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ABSTRACT

High performance computing libraries provide efficient implementations of common com-

putational kernels. Traditionally, such libraries are written in C or assembly. User-schedulable

languages provide performance engineers a productive way to optimize these kernels with well-

designed interfaces which provide users control over performance-relevant decisions and auto-

mate unnecessary concerns. Often, this is a tradeoff: too much control with too little automation

is tedious to program, and too much automation with too little control will hinder obtaining peak

performance. The principle of exocompilation advocates for one end of the extreme: to give per-

formance engineers maximal control over code execution so they can maximize performance, its

current implementation in existing systems is impractical to use. This thesis broadly explores

ways to make exocompilation a practical solution for performance engineers. We show that

providing more control does not necessitate sacrificing automation, as long as the language is

designed so that users can build their own automation. We explore the necessary design features

to enable such a system, demonstrate the types of automation users can build in the system, and

brainstorm ways to further push the amount of control user-schedule languages expose to the

user.
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Chapter 1

Introduction

Modern machine learning and visual computing systems demand high-performance code. Faster

code not only enables more advanced neural network models and image processing pipelines,

but also improves response time delay in real-time, latency-sensitive systems. High-performance

code must be specialized to the hardware it executes on. In recent years, there has been an ex-

plosion of specialized accelerators such as Apple’s Neural Engine, Intel’s AMX Engine, or Qual-

comm’s Hexagon DSP which offer faster execution and higher energy efficiency than traditional,

general-purpose hardware. Between the many applications and hardware targets, there is a huge

demand for high-performance code.

Performance engineering, the process of optimizing a program, consists of repeatedly mod-

ifying it into new programs which compute the same result more efficiently. Traditionally, per-

formance engineering is done in low-level languages such as C or assembly, which allow pro-

grammers to finely control the execution of their code. However, performance engineering in

these languages is tedious and error-prone. For example, matrix-multiply, a core algorithm be-

hind many machine learning computing applications, can be expressed as three nested loops in

only a few lines of code. However, a peak performance implementation of matrix-multiply in

libraries such as IntelMKL or OpenBLAS can take ten thousands lines of hand-written code.

User-schedulable languages (USLs) such as Halide, TVM, TACO, and Taichi offer a promising

solution to increase programmer productivity when doing such optimization [1]–[4]. USLs reify

this optimization process into an explicit scheduling meta-program that transforms an underlying

object program into a better-performing one. They also guarantee that scheduling transformations

preserve the equivalence of the object program, allowing performance engineers to focus on

optimization strategies instead of painstakingly ensuring correctness [5].

Most existing USLs are designed with a fixed set of scheduling operations that target a par-

ticular application domain (e.g., image processing) and/or class of optimization (e.g., loop trans-

formations). The goal of these fixed sets of scheduling operations is to provide explicit control
over key optimization choices while abstracting away tedious details. Well designed USLs care-

fully choose a delineation between automated optimizations and user-scheduled choices exposed

as scheduling operations. For instance, the Halide language automates bounds inference, register

allocation, and instruction selection (to name a few) but gives users explicit control over loop

tiling, fusion, and work vs. locality tradeoffs. When the design works, it shields performance

engineers from unnecessary concerns, improving productivity.

In practice, however, it is difficult to design this automation-control boundary perfectly. When
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the design breaks down, performance engineers have noway to cross the boundary andmust drop

down to C or assembly code (or even modify the compiler) to regain control. These failures can

happen either because an optimization is not expressible with the control provided, or because

of the limited automation capability. For example, even in a decade old system such as Halide,

automated fixed-point vector instruction selection has seen significant improvement in recent

years [6]–[8]. Furthermore, users have no way to leverage Halide’s well-designed scheduling

interface to target novel hardware accelerators without extending the compiler.

Even though existing USLs strive to provide sufficient control to performance engineers, hav-

ing a fixed set of control operations is inherently brittle and cannot accommodate rapidly evolv-

ing application and hardware changes. Thus, the Exo USL explored the idea of exocompilation
– externalizing components of the compiler to further push the boundary towards more control

[9] – by giving performance engineers control over target-specific code generation for matrix

accelerators such as Gemmini [10] or vector architectures such as AVX2 and AVX512. In order

to maximize control, Exo exposes primitive scheduling operations which perform small, local

transformations to the code such as “divide this loop into an inner and outer loop”. While the

resulting programming interface is able to target a broad range of hardware architectures, it was

also tedious to program, requiring a scheduling operation for each minor transformation on the

code. The resulting exocompilation interface was impractical because automation was sacrificed

for control.

However, this need not be the case. In an unpublished manuscript, we propose that the

automation-control tradeoff exists because USLs were not designed for growth [11]. While most

general purpose programming languages provide users the ability to encapsulate useful, shared

code into library functions, existing USLs lack such facilities. Thus, it is difficult to encapsulate

reusable schedule fragments and extend the level of automation beyond the interface exposed by

the USL designers. To design a USL for such growth, we augmented the Exo USL and empowered

users to build new scheduling operations from Exo’s set of primitive scheduling operations. By

composing these safe primitives, users can automate common optimizations beyond the automa-

tion exposed in Exo’s scheduling interface. When more control is required, users can fall back

to using the primitives scheduling operations. This design allows users to choose whether they

want to use more automation or take more control, rather than confining them to a particular

automation-control boundary.

This thesis broadly describes contributions towards making exocompilation more practical

for performance engineers, either by enabling users to extend automation within the language

to improve productivity or extending exocompilation to encompass parallel computing architec-

tures to give users evenmore control. In Chapter 2, we provide background on the development of

USLs and discuss key design issues which prevent users from extending automation within those

languages. In addition, we also present characteristics of existing GPU programming models.

In Chapter 3, we describe the new implementation of Exo which enable users to build reusable

schedule fragments within the USL [11]. In Chapter 4, we demonstrate an example of an au-

tomation library built in our USL by reproducing the Halide language’s scheduling operations.

In Chapter 5, we further push the idea of exocompilation in USLs by externalizing control over

code generation for parallel computing architectures, with a particular emphasis on GPUs.
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Chapter 2

Related Work

2.1 User-schedulable Languages (USLs)

Historically, high-performance computing kernels in machine learning and image processing

were often hand-written by expert performance engineers in low-level languages such as C or

assembly. During optimization, users must make careful decisions about how to best exploit

parallelism, organize the computation, and allocate memory to intermediate results to maximize

performance. We call this choice of how to structure the computation as the schedule of the com-

putation. Performance engineers must tailor the schedule of the computation to best optimize

for each potential hardware target. This process of optimally scheduling is very complex, time-

consuming, and error-prone. While compilers offer modest performance improvements, decades

of compilers research has yet to surpass hand-written code for many standard kernels such as

matrix multiplication.

User schedulable languages (USLs) were introduced as a way to productively navigate the

performance tradeoffs when optimizing such kernels, and was first popularized by the Halide

language in 2012 [12]. USLs make a clear delineation between the algorithm, which defines the

mathematical computation that should be computed, from the schedule, which defines how this

computation should be structured. The schedule is composed of a sequence of scheduling opera-
tionswhich dictate how to restructure the computation. USLs guarantee that scheduling decisions

do not deviate from the algorithm by checking functional equivalence. Since Halide’s inception,

many other USLs have been inspired, such as Lift [13], Elevate [14], TVM [2], Taco [3], Taichi

[4], and Exo [9], the central language in this paper.

Existing USLs were designed for users to easily write one schedule per algorithm and hard-

ware target. They would design their scheduling operations to be a suitable balance between

performance decisions under user control and those automated by the language compiler. The

Exo USL introduced the concept of exocompilation: externalizing as many performance-relevant

decisions (such as hardware instruction selection) to be under the user’s control. As a result, the

scheduling operations in Exo are small, local transformations, and often referred to as scheduling

primitives. These scheduling primitives give users fine-grained control over the code’s execution.

In the next section, we will give a brief overview of Exo’s syntax.
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2.2 Exo Overview

Exo Algorithm We introduce Exo by example through a 3 × 3 box blur, which we will revisit

again in Chapter 4.

@proc

def exo_blur(W: size, H: size, blur_y: ui16[H, W] @ DRAM, inp: ui16[H+2, W+2] @ DRAM):

assert H % 32 == 0

assert W % 256 == 0

blur_x: ui16[H + 2, W] @ DRAM

for y in seq(0, H + 2):

for x in seq(0, W):

blur_x[y, x] = inp[y, x] + inp[y, x+1] + inp[y, x+2]

for y in seq(0, H):

for x in seq(0, W):

blur_y[y, x] = blur_x[y, x] + blur_x[y+1, x] + blur_x[y+2, x]

The exo_blur function is annotated with @proc, marking it as an Exo Procedure. Both procedure

arguments and variable declarations follow the syntax

⟨𝑛𝑎𝑚𝑒⟩ : ⟨𝑡𝑦𝑝𝑒⟩[⟨𝑠𝑖𝑧𝑒⟩] @ ⟨𝑚𝑒𝑚𝑜𝑟𝑦⟩.

For example, the procedure argument inp has type ui16, short for unsigned 16-bit integers The

⟨𝑠𝑖𝑧𝑒⟩s may be constants, or refer dependently to other arguments (e.g., [H, W]) as they do here.

The @ symbol precedes a memory space identifier, specifying in what memory the variable or

argument resides (e.g., @DRAM). The asserts guarantee that all input arrays are even multiples of

32×256 tiles, which can be exploited during scheduling. Finally, for x in seq(0, W) is a sequential
for loop that iterates from 0 to𝑊 − 1, inclusive.

Exo Schedule In Exo, schedules are Python meta-programs that take a procedure (e.g., exo_b ⌋
lur) as input and return a functionally equivalent, rewritten procedure as output. For example,

the divide_loop(p, loop, factor, new_vars, ...) scheduling operator divides a single loop

of 𝑛 iterations into a pair of outer and inner loops of 𝑛/factor and factor iterations. It takes the
procedure, the loop to be divided, the division factor, new iterator variable names, and optional

“tail strategy” arguments for handling cases where 𝑛 does not divide evenly by factor , and returns
the modified procedure.

This raises a natural question: how can we specify which loop we want to divide? As we will

explore in Section 3, the problem of referencing is a fundamental issue with many complexities

in scheduling languages. For now, we will only refer to loops by name using strings.

Suppose we want to write a schedule which will tile the blur computation, a common opti-

mization for improving data locality. Schedules can often be expressed as a series of rewrites,

and these rewrites can be composed sequentially. Each scheduling operation returns a new pro-

cedure that can be further scheduled by the next operation. For example, we can tile exo_blur by

sequentially composing divide_loop and lift_scope primitives as follows.
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p = divide_loop(exo_blur, 'y', 32, ['y','yi'], perfect=True)

p = divide_loop(p, 'x', 256, ['x','xi'], perfect=True)

tiled_exo_blur = lift_scope(p, 'x')

Figure 2.1: Schedule for tiling the blur algorithm into 32 × 256 tiles.

Since we know H and W are perfectly divisible by 32 and 256, respectively, we can omit code for

handling tail cases by passing perfect=True to divide_loop. lift_scope takes either a for loop

or an if statement and interchanges it with the surrounding for or if. This simple composition

of primitives yields the tiled_exo_blur object code as shown below:

@proc

def tiled_exo_blur(W: size, H: size, blur_y: ui16[H, W] @ DRAM,

inp: ui16[H+2, W+2] @ DRAM):

assert H % 32 == 0

assert W % 256 == 0

blur_x: ui16[H + 2, W] @ DRAM

for y in seq(0, H + 2):

for x in seq(0, W):

blur_x[y, x] = inp[y, x] + inp[y, x+1] + inp[y, x+2]

for y in seq(0, H/32):

for x in seq(0, W/256):

for yi in seq(0, 32):

for xi in seq(0, 256):

blur_y[32*y+yi, 256*x+xi] = ...

Figure 2.2: Exo object code after applying the tile schedule from Figure 2.1

2.3 GPU Programming Models

In this section, we discuss several popular programming models for writing high-performance

GPU code. Of all of the parallel programming models we will discuss, CUDA is most closely

aligned with the principle of exocompilation because it maximizes user control. Consequently,

most of our design of a parallel programming model in Chapter 5 will be based on supporting

features available in CUDA. Nonetheless, in the same way that many of the following program-

ming models are extensions of CUDA, we can design extensions of the Exo system based on the

other programming models.

CUDA Developed by NVIDIA specifically to provide programmability to their GPUs, CUDA

has seen immense success in the past decade. CUDA exposes a single instruction, multiple thread

(SIMT) programming model: users write thread-level programs, and the processor executes them
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in groups of 32 known as warps [15]. CUDA gives the user an extremely high degree of control

over the execution of their programs on GPUs. To give a few examples particularly relevant to

writing high-performance computing kernels, CUDA offers a Cooperative Groups API for easily

organizing the subdivision of work across parallel groups, specialized accelerated instructions

such as warp-group matrix multiply accumulate and asynchronous memory copies, and vari-

ous synchronization primitives such as barriers and pipelines. Many state-of-the-art performing

kernels are written in CUDA.

However, writing a high-performance kernel in CUDA is difficult: it is easy to introduce

bugs. As a consequence, several new programming languages have been designed to facilitate

GPU programming.

Triton Triton is another popular GPU programming language [16] which exposes a block-level

programming model. Triton aims to abstracts away many complex issues related to concurrency

within CUDA thread blocks (e.g., memory coalescing, shared memory synchronization/conflicts,

tensor core scheduling). Users simply write an algorithm describing the blockwise operation, and

Triton will automatically organizes the computations and data movement to generate a high-

performance program. As as result, it is significantly easier to write high performance code

in Triton. For instance, Pytorch’s TorchInductor uses Triton to automatically generate high-

performance kernels for GPUs [17]. Triton’s well-designed automation could be an interesting

design target for an Exo automation library.

ThunderKittens ThunderKittens is a C++ framework [18] that facilitates writing fast CUDA

code. In terms of abstraction, it lies between CUDA and Triton. Users still need toworkwith small

tile sizes and perform computations on them. However, ThunderKittens automates many of the

performance-relevant aspects of these tile operations, including utilizing asynchronous tensor

core and memory operations and automatically formatting data so as to minimize bank conflicts.

Unlike Triton, ThunderKittens will not automatically compile an arbitrary block program – if the

block size is larger or smaller than ThunderKitten’s tile primitives, it is up to the user to write

the program in terms of the tiles. While ThunderKittens is likely not the long-term vision for

Exo’s parallel programming model, ThunderKittens can be thought of as a simplified instruction

set for GPU programming. Exo users could potentially leverage the well-built abstractions of

ThunderKittens by writing an Exo hardware library that targets ThunderKittens functions.

Halide Halide was the first user-schedulable language for programming GPUs [12]. In addition

to its core scheduling operations, Halide has gpu_tile, gpu_threads, and store_in scheduling

operations to manage how computations are organized in the GPUs parallel hierarchy and mem-

ories. Extending the Halide library from Chapter 5 to also target GPUs would be an interesting

future project.
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Chapter 3

Implementing Stable References in a USL

All USLs must have a reference mechanism by which the schedule can specify where to perform

the transformations, For instance, the Halide USL uses a nominal reference scheme where each

computation is uniquely identified by a named buffer to store the result and each computation’s

loop nest consists of unique iterator variables. The user may subdivide loop levels further to

introduce new loop levels, but the user cannot create new intermediate buffers. The Halide ref-

erencing scheme is well-suited to its goal of allowing users to easily navigate tradeoffs between

different granularities of fusion: users can easily specify two computations by name and the loop

level at which they should be fused.

However, existingUSL referencing schemes are insufficient for implementing extensible USLs:

USLs in which users can encapsulate reusable schedule fragments as new scheduling operations.

For example, Halide faces two main limitations which prevent extensibility by the user: (1) it uses

a nominal referencing scheme; and (2) it uses a monolithic-lowering scheduling model. Together,

this means that all references must be statically known at compile time. It is impossible to define a

reusable schedule fragment in Halide which applies on a generic reference. In Halide, references

with descriptions such as “the innermost loop” or “the next statement” are not possible – that

reference must be specified by a name.

In contrast, Exo was designed to be an extensible USL from first principles. Exo uses rewrite-

based scheduling rather than using a monolithic-lowering scheduling, allowing scheduling to

be done step-by-step. Furthermore, we argue that a good scheduling language should have an

immutable IR. In a rewrite-based USL with an immutable IR, each scheduling operation results

in the creation of a new, separate IR.

This introduces a new challenge of maintaining a stable referencewhich can be updated after a
scheduling operation is applied. While a nominal referencing schemewith globally unique names

such as Halide’s easily maintains stable references, it cannot represent generic references. We

seek to implement a more generic referencing scheme. In the following section, we describe our

implementation of references in the Exo system, which we term cursors. Cursors allow for both

globally unique references and generic references, which make it suitable for building reusable

schedules. We then present our solution to the stable referencing problem, cursor forwarding.
Cursor forwarding provides users a means to update their references after scheduling operations

have transformed the object program.
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3.1 Cursor Representation

We implement a code referencemechanism called a cursor, analogous to the blinking cursor found
in text editors. Internally, all cursors store two values: a weak reference to the procedure it’s

pointing at (i.e. a time coordinate) and a path defining its relative location inside that procedure’s

AST (a spatial coordinate). The path describes navigation in an AST as a downward traversal. In

an AST, all children are labeled (e.g. the rhs of a binary operation) and are either a node or list of

nodes (e.g. the “body” of a for loop). Thus, each downward step in the ASTmay be represented as

a label-index pair, where the index is null if the child is not a list. Figure 3.1 illustrates an example

of a cursor and its corresponding path in the AST.

x: i8

for j in seq(0, 2):

x = y + z

"""

Path of y: [

(body, 1),

(body, 0),

rhs,

lhs]

"""

Procedure

x: i8

(bod
y, 0

)

for j in seq(0, 2):

x = y + z

x

lhs

y+z

y

lhs

z

rhs

rhs

(body, 0)

(body, 1)

Figure 3.1: Example illustration of a cursor pointing to the read of y in the code on the left. Its

corresponding path in the AST is shown on the right.

In addition to standard cursors to nodes in the AST, we also implement two additional types

of cursors: blocks and gaps. Block cursors refer to a list of nodes (e.g. the body of a for loop is

a list of statement nodes). Representation-wise, cursors to blocks of statements simply store a

range at the final path index, instead of a single value. Gaps are defined as coming before or after

a node, and their path is effectively the path of the anchor node appended with either a “before”

or “after” at the final index.

Spatial navigation operations such as .parent(), .rhs(), .body()[idx], or .next() are straight-

forward to implement bymodifying this path representation. Various tree properties (e.g. whether

one cursor is a subtree of another) can also be determined by comparing path prefixes. The main

complexity in the design addresses the problem of how references and actions interact.

3.2 Stable References via Cursor Forwarding

When a scheduling operation transforms an old procedure into a new procedure, we need a way

to update the old cursor to its corresponding location in the new procedure. We term this cursor

update policy as cursor forwarding, and each scheduling operation has an associated forwarding
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function. When a scheduling operation transforms a procedure, cursors are not automatically

updated. Users must explicitly update the cursors by invoking the forwarding function.

Exo currently has over 40 scheduling operations, and will inevitably add more as the system

continues to grow. The task of maintaining stable references is challenging because each schedul-

ing operation’s forwarding function can be quite complex. To tackle this problem, we implement

cursor forwarding in two steps:

1. We define cursor forwarding through simple transformations, which we term atomic edits.

2. We re-implement Exo’s scheduling operations as compositions of these atomic edits.

This approach allows us to only implement relatively simple, well-defined forwarding func-

tions for the atomic edits. Each scheduling operation’s transformation can then be decomposed

into a sequence of atomic edits, and its forwarding function is simply the composition of the

forwarding functions of its constituent atomic edits.

3.2.1 Forwarding Behavior of Atomic Edits

There are five atomic edits: insert, delete, replace, move, and wrap. Each atomic edit takes input

cursors to determine where to perform the transformation, and returns the updated IR as well as a

forwarding function. It is important to note that these atomic edits do not necessarily preserve the
functional equivalence of the original procedure. It is up to the USL designer to perform the proper

functional equivalence analysis prior to using these atomic edits to transform the underling code.

Insertion Inserts an IR fragment into a gap. This operation preserves all existing cursors.

The forwarding function simply adjusts paths through the insertion point by incrementing pre-

existing paths at the appropriate tree level. Cursors that do not contain the gap forward naturally.

Cursors that contain the gap forward to cursors pointing at the updated AST containing the in-

serted IR fragment, as exemplified by the orange block cursor in Figure 3.2.

def foo(x: f32 @ DRAM):

x = 0.0

x = 1.0

def foo(x: f32 @ DRAM):

x = 0.0

pass

x = 1.0

gap

Figure 3.2: Forwarding behavior when inserting an IR fragment into a gap.

Deletion Deletes subtrees of the AST. This invalidates paths within the deleted subtrees, while

paths outside remain valid. The forwarding function decrements pre-existing paths through the

deletion point at the appropriate tree level. Cursors which do not contain the deleted subtree

forward naturally. Cursors which contain the entire deleted subtree forward to updated ASTs

without the deleted subtree, as exemplified by the orange block cursor in Figure 3.3. All other

cursors, such as those entirely within the deleted subtree or those which partially intersect the

deleted subtree, are invalidated by the forwarding function. This is exemplified by the violet

block cursor in Figure 3.3.

21



def foo(x: f32 @ DRAM):

x = 0.0

pass

pass

x = 1.0

def foo(x: f32 @ DRAM):

x = 0.0

x = 1.0

x

Figure 3.3: Forwarding behavior when deleting a block.

Replacement Replaces subtrees of the AST with a new subtrees. The forwarding behavior is

almost identical to inserting the new subtree and deleting the old, except the unique path to the

replaced subtree remains valid and forwards to the newly inserted subtree, as exemplified by the

orange block cursor in Figure 3.4.

def foo(x: f32 @ DRAM):

...

x = 0.0

x += 1.0

...

def foo(x: f32 @ DRAM):

...

x = 1.0

...

Figure 3.4: Forwarding behavior when replacing a block of statements.

Movement Moves a subtree to a new location specified by a gap. To avoid ambiguity, the gap

cannot bewithin themoved subtree. This preserves all previous node identities, so the forwarding

function maps all node cursors to their natural correspondences. Most blocks forward to natural

correspondences. Blocks entirely within the moved subtree forward to their new locations in the

AST, as exemplified by the orange block cursor in Figure 3.5. Blocks containing the gap or the

entire moved subtree forward to the updated ASTs with/without the moved subtree. However,

blocks which only partially intersect the moved subtree are invalidated, as exemplified by the

violet block cursor in Figure 3.5

def foo(x: f32 @ DRAM):

x = 0.0

for i in seq(0, 4):

pass

x = 2.0

x = 1.0

def foo(x: f32 @ DRAM):

x = 0.0

pass

x = 2.0

for i in seq(0, 4):

x = 1.0

gap

x

Figure 3.5: Forwarding behavior when moving a block of statements. The red highlighted code

on the left is moved to the gap, resulting in the green highlighted code on the right.
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Wrapping Wrapping an existing subtree with a one-hole IR fragment. When the subtree we

are wrapping is a block of statements, this is equivalent to insertion with movement. However,

this is not always the case for lists of expressions. For example, when wrapping plus one around

an expression like (□+1), there’s no (easy) way to insert the partial plus one IR fragment into the

code. In terms of forwarding behavior, wrapping is very similar to movement. Blocks entirely

within the wrapped subtree forward to their new locations in the AST, as exemplified by the

orange block cursor in Figure 3.6. Blocks containing the entire moved subtree forward to the

updated ASTs with the wrapped subtree. However, blocks which only partially intersect the

wrapped subtree are invalidated, as exemplified by the violet block cursor in Figure 3.5

def foo(x: f32 @ DRAM):

...

x = 0.0

x += 1.0

...

def foo(x: f32 @ DRAM):

...

for i in seq(0, 4):

x = 0.0

x += 1.0

...

gap

x

Figure 3.6: Forwarding behavior when moving a block of statements. The red highlighted code

on the left is moved to the gap, resulting in the green highlighted code on the right.

Each of the five atomic edits is designed so that it must return a valid AST.While this generally

holds true most of the time, there are a few pathological cases that require special care. For

instance, Exo is an embedded language within Python, but Python does not allow empty for loop

bodies. If a delete removes a loop’s entire body, the atomic edit will automatically insert a pass

statement as the loop body to align with Python syntax.

3.2.2 Composing Atomic Edits to Build Scheduling Primitives

While insert and delete are sufficient to perform arbitrary AST transformations, they will not

necessarily yield the desired forwarding behavior needed to maintain stable references. We found

that replace, move, and wrap were also necessary to express the desired forwarding behavior.

Depending on the desired forwarding behavior of the scheduling operations, wemight implement

them using a different composition of atomic edits.

For instance, consider the reorder_loops scheduling operation. Figure 3.7 shows the desired

forwarding behavior for cursors before and after the scheduling operation’s transformation. A

naive implementation of reorder_loopsmight call the replace atomic edit to substitute the entire

subtree directly, but this would invalidate all cursors within the replaced subtree.

for i in seq(0, 4):

for j in seq(0, 4):

...

for j in seq(0, 4):

for i in seq(0, 4):

...

Figure 3.7: Desired forwarding behavior for reorder_loops.
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Rather than using a replace atomic edit which invalidates many existing cursors, the imple-

mentation of reorder_loops consists primarily of move atomic edits which preservemost existing

cursors. As each atomic edit is being performed, we are keeping track of the composed forward-

ing function in the fwd variable. Note that cursors do not automatically forward after an atomic

edit is performed, so prior to applying each atomic edit function, the language designer must call

fwd on the cursors to update them.

# Move the inner loop out of the outer loop, auto-generating a pass in the latter.

ir, fwd_move_1 = inner_loop._move(outer_loop.after())

fwd = fwd_move_1

# Move the old outer loop inside the inner loop

ir, fwd_move_2 = fwd(outer_loop)._move(fwd(body).before())

fwd = _compose(fwd_move_2, fwd)

# Move the body inside the old outer loop (now the inner loop)

ir, fwd_move_3 = fwd(body)._move(fwd(outer_loop).body().after())

fwd = _compose(fwd_move_3, fwd)

# Delete the pass statement auto-generated in step 1

ir, fwd_del = fwd(outer_c).body()[0]._delete()

fwd = _compose(fwd_del, fwd)

Figure 3.8: Implementation of reorder_loops as a composition of four atomic edits in order to

achieve the desired forwarding behavior shown in Figure 3.7.

In order to achieve the desired forwarding behavior, Exo language designers must carefully

think about how to compose the atomic edits. However, as long as language designers understand

the forwarding behavior of the five atomic edits, they do not have to worry about implementing

their own forwarding functions. As seen above, we can simply use function composition to obtain

the desired forwarding function for the scheduling primitive.

3.3 Simplifying Implementation of Scheduling Operations

Our cursor and forwarding designs make it easier for Exo language designers to extend the

scheduling language. When defining a new scheduling operation, we must implement four core

components:

1. Where do we modify the AST?

2. What AST transformations need to be performed?

3. Does the transformation preserve functional equivalence?

4. How do we update existing references to the old procedure?

Our cursor design greatly simplifies the implementation of (1) and (4). For (1), the previous Exo

design required each scheduling operation to implement AST navigation to determine where
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to perform the transformation. By implementing cursors as a first-class reference mechanism,

Exo language designers no longer need to concern themselves with this problem. While (4) is

a new requirement introduced by implementing a first-class reference mechanism, our two step

design to cursor forwarding makes this easy. Exo langauge designers do not need to define a new

forwarding function for each new scheduling operation. They simply need to determine how to

decompose the transformation into the five atomic edits, and the forwarding behavior is provided

by composing the forwarding functions of the atomic edits.
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Chapter 4

Reproducing Halide as an Exo Library

Leveraging the cursors and cursor forwarding defined in the previous chapter, we will demon-

strate how users can build libraries of automated scheduling strategies within Exo. We built an

Exo library which implements the Halide scheduling operations as compositions of Exo primitive

scheduling operations. Halide’s well chosen scheduling operations enable performance engineers

to rapidly explore the trade-off space. Compared to Exo, Halide’s scheduling operations operate

at a much higher level of automation, making it a productive system for optimizing many real-

world image processing pipelines. In this chapter, our goal is not to replicate the entire Halide

system, but rather the well-chosen automation level provided by Halide’s scheduling operations.

To start off, we introduce the Halide language via the canonical 3 × 3 box blur example.

4.1 Overview of Halide by Example

Halide Blur Algorithm We divide the computation into two computation stages: a vertical

blur and a horizontal blur. These two computations have a producer-consumer relationship: the

consumer blur_y depends on the results of the producer blur_x. Each Func corresponds to an array

of intermediate values that must be computed. Although for loops are not explicitly written in

Halide, each Var implicitly corresponds to a loop iteration variable. Halide has a default loop

iteration order of y and then x.

Input<Buffer<uint16_t, 2>> input{"input"};

Output<Buffer<uint16_t, 2>> blur_y{"blur_y"};

Func blur_x("blur_x");

Var x("x"), y("y");

blur_x(x, y) = (inp(x, y) + inp(x+1, y) + inp(x+2, y)) / 3;

blur_y(x, y) = (blur_x(x, y) + blur_x(x, y+1) + blur_x(x, y+2)) / 3;

Halide Blur Schedule The expert hand-written Halide schedule for this algorithm, taken from

[12], is shown below. The tile, vectorize, parallel, and compute_at are Halide’s scheduling

26



operations. Lines 1 and 2 introduce new inner loops to subdivide the computation into 32 × 256

tiles, making the new loop iteration order (from outermost to innermost) y, x, yi, xi. Lines 3 and

6 tell the Halide instruction selector to utilize vector instructions during code generation of the

innermost xi loops. Line 4 parallelizes the problem across the outermost y loop.

1 Var xi("xi"), yi("yi")

2 blur_y.tile(x, y, xi, yi, 256, 32)

3 .vectorize(xi, 16)

4 .parallel(y);

5 blur_x.compute_at(blur_y, x)

6 .store_at(blur_y, x)

7 .vectorize(x, 16);

Line 5 is themost interesting line of the schedule. The blur_x.compute_at(blur_y, x) schedul-

ing operation fuses the blur_y and blur_x computations at the x loop level. This means that for

each 32 × 256 blur_x, we compute all the inputs needed to evaluate this tile (e.g. a 34 × 256 tile

of blur_y). Note that the Halide schedule automatically determines what the set of necessary

inputs. The store_at(blur_y, x) scheduling operation drops the allocation within the x loop

iteration, resulting in an allocation of size (32 + 2) × 256 since each row of blur_y depends on

three rows of blur_x. So this schedule implicitly allocate blur_x within the x loop. Ultimately,

the Halide schedule results in the following pseudocode:

parallel for y:

for x:

alloc blur_x

for yi in [0, 33]:

vectorized for xi in [0, 15]:

blur_x(...) = ...

for yi in [0, 31]:

vectorized for xi in [0, 15]:

blur_y(...) = ...

In practice, even if no store_at command were provided, Halide would generate the same

code because by default, it will store at the same loop as compute_at. If neither a compute_at or

store_at scheduling operation were provided for the intermediate value blur_x, then the default

Halide behavior is to inline it into the computation of blur_y. Thus, while the schedule may not

always explicitly specify a compute or store location, Halide will always fill in default values at

compile time.

4.2 Implementing Halide Scheduling Operations in Exo

In this section, we aim to reproduce the core Halide scheduling operations tile, split, reorder,

compute_at, store_at, vectorize, store_in, and parallel within Exo. However, Exo and Halide
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object code are very different: Halide expresses computations as sequences of pure functions

over integer domains, while Exo express computations as sequence of loops, conditionals, and

statements. We restrict our Exo-implemented compute_at and store_at scheduling operations to

a subset of Exo code satisfying certain assumptions:

1. The code only consists of for loops, if statements, buffer allocations, buffer assignments,

and asserts.

2. For each buffer, all of its writes are performed by a single assign statement within loops.

This reflects the implicit assumptions of Halide’s object code when writing statements such

as blur_x(x, y) = ....

3. For each dimension of each buffer assignment, the surrounding loops are arranged from

top to bottom in decreasing stride order (e.g. the x loop contains the xi loop).

4. Each buffer’s computation is dependent on a contiguous subset of a previous buffer.

For example, the Exo 3×3 box blur algorithm from Section 2.2 satisfies these properties. The Exo-

implemented compute_at and store_at operations preserve these assumptions throughout their

transformations. Note that while we make these assumptions, applying our Exo-implemented

compute_at and store_at scheduling operations to programs which violate the assumptions will

never generate incorrect code. Instead, violations of the assumptions will be caught and Exo

will throw errors during scheduling. These assumptions simplify the implementation, but also

introduce limitations. As we will discuss in Section 4.4.2, the second assumption combined with

Exo’s current limitations restrict the tail cases we can handle
1
. However, the second assumption

is essential for code organization: it prohibits generating an exponential number of separate loop

nests for tail cases. This makes it possible to easily chain compute_at operations together.

Inevitably, there are also differences between theHalide and Exo scheduling interfaces. Halide

is a scheduling language which monolithically lowers code based on the provided schedule. As a

result, Halide automatically reorders the scheduling operations at compile time and applies them

in a prescribed order based on the type of transformation: specialization, loops, compute, store,

and bounds [5]. The user does not have to worry about ordering the scheduling operations. How-

ever, in a rewrite scheduling system such as Exo, the user must determine the scheduling opera-

tions order because earlier parts of schedules will influence how later parts of the schedule should

transform the code. In Section 4.2.1, we explain the order in which the Exo Halide-like schedul-

ing operations should be applied. Additionally, Halide postpones determining loop bounds until

the very end. Postponing bounds inference is not possible in Exo because all intermediate code

between rewrites must be valid. Therefore, the Exo implementations of compute_at and store_at

must internally perform bounds inference, which we explain in Section 4.2.2.

In Section 4.2.3 and Section 4.2.4, we will utilize bounds inference to implement compute_ ⌋
at and store_at in Exo. Rather than supplying compute_at and store_at as built-in scheduling

operations, we provide users with the ability to implement them as compositions of Exo’s primi-

tive scheduling operations. We only focus on explaining the implementations of compute_at and

store_at since tile, split, reorder, and store_in are straight forward to implement, paralle ⌋
l is explained in greater detail later in Section 5.1, and vectorize was previously explained in

[19]. Other scheduling operations were not deemed as essential parts of the Halide scheduling

interface, so we did not reproduce them for now.

1
For innermost loop tail cases, the vectorize scheduling operation works.
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4.2.1 Ordering Halide-like Scheduling Operations in Exo

In Exo, users must manually order the scheduling operations. The ordering matters because

previously-applied scheduling operations change the inputs to future scheduling operations. In

Exo, we generally first apply loop transformations such as tile, reorder, split. Then, we apply

compute_at and store_at operations. Lastly, we apply vectorize and parallel.

The compute_at scheduling operation is responsible for moving the buffer assignment while

the store_at scheduling operation is responsible for moving the memory allocation around. For

each intermediate buffer, the proper scheduling operation ordering is compute, store, and then

possibly compute again. The second compute phase is necessary because the exact code trans-

formation we want to perform for compute_at depends on what loop level we pass to store_at.

To illustrate this point, consider the Halide algorithm below. Even between two schedules with

the same compute_at command, the generated code for computing producer values depends on

the buffer’s storage location.

Algorithm

producer(x, y) = sin(x * y)

consumer(x, y) = producer(x, y) + producer(x, y + 1)

Schedule

producer.compute_at(consumer, y)

.store_at(consumer, y)

Generated pseudocode

for y:

alloc producer

for py in [0, 1]:

for x:

producer(...) = ...

for x:

consumer(...) = ...

(a) Compute and store at the same loop

Schedule

producer.compute_at(consumer, y)

.store_root()

Generated pseudocode

alloc producer

for y:

for py in [0, 1]:

if y == 0 or py == 1:

for x:

producer(...) = ...

for x:

consumer(...) = ...

(b) Store at higher loop than compute

Figure 4.1: While both schedules invoke producer.compute_at(consumer, y) to fuse the compu-

tations at the y loop level, they store the result at different locations. The left schedule stores the

producer at the same loop level as compute_at, while the right schedule calls store_root(), which

stores the producer above all loop levels. This results in different generated code.
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If we compute and store at the same loop level (Figure 4.1a), then the generated code will re-

compute some producer values across x loop iterations because the memory is freshly reallocated

each iteration. However, if we are store at a higher loop than we are compute at (Figure 4.1b),

then there is an opportunity to share work across each loop below allocation level. Thus, the

generated code will precompute a prologue of producer values, and then compute the rest of the

producer values on demand at the loop level specified by compute_at.

To enable users to adequately navigate the Halide trade-off space, we provide users with two

different versions of compute_at, modulated by setting the with_prologue flag to either True or

False. When scheduling the compute and storage levels for a particular intermediate buffer, Exo

users should apply the scheduling operations in the following order:

1. The compute_at operation with with_prologue=False at the same loop level that the user

plans to store at.

2. The store_at operation at the desired loop level.

3. (Optional) The compute_at operation with with_prologue=True at the desired compute loop

level. This step is only necessary if computing at a loop level below the storage loop level.

In Section 4.2.3 and Section 4.2.4, we will explain the implementation of each of these scheduling

operations in greater detail.

4.2.2 Bounds Inference

Bounds inference is the problem of determining the indices of all possible accesses to an array

within a given scope of code. We do not claim to have reproducedHalide’s entire bounds inference

system, which ismore general. Our bounds inference only applies to Exo’s object language, which

is restricted to affine iteration spaces, making the bounds inference problem simpler than it would

be in more general languages which allow data dependent access patterns.

for io in seq(0, N / 32):

# arr is accessed within [32 * io : 32 * io + 34]

for ii in seq(0, 32):

x = arr[32 * io + ii] + arr[32 * io + ii + 1] + arr[32 * io + ii + 2]

To implement bounds inference, consider the example of inferring access bounds for ar ⌋
r within the io loop in the code fragment above. Determining the bounds for the array arr

can be reduced to unioning bounds for each array access. In ordinary Python code, we define a

representation of intervals with support for unioning intervals of expressions in arithmetic oper-

ations. Wewill find all accesses to the array, and call infer_range (defined below) on each access’s

index expression to bound it. To determine intervals for each index expression, we decompose

the expression into an linear combination of constants and variables which may be either free

or bound in the scope. For example, in the index expression 32 * io + ii + 1 above, ii is a

bound variable and io is a free variable. Knowing that 0 ≤ ii < 32 implies that this index ex-

pression spans the window [32 * io + 1 : 32 * io + 32]. Leveraging cursors’ ability to return

properties of the object code, our implementation obtains loop bounds (lines 6–9) and maintains
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an environment dictionary (line 10) to track the free and bound variables. We then call inde ⌋
x_range_analysis in line 12, which recursively traverses the AST of idx_expr and consults the

constructed environment to determine a bound on the index expression.

1 def infer_range(idx_expr: Cursor, scope: Cursor) -> IndexRange:

2 # Only add bound variables to the env (which excludes scope)

3 env = dict()

4 ancestors = list(get_parents(idx_expr.proc(), idx_expr, up_to=scope))[:-1]

5 for c in filter(lambda x: isinstance(x, ForCursor), ancestors):

6 lo, _ = constant_bound(c.lo(), env)

7 _, hi = constant_bound(c.hi(), env)

8 if hi is not None:

9 hi -= 1 # loop upper bound is exclusive

10 env[c.name()] = (lo, hi)

11

12 bounds = index_range_analysis(idx_expr, env)

13 return bounds

4.2.3 Compute At

Wewill explain the implementation of compute_at, which is provided at the end of this subsection.

To ground our discussion, let’s start from the 3 × 3 box blur algorithm after tiling, shown in

Figure 2.2.

To perform the code transformation for blur_x.compute_at(blur_y, x), we follow the se-

quence of transformations shown in Figure 4.2. We fuse the computation of the producer blur_x

with the computation of the consumer blur_y by sinking the computation blur_x into the y and

x consumer loops. For each consumer loop we want to sink the compute into, our compute_at

needs to make decisions based on the code it is being applied to. The two “Inspection” labels in

Figure 4.2 are user-implemented analyses which guide the application of scheduling operations

within the compute_at implementation. The first determines whether or not the outermost loop

of the producer loop nest corresponds to the same array dimension as the outermost loop of the

consumer loop nest. Since Exo has to explicitly deal with loops, we may also have to reorder

loops and statements to make the producer and consumer loops adjacent. For the blur example,

we only need to reorder the loops once, as indicated by the red highlighted code in Figure 4.2.

The second “Inspection” utilizes the bounds inference described in Section 4.2.2 to determine loop

bounds when fusing two successive computation stages.
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for y in seq(0, H/32):

for yi in seq(0, 34):

for x in seq(0, W+2):

blur_x[…] = …


for x in seq(0, W/256):

for yi in seq(0, 32):

for xi in seq(0, 256):        

# Y = 32*y+yi, X = 256*x+xi

blur_y[Y,X] = avg(blur_x[Y:Y+3,X])

for y in seq(0, H+2):

for x in seq(0, W+2):

blur_x[y,x] = …


for y in seq(0, H/32):

for x in seq(0, W/256):

for yi in seq(0, 32):

for xi in seq(0, 256):

# Y = 32*y+yi, X = 256*x+xi

blur_y[Y,X] = avg(blur_x[Y:Y+3,X])

for y in seq(0, H/32):

for x in seq(0, W/256):

for xi in seq(0, 258):

for yi in seq(0, 34):

blur_x[…] = …


for yi in seq(0, 32):

for xi in seq(0, 256):

# Y = 32*y+yi, X = 256*x+xi

blur_y[Y,X] = avg(blur_x[Y:Y+3,X])

for y in seq(0, H/32):

for x in seq(0, W+2):

for yi in seq(0, 34):

blur_x[…] = …


for x in seq(0, W/256):

for yi in seq(0, 32):

for xi in seq(0, 256):        

blur_y[…] = …

for y in seq(0, H/32):

for x in seq(0, W/256):

for xi in seq(0, 258):

for yi in seq(0, 34):

blur_x[…] = …


for x in seq(0, W/256):

for yi in seq(0, 32):

for xi in seq(0, 256):        

blur_y[…] = …

reorder_loops(p, loops)

divide_with_recompute(

p, loop, W+2, 256, 

[“x”, “xi”])

fuse(p, loop1, loop2)

blur_x.compute_at(blur_y, x)

Fuse over y loops Fuse over x loops

Inspection: Within loop, we access 
the producer (blur_x) along the x 
dimension at (256*y, 256*y+258).

Inspection: The outermost 
unfused loop of the producer 
(blur_x) is not the x loop

Figure 4.2: DecomposingHalide’s compute_at scheduling operation into Exo’s finer-grained prim-

itive scheduling operations for the blur example’s blur_x.compute_at(blur_y, x).

Recall that in Section 4.2.1, we distinguished between two different modes of compute_at, de-

pending on whether we are computing and storing at the same loop level. The main difference

lies in the precise code transformations that are applied after inspecting the code and reordering

loops/statements. The with_prologue=Falsemode corresponds to lines 44–51 in the implementa-

tion below. For each consumer loop we want to sink the compute into, we divide corresponding

loop around the producer blur_x and fusing the resulting outer loop with the consumer’s loop.

This is the transformation being shown in Figure 4.2 because the blur schedule computes and

stores at the same loop level.

In the second case where we want to compute at a lower level then we store at, we use the

mode with with_prologue = True, which corresponds to lines 52–64 in the implementation below.

For each consumer loopwewant to sink the compute into, rather than dividing the producer loop,

it separates the producer loop into a prologue loop and a main loop via the cut_loop scheduling

operation. Then, it fuses the main producer loop with the consumer loop.

32



Full compute_at Implementation

1 def compute_at(

2 proc: Procedure,

3 producer_assign: AssignCursor,

4 target_loop: ForCursor,

5 with_prologue: bool = False,

6 ):

7 producer_assign = proc.forward(producer_assign)

8 target_loop = proc.forward(target_loop)

9 producer = producer_assign.name()

10

11 # Identify all the consumer loops we need to fuse into

12 p_loop, c_loop = match_parent(producer_assign, target_loop)

13 c_loops = [target_loop] + list(get_parents(proc, target_loop, up_to=c_loop))

14 for c_loop in reversed(c_loops):

15 # Cursor forwarding: enables reusing existing cursors

16 producer_assign = proc.forward(producer_assign)

17 c_loop = proc.forward(c_loop)

18

19 # Inspection: bounds inference to determine which producer values are consumed

20 buffer_dim = get_affected_read_dim(producer, c_loop)

21 bounds = bounds_inference(c_loop, producer, buffer_dim, include=["R"])

22 N_c = c_loop.hi()._impl._node

23

24 # Inspection: identify the corresponding producer loop based on dimension affected

25 dim_vars = _get_reads_of_expr(producer_assign.idx()[buffer_dim])

26 p_loop, _ = match_parent(producer_assign, c_loop)

27 while p_loop.name() not in dim_vars:

28 p_loop = p_loop.body()[0]

29

30 # Surface the corresponding producer loop level

31 while p_loop.parent() != c_loop.parent():

32 proc = reorder_loops(proc, p_loop.parent())

33 # Cursor forwarding: enables reusing existing cursors

34 p_loop = proc.forward(p_loop)

35 c_loop = proc.forward(c_loop)

36

37 # Reorder producer loop nest to be directly before consumer loop nest

38 while p_loop.next() != c_loop:

39 proc = reorder_stmts(proc, p_loop.expand(0, 1))

40 # Cursor forwarding: enables reusing existing cursors

41 p_loop = proc.forward(p_loop)

42 c_loop = proc.forward(c_loop)
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Full compute_at Implementation (continued)

43 # Different transformations depending on [with_prologue] flag

44 if not with_prologue:

45 # Divide the loop with recomputation

46 w_c = bounds.get_stride_of(c_loop._impl._node.iter)

47 new_iters = [f"{c_loop.name()}", f"{c_loop.name()}i"]

48 proc = _divide_with_recompute(proc, p_loop, f"{N_c}", w_c, new_iters)

49

50 # Fuse producer loop with consumer loop

51 proc = fuse(proc, p_loop, c_loop, unsafe_disable_check=True)

52 else:

53 # Separate out prologue loop

54 w_p = bounds.get_size()

55 proc = cut_loop(proc, p_loop, w_p - 1)

56

57 # Cursor forwarding: enables reusing existing cursors

58 prologue_loop = proc.forward(p_loop)

59 main_loop = prologue_loop.next()

60 producer_assign = proc.forward(producer_assign)._reroute_through(main_loop)

61

62 # Fuse main producer loop with consumer loop

63 proc = shift_loop(proc, main_loop, 0)

64 proc = fuse(proc, main_loop, main_loop.next())

65

66 proc = _simplify_with_preds(proc)

67

68 return proc

4.2.4 Store At

The implementation of store_at is simpler. This scheduling operation repeatedly sinks an al-

location into a for loop and shrinks the size of the allocation to reduce memory footprint. The

implementation can be found on the following page. We first gather all the loops we need to

move the allocation via the loops_between function defined on line 11. For each loop, we use

bounds_inference (line 28) to determine how much we can shrink the allocation size by. We then

reorder the allocation to be right before the loop (lines 32–35), and use sink_alloc (line 37) to

move the allocation inside the loop. We then resize the allocation using resize_dim (line 38) and

apply arithmetic simplification (line 39) to the newly generated size expressions. Note that once

again, cursor forwarding is the key mechanism which enables composition of scheduling opera-

tions operating on a generic reference. Without cursor forwarding, we would have to repeatedly

re-obtain a reference to the producer_alloc after each transformation.
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store_at Implementation

1 def store_at(proc: Procedure, producer_alloc: AllocCursor, target_loop: ForCursor):

2 """

3 Moves [producer]'s allocation into [target_loop] and reduces the dimensions

4 as necessary.

5 """

6 producer_alloc = proc.forward(producer_alloc)

7 target_loop = proc.forward(target_loop)

8

9 producer = producer_alloc.name()

10

11 def loops_between(producer_alloc, target_loop):

12 """

13 producer_alloc

14 ...

15 for i in _:

16 for j in _:

17 for k in _: <- target_loop

18 loops_between(producer_alloc, target_loop) -> [i, j, k]

19 """

20 top_loop, _ = match_parent(target_loop, producer_alloc)

21 return reversed(get_parents(proc, target_loop, up_to=top_loop))

22

23 for loop in loops_between(producer_alloc, target_loop) + [target_loop]:

24 loop = proc.forward(loop)

25 producer_alloc = proc.forward(producer_alloc)

26

27 buffer_dim = get_affected_read_dim(producer, loop)

28 bounds = bounds_inference(loop, producer, buffer_dim)

29 lo, _ = bounds.get_bounds()

30 size = bounds.get_size()

31

32 while producer_alloc.next() != loop:

33 proc = reorder_stmts(proc, producer_alloc.expand(0, 1))

34 producer_alloc = proc.forward(producer_alloc)

35 loop = proc.forward(loop)

36

37 proc = sink_alloc(proc, producer_alloc)

38 proc = resize_dim(proc, producer_alloc, buffer_dim, size, lo)

39 proc = simplify(proc)

40

41 return simplify(proc)
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4.3 Evaluation

We apply our Exo Halide-like scheduling operations to optimize several image processing algo-

rithms. We use our Exo Halide-like scheduling operation to schedule the 3 × 3 box blur and

unsharp masking algorithms, achieving performance competitive with state-of-the-art, hand-

written Halide schedules.

For ease of comparison, we defined halide_-prefixed wrapper functions around our Halide-

like scheduling operations to bridge the gap between Halide’s and Exo’s referencing schemes.

These halide_-prefixed wrapper functions expect nominal string references and internally con-

vert to Exo’s cursor references. Halide’s nominal referencing scheme uses action-specialized

built-in navigation. For example, blur_x.compute_at(blur_y, x) refers to the x loop enclos-

ing the blur_y computation. Since cursors generalize nominal referencing, this simply involves

translating the built-in navigation performed by Halide’s scheduling operations.

Furthermore, to shield users from the ordering of scheduling operations described in Sec-

tion 4.2.1, we define the following compound scheduling operations:

• halide_compute_and_store_at_same(proc, producer, consumer, loop): first calls compu ⌋
te_at, then store_at, both at the same loop level

• halide_compute_and_store_at(proc, producer, consumer, compute_loop, store_loop ⌋
): first calls compute_at at store_loop, then calls store_at at store_loop, and finally calls

compute_at_with_prologue at compute_loop

• halide_fully_inline(proc, producer, consumer): calls halide_compute_and_store_at_ ⌋
same on the lowest loop level. Then, it inlines the producer into the consumer and deletes

the unnecessary intermediate buffer for the producer.

4.3.1 3 × 3 Box Blur

Exo Schedule using Halide-like Operations We previously provided the Halide algorithm and

schedule in Section 4.1 as well as the initial Exo 3 × 3 box blur algorithm in the beginning of

Section 4.2, so we’ll dive directly into the Exo schedule. With the exception of the last line, every

line of the Exo schedule has a natural corresponding line in the Halide schedule. Furthermore,

the code generated by the Exo schedule has competitive performance with the code generated by

the Halide schedule, as show in Figure 4.3a.

1 p = exo_blur

2 p = halide_tile(p, "blur_y", "y", "x", "yi", "xi", 32, 256)

3 p = halide_compute_and_store_at_same(p, "blur_x", "blur_y", "x")

4 p = halide_parallel(p, "y")

5 p = halide_vectorize(p, "blur_x", "xi", 16)

6 p = halide_vectorize(p, "blur_y", "xi", 16)

7 p = halide_store_in(p, "blur_x", DRAM_STACK)
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4.3.2 Unsharp Masking

Halide Algorithm The unsharp masking algorithm is an algorithm that enhances the contrast

between adjacent pixels. Below, is the Halide algorithm for unsharp masking. It first converts

an RGB image into gray scale. Then, it applies a 7 × 7 Gaussian blur to the gray image in two

steps, a vertical blur followed by a horizontal blur, to form a blurry image. The sharpened image

is computed as the gray image masked by the blurry image. Finally, the sharpening factor, the

ratio between the sharpened image and the gray image, is used to scale the original image. All

together, the unsharp masking algorithm consists of 7 computation stages.

Input<Buffer<float, 3>> input{"input"};

Output<Buffer<float, 3>> output{"output"};

Var x("x"), y("y"), c("c");

Func kernel("kernel");

const float kPi = 3.14159265358979310000f;

GeneratorParam<float> sigma{"sigma", 1.5f};

kernel(x) = exp(-x * x / (2 * sigma * sigma)) / (sqrtf(2 * kPi) * sigma);

Func gray("gray");

gray(x, y) = (0.299f * input(x, y, 0) +

0.587f * input(x, y, 1) +

0.114f * input(x, y, 2));

Func blur_y("blur_y");

blur_y(x, y) = (kernel(0) * gray(x, y + 3) +

+ kernel(1) * (gray(x, y + 2) + gray(x, y + 4))

+ kernel(2) * (gray(x, y + 1) + gray(x, y + 5))

+ kernel(3) * (gray(x, y + 0) + gray(x, y + 6)));

Func blur_x("blur_x");

blur_x(x, y) = (kernel(0) * blur_y(x + 3, y)

+ kernel(1) * (blur_y(x + 2, y) + blur_y(x + 4, y))

+ kernel(2) * (blur_y(x + 1, y) + blur_y(x + 5, y))

+ kernel(3) * (blur_y(x + 0, y) + blur_y(x + 6, y)));

Func sharpen("sharpen");

sharpen(x, y) = 2 * gray(x + 3, y + 3) - blur_x(x, y);

Func ratio("ratio");

ratio(x, y) = sharpen(x, y) / gray(x + 3, y + 3);

output(x, y, c) = ratio(x, y) * input(x + 3, y + 3, c);
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Exo Algorithm With the exception of explicit loop bounds, the Exo algorithm closely matches

the Halide algorithm.

from math import exp, pi, sqrt

sigma = 1.5

k1, k2, k3, k4 = [exp(-x * x / (2 * sigma ** 2)) / (sqrt(2 * pi) * sigma) for x in range(4)]

r_to_gray, g_to_gray, b_to_gray = 0.299, 0.587, 0.114

@proc

def exo_unsharp(W: size, H: size, output: f32[3, H, W], input: f32[3, H + 6, W + 6]):

assert H % 32 == 0

gray: f32[H + 6, W + 6]

for y in seq(0, H + 6):

for x in seq(0, W + 6):

gray[y, x] = (

r_to_gray * input[0, y, x]

+ g_to_gray * input[1, y, x]

+ b_to_gray * input[2, y, x]

)

blur_y: f32[H, W + 6]

for y in seq(0, H):

for x in seq(0, W + 6):

blur_y[y, x] = (

k0 * gray[y + 3, x]

+ k1 * (gray[y + 2, x] + gray[y + 4, x])

+ k2 * (gray[y + 1, x] + gray[y + 5, x])

+ k3 * (gray[y + 0, x] + gray[y + 6, x])

)

blur_x: f32[H, W]

for y in seq(0, H):

for x in seq(0, W):

blur_x[y, x] = (

k0 * blur_y[y, x + 3]

+ k1 * (blur_y[y, x + 2] + blur_y[y, x + 4])

+ k2 * (blur_y[y, x + 1] + blur_y[y, x + 5])

+ k3 * (blur_y[y, x + 0] + blur_y[y, x + 6])

)

sharpen: f32[H, W]

for y in seq(0, H):

for x in seq(0, W):

sharpen[y, x] = 2.0 * gray[y + 3, x + 3] - blur_x[y, x]
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Exo Algorithm (continued)

ratio: f32[H, W]

for y in seq(0, H):

for x in seq(0, W):

ratio[y, x] = sharpen[y, x] / gray[y + 3, x + 3]

for y in seq(0, H):

for c in seq(0, 3):

for x in seq(0, W):

output[c, y, x] = ratio[y, x] * input[c, y + 3, x + 3]

Halide Schedule Before we schedule unsharp masking in Exo, it is worth understanding the

details of the the Halide schedule, particularly which decisions Halide makes automatically.

1 Var yo, yi;

2 const int vec = natural_vector_size<float>();

3

4 output.split(y, yo, yi, 32)

5 .parallel(yo)

6 .reorder(x, c, yi, yo);

7 .vectorize(x, vec)

8 gray.compute_at(output, yi)

9 .store_at(output, yo)

10 .vectorize(x, vec);

11 blur_y.compute_at(output, yi)

12 .store_at(output, yo)

13 .vectorize(x, vec);

14 ratio.compute_at(output, yi)

15 .store_at(output, yo)

16 .vectorize(x, vec);

Lines 4–5 divide the computation into groups of 32 output rows and parallelizes the groups across

all available cores. Line 6 specifies the loop iteration order. Since no schedule was specified for b ⌋
lur_x and sharpen, Halide’s default behavior is to inline those computations into the computation

of ratio. For gray, blur_y, and ratio, we apply the same schedule of .compute_at(output, yi) ⌋
.store_at(output, yo). This indicates that we should fuse the computation of these buffers with

the final output at the granularity of rows, but only perform the allocation once for each parallel

set of 32 rows. Finally, we vectorize all computations along the x loop dimension to leverage

SIMD parallelism.

Implicit in the schedule above, Halide automatically performs circular buffer optimizations in

order to minimize memory usage. For example, consider the fact that we are storing gray at the yo

loop level, but computing it at the yi loop level. A naive approach would allocate the gray buffer
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to store each of the 38 rows needed to compute 32 rows of output. However, we compute the

output row-by-row and each row only depends on 7 rows of gray, it suffices to store the 7 most

recent rows of gray, and index into the array with modular arithmetic. In practice, Halide rounds

the minimum number of rows up to the nearest power of two to enable fast modular arithmetic

when indexing. Similarly, Halide also applies the circular buffer optimization to blur_y and ra ⌋
tio. The generated code allocates 1 row of memory for blur_y and ratio, and 8 rows worth of

memory for gray.

Exo Schedule using Halide-like Operations To write the same schedule in Exo, we need to

order the scheduling operations appropriately. With the exception of lines 3, 8–9, and 14–16, all

other lines in the Exo schedule have a natural correspondence to a line in the Halide schedule.

In line 3, we defined a custom function which binds all of the constants in the Exo unsharp

masking algorithm (e.g. r_to_gray, k0, etc.) into Exo variables. This is due to a limitation in

Exo’s design which is elaborated in Section 4.4.3. Lines 8–9 perform the Halide’s assumed default

schedule of fully inlining the computations of sharpen and blur_x into the computation of ratio.

Lines 14–16 reflect how Halide automatically performs the circular buffer optimization to reduce

the kernel’s memory footprint. When comparing the performance of the code generated by the

Exo schedule to the code generated by the Halide schedule, our Exo-scheduled kernel shows

competitive performance in Figure 4.3b.

1 p = exo_unsharp

2

3 p = bind_all_consts_for_unsharp(p)

4 p = halide_split(p, "output", "y", "y", "yi", 32, tail="perfect")

5 p = halide_parallel(p, "y")

6

7 p = halide_compute_and_store_at(p, "ratio", "output", "yi", "y")

8 p = halide_fully_inline(p, "sharpen", "ratio")

9 p = halide_fully_inline(p, "blur_x", "ratio")

10 p = halide_compute_and_store_at(p, "blur_y", "output", "yi", "y")

11 p = halide_compute_and_store_at(p, "gray", "output", "yi", "y")

12

13 # Circular buffer optimization, which Halide does automatically

14 p = resize_dim(p, p.find("ratio: _"), 0, 1, 0, fold=True)

15 p = resize_dim(p, p.find("blur_y: _"), 0, 1, 0, fold=True)

16 p = resize_dim(p, p.find("gray: _"), 0, 8, 0, fold=True)

17

18 p = halide_vectorize(p, "gray", "x", 8)

19 p = halide_vectorize(p, "gray", "x", 8)

20 p = halide_vectorize(p, "blur_y", "x", 8)

21 p = halide_vectorize(p, "ratio", "x", 8)

22 p = halide_vectorize(p, "output", "x", 8)
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(a) Performance comparison for 3 × 3 box blur
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(b) Performance comparison for unsharp masking

Figure 4.3: Performance comparison between code generated by Exo schedules and code gen-

erated by expert-written Halide schedules. The Exo schedules exhibit competitive performance

across a range of image sizes.

4.4 Areas for improvement

This implementation is far from the production-grade quality of theHalide system. In this section,

we highlight Exo’s current limitations which either prevent implementing some features present

in Halide (Section 4.4.1 and Section 4.4.2), or make the implementation of the automation less

convenient (Section 4.4.3). We hope that these initial explorations will be helpful for guiding

future improvements to the Exo language.

4.4.1 Generation of Prologue Loops

In the Exo schedule for unsharp masking above, a careful reader may have noticed that lines

16 and 17 are identical. This is not a typo. Rather, this is an artifact of an Exo limitation when

generating prologue loops. Recall that at the beginning of Section 4.2, we said that our Halide

scheduling operations should only apply to code where every buffer is written to by exactly

one assign statement. This artifact is because our scheduling operation technically violates that

condition with the generation of prologue loops, as shown in Figure 4.4b. Ideally, we would

generate the code shown in Figure 4.4a, but current analysis limitations make it impossible to

perform such a transformation. We are currently working on generalizing our analysis to be able

to handle such transformations so we can avoid violating our initial assumptions. In the case of

unsharp masking, the violation did not result in a substantial change to scheduling. However,

the introduction of additional loops could potentially complicate scheduling of earlier pipeline

stages because we would now have to fuse into both the prologue and main loop. This problem

could potentially create a combinatorial explosion of loops, which is detrimental for designing a

scalable compute_at scheduling operation in Exo.
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for y:

for py in [0, 1]:

if y == 0 or py == 1:

for x:

producer(y + py, x) = ...

(a) Ideal form of computing prologues using a

single assign statement

for x:

producer(0, x) = ...

for y:

for x:

producer(y + 1, x) = ...

(b) The current form of computing prologues

generated by Exo, which uses multiple assign

statements

Figure 4.4: Different possibilities for generated prologue loops. Ideally, we would generate the

code on the left, both to be consistent with the assumptions made at the beginning of Section 4.2

and for easier design of the scheduling operations. However, with current Exo’s capabilities, we

are only able to generate the code on the right.

4.4.2 Handling Tail Cases

There are limitations of the Exo language which currently make it difficult for handling tail cases,

particularly for simple loop parallelization strategies such as OpenMP’s parallel for. When using

a parallel for loop, the body must be shared between both the full main iterations and the partial

tail iteration. Ideally, this body should not have predication such as if statements, as that would

add a significant runtime overhead to the main iterations. In Halide, two important tail strategies

which do not introduce significant overhead to themain iterations are RoundUp and ShiftInwards.

One of the main reasons we cannot handle tail cases for these types of parallel code is that

Exo lacks the expressivity to represent these two important tail strategies. The former requries

the language to support overcompute analysis to determine when it is safe to compute garbage

values, as indicated in Figure 4.5a. The latter requires careful management of index expressions

using min, as illustrated in Figure 4.5b, which is not possible in current Exo. Furthermore, Exo’s

current notion of parallel safety has no way to deal with “safe write races”, as we will discuss

later in Section 5.1, which is required for the ShiftInwards tail case strategy.

x: i8[N]

for io in par(0, N / 32):

for ii in seq(0, 32):

x[32 * io + ii] = ...

(a) RoundUp tail strategy: the access to x may be

out-of-bounds when N is not a multiple of 32, so

Exo would need to reason about overcompute.

x: i8[N]

for io in par(0, N / 32):

base = min(32 * io, N - 32)

for ii in seq(0, 32):

x[base + ii] = ...

(b) ShiftInwards tail strategy: invalid Exo code

since Exo lacks support for min in index expres-

sions and also cannot reason about safe write races.

Figure 4.5: Examples of different tail strategies that are necessary for efficient parallelization.

Neither one can currently be supported in Exo.
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4.4.3 Instruction Selection with Constants

In the unsharp masking schedule, we needed to write a custom function which bound all of

the constants into an Exo variable due to an Exo limitation. The Exo system uses Unification

to perform instruction selection. Unfortunately, there is no way to directly unify the body of

Figure 4.6a with the corresponding Exo instruction in Figure 4.6b. As a consequence, we must

manual bind all of the constants in the body of the procedure into variables first before we can

perform the instruction selection. This is mostly an inconvenience than a limitation, but it would

be nice to fix for future use.

@proc

def foo(x: f32[8]:

for i in seq(0, 8):

x = 1.0

(a) Example Proc whose body

we want to replace with a vec-

torized load instruction.

@instr("{out_data} = _mm256_broadcast_ss(&{val_data});")

def mm256_broadcast_ss(out: [f32][8] @ AVX2, val: [f32][1]):

assert stride(out, 0) == 1

for i in seq(0, 8):

out[i] = val[0]

(b) The Exo instruction corresponding to a vectorized load

Figure 4.6: Example of invalid unification. The body of the procedure on the left does not unify

with the body of the instruction on the right because unification does not equate a constant float

with a scalar variable.
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Chapter 5

Scheduling for Parallel Processors

In the original publication, Exowas only scheduled sequentially executed code for single-threaded

processors. However, many high-performance computing kernels benefit immensely from par-

allel execution due to the abundant parallelism inherent in the underlying algorithms. In this

section, we explore how we extended the existing scheduling system so that programmers can

control parallelism without breaking functional equivalence with the original algorithm.

We aim to design a system which can schedule both simple parallel for loops (e.g. OpenMP)

and more sophisticated parallel execution models such as that of CUDA, which has a memory

hierarchy and a variety of synchronization primitives. In the first section, we will explain how

we support simple parallel for loopwithout races. We describe safety checks which verify that the

serial execution and parallel execution always produce the same results. In the second section,

we will discuss ideas for how to extend the system to support more complex parallel processors

such as NVIDIA GPUs. This includes design choices for how to represent the different memory

hierarchies and synchronization primitives exposed by CUDA. This work was ultimately not

implemented, but we hope that these preliminary discussions will inform future work.

5.1 Scheduling Simple Parallel For Loops Without Races

We introduce a new scheduling operator, parallelize_loop, which converts a sequentially for

loop into a parallel for loop (Figure 5.1). Each iteration of the loop is be executed by an indepen-

dent parallel thread.

1 for in seq(0, N):

2 ...

1 for in par(0, N):

2 ...

Figure 5.1: Parallelizing a for loop in Exo.

While the operation’s transformation is simple, the associated safety check is anything but

simple. Under the parallel operational semantics, there are no guarantees on order of execution

between two concurrently executing threads – they could be arbitrarily interleaved. The Exo sys-

tem needs to verify the functional equivalence between the sequential and parallel operational
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semantics of the code. The parallel semantics will always yield a superset of the sequential se-

mantics (which is a singleton set), so our safety check needs to verify that the parallel semantics

also yield a singleton set.

Rather than checking parallel functional equivalence before and after each scheduling op-

eration, we opt to do the check right before compilation. Otherwise, every existing scheduling

operation would need to verify parallel functional equivalence, which is a significant amount of

implementation work. We implement a more conservative check which potentially rejects func-

tionally equivalent versions because this conservative check has a simpler implementation. We

check that each iteration of the for loop is non-interfering with the other iterations. Two sections

of code are considered non-interfering if all memory locations written by one of them are neither

read nor written by the other. Non-interfering threads will avoid write-after-read, read-after-

write, and write-after-write data hazards while still allowing for read-after-read access patterns.

When the check passes, the scheduling operator simply replaces the sequential for loop with a

parallel for loop, as show in Figure 5.1.

This simple modeling of parallel for loops is sufficient to schedule image processing algo-

rithms such as blur and unsharp masking with state-of-the-art performance on multi-core pro-

cessors, as previously shown in Section 4.3.1 and Section 4.3.2. However, for a GPU, which has a

much more complicated parallel execution model, this approach is far from sufficient. In the next

sections, through a series of case studies, we will highlight features that we believe are necessary

for a well-designed scheduling system for GPU programming.

5.2 Scheduling for GPUs

CUDA is the programming model for NVIDIA GPUs. We are not interested in reproducing CUDA

programming model where users write thread-level programs. This programming model often

shields users from many performance-relevant details about how the code is executed. However,

since scheduling languages guarantee functional equivalence, the intermediate object code does

not need to prioritize clear expression of the algorithm: what is being computed. Rather, the

intermediate object language should focus on clearly expressing the schedule: how the program

is being executed. Throughout this section, we propose augmentations of the Exo object language

so as to better represent execution of parallel programs beyond simple parallel for loops, using

GPUs as our primary target of interest.

While we did not implement the ideas in this section, we make note that since our proposed

programming model diverges from CUDA’s programming model, we will need a backend com-

piler which translates from our Exo object language to CUDA code.

5.2.1 Parallel Hierarchy

An individual GPU’s parallel hierarchy ranges from individual threads to warps, thread blocks,

and thread block clusters. In CUDA’s thread-level programming model, users can organize com-

putation at different levels of the hierarchy by predicating on index variables, as shown in Fig-

ure 5.2a. Alternatively, for less standard subdivisions of the parallel hierarchy, CUDA offers Co-

operative Groups.

45



1 if (blockIdx.x < 5) {

2 if (threadIdx.x < 32) {

3 ... // warp 1, step 1

4 __syncthreads()

5 ... // warp 1, step 2

6 }

7 else if (threadIdx.x < 64) {

8 ... // warp 2, step 1

9 __syncthreads()

10 ... // warp 2, step 2

11 }

12 }

(a) CUDA

1 scope: _[5, 64]

2 for blk_x, blk_s in scope.par(0, 5, dim='blk_x'):

3 warp1, warp2 = blk_s[0:32], blk_s[32:64]

4 match fork:

5 case warp1:

6 for i, _ in warp1.par(0, 32, dim='thd_x'):

7 ... # warp 1, step 1

8 case warp2:

9 for i, _ in warp2.par(0, 32, dim='thd_x'):

10 ... # warp 2, step 1

11 syncthreads()

12 match fork:

13 case warp1:

14 for i, _ in warp1.par(0, 32, dim='thd_x'):

15 ... # warp 1, step 2

16 case warp2:

17 for i, _ in warp2.par(0, 32, dim='thd_x'):

18 ... # warp 2, step 2

(b) Sketch of proposed Exo interface (Unfortunately, this switch

statement is not valid Python syntax).

Figure 5.2: Managing the parallel hierarchy in CUDA vs in Exo

We propose an interface similar to CUDA’s cooperative groups. Users should manage an

explicit representation of all the parallel threads which are active in each section of the code, as

illustrated in Figure 5.2b. Initially, we have a variable scope which captures all of the available

parallelism at the start of the kernel. When Exo users want to subdivide into smaller parallel

partitions which execute different code, they must explicitly subdivide the scope and invoke a

fork. At the end of a fork, the program should join back together.

In terms of top-level program organization, rather than organizing the instructions based

on the warp (or other parallel group) that executes them, our design organizes based on execu-
tion order. We believe that prioritizing clear representation of execution will make it easier for

performance engineers to understand the performance characteristics of their CUDA programs.

While this design obfuscates the algorithm, this is not an issue for scheduling languages which

automatically guarantee functional equivalence to the initial algorithm. Thus, at scheduling time,

users should focus on performance concerns.

Arguably, the fork/join syntax above has too much indentation and verbosity. This can be a

problem since CUDA programs often have many levels in their parallel hierarchies. One way to

potentially reduce the amount of new scopes introduced is to omit the match/case statements, and

implicitly parse the fork/join groups based solely on the for loops. However, this would require

the Exo compiler to automatically parse the different fork/join groups, and may not accurately

reflect the intent of the user. We prioritized clarity over concision in this design.
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5.2.2 Memories annotated with scopes

As a motivating example, suppose we augment the previous example by adding local memory

allocations, as shown below in Figure 5.3a. When the executing thread is in the first warp, we

allocate a float, but otherwise, we allocate a double. In general, our programming model should

expose a way for users to control memory allocations under each parallel scope.

1 if (threadIdx.x < 32) {

2 float x;

3 // warp 1, step 1

4 __syncthreads();

5 // warp 1, step 2

6 } else {

7 double y;

8 // warp 2, step 1

9 __syncthreads();

10 // warp 2, step 2

11 }

(a) CUDA

1 scope: _[5, 64]

2 for blk_x, blk_s in scope.par(0, 5, dim='blk_x'):

3 warp1, warp2 = blk_s[0:32], blk_s[32:64]

4

5 with warp1:

6 x: f32

7 with warp2:

8 y: f64

9

10 match fork:

11 case warp1:

12 for i, _ in warp1.par(0, 32, dim='thd_x'):

13 ... # warp 1, step 1

14 case warp2:

15 for i, _ in warp2.par(0, 32, dim='thd_x'):

16 ... # warp 2, step 1

17 syncthreads()

18 match fork:

19 case warp1:

20 for i, _ in warp1.par(0, 32, dim='thd_x'):

21 ... # warp 1, step 2

22 case warp2:

23 for i, _ in warp2.par(0, 32, dim='thd_x'):

24 ... # warp 2, step 2

25

(b) Sketch of proposed Exo interface (Unfortunately, this switch

statement is not valid Python syntax).

Figure 5.3: Managing local memory usage in CUDA vs in Exo

As shown in Figure 5.3b, we can use with warp1 to tie the memory allocation to a particu-

lar parallel scope. This enables us to continue using our fork/join programming model without

introducing extraneous memory usage in scopes that do not use them. At compile time, we will

still generate the CUDA code in Figure 5.3a.
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5.2.3 Scheduling Synchronization Operations

In order to guarantee safe parallel code, users must insert the proper synchronization instructions

into their kernel. We propose a design where users arbitrarily insert synchronization into their

programs during scheduling. We propose that parallel functional equivalence be checked after

scheduling, during the phase in which Exo compiles and generate CUDA code.

In this design, the Exo system does not need any checks when inserting synchronization into

code. Under sequential semantics, synchronization is equivalent to a no-op. Users can insert

synchronization into programs is via the insert_noop_call scheduling operation, which can ar-

bitrarily inject procedure calls to procedures which are equivalent to a no-op (which is pass in

Exo’s object language). This scheduling operation is already used for inserting prefetch instruc-

tions into kernels.

In this work, we do not devise an analysis which checks parallel functional equivalence un-

der the various synchronization primitives. However, there is concurrent work which aims to

improve the power of Exo’s analysis to perform such checks.

5.2.4 Scheduling Asynchronous Operations

One unfinished aspect of this design is how to model the execution of asynchronous instructions.

For instance, CUDAoffers asynchronousmemory copies via the async_memcpy command, which is

essential for pipelined kernels which overlap data movement with compute. A thread will initiate

the command, which is then executed asynchronously, as if by another thread. Likewise, the new

tensor cores offer a warp-group matrix multiply accumulate operation which asynchronously

operates on tensor cores.

These asynchronous instructions pose several challenges to our current design. Firstly, our

current notion of parallel scopes does not represent these other parallel execution pathways.

Secondly, the backend parallel functional equivalence check would need to understand how each

of these asynchronous operations synchronize with the threads that launch the operation.
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Chapter 6

Conclusion and Future Work

Performance Bottlenecks of Composing Atomic Edits The current implementation has some

flaws which could potentially degrade the compiler’s performance. For instance, each atomic edit

requires regenerating the IR for all parents of the edited subtree. When many edits are all being

performed in the same subtree, this generates excessive intermediate IRs. One possible solution

is to enable independent edits to happen simultaneously and avoid generating the unnecessary

intermediate IRs. In addition, forwarding function composition is potentially expensive for oper-

ations which involve many atomic edits. One remedy is to “squash” the forwarding functions into

a single complicated function. Currently, forwarding is not the main performance bottleneck, but

it is worth monitoring whether the bottleneck shifts as users write more complex schedules.

Exo Limitations Preventing Features in Halide Library We already elaborated on this at length

in Section 4.4. Addressing the limitations of Exo’s functional equivalence analysis is ongoing

work, which will help improve code generation for prologue loops. However, Exo’s limitations

on complex indexing expression is more difficult to address, and currently precludes tail strategies

required for certain parallelization strategies.

Expanding Scheduling Libraries in Exo Currently, there are two large libraries that have been

built in Exo’s scheduling language. There is the Halide library that we have descried in great

detail in Chapter 4, but there is also library built specifically to optimize the Basic Linear Algebra

Subroutines (BLAS), which is described in [19]. However, there are plenty more domains and

hardwares that may require bespoke optimizations that could be shared across many algorithms.

Building new libraries which can help more productively performance engineer in those settings

is an interesting future direction of work.

Improved Design for Scheduling Code for Parallel Processors Firstly, even our implementa-

tion for simple parallel for loops has room for improvement. A limitation of our non-interfering

safety check is that we cannot represent algorithms which are safe even in spite of data races.

For an example, we refer to the example presented in Section 4.4.2.

This thesis has presented our initial brainstorming for such a scheduling system. However,

there is room for substantial iteration on refining the design and solving new challenges that may

arise in the future. Furthermore, as discussed in Chapter 2.3, there are many possible extensions

of GPU work once the initial design has been finalized.
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