
Design and Development of an Accelerated Material
Synthesis Platform for Automated Materials Research

by

Eunice I. Aissi

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2024

© 2024 Eunice I. Aissi. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Eunice I. Aissi
Department of Mechanical Engineering
August 23, 2024

Certified by: Tonio Buonassisi
Professor of Mechanical Engineering, Thesis Supervisor

Accepted by: Nicolas Hadjiconstantinou
Chairman, Department Committee on Graduate Theses

https://creativecommons.org/licenses/by-nc-nd/4.0/

2

Design and Development of an Accelerated Material Synthesis
Platform for Automated Materials Research

by

Eunice I. Aissi

Submitted to the Department of Mechanical Engineering
on August 23, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

ABSTRACT

Materials development is the foundation for innovation in many industries and fields,
however, this process is traditionally slow and resource-intensive. Most often, new mate-
rials are developed and characterized on the time scale of years which can limit the pace
of scientific and industry innovation. I address the material synthesis and characterization
bottleneck by presenting a framework that I believe is suitable for smaller labs: Self-built,
low-cost automation. The design philosophy is to de-risk the lab automation process by
keeping costs low, failing fast, and leveraging common resources in electronic systems and
additive manufacturing. I present an improved version of a low-cost but high-throughput ink-
jet material printer developed by Siemenn et al. and adapted to operation in the glovebox,
hood, and benchtop environments. The tool is capable of depositing gradients of droplets
with unique compositions at a rate of up to 1000 materials per minute, is self-built and cost
around $500. I also present a computer-vision-enabled high-throughput material character-
ization algorithm for stability quantification through color degradation. The synthesis and
characterization methods are validated on a methylammonium lead iodide (MAPbI3) and
formamidinium lead iodide (FAPbI3) perovskite material system. X-ray diffraction (XRD),
X-ray photoelectron spectroscopy (XPS), and hyperspectral imaging measurements show
equivalence between high-throughput synthesis and more traditional spin-coating methods.
Results obtained through the high-throughput stability characterization method are aligned
with stability trends reported in literature and has an accuracy of 96.9% when compared to
ground-truth degradation as measured by a domain expert.

Thesis supervisor: Tonio Buonassisi
Title: Professor of Mechanical Engineering

3

4

Acknowledgments

I would like to express my deepest appreciation to my Advisor Tonio Buonassisi for his
professional guidance, feedback and support. I’m also extremely grateful to Alexander E.
Siemenn and Basita Das for their mentorship and continued belief in my potential. Addi-
tionally, this endeavor would not have been possible without the generous support from First
Solar, who partially funded the work presented in this thesis.

I could not have undertaken this journey without my undergraduate advisor Russell Scott
Ray who mentored me and introduced me to the world of academia and my classmate and,
at times teacher, Fang Sheng for her support and instruction.

Lastly, but definitely not least, words cannot express my gratitude to my family and
partner who supported me and lifted me up when I doubted myself.

5

6

Contents

List of Figures 9
List of Tables 13

1 Introduction 15
1.1 Motivation . 15
1.2 An overview of the Archerfish Material Printer 16
1.3 Thesis Overview . 17

2 Improving Archerfish: Advancements in Communication Protocols and
Hardware 19
2.1 Introduction and Overview . 19
2.2 Improvements to the Communications Architecture 20
2.3 Hardware Updates: Enhancing Droplet Uniformity, and Crystallization . . . 21
2.4 Successes in Printing Organic Perovskite Materials 23

2.4.1 Methods . 24
2.5 Chapter Summary . 25

3 High - Throughput Characterization of Perovskite Materials 27
3.1 Introduction and Overview . 28
3.2 Detecting Perovskite Degradation from RGB Time Series Data 28

3.2.1 Segmentation and Identification of Droplets 28
3.2.2 Color Calibration . 29
3.2.3 Composition Extraction . 30
3.2.4 Instability Calculation . 31

3.3 Results . 32
3.4 Chapter Summary . 34

4 Limitations of the Platform 35
4.1 Introduction and Overview . 35
4.2 Lack of Compositional Control . 35
4.3 Droplet Generation . 37
4.4 Environmental and Crystallization Control 38
4.5 Unknown Mixing Mechanisms . 39
4.6 Other Limitations . 41

4.6.1 Material Compatibility . 41
4.6.2 Human Introduced Variation . 41

7

4.6.3 Lack of System Feedback . 42
4.7 Chapter Summary . 42

5 Conclusion 43
5.1 Summary . 43
5.2 Future Work . 43

A Archerfish Components List 45

B Archerfish Raspberry Pi Code 47

C Archerfish Arduino Code 65

References 73

8

List of Figures

1.1 The Archerfish platform, is a retrofitted 3D printer that can deposit gradients
of droplets at a rate of up to 1000 droplets a minute. It consists of two
home-built 3 ml syringe pumps which dispense streams of fluid that join at a
y-junction and are generated into droplets by a Lee valve forcing flow through
a 300 µm diameter ceramic nozzle. Note that the fluid inlets from the syringe
pumps are marked by a + sign. 16

1.2 The Archerfish syringes are driven by $3 28BYJ- 48 stepper motors coupled to
a 4-40 lead screw to force the plunger forward and dispense fluid. The motors
create a fluid gradient from 100% of the fluid in syringe B controlled by motor
B to 100% of the fluid in syringe A controlled by motor A using a descending
and ascending speed profiles respectively. Note that the fluid outlets from the
syringe pumps are marked by a + sign. 17

2.1 The second iteration of Archerfish was developed to address the chemical
limitations of the initial proof of concept. Mainly, the system was fitted with
wireless communication and a GUI for use with lead containing perovskites
inside a glovebox. 19

2.2 The flow diagram for the Archerfish system’s Graphical User Interface (GUI). 20
2.3 The flow diagram for the Archerfish system’s Graphical User Interface (GUI)

with screenshots of the three main screens. The first screen is used to choose
the type of experiment the user is running, next the set-up screen asks for
experimental details including precursor names and saves this information for
experimental logging. This screen also includes a hardware control interface to
load the syringe pumps and changes its input fields based on the experiment
type and the number of pumps being used. Lastly, a simple glove-box window
with prominent start and stop buttons allow the user to control the printer
while working in an enclosed environment with limited mobility. Note that
the GUI adapts its configuration to the type of experiment and the number
of syringe pumps being used for each experiment. 22

2.4 A New 3D printed casing was designed to hold an external pinch valve and
the dispensing nozzle for improved droplet uniformity. 23

2.5 a) Thermal non-uniformity observed through infrared imaging of a commercial
hotplate initially used to anneal Archerfish perovskite samples. b) The new
hotplate built in lab shows better uniformity than its commercial counterpart. 24

9

2.6 FAPbI3 - MAPbI3 hybrid organic-inorganic perovskite droplets printed using
the Archerfish system where characterized using X-ray diffraction (XRD), X-
ray photoelectron spectroscopy (XPS), and hyperspectral imaging. (b) A ∆2θ
of 0.152 deg occurs in an XRD peak corresponding in a change of composition
from MAPbI3 to FAPbI3. (c) Similarly, a change in the peak corresponding to
the C = NH2 double bond found in formamidinium indicates a gradient from
MAPbI3 to FAPbI3. (d) Lastly, a gradual change in the reflectance spec-
tra of the droplets obtained using hyperspectral imaging indicate a change
in composition from pure MAPbI3 to FAPbI3. This figure and its measure-
ments are reproduced with permission from Siemenn and Aissi et al. [8], the
measurements where taken by Fang Sheng and Alexander Siemenn. 25

3.1 a-c Automatic degradation testing and measurement of computer vision-
segmented perovskite deposits. a, The samples are placed in the degradation
chamber with specified environmental conditions for a total of two hours. b,
RGB images of the samples are taken every 30 seconds for two hours to resolve
the time-dependent color change in material. c, Computer vision is used to
segment each deposited sample over time, Φ(t), to compute the degradation
intensity metric, Ic. This figure reproduced with permission from Siemenn
and Aissi et al. [8] . 27

3.2 a) The droplets on the glass substrate cropped out of the first image in the
series. b) Each droplet is identified and labeled as the output of the watershed
image segmentation algorithm. 29

3.3 a) The cropped image of the perovskite droplets before it is processed by the
color-calibration algorithm. b) The same image post calibration, note that
the true color of droplets are now accessible and the purple hue created by
the illumination conditions have been rectified. 30

3.4 The first step in composition extraction is determining the corners of the glass
substrate onto which the droplets are printed. This is done through a series
of computer vision morphological operations and algebraic representations. . 31

3.5 The second step in composition extraction is a perspective transform to obtain
a bird’s eye view of the droplets. a) This row provides the results of the per-
spective warp on all the Archerfish droplets. b) In this row, the same droplet
is highlighted in yellow to indicating the retention of spatial information for
each droplet, the yellow droplet appears in the same position relative to other
droplets in both the initial and the warped perspectives. 32

3.6 An example of a time series color change of every droplet in a sample. Each
horizontal line represents the color of a droplet along the FA1−xMAxPbI3 (
0 ≥ x ≥ 1) compositional gradient over the degradation experiment. 32

10

3.7 a, Performance of the autocharacterization of degradation intensity, Ic, rela-
tive to the ground truth degradation determined by a domain expert (yellow
scatter points) on N = 201 unique perovskite samples across 3 independent
trials. The black dashed line indicates the split between high and low Ic
values, corresponding to high and low degrees of degradation, respectively.
b, Images of the three batches of FA1−xMAxPbI3 gradient samples after the
2-hour controlled degradation. The leftmost samples are FA-rich and the
rightmost samples are MA-rich. The yellowed FA-rich compounds have un-
dergone a phase transition from α-FAPbI3 to δ−FAPbI3 and are considered as
“ground truth" degradation samples if they exhibit a deviation of > 0.02eV in
band gap from pre- to post-degradation, evaluated by a domain expert. This
figure reproduced with permission from Siemenn and Aissi et al. [8] 33

4.1 Energy-dispersive X-ray spectroscopy (EDS) elemental composition traces.
These elemental traces are shown for a Cs3Bi2I9-Cs3Bi2Br9 (cesium bismuth
iodide-cesium bismuth bromide) perovskite gradient printed using Archerfish
where each droplet has its EDS spectrum measured. We note the abrupt
stop in the compositional shift between iodine and bromine due to improper
tuning of the Archerfish print settings. Approximately 80% of the entire
gradient is shown to be successfully printed here, the missing portion of the
gradient is visualized using dashed line projections. This figure reproduced
with permission from Siemenn and Das et al. [20] 36

4.2 The measured flow rate from the current $10 Archerfish syringes with a
constant motor speed. Large and small oscillatory spikes with magnitudes of
up to 333% of the set flow rate occur periodically due to the rotation of the
stepper motor. The x-axis is in 20 second intervals. 37

4.3 Results of a flow rate measurement test indicates non-linearities in the ex-
pected flow rate due to a pressure build-up effect. The syringe was refilled
between the data points circled in red, despite an increase in the motor speed,
the flow rate after a refill remains nearly the same. This effect is a result the
rubber plunger in the syringe relaxing when drawing in fluid and therefore
needing to re-pressurize before any fluid is dispensed. 38

4.4 The profile of a droplet along the Cs3Bi2Br9 to Cs3Sb2I9 perovskite gradient
obtained though stylus profilometry. A coffee ring affect can be seen, with
high ridges along the edge of the droplet and a near-flat film in the middle. 39

4.5 Two different Archerfish prints of the same FAPbI3-MAPbI3 compositional
gradient after annealing and controlled degradation. Yellow samples are de-
graded while black samples are not degraded. These two perovskite gradients
exhibit different degradation patterns despite being of the same composition
and degrading under the same conditions. The differences in crystallization,
as shown by the SEM images, transpired from spatial non-uniformities in the
annealing and deposition processes. This figure reproduced with permission
from Siemenn and Das et al. [20] . 40

11

4.6 Optical microscope images through a machined acrylic 4-way junction with
1/32” inner diameters fluid paths of a) the point of fluid stream contact with
clear separation and no mixing and b) the inlet to the droplet generator indi-
cating, as expected, that no mixing occurs when the fluid streams meet. The
arrows indicate the direction of flow. 41

4.7 Optical microscope images through a machined acrylic three-way junction
with inlets at 90 degrees. RGB color analysis show mixing at the outlet of
the old Archerfish Lee valve, suggested that agitation via the valve could
be a viable path to achieve known mixing for Archerfish droplets. Figure
reproduced with permission from Siemenn and Das et al.. [20] 42

12

List of Tables

A.1 General component list for the improved Archerfish system. Detailed bill of
materials and building instructions for version one of the Archerfish Platform
are provided by Siemenn et al. [20] . 45

13

14

Chapter 1

Introduction

1.1 Motivation

Automation in research is a growing field that has recently gained attention for its potential
to accelerate and improve the quality of scientific outcomes.[1] However, acquiring the human
and capital resources to establish and maintain these advanced tools can be daunting. For
smaller labs investigating a wide range of energy materials, there is demand for low-cost,
flexible, high-throughput (HT), and high-quality materials synthesis and characterization
tools.

In this thesis, I develop low-cost high-throughput synthesis and characterization methods
for automated materials exploration. I present an improved version of a low-cost but high-
throughput ink-jet material printer developed by Siemenn et al. [2] and adapted to operation
in the glovebox, hood, and bench-top environments. The printer takes two or more fluid
precursors and prints a materials gradient within a set of droplets, line segments, or another
user-specified shape. The tool is self-built, leveraging a low-cost 3D printer chassis, and is
affordable at about $500. Our build cycle takes one day and utilizes open-source platforms
for its firmware. The printer can deposit up to 1,000 different material compositions in under
one minute and is easy to use, requiring only three steps: creating a print pattern, loading
the precursors, and printing the materials.

One area of interest for accelerated materials discovery is perovskite materials, com-
pounds of structure ABX3, where A and B are cations and X is a non metallic anion, that
can be used as solar cell materials.[3] The perovskite crystal structure was first discovered
in 1839[4] and since then a subset of these materials know as metal halide perovskites have
shown great promise in optoelectronic applications such as LEDs, lasers, and solar cells. [5]
Metal halide perovskite solar cells have been reported to reach power conversion efficiencies
as high as 26.1% while being light weight and easy of synthesize. [6] However, they cur-
rently suffer from low stability and can degrade quickly when exposed to irradiation and
heat. [7] This limits their applicability as solar cell materials and has slowed their adoption.
Consequently, there has been great interest in optimizing and discovering perovskite solar
cell ink formulas to both improve their stability and understand their modes of degradation.
The material space is however vast for both composition and additives making it a suitable
materials system for exploration through high-throughput combinatorial material synthesis.

15

Figure 1.1: The Archerfish platform, is a retrofitted 3D printer that can deposit gradients
of droplets at a rate of up to 1000 droplets a minute. It consists of two home-built 3 ml
syringe pumps which dispense streams of fluid that join at a y-junction and are generated
into droplets by a Lee valve forcing flow through a 300 µm diameter ceramic nozzle. Note
that the fluid inlets from the syringe pumps are marked by a + sign.

I therefore validate the material-synthesis capacity of the methods I develop in this the-
sis on the methylammonium lead iodide (MAPbI3) and formamidinium lead iodide (FAPbI3)
perovskite material system by showing equivalence to traditional spin-coated samples through
X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and hyperspectral imaging mea-
surements. I also demonstrate high-throughput characterization of the perovskite materials
through an algorithm that quantifies color changes in each material as a proxy for material
degradation. In summary, I present and validate a framework of customized automation
focused on improving R&D reproducibility and speed for smaller academic labs.

1.2 An overview of the Archerfish Material Printer

The Archerfish platform illustrated in Figure 1.1 was first invented by Alexander Siemenn and
James Serdy in the Accelerated Materials Development for Sustainability Lab. [2]. Archerfish
is a low-cost and high-throughput droplet deposition system that can create gradients of
droplets at a rate of up to 1000 droplets per minute. In the first version of this platform, the
plungers of two 3 ml syringes were replaced with a 4-40 lead screw and actuated with 28BYJ-
48 stepper motors and ULN2003 drivers. These home-built pumps where controlled via an
Arduino board in the ascending and descending stair-case flow pattern in Figure 1.2. The
two streams from each pumps were then joined in a spherical y-joint machined from delrin
and ink-jetted through a piezoelectric lee valve and out of a 300 µm ceramic nozzle. Lastly,
the nozzle of a Monoprice MP select Mini Pro 3D printer was removed and replaced with
the droplet generator to deposit the droplets at locations specified by the g-code uploaded to
the printer. With this design, researchers at the Accelerated Materials development lab were
able to create a high-throughput materials synthesis platform for use with simple solution

16

Figure 1.2: The Archerfish syringes are driven by $3 28BYJ- 48 stepper motors coupled
to a 4-40 lead screw to force the plunger forward and dispense fluid. The motors create a
fluid gradient from 100% of the fluid in syringe B controlled by motor B to 100% of the
fluid in syringe A controlled by motor A using a descending and ascending speed profiles
respectively. Note that the fluid outlets from the syringe pumps are marked by a + sign.

based chemistries. However, the system had several limitations included a lack of proper
communications protocols that prevented it from being used in environmental enclosures
such as a glove box, a near necessity for experiments with lead containing perovskites.

1.3 Thesis Overview

This master’s thesis designs and develops improved high-throughput material synthesis and
characterization platforms and algorithms to accelerate the discovery of novel energy mate-
rials.

Redesigning the Archerfish High-Throughput (HT) Platform: In order to al-
low for a wider range of material experiments, I implement several improvements to the
communications and hardware components of the Archerfish platform. Chapter 2 describes
these improvements to the Archerfish system’s hardware and electronic components while
motivating and explaining design choices.

Algorithms for HT Characterization: HT synthesis without characterization limits
the pace of materials discovery. Chapter 3 describes an algorithm I developed to extract
a key material property of perovskite materials, stability, printed using a high-throughput
droplet deposition system like Archerfish.

Limitations of The Archerfish System: Despite its potential, the Archerfish platform
is still imperfect. Chapter 4 describes its limitations and potential pathways to further
improvements.

17

18

Chapter 2

Improving Archerfish: Advancements in
Communication Protocols and Hardware

Figure 2.1: The second iteration of Archerfish was developed to address the chemical limi-
tations of the initial proof of concept. Mainly, the system was fitted with wireless commu-
nication and a GUI for use with lead containing perovskites inside a glovebox.

2.1 Introduction and Overview

Section 1.2 describes the proof of concept version of Archerfish first designed by Siemenn et
al. [2], however, it needed several updates in order to be utilized for chemical experiments.
In this chapter I describe the updates I implemented for the communications, user interface,
and aspects of the hardware in order to allow us to run chemical experiments in an inert
environment. These updates to version one of Archerfish system are depicted in Figure 2.1.

19

Figure 2.2: The flow diagram for the Archerfish system’s Graphical User Interface (GUI).

2.2 Improvements to the Communications Architecture

The primary limitation of the Archerfish system was its communications architecture. Orig-
inally it utilized prescribed printing flow rates for each syringe and a set deposition pattern
that could be activated once the machine was turned on. To change precursors, the user
had to remove the syringe pump motors and mount a smaller pump pre-programmed to
move in reverse and draw in liquid. This meant that there was no way to easily change
precursors, the composition of the gradient, how many droplets were printed, or where the
droplets were deposited. Chemical experiments, however, require flexibility for composition
and deposition as well as peripheral features like data logging. Moreover, chemical synthe-
sis needed to occur in an enclosed environment such as a glove box where users had limited
mobility and dexterity due to bulky chemical safety gloves. Features that required fine move-
ments for reoccurring actions such as exchanging a motor to reload precursors were therefore
intractable.

To allow for more flexibility, a Raspberry Pi was added as a control center to run a
Graphical User Interface (GUI). The pi can be controlled wirelessly from outside the glove
box via a bluetooth connection to a Virtual Network Computing (VNC) client. The VNC
mirrored the raspberry pi screen on a laptop outside the glove box, allowing a user to set
printing parameters through the GUI and control the hardware inside the glove box. Once
the user connects to the raspberry pi, they are instructed to choose one of three printing
modes: batch, two-fluid gradient, and constant+ two-fluid gradient. The pi then establishes
a connection with the arduino and sends motor control instructions via serial communication
to set the flow rates for the syringe pumps.

20

In batch mode, the relative flow rates of each syringe pump is set by the user in the
GUI, the printed droplets are therefore multiple copies of the same composition. In two-
fluid gradient mode, the flow rates of two syringe pumps change from a starting percentage
of one precursor to a percentage of the other, creating a linear gradient between the two
precursors loaded into the syringe pumps. This percentage value is chosen by the user and
allows for finer resolution into sub-regions of a gradient of interest. For example, if a user
notices interesting features in the regions between the droplets of composition A0.25B0.75

and the A0.75B0.25, they could specify these compositions as end points of a new gradient
with all the droplets between this range, thereby zooming into this compositional space. In
constant+ two-fluid gradient mode, a third syringe pump dispenses a precursor at a constant
flow rate alongside the gradient adding a third component to the droplet composition, this
is usually a solvent. After choosing a printing mode, the GUI asks for user inputs regarding
experimental details such as the chemical names for the loaded precursors and saves these
in a text file called Experimental log for later reference. Once all experimental details have
been captured, the GUI goes to a simple run screen that features a prominent start and
stop button. At this point, the user can enter the glove-box space using the bulky protective
glove-box gloves and any further interactions with the Archerfish system takes place on the
touch screen inside. The touchscreen is to facilitate use of the system and features two large
start and stop buttons that can be pressed even with the bulky gloves that decrease the
dexterity of the user.

It is important to note that the GUI also guides the user with confirmation and error
messages to ensure that all necessary data is properly captured and the user follows the
proper path through the GUI. The full GUI path is shown in Figure 2.2 and images of the
three main windows along the path are shown in Figure 2.3. The GUI windows are dynamic
and adaptable to each experimental set-up, they change their input fields depending on the
type of print and the number of fluids the experiment requires.

2.3 Hardware Updates: Enhancing Droplet Uniformity,
and Crystallization

Beyond the flexibility of the system, two challenges limited our ability to print gradients of
perovskite droplets: droplet uniformity, and uniform annealing. Test prints revealed that the
unknown internal volume of the initial Archerfish Lee valve resulted in reservoirs of trapped
fluid that required large volumes of transfer fluid to completely clear out. The unknown
chemical composition of the wetted materials also created a potential for side reactions that
could adversely impact the deposited materials purity. Consequently, the lee valve was
replaced with a 24 V Precigenome solenoid pinch valve to provide breaks in the outlet fluid
stream and generate droplets. Unlike the lee valve, the pinch valve’s surfaces are not wetted,
the actuator strikes a 1/32" ID x 3/32" OD silicone tube containing outlet fluid in a square
wave pattern. A new 3D printed casing shown in Figure 2.4 was designed to hold the valve
and the nozzle steady while printing as this was shown to minimize satellite droplets and
improve droplet uniformity.

Annealing is a crucial step for perovskite crystallization and therefore requires a uniform

21

(a) First two windows in the GUI.

(b) Last window of the GUI.

Figure 2.3: The flow diagram for the Archerfish system’s Graphical User Interface (GUI)
with screenshots of the three main screens. The first screen is used to choose the type of
experiment the user is running, next the set-up screen asks for experimental details includ-
ing precursor names and saves this information for experimental logging. This screen also
includes a hardware control interface to load the syringe pumps and changes its input fields
based on the experiment type and the number of pumps being used. Lastly, a simple glove-
box window with prominent start and stop buttons allow the user to control the printer
while working in an enclosed environment with limited mobility. Note that the GUI adapts
its configuration to the type of experiment and the number of syringe pumps being used for
each experiment.

22

Figure 2.4: A New 3D printed casing was designed to hold an external pinch valve and the
dispensing nozzle for improved droplet uniformity.

heating plate. However, infrared images of the commercial hot plate often used for chemical
experiments revealed a non-uniform heating surface that resulted in noticeable degradation
and poor crystallization of the perovskite droplets. Additionally, moving the samples from
the print bed to the hot plate led to unpinning of the droplet edges further wetting of the glass
substrate creating pools of materials instead of uniform droplets. In order to create viable
perovskite samples, a new heating plate was designed and built for annealing perovskite
droplets directly on the 3D printer bed and is shown in Figure 2.5. The new hot plate
consisted of a flexible heating element sandwiched between a 1/8" thick glass bottom plate
and an 1/8" thick aluminum top plate. Two foam pads where placed bellow the glass plate
for structural stability. The heating element was controlled via an InkBird PID temperature
controller with a k-type thermocouple for temperature feedback. Infrared images of the new
heating plate revealed a near thermally uniform surface, further images where taken with a
carbon sheet over the aluminum to decrease the impact of reflectance on the infrared image
results. These images, though not shown here, also indicated improved thermal uniformity
when compared to the commercial product.

2.4 Successes in Printing Organic Perovskite Materials

The FAPbI3 - MAPbI3 hybrid organic-inorganic perovskite material system was used to val-
idate the improved Archerfish’s ability to create gradients of materials in a high-throughput
manner. This system was chosen because it is established with many data sets in literature
that could be cross referenced for comparison with the Archerfish produced droplets. [9]
Furthermore, each precursor, FAPbI3 and MAPbI3, could be mixed in solution form to pro-
duce FA1−xMAxPbI3 droplets with 0 ≥ x ≥ 1 that could then be annealed at 150◦C for 15

23

Figure 2.5: a) Thermal non-uniformity observed through infrared imaging of a commercial
hotplate initially used to anneal Archerfish perovskite samples. b) The new hotplate built
in lab shows better uniformity than its commercial counterpart.

minutes and crystallize to create the perovskite materials. Archerfish synthesized perovskite
gradients are printed on a clean 2"×3" glass substrate in a serpentine pattern with the print
head moving at a speed of 38 mm/s. The pinch valve actuates at 5Hz and 11% duty cycle
depositing 70-80 droplets of unique compositions in roughly 16.5 seconds. Each print uses
approximately 0.15ml of fluid, including fluid used to flush the lines before each print. Figure
2.6 show results of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and
hyperspectral imaging that confirm the presence of a gradient across the Archerfish droplets
ranging in composition from pure MAPbI3 to FAPbI3.

2.4.1 Methods

Materials

3"×2"×1mm glass slides (C&A Scientific) are cleaned using deionized water (DI, < 1.0µS/cm,
VWR), Hellmanex III (VWR), and isopropyl alcohol (IPA, ≥ 99.5%, VWR) to be used as
substrates. Lead iodide powder (PbI2, 99.999% trace metal basis, Sigma-Aldrich), formami-
dinium iodide powder (FAI, >99.9%, Greatcell Solar Materials), methylammonium iodide
(MAI, >99.9%, Greatcell Solar Materials), dimethylformamide (DMF, ≥ 99.8%, Sigma-
Aldrich), and dimethylsulfoxide (DMSO, ≥ 99.9%, Sigma-Aldrich) are used to prepare the
perovskites.

24

Figure 2.6: FAPbI3 - MAPbI3 hybrid organic-inorganic perovskite droplets printed using the
Archerfish system where characterized using X-ray diffraction (XRD), X-ray photoelectron
spectroscopy (XPS), and hyperspectral imaging. (b) A ∆2θ of 0.152 deg occurs in an XRD
peak corresponding in a change of composition from MAPbI3 to FAPbI3. (c) Similarly, a
change in the peak corresponding to the C = NH2 double bond found in formamidinium
indicates a gradient from MAPbI3 to FAPbI3. (d) Lastly, a gradual change in the reflectance
spectra of the droplets obtained using hyperspectral imaging indicate a change in composi-
tion from pure MAPbI3 to FAPbI3. This figure and its measurements are reproduced with
permission from Siemenn and Aissi et al. [8], the measurements where taken by Fang Sheng
and Alexander Siemenn.

Substrate Preparation

Glass slide substrates are prepared for printing the perovskite samples using a three-step
cleaning process: (1) ultrasonication for 5 minutes in DI water with 2%vol. Hellmanex III
solution, (2) ultrasonication for 5 minutes in DI water only, and (3) ultrasonication for 5
minutes in IPA. Once cleaned, the substrates are transferred to an inert nitrogen environment
glovebox with moisture levels < 10ppm.

Perovskite Preparation

FAPbI3 (formamidinium lead iodide) and MAPbI3 (methylammonium lead iodide) are pre-
pared as 0.6M liquid-based precursors for high-throughput printing. For printing, 2mL of
each precursor is prepared in an inert nitrogen environment glovebox with moisture lev-
els < 10ppm. First, 3.2mL DMF is mixed with 0.8mL of DMSO to make 4mL of 4 : 1
DMF:DMSO solution. Then, 1.106g of PbI2 powder is dissolved into the 4mL of 4 : 1
DMF:DMSO to make a PbI2 stock. Next, the 4mL PbI2 stock is split in half, pipetting 2mL
of stock per vial. Lastly, 0.206g of FAI powder is dissolved into one of the 2mL PbI2 stock
vials and 0.191g of MAI powder is dissolved into the other making 0.6M FAPbI3 and 0.6M
MAPbI3, respectively.

2.5 Chapter Summary

In this chapter, I present improvements to the Archerfish platform’s communication protocols
and hardware, then validate the capabilities of the new system by printing gradients of hybrid

25

organic-inorganic perovskite materials and showing compositional equivalence to spin-coated
samples with XRD, XPS, and hyperspectral imaging measurements. In the next chapter, I
will develop an algorithm for high-throughput characterization of materials deposited with
the new Archerfish platform.

26

Chapter 3

High - Throughput Characterization of
Perovskite Materials

Figure 3.1: a-c Automatic degradation testing and measurement of computer vision-
segmented perovskite deposits. a, The samples are placed in the degradation chamber with
specified environmental conditions for a total of two hours. b, RGB images of the samples
are taken every 30 seconds for two hours to resolve the time-dependent color change in ma-
terial. c, Computer vision is used to segment each deposited sample over time, Φ(t), to
compute the degradation intensity metric, Ic. This figure reproduced with permission from
Siemenn and Aissi et al. [8]

27

3.1 Introduction and Overview

The Archerfish system presents a unique opportunity as a high-throughput synthesis method
to explore the perovskite material space, however high-throughput material synthesis without
characterization is insufficient to accelerate the rate of materials discovery. In this chapter,
I present a high-throughput characterization algorithm to extract the stability of Archerfish
produced perovskite samples.

As a lead halide perovskite degrades, it changes color from black to yellow, a result
of a phase change and/or decomposition of the structure [10–12]. We leverage this RGB-
detectable degradation mechanism [13] and use parallelized computer vision segmentation to
automate the detection of degradation within perovskites, as shown in Figure 3.1c. Three sets
of Archerfish produced FAPbI3 to MAPbI3 gradients, also called samples, totalling N = 201
droplets, were degraded for 2 hours in an environmental chamber as shown in Figure 3.1 under
0.5 suns illumination at 34.5◦C. The perovskite gradients where synthesized as explained
in section 2.4. RGB images of each gradient were taken every 30 seconds as the perovskite
droplets degraded. We compute the degradation intensity, Ic, of each perovskite droplet by
integrating its change in color, R, over time, t [10]:

Ic(X̂, Ŷ) =
∑

R={r,g,b}

∫ T

0

|R(t; X̂, Ŷ)−R(0; X̂, Ŷ)|dt, (3.1)

where T is the duration of the degradation and the three reflectance color channels are
red, r, green, g, and blue, b, for each sample, (X̂, Ŷ)n ∈ N . High Ic indicates high color
change, corresponding to high degradation; Ic close to zero indicates low color change and
low degradation.

3.2 Detecting Perovskite Degradation from RGB Time
Series Data

3.2.1 Segmentation and Identification of Droplets

To start the analysis of the RGB images obtained at each time step of a samples degradation,
the first image in the series is chosen and used to identify the location of the droplets within
all the RGB images. Because the camera and the substrate do not move, the droplets only
need to be identified in one image and these positions are used for all subsequent images in
the series. First, the image is cropped to remove most of the background and include only
the droplets on the glass substrate. This cropped image is then segmented using a series of
morphological operations and the open-cv watershed algorithm.[8] The result is a gray-scale
image with each droplet identified and labeled as shown in Figure 3.2. After segmentation
the image is eroded and dilated to remove noise and maximum the number of pixels captured
for each droplet.

28

Figure 3.2: a) The droplets on the glass substrate cropped out of the first image in the series.
b) Each droplet is identified and labeled as the output of the watershed image segmentation
algorithm.

3.2.2 Color Calibration

To use color as a reproducible and repeatable quantitative proxy for degradation, color cali-
bration needs to be applied because the illumination conditions in the environmental chamber
may create distortions to the true sample color. At the beginning of the degradation study,
an image of a reference color chart (X-Rite Colour Checker Passport; 28 reference color
patches), IR, is taken under the same illumination conditions as the perovskite semiconduc-
tor samples. Images at each time step, Ω(∆t), are transformed into CIELAB colorspace and
subsequently into a stable reference color space, CIE 1931 color space with a 2-degree stan-
dard observer and standard illuminant D50, by applying a 3D-thin plate spline distortion
matrix D [10, 14] defined by IR and known colors of the reference color chart:

D =

[
V
O4,3

] [
K P
P T O4,4

]−1

(3.2)

Here, O(n,m) is an n×m zero matrix, V is a matrix of the color checker reference colors
in the stable reference color space, P is a matrix of the color checker RGB colors obtained
from IR, and K is a distortion matrix between the color checker colors in the reference space
and in IR. The matrix V ,K,P , and O are further described in Equation 3.3,

V =

1 x
′
1 y

′
1 z

′
1

...
...

...
...

1 x
′
N y

′
N z

′
N

 ,

P =

1 x1 y1 z1
...

...
...

...
1 xN yN zN

 ,

K =

0 . . . U(r1N)

U(r21) . . . U(r2N)
...

...
...

U(rN1) . . . 0

 ,

(3.3)

29

where N = 24 and is the number of colour patches on the X-Rite colour card, and U(rij)
is given by:

U(rij) = 2r2ij log(rij + 10−20)

rij =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

(3.4)

Here, rij is the Euclidean distance between the CIELAB values of the color patches under
the current illumination given by xi, yi, and zi and CIE 1931 color space values of the color
patches given by xj, yj, and zj. Vectorization techniques are employed for more efficient
calculation of the distortion matrix D. The result of the color calibration algorithm is shown
in Figure 3.3 and it observed that the purple hue produced by the illumination condition
has been rectified.

Figure 3.3: a) The cropped image of the perovskite droplets before it is processed by the
color-calibration algorithm. b) The same image post calibration, note that the true color of
droplets are now accessible and the purple hue created by the illumination conditions have
been rectified.

3.2.3 Composition Extraction

After identifying the location of the droplets and performing color calibration, it is necessary
to determine estimated values of the droplets composition in order to extract meaningful
scientific information. However, due to the positioning of the camera, a perspective change is
needed to access the true distance between the droplets and back-propagate their composition
using the syringe pump speeds and the travel path of the printer head. [8] The algorithm
for this change in perspective consists of two parts: corner detection and warping. Corner
detection involves a series of morphological and mathematical operations to detect the four
corners of the 2" x 3" glass substrate onto which the droplets are deposited. First the cropped
RGB image of the droplets on their substrate is converted to gray-scale and thresholded.
Canny edge detection is then performed on the thresholded image to extract its dominant
contours. The contour corresponding to droplets are removed using the pixel locations from
the segmentation algorithm in Section 3.2.1. A Hough Lines transform is then performed on
the remaining contours to determine the dominant lines in the image. For each dominant
line, the slope and y-intercept is calculated and used to form a linear equation representation
to determine the angles between the lines and their intersection points. These angles and
points are used to remove extraneous lines that most likely do not belong to the glass

30

Figure 3.4: The first step in composition extraction is determining the corners of the glass
substrate onto which the droplets are printed. This is done through a series of computer
vision morphological operations and algebraic representations.

substrate. Lines that have less than 10 degrees between them, for example, are likely to be
clusters of lines corresponding to the same edge in the image, they are therefore removed
and only one of the lines is kept as a candidate for the edge of the glass substrate. Moreover,
because the substrate is a rectangle whose edges intersect within the image, we remove lines
that intersect outside the image as they are unlikely to corresponding the the edges of the
substrate. Likewise, the intersection points that lie outside the image or along the edges
of the image are removed. Finally, clusters of points that emerge near the corners of the
substrate can be joined to elucidate the true location of the substrate corners within the
image. This is achieved by taking the Euclidean distance between all remaining intersection
points and condensing pairs of points into midpoints and repeating this process until all
points are sufficiently far from one another. These steps result in the identification of the
substrate edges and four corners as shown in Figure 3.4 which are then used to obtained a
perspective transform and warp the image into a birds eye view of the droplets as shown in
Figure 3.5.

3.2.4 Instability Calculation

Using the color-calibrated images, droplet composition, and droplet pixel locations given by
Φ, a final array, R(t; X̂, Ŷ) of the average color at time t for perovskite semiconductor of
composition FA1−xMAxPbI3 is created. The color of each droplet is measured to determine
the stability metric Ic [10], calculated using Equation 3.1. A time series representation of
the color of each droplet in a sample is given in Figure 3.6.

31

Figure 3.5: The second step in composition extraction is a perspective transform to obtain
a bird’s eye view of the droplets. a) This row provides the results of the perspective warp
on all the Archerfish droplets. b) In this row, the same droplet is highlighted in yellow to
indicating the retention of spatial information for each droplet, the yellow droplet appears in
the same position relative to other droplets in both the initial and the warped perspectives.

Figure 3.6: An example of a time series color change of every droplet in a sample. Each
horizontal line represents the color of a droplet along the FA1−xMAxPbI3 (0 ≥ x ≥ 1)
compositional gradient over the degradation experiment.

3.3 Results

The performance of the degradation autocharacterization is demonstrated by comparing the
output Ic to the ground truth degradation, obtained from the pre- and post-band gap de-
viation [10, 15]. Figure 3.7a illustrates the output of the autocharacterization where high
computed Ic values strongly correspond to the occurrence of the ground truth degradation
in the samples (yellow scatter points). The determination of ground truth degradation is
conducted by a human domain expert. This classification performance of the autocharac-
terization algorithm achieves a maximal accuracy of 96.9%, relative to the ground truth.
The yellowing pattern of the FA-rich samples is shown in Figure 3.7b as a result of the
phase change from favorable cubic phase α-FAPbI3 to the non-perovskite hexagonal phase
δ-FAPbI3 [11]. Furthermore, running a full degradation detection computation using au-
tocharacterization takes only 20 minutes per 200 samples, given 48000 total degradation
images over the 2-hour degradation experiment. This is a significant speedup from the stan-

32

Figure 3.7: a, Performance of the autocharacterization of degradation intensity, Ic, relative
to the ground truth degradation determined by a domain expert (yellow scatter points) on
N = 201 unique perovskite samples across 3 independent trials. The black dashed line
indicates the split between high and low Ic values, corresponding to high and low degrees of
degradation, respectively. b, Images of the three batches of FA1−xMAxPbI3 gradient samples
after the 2-hour controlled degradation. The leftmost samples are FA-rich and the rightmost
samples are MA-rich. The yellowed FA-rich compounds have undergone a phase transition
from α-FAPbI3 to δ−FAPbI3 and are considered as “ground truth" degradation samples if
they exhibit a deviation of > 0.02eV in band gap from pre- to post-degradation, evaluated
by a domain expert. This figure reproduced with permission from Siemenn and Aissi et al.
[8]

dard microscopy or XRD methods of determining degradation, which can take hours or days
to identify the degradation of an equivalent number of samples.

Using the fast and accurate stability autocharacterization tool developed in this thesis,
we tractably generate an ultra-high resolution stability trend for the FA1−xMAxPbI3 series,
shown in Figure 3.7a and this trend has not been reported at such a high resolution yet
in literature. Prior literature reports stability compositional resolutions from 0 ≤ x ≤ 1
for 11 compositions [16], 9 compositions [17], and 7 compositions [18] using conventional
characterization methods. Moreover, Charles et al. [16] reports the stability at x ≈ 0.1
compositional increments from 0 ≤ x ≤ 1 using 6 time steps, amounting to a total of
66 temporal data points. Comparatively, using automated characterization, we report the
stability at x ≈ 0.008 unique compositional increments from 0 ≤ x ≤ 1 using 240 time
steps, amounting to 28800 unique temporal data points (with 48000 total temporal data
points). Thus, with autocharacterization, we achieve over a 10x increase in the compositional
resolution and a 40x increase in the temporal resolution for a total of a 436x increase in
the number of unique data points reported for the FA1−xMAxPbI3 stability series, to our

33

knowledge.
Furthermore, with this high-resolution stability trend, we note the same regions of high-

degradation appear in Figure 3.7a as do in the literature for the α-FAPbI3 → δ-FAPbI3
degradation pathway at 0.0 ≤ x ≤ 0.15, with the optimal low-degradation region occurring
at x ≈ 0.40 [16, 19].

Through the generation of ultra-high resolution trends, we may achieve a better un-
derstanding of complex semiconductor composition-property relationships to enable higher-
performance design of materials in the future.

3.4 Chapter Summary

In this chapter, I provided a study that successfully combines high-throughput synthesis and
characterization methods to speed up the rate of information gathering about a material
system. Gradients of FA1−xMAxPbI3 (0 ≥ x ≥ 1) perovskite solar cell materials with N=201
droplets where synthesized using the improved version of the Archerfish system described in
Chapter 2 and characterized using computer vision image processing algorithms to extract
their stability, a key material property for perovskites.

34

Chapter 4

Limitations of the Platform

4.1 Introduction and Overview

The architecture presented for high-throughput combinatorial printing with Archerfish is
promising and has been used to print gradients of several different material systems [8].
However, with its current design, Archerfish can only print gradients, not specific compo-
sitions, and has many limitations that can result in poor reliability and reproducibility of
samples. These limitations can be categorized into three main catagories: compositional
control, droplet generation, and environmental and crystallization control. Each category
has unique limitation considerations for the current tool but also invites opportunities for
growth and design.

4.2 Lack of Compositional Control

Compositional control refers to the ability to set and determine the compositions of indi-
vidual droplets. With Archerfish’s current architecture, it is not possible to set a specific
composition for each droplet or determine a droplet’s exact composition without additional
measurements, such as Energy-dispersive X-ray spectroscopy (EDS). This limits Archerfish
to printing gradients with known endpoints that are pre-loaded as precursors in the syringes.
Compositional control is limited by various factors but major contributors such as pressure
build-ups and fluid reservoirs have been identified and are further discussed here.

Pressure build-ups in areas of compliance within the fluid lines create non-linearities in
flow rates. For example, the syringes use a silicone rubber plunger and as a result, fluid is
not always dispensed when the motors push the plunger, instead, the plunger compresses
to accommodate the resulting pressure from the positive displacement as shown in Figure
4.3. Discontinuities in expected flow rates are also linked to the pressure build-up in the
compliant plunger or fluid lines. Another main hindrance to compositional control is the
presence of fluid reservoirs that result in hard-to-predict mixing behavior, which ultimately
average out to produce a gradient, but do not seem to be linear at each time step. Reservoirs
within the valve generate vortices and can result in residual contamination that complicates
the transition between fluids, producing unknown compositions at the output droplet. To
reduce cross-contamination between runs, reservoirs must also be purged. These purging

35

Figure 4.1: Energy-dispersive X-ray spectroscopy (EDS) elemental composition traces.
These elemental traces are shown for a Cs3Bi2I9-Cs3Bi2Br9 (cesium bismuth iodide-cesium
bismuth bromide) perovskite gradient printed using Archerfish where each droplet has its
EDS spectrum measured. We note the abrupt stop in the compositional shift between iodine
and bromine due to improper tuning of the Archerfish print settings. Approximately 80%
of the entire gradient is shown to be successfully printed here, the missing portion of the
gradient is visualized using dashed line projections. This figure reproduced with permission
from Siemenn and Das et al. [20]

steps take much longer than the prints themselves, sometimes up to a minute, and waste
precursors. Fluid inertia can also pose a problem as pulses in the syringe pump can lead to
large volumes of liquid being dispensed periodically, adding more deviation to the expected
flow rate. Due to the step-wise rotation of the stepper motors, the syringe pumps create
oscillations in the fluid flow, as shown in Figure 4.2 that do not affect the overall gradient
composition but could impact the composition of individual droplets. Over-pressurization
and back-flow in the fluid lines further limit compositional control and create leaks in the
system. Differences in flow rates and thus fluid pressure can at times lead to back-flow and
cross contamination between fluid lines, with one fluid forcing its way into another syringe
instead of exiting through the nozzle. This behavior is aided by compliant materials in the
fluid path that expand to allow build-ups of fluid. This problem could be resolved by the
use of check-valves in the flow path thereby forcing the fluid to exit through the nozzle.
Lastly, important questions regarding the impacts of pressure, fluid viscosity, temperature,
and other parameters on fluid composition and deposition require further analysis and study.

36

These questions have not yet been explored, but are critical to precise compositional control.

Figure 4.2: The measured flow rate from the current $10 Archerfish syringes with a constant
motor speed. Large and small oscillatory spikes with magnitudes of up to 333% of the set
flow rate occur periodically due to the rotation of the stepper motor. The x-axis is in 20
second intervals.

The lack of compositional control reduces the reliability of Archerfish and makes it more
difficult for researchers to use the system. For example, it took three researchers two days to
find the right parameters to create an end-to-end gradient for the FAPbI3-MAPbI3 perovskite
series due to the complex relationship between the droplet wetting properties, reservoirs,
compliant regions, and standing waves within the fluid lines. Figure 4.1 illustrates the
EDS-measured elemental traces of an 80-droplet Cs3Bi2I9-Cs3Bi2Br9 (cesium bismuth iodide-
cesium bismuth bromide) perovskite series printed with Archerfish that did not have its
printing parameters properly tuned. This improper tuning resulted in approximately only
80% of the entire gradient being printed, stopping before reaching the Cs3Bi2Br9 end point.

4.3 Droplet Generation

Archerfish can deposit gradients of uniformly thick droplets on most prints but this uni-
formity can vary based on the precursor molarity and properties of the fluid or substrate.
Substrates with higher wettability often distort the droplets, limit droplet packing, and add
variability to their shape. It has been observed that wetting behavior can even change
between prints of the same materials on the same substrate. Moreover, the relationship
between droplet shape and the PWM driver has not been characterized in detail, making it

37

Figure 4.3: Results of a flow rate measurement test indicates non-linearities in the expected
flow rate due to a pressure build-up effect. The syringe was refilled between the data points
circled in red, despite an increase in the motor speed, the flow rate after a refill remains
nearly the same. This effect is a result the rubber plunger in the syringe relaxing when
drawing in fluid and therefore needing to re-pressurize before any fluid is dispensed.

difficult to change the droplet generation parameters along with the gradient parameters in
accordance with the substrate wettability.

Archerfish droplets with low molarity are subject to the coffee ring effect, in which higher
evaporation rates at the droplet’s edge cause radial migration of the species in the fluid. This
phenomenon produces a droplet with a thicker outer ring of high species concentration and
a thinner inner area of low species concentration [21]. Figure 4.4 illustrates these differences
in species migration rates for a low molarity Archerfish droplet. For most material systems,
the downstream characterization effects of this coffee ring can be avoided through post-
processing techniques and focusing characterization on only the uniform inner area of the
droplet. Satellite droplets can also form during the droplet deposition process, which do not
hinder characterization but are, nonetheless, undesirable.

4.4 Environmental and Crystallization Control

Environmental and crystallization control refers to the ability to control and create uniform
crystallization conditions across all droplets on an Archerfish print. Crystallization control is
not necessary for all Archerfish samples, however, some material systems cannot be studied
without it. Since Archerfish is designed to be a general experimental tool, no aspect of
the device is devoted to post-processing any one specific material system. For example,

38

0.5

Figure 4.4: The profile of a droplet along the Cs3Bi2Br9 to Cs3Sb2I9 perovskite gradient
obtained though stylus profilometry. A coffee ring affect can be seen, with high ridges along
the edge of the droplet and a near-flat film in the middle.

Archerfish does not maintain a constant temperature, pressure, or humidity around samples
while or after they are printed, as these conditions would vary across different material
systems.

This lack of environmental control presented a challenge for the synthesis of perovskite
gradients, limiting our ability to study crystallization-dependent properties like stability.
Inconsistent degradation patterns across Archerfish prints arose due to the non-uniform
crystallization of droplets. Figure 4.5 shows the controlled degradation of two perovskite
samples of the same FAPbI3-MAPbI3 compositional gradient. Varying degradation patterns
were observed due to non-uniformities in droplet geometry and hot plate surfaces during
annealing. While not in the original scope of the project, future versions of Archerfish
should include tunable environmental control to expand the material systems that can be
synthesized and studied.

4.5 Unknown Mixing Mechanisms

Due to the small pipe diameters and low flow rates, the Archerfish fluid streams operate
in the laminar flow regime making is nearly impossible for passive mixing to occur at the
length scales of the fluid lines after the junction. The flow regime can be identified via the
value of the Reynolds number which is defined as:

39

Figure 4.5: Two different Archerfish prints of the same FAPbI3-MAPbI3 compositional gra-
dient after annealing and controlled degradation. Yellow samples are degraded while black
samples are not degraded. These two perovskite gradients exhibit different degradation
patterns despite being of the same composition and degrading under the same conditions.
The differences in crystallization, as shown by the SEM images, transpired from spatial
non-uniformities in the annealing and deposition processes. This figure reproduced with
permission from Siemenn and Das et al. [20]

Re =
ρuL

µ
(4.1)

where ρ is the fluid density, u is the fluid velocity, L is the pipe diameter, and µ is the dynamic
viscosity of the fluid. Passive mixing can be expected in turbulent flow regimes characterized
by Reynolds numbers above 2, 000. For Archerfish operating with near 1 centipoise fluids,
the Reynolds number ranges from 0.3 to 30. Figure 4.6 provide optical microscope images
of a 4-way junction machined from acrylic for visual inspection of the Archerfish junction.
Laminar flow with no mixing is observed, as expected due to the low Reynolds numbers of
this system. However, optical microscopy images from before and after the old Archerfish
system’s Lee valve indicate that mixing could potentially be achieved by agitation from
a valve as shown in Figure 4.7. Precursor flows with higher viscosity or lower Reynolds
numbers could require more folds or obstacles within the plumbing lines to promote more
uniform mixing.

40

Figure 4.6: Optical microscope images through a machined acrylic 4-way junction with 1/32”
inner diameters fluid paths of a) the point of fluid stream contact with clear separation and
no mixing and b) the inlet to the droplet generator indicating, as expected, that no mixing
occurs when the fluid streams meet. The arrows indicate the direction of flow.

4.6 Other Limitations

Beyond the concerns presented by a lack of compositional control, droplet generation, and
environmental and crystallization control, several minor but impactful limitations warrant a
mention.

4.6.1 Material Compatibility

The current wetted materials in the Archerfish plumbing lines are PTFE, silicone, and
polypropylene. While PTFE is resistant to a wide range of chemicals, silicone and polypropy-
lene are not, which limits the materials that can be studied with the current Archerfish
design. Future iterations of the designs should therefore include a carefully chosen material
path with highly chemically resistant tubing and actuators.

4.6.2 Human Introduced Variation

Full integration of each Archerfish subsystem is lacking. The retrofitted 3D printer and the
actuators (pinch valve and microcontroller) are independently controlled. The pi data center
controls the syringe pumps and valve, however the 3D printer gantry is not yet integrated
into the central data center. There is no connection between the deposition location and
the droplet generation leading to variation between prints, even with the same operator, as
the 3D printer and droplet generators may not always be activated simultaneously. Human
to human variation is also introduced between prints as the two sub-systems cannot be
activated simultaneously and in the same order by every operator. One operator may choose
to start the pinch valve before the 3D printer, and another may do the opposite.

41

Figure 4.7: Optical microscope images through a machined acrylic three-way junction with
inlets at 90 degrees. RGB color analysis show mixing at the outlet of the old Archerfish Lee
valve, suggested that agitation via the valve could be a viable path to achieve known mixing
for Archerfish droplets. Figure reproduced with permission from Siemenn and Das et al..
[20]

4.6.3 Lack of System Feedback

Human to human variations can be further exacerbated by the lack of real-time data ac-
quisition during the printing procedure. Currently, there are no monitoring sensors in the
fluid path or on the actuators, there is therefore no way to measure what the system is out-
putting. The syringe pumps for example, have shown discontinuities in flow rates but these
discontinuities currently are not being measured. For example, an encoder on the stepper
motors could provide insight on the true flow rate output of the syringe pumps, and time
logs indicating when each subsystem is activated could help predict and explain variations
between prints.

4.7 Chapter Summary

In this chapter, I present a thorough discussion of limitations and failure modes of the
Archerfish system. These include: lack of compositional control, poor environmental control,
droplet morphological instabilities, and unknown mixing behavior amongst others. In the
next chapter I will provide a conclusion, with a summary and future work for the methods
developed throughout this thesis.

42

Chapter 5

Conclusion

5.1 Summary

In this thesis I presented a high-throughput workflow for synthesizing and characterizing
perovskite materials. I introduced the Archerfish system as developed by Siemenn et al.
[2], explained its limitations, and described several improvements that I implemented to
allow it to be used with perovskite materials. I presented XRD, XPS, and hyper-spectral
imaging results that validated the improved systems ability to synthesis perovskite crystalline
materials. I then demonstrated a high-throughput characterization algorithm to extract the
stability of 201 perovskite droplets generated through the Archerfish platform. Lastly, I
discussed the limitations of the platform and opportunities for future improvements.

5.2 Future Work

The work discussed in this thesis provides an example of low-cost but high-throughput
automated research tools that can decrease synthesis time and increase productivity for
small labs. The Archerfish platform as presented has a lot of potential, however as discussed
in Chapter 4.1, there are several limitations that still require further development before
it can be launched as tool for research. Future work includes further improvements to the
Archerfish system specifically focused on mixing, more robust fluid lines and connections,
and better communication protocols to join all components of the system under one central
command center.

43

44

Appendix A

Archerfish Components List

Summary Table
Description Cost Supplier Part Qty
Solenoid pinch valve; 2-way NO,
1/32" ID x 3/32" OD, 12/24V

$108.00 Precigenome 1

Monoprice MP Select Mini 3D
Printer (discontinued)

$175.99 Mono Price 1

300 um Diameter Flow-focusing
micro-nozzle outlet

$50.00 Small Precision
Tools

1551-120-437P
200 (10-11D-20)

1

Arduino Mega $48.90 Amazon B0046AMGW0 1
ZK-PP2K 24V High Power PWM
Driver

$10.57 Amazon B0C7H1QFR8 1

24V Variable Power Supply $45.99 Amazon B08GFSVHLS 2
Raspberry PI 3 Model B+ $44.41 Amazon B0BNJPL4MW 1
Raspberry Pi Touch Screen Mon-
itor

$32.99 Amazon B07RZYYNMZ 1

Bluetooth KeyBoard and Mouse $19.79 Amazon B07WV5WN7B 1
28BYJ-48 DC 5V Stepper Motors
+ ULN2003

$7.99 Amazon B0CLYCM1CP 1

Fittings, Tubing, and Pumps $23.39 Home-Built +
McMasterCarr

Total $568.02

Table A.1: General component list for the improved Archerfish system. Detailed bill of
materials and building instructions for version one of the Archerfish Platform are provided
by Siemenn et al. [20]

45

46

Appendix B

Archerfish Raspberry Pi Code

1 # import needed libraries
2

3

4 import PySimpleGUI as sg
5 import serial
6 import time
7 import numpy as np
8 from datetime import datetime
9

10 serialcomm = serial.Serial(’COM4’, 9600)
11 serialcomm.timeout = 1
12

13

14 # Save Experiment Setup Data in text file
15

16

17 def save_data(precursors , relative_speeds , mode):
18 # saves precursor and relative speed data
19 # may need to change to accommodate gradient type experiments
20 now = datetime.now ()
21 f = open(’Experimental_log.txt ’, ’a’)
22 # Input Date and Time then table of precursors and speeds for

this specific experiment
23 # P1 P2
24 # S1 S2
25

26 t_string = now.strftime("%H:%M:%S")
27 d_string = now.strftime("%B %d, %Y")
28 dt_string = d_string + ’ ’ + t_string + ’\n’
29 f.write(" \n")
30 f.write(" ---------------------------------- \n")
31 f.write(f"New {mode [0]} Experiment \n")
32 f.write(dt_string)

47

33 f.write(f"Precursors are: {precursors} \n")
34 if mode == [’Batch’]:
35 f.write(f’Relative Speeds are: {relative_speeds} \n’)
36 else:
37 f.write(f’Steps , Percent of 3rd Precursor , and Gradient Range

are: {relative_speeds} \n’)
38 f.close ()
39

40

41 # Set Up Window Layout
42

43

44 def setup_window(def_mot , max_precursor_number):
45 choose = [’Batch’, ’Two Fluid Gradient ’, ’Constant + Two Fluid

Gradient ’]
46 layout = [[sg.Text (" Choose Experiment Type", justification ="c")],
47 [sg.Listbox(choose , size =(30, len(choose)), key=’-EXP

-’)],
48 [sg.T(" Number of Precursors: ", justification ="r"),

sg.I(key="-IN -")],
49 [sg.Button ("Ok")]]
50

51 window_title = "ArcherFish Command Center"
52 window = sg.Window(window_title , layout)
53

54 while True:
55 event , values = window.read ()
56 # cont = ’’
57 if event == sg.WINDOW_CLOSED:
58 break
59 if event == "Ok":
60 # Output the set -up choices
61 # Put in error messages in case they forget to put a

number
62 # of motors or don’t choose an experiment
63 if not values[’-EXP -’]:
64 sg.popup_error ("You must choose a mode", modal=True)
65 if values[’-EXP -’]:
66 choice = values[’-EXP -’]
67 mot = values[’-IN-’]
68 if choice == [’Batch’]:
69 if len(mot) == 0:
70 mot = str(def_mot)
71 elif choice == [’Two Fluid Gradient ’]:
72 mot = str(2)
73 cont1 = sg.popup_ok_cancel ("For Two Fluid

Gradient mode you must use two precursors.",

48

modal=True)
74 if not cont1 == ’OK’:
75 window.close ()
76 return choice , int(mot), cont1 , int(

max_precursor_number)
77 elif choice == [’Constant + Two Fluid Gradient ’]:
78 mot = str(3)
79 cont2 = sg.popup_ok_cancel ("For Constant + Two

Fluid Gradient mode you must use three
precursors.", modal=True)

80 if not cont2 == ’OK’:
81 window.close ()
82 return choice , int(mot), cont2 , int(

max_precursor_number)
83 if int(mot) > int(max_precursor_number):
84 sg.popup_error (" Maximum number of precursors is

3, enter a number lower than or equal to 3.")
85 else:
86 cont = sg.popup_ok_cancel(
87 f"Opening command window for {choice [0]}

experiment with {mot [0]} precursors.",
modal=True)

88 if cont == ’OK’:
89 window.close ()
90 return choice , int(mot), cont , int(

max_precursor_number)
91 else:
92 window.close ()
93 return choice , int(mot), cont , int(

max_precursor_number)
94 window.close ()
95

96

97 def batch_window(mots , def_mots , max_precur_num , max_speed ,
mode_input):

98 print(mode_input)
99 mode_str = str(mode_input)

100 mode_str = mode_str [:-1]
101 mode_str = mode_str [:-1]
102 mode_str = mode_str [1:]
103 mode_str = mode_str [1:]
104 mode = [mode_str]
105

106 print(mode)
107 mots = int(mots)
108 max_precur_num = int(max_precur_num)
109 max_speed = int(max_speed)

49

110 refills = []
111 stopping = []
112 chemicals = [’MAPbI3 ’, ’FAPbI3 ’, ’CsPbI3 ’, ’DMF’, ’DMSO’]
113 info = [’Gradient Steps ’, ’Max Percent of Gradient Composition ’,

’Percent of 3rd Precursor ’]
114 layout = [[sg.T(’Set Experiment Parameters ’)],
115 [sg.HSeparator ()]]
116 if mode == [’Batch’]:
117 mode_num = 1
118 for i in range(mots):
119 istr = str(i)
120 layout = layout + [[sg.T(f"Precursor {istr [0]} Name :"),
121 sg.Combo(chemicals , size =(20, 1), key

=f"-P{istr [0]} -"),
122 sg.T(f"Precursor {istr [0]} Speed :"),
123 sg.I(key=f"-S{istr [0]} -")]]
124 layout = layout + [[sg.T(’’)],
125 [sg.T(" Refill Precursors Before You Start

:")],
126 [sg.HSeparator ()]]
127 elif mode == [’Two Fluid Gradient ’] or mode == [’Constant + Two

Fluid Gradient ’]:
128 mode_num = 2
129 for i in range(mots):
130 istr = str(i)
131 if i == 2:
132 layout = layout + [[sg.T(f"Constant Precursor Name :")

,
133 sg.Combo(chemicals , size =(20, 1),

key=f"-P{istr [0]} -"), sg.Push
(),

134 sg.T(info[i]),
135 sg.I(key=f"-S{istr[0]}-", size

=(20, 1))]]
136 else:
137 layout = layout + [[sg.T(f"Precursor {istr [0]} Name

:"),
138 sg.Combo(chemicals , size =(20, 1),

key=f"-P{istr [0]} -"), sg.Push
(),

139 sg.T(info[i]),
140 sg.I(key=f"-S{istr[0]}-", size

=(20, 1))]]
141

142 layout = layout + [[sg.T(’’)],
143 [sg.T(" Refill Precursors Before You Start

:")],

50

144 [sg.HSeparator ()]]
145 # print(layout)
146 for j in range(mots):
147 jstr = str(j)
148 if j == 0:
149 layout_left = [[sg.Button(f"Fill Precursor {jstr [0]}")]]
150 flush = [f"Flush Precursor {jstr [0]}"]
151 layout_right = [[sg.Button(f"Flush Precursor {jstr [0]}")

]]
152 refills = refills + [f"Fill Precursor {jstr [0]}"]
153 stopping = stopping + [’0000’]
154 else:
155 layout_left = layout_left + [[sg.Button(f"Fill Precursor

{jstr [0]}")]]
156 layout_right = layout_right + [[sg.Button(f"Flush

Precursor {jstr [0]}")]]
157 refills = refills + [f"Fill Precursor {jstr [0]}"]
158 flush = flush + [f"Flush Precursor {jstr [0]}"]
159 stopping = stopping + [’0000’]
160 for f in range (int(max_precur_num) - int(mots)):
161 stopping = stopping + [’0000’]
162 layout_left = layout_left + [[sg.Button ("Fill All Precursors ")]]
163 layout_right = layout_right + [[sg.Button ("Flush All Precursors ")

]]
164 refills = refills + ["Fill All Precursors "]
165 flush = flush + ["Flush All Precursors "]
166 layout_stop = [[sg.Button ("Stop")], [sg.Button ("Turn on Valve")]]
167 layout_columns = [[sg.Column(layout_left),sg.VSeparator (),

sg.Column(layout_right), sg.VSeparator (), sg.Column(
layout_stop)]]

168

169 layout = layout + layout_columns + [[sg.T(’’)],
170 [sg.T(’Make Sure to Recalibrate the Syringes

After a Refill ’)],
171 [sg.HSeparator ()],
172 [sg.Button (" Recalibrate Syringes",

button_color=’purple ’, size =(30, 2))],
173 [sg.Button(’Move to Glove Box’, button_color=’

green’), sg.Button(’Return to Setup Window ’
,

174 button_color
=
’
red
’
)
]]

51

175

176 window_title = f"{mode [0]} Experiment Command Center"
177 window = sg.Window(window_title , layout)
178 op = bool
179 speeds = []
180 precur = []
181 while True:
182 event , values = window.read ()
183 if event == sg.WINDOW_CLOSED:
184 break
185 if event == "Turn on Valve":
186 i = str(1) + str(stopping) + str(1)
187 while True:
188 serialcomm.write(i.encode ())
189 time.sleep (0.5)
190 break
191 if event == ’Stop’:
192 stopping_str = str(stopping)
193 i = str(1) + stopping_str + ’0’
194 while True:
195 serialcomm.write(i.encode ())
196 time.sleep (0.5)
197 break
198 if event == "Recalibrate Syringes ":
199 i = []
200 for k in range(mots):
201 i = i + [’ -050’]
202 if mots < max_precur_num:
203 for l in range(max_precur_num - mots):
204 i = i + [’0000’]
205 i = str(1) + str(i) + str(1)
206 while True:
207 serialcomm.write(i.encode ())
208 time.sleep (0.5)
209 break
210 time.sleep (20)
211 i = str(1) + str(stopping) + str(0)
212 while True:
213 serialcomm.write(i.encode ())
214 time.sleep (0.5)
215 break
216

217 if event in refills:
218 # print(event)
219 i = []
220 if event == "Fill All Precursors ":

52

221 for k in range(mots):
222 i = i + [’0600’]
223 else:
224 wvent = str(event)
225 for k in range(mots):
226 if k == int(wvent [15]):
227 # building the serial message as [’####’, ’

####’, ’####’]0
228 # if you are at the location within the

message for the motor you want to
communicate with

229 # make the speed 500, else make the speed 0
230 i = i + [’0600’]
231 # print(k)
232 else:
233 i = i + [’0000’]
234 for kl in range(max_precur_num - mots):
235 i = i + [’0000’]
236 i = str(i)
237 i = str(1) + i + str(0)
238 # print(i)
239 # print(wvent [15])
240 while True:
241 serialcomm.write(i.encode ())
242 time.sleep (0.5)
243 break
244 if event in flush:
245 # print(event)
246 i = []
247 if event == "Flush All Precursors ":
248 for k in range(mots):
249 i = i + [’ -200’]
250 else:
251 wvent = str(event)
252 for k in range(mots):
253 if k == int(wvent [16]):
254 # building the serial message as [’####’, ’

####’, ’####’]0
255 # if you are at the location within the

message for the motor you want to
communicate with

256 # make the speed 500, else make the speed 0
257 i = i + [’ -600’]
258 # print(k)
259 else:
260 i = i + [’0000’]
261 for f in range(max_precur_num - mots):

53

262 i = i + [’0000’]
263 i = str(i)
264 i = str(1) + i + str(1)
265 # print(i)
266 # print(wvent [15])
267 while True:
268 serialcomm.write(i.encode ())
269 time.sleep (0.5)
270 break
271

272 if event == ’Return to Setup Window ’:
273 op = False
274 speeds = []
275 precur = []
276 break
277 if event == ’Move to Glove Box’:
278 max_speed = int(max_speed)
279 if mode == [’Batch’]:
280 op = True
281 # create speeds list which just grabs the exact

values inputted for precursor speeds
282 # Speed values must be between 0 and 1, must sum to

greater than 0.9 but not more than 1 ideally
283 # create list of precursors used
284 for k in range(mots):
285 kstr = str(k)
286 speeds = speeds + [values[f"-S{kstr [0]} -"]]
287 precur = precur + [values[f"-P{kstr [0]} -"]]
288 # print(speeds)
289 # Send Confirmation Message with Precursor and Speed

Values
290 ok_cancel = sg.popup_ok_cancel ("You set up an

experiment for " + str(precur) +
291 " at the respective

speeds of " + str(
speeds))

292 # If user inputs less than 3 precursors , change
speeds list to include

293 if int(mots) < int(max_precur_num):
294 dif = int(max_precur_num) - int(mots)
295 for g in range(dif):
296 speeds = speeds + [’0000’]
297 if ok_cancel == ’OK’:
298 # if ok_cancel == ok just continue on with the

code
299 # save Speeds and Precursors to Data File
300 save_data(precur , speeds ,mode)

54

301 # Check user inputted speed values for all
precursors

302 if ’’ in speeds:
303 sg.popup_error ("One or more Motor Values were

not entered ")
304 op = False
305 speeds = []
306 precur = []
307 # now to change our decimal values to motor

values
308 # max_speed = 700
309 mot_speeds = []
310 val_ints = 0
311 speed_ints = 0
312 # print(len(speeds))
313 for p in range(len(speeds)):
314 # print(speeds[p])
315 # ie 0.3333 *700 = 233.31
316 val = round(float(speeds[p]) * max_speed)
317 # = 233
318 val_ints = val_ints + val
319 speed_ints = speed_ints + float(speeds[p])
320 # print(p)
321 val = str(val)
322 # = ’233’
323 g = len(val)
324 # g = 3
325 d = 4 - g
326 # d = 1
327 # generate zero string to add in front
328 # print(d)
329 for t in range(d):
330 # print(t)
331 if t + 1 == d:
332 val = ’-’ + val
333 else:
334 val = ’0’ + val
335 # 0233
336 mot_speeds = mot_speeds + [val]
337 # print(mot_speeds)
338 if val_ints > max_speed * 1.14:
339 # print(val_ints)
340 sg.popup_error(’Input speeds exceed the

maximum motor speed sum’)
341 op = False
342 elif speed_ints < 0.9:
343 # print(speed_ints)

55

344 sg.popup_error(’Input concentrations do not
sum to the minimum of 0.9’)

345 op = False
346 else:
347 op = True
348 speeds = []
349 break
350 speeds = []
351 precur = []
352 else:
353 speeds = []
354 precur = []
355 if mode == [’Two Fluid Gradient ’] or mode == [’Constant +

Two Fluid Gradient ’]:
356 op = True
357 # create speeds list which just grabs the exact

values inputted for precursor speeds
358 # create list of precursors used
359 for k in range(mots):
360 kstr = str(k)
361 precur = precur + [values[f"-P{kstr [0]} -"]]
362 steps = values[’-S0 -’]
363 max_percent = values[’-S1-’]
364 inputs = [steps , max_percent]
365 percent = 0
366 # Confirmation Message of Experiment Settings
367 if mode == [’Constant + Two Fluid Gradient ’]:
368 percent = values[’-S2-’]
369 inputs = [steps , percent , max_percent]
370 ok_cancel = sg.popup_ok_cancel ("You set up an

experiment for " + str(precur) +
371 " with " + str(

steps) + "
steps , " + str(
max_percent) +
" Percentage
Range , and " +

372 str(percent) + "
Percent of 3rd
Precursor. Note
that the

constant
precursor " +

373 "MUST BE LOADED
IN MOTOR C.
Also , in the
gradient MOTOR

56

B STARTS AT
THE HIGHER
PERCENTAGE. ")

374 else:
375 ok_cancel = sg.popup_ok_cancel ("You set up an

experiment for " + str(precur) +
376 " with " + str(

steps) + "
steps , " + str(
max_percent) +
" Percentage
Range")

377

378

379 # If user inputs less than 3 precursors , change
stopping list to have three values

380 # if int(mots) < int(max_precur_num):
381 # dif = int(max_precur_num) - int(mots)
382 # for g in range(dif):
383 # stopping = stopping + [’0000’]
384 # in mode 2 #[’s###’, ’s###’, ’s###’]# becomes
385 # // mode [’steps’,’percent of third precursor ’

,’max percent of the gradient composition ’] valve
386 # // for the max gradient percent and example

is going from 25% -75% to 75-25 instead of 0-100 to
100-0

387 # // in this case the max percent will be 75 or
100

388 # // for the step numbers the max value is 999
389 # // for third precursor percentage the max

value is 100
390 # // for max gradient percentage the max value

is 100
391 # // #[’0###’, ’0###’, ’0###’]# where ### is an

absolute percent ie 100 = 100%, 050 = 50%
392

393 if ok_cancel == ’OK’:
394 # if ok_cancel == ok just continue on with the

code
395 # Make the speeds vector
396 s = len(steps)
397 m = len(max_percent)
398 p = len(str(percent))
399 speeds_steps = str(steps)
400 speeds_max_percent = str(max_percent)
401 speeds_percent = str(percent)
402 for i in range(4-s):

57

403 speeds_steps = str(0) + str(speeds_steps)
404 # print(speeds_steps)
405 for i in range(4-m):
406 speeds_max_percent = str(0) + str(

speeds_max_percent)
407 for i in range(4-p):
408 speeds_percent = str(0) + str(speeds_percent)
409 speeds = [speeds_steps , speeds_percent ,

speeds_max_percent]
410 # print(speeds)
411

412 # save Speeds and Precursors to Data File
413 save_data(precur , speeds , mode)
414 # Checking values are in the right range
415 # Check user inputted speed values for all

precursors
416 if ’’ in inputs:
417 sg.popup_error ("One or more Experiment

Parameters were not entered ")
418 op = False
419 speeds = []
420 precur = []
421 # Max step is 999
422 elif int(steps) > 999:
423 sg.popup_error ("Steps must be less than or

equal to 999")
424 op = False
425 # Max 3rd percentage is 100
426 elif int(percent) > 25:
427 sg.popup_error (" Maximum 3rd precursor

Percentage is 25")
428 op = False
429 # Max Percentage Range is 100
430 elif int(max_percent) > 100 or int(max_percent) <

60:
431 sg.popup_error (" Maximum percentage range is

60 to 100")
432 op = False
433 else:
434 op = True
435 break
436 speeds = []
437 precur = []
438

439 else:
440 speeds = []
441 precur = []

58

442

443 if op:
444 window.close ()
445 if mode == [’Batch’]:
446 mot_speeds = str(mot_speeds)
447 glove_box(’batch_window ’, mots , def_mots , mot_speeds ,

stopping , max_precur_num , max_speed , mode)
448 else:
449 speeds = str(speeds)
450 print(speeds)
451 glove_box(’batch_window ’, mots , def_mots , speeds ,

stopping , max_precur_num , max_speed , mode)
452 # print(mot_speeds)
453

454 else:
455 window.close ()
456 return op
457 window.close ()
458

459 def glove_box(experiment , number , def_mots , speeds , stopping ,
max_precur_num , max_sp , mode):

460 max_speed = int(max_sp)
461 # print(speeds)
462 q = 3
463 refills = []
464 layoutrefill = []
465 for j in range(number):
466 jstr = str(j)
467 layoutrefill = layoutrefill + [[sg.Button(f"Fill Precursor {

jstr [0]}", size =(25, q))]]
468 refills = refills + [f"Fill Precursor {jstr [0]}"]
469 refills = refills + ["Fill All Precursors "]
470 layoutrefill = layoutrefill + [[sg.Button ("Fill All Precursors",

size =(25, q))],
471 [sg.Button ("Turn on Valve", size

=(25, 1))],
472 [sg.Button (" Recalibrate Syringes",

size =(25, q + 1), button_color
=’purple ’)],

473 [sg.Button ("Stop Print and Exit",
size =(25, q), button_color=’red
’)]]

474 # print(layoutrefill)
475 layoutss = [[sg.Button ("Start Batch Print", s=(25, 25),

button_color=’green’),
476 sg.VSeparator (),

59

477 sg.Button ("Stop All", s=(25, 25), button_color=’
orange ’)]]

478

479 layout = [[sg.Column(layoutss), sg.VSeparator (), sg.Column(
layoutrefill)]]

480

481 window_title = ’Glove Box Controls ’
482 window = sg.Window(window_title , layout)
483 # number is the number of motors or precursors
484 # change speeds to a list that the arduino can read
485 # stopspeeds = "[’0000’, ’0000’, ’0000’]0"
486 stopspeeds = str(1) + str(stopping) + str(0)
487 # print(stopspeeds)
488 if mode == [’Batch’]:
489 startspeeds = str(1) + speeds + str(1)
490 else:
491 startspeeds = str(2) + speeds + str(1)
492 # print(startspeeds)
493 # build vector with equal speeds for all motors
494 rat = 1 / number
495 w = []
496 w_speeds = []
497 # w for warm -up
498 for j in range(number):
499 w = w + [rat]
500 for p in range(number):
501 # print(speeds[p])
502 # ie 0.3333 *700 = 233.31
503 val = round(float(w[p]) * max_speed)
504 # = 233
505 # print(p)
506 val = str(val)
507 # = ’233’
508 g = len(val)
509 # g = 3
510 d = 4 - g
511 # d = 1
512 # generate zero string to add in front
513 # print(d)
514 for t in range(d):
515 # print(t)
516 if t + 1 == d:
517 val = ’-’ + val
518 else:
519 val = ’0’ + val
520 # 0233
521 w_speeds = w_speeds + [val]

60

522 for k in range(max_precur_num -number):
523 w_speeds = (w_speeds + [’0000’])
524 w_speeds = str(1) + str(w_speeds) + str(1)
525

526 while True:
527 event , values = window.read ()
528 if event == sg.WINDOW_CLOSED:
529 break
530 if event == "Turn on Valve":
531 i = str(1) + str(stopping) + str(1)
532 while True:
533 serialcomm.write(i.encode ())
534 time.sleep (0.5)
535 break
536 if event == "Recalibrate Syringes ":
537 i = []
538 for k in range(number):
539 i = i + [’ -050’]
540 if number < max_precur_num:
541 for l in range(max_precur_num - number):
542 i = i + [’0000’]
543 i = str(1) + str(i) + str(1)
544 print(i)
545 while True:
546 serialcomm.write(i.encode ())
547 time.sleep (0.5)
548 break
549 time.sleep (20)
550 i = str(1) + str(stopping) + str(0)
551 while True:
552 serialcomm.write(i.encode ())
553 time.sleep (0.5)
554 break
555

556 if event == ’Stop All’:
557 i = stopping
558 i = str(1) + str(i) + ’0’
559 while True:
560 serialcomm.write(i.encode ())
561 time.sleep (0.5)
562 break
563

564 if event in refills:
565 # print(event)
566 i = []
567 if event == "Fill All Precursors ":
568 for k in range(number):

61

569 i = i + [’0600’]
570 else:
571 wvent = str(event)
572 for k in range(number):
573 if k == int(wvent [15]):
574 # building the serial message as [’####’, ’

####’, ’####’]0
575 # if you are at the location within the

message for the motor you want to
communicate with

576 # make the speed 500, else make the speed 0
577 i = i + [’0600’]
578 # print(k)
579 else:
580 i = i + [’0000’]
581 for f in range(max_precur_num - number):
582 i = i + [’0000’]
583 i = str(i)
584 i = str(1) + i + ’0’
585 # print(i)
586 # print(wvent [15])
587 while True:
588 serialcomm.write(i.encode ())
589 time.sleep (0.5)
590 break
591 if event == ’Stop Print and Exit’:
592 while True:
593 i = stopspeeds
594 serialcomm.write(i.encode ())
595 time.sleep (0.5)
596 break
597 # print
598 number = str(number)
599 def_mots = str(def_mots)
600 window.close ()
601 # print(number)
602 eval(experiment + f’(f"{number}", f"{def_mots}", f"{str(

max_precur_num)}", f"{max_speed}", f"{mode}")’)
603 break
604 if event == ’Start Batch Print’:
605 # first run all the motors at same speed for 25 seconds
606 # then run the given speed/settings values
607 while True:
608 i = w_speeds
609 serialcomm.write(i.encode ())
610 time.sleep (0.5)
611 break

62

612 time.sleep (7)
613 while True:
614 i = startspeeds
615 print(i)
616 serialcomm.write(i.encode ())
617 time.sleep (0.5)
618 break
619 # print(serialcomm.readline () .decode(’ascii’))
620 window.close ()
621

622

623 if __name__ == "__main__ ":
624 default_motors = 3
625 max_precursors = 3
626 max_speed = 400
627 # Changed from 700 to 400 because of over presurization issues
628 # Gets set -up choices and checks that the user wants to continue

with them
629 con = True
630 while True:
631 if con:
632 choices , moto , con , max_precur_num = setup_window(

default_motors , max_precursors)
633 if con == ’Cancel ’:
634 # print("Con was non")
635 con = True
636 else:
637 if not len(choices) == 0:
638 op = batch_window(moto , default_motors ,

max_precur_num , max_speed , choices)
639 if not op:
640 con = True
641 else:
642 sg.popup_error ("Not Yet Defined ")

63

64

Appendix C

Archerfish Arduino Code

1 // Version 1 Python to Arduino Serial communication motor control
Code

2 // Author Eunice Aissi on 9/9/2022
3 int trans = 22;
4 // Variables for running Serial Communication
5 char mode;
6 String incomingByte;
7 // Mode 2 Gradient + Constant solvent mode
8 char step1;
9 char step2;

10 char step3;
11 char prec_per1;
12 char prec_per2;
13 char prec_per3;
14 char grad_max1;
15 char grad_max2;
16 char grad_max3;
17 int step100;
18 int step10;
19 int stepone;
20 int prec_per100;
21 int prec_per10;
22 int prec_perone;
23 int grad_max100;
24 int grad_max10;
25 int grad_maxone;
26 int steps;
27 int prec_per;
28 int grad_max;
29 int maxStepSpeed = 500; // max stepSpeed = 800 before failure/

unreliable
30 int precursor_range = 50; // previously 300
31 int gradient_range = maxStepSpeed - precursor_range;
32 // Mode 1 Batch Mode

65

33 char speedA1;
34 char speedA2;
35 char speedA3;
36 char speedB1;
37 char speedB2;
38 char speedB3;
39 char speedC1;
40 char speedC2;
41 char speedC3;
42 char Sign1;
43 char Sign2;
44 char Sign3;
45 char valve;
46 int speedA100;
47 int speedA10;
48 int speedAone;
49 int speedB100;
50 int speedB10;
51 int speedBone;
52 int speedC100;
53 int speedC10;
54 int speedCone;
55 int speedA;
56 int speedB;
57 int speedC;
58

59 // Variables for runing motors copied from Aleks’ 2_motor_Step_V4_AS
code

60

61

62 // Stepper A pins
63 int a1 = 10;
64 int a2 = 11;
65 int a3 = 12;
66 int a4 = 13;
67 // Stepper B pins
68 int b1 = 2;
69 int b2 = 3;
70 int b3 = 4;
71 int b4 = 5;
72 // Stepper C pins - added by Eunice
73 int c1 = 6;
74 int c2 = 7;
75 int c3 = 8;
76 int c4 = 9;
77

78

66

79 // always choose a maxStepSpeet value that is divisible by 10!!!!!
80 int stepAccel = 100; // don’t really need to change this acceleration

value
81 int stepTime =10; // seconds. don’t exceed 30 seconds or it will run

forever
82 // motors run for stepTime *(number of motors)
83 int stepDirection = -1; // -1 for CW (plunger goes down) and 1 for

CCW (plunger goes up) [motor pin facing down]
84 char firstMotor = ’A’; // ’A’ => first , motor A runs for stepTime

then turns off and motor B runs for stepTime
85 // ’B’ => first , motor B runs for stepTime

then turns off and motor A runs for
stepTime

86

87 float increment ;
88 // for Gradient + constant mode
89 unsigned long wait_time;
90 unsigned long purge_time;
91 unsigned long begin_time2;
92

93 #include <AccelStepper.h > // Tools > Manage Libraries ... > search
for and install AccelStepper

94 #define HALFSTEP 8 // number of full steps for 28BYJ -48 stepper
motors

95 AccelStepper stepperA(HALFSTEP ,a1,a3,a2 ,a4); // define stepper 1 pins
96 AccelStepper stepperB(HALFSTEP ,b1,b3,b2 ,b4); // define stepper 2 pins
97 AccelStepper stepperC(HALFSTEP ,c1,c3,c2 ,c4); // define stepper 3 pins

- added by Eunice
98 // motor controller pin map out (FULLSTEP , N1, N3, N2, N4) Npins are

the motor controller pins
99 int buffer_time = 22000;

100

101 void setup() {
102 // put your setup code here , to run once:
103 // Serial communication set up
104 Serial.begin (9600);
105 pinMode(LED_BUILTIN , OUTPUT);
106 pinMode(trans , OUTPUT);
107

108 // Motor Control Setup
109 // Stepper 1 settings
110 stepperA.setMaxSpeed(maxStepSpeed);
111 stepperA.setAcceleration(stepAccel);
112 // Stepper 2 settings
113 stepperB.setMaxSpeed(maxStepSpeed);
114 stepperB.setAcceleration(stepAccel);
115 // Stepper 3 settings

67

116 stepperC.setMaxSpeed(maxStepSpeed);
117 stepperC.setAcceleration(stepAccel);
118 }
119 void loop() {
120 // put your main code here , to run repeatedly:
121 while (Serial.available () >0) {
122 incomingByte = Serial.readStringUntil(’/n’); // read till end of

line
123 incomingByte.trim ();
124 // Serial.print(incomingByte);
125 // Save input values as speed values
126 // input speed values #[’s###’, ’s###’, ’s###’]#
127 // input mode[speed motor A, speed motor B, speed motor C]valve

on/off
128 // extract individual charcaters note zero indexing
129 // Serial.print(incomingByte);
130 valve = incomingByte.charAt (25);
131 mode = incomingByte.charAt (0);
132 if (valve == ’1’) {
133 digitalWrite(trans , HIGH);
134 }
135 if (valve == ’0’) {
136 digitalWrite(trans , LOW);
137 }
138 // mode one batch mode input speed values and run those speeds
139 if (mode == ’1’){
140 speedA1 = incomingByte.charAt (4);
141 speedA2 = incomingByte.charAt (5);
142 speedA3 = incomingByte.charAt (6);
143 speedB1 = incomingByte.charAt (12);
144 speedB2 = incomingByte.charAt (13);
145 speedB3 = incomingByte.charAt (14);
146 speedC1 = incomingByte.charAt (20);
147 speedC2 = incomingByte.charAt (21);
148 speedC3 = incomingByte.charAt (22);
149 Sign1 = incomingByte.charAt (3);
150 Sign2 = incomingByte.charAt (11);
151 Sign3 = incomingByte.charAt (19);
152

153 // turn them into integers and multiply by their place value
154 String speedA1s = String(speedA1);
155 String speedA2s = String(speedA2);
156 String speedA3s = String(speedA3);
157 String speedB1s = String(speedB1);
158 String speedB2s = String(speedB2);
159 String speedB3s = String(speedB3);
160 String speedC1s = String(speedC1);

68

161 String speedC2s = String(speedC2);
162 String speedC3s = String(speedC3);
163

164 speedA100 = 100* speedA1s.toInt () ;
165 speedA10 = 10* speedA2s.toInt () ;
166 speedAone = 1* speedA3s.toInt () ;
167 speedB100 = 100* speedB1s.toInt () ;
168 speedB10 = 10* speedB2s.toInt () ;
169 speedBone = 1* speedB3s.toInt () ;
170 speedC100 = 100* speedC1s.toInt () ;
171 speedC10 = 10* speedC2s.toInt () ;
172 speedCone = 1* speedC3s.toInt () ;
173 //add them to make the final speed
174 speedA = speedA100 + speedA10 + speedAone;
175 speedB = speedB100 + speedB10 + speedBone;
176 speedC = speedC100 + speedC10 + speedCone;
177 // Serial.println(speedA);
178 if (Sign1 == ’-’){
179 speedA = speedA * -1;
180 }
181 if (Sign2 == ’-’){
182 speedB = speedB * -1;
183 }
184 if (Sign3 == ’-’){
185 speedC = speedC * -1;
186 }
187

188 //input check to make sure the sum of speeds doesn’t exceed
100%

189 if (abs(speedA) + abs(speedB) + abs(speedC) > maxStepSpeed){//
need to change this to absolute value

190 Serial.print("Invalid Input");
191 }
192 stepperA.setSpeed(speedA);
193 stepperB.setSpeed(speedB);
194 stepperC.setSpeed(speedC);
195 } // End of Mode 1
196

197 if (mode == ’2’){
198 // mode 2, two motor making a gradient , third motor is constant
199 // need increment for gradient and motor 3 speed
200 // in mode 2 #[’s###’, ’s###’, ’s###’]# becomes
201 // mode [’steps’,’percent of third precursor ’,’max percent of

the gradient composition ’] valve
202 // for the max gradient percent and example is going from

25% -75% to 75-25 instead of 0-100 to 100-0
203 // in this case the max percent will be 75 or 100

69

204 // for the step numbers the max value is 999
205 // for third precursor percentage the max value is 100
206 // for max gradient percentage the max value is 100
207 // #[’0###’, ’0###’, ’0###’]# where ### is an absolute percent

ie 100 = 100%, 050 = 50%
208 // Extract the info you need , note that chafcaters are 0 indexed

, spaces are characters
209 step1 = incomingByte.charAt (4);
210 step2 = incomingByte.charAt (5);
211 step3 = incomingByte.charAt (6);
212 prec_per1 = incomingByte.charAt (12);
213 prec_per2 = incomingByte.charAt (13);
214 prec_per3 = incomingByte.charAt (14);
215 grad_max1 = incomingByte.charAt (20);
216 grad_max2 = incomingByte.charAt (21);
217 grad_max3 = incomingByte.charAt (22);
218 // turn them into integers and multiply by their place value
219 String step1s = String(step1);
220 String step2s = String(step2);
221 String step3s = String(step3);
222 String prec_per1s = String(prec_per1);
223 String prec_per2s = String(prec_per2);
224 String prec_per3s = String(prec_per3);
225 String grad_max1s = String(grad_max1);
226 String grad_max2s = String(grad_max2);
227 String grad_max3s = String(grad_max3);
228

229 step100 = 100* step1s.toInt () ;
230 step10 = 10* step2s.toInt () ;
231 stepone = 1* step3s.toInt () ;
232 prec_per100 = 100* prec_per1s.toInt () ;
233 prec_per10 = 10* prec_per2s.toInt () ;
234 prec_perone = 1* prec_per3s.toInt () ;
235 grad_max100 = 100* grad_max1s.toInt () ;
236 grad_max10 = 10* grad_max2s.toInt () ;
237 grad_maxone = 1* grad_max3s.toInt () ;
238

239 steps =step100 + step10 + stepone;
240 prec_per = prec_per100 + prec_per10 + prec_perone;
241 grad_max = grad_max100 + grad_max10 + grad_maxone;
242 wait_time = 250;
243 purge_time = 20000;
244 mode2(steps ,prec_per ,grad_max ,wait_time , begin_time2 ,

maxStepSpeed , buffer_time , stepDirection , purge_time);
245 } // end of Mode 2
246

247 } // while ends

70

248

249 stepperA.runSpeed ();
250 stepperB.runSpeed ();
251 stepperC.runSpeed ();
252 } // End of Void Loop
253

254 // START of Special Functions
255

256

257 void mode2 (int steps , int prec_per , int grad_max , unsigned long
wait_time , unsigned long begin_time2 ,int maxStepSpeed ,

258 int buffer_time , int stepDirection , unsigned long purge_time) {
259 // first step is determining the speed bounds based on the
260 // max percent of the gradient composition and precursor percentage
261 float prec_per_float = prec_per; // prec_per = % solvent
262 float C = (prec_per_float /100);
263 // because percentage of solvent = Solvent speed/ (solvent speed +

precursor total speed)
264 // solve that solvent speed for a given percentage of solvent

composition is S = CP/(1-C) where C is desired percent
composition , P is precursor total speed , and S is solvent speed

265 // this makes for a maximum of 25% is solvent composition.
266 float stepperC_speed = (C * precursor_range)/(1-C); // precursor

range refers to MA/FA
267 // 2[’0100’, ’0050’, ’0100’]0
268 float max_gradient_speed = precursor_range;
269 float grad_max_float = grad_max;
270 float max_gradient_comp_speed = max_gradient_speed * (

grad_max_float /100); // max speed based on the gradient
composition

271 // ie. the maximum speed of the starting motor for the 75-25
composition start point

272 float min_gradient_comp_speed = max_gradient_speed -
max_gradient_comp_speed;

273 // now find the increment
274 float step_float = steps;
275 float increment = (max_gradient_comp_speed -

min_gradient_comp_speed)/step_float;
276 float speedq = 0;
277 stepperA.setSpeed(stepDirection * min_gradient_comp_speed);
278 stepperB.setSpeed(stepDirection * max_gradient_comp_speed);
279 stepperC.setSpeed(stepDirection * stepperC_speed); // replaced

stepperC_speed with 800 worked
280 begin_time2 = millis ();
281 while (millis ()-begin_time2 < buffer_time){
282 // run motor speeds
283 stepperA.runSpeed ();

71

284 stepperB.runSpeed ();
285 stepperC.runSpeed ();
286 }
287 for (int i=0; i<steps +1; i+=1){
288 if (i<steps){
289 speedq = speedq + increment ;
290 stepperA.setSpeed(stepDirection * speedq);
291 stepperB.setSpeed(stepDirection * (max_gradient_speed - speedq)

);
292 unsigned long begin_time = millis ();
293 while (millis ()-begin_time < wait_time){
294 // run motor speeds
295 stepperA.runSpeed ();
296 stepperB.runSpeed ();
297 stepperC.runSpeed ();
298 }
299 }
300 else if (i>=steps){
301 unsigned long begin_time = millis ();
302 while (millis ()-begin_time < purge_time){
303 // run motor speeds
304 stepperA.runSpeed ();
305 stepperB.runSpeed ();
306 stepperC.runSpeed ();
307 }
308 }
309 }
310 stepperA.setSpeed (0);
311 stepperB.setSpeed (0);
312 stepperC.setSpeed (0);
313 digitalWrite(trans , LOW);
314 }

72

References

[1] J.-P. Correa-Baena, K. Hippalgaonkar, J. van Duren, S. Jaffer, V. R. Chandrasekhar,
V. Stevanovic, C. Wadia, S. Guha, and T. Buonassisi. “Accelerating Materials Develop-
ment via Automation, Machine Learning, and High-Performance Computing”. In: Joule
2 (8 Aug. 2018), pp. 1410–1420. issn: 2542-4785. doi: 10.1016/j.joule.2018.05.009.

[2] A. E. Siemenn. A System for High-Throughput Materials Exploration Driven by Ma-
chine Learning. 2021.

[3] R. M. Hazen. “Perovskites”. In: Scientific American 258.6 (1988), pp. 74–81. issn:
00368733, 19467087. url: http://www.jstor.org/stable/24989124 (visited on 08/23/2024).

[4] L. Ortega-San-Martin. “Introduction to Perovskites: A Historical Perspective”. In: Rev-
olution of Perovskite: Synthesis, Properties and Applications. Ed. by N. S. Arul and
V. D. Nithya. Singapore: Springer Singapore, 2020, pp. 1–41. isbn: 978-981-15-1267-4.
doi: 10.1007/978-981-15-1267-4_1. url: https://doi.org/10.1007/978-981-15-1267-
4_1.

[5] L. Zhang et al. “Advances in the Application of Perovskite Materials”. In: Nano-Micro
Letters 15 (1 Aug. 2023), p. 177. issn: 2150-5551. doi: 10.1007/s40820-023-01140-3.

[6] X. Fan. “Advanced progress in metal halide perovskite solar cells: A review”. In: Ma-
terials Today Sustainability 24 (2023), pp. 100–603. issn: 2589-2347. doi: https://doi.
org/10.1016/j.mtsust.2023.100603. url: https://www.sciencedirect.com/science/
article/pii/S2589234723002907.

[7] Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. D. McGehee,
E. H. Sargent, and H. Han. “Challenges for commercializing perovskite solar cells”.
In: Science 361.6408 (2018), eaat8235. doi: 10.1126/science.aat8235. eprint: https:
//www.science.org/doi/pdf/10.1126/science.aat8235. url: https://www.science.org/
doi/abs/10.1126/science.aat8235.

[8] A. E. Siemenn, E. Aissi, F. Sheng, A. Tiihonen, H. Kavak, B. Das, and T. Buonassisi.
“Using scalable computer vision to automate high-throughput semiconductor charac-
terization”. In: Nature Communications 15.1 (2024), p. 4654.

[9] F. F. Targhi, Y. S. Jalili, and F. Kanjouri. “MAPbI3 and FAPbI3 perovskites as solar
cells: Case study on structural, electrical and optical properties”. In: Results in Physics
10 (2018), pp. 616–627. issn: 2211-3797. doi: https://doi.org/10.1016/j.rinp.2018.07.
007. url: https://www.sciencedirect.com/science/article/pii/S2211379718311811.

[10] S. Sun et al. “A data fusion approach to optimize compositional stability of halide
perovskites”. In: Matter 4.4 (2021), pp. 1305–1322. doi: 10.1016/j.matt.2021.01.008.

73

https://doi.org/10.1016/j.joule.2018.05.009
http://www.jstor.org/stable/24989124
https://doi.org/10.1007/978-981-15-1267-4_1
https://doi.org/10.1007/978-981-15-1267-4_1
https://doi.org/10.1007/978-981-15-1267-4_1
https://doi.org/10.1007/s40820-023-01140-3
https://doi.org/https://doi.org/10.1016/j.mtsust.2023.100603
https://doi.org/https://doi.org/10.1016/j.mtsust.2023.100603
https://www.sciencedirect.com/science/article/pii/S2589234723002907
https://www.sciencedirect.com/science/article/pii/S2589234723002907
https://doi.org/10.1126/science.aat8235
https://www.science.org/doi/pdf/10.1126/science.aat8235
https://www.science.org/doi/pdf/10.1126/science.aat8235
https://www.science.org/doi/abs/10.1126/science.aat8235
https://www.science.org/doi/abs/10.1126/science.aat8235
https://doi.org/https://doi.org/10.1016/j.rinp.2018.07.007
https://doi.org/https://doi.org/10.1016/j.rinp.2018.07.007
https://www.sciencedirect.com/science/article/pii/S2211379718311811
https://doi.org/10.1016/j.matt.2021.01.008

[11] Z. A. Nan et al. “Revealing phase evolution mechanism for stabilizing formamidinium-
based lead halide perovskites by a key intermediate phase”. In: Chem 7 (9 Sept. 2021),
pp. 2513–2526. issn: 2451-9294. doi: 10.1016/J.CHEMPR.2021.07.011.

[12] J. Wu, J. Chen, and H. Wang. “Phase Transition Kinetics of MAPbI3 for Tetragonal-to-
Orthorhombic Evolution”. In: JACS Au 3 (4 Apr. 2023), pp. 1205–1212. issn: 26913704.
doi: 10.1021/JACSAU.3C00060/SUPPL_FILE/AU3C00060_SI_002.ZIP.

[13] R. Keesey et al. “An open-source environmental chamber for materials-stability testing
using an optical proxy”. In: Digit. Discov. (2023). issn: 2635-098X. doi: 10 . 1039/
D2DD00089J.

[14] P. Menesatti, C. Angelini, F. Pallottino, F. Antonucci, J. Aguzzi, and C. Costa. “RGB
Color Calibration for Quantitative Image Analysis: The “3D Thin-Plate Spline” Warp-
ing Approach”. In: Sensors 12.6 (2012), pp. 7063–7079. issn: 1424-8220. doi: 10.3390/
s120607063.

[15] C. C. Stoumpos, L. Mao, C. D. Malliakas, and M. G. Kanatzidis. “Structure-Band
Gap Relationships in Hexagonal Polytypes and Low-Dimensional Structures of Hybrid
Tin Iodide Perovskites”. In: Inorg. Chem. 56 (1 Jan. 2017), pp. 56–73. issn: 1520510X.
doi: 10.1021/ACS.INORGCHEM.6B02764/SUPPL_FILE/IC6B02764_SI_013.CIF.

[16] B. Charles, J. Dillon, O. J. Weber, M. S. Islam, and M. T. Weller. “Understanding the
stability of mixed A-cation lead iodide perovskites”. In: J. Mater. Chem. A 5 (43 Nov.
2017), pp. 22495–22499. issn: 20507496. doi: 10.1039/C7TA08617B.

[17] O. J. Weber, B. Charles, and M. T. Weller. “Phase behaviour and composition in the
formamidinium–methylammonium hybrid lead iodide perovskite solid solution”. In: J.
Mater. Chem. A 4 (40 Oct. 2016), pp. 15375–15382. issn: 2050-7496. doi: 10.1039/
C6TA06607K.

[18] A. Pisanu, C. Ferrara, P. Quadrelli, G. Guizzetti, M. Patrini, C. Milanese, C. Tealdi,
and L. Malavasi. “The FA1–xMAxPbI3 System: Correlations among Stoichiometry
Control, Crystal Structure, Optical Properties, and Phase Stability”. In: J. Phys. Chem.
C 121 (16 Apr. 2017), pp. 8746–8751. issn: 1520-5215. doi: 10.1021/acs.jpcc.7b01250.

[19] A. Binek, F. C. Hanusch, P. Docampo, and T. Bein. “Stabilization of the Trigonal
High-Temperature Phase of Formamidinium Lead Iodide”. In: J. Phys. Chem. Lett. 6
(7 Apr. 2015), pp. 1249–1253. issn: 1948-7185. doi: 10.1021/acs.jpclett.5b00380.

[20] A. Siemenn, B. Das, E. Aissi, F. Sheng, L. Elliot, B. Hudspeth, M. Meyers, J. Serdy, and
T. Buonassisi. “A Retrofitted 3D Printer for High-throughput Combinatorial Experi-
mentation via Continuous Printing.” In: ChemRxiv (2024). doi: 10.26434/chemrxiv-
2024-fz16p.

[21] R. Sliz, J. Czajkowski, and T. Fabritius. “Taming the Coffee Ring Effect: Enhanced
Thermal Control as a Method for Thin-Film Nanopatterning”. In: Langmuir 36.32
(2020), pp. 9562–9570.

74

https://doi.org/10.1016/J.CHEMPR.2021.07.011
https://doi.org/10.1021/JACSAU.3C00060/SUPPL_FILE/AU3C00060_SI_002.ZIP
https://doi.org/10.1039/D2DD00089J
https://doi.org/10.1039/D2DD00089J
https://doi.org/10.3390/s120607063
https://doi.org/10.3390/s120607063
https://doi.org/10.1021/ACS.INORGCHEM.6B02764/SUPPL_FILE/IC6B02764_SI_013.CIF
https://doi.org/10.1039/C7TA08617B
https://doi.org/10.1039/C6TA06607K
https://doi.org/10.1039/C6TA06607K
https://doi.org/10.1021/acs.jpcc.7b01250
https://doi.org/10.1021/acs.jpclett.5b00380
https://doi.org/10.26434/chemrxiv-2024-fz16p
https://doi.org/10.26434/chemrxiv-2024-fz16p

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 An overview of the Archerfish Material Printer
	1.3 Thesis Overview

	2 Improving Archerfish: Advancements in Communication Protocols and Hardware
	2.1 Introduction and Overview
	2.2 Improvements to the Communications Architecture
	2.3 Hardware Updates: Enhancing Droplet Uniformity, and Crystallization
	2.4 Successes in Printing Organic Perovskite Materials
	2.4.1 Methods

	2.5 Chapter Summary

	3 High - Throughput Characterization of Perovskite Materials
	3.1 Introduction and Overview
	3.2 Detecting Perovskite Degradation from RGB Time Series Data
	3.2.1 Segmentation and Identification of Droplets
	3.2.2 Color Calibration
	3.2.3 Composition Extraction
	3.2.4 Instability Calculation

	3.3 Results
	3.4 Chapter Summary

	4 Limitations of the Platform
	4.1 Introduction and Overview
	4.2 Lack of Compositional Control
	4.3 Droplet Generation
	4.4 Environmental and Crystallization Control
	4.5 Unknown Mixing Mechanisms
	4.6 Other Limitations
	4.6.1 Material Compatibility
	4.6.2 Human Introduced Variation
	4.6.3 Lack of System Feedback

	4.7 Chapter Summary

	5 Conclusion
	5.1 Summary
	5.2 Future Work

	A Archerfish Components List
	B Archerfish Raspberry Pi Code
	C Archerfish Arduino Code
	References

