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ABSTRACT

G-Net is a neural network framework that implements g-computation, a causal inference
method for making counterfactual predictions and estimating treatment effects under dy-
namic and time-varying treatment regimes. Two G-Net models have been successfully im-
plemented: one that uses recurrent neural networks (RNNs) as its predictors, and one that
uses transformer encoders (G-Transformer). However, one limitation of G-Net is that its
counterfactual predictive density estimates do not take into account uncertainty about model
parameter estimates. These uncertainty estimates are necessary for establishing confidence
intervals around the effect estimation, enabling a robust assessment of whether the effects
of two treatment options exhibit statistically significant differences.

An important area of work is adding support for quantification of model uncertainty for
conditional effect estimation. This thesis aims to add uncertainty quantification to both the
RNN-based G-Net and the G-Transformer. To achieve this, we use two well-known tech-
niques in uncertainty modeling, namely variational dropout and deep ensembling. We evalu-
ate our methods using two simulated datasets based on mechanistic models. We demonstrate
that G-Net and G-Transformer models with uncertainty quantification are better-calibrated
and perform better for individual-level clinical decision making than their baseline counter-
parts.
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Chapter 1

Introduction

In the context of clinical decision-making, counterfactual prediction is the problem of pre-
dicting how a patient would have responded to a different treatment strategy than what
they actually received. In the real world, clinicians only have access to the adopted treat-
ment strategies and the observed patient outcomes, which we call the observational regime.
However, they would also like to know what would have occurred under a counterfactual
treatment strategy. This is especially relevant for clinical decision-making settings in which
doctors do not have the option to try alternative candidate treatments on a patient be-
fore making a decision. Counterfactual prediction is also especially important for settings
in which different patients often respond differently to the same treatment. With better
counterfactual predictions, clinicians can make more informed treatment decisions for their
patients that can lead to better outcomes.

While methods for generating counterfactual predictions have been developed, clinicians
need more than just predictions of a patient’s treatment response. Equally critical is the
ability to understand and quantify the uncertainty surrounding these predictions. By ac-
curately modeling the probability distributions of a patient’s potential treatment response,
future trajectories, and the risks of adverse outcomes under different treatment plans, clin-
icians can make more informed decisions. With uncertainty quantification, clinicians would
be better-equipped to navigate the difficult risk-reward trade-off inherent in many clinical
treatment decisions. Thus, our work focuses on predicting patient responses to treatment in
clinical settings as well as the uncertainty around these predictions. We investigate multiple
uncertainty quantification approaches, including deep ensembles and variational dropout, to
approximate the probability distributions of patients’ future trajectories under alternative
dynamic treatment strategies. We compare their performance in estimating the conditional
treatment effect and when used for downstream decision making tasks.

1.1 G-Computation

In clinical settings, treatment strategies are often complex, involving decisions at multiple
time-steps (time varying), where decision-making at each time-step depends on past patient
history (dynamic). These properties of clinical treatment strategies further complicate the
inherently difficult task of counterfactual prediction.
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G-computation is a causal inference framework that is well-suited to this task [14, 13].
G-computation works by first learning the distribution of a patient’s covariates (like heart
rate and blood pressure) conditioned on the patient’s history of treatments and covariates.
It then can iteratively produce predictions of patient outcomes under counterfactual treat-
ment strategies. Every time-step, g-computation decides treatments based on the desired
counterfactual treatment strategy and then draws an estimate of that time-step’s covariates
from the learned conditional distribution. Simulating many trajectories gives us an estimate
of the distribution of patient outcomes at every time-step.

1.2 G-Net and G-Transformer

Though conventional implementations of g-computation have used generalized linear models
to model the conditional distribution of covariates, G-Net [10] and G-Transformer cite have
recently demonstrated that g-computation can also be implemented through deep learning
models. G-Net is a deep learning framework that implements g-computation with recurrent
neural networks, and G-Transformer implements g-computation with transformers. Since the
base models used have much greater expressivity than linear models, they can make much
more accurate predictions of expected patient trajectories under counterfactual treatment
strategies.

1.3 Thesis Overview and Contributions

Though the use of neural networks in G-Net and G-Transformer for g-computation offer
performance boosts over more traditional implementations using linear models, their cur-
rent implementations do not provide adequate estimates for the uncertainty over model
parameters. Our work builds upon G-Net and G-Transformer by enhancing them to sup-
port uncertainty quantification. We evaluated the quality of these models by checking their
calibration and predictive accuracy. We also evaluated their performance on two clinical
decision-making task using two simulated datasets based on mechanistic models. In particu-
lar, we study the problem of administering treatment in the form of fluids and vasopressors to
sepsis patients using a simulated data set generated by CVSim. We use a simulated dataset
from a pharmacokinetics and pharmacodynamics (PK/PD) model of tumor growth to study
the usage of chemotherapy and radiotherapy to treat cancer patients.

Our contributions are the following:

1. Enhanced G-Net and G-Transformer to support uncertainty quantification.
We use variational dropout [5] and deep ensemble [9], two commonly-used methods
for uncertainty quantification. We adapt the G-Net and G-Transformer models to be
more compatible with their respective uncertainty quantification methods.

2. Benchmarked the performance of different uncertainty quantification ap-
proaches in counterfactual prediction under dynamic treatment regimes.
We use the enhanced G-Net and G-Transformer based models for counterfactual pre-
diction on two simulated datasets based on mechanistic models of the human body.
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We evaluate their performance on an individual level using calibration and root mean
squared error (RMSE) as our metrics. Since the goal of this research is primarily to
accurately estimate predictive uncertainty, we prioritize improving calibration while
maintaining similar levels of predictive performance. We show that the enhanced G-
Net and G-Transformer models are better calibrated than their baseline counterparts
while maintaining or even improving predictive accuracy.

3. Characterized impact to downstream decision making tasks under different
uncertainty quantification approaches. We design a clinical decision-making task
that emulates the decision-making process that a doctor may use to prevent choosing
treatment strategies that could lead to adverse outcomes such as hypotension and
pulmonary edema. We demonstrate that the enhanced G-Net and G-Transformer
models outperform their baseline counterparts in these tasks, meaning that they do
better in predicting and preventing rare adverse clinical outcomes under alternative
dynamic treatment regimes.

1.4 Thesis Outline

Chapter 2 provides a summary of related works in g-computation methods and counterfactual
prediction. Chapter 3 describes the theory behind g-computation. Chapter 4 presents in
detail the G-Net and G-Transformer frameworks, the uncertainty quantification methods,
and the simulated datasets. Chapter 5 describes the implementation and design of our
experiments. Chapter 6 presents the results of our experiments. Chapter 7 summarizes our
results and discusses their implications and limitations.

15
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Chapter 2

Background and Related Works

Recent works presented deep learning approaches to estimate time-varying treatment effects
[11, 2, 1, 12]. However, most previous approaches focus on estimating counterfactual out-
comes under static time-varying treatment strategies where treatments are not dependent
on past covariate history. Recent works have leveraged machine learning for counterfactual
prediction under dynamic and time-varying treatment regimes. In particular, G-Net
and G-Transformer are two deep learning approaches that support g-computation, a causal
inference framework that is well-suited conditional treatment effect estimation under dy-
namic treatment regimes [14, 13]. However, none of these prior efforts support uncertainty
quantification in a dynamic and time-varying treatment setting.

2.1 Uncertainty Quantification Methods

There exist many machine learning frameworks for uncertainty quantification. Deep ensem-
ble [9] is a machine learning framework that captures uncertainty in both model parameters
and predicted outputs. It enhances a base model by ensembling it with bagging, captur-
ing model uncertainty. For continuous outputs, it predicts both a point estimate and the
variance around that estimate, capturing uncertainty in the model output. Bayesian neural
networks can be used to obtain model uncertainty, but using them for inference is compu-
tationally expensive. Other methods attempt to approximate Bayesian inference at lower
computational costs. For example, variational dropout [5] utilizes dropout, a regularization
technique used commonly in training neural networks. Turning on dropout masks during
test time and using them to simulate multiple stochastic forward passes through the network
enables approximate Bayesian inference and estimates of predictive uncertainty. Stochastic
Weight Averaging-Gaussian (SWAG) also approximates the posterior distribution of neural
network weights by collecting multiple snapshots of one model during its training and us-
ing them to fit a Gaussian to the weights. While these methods have enjoyed success in
many applications in which predicting uncertainty is important, they have not been used for
counterfactual prediction under dynamic time-varying interventions.
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2.2 Counterfactual Prediction

There exist many frameworks for counterfactual prediction under dynamic time-varying in-
terventions. G-computation [14, 13] is a framework that uses generalized linear models
(GLMs) to learn covariate distributions conditioned on patient history. It then uses the con-
ditional covariate distributions to iteratively predict outcomes under counterfactual regimes.
G-Net [10] implements g-computation with neural networks, replacing the GLMs used in tra-
ditional g-computation methods with recurrent neural networks (RNNs) for their strength
in expressing long-term dependencies. G-Transformer [15] also implements g-computation
by using transformer encoders instead of GLMs, leveraging the expressivity of the more
modern model type. While these frameworks have been shown to produce accurate counter-
factual predictions, neither G-Net nor G-Transformer have adequate measures of predictive
uncertainty.

2.3 Counterfactual Prediction with Uncertainty
Quantification

Classic implementations of g-computation using linear models have used bootstrapping for
uncertainty quantification. For complex prediction settings, deep learning implementations
of g-computation might be more desirable. Modern machine learning methods are particu-
larly well suited to model high-dimensional data with complex temporal dependencies. How-
ever, it is a challenge to properly incorporate model uncertainty into predicted conditional
counterfactual distributions.

In "A Bayesian approach to the g-formula" [8], the authors compare the frequentist g-
formula (“standard g-formula”) using bootstrap and the Bayesian g-formula. However, their
goal was regularization. They were interested in average treatment effect while we focus
instead on the conditional treatment effect, which is a more difficult problem.

Prior works have noted that machine learning approaches to treatment effect estimation
could lead to highly biased estimates, and straightforward application of conventional un-
certainty quantification approaches such as bootstrap do not work with machine learning
technique in these settings. To get average treatment effect estimation with ML approaches,
we need to use doubly-robust estimation and cross fitting when using bootstrap to get con-
fidence intervals [3].
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Chapter 3

Problem Statement and G-Computation

In this work, we use the g-computation framework to tackle the problem of counterfactual
prediction under dynamic and time-varying treatment strategies. G-computation is a causal
inference technique that can be used for treatment effect estimation conditioned on patient
history [14, 13]. The g-computation algorithm is composed primarily of two stages. It first
uses patient data to estimate the conditional distribution of patient outcomes given history.
It then uses the learned distribution to estimate possible patient trajectories via Monte Carlo
simulation.

This chapter presents an overview of g-computation and provides the foundation for
deep-learning implementations such as G-Net and G-Transformer. We define the notation
we use and list the technical assumptions we need.

3.1 Problem Statement

G-computation is a framework used to make counterfactual predictions according to time
varying and dynamic treatment strategies [14]. These strategies involve making decisions
at multiple time-steps, each conditioned on the patient history up until that point. In this
work, we represent patient history with patient covariates and treatment actions measured
at discrete time-steps.

For ease of description, we define variables as follows:

• t ∈ {1, . . . , K}: time-steps, assumed discrete

• At: the observed treatment action at time t

• Lt: the vector of covariates at time t

• Yt: the outcome(s) of interest at time t. For simplicity, we model the outcome(s) as
covariates and include them in the vector Lt.

• Yt(Sm): the outcome of following counterfactual strategy S from time-steps m to t

• Hm ≜ (L1:m, A1:m−1): the patient history at time t
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3.2 G-computation

The goal of counterfactual prediction is then to estimate the expected outcome of a patient
at time t if some counterfactual strategy had started at time m: E[Yt(S)|Hm]. Of equal
importance to us is the conditional distribution of patient outcomes: p(Yt(S)|Hm). G-
computation is well-suited for this task under the following technical assumptions [14]:

• Consistency: when the counterfactual strategy is the same as the observed strategy,
their outcomes are equivalent.

• Sequential Exchangeability: there is no observed confounding at any time-step.
Any covariate that factors into treatment decision making is observed.

• Positivity: the counterfactual strategy S has a positive probability of being adminis-
tered.

The g-computation method is as follows. When t = m and under the above assumptions,
the treatment action Am is a direct function of the counterfactual strategy S, so we have

p(Ym(S)|Hm) = p(Ym|Hm, Am = S(Hm)). (3.1)

When t > m and under the above assumptions, the conditional distribution becomes
complex due to time-varying confounding. The closed form becomes

p(Yt(S) = y|Hm) =

∫
lm+1:t

p(Yt = y|Hm, Lm+1:t = lm+1:t, Am:t = S(Hm, lm+1:t))

×
t∏

j=m+1

p(Lj = lj|Hm, Lm+1:j−1 = lm+1:j−1, Am:j−1 = S(Hm, lm+1:j−1)).

(3.2)

This expression is intractable, so we use Monte-Carlo simulation to estimate it. At
each time step, the simulation strategy involves sampling from the distribution of covariates
conditioned on all actual and simulated observations until that time-step. The simulation
procedure requires an estimate of this conditional distribution:

p(Lt|L1:t−1, A1:t−1). (3.3)

The conditional distribution is estimated in g-computation, and is trained in G-Net [10]
and G-Transformer [15]. To simulate one time-step given the tuple (L1:m, A1:m, S), we sample
L̂m+1 from our trained conditional distribution p(Lm+1|L1:m, A1:m) and then decide Am+1

according to S(L1:m, A1:m, L̂m+1). This process can be repeated iteratively to simulate any
number of time-steps. If we simulate multiple trajectories, we get an empirical estimate of
the conditional distribution from (3.3). If we average these trajectories, we get an empirical
estimate of the conditional expectation E[Lt|L1:t−1, A1:t−1].
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Chapter 4

Methods

In this work, we enhance the G-Net and G-Transformer models by using two uncertainty
quantification methods: variational dropout and deep ensemble. We evaluate the models’
performances on two datasets that cover different domains: Cancer Growth [6], which sim-
ulates cancerous tumor growths, and CVSim [7], which simulates the human cardiovascular
system. Calibration is our main performance metric of interest, though we also would like
to maintain predictive accuracy measured by root mean-squared error.

This chapter begins with an overview of the G-Net and G-Transformer frameworks. We
move on to a summary of the uncertainty quantification methods used in this work and
how we implemented them for our specific use cases. Lastly, we discuss our choice of model
evaluation methods and introduce the datasets we use for evaluation.

4.1 G-Net and G-Transformer

G-Net [10] and G-Transformer [15] are neural network based implementations of g-computation,
where G-Net uses RNNs and G-Transformer uses transformer encoders. They have been
shown to predict patient outcomes more accurately than other counterfactual prediction
methods and g-computation implementations. They are also the models that we build upon
in this work, and we will use them as baselines in analyzing results.

This section describes the theory and implementation behind the base G-Net and G-
Transformer models that do not have adequate measures of uncertainty.

4.1.1 G-Net and G-Transformer Framework

The goal of G-Net and G-Transformer is the same as that of g-computation: to approximate
the conditional distribution of covariates p(Lt|L1:t−1, A1:t−1). However, Lt in many cases
is high-dimensional and complex, so we partition the covariates represented by Lt into G
groups or “boxes”, {L0

t , L
1
t , . . . , L

G−1
t }, and train multiple regressors or classifiers to learn

their distributions separately. This technique is represented mathematically by the chain
rule of probability, where p(Lt|L1:t−1, A1:t−1) is rewritten as

p(L0
t |L1:t−1, A1:t−1)× p(L1

t |L0
t , L1:t−1, A1:t−1)× · · · × p(LG−1

t |L0
t , L

1
t , . . . , L

G−2
t , L1:t−1, A1:t−1).
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In this work, we use G = 2 and set the groups to be the categorical and continuous covariates,
respectively. This is called the two-box architecture, with one classifier for the categorical
covariates and one regressor for the continuous covariates. With this framework, we have
the ability to group the covariates however we like. One option used previously sets G to be
the number of covariates, which we call the one-variable-per-box architecture.

To be concrete, we describe in detail one time-step’s worth of prediction when G = 2.
We set L0

t and L1
t to be the categorical and the continuous covariates at time t, respec-

tively. Let R0 and R1 be a classifier and a regressor that approximate p(L0
t |L1:t−1, A1:t−1)

and p(L1
t |L0

t , L1:t−1, A1:t−1). To simulate for time-step t + 1, R0 takes (L0
1:t, L

1
1:t, A1:t) as

input and outputs a predicted L̂0
t+1. This predicted L̂0

t+1 is passed to R1, which takes
(L0

1:t, L̂
0
t+1, L

1
1:t, A1:t) and outputs a predicted L̂1

t+1. The predicted covariates (L̂0
t+1 and L̂1

t+1)
are concatenated to get L̂t+1. Lastly, Ât+1 is decided by the counterfactual strategy as a
function of (L0

1:t, L̂
0
t+1, L

1
1:t, L̂

1
t+1, A1:t). This process repeats for further time-steps, with R0

taking (L0
1:t, L̂

0
t+1, L

1
1:t, L̂

1
t+1, A1:t, Ât+1) as input to predict L̂0

t+2.
This framework offers impressive flexibility because we never assume the model architec-

tures of R0 and R1. We can essentially use any model that conforms to the desired input
and output format. G-computation is generally performed with R0 and R1 as generalized
linear models. G-Net uses recurrent neural networks, and G-Transformer uses transformer
encoders.

4.1.2 Training Procedure

For the two-box model, we train the two boxes jointly, with the outputs from the first box of
categorical covariates fed as input to the second box of continuous covariates. The categorical
box is trained with cross-entropy loss. For the base G-Net and G-Transformer models, the
continuous box is trained with mean squared error. When these models are implemented
with deep ensemble, we may use a different loss function, as we will discuss in section 4.2.2.

For model training, we also use teacher forcing. Instead of using the predicted L̂t+1

to make predictions on time-step t+2, we use the observed Lt+1. This is equivalent to
training the model on one time-step ahead prediction. We also use teacher forcing for
the individual "boxes". Instead of passing a predicted L̂0

t+1 to R1, we pass the observed
L0
t+1. Since we evaluate performance on multiple time-step ahead prediction, teacher-forcing

notably optimizes a different loss function than our true objective. However, we’ve found
that teacher-forcing performs better than our alternative, student forcing.

4.1.3 Simulation Procedure

After we’ve trained our G-Net and G-Transformer models, we simulate. Our trained models,
on their own, only output conditional expectations — that is, our models output estimates
of E[Lt|L1:t−1, A1:t−1]. However, for continuous covariates, we would want the distribution
of covariates p(Lt|L1:t−1, A1:t−1). We obtain an estimate of these distributions by sampling
from every box as follows:

Lg
t |L0

t . . . L
g−1
t , L1:t−1, A1:t−1 ∼ Ê[L0

t . . . L
g−1
t , Lt|L1:t−1, A1:t−1] + ϵgt (4.1)
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where g denotes the gth box and ϵgt is drawn randomly from a set of residuals Lg
t −

L̂g
t calculated empirically from a validation dataset. This way, we can non-parametrically

simulate from an approximate conditional distribution of covariates at each time-step.
Categorical covariates are treated more simply. Again, our models output estimates of

E[Lt|L1:t−1, A1:t−1], which we enforce to be in the range [0, 1] with a sigmoid activation. To
simulate, we draw from a Bernoulli distribution with parameter Ê[Lt|L1:t−1, A1:t−1].

We repeat this simulation process for a number of time-steps dependent on the specifi-
cations of the dataset. For example, the CVSim dataset involves 32 time-steps in which the
patient undergoes a counterfactual treatment strategy, so we simulate 32 time-steps ahead
in that case.

4.2 Uncertainty Quantification

One thing to note about the base G-Net and G-Transformer models is that while their
simulation procedure accounts for the uncertainty in the covariate distribution (by using
empirical residuals), they do not take into account the uncertainty in the model parameters.
To address this, we enhance G-Net and G-Transformer with two different methods to produce
uncertainty estimates: variational dropout [5] and deep ensemble [9].

This section describes the theory behind the two uncertainty quantification methods,
their implementations, and how we adapted them to work well with the existing G-Net and
G-Transformer models.

4.2.1 Variational Dropout

Dropout is traditionally used in training neural networks as a form of regularization. In
such use cases, inputs to certain network layers are randomly masked during training time,
but no masking occurs during test time to maximize model performance. However, Gal and
Ghahramani showed that dropout, if used during test time, can also be used to produce
a variational approximation to the posterior distribution of a Bayesian neural network [5].
Simulating multiple forward passes of a trained model with independent and identically
distributed dropout masks would give us samples that take into account the uncertainty
over model parameters.

This corresponds very nicely with the G-Net framework because G-Net and G-Transformer
already perform Monte Carlo simulations during test time. To implement variational dropout
for G-Transformer, for example, we can take a trained G-Transformer model and (with mi-
nor modifications) sample trajectories from it with dropout masks turned on. With dropout
masks turned off, the G-Transformer model captures uncertainty in the covariate distri-
bution; with dropout masks turned on, G-Transformer captures uncertainty in the model
parameters as well.

To prevent confusion, we will refer to the variational dropout versions of G-Net and
G-Transformer G-Net with Dropout and G-Transformer with Dropout, respectively.
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Computing Residuals with Variational Dropout

Implementing variational dropout for G-Net and G-Transformer isn’t as straightforward as
turning on dropout masks for simulations. We must also make modifications to how residuals
are computed.

Recall that for G-Net and G-Transformer, the residuals ϵgt were computed empirically
from the Lg

t − L̂g
t values on an validation dataset, where L̂g

t is treated as an estimate of the
conditional expectation E[Lg

t |L0
t , . . . , L

g−1
t , L1:t−1, A1:t−1]. For G-Net with Dropout and G-

Transformer with Dropout, however, forward passes during validation time no longer can be
treated as conditional expectations but rather as samples from an approximate distribution.
To correct this discrepancy, we conduct 100 forward passes of our model to obtain 100 Lg

t−L̂g
t

values per patient in our validation dataset. These 100 forward passes represent uncertainty
about the model parameters. The number of forward passes only dictates the granularity
of our estimate of the residual distribution, and was chosen arbitrarily. During simulation
time, we simulate Lg

t ∼ L̂g
t + ϵgt as per usual. These residuals represent uncertainty about

the model output. This way, we capture both the uncertainty in model parameters and the
uncertainty in patient covariates.

G-Net with Dropout

G-Transformer with Dropout can be implemented simply as the base G-Transformer model
along with the modifications discussed earlier in this chapter. However, G-Net with Dropout
is implemented with a slightly different model architecture as well. The traditional LSTM
architecture involves using independently sampled dropout masks on the inputs and outputs
of every LSTM layer. G-Net with Dropout, on the other hand, uses an LSTM architecture
recommended by Gal and Ghahramani [4] for improved regularization. In their model,
dropout masks are placed not only between layers but also between adjacent time-steps.
Connections between the same pair of layers share dropout masks, and connections within
the same layer also share dropout masks.

4.2.2 Deep Ensemble

Deep ensemble [9] is a flexible method of producing uncertainty estimates, and it can be
applied to many different neural architectures. The deep ensemble algorithm starts with a
base model — in our case, a recurrent neural network or a transformer encoder. It trains an
ensemble of these models through bagging, with randomization coming from just from the
initialization of model parameters and the order in which data is fed into the model during
training. Furthermore, each individual model within the ensemble models the conditional
distribution of the continuous covariates as a Gaussian with some mean and variance. Thus,
each model outputs not only a predicted mean but also a variance estimate. Then for
each model, deep ensemble treats the observed continuous data as samples from a Gaussian
distribution parametrized by the predicted mean and variance and optimizes the negative
log-likelihood of this sample as its loss function. With θ representing a model’s parameters,
we have:
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Figure 4.1: Depiction of an RNN with the standard dropout masks (left) and G-Net with
Dropout (right). Colored arrows indicate dropout masks and dotted arrows indicate their
absence. Arrows that are colored identically are identical dropout masks. Figure from [4].

Loss(θ,x, y) ≜ − log pθ(y|x) =
log σ2

θ(x)

2
+

(y − µθ(x))
2

2σ2
θ(x)

+ constant. (4.2)

The entire ensemble is then interpreted as a mixture of Gaussians with equal weights.
As the number of models, M , increases, the expressivity of the ensemble increases accord-
ingly; even a highly multimodal distribution can be approximated well with a large enough
ensemble. We found that M = 20 worked well for our purposes.

The deep ensemble method quantifies uncertainty in both the model output and in the
model parameters. Ensembling with random initializations represents uncertainty in model
parameters, and parametrizing the model output as Gaussian represents uncertainty in the
model output. In some of our applications of deep ensemble, we simulate using empirical
residuals instead of the predicted Gaussian, in which case the empirical residuals represent
uncertainty in the model output.

Alternative Parametric Assumptions

Note that the deep ensemble method as presented above makes the modeling assumption
that the conditional distribution of covariates at each time-step is a diagonal Gaussian; that
is, the distribution’s covariance matrix is diagonal. By training an ensemble of these models,
we’re approximating the data distribution as a mixture of diagonal Gaussians. By modifying
our modeling assumptions, we thereby modify the way we fit the data.

In addition to modeling the conditional distributions as diagonal Gaussians, we also
modeled them as Gaussians with identity covariance matrices and as Gaussians with all
covariance terms. The loss function changes accordingly. For example, modeling Gaussians
with identity covariances with negative log-likelihood loss is equivalent to training with mean
squared error as the loss function. Details about their implementations are in 5.1.1.
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Simulation Methods

After an ensemble is trained, we can also simulate from it in different ways. Most simply,
we can ignore the variance estimates and simulate by adding empirical noise terms to the
mean estimates as in the base G-Net and G-Transformer models in 4.1. This is our non-
parametric approach to estimating the conditional distribution of covariates. We can also
take the parametric route and, at each time-step, sample from the Gaussians parametrized
by the mean and (co)variance estimates without using any empirical noise terms.

Both methods were explored and evaluated in our experiments. For G-Net, we found
that training for a diagonal Gaussian and simulating with empirical noise worked best. For
G-Transformer, we found that training on MSE and simulating with empirical noise worked
best. Results from other alternative methods are in the appendix.

4.2.3 Variational Dropout with Ensembling

We explored combining variational dropout and deep ensemble. This was accomplished by
independently training M = 20 variational dropout models on MSE using random initializa-
tions and random shufflings of the training data. Each model independently simulates using
empirical noise, and the simulations are aggregated for a full set of simulations from the
ensemble. When M = 20, each individual variational dropout model produces 5 simulations
for 100 simulations in total. Results for this type of model are included in the appendix.

4.3 Evaluation Methods

We have two performance metrics of interest for the G-Net and G-Transformer models both
with and without uncertainty quantification: calibration and root mean-squared error. The
latter can be calculated two ways, by individual level and by population level. The goal of this
thesis on uncertainty estimation is to improve the G-Net and G-Transformer calibrations with
uncertainty quantification while maintaining similar levels of individual-level and population-
level RMSEs.

4.3.1 Calibration

We assess the calibration of a trained model as follows. Given quantiles αlow and αhigh, cali-
bration is evaluated by calculating the frequency with which the model’s observed covariates
fall between the αlow and αhigh quantiles of the predicted covariates. The frequency is cal-
culated across all patients, time-steps, and covariates for a single number. If the frequency
is close to αhigh − αlow, the model is well-calibrated.

4.3.2 Population-Level and Individual-Level RMSE

Performance of a trained model can be evaluated by population-level RMSE or by individual-
level RMSE. To compute population-level RMSE, the simulated trajectories for every patient
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are averaged into a single population-level trajectory, which is then compared to the ground-
truth population-level trajectory. To compute individual-level RMSE, trajectories are aver-
aged per patient and compared to the ground-truth individual-level trajectories. With Nc

as the number of patients, {m,m + 1, . . . , t} as the predicted time-steps, d as the number
of covariates, f as our model, and L̂CF (f) as the average of the predicted trajectories of a
patient as predicted by f , we can express the individual-level RMSE as√√√√ 1

Nc(K −m)d

Nc∑
i=1

K∑
t=m

d∑
h=1

(Lh,CF
ti − L̂h,CF

ti (f))2. (4.3)

For the Cancer Growth and CVSim datasets, we focus on the individual-level RMSE
because it offers a more granular representation of the predictive power of our models.

4.4 Datasets

We perform experiments on two separate clinical datasets: Cancer Growth, CVSim. Each
has different properties that affect how we model the distribution of covariates given patient
history.

Cancer-Growth Dataset. The Cancer Growth dataset is simulated from a pharmacokinetic-
pharmacodynamic (PK/PD) model of tumor growth [6]. We have a data generated under an
observational treatment in which chemotherapy and radiotherapy (the two treatments) are
applied to the patient through a strategy that is conditioned on their tumor volume history
[10]. We also have four testing datasets, each generated with a counterfactual treatment
strategy applied in the last four time-steps of each trajectory. The counterfactual strategies
are no treatment, radiotherapy, chemotherapy, and both (chem-rad). Treatment strategies
are time-varying but static.

CVSim Dataset. The CVSim dataset is simulated from a model of the human cardio-
vascular system [7]. We have data generated under an observational treatment g0 and two
testing counterfactual datasets generated under treatments gc1 and gc2. g0 is a treatment
strategy in which the fluid and vasopressor treatment at each time-step is stochastic. On
the other hand, gc1 and gc2 are deterministic treatment strategies, where gc2 is strictly more
aggressive than gc1. Treatment strategies are time-varying and dynamic.
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Chapter 5

Experiments

To evaluate the performance of our models with uncertainty quantification, we conduct two
types of experiments. The first is in line with experiments that have already been conducted
for G-Net and G-Transformer: measuring the calibration and RMSEs of predicted patient
outcomes on simulated datasets. The second evaluates a model’s usefulness for decision-
making in clinical settings.

In this chapter, we describe the motivations and implementation details of these two
experiments.

5.1 Evaluation of Uncertainty Predictions

In this section, we describe our methods for evaluating how well our models quantify uncer-
tainty. We train, simulate, and evaluate the base, variational dropout, and deep ensemble
versions of G-Net and G-Transformer on the CVSim and Cancer Growth datasets. For the
deep ensemble models, we examine using the different modeling assumptions as described in
4.2.2.

The methodologies for the CVSim and the Cancer Growth datasets are similar, so the
following descriptions apply for both. Any dataset-specific differences are noted in their
respective subsections.

5.1.1 G-Net and G-Transformer Implementation

We explain in detail about the implementations of the G-Net and G-Transformer based
models. Training and simulation of G-Net and G-Transformer models revolve around the
training and simulation of the (two) individual boxes as described 4.1.

G-Net Based Models

For both the base G-Net and the G-Net Ensemble models, the individual boxes are im-
plemented with multilayer LSTM models that output one embedding per time-step with
dimensionality controlled by a hyperparameter. We also have a linear layer that brings
transforms the embedding to the desired output dimension. The G-Net with Dropout model
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is implemented nearly identically, but with the dropout masks implemented as described in
4.2.1.

At each time-step, the base G-Net model theoretically takes in the patient history
(L1:t, A1:t) and conditions on it to produce an estimate of the patient’s covariates for the
next time-step. However, with G-Net based models, the patient histories are actually not
directly input to the model. Instead, to predict for time-step t + 1, the LSTM (in the first
box) predicts using (ht−1, Lt, At), where ht is the LSTM’s hidden state from time-step t− 1
and acts as a learned representation for (L1:t−1, A1:t−1).

G-Transformer Based Models

For all the G-Transformer based models, the individual boxes are implemented with trans-
former encoders. To predict for time-step t + 1, the first box takes the patient history
(L1:t, A1:t) and feeds it through a positional embedding layer and a transformer encoder to
produce a sequence of embeddings. The last embedding in this sequence is fed through a
linear layer to produce our prediction.

Note that the G-Transformer differs from G-Net in that it conditions on the patient
history in its raw form rather than in a learned representation.

Implementing Negative Log-Likelihood Loss

For deep ensemble models, we use negative log-likelihood as the loss function for training.
Since we use multiple different modeling assumptions for the deep ensemble model, the
implementation differs slightly for each as well.

For the Gaussian with identity covariance matrix, we note that optimizing the NLL of
such a Gaussian is equivalent to optimizing the MSE of the mean estimates. Since the G-Net
and G-Transformer models already use MSE to optimize the continuous covariates, we use
their implementations. Nothing changes except that we train 20 models for an ensemble
instead of just one.

For the Gaussian with diagonal covariance matrix, we need to model variances. To do
so, we add a second linear layer alongside the first. We treat the first linear layer as the
predictor for the means and we treat the second as the predictor for the variances. The
second layer comes with a softplus activation function that ensures that positive variances
are predicted. From there, the predicted means and variances are fed into the negative log-
likelihood calculation as in 4.2.2 and are summed across all covariates for the loss on our
continuous covariates.

For the Gaussian with full covariance matrix, we need to model variances and covariances.
Instead of modeling the entire matrix Σ, we use the Cholesky decomposition Σ = LLT

and model L, a lower triangular matrix with positive diagonal entries. As in the diagonal
Gaussian case, we add a second linear layer alongside the first, which outputs all entries of
L. We use the softplus activation on the diagonal entries of L to ensure positivity. To ensure
numerical stability, we use PyTorch’s MultivariateNormal distribution to compute negative
log-likelihood.
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5.1.2 Training

Our training procedure for each of our models begins with a grid search over multiple hy-
perparamter settings. After selecting hyperparameters, we train the two boxes of the model
on the data collected from the observational regime. The two boxes are couple and are
trained with teacher forcing. We use binary cross-entropy loss for the categorical covariates
and either mean squared-error or negative log-likelihood loss for the continuous covariates,
depending on the model. We use Adam as our optimizer and CosineAnnealingWarmRestarts
as our learning rate scheduler.

To train the ensembles, we simply train 20 individual base models with different random
seeds that control parameter initializations and the order in which training data is fed into
the model. For G-Net Ensemble, we trained 20 G-Net models on seeds 0 to 19; for G-
Transformer Ensemble, we trained 20 G-Transformer models on seeds 0 to 19.

5.1.3 Simulation

After training our models, we simulate once once for each of the counterfactual treatment
strategies. For the CVSim dataset, we simulate under gc1 and gc2; for the Cancer Growth
dataset, we simulate under no treatment, radiotherapy, chemotherapy, and both. Simulation
happens as described in 4.1. For a fixed counterfactual treatment strategy, we simulate 100
trajectories per patient.

For the sake of fair comparison, we require that the ensemble models produce exactly 100
trajectories per patient as well. Since our ensembles are composed of 20 models, each model
contributes 5 trajectories per patient to the overall ensemble’s collection of simulations.

5.1.4 Evaluation

We perform model evaluation with two metrics: calibration and individual-level RMSE. For
each of the models, we use the 100 simulated trajectories per patient to compute per-time-
step calibrations and individual-level RMSEs as in 4.3.

For the Cancer Growth dataset, we only simulate under the counterfactual treatment
strategies for four time-steps. This allows us to analyze RMSEs with more granularity, so we
calculate per-time-step individual-level RMSEs in this case. We also divide by the maximum
tumor volume (1150cm3) for percentage RMSEs.

At this stage, we use these metrics to choose between the different versions of the ensemble
models. We choose primarily using calibration because calibration reflects the quality of the
model’s predictive uncertainty better than RMSE does.

5.2 Clinical Decision Making

While well-calibrated models are preferable to badly-calibrated ones, calibration doesn’t
exactly reflect the usefulness of a model in clinical settings. Doctors care greatly about
preventing worst-case outcomes in patients, and a model’s ability to predict such outcomes
aren’t perfectly reflected in the calibration metric. This mismatch in objectives motivates
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this section’s experiment, which emulates how a doctor might use uncertainty predictions in
a clinical setting.

For the CVSim dataset, we focus on the problem of administering fluid to a patient. If
a patient’s blood pressure (mean arterial pressure, or MAP) is low, a doctor might want to
administer fluids to increase blood pressure and blood perfusion to the organs. However, too
much fluid leads to a higher risk of developing pulmonary edema, which is indicated by the
pulmonary venous pressure (PVP) covariate. This balancing act in administering just the
right amount of fluid may be difficult for a doctor and can be made easier with uncertainty
prediction.

For the Cancer Growth dataset, we focus on the problem of minimizing the chance of
cancerous tumors growing too large. There is no trade-off between treatment effects similar
to the one in the CVSim dataset. Rather, we seek to reduce occurrences in which patient
tumors grow to dangerous sizes. This goal of predicting for and preventing uncommon but
significant outcomes is also made easier with uncertainty prediction.

5.2.1 Decision Rules

Before we go into detail about the methodology of this experiment, we must define objective
functions that emulate those of a doctor. For the CVSim dataset, doctors want to avoid
worst-case scenarios in which a patient’s MAP drops too low and also cases in which a
patient’s PVP rises too high. For the Cancer Growth dataset, doctors want to avoid scenarios
in which a patient’s cancer volume rises too high.

For the CVSim dataset, the proportion of time-steps function is the proportion of time-
steps in which a patient’s MAP drops below some threshold or their PVP rises above some
threshold. On the other hand, the proportion of patients function is the proportion of
patients in which a patient’s MAP drops below some threshold or their PVP rises above
some threshold at some point in their trajectory. We include results for both functions, but
we focus on the proportion of time-steps function because it better represents the duration
of time during which the patients are unwell.

For the Cancer Growth dataset, the final tumor volume function is proportion of patients
in which a patient’s cancer volume rises above some threshold on the final time-step. The
function is designed this way because in the real world, we care more about the patient’s
final cancer volume than the patient’s history of cancer before it, and we also hope that this
volume doesn’t get too large.

5.2.2 Methodology

Our methodology emulates the decision-making process that a doctor may use when deciding
a treatment strategy for a patient. If a doctor wanted to choose between multiple treatment
strategies, they would choose the one that they predict would result in the best patient
outcome according to some utility function that gives importance to avoiding especially
poor outcomes. Such functions are described in the above section.

For the CVSim dataset, our decision-making task is as follows. We pre-select MAP and
PVP thresholds and either proportion of time-steps or proportion of patients as our objective
function. Note that since we want to avoid time-steps in which MAP is too low or PVP is
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too high, we want to minimize the objective. For each patient, our task is to decide between
gc1 and gc2 for treatment.

For the Cancer Growth dataset, we pre-select cancer volume thresholds for our final
tumor volume function. We want to minimize this objective, and for each patient, we decide
between no treatment, radiotherapy, chemotherapy, or chem-rad for treatment.

We decide with some trained G-Net or G-Transformer based model. Using the model, we
simulate 100 trajectories for the patient under each of the counterfactual treatment regimes.
We compute the objective functions between all sets of simulations, and we choose the
treatment strategy that minimizes the objective. This process is done for each patient on an
individualized basis.

5.2.3 Evaluation

With the choice of treatment strategy for every patient, we evaluate our model’s perfor-
mance by computing the objective function for the patient’s ground truth trajectory corre-
sponding to the chosen treatment strategy. We compute this result across all our G-Net
and G-Transformer based models, across multiple sets of (PVP and MAP, or cancer vol-
ume) thresholds, and across all our objective functions. We also compute the results that
would occur if we naively chose one of the counterfactual treatment strategies for every single
patient; we use these as baselines.
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Chapter 6

CVSim Results

In this chapter, we present the results of the CVSim experiments described in chapter 5. The
experiments for calibration and RMSE quantify the quality of the uncertainty estimation and
the predictive accuracy of the models. The experiments for decision-making quantify the
usefulness of uncertainty estimation in real settings. We include a brief analysis on how
ensemble size affects model calibration. Finally, we include a brief case study that illustrates
the value of adding uncertainty quantification to our models.

6.1 Evaluation of Uncertainty Predictions

For each of the G-Net and G-Transformer based models, we performed experiments as de-
scribed in 5.1. For each model and on each counterfactual regime (gc1 and gc2), we calculated
the per time-step calibration and the individual-level RMSE. To compare between uncer-
tainty quantification methods, we group results from the G-Net based models separately
from the G-Transformer based results.

6.1.1 G-Net Based Model Calibrations and RMSEs

For the G-Net based models, both methods of uncertainty quantification succeeded in im-
proving calibration uniformly across all time-steps. Of the many training and simulation
methods available for the ensemble model, training with NLL with respect to a diagonal
Gaussian and simulating with empirical noise performed the best, so we present those re-
sults. While the calibration results don’t meet the ideal of 0.90, improving by a couple
percent as shown in the plots is still a significant improvement. Interestingly, while the base
G-Net model’s calibration decays into further time-steps, the calibrations of the enhanced
models don’t exhibit that effect as much.

As for the RMSE results, we see that the individual-level RMSEs of the models are all at
similar levels. Adding uncertainty quantification even has the potential to improve RMSE
under some counterfactual regimes, as with G-Net with Dropout under gc2.
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(a) CVSim under gc1 (b) CVSim under gc2

Figure 6.1: Per time-step calibration for G-Net based models on CVSim under counterfactual
regimes gc1 and gc2. Ideal is 0.90. G-Net Ensemble is trained on NLL w.r.t. a diagonal
Gaussian and simulated with empirical noise.

Individual Level
Model RMSEgc1 RMSEgc2

G-Net 1.022 1.114
G-Net Ensemble (NLL) 1.027 1.119
G-Net with Dropout 1.033 1.111

G-Net with Dropout Ensemble 1.027 1.115

Table 6.1: Individual-level RMSEs for G-Net based models on CVSim under counterfactual
regimes gc1 and gc2. Bolded is best for each of gc1 and gc2. G-Net Ensemble is trained on
NLL w.r.t. a diagonal Gaussian and simulated with empirical noise.

6.1.2 G-Transformer Based Model Calibrations and RMSEs

For the G-Transformer based models, both methods of uncertainty quantification improved
calibration, though not by significant amounts. Of the many training and simulation meth-
ods available for the ensemble model, training with MSE and simulating with empirical noise
performed the best, so we present those results. Under gc1, all three models have similar cal-
ibrations, with G-Transformer Ensemble performing marginally better than the base model.
Under gc2, G-Transformer Ensemble’s edge in calibration over the base model is more signif-
icant. Under both counterfactual regimes, G-Transformer with Dropout offers only marginal
benefits in calibration over the base model, if at all.

We again observe that the individual-level RMSEs of the models are all at similar lev-
els. As before, adding uncertainty quantification sometimes improves RMSE, as with G-
Transformer Ensemble under gc1.
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(a) CVSim under gc1 (b) CVSim under gc2

Figure 6.2: Per time-step calibration for G-Transformer based models on CVSim under
counterfactual regimes gc1 and gc2. Ideal is 0.90. G-Transformer Ensemble is trained on
MSE and simulated with empirical noise.

Individual Level
Model RMSEgc1 RMSEgc2

G-Transformer 1.017 1.102
G-Transformer Ensemble (MSE) 1.013 1.105

G-Transformer with Dropout 1.017 1.109
G-Transformer with Dropout Ensemble 1.014 1.099

Table 6.2: Individual-level RMSEs for G-Transformer based models on CVSim under coun-
terfactual regimes gc1 and gc2. Bolded is best for each of gc1 and gc2. G-Transformer Ensemble
is trained on MSE and simulated with empirical noise.

6.2 Clinical Decision-Making

We now present the results for the clinical decision making experiment as described in 5.2.
We present results from both the G-Net and G-Transformer based models on the propor-
tion of time-steps and proportion of patients function tasks. We select the same ensemble
variants that we used for evaluating calibration and RMSE in the previous section. For the
proportion of time-steps task, we fixed the PVP threshold to 20 and analyzed results with
MAP thresholds from the set {40, 45, 50, 55}. For the proportion of patients task, we used
MAP thresholds from {35, 40, 45, 50, 55}. We compared the model performances with the
baselines of always choosing gc1 or always choosing gc2 for every patient.

Note that we care more about the proportion of time-steps task because we care about
the duration of time a patient’s condition is poor.

37



6.2.1 G-Net Based Decision Making

For the G-Net based models, both uncertainty quantification methods improved the base
model’s performance on the decision-making task. G-Net Ensemble at least matches G-Net’s
performance across all thresholds and tasks, while G-Net with Dropout performs significantly
better. Notably, while G-Net often fails to outperform always choosing gc1 on the proportion
of time-steps task, G-Net with Dropout outperforms gc1 across all the thresholds. The same
nearly holds true for the proportion of patients task, where G-Net with Dropout very nearly
matches the performance of always choosing gc1. This suggests that for the G-Net based
models, uncertainty quantification not only improves clinical decision making performance.
It can also make G-Net based models more viable for individual-level treatment rather than
population-level treatment.

Another point to note is that uncertainty quantification methods improve G-Net’s ability
to predict rare events. For example, the event of a patient’s MAP falling below 40 or their
PVP rising above 20 happens in just 0.5% of time-steps and in roughly 10% of patients if
gc1 is always chosen as the treatment strategy. As the MAP threshold lowers (indicating
more rare events), the base G-Net model begins performing worse than always choosing gc1.
However, G-Net with Dropout still outperforms gc1 in those tasks, suggesting that G-Net
with Dropout is better than the base G-Net model at predicting rare events. This property
is especially useful for our task of clinical decision-making because those rare events are often
the ones that clinicians want to prevent the most.

(a) Proportion of time-steps task (b) Proportion of patients task

Figure 6.3: Decision making tasks for G-Net based models for varying MAP thresholds and
a fixed PVP threshold at 20. Lower is better. G-Net Ensemble is trained on NLL w.r.t. a
diagonal Gaussian and simulated with empirical noise.

6.2.2 G-Transformer Based Decision Making

For the G-Transformer based models, only deep ensemble improved the base model’s per-
formance on the decision-making task. G-Net with Dropout performs slightly worse than
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(a) Proportion of time-steps task (b) Proportion of patients task

Figure 6.4: Percent difference in performance on decision making tasks between G-Net En-
semble and the base G-Net model. Lower (greener) is better. G-Net Ensemble is trained on
NLL w.r.t. a diagonal Gaussian and simulated with empirical noise.

(a) Proportion of time-steps task (b) Proportion of patients task

Figure 6.5: Percent difference in performance on decision making tasks between G-Net w/
Dropout and the base G-Net model. Lower (greener) is better.

the base G-Transformer model. As we saw before, one of the uncertainty quantification
methods outperforms always choosing gc1 (and gc2), though this time it’s deep ensemble
instead of variational dropout. As was the case with G-Net, this suggests that uncertainty
quantification can make G-Transformer more effective at individual-level predictions.

Again as we saw before with G-Net, uncertainty quantification for G-Transformer can
make it more effective at predicting rare events. While the base G-Transformer model is
outperformed by always choosing gc1 for the MAP < 50 threshold (which happens just 1%
of the time under gc1), the G-Transformer Ensemble model outperforms always choosing gc1
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across all thresholds.

(a) Proportion of time-steps task (b) Proportion of patients task

Figure 6.6: Decision making tasks for G-Transformer based models for varying MAP thresh-
olds and a fixed PVP threshold at 20. Lower is better. G-Transformer Ensemble is trained
on MSE and simulated with empirical noise.

(a) Proportion of time-steps task (b) Proportion of patients task

Figure 6.7: Percent difference in performance on decision making tasks between G-
Transformer Ensemble and the base G-Net model. Lower (greener) is better. G-Transformer
Ensemble is trained on MSE and simulated with empirical noise.
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(a) Proportion of time-steps task (b) Proportion of patients task

Figure 6.8: Percent difference in performance on decision making tasks between G-
Transformer w/ Dropout and the base G-Net model. Lower (greener) is better.

6.3 Ensemble Size Comparison

As an aside to the calibration and RMSE experiments, we also compared calibration results
for various ensemble sizes to determine how additional ensemble members may benefit model
performance. For the G-Net Ensemble and G-Transformer Ensemble models, we plotted per
time-step calibration on gc1 and gc2 while varying ensemble sizes. We chose {1, 2, 5, 10, 20}
as the sizes to examine. We made sure to include 100 simulated trajectories for each of the
ensembles to compare fairly.

We found that increasing ensemble size improved calibration across all models and coun-
terfactual regimes. For most models and counterfactual regime pairings, calibration improved
only marginally between the 10-model and 20-model ensembles. For G-Transformer Ensem-
ble under gc2, however, the 20-model ensemble displays significant improvement over the
10-model ensemble during the later time-steps.
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(a) CVSim under gc1 (b) CVSim under gc2

Figure 6.9: Per time-step calibration for G-Net Ensemble for various ensemble sizes on
CVSim under counterfactual regimes gc1 and gc2. Darker lines are larger ensembles. Ideal
is 0.90. G-Net Ensemble is trained on NLL w.r.t. a diagonal Gaussian and simulated with
empirical noise.

(a) CVSim under gc1 (b) CVSim under gc2

Figure 6.10: Per time-step calibration for G-Transformer Ensemble for various ensemble sizes
on CVSim under counterfactual regimes gc1 and gc2. Darker lines are larger ensembles. Ideal
is 0.90. G-Transformer Ensemble is trained on MSE and simulated with empirical noise.

6.4 Case Study

To further illustrate the value added by uncertainty quantification, we present a case study of
patients in the CVSim datasets. For both patients, we compare counterfactual predictions for
gc1 produced by the G-Net and G-Net with Dropout models. We purposefully chose patients
that encountered rare, adverse outcomes in their ground truth trajectories to see how well
the two models predicted such an event in their simulations. For each model, we plotted the
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patient’s ground truth trajectories, the model’s 100 simulated patient trajectories, and the
model’s prediction (obtained by taking a per time-step average of the 100 simulations).

We specifically looked at trajectories of MAP and PVP because those were the relevant
covariates in the decision making experiments. More specifically, we focused on patients
whose MAP values fell very low or patients whose PVP values rose very high.

We can see that with patients 56 and 123, whose MAP values dipped below 30, G-
Net with Dropout was able to predict dips of such magnitude while the base G-Net model
wasn’t. With patients 207 and 386, whose PVP values rose above 25, the difference in the
simulations between the two models is even more pronounced. For patient 386, for example,
G-Net didn’t come close to predicting that the patient’s PVP might spike, whereas G-Net
with Dropout had many simulations indicating that it might happen. This indicates that
G-Net with Dropout is much better at predicting for rare events than G-Net, which may not
predict for such events at all.

(a) G-Net Simulations (b) G-Net with Dropout Simulations

Figure 6.11: MAP Simulations from G-Net and G-Net with Dropout for patient 56 under
counterfactual treatment strategy gc1. VD=variational dropout.
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(a) G-Net Simulations (b) G-Net with Dropout Simulations

Figure 6.12: MAP Simulations from G-Net and G-Net with Dropout for patient 123 under
counterfactual treatment strategy gc1. VD=variational dropout.

(a) G-Net Simulations (b) G-Net with Dropout Simulations

Figure 6.13: PVP Simulations from G-Net and G-Net with Dropout for patient 350 under
counterfactual treatment strategy gc1. VD=variational dropout.
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(a) G-Net Simulations (b) G-Net with Dropout Simulations

Figure 6.14: PVP Simulations from G-Net and G-Net with Dropout for patient 386 under
counterfactual treatment strategy gc1. VD=variational dropout.
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Chapter 7

Cancer Growth Results

Our experiments for the Cancer Growth dataset are twofold: we analyze the calibration and
RMSE of every model, and we evaluate the models on a decision-making task.

7.1 Evaluation of Uncertainty Predictions

We calculated calibrations and RMSEs for all models and for each of our four counterfactual
regimes. Since the Cancer Growth dataset has just four time-steps of counterfactual treat-
ment, we present individual-level RMSEs for each time-step for greater granularity. Similarly
to CVSim, we group results around the base model: G-Net and G-Transformer.

7.1.1 G-Net Based Model Calibrations and RMSEs

Of the ensemble variants for G-Net, we found that training with NLL and simulating with
empirical noise performed the best, so we present those results. We found that the models
with uncertainty quantification had better RMSEs than the base model under no treatment
and chemotherapy, while the base model performed better on the other two counterfactual
regimes.

For calibration, we focus our analysis on the no treatment and chemotherapy treat-
ment strategies because all the models produced greatly biased estimates for radiotherapy
and chem-rad. With such biased estimates, calibration becomes less meaningful — simply
adding noise to biased simulations will increase calibration. Focusing on no treatment and
chemotherapy, we see that G-Net Ensemble is better calibrated than G-Net under chemother-
apy but worse under no treatment. G-Net with Dropout’s simulations are too noisy, with
calibrations close to 1.

7.1.2 G-Transformer Based Model Calibrations and RMSEs

Of the ensemble variants for G-Transformer, we found that training with MSE and simu-
lating with empirical noise performed the best, so we present those results. We found that
the models with uncertainty quantification had better RMSEs than the base model under
every treatment strategy, with G-Transformer Ensemble having the best RMSE under no
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t G-Net G-Net Ensemble (NLL) G-Net with Dropout

No 1 0.25 0.25 0.26
Treat 2 0.52 0.41 0.50

3 0.77 0.49 0.73
4 1.03 0.59 0.98
A 0.64 0.44 0.62

Radio 1 3.60 5.31 4.41
2 3.64 5.14 4.39
3 3.64 4.82 4.27
4 3.73 4.60 4.24
A 3.65 4.97 4.33

Chemo 1 0.36 0.26 0.29
2 0.65 0.41 0.53
3 0.87 0.49 0.72
4 0.97 0.56 0.81
A 0.71 0.43 0.59

Radio 1 3.51 5.03 4.02
Chemo 2 2.31 3.64 2.87

3 1.52 2.56 1.97
4 1.17 2.02 1.41
A 2.31 3.31 2.57

Table 7.1: Percent RMSEs for G-Net based models on Cancer Growth data for various
prediction horizons. Best performing models in bold. G-Net Ensemble is trained on NLL
w.r.t. a diagonal Gaussian and simulated with empirical noise.

G-Net G-Net Ensemble (NLL) G-Net with Dropout

No Treat 0.90 0.95 0.98
Radio 0.55 0.59 0.48
Chemo 0.66 0.93 0.99

ChemRad 0.36 0.74 0.84

Table 7.2: Calibrations for G-Net based models on Cancer Growth under the four counter-
factual regimes. Calculated using the 5th and 95th quantiles; 0.90 is ideal. G-Net Ensemble
is trained on NLL w.r.t. a diagonal Gaussian and simulated with empirical noise.

treatment and G-Transformer with Dropout having the best under radiotherapy, chemother-
apy, and chem-rad. It’s uncommon to see one model outperforming another under all four
counterfactual regimes, but G-Transformer with Dropout achieves just that against the base
G-Transformer model.

For calibration, we again focus our analysis on the no treatment and chemotherapy
treatment strategies. G-Transformer Ensemble and G-Transformer with Dropout are better
calibrated than G-Net under chemotherapy but are worse under no treatment. The mod-
els with uncertainty quantification have noisy estimates for the no treatment regime, with
calibrations close to 1.
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t G-Transformer G-Transformer Ensemble (MSE) G-Transformer with Dropout

No 1 0.42 0.38 0.38
Treat 2 0.73 0.63 0.67

3 0.95 0.79 0.84
4 1.19 0.98 1.08
A 0.82 0.70 0.74

Radio 1 3.60 3.73 3.55
2 3.54 3.62 3.36
3 3.56 3.47 3.24
4 3.74 3.40 3.30
A 3.61 3.56 3.36

Chemo 1 0.40 0.40 0.40
2 1.33 1.35 1.07
3 2.44 2.48 2.04
4 3.31 3.37 2.71
A 1.87 1.90 1.56

Radio 1 3.25 3.42 3.17
Chemo 2 2.44 2.47 2.40

3 1.82 1.72 1.78
4 1.45 1.22 1.33
A 2.24 2.21 2.17

Table 7.3: Percent RMSEs for G-Transformer based models on Cancer Growth data for
various prediction horizons. Best performing models in bold. G-Transformer Ensemble is
trained on MSE and simulated with empirical noise.

G-Transformer G-Transformer Ensemble (MSE) G-Transformer with Dropout

No Treat 0.87 1.00 0.98
Radio 0.60 0.76 0.74
Chemo 0.72 0.88 0.92

ChemRad 0.69 0.83 0.78

Table 7.4: Calibrations for G-Transformer based models on Cancer Growth under the four
counterfactual regimes. Calculated using the 5th and 95th quantiles; 0.90 is ideal. G-
Transformer Ensemble is trained on MSE and simulated with empirical noise.

7.2 Clinical Decision-Making

We now present results for the clinical decision-making experiment for the Cancer Growth
dataset. We present results from the G-Net and G-Transformer based models. We select the
same ensemble variants that we used for evaluating calibration and RMSE in the previous
section. For the decision making task, we analyzed results with cancer volume thresholds
from the set {20, 40, 60, 80}.

Across every threshold and model type, the models with uncertainty quantification out-
perform the base models in the decision making task. The deep ensemble and variational
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dropout methods perform similarly on the decision making tasks. We see again that the
models with uncertainty quantification perform better in predicting for rare events than
their baseline counterparts.

Threshold G-Net G-Net Ensemble(NLL) G-Net with Dropout

20 0.129 0.086 0.081
40 0.068 0.039 0.038
60 0.053 0.026 0.026
80 0.037 0.015 0.015

Table 7.5: Frequency that the tumor volume threshold is crossed on the final time-step if
we decide with the above G-Net based models. Lower is better. Best performing models in
bold. G-Net Ensemble is trained on NLL w.r.t. a diagonal Gaussian and simulated with
empirical noise.

Threshold G-Transformer G-Transformer Ensemble (MSE) G-Transformer with Dropout

20 0.121 0.088 0.086
40 0.070 0.054 0.052
60 0.043 0.041 0.044
80 0.040 0.030 0.034

Table 7.6: Frequency that the tumor volume threshold is crossed on the final time-step if
we decide with the above G-Transformer based models. Lower is better. Best performing
models in bold. G-Transformer Ensemble is trained on MSE and simulated with empirical
noise.
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Chapter 8

Conclusion

This thesis builds upon G-Net and G-Transformer, two neural network frameworks for pro-
ducing counterfactual predictions under dynamic and time-varying clinical treatment strate-
gies. While the base G-Net and G-Transformer models only take into account the uncertainty
in patient outcomes, they do not account for model uncertainty. To address this, we enhance
G-Net and G-Transformer using deep ensembles and variational dropout, two methods that
take into account both types of uncertainty. With greater measures of uncertainty, doctors
would be better-equipped to make safer and more accurate decisions in clinical settings.

To evaluate our models, we used two simulated datasets: CVSim, which simulates the
human body’s cardiovascular system, and Cancer Growth, which simulates human tumor
growth. For each dataset, we measured each model’s predictive performance using calibration
and RMSE. We also evaluated our models on constructed decision making tasks that emulate
the decision making process that doctors undergo in real-life clinical settings.

We found that on the CVSim dataset, both methods of uncertainty quantification im-
proved the calibration of the G-Net and G-Transformer models while maintaining or even
improving predictive accuracy as measured by RMSE. Additionally, per time-step calibra-
tion decayed more slowly for the models with uncertainty quantification, indicating that
they may be useful in learning long-term dependencies. The results from the Cancer Growth
dataset were less interpretable because all models were biased on the radiotherapy and chem-
rad counterfactual regimes. Under the no treatment and chemotherapy regimes, we found
that uncertainty quantification improved predictive accuracy. On the decision making tasks,
we found that the uncertainty quantification methods outperformed the base G-Net and
G-Transformer models. Notably, they were especially strong at predicting for rare adverse
events, which are exactly the events that doctors want to avoid in clinical settings.

There are a few extensions to this work that we may explore in the future. We’d like to
apply our methods to real-world clinical datasets like MIMIC-IV. Evaluating the quality of
our uncertainty predictions would be challenging in such settings where we only have access
to the ground truth, so we would need to develop some predictive checks. Since neural
network architectures are greatly improved by larger amounts of training data, it would be
interesting to expand our dataset for future experiments. This would especially benefit the
evaluation of the uncertainty quantification methods and how they perform on rare events.
There is also some exploration to be done on parametric simulation methods for the deep
ensemble based models. If we could use feature transformations to make the conditional
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distributions of covariates more closely resemble Gaussians, simulating parametrically from
a learned Gaussian rather than from an emprical set of residuals could have promise.

We hope that the enhanced G-Net and G-Transformer models presented in this work
can help doctors make more accurate and informed clinical decisions, resulting in better
patient outcomes overall. Our methods are flexible, so they can be used even outside of
clinical applications to any setting which involves counterfactual prediction under dynamic
and time-varying interventions.
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Appendix A

A.1 CVSim Hyperparameter Settings

Table A.1: Hyperparameter search space in CVSim experiments. We perform no tuning for G-
Transformer Ensemble because we can copy hyperparameters from the base G-Transformer model.

Hyperparameters Search Range
Number of Layers 2, 3

Hidden Dimension (Categorical) 64, 128
Hidden Dimension (Continuous) 64, 128

Batch Size 16
G-Net Learning Rate 0.0001

Batch Size 16, 32
Number of Layers 1, 2, 4

G-Net Ensemble Hidden Dimension (Continuous) 32, 64, 128
(NLL, diagonal) Learning Rate 0.01, 0.001

Batch Size 16, 32
Number of Layers 1, 2, 4

Hidden Dimension (Continuous) 32, 64, 128
G-Net Dropout Rate 0.05, 0.1, 0.2

with Dropout Learning Rate 0.01, 0.001
Number of Layers 3
Hidden Dimension 32, 64, 128

Batch Size 16
G-Transformer Learning Rate 0.0001

Number of Layers 3
Hidden Dimension 32, 64, 128

G-Transformer Batch Size 16
with Dropout Learning Rate 0.0001
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A.2 Cancer Growth Hyperparameter Settings

Table A.2: Hyperparameter search space in Cancer Growth experiments. We perform no tuning
for G-Transformer Ensemble because we can copy hyperparameters from the base G-Transformer
model.

Hyperparameters Search Range

Number of Layers 1, 2, 4
Hidden Dimension (Continuous) 64

Batch Size 16, 32
G-Net Learning Rate 0.001, 0.01

Number of Layers 1, 2, 4
Hidden Dimension (Continuous) 64

G-Net Ensemble Batch Size 16, 32
(NLL, diagonal) Learning Rate 0.001, 0.01

Number of Layers 1, 2, 4
Hidden Dimension (Continuous) 64

Batch Size 16, 32
G-Net Dropout Rate 0.1, 0.2

with Dropout Learning Rate 0.001, 0.01

Number of Layers 1, 2, 3
Hidden Dimension (Continuous) 64, 128

Batch Size 16, 32
G-Transformer Learning Rate 0.0001, 0.001

Number of Layers 1, 2, 3
Hidden Dimension (Continuous) 64, 128

G-Transformer Batch Size 16, 32
with Dropout Learning Rate 0.0001, 0.001
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A.3 G-Net with Dropout Ensemble Results

Calibration Results

(a) CVSim under gc1 (b) CVSim under gc2

Figure A.1: Per time-step calibration for G-Net based models on CVSim under counterfactual
regimes gc1 and gc2. Ideal is 0.90.

Decision Making Results

(a) Proportion of time-steps task (b) Proportion of patients task

Figure A.2: Percent difference in proportion of time-steps performance between G-Net w/
Dropout Ensemble and the base G-Net model. Lower (greener) is better.
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A.4 G-Transformer with Dropout Ensemble Results

Calibration Results

(a) CVSim under gc1 (b) CVSim under gc2

Figure A.3: Per time-step calibration for G-Transformer based models on CVSim under
counterfactual regimes gc1 and gc2. Ideal is 0.90.

Decision Making Results

(a) Proportion of time-steps task (b) Proportion of patients task

Figure A.4: Percent difference in proportion of time-steps performance between G-
Transformer w/ Dropout Ensemble and the base G-Net model. Lower (greener) is better.

56



A.5 Alternative Implementations for Deep Ensemble

As mentioned in 4.2.2, the training and simulation process for deep ensemble can be im-
plemented in many ways. We include two methods that we explored: training a diagonal
Gaussian and simulating from it parametrically, and training a Gaussian with full covariance
matrix and simulating from it.

Train Diagonal Gaussian, Simulate Parametrically

(a) CVSim under gc1 (b) CVSim under gc2

Figure A.5: Per time-step calibration for G-Transformer based models on CVSim under counter-
factual regimes gc1 and gc2. Ideal is 0.90.

Train Covariance Matrix, Simulate Parametrically

(a) CVSim under gc1 (b) CVSim under gc2

Figure A.6: Per time-step calibration for G-Net based models on CVSim under counterfactual
regimes gc1 and gc2. Ideal is 0.90.
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