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ABSTRACT

This thesis investigates the deployment and utilization of Large Language Models (LLMs)
as agents, exploring their potential in automating workflows and enhancing user interactions.
The study begins with an in-depth analysis of language models, tracing their evolution from
pure statistical models to advanced neural network architectures like Transformers and their
bidirectional variants. It then delves into the operational framework of LLM agents, detail-
ing user interactions, environmental considerations, memory management, task planning,
and tool use. The study addresses critical limitations in LLM inputs, such as the context
window and introduces Retrieval-Augmented Generation (RAG) as a solution to extend the
model’s capability. Key APIs provided by OpenAl for deploying GPT models are discussed,
highlighting their functionalities and applications. Finally, the practical application of LLMs
in creating Robotic Process Automation (RPA) workflows is demonstrated through a divide-
and-conquer methodology, showcasing the efficiency, scalability, flexibility, and accuracy of
this approach. This comprehensive study underscores the transformative impact of LLMs
in automating complex processes and enhancing user experiences through intelligent agent
deployment.
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Chapter 1

Introduction

The deployment of Large Language Models (LLMs) as agents in various sectors represents
a groundbreaking advancement in the field of artificial intelligence (AI).

LLMs, such as OpenAI’s GPT|2|[3][4][5] series and Google’s BERT6], based on the neural
network structure Transformer|7|, have demonstrated unprecedented capabilities in under-
standing and generating human-like text|8], thereby offering trans-formative potential across
a wide range of applications|9]. From enhancing performance in natural language process-
ing tasks to making a meaningful conversation with end users|[10], even helping users finish
complex tasks|[1], LLMs are reshaping the landscape of Al technology and its practical im-
plications.

The advent of LLMs has spurred extensive research and experimentation, leading to
notable achievements such as performance improvements in machine inference benchmarks
and advancements in agent applications. As the technology continues to evolve, the future
of deploying LLMs as agents hinges on addressing these challenges while capitalizing on
the opportunities they present. Ultimately, the responsible development and deployment of
LLMs as agents offer a promising path forward in harnessing the power of Al to augment
human capabilities and drive progress across industries.

These agents utilize a particular feature of LLMs known as function calling[11][12]. The
LLM can identify missing information and initiate a function call to retrieve it. Large
language models have shown remarkable proficiency in function calling, which has been a
significant factor in the increasing role of Al agents in the software industry. Research into
AT agents has been vigorous, with advances in thought sequencing and improved prompting
methods.

We will conduct an in-depth review of the important OpenAl APIs, specifically focusing
on Text Completions, Chat Completions, and Function Calling feature. We will provide
a comprehensive explanation of these APIs and their functionalities. Additionally, we will
explore the three major methods for re-implementing Function Calling feature from LLMs
without it. Building upon these foundational tools for creating Language Model (LLM)
Agents, this paper will introduce a novel divide-and-conquer algorithm. This innovative ap-
proach is designed to enhance the generation of RPA (Robotic Process Automation) work-
flows, offering a more efficient and effective method for automating tasks. Through detailed
analysis and practical examples, we aim to demonstrate how this new algorithm can be
utilized to improve RPA workflow generation, contributing to advancements in automation.



Chapter 2

What is Language Model?

First of all, to better understanding Large Language Model (LLM), here we introduce the
basic concept of the classical statistical language model and the neural network language
model concept. They are important concepts of Natural Language Processing.

2.1 Pure Statistical Language Models

Pure statistical language models[13] use statistical methods to predict the likelihood of the
next word of a text. For example, the most possible next word of the sentence " The weather
in Seattle is always" is "rainy".

. rainy 97.1%

+ cloudy 1.5%
The weather in Seattle is always -.' =+ windy 0.5%

"e sunny  0.0%

Figure 2.1: An example of a statistical language model

Assume we could express an n-words text as wyws ... w,, we could use the equation to
express this possibility:
# (w1w2 Ce wm)
# (w1w2 Ce wm,l)

There is an important variant of the statistical language models: Word n-gram language
model, which assumes the possibility is only determined by the previous n-words:

P (wm ’ wiwsy . . .wm_l) =

# (wm—nwm—n—l—l s wm)
# (wm—nwm—n+1 cee wm—l)
We could use basic count-based method to get this model: we could collect all the text on
the Internet or books in the library to return the exact statistical result of the possibilities.

We could also use machine learning methods to train a model to give the result. Especially
the Neural Network Language Models, which we’ll introduce in the next section.

P (wp | wi, ..., wy) = P Wy | W nWin—pg1 « - Wip—1) =




2.2 Vector Representation of Words/Tokens

We could use neural network methods to build the language model. But before putting text
into the neural network language model, we need preprocessing text into small words/tokens
and then represent each word/token as a vector.

2.2.1 One-Hot Vector Representation

Before Word2Vec[14], one-hot vector representations were commonly used to represent words.
However, one-hot vectors have significant limitations, such as high dimensionality and lack
of semantic information.

In a one-hot vector representation, each word in the vocabulary is represented by a vector
with the same length as the size of the vocabulary. The vector is filled with zeros except
for a single one at the index corresponding to the word. For example, in a vocabulary of 5
words: ["apple", "banana", "cherry", "date", "elderberry"|, the one-hot vectors would be:

Zapple” — [1,0,0,0,0]
"banana” — [0, 1,0,0,0]
"cherry” — [0,0,1,0,0]

"date” — [0,0,0,1,0]
"elderberry” — 10,0,0,0, 1]

While one-hot vectors are very simple, there are serious limitations of One-Hot Representa-
tion:

(1) High Dimensionality: For a large vocabulary, the vector size becomes extremely large,
leading to inefficiency in storage and computation, especially for multilingual purpose.

(2) Sparsity: The vectors are sparse, containing mostly zeros, which makes them inefficient
in terms of space.

(3) Lack of Semantic Information: One-hot vectors do not capture any semantic rela-
tionships between words. For example, "apple" and "banana" are as different as "apple"
and "cherry" despite the former being more semantically related.

Thus one-hot vector representation is hard to implement into neural network models, since
they waste a lot of dimensions. A normal word may contain 3000+ dimensions.

10



2.2.2 Word2Vec/Embeddings

Word2Vec, introduced by Mikolov et al. in 2013[14], revolutionized word representation by
addressing these limitations. Word2Vec uses neural networks to learn dense vector represen-
tations (embeddings) of words, capturing semantic relationships between them. There are 3
important features of Word2Vec:

(1) Dense Representations Words are represented as dense vectors in a lower-dimensional
space, typically 100-300 dimensions.

(2) Semantic Similarity: Words with similar meanings are mapped to nearby points in
the vector space. For example, "king" and "queen" are closer to each other than "king" and
"apple".

(3) Training Methods: There are two main approaches to training Word2Vec:

(3.1) Continuous Bag of Words (CBOW): Predicts a target word based on its context
(surrounding words).

(3.2) Skip-Gram: Predicts the context words given a target word.

By using Word2Vec, the limitations of one-hot encoding are mitigated, and more mean-
ingful word representations are obtained, which significantly improve the performance of
downstream NLP tasks.

11



2.3 Text Preprocessing

After understanding the embedding concept, We could focus on a step-by-step description
of the preprocessing of text before sending it to neural network language models:

2.3.1 The Plain Text

The starting point is a plain text string, which is the input text that needs to be processed.
Example: "The quick brown fox jumps over the lazy dog"

2.3.2 Tokens

The text string is then tokenized. Tokenization is the process of breaking the text into
smaller units called tokens. Tokens can be words, sub-words, or even characters, depending
on the tokenization strategy used by the language model.

Example tokens (word-based): ["The", "quick", "brown", "fox", "jumps", "over", "the",
"azy" ”dog"]

Example tokens (sub-word-based, as used in models like Transformers): ["The", "quick",
Hbrownll HfOXH "jumpll U##SU Hoverll che" Ulazyll Udogll]

9 ) 9 3 ) 9 Y

2.3.3 Token IDs

Each token is then mapped to a unique integer ID using a predefined vocabulary. This
mapping converts the tokens into a sequence of numbers that the model can process.
Example token IDs: {2026, 1018, 2154, 4419, 3497, 2052, 1996, 7173, 3899

2.3.4 Embedding into N-Dimension Vectors

The embedding layer produces these n-dimensional vectors for each token ID. This step
transforms the sequence of token IDs into a sequence of n-dimensional vectors. These vectors
capture semantic information about the tokens.

The embedding layer weights will be changed during training, just like in the Word2Vec.

Example:
"The" — 0.12 —-0.45 068 --- 0.23
"quick" — 0.34 0.56 —-0.12 --- —=0.78
"dog" — 091 -0.37 0.15 --- 0.67

2.3.5 Summary

The preprocessing steps transform the input text into a form that the language model can
work with. Starting from the original string, the text is tokenized into smaller units, con-
verted into unique IDs, mapped to dense vectors through an embedding layer, and then
further processed into high-dimensional vectors that can be used by the model to perform
various tasks like text generation, classification, or translation.

12



2.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs)[15] are a class of neural networks designed for processing
sequential data. They are commonly used in tasks such as language modeling, machine
translation, and time series prediction. The most important types of RNNs include Vanilla
RNNs, GRUs (Gated Recurrent Units), and LSTMs (Long Short-Term Memory Networks).

2.4.1 Vanilla RNNs

Vanilla RNNs are the simplest type of RNN. They process sequences of data by maintaining
a hidden state that is updated at each time step based on the input at that step and the
previous hidden state. This hidden state acts as a form of memory, allowing the network to
capture information from previous time steps. However, Vanilla RNNs are limited by their
short-term memory and struggle with learning long-term dependencies due to issues such as
vanishing and exploding gradients.

2.4.2 LSTMs (Long Short-Term Memory Networks)

LSTMs[16] are a type of RNN specifically designed to overcome the limitations of Vanilla
RNNs. They use a more complex architecture that includes memory cells and gates (input,
output, and forget gates) to control the flow of information. This allows LSTMs to remember
long-term dependencies more effectively, making them suitable for tasks that require cap-
turing long-range patterns in data. LSTMs have been widely used in various applications,
including language modeling, speech recognition, and time series prediction.

2.4.3 GRUs (Gated Recurrent Units)

GRUs[17] are another type of RNN that aim to solve the vanishing gradient problem and
improve the ability to capture long-term dependencies. GRUs are similar to LSTMs but have
a simpler architecture with fewer gates. They combine the input and forget gates into a single
update gate and merge the hidden state and cell state into one. This simplification makes
GRUs computationally more efficient while still maintaining the ability to model long-term
dependencies effectively.

2.4.4 Summary

(1) Vanilla RNNs: Suitable for sequential data but limited by short-term memory.

(2) LSTMs: A type of RNN designed to remember long-term dependencies using memory
cells and gates.

(3) GRUs: Simplified RNNs with fewer gates that are computationally efficient and can
model long-term dependencies.

These models have revolutionized the field of natural language processing (NLP) by enabling
more sophisticated understanding and generation of human language.
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2.5 Large Language Models

Large Language Models (LLMs) are advanced computational systems designed to understand
and generate human language. They are built on the architecture of Transformer neural
networks, which have revolutionized the field of natural language processing (NLP).

2.5.1 Transformer Neural Networks

The concept of Transformers, introduced by Vaswani et al. in 2017(7], marked a significant
shift in how language models are constructed. Unlike previous models that relied heavily
on recurrent neural networks (RNNs) and their variants, Transformers utilize a mechanism
known as self-attention. This allows them to weigh the importance of different words in a
sentence relative to one another, leading to better understanding and generation of text.

2.5.2 BERT (Bidirectional Encoder Representations from Trans-
formers)

One of the pioneering models based on the Transformer architecture is BERT|[6], developed
by Google. BERT’s innovation lies in its bidirectional training approach, meaning it considers
the context from both directions (left-to-right and right-to-left) when processing a sentence.
This approach enables BERT to achieve a deeper understanding of language context and
nuances, making it highly effective for a wide range of NLP tasks, such as question answering
and sentiment analysis.

2.5.3 GPTs (Generative Pre-trained Transformers)

Following BERT, OpenAl introduced the Generative Pre-trained Transformer (GPT) se-
ries|2][3][4][5]. GPT models are designed with a unidirectional approach, primarily focusing
on generating coherent and contextually relevant text. Each iteration, from GPT to GPT-4,
has demonstrated substantial improvements in text generation capabilities, making them
suitable for applications such as chat-bots, content creation, and language translation.

2.5.4 Summary

In summary, Large Language Models, exemplified by BERT and GPT, leverage the power of
Transformer neural networks to push the boundaries of what is possible in natural language
processing. Their ability to understand and generate human-like text has opened up new
possibilities in various domains, transforming how we interact with and utilize language
technology.

14



2.6 Multi-modal Models

Multi-modal models are advanced Al systems capable of processing and generating various
types of data, such as text, images, speech, and videos. These models integrate natural
language processing (NLP) with computer vision and other modalities, allowing them to
understand and produce content in multiple formats. For instance, GPT-4V|5| can ana-
lyze images to generate descriptions, while models like DALL-E[18] and Stable Diffusion|19]
convert text into images. Sora|20| creates videos from text, and Suno|21| generates music
from textual input. Launched in May 2024, GPT-40[22]| is a comprehensive end-to-end voice
model with both text-to-speech (TTS) and automatic speech recognition (ASR) capabilities.

In this thesis, however, we will focus on text-to-text large language models and their
agents rather than multi-modal models.

15



Chapter 3
What is LLM Agent?

LLM (Large Language Model) Agents refers to a system or entity that leverages large lan-
guage models to perform various tasks. These tasks can include generating text, answering
questions, summarizing content, translating languages, and more. One of the most impor-
tant key component, is to call outside tools and use the tools to get information they do not
know, and return the result to the user.

This chapter will introduce the concept and components of LLM agents, most of the con-
tent is from "LLM Powered Autonomous Agents" written by Lilian Wang from OpenAT|23].

Memories Environments

Q Request - Tool Calls |

I d I d

Agent Tools
< <
Result Result
User
Planning

Figure 3.1: Components of LLM Agents

3.1 Overview
In an LLM-powered autonomous agent system, the LLM serves as the agent’s brain, sup-

ported by several key components: User Interactionx, Environments, Planning, Memory,
Tool Use.

16



3.2 User Interactions

Handles user requests and returns results.

3.3 Environments

The various contexts and scenarios the agent operates within. This environments information
will be included into the system role prompt.

3.4 Memory

In-context Learning: Utilizes the model’s short-term memory to adapt and learn from
immediate data.

Long-term Memory: Retains and recalls extensive information over extended periods,
often leveraging an external vector store and fast retrieval methods.

3.5 Planning

Subgoal and Decomposition: The agent divides large tasks into smaller, manageable
subgoals to efficiently tackle complex tasks.

Reflection and Refinement: The agent engages in self-criticism, reflects on past actions,
learns from mistakes, and refines its approach for future tasks, thereby enhancing the quality
of final results.

3.5.1 Task Decomposition

Complex tasks typically involve multiple steps that need careful planning and execution.
Effective task decomposition strategies enable an agent to break down a large problem into
smaller, manageable steps, enhancing problem-solving efficiency.
Chain of Thought (CoT; Wei et al., 2022)[24] has emerged as a standard prompting
technique to enhance model performance on complex tasks. CoT instructs the model to
"think step by step," transforming large tasks into smaller, more manageable ones. This
approach illuminates the model’s thought process and facilitates better task execution.
Tree of Thoughts (ToT; Yao et al., 2023)25] extends CoT by exploring multiple rea-
soning possibilities at each step. It creates a tree structure where each node represents a
thought, and multiple thoughts are generated per step. The search process can employ ei-
ther breadth-first search (BFS) or depth-first search (DFS), with each state evaluated by a
classifier or majority vote.

Task decomposition can be achieved through: (1) Simple prompting: e.g., "Steps for
XYZ." (2) Task-specific instructions: e.g., "Write a story outline." (3) Human inputs.

Another approach, LLM+P (Liu et al., 2023)|26], involves using an external classical
planner for long-horizon planning. This method utilizes the Planning Domain Definition

17



Language (PDDL) to describe the planning problem, outsourcing the planning step to an
external tool.

3.5.2 Self-Reflection

Self-reflection is crucial for autonomous agents to iteratively improve by refining past deci-
sions and correcting mistakes. It is particularly important in real-world tasks where trial
and error are inevitable.
ReAct (Yao et al., 2023)[27| integrates reasoning and acting within a large language
model (LLM) by combining task-specific actions with language-based reasoning. This ap-
proach allows the LLM to interact with the environment and generate reasoning traces in
natural language, leading to better performance in both knowledge-intensive and decision-
making tasks.
Reflexion (Shinn & Labash, 2023)[28] equips agents with dynamic memory and self-
reflection capabilities to enhance reasoning skills. Reflexion follows a reinforcement learning
setup, where the agent uses self-reflection to compute heuristics and decide on new trials
based on past experiences.
Chain of Hindsight (CoH; Liu et al., 2023)[29] encourages models to improve their
outputs by presenting a sequence of past outputs with feedback. This approach involves
fine-tuning the model to use feedback to produce better outputs incrementally.

By leveraging task decomposition and self-reflection, autonomous agents can effectively
plan and execute complex tasks, leading to continuous improvement and better performance
over time.

3.6 Tool Use

External API Integration: The agent learns to call external APIs for additional informa-
tion not present in the model weights, including current data, code execution capabilities,
access to proprietary information sources, and more.

3.7 LLM and Agent deployment

The LLM works as the brain of the agent. It can be installed locally or on a server such as
the OpenAl API server, while the agent component can run on a server or a client where is
convenient for tasks.

18



3.8 Agent Frameworks

LLM agent frameworks are software architectures and toolkits designed to build intelligent
agents powered by large language models (LLMs). These frameworks provide the necessary
components and infrastructure to create agents capable of understanding and responding to
user queries, accessing external tools and data sources, maintaining memory, and executing
complex tasks. Some notable examples of LLM agent frameworks include:
OpenAl Assistants: The OpenAl Assistants API and associated frameworks empower de-
velopers to build sophisticated multi-agent systems capable of tackling complex tasks through
specialized expertise, parallel execution, and coordinated decision-making.|[30][31][32]
LangChain: A popular open-source framework for building applications and agents with
LLMs. It provides a modular and extensible architecture, allowing developers to integrate
various LLMs, memory components, and external tools.|[33][34]
Llamalndex: A framework focused on connecting LLLMs with custom data sources, enabling
agents to retrieve and process information from various data formats.[34|
Haystack: An NLP framework designed for building LLM-powered applications, including
question-answering agents and document retrieval systems.|35]
AutoGPT: A framework that provides tools and utilities for building autonomous AI agents
capable of self-improvement and task completion.|[34]
AutoGen: A framework that enables the development of multi-agent LLM applications,
where agents can collaborate and communicate to solve complex tasks.|[34]

LLM agent frameworks empower developers to create intelligent agents that can perform
a wide range of tasks, such as:
Question answering: Agents can understand and respond to user queries by retrieving
relevant information from various data sources and generating coherent and contextual re-
sponses.|33][34][35]
Task automation: Agents can automate various tasks by breaking them down into smaller
steps, utilizing external tools and APIs, and executing the necessary actions.|[33][35]
Content creation: Agents can assist with writing, editing, and proofreading tasks by lever-
aging the language generation capabilities of LLMs.|35]
Data analysis: Agents can interact with structured data sources like databases or APIs,
extract and analyze information, and provide valuable insights to users.|[35]
Multi-agent collaboration: Frameworks like AutoGen enable the development of multi-
agent systems, where agents can collaborate, communicate, and share information to tackle
complex problems more effectively.|34]
Research and development: LLM agent frameworks are being actively explored in re-
search and development domains, pushing the boundaries of artificial intelligence and en-
abling the creation of specialized agents for various fields, such as mathematics, chemistry,
and coding.|[35]

By combining the power of LLMs with external tools, memory management, and planning
capabilities, LLM agent frameworks unlock a wide range of possibilities for building intelli-
gent and versatile agents that can assist humans in various tasks and domains.|33][34][35]
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Chapter 4

Input Limitation of the LLMs

LLMs like GPTs will finally accept sequence of tokens as described in Chapter 2, and generate
sequence of tokens as a result. The Transformer architecture has a limitation of the total
length of the input token sequence, which is called context window.

4.1 Context Window

The context window is the maximum number of tokens they can consider at once. This
context window is critical because it determines how much text the model can take into
account when generating responses.

The size of the context window impacts the model’s ability to understand and generate
coherent, contextually relevant text. A larger window allows for more context and can
improve performance, especially on tasks requiring long-range dependencies.

If the input text exceeds the context window, the model cannot consider the entire text at
once. Instead, it processes the most recent portion of the input within the window size. When
generating long responses, the model might lose track of earlier parts of the conversation or
document if the total token count exceeds the context window.

4.1.1 GPT Model Descriptions and Context Window
[36]

MODEL DESCRIPTION CONTEXT
WINDOW
gpt-40 New GPT-40: Our most advanced, 128,000 tokens

multimodal flagship model that’s
cheaper and faster than GPT-4
Turbo. Currently points to
gpt-40-2024-05-13.
gpt-40-2024-05-13 gpt-4o currently points to this 128,000 tokens
version.
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gpt-4-turbo

New GPT-4 Turbo with Vision: The
latest GPT-4 Turbo model with
vision capabilities. Vision requests
can now use JSON mode and

function calling. Currently points to
gpt-4-turbo-2024-04-09.

128,000 tokens

gpt-4-turbo-2024-04-
09

GPT-4 Turbo with Vision model.
Vision requests can now use JSON
mode and function calling.
gpt-4-turbo currently points to this
version.

128,000 tokens

gpt-4-turbo-preview

GPT-4 Turbo preview model.
Currently points to
gpt-4-0125-preview.

128,000 tokens

gpt-4-0125-preview

GPT-4 Turbo preview model
intended to reduce cases of “laziness”
where the model doesn’t complete a
task. Returns a maximum of 4,096
output tokens. Learn more.

128,000 tokens

gpt-4-1106-preview

GPT-4 Turbo preview model
featuring improved instruction
following, JSON mode, reproducible
outputs, parallel function calling,
and more. Returns a maximum of
4,096 output tokens. This is a
preview model. Learn more.

128,000 tokens

gpt-4-vision-preview

GPT-4 model with the ability to
understand images, in addition to
all other GPT-4 Turbo capabilities.
This is a preview model, we
recommend developers to now use
gpt-4-turbo which includes vision
capabilities. Currently points to
gpt-4-1106-vision-preview.

128,000 tokens

gpt-4-1106-vision-
preview

GPT-4 model with the ability to
understand images, in addition to
all other GPT-4 Turbo capabilities.
This is a preview model, we
recommend developers to now use
gpt-4-turbo which includes vision
capabilities. Returns a maximum of
4,096 output tokens. Learn more.

128,000 tokens
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gpt-4 Currently points to gpt-4-0613. See | 8,192 tokens
continuous model upgrades.

gpt-4-0613 Snapshot of gpt-4 from June 13th 8,192 tokens
2023 with improved function calling
support.

gpt-4-32k Currently points to gpt-4-32k-0613. | 32,768 tokens

See continuous model upgrades.
This model was never rolled out
widely in favor of GPT-4 Turbo.

opt-4-32k-0613

Snapshot of gpt-4-32k from June
13th 2023 with improved function
calling support. This model was

never rolled out widely in favor of
GPT-4 Turbo.

32,768 tokens

gpt-3.5-turbo-0125

New Updated GPT 3.5 Turbo: The
latest GPT-3.5 Turbo model with
higher accuracy at responding in
requested formats and a fix for a
bug which caused a text encoding
issue for non-English language
function calls. Returns a maximum
of 4,096 output tokens. Learn more.

16,385 tokens

gpt-3.5-turbo

Currently points to
gpt-3.5-turbo-0125.

16,385 tokens

gpt-3.5-turbo-1106

GPT-3.5 Turbo model with
improved instruction following,
JSON mode, reproducible outputs,
parallel function calling, and more.
Returns a maximum of 4,096 output
tokens. Learn more.

16,385 tokens

gpt-3.5-turbo-instruct

Similar capabilities as GPT-3 era
models. Compatible with legacy
Completions endpoint and not Chat
Completions.

4,096 tokens

gpt-3.5-turbo-16k

Legacy: Currently points to
gpt-3.5-turbo-16k-0613.

16,385 tokens

gpt-3.5-turbo-0613

Legacy: Snapshot of gpt-3.5-turbo
from June 13th 2023. Will be
deprecated on June 13, 2024.

4,096 tokens

gpt-3.5-turbo-16k-
0613

Legacy: Snapshot of
gpt-3.5-16k-turbo from June 13th
2023. Will be deprecated on June
13, 2024.

16,385 tokens
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4.2 RAG (Retrieval-Augmented Generation)

RAG(37| combines the strengths of retrieval-based and generation-based approaches to en-
hance the model’s performance on tasks requiring extensive background knowledge.

4.2.1 Process

Retrieval: When a query is presented, the model retrieves relevant documents or passages
from an external knowledge base (e.g., Wikipedia, internal documents).

Generation:  The model then uses the retrieved information along with the query to
generate a response. This ensures that the generated text is informed by the most relevant
and up-to-date information.

4.2.2 Components

Retriever: A system (e.g., a search engine or a neural retriever) that identifies and fetches
relevant documents based on the query.

Generator: A language model that takes both the query and the retrieved documents as
input to generate a coherent and contextually rich response.

4.2.3 Advantages

Enhanced Knowledge: By incorporating external information, RAG models can provide
more accurate and comprehensive answers, especially for specific or niche topics.
Scalability:  The retrieval component can access vast amounts of information without
increasing the model’s size, making it more scalable.

Dynamic Updates: The model can stay up-to-date with the latest information by re-
trieving current documents, without needing to retrain the entire model frequently.

4.3 Summary

In summary, the context window defines the limit of tokens an LLM can handle at once, and
various methods like sliding windows and hierarchical models help manage longer contexts.
RAG enhances the model’s capabilities by integrating external knowledge through retrieval
and generation processes.
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Chapter 5

Important OpenAl APIs for GPT
Models

GPT models are deployed on the Open Al Server, and developers and other services could
call the OpenAl API to utilize the model capabilities. In this chapter, we’ll focus on OpenAl
API for GPT models and how it evolves its input and output format.
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5.1 Text Completions API

The Text Completions API|38] takes plain text as input and generates plain text as output,
predicting the most likely continuation of the input based on the GPT models’ understanding.
This API, originally introduced for GPT-1 through GPT-3, has been deprecated for newer
models starting from GPT-3.5.

Listing 5.1: Text Completions API call in Python|38]

from openai import OpenAl
client = OpenAI ()

input_text = "Write a tagline for an ice cream shop."

response = client.completions.create(
model="gpt-3.5-turbo-instruct",
prompt= input_text

)

output_text = response["choices"][0]["text"]
print (output_text) # "Indulge in happiness, one scoop at a time."

We have created a diagram to demonstrate the Text Completions API for GPT-1 to
GPT-3. The Text Completions API service, including the GPT LLM models, is deployed on
OpenAT’s servers. A developer app or server, or even the OpenAl’s online Playground for
Completions|39] is marked as a client in the figure, since they are the caller side of the APIL.
Before sending the input to the model, a preprocessing step occurs. The input text will be
translated into a token sequence, and its length must be smaller than the context window.
Otherwise, an error will occur.

EOpenAI: '

‘Text Completions API

'Service context !

I window :

~ Plain Text _ limitation !

Developer: —>|Preprocessing > GPT-1 !

Text Completions AP | Text Completions API : GPT-2 .
Client J< : ostprocessing|€ GPT-3 ;

Plain Text E

User :

RAG, Index
Database

Figure 5.1: Text Completions API

Most open-source language models, including GPT-1 to GPT-3, use plain text for both
input and output. These models are typical causal language models that predict a contin-
uation of the input text. They are relatively easy to prepare and train, as we only need
a sufficient amount of free text materials, such as articles, tables, and code, to train the
language model.
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5.2 Chat Completions API

Since the introduction of GPT-3.5 in November 2022, the input and output formats have
been completely changed. The new Chat Completions API[40] does not accept plain text
but requires a list of messages. The output is the predicted subsequent message.

Listing 5.2: Chat Completions API call in Python|40]

from openai import OpenAl
client = OpenAI ()

response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[

{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who won the world series in 20207"},
{"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."
¥o
{"role": "user", "content": "Where was it played?"}
]

)

output_message = response["choices"][0] ["message"]

print (output_message) # {"role": "assistant", cotent: "The 2020 World Series was played at

Globe Life Field in Arlington, Texas. This was a unique arrangement due to the COVID-19
pandemic, as the league decided to use a neutral-site "bubble" to minimize travel and
reduce the risk of spreading the virus."}

When developers work on the client side of the Chat Completions API, it is crucial to
prepare a list of messages that includes both the historical messages and the most recent
user request. It is the client’s responsibility to maintain the correct history of messages and
send them in the correct order to the API.

The chat message list will ultimately be processed and translated into tokens before being
sent to the GPT models. Thus, be mindful that the total number of tokens must be smaller
than the context window limit of the specific large language model being used. If this limit
is exceeded, an API error will be returned to the client.

User

'OpenAl:

History :ghat_ Completions API
Messages poervice

' context '

window

~  Message List ; _ . limitation R :

Developer: > Preprocessing > GPT.35

Chat Completions API |Chat Completions API ! GPT-L.'. !
Cllent ) 0 ostprocessing|<
Message ! '

RAG, Vector
Stores

Figure 5.2: Chat Completions API
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5.2.1 Roles of a Chat Message

Each message has two components: role and the content. The role is an enumerate value,
could be one of system, user and assistant.

System role: Most of the case, it should be showed up on the first message of the message
list send to the Chat Completions API. The System role is typically hidden from users but
plays a vital part in guiding the language model to produce relevant and accurate responses.
This role provides essential context and instructions that help the model understand the
environment and the specifics of the interaction. For instance, knowing the current date
allows the model to generate responses that are timely and appropriate. The System role
ensures that the interaction flows smoothly by maintaining contextual coherence and aligning
the model’s responses with the user’s needs.

User role: The User role represents the individual interacting with the Al assistant. The
user asks questions, makes requests, and provides input that drives the conversation. The
user’s role is crucial as it initiates and directs the flow of interaction, allowing the assistant
to understand their needs and preferences. The user can engage with the assistant on a wide
range of topics, from seeking information and assistance to casual conversation and creative
collaboration.

Assistant role: The Assistant role message is the response from GPT models. The
assistant interacts directly with the user, providing information, answering questions, and
engaging in dialogue based on the prompts and context provided. The assistant leverages
the hints and guidelines from the system role to ensure that responses are accurate, relevant,
and helpful. The assistant aims to create a seamless and intuitive user experience by being
responsive, informative, and empathetic.

Together, these roles create a structured and effective conversational environment, en-
suring that interactions are meaningful and aligned with the user’s expectations.

5.2.2 Example of Chat Messages

Here we have an example of input and output (as shown in Table 5.1). The input will include
history messages and the last user request message. Also the output is the same message
structure, but it only output one message, with the role of assistant.

Role Content
Input System Assistant is a large language model. Current time
Messages is April 2, 2024.

User How can you help me today?

Assistant I can help answer your questions or provide
information on a wide range of topics.

User What date is today?

Output Assistant Today is April 2, 2024.

Message

Table 5.1: An example of chat messages input-output
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V]

Chat Messages in JSON format

We could also use JSON to represent the chat messages. The input list of messages usually
formatted in JSON when developers bundled all the history messages in the message lists to
the OpenAl API. For example:

[

{"role": "system", "content": "Assistant is a large language model. Current time is is
April 2, 2024. "},

{"role": "user", "content": "How can you help me today?"},

{"role": "assistant", "content": "I can help answer your questions or provide information
on a wide range of topics."},

{"role": "user", "content": "What date is today?"}

Listing 5.3: Input in JSON Format

Also, the output could also be represented in JSON format, since it is only one message,

we do not need the list to wrap the only one assistant message.

{"role": "assistant", "content": "Today is April 2, 2024."}

Listing 5.4: Output in JSON Format

Chat Messages in ChatML format

While, finally, the JSON format will be flattened into ChatML|41] formatted text as the input
of the model on the OpenAl server. So the model actually accepts ChatML formatted text,
which list of history messages with different roles.

Listing 5.5: Input in ChatML Format

<|im_start|>system

Assistant is a large language model. Current time is is April 2, 2024.
3 <|im_end|>

<|im_start|>user

How can you help me today?

<|im_end|>

<|lim_start|>assistant

I

can help answer your questions or provide information on a wide range of topics.

<|im_end|>
<|im_start|>user
What date is today?
<|im_end|>

3 <|lim_start|>assistant

Listing 5.6: Output in ChatML Format

Today is April 2, 2024.
<|im_end | >

5.2.3 Training Data for Chat Messages

Since the model input format ChatML is different than the free text, and limit the model
output in the same ChatML foramt with the end token |im_end|, it requires all the training
data formatted in ChatML for training GPT-3.5 and GPT-4.
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5.2.4 Reason for using Chat Messages

The reason to change the free text input-output to chat messages, is to make the language
model interaction more like a human conversation. User could have multiple turns conver-
sation with GPT and remember all the roles associated with the content components, using
user role to mark the user inputs and asssistant role to mark the model outputs.

This is a product direction change, which make the GPT language models more like a
general purpose chatbot instead of Natural Language Processing academic purpose experi-
ments, thus OpenAl renamed their product from GPT to ChatGPT after GPT-3.5. Also,
OpenAl use reinforcement learning algorithm (InstructGPT) to make the model choices of
conversation more like human.
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5.3 Chat Completions API with Function Calling

From the advent of an update since June, 2023, OpenAl introduced the capability of Func-
tion Calling|42] within the chat completions API on GPT-3.5 and GPT-4 models, and also
demonstrated in the article Function calling and other API updates[43]. This extension of
the model’s abilities represents a significant evolution in how users interact with language

models.

When developers call the Chat Completions API with Function Calling, not only the
message lists will send to the API, but also the function definitions. The function definitions
will be translated into tokens, which are counted towards the context window size when
passed into the GPT models. Therefore, we must ensure not to exceed the context window

token size limit.

EOpenAI:
; iChat Completions API
History iService P
Messages :
context
window
Message List & limitation

R Tool Definitions

Developer: > Preprocessing >
Chat Completions API | Chat Completions API !
Client < 0 ostprocessing|<

J

Message

User

External Tool:
RAG, Vector Function

Stores Calling

Figure 5.3: Chat Completions API with Function Calling

There are many other ways to implement language models’ function calling features,
we’ll explain more on next chapter. In this section, we only introduced the Tool Augmented

Model method, which GPT-3.5 and GPT-4 model deployed.
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5.3.1 Example of Function Calling

Consider a conversation that user ask for the current weather of Boston. Language Model
could not answer the question without querying the external weather API. Thus the GPT-
3.5 and GPT-4.0 introduced the capability for calling developer prepared functions to query
the necessary information.

Definition of a function in JSON Schema format

So first of all, developers need describing functions that the language model could call.
OpenAl models ask the function descriptions defined in JSON-Schema. For example, the
get_weather function has two arguments, one is the location and another is the unit of
temperature.

{
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "Object",
"properties": {
"location": {
Vltypell: llstringll’
"description": "The city and state, e.g. San Francisco, CA"
3,
"unit": {
"type“: “String",
"enum": ["celsius", "fahrenheit"]
}
¥s
"required": ["location", "unit"]
}
}

Listing 5.7: Function Defination in JSON Format

Definition of a function in ChatML format

function definitions also translate into a specific format before sending to GPT-3.5 or GPT-4
model, just like the message list data translating into ChatML format. It has been found as
a TypeScript-like grammar|44].

## functions
namespace functions {

// Description of example function the AI will repeat back to the user
type get_eather = (_: {

// description of function property 1: string

location: string,

// description of function property 2: string w enum

unit: "celsius" | "fahrenheit",

}) => any;

} // namespace functions

Listing 5.8: Function Defination in ChatML Format|44]
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Function Calling Process

Developer: OpenAl: External Tool:
Chat Completions API Client Chat Completions API Server Weather API Server
User

(1) Receive a User Message

What's the weather like
in Boston right now? |(2a)Call OpenAl API

>
>

Message History & :
get_weatherFuncﬁondeﬁMﬁon:

(2b) Receive an Assistant Message

<
tool call:
id: Nvh004
type: function
name: get_weather
arguments: .
location: Boston, MA
unit: celsius .

(3a) Call External Tool API
location: Boston, MA
unit: celsius

(3b) Receive a Tool Message
id: Nvh004
name: get_weather
content:
temperature: 22
unit: celsius
description: Sunny

(4a) Call Open API Again

Message History

(4b) Receive an Assistant Message :

(5) Show the content con:;ent: " A o
. of Last Assistant Message| ~The weather in Boston is:
< currently sunny with a

The weather in Boston is |temperature of 22 °C
currently sunny with a
temperature of 22 °C

Figure 5.4: function calling Process regarding the weather in Boston

(1) The user may ask a question to the developer’s application, such as "What’s the
weather like in Boston right now?" The developer’s application will then record the user’s
message in its message history. In the figure, all blue arrows represent steps that record a
new message in the message history.

(2a) The developer’s application sends the message list, including the latest user message
with the content "What’s the weather like in Boston right now?" to the OpenAI Chat
Completions API.
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(2b) When the GPT models determine it is necessary to make a tool call instead of
directly returning message content to the user, in this case, the model will generate an
assistant role message with a function-type tool call and notify the developer’s code to call
the function with the provided arguments (location="Boston, MA", unit="Celsius").

(3a) After the developer’s application receives the assistant message with a function-typed
tool call request, the application will call the weather API with the arguments (location:
location="Boston, MA", unit="Celsius") and wait for the response from the weather API
server.

(3b) The weather API server will return the weather result
(temperature="22" unit="Celsius", description="Sunny") to the developer’s application.
The developer’s application will then record a new Tool role message, including the tool call
ID and function name from (2b), along with the weather result. This message will clearly
indicate the result for the specific tool call ID, making it easy for LLMs to trace the tool call
and its corresponding result.

(4a) The developer’s application sends the updated message list, including the latest tool
role message described in (3b), to the Chat Completions API. The API server now has all
the information it needs to generate a response to the user’s weather inquiry.

(4b) If the GPT model determines no further tool calls are needed and the information is
sufficient to answer the user’s request, it will generate a natural language response based on
the weather result. It will create an assistant message with content describing the weather:
"The weather in Boston is currently sunny with a temperature of 22°C."

(5) The developer’s application receives the assistant message with the complete response
to the weather inquiry and displays the content of the assistant message to the user.

Role Tool Call Properties Content
User / "What’s the weather like in Boston right now?"
Tool Calls = [{
"id": "Nvh004"

"type": "function",
"function": {

"name": "get weather",
Assistant "arguments": { /
"location": "Boston, MA",

"unit": "celsius"

}
}
.

{

"temperature": "22"
_n "
Tool Tool Call ID = "Nvh004 it "eelsing"

Name = "get weather" "description": "Sunny"
}

"The weather in Boston is currently
sunny with 22 °C."

Assistant | /

Table 5.2: Message History Regarding the Weather in Boston
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Listing 5.9: Chat Completions API with Function Calling code in Python|42]

from openai import OpenAl
import json
client = OpenAI ()
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an extermnal API
def get_weather (location, unit="celsius"):
return "{’temperature’: ’22°, ’unit’: ’celsius’, ’description’: ’sunny’l}"

def run_conversation():
# Step 1: send the conversation and available functions to the model

messages = [{"role": "user", "content": "What’s the weather like in Boston?"}]
tools = [{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
VltypeII: llobjectll,
"properties": {
"location": {
lltype": "String",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
1,
"required": ["location"],
P
},
1]
response = client.chat.completions.create(

model="gpt-40",

messages=messages,

tools=tools,

tool_choice="auto", # auto is default, but we’ll be explicit

)
response_message = response.choices[0].message
tool_calls = response_message.tool_calls

# Step 2: check if the model wanted to call a function
if tool_calls:
# Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = {"get_weather": get_weather} # only one function in this
example, but you can have multiple
messages .append (response_message) # extend conversation with assistant’s reply
# Step 4: send the info for each function call and function response to the model
for tool_call in tool_calls:
function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(
location=function_args.get("location"),
unit=function_args.get ("unit"),
)
messages .append ( {
"tool_call_id": tool_call.id,

"role": "tool",
"name": function_name,
"content": function_response,
} ) # extend conversation with function response
second_response = client.chat.completions.create(

model="gpt-40",

messages=messages,
) # get a new response from the model where it can see the function response
return second_response

print (run_conversation()) # The weather in Boston is currently sunny with 22 degree.
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5.3.2 Importance of Function Calling

In a typical scenario, Function calling is embedded within the chat as a part of the message
list. The model interprets these commands, executes the specified function, and returns the
result as part of the conversation. This process is seamlessly integrated into the chat, making
the interaction between the user and the model more dynamic and versatile.

Function calling in GPT models allow the model to perform specific tasks beyond text
prediction. These can range from accessing external databases and performing calculations to
generating images and executing code. This functionality dramatically expands the potential
applications of GPT models in various industries.
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5.4 Assistants API

The OpenAl Assistants API[45] was launched on November 6, 2023, as announced at Ope-
nAl’s developer conference[46]. The Assistants API is a convenient tool for developers to
create agents.

5.4.1 Features

The Assistants API is similar to the Chat Completions API introduced in previous sections.
It has some extra features that the Chat Completions API does not have:

Built on Chat Completions API: The Assistants API is constructed on top of the Chat
Completions API, utilizing its capabilities to enhance the service, as depicted in the figure
below.

iService
i Assistants
Threads

Messages
Runs

Preprocessing ‘OpenAl:
(auto truncate for ‘Chat Completion API
context window Service
limitation) : context
! window
Message Lists H limitation
! Preprocessing >
A D?Vill?lzekpl Assistants API ts Server | Chat Completion AP ! GGP;.}T
Client +——Postprocessing/€

7< Message |
g .
File Search

(RAG, Vector
Stores)

External Tool:
i Function
Calling

Code Interpreter

RAG, Vector
Stores

! Tools in Assistants API

Figure 5.5: Chat Completions API with Function Calling

More Agent-like Experiences: Unlike the LLM API, the Assistants API functions more
like an agent framework, providing additional services (especially RAG Service) beyond the
LLM to simplify the development of agent applications.

Internal System Instructions: The Assistants API includes internal system instructions,
which developers cannot control. These instructions utilize models, tools, and files to re-
spond to user queries.

Extra Tool Support: The Assistants API supports three types of tools: Sandboxed Code
Interpreter, File Search, and Function Calling. In contrast, the Chat Completions API only
supports Function Calling. The Code Interpreter eliminates the need for developers to build
their own calculators or code execution tools, facilitating accurate mathematical calculations
and code execution results. The File Search tool (supporting up to 10,000 files per assistant)
allows developers to avoid creating their own retrieval-augmented generation (RAG) system
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for specific documents.

Persistent Online Data Management for Assistants, Threads, Messages and Runs:
The Assistants API automatically saves message history and provides APIs for managing
Assistants, Threads, Messages, and Runs. With the Assistants API, developers can create
persistent and infinitely long threads, enabling them to delegate thread state management
to OpenAl and bypass context window constraints. Developers can create, edit, delete, and
retrieve these entities for better control. The message history can be maintained for an
extended period. The Assistants API automatically handles the context window limitation,
using the most relevant context if the limit is reached. However, developers cannot change
the order of the message list sent to the LLM.

Image File Input Support: The Assistants API supports image file input as a user mes-
sage.

Integration with GPT Store and Playground: The GPTs|47| available in the GPT
Store and OpenAl’s online Playground for Assistants|[48] are built on the Assistants APIL.
GPTs allow users to create and configure their own GPT-based assistants directly through
their web browser without writing any code. Users can upload files, configure system
prompts, and customize the behavior of these assistants to suit their specific needs.

5.4.2 Choosing Between the Chat Completions API and the Assis-
tants API

Chat Completions API: This API provides developers with more freedom. Developers can
implement their own Retrieval-Augmented Generation (RAG) systems and manage message
lists.

Assistants API: This API handles more of the heavy lifting for developers. It offers two
additional tools (File Search and Code Interpreter) and automatically manages the context
limitations of message histories. It eliminates the need for developers to maintain message
history.

Developers can use the Chat Completions API to recreate an assistants API if they prefer
more control and flexibility. However, if developers do not want such freedom, but want to
store threads on cloud, and write less code and have the Assistants API assist in building
the RAG system and Code Interpreter while managing context limitations, they should opt
for the Assistants API..
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5.5 Conclusion

The evolution from simple text-based models to those capable of handling structured chats
and executing functional commands illustrates the significant advancements in the field of
artificial intelligence. These developments not only improve user experience but also broaden
the scope of applications for GPT models in real-world scenarios.

As we have seen, the evolution from GPT-1 through to GPT-4 and beyond involves not
only improvements in model architecture and training techniques but also significant changes
in how models handle inputs and outputs. These changes enhance the flexibility and utility
of the models in various applications, from simple text prediction to complex interaction and
data manipulation tasks.
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Chapter 6

How to Gain Function Calling
Capabilities

If we do not have the OpenAl Function Calling API, how can we achieve Function Callings
with existing models? Especially with open-source models that lack built-in Function Calling
capabilities or with GPT models released before the Function Calling feature.

Before OpenAl released the Function Calling feature in GPT-3.5 and GPT-4, many
researchers had already devised various methods for enabling LLMs to call APIs.

Function Calling feature could be gained by three methods: (1) Prompt Engineering, (2)
Fine-tuning, and (3) Large Language Model + Planner.
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6.1 Prompt Engineering

Input Text

Language Model (J-1)

f Input Adapter

uuuuuuuuuuuuuuuu

uuuuuuuu

Language Model (J-1)

Output Text

Figure 6.1: MRKL System
[49].

If we already have an LLM, but it is lack the capability to call tools automatically, we
still could use prompt engineering to gain the Function Calling feature. In the method of
Prompt Engineering, the API’s description and the work to implement Function Callings
are embedded directly into the prompt. The MRKL System [49] is a typical example of this
category.

Most implementations using this method also leverage techniques such as Chain of
Thought (CoT) or Self-reflection to facilitate the Function Calling process. This approach
is particularly useful given the capabilities of LLMs for zero-shot or few-shot learning. How-
ever, while these models can handle simple queries effectively, their performance degrades
with complex tasks, and they exhibit a high error rate.

40



6.2 Fine-tuning an LLM

Fine-tuning is a more tailored approach where a pretrained model is further trained on a
specific dataset that includes examples of Function Callings. This method allows the model
to adapt to particular API structures and domain-specific language, enhancing its ability to
execute Function Callings accurately.

For instance, a model could be fine-tuned on datasets that simulate banking transactions
or weather information retrieval. This adaptation makes the model more robust in handling
the nuances of such specialized tasks, thereby reducing error rates and improving response
relevance.

Two typical solutions in this category include Toolformer [50] and TALM (Tool Aug-
mented Language Models) [51]. These two solutions differ in their approach to the Function
Calling process.

The New England Journal of Medicine is a registered
trademark of [QA(“Who is the publisher of The New
England Journal of Medicine?”) — Massachusetts
Medical Society] the MMS.

Out of 1400 participants, 400 (or [Calculator(400 / 1400)

_, 0.29] 29%) passed the test. Tool Augmented Language Model

[ input ]—4 tool input [ tool result Houtput]

The name derives from “la tortuga’, the Spanish word for exter;a;: L \A( l :gglend
[MT(“tortuga”) — turtle] turtle. tool 2N result
The Brown Act is California’s law Figure 6.3: TALM (Tool Augmented Lan-

guage Models)
[51, Figure 2]

that requires legislative bodies, like
city councils, to hold their meetings open to the public.

Figure 6.2: Toolformer
[50, Figure 1]

The Toolformer solution simply replaces the LLM’s output text with the tool’s result,
eliminating the need for developers to feed the result back into the LLM to generate a user-
readable response. In contrast, TALM requires that the result be sent back to the LLM,
and then generate a user-readable response; this is the method chosen by OpenAl for its
Function Calling feature.
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6.3 LLM -+ Planner

The third approach LLM+ Planner|52| involves integrating a large language model with a
specific planner model designed to interpret the model’s responses and execute Function
Callings. This planner acts as an intermediary that translates the LLM’s natural language
output into actionable API calls.

One significant advantage of using a planner is the separation of concerns: the LLM
focuses on understanding and generating human-like responses, while the planner handles the
technical execution of API calls. This modularity allows for easier updates and maintenance
of the system, as changes in API specifications or capabilities require only modifications to
the planner rather than retraining the entire LLM.

s ™
Module Generated Text Provided Text Context Ex. P & Ex. Sol
-
Problem (P) Problem (P)
jl_, -+  Plan :|—> -+  Plan
Domain TLM Domain
. J
LLM-As-Planner LLM-As-Planner (In-context Learning)
s N
Context = Ex. P & Ex. PDDL Domain PDDL
Problem (P) —» % CE]D % - Plan
LLM Planner LLM
Problem PDDL PDDL Plan
\ J

Figure 6.4: LLM + P
[52, Figure 1]
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6.4 Conclusion

In conclusion, each of these methods has its strengths and weaknesses. Prompt Engineering
is quick and easy to implement but lacks robustness for complex tasks. Fine-tuning offers
improved accuracy and specificity at the cost of requiring a large amount of domain-specific
training data. Lastly, integrating an LLM with a planner provides a flexible and scalable
solution but requires additional system architecture and maintenance. The choice of method
depends on the specific requirements and constraints of the application at hand.
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Chapter 7
A Divide-and-Concur RPA Agent

7.1 Introduction

Robotic Process Automation (RPA) (|53],[54],|55]), the cutting-edge automation approach, is
a type of software service that helps people build workflows on existing services. It enhances
efficiency by automating processes through the integration of various software systems, fol-
lowing meticulously crafted rules to create a streamlined workflow.

RPA utilizes software robots to either automate interactions with software APIs or mimic
user GUT actions to complete tasks across various software platforms. Consequently, RPA has
recently garnered considerable attention as an efficient technology for automating repetitive,
rule-based tasks traditionally handled by humans.

Although RPA has helped people complete their work more efficiently, it still requires
detailed human thought and programming concepts, leaving tasks that demand human in-
telligence dependent on human effort. While RPA workflows can automate execution, their
creation relies heavily on human expertise for detailed design. Additionally, many tasks
undertaken by humans are characterized by their complexity and adaptability.

Since RPA workflows are just another format of programming structures, we have pro-
posed a method to let LLM to generate Python code and then translate them into RPA
workflows in the " ProAgent: From Robotic Process Automation to Agentic Process Automa-
tion"[1] paper.

In this chatper, we will introduce another method, which will progress with user request
with the devide-and-concur method.
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7.2 Objective

Our primary goal is to translate user requests into functional RPA workflows. For example,
consider the following prompt that describes a grade format:

"The data format is like $json = {"grade": 90, "name": "Lisa",
"email": "lisa@gmail.com"}."

Additionally, we have a user request such as:

"Retrieve data from MongoDB and check if the score is greater than or equal to 90. If it
18, send the score and name to the #general channel on Slack. If not, send an email through
Gmail to remind that the score needs to be improved."

This user prompt describe a workflow to do an action for each student’s transcript records.

True send the score and name to the
#general channel on Slack

check if the

score >= 90

Retrieve data from
MongoDB

remind that the score needs to be

False {>[ send an email through Gmail to J
improved.

Figure 7.1: RPA Workflow Builder Task Overview

We need translate this prompt into a real n8n|56] workflow dynamically by our RPA
agent.

7.2.1 Workflow Nodes

The n8n workflows are built with nodes, which is a fixed and single feature units in the RPA
system. We listed all the nodes we used in this example.

To address this specific user request, we can utilize a combination of nodes with types
including "MongoDB", "Slack", "Gmail", and "if". Here’s a detailed breakdown of how this
can be achieved:

MongoDB Node

4 N
" s

Function: Retrieve data from MongoDB.
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Operation: Extract the relevant grade and user details.

If Node

]

.

Function: Evaluate the condition.
Operation: Check if the score is greater than or equal to 90.

Slack Node

i N

\ 7

Function: Send a message to Slack.
Operation: If the score meets the criteria, send the score and name to the #general
channel.

Gmail Node
' i Y
| ™ ¢

Function: Send an email.
Operation: If the score does not meet the criteria, send an email to remind the user that
the score needs improvement.
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7.3 Methodology

We propose a novel divide-and-conquer method leveraging our LLM (Large Language Model)
agent to build a Robotic Process Automation (RPA) workflow based on user requests. The
key concept of this methodology is to systematically decompose the user’s request into
smaller, manageable components. This step-by-step division ensures that each component
can be easily translated into a functional unit, such as an n8n node. Once all the components
have been identified and translated into their corresponding nodes, we halt the decomposition
process and proceed to assemble these nodes into a cohesive n8n workflow. This approach
not only simplifies the complexity of translating user requests into automated workflows but
also enhances the accuracy and efficiency of the RPA development process.

Detailed Process

Initial User Request: The process begins with the user submitting a request for a
specific RPA workflow. This request is usually a high-level description of the tasks they
want to automate.

Decomposition: The LLM agent then analyzes the user request and divides it into smaller,
more manageable components. Each step of the decomposition is designed to break down
complex tasks into simpler, discrete actions.

Translation into Nodes: FEach of these smaller components is then translated into a
functional unit. In the context of n8n, these functional units are represented as nodes, each
responsible for a specific task or operation.

Node Assembly: After all the components have been translated into nodes, the LLM
agent assembles these nodes into a coherent n8n workflow. This involves connecting the
nodes in a logical sequence to ensure that the workflow performs the desired automation
tasks correctly.

Verification and Testing: Once the workflow is built, it undergoes verification and
testing to ensure it meets the user’s requirements and performs as expected. Any necessary
adjustments are made to refine the workflow.

Deployment: Finally, the verified and tested workflow is deployed, allowing the user to
benefit from the automated process.

Advantages

Efficiency: By breaking down complex user requests into simpler components, the process
becomes more manageable and less prone to errors.

Scalability: The divide-and-conquer approach allows for easy scaling, as additional com-
ponents can be seamlessly integrated into the workflow.

Flexibility: Users can request changes or additions to the workflow, which can be accom-
modated by adjusting the relevant nodes without overhauling the entire system.
Accuracy: The systematic translation of user requests into functional units ensures that
the final workflow closely aligns with the user’s intentions. This innovative approach lever-
ages the advanced capabilities of our LLM agent to streamline the creation of RPA workflows,
making it easier for users to automate their processes efficiently and accurately.
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7.3.1 Steps

1. Initial Node Determination and Divide into First Part and Rest Part

When the builder encounters a full request from a user, it first determines the type of the
initial node. Given that the initial step of the user’s request involves using MongoDB to
query the transcript, the LLM will return the initial node type as "MongoDB". Using the
choose node type prompt (" Use function call to choose node type for the user query."), we
can determine the appropriate block type for the user query.

Using the divide into first part and rest part prompt (" Divide a user query into
a sequence first sub query with rest. You just need separate the first step as first part, and
rest as rest_part. "), we can divide the full request into two parts:
the first part (the MongoDB node: "Retrieve data from MongoDB") and
the rest part ("check if the score is greater than or equal to 90. If it is, send the score and
name to the #general channel on Slack. If not, send an email through Gmail to remind that
the score needs to be improved.").

Retrieve data from MongoDB and check if the score is greater than or equal to 90. If it is, send the
score and name to the #general channel on Slack. If not, send an email through Gmail to remind that
the score needs to be improved.

) LLM chooses
"MongoDB" type

check if the score is greater than or equal to 90. If it is, send
the score and name to the #general channel on Slack. If

Retrieve data from
not, send an email through Gmail to remind that the score :

MongoDB

needs to be improved.

First Part

"MongoDB" Block
Figure 7.2: RPA Workflow Builder Step (1)
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Listing 7.1: Sequence Query Builder Code

def query_builder_sequence(raw_query: str, hint: str, 1llm: OpenAILLM):

messages = []
FUNCTION_NAME = "devide_into_first_rest"
messages += [
{"role": "system", "content": f"We need to divide a complex query into first sub
query with rest. {hint}"}
]
messages += [
{"role": "user", "content": f"# User Query:\n{raw_queryl}"}
]
functions = [
{
"name": FUNCTION_NAME,
"description": "Divide a user query into a sequence first sub query with rest.
You just need seperate the first step as first_block, and rest as rest_block
If it is an unit action, including the action’s parameters, e.g. message
to send, just leave it as first_block, and rest_block as empty string. You
must call this function to response.",
"parameters": {
lltype": "Object",
"properties": {
"first_block": {
"type“: "String",
"description": "first step to do"
})
"rest_block": {
lltypeII: "String",
"description": "after first step. Optional."
1,
},
}
}
]
content , function_name, function_arguments, message = llm.chat_completion(
messages=messages,
functions=functions,
function_call={"name": FUNCTION_NAME}
)

if not function_name or not function_arguments:
raise KeyError ("function_call")
assert function_name == FUNCTION_NAME

first_block = function_arguments.get("first_block")
rest_block = function_arguments.get("rest_block") or None

return first_block, rest_block
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2. If Node Breakdown

For the remaining part of the request, the LLM uses the choose node type prompt to
determine the node types and divide them into smaller parts. It identifies the current node
as an "if" node.

The LLM then constructs an "if" node, dividing the current request text into four parts:

(2a) If expression part: "check if the score is greater than or equal to 90"),

(2b) True branch part: "send the score and name to the #general channel on Slack"),

(2c) False branch part: "send an email through Gmail to remind that the score needs
to be improved. ")

(2d) Remainder part: which is empty in this case).

For the If expression part, the LLM translates it into the expression $json[’grade’] >=
90. For the remaining parts (True branch, False branch, Remainder), the LLM continues to
determine their block types.

]

i

i

E

E check if the score is greater than or equal to 90. If it is, send
Retrieve data from ! the score and name to the #general channel on Slack. If

MongoDB | not, send an email through Gmail to remind that the score

E needs to be improved.

i

i

i

i

g

"MongoDB" Block

LLM chooses

(2) n Ifll type

(2a) If Expression Part (2b) True Branch Part

send the score and name
~| to the #general channel
on Slack

True

Retrieve data from
MongoDB

"MongoDB" Block
send an email through
Gmail to remind that the
score needs to be
improved.

json['grade'] >= 90>r----omommommoeeeeee oo E Empty E

(2c) False Branch Part (2d) Rest Part '

"If" Block

Figure 7.3: RPA Workflow Builder Step (2)
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Listing 7.2: If Branch Query Builder

1 def query_builder_if_branch(raw_query: str, 1lm: OpenAILLM):

2 messages = []

3 messages += [

4 {

5 "role": "system",

6 "content": """

7 We need to divide a complex query into block queries.

8 You should only reply a json object, has a json schema:

9 "if _expression_block": {

10 "type": "string",

11 "description": "if expression part. If a block has nothing to do just
return empty string."

12 ¥

13 "true_branch_block": {

14 "type": "string",

15 "description": "if true what we should do. If a block has nothing to do
just return empty string."

16 ¥o

17 "false_branch_block": {

18 "type": "string",

19 "description": "if false wha we should do. If a block has nothing to do
just return empty string."

20 ¥

21 "rest_block": {

22 "type": "string",

23 "description": "after what we should do"

24 Iy

25 nnn

26 }

27 ]

28 messages += [

29 {"role": "user", "content": f"""# User Query:\n{raw_queryl}"""}

30 ]

31 while True:

32 content, function_name, function_arguments, message = llm.chat_completion(

33 messages=messages

34 )

35 try:

36 content_json = json.loads(content)

37 break

38 except json.JSONDecodeError:

39 continue

40

41

42

43 if_expression=str(content_json.get("if_expression_block")) or None

44 true_branch_block=str(content_json.get("true_branch_block")) or None

15 false_branch_block=str(content_json.get("false_branch_block")) or None

46 rest_block=str (content_json.get("rest_block")) or None

47 return if_expression, true_branch_block, false_branch_block, rest_block
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3. True Branch Processing

For the (2b) True branch part, the LLM determines it as a "Slack" block type. The text
request "send the score and name to the #general channel on Slack” is translated into an
n8n Slack node, as listed in Table 7.1.

Node Type Slack

Node Sub-Type send_message

Mode channel

Channel Id #general

Content "Student " + $json.name + " has received
a grade of " + $json.grade + " in the re-
cent examination."

Table 7.1: LLM translates (2b) into Slack Node

4. False Branch Processing

For the (2c) False branch part, the LLM determines it as a "Gmail" block type. The text
request "send an email through Gmail to remind that the score needs to be improved." is
translated into a Gmail node, as listed in Table 7.2.

Node Type Gmail

Slack Node Type send_email

To $json.email

Title "Reminder for " + $json.name + ", Your
grade needs to be improved"

Content "Dear " + $json.name + ", | <3| Your cur-
rent grade is " + $json.grade + ". There
is always room for improvement. Keep up
the good work! [ 2 |Best, Your Teacher"

Table 7.2: LLM translates (2c) into Gmail Node
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7.4 Result

The proposed divide-and-conquer methodology, leveraging our Large Language Model (LLM)
agent, successfully translated the user request into a functional n8n workflow. The systematic
decomposition of the user request into manageable components ensured that each step was
clearly defined and accurately executed. The resulting workflow included the necessary nodes
for MongoDB data retrieval, conditional evaluation using an If node, and subsequent actions
via Slack and Gmail nodes.

The automated workflow was verified and tested, demonstrating its ability to handle the
specified tasks accurately and efficiently.

7.4.1 Visual Results

n8n Workflow: The assembled workflow in n8n, as depicted in 7.4, shows the interconnected
nodes representing the various steps of the process.

{ ] 1 item
ik
1item o4
79666de0-9d8f-4dfb-
1 item 1 item 2 items 2 items ey E aeoeiido8eheoocls
5| @ _— i
1 false
v v v v v
1de6e55c-02ba-4d75- 87c2f4e2-9098-4db9- cOaaf6e2-b571-408¢c- 80a92912-2dd7-4f48- 58207bb4-8826-4bed- | item
bb25-76a24e287a79 b989-87863abcc469 beea-4e0dcefe02f1 bdea-c45502b7fbad 8c00-4c82712besff 1 item
v

f5c967dc-1e86-4d3a-
ab9e-18ef77a42e79

send: messag

Figure 7.4: RPA Result n8n Workflow

Gmail Notification: An example of the email sent through Gmail, shown in 7.5, illustrates
the reminder message to students whose scores were below the threshold.

Reminder for Wang Wu, Your grade needs to be improved

L3

yourxagent@gmail.com 05:47 (6%
BRREH v

Dear Wang Wu,
Your current grade is 80. There is always room for improvement. Keep up the good work!

Best,
Your Teacher

Figure 7.5: RPA Result Gmail

Slack Notification: The message posted in the #general Slack channel, as shown in 7.6,
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confirms the successful notification of students with satisfactory grades.

yourxagent 5:35AM
Hello, everyone! Student Li San has received a grade of 90.

5:39 Hello, everyone! Student Li San has received a grade of 90.
Student Li San has received a grade of 90 in the recent examination.
Student Li San has received a grade of 90 in the recent examination.

Student Li San has received a grade of 90 in the recent examination.

Figure 7.6: RPA Result Slack

7.5 Conclusion

The divide-and-conquer methodology, powered by the LLM agent, has proven to be a robust
approach for translating complex user requests into functional RPA workflows. The system-
atic decomposition of tasks ensured that each component was manageable and accurately
translated into n8n nodes. The resulting workflow not only met the user’s requirements but
also demonstrated the following key advantages:
Efficiency: The process was streamlined, reducing the likelihood of errors and ensuring
quick development.
Scalability: Additional components can be easily integrated into the workflow, allowing for
future enhancements.
Flexibility: The workflow can be adjusted based on user feedback or changing requirements
without significant rework.
Accuracy: The final workflow closely aligned with the user’s intentions, ensuring the desired
outcomes were achieved.

Overall, this innovative approach leverages the advanced capabilities of our LLM agent to
simplify and enhance the creation of RPA workflows, making it easier for users to automate
their processes effectively.
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Chapter 8

Conclusion

The research presented in this thesis highlights the significant advancements in the field of
Large Language Models (LLMs) and their deployment as agents for various applications. By
exploring the historical development of language models and their transition to sophisticated
neural network architectures, we have established a solid foundation for understanding the
capabilities and limitations of LLMs. The study’s focus on LLM agents has provided insights
into their operational frameworks, including user interactions, environmental considerations,
and task planning, which are crucial for effective deployment.

Addressing the limitations of LLM inputs, particularly the context window, the thesis
introduces Retrieval-Augmented Generation (RAG) as a viable solution, enhancing the mod-
els’ ability to handle extensive background knowledge. The exploration of OpenAl’s APIs
for GPT models has further emphasized the practical applications and versatility of these
models in real-world scenarios.

The practical implementation of LLMs in Robotic Process Automation (RPA) through a
divide-and-conquer methodology has demonstrated the potential of these models to stream-
line complex workflows, ensuring efficiency, scalability, flexibility, and accuracy. This innova-
tive approach simplifies the creation of RPA workflows, making automation more accessible
and effective for users.

Overall, this thesis confirms the transformative potential of LLMs in automating processes
and enhancing user interactions. Future research should continue to explore the evolving
capabilities of LLMs, focusing on improving their efficiency, expanding their applications,
and addressing emerging challenges in their deployment as intelligent agents.
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