turbation ranges of [−2,+2], [−6,+6] and [−25,+50], the ability of SymAE to correct

for the perturbed velocity of an unseen instance (from datapoint X901) such that its

water velocity profile matches that of the reference Hood’s profile is tested.14 Another

unseen instance (from datapoint X987) arising from a different subsurface geology than

our perturbed instance, but with the desired Hood’s water velocity profile, is provided

for redatuming - this instance is called the auxiliary record. Equation (21) expresses

redatuming of this test case, to produce the corrected datapoint, X901→987[τref]. Figure

16 shows the auxiliary record, X987[τref]), and Figure 17 shows the results of redatuming

an instance of datapoint X901 across all three datasets.

X901→987[τref] = Fuse[Cenc(X901;Nenc(X987[τref])] (21)

For a more detailed inspection of the correction performed by SymAE on traces, the Mov-

ing Window Cross-Correlation method was used to measure the timeshifts between per-

turbed and reference, and redatumed and reference traces.15 We measured the timeshifts
14All instances used in this testing stage belong to the set of (testing) datapoints that SymAE has

not seen during previous training and validating stages.
15The Moving Window Cross-Correlation is a commonly used technique to measure arrival time
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Figure 16: Auxiliary shot gather resulting from a subsurface model with the Hood’s
water velocity profile (reference velocity). Its nuisance code is a low-dimensional repre-
sentation of the Hood’s profile and therefore, is used by SymAE to redatum shot gathers
with a velocity profile that is perturbed from the Hood’s profile.

on the [−6,+6] dataset, specifically on the +6% perturbation instances of datapointX901.

This dataset range and perturbation value were chosen as SymAE performs well on this

dataset (shown in Figure 17), and the timeshifts are larger and more discernable com-

pared to those observed in the [−2,+2] dataset. Figure 18 shows the timeshifts before

and after redatuming, for both the 0km (zero) offset and 3.25km (far) offset traces.16

For each trace, the timeshifts between reference and perturbed traces vary with arrival

times of waveforms and distance from the source (offset). ∆t1,∆t2,∆t3,∆t4,∆t5 are

the timeshifts of the direct arrival, seabed triplet (multiple), seabed quintuplet (mul-

tiple), reflector primary and reflector multiple, respectively. From the figure, for both

offsets, the timeshifts prior to redatuming have non-zero values; after redatuming, these

timeshifts are zero. Thus, the perturbed traces were aligned to the reference traces -

redatuming has corrected for the water velocity variation induced timeshifts.

To further understand the performance of SymAE, timeshifts on a new test case (data-

point X906), with a different subsurface than X901, were measured (Figure 19). Unlike

the previous test, here waves from the reflector arrive after the seabed multiples. SymAE

differences in seismic traces [Mikesell et al., 2015], [Liu et al., 2010]. In the continuous domain, consider
f and g to be functions of t. The windowed-signals are f(t; y) = g(t)w(t− y) and g(t; y) = g(t)w(t− y),
where t− y specifies the location of the windowed function on the signal. The cross-correlation of these
windowed signals is (f ⋆g)(τ) =

∫∞
−∞ f(t; y)g(t+ τ ; y)dt. For our purpose, discretizing this equation and

taking the lag of maximum cross-correlation of windowed signals yields the timeshift between f(t) and
g(t) within that window (local timeshift), whereby we set the reference trace as f(t) and the perturbed
trace as g(t).

16The 3.25km far offset trace lies at the edge of the physical domain, and was collected by the 100
receiver.
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is able identify this inversion of arrival times, and perform the corresponding timeshift

corrections. However, in the far-offset redatumed trace, there exists a non-zero timeshift

of 0.01382s, in the reflector primary; this was corrected from the original timeshift of

0.02764s between reference and perturbed traces. Collectively, these results reveal that

the timeshifts strongly converge to zero, however it is not certain all timeshifts reach

absolute zero. Notably, this finding demonstrates the superior data-centric performance

of SymAE compared to our model-centric benchmark test. In the benchmark test, most

arrivals fail to achieve the required time precision of 0.01s, whereas SymAE achieves the

0.01s level of precision for all wave arrivals.

To quantify the performance of SymAE, we compute the L2 norm of residuals between

perturbed and reference, and redatumed and reference instances across all test data-

points. These norms are used to compute the gain of each instance: ||reference-perturbed||2
||reference-redatumed||2 .

The gains are averaged over all instances to obtain the mean gain achieved by SymAE.

Additionally, to probe (and compare with) the performance of SymAE on datasets out-

side of its training range, we cross-test SymAE trained on one dataset range and tested

on a different dataset range. The results are compiled in Figure 20. SymAE achieves a

gain > 1, meaning overall reduction in timeshifts, for all testing ranges. Significantly,

SymAE performs best (maximal gain) when trained and tested on datasets of equivalent

range.

Since gain represents the relative improvement in timeshift alignment between redatumed

and perturbed states; to assess absolute performance independent from the influence of

perturbed timeshifts, we compute and average the normalized residual norm (test er-

ror), ||reference-redatumed||2
||reference||2 , between redatumed and reference instances, across all test dat-

apoints (Figure 21). The residual norm is simply a measure of how well the trained

network generalizes to new data [Kawaguchi et al., 2020]. Generalization is highest for

the [−2,+2] SymAE tested on [−2,+2] data, and this value is close to the generalization

of the [−6,+6] SymAE tested on [−6,+6] data. However, compared to the aforemen-

tioned cases, the generalization ability decreases by approximately a factor of two for

the [−25,+50] SymAE tested on [−25,+50] data.
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3.4 Discussion

Generalization can be understood as the formulation of general concepts based on es-

sential features common to specific examples [Mitchell et al., 1986].17 From SymAE’s

training dataset which highlights timeshift variation due to underlying variation in sea-

water velocity, the main general concepts to be learned consists of:

1. Identification and disentanglement of coherent information depicting subsurface

geology from nuisance information depicting water velocity variation.

2. Sufficiently-expressive encoding of coherent and nuisance information in the latent

space.

3. Appropriate functional complexity (from the composition of non-linear activation

functions) required to reconstruct waveforms in shot gathers, based on encoded

coherent and nuisance information.

If SymAE learns (finds) these general concepts from the space of all possible concepts via

training, then the learned SymAE generalizes well; the generalization gap18 is minimized

and SymAE is able to make good predictions on test data.

We evaluate the predictions on test data by performing redatuming - which necessitates

the learning of all three general concepts - on perturbed instances. Good predictions

entail the reconstruction of all arrival waves and strong convergence of timeshifts (with

respect to reference trace) to zero in redatumed instances. The results show that SymAE

generalizes well when trained and tested on [−2,+2] and [−6,+6] datasets, but its per-

formance declines on the [−25,+50] dataset.

The weaker performance on the [−25,+50] dataset could be attributed to several rea-

sons. First, the training dataset could be providing compromised knowledge of features

relevant to general concepts being learned, specifically the concept of distinguishing the
17This understanding elucidates how generalization is actually an inductive process, where general

laws are induced from particular examples [Mingers, 2012].
18The generalization gap can be understood as the difference between the model’s performance on

training data and its performance on unseen data drawn from the same distribution. More accurately,
the generalization gap is the difference between expected and empirical risk of a learning algorithm on
a distribution of data [Kawaguchi et al., 2020].
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right coherent information. Higher water velocity perturbations cause larger changes in

the seismic isochrone shape (due to the large bending of ray-paths) [Han et al., 2012],

which may cause the seismic energy to penetrate weakly or not at all in some areas of the

subsurface [Kazemi et al., 2020], leading to non-uniform illumination of the horizontal

reflector. Thus, the horizontal reflector is classified as nuisance information rather than

coherent information. Second, we observe that increased water velocity perturbation re-

quire increased latent dimensions in the nuisance encoder, suggesting the need for higher

expressivity in the learning algorithm. Besides increasing the nuisance latent dimen-

sion, this can be achieved by increasing the width and depth (or changing layer types)

of SymAE’s current architecture, to increase the complexity of the computed function,

fA(S).19 Third, the trainability of this network could be compromised. Finding a good

minimizer of the loss function depends on the behavior of the loss-landscape (chaotic, or

having more convex-like structure) and minimization trajectory (determined by network

initialization and optimizer) in the landscape. It is possible that the [−25,+50] SymAE

has a more chaotic landscape, whereby changes to network architecture (i.e., introducing

skip-connections) and size (i.e., increasing width) could flatten-out the chaos - allowing

for improved loss minimization [Choromanska et al., 2015; Li et al., 2018].

Nevertheless, as illustrated in Figure 14, it is unlikely that real seawater velocity per-

turbations will reach the limits of the [−25,+50] (or even the [−6,+6] range). Thus for

1D real-life applications, the architectural design and optimization decisions used in the

current version of SymAE should suffice. This is with the caveat that the real subsur-

face structure and variation of structure between datapoints is similar to those that we

modeled in this study. It is probable that the real subsurface has multiple reflectors with

different depths and dips, and inhomogeneities within layer velocities. In this case, the

training dataset S should be modified to account for the subsurface differences (either

by real data or more-realistic simulations), so that a new fA(S) (learned-SymAE), which

still learns the general concepts listed, can be found.

From the results of this study, we induce the following conclusions:

1. SymAE is able to disentangle the coherent and nuisance information identified in
19Expressivity is analagous to the complexity of the function fA(S) computed by the learning algorithm

(neural network architecture) A when trained on dataset S [Kawaguchi et al., 2020]
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the context of deepwater seismic acquisition.

2. In the latent space, SymAE is able to combine selected information points, to

produce a hybrid latent point which has the selected subsurface and water velocity

configurations.

3. Through SymAE’s process of reconstruction from hybrid latent codes (by the

learned-decoder), the timeshifts of perturbed instances are corrected for, leading

to a strong convergence of arrival times to those of the reference instance.

Thus we have determined that SymAE is a learning algorithm capable of performing

offset and depth dependent timeshifts in seismic measurements. This highlights SymAE’s

ability in signal processing for the non-linear classification of different arrivals: direct

arrival, primary reflections and multiples. This is done by using different convolutional

kernels that slide on the time-axis of the traces of the 2D seismic record to apply statics

(timeshifts) pertaining to the type of arrival the sliding window encounters. SymAE’s

capability in identifying and correcting specific timeshifts related to different arrivals is

learned directly from the seismic data (with shot records serving as inputs of SymAE)

and does not depend on an understanding of the underlying physics of wave propagation

and multiple scattering in the velocity model.

This foundational understanding and confirmation is needed before using SymAE to

tackle real environments, which introduce additional complexities to the problem. These

complexities include increased heterogeneity in subsurface velocity structure, lateral (x-

direction) water velocity variation and the evolution (subsidence /uplift) of seafloor

depth.20 Addressing these challenges is beyond the scope of this study, but it is a

worthwhile pursuit for practical applications of this algorithm in real deepwater acquisi-

tion.
20The changes in seafloor depth directly influence and co-evolve with the position of OBN receivers,

which are embedded within the seafloor [Laurson, 2024]. In a 2007 OBN survey conducted by Fairfield
Industries for Shell in the Gulf of Mexico, it was observed that the average positional change of 16
nodes over a 60-day marine acquisition period was 5.3 meters. The resulting depth-migrated 2D image
difference sections (generated from the acquired OBN seismic data) had an NRMS of approximately
10% for P-wave signals, and approximately 50% for S-wave signals. This noise from changing receiver
positions manifested as substantial depth-misalignment of the reflectors in the resulting 2D images.
Thus, it is crucial to remove the effects of OBN position variation to achieve accurate subsurface imaging
and ensure good 4D repeatability [Hays et al., 2008].
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3.5 Conclusion

Conventional deepwater static correction consists of a two-step workflow of deriving and

applying water velocity static corrections to the seismic dataset. Due to challenging

complications in this workflow, the aim of our study is to bypass the conventional work-

flow with a deep learning algorithm that can perform the necessary offset and depth

dependent timeshifts. We created a seismic dataset that highlights timeshift variation

due to the underlying variation in seawater velocity, and used this to train SymAE; an

autoencoder-based learning algorithm that has the capability of disentangling symmetric

(coherent) and nuisance (incoherent) information from a dataset, and encoding them in

two separate latent spaces.

During training, SymAE learns to encode varying seawater velocity as nuisance infor-

mation and unchanging subsurface geology as coherent information. With the learned-

SymAE, nuisance information encoding a reference seawater velocity profile from one

seismic datapoint, and coherent information encoding a subsurface velocity profile from

another seismic datapoint, can be combined in its latent space, to construct a redatumed

datapoint. Thus, we redatumed an auxilliary datapoint containing a reference seawater

velocity profile (Hood’s model), with test datapoints containing instances of perturbed

seawater velocity profiles. Each test datapoint also has an associated reference instance,

with the Hood’s velocity profile, that is not passed into SymAE but used to evaluate the

redatumed predictions of SymAE.

Comparisons of the redatumed and reference instances yield a strong convergence of

the arrival times of the redatumed waves to those of the reference waves; the non-zero

timeshifts between perturbed and reference instances strongly converge to zero valued

timeshifts between redatumed and reference instances, satisfying the 0.01s resolution

in time for accurate 3D imaging. The perturbed timeshifts are hence, corrected for.

Therefore, we conclude that is SymAE is a learning algorithm capable of performing

offset and depth dependent timeshifts in seismic measurements due to depth-dependent

seawater velocity variations.

This conclusion is the foundational understanding and confirmation that enables further
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research into using SymAE for practical applications. A host of other complexities are

introduced by the real environment during deepwater seismic acquisition. These com-

plexities can be layered on one at a time into the training dataset, and the performance

of SymAE investigated with each modification to the dataset.
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Figure 17: Redatuming results for different water velocity perturbation instances. The
topmost row of the second column shows the reference shot gather; this shot gather arises
from the same subsurface geology as the perturbed instances, however its water column
follows the Hood’s velocity profile. Thus, the aim of redatuming is to map perturbed
instances to reference instance. SymAE performs well on the +1.914% and −5.5% per-
turbations; but its performance declines at a much higher perturbation of +50.00%,
where it displays comprised ability in capturing the 2 and 4 arrivals. Column 1: Per-
turbed instances; top-to-bottom row sampled from the [−2,+2], [−6,+6], [−25,+50]
datasets respectively. Column 2: Corresponding redatumed instances from perturbed
instances of Column 1.Column 3: Residuals between redatumed and reference instance.
Column 4: Residuals between redatumed and perturbed instances.
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Figure 18: Results of redatuming the +6% perturbed instance of test datapoint X901.
The timeshifts compared to reference trace, before and after redatuming, for zero offset
and far offset are shown. All timeshifts reach zero.

Figure 19: Results of redatuming the +6% perturbed instance of another test datapoint,
X906, with different subsurface velocities thanX901. The timeshifts compared to reference
trace, before and after redatuming, for zero offset and far offset are shown. All timeshifts
converge to zero.
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Figure 20: Average gain achieved upon redatuming test data. Higher values imply
higher redatuming impact when correcting timeshifts between perturbed and reference
data.

Figure 21: Average normalized residual norm achieved upon redatuming test data.
Lower values characterize better generalization.
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4 Interface Model

With the previous experiments in Chapter 3, we have come to understand SymAE’s

capacity for marine statics correction in a qualitatively pristine subsurface model that

creates reflected arrivals with a single flat and horizontal interface. Here, we build upon

the experiments in Chapter 3, by adding a layer of complexity to the subsurface velocity

profiles - with the presence of multiple flat interfaces of distinct depths and dips. Hence,

the seismic dataset used in experiments of this chapter are altered from the previously

used horizontal reflector dataset, and referred to as the interface model dataset.

The experimental workflow follows that of Chapter 2: first, the training of SymAE on

the interface model dataset - and parallel hyperparameter tuning of the network during

this process, using supportive generalization information from testing with the validation

dataset; second, the redatuming of subsurface geology and water column profiles of un-

seen seismic records from the test dataset; third, the comparative analysis of redatumed

seismic records to reference seismic records.

Our overaching aim is to determine if SymAE is able to handle the heightened complex-

ities and features introduced by this more intricate geological case into the seismic data.

As outlined in the Conclusion of the preceding chapter (Section 3.5), our future research

direction for using SymAE in practical applications involves gradually integrating real-

istic complexities - especially those pertaining to the marine geological environment and

seismic acquisition - into the training dataset and evaluating SymAE’s performance with

each dataset modification

4.1 Data

The new interface model dataset used in the training and testing of SymAE consists of

synthetic data generated by the GeoPhyInv toolbox, an acoustic and elastic wave equa-

tion solver for high-performance computations. To ensure congruency between datasets,

similar to the previous horizontal reflector dataset, the size and resolution of the interface

model’s physical domain, the number of datapoints generated, and the seismic acquisi-

83



tion parameters remain constant. The difference between the interface model dataset

and the previous horizontal reflector dataset lies in its subsurface geology, whereby three

flat reflectors are introduced into the subsurface structure unlike the single horizontal

reflector present in the previous subsurface structure. Additionally, the three reflectors

are not constrained to lie horizontally, but instead lie at an angle to the horizontal plane.

Thus, the geometric attribute of dip is established in our reflectors. Besides that, the

water column structure is unchanged from the previous dataset, and maintain the same

depth-dependent acoustic velocity profiles.

A two-dimensional model of rectangular shape was used as our physical domain. It has

1301 gridpoints on the x-axis spanning a length of 6500m, and 1201 gridpoints on the

z-axis spanning a depth of 6000m. The sea surface is positioned at a depth 0m, which is

the top of the physical domain. The model is divided into an upper layer consisting of a

water column and bottom layer of bedrock; the subsurface we are interested in imaging.

The dataset is composed of seismic measurements from 1000 different subsurface models,

which constitute the datapoints Xii=1,...,1000. Each datapoint has 11 different water

velocity models, which constitute the instances kk=1,...,11.3 This results in a total of

11,000 models in the entires seismic dataset. Figure 22 shows an example of a model

generated. The following sections describe the specifics of the subsurface bedrock and

water column structure.

Subsurface structure

The subsurface extends from the seafloor, at a depth of 2000m, to the bottom of the

physical domain, at 6000m. Three flat reflectors are placed at 3030m ± 30m, 4060m

± 130m and 5090m ± 30m. This depth placement of reflectors roughly divides the

subsurface into four layers. Each flat reflector is then rotated about its midpoint on the

x-axis (3250m), from the horizontal plane to create dip. For reflectors with midpoints

below 3750m, the dip angle is between −5 to 0, reflectors with with midpoints between

3750m and 4750m have dip angles between 0 to +8, and reflectors with midpoints above

4750m have dip angles between −5 to 0. These angle ranges were chosen so that flat

reflectors lie cleanly on the subsurface without intersecting each other.

A different and individual seismic velocity is assigned for each layer in the subsurface,
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Figure 22: Visualization of a model used to create synthetic shot gather data. Vp
here refers to the acoustic wave propagation velocity through the domain. The source,
marked with a red x, is positioned in the water column at a depth of 10m. An array of
equally-spaced receivers, marked with blue triangles, are positioned on the seafloor at
a depth of 2000m. The seawater column appears to be vertically homogenous because
the depth-dependent water velocity profile does not vary drastically enough for a visible
change in the plot. However, as shown in Section 3.2.1, the modeled water velocity does
indeed change with depth through the domain. For each datapoint, one instance within
kk=1,...,11 is modeled as a reference instance, ref, that follows a reference velocity profile
(described in Section 3.2.1). The remaining 10 instances are variations from the reference
velocity profile.

which are bounded by the dipping reflectors. The velocities range between 1800m/s to

6000m/s for the entire subsurface. The selection of each layer’s velocity consists of a

three-step process: First, the velocity range bounds of 1800m/s to 6000m/s is linearly

mapped to the subsurface depth range of 2000m to 6000m. Hence, the map f(z) = y,

for z being depth and y being velocity is created. Second, a velocity value is assigned to

each dipping reflector by applying the previously computed linear map onto the midpoint

depth (depth at x-axis midpoint of 3250m) of the reflector to output its corresponding

velocity value. Accordingly, z is the midpoint depth; f , the linear map; and y, the

assigned reflector velocity value. Third, a uniformly-distributed random value between

the velocity bounds of the layer (which are the assigned velocities of reflectors bounding
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the layer, the 1800m/s value for an upper seafloor boundary, or 6000m/s for the physical

domain bottom boundary) is selected for each layer. In a nutshell, the seismic velocity of

each layer is different and increases with subsurface depth; and falls between the 1800m/s

to 6000m/s range.

To summarize, across datapoints, the depth midpoint and dip angles of the three dipping

reflectors are uniformly distributed between their specified ranges mentioned earlier in

this section, and the velocities of the subsurface layers bounded by these reflectors are

also uniformly distributed between the linearly mapped velocity bounds of each reflector

at the reflector’s midpoint depth.

Water column structure

The water column structure of our velocity models remains unchanged from the previous

dataset, following a depth-dependent velocity function that consists of two states: ref-

erence and perturbed. The reference water velocity adheres to Hood’s model, while the

perturbed water velocity is derived from Hood’s model with a cosine-squared modulation

applied to the top 0m to 1000m of the water layer. Each datapoint generated includes

one reference instance, τk=1, with the Hood’s water velocity model, and 10 perturbed

instances, τkk=2,...,11, with the aforementioned modulations to the Hood’s water veloc-

ity model. This water velocity format is identical to the previous horizontal reflector

dataset, as we aim to evaluate SymAE’s performance for static correction in more com-

plex subsurfaces. Therefore, there is no alteration to the water velocity profiles in this

new dataset. For more details about deriving the water velocity profile, including the

equation describing Hood’s model, refer to Section 3.2.1. The velocity perturbation p

for this dataset falls within the [-6,+6] range. This range was selected based on findings

from the previous horizontal reflector experiments, which indicated that the [-6,+6] range

is sufficiently challenging for testing SymAE’s static correction capabilities due to the

larger timeshifts caused by larger ray bending propagation paths. These experiments

also showed that SymAE performs better with the [-2,+2] perturbation range, which

is typically observed in the real ocean, than with the [-6,+6] range. Consequently, we

can infer that SymAE would perform better in realistic deepwater environments where

the [-2,+2] perturbation range is observed. Thus, the [-6,+6] dataset was chosen as it
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represents a challenging edge case for testing SymAE’s capabilities for static correction.

Shot gather simulations. From the physical models described, shot gather data was

generated with the following specifications:

Finite difference simulations. The 2D acoustic wave equation solved with a sec-

ond order in space and second order in time finite-difference modeling. Perfectly

matched layers (PML) used at all model boundaries, except the z= 0 free surface,

which has a Dirchlet boundary condition of 0. Simulations ran for a time range of

8.8456s, with 0.00062s time steps; with grid-spacing of 5m in x and z directions.

Acquisition geometry. Single source at a depth of 10m from the top of the domain

(within the water column). 100 receivers, equally spaced, positioned at seafloor

depth of 2000m.

Source signature. Ricker wavelet with peak frequency of 6.78Hz and maximum fre-

quency of 20.23Hz.

Data Normalization

As the generated seismic records have a wide range of amplitudes - mostly pertaining

to the direct arrival and primary reflections exhibiting larger amplitudes and multiples

showing lower amplitudes - we normalized the seismic records. This was done to reduce

the large contrast in magnitudes amongst various arrivals; enhancing the visibility of

subtler amplitudes and diminishing the influence of extreme amplitude values. This

would aid SymAE in noticing and learning a broader range of features from the seismic

record [Huang et al., 2023]

In our study, we applied arctan normalization to the seismic records to calibrate their dy-

namic amplitude ranges; compressing high-amplitude values and expanding low-amplitude

values for a more uniform amplitude distribution. The normalization function used was,

A(r, t)normalized = arctan
(
A(r, t)

α

)
(22)
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where A(r, t) is the amplitude of the seismic signal at time t for trace r, and α is a scaling

parameter that influences the slope of the arctan function with respect to A(r, t). A larger

α results in a flatter curve at the origin and gentler transition towards the asymptotes at

±π
2
, whereas a smaller α results in a steeper curve at the origin and a faster transition

towards the asymptotes at ±π
2
. Via experimentation, we decided on α = 0.1 which

amplified smaller amplitude values near the origin for increased visibility in the seismic

records. After applying the arctan transformation, the resulting amplitudes were in a

more normalized range, between −π
2

and π
2
.

4.2 Hyperparameter Tuning

From our previous experiment with tuning SymAE’s hyperparameters for the horizontal

reflector dataset, we learned that the expressivity of SymAE’s encoders strongly influ-

enced its performance. Thus, the elements which control expressivity - latent dimensions

of the coherent and nuisance encoder, and the Gaussian dropout applied to the output

of the nuisance encoder - were the hyperparameters we focused on for tuning.

The interface model dataset, which includes additional reflectors of varying depths and

dips in the subsurface geology, differs from the previous dataset with a single horizontal

reflector. The increased complexity of the new subsurface geology necessitates higher

expressivity, suggesting the need for increased latent dimensions in the coherent encoder;

which captures the symmetric subsurface geological information for all instances in each

datapoint.

We conducted three experiments, each focusing on one of the high-impact hyperparam-

eters mentioned above: Gaussian dropout rate, coherent encoder latent dimensions, and

nuisance encoder latent dimensions. In each experiment, we trained SymAE on the in-

terface model dataset, whilst varying the values of the focused hyperparameter being

optimized for. The training process involved minimizing the reconstruction MSE loss,

using the Adam optimizer with a learning rate of 0.001.

Figures 23, 24 and 25 illustrate the outcomes of our experiments. First, keeping the co-

herent and nuisance latent dimensions fixed, we tested dropout rates from 0.2 to 0.8, and
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observed that the dropout rate of 0.5 provided the lowest normalized residual norm be-

tween unseen reference and redatumed seismic records, and the highest gain in timeshift

reduction before and after redatuming of the perturbed seismic records (Figure 23).

Next, setting the dropout rate to 0.5 and keeping the nuisance latent dimension fixed

to its value during dropout rate tuning, we tested coherent latent dimensions from 60

to 120. We observed that the coherent latent dimension of 70 provided the lowest nor-

malized residual norm and highest gain on the unseen test dataset. Lastly, setting the

coherent latent dimension to 70 and maintaining the dropout rate of 0.5, we tested nui-

sance latent dimensions from 20 to 80. We observed that the nuisance latent dimension

of 60 provided the lowest normalized residual norm and highest gain on the unseen test

dataset. Thus, the optimal network tailored for our new interface model dataset has the

following configuration: Gaussian dropout rate of 0.5, coherent encoder latent

dimension of 70 and a nuisance encoder latent dimension of 60. In the Results

section, we will explore the predictions made by this optimized network in greater detail.

Figure 23: SymAE hyperparameter tuning results for dropout rates (applied to the
output of the nuisance encoder) ranging from 0.2 to 0.8. The dropout rate of 0.5 yields
the lowest normalized residual norm between unseen reference and redatumed seismic
records, and the highest gain in timeshift reduction before and after redatuming of the
perturbed seismic records.
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Figure 24: SymAE hyperparameter tuning results for latent dimensions of the coherent
encoder ranging from 60 to 120. The coherent latent dimension of 70 yields the lowest
normalized residual norm between unseen reference and redatumed seismic records, and
highest gain in timeshift reduction before and after redatuming of the perturbed seismic
records.

Figure 25: SymAE hyperparameter tuning results for latent dimensions of the nuisance
encoder ranging from 20 to 80. The nuisance latent dimension of 70 yields the lowest
normalized residual norm between unseen reference and redatumed seismic records, and
highest gain in timeshift reduction before and after redatuming of the perturbed seismic
records.
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4.3 Results

With the optimal network configuration established in Section 4.2, we trained SymAE

on the interface model dataset with [-6, +6] perturbation range. Upon completion of

training, SymAE’s ability to redatum unseen seismic records from the test dataset to

produce statics-corrected records was evaluated. Figure 26 presets the pre- and post-

corrected records for three different velocity models, each characterized by distinct sub-

surface and water velocity profiles. The amplitude differences expressed in the colorbar

of the last-two columns, are percentage differences calcuated as A(r,t)−B(r,t)
A(r,t)max

×100%, where

A(r, t) is the amplitude of the reference trace at time t and receiver r, B(r, t) is the am-

plitude of either the redatumed or reference trace at time t and receiver r, and A(r, t)max

is the maximum amplitude value of the reference record for all times and traces. Before

redatuming, all three instance - reference residuals exhibit notably strong amplitude dif-

ferences, mostly residing between the ±25% to ±100% range. After redatuming, all three

instance - reference residuals exhibit significantly weaker amplitude differences, primarily

within the 0% to ±20% range. These results clearly demonstrate that SymAE’s reda-

tuming process leads to the alignment of perturbed traces to reference traces, thereby

minimizing the timeshifts between arrivals in the perturbed and reference traces.

In Figure 26, as we descend down the rows, the magnitude of the model’s water pertur-

bation increases from 2.000%, 4.215%, to 6.000%. Based on the results of the horizontal

reflector case that demonstrated the increase in the test dataset’s average normalized

residual norms with increasing water perturbation ranges (see Figure 21), we would ex-

pect the gradual degradation in statics correction with increasing water perturbation.

However, it is observed that there are stronger residual amplitude differences in the re-

datumed - reference records for the first model (top row of Figure 26) than in the second

model (middle row of Figure 26), despite the second model experiencing a larger water

perturbation. This contrast in amplitudes is especially visible in the later arrivals of the

far offset receivers, where certain redatumed-reference amplitudes of the first model show

differences larger than ±25%. This finding suggests that there could be other factors at

play besides water perturbations that affect the performance of SymAE; which may even

supersede the influence of water perturbation on the accuracy of the redatumed records.

What is clear in Figure 26 is that the reflectors in the first model’s subsurface exhibits
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greater dipping angles, than those of the second model’s subsurface. This indicates that

increased subsurface complexity is an additional factor influencing SymAE’s performance

on the shot record. We will explore this topic further in the discussion section of this

chapter.

Figure 26: Dynamic static correction results for four velocity models, taken from the
unseen test dataset. Each row represents one velocity model, with its characteristic
subsurface structure depicted in the left-most column. The second column displays
the perturbed shot record annotated with its specific water perturbation, and the third
column displays the reference shot record arising from the Hood’s water velocity profile.
The final two columns show the residual of redatumed - reference record, and instance
(perturbed) - reference record. The contrast between pre- and post-redatumed residuals
clearly demonstrates that SymAE has aligned perturbed traces with reference traces,
significantly diminishing the timeshifts between arrivals in the perturbed and reference
traces.

To analyze the correction performed by SymAE on the traces more thoroughly, we com-

puted the timeshifts between reference and perturbed traces, and between reference and

redatumed traces using the Moving Window Cross-Correlation method (see Section 3.3)

for details of the method).21 Two unseen velocity models in our test dataset were ran-

domly selected for this analysis: Model 919 and 926, as shown in Figure 27. Each model
21By nature of the Moving Window Cross-Correlation method, the fine-grained accuracy or precision of
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features a distinct subsurface velocity profile, and encompasses instances with different

velocity perturbations. Specifically, we focused on the +4.453% perturbation for Model

919 and the −5.813% perturbation for Model 926.

Figure 27: Two randomly selected models from the interface model test dataset, Model
919 and Model 926, featuring a distinct subsurface velocity profile. Each subsurface
model has ten replicated instances with different velocity perturbations. These models
were used for the subsequent computation of timeshifts between reference and perturbed
traces, and between reference and redatumed traces; done with the purpose of further
evaluation of SymAE’s statics correction performance. The results of these computations
are presented in Figures 28 and 29 respectively.

For Model 919, Figure 28 illustrates the timeshifts before and after redatuming for both

the 0km (zero) offset and -3.25km (far) offset traces; and for Model 926, Figure 29 shows

the timeshifts before and after redatuming for both the 0km (zero) offset and +3.25km

(far) offset traces. For both models, the timeshifts between reference and perturbed

traces are different for both zero offset and far offset cases, and vary with the depth

traversed by the seismic ray, which is indicated by its arrival time on the trace. This

underscores the dynamic nature of static timeshifts, which depend on both offset and

depth. ∆t1 represents the timeshifts of the direct arrival from the seismic source at the

ocean surface to the seabed receiver; multiples of this ray propagation path are labeled

as seabed triplet and seabed quintuplet in the figures. Additionally, the primary and

multiple reflections from the three different subsurface reflectors are labeled as Reflector

1 primary, Reflector 2 primary, Reflector 3 primary, Reflector 1 multiple, Reflector 2

the timeshifts is limited by the step size dt of the seismic traces, which is 0.01122 seconds. Consequently,
the smallest possible timeshift is 0.01122 seconds, and each timeshift is a multiple of this step size.
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multiple, and Reflector 3 multiple, respectively. In the far offset case for Model 919, we

see in Figure 28 that there is no Reflector 1 primary labeled. This is because the Reflector

1 primary superposes with the direct arrival wave; both waves reach the far offset receiver

at the same arrival time, and the resultant amplitude is the sum of displacements of both

individual waves.

After redatuming, all timeshifts in Model 919 are reduced to zero except for the Re-

flector 3 multiple in the far offset case which has a timeshift of 0.01122s (the minimum

possible timeshift based on the granularity of dt, as explained in the previous Foot-

note). In contrast, in Model 926, all timeshifts are reduced to zero after redatuming.

Collectively, these findings demonstrate that redatuming and subsequent reconstruction

of the seismic record with SymAE’s decoder, aligns perturbed traces to the reference

traces effectively, across different subsurface models. This outcome is consistent with

results from Chapter 3, which show that the timeshifts for all offsets and depths strongly

converge to zero, achieving the 0.01s level of precision for each wave arrival. These

results further confirm the superior accuracy of the data-centric SymAE compared to

the model-centric benchmark test on marine statics correction. In the benchmark test,

timeshifts showed weak convergence to zero, with most arrival timeshifts exceeding 0.01s

and reaching up to 0.04s. Besides this, the velocity profile of the upper water layer and

underlying subsurface medium not only affects the arrival times of direct arrivals and

various reflections but also influences how these waves interact and combine with each

other, resulting in complex waveforms when the waves do not meet in perfect alignment.

This variability in waveforms and arrival times is evident in the traces of Models 919

and 926. This shows that even in the presence of arrivals that may have undergone su-

perposition, SymAE is able to align such perturbed traces to their respective reference,

thereby strongly converging all timeshifts to zero.

The error between redatumed and reference seismic records is quantified by taking the

normalized L2 norm of residuals between both records. The L2 norm of a seismic record

is a measure that represents that overall magnitude of the seismic signal, by taking the
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Figure 28: Results of redatuming the +4.453% perturbed instance of test datapoint,
Model 919. The timeshifts compared to reference trace, before and after redatuming,
for zero offset and far offset are shown. All timeshifts of the large-amplitude arrivals are
reduced to zero.

square root of the sum of squares of amplitude values across the seismic record,

||A||2 =

√√√√ m∑
r=1

n∑
t=1

|A(r, t)|2 (23)

where A(r, t) is the amplitude of the seismic signal at time t for trace r, n is the number

of time-points and m the number of traces. The L2 norm of the residuals is thus,

||A−B||2 =

√√√√ m∑
r=1

n∑
t=1

|A(r, t)−B(r, t)|2 (24)

where A(r, t) is the amplitude of the seismic signal of record A; and B(r, t), the amplitude

of the seismic signal of a different record B. From this equation, we can see that ||A−B||2
computes the residual between amplitudes at each timepoint, for each trace; and then

sums residuals across all timepoints for each trace, across all traces of the seismic record.

When the two records A and B are the reference and perturbed records, ||A − B||2
is measure of the accuracy of the prediction, as it encodes the differences between the

redatumed and reference record elements (amplitude values at each time and trace/offset

95



Figure 29: Results of redatuming the −5.813% perturbed instance of another test
datapoint, Model 926, with different subsurface velocities than Model 919. The timeshifts
compared to reference trace, before and after redatuming, for zero offset and far offset
are shown. All timeshifts of the large-amplitude arrivals are reduced to zero except for
the Reflector 3 multiple in the far offset case which has a timeshift of 0.01122s

.

point). We then take the normalized L2 norm of the residuals, which is simply

||A−B||2
||A||2

=

√∑m
r=1

∑n
t=1 |A(r, t)−B(r, t)|2√∑m

r=1

∑n
t=1 |A(r, t)|2

(25)

With this definition of the normalized L2 norm (Equation 25), A would represent the

reference seismic record, and B, the perturbed seismic record. This definition enables

us to understand how the amplitude residuals between A and B scale in relation to the

actual amplitude of waves observed in the reference record A - giving us insight into the

significance of the error of the redatumed records.

To evaluate the effectiveness of SymAE in correcting for statics, we computed the nor-

malized L2 norm of residuals between redatumed and reference instances for all 100 test

datapoints. These values were then averaged over all instances (1000 instances = 100

test datapoints × 10 instances per datapoint), yielding a mean normalized L2 residual

norm of 0.22494. To gauge the L2 norm of redatumed-reference residuals relative to

the original residual between redatumed-perturbed instances, we computed their ratio
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of residual L2 norms, ||reference-perturbed||2
||reference-redatumed||2 , which is equivalent to the gain achieved via

SymAE’s static correction method. Averaging the gains over all 1000 instances, the re-

sulting mean gain value totaled 4.66693. The notably low normalized residual norm of

0.229 implies that SymAE’s successful correction of timeshifts caused by velocity varia-

tions, effectively aligning redatumed data with reference data. Furthermore, the observed

4.7× gain underscores the substantial enhancement in seismic data quality before and

after application of SymAE’s statics correction methodology.

4.4 Discussion

The results reveal that SymAE performs well on the interface model dataset, which fea-

tures several horizontal and flat reflectors at different depths and dips in the underlying

subsurface. To understand SymAE’s performance on this dataset relative to the previous

horizontal reflector dataset (which is now our benchmark), we present in Figures 30 and

31 , a summary of the aggregated results, depicting the test dataset’s average normalized

residual norm and gain.

Figure 30: Average normalized residual norm achieved upon redatuming 100 unseen dat-
apoints from the horizontal reflector and interface model datasets. Lower values indicate
better generalization. The value highlighted in green is the result of this experiment,
and the values highlighted in blue are best results from previous experiments, serving as
a benchmark.

Figure 30 shows that the [-6,+6] interface model has a normalized residual norm that is

slightly higher than the [-25,+50] horizontal reflector dataset; this norm is therefore in the

ballpark of results demonstrated by SymAE in previous experiments. Additionally, it is

not surprising that the interface model norm is slightly higher than that of the [-25,+50]

dataset: its subsurface model encompasses additional complexities, which introduce more

scattering events and multiples that are observed in the trace data.
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Figure 31: Average gain achieved upon redatuming 100 unseen datapoints from the
horizontal reflector and interface model datasets. Higher values indicate better timeshift
reduction before and after redatuming. The value highlighted in green is the result of this
experiment, and the values highlighted in blue are best results from previous experiments,
serving as a benchmark.

Figure 31 shows that the [-6,+6] interface model has a gain that is between that of the [-

2,+2] and [-6,+6] horizontal reflector datasets; again demonstrating that its performance

resides in the ballpark of previous SymAE experiments. Its gain value is an expected

outcome. Firstly, this is because the [-2,+2] dataset has original timeshifts between

perturbed and reference seismic records that are smaller in magnitude than those of the

[-6,+6] dataset, which exhibits greater velocity perturbations and thus larger traveltime

differences. Secondly, reining back into our previous explanation, the interface model

[-6,+6] dataset introduces additional subsurface complexity, and thus yields a lower gain

than that of its counterpart in the horizontal reflector dataset.

Overall, the results demonstrate a gradual degradation in the performance of SymAE

with increasing subsurface geology complexity. The introduction of additional reflectors

of different depths and dips into the subsurface layer (consequentially resulting in a

four-layered velocity subsurface profile) creates more scattering events at the reflectors,

which generate new branches of the incident wave; the reflected and transmitted waves.

These multiples, along with the primary reflections, may interact with each other -

superposing constructively, destructively, or partially; depending on the phase-alignment

of the waves. This causes multiples of large amplitudes and small amplitudes, and of a

variety of shapes, to emerge in the seismic records.

Therefore, if we look closely at the seismic traces, as shown in Figures 28 and 29, we see

that the multiples consists of large amplitude reflector multiples22 which are the labeled
22The large amplitude multiples are the first-order multiples that arise when the seismic waves reflect

off the interface, travels upwards, reflect off the seabed, travels downwards, reflecting off the interface
again before returning upwards to the seabed. Hence, it involves one extra round trip between two
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reflector multiples, and small amplitude multiples. In the aforementioned figures, it is

evident that post-redatuming, the timeshifts strongly converge to zero; specifically, in

the direct arrival, seabed triplet, seabed quintuplet, reflector primaries and large ampli-

tude (first-order) reflector multiples (for the purpose of brevity, we classify these arrivals

as large amplitude arrivals, and other arrivals as small amplitude arrivals). The error

between reference and redatumed traces primarily arise from the amplitude differences

of the two records. Zooming into the large amplitude arrivals, this error is predomi-

nantly caused by the redatumed amplitudes not reaching the full extent (magnitude) of

the reference amplitudes, although the shape of the waveforms are preserved. In con-

trast, zooming into the small amplitude arrivals, the error predominantly arises from

the difference in shape between redatumed and reference waveforms, whereby the reda-

tumed waveforms are smoother than the reference waveforms: redatumed traces express

a reduced intensity and frequency of crest and troughs compared to reference traces.

Veritably, the ability of SymAE to smooth out the crests and troughs of small amplitude

arrivals, creating waveforms that are more continuous and less jagged, is due to its ca-

pacity for denoising. This is due to SymAE’s design, which is based on the architecture

of autoencoders, which is adept at denoising unwanted noise from signals [Berahmand

et al., 2024]. This happens because the encoder is designed to abstract and extract

informative features from the inputs into a lower-dimensional latent space, and the de-

coder is designed to reconstruct corresponding inputs based on the compressed latent

representation. Since perfect training—where the autoencoder perfectly maps inputs to

outputs—is rare, the encoder naturally filters out noise during data compression, and the

decoder subsequently reconstructs denoised outputs. In addition to SymAE’s denoising

capacity based on its fundamental architectural properties, the robustness of SymAE

to additive noise can be enhanced by using noisy data as inputs and clean (denoised)

data as outputs of the network during training. This approach compels the network to

capture and retain essential, noise-free features in its latent space - thus, impelling the

conversion of noisy inputs into clean outputs.

These differences between redatumed and reference traces can be understood by exam-

ining a few fundamental properties of SymAE. Firstly, as the architectural design of

interfaces, the seabed and a subsurface reflector.
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SymAE is based on the autoencoder, it is a reconstruction algorithm that seeks to con-

struct its input data from meaningful features captured in the latent space. The presence

of more subsurface interfaces results in increased waveform arrivals, which in turn neces-

sitates additional waveform reconstruction for each trace in the seismic records. Thus,

parallel to the activity of increased waveform reconstruction, is the increased cumulative

error between reconstructed and reference waveforms. Secondly, central to the architec-

ture of SymAE (and autoencoders) are the convolutional layers that form the building

blocks of the encoder and decoder networks. As convolutions entail sliding a (learned)

weighted kernel across the height and width of the 2D seismic records, where the weights

of the kernel are multiplied element-wise with corresponding image patch values - and the

products summed up to a single scalar value; there is a degree of information abstraction

that happens via this process. This enables the extraction of essential features from the

seismic record, but may also abstract away subdued trace amplitudes that have a smaller

influence on the summation of patch-wise elemental products. Lastly, neural networks

are universal function approximators [Hornik et al., 1989], not perfect maps between

input and output data. Hence, it is expected that some error exists between predictions

(redatumed) and ground truth (reference) data. In our case, the redatumed seismic

record approximates the reference seismic records but does not perfectly match them;

highlighting the inherent nature of deep learning, which is to approximate functions.

Bearing these concepts in mind, SymAE’s function can be perceived as reconstructing

from an empty canvas, amplitudes of seismic traces from key values (the features) ex-

tracted in its low-dimensional latent spaces via convolutional operations.

When analyzing the architectural properties of SymAE, we recognize that these are

expected constraints of the network - no new insights are garnered from these errors.

While achieving absolute precision is seldom feasible, SymAE can be further fine-tuned to

capture and retain more nuanced details, such as small amplitude arrivals. Enhancements

may involve amplifying predicted values such that amplitude of the final traces extend

to reach those of the reference traces. This could be achieved by switching the activation

function in the final layer to a linear one that does not squash output values to a limited

range. Features are extracted through convolutional layers, which distill information -

but increasing the number of filters (parallel kernels in each convolutional layer) may

broaden the range of feature extraction by generating more feature maps. SymAE’s
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limitation of approximating functions however, remains, as it is an intrinsic aspect -

both an ability and disability (depending on how one perceives it) - of deep learning

[Hornik et al., 1989].

Another potential enhancement to SymAE is combining the inclusion of deeper layers

with U-Net inspired skip connections [Ronneberger et al., 2021], that directly transmit

information from encoders to decoders, in shallower layers. Based on the hierarchical

structure of feature extraction with layers, deeper layers will extract even more latent

patterns in the seismic records, which are ultimately represented in the latent space of

the autoencoder. To combat the increased abstraction of information captured in deeper

layers, skip connections could be used in shallower layers to pass higher-resolution in-

formation from the encoders to decoders, to facilitate the fine-grained reconstruction of

small amplitude arrivals. However, it is essential to note a potential drawback: this

approach may inadvertently pass non-disentangled information from the encoders to the

decoder; specifically, if skip connections are introduced before the summation across

downsampled instances in the coherent encoder. Therefore, a careful analysis of the

implications of introducing skip connections in this scenario is necessary before imple-

mentation.

In summary, our experiment with the flat interface dataset reveals that SymAE adeptly

manages the complexities of a more intricate geological case, pertaining to multiple re-

flectors of different depths and dips in the subsurface. With a macro view, we observe

that SymAE is successful in converging non-zero timeshifts between perturbed and refer-

ence traces to zero, thereby aligning the perturbed to reference traces. The error between

redatumed and reference records were quantified by its normalized residual norm and

gain, both of which fall within the range observed in previous experiments using the

horizontal layer dataset (which constitutes a more simplified geological model). Using a

micro view, we understand that the gradual degradation from its [-6,+6] counterpart in

the previous dataset can be attributed to the emergence of additional multiples of vari-

ous shapes and sizes due to increased wave scattering at the multiple reflector locations.

This presents a new challenge to the present architecture of SymAE, and highlights an

area of further study: modification of SymAE’s architectural properties to enhance its

predictive ability.
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4.5 Conclusion

We extended the research in Chapter 4, to encompass more complex subsurface geol-

ogy. The new geological profiles feature additional reflectors - three to be precise - of

various depths and dips. These reflectors created more arrivals in the seismic traces due

to increased scattering in the subsurface medium. This challenged SymAE’s prowess

in statics correction, especially in the detailed reconstruction of small amplitude multi-

ples. However, SymAE’s ability to correct for timeshifts, experienced by large amplitude

arrivals such as the direct arrival, primary reflections and first-order multiples, remain

uncompromised. In both experiments - the simplified horizontal reflector dataset and the

more intricate interface model dataset - SymAE succeeds in aligning perturbed traces to

reference traces, strongly converging all offset and depth dependent timeshifts to zero -

and satisfying the time precision requirement of 0.01s for all arrivals.

The clear and evident path forward is further innovation on the architectural properties

of SymAE to improve its capacity for waveform reconstruction, which would result in

the superior accuracy of trace amplitudes of redatumed records. A more ambitious

path forward which is a step ahead from our current experiments, but an important

prerequisite for applied statics correction using SymAE in real geological environments,

is explained in the section below.

4.6 Future Directions

Towards Uncharted Territory

The experiments conducted in this chapter and the previous chapter, investigated the

ability of SymAE to perform dynamic timeshifts on geological subsurfaces of increas-

ing complexity. To focus exclusively on the matter of enhanced heterogeneity in the

geological profile, we ensured that the timestamps of primary reflections and first-order

multiples were relatively consistent across all instances for the 1000 datapoints in our

datasets. This was done by fixing the number of reflectors to be consistent (either one

or three, depending on the dataset) across datapoints, and curbing the range of dipping

angles and depths of reflectors of the interface model dataset to exclude extreme values;
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these limits are detailed in the Data section of this chapter. By doing so, the timestamps

of the large-amplitude reflections, were stabilized to exist within smaller margins for all

datapoints. Each arrival at each of these timestamp margins thus likely, represents the

primary reflection or a same-order multiple from corresponding reflectors, associated to

each timestamp margin.23

Thus, by understanding the coherency of timestamp margins across datapoints (here-

after referred to as pan-dataset arrival timestamps), the neural network can focus on the

minor timeshifts, induced by water velocity perturbations, within the waveforms for each

pan-dataset arrival timestamp; these variations in timeshifts would register as nuisances

to SymAE. This results in a pan-dataset understanding of coherent and nuisance infor-

mation from a pure seismic data space: coherent subsurface information across instances,

extends to coherent subsurface information across datapoints, by the gentle moderation

of subsurface interface reflections to arrive at similar timestamp margins; nuisance in-

formation across instances, extends as the only nuisance information across datapoints,

by ensuring that sufficient coherence is reflected in seismic records when variations in

subsurface properties exist across datapoints.

We enter into unknown territory via the introduction of diversity into the subsurface

profiles which disrupts the pan-dataset coherence of arrival timestamps. This could hap-

pen when the number of subsurface interfaces (reflectors) varies between datapoints, or

when interfaces of different dipping angles intersect with each other - thereby breaking

the flat interface pattern of our previous simulations. We may also introduce velocity

heterogenities into the layers bounded by the reflectors, to represent different objects

embedded in the subsurface such as salt bodies, which may have distinct velocities com-

pared to the surrounding sedimentary rock surrounding it [Teixeira and Lupinacci, 2019].

These diverse conditions are typical in real geological environments and should be tested

with SymAE to prepare for practical applications of the method. The key method of

incorporating these diverse conditions is to use a training dataset that encapsulates the

diversity of subsurface realities,24 and which crucially, disrupts the pan-dataset coherence
23Realistically, there are deviations to this general approximation, particularly in far-offset arrivals.

These arrivals experience increased raypath bending which extends their traveltimes, often leading to
interaction and superposition with other scattered reflections.

24Note that this diversity exists between datapoints, not between instances of datapoints, which have
constant subsurface profiles.
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of arrival timestamps - thereby, causing the arrival timestamps themselves to appear as

pan-dataset nuisance variations. With this adjustment to the training dataset, and im-

portant question rises to the surface, does SymAE breakdown in the presence of two-pan

dataset nuisance variations, one arising from water velocity perturbations, and another

arising from subsurface velocity variations?25Answering this question is beyond the scope

of our study, but a key step toward using SymAE for marine statics correction in real

deepwater environments.

Generalization and Robustness Considerations

First, we mention that the discussion in this section is informed by the work, Machine

Learning Robustness: A Primer, by Braiek and Khomh [2024]. As alluded to in the

previous discussion, Towards Uncharted Territory, the generalization ability of SymAE

to perform dynamic statics correction on a diversity of subsurface profiles - that disrupt

the pan-dataset coherence of arrival timestamps - needs to be further researched. As

deep learning models are based on the principle of Empirical Risk Minimization, which

assumes that training and test data are identically and independently distributed, the

i.i.d. assumption (also known as a closed-world assumption); the essential prerequisite for

evaluating i.i.d. generalization is to ensure that the test and training data come from the

same closed distribution. Therefore, to explore SymAE’s i.i.d. generalization ability on

a diversity of subsurfaces, the training dataset has to also encompass a similar diversity

of subsurfaces. The threshold at this point is that SymAE will likely breakdown in the

presence of high subsurface diversity during training, because the multitude of subsurface

variation disrupts the pan-dataset coherence of arrival timestamps - creating two pan-

dataset nuisance variations from subsurface and water velocity changes, instead of just

one pan-dataset nuisance variation arising from water velocity changes. If demonstrated

to be true through experiments in the presence of two pan-dataset variations, subsurface

diversity at the level which disrupts the pan-dataset coherence of arrival timestamps

becomes the most important limitation of SymAE.

Therefore, based on our current understanding of SymAE’s capabilities and the afore-

mentioned likely limitation, we deduce that training SymAE on any possible marine
25Keep in mind, that the water velocity variations exist between instances and datapoints, and subsur-

face velocity variations exist only between datapoints and not between instances of the same datapoint.

104



seismic data will be unsuccessful because the infinite (or realistically, extremely large)

subsurface diversity this entails will break the pan-dataset coherence of arrival times-

tamps required for SymAE to learn to disentangle subsurface coherence and water veloc-

ity variation sucessfully. However, it is important to note that SymAE can theoretically

perform on any subsurface profile so long as the condition that the training dataset is

created to encompass variations to that profile that maintain the coherency of timestamp

margins, is met. Consequently, for practical applications, it is advised to train a fresh,

randomly initialized SymAE for each location where the statics need to be corrected for.

The path for testing for sensitivities of SymAE towards data, is to: first, ensure i.i.d.

generalizability; and secondly, evaluate robustness.

To address the first stage of ensuring i.i.d. generalizability, we first form an in-distribution

(ID) dataset, from which training and test datapoints are selected from. To form the ID

dataset, first, a rough estimate of a subsurface velocity model that captures key large-

scale features of the location of interest is required; second, a range of variations to the

rough subsurface model should be synthesized or collected from field data, to create the

total training dataset (of number of datapoints in the order of at least 1000) with the

constraint that these variations do not disrupt the pan-dataset coherency of the large-

amplitude arrival timestamps. Once this ID dataset has been created, SymAE should

be trained and tested on this dataset, and the stability of its predictive performance

ensured. At this stage, potential vulnerabilities include underfitting, which occurs when

there are too few or biased data points that fail to represent the full diversity of the prob-

lem space. Another issue is short-cut learning, where the network depends on simple yet

misleading patterns in the training data instead of instead of capturing the underlying,

more generalizable relationships. 26

To address the second goal of evaluating robustness, we first quote from [Braiek and

Khomh, 2024] the general definition of robustness: Deep learning model robustness de-

notes the capacity of a model to sustain stable predictive performance in the face of
26In our interface model dataset, the energy of the direct arrival, seafloor multiples and primary

reflections in the seismic records was significantly stronger than the other multiples. This makes SymAE
susceptible to short-cut learning from these selected arrivals, thereby missing the information conveyed
by lower energy multiples. Thus, to mitigate the potential for short-cut learning with the interface model
dataset, we applied the arctan normalization to the seismic records to moderate its dynamic amplitude
range, allowing for a more consistent learning across all arrivals. Refer to Section 4.1 for further details
on our normalization scheme.
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variations and changes in the input data. Specifically, a deep learning model is deemed

robust, when deployed in a production environment, if its predictive performance re-

mains within the acceptable tolerance level despite variations in input data as defined

by the domain of potential changes. Hence, we have to specify the data changes against

which the model would be tested, and the tolerance level (or the threshold for proper

prediction) to evaluate robustness. In real-world scenarios, offshore reservoir/locational

data distributions shifts may happen naturally due to natural environmental distortions

(i.e., tectonic activity, seafloor subsidence/uplift and sediment deposition/erosion) or

human activities such as production/injection operations in reservoirs. These subsur-

face perturbations form the domain of potential changes to the input data, potentially

shifting the original ID data distribution to a different data distribution. The tolerance

level for robustness depends on the application context and assurances needed. For the

purpose of 4D seismic reservoir monitoring for imaging subtle fluid-flow features (such as

reservoir pore pressure and fluid saturation changes), the typical spatial resolution in x,

y and z dimensions required is in the order of 50 feet (approximately 15m). Substituting

this spatial resolution |∆z| = 15 and the parameters of our velocity model into Equations

2, this corresponds to a timeshift resolution of 0.01s, which is equivalent to the level of

precision achieved by SymAE’s corrected-for timeshifts.

To evaluate the stability of SymAE’s performance to these input data changes in dy-

namic environmental settings, we may compute and compare average normalized resid-

ual norm for reference vs redatumed seismic records for both in-distribution data and

shifted-distribution data. This approach is analogous to the cross-testing experiments

we ran in Chapter 3 on out-of-distribution data (see Figure 21), except here we would be

cross-testing different perturbation ranges of the subsurface velocity layer instead of the

water velocity layer. Additionally, other robustness metrics developed by the scientific

community, such as those proposed by [Laugros et al., 2019] and [Taori et al., 2020],

could be implemented in our experiments too.

In summary, SymAE can theoretically be trained to perform on a dataset with any sub-

surface velocity profile, provided that the velocity model perturbations of the datapoints

are not so severe as to disrupt the pan-dataset coherence of arrival timestamps. This

forms the closed-world domain of inputs for each training scenario at a specific loca-
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tion, where SymAE is expected to maintain stable predictive performance, assuming

i.i.d. generalization is achieved. Since a rough estimate of the velocity model at the

location of interest is needed to create an ID dataset with perturbations that adhere

to the pan-dataset arrival timestamp coherence constraint, this raises the question of

whether SymAE is moving closer to a model-centric approach vs data-centric approach

than expected? As described in Section 1.3, the model-centric approach consists of a

two-stage process that transforms between non-commensurate model space and data

space domains: the first stage, inversion of an accurate velocity model from the seismic

data; the second stage, forward modeling from velocity model to seismic data, whereby

a reference velocity model replaces the inverted/measured velocity model. In contrast,

SymAE is a streamlined, one-step static correction method that operates directly be-

tween commensurate spaces (from data space to data space). Once trained, SymAE

performs static corrections for multiple seismic records simultaneously (the instances of

each datapoint) without needing to go through the intermediate stage of inverting for

the velocity model of each seismic record. This direct mapping capability is a key feature

that places SymAE as a data-centric approach, setting it apart from the model-centric

approach.

For 4D applications in real geological environments, before deploying SymAE at an

identified location of interest, two main preliminary checks are essential: first, acquiring

the rough velocity structure of the area; and second, ensuring that the extremity of

expected temporal perturbations to its velocity structure does not disrupt SymAE’s

pan-dataset arrival timestamp coherence constraint. Once these checks are completed,

SymAE can be trained and used to correct statics for a live-acquisition of seismic records

in a single predictive step, without needing additional details on the area’s velocity

perturbations.
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5 Conclusions and Future Directions

This thesis is an investigation into using deep learning to solve a challenging problem in

geophysics, the marine statics correction problem, which has predominantly been based

in a model-centric paradigm. This paradigm involves a series of transformations between

non-commensurate spaces: first, inversion from seismic data space to velocity model

space and second, forward modeling from velocity model space to seismic data space.

Statics correction within this paradigm has severe drawbacks; mainly the high compute,

time and labor cost, and inaccuracies stemming from errors in velocity model inversion

or from unmet assumptions about subsurface structure. Overcoming these drawbacks

was thus, the prime motivation for our study - where we chose to leverage deep learning

as the core algorithmic tool to understand the limits of the model-centric paradigm and

explore the performance horizons of a different paradigm to statics correction, that which

is data-centric.

In Chapter 2, we performed benchmark testing on the the model-centric paradigm for

marine statics correction where deep learning was used to invert for the water velocity

model from seismic records. For this inversion task, we designed a unique and novel

neural network by hierarchically composing in sequence, four deep learning algorithms

that have shown success in previous seismic inversion studies. The network performed

well, producing predicted water velocity models with a MAPE value of 0.26%. This

low degree of inaccuracy in the inverted models was however, assessed for downstream

impact, by forward modeling to seismic data using an NMO-based procedure that did not

require explicit subsurface velocity model. The results were moderately accurate seismic

records with most arrival timeshifts, between ground truth and trace pairs, exceeding

0.01s and reaching values as large as 0.04s. This indicates that statics correction using

the model-centric paradigm is unable to meet the time precision requirement of 0.01s for

arrivals in the seismic records, necessary for achieving a spatial precision of 15m in the

seismic image. Hence, there is a compelling need to improve on this approach for marine

statics correction.

Subsequently, in Chapter 3, we chose to venture into a different paradigm: data-centric

marine statics correction. The main feature of this approach is the direct mapping be-

108



tween commensurate data spaces, eliminating the need for intermediary transformations

to and from velocity model space. To disentangle the cause of timeshifts, water velocity

perturbations, from the information we want to preserve, the subsurface velocity profile;

we implemented an autoencoder algorithm, named SymAE, that would leverage the per-

mutation symmetry of subsurface information that is coherent at time scales at which,

water velocity information is varying. Upon building a phantom generator, we created

synthetic datasets with a simple subsurface model that creates reflected arrivals with a

single flat and horizontal interface. Using these datasets, the trained SymAE success-

fully redatumed selected subsurface and water velocity information in its latent space to

produce statics-corrected seismic records. In these records, the initial timeshifts between

perturbed and reference records were strongly reduced to zero, with all wave arrivals

achieving the 0.01s level of precision required for good seismic imaging and time-lapse

analysis. The experiments in this chapter thus form the foundational understanding of

SymAE’s capacity in performing offset and depth dependent statics correction.

Building on this foundational understanding, in Chapter 4, we added a layer of com-

plexity to the subsurface velocity models - with the presence of multiple flat interfaces

of distinct depths and dips - to more accurately reflect the geological possibilities of

real-world environments. Hyperparameter tuning was focused on coherent and nuisance

encoder latent dimensions and dropout rate, to sufficiently express the increased infor-

mation content of complex subsurface models. The introduction of multiple reflectors

created more arrivals in seismic traces due to increased scattering in the subsurface

medium. This challenged SymAE’s prowess in statics correction, especially in the de-

tailed reconstruction of small amplitude multiples. However, SymAE’s ability to correct

for timeshifts of large amplitude arrivals such as the direct arrival, primary reflections

and first-order multiples, remain uncompromised - and is consistent with the results from

the previous chapter. Overall, SymAE adeptly manages the complexities of this more

intricate geological case; strongly converging all offset and depth dependent timeshifts

to zero, and successfully achieving the 0.01s time precision criterion for all arrivals in the

seismic traces.

In summary, our experiments demonstrate that a data-centric approach using SymAE

for dynamic marine statics correction significantly outperforms the traditional model-
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centric approach. SymAE delivers the required time shift resolution of 0.01 seconds for

all arrivals, which is vital for precise imaging and time-lapse analysis - an achievement

that the traditional approach falls short of. The ultimate goal of this study is the real-

world deployment of SymAE. This objective will shape future research, as real deepwater

environments present a myriad of additional complexities. This complexities should be

layered one at a time into the training dataset, the stability of SymAE evaluated at

each stage and necessary innovations made to its design to accommodate increasingly

complex real-world scenarios.

5.1 Future Directions

The experiments described in this thesis have provided a foundational understanding

of the capabilities and limitations of SymAE in performing dynamic statics correction

on marine seismic data. Further work remains to be performed, with the end-goal in

mind, of deploying SymAE in real marine environments. Here, we summarize several

important research directions that will help propel SymAE and the data-centric approach

it espouses, towards enhanced performance, generalizability and robustness.

Performance: Hyperparameter tuning strategy

The hyperparameters of SymAE are its parameters which are set before the learning pro-

cess begins, and remains constant during training. Broadly, SymAE’s hyperparameters

can be separated into two domains: architectural properties and training configurations.

In Chapter 4, we saw the need for innovations on the architectural properties of SymAE

to improve its capacity for waveform reconstruction, which would lead to the increased

accuracy of the trace amplitudes of redatumed records. In Chapter 3, when handling

the edge case of the largest water velocity perturbation range, the need to improve the

trainability of the network was suggested. In general, trainability is a function of the

curvature and smoothness of its loss-landscape and the efficiency and trajectory of the

optimization path, which are in turn, functions of hyperparameters: learning rate, op-

timizer type, batch size, regularization to the training loss function and the number of

training epochs.
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Due to being limited in computational memory and power, we manually performed hyper-

parameter tuning on our experiments using a labor-intensive, trial-and-error approach,

where selected hyperparameters were chosen for each training run and the model evalu-

ated for each combination, and subsequently updated based on performance comparisons

of different training runs. To enable a broader exploration of hyperparameter values and

to improve exploration efficiency in higher-dimensional spaces, more sophisticated hy-

perparameter tuning strategies should be explored in the future. Among such strategies

which have been gaining more momentum to-date include HyperBand, Bayesian Opti-

mization and PriorBand [Mallik et al., 2023]. Further optimizing SymAE’s hyperparam-

eters using advanced tuning strategies will improve its performance on various fronts:

notably the predictive accuracy of redatumed records, convergence rate of training and

generalization capacity on unseen data.

Generalizability: Disrupting the pan-dataset coherence of arrival timestamps

As alluded to in Section 4.6, the next phase of experiments for SymAE consists of

more geologically diverse subsurface profiles that, all-together are trained on by SymAE.

Creating this ID dataset with increased diversity will expand the generalization ability of

SymAE to perform on a larger variety of unseen subsurface models. The frontier of our

research at this point, is to create an ID dataset encompassing a multitude of subsurface

profiles that break the pan-dataset coherency of arrival timestamps. SymAE has been

shown to perform well when tested on diverse subsurface profiles which have been gently

moderated such that subsurface interface reflections arrive at similar timestamp margins

(keeping its pan-dataset coherency). However, we have yet to thoroughly test SymAE’s

performance on the case which disrupts the pan-dataset coherence of arrival timestamps.

We suggest gradually disrupting the pan-dataset coherence of arrival timestamps to de-

termine if and where thresholds to SymAE’s performance lie in the lens of changing input

data; this can be done by taking an incremental approach of widening perturbations to

the subsurface profiles in each ID dataset, and evaluating SymAE’s performance at each

of those datasets before further widening the subsurface perturbation range. A good

first step, would be to generate similar synthetics as with our experiments in Chapter 3

111



and Chapter 4, but with a varying number of reflectors between datapoints - this would

create a different number of arrivals between our seismic records, thereby breaking the co-

herency of the same number of arrivals, each arriving at their corresponding timestamps

margins. Furthermore, the range of dipping angles and depths of the reflector can be

increased to include more extreme values - thereby generating a myriad of interface pat-

terns and intersections in the subsurface layer. Eventually, SymAE should be applied to

benchmark synthetic geological models, such as Marmousi 2 [Martin, 2004], SEG/EAGE

Salt Model and BP 2004 Model. Following our suggested incremental testing approach,

upon successful performance on these benchmark models, SymAE should then be applied

onto real marine seismic data acquired in regions of active offshore monitoring.

Robustness: Real-world deployment

Robustness is a key requirement in fostering trustworthy real-world artificial intelligence

systems [Li et al., 2023]. From a technical viewpoint, it is an epistemic concept that

presupposes the generalization ability of the model’s inductive bias on in-distribution

data. It further extends to assess the stability and resilience of this inductive bias in real-

world deployment scenarios [Braiek and Khomh, 2024]. In real deepwater environments,

a host of additional complexities are introduced to the seismic data: this may include

lateral (x-direction) water velocity variation; the evolution (subsidence /uplift) of seafloor

depth which moves the position of OBN receivers; and the addition of field noise, from

environmental or equipmental sources, for instance. These variations in seismic data

define the domain of input data changes, where it is crucial to evaluate the stability of

SymAE statics correction performance. An important and useful metric for assessing

this stability is the tolerance level of timeshift resolution (time precision for arrivals in

the seismic record) needed to achieve the necessary spatial and velocity resolutions of

the subsurface model for the intended applications (for computational details that relate

timeshifts to velocity model sensitivities, refer to Section 1.4).
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6 Appendix

6.1 Seismic Phantom Generator

We created a synthetic seismic data generator (known as a phantom generator in the

geophysics community) to obtain large amounts of training data. Using this generator,

1000s of datapoints were created randomly for training our neural networks. We used the

GeoPhyInv software, a seismic wave equation solver, to create synthetic earth velocity

models and perform forward modeling to obtain our shot gathers for training. All code

in the phantom generator was written in the Julia programming language. Below are

important snippets (code blocks) of code used in the phantom generator. Figure 32 is the

GeoPhyInv code used to generate velocity models and run forward modeling to produce

shot gathers, and Figure 33 is the Julia code used to generate a training dataset of

random seismic datapoints. Note the use of a Mersenne Twister to generate a sequence

of random numbers (which importantly propagate into subsurface geology and water

layer parameters), that can be replicated for each run of the same script.
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Figure 32: Function used to generate velocity models with user-controlled parameters.
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Figure 33: GeoPhyInv code used to generate synthetic phantom dataset consisting of
a collection of datapoints. This code block includes forward modeling on synthetically
generated velocity models to produce their corresponding shot gathers.
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