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Abstract

2D materials are a rising class of soft matter material with a promising set of unique characteristics.
The most ubiquitous 2D material, graphene, for example, possesses large surface areas, tunability,
and unique electrical, optical, and catalytic properties while being lightweight, strong, and flexible.
This has led to graphene seeing use in separations, biomedical applications, flexible electronics,
and more. Meanwhile, synthetic 2D polymers, a relatively new field of study, represent a massive
expansion of the design space for 2D materials and their applications. Solution processing of these
materials is often an important step for synthesizing or applying them, necessitating knowledge of
their behavior in suspensions and in flows. As these materials become more viable, our fundamental
understanding of them must increase in tandem. This will inform us in designing these materials
for our desired applications. However, especially when compared to their 1D counterparts, our
understanding of 2D materials is lacking. It is the goal of this thesis to help fill this gap in
knowledge.

In Chapter 1, we discuss the basics of soft matter and methods for simulating them which
are the basis for understanding the work in this thesis. We present and discuss the governing
equations for the movement of soft matter particles. We then discuss the simulation methodology
and mobility tensor approximations used in this thesis along with some additional considerations.

In Chapter 2 we study methods for simulating constrained Brownian systems. We compare
the current state-of-the-art method for these simulations, GMRES, to a different method called
the projected conjugate gradient (PrCG) method. In particular, we compare PrCG and GMRES
for rigid bodies, freely jointed chains, and immobile systems. We find that both methods exhibit
the same linear computational complexity. We find that PrCG, however, exhibits some notable
advantages over GMRES including lower precomputational and storage burdens, a guaranteed
feasible iterate, and trivial extension to new constraint types due to the lack of a preconditioner. We
use PrCG to solve a mixed constraint problem with rigid body and immobile particles, comparing
to the analytical solution at large separations.

The remainder of this thesis studies the effects of self-attraction on self-avoiding, semi-flexible,
athermal 2D materials (sheets) in shear flow. In Chapter 3, we give a background on rheology and
2D materials which are necessary for understanding the remaining chapters. We begin by discussing
non-Newtonian fluids, specifically their applications and affect on the momentum balance presented
in Chapter 1. Then, we give a brief introduction on simple shear and discuss how it is implemented
in simulations. Finally, we give a brief introduction to 2D materials, their applications, as well as
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previous experimental, theoretical, and computational work.
In Chapter 4, we model self-interacting, self-avoiding, semi-flexible, athermal sheets in shear

flow. We find a rich conformational landscape of 4 different behaviors — flat, tumbling, 1D folded,
and 2D folded — which are well-delineated by several dimensionless groups representing the ratios
between shear strength and interaction strength, and bending rigidity and interaction strength. We
use these dimensionless groups to explain the observed behaviors, explain the folding behavior of
1D folded sheets, and calculate and explain the viscosity of a dilute suspension of these sheets. We
use the conformational and rotational properties of the sheet simulations to explain this behavior,
demonstrating a new explanation for the non-monotonic rheological properties of 2D materials
which does not involve sheet-sheet interactions (which are rare in dilute suspensions) or thermal
energy (which is often small in sheet systems). We also study systems with two initially stacked
sheets in order to model, for example, shear exfoliation of 2D materials. We find three behaviors
— separating, waltzing, and flipping — which are characterized by the same dimensionless groups
as single sheets. We again explain these behaviors and calculate the viscosity of these sheets
which again shows interesting non-monotonic rheological properties which we also explain using
the conformational and rotational properties of the sheets.

In Chapter 5, we use simple time-dependent flow protocols to show how the properties of sheets
can be controlled. Specifically, we use linear shear annealing simulations to show that the final
conformational properties of a sheet suspension can be tuned continuously by varying the quench
time. We also use our knowledge of the phase map of sheets to design flow protocols with step
changes in shear rate to produce a target state of highly aligned, 1D folded sheets which represents,
among other things, our predicted lowest possible viscosity for a sheet suspension.

In Chapter 6, we discuss potential future directions for the sheet model applied in Chapters 4
and 5. Specifically, we discuss loose ends from Chapter 4 and potential extensions of the model.
We discuss potential benefits of and complications in exploring these directions.

Finally, in Chapter 7, we summarize the discoveries presented in this thesis and provide con-
cluding remarks.

Thesis Supervisor: James W. Swan
Title: Associate Professor of Chemical Engineering

Thesis Supervisor: Patrick S. Doyle
Title: Robert T. Haslam (1911) Professor of Chemical Engineering
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Chapter 1

Introduction

In this chapter, we discuss the basics of soft matter and soft matter simulations which will be

needed to understand the rest of this thesis. We present and discuss the governing equations for

the movement of soft matter particles. We then present the simulation methodology and mobility

tensor approximation used in this thesis along with some additional considerations.

1.1 Introduction to soft matter
This thesis deals with soft matter, which is a particular class of material that deals with, well, soft

things. If you are already familiar with soft matter, its equations of motion, and simulations with

hydrodynamics, you can move on past the introduction without losing much. If not, this will serve

as an introduction to soft matter simulations which will be needed to understand the work later in

this thesis. I will state a more formal definition for soft matter a little later, but for now I’ll start

with a few examples. Food like milk and jello, care products like shampoo and creams, polymers

which compose many of the things around you at this very moment, even the cells in your body,

are all classified as soft matter. There are many more examples, but the point is just that soft

matter is ubiquitous in our everyday lives. But to understand what soft matter really is and why

behaves the way it does, it isn’t enough to look at them with our naked eyes. We have to zoom in.

If we look closely at soft matter, we see that it is really composed of many small pieces immersed

32



in a fluida. These pieces are larger than individual atoms, but much smaller than what we can

perceive normally, on the order of nanometers to micrometersb. This is really small, these materials

are typically tens, hundreds, or even thousands of times smaller than the width of a single human

hair. If we want to understand how soft materials behave in our macroscopic world, it’s necessary

to understand what’s going on in their microscopic world.

Our goal is to understand how particlesc like this move around so that we can simulate them.

Simulating them allows us to do many things. First, it informs understanding. If our simulations

can be trusted, it allows us to peer in and see physics that might otherwise be very difficult

to measure experimentally. Second, it saves resources, both physical and temporal. We can

quickly and freely vary different parameters in our system without needing to go through possibly

painstaking synthesisd. Third, it allows us to do things we couldn’t otherwise do with real materials.

For example, we could turn off a particular piece of physics and see how the system behaves. If

the behavior is drastically different it means that this piece of physics is relevant for our system

and we should pay attention to it in the future. In order to run simulations, we’ll first need to

gain an understanding of the forces that these particles undergo.

1.1.1 Drag forces as a function of particle size

Perhaps the most significant difference between the microscopic world and our world is the way

we experience drag. When we are running or swimming through a fluid like air or water, we feel

it push back against us. Physically, this is because in order to move to a new location, we need to

displace the fluid which previously occupied it. The drag force that we feel is proportional to the

amount, specifically the mass, of fluid that we displace per unit time, ṁ. To displace this mass, we

need to accelerate it from rest (the fluid molecules are moving, but on average they are stationary)

aFluids which consist of multiple components like this are called complex fluids. The particular case of a solid
suspended in a fluid is called a suspension.

b"On the order of" means about the same order of magnitude (factor of 10). If two numbers are within about a
factor of 3, they are the same order of magnitude. Mathematically, if L is the characteristic size of these materials,
we could say L ∼ O(nm− µm). This is called "Big O" notation.

cBy particle, we just mean some element in the fluid. This is a pretty broad definition. It could refer to
an individual atom or molecule, but also can represent larger collections of these things. In essence, particles in
simulations represent the smallest "thing" we are interested in observing. We will go over examples throughout this
thesis.

dIf our simulations are faster than the time it takes to run experiments.
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to the velocity that we are moving, u. For an object with characteristic size L (L ∼ O(1 m) for

humans), ṁ ∼ ρL2ue, where ρ is the fluid density and L2 is proportional to our cross-sectional

area perpendicular to the direction of movement. Thus, the drag force we feel is FDI ∼ ρL2u2,

and we expect smaller things to experience a much smaller drag force compared to larger things.

But this is not the only drag force that we experience. Described above is the inertial drag and

is what most people think of when they think of drag. The other type of drag is called viscous

drag. Viscous drag comes from the fact that, when we move, a small layer of our surrounding fluid

comes along with us. This fluid layer shears with the fluid surrounding it, that is, slides along it,

causing frictionf. This friction is the origin of viscous drag. The equation for this drag was derived

for a sphere by Stokes nearly two centuries ago1:

FDv = −6πηau, (1.1)

where a is the sphere’s radius, η is the fluid viscosity, and the negative sign indicates that the

force opposes movement. We’ll remove the coefficient for now and just discuss how the magnitude

of this drag changes (for an object of any shape) with different parameters: FDv ∼ ηLu, where

we’ve replaced the sphere radius with L, the characteristic length of the object. Notably, when we

halve our size or velocity, the viscous drag only halves, unlike the inertial drag, which decreases

by a factor of 4. This means that the smaller we get, the larger viscous drag becomes relative to

inertial drag.

We quantify the relative strengths of inertial and viscous drag by taking the ratio between the

two quantities to obtain a dimensionless number called the Reynolds number:

Re ≡ ρLu

η
. (1.2)

eWe would say this as ṁ goes as ρL2u. This is not an equality, but instead means that we expect that, under
certain limits, if we change the right-hand-side by a specific factor, we expect the left-hand-side to change by the
about the same factor. For example, here we expect that doubling L will quadruple ṁ.

fThis layer doesn’t really have a well-defined thickness. Rather, the closer the fluid is to the surface of the object,
the more strongly it is dragged along. The further the fluid is from the surface of the object, the more its behavior
resembles the bulk fluid. The velocity of the fluid changes continuously from the surface of the object to the bulk
fluid and friction occurs due to this change in velocity. The larger the viscosity, the larger the friction, meaning a
sharper change in velocity.
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When the Reynolds number is large, inertial forces dominate. When we are swimming, our

Reynolds number is about 106, so inertial forces are about a million times stronger than vis-

cous forces. In other words, for us, we hardly feel the effects of viscous forces. For a soft matter

particle however, which is a million times smaller and moves a hundred thousand times slower,

the Reynolds number is about 10−5. These particles hardly feel any inertial forces relative to their

viscous forces. This means that we can approximate, with a high degree of accuracy, the drag they

feel using just the viscous drag:

FD = FDv + FDI ≈ FDv. (1.3)

This will have very important consequences for us in a little bit.

1.1.2 Stokes equations and their implications

The Reynolds number can be derived more formally using the equations of motion for the fluid,

which are obtained through a momentum balance. If we assume our fluid is incompressible (con-

stant density) and is Newtonian (constant viscosity)g, then the momentum balance reduces to the

incompressible Navier-Stokes equation:

ρ

(
∂u
∂t

+ (u ·∇)u
)
≡ ρ

Du
Dt

= η∇2u−∇p + fb. (1.4)

The units for each term of this equation are a force per unit volume. Du
Dt

gives the rate of change of

the velocity for a tracer particle following the flow and its term in the above equation is a measure of

the inertia of the system. This derivative is called by several names such as the material derivative

or convective derivative. η∇2u gives the diffusion or dispersion of momentum. The higher the

viscosity, the faster momentum is dispersed. ∇p is the pressure gradient and gives the driving

force for flow. fb captures all the other external forces on the fluid (e.g. gravity). These are 3

equations (one for each velocity component) with 4 unknowns (the 3 velocity components and the

pressure), so to complete them we add a mass balance with the continuity equation, which for an

gThis is usually a good assumption for our systems. Newtonian here specifically refers to a constant viscosity
with respect to the strain rate, which is a measure of the rate at which the fluid is being deformed. We go into
more detail in Chapter 3.
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incompressible fluid is

∇ · u = 0. (1.5)

The Reynolds number can be derived through scaling analysis of these equation. Scaling analysis

involves finding how the size of each term changes ("scales") with the different system parameters.

Scaling analysis on the Navier-Stokes equation shows that the relative size of the left-hand-side (the

inertial term) to η∇2u (the viscous term) is given by the Reynolds number. When the Reynolds

number is small (such as for soft matter particles), the inertial term is small compared to the

viscous term and can be neglected. This gives us the Stokes equations:

0 = η∇2u−∇p + fb. (1.6)

These equations are the governing equations for the fluid our soft matter particles exist in and

determine the forces that our particles experience. As a notable example, these equations are what

Stokes used to derive the viscous drag on a sphere.

These equations have some very interesting implications for soft matter systems. Because there

is no time-dependence to these equations, the fluid responds instantaneously to changes in system

parameters (boundary conditions, applied forces, etc.). This means that, in order to understand

what a system will do, we only need to understand its current state, not anything about its history.

If we apply a change to the system, it doesn’t matter if we do so quickly or slowly, the resulting

flow will be the same during each point in the change. These equations are also time-reversible.

This means that, if we apply a change, then apply the same change in reverse (at any rate), the

net result is no change. This has the interesting consequence that any reciprocal motion of a

particle will not allow it to swim. The quintessential example is the scallop, which can swim in

our world by slowly opening its shell then closing it quickly, expelling water. In a low Reynolds

number system, the scallop would move back to its original location in the process of opening its

shell again, no matter how slowly it does it.

For those interested, EM Purcell gave a great, high-level lecture on low Reynolds number flows
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which has since been transcribed2.

1.1.3 Diffusion of a single soft matter particle

There is one more thing we should understand about the fluid before we try to understand the

way a small particle moves in it. Particles immersed in a fluid experience random motion called

Brownian motion. This motion is due to collisions with fluid molecules which are moving around

at high speeds. The average velocity of these particles is constant, but individual particles move

around at different speeds and in different directions, causing spatial and temporal variation in the

velocity, and thus temperature (which is the average kinetic energy), of the fluid. This variation,

called thermal fluctuations, causes Brownian motion. For human-sized things these fluctuations are

so small and fast that we experience an essentially constant force from the fluid around us, called

pressure. For small things, however, these forces cause significant, random movements relative to

their size. It is the defining characteristic of soft matter that its constitutive particles are small

enough that thermal fluctuations are relevant. We might call such a particle a Brownian particle.

The diffusivity, D, is a measure of how quickly a particle moves, or diffuses, via random motion:

2nD∆t ≡ ⟨∥x− x0∥2⟩, (1.7)

where n is the number of dimensions in which the particle is diffusing (in this case 3), x0 is the

initial position, ∆t is the time that has passed since the particle was at its initial position (the time

lag), ∥·∥ is the Euclidean norm, and ⟨·⟩ indicates an average over many realizations. For spherical

particles with small Reynolds numbers, like soft matter particles, the diffusion coefficient is given

by the Stokes-Einstein-Sutherland relation:

D = kBT

6πηa
, (1.8)

where kB is the Boltzmann constant, T is the temperature, and their product is the thermal energy.

Because the mean squared displacement of a particle goes as its diffusivity times the time lag, a

particle moving over a fixed time step ∆t will move a distance proportional to the square root of

the product of its diffusivity with the time step: ∆x ∼
√

6D∆t.
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1.2 Introduction to Brownian dynamics simulations with hydro-

dynamics

1.2.1 Deriving the equation of motion for a single particle

The equations for the Stokes (viscous) drag and Stokes-Einstein-Sutherland diffusivity were both

given for spherical particles. This is because spherical particles look the same moving in any

direction and it makes deriving equations easier. For this reason, we usually simulate even complex

systems as collections of spheres, sometimes rods. We can then link them up in various ways,

some of which we’ll discuss later. For the remainder of this thesis, "particle" or "bead" will refer

specifically to spherical particles, although many of the non-numerical arguments will apply to

non-spherical particles as well. The radius of these particles is the hydrodynamic radius, which

means that their radius, a, is defined such that they experience Stokes drag 6πηa.

Let’s consider a single particle to start in the reference frame of the bulk fluid flowh. As with

many physics problems, we start by writing a force balance. The sum of the forces on the particle

is equal to its mass times its acceleration. We’ll break the force into several pieces:

ma = FH + FB + FP , (1.9)

where m is the particle’s mass, a is the particle’s acceleration, FH is the hydrodynamic (drag)

force, FB is the Brownian force, and FP is the potential force.

We’ll go over each force separately. Because we are at small Reynolds number, the hydrodynamic

force is just the viscous drag we discussed before: FH = −6πηau. The Stokes drag coefficient,

6πηa, will appear a lot in these systems, so we write it instead as the resistance to translation:

R = 6πηa. In a resistance problem, the particle velocities are known and the resulting forces must

be calculated. Often, we know the particle forces and are interested in the velocities instead. In

this case, it is often more convenient to use the inverse of the resistance, the mobility:

hThat is to say, our reference frame is moving at the same rate as the bulk fluid so that it appears stationary.
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M≡ R−1 = 1
6πηa

. (1.10)

So,

FH = −Ru = −M−1u. (1.11)

In a mobility problem, the particle forces are known and the resulting velocities must be calculated

(via u = −MFH).

Because the number of molecular collisions is large, the central limit tells us that the Brownian

force should be normally distributed. The distribution should have mean ⟨FB(t)⟩ = 0 (there’s no

preference for a force in any direction as we’re in a reference frame stationary to the bulk fluidi)

and autocorrelationj ⟨FB(t)FB(0)T ⟩ = 2kBTM−1Iδ(t) (to satisfy the Stokes-Einstein-Sutherland

relation and instantaneous response of the fluid under Stokes equationsk), where I is the identity

matrix. In practice, we sample the velocity the Brownian force imparts directly using

uB =
√

2kBT/∆tM1/2 · dW, (1.12)

where W is the standard Wiener process, which produces a random variable that is normally

distributed. We can relate this Brownian velocity to the force that caused it with the Stokes drag:

FB =M−1uB. (1.13)

Finally, FP , the potential force, covers all the conservative forces in our system. Conservative

(path-independent) forces can be written as a potential gradient: FP (x) = −∇V (x), where V is

iEven if we were not in this reference frame, the bulk motion of the fluid would be included in a separate term.
jThe autocorrelation function gives a measure for how a property at one time correlates with that same property

at a different time. One way to think about it is that large values of the autocorrelation (in terms of magnitude)
mean that we can use the value of the property at one time to predict very well its property at another time.
Properties tend to change continuously, so the autocorrelation will tend to be large at nearby times and decay over
time. For purely cyclic motions, the autocorrelation can be cyclic as well, although there are usually deviations
that cause it to decay in this case as well.

kThe δ(t) is the delta function, which is 0 for all inputs other than 0. Its appearance in this equation tells us
that the autocorrelation depends only on the specific time, t, we are looking at. This means that Brownian forces
are memoryless, that is, the force at one time does not depend on the force at another. In reality, this is true up to
extremely small time lags.
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the potential energy at position x. These potentials provide much of the richness of our simulations,

so common examples will constitute their own section in this chapter.

This gives us the first version of our force balance, the Langevin equation:

m
d2x
dt2 = −M−1 dx

dt
+M−1uB −∇V. (1.14)

Scaling analysis can be used again to simplify this equation. It tells us that the relative size of

the left-hand-side of the equation (the inertial term) to the right-hand-side of the equation (aside

from the potential force, which could be anything depending on the system) is given by the inverse

Schmidt number, which measures the rate at which the particle diffuses relative to the rate at

which its momentum is dispersed (it is slowed down) by the fluid:

Sc−1 ≡ mkBT

η2a4 ∼
ρpkBT

η2a
, (1.15)

where ρp is the density of the particle. The Schmidt number is typically very large in these systems

(O(106 − 108)), so the inertial term can be neglected. Adding this assumption to Equation 1.14

results in the overdamped Langevin equation:

u = dx
dt

= −M∇V + uB, (1.16)

which we can use to find the particle velocities. In the simulations in this thesis, we choose a finite

time step and integrate via an Euler-Maruyama scheme3:

∆x = ∆t(−M∇V + uB). (1.17)

This equation is stochastic (random) due to the presence of the Brownian velocity term.

The velocity of the particles depends only on the forces currently being applied to the particle

and not any forces applied previously. This is a direct consequence of the low Reynolds number,

which causes the drag force to be linear in the velocity, and the high Schmidt number, which

causes the inertial term of the Langevin equation to disappear. So, if a particle is not receiving a

force at a given time, it is not moving. This is in stark contrast to our daily experience. When
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a human stops their stroke while swimming in water, they glide, typically for a few feet and for

a few seconds, depending on their initial speed, before coming to a stop. That is, the stopping

distance for humans in water is around the size of a human and the stopping time is around our

reaction time. For soft matter, on the other hand, the stopping distance is about 105 times smaller

than the size of the particle, with a stopping time less than 10−6 seconds. For reference, this is

equivalent to a swimming human gliding less than the width of a human hair before coming to a

complete stop. This glide would take a hundred thousand times less time than it takes for us to

blink.

1.2.2 Incorporating more particles

At first glance, we might think that we can add more particles very easily by just stacking the

velocities of all the particles and calculating them separately. This is called the freely-draining

model because it assumes that a particle will not affect the fluid flow (i.e. the fluid will freely drain

through the particles). Unfortunately, this is often not a good assumption because of viscous drag.

As we discussed earlier, a particle moving in a fluid drags some fluid along with it. This fluid can

affect other particles, dragging them along with it. So, if we apply a force to only one particle, other

nearby particles will be influenced as well; the particle velocities are coupled through the fluid.

The effective interactions between particles through the fluid are called hydrodynamic interactions

and are illustrated in Figure 1.1. In essence, the existence of the particle causes a disturbance in

the fluid flow field which affects the local fluid flow around other particles. This means that we

cannot calculate the drag on a given particle without taking into account the movement of all the

other particles. Similarly, this affects the strength of the Brownian forces particles experience.

Luckily, the only change we need to make is to replace the constant mobility, M, with the

mobility tensorl, M, which takes into account hydrodynamic interactions. Unluckily, this tensor

isn’t easy to formulate. Consider N particles in a fluid. From now on, we use u ∈ R3N×1 to

refer to the stacked vector of all particle velocities. Similarly, the stacked Brownian velocities are

uB ∈ R3N×1. The gradient is now with respect to the 3 component position of each particle, and

is thus also a 3N × 1 vector. So, M ∈ R3N×3N . The ij’th 3 × 3 box of M thus gives how the

lWe will also refer to this as the mobility matrix in this thesis.
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(a) (b)

Figure 1.1 Snapshots of two particles. A force is applied up and to the right to the leftmost particle and no
external force is applied to the rightmost particle. (a) Shows initial conditions and (b) shows after dragging.
The arrow indicates the direction of dragging. After dragging only the leftmost particle, the rightmost particle
has also moved.

forces on particle j affect the movement of particle i.

There are a few things that M must satisfty. First, the diagonal elements, which correspond

to the hydrodynamic interactions of a particle with itself, should correspond to the single particle

diffusion:

Mii = 1
6πηa

I3, (1.18)

where Mii is the i’th 3× 3 diagonal block of M and Ij is the identity matrix of size j.

Second, M must be symmetric. This is called reciprocity and implies that swapping particles

will not affect the hydrodynamic interactions. Reciprocity is a direct result of the Lorentz reciprocal

theorem for Stokes flow and is proved in Kim and Karilla4.

Finally, M must be positive-definite (i.e. all of its eigenvalues must be positive). This is due

to the 2nd law of thermodynamics. If there was a negative eigenvalue of the mobility tensor, then

there is a set of forces that we can apply on the particles such that their motions are in the opposite

directions. This would imply that the fluid is not dissipating energy, which violates the second

law. A more rigorous proof is also provided in Kim and Karilla4.

So, the mobility tensor must be symmetric positive definite (SPD). This has a few important

implications. First, it means that the mobility tensor is invertible, so we can obtain the resistance
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tensor, R, by inverting M. The corresponding resistance tensor must also be SPD. Second, it

means that, for any non-zero vector x, xT Mx > 0, and equals 0 if and only if x = 0. This will

come in handy in the next chapter.

Groups of particles can experience something called Brownian drift, which must be added to

the equations of motion5:

u = −M∇V + uB + kBT∇ ·M. (1.19)

In the case where the mobility tensor is divergence-free, as will be the case for the particular

mobility tensor approximation we will use, this additional term is zero, so we will drop it in the

future. Overall, an integration scheme for a simulation with many particles is

∆x = ∆t(−M∇V + uB), (1.20)

with

uB =
√

2kBT/∆tM/ · dW, (1.21)

where the slash here and in the rest of this thesis refers to the matrix satisfying M/ M/ † = M,

with M† indicating the adjoint (conjugate transpose) of M. It is a type of square root.

1.2.3 Calculating the mobility tensor

The mobility tensor (and its square root) is difficult to formulate and depends on the system’s

boundary conditions. A common approximation is the Rotne-Prager-Yamakawa (RPY) tensor6,

which is a form of regularized Stokeslet. Stokeslet means that it is indeed a solution to the Stokes

equations and regularized means that the applied forces are spread over a small domain (to remove

a singularity). The RPY tensor includes only long-range hydrodynamics interactions and therefore

does not include lubrication, which sharply resists the fast approach or separation of two nearby

surfaces (lubrication is short-ranged in that its strength scales with the separation between the

surfaces to the minus third power, Flub ∼ r−3, so it decays rapidly as the separation increases).
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Notably, the RPY tensor is guaranteed to be SPD and divergence-free (∇ ·M = 0), fulfilling

our necessary conditions for the mobility tensor and eliminating Brownian drift. In an unbounded

domain (infinite fluid) with identical particles, the ij’th 3× 3 block of the RPY tensor is

MRP Y
ij =



1
6πηa

I if i = j

1
8πηr

(
1 + a2

3 ∇
2
)

(I + r̂r̂T ) if i ̸= j and r > 2a

1
6πηa

[(
1− 9r

32a

)
I + 3r

32a
r̂r̂T

]
if i ̸= j and r ≤ 2a,

(1.22)

where a is the radius of the particles, r is the distance between their centers, and r̂ is the unit

vector pointing from the center of the i’th particle to the center of the j’th particle6. There exist

formulations of this tensor for different-sized particles7 and particles which can rotate rigidly8,

but in this thesis all simulations are performed with a mono-disperse (single-size) suspension of

particles with only translational degrees of freedom.

The strength of the hydrodynamic interactions between two particles decays with their distance

to the first power, r−1. This means that hydrodynamic interactions are long-range and thus cannot

be neglected even for far away particles (roughly, this is because
∫∞

0 1/r →∞). This means that

the condition number of M grows with system size. Consequently, matrix operations involving

the mobility tensor become more difficult with system size, making it difficult to simulate large

numbers of particles without clever calculation of the mobility tensor and its square root9.

Often, simulations are run using periodic domains, where the simulation box is duplicated in

all directions and interactions are calculated for the simulation box with all of its periodic images.

This boundary condition is used to approximate the behavior of an infinite system, as often the

number of particles we can simulate is much smaller than the number of particles that would

exist in a real applicationm. This is especially relevant here, where the long-range nature of the

hydrodynamic interactions means that they are relevant potentially for even distant images. For

a cubic simulation box with side length Lbox, the periodic RPY tensor is

mBecause the fluid looks roughly the same everywhere, we expect the behavior in the simulation box to be
representative of a much larger sample.
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MRP Y
ij = 1

ηL3
box

∑
k ̸=0

eik·r 1
k2

(
sin(ka)

ka

)2

(I− k̂k̂), (1.23)

where k is the set of all reciprocal lattice vectors, k = |k|, and k̂ = k/k 10.

Practically, the mobility tensor is never stored (its size goes as the square of the number of parti-

cles, which is prohibitive). Instead, functions are written to compute the matrix-vector product of

the mobility tensor with an arbitrary vector, a: MRP Y a. Importantly, methods such as the Force

Coupling Method (FCM)11 and Positively Split Ewald (PSE)9,12 method have been developed for

calculating this product as well as M/ RP Y a (for the Brownian velocities).

In the next chapter, we use the PSE method in particular for calculating mobility tensor-vector

products in linear time with the number of particles. Conceptually, this algorithm works by split-

ting the mobility tensor into a near-field (short-ranged) and a far-field (long-ranged) component.

Because the near-field component is short-ranged, it can use a cut-off radius for interactions. The

far-field component, on the other hand, can take advantage of the periodicity of the systemn. The

PSE method splits the mobility tensor in a clever way such that both components are SPD. This

allows for efficient calculation of both components (to a controllable error tolerance), which can

be summed to produce the overall mobility tensor. The PSE method (as well as the FCM) is

O(N log N) time (although the log N dependence is difficult to observe in practice) and can be

accelerated using GPU’s to take advantage of its massively parallel structure9,11,12. Overall, this

means that, in practice, the cost to simulate a system scales linearly with the number of particles,

which is the same cost as for systems without hydrodynamics. This allows systems with many

(millions) of particles to be simulated in reasonable time.

1.2.4 Exploring common conservative potentials

Conservative potentials are where many of the distinguishing details between soft matter systems

is encoded in simulations. There are several common examples.

nMathematically, a Fourier transform is performed to transform the far-field component to wave space, where
large distances become small wave vectors whose sum converge quickly.

45



External fields

External potentials, such as gravity, electric fields, or magnetic fields can be implemented here.

In the simplest case, the forces these fields cause are the same on each particle. For example, for

gravity:

Fg = gVp(ρp − ρ), (1.24)

where g is the acceleration due to gravity and Vp is the particle volume. In many cases, soft matter

particles have a similar density to water and are thus neutrally buoyant and will not experience a

net gravitational forceo. Other fields can be implemented in a similar manner. However, just as

particles can disturb the flow field of a fluid, they can disrupt potential fields. For example, polar-

izable particles perturb applied electric/magnetic fields. In this case, the local electric/magnetic

field a particle experiences is coupled with the locations of all of the other particles in the system,

and it must be treated in a similar way to flow field perturbations with a different version of the

mobility tensor. In this thesis, we do not deal with such external fields. Perturbations such as

these and their applications is the topic of a thesis by Kelsey M. Reed, so those interested in

learning more should look there13.

Hard-sphere interactions

The other class of potentials are inter-particle potentials which occur between two or more particles.

One of the most common inter-particle potentials is the hard-sphere potential. In many cases, a

soft matter particle in a simulation with hydrodynamic radius a represents a real, roughly rigid

(non-deforming) particle with radius a. In this case, particles cannot overlap. This corresponds to

a potential:

VHS =

0, r ≥ a1 + a2

∞, r < a1 + a2,
(1.25)

where r is the distance between two particles of hard-sphere radius a1 and a2 (usually but not nec-

oThe gravitational force is balanced by the buoyant force.
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essarily equal to the hydrodynamic radius). This potential is difficult to implement in simulationp,

so we must implement a "softer" hard-sphere potential. A common choice is the Heyes-Melrose

hard-sphere (HMHS) potential14. Under this potential, non-overlapping particles again receive no

force, but overlapping particles receive a force which, in the absence of other forces in the system,

places the particles tangent to each other at the next time step. For monodisperse particles with

hard-sphere radius a interacting under RPY hydrodynamics, the HMHS potential is15:

VHSper =


16πηa2

∆t
(2a ln 2a

r
+ r − 2a), r < 2a

0, r ≥ 2a.
(1.26)

Because this potential depends only on the distance, r, between particles, it is symmetric, meaning

the particles will experience the same force but in opposite directions. Thus, they do no net work

on the system. This is common in inter-particle potentials and will be true for the rest of the

potentials discussed in this chapter.

Soft matter particles in simulation are not necessarily hard-spheres. They may represent soft,

deformable particles or a collection of unitsq which has holes and thus can overlap with other

particles (with respect to their hydrodynamic radii). In this case, the potential for two overlapping

particles can take many different forms (or take no form at all).

Harmonic potentials

The other most common inter-particle potential is a harmonic potential, which models a spring

between two particles:

Vhar = k

2(r − r0)2, (1.27)

where k is the spring constant and r0 is the equilibrium distance between the particles. This

pRemember that for the purposes of integration, we are interested in the gradient of the potential. Because
the potential here is discontinuous, we run into an issue. The potential gradient is infinite right at contact and
zero elsewhere. In simulations, we must take steps of finite size, so two particles are extremely unlikely to overlap
exactly and be affected by the potential. If they were, the gradient would be infinite, which would cause an infinite
displacement due to the finite time step.

qThe process of taking a collection of units and turning them into a single piece is called coarse-graining. It is
often useful for reducing the number of particles which need to be simulated, but great care needs to be taken such
that the overall physics of the system are still represented. Coarse-graining is common in, for example, polymer
simulations16.
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potential is very general, as the region around any local minimum looks quadratic for small enough

deviations. Notably, larger spring constants result in larger forces for the same displacement, and

the particles tend to stay closer to their equilibrium distance apart. For a fixed time step, the

displacement for a single particle due to the spring force ∆xhar ∼ k∆t, moving the particle towards

its equilibrium distance. If ∆xhar is larger than twice the displacement from r0, the particles will

have an even larger potential energy at the next time step and the system will be unstable. Thus,

as the spring becomes stiffer (k increases) smaller time steps need to be used to maintain numerical

stability. For very stiff springs, the particles are essentially at a fixed distance r0, yet a very small

time step must be used to simulate it. In cases like this, we might want to replace this stiff spring

with a "rod" which keeps the particles a fixed distance apart. Then we may be able to choose

a larger time step and run simulations over longer times. Care must be taken to do this, as we

discuss in the next chapter.

In future chapters, we will introduce other potentials as well. It bears mentioning now that often

these potentials are short-ranged (meaning we can accelerate calculation with a cut-off radius) and

pair-wise (meaning they involve only two particles at a time). There are interactions which occur

between more than two particles. However, the odds of n particles coming close enough to interact

via these potentials goes as ϕn−1, where ϕ is the volume fraction of the system (total volume of the

particles divided by the total volume of the system). Thus, except for very high volume fractions,

many-body interactions are rare and often neglected in simulations. However, sometimes, many-

particle interactions cannot be neglected. This is the case for 2D materials, which are the focus

of Chapters 4 and beyond, requiring the inclusion of an additional potential to enforce bending

rigidity.

1.2.5 Including other effects

So far, we have only discussed the translation of Brownian particles. However, there are other

ways the particles and fluid can influence each other. The fluid can translate, rotate, or deform

(strain), applying forces F, torques T, and stresslets S on the particles. The grand resistance (or

mobility) problem concerns itself with all of these effects. In the laboratory (stationary) frame of

reference4:
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
F

T

S

 =


RF U RF Ω RF E

RT U RT Ω RT E

RSU RSΩ RSE




U∞ − u

Ω∞ − ω

E∞

 , (1.28)

where RF U is the resistance tensor coupling the particle velocities to their corresponding forces,

RF Ω is the resistance tensor coupling the particle rotational velocities to their corresponding forces,

and so on. U∞, Ω∞, and E∞ are the bulk fluid’s velocity, angular velocity, and rate of strain,

respectively, and u and ω are the particle velocities and angular velocities, respectively. The

resistance tensor here is the grand resistance tensor. The corresponding grand mobility tensor is

the inverse of this tensor. The grand resistance tensor is SPD as are each of the diagonal blocks,

RF U , RT Ω, and RSE. In this thesis, the simulations will only include the translational velocities

of particles:

F = RF U(U∞ − u). (1.29)
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Chapter 2

Methods for constrained Brownian dynamics

In this chapter, we compare two methods, the projected conjugate gradient (PrCG) and the gen-

eralized minimum residual (GMRES) methods, for solving the saddle point problem involved in

performing constrained Brownian dynamics simulations. Using the example holonomic constraints

of rigid bodies, freely jointed chains, and immobile particles, we show that PrCG and GMRES carry

the same empirical linear computational complexity. PrCG, however, exhibits some notable advan-

tages over GMRES including lower precomputational and storage burdens, a guaranteed feasible

iterate, and trivial extension to new constraint types due to the lack of a preconditioner. Finally,

we use PrCG to solve a mixed constraint problem with a rigid body and immobile particles, com-

paring to the analytical solution at large separations. The content of this chapter was adapted

from Funkenbusch, W. T., Silmore, K. S., & Swan, J. W. (2024). "Approaches for fast Brownian

dynamics simulation with constraints." Journal of Computational Physics, 509, 113043.

2.1 Introduction to constrained systems
Thus far, the particles we have seen have all had 3 degrees of freedom. By this, we mean that

we can independently specify the x, y, and z coordinates of each particle. This is not always the

case. Consider a particle constrained to the surface of a sphere of radius R (this could represent

a charge moving around a particle, for example). The sphere is represented by the equation

x2 + y2 + z2 = R2, (2.1)
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so if we specify the x and y positions of the particle, the z position can only take 2 values:

z = ±
√

R2 − x2 − y2. (2.2)

Because we can only specify 2 of the 3 components independently, this particle only has 2 degrees

of freedom. For N particles constrained to the surface of the sphere, the overall system would

only have 2N degrees of freedom instead of 3N . We call conditions which reduce the degrees of

freedom of the system constraints. Adding constraints complicates our simulations, but before we

discuss how, let’s discuss why we might want to constraint our system in the first place.

Motivation for constrained systems

The most common reason to constrain a systems is to model more complex colloidal systems

which are not just a suspension of floating spheres or rodsa. For example, large polymers can be

modeled with beads connected by inextensible links, where each bead represents one or several

monomers1. Flexible fibers, such as those present in animal cells, can be modeled with a similar

coarse graining scheme that imposes a set of constraints which enforce inextensibility of the whole

fiber2. While coarse-grained elements are typically treated as spherical beads, they can be arranged

and connected rigidly to represent more complicated shapes and even coupled to elastic structures

to represent complex bodies like a swimming microscopic organism and its flagellum3.

We should ask whether constraints such as these can be relaxed and replaced with conservative

forces derived from stiff potentials that enforce the desired physical behavior. Indeed, stiff poten-

tials have been used to model rigid bodies4 as well as polymers. For polymers, this representation

is called the bead-spring model5, contrasting with the bead-rod model which applies explicit rigid

constraints to the links between beads6. In numerical solutions of the equations of motion, the

simulation time step is usually limited by the shortest characteristic relaxation time of the dynami-

cal system to preserve numerical stabilityb. For example, in a polymer chain with stiff spring links,

the relaxation time of these springs, and thus the required time step, can be very short relative

aRecall that we have equations developed for solutions to our equations for spheres and rods but not arbitrarily-
shaped particles.

bIf our time step was longer, we could not resolve that piece of physics in our system and our simulation might
be numerically unstable. See the discussion on harmonic potentials from the previous chapter.
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to the relaxation time of the whole polymer. Additionally, when external forces are applied to the

polymer, a sufficient stiffness may not be known a priori. For example, one may pull the end of

a DNA strand through a nanopore for sensing7, deforming the polymer and causing the links be-

tween the beads to stretch or compress. A bond that is stiff enough to give the desired equilibrium

behavior of a polymer may not be stiff enough when subjected to a complex nonlinear process of

this sort. Perhaps a conservative force that diverges at a finite extension could be employed, but

then the bond grows ever stiffer as it is stretched, necessitating shorter time steps still. Rigid con-

straints which fix the distance between beads, on the other hand, eliminate these fast time scales,

allowing for longer time steps to be employed in exchange for increased computational cost per

step8. Inextensible links of this nature and other constraints which explicitly reduce the number of

degrees of freedom of the system cannot be modeled using a simple conservative force fieldc. Thus,

practical integration schemes must balance the tradeoff between time step and computational cost

per step, generally necessitating linear scaling with the number of beads for constrained systems

in order to be competitive with unconstrained methods.

As an example of flow through a complex geometry, Figure 2.1 shows a system of beads, some

placed on the surface of a gyroidd and others randomly distributed in the interstitial space. A force

was then applied to the beads on one side of the gyroid surface. When no constraint is applied

to the beads, the beads move as expected. Due to the periodic boundary conditions, the beads

with no applied force tend to move in the opposite direction such that there is no net flow through

the box. When the beads on the surface of the gyroid are constrained such that they have zero

velocity, the velocities of the beads on both sides of the gyroid surface change quite significantly,

showing the importance of properly treating constraints in systems.

2.1.1 Current methods for solving of constrained systems

Holonomic constraints, which are the subset of constraints we will focus on in this chapter, are

defined as algebraic equations depending only on the positions of the beads9. We will give a more

formal definition later, but for now the important part is that these constraints define a submanifold

cWe will see why in a bit.
dA porous surface commonly seen in nature due to having a high surface area-to-volume ratio.

54



Figure 2.1 Three orthogonal planar cuts with width equal to 4 bead radii through the same cubic, periodic
simulation box. The black beads are held fixed by holonomic constraints and have been localized to the surface
of a gyroid with unit cell dimension of 80 bead radii, matching that of the periodic simulation cell. The red
beads are free to move on one side of the gyroid surface. No external forces are applied to the red beads. The
blue beads are free to move on the other side of the gyroid. A uniform force is applied to the blue beads with
direction indicated below each planar cut. The thick gray lines show the velocity of the beads projected into
the plane when the holonomic constraints are enforced by the PrCG algorithm. The thin gray lines show the
velocity of the beads projected into the plane when no constraints are imposed.

of R3N e, called the constraint manifold, which the particles must stay on9–11. Therefore, particle

velocities must be tangent to the constraint manifold. This is achieved by exerting a constraint

force, which we cannot determine a priori, on each bead, which in practice involves solving a system

of linear equations12. Specifically, these equations take the form of a saddle point problem, where

the constrained velocities act as Lagrange multipliers. In molecular dynamics simulations, for

example, holonomic constraints can be used to enforce fixed bond lengths or angles in molecules.

The motion of these constrained systems are often solved using the SHAKE13, RATTLE14, or

LINCS15 algorithms, or their variants such as M-SHAKE16 or P-LINCS17, which are all based in

the method of Lagrange multipliers. Saddle point formulations also appear in mechanical systems

with holonomic constraints to solve for particle accelerations18.

For colloidal suspensions of many particles, Swan and Wang used the Schur complement to

eliminate the constraint forces and solved for the constrained velocities in a rigid body system

using the preconditioned conjugate gradient method19; however this method was superlinear in

the number of particles. Previous work by Usabiaga et al. used the generalized minimum residual

eBy submanifold we essentially mean a continuous, lower-dimensional surface in R3N .
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(GMRES) method to solve rigid body problems with linear scaling3. This method has also been

applied with success to other systems, such as those of slender fibers2.

However, GMRES often requires the construction of a constraint-specific preconditioner, which

can be difficult to formulate and may require significant storage and computational costs in pre-

computation. Furthermore, the iterates produced by GMRES are not guaranteed to be feasible

(i.e. to not do work on the system), meaning that one must monitor both the convergence of bead

velocities and the feasibility of the solution. To be computationally efficient, one would like to

choose the errors accrued by the saddle point solve to match the errors accrued by the integration

scheme, which scale with the time step used. However, for a solver like GMRES, the solution

tolerance must be chosen keeping in mind feasibility, possibly necessitating more iterations for

convergence, even if the bead velocities have converged to the desired tolerance. This is especially

relevant given that one advantage of constraining a system is a larger time step, leading to larger

errors from the integration scheme.

In this chapter, we use the projected conjugate gradient (PrCG) method without precondition-

ing20,21 to solve these constrained dynamical problems common to Brownian dynamics simulations.

We find that PrCG exhibits the same linear scaling and similar residual convergence as GMRES,

but exhibits several advantages over it:

1. Lower precomputation costs, both computational and storage, depending on the type of

constraints used.

2. Feasible iterates, allowing the tolerance to be varied freely according to the desired error

tolerance on the bead velocities, rather than being restricted by the satisfaction of the work

constraint.

3. A residual which accurately reflects the convergence of the constrained velocities, which are

used to calculate the bead velocities.

4. Trivial and robust extension to different types of constraints, including mixed constraints,

without the need to formulate a preconditioner.

Because beads are advanced over a finite time step, integration schemes for constrained Brown-

ian dynamics always move the elements tangent to, but potentially off of, the constraint manifold
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if the constraints are nonlinear. These “off-manifold” moves must be followed with retractions

back onto the constraint manifold3,22–25. While retraction schemes are nontrivial to implement,

the saddle point solve is often the most computationally intensive part of this process and is thus

the focus of this work. In this paper, we solve this saddle point problem for several constraints

using PrCG and compare to GMRES.

The remainder of the chapter is organized as follows. In Section 2.2, the saddle point problem

as applied to Brownian dynamics simulation is discussed. The relevant forces within the simulation

are introduced, and the saddle point problem is formulated in the context of iterative algorithms

such as PrCG and GMRES. In Section 2.3, PrCG is compared to GMRES for several example

constrained systems: rigid bodies, freely jointed chains, and immobile bead systems. The relative

residuals, relative solution errors, and time complexities are examined for each example. Finally,

PrCG is applied to an example problem with two distinct types of constraints involving a rigid

body moving under a constant force towards a collection of beads fixed in space. The resulting

velocity of the rigid body and the force on the fixed beads is compared to analytically derived

formulas in the limit of large separation in order to validate the method.

2.2 Saddle point problems for constrained Brownian dynamics

simulations
The formulation for constrained systems is similar to unconstrained systems, but with the addition

of constraint forces. The other forces in our system can act in any direction and the constraint

forces act in response to these other forces such that the particle move tangent to the constraint

manifold. Because the constraint forces are coupled to all of the other forces occurring in the

system, we do not necessarily know them a priori f This makes our previous method of finding the

particle velocities (of summing the forces and multiplying by the mobility tensor) difficultg. There

are also often many constraint forces which will satisfy the constraints, so an additional condition

is needed to fully specify the system. This makes solving constrained systems more difficult than
fThat is, we cannot calculate them using just the positions of the particles, as we could for all of the other forces.
gIt is possible to write down an analytical equation for the constraint forces, as we will show later, but it is very

expensive to calculate as it requires inverting the mobility tensor, which requires O
(
N3) operations, where N is

the number of particles.
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unconstrained systems.

2.2.1 List of forces for constrained systems

We formulate the problem formally now. Consider N interacting beads in 3D space with positions

x ∈ R3N immersed in a Stokesian fluid. As discussed in the previous chapter, the particles can

experience several forces, with the constraint forces being added to the list:

• Conservative forces, −∇V (x), where V (x) is the potential energy of the particles. V (x) is a

function of the particle positions and, in this work, is assumed to be smooth with respect to

those positions.

• Hydrodynamic forces, fH = −M−1u, where M ∈ R3N×3N is the mobility tensor and u ∈

R3N are the particle velocities. The mobility tensor is symmetric positive definite (SPD) and

depends on the bead positions. We use the RPY tensor26 as an approximation for the mobility

tensor, as discussed in the previous chapter. We note again that matrix-vector products with

this tensor can be performed in log-linear time with the number of particles27–29.

• Brownian forces, fB, with ⟨fB(t)⟩ = 0, ⟨fB(t)fB(0)T ⟩ = 2kBTM−1δ(t), where kBT is the

thermal energy, t is the time, δ(t) is the Dirac delta function, and the angle brackets indicate

an average over realizations of this stochastic force.

• Constraint forces, fc, which restrict the motion of the beads to a manifold defined by the

potentially nonlinear equations q(x) = 0, where q : R3N → RM . The constraints are assumed

to be a function of the particle positions such that they are holonomic. As with the potential

energy, we will assume that the constraints are smooth.

2.2.2 Force balance for constrained systems

Constraint forces appear in a variety of Brownian dynamics models. In the immersed boundary

method applied to the motion of rigid bodies through a fluid, these constraint forces are the internal

forces that must be exerted on the discrete elements of the bodies so that they move rigidly. In

the simulation of polymers, the bead-rod model treats a linear polymer as a chain of beads, which

are freely jointed but with fixed distance between neighboring beads in the chain.

The over-damped force balance, which we discussed in the previous chapter without constraint
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forces, can be rewritten to determine an instantaneous, stochastic velocity of the beads:

u = M(−∇V +f c) + uB, (2.3)

where uB = MfB are the Brownian velocities of the beads. The constraint forces, fc, are still

undetermined, but they must act such that the bead positions at each point in time satisfy the

constraints, q(x) = 0. We define the gradient of the constraints: G = ∇q ∈ R3N×M . The beads

must move tangent to the constraint manifold such that u = Σλ, where Σ ∈ R3N×P with columns

that form a minimal basis for the left null space of G, λ ∈ RP are Lagrange multipliers, and P , the

degrees of freedom of all the beads, is the dimension of the left null space of G. The columns of

Σ describe a P -dimensional manifold of R3N to which the particles must move tangent. We refer

to Σ in this work as the constraint matrix. Holonomic constraints give rise to constraint forces

which are linear combinations of the columns of G12. Thus, because Σ is a basis for the null space

of G, the constraint forces do not dissipate energy and act normal to the constraint manifold (i.e.

ΣT fc = 0). This equation combined with the over-damped momentum balance on the beads yields

a system of equations for the constraint forces, fc, and the multipliers, λ:

M′x′ =

 M −Σ

−ΣT 0


fc

λ

 =

M∇V − uB

0

 = b′. (2.4)

Equation 2.4 is a so-called saddle point problem2,30, and solving this equation via the PrCG

iterative method will be the focus of this chapter. The bead velocities for integration in time can

be calculated from the multipliers: u = Σλ. The analytical solution to this problem is simple

to write down: fc = ∇V + fb + M−1Σλ and λ = (ΣT M−1Σ)−1(∇V + fb). However, for large

numbers of beads and a dense mobility matrix, directly inverting M requires O(N3) operations,

which can be prohibitive. Additionally, calculating Σ through QR decompositionh requires, at

worst, O(NM2) operations.

hThe QR decomposition breaks a matrix, A down into an orthogonal matrix, Q and upper triangular matrix,
R, such that A = QR. An orthonormal matrix has QT Q = I while an upper triangular matrix only has elements
on and above its diagonal. These properties end up being convenient for accelerating calculations compared to
working with the raw matrix Q, as we will see later.
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2.2.3 Discussion of the constraint matrix

Constraint matrix for nonlinear constraints

The constraint matrix, Σ, depends on the positions of the particles and the types of constraint

imposed. For Brownian motion of beads restricted to the surface of a sphere with radius R and

with center at zero, qi(x) = ∥x∥2 − R2 for i = 1, . . . N . For bead-rod chains, a rigid link between

a bead labeled i and a bead labeled j can be assigned a unique element, k, of the constraint

equation vector: qk(x) = ∥rij∥2 − L2
ij, where rij = xi − xj is the vector pointing from the center

of bead j to the center of bead i and Lij is the length of the bond between those beads. For

nonlinear constraints such as these, G can be calculated analytically and the constraint matrix

can subsequently be determined, for example, through a QR decomposition of G at each time

step.

Constraint matrix for linear constraints

In the case of linear constraints, the constraint matrix can be determined without explicitly cal-

culating G. For example, the motion of a rigid body can be described as a combination of its

translational and rotational motion. Because both of these are linear transformations of the bead

coordinates, the analytical form for the constraint matrix can be written down easily without the

need for the constraint equations. For a system containing many rigid bodies, the full constraint

matrix is block diagonal, with each block corresponding to an individual rigid body because there

are no constraints between beads in different rigid bodies:

Σ =



Σ1 0 . . . 0

0 Σ2 . . . 0
... ... . . . ...

0 0 . . . ΣNbodies


, (2.5)

where Nbodies is the number of rigid bodies in the simulation.

For a single block corresponding to a rigid body containing Bi beads, Σi has at most 6 columns,

corresponding to the 3 translational and at most 3 rotational degrees of freedom of the body.
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Colinear bodies have only 2 rotational degrees of freedom, and thus their corresponding Σi has

only 5 columns, and free beads not constrained to a rigid body have a Σi with only 3 columns.

For a non-colinear rigid body, each of the blocks in Σ has the form:

Σi =



I3 Hi,1

I3 Hi,2

... ...

I3 Hi,Bi


, (2.6)

where Bi is the number of beads in the ith body, I3 is the 3 × 3 identity tensor, and Hi,α =

ϵ · (xi,α − x̄i), with ϵ the Levi-Civita tensor, xi,α the position of the αth bead in body i, and x̄i

the average position of beads in body i.

The condition number of ΣT
i Σi grows with the squared radius of gyration, so both the long-

ranged hydrodynamic interactions as well as the geometry of the rigid body contribute to making

iterative solution of the saddle point equations difficult. With Σ constructed this way, the multi-

pliers, λ, are just the translational and angular velocities of the rigid bodies themselves.

As another example, the constraint matrix for a mixture of immobile beads and free beads

(indexed in this order) has a sparse, simple form:

Σ =

 0

I3Nf

 (2.7)

where Σ ∈ R3N×3Nf , with Nf the number of free beads and N the total number of beads. Linear

constraints such as these or rigid body constraints are convenient in that retraction steps are not

needed, unlike nonlinear constraints such as bead-rod constraints. One could conceive of and

formulate constraint matrices for other types of linear constraints in a similar manner, such as

bodies which are free to rotate but not translate:
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Σi =



Hi,1

Hi,2

...

Hi,Bi


, (2.8)

with Hi,α as defined above.

2.2.4 Time complexity of iterative solutions to the saddle point problem

Iterative methods for solving the saddle point problem resulting from constrained Brownian dy-

namics can improve the computational complexity significantly compared to direct inversion of the

saddle point matrices. For the modeling of rigid bodies in immersed boundary simulations, this

saddle point problem has been solved with the generalized minimum residual (GMRES) method

using certain cleverly constructed preconditioners2,31. These methods can lead to linear compu-

tational complexity with respect to the number of beads in the simulation or the number of rigid

bodies when methods like spectrally accurate Ewald summation or fast multipoles are used to

compute the product of the mobility matrix with a vector. We find that, in practice, because the

condition number of the mobility matrix grows with the number of beads29, so does the condi-

tion number of the saddle point problem, necessitating preconditioning. A complication with this

approach is that the preconditioners can be expensive to calculate, but this calculation can be

amortised over the duration of a simulation.

One successful approach, discussed in more detail in the Methods Section, uses a Schur de-

composition of the saddle point problem to construct a preconditioner that yields the solution

one would expect if each of the beads only interacted hydrodynamically with beads in its own

rigid body31. This can be thought of as precomputing the single body solution for each body if

it were isolated. For identical rigid bodies made from B beads, this precalculation requires O(B3)

operations to precompute and O(B2) memory for storage of the single body solution and can be

reused over the course of the simulation for any of the identical bodies by simply rotating it into

the appropriate reference frame for that body.

There are cases, however, when precomputation is not as efficient. For example, in the case
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above, if the rigid bodies are distinct from one another, the precomputation must be done for each

distinct body. There may also be circumstances in which one wants the rigid constraints to change

during the simulation such as models of fracture or agglomeration of bodies. Then, the number

of rigid bodies as well as their morphology changes dynamically. In that case, one cannot simply

amortise the precalculation cost for the preconditioner over the simulation. Wang et al. found

that high-frequency viscosity calculations of equilibrium configurations of monoclonal antibodies,

which can also be cast as a saddle point problem, agreed better with experimental values when

nearly-touching antibodies were treated as a single rigid body32,33. In this case, it is unlikely that

any two rigid bodies in all of the samples are identical, so precomputation must be done for each

rigid body in each configuration.

Assuming each body has a distinct morphology, the storage cost for the preconditioner is

O(NbodiesB
2), and the time complexity of calculating the preconditioner for all the particles grows

as O(NbodiesB
3) instead. In general, this precomputation must be done before each saddle point

solve. Although the cost for precomputation scales linearly with the number of beads, it has a

strong dependence on the number of beads per body and for large bodies may require significant

computational effort compared to the saddle point solve itself. Thus, even though iterative meth-

ods with specialized preconditioners can reduce the time complexity of the saddle point problem

solve to one that is linear in the number of beads for all the examples discussed, there are limita-

tions that are resolved by introduction of an iterative method that requires no preconditioner at

all, as we explore below.

2.2.5 Application of projected conjugate gradients

We start by considering a generic saddle point problem, which can be written as

 A −Σ

−ΣT 0


y

λ

 =

b

d

 . (2.9)

This can be equivalently written as an equality-constrained minimization problem:
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y = arg miny
1
2yT Ay− yT b

s.t. ΣT y = −d.

In the case of Brownian dynamics as formulated above, y = fc, A = M, b = (M∇V − uB),

and d = 0. Note that this formulation does not include inequality constraints. Constraints

such as these are difficult to implement in general, but can be solved using, for example, interior

point methods or by transforming the inequality constraints into equality constraints (as long as

the inequality constraints are also smooth)22,34,35. However, this implementation is a non-trivial

extension of this work, so we do not consider such constraints in this work.

The conjugate gradient (CG) method is a technique for solving linear systems of equations with

an SPD matrix (such as the mobility tensor) and is often used to solve unconstrained quadratic

programming (QP) problems. Nocedal et al.20 extended the conjugate gradient method to equality-

constrained QP problems by projecting the iterative steps taken by the CG method onto the

tangent space of the constraint manifold. This algorithm is called the projected conjugate gradient

(PrCG) method. When the constraints are affine, solutions starting on the constraint manifold

remain on that manifold. In this work, we use a modification of the PrCG method presented by

Gould et al. (Algorithm 6.2)21, which improves numerical stability over the original formulation.

The PrCG algorithm requires a linear operator to project changes to the constraint forces

tangent to the constraint manifold. Formally, this projection operator can be written as Z = I−

Σ(ΣT Σ)−1ΣT . Directly calculating ΣT Σ and its inverse requires O(NP 2) and O(P 3) operations,

respectively, which is a significant computational cost given that this projection operator must

be calculated at every iteration. However, if Σ is replaced with a matrix Q from a thin QR

decomposition, Σ = QR, no inversion is necessary as Q is orthonormal (i.e. QT Q = I). Using the

orthogonal projection drawn from a QR decomposition of Σ, the saddle point problem (Equation

2.9) can be re-expressed as:  A −Q

−QT 0


y

λ′

 =

b

c

 , (2.10)

where c = R−T d and λ′ = Rλ. The bead velocities can be determined with a single matrix
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multiplication: u = Qλ′. This reformulation is still a saddle point problem, but now the orthogonal

projection operator requires no inversion: Z = I−QQT .

The PrCG algorithm may be initialized with any point on the constraint manifold such as the

generic choice y0 = −Qc. Due to the projection step at each iteration of the PrCG algorithm,

solutions starting on the manifold remain on the manifold throughout the iterative solution process.

This is especially relevant for systems where c ̸= 0, where an on-manifold initial guess is not

necessarily available for GMRES. In these systems, for GMRES, constraint satisfaction must be

satisfied as iteration progresses or additional precomputational effort must be expended to produce

an on-manifold initial guess (for example, by re-expressing the saddle point problem as for PrCG

through a QR decomposition of Σ). The PrCG algorithm requires one matrix-vector multiply using

the matrix A and two matrix-vector multiplies with Q and QT per iteration, which is equivalent

to one augmented mobility matrix multiplication in GMRES. In practice, for Brownian dynamics

simulations, the multiplication with the mobility tensor will dominate the time complexity because

the mobility tensor is dense.

Making the appropriate substitutions for the Brownian dynamics system, Equation 2.10 be-

comes

 M −Q

−QT 0


 fc

λ′

 =

M∇V − uB

0

 , (2.11)

which is solved using the PrCG algorithm shown in Algorithm 1, adapted from Gould et al.21.

2.3 Results

2.3.1 Methods

To investigate applications of the PrCG approach to solving the saddle point problems relevant to

Brownian Dynamics simulations, we consider three types of example systems: rigid bodies, freely

jointed chains, and systems with immobile particles. Example rigid bodies, freely jointed chain,

and immobile bead scenarios are shown in Figure 2.2, and these systems are described in more

detail in their respective subsections. We study the performance as a function of number of beads
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Result: y, λ′

Calculate Q, R such that Σ = QR
Initial guess y← −Qc
Residual r← Ay− b
Projected residual g← r−QQT r
Refined projected residual g← g−QQT g
Initial residual norm nr0 ← ∥g∥
Step direction d← −g
r← g,
for i = 1 : Niters do

Step distance α← rT g
dT Ad

Update guess y← y + αd,
Update residuals r′ ← r + αAd, g′ ← r′ −QQT r′

β ← r′T g′

rT g
Update step direction d← −g′ + βd
Update residuals g← g′, r← g′

if ∥g∥/nr0 < ϵ then
break

end
end
Lagrange multipliers λ′ ← −QT (b−Ay)

Algorithm 1: PrCG algorithm adapted from Gould et al.21. Niters is the maximum allowed
iterations and ϵ is the desired tolerance.

and number of bodies in each of these cases and compare that performance to solutions using the

preconditioned GMRES method. For GMRES, we solve the original saddle point (Equation 2.4)

formulation4 and use the default GMRES method in MATLAB. For PrCG, we solve the saddle

point problem transformed by decomposing Σ (Equation 2.11).

Both algorithms were run with a fixed residual tolerance of ϵ = 10−8i. No conservative inter-

bead potentials were applied (i.e. ∇V = 0)j. The Brownian velocities should have a covariance

proportional to a certain square root of the mobility tensor in general, uB =
√

2kBT/∆tM/ · dW,

where ∆t is the time step, W is the standard Wiener process, and M/ is a matrix such that

M/ M/ † = M, where the dagger denotes the adjoint operator. As discussed in the previous

chapter, calculating M/ can be done in O(N) time using methods such as the spectral Ewald

approach28 or force-coupling method27,37. However, in order to isolate the computational burden of

iThis is a pretty low tolerance to show that the algorithms continue to be stable at these tolerances. The relative
performance of the two algorithms doesn’t change much with the desired tolerance and results for lower tolerances
can be inferred from plots of performance vs. iteration (e.g. Figure 2.3)

jCalculation of inter-bead potentials are almost never rate-limiting so we choose to control with the simplest
scenario.
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(a) (b) (c)

Figure 2.2 (a) Example system of geodesic polyhedra. A slice is shown for clarity. (b) Example system of
freely jointed chains. A slice is shown for clarity. (c) Example gyroid immobile system with a volume fraction
of v = 0.075. Half of the beads are immobile, and these beads are colored black. In all systems, black borders
correspond to periodic simulation box boundaries. Images rendered using OVITO36.

the iterative solves, we instead sample Brownian velocities from a normal distribution (i.e. without

hydrodynamic interactions): uB =
√

2kBT/6πηa∆tdW, with ∆t = 10−5 for all simulations. Beads

were moved to provisional positions x = x0 + uB∆t/2, where x0 were the initial positions of the

particles. A constrained solve was then performed at this provisional point with the same Brownian

velocities, in a matter similar to what would be used in a predictor-corrector integration scheme.

Because the Brownian velocities are stochastic, iterative solutions to the saddle point problem

cannot be accelerated through any clever choice of the initial guess, for example, by using the

solution at a previous time step in a dynamic simulation.

Restarts are another free parameter in the GMRES algorithm which can be adjusted to improve

performance. GMRES increases in computational burden with each iteration, requiring more

effort for the Arnoldi processk. This can become prohibitive for a large number of iterations.

By restarting GMRES every k iterations, the computational burden is reduced at the cost of

guaranteed convergence. Thus, k is another parameter in GMRES which must be optimized by

kGMRES works on the principal that a certain subspace, called the nth Krylov subspace, where n is the iteration
number, gives a good approximation of the exact solution for relatively low values of n. As the iteration number
increases, the subspace becomes larger and the cost of each iteration increases with n2. To circumvent this, the
method can be restarted, that is, with a new Krylov subspace, with an updated, better initial guess based on the
previous iterations. This can result in some stagnation after the restart, but is generally fine for positive-definite
matrices (like the mobility matrix). For more information on GMRES, see the original paper by Saad and Schultz38
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balancing convergence of the residual with computational cost. For this work, the number of inner

iterations per restart was set to a fixed value of k = 100 for simulations with N ≥ 100, and it was

set to a value of k = N otherwise.

The mobility matrix multiplication approximation applied in this work is based on the spectral

Ewald method39,40. This method has linear computational complexity in the number of bead, and

the relative tolerance for errors in the calculation was set to a value of 10−8. Thus, if the number

of iterations for PrCG or GMRES is constant, the algorithms themselves should also be linear in

the number of beads. Therefore, the rate at which the number of iterations for each algorithm

increases with systems size is indicative of their computational complexity, and for a given system

size, the difference in the number of iterations between algorithms is indicative of their relative

performance.

To our knowledge, a preconditioner has only been thoroughly developed for the rigid body

problem31. However, we translate this same approach, described in detail next, to construct a pre-

conditioner for the freely jointed chain and immobile bead problems and find that it leads to linear

computational complexity with respect to the number of beads as with iterative solutions of rigid

body problems. In this way, we believe we are using competitive preconditioners for all systems

and thus making a fair comparison between methods both on the basis of precomputation effort

and the subsequent iterative solve. The preconditioner we used was a slight modification of the

preconditioner presented by Balboa Usabiaga et al.31, where the mobility matrix is approximated

by only considering interactions between beads in the mobility matrix if they are part of the same

constrained body:

M̃ij =


Mij if bi = bj

0 otherwise
. (2.12)

Here, M̃ij is the ij’th 3 × 3 block of the preconditioner, bi is the body of particle i, and Mij is
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the non-periodic RPY mobility tensor for particles i and j. The preconditioner is then

P =

 M̃ −Σ

−ΣT 0

 . (2.13)

The LU decompositionl of this preconditioner was calculated as a precomputation step using

the default sparse LU decomposition function in MATLAB. This preconditioner is known to be

effective for rigid bodies and was used in GMRES for rigid bodies, freely jointed chains, and

immobile systems (where each bead is its own body and M̃ is a diagonal matrix). Because Σ is a

shift matrix for immobile systems, P is very sparse and no LU decomposition was needed. To our

knowledge, this preconditioner has not been used for systems of freely jointed chains or immobilized

beads before. Application of the non-preconditioned GMRES method for these systems can take

thousands of iterations to converge even for systems with only a few thousand beads, necessitating

the use of a preconditioner.

The other precomputation, the QR decomposition of Σ, can be calculated using various algo-

rithms to orthonormalize the column vectors such as Householder reflections, Givens rotations,

or Gram-Schmidt (GS) methods. QR decomposition on a block-diagonal matrix can be done

block-wise to accelerate computation, as shown in Appendix B, with a computational complexity

of O(nm2) for each n × m block. All QR decompositions were done block-wise with each body

corresponding to a block. For rigid bodies, we used an explicit orthonormalization utilizing a GS

algorithm. The details of this orthonormalization can be found in Appendix B. We note here that

despite GS algorithms typically being disfavored due to loss of orthogonality for matrices with

high condition number, this effect is mitigated in this system due to the block-wise structure. For

the freely jointed chain system, QR decomposition was done using the default sparse QR decom-

position function in MATLAB. For immobile systems, no QR decomposition was required as Σ is

orthonormal by construction.

Two different wall clock times are reported for each algorithm: the time to execute the iterative

lThe LU decomposition is another decomposition of a matrix A such that A = LU, where L is a lower trian-
gular matrix and U is an upper triangular matrix. This decomposition is convenient because inverting triangular
matrices is fast, making inversions of A fast: A−1x = U−1L−1x for an arbitrary vector x. We need to invert the
preconditioner often in the algorithm, making this precomputation worthwhile.
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solve and the time to perform precomputation of the normal space basis (PrCG for all systems

and GMRES for the freely jointed chains) and/or the preconditioner (GMRES) for the iterative

scheme. For rigid bodies, PrCG requires the analytical QR decomposition of the constraint matrix

and GMRES requires the LU decomposition of the preconditioner. Once these matrices have

been determined, subsequent matrix solves are faster. Because of the block diagonal nature of

the preconditioner, both decompositions are expected to take O(NbodiesB
3) time. Even though

the mobility matrix is SPD, the augmented matrix has negative eigenvalues corresponding to the

introduced Lagrange multipliers, and is thus indefinite. This is a general property of saddle point

problems. The preconditioner is similarly indefinite in general, so the Cholesky decomposition

cannot be used for precomputation.

For freely jointed chains, both algorithms require finding a basis for the left null space of G.

This basis was found using a block-wise QR decomposition of G, which resulted in 2B +1 columns

in Σ per chain. Those columns of Σ are orthonormal by construction so Q = Σ. For GMRES,

the LU decomposition of the preconditioner still needs to be calculated. Because GMRES requires

one additional precomputation step, it is guaranteed to have a higher precomputation time for

freely jointed chains. For the simulations that mix free and immobile beads, no precomputation is

required.

The residual plots that we present report the monitored residual for each algorithm normalized

by its initial value. Both algorithms terminate when the relative residual is below the designated

tolerance. For PrCG, the residual is ∥Z(Mfc − b)∥2 for projection operator Z = I − QQT as

discussed previously. For GMRES, the residual is preconditioned and uses the augmented mobility

matrix: ∥P−1(M′x′ − b′)∥2, with M′, x′, and b′ defined analogously to Equation 2.4. These

residuals are the values both algorithms use to monitor convergence and determine when to stop

iterating.

We also report the norm of the error in the constraint forces and constrained velocities normal-

ized by their initial values. These errors were calculated relative to the “exact” solution, which was

approximated by running each algorithm to a tighter tolerance of ϵ = 10−12. These plots monitor

the convergence of each algorithm to the exact solution of the saddle point problem. Simulations
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ranged in size from O(102) to O(105) beads. We perform all calculations in MATLAB R2020b run

on a laptop computer with an Intel Core i9 processor. Many of the calculations in this paper in-

cluding the mobility matrix multiplications, QR decompositions, and preconditioner formulations

can be accelerated using parallel programming and GPU’s. In this work, we do not implement

these methods as the rate-limiting step is the mobility matrix multiply, for which parallel methods

have been explored, for example by Fiore et al.29. We note here, however, that precomputation in

both methods is highly parallelizable due to the block-wise nature of the constraint matrix. Paral-

lel versions of the GMRES algorithm have already been implemented, for example see a paper by

Fiore and Swan on fast Stokesian dynamics40. Parallel implementation of PrCG would be valuable

in future work to test its performance versus GMRES is actual simulations.

2.3.2 Systems of rigid bodies

As an example rigid body constraint, we generated geodesic polyhedra by placing beads on the ver-

tices of a tetrahedron or an [m, 0] geodesic icosahedron, with m = 1, 2, 3, 441. Geodesic polyhedra

are approximations of a sphere with the number of vertices increasing with m. The polyhedra were

formed such that beads connected by a short edge were tangent according to their hydrodynamic

radii. These types of bodies have been used previously to model suspensions of spherical parti-

cles42. We varied the number of bodies (Nbodies = 23, 43, 63, 83, 103) with a fixed number of beads

per body (B = 42), and varied the number of beads per body (B = 4, 12, 42, 92, 162) with a fixed

number of bodies (Nbodies = 63). The bodies were placed uniformly at random in the simulation

box. The size of the periodic box was adjusted such that the volume fraction of the bodies if they

were treated as solid spheres was approximately constant.

The residuals as a function of iteration number for the geodesic polyhedra are shown in Figure

2.3. As the number of bodies increased from Nbodies = 23 to Nbodies = 103 with B = 42, the

number of required iterations increased from about 60 to 110 for PrCG and from about 40 to 60

for GMRES. At B = 4, PrCG and GMRES performed nearly equally, at about 30 iterations. As

the size of the bodies increased to B = 162, the number of required iterations increased to about

120 for PrCG and to about 70 for GMRES. The algorithms separate quickly in residual during the

first few iterations, with GMRES converging faster. However, GMRES then tapers and converges
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at about the same rate as PrCG. The major difference in the number of iterations, therefore, is in

the first few (about 10) steps each algorithm takes. These results suggest that GMRES is superior

to PrCG for rigid bodies in terms of the convergence of the measured residual.

Because GMRES solves the augmented mobility matrix system, it attempts to solve for the

constraint forces and constrained velocities simultaneously. These values have uneven impacts on

the residual and may not converge at equal rates, especially because a good initial guess for both the

constraint forces and constrained velocities is not necessarily available for GMRES. Furthermore,

GMRES monitors the preconditioned residual, so its convergence is not necessarily indicative of

the convergence of the solution to the original saddle point problem equations. This makes the

convergence of the actual forces and velocities uncertain.

(a) (b)

Figure 2.3 Residual (∥Z(Mfc − b)∥ for PrCG and
∥∥P−1(M′x′ − b′)

∥∥ for GMRES) for rigid body geodesic
polyhedra systems relative to the residual at the initial guess. (a) Varying the number of bodies,
Nbodies = 23, 43, 63, 83, 103, with constant beads per body, B = 42. (b) Varying B = 4, 12, 42, 92, 162, with
constant Nbodies = 63. Circles correspond to PrCG while triangles correspond to GMRES. Only every 5th
iteration is plotted in the scatter for clarity. The system size is denoted by color.

We plot the relative norm of the errors in the constraint forces (fc) and constrained velocities

(λ) for the rigid bodies in Figure 2.4. For PrCG, the relative error of the constrained velocities

from the original formulation (Equation 2.4), λ = R−1λ′, are calculated for proper comparison

with GMRES.

The relative norm of the errors in the constraint forces and constrained velocities are shown in
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Figure 2.4. As the number of bodies increases, these errors increase quickly then plateau at about

10−7 for GMRES. As B was increased at constant Nbodies, these errors also increased to over 10−7

for GMRES. For reference, we show the errors at each iteration for each B at constant Nbodies in

Appendix C.

The residual from the preconditioned GMRES method overestimates the convergence rate of

both the constraint forces and constrained velocities. For Brownian dynamics simulations, we

want to control the accuracy of the constrained velocities, which are used to calculate the bead

velocities: u = Σλ. These results mean that, in order to achieve a desired level of accuracy in

the constrained velocities, the tolerance of the preconditioned GMRES method must be set to a

lower, system-dependent value. This is most likely an artifact of preconditioning, which affects the

formulation of the residual but not the values being solved for.

Conversely, PrCG consistently terminated with relative errors for the constraint forces and

constrained velocities of about 10−8, which was the desired tolerance, regardless of the number of

bodies or the size of the bodies. Because the residual is not preconditioned, only projected, the

residual gives an accurate approximation for the true convergence of the constraint forces. The

constrained velocities can be determined from these constraint forces after termination through a

single mobility matrix multiplication: λ = R−1QT (Mfc −M∇V + uB).

Precomputation and solve times for both algorithms are shown in Figure 2.5. The mobility

matrix multiplications were the dominant calculation in both algorithms, and scale linearly in the

number of beads. Therefore, because the number of iterations increased slowly as Nbodies increased,

the timing for both algorithms is slightly superlinear in Nbodies. The number of iterations for both

algorithms scaled approximately quadraticly in B. For a given Nbodies and B, GMRES required

about half the time as PrCG. However, as discussed earlier, GMRES does not converge to the

desired tolerance in the constraint forces and constrained velocities, suggesting a smaller difference

in the solve time if the same tolerances were reached.

For precomputation, PrCG was linear in Nbodies, as expected due to the block-wise nature of

the QR decomposition. For these system sizes, precomputation time was nearly constant with

B. It is likely that B was not large enough to exhibit clear linear scaling. We find that PrCG
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(a) (b)

Figure 2.4 Norm of the constraint force (fc) and constrained velocity (λ) errors for rigid body geodesic polyhe-
dra systems at algorithm termination relative to the error at the initial guess, (a) varying the number of bodies,
Nbodies = 23, 43, 63, 83, 103, with constant beads per body, B = 42 and (b) varying B = 4, 12, 42, 92, 162,
with constant Nbodies = 63. Circles correspond to PrCG while triangles correspond to GMRES.

performs similarly using the explicit orthonormalization used in this paper when compared to the

default sparse QR decomposition function in MATLAB in terms of residuals and errors, but has

better precomputation time scaling in B. Precomputation time for GMRES was linear in Nbodies,

as expected, but worse than quadratic in B. The expected precomputation time for GMRES is

O(NbodiesB
3), so this scaling aligns with expectations, although it is possible that larger B must

be sampled to see the cubic scaling more clearly. This poor scaling in B may be rate-limiting for

large enough bodies.

2.3.3 Systems of freely jointed chains

For freely jointed chain constraints, we generated chains using a self-avoiding random walk such

that no beads in the random walk overlapped with respect to their hydrodynamic radii. This was

done to avoid high energy initial configurations of the chains. Neighboring beads were placed such

that they were tangent with respect to their hydrodynamic radii. We varied the number of chains

(Nbodies = 23, 43, 63, 83, 103) with a fixed number of beads per chain (B = 50), and varied the

number of beads per chain (B = 10, 20, 50, 100, 200) with a fixed number of chains (Nbodies = 63).

Similar to rigid bodies, chains were placed uniformly at random throughout the simulation box.
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(a) (b)

Figure 2.5 (a) Wall clock runtimes and (b) precomputation time for PrCG and GMRES with rigid body
geodesic polyhedra systems. For PrCG, precomputation was the QR decomposition of the constraint matrix.
For GMRES, it was the LU decomposition of the augmented mobility matrix. For the black points, the number
of bodies was varied, Nbodies = 23, 43, 63, 83, 103, with constant beads per body, B = 42. For the red points,
the beads per body was varied, B = 4, 12, 42, 92, 162, with constant number of bodies, Nbodies = 63.

The periodic simulation box was sized such that the beads had a volume fraction of 20%.

For the freely jointed chains, both GMRES and PrCG exhibited similar performance with

respect to the number of iterations and solve times, with PrCG requiring slightly more iterations.

The residuals as a function of iteration number are shown in Figure 2.6 and the relative errors in

the constraint forces and constrained velocities are shown in Figure 2.7. GMRES and PrCG both

achieved relative errors in the constraint forces and constrained velocities of approximately 10−8,

matching the convergence of the reported residual. Because the mobility matrix multiplication is

the dominant calculation, both algorithms exhibited nearly identical solve times, with both PrCG

and GMRES demonstrating roughly linear empirical scaling in both Nbodies and B, as shown in

Figure 2.8a. For reference, we show the errors for this system at each iteration for each B at

constant Nbodies in Appendix C.

Relative to the rigid body system, these solves were very fast, showing relatively stable iteration

counts with increasing system size and never requiring more than 50 iterations. The precomputa-

tion time for GMRES was higher than PrCG in this case because, as discussed earlier, GMRES

needs the LU decomposition of its preconditioner to be calculated as well as the same QR decom-
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(a) (b)

Figure 2.6 Residual (∥Z(Mfc − b)∥ for PrCG and
∥∥P−1(M′x′ − b′)

∥∥ for GMRES) for random walk freely
jointed chain systems relative to the residual at the initial guess. (a) Varying the number of bodies,
Nbodies = 23, 43, 63, 83, 103, with constant beads per body, B = 50. (b) Varying B = 10, 20, 50, 100, 200,
with constant Nbodies = 63. Circles correspond to PrCG while triangles correspond to GMRES. Only every 5th
iteration is plotted in the scatter for clarity. The system size is denoted by color.

(a) (b)

Figure 2.7 Norm of the constraint force (fc) and constrained velocity (λ) errors for random walk freely jointed
chain systems at algorithm termination relative to the error at the initial guess, (a) varying the number of bodies,
Nbodies = 23, 43, 63, 83, 103, with constant beads per body, B = 50 and (b) varying B = 10, 20, 50, 100, 200,
with constant Nbodies = 63. Circles correspond to PrCG while triangles correspond to GMRES.
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(a) (b)

Figure 2.8 (a) Wall clock runtimes and (b) precomputation time for PrCG and GMRES with random walk
freely jointed chain systems. For PrCG, precomputation was the QR decomposition of the constraint matrix.
For GMRES, it was the QR decomposition of G and the LU decomposition of the augmented mobility matrix.
For the black points, the number of bodies was varied, Nbodies = 23, 43, 63, 83, 103, with constant beads per
body, B = 50. For the red points, the beads per body was varied, B = 10, 20, 50, 100, 200, with constant
number of bodies, Nbodies = 63.

position needed by PrCG. The precomputation time for both PrCG and GMRES were consistent

with the expected linear scaling in Nbodies and quadratic scaling in B. This quadratic scaling of the

precomputation with system size may pose a problem for larger system sizes. Overall, PrCG and

GMRES are nearly equivalent in both residual, relative errors, and timing, for the freely jointed

chain system, but GMRES requires additional precomputation in calculating the preconditioner.

2.3.4 Systems with immobile particles

Dispersions with a mixture of free and immobile beads were simulated by placing immobile beads

in the simulation box either uniformly at random or according to the unit cell of a gyroid with

fixed lattice parameters, defining a triply periodic surface. In the case of the gyroid, a random

subset of points describing the full gyroid surface were selected and immobile beads were placed

at these locations. Then, free beads were placed uniformly at random throughout the interstitial

space. For the gyroid immobile system, the total number of beads was selected from the set:

N = 1398, 2797, 5593, 13983, 27966. Because the lattice parameters were fixed, the volume fraction

changed with the total number of beads, up to a maximum volume fraction of 1.5%. In the other
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case, termed the "uniform immobile system," all beads were placed uniformly at random. Half of

the beads were free and the other half were immobile. The total number of beads was selected

from the set: N = 103, 153, 203, 253, 303 with a fixed bead volume fraction of 20%.

The residuals as a function of iteration number for the gyroid immobile systems can be seen in

Figure 2.9. PrCG and GMRES required a similar number of iterations at all system sizes, requiring

about 150 iterations at the largest systems size (N = 27966).

Iteration-to-iteration convergence for GMRES was smooth, but notably stalled at the restart

value (100 iterations). Because the number of required iterations increased with system size,

this suggests that at large system sizes (O(105) particles and greater), GMRES might slow down

relative to PrCG, as either the number of iterations required relative to PrCG will increase due

to restarts, or the cost of each iteration relative to PrCG will increase if the iterations between

restarts is set too high.

The relative errors in the constraint forces and constrained velocities are shown in Figure 2.10.

The relative errors in the constraint forces and constrained velocities converged to about 10−8 for

all system sizes for both PrCG and GMRES. In this case, however, PrCG seems to do slightly

better than GMRES in solving for the constraint forces, but slightly worse than GMRES in solving

for the constrained velocities. For reference, we show the errors for this system at each iteration

for each N in Appendix C.

For the solve time, both PrCG and GMRES exhibited approximately linear scaling, as shown in

Figure 2.11. Because the number of iterations was nearly equal for both algorithms, the algorithm

run time was also nearly equal for both algorithms. No precompute time was necessary for either

algorithm because the constraint matrix is already orthonormal and the preconditioner for mixtures

of free and immobile particles, given by Equation 2.7, is very sparse.

The residuals as a function of iteration number for the uniform immobile systems are shown

in Figure 2.12. Compared to other systems, the number of required iterations increased more

quickly with system size, to about 450 iterations for both algorithms at the largest system size of

N = 303. This was most likely due to the larger volume fraction of beads (0.2 compared to 0.015

for the gyroid immobile system at N = 27, 966) and the difference in structure of the immobilized
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Figure 2.9 Residual (∥Z(Mfc − b)∥ for PrCG and
∥∥P−1(M′x′ − b′)

∥∥ for GMRES) for gyroid immobile
systems relative to the residual at the initial guess. The number of particles was varied from the set N =
1398, 2797, 5593, 13983, 27966. Half of the particles were immobile. Circles correspond to PrCG while triangles
correspond to GMRES. Only every 5th iteration is plotted in the scatter for clarity. The system size is denoted
by color.

Figure 2.10 Norm of the constraint force (fc) and constrained velocity (λ) errors for gyroid immobile systems
systems at algorithm termination relative to the error at the initial guess, varying the number of beads from
the set N = 1398, 2797, 5593, 13983, 27966. Half of the particles were immobile. Circles correspond to PrCG
while triangles correspond to GMRES.
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Figure 2.11 Wall clock runtime for PrCG and GMRES with gyroid immobile systems. No precom-
putation was necessary for either algorithm. The number of particles was varied from the set N =
1398, 2797, 5593, 13983, 27966. Half of the particles were immobile.

particles here versus in the gyroid immobile system. Because some of these systems required more

than 100 iterations, the effect of restarts, which occur every 100 iterations for GMRES, could be

seen clearly. Each restart caused the convergence of GMRES to stall, seen as decreased slopes

immediately following the restarts. This is an expected consequence of restarts and increased the

number of required iterations for GMRES, worsening as system size increased. At the largest

system size of N = 303, GMRES required nearly 450 iterations while PrCG required less than 400.

GMRES also saw uneven convergence of the constraint forces and constrained velocities, as

shown in Figure 2.13, with relative errors in the constrained velocities converging to about 10−8

for all system sizes, but with relative errors in the constraint forces increasing from about 10−8

to 10−7 with increasing system size. Meanwhile, PrCG achieved relative errors of approximately

10−8 regardless of system size and immobile particle configuration, suggesting that it is superior

to GMRES for these immobile systems. For the solve time, both PrCG and GMRES exhibited

superlinear scaling with respect to N due to the increasing number of iterations with system size,

as shown in Figure 2.14. For reference, we show the errors for this system at each iteration for

each N in Appendix C.

For both the gyroid and uniform immobile systems, the number of required iterations increased

with the fraction of immobile particles at a constant total number of particles. Therefore, there

might be a trade-off for these systems between algorithm run time and resolution of an immobile
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Figure 2.12 Residual (∥Z(Mfc − b)∥ for PrCG and
∥∥P−1(M′x′ − b′)

∥∥ for GMRES) for uniform immo-
bile systems relative to the residual at the initial guess. The number of particles was varied from the set
N = 103, 153, 203, 253, 303. Half of the particles were immobile. Circles correspond to PrCG while triangles
correspond to GMRES. Only every 10th iteration is plotted in the scatter for clarity. The system size is denoted
by color.

Figure 2.13 Norm of the constraint force (fc) and constrained velocity (λ) errors for uniform immobile systems
systems at algorithm termination relative to the error at the initial guess, varying the number of beads from
the set N = 103, 153, 203, 253, 303. Half of the particles were immobile. Circles correspond to PrCG while
triangles correspond to GMRES.
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Figure 2.14 Wall clock runtime for PrCG and GMRES with uniform immobile systems. No precomputation
was necessary for either algorithm. The number of particles was varied from the set N = 103, 153, 203, 253, 303.
Half of the particles were immobile.

boundary (the number of beads used to represent it). Practically, this means that decreasing the

resolution of an immobile boundary decreases computational cost more than removing the same

number of free particles from the simulation.

2.3.5 Storage costs

We mention here the theoretical storage costs for each algorithm, tabulated in Table 2.1. For

precomputation, PrCG requires the storage of Q and R, which require O(3NbodiesBPB) and

O(NbodiesP
2
B) storage, respectively, where PB is the characteristic degrees of freedom per body

which can range from 1 to 3B depending on the system (e.g. PB = 6 for a non-symmetric rigid

body). GMRES requires the storage of the preconditioner, which requires O(9NbodiesB
2) storage.

This storage is greater than for PrCG because 3B ≥ PB. This difference comes from the storage

of M̃ as opposed to R. In the case that the matrix M̃ is not stored directly but is instead

calculated as a matrix-vector product, only the particle positions are needed and this cost can

be removed. Similarly, in cases where c = 0, such as in these simulations, R is not needed for

calculating particle velocities, and its cost can be removed as well. Overall, this means that pre-

computational storage costs for PrCG and GMRES are similar, only requiring the storage of Q

and Σ, respectively, which share the same dimensions and similar sparsity.

For the algorithms themselves, PrCG requires O(N) storage for various vectors which update
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with each iteration. GMRES, on the other hand, requires O(min (k, i)(N + P )) storage for each

of the Arnoldi vectors, where k is the restart value and i is the current iteration number. This

means that the relative cost of GMRES increases with the number of iterations.

Overall, both algorithms are similar in both precomputation and algorithm storage costs, with

the specifics depending on the system. However, problems which require many iterations for

convergence may accrue significant storage costs for GMRES.

PrCG GMRES
Precomputation O(3NbodiesPBB) O(9NbodiesB

2)
Per iteration 3N O(min (k, i)(3N + P ))

Table 2.1 Storage costs for PrCG and GMRES. Precomputation is the cost for storing Q and R for PrCG
and the P for GMRES. Per iteration is the additional cost for the algorithm. PB is the characteristic degrees
of freedom per body, k is the restart value of GMRES, and i is the iteration number.

2.3.6 Simulations involving multiple types of constraints

An advantage of using the PrCG method to solve saddle point problems in Brownian dynamics

simulations is the ease of incorporating multiple types of constraints. As an additional test, a

non-periodic system with both a rigid body and a collection of immobile beads was constructed

and solved using PrCG. In this example, a 252mer (a [5, 0] geodesic polyhedron constructed as

described in Section 2.3.2) was made a rigid body and centered at the origin. The Stokes radius

of the 252mer was determined by applying a force, F, distributed equally amongst the beads, and

determining the resultant rigid body velocity, U, with a constrained solve using PrCG. The Stokes

radius can then be determined using the Stokes drag formula: rs = ∥F∥
6πη∥U∥ .

Then, another 252mer was used to specify the coordinates for a set of immobile beads centered

a distance b away from the origin along the x-axis. A force was then applied to the rigid body and

distributed equally amongst the beads. The velocity of the rigid body is altered by hydrodynamic

interactions with the immobile beads, which behave collectively like another sphere held fixed in

space. At the same time, a force is induced on the immobile beads due to the motion of the rigid

body, and it is the constraint forces that precisely balance these hydrodynamic forces. We sum

those constraint forces on the immobile beads to determine the force holding the immobile body

in place. When b/rs ≫ 1, the asymptotic analytical solution for the resultant velocity on the rigid
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body, U1, and summed force on the collection immobile beads, F2, are

U1 = 1
6πηrs

[(
1− 9

4

(
rs

b

)2)
r̂r̂ +

(
1 + 9

16

(
rs

b

)2)
(I− r̂r̂)

]
· F1 +O

(
rs

b

)3
, (2.14)

F2 = −
[

3
2

rs

b
r̂r̂ + 3

4
rs

b
(I− r̂r̂)

]
· F1 +O

(
rs

b

)3
, (2.15)

where r̂ is the unit vector pointing from the center of one body to the other43. Two different forces

applied to the rigid body were considered: a force parallel to the x-axis (F∥
1 = F1[1, 0, 0]T ) and a

force perpendicular to the x-axis (F⊥
1 = F1[0, 1, 0]T ).

As the distance b becomes large, the velocity of the rigid body approaches the velocity in the

absence of the immobile beads: U1 = F1
6πηrs

. In the same circumstance, the force on the immobile

beads approaches zero. From the analytical solutions, we expect the difference in the rigid body

velocity from its velocity in absence of the immobile beads to increase with (rs/b)2 and the force

on the immobile beads to increase with (rs/b) for large separations.

The rigid body velocity and immobile particle forces were calculated using PrCG for various

dimensionless separations, (rs/b). The results are shown in Figure 2.15. As expected, for both

the parallel and perpendicular forces, the rigid body velocity scales with (rs/b)2 and the immobile

particle force scales with (rs/b). Furthermore, when the rigid body and immobile beads are in

contact, the rigid body should be unable to move and the immobile beads should experience a

constraint force equal in magnitude and opposite in direction to the force applied to the rigid body,

as seen in the results at the largest (rs/b), for which the rigid body and immobile bead groups were

tangent, and for which the asymptotic analytical model breaks down. Because the immobile beads

in the system with the perpendiular force are not directly obstructing the rigid body, the velocity

and force for this system are lower for a given (rs/b), but both drop to zero once the constrained

elements are in contact. Importantly, once the constraint matrix has been identified, no additional

work is necessary for precomputaiton in this mixed constraint system. The construction of Σ is

straightforward and Q can be calculated efficiently using a block-wise QR decomposition. This

contrasts with GMRES, for which a novel preconditioner may need to be developed for such a
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(a) (b)

Figure 2.15 (a) Normalized difference between rigid body velocity with the immobile beads and its velocity
at infinite separation, U∞ = F1

6πηrs
. (b) Total force on the immobile beads. Results from the simulation are

shown as points, and the analytical solution is shown as a solid line. The rightmost point corresponds to the
rigid body and immobile bead groups being in contact. Black points correspond to a force parallel to the x-axis
(F∥

1 = F1[1, 0, 0]T ). Red points correspond to a force perpendicular to the x-axis (F⊥
1 = F1[0, 1, 0]T ).

system which combines multiple types of constraints.

2.4 Conclusions
In this chapter, we show that saddle point problems in Brownian dynamics simulations can be

solved efficiently using the projected conjugate gradient (PrCG) method with certain advantages

over the typically utilized GMRES method. Specifically, much of the complexity of the PrCG

algorithm can be front-loaded into the QR decomposition of the constraint matrix, which can be

performed efficiently for block diagonal constraint matrices. For GMRES, a preconditioner must

be calculated, which is often the most storage-intensive step and can be expensive computationally

as well. That said, the preconditioner presented by Balboa Usabiaga et al.31 is found to be effective

for freely-jointed chains and immobile systems as well as for its original application of rigid bodies.

GMRES also often requires the same QR decomposition as PrCG to generate the constraint matrix.

In all systems studied in this work, precomputation was cheaper for PrCG compared to GMRES.

PrCG has been shown to exhibit the same empirical linear computational complexity as GM-

RES for simple Brownian rigid bodies, freely jointed chains, and systems of immobile particles.
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Furthermore, its residual reliably predicts the relative error in both the constraint forces and con-

strained velocities. For GMRES, the reported residual was not always indicative of the relative

errors in the constraint forces and constrained velocities. The offset between the reported residual

and true convergence was a function of the constraint type, system size, and particle configura-

tion, making it difficult to determine the offset a priori. These issues with GMRES suggest an

additional (often overlooked) aspect of developing preconditioners for these systems: the reported

residual may not always directly correlate with the error in the solutions themselves.

The iterates produced by PrCG are guaranteed to be feasible, which is not true for GMRES. For

GMRES, initial guesses which are infeasible should converge on this constraint in a similar manner

to residual convergence. In these cases, setting a tolerance for GMRES simultaneously sets the

tolerance for feasibility, even though this should ideally be satisfied exactly. This means that extra

computational effort needs to be expended to make the solution feasible. For example, one could

converge the residual past where the velocities have converged to the desired tolerance such that

feasibility is satisfied to the desired tolerance. Alternatively, one could generate an initial guess

which is feasible, for example by using a QR decomposition of the constraint matrix to transform

the saddle point problem to the form used for PrCG and using the same initial guess as PrCG

(although this does not guarantee that future iterates continue to be feasible). These methods

both require extra effort in either solve or precomputation time. PrCG guarantees feasibility at

each iteration, requiring only the QR decomposition.

PrCG trivially extends to simulations with rigid bodies of different shapes and sizes and/or

different types of constraints without the need for careful formulation or storage of a preconditioner.

In many constrained systems, the formulation of a preconditioner comprises much of the work in

developing the model, and PrCG obviates the need to develop one for new constrained systems.

In summary, we find that PrCG is an effective algorithm for conducting constrained Brownian

dynamics simulations. It exhibits the same empirical computational complexity as GMRES and

is more easily extended and robust to different types of constrained systems.
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Chapter 3

Primer on rheology and 2D materials

In this chapter, we give a background on rheology and 2D materials, which will be the focus of the

remainder of this thesis. We begin by discussing non-Newtonian fluids, specifically their applica-

tions and affect on the momentum balance. Then, we give a brief introduction on simple shear, a

common rheological technique, and discuss how it is applied to our simulations. Finally, we give a

brief introduction to 2D materials, their applications, as well as previous experimental, theoretical,

and computational work.

3.1 Introduction to rheology
Rheology is the study of flow. Specifically, much of rheology is interested in the study of non-

Newtonian fluidsa. Recall that Newtonian fluids have a constant viscosity with respect to the

strain rate, so a non-Newtonian fluid is any fluid with a non-constant viscosity with respect to

the strain rate. We will explore the consequences of this in the following sections. We start

by presenting some common non-Newtonian fluids and their basic properties. Then, we give a

common rheological experiment which is used to find the fluid viscosity and explaining how it is

implemented in simulation. Finally, we introduce the basic math connecting these experiments to

the fluid viscosity.

aAs they are richer and more complicated than Newtonian fluids
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3.1.1 Types of non-Newtonian fluids

We note here that the study of non-Newtonian fluids is not purely academic, as such fluids are

ubiquitous in daily life. While many common fluids (such as air and water) are Newtonianb,

there are many non-Newtonian fluids as well which exhibit more complex and interesting behavior

than Newtonian fluids. Ketchup, for example, will not come out of its bottle until the bottle is

squeezed (i.e. a strain is applied). Ketchup thus behaves solid-like at low strain rates but like

a fluid at higher strain rates. This is called a Bingham plastic or yield stress fluid. Many other

food products as well as care products (often kept in bottles) are Bingham plastics. For example,

ketchup, mustard, other condiments, shampoos and lotions, and blood all fall under this category.

Often, this has to do with some solid-like structure in the fluid which is broken down by large

enough strain rates.

Hand sanitizer sits pretty nicely in the hands, but once it is rubbed (i.e. sheared), it flows

more easily. Its viscosity thus decreases with strain rate. This is called a shear-thinning fluid or

pseudoplastic. Many of the examples for Bingham plastics, such as shampoo and blood, are also

shear-thinning. Again, this often has to do with some structure in the fluid which is broken down

with increasing strain rates, causing the fluid to flow more easily.

Oobleck, a mixture of cornstarch and water, flows like a liquid under low strain rates. However,

under high strain rates, its viscosity increases drasticallyc. Such a fluid is called a shear-thickening

fluid or dilatant. One way shear-thickening might arise is some "jamming" mechanism, where large

enough strain rates lead to particles being too tightly packed to flow properly.

These (Bingham plastics, pseudoplastics, and dilatants) make up the "basic" non-Newtonian

fluids and are depicted in Figure 3.1. Many of these fluids may also exhibit thixotropy, which

is, roughly, time-dependent shear-thinning behaviord, causing the entire flow history to affect the

viscosity (and making modeling much more difficult). There are also fluids which can exhibit both

shear-thinning and shear-thickening depending on the shear rate. Such a fluid will be the topic of

the next chapter. In order to design these materials to behave in the ways we wish, it is important

bAt least in the range of conditions we typically care about.
cThis has led to fun videos where people can run across pools of oobleck.
dThere are often debates on the exact definition of thixotropy, so I will avoid defining it with certainty.
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Figure 3.1 Basic non-Newtonian fluids. Recall that the viscosity is proportional to the slope of the lines.
Reproduced from Mehrabi and Setayeshi1.

to understand non-Newtonian fluids, both their macroscopic properties such as viscosity and how

their composition causes these macroscopic properties. As discussed previously, a common method

of studying the microscopic origins of macroscopic fluid behaviors is simulation.

3.1.2 Simple shear

Often, we wish to run simulations which mimic experiments to compare results. This equates

to applying the same velocity gradient to our simulations as those applied in experiments. One

common rheological experiment (performed in "rheometers") is simple shear (we will frequently

refer to simple shear as just "shear"). In a simple shear experiment, a fluid is placed in a small

gap between two parallel platese. One of these plates moves while the other remains stationary.

Because the fluid grips the plates, this creates a velocity gradient, as depicted in Figure 3.2.

For small enough gaps, the profile will be linear, so the velocity gradient only has one non-zero

component given by the plate velocity, ux, divided by the gap between the plates, H:

Lxy ≡
∂ux

∂y
= ux/H ≡ γ̇, (3.1)

eThere are many slight variations, such as a cone and a plate (called a cone-plate rheometer) instead of two
plates (called a parallel plate rheometer), but the basic concept is the same.
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(a)
(b)

Figure 3.2 (a) Depiction of simple shear and (b) deformation of a fluid element in simple shear.

where L is the velocity gradient tensorf and γ̇ is the shear rateg, which has units of inverse time.

A fluid element in simple shear is deformed at a rate determined by the shear rate. Specifically,

a differential cube in the fluid becomes a parallelpiped after shearing. This process is depicted in

Figure 3.2. The strain which has been applied via shear is the total length of the fluid element

relative to its original length: (L + ∆L)/L = γ̇t. The strain rate is the rate at which this changes

over time: γ̇. We will use these terms in the future.

Similar profiles are common in real applications. For example, toothpaste near its container’s

walls experiences shear. This is why it’s so difficult to get all the toothpaste out of its container;

the container wall is a stationary surface so there is stationary fluid next to it, requiring very large

shear rates to remove most of it. Many lubrication processes, which involve thin fluid layers by

definition, also involve simple shear.

Other common imposed velocity gradients are extensional flows, where fluid is stretched in

some directions and compressed in others. Such fluid kinematics might model an extrusion process

or chewing of certain foods. Applying different flow deformation protocols can give different

information about a fluid. In this thesis, our results focus on applied simple shear.

3.1.3 Applying simple shear to simulations

One convenient aspect of simple shear (and many other flow types) is that it is self-similar in the

sense that the shear rate is the same no matter where we are in the fluid or how close we zoom in.

fLij is the ij’th component of L.
gConceptually, simple shear consists of a deformation (parallel planes of fluid slide relative to each other) and a

rotation (in Figure 3.2, this rotation is clockwise). This rotation is about the plane of flow and velocity gradient.
Thus, we can refer to simple shear with respect to three axes: the flow axis in the direction of flow, the shear axis
in the direction of the velocity gradient, and the vorticity axis about which the fluid rotates. Pure shear refers to
shear with no rotation.
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Thus, when we simulate simple shear, we need not simulate an entire rheometer. Rather, we can

simulate a smaller, characteristic piece of the fluid and apply the overall shear rate to it (by giving

each particle an x velocity proportional to its y coordinate)h. The behavior of this piece of fluid

should be the same for the rest of the simulation box due to self-similarity. Thus, the equations

of motion (Equation 1.20) become

∆x = ∆t(−M∇V + uB + Lx). (3.2)

3.1.4 The new momentum balance

We now discuss how the fluid viscosity can be extracted from a simple shear experiment or simu-

lation. A more general version of the Navier-Stokes equation, discussed in Chapter 1, which does

not assume constant viscosityi is the Cauchy momentum equation:

ρ
Du
Dt

= −∇p + ∇ · τ + fb, (3.3)

where ρ is the fluid density, Du
Dt

is the material derivative of the fluid velocity, u, as described

previously, p is the pressure, fb are the body forces (per unit volume) on the fluid, and τ is the

deviatoric stress tensor j. This stress tensor term replaces the viscous term from the Navier-Stokes

equation (Equation 1.4). We can relate the stress tensor to the fluid viscosity, which we do in the

next section.

3.1.5 Viscosity and the stress tensor

Simple shear of an isotropic, incompressible fluid produces a stress with 6 non-zero components:

hWe also use different boundary conditions, called Lees-Edwards boundary conditions2 to accommodate period-
icity and shear.

iAs with the Navier-Stokes equation from earlier, we will still assume that the fluid is incompressible, that is,
constant density, here. Dealing with compressible fluids is possible, we would just need to take into account the
effects of the expansion and compression of the fluid due to the forces it experiences.

jThe tensor is "deviatoric" because we have removed the pressure component and put it as its own term. This
tensor thus gives how much the fluid "deviates" from an isotropic one with just the pressure from the surrounding
fluid. We will refer to this tensor as just the stress tensor for the rest of this thesis.
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τ =


τxx τyx 0

τxy τyy 0

0 0 τzz

 (3.4)

where x is the flow direction and y is the shear direction. Only 2 of the diagonal components

are independent and experimentally, we cannot separate the pressure and normal stresses, so we

instead calculate differences in normal stresses, which remove the pressure contribution:

N1 ≡ τxx − τyy (3.5)

and

N2 ≡ τyy − τzz. (3.6)

N1 and N2 are called the first and second normal stress differences, respectively. Normal stress

differences are important in many non-Newtonian fluids and can produce interesting effects such

as a fluid climbing a stirring rod as opposed to creating a depression. However, in this thesis

we focus on the off-diagonal components of the stress tensor. For a more detailed and rigorous

description of these concepts and non-Newtonian fluids in general, see Volume 1 of The Dynamics

of Polymeric Liquids3.

For an isotropic fluid, the stress tensor is symmetric, so τxy = τyx. τyx is called the shear stress.

The shear stress can be related to the viscosity and shear rate with

τyx = ηγ̇. (3.7)

The viscosity thus acts as the proportionality constant between the shear stress and the shear ratek.

For a Newtonian fluid, η is constant and ∇ · τ = η∇2u, recovering the Navier-Stokes equation.

But Equation 3.7 is valid for non-Newtonian fluids as well, in which case the viscosity is a function

kNote that the viscosity here can depend not only on the shear rate but also other parameters. For example,
a fluid might have a delay in its response to changes in shear stress, causing time-dependence. In this case, the
viscosity must take the entire deformation history of the fluid as input, which drastically increases the complexity
of the problem.
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instead of a constant. Modeling the fluid viscosity is thus an important step in modeling the stress

tensor, which in turn allows us to model the fluid itself with the Cauchy momentum equation

(Equation 3.3). This makes a major focus of rheology the development of constitutive models for

fluid viscosity and stress tensor.

3.2 Introduction to 2D materials
The remainder of this thesis will focus on 2D materials (also referred to as sheets), specifically

how they behave while suspended in a fluid undergoing simple shear. By 2D material, we mean

a 2D polymer. That is, it consists of a repeat unit, called a monomer, which is repeated along 2

dimensions. This is in contrast to 1D polymers, which are repeated only along a single dimensionl

and 3D polymers (more commonly referred to as crystals), whose monomers (more commonly

referred to as unit cells) are repeated along all 3 dimensions. All three are depicted in Figure 3.3a.

2D polymers lie in an interesting in-between space between 1D polymers and crystals, combining

aspects of the flexibility of 1D polymer chains with the rigidity of 3D structures. For a nice

introduction on how and why 2D polymers are fundamentally different from their 1D counterpart,

I recommend the paper "How the world changes by going from one- to two-dimensional polymers

in solution" by Schlüter et al.4. For this thesis, we will move on to applications and theory.

3.2.1 Applications of 2D materials

Certainly the most ubiquitous 2D material is graphene, which consists of carbon atoms arranged

in a hexagonal lattice (i.e. each carbon atom in the sheet’s interior has 6 neighbors) depicted in

Figure 3.3b. Graphene possesses large surface areas, tunability (e.g. through functionalization to

materials such as graphene oxide, another common 2D material), and favorable electrical, optical,

and catalytic properties while being lightweight, flexible, and mechanically stable, allowing them

to see success as membranes for separations5, in biomedical applications such as drug delivery6,7,

l1D polymers can still bend and take up a 3D space. Their classification is based purely on their topology. To
identify the dimension of a polymer, we might think about selecting two random monomers in it. On average, the
number of steps along the polymer we would have to take for a 1D polymer would go as the number of monomers,
N , to the first power. For a 2D polymer, the number of steps would go as N1/2. For a 3D polymer, it would go
as N1/3. For a polymer with a complicated connectivity, such a measure would give us a way of measuring its
dimension, which may not be an integer value!
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(a) (b)

Figure 3.3 (a) Sample 1D, 2D, and 3D polymer constructions from repeat units (circles). (b) Hexagonal
lattice where each bead has 6 neighbors.

in flexible electronic devices8, and more9–11. 2D transition metal dichalcogenides (2D TMDs),

which, as their name suggests, consist of a transition metal and a chalcogen, possess favorable

electronic and optical properties. These properties can be orthogonal to those of graphene. For

example, 2D TMDs may possess a band gap, which graphene lacks. These properties lead to 2D

TMDs being promising in applications such as electronics12,13 and catalysis14,15. Finally, synthetic

2D polymers, a field still in its infancy, represents a massive expansion of the design space for 2D

materials, opening up the doors to many more applications16. For the time being, we will use

graphene as a representative example.

In order to apply graphene and its derivatives to industrial and commercial use, it is important

to be able to produce them at high quality and with relatively low cost. Many of the methods

of producing graphene such as mechanical exfoliation17 and various bottom-up synthesis strate-

gies18–20, have been restricted by high costs and/or limited scalability21–24. Liquid exfoliation,

which typically involves using either sonication or shear of a material in solution to separate its

stacked layers, represents a cheap, facile, and easily scalable method for producing 2D materials

for certain applications24–29. Furthermore, many of the applications of graphene involve the use

a suspension precursor regardless of the synthesis method (e.g. graphene inks for the printing of

flexible electronics30). Therefore, in order to optimize the production and application of graphene

as well as other 2D materials, it is important to understand how suspensions of 2D materials

behave in flow.
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3.2.2 Current theoretical and computational understanding of 2D materials

While there has been significant progress studying 2D materials in the past several decades, our

understanding, especially compared to their 1D (polymers) and 3D (crystals) counterparts is still

lacking. Much of the early theoretical, computational, and experimental work on sheetsm focused

on their equilibrium properties in the absence of flow. Specifically, there was much interest in

finding the critical exponent, η, which quantifies how the radius of gyration of the sheet, Rg, scales

with the characteristic size of the flat sheet, L: Rg ∼ Lη. Computational studies of self-avoiding

sheetsn (in contrast with simulations of phantom sheets31,32) with and without bending rigidity

(which resists local deformations of a sheet) suggest the lack of a finite-temperature transition

from a rough but flat state (η = 1) to a crumpled state (η ≈ 0.8)33–41. Meanwhile, theoretical

predictions and experiments show both phases42–48. The flat and crumpled phases may have

very different functionality such as different mechanical properties, rheological properties, solvent-

accessible surface areas, or functionalities, making it important to be able to realize them in

simulations.

One way to potentially induce a crumpled phase in simulation is the addition of defects which

decrease the effective bending rigidity of a sheet and relax the self-avoiding constraint49–51. Another

method is the inclusion of attractive interactions which can overcome the bending rigidity of the

sheets, which may exist in a real system in the form of depletion or electrostatic interactions,

for example. Indeed, the addition of such attractive interactions to simulations results in the

appearance of crumpled and/or collapsed/compact (η = 2/3) phases not observed in self-avoiding

simulations without attractive interactions37,48,52–54. This highlights the importance of considering

and including attractive interactions when studying 2D sheets.

There have also been advances on the dynamics of 2D sheets when subjected to flows. Xu

and Green studied phantom 2D sheets under shear and biaxial extensional flow and calculated

their semiaxial lengths as a function of shear strength among other parameters55,56. Notably,

they observed shear-thinning behavior but no extensional thinning. Yu and Graham studied

mAt the time, they were often referred to as "tethered membranes" to distinguish them from fluid membranes
without fixed connectivity.

nSelf-avoiding means that the sheet cannot intersect itself. A sheet which can intersect itself is called "phantom."

101



phantom 2D sheets under planar, biaxial, and uniaxial extensional flows and found compact and

stretched conformations with bistable behaviors57,58. They also classified different stable and

unstable deformation modes. Salussolia and Botto studied 1D sheets in 2 dimensions under shear

with full hydrodynamicso, finding that pairs of sheets could separate and reassemble under certain

conditions59. Perrin, Li, and Botto also studied 1D bilayer sheets in 2 dimensions and found that,

due to a lateral hydrodynamic force at moderate sheet separations, the buckling transition occurred

much earlier than for single-layer sheets60, despite the bending rigidity of multi-layer sheets being

higher than single layer sheets61. At low enough separations, lubrication forces dominated and

prevented buckling60. Silmore, Strano, and Swan, whose model we extend in this thesis, showed

that the rotation of 2D sheets in shear closely matched the predictions given by Jeffery for the

rotation of rigid ellipsoids62 under certain conditions of shear rate (relative to bending rigidity)

and initial condition, beyond which orientations were shown to be chaotic63. They also predicted

and observed the buckling modes for the initial buckling of the sheets. They later added thermal

energy to the system as well and observed shear-thinning followed by shear-thickening rheological

behavior64.

Experimentally, Zhang et al. found shear-thinning into shear-thickening rheological behavior

in graphene suspensions, which they explained using the breakdown and buildup of multisheet

structures65. Shim et al. found similar behavior in graphene oxide suspensions and used X-ray

scattering to quantify the relative frequencies of different sheet orientations66. Notably, they found

that the behavior was different for dilute enough suspensions, suggesting different mechanisms in

each regime.

In many real systems, such as graphene, bending rigidity is several orders of magnitude greater

than thermal energy67,68 (graphene oxide being an exception, with bending rigidity about the

same as thermal energy at room temperature69). This raises the question as to whether the non-

monotonic rheological behavior observed experimentally can be generated in the athermal limit.

As discussed earlier, self-interactions are a potential method of producing conformational changes

in sheets, which can affect their rheological properties, as we explore in the next chapter.

oThat is, including short-range hydrodynamics, called lubrication forces, as well as long-range hydrodynamic
interactions.
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Chapter 4

Dynamics of a self-interacting sheet in shear

flow

Solution processing of 2D materials such as graphene is important for applications thereof, yet a

complete fundamental understanding of how 2D materials behave dynamically in solution is lacking.

In this chapter, we extend the model developed by Silmore et. al.1 by adding short-ranged Lennard-

Jones interactions to 2D sheets in shear flow. We find that the addition of these interactions allows

for a rich landscape of conformations which depend on the balance between shear strength, bending

rigidity, and interaction strength as well as the initial configuration of the sheet. We explore this

conformational space and classify sheets as flat, tumbling, 1D folded, or 2D folded based on their

conformational properties. We use kinetic and energetic arguments to explain why sheets adopt

certain conformations within the folded regime. We calculate the stresslet and find that, even in the

absence of thermal fluctuations and multiple sheet interactions, shear-thinning followed by shear-

thickening behavior can appear. Finally, we extend this model to two sheet simulations to model

shear exfoliation. We find that, even with just two sheets, there are new conformational behaviors

— flipping and waltzing — which had significant effects on the suspension properties. As with

single sheets, we explain why sheets adopt these conformations as well as explain how they result

in the observed rheological behavior. The content of this chapter regarding single sheet simulations

was adapted from Funkenbusch, W. T., Silmore, K. S., & Doyle, P. S. (2024). "Dynamics of a

self-interacting sheet in shear flow." Soft Matter.
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4.1 Introduction
In the previous chapter, we discussed the current understanding of 2D material suspensions, both

with and without flows. A missing piece of this understanding was a sheet model in 3 dimensions

with both self-interactions and flow. In this chapter, we develop such a model, using the model

developed by Silmore et. al.1 as a starting point. By examining this model, we hope to explain

the interesting, non-monotonic rheological properties seen in real suspensions of 2D materials.

4.2 Model for self-avoiding, self-interacting 2D materials in shear
In order to understand more dense suspensions of 2D materials, it is important to first understand

how a single sheet behaves. Such a model also informs understanding of dilute suspensions, in

which sheets are unlikely to interact with one anothera. As discussed in the previous chapter,

self-avoiding interactions are important and thermal energy tends to be small. This motivates our

model of an athermal, self-avoiding, self-interaction sheet in shear flow.

We construct hexagonal sheets with circumradiusb L = 39a with beads of radius a such that

each interior bead has 6 tangent neighbors, totalling N = 1141 beads, as depicted in Figure 4.2a.

These sheets are initially flat and lie in the flow-vorticity planec. They are then rotated by a fixed

angle θ = 5◦ about the vorticity axis to induce an initial flipping of the sheet due to shear. It is

then rotated by a varying angle ϕ about the flow axis to sample many initial configurations. These

angles are depicted visually in Figure 4.1. We sample from ϕ = 0◦ to ϕ = 90◦ with samples at every

5◦. In averages over ϕ, we give relative weights to each ϕ proportional to sin ϕ, corresponding to

initially randomly oriented sheetsd. We use a fixed time step of γ̇t = 2× 10−4 for all simulations,

where γ̇ is the shear rate. Simulations were run for 2000 strain cycles (γ̇ = 2000) and results

were calculated using the last 200 strain cycles using data from every 100γ̇t, as analysis of the

aThat is, the average distance between them is much larger than the range of the interactions between them.
bThe circumradius is the distance from the center to one of the corners. It is called the circumradius because it

is the radius of the smallest circle which completely encloses the shape.
cRecall that the vorticity axis is the axis perpendicular to both the velocity and velocity gradient. The shear

axis points in the direction of increasing x velocity.
dDue to the fixed rotation angle θ, we won’t be sampling every possible initial condition. This is because adding

an extra parameter would require many more simulations to analyze. However, due to the results of this chapter,
such an analysis may be worthwhile, as we discuss later.
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Figure 4.1 Depiction of initial angle conditions. θ is the angle about the vorticity (z) axis. ϕ is the angle
about the flow (x) axis. y is the shear axis.

autocorrelatione of sheet properties such as the radius of gyration at small interaction strengths (i.e.

for tumbling sheets, as described later, who have the slowest decaying autocorrelations) showed

that approximately every 100γ̇t are independent.

The system is integrated forward in time using an Euler-Maruyama integrator, as discussed in

Chapter 1, with the following equations of motion for Brownian dynamics with hydrodynamics:

eIf the autocorrelation between two points is large, then they are correlated with each other and we don’t really
have two independent points, because knowing one we could predict the other. So, we don’t want to use both points
in our analyses as they would result in smaller error bars than desired, as we would think we have more independent
points than we do. So, one strategy is to examine the autocorrelation function and see when it becomes small, and
only sample points which are that distance apart in time.
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(a) (b)

Figure 4.2 (a) Example sheet with beads of radius a drawn to scale. L = 39a is the circumradius. (b)
Connectivity of the sheets, where the intersection between lines represents the center of beads. Between
neighboring beads (along lines), a harmonic potential with spring constant k is applied. Between neighboring
triangles, a dihedral potential with bending rigidity κ is applied.

dxi =
(
−
∑

j

Mij
∂Ui

∂xj

+ Lxi

)
dt, (4.1)

where (L)mn = γ̇δm1δn2 is the velocity gradient tensor for simple shear and Ui is the sum of the

applied potentials on bead i. To achieve long-range hydrodynamics, we use the Rotne-Prager-

Yamakawa (RPY) tensor2 for Mij, which is given analytically by

Mij = 1
6πηa



(
3a
4r

+ a3

2r3

)
I +

(
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)
r̂r̂T r > 2a(

1− 9
32a

)
I + 3

32a
r̂r̂T r ≤ 2a,

(4.2)

where η is the fluid viscosity, r is the distance between two beads, and r̂ is the unit vector pointing

from particle i to particle j. Note that, because we wish to study the behavior of a single, isolated

sheet, we use the non-periodic RPY tensor here. Our boundary conditions for the system are

still periodic such that the sheet will return to the simulation box if it leaves, but it will not
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interact hydrodynamically with its periodic images. This also has the added benefit of saving on

computation time as the number of particles is small (O(103)), although the RPY tensor product

used here is N2 in the number of beads.

The Rotne-Prager-Yamakawa tensor models long-range, pairwise hydrodynamic interactions

between beads, with each bead acting as a regularized Stokeslet1. Thus, finite discretizations of

these beads as sheets have some degree of permeability. However, Yu and Graham recently showed

that, for similarly discretized sheets, the permeation velocity (i.e. the fluid velocity normal to the

sheet surface) in extensional flows tends to be small (on the order of 1% relative to the sheet size

and strain rate)3. We expect shear flows to carry similar permeation velocities. Second, for small

enough sheets, lubrication forces are relatively small compared to the forces from self-interaction.

We discuss this assumption and the sheet size limit in Appendix D. Conceptually, because the

applied self-interaction includes a repulsive component and equilibrium distance, small enough

sheets do not approach closely enough for lubrication forces to be significant.

Simulations were run using HOOMD-blue4 on NVIDIA GeForce GTX 1080 Ti’s with a custom

package from Silmore et. al.1 which was adapted from Fiore et. al.5. All images of sheets were

rendered using Ovito6.

4.2.1 Applied potentials

We now describe the potential applied to beads. First, to enforce the connectivity of the sheet, we

apply a harmonic potential between neighboring beads:

Ubond = k

2(r − r0)2 (4.3)

where k is the spring constant and r0 = 2a is the equilibrium distance between beads. This is

visualized in Figure 4.2b. We use a stiffness of k = 1000 × 6πηγ̇a. The continuum 2D Young’s

modulus, Y , which characterizes the in-plane stiffness (the "stretchiness") of the sheet, can be

connected to the discrete spring constant, k, with Y = 2k/
√

37.

We also apply a dihedral potential between neighboring triangles to give the sheet bending

rigidity:
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Udhdl = κ(1− n̂i · n̂j), (4.4)

where κ is the bending rigidity (out-of-plane stiffness) and n̂i is the normal vector to triangle if.

This discrete bending rigidity can be mapped to a continuum bending rigidity, κ̃, with κ̃ = κ/
√

3

for this hexagonal triangulation8.

The values of k and κ were chosen such that the in-plane stiffness of sheets is much larger

than their out-of-plane stiffness, as is true in many real systems. This can be quantified using the

Föppl-von Kármán number, FvK ∼ kL2/κ, which was between 103 and 107 for the simulations in

this paper. Thus, the sheets are inextensible relative to bending.

We also apply hard-sphere interactions between non-neighboring beads with a pair-potential

which places overlapping beads tangent to each other under Rotne-Prager-Yamakawa dynamics

(as described in Chapter 1):

UHS =


16πηa2

∆t

(
2a ln 2a

r
+ (r − 2a)

)
, 0 ≤ r ≤ 2a

0, r > 2a.

(4.5)

Finally, we apply a short-ranged interaction in the form of a truncated Lennard-Jones potential

between non-neighboring beads:

ULJ(r) = 4ϵ

(σ

r

)12

−
(

σ

r

)6
, (4.6)

where ϵ is the interaction strength and σ is the interaction range. We use a turn-on distance of

ron = 2a and cut-off radius of rcut = 2.5σ. For all simulations, we set σ = 4
√

6a/3g.

Beads can interact via this potential along the sheet surface, which may change the in-plane

behavior of the sheets. However, we find empirically that, even for the largest interaction strengths

used, the harmonic bonds between neighboring beads in a flat sheet extend by less than 0.1% of

fNote that these normal vectors must be defined such that they are oriented along the same direction and the
potential is always positive (that is, there’s always a penalty for bending).

gNote that it is not important for a given real system to have an interaction potential with the same form as we
apply in our simulations, only that it has the same essential features (that is, that the potential is short-ranged).
The repulsive component to our applied potential might have its role filled by lubrication forces in real systems, as
we discuss in Appendix D.
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their equilibrium distance. Therefore, we expect that self-interactions do not significantly affect

the in-plane interactions of the sheet.

4.2.2 Relevant dimensionless groups

The addition of self-interactions adds two new parameters to the system compared to a system

without self-interactions: the interaction strength, ϵ, and interaction range, σ. To give a roughly

constant interaction energy for a bead moving parallel to a sheet, we require σ ≫ a. As mentioned

earlier, for all sheets in this thesis, we choose σ = 4
√

6a/3 ≈ 3.27a. While ϵ is the energy scale for

the interaction between two beads, the energy scale for the interaction of a bead with a plane of

beads separated by the equilibrium distance of σ is

ϵ̃σ2 = ϵ
σ2

2
√

3a2
, (4.7)

where ϵ̃ = ϵ/2
√

3a2 is the interaction energy density of the sheet. For two parallel sheets of

characteristic size L aligned with the shear-vorticity plane and separated by a distance σ, shear

acts as a force trying to separate the two sheets by sliding them along each other, while their

interaction resists this sliding. Taking the ratio of these two forces gives a dimensionless group

characterizing the ability of attractive interaction to resist shear:

χ ≡ ϵ̃σ2

6πηγ̇L2σ

(
L

a

)
, (4.8)

where η is the fluid viscosity and γ̇ is the shear rate. This dimensionless group characterizes the

ability of nearby sections of the sheet to slide along each other. A derivation of this dimensionless

quantity can be found in Appendix E.

We note the existence of the bead radius, a, in this dimensionless number. In work by Silmore

et. al.1,9, a was the smallest resolvable length scale and did not play a role in the dynamics.

Here, because interactions happen between individual beads, a is relevant. The quantity (L/a)

is proportional to the number of interactions along the edge of the sheet. In a physical system,

a now corresponds to the interacting elements of a sheet, for example, individual carbon atoms

in a graphene sheet interacting via van der Waals forces. Typical solution-processed sheets have
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sizes ranging from nanometers to micrometers10 and may interact at a wide range of distances11.

Further control over the shear rate in experiments means that this dimensionless number can span

several orders of magnitudes, and we thus expect this dimensionless number to reveal interesting

transitions in real systems.

While the ratio of bending rigidity to shear, S, with

S = κ

πηγ̇L3 , (4.9)

is a relevant dimensionless group for the dynamics of this system, as we discuss in the results, we

find that another illuminating group is the ratio between bending rigidity and interaction strength:

K ≡ κ

ϵ̃σ2 . (4.10)

Interaction tries to move sections of the sheet together by folding, while bending rigidity resists

this folding. Thus, when K ≫ 1, attraction interactions cannot overcome bending rigidity, and

we expect the sheet to behave as in work by Silmore et. al.1,9. This dimensionless group is also

convenient because it is a function of material properties, while χ can be tuned experimentally by

adjusting shear rate.

Plots varying K and χ−1 thus have a convenient physical interpretation: moving along the first

axis adjusts the material property of bending rigidity to interaction strength, while moving along

the second axis changes the experimental property of shear force relative to interaction strength.

The value of S can be determined from the values of χ, K, σ and a with S = 6χK(a/L)(σ/L).

4.3 Conformational properties

4.3.1 Identifying sheet conformations

The conformational properties of sheets are highly sensitive to experimental conditions (χ), ma-

terial properties (K), and initial conditions (e.g. the initial orientation of the sheets relative to

the flow axis, ϕ). We identify four different conformations that sheets can exhibit: flat, tumbling,

1D folding, and 2D folding. An example of each is shown in Figure 4.3. Videos of simulations
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Figure 4.3 (a-d) Example conformations for (a) flat, (b) tumbling, (c) 1D folded, and (d) 2D folded sheets.
x is the flow direction and y is the shear direction. (e-h) Square root of the eigenvalues of the gyration tensor,
λi, over time for the (e) flat, (f) tumbling, (g) 1D folded, and (h) 2D folded sheets. Green is the smallest,
orange is the second largest, and blue is the largest characteristic length.

for each conformation along with their corresponding average signed local mean curvature (see

Section 4.3.3) can be found in the ESI of the paper published on this chapter12. We examine how

the values of χ, K, and ϕ lead to each of these conformations in future sections. In this section,

we show how each conformation can be characterized.

We identify these conformations by looking at the square root of the eigenvalues of the gyration

tensor, λi (i = 1, 2, 3 with λ1 > λ2 > λ3), which correspond to the three characteristic lengths of

the conformation. We take averages of each λi over the last 250γ̇t of the simulation every 0.25γ̇t,

denoted λ̄i.

Flat sheets have almost no bends and therefore λ̄1 and λ̄2 are near their maximum value of

0.456L at all times. We categorize sheets as flat if λ̄2 > 0.4L. They are the only sheet conformation

we observe which are not necessarily continuously rotating about the vorticity axis.

Tumbling sheets are characterized by impermanent folds which cause their λi to fluctuate sig-

nificantly throughout the simulation. We categorize sheets as tumbling if, regardless of λ̄i, the

smallest standard deviation in λi (over the last 200γ̇t) is greater than 7 × 10−3L or the largest

standard deviation in λi is greater than 3× 10−2L.
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1D folded sheets are characterized by a series of parallel folds, resulting in a λ1 close to the

maximum value, but a much smaller λ2. We categorize sheets as 1D folded when λ̄1 > 0.4L and

λ̄2 < 0.4L.

2D folded sheets are characterized by the appearance of non-parallel folds, causing λ1 to deviate

significantly from its maximum value. We categorize sheets as 2D folded when λ̄1 < 0.4L. 1D

folded and 2D folded sheets are referred to together as folded sheets. Folded sheets are distinct

from tumbling sheets, which also have folds, because their folds are persistent over time.

The boundaries between different sheet conformations were chosen by looking at histograms of

λ̄i and the standard deviation in λi. These histograms can be found in Appendix F. There is a clear

gap in the histogram of λ̄2 at 0.4L, making λ̄2 > 0.4L a natural choice for characterizing a sheet as

flat. The transition between 1D and 2D folded sheets appears continuous in that sheets can have

both parallel and non-parallel folds. The cutoff between these conformations was therefore chosen

by eye by finding a value of λ̄1 which seems to correspond to the beginning of the appearance

of non-parallel folds. For tumbling sheets, the cutoffs were chosen again by eye such that each

distribution of standard deviations for tumbling sheets appears normal-like.

4.3.2 Phase map of sheet conformations

We performed a parameter sweep across χ, K, and ϕ and categorized each conformational state

as flat, tumbling, 1D folded, or 2D folded. We plot using χ−1 instead of χ as increasing χ−1

corresponds to increasing shear rate, as one might see in a rheological experiment. As this is a

large, 3D phase space, we present 2 slices at ϕ = 0◦ and ϕ = 45◦, shown in Figure 4.4. First

looking at the phase plot for ϕ = 0◦, we see clear divisions between each conformation. For large

K (> 1), attractive interactions cannot overcome bending rigidity, and sheets tend to be flat. At

large χ−1 (> 100) and low K (≲ 1), shear is able to break local attractive interactions, and the

sheets tumble. At low χ−1 (≲ 100) and low K (≲ 1), shear is unable to break local attractive

interactions, so folds are permanent and the sheets are 1D or 2D folded. Lower values of χ−1 at

low K (< 1) correspond to less well-aligned folds and thus more 2D folded sheets.

At ϕ = 45◦, the features of the plot remain the same with one notable exception. The tumbling

region expands to occupy the high χ−1 (> 100), high K (> 1) regime, similar to Figure 6 in work by
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Figure 4.4 Conformational phase map of sheets with initial conditions (a) ϕ = 0◦ and (b) ϕ = 45◦.

Silmore et. al.1, where the continuously tumbling regime was larger for larger ϕ. The specific sheets

which tumble for K ≳ 1 are unpredictable, but on average tumbling behavior is more common

at larger ϕ and χ−1. This makes sense, as larger ϕ mean larger initial deformations from the flat

conformation and larger χ−1 at constant K mean stronger initial buckling due to a reduced value of

S, the dimensionless ratio of bending rigidity to shear strength. However, the tumbling behaviors

in the sheets in this thesis are notably different than those observed by Silmore et. al.1 due to the

presence of self-interaction. For example, in Figure 4.5, the sheet forms several, slowly sliding folds

which continuously flip in sequence. We term this "teacup" behavior. This behavior was observed

for many initial orientations near the tumbling/folded boundary (1.4 × 102 ≤ χ−1 ≤ 1.4 × 103).

Teacup behavior is usually transient in the sense that sheets alternate between it and more typical

tumbling behavior over long time scales (several hundred γ̇t). It is classified as tumbling due to

the existence of non-persistent folds and is difficult to distinguish from typical tumbling behavior

using the values of λ̄i and the standard deviations of λi. A video of a simulation with this behavior

can be found in the ESI of the paper published on this chapter12.

Within a given region (flat, tumbling, and folded), sheet behavior can be predicted reliably.

Near the boundaries between regions, sheet behavior may be highly sensitive to initial orientation.

4.3.3 Bending modes of 1D folded sheets

We calculate the signed local mean curvature of the sheets and calculate the average over 101

equally spaced snapshots during the last 200γ̇t, giving an average signed local mean curvature
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Figure 4.5 Sequential snapshots showing a 180◦ rotation of a sheet exhibiting teacup behavior, rotating in
the counterclockwise direction with χ = 2.42 × 10−3, K = 0.01, and ϕ = 85◦. x is the flow direction and y

is the shear direction. A single bead is colored red to guide the eye.
.

(ASLMC). We plot these for the ϕ = 0◦ and ϕ = 45◦ conditions in Figure 4.6. These plots

correspond well to the characterizations given in the previous section. Flat sheets have no local

mean curvature, and thus have an ASLMC of about 0 at all points. Tumbling sheets have significant

but non-persistent folds, and their ASLMC’s thus appear noisy. Folded sheets have persistent folds,

and thus are characterized by sharp bands of high magnitude ASLMC. 1D folded sheets have folds

which are aligned along a single axis, while 2D folded sheets have non-parallel folds which can

branch off into more folds. Some sheets, especially for ϕ = 45◦ have characteristics of both 1D and

2D folded sheets.

1D folded sheets at the boundary with tumbling sheets (e.g. χ−1 = 1.4×102) typically have two

close parallel folds and moderate curvature throughout the rest of the sheet. These 1D folded sheets

take on a "rolled-up" conformation, as seen in Figure 4.7. A video of a simulation of a rolled-up

sheet can be found in the ESI of the paper published on this chapter12. Interaction is strong enough

to cause an initial folding of the sheet, but shear is strong enough to anneal all but the last two

folds. This results in rolled-up sheets being an even more energetically favorable state due to the

high degree of contact for self-interactions and gentle folding throughout. Similar conformations

have been observed in graphene oxide suspensions without flow (called "nanoscrolls")13. 1D folded

sheets have a number of folds ranging from 2-folds in rolled up sheets, to 6, evenly spaced folds.

There appears to be no clear pattern to the exact number of folds that will appear, although

roughly the number appears to increase with decreasing χ−1 unless the sheet 2D folds.
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Figure 4.6 Average signed local mean curvatures for sheets during the last 200γ̇t with (a) ϕ = 0◦ and (b)
ϕ = 45◦. Signed local mean curvatures for sheets at their initial flip with (c) ϕ = 0◦ and (d) ϕ = 45◦.
Backgrounds correspond to different conformational behaviors (black: flat, green: tumbling, red: 1D folded,
blue: 2D folded). Diagonal lines running up and to the right correspond to sheets with constant S. Moving
right or down corresponds to increasing S by about a factor of 3. The arrow in the top right corner of each
plot indicates the direction of maximally increasing S. For reference, the sheet at K = 1.0, χ−1 = 1.4 has
S × 105 = 920.

We can estimate the expected number of folds using a simple energetic argument balancing the

bending and interaction energies of a 1D folded sheet, which is detailed in Appendix G. Doing so,

we obtain the following estimate for the optimal number of folds, n∗
fold, in a rectangular 1D folded

sheet:

n∗
fold ≈

√
2L/wfold + 1
1− β + αK

− 1, (4.11)
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Figure 4.7 Example of a 1D folded sheet that adopts a rolled-up conformation. x is the flow direction and y

is the shear direction.

where α and β are fit parameters. α is a measure of the relative importance of bending to

interaction strength and β is a measure of the interaction energy of beads within a fold. We find

α = 0.0618 ± 0.0010 and β = 0.528 ± 0.003 (± one standard deviation) for rectangular sheets.

wfold is a correlation length characterizing the width of a fold, which is an unknown function of

the system parameters, including perhaps the Föppl-von Kármán number. We observe that all

folded sheets in our simulations have wfold ≈ 6a, which corresponds to the smallest fold a sheet

can have. This means that folds under the conditions in this thesis are controlled by the smallest

length scale, a.

For small χ−1 (≲ 41), shear is not strong enough to break up all the folds, and the sheet can

obtain an energetically stable folded configuration. In the small K limit for sheets with L = 39a,

Equation 4.11 approaches about 4.46, which is close to 4, the most common number of folds

observed. For sheets with L = 79a, Equation 4.11 approaches about 6.62. A series of simulations

run with L = 79a and ϕ = 0◦ in the 1D folded regime showed 6 folds at higher χ−1 (shear rates)

and 8 folds at lower χ−1.

For slightly higher χ−1 (≈ 141), shear is strong enough to break up all but 2 folds and the sheet

adopts a more energetically favorable rolled-up conformation, which is not modelled by Equation

4.11. At even higher χ−1 (≳ 410), shear is strong enough to continuously break new folds which

form as the sheet tumbles.
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Because α ≈ 0.05, the number of folds predicted by Equation 4.11 does not decrease significantly

until K ≈ 20. The sheets flattening at about K = 3.0, a full order of magnitude lower, is therefore

likely a kinetic phenomenon, which we explore in the next section.

4.3.4 Creation of persistent folds in 1D folded sheets

To explain why sheets in shear adopt configurations with parallel folds as opposed to other config-

urations (e.g. the "double folded" configuration observed by Abraham and Kardar14), we return

to work by Silmore et. al.1, which calculated the buckling modes of sheets in shear as a function

of the ratio of bending rigidity to shear, S = κ/πηγ̇L3, at ϕ = 0◦ and at the maximal in-plane

stress for a flipping sheet, θ = 45◦. This analysis did not consider attractive interactions, which

could change the buckling behavior, however we believe it to still be useful. Lines of constant S

correspond to lines of slope 1 in plots of K versus χ−1. In our simulations, S × 105 ranges from

9.4× 10−4 to 2.8× 104, which covers more than 10 of the first buckling transitions. Notably, the

buckling modes calculated by Silmore et. al.1 have alternating signs in curvature, just like what

is observed in the 1D folded sheets here.

Figure 4.6 shows the local mean curvature for sheets averaged over the last 200γ̇t and during

their initial flip (determined as when the average normal vector of the triangles in the sheet is

closest to θ = 45◦). As χ−1 decreases for low K, the number of folds at the initial buckle decreases

as expected because the effective bending rigidity increases relative to shear strength (given by S).

In the 1D folded regime, sheets have folds which which are sharper in the initial buckle than the

buckles that appear in the absence of interactions, showing that interaction is strong enough to

affect the initial buckling. In this regime, the number of folds often decreases from the initial buckle

to the final conformation, showing annealing to a more energetically stable configuration. As K

increases, the magnitude of the curvature in the initial flip decreases, again due to an increasing

S, until the sheet eventually appears flat. While the analysis done by Silmore et. al.1 was only

done for sheets with ϕ = 0◦, the same trends are seen in sheets with any value of ϕ, as seen in

Figure 4.6d.

We propose that persistent folds in 1D folded sheets are formed during the initial buckling of

the sheet during the first flip followed by annealing caused by shear towards an energetically stable
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state. If shear is too strong (χ−1 ≳ 410), the folds formed during buckling are not persistent, and

the sheet tumbles or flattens. At an intermediate value of shear (χ−1 ≈ 141), folds form during

buckling but most are broken up by shear, resulting in an energetically favorable rolled-up sheet.

At lower values of shear (χ−1 ≲ 41), shear anneals the sheets towards their energetically preferred

number of folds as predicted by Equation 4.11. If shear is too weak, it can only anneal partially

(thus why some 1D folded sheets have more than 4 folds). Annealing can only decrease the number

of folds. So, if the number of bends in the initial buckle is less than the energetically ideal number

of folds, it is kinetically trapped with that number of folds. Because the buckling modes of sheets

in shear have parallel folds, the resulting conformations have parallel folds.

At low K, interactions are stronger than buckling, so buckling will propagate into folds. For

K ≳ 1, interactions are not strong enough to overcome bending, so the extent of buckling is

determined by the competition between bending rigidity and shear (i.e. the value of S). This

explains how sheets can transition from flat to 1D folded and back to flat with increasing shear

at K = 3.0. At low shear, the sheets do not buckle strongly, and interactions are insufficient to

fold the sheet. As shear increases, S decreases, and the sheets buckle more strongly. Only if the

buckling is strong enough can it initiate folding through interactions. Once shear becomes too

strong, however, interaction is not strong enough to create persistent folds, so the sheet is flat.

The critical value of S × 105 above which sheets will not buckle if K ∼ 3 is about 943 (which is

indeed the lowest value of S in these simulations above the first buckling transition determined by

Silmore et. al.1). The critical value of χ × 105 below which shear is too strong for sheets to fold

is approximately 710.

S = 6χK(a/L)(σ/L), so depending on the size of a given sheet, the 1D folded region between

two flat regions may be inaccessible. Specifically, given a critical S∗ and χ∗, we require S < S∗,

χ > χ∗, and K ∼ 1. As L increases, S decreases relative to χ, and we expect the 1D folded region

to increase in width. Similarly, the region decreases in width with increasing σ. Therefore, this

region increases in size as the size of the sheet increases relative to interaction range. Because

χ∗ ≈ S∗, K ∼ 1, and (L/a) ≫ 1, this region should exist if σ is not much larger than L (if

(σ/L) ≲ (1/K)(S∗/6χ∗)(L/a)), that is, if sheets are not much smaller than the range of their
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interactions. In such a system, χ is no longer the relevant dimensionless parameter as each bead

would interact with every other bead in the sheet and therefore ϵ̃σ2 is no longer the relevant energy

scale.

If both χ−1 and K are small, small deviations from the alignment of the folds caused by finite-

size, edge, and/or initial orientation effects will cause the spontaneous formation of more folds,

and the sheet can 2D fold. This is supported by the 2D folded sheets in Figure 4.6c, which are

already in their 2D folded configuration at the first flip.

It is important to consider how sheet behavior would change with sheet shape. The equation

for the optimal number of folds was derived for a rectangular sheet but the overall arguments are

valid as long as the number of beads vertically along the folds does not change quickly across the

width of the sheet (relative to the width of folded regions). This, along with the equation matching

with the hexagonal sheet simulations in this thesis, suggest that Equation 4.11 is applicable for a

broad range of sheet shapes with slowly changing widths.

Changing the sheet shape will affect the bending modes of the sheet and therefore the critical

values of S corresponding to different buckling modes. This might affect the shape of the right

edge of the folded/flat boundary due to the earlier discussion of the importance of S. Additionally,

videos of 1D folded sheets (which can be found in the ESI of the paper published on this chapter12)

show that the process of a 1D folded sheet losing folds involve these folds "sliding" along the width

of the sheet until it hits the edge of the sheet, where the fold disappears. This process may be

affected by the shape of the sheet. Simulations with different sheet shapes (e.g. rectangular or

circular) would be valuable in illuminating the effects of sheet shape on the formation and breaking

of 1D folds.

4.4 Rheological properties

4.4.1 Sheet viscosity calculations

The stress of a dilute suspension of force-free rigid particles is

Σ = −p⟨I⟩+ 2ηE∞ + n⟨Σ̃⟩, (4.12)
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Figure 4.8 Stresslet ("sheet viscosity") averaged over the last 200γ̇t and all ϕ. Error bars are 95% confidence
intervals. Dotted lines drawn to guide the eye. On the borders are characteristic behaviors for different regions.
x is the flow direction and y is the shear direction. Top left: high alignment folded. Bottom left: low alignment
folded. Top right: tumbling. Bottom right: flat.

where p is the pressure, E∞ is the rate-of-strain tensor, n is the number density of particles, and Σ̃

is the stresslet (the first moment of the stress on a particle)15. As in previous work9, we calculate

an approximate upper bound on the stresslet using the minimum-bounding ellipsoid of the sheet,

its Jeffrey orbits16, and the stress for an ellipsoidal particle as found in Kim and Karilla17. The

resulting average off-diagonal (flow-gradient) contribution to the stress over the last 200γ̇t, which

is expected to grow linearly with the viscosity of a dilute suspension of these sheets, is shown in

Figure 4.8.

The sheet viscosity shows 2 different behaviors based on K. For K ≳ 10.0, sheets have a small

sheet viscosity at low χ−1 (i.e. low shear rates). Flat sheets which rotated about the vorticity axis

contributed a higher stress than flat sheets in the flow-vorticity plane, with Σ̃12/(6πηγ̇L3) > 1.5.

These sheets were ones initially oriented with their normal close to the voriticty axis (ϕ = 85◦ or

90◦). Finally, once shear is strong enough to induce tumbling, shear-thickening behavior begins.

For K ≲ 1.0, there is steady shear-thinning followed by shear-thickening behavior which appears

near the same critical χ−1 as for the high K behavior. We discuss the origin of these behaviors in

the next section.
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4.4.2 Explanation of non-monotonic rheological properties

The nature of this shear-thinning into shear-thickening behavior is different than that with thermal

energy but no interactions, which resulted from the "u-turn" radius of a flipping sheet9. In our

current work, sheets in the shear-thinning regime are 1D or 2D folded.

We calculate several summary statistics for our simulations: the radius of gyration, Rg/L, the

relative shape anisotropy, ζ2, and the orientation of the largest axis of the minimum bounding

ellipsoid of the sheet dotted with the vorticity axis, |v1 · ẑ|, which we term the "alignment" of the

sheet. The radius of gyration is a measure of the size of a sheet. Flat sheets have the largest

possible radius of gyration for an inextensible sheet (Rg ≈ 0.65L). 1D folded sheets have moderate

Rg ≈ 0.5L and 2D folded sheets have smaller Rg ≲ 0.4. Tumbling sheets have widely varying

values of Rg but tend to average around the value for 1D folded sheets, Rg ≈ 0.5. The relative

shape anisotropy is a measure of the shape of a sheet. It ranges from 0 to 1, with 0 corresponding

to a spherically symmetric sheet and 1 corresponding to a linear sheet. 1D folded sheets, who have

a single large axis and are therefore "line-like," have large values of η2 ≈ 0.7. Flat sheets have low

values of η2 ≈ 0.25. Different 2D folded sheets can have very different values of η2 corresponding

to different fold patterns. Tumbling sheets again have widely varying values of η2, but tend to

average with very low values of η2 ≲ 0.2, corresponding to a more "sphere-like" sheet. Finally, the

alignment also varies from 0 to 1 and is a measure of the orientation of a sheet with respect to the

vorticity axis.

Scatter plots of the sheet viscosity versus each of these quantities can be found in Appendix H.

We note several notable features of these plots in the following discussion.

In Figure 4.9, we plot these three summary statistics as a function of χ−1 and K to explain the

observed rheological behavior.

Folded: low χ−1 ≲ 1.4× 102, low K ≲ 3.0 behavior

In this regime, sheets are 1D or 2D folded. Below χ−1 ∼ 1.4×101, Rg/L and ζ2 increase with shear

rate. This corresponds to fewer sheets adopting the 2D folded conformation at higher shear rates.

However, at even higher χ−1, these values plateau despite shear-thinning continuing. Peculiarly,
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Figure 4.9 (a) Radius of gyration, (b) relative shape anisotropy, and (c) alignment averaged over the last
200γ̇t and all ϕ. Error bars are 95% confidence intervals. Dotted lines drawn to guide the eye.

there appears to be no strong correlation between radius of gyration and sheet viscosity for folded

sheets. Instead, the 1D folded sheets form two distinct clusters, one with a higher sheet viscosity

(∼ 0.35× 6πηγ̇L3) and one with a lower sheet viscosity (∼ 0.2× 6πηγ̇L3).

This can be explained by looking at the average alignment of the sheets, which increases with

shear rate. For prolate spheroids (ellipsoids with one large axis and two small axes) such as the

minimum bounding ellipsoid of 1D folded sheets, large average alignment ("log-rolling") behavior

is favored, which is why large average alignments result in lower sheet viscosities. Conceptually,

this is because the distance the sheet "sticks out" into the shear axis is lower. These two types of

motions (high and low average alignment) were observed in the past as the long-time behavior for
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ellipsoidal particles in shear18.

Indeed, for 1D folded sheets, most sheets have an average alignment close to either 1 or 0, indi-

cating that they reach one of these terminal behaviors. The mechanism for these sheets deviating

from their Jeffrey orbits to reach this high or low average alignment state is possibly the deforma-

bility of the sheets, which has been shown to influence the orbits sheets take in this manner19,20.

1D folded sheets with high average alignments have lower stresses than 1D folded sheets with

low average alignments, explaining the two clusters observed in a scatter plot of sheet viscosity

versus the Rg/L. The behavior of individual sheets is erratic, necessitating an average over initial

condition. Thus, shear-thinning is due to a statistical average over many initial conditions. At

higher shear rates, sheets on average adopt more log-rolling behavior, causing shear-thinning. This

makes sense, as stronger shears cause greater perturbations in sheets, and thus allow for them to

be more likely to be able to access the more favorable, lower stress, rotational behavior. Note that

the decrease in average alignment at χ−1 ∼ 1.4 × 102 is due to the rare appearance of tumbling

sheets at this value of χ−1.

Tumbling: high χ−1 ≳ 1.4× 102, low K ≲ 3.0 behavior

Once shear increases enough to cross the tumbling/folded boundary, Rg/L decreases slightly before

recovering to close to the 1D folded value. ζ2 and the average alignment, however, both decrease

drastically. While the trends for Rg/L and the average alignment upon increasing χ−1 further are

noisy and depend on the specific value of K, ζ2 continuously decreases with shear rate. Thus,

shear-thickening is caused by sheets with lower values of ζ2 sticking out further into the shear

axis at larger shear rates. This makes sense, as lower values of ζ2 correspond to more spherically

symmetric sheets, where the effect of increasing average alignment on sheet viscosity is lower.

Thus, the sheet viscosity is higher for the same values of Rg/L and average alignment. Note that

an average alignment value of approximately 0.52 corresponds to random orientation, which is

around where the average alignments hover past the tumbling transition, suggesting that there is

less preference for a particular rotational behavior. This is explained by the small values of ζ2.

Sheets exhibiting teacup behavior have similar sheet viscosities to folded sheets. This behavior is

seen as a low sheet viscosity cluster of low average alignment tumbling sheets at a range of Rg/L.
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This behavior decreases in frequency at higher shear rates as it is a self-interaction-dependent

behavior, which could contribute to the shear-thickening behavior. However, because this behavior

is relatively rare, we expect that its effect is small. A detailed study of teacup behavior, its

frequency as a function of χ−1 and K, and its effects on the sheet viscosity would be enlightening.

Flat: high K ≳ 3.0 behavior

For large enough values of K, bending rigidity overcomes interaction strength, and sheets are flat.

The deviation from zero sheet viscosity, which would be the case for an infinitely thin sheet in

the flow-vorticity plane, comes from a fraction of the flat sheets which lie in the flow-shear plane

and rotate like a discus about the vorticity axis. Because these sheets stick out into the shear axis

by the maximum amount possible for inextensible sheets, these sheets produce the highest sheet

viscosities of any other conformational or rotational behavior. As shear increases, this behavior

becomes less likely, again resulting in overall shear-thinning behavior. In Figure 4.8, the sheet

viscosity curves for low χ−1 and K ≥ 10.0 are flat. To observe shear-thinning behavior here, we

suspect that more initial conditions need to be sampled. Past the tumbling transition, some sheets

begin to tumble, resulting in shear-thickening as before.

The value of K ∼ 3.0 appears to be right at the boundary between low K and high K behav-

iors and exhibits a mix of both behaviors, resulting in complex trends in Rg/L, ζ2, and average

alignment.

4.5 Exfoliation simulations — two sheets
A natural extension of single sheet simulations is multiple sheet simulations. As discussed in Chap-

ter 3, sheet-sheet interactions are important for their macroscopic properties. Furthermore, one

important process for the production of and subsequent application of 2D materials is exfoliation,

where flow such as shear is applied to stacked sheets to separate them. Such as system has been

studied in the past, using molecular dynamics simulations21,22, which are limited by computational

cost and can therefore only simulate relatively small sheetsh and in two dimensions23, which lacks

what could be a very relevant third dimension. The simulations in this thesis are a middle-ground

hThat said, these simulations do provide great insight into the specific physical mechanisms occurring here.
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of these in terms of computational complexity and system detail, so, when thinking about adding

more sheets to a simulation, the separation of two stacked, interacting sheets is a logical place to

start. We present some preliminary results here before discussing further extensions.

4.5.1 Exfoliation model

We apply the same model as for single sheets, but with two sheets which begin stacked laterally a

distance σ away from each other. These sheets interact with each other as well as with themselves.

For simplicity and applicability to real systems, we consider identical sheets with the same param-

eters: bending rigidity, in-plane stiffness, interaction parameters (both internally and with each

other), time step, etc.. This is a likely scenario in a real systemi. We again rotate the sheets about

the vorticity axis by a fixed angle θ to give an initial deviation from the flow axis and then about

the flow axis by a fixed angle ϕ to simulate different initial conditions. We simulate the system for

a variety of χ−1 and K, as in Chapter 4. We again render all sheet images using Ovito6.

4.5.2 Results: types of sheet behaviors

We find that sheets can behave in three different ways depending on the values of χ−1, K, and

ϕ, which we depict in Figure 4.10. First, sheets can separate. In this case, the sheets eventually

separate and move in separate directions due to shear and behave as earlier for single sheets. We

call these separated sheets and this was the expected result if shear is strong relative to interactions,

that is, χ−1 ≳ 1. Second, sheets can flip. In this case, the sheets do not slide along each other

and instead flip about the vorticity axis. Recall that in these sheets, the in-plane stiffness of the

sheets is relatively large. For two sheets (or any object with non-zero thickness) to bend without

any sliding, one must stretch while the other compresses. This is because, after a bend, the sheet

on the outer part of the sheet covers a wider arc than the inner sheet. So, because the in-plane

stiffness of these sheets is large, if the sheets cannot slide along each other, their bending is greatly

restricted, causing the sheets to flip while remaining mostly flat. We call these sheets flipping and

iModeling non-identical sheets also has applications. For example, multi-layer sheets have higher effective
bending rigidities than individual sheets, as discussed in Chapter 324,25. Therefore, a two sheet simulation where
one sheet has a higher bending rigidity might approximate, for example, the peeling of a single sheet off a larger
stack without needing to simulate the entire stack. Another common scenario might be a smaller sheet (in terms
of L) separating from a larger sheet or a stack of larger sheets.
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(a) (b) (c)

Figure 4.10 Sheet behaviors for two initially stacked sheets. (a) Two separating sheets (χ−1 = 410, K = 0.1,
ϕ = 0◦). (b) Waltzing sheets (χ−1 = 41, K = 0.1, ϕ = 0◦). (c) Flipping sheets (χ−1 = 4.1, K = 0.1,
ϕ = 0◦). x is the flow direction and y is the shear direction.

this was the expected behavior is shear is weak relative to interactions, that is, χ−1 ≲ 1. Note

that, unlike for single sheets, these sheets will periodically flip as their finite thickness (recall that

single sheets are hydrodynamically thin in this model) causes them to always protrude into the

shear axis. Note also that these sheets, when compared to single sheets, also much more frequently

exhibit discus-like rotational behavior due to these flips. These rotations can exhibit a wide variety

of alignments, just like discus behavior for single sheets.

Finally, sheets can initially slide along each other but wrap around each other and eventually

rotate together. We call these sheets waltzing. In Figure 4.11, we depict the typical process for

sheets to begin waltzing. The process involves an initial sliding of the sheets along each other.

The edges of the two sheets which have separated then curl back towards the other sheet due to

interactions, before eventually wrapping around each other fully. Notice that, because the sheets

are sliding along each other, they are able to bend even though they are relatively inextensible.

This behavior resembles rolled-up sheets due to its large relative shape anisotropy, suggesting that

this conformation again has to do with minimizing stresses on the sheet due to shear.

In Figure 4.12, we show phase plots for the sheet behavior at two values of ϕ. We begin by

interpreting the behavior at ϕ = 0◦. For low K ≲ 1 and at large χ−1 ≳ O(102), shear overcomes

interaction and sheets separate. For low K ≲ 1 and low χ−1 ≲ O(100), sheets cannot slide

along each other and they are flipping. For moderate χ−1, sheets can slide along each other, but

interaction causes the sheets to wrap around each other. Shear is not strong enough to break

this wrapping, so the sheets waltz. As K increases, the wrapping of sheets after their initial slide
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(a) (b) (c)

Figure 4.11 Formation of waltzing behavior for χ−1 = 141, K = 0.1, ϕ = 0◦. (a) Initial condition. (b) Initial
sliding followed by sheet ends wrapping due to interactions. (c) Completion of waltzing. x is the flow direction
and y is the shear direction.
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Figure 4.12 Phase plots for two sheet behaviors for (a) ϕ = 0◦ and (b) ϕ = 45◦.

is restricted. For χ−1 on the low end of waltzing for low K, the time for sheets to fully slide

along each other and separate is longer than their flipping time, causing them to exhibit flipping

behavior. For χ−1 on the high end of waltzing for low K, the opposite is true, causing them to

separate. For other values of ϕ, the behavior is more complicated due to the initial orientation of

the sheets, but the trends are the same. For K = 30, no waltzing behavior was observed, which,

notably, is near the predicted transition in K to no folds given by Equation 4.11, where we predict

wrapping (which forms a fold) to be energetically unfavorable.

Notably, the separated/waltzing boundary for low K here is the same as the tumbling/folded

boundary for single sheets, suggesting that a similar wrapping mechanism occurs in the formation

of a 1D folded sheet in its initial buckling. Interestingly, compared to single sheets, sheets waltz

at much larger K from an initially flat configuration. This makes sense, as the extra thickness

provided by the second sheet provides a force in the shear direction which enhances wrapping.
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4.5.3 Results: rheological properties

As a first pass, we can estimate the rheological properties of a two sheet suspension by utilizing

the rheological properties of a single sheet suspension. Specifically, if the sheets are flipping or

waltzing, we can calculate the sheet viscosity as for single sheets. If the sheets separate, we can

estimate the sheet viscosity as twice the single sheet viscosity at the given parameters (K, χ−1,

and ϕ). This is just an estimate as sheets do not necessarily behave as they did in the single sheet

simulations after separating due to the initial condition dependence of the behaviors. Note that

we cannot just calculate the sheet viscosity for each individual sheet after separation, as due to

the periodic boundary conditions, sheets can continue to collide and interact after separating. One

solution would be to run simulations for each sheet using the post-separation initial condition,

although this was not done here.

The estimated two sheet simulation sheet viscosities are shown in Figure 4.13. Past the sep-

arated/waltzing boundary (χ−1 ≳ 1.4 × 102), the viscosity is the same as for single sheets, but

double due to the additional sheet. For low K before the separated/waltzing boundary, we see

sharp shear-thinning. This is because flipping behavior, which is more likely at low χ−1, produces

higher stresses. This is because the "u-turn" radius of flipping sheets, as described by Silmore

et al.1, is very large due to their restricted bending. Waltzing sheets, on the other hand, are

similar to 1D folded sheets and thus represent a low stress conformation. Again, we see shear-

thinning due to averaging over many initial conditions. For low enough K, all sheets are waltzing

at χ−1 = 1.4× 102, causing a plateau in the sheet viscosity.

For large K > 10, we see more complicated behavior, where there is shear-thickening before

passing the separated/waltzing boundary. This shear-thickening is caused by an increase in the

frequency of discus behavior, which produces much higher stresses than sheets periodically flipping

about the vorticity axis while sitting in the flow-vorticity plane. Higher χ−1 correspond to larger

shear rates, which in turn cause more initial configurations to be "knocked" into this higher stress

behavior. Note that, because these sheets stay relatively flat (i.e. they are not very deformable), we

lose the mechanism for sheets to transition between Jeffrey orbits, and thus they do not transition

to a high or low alignment state, unlike with single sheets. Comparing the orientation of these
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Figure 4.13 Sheet viscosity for two sheet simulations averaged over the last 200γ̇t and all ϕ. Error bars are
95% confidence intervals. Dotted lines drawn to guide the eye.

sheets over time with the predicted orientations from Jeffrey orbits would help confirm this. For

χ−1 = 4.1 × 101, all sheets with K = 10 and K = 30 are exhibiting discus behavior. Once χ−1

is large enough to cause sheets to separate, they behave as flat, single sheets with very low stress

contributions, explaining the sharp drop off in sheet viscosity. Recall, however, that we predicted

that flat behavior for K ≲ 20 is a kinetic phenomenon. Especially for sheets with larger initial

rotations, θ, about the vorticity axis, sheet-sheet interactions might cause sheets to be perturbed

from the flat state and tumble instead. This might make the sheet viscosity drop off we observe

much less sharp.

4.6 Conclusions
In this chapter, we examined the role of short-ranged attractive interactions in semi-flexible, ather-

mal sheets in shear flow. We found a rich set of conformations which depend on two dimensionless

groups: the material properties of the sheet (K) and experimental conditions (χ). We character-

ized these sheets as flat, tumbling, 1D folded, or 2D folded based on the eigenvalues of the gyration

tensor. We found roughly that sheets folded when K ≲ O(1) and χ−1 ≲ O(102), tumbled when
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K ≲ O(1) and χ−1 > O(102), and were flat otherwise, although the exact behavior depended

highly on initial condition near the boundaries.

We used the average signed local mean curvature of the sheets to show the nature of each type

of sheet. Specifically, we identified parallel folds in 1D folded sheets and non-parallel folds in 2D

folded sheets. We used a simple energetic argument to estimate the number of folds in a 1D folded

sheet and showed that our equation matched well with the number of folds for these sheets in

the low K limit. We also showed the relevance of the bending rigidity to shear (S) in inducing

folding when K ∼ 3. From this, we proposed a mechanism of an initial buckling followed by

shear-induced annealing towards the most energetically favorable number of folds. The strength of

shear determines the degree of annealing which is possible. We also discussed the expected effect

of changing L on the rheological properties of the sheet based on the predicted number of folds in

a 1D folded sheet.

We also calculated an approximate upper-bound on the stresslet, which is expected to grow

linearly with the viscosity of a dilute suspensions of these sheets. We found shear-thinning followed

by shear-thickening behavior with increasing shear rate, with different behavior depending on

whether K is greater than or less than 1. This shear-thinning is present in the absence of sheet-

sheet interactions and thermal fluctuations. Instead, it is a result of the average conformational and

rotational behaviors of folded sheets. The changes in the conformation of a sheet with changing

initial conditions follow trends, but are chaotic in the sense that small changes in the initial

conformation can cause unpredicted changes in the final conformation near the boundaries between

different conformations, similar to observations by Silmore et. al.1. We have yet to study the effect

of changes in θ, the initial orientation of the sheet about the vorticity axis.

While the rheological behavior we observed in our exfoliation simulations appears similar to

single sheets (although with much more pronounced shear-thinning behavior), just as when com-

paring athermal, self-interacing sheets to thermal, non-self-interacting sheets, the mechanisms

which produced this behavior were different. Even with just two sheets, we found new conforma-

tional behaviors (flipping and waltzing) which had significant effects on the suspension properties.

There are still many questions to be answered for two sheet simulations. What are the properties
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of separated sheets from exfoliation compared to those observed in single sheet simulations? If two

separate sheets collide, what are the resulting conformations as a function of χ−1 and K? What

do the rotational properties of the different observed behaviors look like? And so on.

We note here that thermal fluctuations cause out-of-plane stiffening for sheets26–29, which can

change their bending rigidity quite significantly. Translating these simulations from the athermal

limit to real systems, therefore, requires careful consideration of the effective bending rigidity of

the system.

This type of shear-thinning into shear-thickening behavior is often attributed to the buildup

and breakdown of agglomerates or other multi-sheet structures. However, we show that even in

the dilute limit, this behavior can still emerge.
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Chapter 5

Shear annealing of self-interacting sheets

Solution processing is an important step in producing and applying many 2D materials. The pre-

vious chapter demonstrated that self-interacting sheets in shear exhibit initial condition-dependent

behavior, suggesting that time-dependent shear protocols can be utilized to tune their properties.

In this chapter, we use two simple protocols, linear shear annealing and step changes in shear, to

show how knowledge of the phase map for 2D materials can be exploited to generate sheets with

the desired conformational and rotational properties. The content of this chapter was adapted from

Funkenbusch, W. T., Silmore, K. S., & Doyle, P. S. (2024). "Shear annealing of a self-interacting

sheet." Soft Matter (submitted).

5.1 Motivation for time-dependent flow protocols in 2D materials
One significant feature of the single sheet behavior observed in Chapter 4 was that the confor-

mational behavior observed was highly dependent on initial condition. This presents a potential

problem for application in real systems. Especially considering that the initial condition in our

simulations were flat sheets and no flat sheets were observed for K < 1.0, suggesting such a state

may not be accessible at any shear rate. Of particular importance, the no shear configuration of

sheets might also look very different from a flat sheet1–4. Thus, it is important to examine what

conformations can be obtained from many initial conditions. More broadly, we can ask questions

about how the conformations of these systems can be controlled over time by applying non-steady

flows or, more generally, by varying the parameters of the system over time.
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This idea is not without precedent. Suspensions of colloidal particles exhibit different mi-

crostructures depending on factors such as the shear rate and volume fraction, analogous to sheet

conformations. These microstructures, in turn, result in unique macroscopic material properties

(liquids, gels, glasses, and crystals) which can be tuned for a particular application. Notably, col-

loidal suspensions with attractive interactions, even at volume fractions much lower than the glass

transition, exhibit the same characteristic shear-thinning into shear-thickening rheological behav-

ior seen in sheet suspensions due to the breakdown and formation of particle clusters5–9. The time

scales for these microstructural changes cause the material to have memory of the flow history10.

This memory allows for tuning of the final microstructure of a material through control of the ap-

plied flow protocol, for example by varying the "quenching" time from a high-shear "rejuvenation"

(memoryless) regime11,12. Similarly, the tumbling regime for 2D sheets, which appears at high

shear rates, represents a region where the conformation of sheets is continuously changing (i.e.,

they have access to many conformations, similar to a rejuvenation regime)13. The folded regime

similarly represents a regime where sheet conformation and rotation do not change significantly

with time and where the final conformational and rotational properties of sheets possibly depends

highly on the initial configuration and flow history. Thus, it makes sense to examine the 2D sheet

system from a similar framework as that used for colloidal suspensions.

We apply two different protocols to examine this: annealing protocols and step protocols.

5.2 Annealing simulations
Similarly to shear protocols applied to attractive colloidal suspensions12, we apply a linear anneal-

ing shear protocol to sheets. First, we run a constant shear simulation at χ−1 = 4.1 × 102 for

2000γ̇0t, where γ̇0 is the initial shear rate. Then, the shear rate is decreased linearly to zero over

a variable quench time γ̇0tq, relative to the initial shear rate: γ̇(T ) = γ̇0(1− T/tq), where T is the

time since beginning the annealing process. Finally, the sheet is allowed to equilibrate at no shear

for another 2000γ̇0t. We choose equilibration times of 2000γ̇0t to correspond to the longest time to

observe conformational changes in Chapter 4, allowing for the collection of statistics. The largest

quench time, γ̇0tq = 10000 is chosen to be much larger than this time. The smallest quench time,
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γ̇0tq = 10, is chosen to be around than the typical time for a half rotation of a 1D folded sheet,

which we believe to be the smallest relevant time scale for conformational changes in the system.

Averages are taken over the last 500γ̇0t of the constant shear and no shear portions. We expect

that, by varying the quench time, the final conformation of the sheets will vary. Specifically, as

quench time increases, sheets will have more time at moderate shear rates to rearrange themselves

into more energetically favorable conformations.

Sample configurations along with their corresponding signed local mean curvature (SLMC, as

described in previous work Silmore et al.13) at the start of annealing (γ̇0t = 2000) and at the end

of the simulation (γ̇0t = 4000+ γ̇0tq) for K = 0.03 are shown in Figure 5.1. A video of an annealing

simulation can be found in the ESI†. The images on the left of each subfigure, which correspond

to tumbling sheets, can display a variety of folding patterns. After annealing, the sheets appear

to become more compact due to the presence of attractive interactions (for K ≲ 1). However, the

behavior of an individual sheet depends on its configuration at the onset of annealing. Therefore,

it is necessary to look at averages over many initial conditions.

To do this, we measure several properties of the final conformation: the radius of gyration,

Rg, and the relative shape anisotropy, ζ2. These properties are described in Chapter 4. As

shown in that chapter, these properties give a more detailed description of sheets than just their

conformations. Flat sheets have large Rg and low ζ2, 1D folded sheets have moderate Rg and

high ζ2, 2D folded sheets have lower Rg and ζ2 values than 1D folded sheets, and tumbling sheets

typically have moderate Rg and low ζ2, with larger variances in these values.

We report these summary statistics for the final sheet configurations in Figure 5.2. For K ≲ 1,

the radius of gyration does not change much with quench time. Its approximate value of 0.45L

is smaller than tumbling sheets, showing that sheets become more compact due to attractive

interactions to fairly consistent value, which makes sense for K ≲ 1, as attractive interaction can

overcome bending rigidity. For K ≳ 1, there are flat sheets as well as folded sheets, causing a

higher average radius of gyration.

For K ≲ 1, the relative shape anisotropy of the sheets increases on average with quench time.

This indicates that sheets on average exhibit more 1D folded conformations. Indeed, Figure 5.2c
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Figure 5.1 Sample configurations (top) and their corresponding signed local mean curvatures (bottom), shown
before (left) and after (right) annealing, for K = 0.03 and (a) tq = 10γ̇t, (b) tq = 100γ̇t, (c) tq = 1000γ̇t,
and (d) tq = 10000γ̇t. Before annealing, sheets are sheared with a constant χ−1 = 4.1× 102, which is in the
tumbling regime. In configurations, x is the flow direction and y is the shear direction. Signed local mean
curvature plots are all drawn to the same scale.

calculates the fraction of sheets which are 1D folded, which matches with the relative shape

anisotropy. This makes sense, as 1D folded sheets are slightly more energetically favorable than

2D folded sheets (which we discuss in more detail in Chapter 6). Longer quench times gives more

time for sheets which were more 2D folded-like to anneal towards this more energetically favorable

conformation. The fraction of 1D folded sheets not increasing monotonically and instead only

trending upwards is due to two reasons. First, it is possibly a sampling error due to the relatively

few number of initial conditions sampled (19). Second, because this is a classification scheme where

all sheets are classified as either flat, 1D folded, or 2D folded, subtle changes in the average behav-

ior of the sheets (such as ζ2) are not picked up on. This highlights the importance of considering

these summary statistics in our analyses. For moderate K ∼ 1, the relative shape anisotropy and
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Figure 5.2 Sheet (a) radius of gyration and (b) relative shape anisotropy as a function of quench time,
averaged over the last 500γ̇0t of the no shear portion of annealing simulations and all ϕ. Error bars indicate
95% confidence intervals and dotted lines are drawn to guide the eye. (c) The fraction of sheets which were
1D folded after annealing.

fraction of 1D folded sheets also increased with quench time due to increased annealing, although

the trend is suppressed because most sheets were flat in this regime. We suspect the initial de-

crease to be due to the relatively small number of annealing strain cycles causing larger variance

in the final sheet conformations. For K ≳ 10, the relative shape anisotropy is relatively constant,

corresponding to nearly all sheets being flat.

These results show that controlling quench time can indeed influence the final conformations of

sheets. For large K, sheets tend to be flat in the athermal limit. For moderate to low K ≲ 1.0, the

148



average relative shape anisotropy of the sheets increases significantly with quench time. For the

shortest quench times, about 40% of sheets were 1D folded. For the longest quench times studied

here, most sheets (about 50% to 85%) were 1D folded. It is unknown if long enough quench times

would produce nearly 100% 1D folded sheets or if there is an asymptote with this shear protocol.

For thermal energies which are small relative to interaction strength, these no shear conformations

are likely stable, showing that the final properties of a suspension can be tuned by varying flow

protocol. That said, in the no shear limit, the effects of thermal energy become more important,

making an examination of the effects of thermal energy, as discussed in Chapter 6, even more

important.

We note here that in these simulations and in the step protocol simulations, 1D folded sheets

which appear at the end of protocols are usually rolled-up sheets. That is, they have either 0 or

2 folds along their center and a fairly constant curvature throughout the rest of the sheet (for

example, see Step 2 in Figure 5.4). These sheets have slightly larger relative shape anisotropy

values than sheets with many folds as their characteristic sizes perpendicular to the largest axis

tend to be closer in size. Their appearance after protocols suggests that these sheets are more

kinetically accessible than sheets with many folds, as sheets with many folds require alternating

curvatures, which are generated due to the initial buckling from a flat initial condition. This,

combined with rolled-up sheets’ favorable energetic properties (see Chapter 6), explains why they

are the more likely form of 1D folded sheet from a variety of initial conditions.

5.3 Step protocols
Next, we show that the features of the phase plot can be exploited to tune the final properties of a

dilute suspension of sheets. As a target, we choose 1D folded, high alignment sheets at relatively

low shear rates. This value was shown in the previous chapter to correspond to the viscosity of

a dilute suspension of sheets, with high alignments corresponding to lower viscosities. In this

chapter, we use the eigenvector of the gyration tensor corresponding to its largest eigenvalue as

opposed to the largest semi-axis of the minimum bounding ellipsoid used in Chapter 4, as it points

in a similar direction and is much cheaper to calculate.
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A suspension with high alignment might have favorable macroscopic properties. For example,

this suspension would have the minimal viscosity for a dilute suspension for a particular value

of K as seen in the previous chapter. In addition, this suspension would be highly ordered and

thus might carry favorable electronic properties, packing properties when concentrated, etc.. We

would like to achieve this state from both the high-shear tumbling regime and from folded sheets

with lower alignments, which would suggest that this desired state could be achieved from many

initial conditions. In particular, achieving this state from tumbling would be desirable as tumbling

accesses many different configurations.

Note the typical orientations of different conformations. Flat sheets have alignments which

depend on their orientation. Flat sheets which rotate about the voriticity axis have alignments

close to 0 while flat sheets in the flow-vorticity plane can have a range of alignmentsa. 2D folded

sheets similarly have a range of alignments corresponding to the particular orbit they occupy.

Tumbling sheets, on the other hand, tend to have alignments close to what would be achieved with

a random sheet orientation, |v1 · ẑ| ≈ 0.52. This makes sense, as these sheets tend to have low

values of ζ2 and therefore little preference for different alignments in shear. 1D folded sheets tend

to have alignments close to 0 or 1 depending on the initial condition, with 1 being more likely for

higher shear rates.

To achieve this 1D folded, high alignment state, we note the features of Figure 4.8b. In partic-

ular, this figure shows that high alignment for sheets with relatively low values of K is achieved

at values of χ−1 just before the tumbling transition (1.4 × 101 ≲ χ−1 ≲ 1.4 × 102). While these

results were achieved from flat initial configurations, we suspect that these shear rates have the

effect of creating 1D folded, high alignment sheets for many initial configurations. The mechanism

for changing average alignments was discussed in Chapter 4, having to do with the deformability of

these sheets allowing sheets to shift Jeffrey orbits14–16. As χ−1 increases, the low alignment state

becomes less favorable due to its higher stress, causing an increase in the high alignment state.

However, it remains to be seen if this high alignment can be achieved from 1D folded sheets which
aThis is because flat sheets have two large axes and thus their largest axis can point in many directions in the

plane perpendicular to their short axis. This makes the alignment for flat sheets a less meaningful value to calculate
than for other conformations.

bRecall that we use a slightly different, nearly equivalent definition of the alignment in this chapter compared
to the previous one.
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are already in low alignment orbits. Because sheet sections can slide along each other, this region

likely has the additional effect of rearranging 2D folded sheets into lower stress, more energetically

favorable 1D folded sheetsc. At large enough values of χ−1, the sheets tumble and alignment is

broken down due to the low relative shape anisotropy of tumbling sheets, leading to this Goldilocks

zone for alignment. Therefore, targeting this region requires knowledge of the tumbling transition.

We design two step protocols to target this region. Protocol 1 starts in the 1D folded regime

at moderate alignments, χ−1 = 1.4× 101 (Step 0), and steps into the high alignment zone, χ−1 =

1.4× 102 (Step 1), before stepping back down to the original χ−1 = 1.4× 101 (Step 2). Each step

is run for equal strains of 2000γ̇t, where γ̇ is the shear rate at each step. This protocol is run at a

variety of K. We visualize this protocol on an abstraction of the phase plot from Chapter 4, seen

in Figure 5.3.

(a) (b)

Figure 5.3 Abstractions of different protocols. Dots with numbers indicate constant χ−1 simulations run for
2000γ̇t. Arrows represent a factor of 10 change in χ−1. (a) Protocol 1, which starts at χ−1 = 1.4× 101. (b)
Protocol 2, which starts at χ−1 = 1.4× 103. The boundary between the flat/tumbling and tumbling regions
lies at about K = 1. The boundary between the tumbling and 1D folded regions lies at about χ−1 = 1.4×102.
The boundary between the 1D/2D folded and 1D folded regions lies at about χ−1 = 1.4. For detailed values,
see Figure 4.6.

For tunability, it is important that high alignment is achieved upon increasing χ−1 and is

maintained upon returning to the lower χ−1. Once sheets are in a high alignment state, we don’t

cAgain, we discuss energetics in more detail in Chapter 6.
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expect reducing χ−1 to produce a mechanism for alignment to decreased, as the low alignment

state still produces higher stresses than the high alignment state, making it likely that the high

alignment state can be retained.

Protocol 2 starts in the tumbling regime, χ−1 = 1.4 × 103 (Step 0), steps down into the high

alignment zone, χ−1 = 1.4 × 102 (Step 1), then steps down to χ−1 = 1.4 × 101. Each step is

again run for 2000γ̇t and this protocol is also run at a variety of K. This protocol tests if high

alignment, 1D folded sheets can be generated from the tumbling regime, which accesses many more

configurations than the 1D folded sheets. We visualize this protocol in Figure 5.3.

We calculate the radius of gyration, Rg, and relative shape anisotropy, ζ2 as before as well as

the alignment, |v1 · ẑ| of these simulations. Again, the behavior of an individual sheet is erratic,

necessitating averages over many initial conditions, ϕ.

5.3.1 Protocol 1: Staying within the 1D folded regime

In Protocol 1, sheets are in the 1D folded regime for the whole simulation. Sample configurations

at the end of each constant χ−1 step are shown in Figure 5.4.

We report the summary statistics for the sheets averaged over the last 500γ̇t of each step in

Figure 5.5. These plots for all initial conditions for the example value of K = 0.03 are shown

in Figure 5.6 and these plots for all individual values K are provided in the ESI of the paper

submitted on this work. For all K, the radius of gyration and relative shape anisotropy do not

change significantly, showing that most sheets remained 1D folded throughout the simulations.

Furthermore, the average alignment of these sheets shows that sheets are indeed aligned upon

moving to the high alignment region at Step 1. This is despite many sheets having near-zero average

alignments during Step 0. This confirms that this region can induce alignment in sheets from a

variety of initial conditions, even a low alignment condition. Significantly, this high alignment is

maintained upon returning to the original χ−1 in Step 2, as expected and desired. Even though

sheets stayed 1D folded, their folds could change. In particular, higher shear rates allowed for fold

dThermal energy can cause sheets to rotate. However, the rotational diffusivity of a sheet goes as L−3, meaning
that as sheet size increases, this rotation quickly becomes slow and is overcome by the effects of the stress of a
particular alignment. We don’t do a specific analysis of this here, although this again shows the importance of
analyzing the effects of thermal fluctuations.
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Figure 5.4 Sample configurations (top) and their corresponding signed local mean curvatures (bottom), shown
at the end of each constant χ−1 step for Protocol 1. In configurations, x is the flow direction and y is the
shear direction. Signed local mean curvature plots are all drawn to the same scale.

annealing and the formation of rolled-up sheets, for example as seen in Figure 5.4.

Note that the one sheet with K = 0.03 whose relative shape anisotropy decreased significantly

in Step 1 exhibited teacup behavior, which is a classification of tumbling discussed in the previous

chapter. Returning to a lower χ−1 in Step 2 caused this sheet to return to a high alignment, 1D

folded conformation. However, this was not always the case for sheets exhibiting teacup behavior

in Step 1. Some sheets became 2D folded in Step 2e while others became low alignment, 1D

folded sheets. This is why the achieved alignment for many K ≤ 1.0 was not perfect and indicates

that avoiding tumbling is potentially important for achieving consistently high alignments and 1D

folding, although the behavior was rare for all K.

For large enough K ≳ 3, the average radius of gyration is higher, the average relative shape

anisotropy is lower, and the average alignment is lower. Examination of individual simulations

reveals that this is due to the presence of a fraction of flat sheets. Some of these flat sheets become

1D folded at Step 1 due to the higher χ−1, as indicated by the decrease in average radius of gyration

and increase in relative shape anisotropy. Because flat sheets in the flow-vorticity plane can have

a variety of alignments due to having two large axesf, this makes the average alignment for large
eRecall that 2D folded sheets can have a wide variety of alignments.
fUnfortunately, this makes it so that the specific value of alignment we find for K ≥ 3.0 is less meaningful.
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K lower, even though most sheets are either high alignment 1D folded sheets or flat sheets in the

flow-vorticity plane. Together, these data show that the final properties of the suspension can

indeed be changed by modifying flow protocol.
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Figure 5.5 Sheet (a) radius of gyration, (b) relative shape anisotropy, and (c) alignment averaged over the
last 500γ̇t of each step for Protocol 1. Error bars indicate 95% confidence intervals and dotted lines are drawn
to guide the eye.

5.3.2 Protocol 2: Tumbling to 1D folding

In Protocol 2, sheets start in the tumbling regime, are moved to the high alignment region by

lowering χ−1, then are moved outside of the high alignment region by lowering χ−1 further. Sample

configurations at the end of each constant χ−1 step are shown in Figure 5.7.
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Figure 5.6 Sheet (a) radius of gyration, (b) relative shape anisotropy, and (c) alignment for each initial
condition with K = 0.03, averaged over the last 500γ̇t of each step for Protocol 1. Black lines indicate the
weighted average over all initial conditions. Error bars indicate 95% confidence intervals and dotted lines are
drawn to guide the eye.

We report the summary statistics for a range of K in Figure 5.8. These plots for all initial

conditions for the example value of K = 0.03 are shown in Figure 5.9 and these plots for all

individual values K are provided in the ESI of the paper submitted on this work. For K ≲ 1 and

from Step 0 to Step 1, the radius of gyration of the sheets stays approximately the same while the

relative shape anisotropy increases. This shows that sheets are indeed transitioning from tumbling

to 1D folded from Step 0 to Step 1. The alignment also increases from Step 0 to Step 1, as expected,
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Figure 5.7 Sample configurations (top) and their corresponding signed local mean curvatures (bottom), shown
at the end of each constant χ−1 step for Protocol 2. In configurations, x is the flow direction and y is the
shear direction. Signed local mean curvature plots are all drawn to the same scale.

with sheets transitioning from a roughly random orientation with tumbling to high alignment 1D

folded conformations. Interestingly, this increase also occurs from Step 1 to Step 2. This means

that not only does entering the high alignment regime increase alignment, but changing χ−1 within

the folding regime also can increase the average alignment of sheets. Lower values of χ−1, even

outside the high alignment regime, can change the rotational behavior of sheets, evidently allowing

sheets to adopt new, lower stress orbits. Notably, the final alignment decreases with increasing K,

suggesting that sheet deformability is key for sheet alignment.

Analysis of individual simulations also shows several sheets adopt high average alignment 2D

folded behavior, depicted in Figure 5.9, which originates from teacup tumbling behavior described

previously. Protocol 2 observes more of this behavior than Protocol 1 due to tumbling sampling

more behaviors which are "closer" conformationally to teacup behavior. This results in a lower

average relative shape anisotropy for this protocol. However, the average alignment which is

achieved is similar to Protocol 1. The resulting sheet viscosity from such a suspension, however,

would be higher than in Protocol 1 due to the more frequent presence of 2D folded sheets.

For K ≳ 3.0, the behavior is similar to K ≲ 1.0, but with the presence of flat sheets causing

higher radii of gyration, lower relative shape anisotropies, and lower average alignments. For
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Figure 5.8 Sheet (a) radius of gyration, (b) relative shape anisotropy, and (c) alignment averaged over the
last 500γ̇t of each step for Protocol 2. Error bars indicate 95% confidence intervals and dotted lines are drawn
to guide the eye.

K = 30.0, every sheet is flat throughout the simulation, causing no significant change in any

summary statistic.

Together, these data show that, even from the tumbling regime where sheets sample many

different configurations, high alignment, 1D folded behavior can be achieved using fairly simple

shear protocols.
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Figure 5.9 Sheet (a) radius of gyration, (b) relative shape anisotropy, and (c) alignment for each initial
condition with K = 0.03, averaged over the last 500γ̇t of each step for Protocol 2. Black lines indicate the
weighted average over all initial conditions. Error bars indicate 95% confidence intervals and dotted lines are
drawn to guide the eye.

5.4 Conclusions for time-dependent protocols
In this chapter, we examine several time-dependent protocols for self-interacting, semi-flexible

sheets in simple shear. Through linear annealing from tumbling to zero shear, we show that the

average final properties of the sheets (in the athermal limit) can be tuned through varying the

quench time. In particular, while the radius of gyration of sheets remains about the same regardless

of quench time, the relative shape anisotropy increases due to the increased presence of 1D folded
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sheets. For large enough K, sheets are flat instead and these trends disappear.

Next, by implementing step changes in χ−1, we show that sheets can also be aligned. Specifically,

we show that sheets in the 1D folded regime can be aligned by increasing χ−1 to a value in a high

alignment regime, which lies just below the tumbling transition. This alignment is maintained upon

returning to a lower value of χ−1, showing hysteresis in the rotational behavior of these sheets.

This protocol could be used to tune bulk properties. For example, a suspension of high alignment

sheets has a lower viscosity than sheets at the same shear rate but lower average alignments.

We also show that alignment can be achieved from the tumbling regime, again by stepping into

the high alignment 1D folding regime before decreasing the value of χ−1 lower. Interestingly, the

alignment of these sheets increases upon lowering χ−1 below the high alignment regime, showing

that changing χ−1 allows sheets to adopt new, lower stress orbits. The final conformations of

these sheets are 1D folded or 2D folded, depending on the initial condition. The final alignment

decreasing with K suggests that deformability is vital to achieving high alignment. For high

enough values of K, sheets are flat, and the trends disappear.

It is possible that further design is possible through varying the time at each step or values of χ−1

at each step, time between steps or applied rate of change of χ−1 between steps, or by implementing

more complex protocols with more steps. For example, due to the increase in average alignment

from Step 1 to Step 2 in Protocol 2, a cyclic shear protocol which avoids the tumbling regime

might achieve even better alignments after several cycles.

Furthermore, it might be possible to tune sheet properties even more specifically by introducing

changes in K as well as χ−1. This might be achieved experimentally, for example, by changing

solvent to induce more or less favorable self-interactions and/or bending rigidities (see, for instance,

work by Tang et al.1,2) or by varying temperature to induce changes in bending rigidity17–20.

Studies on the effect of protocols varying K would be valuable.

We note here that our simulations do not explore the entire space of potential sheet conforma-

tions. For example, kinetoplast sheets exhibit "puckered" equilibrium behavior21 and nanoplatelets

can be induced to have a helical structure through the addition of ligands3. Examination of the

responses of these sorts of initial conditions in shear would be valuable, although care must be
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taken as these materials might exhibit inhomogeneities (e.g. kinetoplast densities at the rim versus

the interior of the sheet).

Using simple protocols to traverse the χ−1, K phase space, we show that the conformational

and rotational properties of sheets can be tuned with varying degrees of consistency. We hope

that this work can help inform the design of such protocols to produce sheets with the desired

properties.
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Chapter 6

Future considerations for self-interacting 2D

materials in shear

There are many directions the work from the previous two chapters could go. In this chapter, we

discuss some of these directions, primarily focusing on work related to the model discussed in the

previous chapter.

6.1 Introduction
The primary focus of the preceding work on sheets was to study how self-interaction affects the

conformational properties (and thereby the bulk properties) of a sheet suspension and how these

properties can be controlled with flow. Due to this and time constraints, there are several directions

this work could go which would constitute either a more in-depth analysis of existing simulations

or an interesting extension of the work requiring more simulations. We present some of these

directions here, focusing primarily on directions which use the model presented in this work.

6.2 Initial condition effects
In this thesis, we examined the effect of initial sheet orientation by varying the initial angle of a

flat sheet about the flow axis, ϕ. We used a fixed angle about the vorticity axis, θ = 5◦, as this

gives a deviation from the flow-shear plane which causes the sheet to initially flip. One primary

result of Chapter 4 was the importance of initial condition in the final sheet conformation which is
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obtained, making it important to study the effect of varying θ as well. The specific conformation

(number of folds) for 1D folded sheets in particular is highly dependent on the initial buckling of

the sheet, which is affected by θ. Sheets at high χ−1 and K, which were tumbling or flat depending

on the initial conformation, might also be affected by the value of θ. Finding these effects would

be valuable for improving the results of Chapter 4, but would likely not significantly affect the

results of Chapter 5, which were largely achieved from the tumbling regime, which we expect to

not be significantly impacted by θ.

6.3 Confirmation of scalings
Several new dimensionless groups were presented in Chapter 4, but their scalings were not con-

firmed. Specifically, the scaling of S with L was confirmed by Silmore et al.1 and the scaling for

n∗
fold was confirmed numerically and empirically with simulations of sheets with L = 79a, but

scalings for χ and K have yet to be confirmed.

The ratio of shear strength to interaction strength, χ, includes predictions for how the system

should behave as L and σ are varied. Because all simulations done in Chapter 4 used the same

sheet dimensions and interaction range, this scaling was not tested. To confirm this scaling, it

should be shown that the critical χ for tumbling is constant. This should be done in a parameter

sweep over χ, K, as seen in Chapter 4. While a sweep over ϕ would be ideal, this would drastically

expand the parameter space and the tumbling/folded boundary was not a function of ϕ, so it is

likely unnecessary.

There are several limitations to scaling confirmation. First, while finite-size effects for self-

avoiding, thermally-fluctuating sheets without flow seem to disappear for very small sheets (for

example, Figure 3 in work by Babu and Stark2), the finite-size limit may be higher for self-

interacting sheets in shear. For example, Yllanes et al. studied thermally-fluctuating perforated

sheets and found finite-size effects persisted to L/a ≈ 50 due to the addition of a new length

scale corresponding to the size of a perforation3. Similarly, the existence of σ in our simulations

presents a new length scale which may introduce finite-size effects at smaller sheet sizesa. Our

aDue to our introduced length scale being similar in size to that introduced by Yllanes et al., we expect sheets
significantly smaller than those implemented in our simulations to start exhibiting finite-size effects.
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relevant dimensionless group goes as L−1, necessitating large changes in L to confirm scaling

predictions. The relatively weak L dependence of χ, the possibility of finite-size effects at smaller

L, along with the simulations being quadratic in the number of beads (and thus quadratic in L),

make it more difficult, but not prohibitively difficult, to confirm the L scaling of χ.

Testing χ’s scaling with σ is more difficult. Due to self-interactions occurring along the length

of the sheet, σ cannot be increased too much before they begin to significantly affect the in-plane

stiffness of the sheets (more on this later), necessitating stiffer bead-bead spring constants and

therefore shorter time steps, making simulations more expensive. Due to self-avoiding interac-

tions, σ has a minimum value of 2a before hard-sphere interactions come into play before the

potential energy minimum of self-interactions. However, because of the repulsive nature of the

self-interactions and hydrodynamically thin nature of the sheets in these simulations, hard-sphere

interactions can likely be removed while maintaining the self-avoiding nature of the sheets, allowing

for much smaller σ. However, there is the additional restriction that σ ≫ a so that the interaction

energy of a bead moving parallel to a sheet is approximately constant. This gives a fairly small

range of σ which can be tested. It is difficult to devise a scheme for which interactions along the

sheet are neglected, but such a thing might be necessary to test an appropriate range of σ without

drastically decreasing the time step or moving to a constrained system (more on this later as well).

Similarly, K’s scaling with L (no predicted dependence) and σ (K ∼ σ−2) could be tested by

finding the folded-flat transition with varying L and σ, using similar precautions as those discussed

earlier.

6.4 Tumbling time for tumbling and folded sheets
Another interesting aspect of tumbling sheets is their tumbling time, which is roughly the time

for a sheet to make half a revolution about the vorticity axis. For 1D polymers, the tumbling

time is a complex function of polymer parameters (such as the persistence length, bending rigidity

equivalent for 1D polymers) and shear strength4,5. For 2D sheets, Silmore et al. proposed and

confirmed scaling arguments for the flipping time of relatively inflexible sheets1. The flipping time

in simulations was calculated using peaks in the total bending energy of a sheet. Such a method
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might work for folded or flat sheets. Because folded sheets appear to behave like deformable

ellipsoids, one potential result is sheets adopting different trajectories according to an effective

orbit constant and aspect ratio, as seen by Zhang, Lam, and Graham6 in deformable "capsules."

However, due to their constant deformation, the tumbling time for tumbling sheets is non-trivial to

find in simulation or develop scaling arguments for. The former is possible, but difficult. This is,

in part, because sheet deformations can cause discontinuous changes in the "orientation" of a sheet,

as characterized by, for example, the minimum bounding ellipsoid semi-axes or the eigenvectors of

the gyration tensor. It is often much easier to identify a rotation by eye than to identify one in

general by looking at sheet properties.

Still, resolving this question would be valuable in answering several questions. For example,

how does the tumbling time scale with shear rate in the folded and tumbling regimes? Are these

scalings different? Does the tumbling transition represent a continuous or discontinuous change in

the tumbling time of sheets? And so on. A study on the flipping dynamics of tumbling and folded

sheets was not conducted here, but would be valuable in the future.

6.5 Adding thermal fluctuations
In Chapters 4 and 5, we neglected thermal fluctuations, arguing that thermal energy is often

small relative to bending rigidity. This is true, however there are cases, notably graphene oxide,

where thermal energy may be comparable to bending rigidity and interactions. In this case, their

role might be quite important. For example, how stable are folded conformations when thermal

energy is comparable to interaction strength? Thermal fluctuations might, for example, provide

the necessary "push" to anneal sheets to their energetically most favorable number of folds. They

could also allow the folds in the 2D folded sheets to rearrange to a more favorable, 1D folded

conformation.

While we haven’t performed such simulations yet due to thermal simulations being significantly

more computationally expensive than athermal ones, we can make predictions based on the relative

strengths of thermal energy, kBT , to interaction strength, ϵ̃σ2, thermal energy to bending rigidity,

κ, and bending rigidity to interaction strength. If kBT/ϵ̃σ2 ≪ 1, then sheets behave as in Chapter
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4. This is true because, in the small K ≡ κ/ϵ̃σ2 limit, interactions dominate both thermal energy

and bending rigidity. In the large K limit, kBT/κ≪ 1 necessarily and thermal energy is negligible

compared to both interactions and bending rigidity. In both cases, the sheets behave as in Chapter

4 neglecting some of the potential effects noted above. If kBT/ϵ̃σ2 ≫ 1, then interactions are

negligible and sheets behave as in work by Silmore et al.7 due to similar analysis of the relevant

limits. When thermal energy is comparable to bending rigidity and/or interactions, we expect

more complex phenomena to arise. We believe all of these limits to be worth exploring.

Even if thermal energy does not significantly affect the overall conformations of sheets, it still

may affect the viscosity by causing random fluctuations along the shear axis. These fluctuations

would become more strongly depressed with increasing shear rate, likely resulting in the shear-

thinning behavior seen by Silmore et al.7.

Finally, in Chapter 5, we annealed sheets to zero shear. In the absense of shear, thermal energy

becomes a more relevant parameter which should be considered. Thermal energy much larger than

interaction strength would likely break apart folded conformations in the absence of shear8. There

may be an intermediate level of thermal energy which is insufficient to break apart the folded

conformations but strong enough to cause rearrangement of folds, perhaps causing sheets to adopt

1D folded conformations. A study on the effect of this thermal energy would be valuable in the

future.

6.6 Sheet size scaling of sheet viscosity
In Figure 4.8, we scale the sheet viscosity to L3. However, given two additional length scales, σ

and a, this is not necessarily the proper scale. Furthermore, the proper scale for the sheet viscosity

might be different for flat vs. tumbling vs. folded sheets. We have not confirmed any such scalings

here, but we believe it warrants investigation and discuss predicted scalings here.

Because wfold ∼ a, where a is the equivalent of a molecular or atomistic length scale in a 2D

sheet, the number of folds is expected to increase for larger sheets, with n∗
fold ∼ (L/a)1/2, as

derived in Appendix G. For a 1D folded sheet, its largest characteristic size scales as L because

this dimension is parallel to the folds. Another characteristic size is the width of each folds times

168



the number of folds: σnfold ∼ σ(L/a)1/2. The last characteristic size is the width of each flat

region: wflat ∼ L/nfold ∼ a(L/a)1/2. The sheet viscosity will grow roughly as the cross-sectional

area of the sheet in the shear-vorticity plane times the length of the sheet along the shear axis.

If the sheet is log-rolling, for example, its cross-sectional area in the shear-vorticity plane goes as

L3/2 and its length along the shear axis goes as L1/2. The sheet viscosity would therefore go as

L2. Orientations of sheets with their largest dimension rotating about the vorticity plane have

sheet viscosities which go as L5/2. Rolled-up sheets occupy a roughly circular area perpendicular

to their largest axis which goes as Lσ, so its other characteristic sizes go as
√

Lσ ∼ L1/2, so its

sheet viscosity will have the same scaling as sheets with many folds. Assuming each characteristic

size of a tumbling sheet scales with L, the stress scales as L3, which is stronger than in the 1D

folded regime.

If we were to treat a as simply the smallest resolvable length scale in the system, we would

expect wfold to grow proportionally to L. In this case, n∗
fold is not a function of L, and the three

characteristic sizes of the sheet grow as, from largest to smallest, L, L, and σ. In the limit of

L≫ σ, the sheet will preferentially align itself with the flow-vorticity plane, and behave effectively

as a flat sheet with a small width. The sheet viscosity, assuming the largest axis is aligned with the

vorticity axis, would thus grow as Lσ2, which is weaker than when a is the atomistic or molecular

length scale in the system. This highlights the importance of treating a as an explicit length scale

in these systems.

As L increases, χ−1 increases, and sheets are pushed toward the tumbling regime. Sheet suspen-

sions are often poly-disperse9 and the total contribution to the viscosity in a dilute suspension is

the sum of the individual sheet viscosities. So, the total contribution to the viscosity is a weighted

sum of the sheet viscosity from each particle size’s sheet viscosity, each of which is non-monotonic

with shear rate.

6.7 Sheets with finite in-plane stiffness
In the sheets simulated in this thesis, the Föppl-von Kármán number was large such that sheets

were relatively inextensible relative to bending. However, finite extensibility may be important
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for the specific behaviors certain sheets exhibit. For example, a bilayerb can bend only if the

two layers slide along each other (which, depending on the strength of the interactions keeping

them stacked, may be difficult) or if the sheets extend or compressc. As another example, finite

extensibility allows for sheets to bend in ways which would not otherwise be possible. Therefore, an

examination of the effects of finite extensibility on these sheets would be valuable. For example, the

freely-jointed constraint used in Chapter 2 could be used to examine a sheet with zero extensibility.

Then, the spring constant could be varied to see how sheet behavior changes with extensibility.

Such an examination was not performed in this thesis as it represents a large increase in the size

of the phase space and, again, in these systems the Föppl-von Kármán number is typically large.

6.8 Energetic map for sheet conformations
We have calculated the energies of each type of conformation and find that folded sheets areO(1ϵ̃σ2)

per bead more energetically favorable than flat sheets, with 1D folded sheets being slightly more

energetically favorable than 2D folded sheets (by O(10−1ϵ̃σ2) per bead), and rolled-up sheets being

slightly more energetically favorable than 1D folded sheets with many folds (by O(10−2 − 10−1ϵ̃σ2)

per bead). Meanwhile, tumbling sheets have widely varying energies, which can be significantly

more or less energetically favorable than flat sheets (by O(1ϵ̃σ2) per bead in either direction).

That said, we have yet to examine nearby conformations to examine the transition between

these conformations. By perturbing different conformations, we could generate an energetic map

which would give an idea of the energetic barrier required to transition between conformations.

This would be useful, for example, in determining the required thermal energy needed to cause

phase transitions. Such an analysis would also not require running simulations, only performing, for

example, a Monte Carlo simulation of nearby states and doing energetic analysis of the generated

states.

bThat is, two sheets stacked on top of one another.
cThis is common in mechanics. In a bend in a material with finite thickness, the outer part of the bend must

extend while the inner part must compress. Thus, the bending of these materials depends on their extensibility.
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6.9 Sheet fracture
One aspect of flow processing of sheets that is typically neglected in models is fracture. By varying

the time and strength of processing protocols such as shear and sonication, the size distribution

of the resulting sheet suspension can be changed10. This is important because the properties of

2D materials depend on their size (for example, note how the dimensionless parameters S and χ

depend on L).

In theory, to model sheet fracture, we simply need to add a condition for when the bonds

between beads should break. For example, we might break a bond between beads when they

achieve a certain separation or separating force. Then, we could run simulations at various values

of K, χ, and dimensionless fracture threshold and monitor the number of sheets and their sizes

over time, comparing with the distributions observed in real systems.

In practice, sheet fracture causes sheets to become smaller and thus finite-size effects can quickly

become relevant. Implementing a sheet fracture model thus requires careful consideration and

potentially moderation of these effects. For example, in a model where a represents the smallest

resolvable length scale in the system, the bead mesh of fractured sheet sections might need to

be refined to avoid finite-size effects, although this might increase the computational cost of the

simulation significantly over time.

6.10 Adding more sheets
Another question we could ask is what happens when we add more sheets. We might consider

exfoliation of many stacked sheets, for example. In this case, waltzing is unlikely to appear as the

larger stack which the exfoliating sheet is peeling from is both thicker and stiffer than the exfoliating

sheet. However, there will likely be wrapping of some sort, resulting in potentially interesting

structures and behavior. The wrapping sheets might, for example, restrict the exfoliation of future

sheets, or exfoliation of future sheets might allow wrapped sheets to separate fully. It is difficult

to make any concrete predictions.

Staying within the dilute regime, we could also see how aggregation of sheets could occur.

For example, we might consecutively add more sheets to a simulation, observing what sorts of
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structures are formed and under what conditions sheets aggregate. This might model a dilute

regime where collisions between sheets are rare.

We might also consider more dense suspension of sheets. We could initialize a suspension of

sheets, for example, by doing a thermal simulation in the absence of shear and self-interactions,

then shear the system and observe the results. We could ask interesting questions about the

resulting suspension. For example, do clusters of sheets form? Does the system percolate? How

do these higher-order structures affect the rheological properties? How do the answers to these

questions change with varying χ−1, K, sheet volume fraction, kBT/κ, etc.? A logical place to start

might be to do no shear simulations to see how the system behaves without it before introducing

the extra complexity of shear into the system.

Because the algorithm used in this thesis goes as the number of beads in the simulation squared,

we quickly become limited in the number of sheets we can add to a simulation. To remedy this, we

would need to use an algorithm which is linear in the number of beads, such as the PSE method

discussed in Chapter 111,12. This makes sense for more dense suspensions, where the periodic

nature of the RPY tensor used for these methods more accurately captures the desired physics. In

our single and two sheet simulations, we were interested in the dilute limit, where the sheets do

not interact hydrodynamically with other sheets in the suspension, motivating the non-periodic

(unbounded) RPY tensor, which is faster for a relatively small number of beads.

6.11 Conclusions
In this chapter, we presented some potential directions for future work on self-interacting sheets

in shear using the model presented in this work. Our priority in exploring them depends on our

desired application.

Exploring the effects of varying θ is desirable for improving the results from Chapter 4. However,

it adds an additional parameter to the system which drastically expands the design space for

simulations and we expect the effects to only be minor.

Confirming the length scalings of the new dimensionless parameters would be useful not only

in translating this work to sheet simulations of different sizes but also in predicting their values
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(for example, the tumbling/folded transition in χ−1) for real materials. This was not done in this

thesis due to the limitations discussed in that section, however these can be overcome given time

for longer simulations.

Analysis of the tumbling time for tumbling sheets would be useful first from a fundamental level.

Better understanding of how sheets tumble would help us better understand their conformational

and rotational properties, again ultimately leading to better understanding of their rheological

properties. This was not done in this thesis due to the computational difficulty of identifying a

flip, although we believe this can be overcome.

The addition of thermal fluctuations would be useful not only in understanding the effects

of small thermal fluctuations to the system, but also very practically for certain real materials

such as graphene oxide, with bending rigidities which are comparable to thermal energy at room

temperature. However, this was also not implemented in this thesis due to time limitations, as

calculating thermal fluctuations are the most expensive part of these simulations.

Proving the sheet size scaling of sheet viscosity would help translate our results to real systems

as well as allow us to better understand the role of, for example, polydispersity in the observed

rheological behavior of sheets. This was not done in this thesis due to the same considerations as

discussed for the confirmation of size scalings for the dimensionless groups.

While many 2D materials have large Föppl-von Kármán numbers, and are thus relatively inex-

tensible, understanding the effects of finite in-plane thickness would be useful for extending this

work to new materials with finite extensibilities as well as for stacks of sheets whose behaviors are

dependent on small but finite extensions. However, this also adds a new parameter to the design

space which makes it tricky to study in practice.

Creating an energetic map of sheet conformations would help our fundamental understanding of

how sheets transition between different conformations. Studying sheet fracture would be important

for production applications, where the sheet size distribution changes most quickly over time.

Learning how this process occurs could help design flow protocols for producing sheets with the

desired size distribution. Furthermore, such as study would not require simulating dynamics,

making it relatively cheap to study compared to the other considerations listed here.
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Finally, adding more sheets would be helpful for studying non-dilute suspensions, which are

common in many real applications. The main limitation here is, again, time, as each additional

sheet adds to the computational burden of a single simulation. In this thesis, we focused on the

behavior of single sheet and two sheet systems to create the building blocks for these more complex

systems.

Overall, there is still much to learn about self-interacting sheets which can be illuminated using

this model. For fundamental understanding, the effects of varying θ, confirmation of size scalings

for dimensionless
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Chapter 7

Concluding remarks

In this thesis, we examined examined methods for soft matter simulations and applied simulation

methods to further the fundamental understanding of 2D materials. In Chapter 1, we gave a

brief introduction to Brownian dynamics simulations with hydrodynamics. Due to the size of

real soft matter systems, which cause these systems to have low Reynolds numbers and large

Schmidt numbers, we are able to make simplifying assumptions which allow these simulations

to be run quickly, despite long-range hydrodynamics which couple the motion of all particles in

the system. We derived the equations of motion for the system, identifying complications and

simplifications as they arose. Finally, we discussed how simulations are done in log-linear time,

common conservative potentials in soft matter models, and how more degrees of freedom could be

included in our particles.

In Chapter 2, we introduced constrained Brownian dynamics simulations, explaining how the

equations of motion from Chapter 1 must be modified, discussing why constrained systems are

more difficult to implement than unconstrained systems, introducing the current state-of-the-art

methods for simulating these systems (GMRES), and deriving the time-complexity for implement-

ing different pieces of these simulations. We then introduced PrCG, a different method for solving

constrained systems which is simpler to implement than GMRES for new or mixed constraints

and carries certain advantages such as guaranteed feasibility of iterates. We showed in our results

that PrCG and GMRES carry the same computational complexity and similar asymptotic storage

costs on a variety of constraint types. Finally, we compared PrCG to the analytical solution of
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a mixed constraint system, showing that the numerical and analytical solutions agreed. Overall,

we showed in this chapter that PrCG is a competitive method which might be advantageous over

GMRES in constrained Brownian dynamics simulations for certain systems.

In Chapter 3, we introduced the necessary background on rheology necessary to understand

the remainder of the thesis. We discussed non-Newtonian fluids and their applications, simple

shear, the necessary modifications to the equations of motion, as well as how these changes are

implemented in simulations. As a part of this, we introduced viscosity and the stress tensor, how

they are connected, and why we care about developing models for them. We then moved our focus

to 2D materials, which were the focus of the remainder of the thesis. We introduced 2D materials,

their applications, our current theoretical understanding of their behavior, and their rheological

properties.

In Chapter 4, we connected the pieces from the previous chapter, presenting a model for ather-

mal, semi-flexible, self-interacting sheets in simple shear flow. Using this model, we discovered a

rich conformational landscape, showing flat, tumbling, 1D folded, and 2D folded behavior. We de-

rived a new dimensionless parameter balancing the strength of shear to interaction strength, using

this parameter as well as the ratio between bending rigidity and interaction strength to create a

phase map of these conformations. We calculated a proxy for the sheet viscosity and showed inter-

esting non-monotonic rheological behavior that matches with experimental observations. We used

the conformational and rotational behavior of the sheets to explain these rheological properties,

demonstrating that the shear-thinning behavior we observed was a result of averaging over many

initial conditions. This chapter gave a new explanation for how these rheological behaviors can

arise even in the dilute limit and in the absence of thermal energy. Then, we used the same model

to study the shear exfoliation of two sheets. We showed that sheets exhibit separating, waltzing,

or flipping depending on the previously determined dimensionless groups. We connected these

behaviors again to the rheological behavior of the dilute suspension, and explained the behavior

using the observed conformations and the insights from our single sheet simulations.

In Chapter 5, we examined the initial condition dependence of our sheet systems by imple-

menting different shear protocols to our system in an attempt to control the final properties of the
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suspension. Inspired by colloidal suspensions, we implemented a linear shear annealing protocol

and showed that the relative shape anisotropy of sheets increases with quench time. Next, we uti-

lized the features of the phase map from Chapter 4 to design protocols with step changes in shear,

showing that sheets 1D folded sheets with high alignments can be produced quite reliably from a

variety of initial conditions. Using only simple flow protocols, we showed that the conformational

and rotational behaviors of a dilute suspension of sheets can be tuned. The results of this chapter

are promising for showing how the properties of suspensions of 2D materials can be controlled.

Finally, in Chapter 6, we discussed a few potential future considerations for self-interacting

2D materials in shear. Specifically, we discussed loose ends from Chapter 4: analyzing the ef-

fect of varying θ, confirming the scaling of χ−1, calculating the tumbling time for different sheet

behaviors, adding thermal fluctuations, finding the scalings of sheet viscosity for different sheet

behaviors, examining the effects of finite in-plane stiffness, and generating an energetic map for

sheet conformations. Then, we discussed potential extensions to the model: sheet fracture and

dense suspensions of sheets. We discussed potential complications for studying these, usually in-

volving larger or more numerous simulations, which caused us to prioritize the work presented in

this thesis. For applicability to real systems, we believe confirmation of the size scalings of χ−1

and the sheet viscosity are particularly important. Sheet fracture and dense sheet suspensions,

on the other hand, are two interesting new directions this work could go after these scalings are

confirmed.

This model, just like 2D materials as a whole, is still in its infancy. As time goes on and methods

for synthesizing new 2D materials develop, I believe that this and similar works as well as future

work based on these models will serve as important reference for understanding, explaining, and

ultimately controlling the properties of these materials to be optimal for a specific application. I

look forward to future scientific discoveries in this field, which I hope that the work I have done

here will aid.
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Appendix A

Notes on notation

In this thesis, non-bold symbols refer to scalar values, while bold symbols will refer to vector,

matrix, or tensor values. Non-bold symbols for otherwise vector values indicate either the norm of

the vector (e.g. u = ∥u∥) or a component of the vector, depending on the context (unless otherwise

specified, such as the particle acceleration, a, and particle radius a). Vectors are column vectors.

The transpose of a matrix, x, is xT . The inverse of a matrix, x, is x−1. ∇ is the gradient operator

and ∇2 is the Laplacian operator. · is the dot product.

A.1 Nomenclature
Variables will be defined when first introduced but recurring ones will be included here as well for

reference.

a - particle radius (hydrodynamic or hard-sphere)

D - diffusivity

E - strain rate tensor

ϵ - error, error tolerance, or interaction strength

ϵ̃ - per-area interaction energy density

η - fluid viscosity or critical exponent

FB - Brownian force

FH - hydrodynamic force

FP - potential force
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fc - constraint force

ϕ - particle volume fraction or sheet rotation about the vorticity axis

G - gradient of constraint equations

γ̇ - shear rate

I - identity matrix

K - dimensionless parameter characterizing the strength of bending rigidity to interactions

k - spring constant or magnitude of reciprocal lattice vector

κ - bending rigidity

kBT - thermal energy

L - velocity gradient tensor

L - characteristic length or circumradius of a sheet

λ - Lagrange multipliers ("constrained velocities") or the square root of an eigenvalue of the

gyration tensor

λ̄ - average of the square root of an eigenvalue of the gyration tensor

M - mobility tensor

N - number of particles in a simulation, for example the number of beads in a sheet

O - "order of"

P - preconditioner matrix

p - pressure

q - constraint equations

ρ - fluid density

Q - orthonormal matrix in QR decomposition

R - upper-triangular matrix in QR decomposition

Rg - radius of gyration

r̂ - unit vector pointing between particles

r - distance between particles

R - resistance tensor

Re - Reynolds number
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S - dimensionless parameter characterizing the strength of bending rigidity to shear

Sc - Schmidt number

Σ - constraint matrix

Σ̃ - stresslet

σ - interaction range

t - time

∆t - time step

θ - sheet rotation about the flow axis

U - potential energy

u - particle velocity

uB - Brownian velocity

V - potential energy

v1 - the unit vector pointing in the direction of the largest semi-axis of the minimum bounding

ellipsoid of a sheet or the unit vector pointing along the largest eigenvector of the gyration

tensor of a sheet

x - particle position (or arbitrary vector)

∆x - particle displacement

χ - dimensionless parameter characterizing the strength of interactions to shear

Z - projection operator

ẑ - unit vector pointing in the z-direction (the vorticity axis in shear simulations)

ζ2 - relative shape anisotropy
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Appendix B

Analytical orthonormalization of the

constraints on rigid bodies

We can calculate Q for rigid bodies analytically using Gram-Schmidt methods. Gram Schmidt

(GS) and Modified Gram Schmidt (MGS) algorithms for calculating the QR decomposition of a

matrix are typically disfavored due to the increasing loss of the orthogonality of the columns at

each iteration from machine precision rounding errors, which increase with the condition number

of the matrix being factored1,2. However, this disadvantage can be mitigated for the rigid body

system. Specifically, the loss in orthogonality in the GS and MGS algorithms generally only occurs

after many iterations, even for a matrix with a large condition number3. Thus, the block diagonal

structure of the constraint matrix can be exploited to decrease the loss in orthogonality of the

factorization. Each diagonal block has at most six columns, and the three columns associated with

translational motion are orthogonal by construction. The block QR decomposition of Σ can be

expressed as:

Σ =



Σ1 0 . . . 0

0 Σ2 . . . 0
... ... . . . ...

0 0 . . . ΣNbodies


= QR =



Q1 0 . . . 0

0 Q2 . . . 0
... ... . . . ...

0 0 . . . QNbodies





R1 0 . . . 0

0 R2 . . . 0
... ... . . . ...

0 0 . . . RNbodies


, (B.1)
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where Nbodies is the number of bodies with Σi = QiRi.

By performing the QR decomposition of each block individually, at most 6 columns are orthog-

onalized at a time by the GS algorithm, and thus loss of orthogonality due to numerical errors is

small. The computational cost of this algorithm is also greatly reduced compared to algorithms

which do not exploit the block diagonal structure of the constraint matrix. Specifically, each block

of the constraint matrix requires O(B) operations to decompose. This means the overall decom-

position for all of the Nbodies bodies requires O(N) time. Because this decomposition is linear in

the number of beads, it presents no special burdens computationally. This decomposition is also

easy to parallelize, as each block associated with a different rigid body can be orthonormalized

independently. However, we do not implement such a parallelization in this work.

Furthermore, the columns associated with translational motion in each block are already orthog-

onal to all of the other columns, and the columns associated with angular motion are relatively

simple. This combination of properties allows for a simple, explicit expression for the GS QR

decomposed constraint matrix. This orthonormal matrix depends conveniently on the gyration

tensor for the positions of the beads within a body:

Si = 1
Bi

Bi∑
α=1

(xi,α − x̄i)T (xi,α − x̄i) , (B.2)

where the sum is done across the Bi beads in the body labeled i. The block of the constraint matrix

associated with this body can be written as a set of column vectors: Σi =
[
et

i,1 et
i,2 et

i,3 er
i,1 er

i,2 er
i,3

]
,

with the superscript t corresponding to the translational and the superscript r corresponding to the

rotational components. We start by considering the case of a non-colinear body (with 6 degrees

of freedom). Then, the orthonormalization of columns in Σi from a GS QR decomposition of

that block can be written as: Qi = B
−1/2
i

[
et

i,1 et
i,2 et

i,3 êr
i,1 êr

i,2 êr
i,3

]
. The orthonormalized columns

associated with rotational motion of the rigid body are

êr
i,1 =

er
i,1√

w1(Si)
(B.3a)
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êr
i,2 =

er
i,2 + f1(Si)er

i,1√
w2(Si)

(B.3b)

êr
i,3 =

er
i,3 + f2(Si)er

i,1 + f3(Si)er
i,2√

w3(Si)
, (B.3c)

with

f(S) =


S12

w1(S)

S13
w1(S) + S12S23

w1(S)w2(S) + S2
12S13

w1(S)2w2(S)

S23
w2(S) + S12S13

w1(S)w2(S)

 (B.4)

and

w(S) =



S22 + S33

S11 + f1(S)2S22 + (1 + f1(S)2)S33 − 2cf1(S)S12

(1 + f3(S)2)S11 + (1 + f2(S)2)S22 + (f2(S)2 + f3(S)2)S33

− 2(f2(S)f3(S)S12 + f3(S)S23 + f2(S)S13)


. (B.5)

This explicit formulation is easily parallelizable as each row in a body’s orthonormal block, Qi,

depends only on the gyration tensor of that body and the corresponding row in Σi. Computation

and storage are both O(N). The upper-triangular matrix may also be calculated easily. Each 6×6

block along the diagonal corresponds to a single body, with

Ri(S) = B
1/2
i



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 S22+S33√
w1(S)

− S12√
w1(S)

− S13√
w1(S)

0 0 0 0 S11+S33−f1(S)S12√
w2(S)

−S23+f1(S)S13√
w2(S)

0 0 0 0 0 S11+S22−f2(S)S13−f3(S)S23√
w3(S)



. (B.6)

The overall matrix is 6Nbodies×6Nbodies. The inverse of this matrix may be calculated quickly using

back substitution because each rigid body corresponds to only a 6 × 6 block, the first 3 columns

of which are trivial. Applying this matrix inverse recovers the translational and angular velocities

for rigid bodies, requiring only O(Nbodies) operations.

For beads arranged on a line, such as dimers, there are only 2 rotational degrees of freedom
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associated with rigid body motions that change the bead positions. In this case, the last three

columns of Σ are linearly dependent. More care must be taken to reduce the dimensionality of

the rigid body motions by projecting out rotations along the lineal axis of each body. This will

happen naturally during the GS process. One of the columns of Q will be zero and the QR

decomposition can be treated as rank revealing by retaining only those columns and elements of R

needed to build a full rank Σ. This can also be done prior to the decomposition by calculating the

relative shape anisotropy from the gyration tensor. Unconstrained beads can also be considered

rigid bodies which have no rotational degrees of freedom. In this other degenerate case, the H

matrices composing Σ are all zero, as is the gyration tensor. Simply neglecting those columns of

Σ corresponding to rotation and including only the translational components of Q and R resolves

the degeneracy. In this case, the solution for the constraint forces acting on individual beads is

trivial, as those forces are necessarily zero. However, these beads still contribute to hydrodynamic

interactions, so their translational components in Q must be included when constraints are present

in the system.
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Appendix C

Constraint force and constrained velocity

errors at each iteration

Here we include constraint force and constrained velocity errors for each algorithm as they iterate

for rigid bodies (Figure C.1), freely jointed chains (Figure C.2), gyroid immobile (Figure C.3), and

uniform immobile (Figure C.4) systems.

(a) (b)

Figure C.1 Norm of (a) constraint force and (b) constrained velocity errors relative to the error at the initial
guess, for geodesic polyhedra with varying beads per body, B = 4, 12, 42, 92, 162, with constant number of
bodies, Nbodies = 63. Circles correspond to PrCG while triangles correspond to GMRES. Only every 5th
iteration is plotted in the scatter for clarity. The system size is denoted by color.
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(a) (b)

Figure C.2 Norm of (a) constraint force and (b) constrained velocity errors relative to the error at an initial
guess of all zeros, for freely jointed chains with varying beads per body, B = 10, 20, 50, 100, 200, with constant
number of bodies, Nbodies = 63. Circles correspond to PrCG while triangles correspond to GMRES. Only every
5th iteration is plotted in the scatter for clarity. The system size is denoted by color.

(a) (b)

Figure C.3 Norm of (a) constraint force and (b) constrained velocity errors relative to the error at an initial
guess of all zeros, for gyroid immobile systems with varying number of beads,
N = 1398, 2797, 5593, 13983, 27966, with half of the beads being immobile. Circles correspond to PrCG while
triangles correspond to GMRES. Only every 5th iteration is plotted in the scatter for clarity. The system size
is denoted by color.
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(a) (b)

Figure C.4 Norm of (a) constraint force and (b) constrained velocity errors relative to the error at an initial
guess of all zeros, for uniform immobile systems with varying number of beads, N = 103, 153, 203, 253, 303,
with half of the beads being immobile. Circles correspond to PrCG while triangles correspond to GMRES. Only
every 10th iteration is plotted in the scatter for clarity. The system size is denoted by color.
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Appendix D

Neglecting lubrication forces

As parallel sections of sheet approach each other, a lubrication force is generated. Consider two

parallel sections of sheet of area, A, approaching due to shear and initially separated by a distance,

2σ. The strongest lubrication forces will be generated when the characteristic length of these sheet

sections is L. The lubrication force goes as the lubrication pressure, plub, times the area of the

sheet sections:

Flub ∼ plubA. (D.1)

The scaling for plub can be obtained from the lubrication equation:

∂plub

∂x
= η

∂2u

∂z2 . (D.2)

The x direction goes laterally along the sheets and the z direction goes perpendicularly from the

sheets. Therefore, dx ∼ L and dz ∼ σ. u is the lateral velocity. The maximum relative velocity of

the two sheet sections due to shear is σγ̇. The lateral velocity, to satisfy the continuity equation,

thus goes as u ∼ Lγ̇. Together,

Flub ∼
Aηγ̇L2

σ2 . (D.3)

The energetic benefit of bringing a bead from non-interacting to interacting with a neighboring
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sheet section goes as ϵ̃σ2. The distance it must travel to go from non-interacting to interacting

goes as σ. In bringing two parallel sheet sections together, the number of beads which become

interacting with the neighboring sheet section goes as A/a2. Therefore, the force of interaction

goes as

Fint ∼ ϵ̃σ2 1
σ

A

a2 . (D.4)

Taking the ratio between the lubrication and interaction forces gives their relative strength:

Flub

Fint
∼ ηγ̇L2a2

ϵ̃σ3 . (D.5)

Our simulations, which neglect lubrication forces, are valid when this ratio is much less than

unity. For example, graphene has inter-atom separation, a ∼ O
(
1 Å

)
, and athermal Lennard Jones

interaction strength, ϵ̃ ∼ O
(
0.1 eVÅ

)
with interaction range σ ∼ O(1 nm)4. We use the above

approximation for the lubrication force even though the continuum approximation breaks down at

these length scales. This means that even at high shear rates, γ̇ ∼ O(103 s−1), lubrication forces

are small for graphene sheets in water as long as the sheet size, L≪ 10 µm. This is reasonable for

the O(µm) flakes produced by exfoliation techniques5–7 and becomes better for smaller shear rates

or larger interaction ranges. Furthermore, the repulsive nature of the Lennard-Jones interaction at

small distances restricts sheet segments from getting too close, similarly to lubrication forces. For

purely attractive potentials, lubrication forces could fill a similar role in restricting the distance

between neighboring sheet segments. Thus, we believe our decision to neglect lubrication forces is

valid for real systems.

196



197



Appendix E

Derivation of χ

Consider 2 parallel sheets of characteristic size L interacting via a short-ranged potential of range σ

and separated by their equilibrium distance, σ. If the sheets are sheared such that the flow-vorticity

plane cuts between them, the shear force trying to separate the sheets can be approximated as

Fshear = 6πηaσγ̇Nbeads, (E.1)

where σγ̇ is the relative velocity induced on the sheets due to shear (6πηaσγ̇ is the Stokes’ drag

on a sphere) and Nbeads ∼ (L/a)2 is the number of beads in each sheet.

We now consider the force required to slide the sheets and break the short-ranged interactions

between them. Assuming the sheet is large (L ≫ a) and the separation is large (σ ≫ a), the

energy of the beads in the bulk of the sheet does not change as the sheets slide relative to each

other – only beads which are at the leading and trailing edges of the slide matter. The number of

beads which separate as a result of a slide of distance σ can be approximated as

∆Nslide ∼
Lσ

a2 . (E.2)

The change in energy for each of these beads is approximately

∆Ebead ∼ ϵ̃σ2. (E.3)
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Thus, the force required to separate the beads is approximately

Fslide ∼
∆Nbeads∆Ebead

σ
= ϵ̃σ2

(
Lσ

a2

)(
1
σ

)
. (E.4)

Taking the ratio of these two forces gives the dimensionless parameter we desire to an order 1

geometry-, orientation-, and packing-specific constant:

χ ≡ Fslide

Fshear
∼ ϵ̃σ2

6πηγ̇L2σ

(
L

a

)
. (E.5)
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Appendix F

Gyration tensor eigenvalue histograms

The ij’th component of the gyration tensor, S, is given by

Sij = 1
N

N∑
k=1

(r(k)
i − r̄i)(r(k)

j − r̄j), (F.1)

where N is the number of particles in the sheet, r
(k)
i is the i’th component of the position of

particle k, and r̄i is the i’th component of the center of mass of the particles. The square root of

the eigenvalues of S, λi, give a measure of the characteristic sizes of the sheet, while their standard

deviation gives a measure of how much these sizes fluctuate, and thus how much the sheet deforms

over time. We can use these values to distinguish between different sheet conformations. Please

see the main article for details on the criteria used.

For a given simulation snapshot, we define λ1 > λ2 > λ3. For each simulation, we define λ̄i

to be the average of λi and std[λi] to be the standard deviation of λi, both over the last 250γ̇t

of each simulation, with samples taken every 0.25γ̇t. These quantities were used to identify sheet

conformations. We include histograms of λi and std[λi] for all simulations in Chapter 4 below.
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Figure F.1 Histograms of (a, c, e) the average square root of the eigenvalues of the gyration tensor and (b, d,
f) the standard deviation of the square root of the eigenvalues of the gyration tensor, both over the last 250γ̇t

of each simulation. (a-b) The largest eigenvalue; (c-d) the second largest eigenvalue; and (e-f) the smallest
eigenvalue.
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Appendix G

Derivation and confirmation of scaling of

optimal number of folds

We wish to obtain an approximation for the optimal number of folds in a 1D folded sheet. We

make the following simplifying assumptions. First, the folds are parallel and equally spaced across

the length of the sheet, with regions of flat sheet between them. Second, only neighboring parallel

sections of sheet will interact with each other (i.e. the interaction is short-ranged). Third, the

sheet is rectangular with characteristic length 2L and characteristic width 2W . Fourth, that there

is no stretching or compression of the sheet (i.e. FvK ≫ 1). We define nfold to be the number of

folds in the sheet, wfold to be the width of a fold, and wflat to be the width of a flat region. With

these assumptions, we obtain the following balance for the length of the sheet:

2L = nfoldwfold + (nfold + 1)wflat. (G.1)

The energy of bending roughly goes as the number of triangles which are within folds times the

bending rigidity,

Ebending ∼ κnfold

(
Wwfold

2a2

)
. (G.2)

The energy of interaction goes as
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Figure G.1 (a) Optimal number of folds for varying K and L/wfold. Points are data points and solid lines
are Equation G.5. Optimal values of α and β were found to be α = 0.0618± 0.0010 and β = 0.528± 0.003
(± one standard deviation) using least-squares regression with R2 = 0.989. (b) Master curve using Equation
G.5 to collapse all plots of n∗

fold.

Einteraction ∼ ϵ̃σ2nfold

(
Wwflat

a2 + β′ Wwfold

2a2

)
, (G.3)

where the first term sums interactions for beads between parallel regions and the second term

sums interactions for beads within folds. The parameter β′ is a fold geometry-specific parameter

added as a measure of the strength of interactions for beads within folds. We wish to minimize

the quantity

E = α′Ebending − Einteraction (G.4)

with respect to nfold to obtain the optimal number of folds, n∗
fold. The term α′ is a fold geometry-

specific parameter added as a measure of the relative strength of bending rigidity to interaction

strength. Doing so, we obtain

n∗
fold ≈

√
2L/wfold + 1
1− β + αK

− 1, (G.5)

where α = α′/2 and β = β′/2 have been redefined for convenience. We note that the the charac-
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teristic width of the sheet, 2W , disappears from the final equation as all interactions are linear in

this term. For non-rectangular sheets which are wide enough such that edge effects are irrelevant

(i.e. most beads are interior beads), the changing width affects the energy because folds and flat

regions can be in locations with different widths. This effect is small for slowly-changing widths

and thin folds and/or thin flat regions.

We confirm this scaling by generating rectangular sheets (such that each interior bead of these

sheets has 6 neighbors) and finding their optimal number of folds. All neighboring beads in these

sheets, even the ones in folds, are a constant distance, 2a, apart, and neighboring parallel regions

of sheet are a constant distance, σ, apart. We choose wfold = 6a and σ = 4
√

6a/3 for consistency

with our simulations. A folded region consists of 1 row of beads within a flat region, 1 row at the

"crease" of the fold, and 1 row within the neighboring flat region. We find the optimal number of

folds for a given K and L/wfold with constant W/wfold = 50.0. We then fit these data to Equation

G.5 using least-squares regression, and find α = 0.0618 ± 0.0010 and β = 0.528 ± 0.003 (± one

standard deviation). The fit can be seen in Figure G.1. This equation appears to fit the data quite

well, with R2 = 0.989. The data also collapse fairly well onto a master curve, with the largest

deviation coming from the smallest sheet, where edge effects are the most relevant. This suggests

that n∗
fold ∼

√
L/wfold, as predicted.
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Appendix H

Scatter plots of sheet viscosity versus sheet

summary statistics

The radius of gyration is given by the square root of the sum of the eigenvalues of the gyration

tensor:

Rg =
√∑

λ2
i . (H.1)

The radius of gyration is a measure of the overall size of a sheet.

The relative shape anisotropy can similarly be defined in terms of the eigenvalues of the gyration

tensor:

ζ2 = 3
2

∑
λ4

i

(∑λ2
i )2 −

1
2 (H.2)

The relative shape anisotropy is bounded between 0 and 1. ζ2 = 0 only if the beads are spherically

symmetric and ζ2 = 1 only if the beads are all colinear. The relative shape anisotropy is therefore

a measure of the shape of a sheet.

The alignment is given by the magnitude of the dot product of the unit vector pointing in the

same direction as the largest axis of the minimum bounding ellipsoid, v1, with the vorticity axis,

ẑ: |v1 · ẑ|. The alignment is therefore a measure of the orientation of a sheet.

Below, we include scatter plots for the sheet viscosity versus the average of each of these
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quantities over the last 200γ̇t with samples taken every 100γ̇t for all simulations from Chapter 4.
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Figure H.1 Scatter plots of the sheet viscosity for all simulations from Chapter 4 versus the (a-b) radius of
gyration, (c-d) relative shape anisotropy, and (e-f) alignment of sheets averaged over the last 200γ̇t of each
simulation. (a, c, e) Scatter plots for all simulations; and (b, d, f) scatter plots for only folded sheets.
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