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ABSTRACT

Granular intrusion processes such as sand locomotion, uprooting, and digging are com-
monly present. While these phenomena can be accurately modeled via discrete element
methods and continuum models, this accuracy comes at a great computational cost, espe-
cially for large systems. Granular Resistive Force Theory (RFT) is a reduced-order, rate-
independent model that has been shown to successfully capture the motion of rigid intruders
in granular media, with a reduced computational cost. RFT is based on a rate-independent
theory that calculates the force experienced by a body using its direction of velocity. This
makes it difficult to handle scenarios that are near-stagnant which occur frequently in up-
rooting of plants. To overcome this limitation, we introduce elastic RFT (eRFT) which is
based on a rate-independent plasticity flow-rule–like criterion, and pair it with deformable
intruders. We focus on modeling uprooting processes which inherently have flexible intruders
and are often dynamically controlled. This allows us to address both previously mentioned
shortcomings of RFT (stagnancy and flexible intruders) at once. By combining eRFT with a
nonlinear beam theory to represent slender, inextensible roots we create a speedy computa-
tional tool. Using MATLAB, we simulate various uprooting scenarios to better understand
anchoring mechanisms of different root geometries. We showcase the validity of eRFT results
by comparing them to experimental data. To implement eRFT in ABAQUS, we make use of
an existing user subroutine which allows the study of a broader range of intruder materials
and shapes. While the subroutine has its limitations, initial comparisons to computational
and experimental results are demonstrative.

Thesis supervisor: Ken Kamrin
Title: Professor of Mechanical Engineering and Applied Math
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Chapter 1

Introduction

Studying the interaction of solids with granular media is of interest for a multitude of areas
such as terramechanics [1, 2] , impact penetration [3, 4, 5], or uprooting of trees [6, 7].
Various computational tools have been developed to model the phenomena governing the
interaction of grains and solids. To capture the behavior of a granular medium accurately
through its various phases as it moves, discrete element methods have been developed where
each grain is modeled individually. DEM can yield extremely accurate results given that the
accurate contact models and interaction properties are applied [8]. The problem with DEM
arises when we try to scale up our study area of interest. For problems such as modeling
part of a dirt race track or a large tree root structure, DEM approaches become quite costly
[9, 10]. Also, often in intrusion problems such as terramechanics or surface locomotion of
robots and animals, a detailed response of the granular medium such as a continuously
defined stress field or detection of fly-away grains may not be essential to the problem at
hand. Oftentimes, the resistance the grains apply to the intruder in response to its motion is
sufficient for the application. To reduce the computational cost while preserving the ability to
calculate the resistance experienced by an intruder, Li et al [11] adapted resistive force theory
to granular media. For applications where the detailed response of the granular continuum
is not required, RFT has become the ideal tool for computationally efficient modeling of
intrusion problems in grains obeying frictional plasticity [12].

In this work, we will first cover how resistive force theory works and its shortcomings.
We will then propose and explain elastic RFT to address these shortcomings. Finally, we
will present the applications of elastic RFT to various scenarios to prove it addresses the
shortcomings of RFT and matches experimental results. We will also cover the progress on
an ABAQUS user subroutine implementation of resistive force theory which will allow for
wider and easier usage of RFT.

Besides theoretical extension of resistive force theory to elastic regimes, in this work we
also explore its applications to uprooting problems by pairing it with the nonlinear inexten-
sible beam model we developed to model the behavior of roots. Studying uprooting can help
understand the underlying mechanisms of plant root anchorage. Plant roots improve terrain
stability by anchoring the soil [13, 14] stabilizing river banks [15, 16], and reducing the harm
of landslides [17]. The anchoring effect of root systems can be used in geoengineering appli-
cations to prevent erosion [18, 14]. However, there is not yet a general theory of anchoring
mechanisms. Resistive force theory can be a useful and rapid tool in investigating the effects
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of various root systems. To pair resistive force theory with plant roots, we make use of the
nonlinear inextensible beam model we developed to model the behavior of the roots. The
numerical results obtained from the simulations combining these beams and elastic RFT
to mimic uprooting scenarios were then compared to experiments performed both by our
collaborators from the Perron Group in the MIT EAPS department and by the author.

1.1 Granular Resistive Force Theory

Resistive force theory was initially developed to model the motion of intruders through vis-
cous media [19, 20]. In recent years, it has been adapted to granular media [11]. RFT has
been shown to accurately model motion of legged robots on granular terrain [11], terrame-
chanics of rigid wheels [9], impact intrusion [21], and burrowing motions mimicking animals
[22]. The accuracy of the predictions of resistive force theory in these works when com-
pared to experimental and computational results are higher than those for resistive force
theory in viscous fluids [23]. The simplicity and high accuracy of granular resistive force
theory is attributed to the fact that the continuum level response of a granular medium can
be captured by a frictional plasticity model [24, 25]. The high accuracy paired with the
simplicity of calibrations and reduced computational cost of granular resistive force theory
has inspired the exploration of the limits of granular RFT, along with work on expanding
its applicability which is part of the work in this thesis. In this section we will briefly go
over the core concepts and equations governing granular resistive force theory. For more in
depth derivations, experimental and computational validations, and discussions, the reader
can refer to the aforementioned references.

For an arbitrary intruder moving below the surface of a granular medium, the total
resistive force experienced by the intruder can be expressed as the integral of the traction
applied onto the intruder by the grains along the intruder’s external surface [equation 1.1].
Granular resistive force theory argues that, if we are to discretize the surface of the intruder
into small plate surface elements (as can be seen in figure 1.1a), the traction on each surface
element should be independent of other surface elements on the intruder [11, 26].

f total =

∫
surf

t dA (1.1)
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(a) (b)

Figure 1.1: Visual overview of rigid RFT assumptions: (a) an intruder moving through
granular media with discretized surface elements (b) Surface normal n̂, velocity direction v̂,
and gravity direction ĝ highlighted on a single surface element of interest

Furthermore according to granular resistive force theory, the traction on each surface
element can be determined via a traction per depth vectorial function, called the α function
in this work and some others, and the depth of the surface element. If the surface element is
above the surface level, the corresponding resistive force is zero since the element is not in the
granular medium. This vectorial α function depends on the surface normal n̂ and velocity
direction v̂ of the plate element, along with gravity g and material parameters [equation
1.2].

t = α(n̂, v̂,g;mat)|z| (1.2)

To determine the α function, experimental (as in [11]) or higher order computational
(as in [26]) datasets are generated by moving a small rigid plate element with a set surface
normal n̂ and velocity direction v̂ in the granular medium of interest. The test is repeated
as these parameters are varied. Once enough data points are obtained, the α function values
can be plotted as a heat map, as can be seen in figure 1.2 for the 2D case. To be able to plot
the independent variables velocity direction and face normal in single axes, we define scalar
angles that correspond to the direction of these vectors. As can be seen in figure 1.3, the
variable β corresponds to the angle from the horizontal and the face of the plate element,
while γ is the angle from the horizontal to the direction of velocity. These definitions apply
to 2D-RFT. In 3D a third angle is introduced for the tilt of the plate element [26, 22]. With
these angles defined, the α values are plotted with γ, the angle of attack, varying along
the horizontal axis and β, the orientation, changing along the vertical axis. Once these
heat maps are established with enough data points, we can perform fits to the values of the
α function in terms of its input parameters. In [11] trigonometric functions were used to
calculate these fits while Agarwal et al. [26] used polynomial functions. For most of the
work in this thesis, linear fits are used.

15



Figure 1.2: α heat maps for horizontal and vertical components for 2D-RFT

Figure 1.3: Visual definitions of the β and γ angles corresponding to the plate direction and
velocity direction, respectively.

Upon investigating the values of the α function for various materials experimentally, Li
et al. have discovered that the overall shape of the heat maps for the components of the α
functions do not vary when the material of the grains is modified [11]. Thus, a generic α
function can be defined that only needs to be adjusted via a single scalar function of material
parameters when the granular medium of interest changes [equation 1.3]. This significantly
reduces the effort required to apply granular RFT. The scaling material function ξ depends
on the critical density of the granular medium ρc, the magnitude of gravitational acceleration
g, and f : a function of surface friction between the intruder and the granular medium µs

and the internal friction of the grains µint [equation 1.4][11, 26].

t = αgen(n̂, v̂, ĝ)ξ(mat, |g|)|z| (1.3)
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ξ = ρc g f(µs, µint) (1.4)

With continuous definitions of traction per area per depth in terms of the plate orientation
and velocity direction, any intruder can be prescribed a resistive force, provided that all plate
elements have a well-defined velocity direction.

1.1.1 Leading Edge Hypothesis

The resistive force on a surface element is calculated as outlined above only if the surface
element is on the leading edge. The leading edge is the side of the intruder at a point
that is moving into the grains surrounding itself. Resistive forces are only applied to the
leading edge since in the wake of the motion the "back side" or "following edge" should
experience negligible forces from the grains. The evaluation of the leading edge is performed
by calculating the dot product of the face normal of the surface element n̂ and velocity
direction v̂. If this dot product is positive or zero on the surface element, the element is
considered in the leading edge and the resistive force on the element is calculated as outlined
above. If the dot product is negative, the surface element is assigned zero resistive force.

1.1.2 Calibration of RFT Data for Different Materials

As previously mentioned, the shape of the α functions are generic for any material. When
we want to adjust it for a new set of intruder material - grain combination, we need to follow
a calibration process. To do so, one must pick a single point on the α plots that corresponds
to a plate orientation and motion direction. Typically tests that are easier to perform are
chosen for experimental ease such as a horizontal plate being pulled out or pushed in a bed of
grains. Then, an experiment mimicking the desired point on the α plot should be conducted.
The α values should then all be linearly scaled such that the point chosen on the α plot
matches the experimentally measured resistive force.

1.2 Shortcomings of Granular/Rigid RFT

The ability of resistive force theory to capture the forces experienced by intruders in gran-
ular media under steady state kinematically controlled motions is remarkable and has been
verified against both experimental results and continuum models [11, 26, 21]. However, since
the definition of the resistive force relies on the direction of velocity, in cases where a surface
element has zero velocity the resistive force is not well defined. The absence of velocity can
occur in various scenarios including the stagnant point at the bottom of a rotating wheel
and any static equilibria. Using granular RFT, any object being dropped into grains never
reaches equilibrium since once the resistive forces balance the weight of the object, the object
has zero velocity. In the absence of velocity there is no resistive forces and the self-weight of
the object mobilizes it again. The lack of a well-defined traction in the absence of velocity
for granular resistive force theory is similar to the absence of a well-defined stress tensor
in the absence of plastic strains in rigid plasticity models. Motivated by this similarity, we
rename granular RFT that has been developed so far "Rigid RFT".
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We propose "elastic RFT" to mitigate this problem. With elastic RFT we treat the
steady-state resistive forces which come from the α functions as yield tractions that apply
once the granular media flows steadily around the intruder element. Before yield, and thus
in the absence of velocity, we define an elastic traction which arises from the bulk stiffness
of the grains. We mimic this by introducing an RFT stiffness.

When comparing the results from rigid RFT to DEM simulations for reciprocal motion
of an intruder, Zhang et al. have found that while for rigid RFT the resistive force would
switch directions and magnitudes following a square wave pattern, the DEM results provided
resistive forces that gradually built up to the steady-state value of the resistive force [27].
With elastic RFT we aim to mimic this gradual build-up of the resistive forces to their
steady-state values.

Another unexplored avenue with rigid RFT is that thus far it has only been paired with
either rigid intruders [1], or deformable intruders with prescribed kinematics [11, 22]. Many
common intruders in grains such as snakes, plant roots, soft robots are elastic and deform in
response to the forces applied by the grains onto them. We anticipate the resulting change
in shape of the intruder to in turn affect the resistive force calculations. In this work, we first
explore the effect of intruder flexibility via beams modeling plant roots, which is outlined in
chapter 3. Chapter 4.4 discusses the effect of intruder flexibility on resistive forces. We then
attempt to implement resistive force theory as a user subroutine in the commercial finite
element analysis software ABAQUS so the intruder can be modeled with a wider variety of
material models in chapter 4.6.
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Chapter 2

Elastic RFT

To resolve the issue of an unknown traction in the absence of velocity observed in rigid RFT,
we propose elastic resistive force theory, which introduces an elastic traction to the existing
RFT formulation. This also allows RFT to transition from a purely plastic model to a
hypoelastic-plastic one which has been shown to accurately capture the continuum behavior
of granular media and is thus used widely [28, 29]. Plasticity theory has been used as a
successful parallel for deriving and explaining constitutive relations where the tractions are
governed by frictional yield conditions [30].

2.1 Analog Models for Rigid and Elastic RFT

(a) (b)

Figure 2.1: Analog models for rigid (a) and elastic (b) RFT.

We make use of one-dimensional analog models to help visualize the constitutive models
discussed in this section for resistive force theory, similar to their use for plasticity models
[31]. Both models are used to model the traction applied to the plate element of interest
with velocity v and and Set parameters corresponding to the plate which are the face normal
n̂, depth |z|, gravity g, and material parameters. The rigid RFT analog model (figure 2.1a)
consists of a slider connected to the plate element. The slider captures the plastic response
due to the flow of grains. Below the yield force set by rigid RFT corresponding to the
velocity and Set parameters corresponding to the plate, the slider does not move. Thus,
when the plate is moving the force in the system is that governing the slider. However, when

19



the slider is not moving, we cannot determine the traction experienced by the plate element.
To remedy this, we introduce an elastic spring with stiffness kRFT . This way, even when
the plate is not moving or the slider is not sliding, by keeping track of the displacement the
spring has experienced from its neutral position we can calculate an elastic traction. The
spring captures the bulk elastic response of the grains, and allows for a well-defined traction
below the yield of grains.

The sliders in both analog models for RFT are governed by a yield strength that depends
on the velocity direction and Set parameters which includes the face normal of the plate, the
material parameters, depth of the plate, and gravity. Holding the Set parameters constant,
which are typically known for a plate element at a time of interest, we can create yield
traction surfaces that govern the sliders. For rigid RFT, these surfaces vary as the velocity
direction changes. For elastic RFT (eRFT) we construct closed yield surfaces by holding
the Set parameters constant and varying the plastic velocity direction. Examples of yield
surfaces for different plate normal directions can be seen in figure 2.2. If the traction vector
the plate is experiencing is within the locus corresponding to its parameters, it is still within
the elastic regime and thus there is no flow of grain around the plate. If the traction grows
and reaches the yield surface, then there is plastic flow, corresponding to the sliding of the
slider in the analog models. For each locus, the vertices are created by holding the plate
orientation and other Set parameters constant while varying the velocity direction. Between
loci, the plate orientation is varied while other Set parameters are still constant. Essentially,
these are points along a horizontal line of the alpha plots since the plate orientation angle
β does not vary along a horizontal line on these heat maps. Besides the experimentally
measured points, the points generated by the fits, such as the trigonometric [11, 22] or
polynomial [26] fits, defining the alpha functions can be used to generate these loci. The
continuous alpha functions generated by these fits are useful for rigid RFT, however since we
evaluate our yield condition by checking whether the traction vector is within the yield locus,
it can often be difficult with higher order fits which might have loops and self intersections
(figure 2.3).
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: Linearly interpolated loci for different plate orientations

(a) (b) (c)

(d) (e) (f)

Figure 2.3: Loci generated via 3rd order polynomial interpolations for different plate orien-
tations

The spring in elastic RFT allows us to assign a well-defined traction to the system
below the yield threshold of the slider, corresponding to the region inside the yield surfaces.
We have followed 2 different approaches to define the manner in which the elastic traction
approaches the yield:

1. Non-codirectional Linear Elastic RFT

2. Codirectional Nonlinear Elastic RFT
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For these two versions, linear and nonlinear describe the elastic response, while codirectional
and non-codirectional refer to the relationship between elastic displacement and plastic ve-
locity. This is slightly different than the usage of these words in plasticity theory, however
it is useful for us when distinguishing between the two models. For both of these methods
we follow the same kinematic steps initially.

Figure 2.4: Decomposition of displacements and velocities into elastic and plastic components
for rigid and elastic RFT

For rigid RFT, any displacement of the plate will result in the slider moving, thus any
displacement and velocity are plastic. For elastic RFT, we assume an additive kinematic
decomposition of the displacement u and velocity v into elastic and plastic components over
the spring and slider, respectively. The elastic displacement over the spring is recovered
once the plate is released, however the plastic displacement over the slider will remain unless
further plasticity is achieved. The difference between the two elastic RFT models arise from
the definition of the direction of the elastic traction.

For a displacement u from a reference configuration, the elastic and plastic components
are defined as in equation 2.1 and velocity as in equation 2.2 where the superscripts e and p
denote the elastic and plastic components.

u = ue + up (2.1)

v = ve + vp (2.2)

2.2 Non-codirectional Linear Elastic RFT

Once the displacement is decomposed into elastic and plastic components, the traction in
the system is defined as the RFT stiffness times the elastic displacement as can be seen in
equation 2.3. We assume a linear elastic response such that the magnitude of the traction
in the elastic regime scales linearly with the elastic displacement, and the direction of the
traction is along the direction of the elastic displacement.

t = kRFT ue = kRFT (u− up) (2.3)
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We keep track of the rate of change in traction due to elastic velocity [equation 2.4]. This
expression is a material time derivative as long as the velocity is defined as the relative veloc-
ity of the plate with respect to the background material, which is typically stationary. Since
RFT defines traction on material plate elements, after this step, material frame indifference
is satisfied.

ṫ = kRFT (v − vp) (2.4)

2.3 Codirectional Nonlinear Elastic RFT

Codirectional eRFT assumes that the elastic tractions within the system grow in the direction
of the yield strength that corresponds to the direction of elastic displacement.

For this version of RFT, we assume that the elastic traction grows in the direction of the
flow strength corresponding to the direction of elastic displacement. The flow strength is not
necessarily along the elastic displacement, which results in a nonlinear elastic relationship.
To evaluate the direction in which the traction should be, we evaluate the yield strength
function yRFT by substituting the velocity direction with the elastic displacement direction.

t = kRFT |ue| yRFT (û
e, Set)

|yRFT (ûe, Set)|
(2.5)

As can be seen in equation 2.5, below the yield threshold, the magnitude of the traction in
the system scales linearly with the elastic displacement magnitude and RFT stiffness. The
nonlinearity arises from the direction of the traction which is embedded in the fractional
term which defines the direction of the traction. During flow, this traction is also equal to
the yield strength corresponding to the plastic velocity direction (equation 2.7). The yield
surfaces for linear and nonlinear elastic RFT are identical.

t = yRFT (v̂
p, n̂, ĝ, |z|,mat) (2.6)

2.4 Flow Rules for Elastic RFT

Continuing the parallels between resistive force theory and plasticity theory, we can define
a flow rule governing the traction and velocity in the system, similar to plastic flow rules
relating the stresses to the strains [32]. During plastic flow, the resistive traction is equal
to the yield strength yRFT which forms identical yield surfaces as those defined by rigid
RFT, however for elastic RFT we assume that the yield strength depends not on the total
velocity direction, but on the direction of the plastic velocity (equation 2.7). During yield,
the traction will be defined in terms of the plastic velocity and the Set parameters.

t = yRFT (v̂
p, n̂, ĝ, |z|,mat) (2.7)

We can then define the yield condition h (equation 2.8) which evaluates whether the traction
is causing yield or is in the elastic regime. Here, v̂p∗ defines the direction of plastic velocity
that would be obtained if the traction t were scaled in magnitude so as to reach the yield
locus. If traction t is less than the yield strength, thus the traction vector is within the
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locus and the value of h is less than zero, the grains around the plate element are still in the
elastic regime. If the traction t is equal to the yield strength, the traction vector is on the
yield locus and h = 0, plastic flow can occur.

h = |t| − |yRFT (v̂
p∗(t), n̂, ĝ, |z|,mat)| ≤ 0 (2.8)

where v̂p∗ returns the point on the yield surface corresponding to the direction of the traction
t.

During flow, the traction must be on the yield surface and remain on the yield surface.
This corresponds to both h = 0 and its time derivative ḣ = 0. The time derivative of h can
be evaluated as in equation 2.9.

ḣ =
t

|t|
· ṫ− yRFT

|yRFT |
· ẏRFT (2.9)

We can apply the chain rule to expand ẏRFT

ẏRFT =
∂yRFT

∂v̂p∗

(
∂v̂p∗

∂t
ṫ

)
+

∂yRFT

∂n̂
˙̂n (2.10)

Plugging the expression for ẏRFT into the equation for ḣ = 0 and rearranging to isolate ṫ
we obtain equation 2.11[

t

|t|
−

(
∂v̂p∗

∂t

)T(
∂yRFT

∂v̂p∗

)T
yRFT

|yRFT |

]
· ṫ = yRFT

|yRFT |
·
(
∂yRFT

∂n̂
˙̂n

)
(2.11)

During yield, v̂p∗ is equal to v̂p. We can determine v̂p by inverting the flow strength function.
For a particular element of interest, the Set parameters Set = {n̂, ĝ, |z|,mat} are all known
for a plate of interest at a set time from geometry, material parameters, and experimental
parameters. Then, v̂p is the inverse of the flow strength function returning the traction t
during yield.

v̂p = y−1
RFT (t, Set) (2.12)

With the direction of plastic velocity known, once we can get an expression for the magnitude
of plastic velocity we can combine the two for a flow rule. If we express the plastic velocity as
a magnitude and direction, vp = vpv̂p, where vp is the unknown plastic velocity magnitude
we will obtain from the explicit form of the flow rule.

After this step, the approach to obtain the flow rule for the two different formulations of
elastic RFT differ.

2.4.1 Flow Rule for Non-codirectional Linear elastic RFT

To continue deriving the flow rule for non-codirectional linear elastic RFT, in the ḣ = 0
equation, we can substitute the time rate of change of the traction as defined by 2.4.[

t

|t|
−

(
∂v̂p∗

∂t

)T(
∂yRFT

∂v̂p∗

)T
yRFT

|yRFT |

]
· ṫ = yRFT

|yRFT |
·
(
∂yRFT

∂n̂
˙̂n

)
(2.13)
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The time derivative of the traction for non-codirectional linear elastic RFT (equation 2.4)
can be substituted in.[

t

|t|
−
(
∂v̂p∗

∂t

)T(
∂yRFT

∂v̂p∗

)T
yRFT

|yRFT |

]
· kRFT (v − vpv̂p) =

yRFT

|yRFT |
·
(
∂yRFT

∂n̂
˙̂n

)
(2.14)

In this equation, the only unknown is the magnitude of plastic velocity vp. To write the
explicit flow rule succinctly, everything in the square brackets is renamed as m [equation
2.15]. Once isolated, we can solve for the explicit form of the magnitude of plastic velocity
2.16. Combined with the direction of plastic velocity solved for earlier in equation 2.12, we
have the complete flow rule for non-codirectional linear elastic RFT.

m =

[
t

|t|
−
(
∂v̂p∗

∂t

)T(
∂yRFT

∂v̂p∗

)T
yRFT

|yRFT |

]
(2.15)

vp = vpv̂p (2.16)

vp =
m · v
m · v̂p

− 1

kRFTm · v̂p

yRFT

|yRFT |
·
(
∂yRFT

∂n̂
˙̂n

)
(2.17)

2.4.2 Flow Rule for Codirectional Nonlinear elastic RFT

To derive the flow rule for codirectional nonlinear eRFT, we expand equation 2.11 by sub-
stituting ṫ with equation 2.18.

ṫ =
∂t

∂ue
u̇e (2.18)

We can then substitute the u̇e term with the plastic velocity subtracted from the total
velocity. Since the direction of plastic velocity v̂p can be determined from 2.12 directly, after
this substitution the only unknown is the magnitude of plastic velocity.

u̇e = ve = v − vp = v − vpv̂p (2.19)

To write the final version of the flow rule shortly, we introduce another shorthand for one
of the terms. The tensorial quantity N is the transpose of the derivative of the traction with
respect to the elastic displacement direction, which can be evaluated from equation 2.5.

N =

(
∂t

∂ue

)T

(2.20)

Isolating the plastic velocity magnitude we get the final expression for the flow rule governing
codirectional nonlinear elastic RFT [equation 2.21].

vp =
v · (Nm)

v̂p · (Nm)
− 1

v̂p · (Nm)

yRFT

|yRFT |
·
(
∂yRFT

∂n̂
˙̂n

)
(2.21)
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2.5 Numerical Implementation of Elastic RFT

To numerically simulate an intruder’s motion via discrete timesteps, we calculate the resistive
forces with a trial return, explicit/implicit Euler algorithm [33].

With the traction, position, velocity, elastic velocity, plastic velocity and external loads
known at time t, we first assume a purely elastic step and calculate a trial traction. We then
check if the trial traction is inside the yield locus corresponding to the Set parameters of
the plate element at timestep t. This is done by the inpoly command available in MATLAB
which evaluates whether the point defined by the traction vector is inside the closed polygon
generated by the vertex points defining the locus. If the trial traction vector is inside the
locus, the elastic step is accepted and the solver advances to time t+ dt. If however the trial
traction is outside the yield locus, yield has occured in this timestep and we must correct
the trial traction so it lands on the locus. This step is different for the two different elastic
RFT methods.

(a) (b)

(c) (d)

Figure 2.5: Visual representation of the steps for the numerical of the traction update through
time and evaluation of the flow rule
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2.5.1 Linear Elastic RFT: Numerical Solution

Algorithm 1 Algorithm for evaluating the flow rule numerically for linear elastic RFT
knowing t,u,vnew,ve,vp at timestep t
take an elastic trial step ▷ figure 2.5a
set the new elastic velocity to the new velocity
ve,new = vnew

ttrial = t+ kRFT vnew dt
if ttrial is inside or on the locus then ▷ figure 2.5b

tnew = ttrial

vp,new = vp,old

else ttrial is outside the locus ▷ figure 2.5c
solve for vp,new such that ▷ figure 2.5d
vnew = vp,new + ve,new & tnew = told + kRFTv

e,new dt = yRFT (v̂
p,new, Set)

end if

Solving for the Plastic Velocity Direction for Linear Elastic Velocity

For linear noncodirectional elastic RFT, we can solve for the plastic velocity direction fol-
lowing the steps below. Assuming a fully elastic step, we update the resistive force as:

ttrial = told + kRFT vnew dt (2.22)

If this trial force lies outside the yield locus, then it means that the grains are flowing and the
trial traction must be returned back such that it lies on the yield locus at the new timestep.
To perform this "return" step, we assume that the change in Set parameters, such as the
face normal and depth, are negligible within the timestep.

tnew = told + kRFT (v − vp) dt = yRFT (v̂
p, Set) (2.23)

Rearranging and decomposing equation 2.23, we obtain the following three equations.

ttrial − yRFT (v̂
p, Set) = kRFT vp dt (2.24)

ttrialx − yRFT,x(v̂
p, Set) = kRFT |vp| cos(γp − π)dt (2.25)

ttrialy − yRFT,y(v̂
p, Set) = kRFT |vp| sin(γp − π)dt (2.26)

The −π comes from the definition of γ in the RFT formulation. We can now divide the
x-direction equation by the y-direction equation and rearrange to obtain the following:

(ttrialx − yRFT,x(v
p)) sin(γp − π) = (ttrialy − yRFT,y(v

p)) cos(γp − π) (2.27)

We can then solve this by finding the instersections of these two curves which can be done
using the polyxpoly command in MATLAB. Sometimes these curves have multiple intersec-
tions. In such cases the intersection that is closest to the trial traction is selected. If there
are no intersections, the trial traction is accepted for that timestep which often results in a
solution in the next iteration.
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2.5.2 Linear Codirectional Elastic RFT: Numerical Solution

Algorithm 2 Algorithm for evaluating the flow rule numerically for nonlinear elastic RFT
knowing t,u,vnew,ue,up at timestep t
take an elastic trial step ▷ figure 2.5a
set the new elastic velocity to the new velocity
ve,new = vnew

ue,new = ue + vnew dt
ttrial = t+ kRFT |vnewdt| yRFT (ûe,Set)

|yRFT (ûe,Set)|
if ttrial is inside or on the locus then ▷ figure 2.5b

tnew = ttrial

vp,new = vp

up,new = up

else ttrial is outside the locus ▷ figure 2.5c
solve for vp,new such that ▷ figure 2.5d
tnew = told + kRFT |ve,newdt| yRFT (ûe,Set)

|yRFT (ûe,Set)| dt = yRFT (v̂
p,new, Set) &

vnew = vp,new + ve,new

adjust and update the rest of the variables
ue,new = ue + ve,newdt
up,new = up + vp,newdt

end if

Solving for the Plastic Velocity Direction for Nonlinear Elastic Velocity and
Proof of Codirectionality

For the nonlinear codirectional formulation of elastic RFT, the elastic traction is defined
following equation 2.5. After the elastic trial step for this formulation, if the trial displace-
ment leads to a traction outside the yield locus, it must be corrected by some correction
factor R such that the new corrected elastic displacement at the end of the timestep yields
the correct elastic traction which matches the yield traction due to the direction of plastic
velocity [equation 2.7].

ue,new = ue,trial −R = ue,trial − ue,old + ve,new dt = ue,trial − vp,new dt (2.28)

R = vp,new dt (2.29)

telastic(ue,new) = yRFT (v̂
p,new) = yRFT

(
R̂

dt

)
(2.30)

The elastic traction is defined following equation 2.5, such that its direction is already de-
termined by the yRFT function. Thus for the elastic and plastic traction to be equal to
each other as in equation 2.30, the direction provided from the yRFT function must be the
same for both inputs ûe,new and vp,new. For this to be true, the direction of both of these
inputs must be the same since the yield traction function is one-to-one. The direction of the
corrected elastic displacement must be along the direction of the updated plastic velocity.
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Both the trial and corrected elastic displacements are along the plastic velocity direction,
earning this formulation of elastic RFT the "co-directional" title.

kRFT |ue,new| yRFT (û
e,new, Set)

|yRFT (ûe,new, Set)|
= yRFT (v̂

p,new, Set) (2.31)

ue,new ∥ vp,new (2.32)

ue,trial −R ∥ R

dt
(2.33)

ue,trial ∥ R (2.34)

2.6 Viscoelastic RFT

Figure 2.6: Elasto-Visco-Plastic Resistive Force Theory Analog Model

The framework for viscoelastic RFT is similar to elastic RFT. To account for the viscous
dissipation and slight rate dependent response in the elastic response of grains, we introduce
some damping into the model. In the analog model we represent this as a damper parallel
to only the elastic spring portion of the model. While a large amount of visco-elasto-plastic
models for granular media are similar to a Bingham plasticity model[28], it is essential for
the viscosity introduced to RFT to not affect the slider or equivalently the plastic response
since resistive force theory (unless dynamic-RFT is used [21]) applies at low velocities, where
the plastic response of noncohesive grains are effectively rate-independent [12]. Besides the
physical slight rate dependent elastic behavior of grains [34], viscoelastic RFT will also reduce
some of the oscillatory behavior of the intruder. Once we have established the manner in
which viscosity should be introduced into the model, we can follow the same steps as before
to define the elastic traction. In this section, we will refer to the traction over the section
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of the analog model containing the viscous damper and elastic spring as the viscoelastic
traction. In this portion of the model, we can see that by having them parallel to each other
the viscoelastic traction [equation 2.36] is the linear superposition of the elastic traction
[equaiton 2.3 or 2.5] and viscous traction [equation 2.35]. Both linear and nonlinear elastic
RFT can be used in the viscoelastic RFT formulation. For the rest of this section, we will
use the linear non-codirectional elastic RFT.

tviscous = η u̇e = η ve (2.35)

tviscoelastic = telastic + η ve (2.36)

To numerically implement this we follow the same trial-return algorithm as in the elastic
RFT solvers.

Algorithm 3 Algorithm for evaluating the flow rule numerically for viscoelastic RFT
knowing t,u,vnew,ve,vp at timestep t
take an elastic trial step ▷ figure 2.5a
set the new elastic velocity to the new velocity
ve,new = vnew

ttrial = t+ kRFT vnew dt + ηvnew

tetrial = t+ kRFT vdt
tvtrial = ηv
if ttrial is inside or on the locus then ▷ figure 2.5b

tnew = ttrial

vp,new = vp,old

else ttrial is outside the locus ▷ figure 2.5c
solve for vp,new such that ▷ figure 2.5d
vnew = vp,new + ve,new & tnew = told + kRFTv

e,new dt = yRFT (v̂
p,new, Set)

k̃ = k + η/dt
tnew = ttrial − k̃vp,newdt = yRFT (v̂

p,new, Set)
end if

If the trial traction is outside the locus, we can follow section 2.5.1 by decomposing the
plastic velocity to obtain 2 different equation to solve for the plastic velocity direction. The
trial traction is then corrected a new timestep can be taken following the same algorithm.
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Chapter 3

Nonlinear Inextensible Beam Solver for
Root Models

To model the motion of the roots as they are being pulled out of granular solids, we choose
beam elements due to the roots’ slender nature. Since we anticipated large deformations
of the roots as they move through the grains, we diverge from the commonplace linear
Euler-Bernoulli beam theory and make use of nonlinear beam dynamics as well as introduce
inextensibility in the roots. To satisfy the inextensibility kinematic constraint, we introduce
the tension within the beams/roots as a Lagrange multiplier to satisfy this constraint. One
of the benefits of modeling the roots as inextensible beams is that monitoring the tension
inside the roots allows us to evaluate whether the roots would break during the uprooting
process. Root structures mainly fail by either root breakage or root pullout [35]. Root
pullout is addressed by using resistive force theory, while the tension calculated inside the
root structures can be compared to the plant’s axial strength to consider breakage. The
second beneift of modeling the roots as inextensible beams is that from a scaling argument,
the inextensible bending process is governed by a time step of the order 1/E instead of 1/EI
if we were to solve for stretch of the beams. This way, the numerical solver is able to take
larger stable timesteps and produce results quicker.

While the assumption of inextensibility of roots was initially made for the computational
time savings, it is well justified when considering that most green wood (wood that has at
least 50% moisture) have Young’s moduli of the order of gigapascals [36]. Typically tree
roots, branches, and wood in general are considered to be orthotropic materials meaning
that they have different elastic properties in 3 orthogonal directions [37, 38]. Wagner et
al.’s inspection of the elastic properties of a root in three orthogonal directions, longitudinal,
radial, and tangential, demonstrate that the longitudinal stiffness of green wood is much
larger than the other two, suggesting that an inextensibility assumption of roots along their
length is realistic [39].

3.1 Governing Equations for Nonlinear Beams

From the position of the points along the beam, we can define tangent and normal vectors
along the beam. These can then be used to calculate the curvature as a function of the axial
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coordinate s 3.1

K =
dt̂

ds
· n̂ (3.1)

For the constitutive relationship between the moment and curvature, we use the linear elastic
relationship [40].

M = EI K (3.2)

The equations of motion governing a nonlinear beam with linear mass λ subject to bend-
ing moments M , tension T , shear forces V , and external loading f can be derived by exam-
ining the free body diagram in figure 3.1a

(a) (b)

Figure 3.1: (a) Free Body Diagram for Deriving Governing Equations. (b) Detailed Image
for dθ

Balance of angular momentum at axial coordinate s returns:

ΣMs = −M(s) +M(s+ ds) + V (s+ ds)ds = 0 (3.3)

Since we want the beam model to be able to capture large deformations, we define our
balance of linear momentum equations in local tangential and normal directions instead of a
global coordinate system. The balance of linear momentum in these two directions returns:

ΣFt = −T (s) + T (s+ ds) +N(s+ ds) sin(dθ) + ftds = λdsẍ · t̂ (3.4)
ΣFn = −V (s) + V (s+ ds) + T (s+ ds) sin(dθ) + fnds = λdsẍ · n̂ (3.5)

Rearranging these three we get the three governing equations of motion:

1. Tangential direction equation of motion:

dT

ds
+ V K + ft = λv̇ · t (3.6)

2. Normal direction equation of motion:

dV

ds
+ TK + fn = λv̇ · n (3.7)
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3. Balance of moments, relating shea forces to moments:

V = −dM

ds
(3.8)

These 3 equations govern the motion of the beam elements. These are similar to linear
Euler-Bernoulli beam governing equations. We can see that for small deformations (which
is the regime in which linear beam theory applies) the curvature can be approximated to be
zero dropping the nonlinear terms in both equations 3.6 and 3.7. At low deformations, we
can neglect the extension of the beam and thus any tension developing in response, dropping
out the tension T . Then we recover linear Euler-Bernoulli theory.

3.2 Inextensibility Constraint

Figure 3.2: Sample parametric 2-dimensional curve for the inextensibility constraint deriva-
tion

This section derives the governing equations to satisfy the inextensibility constraint applied
to the beam elements modeling the roots. The length L of a 2-dimensional parametric curve
defined by x(s) and y(s) such as the one in figure 3.2 in the range s ∈ [a, b] can be calculated
using the integral in equation 3.9.

L =

∫ b

a

ds =

∫ b

a

√(
dx

ds

)2

+

(
dy

ds

)2

ds (3.9)

Since we want the length of a section of the beam to not change during its motion, we set
its time rate of change to zero.

dL

dt
=

d

dt

∫ b

a

√(
dx

ds

)2

+

(
dy

ds

)2

ds = 0 (3.10)
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Using the Leibniz integral rule we can take the derivative inside the integral [equation 3.11].

0 =

∫ b

a

2

(
dx
ds

d
dt

(
dx
ds

)
+ dy

ds
d
dt

(
dy
ds

))
2
√(

dx
ds

)2
+
(
dy
ds

)2 ds (3.11)

Since time t and length parameter s have no dependency we can flip the order of differenti-
ation.

0 =

∫ b

a

dx
ds

d
ds

(
dx
dt

)
+ dy

ds
d
ds

(
dy
dt

)√(
dx
ds

)2
+
(
dy
ds

)2 (3.12)

The (not-normalized) tangent vector on a parametric curve can be written as in equation
3.13.

t =

〈
dx

ds
,
dy

ds

〉
(3.13)

The velocity vector in terms of time derivatives can be written as:

v =

〈
dx

dt
,
dy

dt

〉
(3.14)

The expression in the numerator of the integral in equation 3.12 can be expressed as the dot
product of the derivative of the velocity vector v with respect to the parameter s with the
tangent vector t. Equation 3.12 can be re-written as:

0 =

∫ b

a

t · dv
ds√(

dx
ds

)2
+
(
dy
ds

)2 (3.15)

Since the denominator in equation 3.15 cannot be zero, to satisfy the inextensibility con-
straint, the numerator must equal zero, giving us the final form of the inextensibility con-
straint in equation 3.16. The dot product of the tangent vector at a point and the derivative
of velocity along the curve coordinate s must equal zero to satisfy inextensibility.

t · dv
ds

= 0 (3.16)

3.3 The Projection Method

The projection method is a numerical method primarily developed and popularized by Chorin
to reduce the difficulties of numerically solving the incompressible Navier-Stokes Equation
for fluids [41]. In this approach, the pressure and velocity fields which are coupled through
the incompressibility constraint. To mediate this, Chorin decouples the two fields and first
calculates a mid-step star velocity that does not necessarily satisfy incompressibility[42].
Since the the calculation of the star velocity splits the time-step into fractions, the projection
method falls under the broader umbrella of fractional step methods [41]. After the star step,
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the pressure is calculated via the incompressibility constraint. Once the incompressibility-
satisfying pressures are known, the velocity is updated from the mid-step star values to the
new velocities at the new time step.[43]

We make use of the projection method to separate the calculations of velocities and ten-
sions for the beams representing the roots. At the start of a time-step, from the positions
of the nodes we calculate the curvature 3.1. Once the curvature is known, the moments are
defined following 3.2. Then the shear forces along the beam are defined from the derivative
of the moments as 3.8. Then, knowing the old velocities, external line loads (due to resistive
forces, gravity etc.), curvatures, and shear forces we can take a semi-explicit half step fol-
lowing equations 3.17, 3.18 to define mid-step star velocities, as is typical for the projection
method.

v∗t = (V K + ft)
dt

λ
+ voldt (3.17)

v∗n = (
dV

ds
+ fn)

dt

λ
+ voldn (3.18)

Using these star velocities, we solve the inextensibility constraint for the tensions. This is
detailed in the following section. Once the tensions are known, the new velocities satisfying
inextensibility are calculated using 3.19 & 3.20.

vnewt =

(
dT

ds

)
dt

λ
+ v∗t (3.19)

vnewn = TK
dt

λ
+ v∗n (3.20)

Thus we are able to calculate the tensions and velocities in separate steps to satisfy the
inextensibility constraint by making use of the projection method.

3.4 Calculations for Projection-Correction:
Tensions Satisfying Inextensibility

In order to successfully implement the projection method, we need an expression of the
inextensibility constraint and governing equations in terms of tension T . To do so we first
take the derivative of equation 3.19 with respect to s and rearrange:

d2T

ds2
=

λ

dt

[
d

ds

(
vnew · t− v∗ · t

)]
(3.21)

By applying the chain rule to the first term we obtain equation 3.22.

d2T

ds2
=

λ

dt

[
dvnew

ds
· t+ vnew · dt

ds
− dv∗t

ds

]
(3.22)

Due to inextensibility [equation 3.16] the first term on the right hand side of equation 3.22is
zero. We can also write the second term as a product of components rather than a dot
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product. In equation 3.23 and the following, the subscripts t and n denote the components of
the derivative of the tangent of the beam in the tangential and normal directions, respectively.

d2T

ds2
=

λ

dt

[
vnewt

(
dt

ds

)
t

+ vnewn

(
dt

ds

)
n

− dv∗t
ds

]
(3.23)

Since we want to solve for the tension before we know the new tangential and normal veloci-
ties, we replace vnewt and vnewn with their expressions in equations 3.19 and 3.20 to substitute
the star velocities and other quantities known before tension is calculated.

d2T

ds2
=

λ

dt

[((
dT

ds

)
dt

λ
+ v∗t

)(
dt

ds

)
t

+

(
TK

dt

λ
+ v∗n

)(
dt

ds

)
n

− dv∗t
ds

]
(3.24)

Rearranging we get a second order ordinary differential equation for T (equation 3.25) which
can easily be numerically solved.

d2T

ds2
− dT

ds

(
dt

ds

)
t

− TK

(
dt

ds

)
n

=
λ

dt

[
v∗t

(
dt

ds

)
t

+ v∗n

(
dt

ds

)
n

− dv∗t
ds

]
(3.25)

Combining equation 3.25 for T, equation 3.19 for vnewt and equation 3.20 for vnewn along with
the boundary conditions, we can solve for the unknowns at all nodes.

3.5 Discrete Numerical Beams

So far, the derivation of the inextensible nonlinear beam theory has been a discussion based
on a continuous beam with axial coordinate s. To numerically solve for the motion of these
beams, we discretize them into nodes and elements.

The black squares denote the element centers while the orange circles denote the nodes.
There are ghost elements at the free ends of the beams to help calculate certain derivatives
at the nodes. The positions, velocities, curvatures, moments, and line forces are stored in
and applied to the nodes. The tension T , shear force V are stored at the element centers.
The ghost nodes have 0 shear force and typically have 0 tension (can be modified for force-
controlled boundary conditions). Since the positions and velocities are stored at the nodes,
the governing equations are solved for the nodes. Storing tensions and shear forces in the
element centers allows for the derivative terms dT/ds and dV/ds to be centered at the nodes.
For the tension and shear force terms that appear directly (paired with curvature K in the
governing equations) we average the elemental values to the node centers. The existence of
ghost elements makes the calculation of averages and centered finite difference derivatives
more straightforward.

The tangents are first calculated for the elements from the positions of their 2 neighboring
nodes. The normals are then defined for the elements via a 90 degree rotation of the tangent
clockwise. Once the element tangent and normal vectors are defined, they are averaged onto
the nodes as nodal normal and tangential vectors.
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3.6 Is the discrete inextensibility the same as the
continuous?

The inextensibility equation 3.16 is derived for the continuous beam. It should hold for
the discretized beam as well, and the numerical solution should approach the analytical as
the discretization gets finer and finer. However a key issue/difference for the continuous
and discrete implementation of the inextensibility equation is that in the derivation of the
constraint, both terms in equation 3.16, the tangent vector and the velocity derivative, are
located at the same position on the beam. However, for the discrete beam, the tangents are
calculated at the element centers and averaged to the node centers. This section goes over
the procedure we follow to ensure that both terms for the inextensibility constraint are in
consistent positions and the discrete and continuous results match.

The equivalent of equation 3.16 in a discrete element with 2 surrounding nodes can be
visualized as the following:

Figure 3.3: One discrete beam element with velocities visualized at the surrounding nodes

Rewriting the inextensibility equation 3.16 as a refresher:

t · dv
ds

= 0

The t̂ in the continuous equation is the green element tangent vector t̂ in figure 3.3. The
velocity to satisfy this equation is the new velocities defined by equations 3.19 and 3.20. We
can express the velocities at the nodes as:

vnew
i = vnewn,i n̂i + vnewt,i t̂i (3.26)

vnew
i+1 = vnewn,i+1n̂i+1 + vnewt,i+1t̂i+1 (3.27)
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Where n̂i is the normal vector at the ith node. We can now write the derivative term in
equation 3.16 which becomes:

t̂ · dv
ds

= t̂ · 1

ds

(
vnewn,i+1n̂i+1 + vnewt,i+1t̂i+1 − vnewn,i n̂i − vnewt,i t̂i

)
= 0 (3.28)

There are 4 separate dot products in this equation. Since the tangential and normal vectors
are averaged to the nodes and t̂ is defined for the element none of them cancel out. Now we
can replace the vnew components for the nodes with equations 3.20 and 3.19 to incorporate
T . One detail here is how we average T to the nodes to be able to calculate equation 3.20
and how we take the 1st order difference in equation 3.19 will change the final form. For
this explanation we will follow equation 3.29 which averages the elemental tension values to
the node. We follow equation 3.30 which is a first order central difference approximation
to calculate the first derivative of the tension at the nodes. In both of these equations, the
right hand side indices i and i− 1 refer to element indices.

Taveraged

∣∣
i
=

Ti + Ti−1

2
(3.29)

dT

ds

∣∣∣∣
i

=
Ti − Ti−1

ds
(3.30)

The normal and tangential velocities at the ith node can be expressed as equations ??
once the previously calculated average tension values and derivatives are subsituted in.

vnewn,i =
Ti + Ti−1

2
∗Ki ∗

dt

λ
+ v∗n,i (3.31)

vnewt,i =
Ti − Ti−1

ds

dt

λ
+ v∗t,i (3.32)

Plugging these expressions and the new velocity component expressions into the discrete
inextensibility equation 3.28 and cancelling out 1/ds we obtain equation 3.33.(

Ti+1 + Ti

2
Ki+1

dt

λ
+ v∗n,i+1

)
ni+1 · t̂+

(
Ti+1 − Ti

ds

dt

λ
+ v∗t,i+1

)
ti+1 · t̂

−
(
Ti + Ti−1

2
Ki

dt

λ
+ v∗n,i

)
ni · t̂−

(
Ti − Ti−1

ds

dt

λ
+ v∗t,i

)
ti · t̂ = 0 (3.33)

This equation evaluated for each element is going to form the system of equations govern-
ing the beam structure as the solver steps through discrete timesteps. In the next few steps
we will isolate the coefficients for each of the terms so entries into the matrix representing
this linear system of equations can be reviewed. We place the known parameters, the star
velocities, at the right hand side equation and factor out the coefficients for the elemental
tension forces.
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For the left hand side of the equation becomes:

Ti+1

[
1

2
Ki+1

dt

λ
t̂ · ni+1 +

1

ds

dt

λ
t̂ · ti+1

]
Ti

[
1

2
Ki+1

dt

λ
t̂ · ni+1 −

1

ds

dt

λ
t̂ · ti+1 −

1

2
Ki

dt

λ
t̂ · ni −

1

ds

dt

λ
t̂ · ti

]
Ti−1

[
−1

2
Ki

dt

λ
t̂ · ni +

1

ds

dt

λ
t̂ · ti

]
On the right hand side, we gather the known or previously evaluated variables:

−(v∗n,i+1)̂t · ni+1 − (v∗t,i+1)̂t · ti+1 + (v∗n,i)̂t · ni + (v∗t,i)̂t · ti

Using these values and equations 3.20 and 3.19 we construct the matrix representing
the governing equations for the beam structure. Once this system is solved, we obtain the
updated velocities which satisfy the inextensibility equation.

3.7 Curvature Rate Based Damping

The inextensible beams are able to capture the overall elastic response of tree roots. However,
in reality the plant material also displays some time-dependent behavior [44, 45]. To mimic
this effect as well as to damp out the oscillations of the roots in our simulations, we introduce
a curvature-rate-based damping into our system of equations. This approach helps mimic
the resistance of a root to being bent and the damping increases the quicker and more intense
the change in shape occurs. We do so by augmenting the moment response in the beam in
response to the curvature change rate.

Figure 3.4: Analog model visualization of viscoelastic beam elements
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We modify equation 3.2 as the following to account for the curvature rate based damping,
where η is the damping coefficient.

M = EI K + ηK̇ (3.34)

Evaluating the time rate of change of curvature numerically requires us to store the past
values of curvature. To avoid this and work with only the present values of variables we
follow the steps outlined below. We can plug in the definition of the curvature along the
beam as stated in equation 3.1.

K̇ =
d

dt

(
dt̂

ds
· n̂

)
(3.35)

When we apply the chain rule we obtain:(
d

dt

d2x

ds2

)
· n̂+

d2x

ds2
· dn̂
dt

(3.36)

The first term scales with the rate of change of the curvature while the second term scales
with the present curvature magnitude. If we rearrange the the order of the derivatives in
the first term we get the second derivative of the normal velocity (equation 3.37). This can
be evaluated in a single time step and is able to capture the resistance of the beam. This
term is used in place of K̇ in our beam code due to its computational ease. The second term
can be accounted for by storing the face normal vectors between timesteps, however it has
not been necessary to capture a realistic damping response thus far. This second term can
be rearranged into the form in equation 3.37, which can be evaluated easily for all nodes by
simply using the normal velocity values at the current timestep.

d2vn
ds2

(3.37)

3.8 Multi-Branch Equations

To model elementary 2D root structures, we combine multiple beams. Besides each branch’s
individual governing equations, we introduce 2 new kinematic constraints at the intersection
of any 2 beams/branches.

1. The nodes at the connection interface need to have the same velocity and position at
all timesteps

2. The initial angle between the connecting branches does not change.

The second kinematic constraint comes from the assumption that junctions of roots are much
stronger than the rest of the roots.
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Figure 3.5: Inverted Y shaped branch made up of 3 combined beams. At the center orange
node, kinematic constraint 1 applies. The angular constraint is achieved via blue massless
rigid links

With all the equations governing the multi-branch structure, we assemble them into a
linear system of equations which is solved at each time step as we iterate through time in our
simulations. The linear system of equations is visualized in figure 3.6 where the unknowns
are listed as T for tension, ftop for the force required at the top node to apply a velocity
constraint, frigid for the forces in the rigid links satisfying the angular constraint between
branches, and fconn for connection forces at the center node between connecting branches
ensuring they move together.

Figure 3.6: Final form of the linear system of equations for a multi-branch root structure.
Top node velocity controls are emitted for force controlled uprooting scenarios.

3.9 Boundary Conditions & Implementation

We have considered 3 types of boundary condition options for the single beam or combined
root structures.

1. top node imposed velocity boundary condition

2. top element imposed tension boundary condition

3. top node angular velocity constraint paired with curvature constraint for the first 2
nodes.
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Figure 3.7: Three boundary condition options visually represented. Velocity boundary con-
dition at the top node (left), tension boundary condition at the top element (center), angular
velocity and curvature constraint (right)

Velocity Boundary Condition

One scenario we were interested in modeling was a root structure being pulled with constant
or controlled velocity from the top. To mimic this, we make use of an imposed velocity
boundary condition at the top node (figure 3.7-left). The boundary conditions for the top
node are obtained by imposing the desired velocity in equations 3.7 and 3.6, resulting in
equations 3.38,3.39.

T2 − T1

ds
+ V1K2 =

λ

dt
(vnewt,2 − voldt,2 )− ft,2 (3.38)

−1

ds
V1 +K2T1 =

λ

dt
(vnewn,2 − voldn,2)−

V2

ds
− fn,2 (3.39)

Solving this set of equations gives us the tension T at all the elements and the shear force
V1 within the first element.

Tension Boundary Condition

The simplest boundary condition to enforce is the assigned tensile force applied at a desired
position along the structure. This force is typically placed at the top. We mimic this by
applying the tension to the ghost element before the first real element. This is simply an
equation of type T = assigned value which modifies the prior T = 0 for the top ghost
element.

Velocity and Curvature Boundary Condition

To pull a single beam buried vertically in grains sideways we have made use of this boundary
condition. To ensure that the top of the beam where it is dragged sideways, we assign the
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same velocity to the two first nodes so they move together and the curvature at the first real
element (second black box from the top in figure 3.7-right).

3.10 Summary of the Beam Solver

Algorithm 4 Algorithm for solving the beam equations numerically
knowing the positions of the nodes x(s), current velocities at the nodes, and the external
loads at some timestep t:

calculate the tangent vectors t̂ for the elements. ▷ equation 3.13
Rotate the tangent vectors 90 degrees clockwise to define the elemental normal vectors n̂

Average the elemental tangent and normal vectors to the nodes.
calculate curvatures at the nodes K = n̂ · dt̂

ds
▷ equation 3.1

Calculate the moments from curvatures M = EI K, ▷ equation 3.2

if damping is used then
add damping term ▷ equation 3.34

end if

Calculate the shear forces at the elements ▷ equation 3.8
and the derivative of shear forces at the nodes

Take the star step with the known quantities. ▷ equations 3.17, 3.18

Assemble the linear system of equations ▷ sections 3.6, 3.8, 3.9
and solve for tension T at the elements, along with rigid link forces, connection forces,
and boundary condition satisfying forces.

Perform the corrector step to obtain the velocities ▷ equations 3.20, 3.19
at the nodes at the new timestep t+ dt

Update the positions

3.11 Complex Branch Generator & Solver

Most of this project focused on experiments and simulations of Y-shaped simple root struc-
tures. However, realistic roots contain fractal-like more complex and higher number of
branches. The beam solver developed for the Y-shaped roots was written specifically for a
3-branch model, however to avoid having to customize the code for each root geometry, we
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developed a complex root structure generator and solver. This was then paired with the
elastic RFT solver to complete uprooting simulations.

With the complex root generator and solver, it is possible to model root branches with
different lengths and number of elements. Inclusion of tapering branches or different cross-
sections and thus bending stiffnesses is also possible, but not yet incorporated. To generate
any root geometry of interest, the user needs to provide the complex root generator with the
number of branches, the angles of those branches measured clockwise from the -y axis, the
number of nodes on each branch, the lengths of each branch and the connections list. The
connections list is a 2-by-N matrix, where N is the number of connections. A connection is
a top to bottom linking of two branches. For each connection the user must first enter the
number corresponding to the top branch and then the bottom one. With all this information,
the complex branch generator creates two simple text files for the solver to read. The first,
the branch data file, is a file that contains four columns. The first column has the node
IDs which are unique sequential integer numbers assigned to each node to keep track. The
second column is the branch ID column which shows the ID number of the branch that a
node corresponds to. The third and fourth columns contain the x and y coordinates of the
nodes, respectively.

The second file, the connection file, has as many row as there are total nodes and as
many columns as the total number of connections. In each column, the bottom node of the
top branch for that connection gets a +1 entry while the top node for the bottom branch
gets a -1 entry. There can be rows with multiple +1 entries since multiple bottom branches
can connect to a top branch.

The complex branch solver can take this geometry data and run the same uprooting
tests as the inverted Y-shaped root structures. It follows the same governing equations. The
challenge of the complex solver is handling different number of nodes for different branches
and creating the matrix entries corresponding to the linear system of equations to apply the
corrector step after the star step calculation for velocities.
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Chapter 4

Applications of eRFT & Discussion

4.1 Beam Drop Test

One of the key shortcomings of rigid RFT is its inability to achieve static equilibrium in
load controlled scenarios. To highlight this shortcoming and demonstrate that eRFT is able
to address it, we look at the test case of dropping a horizontal beam with initial velocity
into a bed of grains under its self-weight. The experimental setup can be seen in figure
4.1a. These results are compared to an analytical solution acquired from a work-energy
balance (equations 4.1 4.2) in figure 4.1b. Both rigid RFT and eRFT first hit the depth
corresponding to the analytical solution. However, once a balance between the resistive
force and the beam’s weight is achieved, the beam should have zero velocity in this static
equilibrium. Without any velocity, rigid RFT is unable to provide a resistive force to hold
up the beam’s weight, so it begins to move. The beam keeps moving upward in the rigid
RFT scenario. After the initial "dip" of the beam below the analytical depth, the beam is
pushed up and accelerates. In general, the resistive forces are much larger for intrusion than
extraction, thus the beam faces less resistance moving upward, which results in the rigid
RFT solution slowly lifting the beam up. The eRFT solution on the other hand, remains
at the analytical solution, with small oscillations if undamped eRFT is used. This example
clearly highlights elastic RFT’s ability to fill in the gap in intrusion processes corresponding
to no velocity/load control/static equilibrium cases which cannot be captured accurately by
rigid RFT.

The analytical solution for this section is derived from a work energy balance between
the initial kinetic energy of the beam, change in potential energy, and the work done by
resistive forces as the beam travels through the grains.

KE0 = ∆PE +WRFT (4.1)

1

2
m|v0|2 = mg(z0 − zfinal) +

∫ zfinal

zsurface

|fz| dz (4.2)
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(a) (b)

Figure 4.1: (a) Setup for Beam Drop Test. (b) time-position results of the beam drop test
comparing the analytical solution (green), elastic RFT solution (orange), and rigid RFT
solution (blue)

4.2 Effects of Elastic RFT Stiffness

To investigate the effects of the RFT stiffness parameter kRFT , we ran the same beam
drop test at various values of kRFT . The results (figure 4.2) show that for any value of
RFT stiffness, elastic RFT solution hits the analytical depth and begins to oscillate. The
frequency of the oscillations increase and the amplitude of the oscillations decrease with
increasing stiffness as expected. The oscillations are effectively indiscernible to the naked
eye for the stiffest solution. The solutions tend to oscillate above the analytical solution
instead of centered around the analytical solution due to the fact that the resistive forces are
higher during intrusion, thus a net upward bias is born from a short distance of intrusion
resistive forces balancing a larger distance of extrusion forces.

(a) (b) (c)

Figure 4.2: Computational beam drop experiment results for three different RFT stiffnesses.
(a)kRFT=500N/m (b) kRFT=1kN/m (c) kRFT=10kN/m
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4.3 Force Controlled Uprooting: What is the threshold
for uprooting?

Mimicking an uprooting scenario by loading our root structures vertically from the top, we
investigate the threshold force requried to uproot a root structure. We tested the response
of the same root under 5N, 100N, and 4kN applied to the top of the root. All three roots
were pulled for 4 seconds and then released for 4 seconds. Chronological screencaps can be
seen in figure 4.3.

(a) Purely Elastic Case

(b) Small Plasticity Case

(c) Large Plasticity Case

Figure 4.3: Response of an identical root to three different applied load magnitudes at the
top node.
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(a) Purely Elastic Case (b) Small Plasticity Case (c) Large Plasticity Case

Figure 4.4: time vs the position of the top node for the three identical roots pulled at different
load magnitudes.

For the smallest applied load, the root structure barely deforms and eRFT is able to
balance the applied load via only elastic tractions. This corresponds to none of the grains
around the root flowing, but simply responding elastically. When we increase the load
to 100N, we see the small plastic response. Around the vertical portion of the root red
traction arrows corresponding to plastic flow of grains are present. This load is not enough
to completely uproot the structure in 4 seconds however when the load is removed we can
still see its effect via the residual tractions required to balance the new position of the root,
similar to residual stresses in a partially plastically deformed metal after unloading due to
lack of compatibility of strains in the plastic part. For loads large enough, such as 4kN for
this root, the grains quickly yield resulting in red plastic traction arrows in the visualization.
The roots bend significantly under the large load, and most of the root is above the surface
by the end of the 4 seconds of loading.

4.4 Effects of Intruder Flexibility

Previous studies using RFT mainly focused on either rigid intruders or flexible intruders
whose kinematics were assigned. This portion of the thesis reviews the effects of accounting
for the flexibility of the intruder on the resistive forces calculated. The same velocity-
controlled uprooting scenario was repeated for 2 roots with identical geometries but different
elastic moduli. The geometric and material parameters for the large aluminum sample and
the 50A rubber sample can be seen in tables 4.2 & 4.1. In figure 4.5 the difference between
the response of the two samples can be seen qualitatively. The rubber sample bends a lot
more in response to the resistive forces, while the aluminum sample essentially maintains its
initial shape.
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(a) Rubber Branch

(b) Aluminum Branch

Figure 4.5: Response of identical roots with different material properties to constant velocity
pull at the top node

In figure 4.6 the force required at the top node to apply a constant velocity is shown for
the two samples. Overall, since the aluminum sample bends less, it maintains a larger area
that is perpendicular to its direction of motion resulting in a larger peak resistive force. The
rubber root structure requires a peak load that is over 30% lower than that required for the
aluminum sample. Since the rubber sample bends significantly, its ends remain in the sand
for a larger total displacement. It can be seen in figure 4.6 that the aluminum sample is
freed from the grains around 15 cm of displacement and no longer experiences any resistance
from the grains while the rubber sample continues to experience traction from the grains
until it travels 17 cm. These results highlight that both qualitatively and quantitatively,
taking the flexibility of the intruder into account heavily influences the results one obtains
from resistive force theory.

49



Figure 4.6: force displacement response of the rubber and aluminum Y-shaped roots

4.5 Experimental Comparison

To validate our numerical elastic RFT beam solver uprooting results, 2 separate sets of
experiments have been conducted. As part of the Perron group’s efforts to investigate the
strength and contribution of primitive roots to landscape formation, Madison Douglas, PhD,
has constructed the large sandbox testing rig seen in image 4.7a. In these experiments, the
sample is pulled out of the sandbox with a fishing line that is tied to a constant torque drill
that is operated manually. The force required for the uprooting is captured via a load cell
in series with the fishing line used in the pulley uprooting mechanism. The initial results
from these experimental and computational results showed qualitative agreement, however
we struggled to achieve better quantitative matching.

To try out another method of running similar uprooting tests, a second set of experiments
were conducted by the author using a 5 gallon bucket as the sand bed (figure 4.7b). In these
sets of experiments, the bucket was placed in an INSTRON machine to control the velocity
boundary condition and measure the total resistive force required to impose said motion.
This setup allowed for more precise control when imposing the velocity boundary condition
at the top of the root structure.

Between the two different setups, 4 inverted Y shaped root structures have been man-
ufactured and tested. The geometric and material parameters defining these samples can
be found in tables 4.1 & 4.2. The elastic modulus for the rubber samples are converted
from their shore A hardness scale following the empirical relationship in [46]. The aluminum
samples manufactured using Amerimax flashing shingles were covered in 60 grit sandpaper
so that the surface friction between the root structure and the grains would be similar to the
internal friction of the grains. The rubber samples were sanded with a coarse grit sander to
remove their smooth finish.
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(a) (b)

Figure 4.7: Two experimental setups used.(a) Large sand bed with drill-controlled pulley
mechanism, (b) INSTRON controlled bucket

(a) (b) (c) (d)

Figure 4.8: Experimental inverted Y-shaped root structures. (a) large aluminum (b) small
aluminum (c) rubber 50A (d) drawing for dimension references

length [mm] height [mm] angle [rad] thickness [mm]
large aluminum 126 45 1.0949 3
small aluminum 60 60 1.0475 3

rubber 50 A 95 70 0.8029 7

Table 4.1: Table of experimental branch structure geometric specifications
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linear density λ[kg/m] Young’s Modulus
large aluminum 1.0125 0.1-1 GPa
small aluminum .486 0.1-1 GPa

rubber 50 A 3.0429 0.82 MPa

Table 4.2: Table of experimental branch structure material parameter specifications

4.5.1 Large Sandbox Uprooting Tests

2 sets of roots and their corresponding calibration tests have been completed in this setup.
An aluminum sample coated in 60 grit sandpaper and a shore 50 A rubber sample, have
been manufactured into the inverted Y root shapes. Flat plates made of these materials
have been uprooted and the resulting forces have been used to calibrate the α functions as
mentioned in the introduction section.

(a) (b) (c)

Figure 4.9: Comparison of experimental and computational force-displacement results for
the large aluminum root structure. (a) raw force-time data converted to force-displacement
assuming constant velocity (b) results from (a) adjusted by the fishing line extension (c)
data from (a) adjusted to match the distance covered under the surface

After the calibration, the initial comparison between the numerical and experimental
results for the aluminum sample showed general qualitative agreement as can been seen in
figure 4.9a. The initial peak in the force response for the experimental data was assumed to
be due to the preparation process in which the sand is poured over the top of the sample.
The RFT forces are calculated at a steady flow state, thus they will not be able to capture a
more densely packed state. If desired, this can be built into the ξ parameter so it accounts
for the packing density, however this would require a lot more experimental data to construct
the α functions. Besides the initial peak, the experimental and computational results also
differed in the amount of time the sample spent under the sand surface. Assuming the
experiment was conducted under constant velocity conditions via the drill, this difference
was attributed to the fact that the fishing line used in the experiments was elastic. To adjust
for the stretching of the fishing line, we have completed tensile testing for the material using
an INSTRON machine. The fishing line showed some hardening behavior as we repeated
tensile tests. The results can be seen in figure 4.10. We have used the stiffer elastic modulus
which was achieved after a couple tests since the line used in the experimental setup was
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reused for all repetitions of the test. The force-time-displacement data from experiments
were adjusted by taking the stretching of the fishing line into account. This only created a
minor difference in the results, as can be seen in figure 4.9 b.

Figure 4.10: Fishing line tensile test force displacement results. Legend shows sequence of
tests.

According to these experimental results, if the drill velocity was held constant, the du-
ration that the sample experienced a resistive force times that velocity was larger than the
depth of the sample. This lead us to believe that the drill used in the setup was in fact
not able to provide constant velocity to the sample. To fix this mismatch in time spent
under the surface level between experimental and computational results, we tried adjusting
the experimental data such that the constant velocity multiplied by the time the sample
experienced a force would result in the total distance the sample needs to travel to exit the
sand. With this adjustment, the experimental and computational results show much better
agreement (figure 4.9b) besides the initial peak due to preparation. This process strength-
ened our beliefs that the drill was not an adequate tool for the tests we wanted to conduct,
which lead to the next set of experiments.

4.5.2 INSTRON Machine Sandbucket Uprooting Tests

To ensure that the sample is pulled at a constant rate from the top, we made use of an
INSTRON tensile testing machine. Since the space available to run uprooting tests with
this machine was limited, we scaled down the sandbox into a 5-gallon bucket. To ensure no
edge effects are present, we scaled down the aluminum root sample such that all dimensions
would be less than a third of the bucket diameter and sand height. By doing so, according to
slip line theory, the flow around the samples should not experience the effects of the bucket
walls [47, 48].

To run the uprooting and calibration tests with the INSTRON machine and sandbucket
setup, first the test bucket is filled at least one sample height tall with sand. Then the sample
is placed at the center of the bucket. The bucket is then filled with the sand from the top by
pouring through a sieve. During this stage, attention must be paid to not bury the fishing
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line loop that must be tied to the INSTRON machine crosshead. Once the bucket is filled to
desired sand height, it is then placed into the INSTRON machine. Filling the bucket on the
INSTRON machine or using alternative methods could yield results that better match the
assumptions of resistive force theory, however to limit the disruption of use of the INSTRON
and labspace, this was the best method at the time of these experiments. Once the bucket
is in the INSTRON, the fishing line loop of the buried sample is attached to the fishing line
tied to the crosshead via a carabiner. The INSTRON is then run following the program
corresponding to the user’s parameters.

Figure 4.11: Sequential images of the bucket uprooting experiment for the small aluminum
sample

To calibrate the α functions via the ξ parameter, we first performed pull tests on a
flat 6cm*6cm aluminum plate covered by 60 grit sand paper. The INSTRON was able to
provide extremely reproducible displacement and force data. To calculate the ξ parameter,
we intended to use the backslope of the force displacement data from these tests. However,
as can be seen in figure 4.12, there were 2 distinct linear regions in the force-displacement
data past the initial peak as we loaded the test specimens. The ξ parameters calculated off
of these two slopes differ by one order of magnitude which resulted in drastically different
results when used in the computational solutions.

(a) (b) (c)

Figure 4.12: Three separate flat pull calibration tests for the INSTRON-bucket setup

Previous applications and calibrations of resistive force theory either worked with large
intruders at the surface where the depth scaled with the lengthscale of the part of the intruder
below the surface, or with fully submerged plate elements buried deep. In this study of
uprooting we are combining both where the root structures first are buried somewhat deep
compared to their length, similar to the latter case and as they are being extracted from the
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sand, they interact with the grains similar to the large intruders at the surface. This fact,
paired with the 2 clearly distinct slopes on the calibration tests leads us to consider that
perhaps the depth of the intruder with respect to its characteristic length is an important
factor to take into consideration when applying RFT to intruders that traverse multiple
regimes.

To explore this hypothesis, we tested a smaller flat calibration plate. The new plate,
made from aluminum coated with 60 grit sandpaper as the previous samples, had a length
and width of 2 cm. Thus, the same start depth of the previous calibration tests, 10 or 15 cm
depending on the test, corresponded to a much larger depth relative to the lengthscale of
the sample. The force-displacement plots for these tests [figure 4.13] reproduced the larger
ξ parameter as measured by the higher relative depth portions of the previous calibration
tests.

Figure 4.13: Force displacement data for a small flat plate being extracted

When deriving an analytical explanation as to why resistive force theory works well
for materials governed by frictional plasticity, Askari & Kamrin made use of dimensional
analysis for garden hoe typed intrusion problems [24]. Their derivation, which used the
length of the gardenhoe as one of the parameters governing the resistive force experienced
by the gardenhoe, did not need to consider the depth as a separate lengthscale governing the
resistive forces since for a gardenhoe type intrusion, the depth scales directly with the length
of the hoe that has intruded the grains. In many of the previous successful uses of resistive
force theory [1, 11], similar surface intrusion of large bodies have been studied. However,
motivated by the clearly different ξ parameters we see in our bucket extraction experiments,
we expect that the relative depth, a depth to characteristic lengthscale ratio, should also be
considered as a parameter in resistive force theory formulations.
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Figure 4.14: Experimental force displacement results plotted along numerical results cali-
brated at two different relative depths

In figure 4.14, we see the experimental force displacement data alongside two sets of
computational results. The orange curve calculated using the ξ parameter at the higher
relative depth (the higher ξ value) matches the initial portion of the experiments where the
root structure was buried deeper. As the structure is extracted, after a few centimeters of
extraction, the numerical solution deviates from the experimental. However, if we are to use
a ξ parameter calculated at a lower relative depth, the yellow numerical curve is closer to
the later parts of the experimental data.

4.6 ABAQUS Implementation of RFT

While the inextensible beam and elastic RFT combination is able to capture uprooting sce-
narios realistically as has been discussed in prior sections, the capabilities of the beam-based
intruder solver we generated is limited when modeling intrusion and extraction problems. To
be able to model more complex geometries, as well as account for a wider range of material
models we are working on an ABAQUS user subroutine implementation of resistive force
theory.

4.6.1 VDLOAD 3D Rigid RFT

In this section we go over the implementation of rigid 3D RFT in ABAQUS using the explicit
user subroutine VDLOAD. For an overview of 3D rigid RFT, the reader can refer to source
[26].

ABAQUS Explicit has a subroutine named VDLOAD that allows the user to define a
surface pressure as a function of position, velocity, face normals and more at each surface
element [49]. We have written a FORTRAN subroutine with the 3D-RFT coefficients, gravity
magnitude, and surface level position built-in. The subroutine code can be found in Appendix
A. The polynomial fit coefficients used in [26] are typed directly into the FORTRAN file.
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To use this code on any explicit ABAQUS simulation of interest, the reader can follow the
steps listed below.

1. Define your solid model in ABAQUS with desired geometry, material model, and mesh.
Make sure that the direction of gravity is aligned with the -y axis (Or modify the
definition of variable g in the code). It is recommended to align the top center at the
origin or at y=0 so specifying the surface level height will be more straightforward in
the following steps.

2. Under the load module, select the distributed load option. Apply a user defined load
(VDLOAD) on external surfaces you want to apply RFT forces onto.

3. Modify the FORTRAN code to fit your model for the following parameters:

(a) surface level height

(b) ξ material scaling parameter

4. Create a job. Under the "general" tab add the Select the FORTRAN file containing
the subroutine.

5. Submit job and verify results.

VDLOAD Uprooting Test

We have followed the process outlined in the previous section on a solid model of the large
aluminum y-root sample in ABAQUS. We have used a linear elastic material model for the
aluminum with elastic modulus E=0.1 GPa and Poisson’s ratio ν=0.3. The solid was also
assigned a density of 2700 kg/m3. We then assigned a constant velocity boundary condition
at the top surface in the y direction via a reference point rigidly tied to the surface. The
pressure load distribution from 3D Rigid RFT partway through the solution can be seen
in figure 4.15a. Since both gravity and resistive forces are applied instantaneously on the
model, the initial results had plenty of oscillations. To damp these out we introduced mass
scaling and increased linear bulk damping viscosity as suggested by the ABAQUS manual
[49]. These results were clearer, however for ease of visualization we have further smoothed
the data for the comparison in figure 4.15b. We have also made significant use of mass scaling
to reduce some of the dynamic oscillations [49] Since the VDLOAD subroutine was only able
to apply the perpendicular portion of the traction due to resistive forces, we modified the
MATLAB solver to do the same. Despite the frequent oscillations even after multiple rounds
of smoothing of the ABAQUS data, we see that the force required at the top of the root
structure to uproot it at the assigned constant velocity generally agrees between the two
solvers.
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Figure 4.15: (a) Loading and geometry of aluminum root simulated in ABAQUS (b) Com-
parison of ABAQUS VDLOAD results with MATLAB eRFT results (with the tangential
loads removed)

VDLOAD Complex Geometry Test

The main motivation in creating an ABAQUS RFT implementation was to create a more
easily and widely usable RFT code that can be paired with the strong finite element modeler
and solver in ABAQUS. To highlight the ability of our implementation to capture this goal
even with just VDLOAD, we present a more complex geometry and boundary conditions in
this section.

(a) (b) (c) (d) (e) (f) (g)

Figure 4.16: Sequential snapshots of the pressure loads from ABAQUS VDLOAD RFT an
inverted V-shape being twisted and extracted

An inverted V-shaped soft aluminum structure has been modeled as a linear elastic solid
with Young’s modulus E=1 MPa and Poisson’s ratio ν=0.3. The structure is tied to a rigid
point above the center of its top face where a vertical linear velocity boundary condition and
an angular velocity boundary condition are applied such that the structure is rotated as it
is being pulled up. A sequence of the normal component of the resistive forces calculated
via the VDLOAD subroutine can be seen in figure 4.16. The deformation of the structure is
realistic. The pressure loads and thus deflections are larger earlier on in the simulation when
the structure is deeper below the surface level. As the structure gets closer to the surface, its
"arms" open further apart due to the lower resistive tractions with lower depth. We cna also
see the leading edge hypothesis being applied correctly in the snapshots where both the rear
edge of the arms are visible with no load applied. Although a linear elastic model is not the
most appropriate for such large deformations, this initial test demonstrates the feasibility of
modeling a wide range of geometries and materials in ABAQUS paired with RFT.
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4.7 Conclusions & Future Work

This work proposed elastic RFT to improve upon rigid granular RFT. The theory for codi-
rectional nonlinear and non-codirectional linear formulations of elastic RFT were presented.
Steps for numerical implementation of both versions were outlined. Proof of elastic RFT’s
ability to address rigid RFT’s shortcomings was demonstrated via the beam drop example
and a study of intruder flexibility. With the introduction of elasticity to resistive force the-
ory, it can now be applied to load-controlled scenarios and achievement of equilibrium or
temporary no velocity positions can be captured.

A nonlinear inextensible beam theory is discussed and numerically implemented to model
root structures. Numerical simulations of uprooting scenarios combining these beam struc-
tures with elastic RFT are compared to two sets of experimental results.

The ABAQUS implementation of resistive force theory has the potential to make resistive
force theory accessible to a wider range of users. Currently, a user element subroutine to
implement elastic RFT completely in ABAQUS is under way. This can become a great tool
for engineers and scientists working on intrusion problems or designs that interface with
flowing grains.

Granular resistive force theory still has a wide range of unexplored application scenarios.
Although resistive force theory has been used for swimmers fully immersed in viscous fluids
[50], it has not been expanded for viscous solids or granular media. Viscous resistive force
theory a future area of consideration as we seek to represent the soils for the uprooting
simulations more realistically.

The most recent set of experiments also strongly suggests that the relative depth of the
intruder with respect to its characteristic length could have an influence on the resistive
forces. The transition between deeply buried intruders and surface intrusions remains to be
explored. W anticipate that this transition can be built into resistive force theory via the
inclusion of a relative depth parameter in the formulations.
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Appendix A

VDLOAD RFT FORTRAN Code

subroutine vdload (
C Read only (unmodifiable)variables -

1 nblock, ndim, stepTime, totalTime,
2 amplitude, curCoords, velocity, dirCos, jltyp, sname,

C Write only (modifiable) variable -
1 value )

C
include ’vaba_param.inc’

C
dimension curCoords(nblock,ndim), velocity(nblock,ndim),

1 dirCos(nblock,ndim,ndim), value(nblock)
character*80 sname

C

!declaring variables
real :: coeffs(20,3)
real :: RFTforce(3)
real, dimension(20) :: Tk !coefficients/terms

real :: p1, p2, p3 !g dot v !g dot n ! n dot v
real :: f1, f2, f3
integer :: i
real :: ksi, depth, area

real :: n1, n2, n3
real, dimension(3) :: v, n, g
real, dimension(3) :: alfa_gen, alfa_gen_norm,alfa_gen_tang,alfa
real :: vmag
integer :: deneme

logical :: negNV, negGN
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g = [0.0,-1.0,0.0] !gravity taken along y=-1

!##############fit coefficients #############
coeffs(1,:) = [0.00212, -0.06796, -0.02634]
coeffs(2,:) = [-0.02320, -0.10941, -0.03436]
coeffs(3,:) = [-0.20890, 0.04725, 0.45256]
coeffs(4,:) = [-0.43083, -0.06914, 0.00835]
coeffs(5,:) = [-0.00259, -0.05835, 0.02553]
coeffs(6,:) = [0.48872, -0.65880, -1.31290]
coeffs(7,:) = [-0.00415, -0.11985, -0.05532]
coeffs(8,:) = [0.07204, -0.25739, 0.0679]
coeffs(9,:) = [-0.02750, -0.26834, -0.16404]
coeffs(10,:) = [-0.08772, 0.02692, 0.02287]
coeffs(11,:) = [0.01992, -0.00736, 0.02927]
coeffs(12,:) = [-0.45961, 0.63758, 0.95406]
coeffs(13,:) = [0.40799, 0.08997, -0.00131]
coeffs(14,:) = [-0.10107, 0.21069, -0.11028]
coeffs(15,:) = [-0.06576, 0.04748, 0.01487]
coeffs(16,:) = [0.05664, 0.20406, -0.02730]
coeffs(17,:) = [-0.09269, 0.18519, 0.10911]
coeffs(18,:) = [0.01892, 0.04934, -0.04097]
coeffs(19,:) = [0.01033, 0.13527, 0.07881]
coeffs(20,:) = [0.1512, -0.33207, -0.27519]

ksi= 133282; !media-dependent scaling coeff
surfLevel = 3 !surface level

do i = 1, nblock
n1 = dirCos(i,3,1)
n2 = dirCos(i,3,2)
n3 = dirCos(i,3,3)
n = [-n1,-n2,-n3]
v = velocity(i,:)

vmag = sqrt(v(1)**2+v(2)**2+v(3)**2)+.0001;
v = [v(1)/vmag,v(2)/vmag,v(3)/vmag]

!calculating dot products
p1 = dot_product(g,v)
p2 = dot_product(g,n)
p3 = dot_product(n,v)

negNV = (p3 .lt. 0)
negGN = (p2 .lt. 0)

if ((p2 .lt. 0)) then
p2 = -p2
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end if
Tk = [1.0,p1,p2,p3,p1**2,p2**2,p3**2,p1*p2,p2*p3,p3*p1,

+ p1**3,p2**3,p3**3,p1*p2**2,p2*p1**2,p2*p3**2,
+ p3*p2**2,p3*p1**2,p1*p3**2,p1*p2*p3]

f1 = sum(Tk*coeffs(:,1))
f2 = sum(Tk*coeffs(:,2))
f3 = sum(Tk*coeffs(:,3))
alfa_gen = f1*n + f2*v + f3*g
alfa_gen_norm = dot_product(alfa_gen,n)*n

depth = surfLevel - curCoords(i,2)
RFTforce = ksi*alfa_gen_norm*depth

RFT_pres = dot_product(RFTforce,n)
if ((depth .lt. 0) .or. (p3 .lt. 1e-3)) then
RFT_pres = 0
end if

value(i) = -RFT_pres*amplitude
enddo

return
end
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