
Exploiting irregular parallelism to accelerate FPGA
routing

by

Alan Y. Zhu
S.B. Writing and Computer Science and Engineering

Massachusetts Institute of Technology, 2023

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2024

© 2024 Alan Y. Zhu. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Alan Y. Zhu
Department of Electrical Engineering and Computer Science
August 30, 2024

Certified by: Daniel Sanchez
Professor of Electrical Engineering and Computer Science, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

https://creativecommons.org/licenses/by-nc-nd/4.0/

2

Exploiting irregular parallelism to accelerate FPGA routing
by

Alan Y. Zhu

Submitted to the Department of Electrical Engineering and Computer Science
on August 30, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

ABSTRACT

In the era of hardware specialization, field-programmable gate arrays (FPGAs) provide
a promising platform for computer architects, combining the programmability of software
with the speed and performance of hardware. Despite this, compiling hardware programs
onto FPGAs can be incredibly time-consuming, making it hard to develop and iterate on
complex FPGA programs. Of particular relevance is the routing phase, which takes a circuit’s
technology-mapped netlist and routes its signals using the switches and wires present on
a given FPGA architecture, often with a target of minimizing critical path delay. This
optimization problem is known to be NP-hard, and existing algorithms for approximating it
exhibit very little regular parallelism.

This thesis accelerates the routing phase of VTR 8.0, a commonly used, open-source
research tool for FPGA CAD flow. We show that despite the lack of regular parallelism,
routing still exhibits significant irregular parallelism. This parallelism can be exploited on
parallel architectures that provide hardware support for ordered tasks and fine-grained spec-
ulation, such as the Swarm architecture. Using Swarm, we exploit the parallelism present
at the core of VTR’s algorithm, achieving a 35.9x speedup on a single routing iteration of a
large benchmark (cholesky_mc) on 256 cores.

Thesis supervisor: Daniel Sanchez
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I am very grateful to have had the support of many people during the completion of this
thesis project, who I will do my best to thank accordingly:

With regards to the thesis itself, I am incredibly thankful to Professor Daniel Sanchez for
introducing me to the FPGA routing problem and the Swarm architecture; I have learned
so much about the world of computer architecture and irregular parallelism in the process,
and he has helped me point my focus in the right direction when there were so many more
places to become distracted or lost. I am also very grateful to Fares Elsabbagh, who sur-
vived my unceasing barrage of questions, helped me navigate the innumerable challenges
which cropped up during this project, and has taught me about everything from dataflow
architectures to the details of how, exactly, to navigate all the infrastructure the group has.

With regards to the arc of my academic interests, I am especially grateful for Silvina
Hanono Wachman and Professor Mengjia Yan, whose teaching in 6.004 first piqued my
interest in computer systems and architecture and led me down the path to where I am today.
I am additionally thankful to Silvina, Professor Christina Delimitrou, and Joe Steinmeyer for
having me as a teaching assistant for 6.191 and 6.190; serving as a TA for their classes was
incredibly rewarding and helped keep my skills sharp, contributing to a number of specific
tricks used in this thesis.

I’m thankful to many of the MIT staff and faculty who have taken an interest in my
progress and given me great advice, academic or otherwise. I’m especially thankful to my
undergraduate advisor, Nick Montfort; my boss at MIT Admissions, Chris Peterson; and my
academic administrators, Shannon Larkin and Katrina LaCurts, all of whom have helped
me through one crisis or another with great care and thoughtfulness.

I am incredibly grateful for the support of all of my friends, who often believed in me even
when I did not. I am particularly grateful to my former roommates, Tong Zhao, Matthew
Ho, and Krit Boonsiriseth, as well as my eternal first reader, Fatima Abbasi. Shuli Jones,
Paolo Adajar, Jonathan Huang, and Tristan Shin have always been great sources of advice
and comfort, particularly when it comes to confronting the existential question of “what
comes next?” I also could not have made it through this year and summer without the
friendship of Katie Kitzinger, Alice Le, Silu Shen, Kelsey Glover, and so many others.

Last, but certainly not least, I owe a world of gratitude to my sister, Megan. I’m so
thankful to have had a year here with you around, so proud of all you’ve done already, and
so excited to see what you do next.

5

6

Contents

List of Figures 9
List of Tables 11

1 Introduction 13
1.1 Contributions . 14

2 Background 17
2.1 The FPGA Routing Problem . 17

2.1.1 Pathfinder . 18
2.1.2 Related Work . 20
2.1.3 Verilog-to-Routing (VTR) . 22

2.2 Swarm and Irregular Parallelism . 23
2.2.1 Swarm . 24
2.2.2 Fractal . 26

3 Implementation 27
3.1 High-level Techniques . 27

3.1.1 Nested Loops and Continuations . 27
3.1.2 Spawner Tasks . 28

3.2 Accelerating A* Search . 29
3.2.1 Approach . 29
3.2.2 Timestamps . 31

3.3 A* in Parallel . 32
3.3.1 Repeated Searches . 32
3.3.2 Route Tree Forwarding . 33

3.4 Determinism . 34

4 Evaluation 37
4.1 Experimental Setup . 37

4.1.1 Modeled System . 37
4.1.2 Baseline . 38

4.2 Routing Performance . 40
4.2.1 Full Run . 40
4.2.2 Single Iteration . 40

4.3 Roadblocks . 45
4.3.1 Amdahl’s Law . 45

7

4.3.2 False Dependences . 45

5 Conclusion 47
5.1 Future Work . 47

References 49

8

List of Figures

2.1 A Swarm chip with 64 tiles. 24
2.2 An example Swarm task for breadth-first-search. 25
2.3 The Fractal execution model. 26

3.1 Nested for loops in Fractal. 28
3.2 Two approaches to spawning tasks quickly: recursive spawners, for known-

tripcount loops, and chain expansion, for serializing loop variables. 29
3.3 An example A* search on a graph with heuristic h, with estimated total

distance as timestamps. Even though both A and Y enqueue tasks to relax
X, the enqueue from A has a lower estimated cost, leading to the abort of the
task from X and its children. 30

3.4 Our route tree forwarding scheme. Note that this does not include the serial-
ized, full-FPGA searches. 34

3.5 Timestamps for deterministic and non-deterministic implementations of A*. 34

4.1 Speedup vs. core count for tseng, neuron, and cholesky_mc. 42
4.2 Cycle breakdowns for tseng, neuron, and cholesky_mc, from left to right.

Note that the 1 core configuration did not complete on cholesky_mc. 43
4.3 Cycle breakdowns for neuron with infinite queues. 44

9

10

List of Tables

4.1 Configuration of the modeled systems. 38
4.2 List of benchmarks used for evaluation; consolidated nets refers to the number

of nets produced by VPR before routing. 39
4.3 Routing performance of default VPR, VPR with monotonic relaxations, and

our baseline on larger benchmarks. Smaller values are better. 39
4.4 Routing performance of Baseline and Swarm (256 cores, deterministic) on full

runs of smaller benchmarks. 40
4.5 Routing time of Baseline and Swarm (256 cores) on single routing iterations

of each benchmark. 41
4.6 Routing resource graph nodes and proportion of committed cycles occupied

by net initialization for each benchmark. 42

11

12

Chapter 1

Introduction

Field-programmable gate arrays (FPGAs) have become increasingly popular as industrial

demand for hardware accelerators has risen. In contrast to application-specific integrated

circuits (ASICs), FPGAs can be reconfigured by the end user, promising the performance

of hardware with reprogrammability of software. This has allowed programmers to accel-

erate applications which require significant flexibility over time, such as software-defined

networking [1] or search engine ranking [2], and the widespread availability of FPGAs has

allowed for innovation by individuals and companies which would otherwise not have access

to specialized hardware platforms.

Unfortunately, as modern systems have gotten larger, compiling programs onto FPGAs

has become incredibly complex and time-consuming. FPGA programs are typically specified

using hardware description languages (HDLs) and compiled down to hardware primitives

over a number of steps, often using device-specific, commercial tools such as Vivado [3] or

Quartus [4]. For a two-FPGA design with 128 processing elements, compilation can take 13

hours [5]; for even larger designs, the process may take days or even weeks, making iteration

difficult.

In this thesis, we parallelize the routing phase of FPGA compilation. Routing takes the

logic elements of a given design, which have already been placed onto the board, and connects

13

them using the reconfigurable switches available on the FPGA. Algorithms for routing have

been hard to accelerate due to their irregular parallelism: like most graph algorithms, access

patterns are not known a priori, making independent threads of computation hard to identify

and exploit.

Prior work has addressed this difficulty through different software techniques. Some

parallel routers perform routing without concern for potential dependences; these routers are

non-deterministic, making them impractical to use in situations where repeatability is crucial

[6]. Other routers pre-partition the problem into independent subproblems which must be

scheduled [7, 8], which requires software synchronization and is limited in parallelism by the

number of potentially independent subproblems. Finally, other routers exploit fine-grained

parallelism in the graph search at the core of FPGA routing using a conventional multicore,

but this produces poor results given the overheads of CPU threads with small tasks [9].

Given these challenges, hardware support for ordered, fine-grained parallelism is necessary

to fully exploit the parallelism present in FPGA routing. We accelerate the routing phase for

a commonly used, open-source research tool for computer-aided design (CAD) of FPGAs,

Verilog-to-Routing (VTR) 8.0 [10], using the Swarm hardware architecture [11]. Swarm is a

tiled multicore which uses tiny, ordered tasks, speculative execution, and selective aborts to

exploit irregular parallelism that is otherwise unavailable on conventional multicores. Using

a number of different techniques, we explore the parallelism present in the FPGA routing

phase and use it to provide a significant speedup for an important problem.

1.1 Contributions

We make the following contributions:

1. We implement FPGA routing in Swarm. We demonstrate that Swarm’s task-based

execution model is sufficient to capture the irregular parallelism present in a complex

application (VTR) without significant changes to its approach. We also introduce a

14

number of strategies for using the Swarm execution model which could be useful in

accelerating other applications.

2. We evaluate our implementation in the Swarm simulator and find that it produces a

35.9x speedup over VTR on realistically sized benchmarks with 256 cores with minimal

losses in routing quality. We also identify some barriers to further acceleration, and

propose potential solutions for them.

15

16

Chapter 2

Background

2.1 The FPGA Routing Problem

Traditional FPGAs consist of an array of configurable logic blocks (CLBs) and a network

of wires; the connections between these wires pass through routing switches, which are

programmable and can connect different wires to each other. Modern FPGAs also have

specialized hardware blocks which serve common use cases, including digital signal processing

blocks (DSPs), memories, and even full ARM cores. Many of these blocks are reconfigurable;

for example, CLBs contain lookup tables (LUTs) which implement simple Boolean functions,

taking in a fixed number of inputs and producing a configurable output.

Once a circuit has been synthesized for a particular FPGA’s hardware primitives, FPGA

CAD tools compile that circuit onto the FPGA through two distinct phases: placement

and routing. Placement takes these hardware primitives and places them on the FPGA;

for example, it assigns circuit logic to the specific CLBs available on the FPGA based on

some optimization objective, such as wirelength. The routing phase’s task is to connect

these already configured circuit elements to each other using the actual wires and switches

available in the FPGA’s interconnect, such that the output of every element (e.g., a logic

gate) connects only to the corresponding inputs it should be wired to (e.g., the input of a

17

DSP). These outputs and inputs are known as pins.

Our work focuses on the routing phase, which we define more formally as follows:

Let a particular FPGA architecture’s routing resource graph (RRG) be a directed

graph G = (V,E) where the vertices V correspond to the architecture’s pins and

wires, and the edges correspond to connections between them (e.g., a routing

switch which connects different wire segments). Then, for a given placement of

an FPGA program, let a net Ni be the combination of a signal, si, and its sinks

Ti = {ti1, ti2, . . . , tim}, and say a net Ni is routed by some route tree RTi if RTi

is a tree in G with root si and Ti ⊂ RTi. Find a set of route trees RTi such that

every net is routed and every route tree is disjoint.

2.1.1 Pathfinder

FPGA routing is, in general, NP-complete [9, 12]. As such, heuristic algorithms which iter-

atively converge to an approximate solution are necessary to perform routing. Most FPGA

routing algorithms, both commercial and academic, are ultimately based on PathFinder [13],

which iteratively re-routes every net in a fixed order using Dijkstra’s algorithm repeatedly

until no nets share routing resources (Algorithm 1).

While routing a given sink tij, the cost of a node in PathFinder, cn, is the combination of

two factors: the intrinsic delay of a given node and its congestion (i.e., the number of other

routes using this node). The relative weighting of these two terms is given by the criticality

of a node to the routing, which is defined as Dij/Dmax, where Dij is the delay of the longest

path containing the route from si to tij and Dmax is the delay of the longest path overall;

i.e., the critical path. The congestion cost of nodes already on the route tree is set to zero.

PathFinder routes sinks in order from most to least critical.

There are a few important characteristics of this algorithm: first, the route tree for each

signal-sink connection depends on the routing of the previous connections within the same

net. This is ideal because it allows for reuse of routing resources for sinks which are near each

18

Algorithm 1 The original PathFinder algorithm [13]
while shared resources exist do

for each net Ni do
Rip up routing tree RTi

RTi ← si
for each signal tij ∈ Ni do

Initialize priority queue PQ to RTi

while PQ is non-empty do ▷ Dijkstra’s algorithm
Remove lowest cost node m from PQ, with path cost Pim

if m is tij then
break

end if
for each child n of node m do

Add n to PQ at cost cn + Pim

end for
end while
for each node n in path from si to tij do ▷ backtrace

Update cn
Add n to RTi

end for
end for

end for
end while

19

other, but creates a data dependence between the routing of those connections. Second, its

performance is dependent on the order in which nets are routed: different orders can lead to

significant differences in PathFinder performance [14, 15]. Third, all nets are fully re-routed

in each iteration, which can be a significant amount of work on modern circuits with many

nets.

2.1.2 Related Work

Work on improving FPGA routing tends to have two focuses: providing improvements

to serial algorithms for routing, or improving runtime by looking for traditional forms of

parallelism in existing algorithms, usually on multicore general-purpose processor systems.

Notably, since the FPGA routing problem is NP-complete, a tradeoff also exists between

runtime of the algorithm and quality of the routing [16]; there are also multiple criteria for

FPGA routing quality, such as wirelength and critical-path delay.

Serial Improvements

Most work on providing better serial algorithms for routing is based off of PathFinder.

Much recent work focuses on decreasing the amount of re-routing performed by the routing

algorithm; many algorithms, for example, have shifted from ripping up entire nets on each

iteration to only re-routing source-sink connections which contain congested nodes [16, 17].

Other optimizations include only expanding portions of the existing route tree close to the

target sink for sinks which are not critical [18].

One particular area of focus is reassessing the costs from the original PathFinder al-

gorithm, which reflected FPGA architectures at the time of writing. By adding different

heuristics, algorithms have minimized the Manhattan distance of explored nodes [17], wire-

lengths on different architectures [16, 19], or the delay incurred along the path [16]. The

introduction of these heuristics transform PathFinder’s Dijkstra’s-based router into an A*-

based router. Other work has explored reducing the order dependence and increasing the

20

stability of PathFinder by changing how pressure and congestion costs are calculated over

time [15].

Although our work in this thesis focuses on providing parallel speedup for a particular

router implementation, our techniques are applicable to these serial algorithms because of

their common, Pathfinder-based approach. In other words, the parallelism we find in our

work is orthogonal to the serial speedup provided by the previous work here.

Parallel Routers

PathFinder is a difficult challenge for traditional parallelism, because its parallelism is ir-

regular; as in most graph algorithms, the nodes that are visited (and, correspondingly, their

memory accesses) are dependent on the nodes that are visited previously and cannot be

predicted at compile time. Parallel routers fall into two categories - coarse-grained routers

and fine-grained routers [6]. Coarse-grained routers [7, 8] work by partitioning the routing

problem into independent problems which can be passed to different instances of VTR; this

is done by clustering groups of nets with overlapping bounding boxes and then scheduling

them in a reasonable order. Fine-grained routers, by contrast, start by parallelizing the

shortest-paths solver; for example, Moctar et. al. [9], uses a software transactional memory

to speed up A* search by allowing threads to expand multiple nodes at once, using locks to

ensure accesses remain disjoint.

Works which perform hardware acceleration of FPGA routing, e.g., using the GPU or

another FPGA, are more sparse in the literature. Corolla [20] combines a coarse-grained

parallel router with GPU-based fine-grained acceleration of a Bellman-Ford-based shortest-

paths solver, achieving an 18x speedup. Korolija and Stojilović [21] implement priority

queues, wavefront expansion, and a cost-resetting DMA module on an FPGA to accelerate

A* search; they achieve 2-4x speedup against their baseline and no speedup against VTR.

Beyond the quality-runtime tradeoff identified earlier, an important characteristic for

parallel routers is determinism. In order to achieve consistent results and allow for reliable

21

testing, it is important for routers to produce repeatedly the same output, given the same

inputs. Determinism is generally guaranteed by serial execution but is not always certain

for parallel routers.

2.1.3 Verilog-to-Routing (VTR)

Verilog-to-Routing [10, 22] is a state-of-the-art, open-source, academic system which per-

forms HDL compilation for FPGAs. It contains many tools for synthesizing digital circuits

written in Verilog onto an FPGA, including Versatile Place and Route (VPR), which takes

in a BLIF netlist describing a circuit which has been technology-mapped to a particular

FPGA architecture, and produces packing, placement, and routing files for the given circuit

on that architecture.

VPR’s router [23] is a serial router which makes a number of improvements to the original

PathFinder algorithm. Like previously described work, it only re-routes congested connec-

tions, uses A* search, and—for nets with high fanout—only expands a portion of the route

tree closest to the sink it is currently routing. It additionally calculates bounding boxes

for each net, which it expands dynamically if the route tree found is near the edge of the

bounding box (Algorithm 2).

VPR’s A* heuristic, which it calls its router lookahead, is calculated by profiling the

routing network of the FPGA and building a “map” of the delay and congestion costs of

resources on its sample routes based on wire type and orientation. It scales these costs by

wirelength to decrease congestion on the long wire network. VPR’s heuristic is not necessarily

monotone; that is to say, the estimated final cost of a path may decrease along the path.

VPR’s routing phase is primarily serial, although its timing-driven router does its once-

per-iteration static timing analysis (STA) using Tatum [24], a parallel STA library which uses

Thread Building Blocks (TBB). Although our focus in this work has been on accelerating

the core routing algorithm, we do reimplement the TBB-based parallelization in Swarm and

Fractal to ensure comparability of results.

22

Algorithm 2 VPR’s routing algorithm [23]
while shared resources exist do

for each net Ni do
Prune subtrees of RTi which have congested resources
for each unrouted signal tij ∈ Ni do

if Ni is high-fanout and tij is not critical then
Run A* from portions of the route tree near the sink tij
if A* succeeds, add the backtrace to RTi and continue

end if
Run A* from RTi, only considering routing resources inside the bounding box

for net Ni

if A* succeeds, add the backtrace to RTi and continue
Run A* from RTi, considering routing resources on the whole FPGA
Add the backtrace to RTi

end for
Expand the bounding box if RTi borders or exits the bounding box

end for
end while

2.2 Swarm and Irregular Parallelism

In order to improve performance, parallel architectures such as conventional multicores have

traditionally relied on programmers to extract thread-level parallelism from existing pro-

grams; that is, they rely on the software to identify independent threads of computation

which can be run on different processing elements. Thread-level parallelism, however, can

be hard to exploit on conventional multicores with large runtime overheads which dominate

for smaller task sizes and without hardware support for ordered algorithms [25].

Hardware architectures have attempted to extract additional parallelism using hardware

transactional memory (HTM) [26] and thread-level speculation (TLS) [27], where transac-

tions or threads run speculatively and abort when a conflict is detected. This addresses

some difficulties, but data conflicts on software queues can still bottleneck performance. In

this chapter, we provide an overview of Swarm [11], a hardware architecture which uses

speculation and hardware queues to allow users to exploit ordered, irregular parallelism.

23

T

Mem

Mem

Task Unit

L3 Cache Router

L2 Cache

L1
I/D

L1
I/D

L1
I/D

L1
I/D

Core Core Core Core

Tile Components

Figure 2.1: A Swarm chip with 64 tiles.

2.2.1 Swarm

The Swarm architecture [11] allows programmers to exploit irregular parallelism by com-

bining a number of important techniques. The architecture itself is a tiled multicore, with

each tile consisting of a group of four cores with private L1 caches and a shared L2 cache,

along with a slice of a chip-wide L3 cache. Each tile also contains a router and a task unit,

which manages the execution of Swarm programs. The design of the architecture is shown

in Figure 2.1.

Swarm programs consist of small tasks with programmer-defined timestamps, which ap-

pear to execute atomically and in timestamp order. Tasks can enqueue children, which must

have later or equal timestamps. Tasks with the same timestamp are allowed to execute in

any order. For example, a Swarm task for breadth-first search (BFS) could be implemented

as in Figure 2.2. In this example, our timestamps represent our distances from the start

node, and therefore the task at a certain node with the lowest distance will always appear

to execute first, as desired in BFS.

This execution model allows to Swarm to execute tasks speculatively and out-of-order;

tasks are issued from the task unit’s task queue, and completed tasks are stored in a commit

24

void bfs_task(swarm :: Timestamp dist , Vertex* v, Vertex* parent) {
if(v->visited) return;
v->visited = true;
v->parent = parent;
for(Vertex* neighbor : v->neighbors) {

swarm:: enqueue(bfs_task ,
dist + 1, // timestamp
NOHINT , // spatial hint
neighbor , // task arguments
);

}
}

Figure 2.2: An example Swarm task for breadth-first-search.

queue with associated information. Swarm utilizes selective aborts, meaning tasks are only

aborted if their read/write sets directly conflict, based on the timestamp, or if they have

a dependence on an aborted task; e.g., in Figure 2.2, later tasks which may have executed

speculatively at the same node will abort due to their read of v->visited, as will any child

tasks they spawned. A task can commit once all earlier tasks on the chip have completed.

This technique, in combination with the large speculation windows provided by hardware

queues, allows Swarm to effectively exploit the parallelism in the independent tasks of a

given problem.

In some cases, it is preferable to run certain tasks serially, such as when tasks are likely

to access the same data. Swarm provides spatial hints [28], which enqueues same-hint tasks

to the same tile. This improves locality for task data and reduces data-based aborts from

conflicting accesses. Additionally, Swarm allows users to run tasks non-speculatively or to

explicitly serialize them [29], as may be necessary for tasks which generate exceptions or are

expensive and may have been misspeculated. These tasks run when they are the earliest

unfinished task, and do not run concurrently with any other task.

25

0

deepen

0 1

0
enqueues

atomic with respect to each other

happens
before

2

enqueue super

subdomains

Figure 2.3: The Fractal execution model.

2.2.2 Fractal

Fractal [30] is an extension of Swarm which allows for the creation of nested domains. A

task in Fractal can enqueue tasks within its domain, create a nested subdomain and enqueue

tasks to it (also called deepening), or enqueue tasks to its superdomain, if one exists. At each

domain level, Fractal tasks and their subdomains appear to execute completely atomically

and in the order of their timestamp, as shown in Figure 2.3. Fractal retains the fine-grained

parallelism of Swarm by speculatively executing small tasks from all available domains while

maintaining the atomicity and global ordering required by its execution model using selective

aborts.

Fractal allows for users to parallelize programs which have nested parallelism; for exam-

ple, a transactional database may have coarse-grained parallelism across transactions (which

must execute atomically) while also exhibiting fine-grained parallelism within them. In-

deed, Fractal supports unlimited nesting, although it requires spilling tasks to memory for

programs which use more than four levels of nesting.

26

Chapter 3

Implementation

This chapter describes our approach to accelerating VPR in Swarm.

3.1 High-level Techniques

3.1.1 Nested Loops and Continuations

We use Fractal to support the nested loops in PathFinder. Despite the complexity of

PathFinder, we never go beyond four nesting levels, eliminating the need for Fractal’s task

spillers. Our subdomain structure is described in Algorithm 3.

Algorithm 3 VPR’s structure in Fractal
while shared resources exist do ▷ Domain 1

Fractal deepen
for each net Ni do ▷ Domain 2

Prune subtrees of RTi which have congested resources
Fractal deepen
for each unrouted signal tij ∈ Ni do ▷ Domain 3

Fractal deepen
Perform A* search ▷ Domain 4

end for
Fractal undeepen
Expand the bounding box if RTi borders or exits the bounding box ▷ Domain 2

end for
end while

27

Serial Nested For Loop
ordered by execution

Fractal Nested For Loop
ordered by timestamp

for
1

for
2

outer
for

… end continuation

1
2
3
…

1
2
…

outer
for

for
1

1

for
2 … end

2
3
…

1
2
…

deepen

Figure 3.1: Nested for loops in Fractal.

Each “for” in Algorithm 3 is structured as a “parallel for”, as shown in Figure 3.1; i.e., all

tasks are enqueued at the same time. Tasks which occur at a certain Fractal level but after

a nested for loop are enqueued to a higher timestamp as continuations, such as the bounding

box expansion shown above. These continuations are non-speculative, since they are unlikely

to complete without conflicts until routing finishes; indeed, the net-level continuation requires

serialization since it creates a segmentation fault when net routing is incomplete.

In our current implementation of VPR, we additionally serialize before each net, meaning

that all tasks from the previous net must commit before the following net begins routing.

This means our router is a fine-grained parallel router, although our approach is theoretically

compatible with coarse-grained parallelism as well. We discuss our reasons for this in Chapter

4.3.2.

3.1.2 Spawner Tasks

In general, we follow T4 [31], which uses recursive spawner trees to quickly enqueue tasks

for loops with known iteration counts. When spawner trees are balanced, this approach

shortens the critical path of task spawns to be logarithmic, as opposed to the linear path of

serial spawners. This is possible for most loops in VPR because of the fixed structure of the

FPGA routing problem; routing resources always have the same connections, nets always

28

Recursive Spawner Tree
for(int i = 0; i < n; i++)

Chain Expansion
for(Node* list; list != nullptr;

list = list->next)

…

sp

sp sp sp sp

… … …

0 21 3

sp …
… n

sp

0 21 sp

3 54 sp

…

Figure 3.2: Two approaches to spawning tasks quickly: recursive spawners, for known-
tripcount loops, and chain expansion, for serializing loop variables.

have the same sinks, etc.

One small exception to this occurs where VPR uses linked lists to store data, such the

children of route tree nodes. In these cases, the current pointer to the linked list is serializing,

since each iteration’s value of that pointer depends unconditionally on that of the previous

iteration. Here, we use chain expansion with fixed fanout—we spawn 3 tasks to process each

element of the list before spawning a new task to process the next chunk of the list, allowing

element processing to run off the critical path of task spawns.

We illustrate these two approaches to task spawning in Figure 3.2.

3.2 Accelerating A* Search

In order to achieve the most fine-grained parallelism, we start by accelerating the most nested

level of the routing process, the A* search.

3.2.1 Approach

The key order constraint of A* search is that of the priority queue: i.e., nodes must be

visited in an order such that the node with the lowest estimated total distance to the goal is

always relaxed first. Thus, it is natural to divide A* search into tasks which represent node

29

Graph Tasks

A B

W

X

Y
h(W) = 3

2

3 5

h(X) = 4

h(Y) = 1
2

2

4

A
0

W
B: 2
E: 5

B
6

Y
B: 4
E: 5

X
B: 3
E: 7

X
B: 8

E: 12

B
8

B
13

Figure 3.3: An example A* search on a graph with heuristic h, with estimated total distance
as timestamps. Even though both A and Y enqueue tasks to relax X, the enqueue from A
has a lower estimated cost, leading to the abort of the task from X and its children.

visits, with timestamps that represent the estimated total distance of that node, as shown

in Figure 3.3. The task we use for VPR is outlined in Algorithm 4.

Algorithm 4 Psuedocode for our A* visit task.
procedure astar_visit(node i, cost c, backwards cost cb, parent node ip, done d)

if d is set, return
if c < recorded total cost and cb < recorded backwards cost, or i is the sink then

Record the new total cost c, backwards cost cb, and parent node ip
Enqueue a task to reset the node cost
if i is the sink then

Set the flag d
Calculate a backtrace and update PathFinder costs
return

end if
for neighbor n of i do

Calculate new total cost c′ and backwards cost c′b from i
Enqueue astar_visit(n, c′, c′b, i, d) with timestamp c′

end for
end if

end procedure

Since a serial A* search terminates when the sink is found, we use a “done” flag (a

bool*) which is passed to all tasks within a parallel search; this flag terminates all tasks

with timestamps later than the timestamp of the earliest task which reaches the sink node.

30

Swarm’s abort semantics allow us to do this safely; any later task which has already run will

be aborted, since it will have read the “done” flag set by the sink node. Additionally, the

calculation of new costs is independent for each neighbor n, and so can be done in parallel

by enqueuing cost-calculation tasks for each node at the timestamp of the parent.

One unique usage of the Fractal execution scheme here is found in resetting node costs.

Since VPR uses the same routing context to record node costs, it uses a std::vector to

record all touched nodes for each connection and then resets them manually. Here, because

we know exactly when a node is being relaxed, we can enqueue a task to reset that node

specifically, eliminating the need for an additional data structure. However, because we don’t

necessarily know what the maximum timestamp is within the current domain, we instead

enqueue the task to the next timestamp in the parent domain, which is guaranteed to run

after all tasks in this domain complete. In order to ensure the reset occurs between each

search, we set the parent-level timestamp of each search as two times its index, allowing us

to properly place the reset tasks between searches.

3.2.2 Timestamps

Using this formulation is not quite sufficient to handle VPR’s routing phase, for two reasons:

first, Swarm timestamps are integers, while the distances in VPR are floating-point values.

Second, VPR’s lookahead is non-monotonic, meaning that the estimated total cost of a

successor node, factoring in the backwards path cost and the estimated delay, may be less

than the estimated total cost of the current node when it was placed on the heap. This

means that it is possible for the current node to attempt to enqueue a successor node with

a smaller timestamp, which violates Swarm’s assumptions.

To address the first issue, we simply re-interpret the floating-point distances as unsigned

integers. Because the distances in VPR are always positive, IEEE 754 guarantees us that if

floats x, y > 0, then x < y if and only if int(x) < int(y). We also pass the float distance as

a task argument to the child task for ease of use, although it could be omitted.

31

We depart from VPR’s implementation in that we forcibly make VPR’s relaxations mono-

tonic by taking the maximum of the newly calculated timestamp tsucc and the current times-

tamp tcurr. Because this changes the routing behavior of VPR, we also modify our baseline to

perform monotonic relaxations. We evaluate the performance of this change in Chapter 4.1.2.

Because our routing occurs in parallel, there is no guaranteed order for the relaxation of

two connections with the same estimated distance. Instead, additional order constraints are

necessary to guarantee determinism, as discussed in Section 3.4.

3.3 A* in Parallel

We run the A* searches for all the connections in a single net in parallel. To avoid false

dependences, each search is assigned an individual “context”, which includes the sink node

and the “done” flag, as well as other reused values such as the bounding box and cost

parameters. This context is allocated beforehand for each search, passed by reference between

calls to astar_visit, and deallocated afterwards.

3.3.1 Repeated Searches

In the case where VPR fails to route within the bounding box for a given net, it repeats

the routing attempt with a larger bounding box. Because attempts to route the same

connection on the bounding box and on the entire FPGA are likely to share resources (and

thus cause aborts), and because routing on the entire FPGA is only done in rare cases where

the bounding box method fails, we start the full-FPGA searches for each connection non-

speculatively. These repeated searches share a context with the initial search, including the

“done” flag, so that they can terminate immediately if the initial search succeeds.

VPR also contains an optimization for high-fanout nets known as spatial lookup, where

only portions of the route tree nearest the sink are added to the initial priority queue. For

the sake of simplicity, we omit this optimization in our implementation and the baseline,

32

although a similar approach where the first routing attempt is done speculatively and the

subsequent routing attempts are non-speculative would be feasible here.

3.3.2 Route Tree Forwarding

As discussed in Chapter 2.1.1, PathFinder builds the initial route tree for a given connection

from the existing routing of the previous connections within that net. This allows for con-

nections within the same net to reuse routing resources, decreasing wirelength and overall

congestion on the FPGA. However, this means that a data dependence exists between each

connection; when a given node of the route tree is updated by the routing of an earlier

connection, all children of that node in subsequent searches abort, even though route tree

updating is only additive; i.e., any node that was initially enqueued will never be dequeued

by a later update.

To solve this problem, we collapse all the searches for a given net into a single Fractal

subdomain. We place the original sink routing order in the upper 31 bits of our 64-bit

timestamps, use one additional bit for cost resetting, and leave the lower 32 bits the same

(i.e., as the bits of our float). Enqueues from the initial route tree happen at timestamp 0,

so that subsequent route tree updates do not abort them. Then, when a search completes

its backtrace, it forwards any route tree nodes it adds to the tree to all subsequent searches

at the appropriate timestamp, so that later searches can reuse the routing resources from

earlier searches.

Cost resetting occurs after search n at timestamp (n ≪ 33)|(1 ≪ 32). Because every

task for search n < n′ occurs at a timestamp lower than every task for search n′, Swarm

guarantees that all searches appear atomic to each other as before. An illustration of this

process can be seen in Figure 3.4.

We focus solely on performing the first A* search for each connection in parallel. Since the

subsequent searches—i.e., the full-FPGA searches—are already serialized, we push them to

the end of the routing order, and enqueue the route tree at timestamp 0 within that search.

33

Collapsed Fractal Domain

...

RTi

Sink 1 Sink 2 Sink 3

resetting tasks

63:33 32 31:0

...

sink # reset? distance

node timestamp

timestamp 0

Figure 3.4: Our route tree forwarding scheme. Note that this does not include the serialized,
full-FPGA searches.

63:33 32 31:0
sink # reset? distance

non-deterministic node timestamp

63:52 51
sink # reset? distance

50:19 18:0
tiebreaker

deterministic node timestamp

Figure 3.5: Timestamps for deterministic and non-deterministic implementations of A*.

At that point, the route tree will already be fully up-to-date when the search initializes.

This change results in a slight change in behavior from VPR’s default routing approach:

connections which fail to route within the net bounding box are routed sequentially after all

other connections have been routed, rather than in their initial position.

3.4 Determinism

We implement a deterministic version of our approach by providing a fixed order for routing

nodes at the same distance. We accomplish this by appending some bits at the bottom of our

timestamp which specify an application-specific tiebreaker, conveying additional information

about the edge being relaxed, as shown in Figure 3.5.

34

For the purposes of our work, we use a bitwise XOR of the node IDs for the start and end

of the edge being relaxed, which was sufficient to guarantee determinism on the problems

we evaluated. In cases where our total distance was kept the same due to monotonic relax-

ations but our tiebreaker decreased, we incremented the total distance by one to maintain

timestamp ordering. Unfortunately, because we are constrained to 64-bit timestamps in our

version of Swarm, the size of problems we can evaluate using this technique is limited; the

maximum sink number, i.e., the size of the highest fanout net, must be less than 4096, and

there must be at most 219 or around 520k nodes in the routing resource graph. We leave

expanding Swarm timestamps or evaluating smaller tiebreakers to future work.

35

36

Chapter 4

Evaluation

4.1 Experimental Setup

4.1.1 Modeled System

We evaluate our system using the Swarm simulator, which is execution-driven using a cus-

tom RISC-V binary instrumentation tool. We take the parameters for the Swarm system

(Table 4.1) from prior work [11, 31] with the exception of the cores, which are replaced with

a simple RISC-V core with floating-point extensions. The simulator uses detailed timing

models for caches, network, and main memory, as well as for Swarm features such as en-

queues, aborts, and conflict checking. Notably, queue and cache sizes are per-tile, meaning

that larger systems also have lower queue and cache contention.

We perform routing on benchmarks of various sizes (Table 4.2); for small benchmarks,

we use the MCNC benchmarks [35] included with VPR. We use some of the medium-sized

benchmarks provided by VPR [10, 22], as well as the large-scale benchmarks provided as part

of the Titan benchmark suite [36]. For the VPR benchmarks, we route at a fixed channel

width of 100; for the Titan benchmarks, we route on the associated timing-driven Stratix

IV architecture and we route at a fixed channel width of 300. We use VPR’s map router

lookahead for all benchmarks. We measure from the beginning of the first routing iteration

37

Cores 4 cores/tile, up to 256 cores in 64 tiles, RISC-V ISA
with F (float), D (double), and C (compressed)
extensions; simple core model with 1 IPC except for
misses and Swarm instructions

L1 caches 32KB, per-core, split D/I, 8-way, 2-cycle latency
L2 caches 1MB, per-tile, 8-way, inclusive, 9-cycle latency
L3 cache 64MB, shared, static NUCA [32] (4MB bank/tile),

16-way, inclusive, 12-cycle bank latency
Coherence MESI, 64 B lines, in-cache directories

NoC Four n× n meshes, 192-bit links, X-Y routing,
1 cycle/hop when going straight, 2 cycles on turns (like
Tile64 [33])

Main mem 4 controllers at chip edges, 120-cycle latency

Queues 64 task queue entries/core,
16 commit queue entries/core

Conflicts 2Kbit 8-way Bloom filters, H3 hash functions [34]
Tile checks take 5 cycles (Bloom filters) + 1 cycle per
timestamp compared in the commit queue

Commit Tiles send updates to virtual time arbiter every
100 cycles

Spills Spill 15 tasks when task queue is 86% full

Table 4.1: Configuration of the modeled systems.

to the completion of routing, meaning that we exclude all setup and teardown costs.

4.1.2 Baseline

For our baseline, we compare against a version of VPR which contains two modifications

from VPR 8.0, as described in Chapter 3. First, we modify VPR to take only monotonic

relaxations; i.e., to set the estimated total cost of a successor node to at least the estimated

total cost of its parent. Second, we modify VPR to eliminate spatial lookup. We do not

implement the re-ordering caused by our route tree forwarding scheme (Chapter 3.3.2);

instead, we measure the effect of that change against our baseline in full runs (Section

4.2.1).

Because our baseline is modified from the default behavior of VPR, we compare the

38

Benchmark Source Consolidated Nets

tseng MCNC 572
alu4 MCNC 634

elliptic MCNC 1853
blob_merge VPR 7 3839
arm_core VPR 8 9225
neuron Titan 51456

cholesky_mc Titan 66664

Table 4.2: List of benchmarks used for evaluation; consolidated nets refers to the number of
nets produced by VPR before routing.

Wall-clock time (s) Wirelength Critical path (ns)

Default Mono Baseline Default Mono Baseline Default Mono Baseline

blob_merge 2.52 2.21 3.93 94.8k 94.6k 94.2k 14.72 14.73 14.71
neuron 29.12 31.08 32.48 764k 770k 768k 8.70 8.84 8.84

cholesky_mc 78.18 81.31 84.67 1.23m 1.24m 1.23m 7.98 8.26 8.23

Table 4.3: Routing performance of default VPR, VPR with monotonic relaxations, and our
baseline on larger benchmarks. Smaller values are better.

routing performance and routing time of unmodified VPR, VPR with monotonic relaxations,

and our baseline. We perform this evaluation on some of our larger benchmarks, which are

more likely to suffer from the removal of spatial lookup. Since this comparison is solely

algorithmic and simulation overheads are large, we use x86 for this comparison.

The results of this comparison are shown in Table 4.3. In general, our baseline produces

routing results that are comparable but slightly worse than VPR with respect to runtime,

and within 5% with respect to wirelength and critical path delay. We did not include

arm_core in this comparison because its routing does not run to completion with the given

architecture and channel width on any configuration. It is not entirely clear which of our

changes contributes more to the worse routing times of the baseline; the lack of spatial lookup

could be easily remedied by further work, while the monotonic relaxations are a necessary

result of Swarm semantics.

39

Cycles Wirelength Critical path (ns)

Baseline Swarm Speed-up Baseline Swarm Baseline Swarm

tseng 1.04T 267B 3.89x 6.38k 6.52k (+2.0%) 6.430 6.514 (+1.3%)
alu4 1.92T 541B 3.54x 10.8k 10.9k (+1.9%) 5.350 5.391 (+0.8%)

elliptic 10.8T 1.50T 7.20x 36.0k 35.0k (-2.8%) 8.759 9.314 (+6.3%)
blob_merge 25.4T 4.64T 5.46x 93.9k 97.7k (+4.3%) 14.73 14.93 (+1.4%)

Table 4.4: Routing performance of Baseline and Swarm (256 cores, deterministic) on full
runs of smaller benchmarks.

4.2 Routing Performance

4.2.1 Full Run

We measure the performance of our four small-to-medium-sized benchmarks by running VPR

to completion. This allows us to capture changes in both routing time and performance (i.e.,

wirelength and critical path delay) from our Swarm implementation. We instrument the

baseline to track its progress throughout the routing process and run it under Swarm on a

16-core, 4-tile configuration, although it only takes up one core.

Table 4.4 summarizes the results from full runs, using our deterministic router. Our

implementation achieves modest speedups across the board, with minor regressions with

respect to wirelength and critical path. Differences in routing quality are caused by two

factors: first, our repeated search approach (Chapter 3.3.1) changes the order in which full-

FPGA searches are completed; second, our tiebreaker orders nodes which have the same

estimated total distance differently from VPR. The overall differences are relatively small,

and our implementation and the baseline remain comparable.

4.2.2 Single Iteration

For our largest benchmarks—i.e., arm_core and the two Titan benchmarks—running rout-

ing to completion in simulation is infeasible. For these benchmarks, we measure just one

iteration of PathFinder, from the start of the loop to the completion of routing of all nets,

40

Baseline Swarm, non-det. Swarm, det.

Cycles Cycles Speedup Cycles Speedup

tseng 39.3B 21.7B 1.81x 21.9B 1.80x
alu4 96.1B 43.5B 2.21x 43.1B 2.23x

elliptic 265B 107B 2.48x 106B 2.48x
blob_merge 756B 289B 2.61x 284B 2.66x
arm_core 14.9T 716B 20.8x 714B 20.8x
neuron 32.9T * 1.03T 31.9x

cholesky_mc 92.5T * 2.58T 35.9x

Table 4.5: Routing time of Baseline and Swarm (256 cores) on single routing iterations of
each benchmark.

excluding static timing analysis (STA). This focus has the added benefit of constraining

the measurement on the core improvements from our Swarm implementation. We choose

the third iteration in order to avoid potential start-up costs while still retaining a signif-

icant amount of work. For the sake of comparison, we also include the results from our

smaller models here. Due to timestamp constraints, the largest problem we can route with

a deterministic router is arm_core.

Scalability

As seen in Table 4.5, our Swarm implementation achieves small improvements on the smaller

circuits but provides significant improvements for our larger circuits. The reason for this

difference is a dearth of parallelism on the smaller circuits; smaller circuits are less likely to

have nodes that can be visited independently for a given connection or across two connections,

which can be partially inferred from the routing resource graph sizes. Additionally, as circuits

get larger, a smaller proportion of time is taken up by net initialization and the ceiling for

parallelism increases. Both of these effects can be seen in Table 4.6.

Figure 4.1 contrasts the scalability of our smallest benchmark, tseng, and our two largest

benchmarks, neuron and cholesky_mc. As core count increases, tseng’s performance ac-

tually worsens, while the Titan benchmarks continue to improve, although at a decreasing

rate.

41

Circuit RRG nodes % serialized cycles

tseng 17.6k 9.4%
alu4 23.9k 7.6%

elliptic 52.2k 8.2%
blob_merge 130k 9.2%
arm_core 278k 1.3%
neuron 5.15M 0.7%

cholesky_mc 4.82M 0.5%

Table 4.6: Routing resource graph nodes and proportion of committed cycles occupied by
net initialization for each benchmark.

1 64 128 256
Cores

0

5

10

15

20

25

30

35

Sp
ee

du
p neuron

tseng
cholesky

Figure 4.1: Speedup vs. core count for tseng, neuron, and cholesky_mc.

42

0

1

2

3

4

5

A
gg

re
ga

te
 c

or
e

cy
cl

es

1e9

1 4 16 64 128 256

Committed
Aborted

Full Queues
Idle

0.0

0.5

1.0

1.5

2.0

2.5

A
gg

re
ga

te
 c

or
e

cy
cl

es

1e11

1 4 16 64 128 256

Committed
Aborted

Full Queues
Idle

0

1

2

3

4

5

6

A
gg

re
ga

te
 c

or
e

cy
cl

es

1e11

1 4 16 64 128 256

Committed
Aborted

Full Queues
Idle

Figure 4.2: Cycle breakdowns for tseng, neuron, and cholesky_mc, from left to right. Note
that the 1 core configuration did not complete on cholesky_mc.

Figure 4.2 shows the scalability bottlenecks from a hardware perspective: tseng spends

the vast majority of its cycles empty at higher core counts - as discussed earlier, there simply

is not enough work to fill the system, and so a lack of speedup is inevitable. By contrast,

neuron and cholesky_mc both have very few idle cycles and a much higher proportion of

committed cycles at higher core counts. However, many cycles are spent waiting on full

queues: higher core counts (and hence larger queues) are not always enough to stave off

queue pressures, indicating a potential place for future optimization.

Still, even with the large queue pressure seen on neuron and cholesky_mc, parallelism

remains a bottleneck for scalability on our largest circuits. Given a simulation with infinite

queues, neuron’s runtime only decreases by 8.3% on 256 cores, to give a speedup of 34.5x.

Indeed, as shown in Figure 4.3, idle cycles dominate in such a simulation. The significantly

increased aborts on higher core counts likely indicate that Swarm has exhausted all the

parallelism present in the implementation; thus, the commit queue pressure seen earlier is

a result of those aborting tasks, rather than a direct constraint on our implementation’s

performance.

43

0.0

0.5

1.0

1.5

2.0

2.5

A
gg

re
ga

te
 c

or
e

cy
cl

es

1e11

1 4 16 64 128 256

Committed
Aborted

Full Queues
Idle

Figure 4.3: Cycle breakdowns for neuron with infinite queues.

Discussion

Across the benchmarks it runs, our deterministic router gives us speedup which is compa-

rable to (within 3% of) our non-deterministic router—in other words, the addition of order

constraints does not significantly change the parallelism we find in the problem. This means

that our deterministic router is also likely to scale well to larger models, given that the

problem of tiebreaker size is addressed. Since having consistent results is critical to reliable

testing, it is likely that the deterministic router would be preferred in real-world contexts.

Counterintuitively, speedups for a single iteration of the smaller circuits have lower speed-

up than the full runs. Two phenomena at least partially explain this difference. First, the

naive Swarm implementation of STA accounts for a significant portion of cycles and bolsters

our numbers; for example, on elliptic, STA occupies at least 35% of committed cycles and

achieves 10.2x parallelism on 256 cores. Second, the third routing iteration is not entirely

representative of routing time—a random sample of three other routing iterations (out of

44

30) all found higher speedups (between 3.09x and 3.22x). Although more analysis needs to

be done to fully explain this phenomenon, it is promising for the potential speedups of VPR

for full runs on larger models.

4.3 Roadblocks

4.3.1 Amdahl’s Law

Amdahl’s Law states that the maximum speedup achievable in a program whose serial por-

tion takes up a proportion p of its overall time is 1
p
. This means that our choice to serialize

before starting to route a net necessarily caps our performance at 1
p
, where p is the propor-

tion of cycles spent in net initialization. For our smaller benchmarks, p ≥ 0.076, limiting

speedups for those benchmarks to 13.1x maximally.

In general, this means that breaking serialized tasks down into smaller tasks is critical to

improving parallelism, and we have manually divided some larger tasks in order to achieve

this. Unfortunately, some graph operations - particularly depth-first-search (DFS) - are

inherently difficult to accelerate, as they require traversal of a graph in a particular sequence,

which is necessarily serializing. Relatedly, these graph operations are also more difficult to

express in Swarm, since the timestamps needed for the all the nodes in a parent’s subtree

are not explicitly known at the time it runs. During net initialization, VPR does multiple

conversions between two related data structures which convey routing information, both of

which involve a DFS, making increased parallelism hard to find.

4.3.2 False Dependences

In a system with nested parallelism, one alternative to decreasing the size of serialized tasks

at the most fine-grain level is to increase parallelism at a coarser level. In the case of VPR,

this would entail running multiple nets in parallel. Although we attempted to enable this

45

functionality, we faced significant engineering challenges due to the structure of VPR, which

reuses a number of routing structures between nets, likely to save memory. These shared

routing structures resulted in significant increases in aborts and no increase in parallelism,

even though, in principle, the routes could have been routed in parallel. Ultimately, it was

not possible to achieve any significant improvements from removing serialization between

nets in our timeframe.

Both of these roadblocks indicate the importance of parallel-friendly data structures and

algorithms when porting complex applications to Swarm; although some programs can be

naturally “Swarm-ified”, additional work must be done to eliminate false sharing. Compiler-

driven tools such as T4 [31] can help to automate or guide this work, but may fall short

when confronted with existing codebases with complex global state or uncooperative data

structures (e.g., std::vector). In these cases, it may be necessary to use data structures

designed explicitly for Swarm semantics [37], and to carefully look at traces to distinguish

true and false dependences. Finally, for sufficiently memory-intensive programs, there may

be a tradeoff between memory usage and data dependences; initializing scratchpads for every

subproblem can be expensive, and it may be preferable to initialize a fixed number and hash

problems to scratchpads instead.

46

Chapter 5

Conclusion

We have presented an approach which extracts the irregular parallelism present inside FPGA

routing using Swarm, a tiled multicore which uses an execution model based on small,

timestamped tasks. Our approach uses a combination of techniques to accelerate routing

at two levels: first, within the A* search used to route single connections, and second, in

routing multiple connections within a single net at once. Our implementation achieves up to

36x speedup on large benchmarks, and we show that the primary constraint on additional

performance is parallelism.

5.1 Future Work

This work opens many interesting avenues for further work. First and foremost, the primary

bottleneck for our implementation is a lack of parallelism. Fortunately, there is likely more

parallelism to be extracted in the FPGA routing problem. Shen et. al., for example, show

that it is possible to achieve 19.13x speedup with a net-based parallel router while maintain-

ing serial equivalency [8]; those gains should be composable with the fine-grained parallelism

that we exploit in this thesis and would yield significant improvements if realized.

Enabling determinism on larger test cases could yield interesting results. Although ex-

panding timestamps beyond 64 bits should be sufficient to replicate our approach, the cur-

47

rent choice of tiebreaker is somewhat arbitrary, and it is not immediately clear whether it is

necessary or sufficient to guarantee determinism at all model sizes. Additionally, narrower

tiebreaker representations may be needed to route significantly larger (e.g., multi-FPGA)

models depending on timestamp size, which could introduce a three-way tradeoff between

tiebreaker representations, routing time, and determinism.

Additional use of information about the FPGA architecture could likely further improve

performance. Although the exact order of relaxations for a given routing iteration is not

known a priori, FPGAs have very regular structure, and the routing resource graph and

netlist are fixed before routing starts. Use of that information to partition or guide the

routing workload, such as through the use of Swarm’s spatial hints, could likely improve

performance if parallelism is sufficiently high.

Finally, our evaluation shows that circuit size alone does not determine the parallelism

achievable by our system. Characterizing FPGA problems that might be more or less par-

allelizable could help us understand more about what makes certain routing problems hard.

That work could also have implications for how logic blocks are packed and placed on the

FPGA before routing, which would improve the overall performance of FPGA compilation

beyond routing alone.

48

References

[1] D. Firestone et al. “Azure Accelerated Networking: SmartNICs in the Public Cloud”. In:

15th USENIX Symposium on Networked Systems Design and Implementation (NSDI

18). Renton, WA: USENIX Association, Apr. 2018, pp. 51–66. isbn: 978-1-939133-01-4.

url: https://www.usenix.org/conference/nsdi18/presentation/firestone.

[2] A. Putnam et al. “A Reconfigurable Fabric for Accelerating Large-Scale Datacenter

Services”. In: IEEE Micro 35.3 (2015), pp. 10–22. doi: 10.1109/MM.2015.42.

[3] Advanced Micro Devices (AMD). Vivado Design Suite. 2023. url: https://www.xilinx.

com/products/design-tools/vivado.html.

[4] Intel Corporation. Intel Quartus Prime Design Software. url: https://www.intel.com/

content/www/us/en/products/details/fpga/development-tools/quartus-prime.html.

[5] F. Elsabbagh, S. Sheikhha, V. A. Ying, Q. M. Nguyen, J. S. Emer, and D. Sanchez.

“Accelerating RTL Simulation with Hardware-Software Co-Design”. In: 2023 56th

IEEE/ACM International Symposium on Microarchitecture (MICRO). 2023, 14 pages.

doi: 10.1145/3613424.3614257.

[6] M. Stojilović. “Parallel FPGA routing: Survey and challenges”. In: 2017 27th Interna-

tional Conference on Field Programmable Logic and Applications (FPL). 2017, pp. 1–8.

doi: 10.23919/FPL.2017.8056782.

[7] M. Gort and J. H. Anderson. “Accelerating FPGA Routing Through Parallelization and

Engineering Enhancements Special Section on PAR-CAD 2010”. In: IEEE Transactions

49

https://www.usenix.org/conference/nsdi18/presentation/firestone
https://doi.org/10.1109/MM.2015.42
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime.html
https://doi.org/10.1145/3613424.3614257
https://doi.org/10.23919/FPL.2017.8056782

on Computer-Aided Design of Integrated Circuits and Systems 31.1 (2012), pp. 61–74.

doi: 10.1109/TCAD.2011.2165715.

[8] M. Shen, W. Zhang, G. Luo, and N. Xiao. “Serial-Equivalent Static and Dynamic

Parallel Routing for FPGAs”. In: IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 39.2 (2020), pp. 411–423. doi: 10.1109/TCAD.2018.

2887050.

[9] Y. O. M. Moctar and P. Brisk. “Parallel FPGA routing based on the operator formula-

tion”. In: 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC). 2014,

pp. 1–6. doi: 10.1145/2593069.2593177.

[10] K. E. Murray et al. “VTR 8: High-Performance CAD and Customizable FPGA Ar-

chitecture Modelling”. In: ACM Trans. Reconfigurable Technol. Syst. 13.2 (June 2020).

issn: 1936-7406. doi: 10.1145/3388617. url: https://doi.org/10.1145/3388617.

[11] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez. “A scalable ar-

chitecture for ordered parallelism”. In: 2015 48th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO). 2015, pp. 228–241. doi: 10.1145/2830772.

2830777.

[12] Y.-L. Wu and D. Chang. “On the NP-Completeness of Regular 2-D FPGA Routing

Architectures and a Novel Solution”. In: Proceedings of the 1994 IEEE/ACM Interna-

tional Conference on Computer-Aided Design. ICCAD ’94. San Jose, California, USA:

IEEE Computer Society Press, 1994, pp. 362–366. isbn: 0897916905.

[13] L. McMurchie and C. Ebeling. “PathFinder: A Negotiation-Based Performance-Driven

Router for FPGAs”. In: Third International ACM Symposium on Field-Programmable

Gate Arrays. 1995, pp. 111–117. doi: 10.1109/FPGA.1995.242049.

[14] R. Y. Rubin and A. M. DeHon. “Timing-driven pathfinder pathology and remediation:

quantifying and reducing delay noise in VPR-pathfinder”. In: Proceedings of the 19th

ACM/SIGDA International Symposium on Field Programmable Gate Arrays. FPGA

50

https://doi.org/10.1109/TCAD.2011.2165715
https://doi.org/10.1109/TCAD.2018.2887050
https://doi.org/10.1109/TCAD.2018.2887050
https://doi.org/10.1145/2593069.2593177
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/2830772.2830777
https://doi.org/10.1145/2830772.2830777
https://doi.org/10.1109/FPGA.1995.242049

’11. Monterey, CA, USA: Association for Computing Machinery, 2011, pp. 173–176.

isbn: 9781450305549. doi: 10.1145/1950413.1950447. url: https://doi.org/10.1145/

1950413.1950447.

[15] Y. Zha and J. Li. “Revisiting PathFinder Routing Algorithm”. In: Proceedings of the

2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.

FPGA ’22. Virtual Event, USA: Association for Computing Machinery, 2022, pp. 24–

34. isbn: 9781450391498. doi: 10.1145/3490422.3502356. url: https://doi.org/10.

1145/3490422.3502356.

[16] D. Vercruyce, E. Vansteenkiste, and D. Stroobandt. “CRoute: A Fast High-Quality

Timing-Driven Connection-Based FPGA Router”. In: 2019 IEEE 27th Annual Inter-

national Symposium on Field-Programmable Custom Computing Machines (FCCM).

2019, pp. 53–60. doi: 10.1109/FCCM.2019.00017.

[17] E. Vansteenkiste, K. Bruneel, and D. Stroobandt. “A connection-based router for FP-

GAs”. In: 2013 International Conference on Field-Programmable Technology (FPT).

2013, pp. 326–329. doi: 10.1109/FPT.2013.6718378.

[18] D. Wang, Z. Duan, C. Tian, B. Huang, and N. Zhang. “A Runtime Optimization

Approach for FPGA Routing”. In: IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 37.8 (2018), pp. 1706–1710. doi: 10.1109/TCAD.2017.

2768416.

[19] Y. Zhou, P. Maidee, C. Lavin, A. Kaviani, and D. Stroobandt. “RWRoute: An Open-

Source Timing-Driven Router for Commercial FPGAs”. In: ACM Trans. Reconfigurable

Technol. Syst. 15.1 (Nov. 2021). issn: 1936-7406. doi: 10.1145/3491236. url: https:

//doi.org/10.1145/3491236.

[20] M. Shen and G. Luo. “Corolla: GPU-Accelerated FPGA Routing Based on Subgraph

Dynamic Expansion”. In: Proceedings of the 2017 ACM/SIGDA International Sym-

posium on Field-Programmable Gate Arrays. FPGA ’17. Monterey, California, USA:

51

https://doi.org/10.1145/1950413.1950447
https://doi.org/10.1145/1950413.1950447
https://doi.org/10.1145/1950413.1950447
https://doi.org/10.1145/3490422.3502356
https://doi.org/10.1145/3490422.3502356
https://doi.org/10.1145/3490422.3502356
https://doi.org/10.1109/FCCM.2019.00017
https://doi.org/10.1109/FPT.2013.6718378
https://doi.org/10.1109/TCAD.2017.2768416
https://doi.org/10.1109/TCAD.2017.2768416
https://doi.org/10.1145/3491236
https://doi.org/10.1145/3491236
https://doi.org/10.1145/3491236

Association for Computing Machinery, 2017, pp. 105–114. isbn: 9781450343541. doi:

10.1145/3020078.3021732. url: https://doi.org/10.1145/3020078.3021732.

[21] D. Korolija and M. Stojilović. “FPGA-Assisted Deterministic Routing for FPGAs”. In:

2019 IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW). 2019, pp. 155–162. doi: 10.1109/IPDPSW.2019.00034.

[22] J. Luu et al. “VTR 7.0: Next Generation Architecture and CAD System for FPGAs”.

In: ACM Trans. Reconfigurable Technol. Syst. 7.2 (July 2014). issn: 1936-7406. doi:

10.1145/2617593. url: https://doi.org/10.1145/2617593.

[23] K. E. Murray, S. Zhong, and V. Betz. “AIR: A Fast but Lazy Timing-Driven FPGA

Router”. In: 2020 25th Asia and South Pacific Design Automation Conference (ASP-

DAC). 2020, pp. 338–344. doi: 10.1109/ASP-DAC47756.2020.9045175.

[24] K. E. Murray and V. Betz. “Tatum: Parallel Timing Analysis for Faster Design

Cycles and Improved Optimization”. In: IEEE International Conference on Field-

Programmable Technology (FPT). 2018.

[25] M. A. Hassaan, M. Burtscher, and K. Pingali. “Ordered vs. unordered: a comparison

of parallelism and work-efficiency in irregular algorithms”. In: Proceedings of the 16th

ACM Symposium on Principles and Practice of Parallel Programming. PPoPP ’11.

San Antonio, TX, USA: Association for Computing Machinery, 2011, pp. 3–12. isbn:

9781450301190. doi: 10 . 1145 / 1941553 . 1941557. url: https : / / doi . org / 10 . 1145 /

1941553.1941557.

[26] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd Edition. 2nd. Morgan

and Claypool Publishers, 2010. isbn: 1608452352.

[27] A. Estebanez, D. R. Llanos, and A. Gonzalez-Escribano. “A Survey on Thread-Level

Speculation Techniques”. In: ACM Comput. Surv. 49.2 (June 2016). issn: 0360-0300.

doi: 10.1145/2938369. url: https://doi.org/10.1145/2938369.

52

https://doi.org/10.1145/3020078.3021732
https://doi.org/10.1145/3020078.3021732
https://doi.org/10.1109/IPDPSW.2019.00034
https://doi.org/10.1145/2617593
https://doi.org/10.1145/2617593
https://doi.org/10.1109/ASP-DAC47756.2020.9045175
https://doi.org/10.1145/1941553.1941557
https://doi.org/10.1145/1941553.1941557
https://doi.org/10.1145/1941553.1941557
https://doi.org/10.1145/2938369
https://doi.org/10.1145/2938369

[28] M. C. Jeffrey, S. Subramanian, M. Abeydeera, J. Emer, and D. Sanchez. “Data-centric

execution of speculative parallel programs”. In: 2016 49th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO). 2016, pp. 1–13. doi: 10.1109/

MICRO.2016.7783708.

[29] M. C. Jeffrey, V. A. Ying, S. Subramanian, H. R. Lee, J. Emer, and D. Sanchez.

“Harmonizing speculative and non-speculative execution in architectures for ordered

parallelism”. In: Proceedings of the 51st Annual IEEE/ACM International Symposium

on Microarchitecture. MICRO-51. Fukuoka, Japan: IEEE Press, 2018, pp. 217–230.

isbn: 9781538662403. doi: 10.1109/MICRO.2018.00026. url: https://doi.org/10.

1109/MICRO.2018.00026.

[30] S. Subramanian, M. C. Jeffrey, M. Abeydeera, H. R. Lee, V. A. Ying, J. Emer, and D.

Sanchez. “Fractal: An Execution Model for Fine-Grain Nested Speculative Parallelism”.

In: Proceedings of the 44th Annual International Symposium on Computer Architecture.

ISCA ’17. Toronto, ON, Canada: Association for Computing Machinery, 2017, pp. 587–

599. isbn: 9781450348928. doi: 10.1145/3079856.3080218. url: https://doi.org/10.

1145/3079856.3080218.

[31] V. A. Ying, M. C. Jeffrey, and D. Sanchez. “T4: Compiling Sequential Code for Ef-

fective Speculative Parallelization in Hardware”. In: 2020 ACM/IEEE 47th Annual

International Symposium on Computer Architecture (ISCA). 2020, pp. 159–172. doi:

10.1109/ISCA45697.2020.00024.

[32] C. Kim, D. Burger, and S. W. Keckler. “An adaptive, non-uniform cache structure

for wire-delay dominated on-chip caches”. In: Proceedings of the 10th International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems. ASPLOS X. San Jose, California: Association for Computing Machinery, 2002,

pp. 211–222. isbn: 1581135742. doi: 10.1145/605397.605420. url: https://doi.org/10.

1145/605397.605420.

53

https://doi.org/10.1109/MICRO.2016.7783708
https://doi.org/10.1109/MICRO.2016.7783708
https://doi.org/10.1109/MICRO.2018.00026
https://doi.org/10.1109/MICRO.2018.00026
https://doi.org/10.1109/MICRO.2018.00026
https://doi.org/10.1145/3079856.3080218
https://doi.org/10.1145/3079856.3080218
https://doi.org/10.1145/3079856.3080218
https://doi.org/10.1109/ISCA45697.2020.00024
https://doi.org/10.1145/605397.605420
https://doi.org/10.1145/605397.605420
https://doi.org/10.1145/605397.605420

[33] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina,

C.-C. Miao, J. F. Brown III, and A. Agarwal. “On-Chip Interconnection Architecture

of the Tile Processor”. In: IEEE Micro 27.5 (2007), pp. 15–31. doi: 10.1109/MM.2007.

4378780.

[34] J. L. Carter and M. N. Wegman. “Universal classes of hash functions (Extended Ab-

stract)”. In: Proceedings of the Ninth Annual ACM Symposium on Theory of Com-

puting. STOC ’77. Boulder, Colorado, USA: Association for Computing Machinery,

1977, pp. 106–112. isbn: 9781450374095. doi: 10.1145/800105.803400. url: https:

//doi.org/10.1145/800105.803400.

[35] S. Yang. Logic synthesis and optimization benchmarks user guide: version 3.0. Micro-

electronics Center of North Carolina, 1991.

[36] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz. “Timing-Driven Titan: Enabling

Large Benchmarks and Exploring the Gap between Academic and Commercial CAD”.

In: ACM Trans. Reconfigurable Technol. Syst. 8.2 (Mar. 2015). issn: 1936-7406. doi:

10.1145/2629579. url: https://doi.org/10.1145/2629579.

[37] V. A. Ying. “Compiler-Hardware Co-Design for Pervasive Parallelization”. Available

at https ://people . csail .mit . edu/sanchez/theses/2023 .ying .phd .pdf. PhD thesis.

Cambridge, MA: Massachusetts Institute of Technology, Sept. 2023.

54

https://doi.org/10.1109/MM.2007.4378780
https://doi.org/10.1109/MM.2007.4378780
https://doi.org/10.1145/800105.803400
https://doi.org/10.1145/800105.803400
https://doi.org/10.1145/800105.803400
https://doi.org/10.1145/2629579
https://doi.org/10.1145/2629579
https://people.csail.mit.edu/sanchez/theses/2023.ying.phd.pdf

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 The FPGA Routing Problem
	2.1.1 Pathfinder
	2.1.2 Related Work
	2.1.3 Verilog-to-Routing (VTR)

	2.2 Swarm and Irregular Parallelism
	2.2.1 Swarm
	2.2.2 Fractal

	3 Implementation
	3.1 High-level Techniques
	3.1.1 Nested Loops and Continuations
	3.1.2 Spawner Tasks

	3.2 Accelerating A* Search
	3.2.1 Approach
	3.2.2 Timestamps

	3.3 A* in Parallel
	3.3.1 Repeated Searches
	3.3.2 Route Tree Forwarding

	3.4 Determinism

	4 Evaluation
	4.1 Experimental Setup
	4.1.1 Modeled System
	4.1.2 Baseline

	4.2 Routing Performance
	4.2.1 Full Run
	4.2.2 Single Iteration

	4.3 Roadblocks
	4.3.1 Amdahl's Law
	4.3.2 False Dependences

	5 Conclusion
	5.1 Future Work

	References

