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ABSTRACT

In the era of hardware specialization, field-programmable gate arrays (FPGAs) provide
a promising platform for computer architects, combining the programmability of software
with the speed and performance of hardware. Despite this, compiling hardware programs
onto FPGAs can be incredibly time-consuming, making it hard to develop and iterate on
complex FPGA programs. Of particular relevance is the routing phase, which takes a circuit’s
technology-mapped netlist and routes its signals using the switches and wires present on
a given FPGA architecture, often with a target of minimizing critical path delay. This
optimization problem is known to be NP-hard, and existing algorithms for approximating it
exhibit very little regular parallelism.

This thesis accelerates the routing phase of VIR 8.0, a commonly used, open-source
research tool for FPGA CAD flow. We show that despite the lack of regular parallelism,
routing still exhibits significant irregular parallelism. This parallelism can be exploited on
parallel architectures that provide hardware support for ordered tasks and fine-grained spec-
ulation, such as the Swarm architecture. Using Swarm, we exploit the parallelism present
at the core of VI'R’s algorithm, achieving a 35.9x speedup on a single routing iteration of a
large benchmark (cholesky_mc) on 256 cores.
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Chapter 1

Introduction

Field-programmable gate arrays (FPGAs) have become increasingly popular as industrial
demand for hardware accelerators has risen. In contrast to application-specific integrated
circuits (ASICs), FPGAs can be reconfigured by the end user, promising the performance
of hardware with reprogrammability of software. This has allowed programmers to accel-
erate applications which require significant flexibility over time, such as software-defined
networking [1] or search engine ranking [2|, and the widespread availability of FPGAs has
allowed for innovation by individuals and companies which would otherwise not have access
to specialized hardware platforms.

Unfortunately, as modern systems have gotten larger, compiling programs onto FPGAs
has become incredibly complex and time-consuming. FPGA programs are typically specified
using hardware description languages (HDLs) and compiled down to hardware primitives
over a number of steps, often using device-specific, commercial tools such as Vivado [3] or
Quartus [4]. For a two-FPGA design with 128 processing elements, compilation can take 13
hours [5]; for even larger designs, the process may take days or even weeks, making iteration
difficult.

In this thesis, we parallelize the routing phase of FPGA compilation. Routing takes the

logic elements of a given design, which have already been placed onto the board, and connects
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them using the reconfigurable switches available on the FPGA. Algorithms for routing have
been hard to accelerate due to their irregular parallelism: like most graph algorithms, access
patterns are not known a priori, making independent threads of computation hard to identify
and exploit.

Prior work has addressed this difficulty through different software techniques. Some
parallel routers perform routing without concern for potential dependences; these routers are
non-deterministic, making them impractical to use in situations where repeatability is crucial
[6]. Other routers pre-partition the problem into independent subproblems which must be
scheduled |7, 8], which requires software synchronization and is limited in parallelism by the
number of potentially independent subproblems. Finally, other routers exploit fine-grained
parallelism in the graph search at the core of FPGA routing using a conventional multicore,
but this produces poor results given the overheads of CPU threads with small tasks [9].

Given these challenges, hardware support for ordered, fine-grained parallelism is necessary
to fully exploit the parallelism present in FPGA routing. We accelerate the routing phase for
a commonly used, open-source research tool for computer-aided design (CAD) of FPGAs,
Verilog-to-Routing (VTR) 8.0 [10], using the Swarm hardware architecture [11]. Swarm is a
tiled multicore which uses tiny, ordered tasks, speculative execution, and selective aborts to
exploit irregular parallelism that is otherwise unavailable on conventional multicores. Using
a number of different techniques, we explore the parallelism present in the FPGA routing

phase and use it to provide a significant speedup for an important problem.

1.1 Contributions

We make the following contributions:

1. We implement FPGA routing in Swarm. We demonstrate that Swarm’s task-based
execution model is sufficient to capture the irregular parallelism present in a complex

application (VTR) without significant changes to its approach. We also introduce a
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number of strategies for using the Swarm execution model which could be useful in

accelerating other applications.

. We evaluate our implementation in the Swarm simulator and find that it produces a
35.9x speedup over VTR on realistically sized benchmarks with 256 cores with minimal
losses in routing quality. We also identify some barriers to further acceleration, and

propose potential solutions for them.
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Chapter 2

Background

2.1 The FPGA Routing Problem

Traditional FPGAs consist of an array of configurable logic blocks (CLBs) and a network
of wires; the connections between these wires pass through routing switches, which are
programmable and can connect different wires to each other. Modern FPGAs also have
specialized hardware blocks which serve common use cases, including digital signal processing
blocks (DSPs), memories, and even full ARM cores. Many of these blocks are reconfigurable;
for example, CLBs contain lookup tables (LUTs) which implement simple Boolean functions,
taking in a fixed number of inputs and producing a configurable output.

Once a circuit has been synthesized for a particular FPGA’s hardware primitives, FPGA
CAD tools compile that circuit onto the FPGA through two distinct phases: placement
and routing. Placement takes these hardware primitives and places them on the FPGA;
for example, it assigns circuit logic to the specific CLBs available on the FPGA based on
some optimization objective, such as wirelength. The routing phase’s task is to connect
these already configured circuit elements to each other using the actual wires and switches
available in the FPGA’s interconnect, such that the output of every element (e.g., a logic

gate) connects only to the corresponding inputs it should be wired to (e.g., the input of a
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DSP). These outputs and inputs are known as pins.

Our work focuses on the routing phase, which we define more formally as follows:

Let a particular FPGA architecture’s routing resource graph (RRG) be a directed
graph G = (V, E)) where the vertices V' correspond to the architecture’s pins and
wires, and the edges correspond to connections between them (e.g., a routing
switch which connects different wire segments). Then, for a given placement of
an FPGA program, let a net N; be the combination of a signal, s;, and its sinks
T; = {ti1, ti2, - - -, tim}, and say a net NN, is routed by some route tree RT; if RT;
is a tree in G with root s; and T; C RT;. Find a set of route trees RT; such that

every net is routed and every route tree is disjoint.

2.1.1 Pathfinder

FPGA routing is, in general, NP-complete [9, 12|. As such, heuristic algorithms which iter-
atively converge to an approximate solution are necessary to perform routing. Most FPGA
routing algorithms, both commercial and academic, are ultimately based on PathFinder [13],
which iteratively re-routes every net in a fixed order using Dijkstra’s algorithm repeatedly
until no nets share routing resources (Algorithm 1).

While routing a given sink ¢;;, the cost of a node in PathFinder, ¢,, is the combination of
two factors: the intrinsic delay of a given node and its congestion (i.e., the number of other
routes using this node). The relative weighting of these two terms is given by the criticality
of a node to the routing, which is defined as D;;/Dy,q., where D;; is the delay of the longest
path containing the route from s; to ¢;; and D,,,, is the delay of the longest path overall;
i.e., the critical path. The congestion cost of nodes already on the route tree is set to zero.
PathFinder routes sinks in order from most to least critical.

There are a few important characteristics of this algorithm: first, the route tree for each
signal-sink connection depends on the routing of the previous connections within the same

net. This is ideal because it allows for reuse of routing resources for sinks which are near each
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Algorithm 1 The original PathFinder algorithm [13]

while shared resources exist do
for each net N; do
Rip up routing tree RT;
RT; < s;
for each signal ¢;; € N; do
Initialize priority queue PQ to RT;
while PQ is non-empty do

if m is ¢;; then
break
end if
for each child n of node m do
Add n to PQ at cost ¢, + P,
end for
end while
for each node n in path from s; to ¢;; do
Update ¢,
Add n to RT;
end for
end for
end for
end while

> Dijkstra’s algorithm
Remove lowest cost node m from P(Q), with path cost P,

> backtrace

19



other, but creates a data dependence between the routing of those connections. Second, its
performance is dependent on the order in which nets are routed: different orders can lead to
significant differences in PathFinder performance [14, 15]. Third, all nets are fully re-routed
in each iteration, which can be a significant amount of work on modern circuits with many

nets.

2.1.2 Related Work

Work on improving FPGA routing tends to have two focuses: providing improvements
to serial algorithms for routing, or improving runtime by looking for traditional forms of
parallelism in existing algorithms, usually on multicore general-purpose processor systems.
Notably, since the FPGA routing problem is NP-complete, a tradeoff also exists between
runtime of the algorithm and quality of the routing [16]; there are also multiple criteria for

FPGA routing quality, such as wirelength and critical-path delay.

Serial Improvements

Most work on providing better serial algorithms for routing is based off of PathFinder.
Much recent work focuses on decreasing the amount of re-routing performed by the routing
algorithm; many algorithms, for example, have shifted from ripping up entire nets on each
iteration to only re-routing source-sink connections which contain congested nodes [16, 17].
Other optimizations include only expanding portions of the existing route tree close to the
target sink for sinks which are not critical [18].

One particular area of focus is reassessing the costs from the original PathFinder al-
gorithm, which reflected FPGA architectures at the time of writing. By adding different
heuristics, algorithms have minimized the Manhattan distance of explored nodes [17], wire-
lengths on different architectures [16, 19|, or the delay incurred along the path [16]. The
introduction of these heuristics transform PathFinder’s Dijkstra’s-based router into an A*-

based router. Other work has explored reducing the order dependence and increasing the
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stability of PathFinder by changing how pressure and congestion costs are calculated over
time [15].

Although our work in this thesis focuses on providing parallel speedup for a particular
router implementation, our techniques are applicable to these serial algorithms because of
their common, Pathfinder-based approach. In other words, the parallelism we find in our

work is orthogonal to the serial speedup provided by the previous work here.

Parallel Routers

PathFinder is a difficult challenge for traditional parallelism, because its parallelism is ir-
regular; as in most graph algorithms, the nodes that are visited (and, correspondingly, their
memory accesses) are dependent on the nodes that are visited previously and cannot be
predicted at compile time. Parallel routers fall into two categories - coarse-grained routers
and fine-grained routers [6]. Coarse-grained routers |7, 8] work by partitioning the routing
problem into independent problems which can be passed to different instances of VI'R; this
is done by clustering groups of nets with overlapping bounding boxes and then scheduling
them in a reasonable order. Fine-grained routers, by contrast, start by parallelizing the
shortest-paths solver; for example, Moctar et. al. |9], uses a software transactional memory
to speed up A* search by allowing threads to expand multiple nodes at once, using locks to
ensure accesses remain disjoint.

Works which perform hardware acceleration of FPGA routing, e.g., using the GPU or
another FPGA, are more sparse in the literature. Corolla [20] combines a coarse-grained
parallel router with GPU-based fine-grained acceleration of a Bellman-Ford-based shortest-
paths solver, achieving an 18x speedup. Korolija and Stojilovi¢ [21] implement priority
queues, wavefront expansion, and a cost-resetting DMA module on an FPGA to accelerate
A* search; they achieve 2-4x speedup against their baseline and no speedup against VTR.

Beyond the quality-runtime tradeoff identified earlier, an important characteristic for

parallel routers is determinism. In order to achieve consistent results and allow for reliable
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testing, it is important for routers to produce repeatedly the same output, given the same
inputs. Determinism is generally guaranteed by serial execution but is not always certain

for parallel routers.

2.1.3 Verilog-to-Routing (VTR)

Verilog-to-Routing [10, 22] is a state-of-the-art, open-source, academic system which per-
forms HDL compilation for FPGAs. It contains many tools for synthesizing digital circuits
written in Verilog onto an FPGA, including Versatile Place and Route (VPR), which takes
in a BLIF netlist describing a circuit which has been technology-mapped to a particular
FPGA architecture, and produces packing, placement, and routing files for the given circuit
on that architecture.

VPR’s router 23] is a serial router which makes a number of improvements to the original
PathFinder algorithm. Like previously described work, it only re-routes congested connec-
tions, uses A* search, and—for nets with high fanout—only expands a portion of the route
tree closest to the sink it is currently routing. It additionally calculates bounding boxes
for each net, which it expands dynamically if the route tree found is near the edge of the
bounding box (Algorithm 2).

VPR’s A* heuristic, which it calls its router lookahead, is calculated by profiling the
routing network of the FPGA and building a “map” of the delay and congestion costs of
resources on its sample routes based on wire type and orientation. It scales these costs by
wirelength to decrease congestion on the long wire network. VPR/’s heuristic is not necessarily
monotone; that is to say, the estimated final cost of a path may decrease along the path.

VPR’s routing phase is primarily serial, although its timing-driven router does its once-
per-iteration static timing analysis (STA) using Tatum [24], a parallel STA library which uses
Thread Building Blocks (TBB). Although our focus in this work has been on accelerating
the core routing algorithm, we do reimplement the TBB-based parallelization in Swarm and

Fractal to ensure comparability of results.
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Algorithm 2 VPR’s routing algorithm [23|

while shared resources exist do
for each net N; do
Prune subtrees of RT; which have congested resources
for each unrouted signal ¢;; € N; do
if NN, is high-fanout and ¢;; is not critical then
Run A* from portions of the route tree near the sink t;;
if A* succeeds, add the backtrace to RT; and continue
end if
Run A* from RT;, only considering routing resources inside the bounding box
for net N;
if A* succeeds, add the backtrace to RT; and continue
Run A* from RT;, considering routing resources on the whole FPGA
Add the backtrace to RT;
end for
Expand the bounding box if RT; borders or exits the bounding box
end for
end while

2.2 Swarm and Irregular Parallelism

In order to improve performance, parallel architectures such as conventional multicores have
traditionally relied on programmers to extract thread-level parallelism from existing pro-
grams; that is, they rely on the software to identify independent threads of computation
which can be run on different processing elements. Thread-level parallelism, however, can
be hard to exploit on conventional multicores with large runtime overheads which dominate
for smaller task sizes and without hardware support for ordered algorithms [25].

Hardware architectures have attempted to extract additional parallelism using hardware
transactional memory (HTM) [26] and thread-level speculation (TLS) [27]|, where transac-
tions or threads run speculatively and abort when a conflict is detected. This addresses
some difficulties, but data conflicts on software queues can still bottleneck performance. In
this chapter, we provide an overview of Swarm [11], a hardware architecture which uses

speculation and hardware queues to allow users to exploit ordered, irregular parallelism.
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Figure 2.1: A Swarm chip with 64 tiles.

2.2.1 Swarm

The Swarm architecture [11| allows programmers to exploit irregular parallelism by com-
bining a number of important techniques. The architecture itself is a tiled multicore, with
each tile consisting of a group of four cores with private L1 caches and a shared L2 cache,
along with a slice of a chip-wide L3 cache. Each tile also contains a router and a task unit,
which manages the execution of Swarm programs. The design of the architecture is shown
in Figure 2.1.

Swarm programs consist of small tasks with programmer-defined timestamps, which ap-
pear to execute atomically and in timestamp order. Tasks can enqueue children, which must
have later or equal timestamps. Tasks with the same timestamp are allowed to execute in
any order. For example, a Swarm task for breadth-first search (BFS) could be implemented
as in Figure 2.2. In this example, our timestamps represent our distances from the start
node, and therefore the task at a certain node with the lowest distance will always appear
to execute first, as desired in BFS.

This execution model allows to Swarm to execute tasks speculatively and out-of-order;

tasks are issued from the task unit’s task queue, and completed tasks are stored in a commit
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void bfs_task(swarm::Timestamp dist, Vertexx* v, Vertex* parent) {
if(v->visited) return;

v->visited = true;
v->parent = parent;
for(Vertex* neighbor : v->neighbors) {

swarm: : enqueue (bfs_task,
dist + 1, // timestamp

NOHINT, // spatial hint
neighbor, // task arguments
)

Figure 2.2: An example Swarm task for breadth-first-search.

queue with associated information. Swarm utilizes selective aborts, meaning tasks are only
aborted if their read/write sets directly conflict, based on the timestamp, or if they have
a dependence on an aborted task; e.g., in Figure 2.2, later tasks which may have executed
speculatively at the same node will abort due to their read of v->visited, as will any child
tasks they spawned. A task can commit once all earlier tasks on the chip have completed.
This technique, in combination with the large speculation windows provided by hardware
queues, allows Swarm to effectively exploit the parallelism in the independent tasks of a
given problem.

In some cases, it is preferable to run certain tasks serially, such as when tasks are likely
to access the same data. Swarm provides spatial hints [28|, which enqueues same-hint tasks
to the same tile. This improves locality for task data and reduces data-based aborts from
conflicting accesses. Additionally, Swarm allows users to run tasks non-speculatively or to
explicitly serialize them [29], as may be necessary for tasks which generate exceptions or are
expensive and may have been misspeculated. These tasks run when they are the earliest

unfinished task, and do not run concurrently with any other task.
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Figure 2.3: The Fractal execution model.

2.2.2 Fractal

Fractal [30] is an extension of Swarm which allows for the creation of nested domains. A
task in Fractal can enqueue tasks within its domain, create a nested subdomain and enqueue
tasks to it (also called deepening), or enqueue tasks to its superdomain, if one exists. At each
domain level, Fractal tasks and their subdomains appear to execute completely atomically
and in the order of their timestamp, as shown in Figure 2.3. Fractal retains the fine-grained
parallelism of Swarm by speculatively executing small tasks from all available domains while
maintaining the atomicity and global ordering required by its execution model using selective
aborts.

Fractal allows for users to parallelize programs which have nested parallelism; for exam-
ple, a transactional database may have coarse-grained parallelism across transactions (which
must execute atomically) while also exhibiting fine-grained parallelism within them. In-
deed, Fractal supports unlimited nesting, although it requires spilling tasks to memory for

programs which use more than four levels of nesting.
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Chapter 3

Implementation

This chapter describes our approach to accelerating VPR in Swarm.

3.1 High-level Techniques

3.1.1 Nested Loops and Continuations

We use Fractal to support the nested loops in PathFinder. Despite the complexity of

PathFinder, we never go beyond four nesting levels, eliminating the need for Fractal’s task

spillers. Our subdomain structure is described in Algorithm 3.

Algorithm 3 VPR’s structure in Fractal

while shared resources exist do
Fractal deepen
for each net N; do
Prune subtrees of RT; which have congested resources
Fractal deepen
for each unrouted signal ¢;; € N; do
Fractal deepen
Perform A* search
end for
Fractal undeepen

Expand the bounding box if RT; borders or exits the bounding box

end for
end while

> Domain 1

> Domain 2

> Domain 3

> Domain 4

> Domain 2
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Figure 3.1: Nested for loops in Fractal.

Each “for” in Algorithm 3 is structured as a “parallel for”, as shown in Figure 3.1; i.e., all
tasks are enqueued at the same time. Tasks which occur at a certain Fractal level but after
a nested for loop are enqueued to a higher timestamp as continuations, such as the bounding
box expansion shown above. These continuations are non-speculative, since they are unlikely
to complete without conflicts until routing finishes; indeed, the net-level continuation requires
serialization since it creates a segmentation fault when net routing is incomplete.

In our current implementation of VPR, we additionally serialize before each net, meaning
that all tasks from the previous net must commit before the following net begins routing.
This means our router is a fine-grained parallel router, although our approach is theoretically

compatible with coarse-grained parallelism as well. We discuss our reasons for this in Chapter

4.3.2.

3.1.2 Spawner Tasks

In general, we follow T4 [31], which uses recursive spawner trees to quickly enqueue tasks
for loops with known iteration counts. When spawner trees are balanced, this approach
shortens the critical path of task spawns to be logarithmic, as opposed to the linear path of
serial spawners. This is possible for most loops in VPR because of the fixed structure of the

FPGA routing problem; routing resources always have the same connections, nets always

28



Recursive Spawner Tree Chain Expansion
for(int 1 = 0; 1 < n; i++) for (Node* list; list != nullptr;
list = 1list->next)

Figure 3.2: Two approaches to spawning tasks quickly: recursive spawners, for known-
tripcount loops, and chain expansion, for serializing loop variables.

have the same sinks, etc.

One small exception to this occurs where VPR uses linked lists to store data, such the
children of route tree nodes. In these cases, the current pointer to the linked list is serializing,
since each iteration’s value of that pointer depends unconditionally on that of the previous
iteration. Here, we use chain expansion with fixed fanout—we spawn 3 tasks to process each
element of the list before spawning a new task to process the next chunk of the list, allowing
element processing to run off the critical path of task spawns.

We illustrate these two approaches to task spawning in Figure 3.2.

3.2 Accelerating A* Search

In order to achieve the most fine-grained parallelism, we start by accelerating the most nested

level of the routing process, the A* search.

3.2.1 Approach

The key order constraint of A* search is that of the priority queue: i.e., nodes must be
visited in an order such that the node with the lowest estimated total distance to the goal is

always relaxed first. Thus, it is natural to divide A* search into tasks which represent node
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Graph

h(W)=32 h(Y)=1

Figure 3.3: An example A* search on a graph with heuristic i, with estimated total distance
as timestamps. Even though both A and Y enqueue tasks to relax X, the enqueue from A
has a lower estimated cost, leading to the abort of the task from X and its children.

visits, with timestamps that represent the estimated total distance of that node, as shown

in Figure 3.3. The task we use for VPR is outlined in Algorithm 4.

Algorithm 4 Psuedocode for our A* visit task.

procedure ASTAR_VISIT(node i, cost ¢, backwards cost ¢, parent node 4,, done d)
if d is set, return
if ¢ < recorded total cost and ¢, < recorded backwards cost, or i is the sink then
Record the new total cost ¢, backwards cost ¢;, and parent node i,
Enqueue a task to reset the node cost
if 7 is the sink then
Set the flag d
Calculate a backtrace and update PathFinder costs
return
end if
for neighbor n of ¢ do
Calculate new total cost ¢’ and backwards cost ¢, from 4
Enqueue ASTAR_VISIT(n, ¢, ¢, i, d) with timestamp ¢
end for
end if
end procedure

Since a serial A* search terminates when the sink is found, we use a “done” flag (a
boolx) which is passed to all tasks within a parallel search; this flag terminates all tasks

with timestamps later than the timestamp of the earliest task which reaches the sink node.
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Swarm’s abort semantics allow us to do this safely; any later task which has already run will
be aborted, since it will have read the “done” flag set by the sink node. Additionally, the
calculation of new costs is independent for each neighbor n, and so can be done in parallel
by enqueuing cost-calculation tasks for each node at the timestamp of the parent.

One unique usage of the Fractal execution scheme here is found in resetting node costs.
Since VPR uses the same routing context to record node costs, it uses a std::vector to
record all touched nodes for each connection and then resets them manually. Here, because
we know exactly when a node is being relaxed, we can enqueue a task to reset that node
specifically, eliminating the need for an additional data structure. However, because we don’t
necessarily know what the maximum timestamp is within the current domain, we instead
enqueue the task to the next timestamp in the parent domain, which is guaranteed to run
after all tasks in this domain complete. In order to ensure the reset occurs between each
search, we set the parent-level timestamp of each search as two times its index, allowing us

to properly place the reset tasks between searches.

3.2.2 Timestamps

Using this formulation is not quite sufficient to handle VPR’s routing phase, for two reasons:
first, Swarm timestamps are integers, while the distances in VPR are floating-point values.
Second, VPR’s lookahead is non-monotonic, meaning that the estimated total cost of a
successor node, factoring in the backwards path cost and the estimated delay, may be less
than the estimated total cost of the current node when it was placed on the heap. This
means that it is possible for the current node to attempt to enqueue a successor node with
a smaller timestamp, which violates Swarm’s assumptions.

To address the first issue, we simply re-interpret the floating-point distances as unsigned
integers. Because the distances in VPR are always positive, IEEE 754 guarantees us that if
floats z,y > 0, then = < y if and only if int(z) < int(y). We also pass the float distance as

a task argument to the child task for ease of use, although it could be omitted.
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We depart from VPR’s implementation in that we forcibly make VPR’s relaxations mono-
tonic by taking the maximum of the newly calculated timestamp t4,.. and the current times-
tamp t..... Because this changes the routing behavior of VPR, we also modify our baseline to
perform monotonic relaxations. We evaluate the performance of this change in Chapter 4.1.2.

Because our routing occurs in parallel, there is no guaranteed order for the relaxation of
two connections with the same estimated distance. Instead, additional order constraints are

necessary to guarantee determinism, as discussed in Section 3.4.

3.3 A* in Parallel

We run the A* searches for all the connections in a single net in parallel. To avoid false
dependences, each search is assigned an individual “context”, which includes the sink node
and the “done” flag, as well as other reused values such as the bounding box and cost
parameters. This context is allocated beforehand for each search, passed by reference between

calls to ASTAR _VISIT, and deallocated afterwards.

3.3.1 Repeated Searches

In the case where VPR fails to route within the bounding box for a given net, it repeats
the routing attempt with a larger bounding box. Because attempts to route the same
connection on the bounding box and on the entire FPGA are likely to share resources (and
thus cause aborts), and because routing on the entire FPGA is only done in rare cases where
the bounding box method fails, we start the fullFPGA searches for each connection non-
speculatively. These repeated searches share a context with the initial search, including the
“done” flag, so that they can terminate immediately if the initial search succeeds.

VPR also contains an optimization for high-fanout nets known as spatial lookup, where
only portions of the route tree nearest the sink are added to the initial priority queue. For

the sake of simplicity, we omit this optimization in our implementation and the baseline,
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although a similar approach where the first routing attempt is done speculatively and the

subsequent routing attempts are non-speculative would be feasible here.

3.3.2 Route Tree Forwarding

As discussed in Chapter 2.1.1, PathFinder builds the initial route tree for a given connection
from the existing routing of the previous connections within that net. This allows for con-
nections within the same net to reuse routing resources, decreasing wirelength and overall
congestion on the FPGA. However, this means that a data dependence exists between each
connection; when a given node of the route tree is updated by the routing of an earlier
connection, all children of that node in subsequent searches abort, even though route tree
updating is only additive; i.e., any node that was initially enqueued will never be dequeued
by a later update.

To solve this problem, we collapse all the searches for a given net into a single Fractal
subdomain. We place the original sink routing order in the upper 31 bits of our 64-bit
timestamps, use one additional bit for cost resetting, and leave the lower 32 bits the same
(i.e., as the bits of our float). Enqueues from the initial route tree happen at timestamp 0,
so that subsequent route tree updates do not abort them. Then, when a search completes
its backtrace, it forwards any route tree nodes it adds to the tree to all subsequent searches
at the appropriate timestamp, so that later searches can reuse the routing resources from
earlier searches.

Cost resetting occurs after search n at timestamp (n < 33)|(1 < 32). Because every
task for search n < n/ occurs at a timestamp lower than every task for search n’, Swarm
guarantees that all searches appear atomic to each other as before. An illustration of this
process can be seen in Figure 3.4.

We focus solely on performing the first A* search for each connection in parallel. Since the
subsequent searches—i.e., the fulllFPGA searches—are already serialized, we push them to

the end of the routing order, and enqueue the route tree at timestamp 0 within that search.
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Collapsed Fractal Domain

timestamp 0

L

Figure 3.4: Our route tree forwarding scheme. Note that this does not include the serialized,
full-lFPGA searches.

resetting tasks sink # reset? distance
63:33 | 32 | 31:0 | node timestamp

sink # reset? distance

63:33 32 31:0 non-deterministic node timestamp
sink # reset? distance tiebreaker
63:52 | 51 50:19 18:0 | deterministic node timestamp

Figure 3.5: Timestamps for deterministic and non-deterministic implementations of A*.

At that point, the route tree will already be fully up-to-date when the search initializes.
This change results in a slight change in behavior from VPR’s default routing approach:
connections which fail to route within the net bounding box are routed sequentially after all

other connections have been routed, rather than in their initial position.

3.4 Determinism

We implement a deterministic version of our approach by providing a fixed order for routing
nodes at the same distance. We accomplish this by appending some bits at the bottom of our
timestamp which specify an application-specific tiebreaker, conveying additional information

about the edge being relaxed, as shown in Figure 3.5.
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For the purposes of our work, we use a bitwise XOR of the node IDs for the start and end
of the edge being relaxed, which was sufficient to guarantee determinism on the problems
we evaluated. In cases where our total distance was kept the same due to monotonic relax-
ations but our tiebreaker decreased, we incremented the total distance by one to maintain
timestamp ordering. Unfortunately, because we are constrained to 64-bit timestamps in our
version of Swarm, the size of problems we can evaluate using this technique is limited; the
maximum sink number, i.e., the size of the highest fanout net, must be less than 4096, and
there must be at most 2! or around 520k nodes in the routing resource graph. We leave

expanding Swarm timestamps or evaluating smaller tiebreakers to future work.
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Chapter 4

Evaluation

4.1 Experimental Setup

4.1.1 Modeled System

We evaluate our system using the Swarm simulator, which is execution-driven using a cus-
tom RISC-V binary instrumentation tool. We take the parameters for the Swarm system
(Table 4.1) from prior work [11, 31| with the exception of the cores, which are replaced with
a simple RISC-V core with floating-point extensions. The simulator uses detailed timing
models for caches, network, and main memory, as well as for Swarm features such as en-
queues, aborts, and conflict checking. Notably, queue and cache sizes are per-tile, meaning
that larger systems also have lower queue and cache contention.

We perform routing on benchmarks of various sizes (Table 4.2); for small benchmarks,
we use the MCNC benchmarks [35] included with VPR. We use some of the medium-sized
benchmarks provided by VPR [10, 22], as well as the large-scale benchmarks provided as part
of the Titan benchmark suite [36]. For the VPR benchmarks, we route at a fixed channel
width of 100; for the Titan benchmarks, we route on the associated timing-driven Stratix
IV architecture and we route at a fixed channel width of 300. We use VPR’s map router

lookahead for all benchmarks. We measure from the beginning of the first routing iteration
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Cores

4 cores/tile, up to 256 cores in 64 tiles, RISC-V ISA
with F (float), D (double), and C (compressed)
extensions; simple core model with 1 IPC except for
misses and Swarm instructions

L1 caches
L2 caches

32 KB, per-core, split D/I, 8-way, 2-cycle latency
1 MB, per-tile, 8-way, inclusive, 9-cycle latency

L3 cache 64 MB, shared, static NUCA [32] (4 MB bank/tile),
16-way, inclusive, 12-cycle bank latency
Coherence MESI, 64 B lines, in-cache directories
NoC Four n x n meshes, 192-bit links, X-Y routing,

Main mem

1 cycle/hop when going straight, 2 cycles on turns (like
Tile64 [33])
4 controllers at chip edges, 120-cycle latency

Queues

Conflicts

Commit

Spills

64 task queue entries/core,

16 commit queue entries/core

2 Kbit 8-way Bloom filters, H3 hash functions [34]
Tile checks take 5 cycles (Bloom filters) + 1 cycle per
timestamp compared in the commit queue

Tiles send updates to virtual time arbiter every

100 cycles

Spill 15 tasks when task queue is 86% full

Table 4.1: Configuration of the modeled systems.

4.1.2 Baseline

to the completion of routing, meaning that we exclude all setup and teardown costs.

For our baseline, we compare against a version of VPR which contains two modifications
from VPR 8.0, as described in Chapter 3. First, we modify VPR to take only monotonic
relaxations; i.e., to set the estimated total cost of a successor node to at least the estimated
total cost of its parent. Second, we modify VPR to eliminate spatial lookup. We do not
implement the re-ordering caused by our route tree forwarding scheme (Chapter 3.3.2);

instead, we measure the effect of that change against our baseline in full runs (Section

Because our baseline is modified from the default behavior of VPR, we compare the
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Benchmark Source Consolidated Nets

tseng MCNC D72

alud MCNC 634
elliptic MCNC 1853
blob_merge VPR Y7 3839
arm_core VPR 8 9225
neuron Titan 51456
cholesky_mc  Titan 66664

Table 4.2: List of benchmarks used for evaluation; consolidated nets refers to the number of
nets produced by VPR before routing.

Wall-clock time (s) Wirelength Critical path (ns)

Default Mono Baseline Default Mono Baseline Default Mono  Baseline

blob_merge 2.52 2.21 3.93 94.8k 94.6k 94.2k 14.72 14.73 14.71
neuron 29.12 31.08 32.48 764k 770k 768k 8.70 8.84 8.84
cholesky_mc 78.18 81.31 84.67 1.23m 1.24m 1.23m 7.98 8.26 8.23

Table 4.3: Routing performance of default VPR, VPR with monotonic relaxations, and our
baseline on larger benchmarks. Smaller values are better.

routing performance and routing time of unmodified VPR, VPR with monotonic relaxations,
and our baseline. We perform this evaluation on some of our larger benchmarks, which are
more likely to suffer from the removal of spatial lookup. Since this comparison is solely
algorithmic and simulation overheads are large, we use x86 for this comparison.

The results of this comparison are shown in Table 4.3. In general, our baseline produces
routing results that are comparable but slightly worse than VPR with respect to runtime,
and within 5% with respect to wirelength and critical path delay. We did not include
arm_core in this comparison because its routing does not run to completion with the given
architecture and channel width on any configuration. It is not entirely clear which of our
changes contributes more to the worse routing times of the baseline; the lack of spatial lookup
could be easily remedied by further work, while the monotonic relaxations are a necessary

result of Swarm semantics.
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Cycles Wirelength Critical path (ns)

Baseline Swarm Speed-up Baseline Swarm Baseline Swarm
tseng 1.04T 2678 3.89x 6.38k  6.52k (+2.0%)  6.430  6.514 (+1.3%)
alud 1.92T 541B 3.54x 10.8k 10.9k (+1.9%) 5.350 5.391 (+0.8%)

elliptic 10.8T 1.50T 7.20x 36.0k 35.0k (-2.8%) 8.759 9.314 (+6.3%)
blob_merge  25.4T 4.64T 5.46x 93.9k  97.7k (+4.3%) 14.73 14.93 (+1.4%)

Table 4.4: Routing performance of Baseline and Swarm (256 cores, deterministic) on full
runs of smaller benchmarks.

4.2 Routing Performance

4.2.1 Full Run

We measure the performance of our four small-to-medium-sized benchmarks by running VPR
to completion. This allows us to capture changes in both routing time and performance (i.e.,
wirelength and critical path delay) from our Swarm implementation. We instrument the
baseline to track its progress throughout the routing process and run it under Swarm on a
16-core, 4-tile configuration, although it only takes up one core.

Table 4.4 summarizes the results from full runs, using our deterministic router. Our
implementation achieves modest speedups across the board, with minor regressions with
respect to wirelength and critical path. Differences in routing quality are caused by two
factors: first, our repeated search approach (Chapter 3.3.1) changes the order in which full-
FPGA searches are completed; second, our tiebreaker orders nodes which have the same
estimated total distance differently from VPR. The overall differences are relatively small,

and our implementation and the baseline remain comparable.

4.2.2 Single Iteration

For our largest benchmarks—i.e., arm_core and the two Titan benchmarks—running rout-
ing to completion in simulation is infeasible. For these benchmarks, we measure just one

iteration of PathFinder, from the start of the loop to the completion of routing of all nets,
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Baseline  Swarm, non-det. Swarm, det.

Cycles  Cycles Speedup Cycles Speedup

tseng 39.3B 21.7B 1.81x 21.9B 1.80x
alu4 96.1B 43.5B 2.21x 43.1B 2.23x
elliptic 265B 107B 2.48x 106B 2.48x
blob_merge 7568 289B 2.61x 284B 2.66x
arm_core 14.9T 716B 20.8x 714B 20.8x
neuron 32.9T * 1.03T 31.9x
cholesky_mc  92.5T * 2.58T 35.9x

Table 4.5: Routing time of Baseline and Swarm (256 cores) on single routing iterations of
each benchmark.

excluding static timing analysis (STA). This focus has the added benefit of constraining
the measurement on the core improvements from our Swarm implementation. We choose
the third iteration in order to avoid potential start-up costs while still retaining a signif-
icant amount of work. For the sake of comparison, we also include the results from our
smaller models here. Due to timestamp constraints, the largest problem we can route with

a deterministic router is arm_core.

Scalability

As seen in Table 4.5, our Swarm implementation achieves small improvements on the smaller
circuits but provides significant improvements for our larger circuits. The reason for this
difference is a dearth of parallelism on the smaller circuits; smaller circuits are less likely to
have nodes that can be visited independently for a given connection or across two connections,
which can be partially inferred from the routing resource graph sizes. Additionally, as circuits
get larger, a smaller proportion of time is taken up by net initialization and the ceiling for
parallelism increases. Both of these effects can be seen in Table 4.6.

Figure 4.1 contrasts the scalability of our smallest benchmark, tseng, and our two largest
benchmarks, neuron and cholesky_mc. As core count increases, tseng’s performance ac-
tually worsens, while the Titan benchmarks continue to improve, although at a decreasing

rate.
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Circuit RRG nodes % serialized cycles

tseng 17.6k 9.4%
alu4 23.9k 7.6%
elliptic 52.2k 8.2%
blob_merge 130k 9.2%
arm_core 278k 1.3%
neuron 5.156M 0.7%
cholesky_mc 4.82M 0.5%

Table 4.6: Routing resource graph nodes and proportion of committed cycles occupied by
net initialization for each benchmark.

—— neuron
tseng
—— cholesky

1 64 128 256
Cores

Figure 4.1: Speedup vs. core count for tseng, neuron, and cholesky_mc.
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Figure 4.2: Cycle breakdowns for tseng, neuron, and cholesky_mc, from left to right. Note
that the 1 core configuration did not complete on cholesky_mc.

Figure 4.2 shows the scalability bottlenecks from a hardware perspective: tseng spends
the vast majority of its cycles empty at higher core counts - as discussed earlier, there simply
is not enough work to fill the system, and so a lack of speedup is inevitable. By contrast,
neuron and cholesky_mc both have very few idle cycles and a much higher proportion of
committed cycles at higher core counts. However, many cycles are spent waiting on full
queues: higher core counts (and hence larger queues) are not always enough to stave off
queue pressures, indicating a potential place for future optimization.

Still, even with the large queue pressure seen on neuron and cholesky_mc, parallelism
remains a bottleneck for scalability on our largest circuits. Given a simulation with infinite
queues, neuron’s runtime only decreases by 8.3% on 256 cores, to give a speedup of 34.5x.
Indeed, as shown in Figure 4.3, idle cycles dominate in such a simulation. The significantly
increased aborts on higher core counts likely indicate that Swarm has exhausted all the
parallelism present in the implementation; thus, the commit queue pressure seen earlier is
a result of those aborting tasks, rather than a direct constraint on our implementation’s

performance.
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Figure 4.3: Cycle breakdowns for neuron with infinite queues.

Discussion

Across the benchmarks it runs, our deterministic router gives us speedup which is compa-
rable to (within 3% of) our non-deterministic router—in other words, the addition of order
constraints does not significantly change the parallelism we find in the problem. This means
that our deterministic router is also likely to scale well to larger models, given that the
problem of tiebreaker size is addressed. Since having consistent results is critical to reliable
testing, it is likely that the deterministic router would be preferred in real-world contexts.
Counterintuitively, speedups for a single iteration of the smaller circuits have lower speed-
up than the full runs. Two phenomena at least partially explain this difference. First, the
naive Swarm implementation of STA accounts for a significant portion of cycles and bolsters
our numbers; for example, on elliptic, STA occupies at least 35% of committed cycles and
achieves 10.2x parallelism on 256 cores. Second, the third routing iteration is not entirely

representative of routing time—a random sample of three other routing iterations (out of

44



30) all found higher speedups (between 3.09x and 3.22x). Although more analysis needs to
be done to fully explain this phenomenon, it is promising for the potential speedups of VPR

for full runs on larger models.

4.3 Roadblocks

4.3.1 Amdahl’s Law

Amdahl’s Law states that the maximum speedup achievable in a program whose serial por-
tion takes up a proportion p of its overall time is %. This means that our choice to serialize
before starting to route a net necessarily caps our performance at %, where p is the propor-
tion of cycles spent in net initialization. For our smaller benchmarks, p > 0.076, limiting
speedups for those benchmarks to 13.1x mazimally.

In general, this means that breaking serialized tasks down into smaller tasks is critical to
improving parallelism, and we have manually divided some larger tasks in order to achieve
this. Unfortunately, some graph operations - particularly depth-first-search (DFS) - are
inherently difficult to accelerate, as they require traversal of a graph in a particular sequence,
which is necessarily serializing. Relatedly, these graph operations are also more difficult to
express in Swarm, since the timestamps needed for the all the nodes in a parent’s subtree
are not explicitly known at the time it runs. During net initialization, VPR does multiple
conversions between two related data structures which convey routing information, both of

which involve a DFS, making increased parallelism hard to find.

4.3.2 False Dependences

In a system with nested parallelism, one alternative to decreasing the size of serialized tasks
at the most fine-grain level is to increase parallelism at a coarser level. In the case of VPR,

this would entail running multiple nets in parallel. Although we attempted to enable this
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functionality, we faced significant engineering challenges due to the structure of VPR, which
reuses a number of routing structures between nets, likely to save memory. These shared
routing structures resulted in significant increases in aborts and no increase in parallelism,
even though, in principle, the routes could have been routed in parallel. Ultimately, it was
not possible to achieve any significant improvements from removing serialization between
nets in our timeframe.

Both of these roadblocks indicate the importance of parallel-friendly data structures and
algorithms when porting complex applications to Swarm; although some programs can be
naturally “Swarm-ified”, additional work must be done to eliminate false sharing. Compiler-
driven tools such as T4 [31] can help to automate or guide this work, but may fall short
when confronted with existing codebases with complex global state or uncooperative data
structures (e.g., std: :vector). In these cases, it may be necessary to use data structures
designed explicitly for Swarm semantics [37|, and to carefully look at traces to distinguish
true and false dependences. Finally, for sufficiently memory-intensive programs, there may
be a tradeoff between memory usage and data dependences; initializing scratchpads for every
subproblem can be expensive, and it may be preferable to initialize a fixed number and hash

problems to scratchpads instead.
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Chapter 5

Conclusion

We have presented an approach which extracts the irregular parallelism present inside FPGA
routing using Swarm, a tiled multicore which uses an execution model based on small,
timestamped tasks. Our approach uses a combination of techniques to accelerate routing
at two levels: first, within the A* search used to route single connections, and second, in
routing multiple connections within a single net at once. Our implementation achieves up to
36x speedup on large benchmarks, and we show that the primary constraint on additional

performance is parallelism.

5.1 Future Work

This work opens many interesting avenues for further work. First and foremost, the primary
bottleneck for our implementation is a lack of parallelism. Fortunately, there is likely more
parallelism to be extracted in the FPGA routing problem. Shen et. al., for example, show
that it is possible to achieve 19.13x speedup with a net-based parallel router while maintain-
ing serial equivalency [8]; those gains should be composable with the fine-grained parallelism
that we exploit in this thesis and would yield significant improvements if realized.
Enabling determinism on larger test cases could yield interesting results. Although ex-

panding timestamps beyond 64 bits should be sufficient to replicate our approach, the cur-
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rent choice of tiebreaker is somewhat arbitrary, and it is not immediately clear whether it is
necessary or sufficient to guarantee determinism at all model sizes. Additionally, narrower
tiebreaker representations may be needed to route significantly larger (e.g., multi-FPGA)
models depending on timestamp size, which could introduce a three-way tradeoff between
tiebreaker representations, routing time, and determinism.

Additional use of information about the FPGA architecture could likely further improve
performance. Although the exact order of relaxations for a given routing iteration is not
known a priori, FPGAs have very regular structure, and the routing resource graph and
netlist are fixed before routing starts. Use of that information to partition or guide the
routing workload, such as through the use of Swarm’s spatial hints, could likely improve
performance if parallelism is sufficiently high.

Finally, our evaluation shows that circuit size alone does not determine the parallelism
achievable by our system. Characterizing FPGA problems that might be more or less par-
allelizable could help us understand more about what makes certain routing problems hard.
That work could also have implications for how logic blocks are packed and placed on the
FPGA before routing, which would improve the overall performance of FPGA compilation

beyond routing alone.
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