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ABSTRACT

The advancement of neural networks in the last several years has yielded some astonishing
results. However, the applicability to system identification and modelling dynamical systems
still has a great amount of room for exploration. This thesis reviews different neural network
architectures and their application to complex non-linear dynamic system identification. In
particular, it uses the intricate process of coffee roasting as a case study to explore and
demonstrate these techniques. Coffee roasting is a complex process that requires precise
control to achieve the desired coffee quality. The ability to develop models that represent
a system, i.e. system identification, is of great value to industry. Coffee roasting poses
several challenges for system identification from complex chemical reactions occurring inside
the bean, to temperature trajectories being dependent on several states that cannot be
explicitly measured, such as moisture content, or reaction rate, making it an ideal candidate
for exploring the application and limitations of neural networks. The primary contributions
of this study are a proposed "grey-box" model that augments previously established physics
based models, as well as illustrating the limits of LSTM, Deep NARX models using "one-
step" forward prediction techniques. Although the study focuses explicitly on coffee roasting,
the conclusions drawn are applicable to other similarly complex industrial and manufacturing
processes.
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Chapter 1

Introduction

Coffee, a beverage enjoyed globally [1], undergoes a complex transformation from green bean
to aromatic brew, intricately tied to the roasting process [2]. This procedure involves precise
heat transfer and chemical reactions, where the quality and flavor of the final cup depend
heavily on the precision and control during roasting. Inconsistent roasting can lead to under-
developed flavors, burnt notes, or batch-to-batch variations, compromising both the sensory
experience and economic value of the product [3].

To achieve the consistency and high quality demanded by discerning coffee drinkers, the
coffee roasting industry increasingly relies on advanced control systems. Automatic control
systems have been in use since antiquity, with examples like automatic fluid level control
devices dating back to 300 to 1 B.C. The first industrial feedback controller, James Watt’s
flyball governor from 1769, marked the beginning of many advancements in control tech-
niques [4]. Despite these advancements, modern tools and techniques still largely depend on
linear, time-invariant models, even for systems that are nonlinear, time-varying, and uncer-
tain [5]. Consequently, system identification for real systems often focuses on approximating
them as linear to apply these control techniques.

One of the first steps in developing or optimizing control systems is understanding the
system that is to be controlled. This often involves deriving differential equations from "first
principles" or well-known physics and mathematical laws. Numerical techniques, such as
computational fluid dynamics (CFD) and finite-element analysis (FEA), allow engineers to
model and simulate systems when a high level of geometrical detail is known [6]. However,
explicit equations or geometrical details are often unavailable or challenging to develop,
necessitating system identification techniques based on input and output data.

Modern advancements in AI, e.g. Non-linear algorithms, and computing are quickly
changing this landscape. Advanced algorithms, such as neural networks, and increasingly
powerful, affordable computers, make these techniques more accessible. This shift is par-
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ticularly relevant in industrial control settings involving complex dynamic systems that are
difficult to model from first principles, have complex nonlinear inter-dependencies, or are
hard to observe.

While system identification has a long history in control engineering, traditional meth-
ods often struggle with complex, nonlinear systems. Advanced machine learning (ML) tech-
niques, particularly neural networks, offer new opportunities for system identification, pro-
viding greater accuracy and robustness in modeling and control. However, the intersection
of these fields remains relatively unexplored. This study investigates the application of ma-
chine learning for system identification in the context of coffee roasting, a highly nonlinear
process with stringent control requirements for achieving high-quality taste. Coffee roasting
is an ideal test case due to its complexity and the potential for significant industry impact
through improved process control.

This thesis delves into the intricacies of coffee roasting as a representative example of a
complex nonlinear process. However, the principles and techniques developed in this work
are broadly applicable to modeling and control challenges in various industrial settings. The
objective is to develop a model that accurately captures the dynamic behavior of the coffee
roasting process, facilitating the design and optimization of control systems for improved con-
sistency and quality. This research bridges the gap between traditional modeling approaches
and advanced data-driven methods by leveraging the power of neural networks.

Coffee roasting’s complexity poses significant challenges for traditional modeling ap-
proaches. While physics-based and data-driven methods have been used, each has limitations
in capturing the process’s intricate dynamics. This thesis explores a hybrid, or grey-box, ap-
proach that combines the strengths of both methodologies. Physics-based models, grounded
in thermodynamics and heat transfer, provide a structured framework and interpretable re-
sults but struggle with complex nonlinear relationships. Neural networks, on the other hand,
excel at learning patterns from data but lack interpretability and robustness. By integrating
these methodologies, this research aims to develop a model that accurately represents the
coffee roasting process and possesses both approaches’ advantages.

This research focuses on dynamically modeling the roasting chamber, a critical component
of the coffee roasting system responsible for heat transfer influencing the coffee’s flavor profile.
Traditional models often rely on simplified assumptions and constant parameters, limiting
their accuracy. This thesis proposes a novel approach, incorporating a neural network within
the differential equations representing the physical processes. By training this network on
real-world production data, the model learns the complex relationships between key variables,
such as heat transfer coefficient, bean movement, and airflow rates, not easily captured by
traditional methods.

12



The development of this model proceeds through several key stages, outlined in the
following chapter structure:

• Background and Literary Review - This chapter provides a comprehensive overview of
coffee bean characteristics, the stages of the roasting process, and the various roasting
equipment designs. It then delves into a detailed review of existing coffee roasting
models, encompassing white-box, black-box, and grey-box approaches. The limita-
tions of existing models in capturing the dynamic nature of the roasting process are
highlighted, setting the stage for the proposed grey-box approach.

• Methods and Experiments - - This chapter outlines the methodologies employed in
this research. It begins by describing the implementation and evaluation of a black-
box Non-linear Auto-regressive with exogenous input (NARX) model, demonstrating
its limitations in accurately representing the roasting process. The chapter then details
the development of the proposed grey-box model. This involves analyzing the perfor-
mance of existing physics-based models, identifying key parameters influencing model
accuracy, and explaining the integration of a neural network to enhance the model’s
predictive capabilities. The chapter concludes by outlining the experimental setup,
training process, and datasets used for model development and validation.

• Results and Discussion - This chapter presents and analyzes the results obtained from
the different modeling approaches. It compares the performance of the black-box,
white-box, and grey-box models, highlighting the advantages of the proposed grey-box
approach in capturing the dynamic behavior of the coffee roasting process. The chapter
discusses the model’s generalization capabilities, limitations, and potential avenues for
future research.

• Conclusion and Future Work - This chapter summarizes the key findings of the research,
emphasizing the contributions made towards developing a robust and accurate model
for simulating and controlling the coffee roasting process. It reiterates the limitations
and future research directions, highlighting the broader implications of this work for
the coffee industry and the field of process control.

This research contributes to the growing body of knowledge in coffee roasting modeling
and control, as well as providing a framework for developing robust and accurate models for
any complex nonlinear process. By combining the strengths of physics-based and data-driven
approaches, this thesis offers a promising avenue for developing advanced control systems,
ultimately leading to more consistent, high-quality production across various industries.
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Chapter 2

Background and Literary Review

2.1 Overview of Coffee and Coffee Roasting

This chapter provides a comprehensive review of the existing literature and background
relevant to the study of coffee roasting and the development of models to simulate and
control the roasting process. The objective is to establish a solid foundation of knowledge,
identify gaps in the current research, and justify the methodologies adopted in this study.
The chapter is divided into several sections, each focusing on different aspects of coffee
roasting and system modeling.

The first section, "Coffee Beans", details the anatomy of coffee cherries, highlighting
the various layers and components that affect the roasting process. The section discusses
the primary species of coffee beans, Arabica and Robusta, and how factors like climate,
processing methods, and bean species influence the taste and quality of coffee.

The "The Roasting Process and Roasting Profile" section delves deeper into the stages
of roasting, describing how heat transfer induces chemical reactions in the beans, which
ultimately shape the flavor and aroma of the coffee. The importance of controlling the
roasting process to achieve consistent results is emphasized, along with a discussion on how
taste is quantified and evaluated using standards like the Specialty Coffee Association’s
(SCA) cupping protocols.

The subsequent section, "Roasting Equipment", provides an overview of different coffee
roaster designs, with a focus on rotating-drum roasters. It explains the mechanics of various
roaster types and their impact on the roasting process. The section also includes a detailed
description of the TMR-25 and TMR-250 [7] roasters used in this study, including the key
measurements and parameters monitored during roasting.

The "Modelling" section reviews various approaches to modeling coffee roasting processes,
categorized into white box, grey box, and black box models. White box models, like those by
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Schwartzberg [8], rely on physical laws and heat transfer equations, while black box models
are data-driven, such as Adiwijaya’s [9] use of LSTM neural networks. Grey box models
combine both methods. The review highlights the need for accurate models for controller
design and simulation, differentiating system identification from time series forecasting. It
discusses specific physics-based models, such as those by Schwartzberg and Vosloo [8, 10], and
explores data-based models including FIR, ARX, RNNs, LSTMs, and GRUs, emphasizing
recent advancements in machine learning techniques for system identification.

This chapter aims to provide a thorough understanding of the current state of coffee roast-
ing research and modeling, setting the groundwork for the methodologies and experiments
conducted in this study.

2.2 Coffee Beans

Coffee beans originate from cherries that grow on coffee trees. Each cherry usually contains
two seeds, encased in several thin layers: first, a silverskin, followed by a yellowish layer
known as the parchment. Between the parchment and the fruit flesh lies a viscous layer.
The outer skin, which starts green and turns red as it ripens, covers the entire fruit. The
anatomy of the coffee cherry is illustrated in Figure 2.1.

Figure 2.1: Anatomy of a coffee cherry. [11]

The composition of the beans is highly sensitive to various factors such as climate, pro-
cessing method, bean species, and location. These differences effect the nature and ultimately
the taste of the coffee bean. [12]. There are two primary species of coffee beans: Arbica and
Robusta. However, there are several subspecies that are derived through selective breeding
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to produce different varieties of traits. In general, there are a few species that are commer-
cially important due to traits like disease resistance and yield [13]. Generally, Arabica Coffee
is considered sweeter, with higher acidity and bright tastes, and is found typically at higher
altitudes. Robusta is typically considered more bitter and less complex flavors. It is grown
at lower altitudes and more resistance to temperature. It is used often for blending.

Like mentioned above, several factors influence the taste and quality of coffee. The har-
vesting process plays a crucial role; some producers hand-pick cherries to ensure only ripe
ones are harvested, while others use mechanical methods like strip picking, where entire
branches are stripped when most cherries are ready [12]. Once harvested, green coffee pro-
cessing involves separating the fruit from the cherry and drying the beans to prevent rotting
during storage or transportation [1]. There are three major methods for this: washed cof-
fee processing, dry natural coffee processing, and pulped natural coffee processing. In the
washed process, the outer fruit layer is separated by a de-pulper, and the mucilage layer
is removed by fermentation and washed off with water [14]. In contrast, the dry natural
method leaves the beans with the fruit to dry, potentially leading to a fermented taste [1,
2]. The pulped natural process also separates the outer fruit layer but retains the silverskin,
parchment, and mucilage layer during drying, which increases the sweetness of the bean due
to the extra sugar in the mucilage layer [14]. These processing methods result in variations
in the taste and quality of the coffee, with the natural process being less controlled and
cheaper, the pulped method producing sweeter coffee, and the washed method being the
most controlled and sophisticated but more expensive to implement [14].

The roasting process significantly influences the final coffee quality. Heating green coffee
beans triggers various chemical reactions, including hydrolysis, polymerization, reduction,
oxidation, and decarboxylation, transforming them into coffee that can be ground, brewed,
and consumed. The speed, timing, and location of these reactions greatly affect the flavor,
aroma, and color of the final product [15, 16]. Achieving consistent and reproducible coffee
roasts, and thus consistent flavor, aroma, and color, is a major challenge for designing roaster
control systems.

2.3 The Roasting Process and Roasting Profile

Although many aspects of coffee flavor stem from the nature of the bean (species or sub-
species) and environmental factors such as climate and soil content, as discussed in Sec-
tion 2.2, several elements can be controlled, such as the harvesting and processing steps,
which also influence the final taste. The roasting of the beans explicitly controls the devel-
opment of coffee taste through heat transfer, inducing chemical reactions in the beans that
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ultimately determine the final taste and aroma of the brewed coffee. Schwartzberg explains
that various constituents in coffee, like sucrose, reducing sugars, proteins, chlorogenic acid,
trigonelline, and amino acids, react extensively and nearly disappear during roasting. These
reactions form the basis of coffee flavor [8]. He further illustrates that the timing and rate
of these reactions are critical for taste development. Multiple reactions occur at different
temperatures and rates, creating complex reaction networks. The temperature at various
stages influences the availability of reactants and products, thereby affecting the final taste.
Reaction rates depend on temperature and reactant concentrations, with later reactions de-
pending on the rate and duration of earlier ones. Schwartzberg believes this sensitivity to
temperature history is why reproducible coffee flavor is challenging to achieve [8].

In the following subsections, this paper will briefly review how taste is affected and
evaluated by the roasting process, detailing the stages of coffee roasting and the prominent
methods and equipment used for coffee roasting.

2.3.1 Stages of the Roasting Process

According to Vosloo, there are 5 general stages that should occur in the roasting process:
drying, yellowing, first crack, roasting, and second crack. These stages are illustrated with
an example of a temperature trend that is typically seen by a coffee roaster in Figure 2.2.

Figure 2.2: Roasting profile example with stages approximately marked. Adapted from [8]

It is important to note, that the actual bean temperature cannot be measured directly
in most situations, and so a probe is placed in the drum where a majority of bean mass will
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be. This is used as a proxy to the bean temperature. When the beans are initially placed in
the roaster, they are typically at ambient temperature. The roaster typically is preheated,
and so the probe starts at high temperature, but then falls rapidly as the cooler beans are
introduced. At some point the probe temperature starts to increase instead of decrease,
which is known as the "turning point" [2, 17]. The bigger the thermal mass of the sensor the
longer this can take, and the larger the gap between the actual bean temperature and the
measured sensor. The measured temperature is known as the "recipe" or the "profile" [17].
If a profile is found to produce good flavor, then a roaster professional will try to replicate
the curve to consistently create that flavour. However, because different probes will have
different dynamics and therefore profiles, it is difficult to transfer profiles from machine
to machine, unless the differences in the probes, and other elements, have carefully been
considered or calibrated [17].

Green coffee beans have moisture contents of around 8 - 12.5 percent, as per standards
governing the storage and sale of green coffee [1, 18]. In the Drying Phase, the majority of
the heat in the process is used converting this moisture to steam, and drying the coffee bean.
In this period, there is very little taste development Next is the Yellowing Phase. Here the
coffee begins to change color and more reactions occur, sugars begin to break down into acids
as moisture level continues to decrease. This stage is characterized as having a "bread" like
aroma [17]. chaff is produced here, as the beans begin to swell, and the silverskins break
and come off. The chaffs pose a risk of catching fire, and so it is important that enough air
flow is present to carry the chaff away. The chaff is collected typically by a cyclone [14]. The
parts of a roaster will be discussed in further detail in section 2.3.3.

Bitter or sour coffee can result if the yellowing phase and drying phase are not completed
properly. Increasing the bean temperature too high, before a sufficient amount of evaporation
has taken place causes the outside of the bean to roast, but the inside to remain under-
roasted [2]. This is relevant to controls as, once this occurs, the roast can not be fixed,
by slowing the development. An inaccurate system dynamics model, or improper controller
could overshoot temperatures if not properly designed, which would ruin the entire batch
of coffee. This is part of the thermal inertia of the system and contributes to some unique
control challenges.

The First crack is a milestone that indicates the start of the development phase. It is
called this from the characteristic cracking sound that occurs as pressure from the products
of the reactions, like carbon dioxide, in the beans build up and the bean cracks and lets the
pressure out [19]. Several studies have been done, and show that first crack typically occurs
around 200°C [3, 14, 19].
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2.3.2 Taste

Developing and consistently reproducing coffee taste is one of the primary goals of coffee
roasting. Thus, it is important to understand how coffee taste is quantified. According to
a seasoned coffee roaster (personal interview, May 29, 2024), the Specialty Coffee Associ-
ation (SCA) and their "Cupping Protocols" are among the most authoritative sources for
quantifying coffee taste [17]. The SCA’s cupping standards are designed to accurately assess
coffee quality through rigorous procedures and qualified ’Q graders.’ These graders evaluate
several key flavor attributes, including Fragrance/Aroma, Flavor, Aftertaste, Acidity, Body,
Balance, Uniformity, Clean Cup, Sweetness, and Defects. Each attribute is graded on a
16-point scale, ranging from 6 to 10 [20]. However, roasters often simplify these categories
into three primary characteristics: bitterness, acidity, and "origin characteristics," which are
considered to change during the roast, as illustrated in Figure 2.3 [17].

Figure 2.3: General trends of taste characteristics through the coffee roasting process.

The longer coffee is roasted, the more bitter it becomes. Acidity increases initially but
decreases with prolonged heat exposure. Origin characteristics encompass all other flavor
aspects and result from the chemical reactions within the bean. Green coffee initially has
little taste, requiring heat to initiate the chemical reactions that develop interesting flavors.
However, the longer these reactions continue, the more the chemistry of the beans converges,
as reaction pathways near completion. This is why darker roasts tend to have more similar
flavors, and why specialty coffees are typically lighter roasts. For specialty roasters, precision
in controlling temperature and heat over time is particularly important [2, 14, 17].

Schwartzberg, and Clarke, clarified the relation between the roast color, reactions and
taste. He explained that roast color can be an indicator of overall reaction extent, however,
there are many ways for the reactions to advance to get to the same color. He further
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explained that the color itself cannot tell us what pathways were favoured, and therefore,
cannot tell us about the exact taste of the roast [8, 21]. The reaction pathways followed
during the roast determine the taste and is sensitive to the temperature profile followed in
the roasting process as previously discussed.

The roaster interviewed emphasized that there are other aspects of controlling the roast-
ing process that are critical to taste. For example, right after the coffee beans get to the "first
crack" point (described in Section 2.3.2), if the heat is not controlled properly, a temperature
"flick" or "crash" can occur. Both of which are undesirable and lead to what roasters refer to
as "baked" tasting coffee [17]. This happens because after the first crack the beans undergo
an exothermic reaction, so if heat is not controlled or compensated correctly, there can be
a sharp rise in temperature, know as a "flick". When the flick is overcompensated for and
the heat is lowered too much, and or too much ambient air is let in, the temperatures can
drop drastically. Because this point is nearer to the end of the roast, the amount of time to
get the temperatures back up might be too long and the required reactions for the desired
coffee taste will be missed or have occurred at the wrong rates. [17].

In total, roasting is a vital process in developing the unique taste of different coffee
flavours, and key in the development is controlling the heat transfer to the beans through-
out time. Because of this, applications of controls, such as Proportional-Integral-Derivative
(PID) systems, have been common for helping to get consistent desired tasting coffee, how-
ever, implementation is difficult due to nonlinear dynamics involved, which will be discussed
further in later sections. Here, machine learning techniques and learned control systems hold
great promise for improving the methods used to control the temperature of the coffee beans
and therefore the taste of the coffee.

2.3.3 Roasting Equipment

This section provides an overview of the different technologies used for roasting coffee beans,
particularly in commercial applications. Schwartzberg and Clarke have identified several
of the most common roaster types used in the industry [8, 14]. These include Rotating-
Drum Roasters, Spouted-Bed Roasters, Rotating-Bowl Roasters, Scoop-Wheel Roasters, and
Swirling-Bed Roasters. Among these, Rotating-Drum Roasters, especially the "classic" de-
sign with directly heated drums, are considered the most prevalent [14].

In this section, each of these roaster types will be summarized and reviewed. Despite the
differences in design, commercial roasters generally require several common systems: a heat
source, a roasting chamber, and an airflow system. Additionally, there are several auxiliary
systems often found in roasters, such as the bean loading system, cyclone, cooling tray, and
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de-stoning system [14]. These auxiliary systems, although not specific to any particular
roasting design, play crucial roles in the overall roasting process.

The heat source for most roasters is either electric or natural gas, but other new energy
sources, such as hydrogen, are being researched [22]. While the heat source is primarily
responsible for adding energy to the system, several other factors influence the rate of heat
transfer to the coffee beans, as discussed in Section 3. The roasting chamber is where this
heat transfer occurs, with the airflow system serving multiple purposes: removing the silver-
skin and chaff that come off the beans during roasting (which are fire hazards) and influencing
heat transfer to the beans. Some roasters control temperature profiles by adjusting airflow,
while others maintain a consistent airflow range and control heat transfer through the heat
source.

Industrial and commercial roasters often feature an air recycle system, which reuses
hot air to heat the beans in the roasting chamber, improving energy efficiency and helping
maintain high temperatures. Roasters that reuse air are known as "R roasters," while those
that use air only once are referred to as "single-pass roasters" or "SP roasters" [23]. Another
important component of the air system is the cyclone, which uses centrifugal force to remove
silver-skin and chaff during roasting.

The bean loading system handles the transfer of beans into the roasting chamber. The
cooling tray cools the beans after roasting to prevent further "cooking" and ensure consistent
flavor. The de-stoning system removes any non-bean debris, such as small rocks, which
are common contaminants during harvesting and transportation [14]. While these auxiliary
processes are outside the scope of the modeling in this paper, they are important to mention.
An overview of each roaster design will be provided below.

Rotating-drum roasters

These are characterized by horizontal rotating drums roasting chambers. The drums are
often flighted to help with the mixing and heat transfer of the beans. For consistent roasts
the beans should be roasted uniformly in the roaster, and the rotation of the drum helps
ensure that each bean roughly gets heated similarly by mixing the beans around in the
drum [8]. Since the air exiting the drum is cooler than the air entering, and heat transfer
between the metal of the drum and the air is also different, the flights are designed to move
the beans so that each beans roughly experiences heat transfer the same [8]. In modern drum
roasters, the speed of the drum is often a variable that can be used to control the heat transfer
to the beans, but in practice this is often set to a constant speed and other parameters such
as the heat source is primarily used to adjust the bean temperatures and to meet the desired
bean temperature profile [8]. This is especially the case in small to medium scale roasting
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facilities, where roasting professionals are the primary source for operating and adjusting
temperatures. Cristo [24], showed that the motion of the coffee beans vary depending on the
amount of the drum filled, and the speed of the drum, and can be divided into several different
regimes, shown in Figure 2.4 - Slumping, rolling, Cascading, Cataracting, and Centrifuging
- which has an impact on the effective heat transfer experienced by the beans.

(a) Rolling (b) Cataracting (c) Centrifuging

Figure 2.4: Different Regimes of motion in a flighted rotating drum. The type of motion has
an effect on the heat transfer experienced by the coffee beans in the roasting chamber.Figure
adapted from [24]

Within the class of rotating-drum roasters, several differences in design influence how
the beans are roasted. The oldest design is the direct heated drum roaster, where the drum
is directly heated by the heat source, most commonly a natural gas flame. In this method,
the metal of the drum heats both the roasting air and the beans [8]. This approach is more
challenging to control due to the thermal mass of the drum, which creates a significant lag
between heating inputs. Additionally, if the drum overheats, it is difficult to cool down.

Next are hot air roasters, which use a heat exchanger to heat the air that is then sent
to the drum, where it roasts the coffee beans [14]. These roasters are more expensive but
easier to control, as the temperature of the air, the primary heat source, can be directly
and easily regulated. Some roasters use drums with perforated walls, and some do not. The
major difference being in the perforated case, the air moves into the roaster drum axially,
but leaves radially, whereas in the non-perforated case the air enters axially, and leaves
axially [8].

Drum roasters typically operate with relatively high inlet gas temperatures, upwards to
550◦C, and roasts typically last from 8 to 12 minutes, although this can depend on the size
of the roaster [8].

The datasets for this study were collected from roasts performed on TMR-25 and TMR-
250 roasters manufactured by IMA, which are categorized as "R"-roasters. A specific example
is the TMR25 from IMA Petroncini, a solid-rotating drum R-roaster. Figure 2.5 illustrates
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this system, and Table 2.1 details the key measurements shown in the figure, which are
typical in commercial roasting settings.

Figure 2.5: Representation of a hot air drum roaster with air recycle (R-roaster). Adapted
from [7]

Spouted-Bed Roasters

Spouted-bed roasters and fluidized-bed roasters are terms that are sometimes used inter-
changeably. Although similar in that they both utilize high-velocity air to lift the beans,
they are quite different. In fluidized-bed roasters, the beans are kept suspended in the air,
creating a bed of constantly moving and circulating beans. However, most roasters referred
to as fluidized-bed roasters are actually spouted-bed roasters. The difference is that while
fluidized-bed roasters keep the beans fully suspended, spouted-bed roasters use air to lift
a "spout" of beans into the air, which then fall back down around the edges, continuously
mixing. Both methods primarily rely on convection for heating the beans.

True fluidized-bed roasters are uncommon in industrial or commercial settings [8]. Spouted-
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Table 2.1: Typical Measured Roaster Parameters

Parameter Description

T1 The temperature of the air coming out of the burner.
T2 The temperature of the air coming into the drum roasting cham-

ber. This temperature is controlled by the burner fuel used, the
amount of air recirculated, and the amount of fresh air drawn into
the system

T3 The temperature of the roasting air leaving the drum.
V AC This is the valve that, along with VAT, controls the air flow rate

through the burner. The valve position is typically measured as a
percentage open or closed.

V AT This valve mostly controls how much air is recirculated and how
much is put through the exhaust. The valve position is typically
measured as a percentage open or closed.

V AF This valve controls how much ambient air is drawn into and mixed
with the recirculated air. The valve position is typically measured
as a percentage open or closed.

BF This is a small control system that controls how much air and fuel
the burner flame gets. It is typically measured as a percentage of
maximum flame temperature.

bed roasters, however, are often used by hobbyists or for small batch roasting due to their
smaller equipment footprint compared to drum roasters. These roasters allow for higher
rates of heat transfer due to larger airflow rates and volumes of air. They are also me-
chanically simple and typically cheaper to produce. Spouted-bed roasters usually operate at
lower inlet temperatures, typically less than 360◦C, with roasting times ranging from 10 to
20 minutes [8].

Rotating-Bowl Roasters

In Rotating-bowl roasters, beans move across the surface of a heavy cast-iron bowl by cen-
trifugal force. the beans move up the wall of the bow towards the rim and strike a stationary
cover where they fall back inwards to the bowl. hot gas moves into the bowl through a
central duct in the top cover and moves through the bowl into an annular duct [8]. Inlet gas
temperatures up to 550◦C are typically used, however, roasting times are typically quicker,
being around 3 to 6 minutes.
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Scoop-Wheel Roasters

This design utilizes scoops mounted on a wheel in the roasting chamber, that rotates through
the beans that collect in a trough at the base. The scoops move through the bed of beans,
mixing them and throwing some beans upwards in the head space. Hot air moves tangentially
to the scoops and moves through slits of perforated metal near the bottom of the trough.
Inlet air temperatures of up to 420◦C are typically used, and roasting times as short as 1.5
to 6 minutes are typical [8].

Swirling-Bed Roasters

Swirling-bed roasters are similar to spouted-bed or fluidized-roasters in that it utilizes high
air speeds to keep the beans in constant motion, increasing the effective surface area and rate
of heat transfer. This results in high-efficiency roasts that utilize lower inlet gas temperatures,
typically lower that 280◦C and short roast times, 1.5 to 3.0 minutes. [8]. The roasting
chamber is designed so that hot air swirls around and pushes beans against the slightly
outward tapered walls, so that the move out and up, and results in a layer of beans to spiral
around the chamber. Beans get pushed up inwards as the get to the top of the wall and fall
back down onto an up-wards pointing cone, where the process repeats. Increasing the flow of
the air increases the heat transfer, but also the drag and centrifugal forces proportionally [8].

Although there are many types and designs of roasters, as illustrated in Figure 2.6, this
study focuses on the rotating-drum roaster. Specifically, rotating solid-drum R-roaster like
illustrated in figure 2.5. This is because drum roasters are arguably the most common type
of roaster used commercially [14], and because operational data for this type of roaster was
available for this study. This data was used to examine the effectiveness of several physical
based models, and develop a reflective physics based system for developing synthetic data
that could be used to further explore machine-learning techniques for system identification
and non-linear control.

Although there are many types and designs of roasters, as illustrated in Figure 2.6, this
study focuses on the rotating-drum roaster, specifically the rotating solid-drum R-roaster,
as illustrated in Figure 2.5. Drum roasters are arguably the most common type of roaster
used commercially [14], and operational data for this type of roaster was available for this
study. This data was used to assess the effectiveness of several physics-based models and
develop a grey-box model in Chapter 3.
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(a) Spouted-bed Roaster (b) Rotating-Bowl Roaster

(c) Scoop-Wheel Roaster (d) Swirling-Bed Roaster

Figure 2.6: Alternative Roaster Designs. Images taken from [8].
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2.4 Modelling

In the previous sections, the background of coffee and the roasting process was summarized,
highlighting the complexity and significance of this process in determining the taste and
quality of the final product. Coffee roasting is a highly intricate procedure involving vari-
ous chemical reactions and heat transfer mechanisms, which significantly impact the flavor,
aroma, and overall quality of the coffee. Given this complexity, developing accurate models
to understand and control the roasting process is of immense value to the coffee industry.
These models enable the design and optimization of control systems, ensuring consistency
and quality in coffee production.

Several models have been proposed for coffee roasting, ranging from those specific to
certain sections of the roasting process and equipment to more general approaches. These
models can generally be classified into three categories: white box, grey box, and black box
models. White box models typically rely on physical, first principle relations to describe the
system. Schwartzberg’s model [8] is one of the most referenced in this category, providing
a comprehensive framework for understanding the heat transfer and reaction kinetics in
coffee roasting. Black box models, on the other hand, are characterized by their data-driven
nature. They utilize machine learning and statistical techniques to model the system based
on empirical data, making them particularly useful when the underlying physical processes
are too complex to model accurately with first principles alone. Recent advancements in
machine learning, especially neural networks, have opened new avenues for developing highly
accurate data-driven models for coffee roasting. Grey box models combine elements of both
methodologies, using known physical laws, empirical relations, and data techniques such as
regression or machine learning to create robust and flexible models capable of capturing the
intricacies of coffee roasting.

It is important to note that the intent of developing a model for this study is to design
and simulate a controller. Therefore, the model must accurately predict how the system
states develop with different inputs or control algorithms. This requirement highlights a
key distinction between "time series forecasting" and "system identification." Forecasting
aims to estimate future states without necessarily perturbing the system, whereas system
identification seeks to understand the system dynamics to facilitate control and manipulation.

This section reviews various approaches to modeling the coffee roasting process. It begins
with a review of physics-based models in literature. Next, it examines attempts at data-based
modeling specifically for coffee roasters. Finally, it provides an overview of neural network
techniques recently developed and used specifically for system identification.
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2.4.1 Physics-based Roaster Models

The most referenced physics based model for coffee roasting comes from Schwartzberg [8],
which encompasses the heat transfer between beans, air, metal, and accounts for moisture
content of the beans as well as exothermic reactions that occur inside the beans. His model
is not specific to any one roaster, although, in his paper he mentions how to adapt the
equations and assumptions that can be made for different roaster types, such as rotating
drum roasters, or spouted-bed roasters. The model primarily relies on heat balance equations
between the roasting air, the bean mass, and the metal of the roaster, but it relies heavily on
regression techniques and the assumption that several key parameters are constant, such as
coefficients related to the rate of reactions inside the bean, and critically, the effective heat
transfer coefficient. This assumption may be accurate when mass of beans in the drum, the
movement of the beans, and the mass air flow rate are held constant, but a model on this
assumption is shown in Section 3 to have significant errors when these variables vary. This
is supported by Critso et al. [24] and Clarke [14], where observations that the effective heat
transfer inside the drum of a roaster was affected by the motion of the bean, which in term
was related to the amount the drum was filled, and the speed of the drum rotation.

Others have taken the Schwartzberg model, and modified it to try to account for the
effective heat transfer, by modelling the flow rate around a coffee bean, such as Vosloo [10].
This method might capture the effect of that different air flow rate will have on the effective
heat transfer but does not take into account the motion of the beans in the drum. Typically
in roasters, the average air velocity is relatively low in relation to the motion on of beans, so
the relative effect of the beans moving through the air will have a significant effect on the
heat transfer rate [24]. Puranto and Chen [15] developed a model utilizing heat transfer
equations similar to Schwartzberg, however, they proposed a moisture loss model which uses
the lumped reaction engineering approach (L-REA) to estimate the moisture loss of the
coffee beans. This process still relies on experimentally determining an "activation energy"
parameter which is determined experimentally.

Other studies, such as Fabbri et al. [25] focus on modelling the the bean temperature by
focusing on the specific geometry of a coffee bean, and utilized Fick’s law to model moisture
loss, and empirical relations to model water diffusivity within the coffee bean.

Vosloo [10] reviews several of these models and tries to validate their performance experi-
mentally with a direct-flame heated drum roaster. Critically however, the inlet temperatures,
drum speeds, and roasting air flow rates were held constant in experimentation. This allows
for several critical assumptions, such as a constant effective heat transfer rate, required for
many of the models above. In real roasting scenarios, the inlet gas temperature varies sig-
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nificantly as part of the bean temperature control, as well as varying drum speeds, and air
flow rates. Interestingly, between many of the models looked at, Schwartzberg based models
performed, with the described caveats, very well with R2 values of around 0.98 for constant
inlet temperatures [8]. For this reason, this is the model that this study utilizes for it’s
exploration into augmenting models to account for varying parameters, or for learning the
system dynamics. Details of the models used can be found in the Appendix B.

2.4.2 Data-based Roaster Models

There have been some studies discovered that try black-box approaches for modelling coffee
roasters. A relevant study utilizing Long Short-Term Memory (LSTM) based neural networks
was conducted by Adiwijaya [9]. Adiwijaya’s study focuses on fitting a "one-step-ahead"
LSTM-based neural network to several roasts with different configurations to determine
how well models generalize to different conditions. This study builds off some of this work
done and explores "one-step-ahead" approaches performance when used in an auto-regressive
fashion to simulate the system dynamics. This is done because the motivation for developing
a model in this study is to facilitate the design and simulation of a controller. In order to do
this, a model of the "plant" dynamics are important. In Adiwijaya’s study, predictions were
made only with actual measured values as input, and not auto-regressively with previous
predictions as inputs to the LSTM.

Other studies look at black-box approaches for identifying system dynamics, but are
not specific to coffee roasting. Cheng demonstrates a unique method for learning both the
system dynamics and optimal controls of linear systems simultaneously. Cheng proposes a
Neural Ordinary Differential Equation (ODE) based method which combines the the system
identification and optimal control learning using a coupled neural structure. Cheng verifies
the approach virtual simulations of deterministic systems, such as the classic mechanical
"cart-pole" or "inverted-pole" problem [26]. Similarily, Bachhuber et al. also develop an
approach for utilizing nerual ODEs for automatic system identification and test it on several
virtual systems. Ramirez-Chavarria et al. presents a regularization scheme for identifying
nonlinear finite response models (NFIR) using neural networks, and Hendriks et al. use
neural networks to develop Deep Energy-Base models that can be used for system identi-
fication. There are several other studies focused at the indersection of machine learning,
controls and system identification. Section 2.4.3, covers some of the common data-based
system identification utilizing machine learning.

29



2.4.3 Data-based models and System Identification

System identification is a crucial discipline in control theory, focused on building math-
ematical models of dynamic systems from measured data. Traditionally, the classical ap-
proach to system identification relies on techniques from mathematical statistics, primarily
using prediction error methods (PEM) and discrete model orders [27]. This method involves
selecting model structures like FIR, ARX, NFIR, and NARX models, which depend on un-
known parameter vectors [27]. The complexity of these models is managed by adjusting
the dimension of these vectors, striking a balance between bias and variance. Complexity
measures such as the Akaike Information Criterion (AIC) and the Bayesian Information Cri-
terion (BIC), as well as cross-validation methods, are commonly employed to select the most
suitable model structure [28].

In classical approaches, the process follows a loop, where data is collected, a family of
models are chosen, and finally the best model in this family is determined, by using model
validation tests [27]. However, it is not guaranteed that any of the models explored produce
satisfactory results. This can happen because of several reasons, such as the the model set
or family was not appropriate and doesn’t contain a satisfactory description of the system,
or the data was not informative enough to provide guidance in selecting an appropriate
model [27].

According to Pillonetto, there has been significant interest and research in using machine
learning, in particular deep neural networks, as a tool for system identification, offering
even more complex model spaces [28]. These networks, composed of multiple layers of
linear transformations and nonlinearities, can approximate a wide range of dynamic systems.
Advances in deep learning, including improved training algorithms, larger datasets, and
enhanced computational resources, have propelled their application in system identification.
Hierarchical models such as deep NFIR and NARX, temporal convolutional networks, and
deep state-space models illustrate the versatility and power of deep learning in capturing
complex system dynamics [28].

The integration of deep learning with system identification promises to bridge the gap
between these fields, offering new methodologies and insights. Techniques like energy-based
models [29], concatenated representer theorems [30], and Koopman operator theory combined
with deep autoencoders [28, 31] are at the forefront of this interdisciplinary research. By
leveraging the strengths of deep learning, system identification can achieve more accurate
and robust models, paving the way for innovative applications across various domains. Here
we will go into some detail about a few of the more common neural network architectures
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used for system identification [28].

FIR and ARX Neural Networks

Finite Impulse Response (FIR) neural networks are model architectures used for system
identification where the system output depends on a finite sequence of past inputs [32]. This
concept originates from FIR filters in signal processing, which respond to an impulse input
over a limited duration.

In FIR neural networks, the input layer captures both the current and a fixed number
of previous input values. This structure allows the network to inherently manage temporal
dependencies within the data. The hidden layers then process this sequence through typical
neural network operations, including weighted summations followed by activation functions,
to extract relevant features and patterns [32].

The output layer of an FIR neural network predicts the current system output based
on the processed input vector, effectively modeling the relationship between the inputs and
the output over the specified window of past inputs [32]. This makes FIR neural networks
particularly suited for time-series prediction and dynamic system modeling tasks.

For example, an FIR neural network designed to predict the output y(t) based on the
past N inputs x(t), x(t− 1), . . . , x(t−N + 1) would operate as follows:

• The input layer takes the current input x(t) along with the past N − 1 inputs x(t −
1), . . . , x(t−N + 1).

• The hidden layers process this sequence, extracting temporal features and dependen-
cies.

• The output layer provides the predicted output ŷ(t).

The mathematical representation of an FIR neural network is shown in Equation 2.1

ŷ(t) = f(x(t), x(t− 1), . . . , x(t−N + 1); θ) (2.1)

where f denotes the function implemented by the neural network, and θ represents the
network’s parameters, including weights and biases.

FIR neural networks have been recognized for their capability to handle dynamic systems
with finite memory effectively and their structure allows them to capture the essence of time-
dependent data [32]. Finite Impulse Response (FIR) neural networks, while advantageous
in many applications, come with several notable disadvantages, such as requiring a large
number or parameters due to the large inputs and increases training complexity. They are
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also sensitive to the input window size as well as to noise making them difficult to train and
tune.

ARX (AutoRegressive with eXogenous inputs) neural networks are another popular ap-
proach in system identification, extending the traditional ARX model by incorporating neural
network components, thus enabling the modeling of nonlinear relationships [28]. These are
similar to FIR architectures, but differ primarily in ARX architectures include exogenous
inputs, such as past measured outputs. This is represented in Equation 2.2

y(t) = f(x(t), x(t− 1), . . . , x(t−N + 1), y(t− 1), y(t− 2), . . . , y(t−M); θ) (2.2)

Here M is the number of past outputs considered.
One important consideration with ARX models is that they require past outputs to make

future predictions. This dependency poses a challenge for long-term predictions since future
outputs are not available until they are predicted. Using these future values prematurely
can lead to temporal leaking, which complicates the training process [28]. Consequently,
ARX models are typically constrained to "one-step-ahead" prediction techniques, where the
model predicts the output of the dynamic system one time-step into the future. These one-
step-ahead predictions are then used in an autoregressive manner to model the system’s
dynamics.

RNNs, LSTM, and GRU Networks

Recurrent Neural Networks (RNNs) are a class of neural network architectures designed
to handle sequential data by modeling dependencies from past inputs and states. RNNs
maintain a hidden state that is updated at each time step, allowing them to capture temporal
dependencies. The general structure of an RNN includes a state-propagation equation and
an output equation. For instance, the Elman RNN updates its hidden state and computes
the output as follows [28]:

h(t+ 1) = σ(Whhh(t) +Whxx(t) + bh), (2.3)

ŷ(t) = Wyhh(t) +Wyxx(t) + by, (2.4)

Here h(t) is the hidden state, x(t) is the input, ŷ(t) is the predicted output, and σ is
a nonlinear activation function. The parameters Whh,Whx,Wyh,Wyx, bh, and by are learned
during training.

One common issue with RNNs is the exploding and vanishing gradient problem, which
arises during backpropagation through time. This problem can make training difficult and
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slow convergence. Solutions include gradient clipping, non-saturating activation functions,
and orthogonal RNNs.

To address the limitations of standard RNNs, particularly the vanishing gradient problem,
gated mechanisms such as Long Short-Term Memory (LSTM) and Gated Recurrent Units
(GRU) have been developed.

Long Short-Term Memory (LSTM) models introduce a set of gates (input, output, and
forget gates) that regulate the flow of information, allowing the network to maintain long-
term dependencies. The equations for an LSTM are as shown in Equations 2.5 through 2.10.

ft = σ(Wf · [ht−1, xt] + bf ), (2.5)

it = σ(Wi · [ht−1, xt] + bi), (2.6)

ot = σ(Wo · [ht−1, xt] + bo), (2.7)

C̃t = tanh(WC · [ht−1, xt] + bC), (2.8)

Ct = ft ∗ Ct−1 + it ∗ C̃t, (2.9)

ht = ot ∗ tanh(Ct), (2.10)

Here ft is the forget gate, it is the input gate, ot is the output gate, Ct is the cell state,
and ht is the hidden state.

Gated Recurrent Units (GRUs) simplify the LSTM architecture by combining the forget
and input gates into a single update gate and merging the cell state and hidden state. The
GRU equations shown in Equations 2.11 to Equations 2.14.

zt = σ(Wz · [ht−1, xt] + bz), (2.11)

rt = σ(Wr · [ht−1, xt] + br), (2.12)

h̃t = tanh(Wh · [rt ∗ ht−1, xt] + bh), (2.13)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t, (2.14)

Here zt is the update gate, rt is the reset gate, and ht is the hidden state.
The benefit of being able to learn long range dependencies is is obvious when it comes

to modeling language, where the context for from words far removed from the present word
is important, however, this is not always the case in dynamical systems, where only nearby
temporal properties are relevant in understanding the current trajectory [28]. This can be
important and beneficial for systems that are cyclic in nature, but one must be careful as it
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might find patterns or dependencies in the data that are not really there.
Probabilistic Recurrent Neural Networks (Probabilistic RNNs) extend the deterministic

nature of traditional RNNs by incorporating probabilistic elements [33]. Instead of predicting
a single output value, Probabilistic RNNs predict a distribution over possible outputs. This
approach provides a measure of uncertainty in the predictions and can be particularly useful
in applications where it is important to quantify the confidence in the model’s predictions. An
example of how this might be expressed mathematically is shown below in Figure 2.15 [28].[

µ(t)

log σ(t)2

]
= Wyhh(t) +Wyxx(t) + by. (2.15)

The logarithm ensures that the variance remains non-negative. The model is trained
by maximizing the likelihood of the observed data under the predicted distribution. The
benefit of using a probabilistic RNN is that it can provide a measure of uncertainty, which
is important in some applications, as well as it can be more robust to noise and outliers in
the data.

Overall, the advancements in RNN architectures, particularly the introduction of LSTM
and GRU, have significantly enhanced the capability of neural networks to handle complex
temporal dependencies in system identification.
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Chapter 3

Methods and Experiments

3.1 Method Overview

This chapter presents the methodology and experiments conducted to model a coffee roaster
using both black-box and grey-box approaches. The focus is on developing a robust model
that sufficiently represents the coffee roasting process with a level of accuracy appropriate
for use in a control system, leveraging the strengths of neural networks and physics-based
equations.

The chapter begins with an exploration of black-box modelling using a Neural ARX
(NARX) approach. Various neural network architectures, including NARX and RNN, are
discussed, with an emphasis on the NARX model trained on real production data from
approximately 4000 coffee roasts. Key variables used in training the model are listed and
described. The NARX model’s structure, implementation, and training process are thor-
oughly explained. Despite achieving high R-squared values and low RMSE, the model’s
performance is critically evaluated against a naive model, which predicts no change in bean
probe temperature. The comparison reveals significant limitations in the NARX model, par-
ticularly when used for autoregressive predictions, highlighting the need for a more accurate
and reliable modelling approach.

To address the limitations of the black-box approach, the chapter transitions to a grey-
box modelling strategy that integrates physics-based equations with neural networks. The
theoretical foundation for the grey-box approach is laid out, drawing from the work of
Schwartzberg [8], Putranto et al. [34], and Vosloo [10]. Schwartzberg’s model, comprising
a system of coupled differential equations, serves as the basis for the grey-box model. Key
parameters and their relations are described, with a focus on the effective heat transfer
coefficient (he), a critical parameter influencing the model’s accuracy.

A detailed analysis of the heat transfer coefficient (he) is conducted. Initially, Vosloo’s
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method [10] for determining he is replicated and evaluated using real production data. The
regression technique used to optimize he and other parameters is explained, revealing the
challenges and limitations of assuming a constant he. The impact of drum speed and air
velocity on he is discussed, highlighting the importance of capturing these dynamics accu-
rately.

The chapter then explores the integration of neural networks into the differential equa-
tions to model he as a function of drum rotation speed, air velocity, and other variables. A
neural network is trained within the system of differential equations to minimize the predic-
tion error of the bean probe temperature. The training algorithm, incorporating backprop-
agation and optimization techniques, is detailed. This hybrid approach aims to leverage the
flexibility and learning capabilities of neural networks while maintaining the interpretability
and reliability of physics-based models.

The chapter concludes by summarizing the methods and experiments conducted to de-
velop a robust coffee roaster model. The limitations of the black-box approach are addressed
through the proposed grey-box model, which combines empirical data with first-principles
equations. This hybrid approach is anticipated to provide a more accurate and reliable
representation of the coffee roasting process, suitable for controller design and simulation.

Overall, this chapter lays the groundwork for the results and analysis presented in the
following chapters, demonstrating the importance of combining neural networks with physics-
based models to overcome the challenges of accurately modelling complex systems like coffee
roasting.

3.2 Roaster Black-box Modelling

The initial method explored in this study was a "one-step-ahead" prediction approach using
neural networks to model the coffee roaster as a black-box system. As discussed by Pillonetto,
in his survey on machine learning techniques for system identification, various architectures
can be employed for this purpose, with NARX and RNN architectures being common [28].
In this study, a NARX model was trained to evaluate the effectiveness of this approach for
modeling a coffee roaster. Although this section focuses on detailing the methodology, it also
highlights the challenges these models face when used for controller simulation and design,
particularly when the variable to be controlled changes slowly compared to the rate at which
the controller inputs change.

In this section, the NARX model developed for this study is first described. Next, a
"naive" model is introduced, which assumes no change between the current bean probe tem-
perature and the next time step. Finally, the implications of this comparison are discussed,
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motivating the exploration of a grey-box model to address the challenges encountered with
the black-box approach.

The theory behind Neural ARX architectures is covered in Chapter 2. This section
provides details on the implementation of the this technique on the application of coffee
roasting. The data comprised approximately 4000 production roasts collected from a real
commercial coffee production. Details about this dataset are found in Appendix C. Table 3.1
lists the variables used in training the neural network, including both inputs to the model
and the target outputs it aims to predict.

Variable Description
Set % command BF [%] Command percentage for Burner Fuel (BF) con-

trol. This is a percentage of the maximum fuel
rate.

Setpoint VAC [% * 0.1] Setpoint for open position of valve VAC (valve con-
trolling airflow into furnace), scaled by 0.1.

Setpoint drum speed TT [% * 0.1] Setpoint for drum speed, scaled by 0.1. The set-
point is a percentage of the maximum speed

Setpoint Closing VAF [%] Setpoint for closed position of VAF (valve control-
ling ambient air intake) percentage.

Setpoint Opening VAT [%] Setpoint for open position of VAT (valve control-
ling roaster air recycle) percentage.

Actual value Tc [°C] Actual temperature Tc (bean probe) in degrees
Celsius.

Actual value T1 [°C] Actual temperature T1 (roaster air temperature
out of the furnace) in degrees Celsius.

Actual value T2 [°C] Actual temperature T2 (roaster air temperature
into the roaster drum) in degrees Celsius.

Actual value T3 [°C] Actual temperature T3 (roaster air temperature
leaving the roaster) in degrees Celsius.

Actual value T4 [°C] Actual temperature T4 (roaster air temperature
entering the furnace) in degrees Celsius.

Flow gas BF [%] Actual BF (Burner Fuel) flow rate as a percentage
of total rate.

Present Value VAC [% * 0.1] Actual open percentage of the VAC.
Actual value TT [rpm] Actual drum speed TT in rpm.
Actual value closing VAF [%] Actual value of the VAF closed percentage.
Actual value opening VAT [%] Actual value of the VAT open percentage.
Air speed meter fSCP [m/sec] Air speed measured by a Pitot tube in meters per

second in the roaster outlet ducting. Sometimes
denoted as vg.

Table 3.1: Variables used in training the neural network.
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These variables were chosen based on their relevance to the system dynamics, their po-
tential impact on the model’s predictive capabilities, and their availability. It is essential
to distinguish between control "inputs" and model "inputs." Control inputs are signals con-
trolled by a controller to achieve desired outputs, while model inputs are features used to
predict the system’s output response. For the coffee roaster system, the control inputs are
the setpoints for BF, VAF, VAT, and VAC. Model inputs, however, are the lagged values of
the control inputs and all the other variables listed in Table 3.1. The model input variables
provide the necessary information about the system’s state and control commands in the
past, while the model outputs are the states of the system the model aims to predict for
the next time step. Since this is a auto-regressive model, and the intent is to simulate a
the "plant" dynamics for controller design, the outputs have to include all of the necessary
information, that will be inputs for the next prediction. The importance of this will be
discussed later.

An NARX model uses lagged values of both model inputs and outputs for prediction.
Therefore, our neural network inputs consisted of lagged values for each variable in Table 3.1,
with the output being the non-controller inputs (actual temperatures, flow rates, and pres-
sures) for the current time step. The measurements were synchronized and taken 1 second
apart. A dataloader was constructed to create "datapoints" containing lagged features for
each model input variable as the x vector and the current values of those vectors as the
model output y vector, as shown in Figure 3.1.

Various lagged values were experimented with (testing up to 30 seconds), but values
beyond 5 seconds did not significantly improve results and increased training time. This
is supported by Pillonetto’s comments, where in dynamics systems, long term dependencies
may not necessarily be beneficial [28]. The final model used 80 features (5 control inputs with
5 lagged values, and 11 model inputs with 5 lagged values) and produced 11 outputs (system
states at the next time step) for each data point. The neural network architecture, shown
in Figure 3.1, consisted of two dense hidden layers with 128 and 64 neurons, respectively.

The model was implemented using TensorFlow and was kept relatively simple due to
resource constraints. It is important to note that all non-controller inputs must be predicted
to make recursive predictions when simulating a roast. The data was split into training,
validation, and test sets in a 70-15-15 ratio, ensuring that individual roasts were not divided
between sets to avoid bias.

The neural networks were trained for approximately 50 epochs, sufficient to observe an
"elbow" in the loss trend, reducing the risk of over-fitting. The obtained R-squared value
and RMSE for the test set were 0.9999 and 4.812, respectively, calculated using all 11 output
variables. Figure 3.2 shows an example of the model’s fit for the bean probe temperature
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Figure 3.1: Structure of the NARX Neural Network developed for modeling the Coffee
Roaster as a Black-box system.

using one-step-ahead predictions with actual data available.
Despite the high R-squared values and low RMSE, caution is necessary. When com-

pared to a "naive" model, which predicts no change in the bean probe temperature at the
next time step using actual measurements from the previous time steps, the performance is
indistinguishable.

In machine learning, particularly in classification tasks, model performance is often com-
pared to a naive model. For example, the Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) curve is used to compare a model against a naive model
that makes random guesses. An AUC value of 0.5 indicates a model that performs no better
than random guessing, while an AUC less than 0.5 indicates a model performing worse than
random guessing. In this study, a similar concept is employed by comparing the NARX
model’s performance to a naive model that assumes no dynamics, predicting that any vari-
able’s value remains constant from one time step to the next. This comparison provides
a baseline to evaluate the usefulness of the NARX model, as expressed mathematically in
Equation 3.1.

ŷ(t) = y(t− 1) (3.1)
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Figure 3.2: Neural ARX model predictions when prior actual data is available for each
prediction. The model fit appears nearly perfect.

Equation 3.1 indicates that the predicted value at time t, ŷ(t), is assumed to be the same
as the observed value at the previous time step, y(t − 1). This assumption of no change
provides a simple baseline against which the performance of more complex models can be
compared. The naive model’s performance, with an average R-squared value of 0.999 and a
total RMSE of 1.446 for the three output variables (Tc, T1, and T2) is shown in Figure 3.3.

Performance metrics such as R-squared can sometimes be misleading when assessing the
practical utility of a model. For instance, in the classic example of cancer prediction, a
model that predicts no one has cancer might achieve a high accuracy because the majority
of the population does not have cancer [35]. However, such a model would be practically
useless if the intent was to identify actual cancer cases. This underscores the importance of
comparing models against naive baselines to assess their true effectiveness. By benchmarking
the NARX model against a naive model, the relative performance and practical value can
be understood more clearly.

The high performance of the naive model likely stems from the fact that in any 1-second
interval the temperature changes are very small due to the large thermal masses involved in
coffee roasting. In other words, since the temperatures do not move much in comparison to
their magnitudes over any 1 second interval, a model that assumes that there is no movement
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Figure 3.3: Predicted vs actual temperatures for a naive model, which predicts no change
for the next step. Despite this, the R-squared and RMSE are deceivingly good, 0.999 and
1.446, respectively.

results in little error. This issue is further highlighted when the NARX model is tested using
auto-regressive predictions, where prior predictions are used in place of actual data, resulting
in significantly worse performance (Figure 3.4).

Figure 3.4: Auto-regressive predictions using the NARX model show significantly decreased
performance.

This issue also applies to feed-forward neural networks and RNN architectures used for
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"one-step-ahead" predictions. When the changes are small relative to the magnitude of what
is being predicted, performance metrics may appear impressive when models are tested with
measured data to predict the next step. However, this may not be sufficient for the model’s
intended purpose. These models may fail when used autoregressively, where predictions are
fed back into the inputs to simulate system dynamics for controller design.

For the trained NARX model, performance visibly decreases when used autoregressively.
However, it may appears the model has learned something about the system dynamics, as
the trend shape is representative and not random. To further test this, the model was used
to simulate a scenario the same as that shown in Figure 3.4, only the fuel control input was
changed to a constant 1%. Figure 3.5 displays the results.

Figure 3.5: Simulation of black-box roaster model with a constant 1% fuel input results in
unrealistic model behavior, missing the drying phase dip and showing higher-than-expected
temperatures.

Although production data from a real system with a fuel rate kept at 1% is not available
in the dataset, the performance can still be assessed by an intuitive understanding and
domain knowledge of what the system should do. As discussed in the Section 2.3.1, the
cold beans are dropped into the drum, which should lower the temperature of the probe
during the drying stage. If the input heat from the furnace is lowered, we should expect the
temperatures to drop potentially faster, and deeper. The model completely misses this and
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conversely predicts that the probe temperature will continue to increase instead of decrease.
This indicates that the model is not truly representative of the system. Additionally, when
compared to the actual data (with all controls except for the fuel used in the simulation),
the simulated bean temperature is higher. This is unrealistic, as the actual fuel rate was
much higher than 1% throughout the roast. Since the fuel is the primary heat source, the
bean temperature could not be higher in the simulated 1% fuel rate scenario.

This error in the model could be due to insufficient data for learning dynamics in regions
where the fuel rate is low, such as the 1% scenario, or it could result from the model architec-
ture or hyperparameters. While there may be many other reasons for the error, this example
highlights a critical flaw in this method: verifying the correctness of the model without ad-
ditional experimentation and data collection is challenging. Moreover, model performance
metrics such as R-squared and RMSE can be misleading, depending on the method used
for model testing. Overall, it is difficult to determine how accurately the model reflects
the system dynamics when control settings differ from those in the dataset. Unfortunately,
additional experimentation and extra data collection are not available for this study. This
limitation is common in the industry, as running equipment under different regimes, apart
from the current operational conditions, to verify models can be expensive or prohibitive.

In the examples above, it is likely that the NARX neural network has difficulties in
accurately capturing the system dynamics due to the small changes in the variables compared
to their magnitudes and the precision of measurements taken at 1-second intervals. This issue
is highlighted by the naive model’s ability to achieve high R-squared values despite predicting
no change. Additionally, there are several states of the system, identified by physics-based
models in other research [8, 10, 36], such as the rate of chemical reactions in the beans and
moisture content, that are not directly measurable. This lack of complete data makes it
challenging for any black-box approach to learn the correct dynamics accurately.

In contrast, traditional physics-based, or white-box, modeling offers advantages that ad-
dress the challenges faced by the black-box approach. First, it ensures that the model
behaves predictably within the constraints of well-understood physical laws, providing con-
fidence in the model’s consistency across different inputs. Additionally, these models are
interpretable, allowing for the inspection and understanding of the results. Although there
are many studies and methods for interpreting neural networks, it remains a challenging
task [37]. Despite these advantages, explicitly modeling all important dynamics in a sys-
tem, such as determining heat transfer coefficients, can be complex and difficult. Therefore,
this study proposes combining physics-based models with neural networks to leverage the
strengths of both approaches, resulting in a more robust grey-box model.

The following section explores this hybrid approach in detail, addressing the limitations
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encountered with the black-box models and demonstrating how a grey-box model can provide
a more accurate and reliable representation of the coffee roasting process.

3.3 Roaster Grey-box Modelling with Neural Networks

As discussed in Section 3.2, one-step-ahead black-box neural network models struggled to
learning the correct dynamics for the coffee roaster due to the small changes in data over
the time-steps between controller inputs. Conversely, white-box models that rely purely
on first-principle physics laws and equations that accurately describe the roaster dynamics
are difficult to write explicitly. This section details the exploration of a grey-box approach
that combines first-principles, empirical relations, and neural networks to model the cof-
fee roaster. First, the physics-based approaches developed primarily by Schwartzberg, and
Vosloo (introduced in Chapter 2) and their performance using real commercial production
data are reviewed. Next, development of a neural network integrated into the differential
equations established in the physics-based approaches is discussed.

3.3.1 Physics-based Models

This section explores various physics-based approaches for modeling a coffee roaster sys-
tem, laying the groundwork for developing a grey-box model. Among the different methods
considered, the equations established by Schwartzberg [8] serve as the primary basis for ex-
ploration. Two main approaches are examined: Schwartzberg’s original method, as detailed
in his seminal paper [8], and a modified approach by Vosloo [10]. Vosloo’s method integrates
findings from additional studies, including those by Putranto and Chen [34], to enhance the
model’s accuracy and applicability. By comparing these methods and their performance
with real production data, we aim to identify the most effective strategy for incorporating
physics-based principles into a grey-box model.

As discussed in Section 2.3.3, several different roaster designs exist. The datasets used
in this study are from various roasters in the TMR series developed by IMA. These are "R"
roasters, meaning they recirculate heated air for re-use, unlike "SP" roasters where the air
passes through only once. Although system dynamics can vary depending on the roaster
design, the dynamics of the roasting drum are generally similar. Because of this, physical
models developed tend to focus on the roasting chamber. For simplicity, and to align with
other studies ([8, 10, 34, 36, 38]), the grey-box model focuses on modeling the roasting
chamber.

In particular, Volsoo reviewed several roasting models including Schwartzberg model,
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Heyd et al. model, fabbri et al. model, L-REA model proposed by Puratranto and Chen.
He found that all proposed models showed good correlation between simulated and exper-
imental results when the inlet temperature, T2, and mass air flow rate are held constant.
Vosloo determined that the models proposed by Schwartzberg, and Putranto and Chen were
the most effective, as they required less computational effort while maintaining relatively
accurate results [10]. Consequently, this study’s model heavily relies on Vosloo’s findings
and uses Schwartzberg’s model as a foundation due to its simplicity, widespread use, and
Vosloo’s endorsement.

Schwartzberg’s model is described by a system of coupled differential equations with
the states being bean temperature (Tb), moisture content (Xb), exothermic heat produced
(He) and bean probe temperature (Trp). The controlled inputs are considered as the inlet
temperature (Tgi) and mass flow rate (Gg). The system of equations are summarized by
equations 3.2 to 3.6:

dTb

dt
=

GgCpg(Tg)(Tgi − Tgo) +mdb(
dHe

dt
+∆Hv

dXb

dt
)

mdb(1 +Xb)Cpb(Tg)
(3.2)

dXb

dt
= −4.32× 109X2

b

(db × 103)2
exp

(
−9889

Tb

)
(3.3)

dHe

dt
= Ar exp

(
−∆ER

Tb

)(
Het −He

Het

)
(3.4)

dTrp

dt
= K(Tb − Trp) (3.5)

Critically, the outlet air temperature, Tgo is considered to be a algebraic constraint and
is described by the following Equation 3.6.

Tgo = Tgi − (Tgi − Tb)

[
1− exp

(
− heAb

GgCpg

)]
(3.6)

The thermal properties of the roasting air, such as heat capacity (Cpg), are evaluated at
the average temperature between the inlet and the outlet for simplicity. This temperature
is denoted as Tg. Detailed derivations and descriptions of the variables can be found in
Appendix B. Relations determined experimentally by Vosloo [10] are used for the thermal
properties of the roasting air, while the relation for the heat capacity of the coffee beans is
taken from the study by Putranto and Chen [15]. Vosloo, and Putranto and Chen, found
that the thermal properties of the roasting air could be sufficiently described as a function
of air temperature, while the coffee bean properties could be described by a function of
both moisture content and temperature [10, 15]. Details of these relations are detailed in
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Appendix A.
Although the rotational speed of the drum does not appear explicitly in these equations,

it significantly affects the effective heat transfer rate (he) according to Cristo et al [24]. The
heat transfer term, he, is explicitly represented in equation 3.6, and thus implicitly shows
up in the equation for the bean temperature, equation 3.2, and by extension of the bean
temperature in Equations 3.3, 3.4, and 3.5. Because of this, it is a very influential parameter
that must be carefully evaluated to ensure the model’s accuracy.

Schwartzberg and Vosloo take different approaches in addressing the effective heat trans-
fer coefficient. Schwartzberg assumes a constant heat transfer coefficient (he) and uses re-
gression techniques to determine a constant that minimizes the error between actual mea-
surements and model predictions, whereas Vosloo’s study tries to explicitly model the he

relation. Vosloo does this by approximating the heat transfer between the bean and the air
using a model of a sphere in a laminar air stream [10]. The exact method is shown in Equa-
tion 3.7 and derivation is explained in Appendix B. This approach is challenging because it
requires knowledge of the relative speed of the bean to the air flow, not just the absolute
average velocity of the air. Given that the absolute air movement in a roaster is relatively
slow, heat transfer is more influenced by the movement of the beans within the drum. This
movement is primarily determined by the drum’s rotational speed, the amount the drum is
filled, and the drum geometry according to Cristo et al. [24].

Schwartzberg proposes that he can be considered time invariant if the inlet temperature
and the mass flow rate are held constant, and determines this value, and other parameters,
by minimizing the error between actual measurements and model predictions [8]. Vosloo
suggests that this value might be approximated by modeling the airflow around a bean,
using the Nusselt, Biot, Prandtl, and Reynolds numbers, making it a function of the air
temperature, the general geometry of the bean, and the properties of roaster air, which
depend on the roasting air temperature [10]. The values for the air velocity come from the
mass flow rate and geometry of the drum. Details of this approach are in Appendix B, and
the final representation of the effective heat constant, using Vosloo’s method, is found in
Equation 3.7.

he =

λb

(
0.6λg

(
cpgug

λg

)1/3

(dbρgvg)
1/2 + 2

)
db

(
0.6db + λb + 0.18λg

(
cpgµg

λg

)1/3 (
dbρgvg
µg

)1/2
) (3.7)

Critically, both approaches neglect the effect of the beans’ movement in the drum, which
significantly affects the heat transfer between the beans and the air, metal, and other beans,
as pointed out by Cristo et al. [24]. By modeling the effective heat transfer coefficient, he,
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as a neural network these effects can potentially be included. Details such an approach are
described in 3.3.2.

Initially, the results from Vosloo’s model were replicated to ensure consistency with his
paper [10]. Vosloo’s parameters, shown in Table 3.2, were used to simulate the roaster drum
dynamics. The results from Vosloo [10] and from this studies reproduced model are shown
in Figure 3.6.

Table 3.2: Simulation Parameters used by Vosloo [10]

Parameter Value

Ab 0.08 m2

db 6.6× 10−3 m
Gg 0.02 kg/s
mb(d.b) 91.8× 10−3 kg d.b
Tb,i 20 ◦C
Tg,i 210, 250 ◦C
t 600 s
vg 0.2 m/s
Xb,i 0.082 kg/kg d.b.
∆Hv* 2790× 103 J/(kg K)
Ar* 1.162× 108 W/ kg
∆ER* 5500 K
Het* 232× 103 J/ kg

Parameters with "*" are values Vosloo takes from literature [10]

(a) 200°C Constant inlet temperature (b) 210°C Constant inlet temperature

Figure 3.6: Comparison of recreated model, and results from Vosloo [10]. "Experiment"
refers to the physical experiment performed by Vosloo, and "Vosloo Paper" is the physics
based model that was developed by Vosloo.
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Although the solutions are similar and have good general agreement, there are some
discrepancies in the bean temperature. Vosloo’s model was reviewed, and the discrepancies
were considered small enough for the methods to be verified.

Next a baseline for Vosloo’s model was constructed, using constants in Table 3.2 and
Equation 3.7, with control inputs from real production data. The roast profile constant, K,
was picked to be 0.0012. This value was chosen to be close to values seen in other papers [8,
10, 38]. A few of the results are shown in Figure 3.7.

(a) Profile 1: R2: -6.84 (b) Profile 2: R2: -4.14 (c) Profile 3: R2: -2.86

(d) Profile 4: R2: -1.77 (e) Profile 5: R2: -6.86

Figure 3.7: Comparison of Vosloo’s method with the actual measured roaster data of variable
roasting air temperature, velocity, and drum rotation speed. Although R2 values are poor,
these physics based models are able to get the correct general shapes of the profiles.

For this model, the R2 values are poor, as can be seen visually in Figure 3.7. Despite
this, the model does seem to be somewhat representative of the dynamics as the shape of
the profile is largely correct and is not random. This could be evidence that the underlying
physics are largely correct, but values such as K, or other parameters, are not accurate.

As suggested in Figure 3.7, and will also be emphasized later, the performance of physics-
based models significantly depends on accurately fitting unknown parameters, such as K, to
the production data. The more unknown parameters there are, the greater the uncertainty
introduced into the model. To minimize this uncertainty, only trials from a TMR25 roasting
machine were selected from the dataset. These trials included detailed information about
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the piping where the average air velocity was measured, the mass of green beans introduced
into the roast, and the approximate geometry of the drum. These parameters are crucial
for the model and are directly measurable, making them readily available if the equipment
is physically accessible. This detailed information allows for a precise assessment of how
well Vosloo’s physics-based model performs with real production data, reducing the added
uncertainty from unknown parameters.

Vosloo approximates the properties of the beans, such as the heat generated by chemical
reactions and the heat of vaporization, based on values found in literature, as shown in
Table 3.2 [10]. Other parameters, specific to the equipment but not directly measurable,
such as K, were determined using optimization techniques. The state variables of the system
and the control inputs are expressed as Equation 3.8 and Equation 3.9.

x = [Tb, Tgo, Xb, He, Trp] (3.8)

u = [Tgi, vg, TT ] (3.9)

The system of equations describing the system (Equations 3.2 to 3.6) can be rewritten and
summarized as Equations 3.10 to 3.14.

dTb

dt
= fb(Tb, Tgo, Xb, He, Trp, Tgi, vg, TT , K) (3.10)

dXb

dt
= fXb

(Tb, Xb) (3.11)

dHe

dt
= fHe(Tb, He) (3.12)

dTrp

dt
= K(Tb − Trp) (3.13)

dTgo

dt
= fTgo(Tgi, Tb, he, Ab, Gg, cpg) (3.14)

The optimization process involves finding the parameter K that minimizes the objective
function J(K). The objective function to be minimized is the mean squared error (MSE)
between the predicted and actual temperature profiles. Equation 3.15 can be written for
each roast profile i.

MSEi =
1

Ni

Ni∑
j=1

(
T (i)
rp (tj)− T (i)

c (tj)
)2

(3.15)

Here, T (i)
rp (tj) is the predicted bean probe temperature at time tj, T

(i)
c (tj) is the actual bean

temperature at time tj, and Ni is the number of data points in each roast profile i. The
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overall objective function to be minimized across all roast profile is written as Equation 3.16.

J(K) =
1

M

M∑
i=1

MSEi (3.16)

Where M is the total number of datasets. The optimization problem can be expressed as
Equation 3.17 and subject to condition 3.18.

min
K

J(K) (3.17)

K > 0 (3.18)

The entire process can be summarized mathematically as in Equation 3.19.

K∗ = argmin
K

{
1

M

M∑
i=1

1

Ni

Ni∑
j=1

(
T (i)
rp (tj)− T (i)

c (tj)
)2}

(3.19)

Here K∗ is the optimized parameter that minimizes the overall mean squared error between
the predicted and actual temperature profiles across all datasets. This was done using the
L-BFGS-B optimization algorithm.

Using this method, the optimized value of K was found to be approximately 0.00376,
resulting in an average R2 value of -1.384. An example of the model’s prediction for Trial
1 is shown in Figure 3.8a. Figure 3.8b compares the difference between the baseline case,
using K of 0.0012, and this optimized case. Although the R2 value improved compared
to the method used in Figure 3.7, the overall chart with the optimized value of K is less
representative, particularly in the drying section of the roast process, which is no longer
captured as accurately. This discrepancy suggests that the model might be missing some
critical dynamics or that assumptions about other parameters, such as the constants adapted
from literature, might be inaccurate. Either way, this shows that the method proposed by
Vosloo is insufficient to effectively model the production data.
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(a) Trial 1, K=0.00376, R2: -1.84 (b) Trial 1, K=0.0012, R2: -6.48

Figure 3.8: Comparison of optimized K and Benchmark K

Although this approach uses the same base set of equations as Schwartzberg’s method,
it differs by using literature values and explicitly attempting to model he. Schwartzberg’s
method involved optimizing several parameters simultaneously, including values for heAb

and factors related to the exothermic reaction, such as Ar, Het, ∆E/R, and Hv. For the
next experiment, Vosloo’s method for estimating he was maintained, however, instead of
using values from literature, a methodology was adapted to determine the unknown param-
eters using a similar optimization technique as the prior experiment. We will denote this
as the "Schwartzberg Method" as it seeks to optimize several parameters all at once like
Schwartzberg does in his original paper [8]. The optimization problem is now expressed as
a function of Ar, Het, ∆E/R, and Hv. To address collinearity issues that arise when us-
ing regression on these parameters individually, several parameters are combined: A = Ar,
B = Ar

Het
, C = ∆E

R
, D = Hv.

The optimization problem is then expressed as equation 3.20 and results are summarized
as Figure 3.9.

min
K

J(A,B,C,D,K) (3.20)
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Figure 3.9: Trial 1, Schwartzberg method, R2: -0.350. The fit improves from the Vosloo
method and the benchmark K method

As shown in Figure 3.9, the fit improves marginally compared to the results in Figure 3.8a
and 3.8b when using the Schwartzberg’s method. Interestingly, the values of A (Ar) and D

(Hv) did not change significantly from the values used in Vosloo’s study, whereas the values
of K, B ( Ar

Het
), and C (∆E

R
) did. Vosloo’s study uses values sourced from literature, but there

is uncertainty about the consistency of these properties across different coffee bean types.
The results suggest that some parameters may remain consistent across various coffee beans.
In contrast, other values are likely more specific to the physical properties of the individual
coffee beans, which might be expected given their relation to the chemical reactions occurring
within the beans.

Notably, the value of K differs from the value determined by regression when optimizing
for that parameter alone. When K was optimized independently, the value was approxi-
mately 0.00376, whereas now it is nearly twice as much, at 0.00721. This highlights that for
these techniques, the estimates of the parameter values can vary depending on the accuracy
of the other parameter values. Therefore, it is crucial to optimize parameters simultaneously
rather than individually, as optimizing one parameter at a time can lead to inaccuracies.

Finally, a regression was conducted assuming that the effective heat transfer coefficient
(he) could be considered constant. This approach, along with parameterizing unknown
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factors, aligns with Schwartzberg’s original proposal [8]. Schwartzberg’s model implicitly
assumes that he is a constant value determined by minimizing the loss between model pre-
dictions and actual data. However, Cristo et al. [24] argue that he likely varies with bean
movement. The assumption of a constant he may be valid if the mass flow rate of the air
and the drum’s rotational speed are held constant, as in Schwartzberg’s study. This assump-
tion makes the equations specific to those conditions and potentially introduces errors when
conditions vary.

For the dataset used in this study, these conditions are approximately met, as shown
in Figure 3.10. The average air velocity is around 7.5 to 8.0 m/s, and the drum rotation
speed remains close to 70 RPM for most of the roast. Although the RPM varies slightly, it
decreases primarily at the end, where the temperature difference between the beans and the
roasting air is small, minimizing the impact on he, since he is a factor of the temperature
difference which is smallest at the end of the roast.

Figure 3.10: Distributions of the average air velocity and drum speed, TT. This shows that
the values are relatively constant

An example of the results of the optimization under the assumption of a constant effective
heat transfer coefficient can be seen in Figure 3.11 and the overall R2 for the values is about
0.946.
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Figure 3.11: Model predictions compared to the actual measured data assuming that He can
be considered roughly constant

While the improvement is significant, there are some critical caveats. It is unclear how
well this method generalizes to other flow rates and drum speeds, as the available data is
fairly uniform. Cristo et al. demonstrated that bean motion in the drum changes significantly
with varying speeds, transitioning through slumping, rolling, cascading, cataracting, and
centrifuging regimes [24]. Consequently, as conditions (particularly drum speed and mass
flow rate) deviate from the averages used for optimization, the model’s accuracy is likely to
decrease. To use this model for a control system, it would be necessary to maintain constant
parameters such as drum speed and airflow, using only the inlet temperature to control the
roast profile. Alternatively, a schedule of he values could be created for different ranges of
tumbling speeds and airflows, tailored to a specific drum geometry and fill level. Using a
neural network to learn the relation of he instead of relying on constant assumptions may
allow a more generalizable model to be developed without such caveats.

In summary, the exploration of physics-based models for coffee roasting underscores the
strengths and limitations of both Schwartzberg’s and Vosloo’s approaches. Vosloo’s method,
while providing representative results, lacks the accuracy needed for simulating controllers
and dynamics with real production data. On the other hand, Schwartzberg’s method, despite
offering a good fit for specific drum speeds and airflow rates, proves impractical for gener-
alizing the roasting dynamics and controlling simulations that may involve varying these
inputs. These findings highlight the necessity of a more flexible modeling approach that can
accurately represent the complex interactions within the roasting process, paving the way
for the development of a grey-box model that integrates neural networks with physics-based
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principles for enhanced control and simulation accuracy.

3.3.2 Grey-box Model

This section delves into the development of a grey-box model for the coffee roasting pro-
cess, combining the strengths of physics-based modeling and data-driven neural networks.
While physics-based models, such as those proposed by Schwartzberg and Vosloo, provide
a foundational understanding of the roasting dynamics, they struggle with accuracy when
applied to real-world production data due to their reliance on certain assumptions, such as
constant inlet temperatures, and limited parameterization. Conversely, purely data-driven
approaches like neural networks can capture complex relationships within the data but can
struggle depending on the structure of the data and lack the interpretability and grounded
nature of physical principles.

To bridge this gap, a grey-box approach is adopted. This method leverages the underlying
physics described by differential equations while incorporating neural networks to model
complex, non-linear relationships that traditional methods may fail to capture accurately.
The key challenge addressed in this subsection is the modeling of the effective heat transfer
coefficient (he), which significantly impacts the accuracy of the roasting process simulation.

The development of the grey-box model involves several steps: exploring production and
synthetic datasets, establishing the model architecture, and training the neural network to
predict he within the differential equations. This integration aims to create a more robust
and flexible model capable of accurately simulating the coffee roasting dynamics under vary-
ing conditions. The process, implementation details, and the results of this approach are
thoroughly examined, highlighting the potential of grey-box modeling to enhance control
and prediction in coffee roasting systems.

Data

Unfortunately, the data for roasts that includes the mass of the coffee beans, the geometry
where the average speed of the air is measured, and the size of the drum is limited and falls
within a narrow distribution for values such as the drum rotation and air mass flow rates
as described in Section 3.3.1. This limitation makes it challenging to confidently apply the
aforementioned techniques in a way that accurately trains a model that generalizes to other
conditions.

To address this, two approaches were take simultaneously to train and verify the model.
First a relationship for the effective heat transfer was assumed, specific parameters were
chosen, and synthetic data was generated. The details of which can be found in Appendix B.
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This approach allowed for the theoretical exploration of a technique to identify he as a
function of drum rotation speed, air velocity, and mass. The synthetic data was then used
to test a grey-box approach that utilizes neural networks to effectively evaluate the he value
within the system of differential equations.

The second approached used production data. However, since mass of the coffee beans,
the geometry where the average speed of the air is measured, and the size of the drum were
not recorded explicitly, some knowledge about the business practices and general size of
equipment was used to estimate these values in hopes the model could be trained and tested
to verify the approach. This consisted of roughly 300 roasts with the temperature profiles
summarized in Figure 3.12. Summary statistics for the dataset can be found in Appendix C.

Figure 3.12: Roasting profiles for the training grey-box model with production data.

The generation of the synthetic data involved taking the available production data, re-
gardless of whether bean mass and other details were known, extracting the initial conditions
and control inputs, and simulating the roasts with the assumed relations for he, hc, and hk

found in Appendix B. This resulted in simulated roast data with distributions similar to the
production data but on hypothetical roaster equipment. By using synthetic data, we could
incorporate all available data, even those without known parameters, thus achieving a much
wider distribution. This wider distribution is still realistically obtainable on a hypothetical
machine as defined by the model generating the synthetic data. The data was collected into
a new dataset.

Figure 3.13a and Figure 3.13b summarize the distributions of inputs (air velocity and
drum rotation speed) for the production training and test data. While the distributions
between the test and training sets are similar, they are distinct enough to demonstrate that
the model generalizes well and avoids overfitting. As the roaster operates within defined
operational bounds, the model does not need to generalize to all possible values but only

56



those within the operating range. Since the control inputs are identical for both the synthetic
data and the production data the distributions are nearly identical.

(a) Distribution of velocity and drum rotation speed for production training
data.

(b) Distribution of velocity and drum rotation speed for production test
data.

Figure 3.13: The distributions for the inputs velocity and drum rotation speeds are similar,
but slightly different between the test and training sets. This helps with avoiding overfitting
during training.

Model Theory

For this Grey-box approach, the system of equations described in equations 3.2 to 3.6
with "Schwartzenberg method" described in Section 3.3.1 will be used and augmented with
a neural network. To do this the "unknown" parameters such as A, B, C, D and K from
Equation 3.20 were parameterized and the relation for the effective heat transfer coefficient,
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he, from Vosloo or Schwartzberg is replaced with a neural network, NNhe , as described in
Equation 3.21.

he = NNhe(Tg, vg, TT ) (3.21)

Where Tg is the average gas temperature, ω is the drum rotation speed, vg is the air velocity,
TT is the drum temperature. The neural network is trained to minimize the prediction error
of the bean probe temperature Trp compared to actual measurements Tc.

Here the parameters A, B, C, D and K, as well as the weights in the he neural network will
be determined simultaneously using backpropagation with the loss function being minimized
described by Equation 3.22.

MSE =
1

N

N∑
i=1

(T (i)
rp − T (i)

c )2 (3.22)

Where T
(i)
rp is the predicted bean probe temperature at time step i, T

(i)
c is the actual

measured temperature at time step i, N is the total number of time steps. The neural
network is trained using Algorithm 1.
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Data: List of training trials T = {D1, D2, . . . , DM}, where each trial
Dj = {(xi, yi)}

Nj

i=1 consists of Nj training samples.
Result: Trained neural network parameters θ

Initialization: Initialize the neural network parameters θ and the Adam optimizer.
for epoch = 1 to max_epochs do

Shuffle the order of trials in T .
for each trial Dj in the shuffled trial list T do

Reset the accumulated loss: Ltotal ← 0.
Extract the state data and control data from trial Dj.
Initialize the initial state s0 based on the first data point in Dj.
for each time step t = 1 to Nj − 1 do

Perform forward propagation to predict the next state derivative:
ŝt+1 = st + f(st, ut; θ), where ut is the control input at time step t.

Compute the loss for the state variable ’Tc’: Lt = MSE(ŝt+1[3], yt+1[3]),
where the index 3 corresponds to ’Tc’.

Accumulate the loss: Ltotal ← Ltotal + Lt.
Update the state: st ← ŝt+1 (detach to avoid backpropagation through
time).

end
Compute the gradients of the total trial loss: ∇θLtotal.
Update the parameters using the Adam optimizer: θ ← θ − η∇θLtotal.

end

end
Algorithm 1: Pseudo code Training Algorithm with Embedded Neural Network in ODE

The overall process involves simulating the coffee roasting process using the neural net-
work to predict the heat transfer coefficient, computing the temperature profiles, and up-
dating the neural network and model parameters to minimize the prediction error. The
optimization problem can be summarized as:

argmin
θ

{
1

N

N∑
i=1

(T (i)
rp − T (i)

c )2

}
(3.23)

Where θ represents the parameters of the neural network for determining the effective heat
transfer coefficient and other parameterized values like A, B, C, D, and K in Equation ??.
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Neural Network Architecture

The neural network used to model the effective heat transfer coefficient (he) is a fully con-
nected feedforward network with three hidden layers. The final architecture, after iterative
tuning, consists of 128, 64, and 32 units in the hidden layers, respectively, with ReLU acti-
vation functions. Table 3.3 provides a detailed breakdown of the network’s architecture.

Table 3.3: Neural Network Architecture

Layer Units Activation

Input Layer 3 (features: Tg, vg, TT ) -
First Hidden Layer 128 ReLU
Second Hidden Layer 64 ReLU
Third Hidden Layer 32 ReLU
Output Layer 1 Linear

Due to the extensive time and resources required for model training, hyperparameter
tuning efforts were limited. The investigation began with a simple single hidden layer ar-
chitecture of 128 units and iteratively added layers until satisfactory results were achieved.
The neural network itself is a fully connected feedforward network, utilizing the air tempera-
tures (Tg), measured air velocity (vg), and drum rotation speed (TT ) as input features. The
output is the effective heat transfer coefficient (he).

Implementation Details

The implementation was done in Python, utilizing the PyTorch library for building and
training the neural network. The training process involved using the Adam optimizer and
the mean squared error (MSE) as the loss function. Due to the complexity of the model and
the need to solve the ODEs for the entire roast duration, the training was computationally
expensive, taking approximately 48 hours on a Nvidia RTX 4050 GPU.

This approach allows for a more flexible and accurate representation of the heat transfer
dynamics in the coffee roasting process, leveraging the power of neural networks to learn
complex relationships from data. The results are discussed in Chapter 4.

3.4 Residual Modelling

A second exploration into improving the model involved modeling the residuals of the initial
grey-box model. While the physics-based approach was augmented by adding a neural
network to capture the dynamics of the effective heat transfer coefficient (he), higher-order
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terms might still not be captured. To address this, a neural network was added to estimate
these residuals.

The approach involved using the grey-box model descirbed in Section 3.3.2 and enhancing
it further with an additional neural network to capture the residuals between the predictions
and the actual data. The process to do this is illustrated in Figure 3.14.

Figure 3.14: Process showing the flow of inputs to output of the model incorporating an
LSTM network to capture residuals

In this process, the new LSTM network takes in the current states and control inputs,
and outputs estimates of the residual values, or difference between the actual bean probe
temperatures and the predicted values. This approach tries to avoid the problem of small
differences between temperatures resulting in small relative errors that was described in
section 3.2 by isolating only differences from the rest of the model and predicting these
values. In order to train the LSTM network, the residuals between between the actual and
predicted Tc values for each time step needed to be calculated. This was done in as part
of the data processing stage and these values are only used in training, process. They are
not needed for predictions. This is critical, as actual values would not be available in the
scenario where a controller or plant is being simulated.

An LSTM based architecture was chosen, since these are well known at capturing tem-
poral dependencies, which are likely present for determining higher order dynamics. Also,
since the inputs of the model are predicted states of the initial grey-box model, because of
error propagation, the error is likely related to the time in the roast and therefor have some
temporal dependency. The final architecture used for the LSTM is summarized in Table 3.4.

The input layer consists of seven features: three control variables (Tgi, TT, vg) and
the four state variables predicted by the initial grey-box model (Tb, Xb, He, Trp). A fully
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Table 3.4: Architecture of the Residual LSTM Network

Layer Description Parameters

Input Layer Input features 7 (Tgi, TT , vg, Tb, Xb, He, Trp)
LSTM Layer 1 LSTM layer with hidden states Hidden size: 127
LSTM Layer 2 LSTM layer with hidden states Hidden size: 127
LSTM Layer 3 LSTM layer with hidden states Hidden size: 127
Fully Connected Layer Fully connected layer for residual prediction Output size: 1 (Tc,t+1 residual)

connected (dense) layer predicts the residuals for Tc from the LSTM’s output. The LSTM
network was implemented in PyTorch, with an architecture optimized through hyperparam-
eter tuning.

Hyperparameter tuning was conducted using Optuna, a hyperparameter optimization
framework [39]. The goal was to identify the optimal configuration of the LSTM network
that minimizes the validation loss. The hyperparameters tuned included hidden size, number
of layers, and learning rate. Optuna’s Tree-structured Parzen Estimator (TPE) [39] was used
to explore the hyperparameter space efficiently. Fifty trials were conducted with a subset of
the training data (30 roasts) to identify the best combination of hyperparameters. A smaller
subset of roasts were used because of resources and time constraints, and optimization using
all 300 roasts per epoch was not feasible. With the 30 roasts the hyperparameter tuning
took more than 48 hours. Early stopping was implemented with a patience of 10 epochs to
prevent overfitting, and a learning rate scheduler was used to adjust the learning rate based
on the validation loss. The best parameters identified were a hidden size of 127, three layers,
and a learning rate of about 0.000134.

The Tree-structured Parzen Estimator (TPE) is a sequential model-based optimization
(SMBO) algorithm. Unlike traditional random or grid search methods, TPE constructs two
probabilistic models: one for the set of good hyperparameter configurations and one for the
set of all observed configurations. The goal is to maximize the expected improvement (EI)
of the objective function. Mathematically, the TPE approach is grounded in the concept of
modeling the density functions l(x) and g(x):

l(x) = p(x|y < y∗) (3.24)

g(x) = p(x|y ≥ y∗) (3.25)

Here, y∗ is a quantile (e.g., the median) of the observed values of the objective function,
l(x) represents the density of good configurations, and g(x) represents the density of all
configurations. The TPE algorithm selects the next hyperparameters to evaluate by max-
imizing the ratio l(x)

g(x)
, which effectively prioritizes configurations that are likely to improve
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the objective function.
After tuning the hyperparameters on the subset, the model was trained on the full set

containing 300 roasts. Mean Squared Error (MSE) between the residuals of the initial grey-
box and the LSTM networks estimated residuals were used for the loss function. The loss
here as accumulated across the entire roast before gradients were updated. The Adam
optimizer [40] was used to update the network parameters, and the loss was backpropagated
through the network. This involved backpropegation through time (BPTT), because of the
temporal nature of the LSTM networks. After each epoch, the network was validated on a
subset of the data to monitor its performance. The validation loss was used to update the
learning rate scheduler and to implement early stopping if no improvement was observed.

A key aspect of the training process was the stateful nature of the LSTM. Instead of
feeding a sequence of states and inputs to the model, the current states and control inputs
were fed in sequentially. This approach leverages the LSTM’s ability to maintain cell states
over long sequences, capturing dependencies that are important for modeling the dynamics
of the system. The stateful LSTM maintains the state across different roasts, and were
manually reset between each roast profile, allowing the model to remember the previous
information throughout the entire roast profile but ensuring specific cell states were not
carried over across roasts.

The pseudo-code for the training process is as follows:
The performance of the LSTM network was evaluated by comparing the corrected predic-

tions (initial grey-box model predictions plus predicted residuals) with the actual Tc values.
The evaluation metrics included R-squared (R²) values and visual inspection of the predicted
vs. actual temperature profiles. R² values were calculated for individual trajectories and
overall to assess the model’s accuracy. The corrected predictions showed significant improve-
ments in R² values compared to the initial grey-box model. The corrected predictions and
actual Tc values were plotted for visual inspection, demonstrating that the LSTM network
effectively captured the residuals, resulting in predictions that closely matched the actual
data.

Overall, the LSTM-based residual modeling approach successfully improved the accuracy
of the coffee roasting model. By capturing the higher-order dynamics and dependencies not
accounted for by the initial grey-box model, the LSTM network provided a more reliable
and accurate representation of the roasting process. The results validated the effectiveness
of combining physics-based models with data-driven approaches to enhance the modeling of
complex systems.
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Data: List of training trials T = {D1, D2, . . . , DM}, where each trial
Dj = {(xi, yi)}

Nj

i=1 consists of Nj training samples.
Result: Trained LSTM parameters θ
Initialization: Initialize the LSTM parameters θ and the Adam optimizer.
for epoch = 1 to max_epochs do

Shuffle the order of trials in T .
for each trial Dj in the shuffled trial list T do

Reset the accumulated loss: Ltotal ← 0.
Extract the state data and control data from trial Dj.
Initialize the initial state s0 based on the first data point in Dj.
for each time step t = 1 to Nj − 1 do

Perform forward propagation to predict the next state derivative:
ŝt+1 = st + f(st, ut; θ), where ut is the control input at time step t.

Compute the residuals between predicted and actual Tc:
rt = yt+1[Tc]− ŝt+1[Tc].

Feed current state and control inputs to LSTM to predict residual:
r̂t = LSTM(st, ut; θ).

Compute the loss for the residual: Lt = MSE(rt, r̂t).
Accumulate the loss: Ltotal ← Ltotal + Lt.
Update the state: st ← ŝt+1.

end
Compute the gradients of the total trial loss: ∇θLtotal.
Update the parameters using the Adam optimizer: θ ← θ − η∇θLtotal.

end
end

Algorithm 2: Pseudo Code Training Algorithm for Residual LSTM
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Chapter 4

Results and Discussion

4.1 Overview

This chapter presents the results of the coffee roaster modeling using black-box, white-box
and grey-box approaches. It evaluates the performance of the Neural ARX (NARX) model,
highlights the challenges encountered, and discusses the enhanced results achieved with the
proposed grey-box model. This chapter also includes a comparative analysis of the different
models and provides insights into their generalization capabilities.

4.2 Black-box Model Performance

The first model to be explored was a black-box approach using a NARX model was employed
to predict the coffee roasting process and methods used are detailed in Section 3.2. These
experiments showed that while the NARX model achieved high R-squared values and low
RMSE during one-step-ahead predictions, its performance degraded significantly when used
for autoregressive predictions. This was emphasized by showing that a naive model, which
assumed no change in bean probe temperature, performed comparably. Moreover, when
tested for generalization to other control regimes, such as fixing the control inputs to low
temperatures, the predictions became very unrepresentative, highlighting the limitations of
the one-step-ahead approaches.

4.3 White-box Approach

The experiments detailed in Section 3.3.1 evaluated popular white-box, physics-based ap-
proaches for modeling roasting chambers developed by Schwartzberg [8] and Vosloo [10].
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Schwartzberg’s model assumes constant air flow and rotational speed, optimizing parameters
to fit experimental data. Vosloo’s model, on the other hand, uses dimensionless parameters
like Reynolds, Nusselt, Prandtl, and Biot numbers to estimate the effective heat transfer
coefficient (he). Both studies assumed a time-invariant inlet temperature and constant mass
airflow rates. Neither explicitly addressed the effects of bean movement within the drum.

Section 3.3.1 specifically examined the accuracy of these models when input parameters
such as inlet temperature, tumbling speed, and mass flow rates varied throughout the roast.
This variability was crucial because the goal was to develop a model capable of predicting
changes caused by adjustments in these control inputs, facilitating controller simulation and
design. While both Schwartzberg’s and Vosloo’s methods produced temperature trajectories
that qualitatively matched the general phases of a coffee roast, their quantitative fits were
poor, with R-squared values of -0.35 for Schwartzberg’s model and -1.84 for Vosloo’s model.

These results suggest that the assumptions inherent in these models were not sufficiently
accurate for the dynamic conditions of real coffee roasting processes and that the models
may be missing some critical dynamics, such as the variable effects of drum rotation speed
and bean movement on the heat transfer. Trying to incorporate and identify these dynamics
provided the motivation for developing more sophisticated grey-box models.

4.4 Grey-box Model Approach

To address the limitations of the black-box and white-box approaches, a grey-box model
was developed. This model integrates the empirical and physical relations established by
Schwartzberg and Vosloo with a neural network. The neural network was embedded within
the system of differential equations to model the effective heat transfer coefficient (he), which
varies with air flow rate, bean movement, and properties of the roasting air.

In Section 3.3.2, the methodology for integrating a neural network into the system of
differential equations established by Schwartzberg was explained. In summary, the heat
transfer coefficient, he, could not be directly measured from operational data and was a
complex function dependent on many factors. This complexity made it challenging to model
using purely white-box or black-box approaches. Therefore, a neural network was created
to represent he, and both the parameters of this neural network and certain parameters in
the physics-based model were simultaneously learned by minimizing the accumulated loss
between the predicted and actual values of the bean probe temperature. This approach was
applied to two datasets: one synthetically generated and one based on actual production
data.

The model trained on the synthetic dataset resulted in a R2 of 0.945 when calculated
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using a test set of about 50 roasts. Figure 4.1 illustrates an example of the model predictions.

Figure 4.1: Predicted and actual bean probe temperature using synthetic data

When the model is tested in a similar manner to the black-box model in Section 3.2,
using low-temperature inputs, the predictions remain accurate, as shown in Figure 4.2. This
contrasts with the black-box model, where predictions were unrepresentative in a similar
scenario that significantly deviated from the production data used for training. This provides
evidence that the model can generalize well and still accurately represent the real dynamics.

The model trained on the production data resulted in an R2 of 0.887 when the test set
was used. Figure 4.3 illustrates an example of the models prediction for a roast.

Comparing the results from the two different data sources reveals that the synthetic
data yields a better R2 value. This outcome is expected, as the model used to generate the
synthetic data and the model used to predict the data share the same underlying physics
equations. This remains a worthwhile test, however, as it isolates the model’s ability to
learn the relation for he, given that other elements of the data generation and prediction
processes are identical. This demonstrates the model’s capabilities of modelling he without
the influence of higher-order dynamics or noise.

Although the predictions made with the model trained on production data were lower
than those from the model trained on the synthetic dataset, they were still quite good.
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Figure 4.2: Model prediction for 20◦C inlet air

However, it was found that adding an LSTM-based neural network to estimate the residuals
significantly increased model performance. This enhancement potentially compensated for
inaccuracies in parameter estimation and captured other higher-order dynamics. When
trained and tested on the same production dataset, the overall R2 value increased from
0.887 to 0.987. This improvement is illustrated by an example in Figure 4.4.

Interestingly, there are some fluctuations in the model. This might represent uncertainty
due to the noise in the measurements. However, the general trend is that the new predictions
are pulled closer to the actual values. Here, it might be helpful to use some smoothing func-
tion to make things more representative. Another approach that could be further considered
is making a probabilistic RNN and using this as a measure of uncertainty with robust control
techniques.

Table 4.1 summarizes the models and their performance.
The grey-box models developed in this study shows promise but also highlights several

areas for further research. One key limitation is that the model is trained specifically for
a single mass of beans and a particular drum size. The movement of the beans, which
significantly influences the roasting process, depends on the drum fill level, as documented
by Cristo et al. [24]. Consequently, this approach may not generalize well to other masses or
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Figure 4.3: Predicted and actual bean probe temperature using production data

Table 4.1: Performance Summary of Different Models

Model Dataset R-squared Value (R²)

NARX Black-box Model (one-step-ahead/autoregressive) Production Data 0.99/-11.92
Schwartzberg White-box Model Experimental Data -0.35
Vosloo White-box Model Experimental Data -1.84
Grey-box Model (Synthetic) Synthetic Data 0.945
Grey-box Model (Production) Production Data 0.887
Grey-box Model with Residuals Production Data 0.987

different drum geometries. Future research should focus on developing models that can adapt
to various drum sizes and fill amounts, enhancing the model’s versatility and applicability
across different roasting setups.

Collecting more production data with known parameters for the initial bean mass and
the general geometries of the roaster is another important step. This data would help
verify the method used in this study, which was tested primarily on synthetic data. Such
empirical validation is crucial for confirming the model’s accuracy and robustness in real-
world conditions.

Additionally, the ultimate goal of this research is to develop a model that can be used
for simulating and designing controllers for the entire roasting process. While this study
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Figure 4.4: Example trajectory of predictions of the grey-box model without and with resid-
ual neural network.

focused on modeling the roasting chamber with controlled inputs such as inlet temperature,
drum speed, and mass flow rates, practical applications require considering the entire system
dynamics. For example, lower-level controllers, such as those managing the furnace and the
valves that control recirculated and ambient air in an R-type roaster, play a significant role,
and the dynamics involved needs to be considered. Future models should incorporate these
elements to create a comprehensive system capable of designing and optimizing controllers
for the entire roasting process.

Moreover, exploring more efficient training methods and architectures could help over-
come the difficulties encountered with the black-box models and improve the resource re-
quirements for the grey-box models. Techniques such as the adjoint method used in neural
ordinary differential equations (NODEs) [41] might offer a way to reduce computational costs
and enhance the efficiency of the training process.

While this study has made significant strides in modeling the coffee roasting process,
addressing these areas in future research would build on the current research and lead to a
robust, adaptable, and practical model that can be applied in the coffee industry.

Overall these results show that the model is able to learn a function for he that can
consider variable drum rotation speeds, air velocities, and inlet temperatures which builds
off of and improves the methods proposed by Schwartzberg [8] and Vosloo [10]. Instead of
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assuming constant rotational speeds and air flow rates, the model is able to account for these
within the physical equations and provide acceptable accuracy. However, There are some
caveats to this process. The first is that the training process is very slow, as it can only
take one optimizer step per iteration of solving the entire system of differential equations
for an entire roast. This was a limitation on hyper-parameter tuning, and complexity of
the neural network. A larger more complex neural network would add time for the forward
and backward passes, and would likely require more epochs for training, which would add
significantly more time. Possibly using the adjoint method to calculate gradients, as done
in neural ordinary differential equations (NODEs) [41], could add efficiency to this process.
However, this and other areas still have potential for future research.
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Chapter 5

Conclusion and Future Work

This thesis explored the application of machine learning techniques, specifically neural net-
works, to model the complex and nonlinear dynamics of coffee roasting. The overarching goal
of this research was to develop a model capable of accurately simulating the roasting process
under varying control inputs, thus laying the groundwork for improved control system design
and optimization.

Initial explorations utilizing black-box approaches, specifically a Neural NARX model,
aimed to capture the system dynamics solely from data. While initial results appeared
promising, with the model achieving high performance metrics during one-step-ahead pre-
dictions, further investigation revealed critical shortcomings. A simple naive model, which
assumed no change in the bean probe temperature from one time step to the next, achieved
surprisingly similar performance metrics. This suggested that the NARX model might not
be effectively learning the subtle dynamics of the roasting process. This suspicion was
confirmed when the model was used for autoregressive predictions, where its performance
degraded significantly, and when tested for generalization to different control regimes, where
it produced unrealistic results. These findings underscored the some challenges of purely
data-driven approaches for this specific problem and highlighted the importance of incorpo-
rating domain knowledge into the modeling process. Faced with these challenges, two paths
forward emerged: either develop significantly more complex neural network architectures,
which might prove infeasible given resource constraints, or leverage the established under-
standing of the underlying physical principles governing the roasting process. This latter
path, incorporating physical principles into the model, formed the basis for the subsequent
exploration of grey-box modeling.

Traditional white-box models, as proposed by Schwartzberg [8] and Vosloo [10], were also
evaluated. These models, grounded in fundamental heat transfer principles, provided a valu-
able framework for understanding the heat transfer mechanisms within the roasting chamber.
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However, their reliance on simplified assumptions and constant parameters ultimately lim-
ited their accuracy when applied to real-world production data with varying control inputs.
The models struggled to adequately capture the dynamic interactions between parameters
like inlet temperature, tumbling speed, and mass flow rates, leading to noticeable deviations
from actual temperature profiles.

To overcome the shortcomings of both black-box and white-box approaches, this thesis
proposed a novel grey-box modeling approach. This hybrid methodology seeks to leverage
the strengths of both physics-based and data-driven methods. At its core, the model utilizes
the differential equations derived from heat transfer principles to represent the core dynamics
of the roasting chamber. Recognizing the complexity and dynamic nature of the effective
heat transfer coefficient (he), the model incorporates a neural network to learn this crucial
parameter as a function of air velocity, bean movement, and bean mass. This integration al-
lows for a more nuanced and accurate representation of the heat transfer processes occurring
within the roaster. The results presented in this thesis clearly demonstrate that the grey-box
model significantly outperforms both the black-box and white-box approaches in accurately
predicting the temperature profiles of the coffee beans during roasting. This enhanced per-
formance, however, comes at the cost of increased computational demands associated with
training a neural network within a system of differential equations.

This research makes several key contributions to the field of coffee roasting modeling and
control. Firstly, it highlights the limitations of using purely data-driven methods for mod-
eling systems with subtle dynamics, emphasizing the importance of incorporating domain
knowledge and physical principles. Secondly, it introduces a novel grey-box model that ef-
fectively combines physics-based equations with a neural network to accurately capture the
dynamic heat transfer characteristics of the coffee roasting process. This model demonstrably
outperforms existing models in terms of prediction accuracy. Lastly, the methodology devel-
oped in this thesis provides a general framework for modeling complex, nonlinear processes
in various industrial settings, especially where traditional modeling approaches struggle to
achieve sufficient accuracy.

Despite these advancements, there remain several limitations and potential avenues for
future research. One key challenge is the model’s dependence on high-quality training data.
The accuracy of the model relies on having data that adequately represents the operating
range of the roaster. Future work should explore methods to improve the model’s robustness
and generalization capabilities, particularly when data is limited or incomplete. Additionally,
the computational cost of training the grey-box model is a significant consideration. Inves-
tigating more efficient training algorithms and architectures, such as those based on neural
ODEs [41], could significantly reduce the computational burden. Furthermore, the current
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model is trained for a specific roaster type and bean mass. Future studies should investigate
methods to adapt the model to different roaster designs, bean varieties, and roasting con-
ditions, enhancing its versatility and practical applicability. Finally, expanding the model
to encompass the entire roasting system, including the burner, airflow control mechanisms,
and other components, would facilitate the design and optimization of comprehensive control
strategies for the entire roasting process.

In conclusion, this research demonstrates the potential of integrating machine learning
techniques with physics-based models to address the challenges of modeling and controlling
complex nonlinear processes. The developed grey-box model for coffee roasting provides a
promising avenue for enhancing the consistency, quality, and efficiency of coffee production.
Future research building on this foundation has the potential to revolutionize the coffee
industry by enabling the development of intelligent and adaptive control systems capable of
consistently producing high-quality coffee while optimizing resource utilization. Moreover,
the principles and techniques presented in this work can be applied to a wide range of
industrial applications, advancing the field of process control and paving the way for more
efficient and sustainable manufacturing processes.
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Appendix A

Thermal Properties for Roaster Air and
Coffee Beans

This appendix details the thermal properties used in the model that was created to gen-
erate synthetic data, or called the "Representative Roaster Model". These relations were
experimentally derived and fitted by Vosloo [10].

A.1 Heat Capacity of Roaster Air

The following relation was determined by Vosloo as accurate for fitting the heat capacity of
air over the temperature of the air that may be experienced in a coffee roaster.

cpg(Tg) = 5.3091× 10−17T 6
g − 4.1550× 10−13T 5

g

+ 1.3621× 10−9T 4
g − 2.3267× 10−6T 3

g

+ 2.1034× 10−3T 2
g − 7.2075× 10−1Tg

+ 1.0839× 103

(A.1)

Where Tg is in Kelvin (K), and Cpg is in J/(kg K). The fit of the equation and the experi-
mental data is shown by Vosloo in A.1

A.2 Density of Roaster Air

The following relationship for roaster air density was determined experimentally by Vosloo [10]:

ρg = 353.34× T−1.002
g (A.2)
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Figure A.1: Experimental data collected by Volsoo for roaster air heat capacity and fitted
function outputs. Figure taken from [10]

Where Tg is in degrees Kelvin, and the density is in kg per meters cubed. The fit of the
function to the experimental data is shown in figure A.2

Figure A.2: Experimental data collected by Volsoo for Roaster air density and fitted function
outputs. Figure taken from [10]

A.3 Viscosity of Roaster Air

Equation A.3 is the relation used by Vosloo [10] for the viscosity of the roasting air. This
relation was developed by empirical observation and a polynomial fit to the data, as can be
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seen in Figure A.3.

µg =1.2184× 10−24[T 6
g ]− 8.1123× 10−21[T 5

g ] + 1.6089× 10−17[T 4
g ]

+ 1.1460× 10−15[T 3
g ]− 3.9733× 10−11[T 2

g ]

+ 7.1226× 10−8[Tg] + 4.8855× 10−7

(A.3)

Figure A.3: Experimental data collected by Volsoo for Roaster air viscosity and fitted func-
tion outputs. Figure taken from [10]

A.4 Thermal Conductivity of Roaster Air

Equation A.4 is the relation used by Vosloo [10] for the viscosity of the roasting air. This
relation was developed by empirical observation and a polynomial fit to the data, as can be
seen in Figure A.4.

λg =1.3819× 10−20[T 6
g ]− 9.1506× 10−17[T 5

g ] + 2.2342× 10−13[T 4
g ]

− 2.2872× 10−10[T 3
g ] + 6.8867× 10−8[T 2

g ]

+ 8.0128× 10−5[Tg] + 7.6694× 10−4

(A.4)

A.5 Heat Capacity of Coffee Beans

Equation A.5 is the relation developed by Putranto et. al. for the heat capacity of a coffee
bean [34].
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Figure A.4: Experimental data collected by Volsoo for Roaster air thermal conductivity and
fitted function outputs. Figure taken from [10]

cpb(Tb, Xb) = 103(1.674 + 2.51

(
Xb

1 +Xb

)
) (A.5)

A.6 Thermal Conductivity of Coffee Beans

Equation A.6 is the relation proposed by Hernandez and used by Vosloo for modelling the
heat transfer in a drum roaster [10]. It is a function of both the bean temperature and the
moisture content of the bean.

cpb(Tb, Xb) = 103(1.674 + 2.51

(
Xb

1 +Xb

)
) (A.6)
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Appendix B

Model Derivations

This appendix details the derivations of the physics based-models investigated in this paper
and used by Vosloo and Schwartzberg as well as the relation for he used in generating a
synthetic dataset to test the proposed grey-box’s neural network.

B.1 Drum Model Derivation

The complete system of equations for the drum roasting chamber is described in Equa-
tions 3.2 through 3.6 in chapter 3. This section goes through the derivations and assump-
tions associated with these equations. In general, this Derivation primarily consists of a heat
balance over the coffee bean mass, a heat balance looking at the volume of air in the roaster
drum and equations governing the moisture content and exothermic reactions taking place
inside the coffee beans. Starting with the heat balance of the coffee bean mass, according to
Vosloo [10], general heat balance over the coffee beans can be written as follows:

mbCpb

dTb

dt
= Φgb − Φgm + Φmb + Φr − Φev (B.1)

where mb is the mass of the coffee beans, Cpg is the heat capacity of the coffee beans, dTb

dt
is

the rate of temperature change of the coffee beans, Phigm is the heat transfer from the hot
gas in the roaster to the coffee beans, Phigm is the heat transfer from the metal to the beans,
Phir is the heat transfer due to exothermic reactions inside the beans, and Phiev is the heat
loss due to evaporation of the moisture in the coffee beans. Vosloo further simplified this
with the following assumptions:

• Negligible heat transfer from roasting air to metal. This assumption is supported by
Schwartzberg for roasters where heat is not applied directly to the outside of the drum
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as is the case in our roaster [8]. Hernandez et. Al also used this assumption in their
analysis and justified it with the fact that roasters are preheated, and so heat transfer
to the metal will be very small [36].

• Negligible heat transfer from beans to the metal. This assumption is made by Bottazzi
et al. and Hernandez et al., justifying it by the fact that the contact area and time of
a bean is very small as they are tumbling in the roaster [36, 38]

After these terms are dropped, the equation becomes:

mbCpb

dTb

dt
= Φgb + Φr − Φev (B.2)

Terms are then rearranged to give the following in terms of the change in bean temperature:

dTb

dt
=

Φgb + Φr − Φev

mbCpb

(B.3)

The expressions for the heat transfer between the gas and the bean can be described by
change in heat of the air between the inlet and the outlet of the drum:

Φgb = GgCpg[Tgi − Tgo] (B.4)

Where Gg is the mass flow rate of the hot air in the roaster, Cpg is the heat capacity of the
air, ant Tgi and Tgo are the temperature of the air at the inlet and the outlet respectively.
Here, it is important to note that the heat capacity of air changes drastically depending on
the moisture content of the air, and the temperature, which makes this term very complex.
Thankfully, however, Vosloo has experimentally determined the a heat capacity function
for roaster air, as well as other properties such as density, thermal conductance, viscosity.
Thermal properties for the beans were experimentally determined as well and are used this
paper’s model. These relations can be found in Appendix A for details about the calculations.
Importantly for the current derivation, is that Cpg is only a function of temperature. Our
approach is a fixed volume analysis to simplify the model, and the properties of the air
are all evaluated at the average value between the inlet temperature, T2, and the outlet
temperature, T3. This we call Tg, or gas temperature. The expression for the heat generated
by the exothermic reaction is described by Vosloo and Schwartzberg to be the following [8,
10]:

Φr = Qrmb,d.b. (B.5)

Where Qr is the rate of heat generated by the reaction for a given mass of dry coffee beans,
mb,d.b.. The expression of Qr will be detailed later using an Arrhenius-based differential equa-
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tion to model how quickly the reactions carry out as a function of the bean temperature [8].
This is expressed mathematically as Equation B.6.

Qr = Ar
Het −He

Het

exp
−∆E

RTb

(B.6)

Where Ar is the Arrhenius equation pre-factor combined with a coefficient representing the
amount of heat generated per unit amount of reaction so that the units are kJ/ kg s on a dry
coffee basis. ∆E is the reaction activation energy, R is the ideal gas constant, and Tb is the
real temperature of the beans in Kelvin, Het is the total amount of reaction heat produced per
kilogram of dry coffee beans, and He is the amount of reaction heat that has been generated
up to the current time. The rate of the reaction, dHe

dt
is the same as the heat transfer

rate, Qr. This makes B.6 the same as 3.4. There are several assumptions made in the
formulation of this relation. First, it assumes that the rate of heat generated is proportional
to the rate of reactions inside the coffee beans, reaction rates are proportional to reactant
concentrations, reactants are consumed in the reaction, and that the coefficients governing
the relation, Ar, Het, and ∆E are constants that are time-invariant, and not functions of
temperature, pressure, or any other external factors. The last term in the Equation B.3, is
the heat consumed by the latent heat of vaporization, caused by evaporating the moisture
contained in the coffee bean into steam. It is expressed as Equation B.7.

Φev = ∆Hv

(
−dXb

dt

)
mb,d.b. (B.7)

Where Φev is the heat transfer consumed by evaporating the moisture from the coffee beans,
∆Hv is the enthalpy of vaporization, dXb

dt
is the change in moisture content in the coffee

beans, and mb,d.b. is the mass of the coffee beans on a dry basis. Combining and rearranging
equations B.3, B.4, B.5, B.6, and B.7 gives equation 3.2.

The differential equation for the change in the moisture content in the bean, dXb

dt
, is taken

from [8] and given by the Equation B.8.

dXb

dt
= −4.32× 109X2

b

(dp × 103)2
exp
−9889
Tb

(B.8)

This is an empirical relation developed by looking at roasting bean data, and assuming that
moisture loss was diffusely regulated and governed by an Arrhenius-type equation, with the
diffusion rate and mass transfer both proportional to the moisture content, Xb. The data
was only for beans with an effective average diameter, dp of 6 mm, which may be as source
of error, if the diameter of the coffee beans vary significantly from this. This is the same as
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equation 3.3.
Next to consider is a heat transfer with the volume of air in the roasting chamber.

Here several assumptions are made. First it is assumed that the airflow through roaster
is uniform, and the the flow rate is low enough that we can approximate it as being in-
compressible. It is assumed as well that all thermophysical properties of air are functions of
the air temperature [36] and all other heat transfer other than that between the gas and the
beans are neglected. This assumption assumes that the metal either mostly has contact with
the beans, and that the transfer of heat to the air is small, since the metal is preheated, the
temperature differences between the air and the metal should be small as well. using these
assumptions, a heat balance equation over the air can be written as Equation B.9 [8].

−GgCpg

(
dTg

dz

)
= he

(
dAb

dz

)
(Tg − Tb) (B.9)

Where Gg is the mass flow rate of the air, Cpg is the heat capacity of the air, dTg

dz
is the

change of the roaster air temperature with respect to the axial direction of the drum and
the average velocity of the air, he is the effective heat transfer coefficient, dAb

dz
is the change

in the bean surface area with respect to the drum axial direction, Tg is the temperature of
the roaster air, and Tb is the temperature of the beans. In the roaster, the temperature of
the beans and the air is a function of z, where the beans get cooler towards the outlet of the
drum as the heat is transferred as it moves through the drum.

Equation B.9 can be rearranged to give Equation B.10 and then integrated over the inlet
and outlet temperatures to get Equation B.11 [10].∫ Tg,o

Tg,i

1

(Tg − Tb)
dTg = −

heAb

GgCpg

(B.10)

(Tg,o − Tb = (Tg,i − Tb)

(
exp

[
− heAb

GgCpg

])
(B.11)

Equation B.11 can be rearranged to give the outlet roaster air temperature in Equa-
tion B.12.

Tgo = Tgi − (Tgi − Tb)(1− exp− heAb

GgCpg
) (B.12)

This is the same equation as equation 3.6. he is the heat transfer coefficient, as discussed
previously. Schwartzberg proposes that this be considered constant, which can be a good
assumption if the air flow rate, and the tumbling speed of the drum does not change dras-
tically [8]. Volsoo proposes that this value be estimated by using the Biot number and the
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Ranz-Marshall correlation, as shown in equations B.13 through B.18 [10].

he =
h

1 + 0.3Bi
(B.13)

Bi =
hdb
λb

(B.14)

Nu = 2 + 0.6Re1/2Pr1/3 (B.15)

Nu =
hdb
λg

(B.16)

Re =
vgdbρg
µg

(B.17)

Pr =
Cpgµgdb

λg

(B.18)

Here h is the heat transfer coefficient, Bi is the Biot number, Nu is the Nusselt number,
Re is Reynolds number, and Pr is the Prandtl number. The dimensionless numbers - Biot,
Nusselt, Reynold, and Prandtl - rely on several properties of the roasting air: λg - thermal
conductivity, rhog - density, and µg - viscosity. Relations for the properties of roaster air were
determined experimentally by Vosloo and are summarized in Appendix A [10]. The equation
that expresses the effective heat transfer coefficient is obtained by combining Equation B.13
through Equation B.18 and rearranging to obtain Equation B.19.

he =

λb

(
0.6λg

(
cpgug

λg

)1/3

(dbρgvg)
1/2 + 2

)
db

(
0.6db + λb + 0.18λg

(
cpgµg

λg

)1/3 (
dbρgvg
µg

)1/2
) (B.19)

Finally, there are dynamics associated with the roaster profiles. The beans are dropped
into the roaster at roughly ambient temperatures, and the roaster will be preheated to
roasting temperatures, which means the temperature of the profile bean probe sensor will not
be the same as the bean temperature, especially at the beginning of the roast. Schwartzberg,
proposed the linear differential equation in Equation B.20.

Trp

dt
= K(Tb − Trp) (B.20)

Here Trp is the temperature read by the bean probe, Tb is the temperature of the beans, and
K is the roast profile constant. This is an empirical constant that Vosloo and Schwartzberg
proposed determining it by data fitting and regression [8, 10]. This is the same as Equa-
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tion 3.5.

B.2 Synthetic Data for Effective Heat Transfer Coeffi-

cient

The data generated to train the neural network for the proposed grey-box was generated syn-
thetically. To do this, a function for he was developed and defined as in Equations B.21, B.22,
and B.23.

hc = C1Re(ω)mPrn
(
λg

db

)
(B.21)

hk = kcontact(AA+BBω + CCω2 +DDω3 + EEω4) (B.22)

he =
1

1
hc

+ 1
hk

(B.23)

The effective heat transfer coefficient (he) between the coffee beans and their surroundings
within the rotating drum roaster is modeled as a combination of two primary heat transfer
mechanisms: convection (hc) and conduction (hk).

Convective Heat Transfer Coefficient (hc) is estimated using a common empirical correla-
tion (Equation B.21), which relates hc to the Reynolds number (Re), Prandtl number (Pr),
thermal conductivity of the gas (λg), and the bean diameter (db). The parameters C1, m,
and n. Importantly, the Reynolds number has been changed from what it was before, to be
a function of the rotational speed of the drum.

Conductive Heat Transfer Coefficient (hk) is modeled as a polynomial function of the
drum’s rotational speed (ω) (Equation B.22). This function, with coefficients AA, BB, CC,
DD, and EE, accounts for the varying contact area and pressure between the beans and the
drum wall as the drum rotates. The parameter kcontact represents the contact conductance
between the beans and the drum surface.

Effective Heat Transfer Coefficient (he): The overall effective heat transfer coefficient (he)
is calculated using a thermal resistance analogy (Equation B.23). This equation assumes
that the convective and conductive heat transfer pathways act in parallel, with their thermal
resistances being additive.

The values of AA, BB, CC, DD, EE, kcontact, C1, m, n, K, A, B, C, D were all
determined by regression. The initial mass of the coffee beans, mbd was guessed, and the
surface area, Ab, was determined using the values measured by Schwartzberg [8]. The data
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used for regression comprised 50 roasting trials. Although the details of the mass of the beans
and duct geometry required to convert average air velocity to mass flow were consistent across
trials, these values are not precisely known and were arbitrarily chosen.

This approach does not guarantee that the model accurately represents the data or gen-
eralizes well to other conditions. However, this is not the primary intent. The goal is to
create a hypothetical system that is somewhat representative of a coffee roaster, not neces-
sarily the specific roaster from which the data was obtained. This allows for the generation
of synthetic data to evaluate how well a neural network can learn the effective heat transfer
coefficient as described earlier. The results of this approach are discussed in Chapter 4.
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Appendix C

Production Coffee Roasting Dataset

This appendix provides a detailed overview of the production coffee roasting dataset used in
this study. Understanding the characteristics and potential limitations of this dataset is cru-
cial for interpreting the performance and generalizability of the black-box models developed
and described in Chapter 3.

Table C.1 presents basic descriptive statistics summarizing the key variables in the
dataset. Each variable represents a specific measurement or control input related to the
coffee roasting process. A comprehensive description of each variable and its role in the
roasting process can be found in [cross-reference to relevant chapter/section]. Notably, the
dataset encompasses a substantial 3898522 data points from 4285 roasts, providing a robust
foundation for training and evaluating our models.

Table C.1: Statitics of Production Roast Data and Variables

Index

Actual
Value

Tc
[°C]

Actual
Value
T1
[°C]

Actual
Value
T2
[°C]

Flow
Gas
BF
[%]

Present
Value
VAC

[% * 0.1]

Actual
Value
TT

[rpm]

Actual
Value

Closing
VAF
[%]

Actual
Value

Opening
VAT
[%]

Gas
Pressure

BF
[mbar]

Air
Speed
Meter
fSCP

[m/sec]

Set
%

Command
BF
[%]

Setpoint
VAC

[% * 0.1]

Setpoint
Drum
Speed
TT

[% * 0.1]

Setpoint
Closing
VAF
[%]

Setpoint
Opening

VAT
[%]

mean 163.0 574.3 357.0 47.48 534.1 28.66 56.01 69.87 138.7 10.25 31.81 53.27 67.76 55.96 70.33
std 40.42 99.00 100.0 14.44 134.2 4.225 34.99 31.56 7.558 3.259 17.69 13.49 11.65 35.94 33.05
min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
25% 131.2 511.0 284.0 40.00 452.0 28.70 23.00 50.00 136.0 8.000 22.00 45.00 68.00 22.00 51.00
50% 174.3 574.0 358.0 47.00 531.0 29.80 59.00 83.00 140.0 9.000 31.00 53.00 71.00 58.00 84.00
75% 197.0 658.0 445.0 58.00 603.0 30.20 95.00 97.00 142.0 13.00 45.00 60.00 72.00 94.00 98.00
max 229.8 796.0 553.0 100.0 932.0 40.90 100.0 100.0 162.0 21.00 100.0 92.00 180.0 100.0 100.0

Figure C.1 illustrates the bean probe temperature profiles for all roasts in the dataset.
As evident from the figure, the data includes the preheating phase of the coffee roasters,
explaining why numerous variables have minimum values of zero. The non-uniform start of
the drying phases further highlights this inclusion.

A key consideration when interpreting the results of this study is the inherent limitations
of the dataset, stemming from its origin in a production environment. Under such conditions,
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Figure C.1: Bean probe profiles for 4285 production roasts

the coffee roasting process is continually governed by a series of PID controllers. While
these controllers play a crucial role in maintaining consistent product quality, their influence
introduces a potential bias into the data.

PID controllers function by maintaining process variables within predefined desirable
ranges, actively minimizing deviations. This control mechanism, however, may inadvertently
mask the true dynamic behavior of the system. The controllers’ corrective actions can
dampen or obscure natural responses, making it challenging to extract information about
the underlying physics or develop models accurately reflecting those dynamics. Moreover,
the dataset likely exhibits a scarcity of data points in operational regions far from the desired
setpoints. PID controllers inherently prevent the system from entering these less desirable
states, hindering the models’ ability to learn the system’s behavior in such conditions.

Building comprehensive models requires a thorough understanding of the system across
a wide range of conditions. This limitation of the dataset emphasizes the importance of
integrating domain knowledge and exploring physics-based modeling approaches to comple-
ment the data-driven black-box models. By incorporating such knowledge, more robust and
generalizable models can be developed, potentially capable of handling a broader range of
operating conditions and extrapolating to scenarios not explicitly captured in the production
dataset.
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