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ABSTRACT

Precisely estimating lumen boundaries in intravascular ultrasound (IVUS) is needed for
sizing interventional stents to treat deep vein thrombosis (DVT). Unfortunately, current seg-
mentation networks like the UNet lack the precision required for clinical adoption in IVUS
workflows. This arises due to the difficulty of automatically learning accurate lumen contour
from limited training data while accounting for the radial geometry of IVUS imaging. We
propose the Geo-UNet framework to address these issues via a design informed by the geom-
etry of the lumen contour segmentation task, building anatomical constraints directly into
the architecture. We first convert the input data and segmentation targets from Cartesian to
polar coordinates. Starting from a convUNet feature extractor, we propose a two-task setup,
one for conventional pixel-wise labeling and the other for single boundary lumen-contour lo-
calization. We directly combine the two predictions by passing the predicted lumen contour
through a new activation (named CDFeLU) to filter out spurious pixel-wise predictions. Our
unified loss function carefully balances area-based, distance-based, and contour-based penal-
ties to provide near clinical-grade generalization in unseen patient data. We also introduce
a lightweight, inference-time technique to enhance segmentation smoothness. The efficacy
of our framework on a venous IVUS dataset is shown against state-of-the-art models. We
will make the code repository for this project available soon after approval from industry
collaborators.

Thesis supervisor: Polina Golland
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Blocked or clogged veins cause acute medical conditions with severe consequences. As a

representative example, deep vein thrombosis (DVT) is a serious condition that can cause

significant short-term discomfort and diminish the quality of life, potentially leading to ir-

reversible, long-term venous system damage that may be limb or life-threatening [1]. It is a

precursor to pulmonary embolism, a critical condition where a clot travels to the lungs, im-

peding blood oxygenation. To manage DVT, clinicians often utilize Intravascular Ultrasound

(IVUS) [2] to guide endovascular treatments, where a catheter equipped with an ultrasound

transducer is inserted to visualize internal structures and pinpoint anatomical landmarks.

IVUS samples are organized into pullbacks, where consecutive frames of images are cap-

tured as the catheter travels through the blood vessel. The catheter emits sound waves that

are reflected by/pass through structures based on their density or acoustic impedence [2].

Dense material appears brighter. For instance, clots and fatty plaque will appear grey, and

blood flow will appear black. IVUS is a radial acquisition and can be used to distinguish

between key features locally around a vessel. These insights can then be used for disease-

detection and treatment outcomes assessment. In the event of a clot, the physician may

remove the thrombus and insert balloons or stents to keep the vessel open and ensure proper

blood flow. These devices are sized based on nearby healthy regions, where accurate mea-

13



surement of the vessel’s lumen is crucial for avoiding complications like pain from improper

device sizes or fatal stent migration [3].

Traditionally, balloon and stent-sizing can be done via manual annotation of medical

images to extract the lumen. However, this is labor-intensive and not scalable. Thus, my

project aims to automate this process safely and reliably by leveraging computer vision

and data processing techniques. Automatic segmentation of venous IVUS (v-IVUS) images

is challenging owing to variability in tissue/vessel appearance across subjects due to thin,

compression-prone vessel walls, stents, artifacts, and the manual nature of the pullback (i.e.

variable longitudinal frame rate across pullbacks due to manual control of the catheter by

the physician).

Deep Neural Networks (DNNs) for vascular segmentation [4] have soared in popularity

due to their ability to provide improved performance without manual intervention during

deployment. The UNet, a fully convolutional/attentional architecture with residual connec-

tions, has shown the most success across various segmentation problems in medical imaging,

even with scarce amounts of training data [5]. Variants of the UNet [6] have been successful

for plaque/calcification detection and vessel segmentation [4], [7]–[9] as well as stent [10] and

lesion detection/classification [11] for coronary artery disease. These use either 2D images [9]

or 3D image blocks [8], [12] as inputs and produce a pixel-wise map of the segmentation tar-

get as the output. The IVUS segmentation literature focuses on arterial acquisitions which

provide a different field of view (FoV) and use a motorized pullback providing a fixed lon-

gitudinal frame rate. However, venous acquisitions are not well-studied, and most existing

techniques do not generalize well to v-IVUS data due to under/over-segmentation of lumen

regions in the presence of imaging artifacts and their predilection to output spurious, frag-

mented predictions when there are nearby vessels or tissue structures. This is potentially

due to their inability to reflect the radial geometry of the imaging modality and constrain

the output to be a single contiguous lumen region, as dictated by the anatomy under con-

sideration.
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For my thesis, we alleviate the issues above by designing a new DNN, named Geo-UNet—

a fully convolutional architecture for lumen segmentation from venous IVUS images that

incorporates radial contour-geometry constraints directly in the architecture, in contrast to

prior works which impose implicit anatomical constraints via loss functions [13]. Our method

features 3 main components: 1) Input representation: we operate on 2D-image inputs

converted from Cartesian to polar coordinates which better reflect inherent IVUS imaging

physics [9], [14]. 2) Anatomically Constrained Self-informing Network: We propose

a two-task setup with a shared UNet feature extraction module. In polar space, the lumen

boundary is a single contour. While the natural prediction target is a standard pixel-level

segmentation, we design a second objective to predict a single lumen boundary contour.

Using this prediction as a guide, we refine the pixel-level segmentation via a new activa-

tion function—CDFeLU, based on the cumulative distribution function. This regularization

mitigates spurious predictions from pixel-level segmentation without the need for additional

post-processing, a known shortcoming of prior approaches. During training, our unified loss

function combines area-based, distance-based, and contour-based penalties to improve gen-

eralization. 3) Inference-time Continuity Enhancement: Based on the radial geometry

in imaging and properties of the convolutional UNet, we propose a continuity enhancement

technique, coined Geo-UNet++, which is a lightweight, inference-time procedure to address

wrap-around discontinuities at 0/2π angles in the segmentation estimation. Our framework

compares favorably against state-of-the-art segmentation baselines with consistent improve-

ments in segmentation Dice scores and derived lumen diameter estimation for stent sizing.
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Chapter 2

Related Works

2.1 UNet-based IVUS Segmentation Methods

The UNet has served as the foundation for feature extraction in medical segmentation tasks,

and many methods build on its principles for the IVUS use case [5]. IVUS-Net [15] is a

fully convolutional network with UNet as a base model and features a similar downsampling

encoder and upsampling decoder framework. Within each encoder/decoder block, a “main"

branch and “refining" branch separately capture features at different granularities to avoid

information loss due to pooling, and their sum is the input to the next block. This model has

proven effective against the task of arterial IVUS segmentation. IVUS-UNet++ [16] adds

a pyramid feature network to UNet++, an enhanced UNet architecture with dense skip-

connections and deep supervision on intermediate layer outputs, to consolidate feature maps

at various scales. Another method combines UNet-extracted features with hand-selected

features via optimization and sparse representation learning to enhance segmentation per-

formance [17]. All of these methods take advantage of UNet’s ability to capture contextual

and detailed information for effective feature extraction.
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2.2 Polar IVUS Representation and Relevant Smoothness-

enhancement Methods

IVUS frames are captured as a catheter continuously spins and travels along the axis of

longitudinal pullback. Though the images are presented with a circular Cartesian view for

easy visual interpretability of the vessel, this is an inherently polar acquisition. To respect

the physics of the acquisition, prior works have trained with polar space representations of

IVUS samples.

Polar representations render the concentric layered geometry of Cartesian IVUS frames

trivially separable as linear layers. This fact was used for more spatial context in arterial

IVUS segmentation via a polar coordinate-aware network augmented with learned trans-

lation dependence [14]. In addition, a polar arterial IVUS representation was used in a

Multiframe Convolutional Neural Network (MFCNN) to incorporate adjacency context [9].

In this method, to enforce a smooth prediction and a univocally defined contour position at

the 0/2π warp-around, the predicted segmentation contour was assumed to be a 2π-periodic

function plus Gaussian noise and is processed using a Gaussian Process regressor. Though

effective in the arterial IVUS use case, the assumption of Gaussian noise on the model predic-

tion may not hold for other models/modalities due to the variability of architectural setups

and input data. The exp-sine-squared kernel used to model the periodic contour has un-

derlying constraints on the consistency of contour positions and may not generalize to more

irregular geometries. Finally, the per-frame optimization is computationally costly.
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2.3 Two-Task Layer Segmentation for Retinal Optical Com-

puted Tomography (OCT)

BoundaryReg [18] is a recent approach based on convolutional UNets designed to produce

layer surface segmentation for retinal optical computed tomography (OCT). This model es-

timates dense pixel-wise and sparse contour predictions using a shared UNet followed by

two distinct output convolution layers. It also has additional topology modules follow-

ing the sparse contour predictions to ensure non-intersecting layer predictions by enforcing

non-negative spacing between correctly ordered, consecutive layers. The two-task approach

empirically enhances segmentation quality/stability and motivated the two-branch setup in

Geo-UNet.

2.4 Anatomically Constrained Networks

Explicit inclusion of known anatomical constraints in medical imaging tasks can help combat

generalization limitations due to data scarcity or imaging artifacts. However, the incorpora-

tion of such information into CNN frameworks is not trivial. Anatomically Constrained Neu-

ral Networks (ACNNs) feature generic training strategies that places anatomical constraints

via regularization [13]. Specifically, the method learns compact, non-linear relationships rep-

resentative of the input anatomy via an autoencoder and encourages the model prediction

to follow the learned distribution in latent space. While generalizable, this implicit regular-

ization does not ensure correct anatomy. Modality-specific hard restrictions imposed by the

network design may be a favorable choice when possible. Geo-UNet demonstrates one such

instance via the contour-prediction branch guaranteeing a single-region lumen prediction—a

known anatomical characteristic of a vessel lumen.
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Chapter 3

Methodology

3.1 Data

3.1.1 Data Acquisition and Specifications

Figure 3.1: Variations in appearance that are all considered as N1 frames with normal
anatomy.

Our venous IVUS dataset is acquired using the Boston Scientific OC35 peripheral imaging

catheter, which uses a rotating transducer to generate cross-sectional views. The catheter
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has a 70mm imaging diameter and a 15MHz operating frequency. It is typically used in the

detection and treatment of venous disease (e.g. DVT, non-thrombotic iliac venous lesions,

chronic post-thrombotic syndrome, and more). We obtained data for 79 patients with 166

pullbacks of varying durations. The data is labeled per frame and partitioned into two

groups: diseased and normal. The former refers to regions with acute/subacute clots and

chronic Post Thrombotic Syndrome (PTS). The latter contains labels N1 (frames with typical

geometry despite variability in appearance shown in Figure 3.1) and N2 (frames with irregular

geometry due to compression from nearby vessels but no thrombus present). Since stent-

sizing is performed on healthy frames, all N1/N2 frames were labeled by expert annotators,

for a total of 77,917 annotated image frames. Given the increased variability in appearance

and subjectivity in annotation, the lumen in N2 frames is qualitatively harder to segment

compared to N1 frames.

3.1.2 Training Data Augmentations

We apply stacked augmentations including rotation, translation, shear, contrast enhance-

ment, Gaussian blur, intensity scaling, and speckle noise on Cartesian inputs [19]. These

stacked transformations can effectively simulate the expected domain variations in a medical

imaging modality, thereby enhancing model generalization during deployment.

3.2 Geo-UNet

Figure 3.2 illustrates the Geo-UNet module. Inputs and prediction targets are represented

in polar space. We use a shared convolutional UNet feature extractor, connected to two

distinct prediction branches via persistent skip connections and convolutional layers.
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Figure 3.2: Geo-UNet Framework for Venous Lumen Segmentation: The feature
extractor is a fully convolutional UNet module with inputs of polar 2D IVUS frames. The
top branch produces a probability map for the lumen contour (Pc) via a row-wise softmax,
which is converted to a single contour segmentation (Sc) via a row-wise expectation function.
The bottom branch produces a per-pixel probability map (Ppix) via a channel-wise softmax.
CDFeLU(·) allows the top branch to inform the bottom, refining the pixel-wise probabilities
to give the segmentation (Spix) that is compared against the (polar) ground truth lumen
mask. The loss functions are highlighted in grey.
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3.2.1 Cartesian to Polar Representation

As shown in Figure 3.3, the original venous IVUS dataset depicts the acquisition in Cartesian

coordinates, where the catheter is a small black circle lying at the center of the square image

and the field of view (FoV) is the circular region inscribed in the input image. No registration

is needed to align the IVUS frames by the nature of the acquisition. We convert from x-y

Cartesian space to r-θ polar space, where the horizontal axis represents the radial distance

from the Cartesian origin, and the vertical axis represents the angles from 0 to 2π. This

simplifies the radial geometry to a left-right geometry, where the lumen region is a vertical

region on the left section of the polar image.

Figure 3.3: Example pair of Cartesian-polar IVUS frames.

3.2.2 Lumen Contour Estimation Branch

In polar space, the horizontal and vertical axes correspond to radii (r) and angles (θ),

respectively. Let Ypix denote the ground truth binary mask of size R×R (R=256 pixels).

To obtain the contour lumen map Yc[·] of size R×1, we summing along the r coordinate

for each θ,

Yc[θ] =
∑
r

Ypix[θ, r].

Yc[·] captures the lumen depth at each θ, a distinct value in {0,. . . , R}. The lumen
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boundary is a single, smooth contour with no self-intersection (i.e. has a distinct depth

r ∈ {0, . . . , R − 1} for each θ ∈ {0, . . . , R − 1}, after discretizing the range [0, 2π] into R

intervals).

The top network branch captures the lumen contour by computing a softmax across each

row of the single-channel output to obtain a row-sparse probability map Pc of size R×R. The

entries Pc[θ, r] ∈ [0, 1] denote the probability that the contour depth at θ is r and is ideally

high along the lumen contour and near 0 elsewhere. We convert Pc into a segmentation

contour Sc with an expectation across radii values,

Sc[θ] = Er(Pc[θ, :]) =
R−1∑
r=0

r ∗Pc[θ, r],

accounting for the uncertainty along boundary pixels in a differentiable operation [18]. This

enforces a distinct contour depth for each θ.

We use two training losses for Pc and Sc. First, we compute the cross entropy between

Pc and Yc to promote high predicted probabilities along the contour:

LCE = − 1

R2

R−1∑
θ,r=0,0

1[Yc[θ] = r]log(Pc[θ, r]) + 1[Yc[θ] ̸= r]log(1−Pc[θ, r]) (3.1)

We then encourage the predicted segmentation Sc[θ] to match Yc[θ] using a Huber loss [20]:

LHuber(·) =
R−1∑
θ=0

d2θ
2
1(|dθ| < 1) + (|dθ| − 0.5)1(|dθ| ≥ 1), (3.2)

where dθ = Yc[θ]−Sc[θ]. To get a polar binary segmentation that guarantees a single lumen

in Cartesian space, for each θ, we have 1s for pixels to the left of/along Sc[θ] (rounded to

the nearest integer) and 0 elsewhere. This yields a dense pixel mask that serves as the final

prediction output.
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3.2.3 Pixel-wise Segmentation Branch with Probabilistic Contour

Maps

Applying a conventional channel-wise softmax operation [4], the bottom branch outputs a

pixel-wise probability map Ppix of size R × R, where Ppix[θ, r] denotes the probability that

pixel [θ, r] is in or on the lumen boundary. To reconcile this with the lumen contour estimate,

we compute a dense probability map from Pc via a novel activation function based on the

cumulative distribution function (CDF). Let Φc[θ, r] = CDF(Pc[θ, r]), the transformation

(1 − Φc[θ, r]) models the confidence that the pixel [θ, r] is contained within the lumen and

is larger at smaller radii, serving as a probabilistic mask for Ppix. We compute the refined

pixel-wise segmentation Spix of size R×R by introducing the following activation,

CDFeLU(Ppix,Pc) = Spix[θ, r]

= Ppix[θ, r] ∗ (1− Φc[θ, r])

= Ppix[θ, r] ∗
[
1−

r∑
j=0

Pc[θ, j]
]
.

CDF error Linear Units (CDFeLU) is analogous to Gaussian Error Linear Units (GELU) [21],

where the CDF error is estimated based on the geometry of the lumen boundary as opposed

to a normal distribution. Finally, we impose a combination of area-based (Dice) and distance-

based (Hausdorff [22]) losses on Spix to match the ground truth pixel-wise lumen mask Ypix,

LDice&Hausdorff(·) = λ ∗ LDice(Spix,Ypix) + (1− λ) ∗ LHaus.(Spix,Ypix). (3.3)

with the trade-off λ ∈ (0, 1) determined experimentally to be 0.9. Note that by design,

CDFeLU(Ppix,Pc) de-emphasises regions outside the lumen (right of Yc[θ]), filtering out

potentially spurious predictions in Ppix, a task usually reserved for manual/semi-automated

post-processing. At the same time, this achieves “communication" between the two predic-
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tion branches to reinforce overlaps between Pc and Ppix, effectively encouraging Geo-UNet

to focus on estimates that align well across the two branches during training.

Through empirical observations during training, the top contour estimation branch and

the bottom pixel-wise prediction branch exhibit differences in the image features picked up

as they move toward convergence. Thus, instead of merely relying on gradients flowing back-

ward to the shared UNet feature extractor, reweighting using CDFeLU can help directly unify

the distinct prediction tasks to optimize for all three losses. As illustrated in Appendix A,

testing on the top contour estimation branch and the bottom pixel-wise prediction branch

gave similar performances, indicating that the branches have stabilized well at convergence

with our proposed technique. We take the contour prediction as the final model output

simply for the single-region lumen guarantee.

3.3 Geo-UNet++: Lightweight Inference-time Continu-

ity Enhancement

Recall that we map pixel intensities from Cartesian space to r-θ space to generate polar im-

ages, where θ ∈ {0, . . . , 2π}. A consequence is that the intensities of the model predictions

are not constrained to align at θ = 0 and θ = 2π, as they lie at the top and bottom borders

of the polar image. This often results in a wrap-around discontinuity when converting back

to Cartesian coordinates that consistently induces errors in the diameter estimation. To

alleviate this, we introduce an inference-time technique based on the radial nature of the

Cartesian v-IVUS images and properties of convolution. We apply vertical wrap-padding to

yield a rectangular, continuous input ranging θ = {−π/2, . . . , 2π}. This extension to the bot-

tom of the polar image with an additional π/2 context near θ = 0. Exploiting convolution’s

lack of dependence on input dimensions, we perform inference using the same trained Geo-

UNet model. We slice the output across the middle section θ = {−π/3, . . . ,−π/3 + 2π})

to avoid edge effects in the padded input, before finally presenting the prediction on the
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original Cartesian input rotated by π/3. The rotation does not affect the clinical objec-

tive of diameter estimation from the segmentation mask. We observe improved prediction

alignment along the re-sliced output for the padded input. A walk-through of the above

procedures is illustrated in Figure 3.4. This technique increases deployment time marginally

(0.3-0.4ms/frame) yet enhances accuracy considerably.

Figure 3.4: Geo-UNet++: Inference-time Segmentation Smoothness Enhance-
ment: The bottom middle image shows the performance of Geo-UNet when given a polar
input image. The green is the prediction, and the blue is the ground truth. In the bottom
left image, note the sudden jumps and misalignment in the green prediction at the top and
the bottom of the image, corresponding to 0 and 2π, respectively, yielding discontinuity at
0/2π in the Cartesian representation. Starting from the top left input image and to the
right, we illustrate the ideas behind Geo-UNet++. We wrap-padded the input by copy-and-
pasting the top π/2 strip to the bottom, as highlighted by the orange braces. To recover the
segmentation, we take the middle portion from −π

3
to 5π

3
. On the lower right, we see that

the Geo-UNet++ result is smoother and nearly perfectly aligned with the ground truth.
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3.4 Diameter Estimation from Segmentation Mask

After obtaining the output from the top branch lumen contour prediction, we need a well-

defined way to infer a diameter estimation from the segmentation mask.

3.4.1 Major and Minor Axes through the Center of Mass

One method to estimate the diameter from the segmentation mask/prediction is by passing

lines through the center of mass (COM) (of the largest component) at 5◦ increments. The

longest and shortest lengths of intersection with the mask border are the major and minor

diameters, respectively. The left section of Figure 3.5 illustrates this technique, and the right

sections shows the error histogram when this diameter estimation method is applied to the

ground truth and the prediction of a vanilla UNet trained with only Dice loss.

Figure 3.5: Left: Diameter estimation from the major-minor axes of COM of segmentation
mask. Right: Estimation error histogram between the ground truth and predictions of a
vanilla UNet trained with only Dice loss.

3.4.2 Perimeter-based Diameter Estimation

Alternatively, given the assumption of a circular vein after stent insertion, a perimeter-based

diameter estimation method seemed plausible. We extract the contours of the segmentation

mask (postprocessed to a single component, if needed) and divide by π to get the diam-

eter. To mitigate the over-estimation of diameters due to concavities in the segmentation
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prediction, we extracted the perimeter from the mask’s convex hull—the smallest convex

polygon that encloses all points in the mask. However, comparing Figure 3.5 and Figure

3.6, when tested on the same vanilla UNet model trained on Dice loss only, these perimeter-

based methods applied to the ground truth segmentation and the prediction showed greater

errors. As a result, we resort to the major/minor axes of COM method in evaluating the

performance of Geo-UNet.

Figure 3.6: Various Perimeter-based Diameter Estimation Results.
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Chapter 4

Results

4.1 Baseline Comparisons

We curate our baselines to reflect the state-of-the-art in the fields of medical image segmen-

tation and automated processing of IVUS images.

4.1.1 MedSAM

Medical Segment Anything Model [23] is a general-purpose, promptable 2D-segmentation

model with a ViT backbone [24], trained on multiple modalities (CT, MRI, ultrasound, etc).

The inputs are 2D medical images and a user-specified bounding box to produce a binary

pixel-wise segmentation without fine-tuning. We input the Cartesian v-IVUS images and

a fixed bounding box based on the FoV to accommodate lumen regions with the largest

diameters.

4.1.2 BoundaryReg

Geo-UNet’s two-task prediction objective was inspired by BoundaryReg for OCT layer seg-

mentation [18]. As A-scan OCT images and retinal layer segmentation have analogous

geometric properties to polar v-IVUS representations and lumen boundary estimation, re-
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spectively, we implement this baseline for our application according to the architectural

details presented in the paper (we used the same loss functions as those of Geo-UNet, which

are better tailored toward IVUS and empirically verified to show better performance.)

4.1.3 Cartesian Dice + Hausdorff

Convolutional UNets are commonly used for lumen segmentation from 2D (arterial) IVUS

images [4]. To adopt these baselines to v-IVUS, we use the architecture from Figure 3.2 with

only the bottom branch where inputs are Cartesian v-IVUS images and outputs are Cartesian

masks. We train using LDice&Hausdorff(·) between predictions and ground truths [22], [25].

4.1.4 Polar Dice + Hausdorff

In line with prior work [9], [14], we adopt a similar architecture and loss function as the

previous baseline, but convert the inputs and targets to polar representations. This baseline

also serves as an ablation for Geo-UNet where the contribution of the contour estimation

branch is omitted. We obtain a single lumen region from the potentially fragmented pixel-

wise predictions by post-processing the outputs to retain the largest connected component [4],

both in this approach and the previous baseline.

4.2 Ablation Studies

To evaluate Geo-UNet, we perform two ablations that systematically remove its key con-

stituent components. These comparisons are (1) Geo-UNet excluding the CDFeLU re-

weighting and (2) Geo-UNet without the pixel-wise prediction branch. The former uses

the same loss function as Geo-UNet while the latter trains the model on a combination of

LCE(·) and LHuber(·).
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4.3 Implementation Details

We train all models on healthy images (frames marked N1 and N2) and adopt a three-fold

cross-validation which stratifies pullbacks across patients (53/21/5 train/test/validation).

Augmented input IVUS frames and model outputs are of size 256× 256 (R = 256). Hyper-

parameters across all experiments are determined using the validation set. We use a batch

size of 3 with 16 gradient accumulation steps. The Adam optimizer is used with a scheduler

that linearly decreases the learning rate from 10−4 to 10−7 over 50,000 training iterations.

We use the validation set to update the weights of the best exponential moving average

(EMA) model. To save on compute time, we only retain LHuber(·) (Eq.(3.2)) at each vali-

dation step to guide optimization for Geo-UNet, BoundaryReg, and the first ablation study

removing CDFeLU from Geo-UNet. Similarly, we kept only LDice(·) for the Cartesian and

polar UNet baselines. Our machine has 50 CPU cores and 2 A-100 NVIDIA GPUs with

32GB RAM, resulting in an average training time of 3.5-4 hrs per cross-validation fold.

4.4 Clinical Targets

In addition to the Dice score at test time, we evaluate the measurement error in the diameter

of the major/minor axes of the predicted lumen against that of the ground truth lumen [3].

Commercial stents are sized on N1 frames, are available in 0.5mm increments, and are sized

against the average of the major and minor diameter [3]. Per a clinician, the models should

ideally achieve a major and minor axis diameter error within 0.25/0.5/0.75mm for 50/90/95%

of all N1 frames. N2 frames are mainly used for vessel compression detection and not for

stent-sizing. Thus, they have less stringent clinical targets of 50/70% of frames within errors

of 0.5/0.75mm.
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4.5 Lumen Segmentation Performance Analysis

To quantify the generalization performance, we report the test-Dice and percentage of frames

with major and minor diameter error within 0.25/0.5/0.75mm for N1 and N2 frames in the

test subjects in Table 4.1 for all models.

Despite being trained on ultrasound modalities, we observe that MedSAM [23] severely

under-performs all the conv-UNet frameworks trained on v-IVUS, due to generalization lim-

itations and an inability to meaningfully discern the lumen region without a more carefully

curated manual prompt. BoundaryReg underperforms Geo-UNet due to architectural differ-

ences and the lack of IVUS anatomy-rooted design decisions. The model trained in Cartesian

space uniformly performs worse than all polar models, reinforcing our choice to use polar

representations. The polar UNet trained on only pixel-wise segmentation performs worse

than Geo-UNet on several comparisons. Upon a qualitative examination (see fourth row

of Figure 4.1), the last two baselines can result in fragmented predictions with multiple

components, as they are not constrained to predict a single lumen contour. This problem

is not resolved by post-processing to choose the largest component given the heterogeneity

across pullbacks and anatomical locations. Taking the output from the contour prediction

branch inherently ensures a single prediction region. The combination of the two branches

is effective as seen by comparing Geo-UNet and its ablated version without the pixel-wise

prediction. Removing the re-weighting (CDFeLU) worsens performance on both N1 and N2

frames. Finally, Geo-UNet++, featuring continuity enhancement during inference, provides

improvements in the estimates of the minor diameter, while maintaining the quality of the

major diameter estimates for the N1 frames 1. Overall, these observations make a strong case

for adopting geometry-informed principles into the design of neural frameworks for lumen

segmentation from v-IVUS imaging.

1Errors on N2 major diameters remain above clinical precision despite slightly worsening

34



Figure 4.1: Example lumen segmentation performance of Geo-UNet++, Geo-UNet, and
baselines. Note that Geo-UNet++ shows the segmentation on a rotated Cartesian input
by the nature of the method. On the third row, we see a stented N1 frame. The ground
truth characterizes the stented region as the lumen though there appears to be a distinctive
surrounding vessel border; most methods (including Geo-UNet) performed well in this case.
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Table 4.1: Lumen Segmentation performance of Geo-UNet, baselines and ablations. The
best performance is in bold, while the second to best is underlined.

Methodology Test Dice
(avg/stddev)

% Frames w.
Major Dia. within
0.25/0.50/0.75mm

% Frames w.
Minor Dia. within
0.25/0.50/0.75mm

Against Baselines (N1 frames)

Geo-UNet++ 0.95/0.045 66/84/90 73/89/94
Geo-UNet 0.95/0.034 69/84/90 69/85/91
MedSAM [23] 0.31/0.087 0/0/0 0/0/0
BoundaryReg [18] 0.94/0.043 60/78/86 70/86/91
Cartesian Dice + Haus. 0.93/0.051 61/77/83 62/79/87
Polar Dice + Haus. 0.94/0.038 66/80/87 67/84/90

Against Baselines (N2 frames)

Geo-UNet++ 0.88/0.094 41/59/69 60/80/87
Geo-UNet 0.87/0.10 47/64/73 57/76/85
MedSAM [23] 0.23/0.085 0/0/0 0/0/0
BoundaryReg [18] 0.87/0.093 36/54/65 55/74/84
Cartesian Dice + Haus. 0.83/0.12 32/44/52 44/63/74
Polar Dice + Haus. 0.86/0.12 40/58/69 55/74/83

Against Ablations (N1 frames)

Geo-UNet 0.95/0.034 69/84/90 69/85/91
w/o CDFeLU reweight. 0.94/0.035 69/82/88 65/83/90
w/o pixel-wise pred. 0.95/0.039 67/81/87 69/85/91

Against Ablations (N2 frames)

Geo-UNet 0.87/0.10 47/64/73 57/76/85
w/o CDFeLU reweight. 0.86/0.10 45/63/72 53/71/81
w/o pixel-wise pred. 0.88/0.092 46/62/71 57/76/85
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Chapter 5

Other Attempted Enhancements

Prior to finalizing the Geo-UNet framework, we explored other modifications in an effort

to increase the segmentation performance. Attempts involved architectural changes and

additional regularization. Though we saw either decreased performance or no significant

improvements with the following additions, the lessons learned from empirical explorations

were instructional.

5.1 UNet Feature Extractor Sharing Levels

The UNet excels at the medical image segmentation task partially due to the long-range

skip connections. By directly concatenating earlier layers to the corresponding layers in the

decoder path, the skip connections preserve high spatial resolution details lost during down

sampling. They allow the network to combine high-level features from deeper layers with the

low-level features from earlier layers to precisely locate pixels near segmentation borders.

With the two-task design, we were curious about how much of the UNet feature extractor

should be shared by the two branches. In other words, we wondered how much weight

customization each task should receive after the UNet diverges into separate prediction

branches to optimize performance. Given the difficulty of interpreting intermediate latent

layers, we trained three models with varying levels of UNet feature extractor sharing using
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the losses from Geo-UNet without CDFeLU, the architectures are shown in Figure 5.1.

Figure 5.1: Two task prediction architecture with varying UNet sharing levels. (a) All of the
encoder and decoder path is shared until the final output convolution. Same architecture
and experiment as BoundaryReg. (b) Sharing ends before the final skip connection. Same
architecture as Geo-UNet. (c) Sharing ends before the penultimate skip connection.

As shown in Table 5.1, sharing the UNet until the last skip-connections consistently

outperforms the others in major diameter estimation and is comparable in terms of test

Dice average and standard deviation. Although it is slightly worse on the minor diameter

estimation, we settled on this architectural component for Geo-UNet weighing its overall

performance and network simplicity.

5.2 Pixel-to-Contour Regularization

CDFeLU(Ppix,Pc) combines the two prediction objectives by using the contour prediction

to reweight the pixel-wise prediction. In order to allow explicit “two-way" communication
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Table 5.1: Lumen segmentation performance on two task prediction model (Geo-UNet with-
out CDFeLU) with varying UNet Feature Extractor Sharing Levels. Best result is in bold;
second best result is underlined.

Shared UNet
until ...

Test Dice
(avg/stddev)

% Frames w.
Major Dia. within
0.25/0.50/0.75mm

% Frames w.
Minor Dia. within
0.25/0.50/0.75mm

N1 frames

(a) Last conv.
layer 0.94/0.043 60/78/86 70/86/91

(b) Last skip-
connection 0.94/0.035 69/82/88 65/83/90

(c) Penultimate
skip-connection 0.95/0.044 65/81/87 70/86/91

N2 frames

(a) Last conv.
layer 0.87/0.093 36/54/65 55/74/84

(b) Last skip-
connection 0.86/0.102 45/63/72 53/71/81

(c) Penultimate
skip-connection 0.87/0.10 39/57/69 57/77/86

between the prediction branches, we investigated the following regularization where the

pixel-wise prediction informs the contour prediction.

Across each row in the dense pixel-wise predicted probabilities, an accurate segmentation

will have near 1s for pixels until the border, and near 0s afterward. Thus, summing up

all the radii values across each row should give a contour depth that is representative of

the contour depicted by the pixel-wise prediction. As a result, we proposed an additional

LHuber(·) between the Pc and the contour Cpix[θ] derived from Ppix, where

Cpix[θ] =
R−1∑
r=0

Ppix[θ, r].

Since the intuition for this regularization is based on a reasonable pixel-wise prediction, we

introduce it as a fine-tuning mechanism on a Geo-UNet that is 1) trained for 50,000 iterations
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Table 5.2: Segmentation performance with Pixel-to-Contour Regularization. Best result is
in bold; second best result is underlined.

Method Test Dice
(avg/stddev)

% Frames w.
Major Dia. within
0.25/0.50/0.75mm

% Frames w.
Minor Dia. within
0.25/0.50/0.75mm

N1 frames

Geo-UNet 0.95/0.034 69/84/90 69/85/91
Finetune from
50,000 iters 0.95/0.037 66/83/89 71/88/92

Finetune from
10,000 iters 0.95/0.030 64/81/88 71/87/92

N2 frames

Geo-UNet 0.87/0.10 47/64/73 57/76/85
Finetune from
50,000 iters 0.88/0.11 42/62/70 61/81/89

Finetune from
10,000 iters 0.87/0.10 40/58/69 59/78/86

and 2) trained for 10,000 iterations, when convergence begins to taper off. Fine-tuning is

done until model convergence after introduction of the new regularization.

However, as shown in Table 5.2, fine-tuning with this regularization term did not yield

a meaningful improvement in segmentation performance across all metrics and thereby was

not included in Geo-UNet.

5.3 Segmentation Boundary Smoothing

Given the anatomical constraints, lumen boundaries exhibit local smoothness. While the seg-

mentation prediction from Geo-UNet is already smooth on frames for which it is accurate,

we hypothesized that explicit smoothing using a 1D average pooling layer across the vertical

axis/θ values of the predicted probabilities on both branches helps enforce this assumption.

Specially, Figure 5.2 is a visual depiction of the effect of an average pooling procedure on

the contour and pixel-wise predicted probabilities for kernel sizes of 5 and 11. We incorpo-
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rated pooling layers with varying kernel sizes during training, a subset of which are shown

in 5.3. Although a kernel size of 3 gave significant improvements for the major diameter

estimation of N2 frames, it did not yield a meaningful improvement for the more clinically

relevant N1 frames. Moreover, the pooling layer adds a substantial amount of training time.

Incorporating it is an unworthy trade-off between performance and speed.

Figure 5.2: 1D segmentation boundary smoothing for kernel sizes of 5 and 11.
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Table 5.3: Segmentation performance with 1d average pooling of varying kernel sizes. Best
result is in bold; second best result is underlined.

Kernel size Test Dice
(avg/stddev)

% Frames w.
Major Dia. within
0.25/0.50/0.75mm

% Frames w.
Minor Dia. within
0.25/0.50/0.75mm

N1 frames

0 (Geo-UNet) 0.95/0.034 69/84/90 69/85/91
3 0.94/0.044 71/85/91 69/85/91
5 0.95/0.040 67/82/88 70/86/92

N2 frames

0 (Geo-UNet) 0.87/0.10 47/64/73 57/76/85
3 0.87/0.10 58/77/86 56/75/85
5 0.88/0.093 46/65/74 58/77/86
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Chapter 6

Discussion and Conclusions

We develop a novel geometry-informed neural model, Geo-UNet, for precise lumen segmen-

tation on venous IVUS imaging for automated stent-sizing. The two-task design, i.e. lumen

contour estimation and dense pixel prediction, ensures appropriate constraints per data ge-

ometry and enables the self-informing feature of the two branches, thereby maximizing the

capabilities of a shared UNet feature extractor. The CDFeLU re-weighting allows us to unify

the distinct prediction targets probabilistically and effectively mitigate spurious predictions.

The inclusion of complementary losses for each prediction target provides sufficient regu-

larization to ensure reliable and robust generalization across unseen patients and pullbacks

despite the modest dataset size. Finally, the inference time enhancement takes advantage

of the input transformation and improves performance with negligible cost. Overall, Geo-

UNet/Geo-UNet++ achieves a majority of clinical targets, with only a narrow gap in others,

making it an attractive assistive tool for interventional specialists.

6.1 Future Work

Having optimized for architecture design and loss/regularization formulations, we believe

that the Geo-UNet model is nearing a performance ceiling for 2D segmentation frameworks

on venous IVUS data. However, one avenue for performance enhancement is incorporating
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temporal information from consecutive frames to enforce segmentation smoothness, essen-

tially extending the problem to a 3D segmentation task. Prior works employ techniques for

temporal context and smoothness on arterial IVUS data [14] .

Applying this method directly to v-IVUS is potentially challenging for three reasons. 1)

Due to thinner vessel walls, venous IVUS can take on a wide range of shapes. 2) The N1/N2

training frames often constitute non-contiguous sections within a single pullback due to the

presence of interspersed and anatomically distinct diseased frames. Thus, the incorporation

of temporal information must be sectional and selective. 3) The variable frame rates due

to the manual nature of v-IVUS pullbacks must be deliberated, perhaps with local constant

rate assumptions. Taking inspiration from a recent work titled NeuralOCT which utilizes

point cloud extraction from 2D segmentation masks to achieve neural 3D reconstruction of

airway OCT geometry [26], we hope to stitch together individual Geo-UNet prediction masks

with appropriate parameterization to promote temporal continuity.
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Appendix A

Test-time Performance Comparison

across the Two Branches in Geo-UNet

Recall that the model output is given by the sparse contour prediction branch due to its

guarantee of a single-connected lumen. However, as shown in Table A.1, for the same

trained Geo-UNet model, the two branches yield comparable performance across all metrics.

This indicates that Geo-UNet is desirably consistent and stable across different prediction

objectives.
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Table A.1: Test-time performance comparison across the sparse contour prediction branch
and the dense pixel-wise prediction branch in Geo-UNet

Prediction
branch

Test Dice
(avg/stddev)

% Frames w.
Major Dia. within
0.25/0.50/0.75mm

% Frames w.
Minor Dia. within
0.25/0.50/0.75mm

N1 frames

Contour 0.95/0.034 69/84/90 69/85/91
Pixel-wise 0.94/0.040 67/82/89 69/85/91

N2 frames

Contour 0.87/0.10 47/64/73 57/76/85
Pixel-wise 0.88/0.099 42/59/68 56/75/84
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