
Labeling Schemes for Improving Cilksan Performance

by

Satya Holla
S.B. Computer Science and Engineering and Mathematics

Massachusetts Institute of Technology, 2024

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2024

© 2024 Satya Holla. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Satya Holla
Department of Electrical Engineering and Computer Science
August 17, 2024

Certified by: Tao B. Schardl
Research Scientist at CSAIL, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair
Master of Engineering Thesis Committee

2

Labeling Schemes for Improving Cilksan Performance
by

Satya Holla

Submitted to the Department of Electrical Engineering and Computer Science
on August 17, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

ABSTRACT

While race detection algorithms like SP-bags have provably good theoretical properties,
large overheads exist in practice, which urges the need for performance optimization. In
this thesis, I propose labeling schemes as a method of circumventing many of the expensive
operations in Cilksan, an implementation of the SP-bags algorithm. The proposed labeling
schemes give strands of a parallel program labels during the execution of Cilksan, allowing
Cilksan to shortcut the processing of certain memory accesses if the label comparison allows.
I describe and prove correctness for two labeling schemes, the procedure labeling scheme
and the prefix labeling scheme, implement both in Cilksan, and measure their performance.
While the results show that the overhead of maintaining labels is too high in my implemen-
tation, the labeling schemes manage to circumvent many of the memory access operations,
suggesting the merit of a more performant implementation of the same schemes.

Thesis supervisor: Tao B. Schardl
Title: Research Scientist at CSAIL

3

4

Acknowledgments

A heartfelt thanks to my wonderful advisor, Tao B. Schardl, for making my experience
working with him educational and fun, and my friends and family, who helped keep me on
track writing this thesis.

5

6

Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 9

List of Tables 11

1 Introduction 13
1.1 Cilk . 14
1.2 Cilksan and race detection . 15
1.3 My contributions . 16
1.4 Outline . 18

2 Background 19
2.1 Cilk control-flow DAGs . 19
2.2 The SP-bags algorithm . 22
2.3 Nested cilk_scopes and Cilk functions . 24

3 Labeling schemes 29
3.1 Motivation and definition . 29
3.2 Procedure labeling scheme . 31

3.2.1 Algorithm and correctness . 31
3.2.2 Implementation . 35

3.3 Prefix labeling scheme . 37
3.3.1 Algorithm and correctness . 37
3.3.2 Implementation . 40

3.4 Performance analysis . 41

4 Related work 45

5 Conclusion 49

7

8

List of Figures

1.1 Example usage of Cilk parallel constructs. The cilk_spawn allows foo() to
run in parallel with bar(), and the enclosing cilk_scope ensures both tasks
have completed before control exits the scope. 14

1.2 Example determinacy race on the variable x. Both calls to increment(x) are
logically in parallel, and both calls read and write the value of x, leading to
nondeterministic behavior. 15

2.1 Each of the constructions of a series-parallel DAG 20
2.2 The code on the left corresponds to the series-parallel DAG on the right. In

the DAG, each of e0, e1, e2, and e3 are strands in the same procedure. foo
and bar are also procedures, which, as drawn, have no parallel constructs of
their own, and hence contain only one thread. 21

2.3 In the code on the left, a cilk_scope is nested inside another one, leading to
the control flow DAG seen on the right. 25

3.1 A Cilk program and associated control-flow DAG, with each strand’s memory
accesses depicted. 30

3.2 An example Cilk control-flow DAG illustrating the procedure labeling scheme 32
3.3 An example Cilk control-flow DAG illustrating the prefix labeling scheme . . 37

9

10

List of Tables

3.1 The number of times a fast path was used to shortcut S/P bag FIND-SET oper-
ations. The final column shows the total number of calls to checkAndSetLabels
for each benchmark/input size. Each column with a “%" shows the ratio of
the previous column to the final column as a percentage. 42

3.2 Runtimes in seconds (rounded to nearest hundredth of a second) 42

11

12

Chapter 1

Introduction

Cilk is a programming language which allows programmers to specify areas of code in their

program which may run in parallel, after which its runtime system uses this information to

efficiently schedule program instructions to processors. Cilk’s model of parallel programming

comes with an associated tool, Cilksan, which analyzes Cilk programs to find bugs called

determinacy races. Cilksan has uniquely strong theoretical guarantees: namely, it is provably

good (i.e., it is guaranteed to find a determinacy race in a program execution if one exists),

and it has excellent asymptotic time and space complexity. However, many of the core

operations involve time-intensive pointer chasing, and high overhead has been observed in

practice. As it stands, it is often the case that some expensive checks performed by Cilksan

are unnecessary. In this thesis, I introduce labeling schemes, which keep track of information

on memory accesses and eliminate some of these unnecessary operations, aiming to improve

the practical performance of Cilksan. In doing so, I prove the correctness of the presented

labeling schemes and benchmark their effectiveness on several parallel programs written in

Cilk.

13

cilk_scope {
cilk_spawn foo();
bar();

}

Figure 1.1: Example usage of Cilk parallel constructs. The cilk_spawn allows foo() to run
in parallel with bar(), and the enclosing cilk_scope ensures both tasks have completed
before control exits the scope.

1.1 Cilk

Cilk is a popular programming language developed in the 1990s at MIT, which extends C

and C++ to allow for multi-threaded parallelism [1]. Cilk provides a wrapper around thread

creation and scheduling procedures in C with two basic constructs:

• cilk_spawn is a keyword used before a function call, which allows the function to exe-

cute in parallel with the remainder of the code in the scope designated by a cilk_scope.

• cilk_spawn statements may occur within a scope designated by curly braces preceded

by the keyword cilk_scope. At the end of the braces, a sync occurs, in which the

program waits for all parallel threads spawned within the scope to complete before

proceeding.

Figure 1.1 illustrates the use of these constructs. In the snippet, the functions foo and

bar are allowed to run in parallel (i.e., they are logically in parallel). Notice that this

description avoids saying that cilk_spawn actually creates a new thread, and instead says

that it “allows" code to run in parallel. This distinction is intentional, as Cilk separates

the specification of logical parallelism with the actual allocation and scheduling of threads.

While the programmer is expected to specify (using the constructs mentioned above) which

parts of the code can run in parallel, the Cilk runtime system is responsible for deciding how

this code should be handled by the resources of the machine. In particular, Cilk may decide

against parallelizing a spawn at runtime if all existing worker threads already have parallel

work.

14

int main() {
int x = 0;
cilk_scope {

cilk_spawn increment(x);
increment(x);

}
}

void increment(int &x) {
int y = x + 1;
x = y;
// Equivalently, we could have
// x = x + 1; but this makes the
// read and write of x more explicit.

}

Figure 1.2: Example determinacy race on the variable x. Both calls to increment(x) are
logically in parallel, and both calls read and write the value of x, leading to nondeterministic
behavior.

1.2 Cilksan and race detection

A variety of tools exist for Cilk, including Cilksan, a program which can detect determinacy

races, which are often bugs [2]. Cilksan uses the SP-bags algorithm [3] to guarantee detection

of determinacy races on given inputs to the program.

Determinacy races occur when two regions of code access the same data with the

access order not guaranteed, leading to nondeterminism in the execution of the program [2].

What this means depends on the model of parallelism; for our purposes, they arise when two

logically parallel regions access the same memory location and at least one of the accesses is

a write. In this case, the execution of the program is dependent on which of the two regions

accesses the race memory location first, leading to the nondeterminism (although the code

output may still be deterministic). Nondeterministic code execution is notoriously difficult

to debug, making race detection in Cilk a valuable problem to tackle.

An example Cilk program which illustrates the dangers of determinacy races is shown in

Figure 1.2. In the figure, a cilk_scope is created, with a call to increment(x) allowed to

run in parallel with another call to increment(x). Each call to increment(x) involves the

following in order:

1. Read the value of x

15

2. Add one to this value, and write it to x

If the first call to increment(x) executes completely before the second call, or vice versa,

the final value of x will be 2. However, if the first call reads the value of x as 0, then the

second call also reads the value of x as 0, and finally both calls compute the value of y as 1

and write this to x, the final value of x will be 1. Since the two regions of code are executing

in parallel, either case (or others) could possibly occur.

A variety of race detection algorithms exist [3]–[6], as well as practical optimizations to

these [7]; these can be further categorized by what types of information they collect and

use for detection. A popular strategy is on-the-fly analysis [4], whereby the race detector

instruments the parallel program with code that detects and reports races during execution.

Cilksan uses one such on-the-fly algorithm called SP-bags [3]. SP-bags runs a program’s

code serially, and tracks which areas of code are logically in series or logically in parallel

with each other. Briefly, the algorithm maintains data structures for each region of code P ,

to track which other regions are logically in series and which other regions are logically in

parallel with P . For each memory access, the data structure of the currently running code

must be queried, to check whether the access might result in a determinacy race. While the

asymptotic overhead of the SP-bags algorithm is good, the primary operations performed

involve expensive pointer jumping, leading to large overhead. Section 2.2 explains the SP-

bags algorithm in further detail.

1.3 My contributions

This thesis introduces labeling schemes, augmentations to SP-bags which store additional

numerical values, called labels, during each memory access operation in Cilksan; these

labels mark different points of the Cilk program execution. Before two memory accesses are

compared in SP-bags to detect a potential race, the labels of each access are first used to

more quickly determine whether the accesses are in series, and if it is therefore possible to

16

shortcut the expensive SP-bags operation(s) involved in such a comparison.

The idea of using labels to track series/parallel relationships is not new. In [4], Offset-

Span Labeling labels each thread with a sequence of ordered pairs whose length is propor-

tional to the depth of the thread’s parallel nesting. These labels are then used to determine

whether any two threads are in series or parallel. In English-Hebrew Labeling [5], two la-

bels which serve the same purpose as in Offset-Span Labeling are given to each “sequential

block” of code. English-Hebrew Labeling requires the program to either be run twice, once

to determine the control-flow structure and assign one set of labels and another to assign

the second and track memory accesses, or otherwise use labels whose length is proportional

to the depth of nesting.

The labeling schemes presented here differ in that they are not intended to fully solve

the problem of determining series/parallel relationships between threads. Instead, they are

intended only as a quick verification that two threads operate in series. Whenever two

threads are determined to not necessarily be in series, the standard SP-bags operations must

still be run. By limiting the scope of the labeling scheme in this way, we can optimize

our schemes for practical performance, and we are able to use smaller labels than those in

English-Hebrew Labeling or Offset-Span Labeling, while still discovering a large fraction of

the pairs of non-racing memory accesses.

The contributions of this thesis are:

• Defining the new method of labeling schemes

• Presenting two labeling schemes, the procedure labeling scheme and prefix labeling

scheme, and proving their correctness

• Describing implementations for the above schemes

• Using various measures of performance to analyze the effectiveness of these implemen-

tations

17

1.4 Outline

Chapter 2 presents background on the SP-bags algorithm, as well as important informa-

tion about Cilksan. Chapter 3 contains the contributions of the paper, namely the two

labeling schemes, their proofs, implementations, and performance analyses. Chapter 4 gives

additional background on related works. Chapter 5 discusses possible future research in

optimizing Cilksan.

18

Chapter 2

Background

This chapter presents the background relevant to the later discussion of labeling schemes.

Section 2.1 introduces a formalization of the structure of parallel programs useful for proving

theoretical results. Section 2.2 states the SP-bags algorithm, as well as invariants maintained

in the course of the algorithm. Finally, Section 2.3 discusses a deviation from the SP-bags

algorithm found in Cilksan.

2.1 Cilk control-flow DAGs

The model of parallelism described by cilk_spawn and cilk_scope, fork-join parallelism,

leads to the computation forming a highly structured DAG. In this section, I present the

notion of a series-parallel DAG, and mention results showing their correspondence with Cilk

control-flow DAGs.

To begin, we can subdivide Cilk programs to better understand their structure. The

parallel constructs in a Cilk program break it up into units of instructions called procedure

instances, which we will shorten to the term procedure.

Definition 1. A procedure is a sequence (not necessarily continuous) of instructions in a

Cilk program which begins at a cilk_spawn of a function (or, for the main procedure, at

19

(a) Base (b) Series composition (c) Parallel composition

Figure 2.1: Each of the constructions of a series-parallel DAG

the start of the Cilk program), and ends when that function returns. During the runtime

of procedure P , a cilk_spawn of function instance x may create a new subprocedure - any

instructions part of x’s execution are not considered to be in procedure P .

Each procedure can be further broken down into units called strands.

Definition 2. A strand is a maximal continuous sequence of instructions in Cilk not contain-

ing any parallel constructs (i.e., not containing cilk_spawn, cilk_scope, or cilk_sync).

As Figure 2.2 demonstrates, this is different from a procedure, since we consider two new

strands to form when we encounter a spawn, the newly spawned strand and the continuation

strand.

In the Cilk model, the program can be represented by a control-flow DAG whose

nodes represent locations in the code where logically parallel code is either spawned (with

cilk_spawn) or synced (at the end of a cilk_scope scope), and whose edges are strands.

Cilk control-flow DAGs turn out to have more structure than standard DAGs:

Definition 3. A series-parallel DAG consists of a source node s, a sink node t, and is

constructed recursively in one of the following ways:

• Base: the graph consists of a single edge from source s to sink t.

• Series composition: the graph G consists of two series-parallel DAGs G1 and G2 with

disjoint edge sets, such that the source of G1 is the source of G, the sink of G2 is the

sink of G, and the source of G2 is the sink of G1.

20

...
int x = 0; // e_0
cilk_scope {

x = 1; // e_0
cilk_spawn foo();
x = 2; // e_1
cilk_spawn bar();
x = 3; // e_2

}
x = 4; // e_3
...

Figure 2.2: The code on the left corresponds to the series-parallel DAG on the right. In the
DAG, each of e0, e1, e2, and e3 are strands in the same procedure. foo and bar are also
procedures, which, as drawn, have no parallel constructs of their own, and hence contain
only one thread.

• Parallel composition: the graph G consists of two series-parallel DAGs G1 and G2 with

disjoint edge sets, such that the sources of G1 and G2 are both the source of G, the

sinks of G1 and G2 are both the sink of G.

Note that we allow multiple edges between the same two vertices in these DAGs. Figure 2.1

illustrates each case above.

Theorem 1 ([3]). A Cilk control-flow DAG is a series-parallel DAG.

The following relationships between strands of the DAG will be useful to define for the

following sections, in which I give correctness results of Cilksan’s algorithm.

Definition 4. Given a DAG corresponding to a Cilk computation,

• A strand e1 precedes another strand e2, denoted e1 ≺ e2, if there is a path in the DAG

containing both e1 and e2 in that order. The ≺ relation is transitive.

• Strands e1 and e2 operate logically in parallel, denoted e1 ∥ e2, if e1 ̸≺ e2 and e2 ̸≺ e1.

21

Algorithm 1 SP-bags
S/P-bag maintenance:
spawn of procedure F

SF ← MAKE-SET(F) ▷ This operation creates an empty union-find data structure
PF ← ∅

sync in procedure F
SF ← UNION(SF , PF)
PF ← ∅

return from spawned F ′ to F
PF ← UNION(SF ′ , PF)

Shadow memory maintenance:
write to shared location ℓ by procedure F

if FIND-SET(reader(ℓ)) is a P-bag or FIND-SET(writer(ℓ)) is a P-bag then
Report race

writer(ℓ)← F

read of shared location ℓ by procedure F

if FIND-SET(writer(ℓ)) is a P-bag then
Report race

if FIND-SET(reader(ℓ)) is an S-bag then
reader(ℓ)← F

2.2 The SP-bags algorithm

This section describes the SP-bags algorithm [3], states theorems regarding its correctness,

and provides reasons for its poor performance in practice.

The SP-bags algorithm runs serially, despite its purpose in analyzing parallel programs.

It processes the input Cilk program depth-first: that is, when encountering a cilk_spawn,

it will explore the entire subcomputation stemming from this spawn before exploring the

continuation. This order corresponds with how the input program would run on a single

processor, without any parallel constructs. Algorithm 1 details the full algorithm, and is

separated into two core routines which maintain information about the currently active

procedures while processing the program.

The first of these routines is the S/P-bag maintenance, which tracks which procedures

are in series/parallel with the current thread. When the SP-bags algorithm encounters a

22

new subprocedure F via a cilk_spawn, it creates two new union-find data structures for

the subprocedure called the S-bag and the P-bag, denoted SF and PF respectively. Upon

processing parallel constructs, it modifies the S and P-bags with the three standard union-

find operations MAKE-SET, UNION, and FIND-SET, in order to maintain the following

invariant: When exploring any strand e, consider any previously explored strand f and its

procedure Pf . If f is logically in series with e, then Pf is in an S-bag, and if f is logically

in parallel with e, then Pf is in a P-bag. The exploration order of SP-bags guarantees that

both of these cases will not simultaneously occur for a procedure.

The second routine is the shadow memory maintenance, which keeps track of previous

accesses of each shared memory location in a structure called the shadow memory. The

shadow memory is composed of two dictionaries called reader and writer. Each of these

maintains, for every shared memory location ℓ in the original Cilk program, the procedure

ID1 of a procedure which previously read (resp: wrote) to ℓ. We refer to the procedure IDs

stored in the shadow memory for location ℓ as reader(ℓ) and writer(ℓ). The operations

on the shadow memory maintain the property that writer(ℓ) always stores the most recent

writer to ℓ, and reader(ℓ) always stores some reader logically in parallel with the current

strand if one exists - otherwise, it stores the most recent reader. It turns out that storing

only these procedures at any given time for a memory location ℓ, rather than the entire

history of accesses, suffices to determine if there is a race on ℓ, by checking for each new

read whether writer(ℓ) is in a P-bag, and for each new write whether either writer(ℓ) or

reader(ℓ) is in a P-bag.

I now state a result concerning the runtime of SP-bags.

Theorem 2 (Theorem 1 in [3]). Consider a Cilk program that executes in time T on one

processor and references ν shared memory locations. The SP-bags algorithm can be imple-

mented to check this program for determinacy races in O(Tα(ν, ν)) time using O(ν) space,

where α denotes the functional inverse of the Ackermann function.
1Cilksan assigns these at runtime

23

This theorem shows that SP-bags is a nearly asymptotically optimal serially run race

detector, as any serial race detector requires Ω(T) time. To see why, imagine a program

which produces some Boolean output in optimal time T , then creates a race if this output is

true - now, the output of the program should be the same as the output of the race detector,

and this output again requires at least T time. While race detectors like SP-order [6], which

runs in O(T) time, achieve this optimal runtime, the extremely slow-growing factor of α(ν, ν)

which separates the two algorithms can be considered constant for all practical purposes.

Rather than improving asymptotic runtime, this work focuses on reducing the number

of S/P-bag operations done by the algorithm during reads and writes. These operations

involve union-find data structures and require traversing trees. Despite good theoretical

performance, the tree operations involve pointer chasing and therefore do not cache well,

which may be the cause of Cilksan’s slow runtime in practice. Empirical evidence agrees

with this prediction - performance analysis on the same benchmarks used in Section 3.4

suggests that on average, Cilksan spends half its total time on reads and writes. Chapter

3 describes the approach of labeling schemes, which may allow SP-bags to shortcut these

expensive operations.

2.3 Nested cilk_scopes and Cilk functions

Differences between Cilk and the model of computation proposed in the SP-bags paper

[3] lead to several deviations seen in Cilksan from the SP-bags algorithm. This section

discusses one such deviation, nested cilk_scopes, which significantly impacts the discussion

of labeling schemes in Chapter 3.

The SP-bags paper [3] never mentions the parallel construct cilk_scope. Instead, they

use a different sync construct, cilk_sync, which syncs all parallel threads spawned by

the calling procedure. While the two are quite similar, an important difference is that

cilk_scope allows for nested synchronization within a single procedure. For example, con-

24

1 int x = 0;
2

3 void A() {
4 x = 2;
5 }
6

7 void CF() {
8 cilk_scope {
9 cilk_spawn B();

10 printf("nested");
11 }
12 }
13

14 int main() {
15 cilk_scope {
16 cilk_spawn A();
17 CF();
18 x = 3;
19 }
20 }

Figure 2.3: In the code on the left, a cilk_scope is nested inside another one, leading to
the control flow DAG seen on the right.

sider the code in Figure 2.3. While inside a cilk_scope, we call another function containing

a cilk_scope2, leading to control-flow structure we could not have achieved using just

cilk_spawn and cilk_sync.

Such nesting of cilk_scopes can lead to correctness issues if we attempt to naively

apply SP-bags. Since the write to x in line 4 and the write to x in line 18 are logically in

parallel, there is a race. However, suppose we try using the SP-bags algorithm and simply

treat the end of a cilk_scope as a cilk_sync. We start with the main() procedure, then

explore the procedure spawned at A(), return to main(), then enter the function CF(), which

contains its own cilk_scope and spawned procedure B(). After line 10, both the A() and

the B() procedures are in main()’s P-bag. Then, in line 11, a sync occurs at the end of CF’s

cilk_scope, which causes A() and B() to move to main()’s S-bag. This causes the error
2It is also possible to directly nest two cilk_scopes, which leads to different behavior. However, this is

not important to understand the remainder of the thesis, so we make no further mention of it.

25

- we still have not synced A() yet, but the sync indiscriminately moves the entire P-bag of

a procedure to the S-bag, instead of just those procedures called within the scope. Now, in

line 18, a race will not be detected.

Cilksan solves this by introducing Cilk functions, functions with any Cilk construct

inside their body. When a Cilk function is called, Cilksan treats the call like a spawn to a

new procedure whether or not the Cilk function was actually spawned, and creates a new

frame, the Cilksan structure intended to track SP-bags procedures. In doing this, the newly

created frame will have its own separate P-bag, so that syncs done within the body of the

new frame will not affect the P-bag of the calling frame.

Algorithm 2 presents simplified version of what Cilksan does differently from SP-bags

in this respect. With the exception of the routines involving Cilk functions in S/P-bag

maintenance, Algorithm 2 and Algorithm 1 are identical.

For the remainder of the chapter, I use the following conventions:

• A procedure in a Cilk program retains the original definition as used in the standard

SP-bags algorithm, whereas a frame is the Cilksan equivalent of a procedure. The

difference between the two lies in the fact that Cilksan creates a new frame when

entering a Cilk function, whereas the procedure remains the same.

• Before, we defined a strand as a maximal continuous sequence of instructions not

containing a parallel construct. Since Cilk functions create new frames, we include

entry into a Cilk function as a parallel construct, so that a new strand forms during

this event.

26

Algorithm 2 Simplified model of Cilksan
S/P-bag maintenance:
spawn of frame F

SF ← MAKE-SET(F)
PF ← ∅

enter Cilk function frame F ′ from frame F
SF ′ ← MAKE-SET(F ′)
PF ′ ← ∅

sync in frame F
SF ← UNION(SF , PF)
PF ← ∅

return from spawned F ′ to F
PF ← UNION(SF ′ , PF)

return from Cilk function frame F ′ to F
SF ← UNION(SF ′ , SF)

Shadow memory maintenance:
write to shared location ℓ by procedure F

if FIND-SET(reader(ℓ)) is a P-bag or FIND-SET(writer(ℓ)) is a P-bag then
Report race

writer(ℓ)← F

read of shared location ℓ by procedure F

if FIND-SET(writer(ℓ)) is a P-bag then
Report race

if FIND-SET(reader(ℓ)) is an S-bag then
reader(ℓ)← F

27

28

Chapter 3

Labeling schemes

This chapter presents the main contribution of the thesis, namely, the analysis of labeling

schemes used to avoid unnecessary S/P-bag operations. Section 3.1 describes the motivation

behind the labeling schemes along with useful definitions/conventions. Section 3.2 presents

the procedure labeling scheme, along with its correctness proof and implementation details.

Section 3.3 does the same for the prefix labeling scheme. Finally, Section 3.4 measures the

labeling schemes’ performance on various benchmark programs.

3.1 Motivation and definition

I begin by presenting an example program which illustrates the purpose of labeling schemes,

and motivates their definition. Consider the Cilk program and associated control-flow DAG

shown in Figure 3.1. Five total memory accesses take place, two of the variable x and three

of the variable y. When run, Cilksan goes through the program and checks during each of

the writes whether the previous accesses were from procedures in a P-bag or not. These

include:

• A check while processing line 2 to see if the access in line 6 is in a P-bag

• A check while processing line 10 to see if the access in line 7 is in a P-bag

29

1 void foo(int& x) {
2 x = 5;
3 }
4

5 int main() {
6 int x = 3;
7 int y = 0;
8 cilk_scope {
9 cilk_spawn foo(x);

10 y = 1;
11 }
12 y = 2;
13 }

Figure 3.1: A Cilk program and associated control-flow DAG, with each strand’s memory
accesses depicted.

• A check while processing line 12 to see if the access in line 10 is in a P-bag

If we look at the example control-flow DAG, we see that some of these checks seem unnec-

essary. For example, the accesses in lines 7, 10, and 12 are from the same procedure. This

means that they will always be logically in series. The line 2 access is from a subprocedure of

the line 6 access, and occurs after the line 6 access. Examining the control-flow DAG shows

that these two accesses will also always be in series.

In the above examples, we could use the information about the procedures and orders of

these accesses to create a fast path, or shortcut, which bypasses the S/P-bag operations to

check for races. Such fast paths can therefore reduce the performance overhead of Cilksan.

Labeling schemes are the method I will use in this thesis to implement the ideas above.

By associating each strand with a value called a label, and storing the labels of procedures

along with procedure IDs in shadow memory, we can use label information during memory

accesses to determine if a fast path is possible. A formal definition is provided below:

Definition 5. A labeling scheme consists of two modifications to the standard Cilksan im-

plementation of SP-bags (see Algorithm 2):

• A modified S/P-bag maintenance algorithm which assigns labels to strands when parallel

30

constructs are encountered.

• A modified shadow memory maintenance algorithm which, upon each memory access,

compares the current strand’s label to those in the shadow memory, creating a fast path

if the label comparison determines that the two strands are in series.

3.2 Procedure labeling scheme

The procedure labeling scheme labels each strand with the procedure that contains it.

Because a cilk_spawn always starts a new procedure, two strands in the same procedure

must always be in series, which is the crux of our fast path. Section 3.2.1 presents the

algorithm pseudocode and proves its correctness, and Section 3.2.2 describes the structures

in Cilksan used for implementation.

3.2.1 Algorithm and correctness

Algorithm 3 details the procedure labeling scheme pseudocode, Figure 3.2 shows an example

of its use. The key modification in the S/P-bag maintenance is the assignment of labels to

each new frame. When a spawn creates a new frame, the frame gets a new label generated

from incrementing a global counter variable. However, when a Cilk function entry creates

a frame, the frame inherits its label from the calling frame, as entry into a Cilk function

does not create a new procedure. In the shadow memory maintenance, the modification is

seen in lines 16, 23, and 25, which feature fast paths that allows us to circumvent FIND-SET

operations1.

I begin by proving some useful intermediate lemmas, then prove the correctness of Algo-

rithm 3.

Lemma 1. For any shadow memory location ℓ, after any call to Algorithm 3, writer(ℓ).label =

wlabel(ℓ) and reader(ℓ).label = rlabel(ℓ).
1Note that we assume that Boolean operations are short-circuited

31

Figure 3.2: An example Cilk control-flow DAG illustrating the procedure labeling scheme

Algorithm 3 Prodecure labeling scheme
1: S/P-bag maintenance:
2: spawn of frame F
3: SF ← MAKE-SET(F)
4: PF ← ∅
5: globalLabelCt← globalLabelCt+ 1 ▷ Each new procedure gets a new label
6: F.label = globalLabelCt
7: enter Cilk function frame F ′ from frame F
8: SF ′ ← MAKE-SET(F ′)
9: PF ′ ← ∅

10: F ′.label = F.label
11: sync in frame F , return from spawn, or return from Cilk function
12: Same as in Algorithm 2
13:
14: Shadow memory maintenance:
15: write to shared location ℓ by procedure F

16: if rlabel(ℓ) = wlabel(ℓ) = F.label then
17: continue
18: if FIND-SET(reader(ℓ)) is a P-bag or FIND-SET(writer(ℓ)) is a P-bag then
19: Report race
20: wlabel(ℓ)← F.label
21: writer(ℓ)← F

22: read of shared location ℓ by procedure F

23: if wlabel(ℓ) ̸= F.label and FIND-SET(writer(ℓ)) is a P-bag then
24: Report race
25: if rlabel(ℓ) ̸= F.label and FIND-SET(reader(ℓ)) is an S-bag then
26: rlabel(ℓ)← F.label
27: reader(ℓ)← F

32

Proof. This follows from the fact that the algorithm always update wlabel(ℓ) at the same

time as writer(ℓ), and similarly for reader(ℓ) and rlabel(ℓ). We use this lemma implicitly

in statements like “the last strand to update wlabel(ℓ) and writer(ℓ)”.

Lemma 2. For strands e ̸= f , e.label = f.label if and only if e and f are contained in the

same procedure, and are therefore logically in series.

Proof. In the procedure labeling scheme, lines 5-6 gives a new label generated from incre-

menting the global counter to a strand upon a cilk_spawn, which ensures that two strands

from different procedures will not have the same label. Since this is the only time we generate

a new label (in the case of entry to a Cilk function, the label is inherited from the calling

strand), strands in the same procedure must have the same label.

Lemma 3. For strands e, f , and g, if e ∥ g, then e ≺ f and f ≺ g cannot both be true.

Proof. Immediate consequence of the transitivity of the ≺ relation.

Lemma 4. If strands e, f , and g are explored in that order, e.label = f.label, and f ∥ g,

then e ∥ g.

Proof. Suppose not, and e ∦ g. Then either g ≺ e (which is impossible because e is explored

before g), or e ≺ g. In the latter case, we know from Lemma 2 and the exploration order that

e and f are from the same procedure, with e ≺ f . Since f ∥ g, g and f (and therefore g and

e) are from different procedures, there must be some cilk_spawn leading to g encountered

on e’s procedure, which occurs after e is explored but before f is explored. But then the

exploration order is e, g, f , a contradiction.

Lemma 5 (Lemma 7 in [3]). If strands e, f , and g are explored in that order, then

(e ∥ f) ∧ (f ∥ g) =⇒ e ∥ g

Theorem 3. The procedure labeling scheme correctly detects determinacy races.

33

Proof. Armed with these lemmas, I first show that if a determinacy race exists, it will be

detected. Consider strands x and y which both access memory location ℓ, with at least one

access being a write. Suppose x precedes y in the depth-first exploration, and let us consider

the earliest y with a determinacy race with x at ℓ. Consider each case:

1. Suppose the memory access in x is a write. Then, I show the following claims in order:

(a) Immediately after x writes to ℓ, the last strand to have updated writer(ℓ) and

wlabel(ℓ) is logically in parallel with y.

• Let this last strand be w. Then, w.label = x.label, since for any write, line

20 updates wlabel(ℓ) to the label of the writer if they differ. Substituting

(w, x, y)→ (e, f, g) in Lemma 4 yields the result.

(b) Immediately before y writes to ℓ, writer(ℓ) is in a P-bag, and wlabel(ℓ) ̸= y.label.

• First, notice that if writer(ℓ) is in a P-bag, Lemmas 1 and 2 imply wlabel(ℓ) ̸=

y.label. To prove that writer(ℓ) is in a P-bag, suppose not. Then, by (a),

there must be some strand w explored after x which updated writer(ℓ), with

w ≺ y. Substituting (x,w, y) → (e, f, g) in Lemma 3, we find that x ∥ w,

which contradicts y being the earliest strand racing with x at ℓ.

2. Otherwise, x’s access is a read and y’s access is a write. We can prove statements

analogous to those in the first case:

(a) Immediately after x’s read is executed, the last strand to have updated reader(ℓ)

and rlabel(ℓ) is logically in parallel with y.

• When x writes to ℓ, lines 26-27 update reader(ℓ) and rlabel(ℓ) with the

exception of two cases. One is if the previous strand w to update these is in

a P-bag, in which case Lemma 5 applies, and (w ∥ x) ∧ (x ∥ y) =⇒ (w ∥ y).

The other is if the previous strand w satisfies w.label = x.label, in which case

Lemma 4 applies, and again w ∥ y.

34

(b) Immediately before y writes to ℓ, reader(ℓ) is in a P-bag, and rlabel(ℓ) ̸= y.label,

• Again, we only need to prove the first statement, as it implies the second.

Suppose reader(ℓ) is in an S-bag (and is therefore in series with x). Then,

by (a), there must be some strand explored after x which updated rlabel(ℓ),

such that it is in series with y. Let w be the earliest strand to be explored out

of these. Now, our contradiction arises from the fact that w can only update

reader(ℓ) if the previous entry was in an S-bag. To be precise, when w writes

to ℓ, the previous entry in reader(ℓ) must be in a P-bag, as otherwise, we

would have an even earlier strand in series with y which updated reader(ℓ)

after x is explored.

In both cases, the final claim immediately proves that a determinacy race will be detected

during y’s memory access.

I now prove the opposite direction, that no determinacy race will be detected if none

exists. Consider any execution which reports a race on location ℓ. Let us ignore memory

locations other than ℓ, as different memory locations do not interact, and assume that the

execution ends with the first race report of ℓ. First, notice that writes which were processed

with a fast path do not change the state of the algorithm, so we can simply remove any fast

path writes from the execution while maintaining the existence of a race report. Similarly,

we can remove any reads for which a fast path skipped updates to reader(ℓ). Finally, any

reads for which a fast path skipped the race report at ℓ can be considered to not have this

fast path, as a race report of ℓ occurs in the execution anyway. What remains is a normal

SP bags execution with a race at ℓ - by correctness of SP bags, there must be a race.

3.2.2 Implementation

This section describes the implementation of the procedure labeling scheme in Cilksan [8].

First, I briefly describe some relevant data types in Cilksan:

35

• A FrameData_t object represents a frame in Cilksan.

• A SimpleShadowMem object represents the shadow memory.

• Each SimpleShadowMem contains one SimpleDictionary object representing reader

and another representing writer.

• Each SimpleDictionary contains a table of Page_t objects which together encapsulate

the memory the program uses. While Page_t objects represent large chunks, 230 bytes

to be precise, of contiguous memory, they do not necessarily align with the pages used

by the operating system. The Page_t objects store procedure IDs during memory

accesses as described in SP-bags.

In my implementation of the procedure labeling scheme, each Page_t object maintains an

array of 230 64-bit labels in which we may store labels during any memory access to any of

the Page_t object’s memory locations. While using 64-bit labels seems inordinate, 32-bits

is insufficient, as there could feasibly be programs with more than 232 ≈ 4× 109 spawns.

Each FrameData_t object has a label attribute. FrameData_t objects generated by a

spawn have a new label generated during their creation from an incrementing global counter,

whereas FrameData_t objects generated from entry into a Cilk function receive their label

from their parent frame, just as in Algorithm 3. The logic for the fast paths resides in a

function called checkAndSetLabels, which is called by Cilksan’s read and write functions

and reports whether these functions can return early. checkAndSetLabels handles large

reads and writes by sequentially checking/updating each memory location in turn within the

Page_t object.

3.3 Prefix labeling scheme

In the prefix labeling scheme, strands are labeled with vectors. The goal is for e ≺ f to be

true iff e.label is a prefix of f.label, but the given algorithm ends up with a small exception

36

to this. Section 3.3.1 describes the algorithm in pseudocode and presents theoretical results,

and Section 3.3.2 describes the implementation of the scheme in Cilksan.

3.3.1 Algorithm and correctness

Algorithm 4 Prefix labeling scheme
1: S/P-bag maintenance:
2: spawn of frame F
3: SF ← MAKE-SET(F)
4: PF ← ∅
5: F ′.label = F.label + [F.numChildren] ▷ This signifies appending to an array
6: F.numChildren = F.numChildren+ 1
7: enter Cilk function frame F ′ from frame F
8: SF ′ ← MAKE-SET(F ′)
9: PF ′ ← ∅

10: F ′.label = F.label
11: sync in frame F , return from spawn, or return from Cilk function
12: Same as in Algorithm 2
13:
14: Shadow memory maintenance:
15: write to shared location ℓ by procedure F

16: if wlabel(ℓ) ̸= F.label then
17: wlabel(ℓ)← F.label
18: writer(ℓ)← F

19: if rlabel(ℓ) is a prefix of F.label and wlabel(ℓ) is a prefix of F.label then
20: continue
21: if FIND-SET(reader(ℓ)) is a P-bag or FIND-SET(writer(ℓ)) is a P-bag then
22: Report race
23: read of shared location ℓ by procedure F

24: if wlabel(ℓ) is not a prefix of F.label and FIND-SET(writer(ℓ)) is a P-bag then
25: Report race
26: if rlabel(ℓ) ̸= F.label and FIND-SET(reader(ℓ)) is an S-bag then
27: rlabel(ℓ)← F.label
28: reader(ℓ)← F

Algorithm 4 outlines the prefix labeling scheme. As before, we generate a new label only

when a frame is spawned, rather than when a Cilk function is entered, so that again all

strands within the same procedure share a label. However, unlike in the procedure labeling

scheme, the prefix labeling scheme attempts to encode even more information into labels.

37

Figure 3.3: An example Cilk control-flow DAG illustrating the prefix labeling scheme

When cilk_spawn spawns a frame F ′ from frame F , line 5 gives F ′ a label one element

longer than F.label; this new label contains F.label as a prefix. Figure 3.3 shows an example

execution of the prefix labeling scheme.

Before starting on the proof of correctness, we can see that the prefix labeling scheme

strongly resembles the procedure labeling scheme. In fact, other than the way the labels

are generated and the fast-passes of specifically the race reports, the two are identical in

behavior. This will make our proof much simpler, as we can just refer to the previous

section’s results. There are two key lemmas we will need to do this:

Lemma 6. Each label in Algorithm 4 maps to a single procedure, and vice versa.

Proof. One direction of this is clear - any procedure can have at most one label among its

strands, as new labels are generated only during a cilk_spawn. For the other direction,

consider the Cilk control-flow DAG of any Cilk execution and any label Q given during this

execution. We can use the fact that labels encode the history of their ancestor procedures

to recover which procedure’s creation generated Q. Suppose the last value in Q is n. Then,

the procedure which generated Q was the nth subprocedure of its parent. By continuing this

process for all of the values in Q until we reach the original main() procedure, we uniquely

describe the location of Q’s procedure in the Cilk control-flow DAG, which demonstrates its

uniqueness.

Lemma 7. For strands e and f explored in that order, if e.label is a prefix of f.label, then

e ≺ f .

38

Proof. The same logic as in the proof of Lemma 6 shows that for procedures E ∋ e and

F ∋ f , if E’s label is a prefix of F ’s label, then E is an ancestor of F (that is, there is

some cilk_spawn statement within A which leads to B). Since e is explored before f , the

aforementioned cilk_spawn statement must occur after e, so that e ≺ f .

We can now prove the correctness of Algorithm 4.

Theorem 4. The prefix labeling scheme correctly detects determinacy races.

Proof. Consider some Cilk execution and its associated labels generated by the procedure

labeling scheme and the prefix labeling scheme. According to Lemma 6 and Lemma 2 in

Section 3.2.1, both schemes assign the same labels to strands e and f iff they are from the

same procedure. Furthermore, the procedure labeling scheme doesn’t use any comparison

between two labels except for the equality operator =, so replacing the label generation in the

procedure labeling scheme with prefix labels does not change the algorithm behavior. After

doing this, the algorithms only differ in their treatment of fast-passing the “Report race”

statements (lines 25 and 30 of Algorithm 3 and lines 27 and 30 of Algorithm 4). Specifically,

the only difference between the algorithms’ behavior is that the prefix labeling scheme will

never report a race against a previous read/write at ℓ if rlabel(ℓ)/wlabel(ℓ) is a prefix of

the current strand’s label. But now, Lemma 7 shows that this fast-pass does not cause

correctness issues.

3.3.2 Implementation

This section describes the implementation of the prefix labeling scheme in Cilksan.

The prefix labeling scheme implementation resembles that of the procedure labeling

scheme seen in Section 3.2.2 - again, we store an array of 230 64-bit labels within each

Page_t object, and checkAndSetLabels houses the fast path logic seen in Algorithm 4. The

main difference is in the implementation of prefix labels. As our prefix labels are only 64

39

bits, we cannot directly store the sequences of values used as labels in Algorithm 4, so a new

method must be determined.

A first approach might be to label the first procedure main() as a 1, then append a bit

for each new child of main(), so the first child’s label is 10 and the second child’s label is

112. This runs into an issue if main() has more than two children, though, as there is no

label left for the third child.

A solution to the above approach is to relabel the continuation strand after a spawn. For

example, main() might start with the label 1, and after spawning a child, the child’s label

is 10, while the main() frame is relabeled 11 after the spawn. This might initially seem

to upend some of the equality checking of labels we do in Algorithm 4, namely in lines 16

and 26, but notice that we can always recover a notion of “equality” of labels by stripping

away any trailing ones from the label. The implementation I use essentially does this, but

relabels the continuation less frequently by treating appends to a label as values in base

4. To illustrate this difference using previous example, main()’s first child’s label becomes

100, its second child’s label becomes 101, its third child’s label becomes 110, and finally

we relabel the continuation of the third child’s spawn as 111. This variation of the scheme

makes continuation labels smaller at the expense of making spawns slightly more expensive.

3.4 Performance analysis

This section presents the empirical results of implementing the labeling schemes earlier in

the chapter. The labeling schemes are tested on three benchmarks:

• parallelPrefix takes an integer input n and computes the prefix sum of an array of

size 2n using the parallel prefix algorithm found in [9], using a base case of size 64.

• cilksort takes an integer input n and sorts an array of size n using a parallel sorting

algorithm similar to merge sort.
2Note that these label values are in binary, not decimal

40

• matmul takes an integer input n and computes the product of two n×n matrices using

a parallel cache-oblivious algorithm.

While the code for parallelPrefix is not public, the code for cilksort and cholesky

can be found at https://github.com/neboat/opencilk-ppopp-23-ae. Three input sizes were

chosen for each benchmark, aiming for a 1 to 10 second runtime for each input size with no

labeling scheme. The input sizes grow exponentially in each case, to better illustrate how

input size affects performance.

Table 3.1 shows the number of times during the execution of the code that each la-

beling scheme took a fast path, along with the total number of opportunities to do so.

These were measured by counting the number of times the core labeling scheme procedure,

checkAndSetLabels returned false to indicate it took a fast path, versus how many times

checkAndSetLabels was called. We measure the number of checkAndSetLabels calls rather

than the number of total memory accesses because other fast paths might already exist in

Cilksan which circumvent our labeling scheme on some memory accesses. Table 3.2 shows

the runtime of each benchmark/labeling scheme pair, along with the runtime without any

labeling scheme and the runtime with an “occupancy bit optimization" explained below.

While the fast path counts in Table 3.1 include the entire execution of each benchmark, in-

cluding setup of data structures like arrays for parallelPrefix and cilksort and matrices

for matmul, the runtimes in Table 3.2 measure only the algorithm runtime.

There are several points of note:

1. Both labeling schemes discovered safe fast paths in a large fraction of the calls to

checkAndSetLabels, in all benchmarks except matmul.

2. Neither labeling scheme outperforms the runtime of the original Cilksan without label-

ing. Instead, the runtime is many times higher in each benchmark with either labeling

scheme than without. This suggests that the overhead of maintaining a 64-bit label for

each memory location is immense and overshadows the benefits of labeling schemes’

41

Procedure LS % Prefix LS % Total Number of Calls
parallelPrefix 25 17825706 50.75 19399896 55.23 35127167
parallelPrefix 26 35651497 50.75 38798631 55.23 70254460
parallelPrefix 27 71303080 50.75 77596023 55.22 140509049
cilksort 3× 106 49623958 38.95 106452010 83.56 127397698
cilksort 6× 106 105946009 39.97 224343314 84.64 265065244

cilksort 1.2× 107 198517738 35.60 473166534 84.85 557671331
matmul 256 37440 0.2219 61440 0.3655 16873472
matmul 512 299584 0.2219 507904 0.3762 134995968
matmul 1024 2396736 0.2219 4128768 0.3823 1080000512

Table 3.1: The number of times a fast path was used to shortcut S/P bag FIND-SET oper-
ations. The final column shows the total number of calls to checkAndSetLabels for each
benchmark/input size. Each column with a “%" shows the ratio of the previous column to
the final column as a percentage.

Procedure LS Prefix LS No LS Occupancy Bit Optimization
parallelPrefix 25 7.52 9.31 2.12 1.69
parallelPrefix 26 16.02 19.39 4.88 3.40
parallelPrefix 27 29.03 37.13 9.30 7.98
cilksort 3× 106 6.90 6.29 1.61 1.61
cilksort 6× 106 8.88 10.89 3.57 3.29

cilksort 1.2× 107 18.79 21.02 7.25 6.97
matmul 256 2.17 2.15 0.17 0.16
matmul 512 5.26 4.70 1.20 1.13
matmul 1024 28.99 27.39 8.93 8.84

Table 3.2: Runtimes in seconds (rounded to nearest hundredth of a second)

42

fast paths. Chapter 5 discusses alternatives to the costly approach taken here which

could potentially overcome this issue.

3. The percentage of calls to checkAndSetLabels in which the code takes a fast path

is highly dependent on the specific parallel program and labeling scheme, and seems

largely oblivious to the input size beyond a point. This can be seen in Table 3.1

in the fact that each benchmark/labeling scheme combination has roughly the same

percentage for each of the three input sizes, but large variance exists amongst the

benchmarks and labeling schemes. Furthermore, even the relative benefit of the prefix

labeling scheme over the procedure labeling scheme seems very program dependent, as

seen in that parallelPrefix sees a small increase from 50% to 55%, and cilksort

sees a much more marked increase of 38% to 84%. This might suggest that algorithms

or their implementations have specific parallel structures which hinder attempts at

general optimizations.

4. The prefix labeling scheme outperforms or closely matches the procedure labeling

scheme runtime in many of the runs of cilksort and matmul, benchmarks which

also have a much larger number of fast paths taken for the prefix scheme than the

procedure scheme. This correlation isn’t strong enough to make definite claims, but

might lend credence to the previous hypothesis that the poor runtime of our labeling

schemes is due to a large fixed overhead of maintaining labels, rather than excessive

logic in the fast paths; after all, the procedure labeling scheme has very little logic

whereas the prefix labeling scheme has much more. This observation may also support

the reduction of S/P bag operations as a fruitful avenue of performance engineering of

Cilksan.

5. The occupancy bit (see Chapter 4) optimization in the final column of Table 3.2 mildly

improves the runtime of Cilksan. As this optimization was inspired by the labeling

schemes, I decided to include it in the thesis as an adjacent result without devoting

43

too much explanation to it. The optimization removes the clearing of the occupancy

bit hashmap that occurs during a sync, motivated by the fact that the strand f after

the sync is parallel to some strand g only if the strand e before the sync is parallel

to g. Since Cilksan processes e immediately before f , we can keep e’s occupancy bits

while processing f .

44

Chapter 4

Related work

Labeling strands for the purpose of maintaining series/parallel relationships is well-documented

in literature. In Nudler and Rudolph’s English-Hebrew labeling [5], we produce two sets of

labels which can jointly determine whether any two strands are in series or parallel. One

set, called the English labels, mirrors the exploration order of the strands during a preorder

traversal of the spawn call tree, visiting spawned strands from “left-to-right”. The other set,

the Hebrew labels, is the same, except strands are explored from “right-to-left”. While the

exploration order of an ancestor will always be smaller than a child in both English and

Hebrew labels, two strands logically in parallel will be explored in different orders in the

English and Hebrew scheme, which allows for differentiability between strands in series and

strands in parallel. Furthermore, labels may be generated on-the-fly while executing in par-

allel, although in this case the label length grows linearly with the depth of nesting (as well

as the number of syncs that are the first sync within their procedure). Crummey improves

upon the asymptotic behavior of English-Hebrew labels with Offset-Span labeling [4]. This

scheme is similar to prefix labeling (Section 3.3) in that each strand u which arose as the

nth child of a forking strand v is labeled with a combination of n and u.label. We refer to n

as the “offset”. The scheme differs in that each offset is accompanied by the total number of

strands spawned during the fork, which impacts the labels of strands that form after a sync.

45

Offset-Span labels’ length still grows linearly with the depth of nesting, but no longer has

dependence on the number of syncs encountered on the path to a strand.

Strand labels can also be used for purposes other than series/parallel maintenance. Leiser-

son, Schardl, and Sukha describe an implementation of deterministic parallel random-number

generation [10] called DotMix, whose goal is to eliminate nondeterminacy in multithreaded

programs which use random number generation. DotMix uses spawn pedigrees, which again

are similar to the prefix labels in Section 3.3, as unique identifiers for each procedure. Dot-

Mix generates pseudorandom numbers by combining a seed with a spawn pedigree, then

hashing both to reduce the size of the pedigree with a pairwise-independent hash family, and

finally applying other “mixing" functions to the result of the hash. The uniqueness of spawn

pedigrees (a property also used in prefix labeling) is essential to the guarantees provided by

DotMix.

Apart from labeling, race detection has seen asymptotic improvements since SP-bags.

Bender, Fineman, Gilbert, and Leiserson’s SP-order algorithm achieves more efficient se-

ries/parallel maintenance than the S/P-bag maintenance seen in SP-bags, eliminating the

inverse Ackermann function α(ν, ν) from the runtime and yielding an optimal serial race

detector. Rather than using a union-find data structure, the algorithm uses an “order-

maintenance data structure” which maintains a total order of the strands of the parallel

program with only constant-time operations. By keeping two such total orders and encoding

a strands’ English labels in one and their Hebrew labels in another, a more efficient English-

Hebrew labeling is achieved. Utterback, Agrawal, Fineman, and Lee’s work in [11] build upon

this work with the WSP-Order, an algorithm that performs series/parallel maintenance in

O(T1/p+T∞) time, which is asymptotically optimal. WSP-Order uses a parallelized version

of SP-order, which requires a modified work-stealing scheduler and a parallel version of the

order-maintenance data structure without additional asymptotic overhead.

Other work focuses on optimizing the access history maintenance (SP-bags’ version of

this is the shadow memory maintenance) of race detectors, rather than the series/parallel

46

maintenance. Xu, Zhou, Yin, and Agrawal observe in [7] that the memory accesses of a strand

are often done to contiguous chunks of memory at a time (for example, reading an array)

and/or to the same memory location many times1. This observation motivates their use of

spatial and temporal coalescing in race detection. Spatial coalescing involves the treatment

of memory accesses in the access history as intervals rather than single locations. Their work

uses a tree structure to store and maintain these intervals, and achieves an O(log n + T1)

bound on the total cost of their algorithm, where n is the number of intervals rather than the

number of shared memory locations. Temporal coalescing employs a bit hashmap to track

which locations have already been read from/written to during the execution of the current

strand. The purpose of the bitmap is to ensure that only one access of each type (read or

write) will be processed by the race detector for each strand. This bitmap exists in Cilksan

as an “occupancy bitmap” [8], which, as currently written, clears all occupancy bits during

any spawn or sync so that each strand has a fresh bit hashmap.

1This observation also explains why LRU caches work well.

47

48

Chapter 5

Conclusion

I conclude by discussing directions for future research on optimizing labeling schemes and

Cilksan.

First and foremost, I believe the runtime of the labeling schemes can be improved by a

more involved performance engineering of their implementations. Due to the scope of my

project, the complexity of Cilksan, and system limitations, I did not significantly performance

engineer the fast path logic, and I was unable to fully explore better methods for label

maintenance than essentially a large array storing a label for each memory location. One

possibility for improvement in this area is spatial coalescing of labels via storing them directly

alongside memory accesses. Another promising possibility is to implement the procedure

labeling scheme with no label maintenance overhead at all, by modifying frames to write a

procedure ID instead of a frame ID into the shadow memory, and directly using the shadow

memory entries as labels. While this seems simple, Section 3.4 shows that the procedure

labeling scheme created many fast paths despite its simplicity, so this area of future work

could potentially significantly improve Cilksan.

Another direction of research motivated by the results of Section 3.4 is improving the

understanding of the structure of Cilk programs. Each of the benchmarks in Table 3.1

had very little variation among its input sizes in the percentage of memory accesses for

49

which the labeling schemes used a fast path. However, this percentage varied greatly from

benchmark to benchmark. This hints at some interesting structural properties of these

algorithm implementations in Cilk. If structural properties that make programs amenable

to a large number of fast paths can be granted during compile time, further research might

be warranted in modifying the compiler to do so. As an example, suppose we have a strand e,

after which a spawn creates a spawned strand f and a continuation strand g. The procedure

labeling scheme works better if e and g have many memory accesses to the same locations

than if e and f do - however, which strand is spawned and which becomes the continuation

does not matter from the perspective of race detection, so the Cilksan compiler should be

free to switch the two during compile time. The above discussion on structural properties

that ease race detection is not limited to labeling schemes - the same argument might hold

for occupancy bits.

50

References

[1] S. Amarasinghe, S. Devadas, and C. E. Leiserson, 6.1060 - software performance en-

gineering, Fall 2022.

[2] R. H. B. Netzer and B. P. Miller, “What are race conditions? some issues and formal-

izations,” ACM Lett. Program. Lang. Syst., vol. 1, no. 1, pp. 74–88, Mar. 1992, issn:

1057-4514. doi: 10.1145/130616.130623. url: https://doi.org/10.1145/130616.130623.

[3] M. Feng and C. E. Leiserson, Efficient detection of determinacy races in cilk programs,

1997.

[4] J. Mellor-Crummey, “On-the-fly detection of data races for programs with nested fork-

join parallelism,” in Supercomputing ’91:Proceedings of the 1991 ACM/IEEE Confer-

ence on Supercomputing, 1991, pp. 24–33. doi: 10.1145/125826.125861.

[5] I. Nudler and L. Rudolph, “Tools for the efficient development of efficient parallel pro-

grams,” in Proceedings of the first Israeli conference on computer systems engineering,

1986, pp. 4–1.

[6] M. A. Bender, J. T. Fineman, S. Gilbert, and C. E. Leiserson, “On-the-fly maintenance

of series-parallel relationships in fork-join multithreaded programs,” in Proceedings of

the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures,

ser. SPAA ’04, Barcelona, Spain: Association for Computing Machinery, 2004, pp. 133–

144, isbn: 1581138407. doi: 10.1145/1007912.1007933. url: https://doi.org/10.1145/

1007912.1007933.

51

https://doi.org/10.1145/130616.130623
https://doi.org/10.1145/130616.130623
https://doi.org/10.1145/125826.125861
https://doi.org/10.1145/1007912.1007933
https://doi.org/10.1145/1007912.1007933
https://doi.org/10.1145/1007912.1007933

[7] Y. Xu, A. Zhou, G. Q. Yin, K. Agrawal, I.-T. A. Lee, and T. B. Schardl, “Efficient

access history for race detection,” in Proceedings of the 33rd ACM Symposium on

Parallelism in Algorithms and Architectures, ser. SPAA ’21, Virtual Event, USA: As-

sociation for Computing Machinery, 2021, pp. 449–451, isbn: 9781450380706. doi:

10.1145/3409964.3461825. url: https://doi.org/10.1145/3409964.3461825.

[8] T. B. Schardl and I.-T. A. Lee, “Opencilk: A modular and extensible software in-

frastructure for fast task-parallel code,” in Proceedings of the 28th ACM SIGPLAN

Annual Symposium on Principles and Practice of Parallel Programming, ser. PPoPP

’23, Montreal, QC, Canada: Association for Computing Machinery, 2023, pp. 189–203,

isbn: 9798400700156. doi: 10.1145/3572848.3577509. url: https://doi.org/10.1145/

3572848.3577509.

[9] J. JáJá, An introduction to parallel algorithms. USA: Addison Wesley Longman Pub-

lishing Co., Inc., 1992, isbn: 0201548569.

[10] C. E. Leiserson, T. B. Schardl, and J. Sukha, “Deterministic parallel random-number

generation for dynamic-multithreading platforms,” SIGPLAN Not., vol. 47, no. 8,

pp. 193–204, Feb. 2012, issn: 0362-1340. doi: 10.1145/2370036.2145841. url: https:

//doi.org/10.1145/2370036.2145841.

[11] R. Utterback, K. Agrawal, J. T. Fineman, and I.-T. A. Lee, “Provably good and prac-

tically efficient parallel race detection for fork-join programs,” in Proceedings of the

28th ACM Symposium on Parallelism in Algorithms and Architectures, ser. SPAA ’16,

Pacific Grove, California, USA: Association for Computing Machinery, 2016, pp. 83–

94, isbn: 9781450342100. doi: 10.1145/2935764.2935801. url: https://doi.org/10.

1145/2935764.2935801.

52

https://doi.org/10.1145/3409964.3461825
https://doi.org/10.1145/3409964.3461825
https://doi.org/10.1145/3572848.3577509
https://doi.org/10.1145/3572848.3577509
https://doi.org/10.1145/3572848.3577509
https://doi.org/10.1145/2370036.2145841
https://doi.org/10.1145/2370036.2145841
https://doi.org/10.1145/2370036.2145841
https://doi.org/10.1145/2935764.2935801
https://doi.org/10.1145/2935764.2935801
https://doi.org/10.1145/2935764.2935801

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Cilk
	1.2 Cilksan and race detection
	1.3 My contributions
	1.4 Outline

	2 Background
	2.1 Cilk control-flow DAGs
	2.2 The SP-bags algorithm
	2.3 Nested cilkscopes and Cilk functions

	3 Labeling schemes
	3.1 Motivation and definition
	3.2 Procedure labeling scheme
	3.2.1 Algorithm and correctness
	3.2.2 Implementation

	3.3 Prefix labeling scheme
	3.3.1 Algorithm and correctness
	3.3.2 Implementation

	3.4 Performance analysis

	4 Related work
	5 Conclusion
	References

