
Experimental Evaluation of Underwater Semantic SLAM

by

Thomas Jeongho Song
B.A., Royal Military College of Canada, 2017

Submitted to the Department of Mechanical Engineering and the
Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

MASTER OF SCIENCE IN NAVAL ARCHITECTURE AND MARINE ENGINEERING

and

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2024

© 2024 Thomas Jeongho Song. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Thomas Jeongho Song
Department of Mechanical Engineering
August 9, 2024

Certified by: John J. Leonard
Professor of Mechanical and Ocean Engineering, Thesis Supervisor

Certified by: Pulkit Agrawal
Assoc. Professor of Electrical Engineering and Computer Science, Thesis Supervisor

Accepted by: Nicolas Hadjiconstantinou
Professor of Mechanical Engineering
Graduate Officer, Department of Mechanical Engineering

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

https://creativecommons.org/licenses/by-nc-nd/4.0/

2

Experimental Evaluation of Underwater Semantic SLAM
by

Thomas Jeongho Song

Submitted to the Department of Mechanical Engineering and the
Department of Electrical Engineering and Computer Science

on August 9, 2024 in partial fulfillment of the requirements for the degrees of

MASTER OF SCIENCE IN NAVAL ARCHITECTURE AND MARINE ENGINEERING

and

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

ABSTRACT

Autonomy is crucial for underwater vehicles due to the challenging and inaccessible na-
ture of underwater environments. These environments pose significant difficulties for human-
operated systems because of limited visibility, high pressure, and vast areas that are costly
and risky to explore manually. Implementing autonomy in underwater vehicles presents
unique challenges due to the marine environment’s harsh and complex nature. Underwa-
ter communication is severely limited as water absorbs and scatters most electromagnetic
signals used in terrestrial communications. This necessitates the use of acoustic communi-
cation, which has a lower bandwidth and is prone to delays and signal distortion. Similarly,
GPS signals do not penetrate water, complicating navigation and creating dependence on
inertial and sonar sensors, which suffer from noisy measurements that are guaranteed to
drift over time. The unpredictable dynamics of underwater environments, including varying
currents, lighting conditions and obstacles, further complicate autonomous navigation. As
such, data collection while moving through a preplanned course is the traditional mission of
the Autonomous Underwater Vehicle (AUV), defining the limitation of current technology.
Higher-level missions such as search, surveillance, maintenance and manipulation require
greater situational awareness, decision-making and navigation abilities, facilitated by pro-
cessing semantic visual information and applying it to map generation and localization.

To address the limited autonomy of current AUVs and enhance their capability for com-
plex missions, this thesis presents the development and evaluation of a real-time, monocular
visual-inertial semantic Simultaneous Localization and Mapping (SLAM) system for under-
water environments, implemented on the cost-effective BlueROV2 platform. The research
aims to enhance AUV autonomy and enable complex underwater missions through improved
navigation and semantic mapping capabilities. Key contributions include the integration of a
custom-trained object detector for underwater environments, adaptation of a hybrid SLAM
algorithm combining Gaussian and Non-Gaussian landmarks for underwater operation, pre-
liminary assessment of the SLAM system’s accuracy using motion capture-based ground
truth measurements, and comparative evaluation of the developed semantic SLAM system
against state-of-the-art alternatives in an indoor pool experiment using the BlueROV2. This

3

work addresses the challenges of underwater navigation and semantic mapping, offering a
potential solution to extend the operational capabilities and mission complexity of affordable
AUV platforms.

Thesis supervisor: John J. Leonard
Title: Professor of Mechanical and Ocean Engineering

Thesis supervisor: Pulkit Agrawal
Title: Assoc. Professor of Electrical Engineering and Computer Science

4

Acknowledgments

It was an immense privilege for me to have been chosen by MIT and the Royal Canadian
Navy to enrol in this prestigious institution. The last two years can only be described as
building my academic foundation, being enlightened by new fields of science and engineering,
and being challenged to my limits both mentally and physically. My success and anything I
have accomplished at MIT is certainly intertwined with the kind efforts of those who have
pushed my back along the way, and I would like to recognize those who have been invaluable
to my MIT experience here.

My research supervisor and head of MIT’s Marine Robotics Group, professor John J.
Leonard, has always been looking far ahead regarding my research and has always provided
invaluable advice every time I needed it. He has always been a wise mentor, steering the
direction of my research to be more productive, and gave me access to the right equipment
and facilities and contact with the right people whenever I had inquiries. I would also like
to deeply thank Associate Professor Pulkit Agrawal for the popular Sensorimotor Learning
course in Spring 2023 as well as graciously accepting to be the reader of this thesis.

My friends at the Marine Robotics Group has always been welcoming and helpful to
me. I must acknowledge: Kurran Singh, who has mentored me since day one of me joining
the lab, allowed me to participate and learn from his experiments, and taught me how to
operate the BlueROV2. QiangQiang "Chad" Huang had already graduated, but he was
incredibly kind and patient with me as he helped me debug my modifications to his original
GAPSLAM code. Jungseok Hong introduced me to my favorite restaurant in Boston, and
as one of the post-docs, have been a great mentor in my research, studies and life in general.
John Paul "JP" Morrison was my lab mate during the Visual Navigation for Autonomous
Vehicles course, and with his exceptional programming skills, found impressive solutions to
some of our lab problems. A proud member of the United States Navy submariners prior to
being admitted to the MIT, he is a great conversationalist and storyteller.

Being involved in various club sports at MIT, I have been privileged to have gotten
to know so many exceptional athletes and coaches. The Kickboxing Club has been my
haven for athletics and extracurricular activities throughout my time at MIT. I would like
to thank MIT research scientist Shan-Yuan "Hoho" Ho, who was a great kickboxing and
Taekwondo coach that helped me take home a bronze medal at the National Collegiate
Taekwondo Association tournament in 2023. Caio Silva and Tsegazeab Beteselassie, who are
undergraduate students will always have a place in my heart as they acted as my right hand
and left hand in successfully managing the club when it became time for me to step up and
take on leadership. Additionally, the Brazilian Jiujitsu Club has been a very fun place to
hang out, relieve stress and learn something new. I would like to thank Alex, Remeyn, Noah

5

and Max for teaching me grappling throughout this year.
To my United States Navy Academic Advisors Cdr Douglas Jonart and Cdr Christopher

MacLean, I owe gratitude as they advised me on my academic course requirements for
graduation, and approved my registration. I will not forget the remarkable presentations
from the 2N events such as the Ship Design and Technology Symposium.

Although apart, my family has always been by my side virtually, sending messages of love
and helping me with taking care of administration back in Canada. I would like to thank
my mother Sanghee, brother Jaeson, father Kineung and sister Cathy, who have helped me
get some peace of mind to completely concentrate on my studies here.

Thanks to you all as always,

TJ

6

Biographical Notes

Thomas Jeongho "TJ" Song has graduated from the Royal Military College of Canada with
a Bachelor’s Degree of Applied Science in Electrical Engineering in 2017. After five years
of service as a Marine Systems Engineer on both Atlantic and Pacific coasts, he was spon-
sored by the Royal Canadian Navy to enrol in MIT and United States Navy’s 2N program
in 2022, to pursue a Masters of Science Degree in Naval Architecture and Marine Engineering.

During his time at MIT, he was admitted to the Marine Robotics Group and the Elec-
trical Engineering and Computer Science Department in 2023 to work on visual SLAM and
computer vision research for underwater vehicles. Additionally, he earned the Graduate
Certificate in Technical Leadership from the MIT-Gordon Engineering Leadership Program.

7

8

Contents

Title page 1

Abstract 3

Acknowledgments 5

Biographical Sketch 7

List of Figures 13

List of Tables 17

List of Acronyms 19

1 Introduction 21
1.1 Motivation . 21
1.2 Summary of Contributions . 25
1.3 Thesis Overview . 26

2 Literature Review 27
2.1 Visual SLAM . 27

2.1.1 Factor Graphs . 27
2.1.2 Front-End . 28
2.1.3 Back-End . 32
2.1.4 Interaction Between Front-End and Back-End 32

2.2 Related Work . 33
2.2.1 Underwater Monocular SLAM . 33
2.2.2 Underwater Visual SLAM with Sensor Fusion 34
2.2.3 Underwater Semantic Visual SLAM with Sensor Fusion 35

2.3 GAPSLAM . 36
2.3.1 Gaussian Approximation . 36
2.3.2 Marginal Posterior of Non-Gaussian Landmarks 38
2.3.3 Reinitialization . 39
2.3.4 GAPSLAM Data Association . 40

2.4 Object Detectors . 40
2.4.1 Detic . 41

9

2.4.2 YOLO . 41
2.5 Summary . 42

3 Preliminary Study 43
3.1 Evaluation of SLAM . 43

3.1.1 Ground Truth . 43
3.1.2 EVO . 44

3.2 Vicon Room Experiment . 44
3.2.1 Differences from Original GAPSLAM Experiment 49

3.3 Summary . 51

4 Methodology 53
4.1 Hardware . 53
4.2 Robot Operating System . 54
4.3 Redis Server . 54
4.4 EKF Odometry . 55
4.5 Custom YOLOv8 Model Training . 56
4.6 Summary . 58

5 Results and Analysis 61
5.1 Introduction . 61
5.2 Z-Center Pool Experiment . 61
5.3 Results . 63
5.4 Analysis . 67
5.5 Summary . 68

6 Discussion 69
6.1 Limitations of Monocular SLAM . 69
6.2 Mahalanobis Distances in GAPSLAM . 70
6.3 Troubleshooting . 71

6.3.1 Unexpected Behavior of Custom YOLOv8 Model 71
6.3.2 MIT Tank Experiment with Detic and GoPro9 72
6.3.3 Effects of Running Parameters on GAPSLAM 73
6.3.4 Visual vs Inertial Odometry Covariance 74

7 Conclusion 77
7.1 Summary of Contributions . 77
7.2 Comparison with Related Work . 77
7.3 Future Research . 78

7.3.1 EKF Odometry Covariance Measurement 78
7.3.2 Domain Shift . 78
7.3.3 Batch Data Association . 80
7.3.4 Interface with Control System via Mission Planner 81

7.4 Conclusion . 82
7.5 Summary . 82

10

References 83

11

12

List of Figures

1.1 The seven levels of marine autonomy as described in the Lloyd’s Register [8].
Level 0 is Manual Operation, without any automation. Level 1 is Low Au-
tomation, which include automated alarms and remote sensors. Level 2 is
Partial Automation, also known as ’human-in-the-loop’, which are automated
tasks that leave room for operators to make a decision. Level 3 is Condi-
tional Automation, also known as ’human-on-the-loop’, which are automated
tasks that do not require constant oversight but leaves room for human inter-
vention when the system encounters unexpected situations. Level 4 is High
Automation, where human intervention is limited within the vehicle’s opera-
tional domain. Level 5 is Full Automation, where no personnel are required
to be on board. Level 6 is unmanned and full automated. 22

1.2 Left: forward facing perspective in a bright environment [12]. Right: down-
wards perspective in a dark environment [13]. Both have significant regions
that lack features due to illumination effects. The bright environment is also
closer to the surface, so air bubbles and their reflections can be seen. The
dark environment is filled with drifting marine snow. 23

1.3 Image of a Remote Environment Monitoring Units (REMUS) 100 unit created
by Woods Hole Oceanographic Institution (WHOI) and Kongsberg Maritime.
During Operation Iraqi Freedom in 2003, the U.S. Navy used REMUS ve-
hicles to detect mines in the Persian Gulf harbor. Navy officers said they
preferred REMUS Autonomous Underwater Vehicles (AUV)s because each
could do the work of 12 to 16 human divers, and they were “undeterred by
cold temperatures, murky water, sharks, or hunger.” [21] 25

2.1 Visualization of Visual Odometry (VO) showing Inertial Measurement Unit
(IMU) integration [34], where f is the focal point, c is the center of the camera,
zfj represents odometry factors from matched features and zL are observation
factors generated from features or landmarks in the image frame. 28

2.2 A simple visualization of the factor graph as it is used in Simultaneous Lo-
calization and Mapping (SLAM), given by Lai [26]. Robot state variables X
are depicted as purple nodes, and landmark variables L are depicted as green
nodes. Odometry factors u and observation factors z and depicted as black
vertices. 29

2.3 Comparison of underwater environments . 33

13

2.4 Gaussian Approximation and Particle Filters SLAM (GAPSLAM) image show-
ing relation between the current update of the map being generated to the
current video frame processed by front-end. The purple Gaussian appears as
an ellipsoid on the map and sphere in the video, while the orange particle filter
has a cone shape on the map while having a more rounded appearance in the
video. The difference comes from the map being presented from a bird’s-eye
view downwards perspective while the video is recorded from a human-eye
level forward facing perspective. 37

3.1 Comparison of Detic (red) and You Only Look Once (YOLO) (green) GAPSLAM
and ORB-SLAM3 (blue) against the Vicon motion capture system ground
truth (black slotted) trajectory on Vicon 1 dataset. 45

3.2 x−y−z Comparison of Detic (red) and YOLO (green) GAPSLAM and ORB-
SLAM3 (blue) against the Vicon motion capture system ground truth (black
slotted) trajectory on Vicon 1 dataset. 45

3.3 Comparison of Detic (red) and YOLO (green) GAPSLAM and ORB-SLAM3
(blue) against the Vicon motion capture system ground truth (black slotted)
trajectory on Vicon 2 dataset. 46

3.4 x−y−z Comparison of Detic (red) and YOLO (green) GAPSLAM and ORB-
SLAM3 (blue) against the Vicon motion capture system ground truth (black
slotted) trajectory on Vicon 2 dataset. 46

3.5 Comparison of Detic (red) and YOLO (green) GAPSLAM and ORB-SLAM3
(blue) against the Vicon motion capture system ground truth (black slotted)
trajectory on Vicon 3 dataset. 47

3.6 x−y−z Comparison of Detic (red) and YOLO (green) GAPSLAM and ORB-
SLAM3 (blue) against the Vicon motion capture system ground truth (black
slotted) trajectory on Vicon 3 dataset. 47

3.7 Semantic map of objects and trajectory of YOLO and Detic GAPSLAM pro-
duced in the Vicon 3 dataset for an object detection score of 0.65. Object
classes are not labeled in the figure, but is recorded and can be retrieved. . . 50

3.8 Frame 136 of the Vicon 3 dataset. with original on the left, YOLO without
segmentation in the middle, and Detic with segmentation on the right. . . . 50

3.9 Comparison of adjacent frames processed by Detic in the Vicon 1 dataset. . . 50

4.1 System architecture of online GAPSLAM for the pool experiment. The thin
arrows show the procedural flow of data of GAPSLAM, while the thick arrows
show the dependency of GAPSLAM on Redis for each transfer of data from
one module to another. 53

4.2 MIT Marine Robotics Group’s BlueROV2 and setup. 54
4.3 Precision-Recall (PR) curve. Other than the trash-bin and tire classes, the

object classes have excellent precision and recall. 57
4.4 F1 Confidence Curve, which shows a balanced metric that considers both

precision and recall. It is shown here that the fish-cage and hand-net classes
also have below average confidence for specific ranges of F1 scores. 58

14

4.5 Batch of 16 generated test images for validating prediction in the target en-
vironment. Compared to the original input, generated images are randomly
blurred and rotated. 59

5.1 In order to compare YOLO GAPSLAM to the Opti-Acoustic Semantic SLAM
(OAS-SLAM) Patch Averaging (PA) method [63], the same pool experiment
dataset is used. 62

5.2 One object per each class, one loop of the pool. Ground Truth (GT) is in black,
blue is GAPSLAM, green is Extended Kalman Filter (EKF) odometry, and
red is Uniform Manifold Approximation and Projection (UMAP) OAS-SLAM. 64

5.3 One object per each class, one loop of the pool in x−y−z view. GT is in black,
blue is GAPSLAM, green is EKF odometry, and red is UMAP OAS-SLAM. 64

5.4 Two objects per each class, one loop of the pool. GT is in black, green is
GAPSLAM, blue is EKF odometry, and red is PA OAS-SLAM. 65

5.5 Two objects per each class, one loop of the pool in x − y − z view. GT is in
black, green is GAPSLAM, blue is EKF odometry, and red is PA OAS-SLAM. 65

5.6 Two objects per each class, two loops of the pool. GT is in black, red is
GAPSLAM, blue is EKF odometry, and green is PA OAS-SLAM. 66

5.7 Two objects per each class, two loops of the pool in x− y − z view. GT is in
black, red is GAPSLAM, blue is EKF odometry, and green is PA OAS-SLAM. 66

5.8 Map generated by YOLO GAPSLAM. Objects failed to reinitialize their
Gaussian Approximations, due to incorrect data association. GAPSLAM does
not record objects on the map unless they reinitialize and meet a confidence
threshold. 68

6.1 Mahalanobis Distances Distortion Function Diagram 70
6.2 Solver Function Diagram . 71
6.3 Frame 161 and 162 of the 2obj1loop pool experiment run. The bounding box

has thinner margins around the tire on the left side for 161. 72
6.4 Initial frames of the tank experiment in MIT Building 1-225. 72
6.5 Comparison of landmark uncertainties in different scenarios. 73
6.6 YAML Configuration for the system running parameters. 75
6.7 The green Gaussian-only landmark has been partially cut out from the visu-

alizations in both the left and right GAPSLAM maps because the extrinsic
matrix that transforms the map’s observer from the robot camera’s intrinsic
matrix was not expected to require reconfiguration while in actuality it did.
This is due to an unexpected and significant variance in the trajectory that
occasionally occurs from one run to another. 76

7.1 Sensor measurements Ỹ are received and processed, and a state estimate X̂
is communicated to the rest of the system. The dotted loop indicates active
perception, where the planner proactively chooses its controls uk to reduce
the uncertainty in the predicted state estimate X̂k that is expected after uk
is applied. 81

15

16

List of Tables

3.1 Best Absolute Pose Error (APE) results w.r.t. translation part (m) with
Sim(3) Umeyama alignment for Detic GAPSLAM, YOLOv8 GAPSLAM and
ORB-SLAM3 on Vicon 1 dataset. 45

3.2 Best APE results w.r.t. translation part (m) with Sim(3) Umeyama alignment
for Detic GAPSLAM, YOLOv8 GAPSLAM and ORB-SLAM3 on Vicon 2
dataset. 46

3.3 Best APE results w.r.t. translation part (m) with Sim(3) Umeyama alignment
for Detic GAPSLAM, YOLOv8 GAPSLAM and ORB-SLAM3 on Vicon 3
dataset. 47

3.4 APE w.r.t. translation part (m) with Sim(3) Umeyama alignment for Detic
GAPSLAM on Vicon 3 dataset across different detection score filters. Object
detection score filter of 0.60 failed for default Detic GAPSLAM settings, so
it was omitted. It does successfully run however, if running parameters are
slightly tuned. 48

3.5 APE w.r.t. translation part (m) with Sim(3) Umeyama alignment for YOLOv8
GAPSLAM on Vicon 3 dataset across different detection score filters. 48

5.1 APE w.r.t. translation part (m) with Sim(3) Umeyama alignment for YOLO
GAPSLAM, EKF Odometry, and 1obj1loop UMAP method. PA method was
not available for this run. 63

5.2 APE w.r.t. translation part (m) with Sim(3) Umeyama alignment for YOLO
GAPSLAM, PA OAS-SLAM, and EKF Odometry. 63

5.3 APE w.r.t. translation part (m) with Sim(3) Umeyama alignment for YOLO
GAPSLAM, 2obj2loop PA, and EKF Odometry. 64

17

18

List of Acronyms

AHRS Attitude and Heading Reference System
APE Absolute Pose Error
APS Acoustic Positioning Systems
AUV Autonomous Underwater Vehicles
BA Bundle Adjustment
BAD-SLAM Bundle Adjusted Direct SLAM
BoW Bag-of-Words
CLAHE Contrast Limited Adaptive Histogram Equalization
CIR Conditional Independence Relation
CNN Convolutional Neural Network
DA Data Association
DAF-SLAM Data-Association-Free SLAM
DVL Doppler Velocity Log
EKF Extended Kalman Filter
EVO Evaluation of Odometry and SLAM
FLANN Fast Library for Approximate Nearest Neighbors
FPS Frames per Second
GAPSLAM Gaussian Approximation and Particle Filters SLAM
GA Gaussian Approximation
GPS Global Positioning System
GTSAM Georgia Tech Smoothing And Mapping
GT Ground Truth
HAUD High-Accuracy Underwater Dataset for Visual-Inertial Odometry
iSAM2 Incremental Smoothing and Mapping version 2
IMU Inertial Measurement Unit
KNN K-Nearest Neighbors
LBL Long Baseline
LSD-SLAM Large Scale Direct SLAM
MAP Maximum a Priori
MC Monte Carlo
ML Machine Learning
MSCKF Multi-State Constraint Kalman Filter
NG Non-Gaussian
OAS-SLAM Opti-Acoustic Semantic SLAM
OKVIS Open Keyframe-based Visual-Inertial SLAM

19

ORB Oriented FAST and Rotated BRIEF
PA Patch Averaging
PID Proportional–Integral–Derivative
PR Precision-Recall
RANSAC Random Sample Consensus
R-CNN Region-Based Convolutional Neural Network
REMUS Remote Environment Monitoring Units
RMSE Root Mean Square Error
ROS Robot Operating System
ROV Remotely Operated Vehicle
RGB-D Red Green Blue and Depth
SIFT Scale-Invariant Feature Transform
SIM3 Similarity Transformation in 3D
SLAM Simultaneous Localization and Mapping
SONAR Sound Navigation and Ranging
SOTA state-of-the-art
SURF Speeded-Up Robust Features
SVIn2 Stereo Visual-Inertial Navigation System 2
UDCP Underwater Dark Channel Prior
UMAP Uniform Manifold Approximation and Projection
UKF Unscented Kalman Filter
USB Universal Serial Bus
UW-GAN Underwater Generative Adversarial Network
VINS Visual-Inertial Navigation System
VO Visual Odometry
WHOI Woods Hole Oceanographic Institution
YOLO You Only Look Once

20

Chapter 1

Introduction

1.1 Motivation

The demand for operating capabilities in undersea environments is on the rise [1], which is
backed by growing environmental concerns [2], continued discoveries of deposits for undersea
resources such as oil [3], minerals [4], and advancements in industries such as aquaculture
[5], marine biotechnology [6] and ocean energy [7]. The unique challenges and opportunities
of exploring these remote environments have captivated the attention of researchers and
engineers alike.

The greatest asset for operating deep underwater is the Autonomous Underwater Ve-
hicle (AUV), and their autonomy is advantageous due to several reasons. First, it allows
AUVs to operate for extended periods without human intervention, enabling long-duration
missions that are otherwise impractical. This autonomy leads to greater efficiency and
cost-effectiveness by minimizing the need for constant human supervision, thereby reducing
operational costs and freeing up human resources. Moreover, AUVs can access challenging
and hazardous environments, such as deep-sea trenches and polar regions, where human
presence is either dangerous or impossible.

When missions are properly planned, AUVs demonstrate reasonable reliability in per-
forming tasks including environmental monitoring and data collection, which are essential
for scientific research, resource exploration, and environmental protection. Onboard sensors
and processing capabilities allow AUVs to make limited real-time decisions, allowing them to
adapt to changing conditions, avoid obstacles, and optimize their paths to a certain extent
without needing continuous communication with a control center; a significant advantage
given the difficulties of underwater signal transmission. Additionally, autonomy increases
operational flexibility, as AUVs can be deployed in swarms or fleets to cover larger areas or
undertake more complex missions collaboratively. This systematic, efficient data collection
enhances the quality and reliability of the information gathered, making AUVs indispensable
tools for underwater exploration, research, and various industrial applications.

Consequently, marine autonomy has emerged as a strategic objective for organizations
within the maritime industry in recent years. Lloyd’s Register has categorized seven Levels of
Autonomy [8] for surface marine vessels ranging from the most to least human involvement.
Although it does not perfectly align, this framework is capable of being used to describe

21

levels of autonomy for undersea vehicles as well.

Figure 1.1: The seven levels of marine autonomy as described in the Lloyd’s Register [8].
Level 0 is Manual Operation, without any automation. Level 1 is Low Automation, which
include automated alarms and remote sensors. Level 2 is Partial Automation, also known
as ’human-in-the-loop’, which are automated tasks that leave room for operators to make
a decision. Level 3 is Conditional Automation, also known as ’human-on-the-loop’, which
are automated tasks that do not require constant oversight but leaves room for human
intervention when the system encounters unexpected situations. Level 4 is High Automation,
where human intervention is limited within the vehicle’s operational domain. Level 5 is Full
Automation, where no personnel are required to be on board. Level 6 is unmanned and full
automated.

Currently in the commercial realm, the autonomy level of AUVs has for the most part
rested on Level 3, or Conditional Automation. Human involvement in operating AUVs is
significant and encompasses a broad range of tasks. Operators are integral in meticulously
planning and configuring the AUV’s mission, setting parameters such as route, depth, and
specific tasks. This phase includes thorough checks to ensure all systems, like sensors and
batteries, are operational. Once the AUV is deployed, its operation shifts to a more au-
tonomous mode, yet human oversight continues from a support ship or shore-based station.
Operators monitor the AUV’s performance via limited acoustic communication to track its
adherence to the mission plan and manually respond to anomalies as well as plan and exe-
cute recovery after completion of the mission. After recovery, depending on the mission the
researchers may need to review hours of video and Sound Navigation and Ranging (SONAR)
data, as well as logs from other mission-specific sensors.

Human operators continue to play such a significant role in AUV operation because in
comparison to an orderly laboratory setting where access is readily available and sensors
operate relatively noise free, the underwater environment is the exact opposite. Navigat-
ing and operating autonomously underwater is challenging due to the inherent degradation
of visual data recorded by underwater cameras and the accumulation of noise from other
onboard sensors. An object that is easily identified by camera a given distance away in a

22

terrestrial environment may become unidentifiable at the bottom of the seafloor. Underwa-
ter visibility is often limited due to factors such as turbidity, suspended particles known as
marine snow, and the absorption and scattering of light [9]. In optically clear waters, the
maximum range of visibility is only 80 meters [10], making it difficult for sensors, primarily
cameras, to capture clear and detailed images from a distance, which impacts the quality of
semantic information. Natural light decreases with depth, and only a narrow band of visible
light wavelengths penetrate meaningfully past 20 meters, making everything appear green
and blue tinted underwater [9]. Past 200 meters, very little light penetrates regardless of the
wavelength, making depth immeasurable and making all features disappear into a monochro-
matic region. As such, visual sensors are near ineffective in open waters for mapping, and
AUVs must be near the seafloor in order to have the opportunity to capture visual landmarks
that can bring situational awareness and indicate the robot’s pose. In optically clear waters
with good visibility, both the overhead perspective of bird’s-eye view and the forward-facing
seafloor level perspective may yield sufficient useful features. However, in darker conditions
artificial illumination is required and only the bird’s-eye view that typically has less variabil-
ity of depth and better return of reflected light may be useful. Artificial lighting is ineffective
unless the water is very clear and results in variable and often low illumination conditions
in brackish waters for any perspective, which challenges cameras in capturing high-quality
images for semantic analysis.

Additionally, light behaves differently underwater compared to in the air, causing distor-
tions and refraction that can affect the accuracy of image data. Accurate and distortion-free
visual data is crucial for semantic understanding of what has been observed, but underwater
conditions often blur perspectives and lessen contours and colors, necessitating techniques
such as enhancement and restoration that leverage heuristics and machine learning, which
have resulted in mixed levels of success [11] varying significantly from dataset to dataset.
Color change increases away from the air-water surface boundary, while refraction and dis-
tortion increases towards the surface boundary.

Figure 1.2: Left: forward facing perspective in a bright environment [12]. Right: downwards
perspective in a dark environment [13]. Both have significant regions that lack features due
to illumination effects. The bright environment is also closer to the surface, so air bubbles
and their reflections can be seen. The dark environment is filled with drifting marine snow.

Underwater scenes shown in figure 1.2 typically lack the distinct visual features, contrasts,
and textures found on land, complicating computer vision algorithms’ ability to identify and

23

track objects or features, particularly for semantic segmentation tasks [14]. Traditional po-
sitioning methods such as Global Positioning System (GPS) and radio communication are
generally unavailable underwater due to the rapid attenuation of electromagnetic signals
[15]. Seawater-air and seawater-seabed interfaces are more permissive, but still limit signal
transfer to several meters [16]. Communication buoys that leverage a combination of GPS
and acoustic modules have been successful in positioning underwater vehicles, but the in-
herent limitations of underwater acoustics relative to the distances required for exploration
missions make their widespread usage infeasible [17]. Acoustic communication is generally
hindered by insufficient bandwidth and range, requiring the entire navigation, mapping, and
mission planning process to be performed within the robot’s limited onboard capabilities;
emphasizing the need for fast and efficient algorithms [11]. A tethered Remotely Operated
Vehicle (ROV) offers more reliable communication with the user and access to additional
computational resources, but it reduces the vehicle’s autonomy as the tether’s position, un-
known to the robot, must be accounted for to avoid obstruction and entanglement. Dead
reckoning and maintaining the true pose of the underwater robot is challenging over longer
periods, even with advanced and expensive sensors, due to drift from accumulating errors.
Acoustic Positioning Systems (APS), such as Long Baseline (LBL) [18], can correct ground-
truth errors but require prior installation and offer low resolution, limiting their application
in underwater localization [19]. Additionally, dynamic marine life such as seaweed, coral, or
fish can occlude the view and interfere with sensor readings, adding complexity to detecting
and segmenting objects accurately. Compared to terrestrial environments, there is a scarcity
of labeled training data for underwater scenes, necessitating extensive data collection ef-
forts for training Machine Learning (ML) models for semantic segmentation in underwater
conditions [20].

Despite the challenging conditions, AUVs such as the REMUS [22] made by the WHOI
shown in figure 1.3 have a proven track record of successful missions. The typical mission
of an AUV encompasses a variety of critical tasks, primarily focused on mapping and sur-
veying, environmental monitoring, inspection and maintenance, scientific research, defense
and security, and resource exploration. In mapping and surveying, AUVs create detailed
maps of the seafloor using bathymetric techniques and side-scan Sound Navigation and
Ranging (SONAR) surveys, which capture high-resolution images of underwater features.
Environmental monitoring involves collecting data on water quality parameters like tem-
perature, salinity, and chemical composition, as well as studying marine habitats such as
coral reefs and fish populations. For inspection and maintenance, AUVs examine underwa-
ter infrastructure, including pipelines, cables, and ship hulls, ensuring their integrity and
identifying areas needing maintenance. Scientific research missions utilize AUVs to gather
oceanographic data, conduct geological and geophysical surveys, and support studies on
ocean currents, marine biology, and climate change. In defense and security, AUVs play
a crucial role in mine countermeasures, detecting and neutralizing underwater mines, and
conducting surveillance and reconnaissance operations to monitor strategic areas. Lastly,
resource exploration missions employ AUVs to survey potential underwater drilling sites for
oil and gas, as well as search for underwater mineral deposits.

Although already capable of providing great utility, there is potential for AUVs to achieve
levels beyond Conditional Automation without requiring state-of-the-art (SOTA) hardware.
For robots to rise into higher autonomy levels they must at minimum operate robustly in

24

Figure 1.3: Image of a REMUS 100 unit created by WHOI and Kongsberg Maritime. During
Operation Iraqi Freedom in 2003, the U.S. Navy used REMUS vehicles to detect mines in the
Persian Gulf harbor. Navy officers said they preferred REMUS AUVs because each could do
the work of 12 to 16 human divers, and they were “undeterred by cold temperatures, murky
water, sharks, or hunger.” [21]

real-time, prioritize safety, recognize and avoid danger, be capable of independently planning
and executing steps required to achieve mission objectives, navigate to and from any known
coordinates while maintaining a situational awareness of its surroundings, and semantically
differentiate regions and objects of importance observed in their visual or SONAR field of
view. With the advent of highly affordable, portable and powerful processors and recent
advancements in image enhancement algorithms [23], image semantic segmentation [24],
object detection [25], and SLAM techniques [26], some of the foundational tools for achieving
the requirements that support next level autonomy have been made available.

This research is motivated by the prospect of leveraging these new foundational tools to
significantly elevate AUV autonomy, increasing safety, convenience and capability without
sacrificing cost-effectiveness. To meet the challenges inherent in underwater environments,
this thesis proposes the design and evaluation of a visual semantic SLAM system for under-
water robots as a solution.

1.2 Summary of Contributions

This thesis describes the development and evaluation of a real-time semantic SLAM system
for operating in an underwater environment, sparsely populated by known objects on a real
robot. Our main contributions are:

1. This work develops the design of a visual semantic SLAM system capable of running
on underwater robots such as AUVs and ROVs.

25

2. This work explores ground truth trajectory evaluations of visual SLAM systems in
order to validate their effectiveness via trajectory error comparison.

3. This work establishes benchmarks for the proposed SLAM system by comparing it
with other SOTA underwater SLAM systems, aiming to identify areas for further
improvement.

1.3 Thesis Overview

The structure of the thesis is as follow. Chapter 2 introduces previous work that serves
as inspiration for this thesis: the visual SLAM problem, object detectors, related work in
underwater SLAM, and the GAPSLAM method.

Chapter 3 focuses on the preliminary study for evaluating GAPSLAM against ORB-
SLAM3 and motion capture ground truth.

Chapter 4 describes the design of an underwater visual semantic SLAM system for
BlueROV2 that leverages GAPSLAM and object detectors, covering system architecture,
and the interfacing hardware and software.

Chapter 5 compares underwater GAPSLAM to the SOTA underwater visual semantic
SLAM method in an indoor pool experiment, via conducting an analysis of the results

Chapter 6 discusses the points of improvement for our underwater visual semantic SLAM
system.

Chapter 7 summarizes our contributions and findings, as well as presenting directions for
future research.

26

Chapter 2

Literature Review

2.1 Visual SLAM

Visual SLAM enhances the autonomy of robots via mapping and localization. Localization
against previously seen parts of the map is essential in correcting the trajectory drift guar-
anteed on AUV, while maps record the observations made by the AUV. This is inherently
useful because it is the objective for mapping missions, or it can be a useful tool for a human
operator or the robot’s on board systems in different mission types to quickly replan a new
course by making use of the map. There is a significant collection of literature on visual
SLAM, dating back to seminal work by Davison [27] and others. Recent surveys include [28]
and [29]. Notable work in underwater visual SLAM includes [30] and [31].

2.1.1 Factor Graphs

Factor graphs are graphical models that are well suited to modelling complex estimation
problems, such as the SLAM problem that deals with robot poses over time relative to land-
marks positions in the environment [32]. A factor graph is a bipartite graph consisting of
factors interfacing with one or more variables as described in figure 2.2. The variables are the
nodes of the graph that represent the unknown random variables in the estimation problem,
whereas the factors represent probabilistic information on those variables, derived from mea-
surements or prior knowledge [33]. In the case of the SLAM problem, the variables nodes are
the robot poses and landmarks, while the factor edges are the probabilistic observations from
the robot to the landmarks, odometry measurements estimated on board as the robot moves
from point A to B, and loop closures when the robot feature matches and recognizes that it
has returned to a location that it has been in previously. Consequently factor graph SLAM
problem in simple form can be expressed as the following joint probability distribution:

p(X,L|Z,U) ∝
∏
i

p(xi|xi−1,ui)
∏

jp(zj|xj, lj) (2.1)

where X = x1, . . . ,xT is the set of robot poses, L = l1, . . . , lN is the set of landmarks, Z =
z1, . . . , zM is the set of observations, U = u1, . . . ,uT is the set of odometry measurements,
p(xi|xi−1,ui) is the odometry model, and p(zj|xj, lj) is the observation model. The factor

27

graph representation translates the problem into one that can be resolved through graph
optimization. The optimization objective can be written as:

X,L = argmax
X,L

∏
i

ψi(xi,xi−1,ui)
∏

jϕj(zj,xj, lj) (2.2)

where ψi(xi,xi−1,ui) are the odometry factors and ϕj(zj,xj, lj) are the observation factors.
The optimization typically involves minimizing a nonlinear least-squares problem, which can
be written as:

X,L= argmin
X,L

∑
i

|ei(xi,xi−1,ui)|2 +
∑

j|ej(zj,xj, lj)|2 (2.3)

where ei(xi,xi−1,ui) are the error terms for the odometry model and ej(zj,xj, lj) are the
error terms for the observation model. The factor graph model describes the mathematics
of the SLAM problem, but SLAM is a robotics problem that is comprised of additional
processes. SLAM is described as having a front-end and a back-end, which are the two
major processes required to implement SLAM on a given platform. For both the front-end
and back-end there are various approaches each with their advantages and disadvantages.

2.1.2 Front-End

Figure 2.1: Visualization of VO showing IMU integration [34], where f is the focal point, c
is the center of the camera, zfj represents odometry factors from matched features and zL
are observation factors generated from features or landmarks in the image frame.

The front end is responsible for generating the components required for the SLAM equa-
tions. Features in the current frame are matched with features from a previous frame,
assuming that only the observer has moved and that most of the environment is stationary.
The observer’s movements are estimated by the matched features and camera focal point

28

Figure 2.2: A simple visualization of the factor graph as it is used in SLAM, given by Lai
[26]. Robot state variables X are depicted as purple nodes, and landmark variables L are
depicted as green nodes. Odometry factors u and observation factors z and depicted as black
vertices.

and center, which connect the current robot state variable to the previous one as shown in
figure 2.2. Observation factors on the other hand, are generated by mapping the current
pose of the camera to landmark positions in the frame and do not require frame-to-frame
matches. Observation factors connect robot state variables to landmarks.

Feature Extraction

Data acquisition and Feature Extraction are critical components in visual SLAM. Features
from image frames can be used to form both observations zj and odometry ui. Effective Fea-
ture Extraction ensures accurate and reliable SLAM performance by identifying key points
in images that can be consistently tracked across multiple frames.

Scale-Invariant Feature Transform (SIFT) [35] is a widely used technique for detecting
and describing local features in images. SIFT is robust to scaling, rotation, and changes in
illumination, making it highly effective for matching features across different views. This
method identifies key points in an image and computes descriptors based on the local gradient
information around each key point. The robustness and accuracy of SIFT have made it a
standard choice for various computer vision applications, including object recognition and
image stitching.

SURF (Speeded-Up Robust Features) [36] is a faster alternative to SIFT, designed to
provide similar robustness to scaling, rotation, and noise while being computationally more
efficient. Speeded-Up Robust Features (SURF) uses integral images to speed up the compu-
tation of image convolutions and relies on the Hessian matrix for key point detection. The
descriptors are based on the sum of Haar wavelet responses within a neighborhood around
each key point. SURF’s efficiency and robustness make it suitable for real-time applications
where computational resources are limited.

Oriented FAST and Rotated BRIEF (ORB) [37] is another popular Feature Extraction
method known for its efficiency and speed, making it suitable for real-time applications.
ORB combines the FAST key point detector and the BRIEF descriptor, with modifications to
ensure rotational invariance. It is particularly effective for applications where computational
efficiency is crucial, such as mobile robotics.

29

Observation Factors

From the extracted features, associations can be made between the robot pose and land-
marks, which is essential for forming the observation model p(zj|xj, lj) and consequently
creating the observation factors ϕj(zj,xj, lj). Observation factors adds constraints into the
factor graph, which is essential during the back end’s optimization. They are most effective
when same landmarks are observed from multiple robot poses

Feature Matching

Feature Matching is the process of pairing extracted features from one frame to their equiv-
alents in the following frame. This pairing allows estimation of translation and rotation of
the camera. The choice of Feature Matching method can significantly impact the robustness
and efficiency of the SLAM system, especially in dynamic and complex environments.

The Bag-of-Words (BoW) model is a powerful technique for Feature Matching and place
recognition. Extracted features are clustered into visual words using a clustering algorithm
such as K-Means, creating a visual vocabulary. Each image is represented as a histogram that
counts the occurrences of these visual words. For Feature Matching, the BoW histograms
of different images are compared using similarity measures like Euclidean distance or cosine
similarity, enabling the system to identify similar images or regions. This is particularly
useful for place recognition and loop closure in SLAM, as it allows the system to recognize
previously visited locations based on visual similarity. By detecting loop closures, the SLAM
system can correct accumulated drift, refine the map, and improve the accuracy of the
estimated trajectory.

Another method is K-Nearest Neighbors (KNN) [38], which matches features between
consecutive frames by finding the nearest neighbors in the feature space. This technique,
detailed in Altman’s introduction to KNN, is straightforward and effective for real-time
applications. KNN works by comparing each feature in the current frame to a set of features
in the previous frame and selecting the closest matches based on a distance metric, such
as Euclidean distance. This method is widely used due to its simplicity and effectiveness,
although it may become computationally expensive as the number of features increases.

For large datasets, the Fast Library for Approximate Nearest Neighbors (FLANN) [39]
is an efficient choice. FLANN is used for approximate nearest neighbor searches, offering a
balance between speed and accuracy, as detailed by Muja and Lowe. FLANN uses a combi-
nation of randomized algorithms and hierarchical data structures to quickly find approximate
nearest neighbors, significantly reducing the search time compared to exact methods. This
makes FLANN particularly suitable for real-time SLAM applications where fast processing
of large numbers of features is required.

Lastly, Random Sample Consensus (RANSAC) [40] is a robust method for estimating
the parameters of a model, which is particularly effective in filtering out outliers in feature
matches. The seminal work by Fischler and Bolles provides a comprehensive overview of
RANSAC. This method iteratively selects random subsets of data points and fits a model
to these points, checking the fit against the entire dataset to identify inliers and outliers.
RANSAC’s ability to handle high levels of noise and outliers makes it invaluable for SLAM,
where data can often be noisy and incomplete.

30

Visual Odometry

The front end models the robot’s motion p(xi|xi−1,ui), providing the odometry factors
ψi(xi,xi−1,ui). Visual odometry (VO) [41] is a technique that uses Feature Extraction
and Feature Matching between frames to estimate these motion factors. Visual odometry
ingeniously leverages the fact that most cases, a majority of the features detected in one
frame will be found again in the next frame. Visual odometry will fail if there are insuffi-
cient common features between frames. By matching each common feature between frames,
it is possible to estimate the translation and rotation of the robot moving from one frame to
the next. However, sensor noise, and outliers in the form of false positive and false negative
matches must be managed as they could cause the trajectory to drift due to error accu-
mulation. These techniques will be discussed in the data association and back-end sections
below.

Monocular VO [42] uses a single camera to estimate motion. The main challenge with
this method is the unknown scale of the translation between frames, which can lead to
inaccuracies in motion estimation if not properly handled. Techniques to mitigate this issue
include using additional information from other sensors or imposing constraints based on
known scene geometry.

Stereo VO [43] employs a stereo camera setup to overcome the scale ambiguity inherent
in monocular systems. The known baseline between the cameras allows for accurate depth
estimation and motion estimation with scale. This setup enables the system to triangulate
feature points and compute the 3D structure of the scene, resulting in more robust and
accurate motion estimation.

Red Green Blue and Depth (RGB-D) VO [44] uses an RGB-D camera that provides
both color and depth information. This additional depth information enables more robust
and accurate motion estimation compared to monocular and stereo systems, particularly in
environments with low texture or poor lighting conditions. RGB-D VO is well-suited for
indoor environments where depth data can significantly enhance Feature Matching and pose
estimation.

Sensors that measure motion, such as Doppler Velocity Log (DVL) and IMUs [45], can
derive odometry by themselves or be integrated with VO. These sensors can also be fused
with other sensor outputs via EKFs [46] and Unscented Kalman Filter (UKF)s [47] to improve
odometry performance. The integration of these sensors helps in providing more accurate
and reliable motion estimation, particularly in challenging environments where VO alone
may not suffice.

Data Association

In the front-end of visual SLAM, data association [48] leverages Feature Extraction and Fea-
ture Matching to play a crucial role in linking observations from the camera with existing
elements in the map or previously observed features. Data association begins with Feature
Extraction from incoming camera frames using algorithms such as SIFT or ORB. Each
extracted feature is then described using a descriptor, which encodes its local appearance.
These descriptors are compared with those from previous frames or the map to find cor-
respondences. Techniques such as RANSAC are employed to match the extracted features

31

accurately, filtering out outliers and ensuring that only reliable matches are considered. As
features are matched, the system updates the map by adding new landmarks for unmatched
features and refining existing landmarks for matched ones. This is known as loop closure,
which adds helpful constraints to narrow down uncertainty for the back-end processing.

2.1.3 Back-End

The back end in SLAM is responsible for constructing, maintaining, and optimizing the factor
graph created by the front end. This graph consists of nodes representing robot poses (X)
and landmarks (L), with edges representing factors derived from motion and observations.
The optimization process aims to maximize the joint probability distribution or minimize the
error terms in the nonlinear least-squares problem, as represented in equations (2.2) and (2.3).
This involves finding the most likely configuration of variables that fit the factors, ensuring
estimated poses and landmarks are consistent with observed data. Common techniques
include Bundle Adjustment (BA) [49], which jointly optimizes the entire trajectory and map
by minimizing reprojection error of all observations. Iterative methods like Gauss-Newton
[50] or Levenberg-Marquardt [51] are often used to refine estimates. Specific algorithms such
as Georgia Tech Smoothing And Mapping (GTSAM) [52] operate as a batch optimization
framework, while Incremental Smoothing and Mapping version 2 (iSAM2) [53] provides an
incremental approach suitable for real-time applications.

Error minimization in the back end focuses on reducing the sum of the error terms
∥ei∥ and ∥ej∥, which represent the differences between the predicted and observed values.
This process incorporates noise and uncertainties into the model, ensuring that the system
can robustly handle real-world variations and inaccuracies. By effectively minimizing these
errors, the SLAM system can achieve more accurate and reliable estimates of the robot’s
trajectory and the map of the environment.

After the optimization process, the back end updates the estimated map and the robot’s
trajectory. This step provides an accurate and updated representation of the environment
and the robot’s path, reflecting the most recent observations and corrections. The continuous
update of the map and trajectory is essential for maintaining an accurate understanding of
the environment, especially in dynamic or previously unexplored areas.

Loop closure detection and correction are integral parts of the SLAM back-end, where
it incorporates loop closure detections described in the front-end into the factor graph.
Loop closures add additional constraints that help correct for drift and improve the overall
accuracy of the system. By recognizing previously observed landmarks in new frames that
are associated with a specific location on the map, the SLAM system can refine its estimates
and reduce cumulative errors, leading to a more consistent and accurate map.

2.1.4 Interaction Between Front-End and Back-End

To summarize, the front end processes the raw sensor data, extracts features, performs
Feature Matching, and generates factors that describe the constraints between the variables.
These factors are then fed into the back end, which constructs the factor graph and performs
optimization to solve for the best estimates of the variables. The front end continuously

32

generates the factors as new data comes in, and the back end continuously optimizes the
factor graph to refine the map and trajectory estimates.

2.2 Related Work

Underwater visual SLAM has been less studied than terrestrial visual SLAM, however there
is some notable prior work, which includes the following references [54] [55] [56] [57] [58]
[59] [60] [61] [62] [63] that are further explored below. There are two categories of testing:
laboratory settings, which are more common and take place in indoor pools and tanks such
as the one shown in figure 2.3a, and real-world AUV scenarios, which are more scarce and
come from video collected by AUVs operating in various mission scenarios such as the one
shown in figure 2.3b.

(a) Image of the underwater environment at the
MIT Zesiger Center Pool containing a lobster
trap (right), seaweed (middle) and buoy (left)
[63]. The white buoy is difficult to observe in
this environment.

(b) Image of an autonomous robot in an out-
doors underwater lake environment [12].

Figure 2.3: Comparison of underwater environments

2.2.1 Underwater Monocular SLAM

A recent experiment by Grimaldi et al. [54] evaluated six distinct image enhancements
on both real-world AUV and lab datasets of varying illumination: artificial lighting, ho-
mogeneous sunlight and mixed lighting. In order to counteract the degradation of Feature
Extraction that results in underwater environment due to visibility and illumination limi-
tation, the following image enhancement algorithms were tested: the heuristic Underwater
Dark Channel Prior (UDCP) algorithm [64], the heuristic Contrast Limited Adaptive His-
togram Equalization (CLAHE) algorithm [65], the Underwater Generative Adversarial Net-
work (UW-GAN) algorithm that was trained on three different types of environments using
machine learning, and lastly the median filter from Köser et al [66]. Grimaldi et al. [54] also
kept the unenhanced images in the experiment as a baseline. The enhanced and baseline
images were used to test multiple SLAM systems. A successful run count was not granted
unless the entire sequence was completed, and failure consisted of three categories: could

33

not initialize or operated from incorrect initialization, lost tracking midway, and complete
failure.

The SLAM methods chosen for the test were monocular, and consisted of: ORB-SLAM2
[67], ORB-SLAM3 [68], Large Scale Direct SLAM (LSD-SLAM) [69], Bundle Adjusted Direct
SLAM (BAD-SLAM) [70], and GradSLAM [71]. ORB-SLAM2 is purely a feature based
method that uses ORB descriptors, while ORB-SLAM3 incorporate additional semantic
information to improve the robustness and accuracy of the system. LSD-SLAM estimates
camera motion and 3D structure directly from the intensity values of the image pixels without
relying on feature detection and mapping. This method is known for its ability to handle
large-scale environments and low-texture scenes typically expected in underwater scenes.
BAD-SLAM is another direct method that specializes in leveraging the RGB-D inputs and
performing BA. GradSLAM leverages computational graphs and deep learning to apply
differentiable VO and differentiable optimization to the SLAM problem for joint and multi-
objective optimization of all parameters including camera motion, depth estimation and
mapping. Direct SLAM systems require depth maps, which were generated by UW-Net [72]
and UDepth [73].

In contrast to their good performance in typical featureless environments, the results
of the experiment by Grimaldi et al. [54] showed that Direct SLAM methods such as
LSD-SLAM, BADSLAM and GradSLAM all failed because the depth estimators malfunc-
tioned as they were not designed for top-down views. Additionally, Grimaldi et al. [54]
recommended that users avoid direct SLAM algorithms for underwater use because they
were too sensitive to the adverse lighting conditions, even with the image enhancement [54].

Other problems included insufficient overlap between frames, which hindered the algo-
rithms’ ability to establish robust correspondences of features. This is due to the low Frames
per Second (FPS) video recorded due to the limitations of on board hardware combined with
jerky rotational motion of the AUV used in the experiment.

Lighting conditions were critical for successful underwater SLAM performance, and per-
forming an optimal initialization procedure was key to success for the ORB-SLAM methods.
The only successful runs without failure, or losing tracking were ORB-SLAM methods in
the laboratory tank with optimal and homogeneous sunlight [54]. Even these successes were
marred by a relatively large absolute error range of 1.34m to 1.61m after being aligned and
scaled using the Similarity Transformation in 3D (SIM3) Umeyama technique [74] [75].

2.2.2 Underwater Visual SLAM with Sensor Fusion

According to the types of sensors, underwater SLAM can be divided into Sound Navigation
and Ranging (SONAR) SLAM [20], visual SLAM [76], and SLAM fusing multiple sensors.
SONAR uses a transmitter to emit sound waves and a receiver to receive echo signals, then
analyzes and processes the echo signals to describe the contour and structure of the target.
Sound wave propagation under water is unaffected by light, making SONAR is a good choice
for underwater SLAM. Although relatively low-resolution and high-cost, SONAR is a good
candidate for sensor fusion with visual SLAM along with inertial sensors for odometry. Com-
binations of sensors in significant sensor fusion experiments range from the simple monocular
visual-inertial, to complex systems leveraging stereo cameras, SONAR and EKF odometry
from IMU, DVL and pressure sensor.

34

High-Accuracy Underwater Dataset for Visual-Inertial Odometry (HAUD) for visual-
inertial odometry by Song et al. [55] was the first experiment to use the Vicon motion
capture system underwater for accurate ground truth, although the test environment was an
inflatable pool that was relatively small. Ten different sequences consisting of trajectories
of different shapes were planned for the testing of ORB-SLAM2 versus Visual-Inertial Nav-
igation System (VINS) [77] using a stereo ZED camera [78] with an on board IMU. This
experiment demonstrated that there was a lot of variance between the sequences. A few
sequences favored ORB-SLAM2, while the majority favored VINS. However, ORB-SLAM2
was more robust than VINS as it did not fail any sequence by losing tracking, while VINS
failed two of the ten. The most significant results of this experiment was the millimetre
resolution of the experiment results to the ground truth.

Stereo Visual-Inertial Navigation System 2 (SVIn2), developed by Rahman et al. [56],
is a SLAM system designed for challenging underwater environments such as wrecks and
caves. It integrates acoustic, visual, inertial, and depth sensors, and employs CLAHE image
enhancement techniques similar to Grimaldi et al. [54]. Based on Open Keyframe-based
Visual-Inertial SLAM (OKVIS) [79], SVIn2 features a robust initialization system using a
stereo camera, downwards SONAR, IMU, and depth sensor, activating only when sufficient
visual features are present. In comparisons with OKVIS, monocular VINS [80], and Multi-
State Constraint Kalman Filter (MSCKF) [81] on the EuRoC [82] datasets without SONAR
and depth sensor integration, SVIn2 showed lower Root Mean Square Error (RMSE) [83]
than OKVIS and MSCKF, but did not consistently outperform monocular VINS. However,
SVIn2 demonstrated exceptional performance in real-world outdoor lake and cavern datasets
captured with the Aqua2 vehicle [84], consistently recognizing loop closures and maintaining
trajectory consistency with the pseudo GT. In contrast, monocular VINS struggled with
scale issues and exposure variations, while OKVIS experienced scale drift that prevented
accurate loop closure detection, resulting in trajectories that significantly deviated from the
pseudo-GT.

2.2.3 Underwater Semantic Visual SLAM with Sensor Fusion

While terrestrial semantic visual SLAM has been rigorously explored in works such as Civera
et al [85], far fewer works exist to challenge the same problem underwater. Most of the
existing underwater SLAM results [57] [58] [59] [60] have used pre-existing CAD models and
SONAR for object detection.

Some real world tests of semantic SLAM have been applied on underwater pipe tracking.
In a 2021 study by Vallicrosa et al. [61], researchers presented a method combining feature-
based SLAM with 3D object recognition. This technique allowed an AUV to autonomously
navigate and map submerged pipeline structures, using sensors such as DVL, and attitude
and heading Attitude and Heading Reference System (AHRS) to provide real-time, drift-less
navigation and consistent mapping.

Additionally, the SubPipe [62] dataset, introduced in 2024, provided a valuable resource
for developing and testing semantic SLAM algorithms tailored for submarine pipeline inspec-
tion. This dataset includes high-resolution camera footage and SONAR images annotated
for pipeline segmentation, facilitating the training of machine learning models for accurate

35

pipeline detection and tracking.

At present, the OAS-SLAM method by Singh et al. [63] represents a recent SOTA se-
mantic visual SLAM method as it encompasses most of the underwater SLAM technologies
explored by previous research: it fuses complimentary visual and acoustic data for obser-
vation factors, combines IMU,DVL and pressure sensor via EKF for odometry factors, uses
iSAM2 for back-end optimization, is capable of semantically recognizing objects of various
classes without prior knowledge and can output a map that has object landmarks overlaying
the robot trajectory.

In the front end, MaskCut [86] is used to segment an image frame and generate masks of
the segmentation. PA and Uniform Manifold Approximation and UMAP are two methods
for accommodating masks of varying sizes while ensuring the output features maintain a
constant dimension to facilitate data fusion with the SONAR. PA and UMAP are tested
against YOLOv8 for precision and recall across four indoor pool tests and one outdoor
tank test, where it is discovered that PA outperforms UMAP. YOLO outperformed PA in
precision, but PA had more datasets where its recall was superior.

2.3 GAPSLAM

GAPSLAM, is a visual semantic SLAM algorithm developed in an office setting by Huang et
al [87]. A single camera without a depth sensor is sufficient to run GAPSLAM; the bearing-
only requirement simplifies the computational and hardware constraints. GAPSLAM holds
research value in the field of underwater SLAM because of its novelty, efficiency and potential
to be operable on lower-cost robots that are not fitted with SOTA sensors. As such, it has
been selected for this experimental implementation of underwater semantic SLAM.

GAPSLAM, visualized in figure 2.4 blends the advantages of the Gaussian Approx-
imation (GA) method on scalability for tackling high-dimensional posteriors, and Non-
Gaussian (NG) particle filter method on inferring marginal posteriors encountered in SLAM.
These two methods operate in complement to each other, and support each other in achiev-
ing optimization. Specifically, GA provides robot pose distributions on which particle filters
are conditioned to sample landmark marginals. In return, if a sample attains a higher prob-
ability than the Maximum a Priori (MAP) estimate when evaluating the posterior, the MAP
point among these samples can be used to reset linearization points in the non-linear solver
of the GA, facilitating the pursuit of global optima. The following subsections describe equa-
tions derived by Huang [87], which review GA, marginal posteriors of NG landmarks and
reinitialization.

2.3.1 Gaussian Approximation

The basis of GAPSLAM is landmark-based SLAM. Let Xt := (X0, X1, . . . , Xt) be robot
pose variables up to time step t where Xi ∈ SE(d). Landmark variables are denoted by
Ln := (L1, L2, . . . , Ln) where each element denotes the location or pose of a landmark ob-
served. Let ot := (o1, o2, . . . , ot) be odometry measurements, each modeled by the likelihood
function p(oi | Xi−1, Xi). Let zt := (z0, z1, . . . , zt) be all landmark measurements, each

36

Figure 2.4: GAPSLAM image showing relation between the current update of the map being
generated to the current video frame processed by front-end. The purple Gaussian appears
as an ellipsoid on the map and sphere in the video, while the orange particle filter has a cone
shape on the map while having a more rounded appearance in the video. The difference
comes from the map being presented from a bird’s-eye view downwards perspective while
the video is recorded from a human-eye level forward facing perspective.

modeled by the likelihood function p(zi | Xi, Ldi), where di ∈ 1, 2, . . . , n is the landmark
index associated with measurement zi. Let dt := (d0, d1, . . . , dt) be data associations for all
landmark measurements. Thus, the posterior of robot and landmark variables at time step
t given in equation (2.4) can be further developed by applying the Bayes Theorem [88] and
assuming conditional independence of measurements given the robot and landmark states,
which allows the factorization of the likelihood into the product of individual measurement
likelihoods depicted in equation (2.5), where p(X,L) denotes the prior.

p(Xt,Ln | zt,ot,dt) (2.4)

Bayes∝
t∏

i=0

p(zi | Xi, Ldi)
t∏

i=1

p(oi | Xi−1, Xi)p(X,L), (2.5)

GAPSLAM denotes the GA of the posterior at time step t as g(Xt,Ln | zt,ot,dt). We
categorize all landmarks into a set of NG landmarks LNt and a set of Gaussian landmarks
LGt = Ln\LNt , where Nt ∪ Gt = {1, 2, . . . , n} and Nt ∩ Gt = ∅. We use the GA to represent
the posterior of robot poses and the Gaussian landmarks, and the Conditional Independence
Relation (CIR) resulting in:

p(Xt,Ln | zt,ot,dt) (2.6)
GA
≈ p(LNt | Xt, LGt , zt,ot,dt)g(Xt, LGt | zt,ot,dt), (2.7)

CIR
= p(LNt | Xt, zt,ot,dt)g(Xt, LGt | zt,ot,dt), (2.8)

CIR
=
∏
i∈Nt

p(Li | XVi
, zVi

, dVi
)g(Xt, LGt | zt,ot,dt). (2.9)

37

The GA can be computed via the Laplace approximation [89]; finding the MAP estimate
as the mean and estimating the inverse of the Hessian of the negative logarithm of the poste-
rior at the MAP estimate as the covariance. In practice, many non-linear local optimization
solvers, in this case GTSAM, will be used as an effective out-of-the-box solution for the GA.

2.3.2 Marginal Posterior of Non-Gaussian Landmarks

GAPSLAM uses particles to represent the marginal posterior of any NG landmark Li ∈ LNt .
Integrating out all variables except Li in (2.9), we can derive the NG marginal posterior
given in equation (2.11). Equation (2.12) is significant because it reveals how the GA side
of GAPSLAM contributes to the NG side of GAPSLAM.

p (Li | zt,ot,dt) (2.10)

GA
≈
∫
XVi

p (Li | XVi
, zVi

, dVi
) g (XVi

| zt,ot,dt) (2.11)

MC
≈ 1

K

K∑
k=1

p
(
Li | XVi

= x
(k)
Vi
, zVi

, dVi

)
, (2.12)

Monte Carlo (MC) integration [90] is applied in (2.12), where
{
x
(k)
Vi

}K

k=1
are K indepen-

dent and identically distributed samples of part of the robot path drawn from the Gaussian
marginal g (XVi

| zt,ot,dt). The conditional probability of Li in equation (2.12) is a result
of eliminating Li from factors adjacent to Li. Equation (2.12) is further developed by equa-
tions (2.13) and (2.14), which describe the key components of the probabilistic model used
to estimate landmark positions in a SLAM context. Equation (2.13) defines the conditional
probability of a landmark Li given the relevant robot poses, measurements, and data as-
sociations. This probability is expressed as a normalized version of a function ψ, which
encapsulates all the information we have about the landmark. Equation (2.14) then defines
this function ψ in detail. It is constructed as the product of two main components: first, the
likelihood of all measurements related to the landmark, which is represented as a product of
individual measurement probabilities for each observation of the landmark; and second, the
prior probability of the landmark’s position. This formulation allows the integration of both
the information gained from sensor measurements and any prior knowledge about landmark
positions into a single, coherent probabilistic model. By using this model, the algorithm can
estimate landmark positions while accounting for uncertainties in both the robot’s trajectory
and the sensor measurements.

p (Li | XVi
, zVi

, dVi
) =

ψ (Li, XVi
)∫

Li
ψ (Li, XVi

)
(2.13)

ψ (Li, XVi
) =

∏
j∈Vi

p (zj | Xj, Li) p (Li) (2.14)

GAPSLAM uses importance sampling to draw samples representing p
(
Li | XVi

= x
(k)
Vi
, zVi

, dVi

)
.

We design the proposal distribution of landmark Li as the sum-mixture of binary factors, as

38

seen in equation (2.15). with proposal samples
{
l
(m,k)
i

}M

m=1
in hand, the normalized weight of

each sample can be computed by equation (2.16), where
∑M

m=1w
(m,k) = 1. Finally, we apply

the resampling and regularization steps to generate equally weighted samples of Li. Thus,
through equations (2.17) and (2.18) the marginal posterior in (2.12) can be approximated.

q
(
Li;x

(k)
Vi

)
=

1

|Vi|
∑
j∈Vi

p
(
Li | Xj = x

(k)
j , zj

)
(2.15)

w(m,k) ∝
p(l

(m,k)
i | x(k)Vi

, zVi
, dVi

)

q(l
(m,k)
i ;x

(k)
Vi
)

∝
ψ(l

(m,k)
i , x

(k)
Vi
)

q(l
(m,k)
i ;x

(k)
Vi
)
, (2.16)

p(Li | zt, ot, dt) ≈ p̃(Li | zt, ot, dt) (2.17)

p̃(Li | zt, ot, dt) =
1

K

K∑
k=1

M∑
m=1

δ(Li − l
(m,k)
i) (2.18)

To summarize, for each of the K robot path samples, we draw M landmark samples. The
delta functions (or other kernels) of all KM landmark samples can be used to approximate
the marginal posterior of the landmark.

2.3.3 Reinitialization

From time step t to time step t + 1, the robot receives a new odometry reading ot+1 and
a new landmark measurement zt+1. It is easy to create a new robot pose Xt+1 and absorb
the odometry ot+1 to form the intermediate Gaussian g (Xt+1,Ln | zt,ot+1,dt). However,
fusing the measurement zt+1 is a more involved process. Assuming that the measurement
zt+1 comes from a landmark with index dt+1, several cases are considered:

1. If the observed landmark Ldt+1 is not new or a NG landmark, we simply add the
likelihood model of zt+1 the factor to the Gaussian solver to update the Gaussian
approximation without making any further changes.

2. If the observed landmark Ldt+1 is new, i.e., dt+1 = n+ 1, we update the landmark set
to Ln+1 = Ln ∪{Ln+1} and indices of NG landmarks to Nt+1 = Nt ∪{n+1}. We then
add the likelihood model of measurement zt+1 to the Gaussian solver. Finally, we can
simulate equally weighted samples of the landmark using this single measurement and
randomly select a point from the samples as the initial value of the landmark.

3. If the observed landmark Ldt+1 is not new and is in NG landmarks LNt , reinitialization
must be considered.

In the third case, our goal is to use the new measurement zt+1 to determine whether
we should explicitly reinitialize the NG landmark in the Gaussian solver. Furthermore, if
our belief of the landmark converges to a less uncertain situation after fusing measurement

39

zt+1, we remove the landmark from the NG set LNt , recording the landmark as being purely
Gaussian.

The union of the samples and the current estimate of the landmark forms a set of can-
didate points for reinitialization. The point in the set that maximizes the posterior will be
used to reinitialize the landmark. During the evaluation of the posterior, all variables other
than the landmark are fixed by the current mean of the GA. This reduces the evaluation to
only the product of factors that are adjacent to the landmark, simplifying the computation.
The reinitialization formula is given in equation (2.19).

l∗i = argmax
li∈{S,l̂i}

ψ (Li = li, XVi
= x̂Vi

) (2.19)

When the largest eigenvalue of the NG landmark’s covariance matrix falls below a thresh-
old, it indicates that the belief of landmark Li has become sufficiently certain, and Li is
removed from the NG landmark set LNt+1 . As a result, Li will no longer be estimated by
particle filters and will only be involved in updates in the Gaussian solver, giving GAPSLAM
enough confidence in the landmark that it draws it as a GA ellipsoid on the map.

2.3.4 GAPSLAM Data Association

GAPSLAM leverages the following five heuristics with respect to its data association scheme,
which assist in determining candidates for reinitialization:

1. Intersection is not allowed. The system removes all but one of multiple detections with
the same object classes intersecting each other on the camera frame.

2. Data association for detections of the same classes within proximity of each other is
determined using Mahalanobis distance [91]. The threshold is the critical value of
the chi-square distribution [92] with a 99 percent confidence level with two degrees of
freedom for simplicity in testing for goodness-of-fit, which has approximately a value
of 9.21.

3. Rejection of detections of different classes within proximity of each other is determined
using Mahalanobis distance. The threshold is the same value as above.

4. Sample-based data association for NG landmarks of the same class is accomplished
by projecting landmark samples to the image and checking the percentage of samples
within the bounding box. The default threshold is 10 percent of the samples.

5. New landmark factor is generated if there are no associations to prior landmarks.

2.4 Object Detectors

Objector detectors are an essential aspect of GAPSLAM as they are required for the creation
of observation factors in the front-end of GAPSLAM. The semantic distinction of their object
classes can be leveraged to filter out transient moving objects such as marine fauna, by
simply discarding detections of known moving objects as observation factors. Additionally,

40

semantic information carried by object detectors is essential for marine autonomy as it imbues
meaning onto maps created by SLAM. With a semantic map, the AUV is able to distinguish
which parts of the map are useful for achieving its objectives. For example, in the pipeline
inspection problem, object detectors and SLAM can be leveraged to detect and map where
corrosion has appeared relative to various points of reference on the pipeline.

2.4.1 Detic

Detic (Detection Transformer for Instance-level Recognition) [93] is a SOTA object detec-
tion framework that builds on the principles of the Transformer [94] architecture, which has
revolutionized natural language processing tasks. The core of the Transformer architecture
is the self-attention mechanism, which allows the model to focus on different parts of the
input sequence when making predictions. In the context of Detic, this helps in focusing on
different regions of an image to identify objects. Detic utilizes the encoder-decoder struc-
ture where the encoder processes the input image, and the decoder generates predictions
about the objects present in the image. Unlike traditional methods like Faster Region-Based
Convolutional Neural Network (R-CNN) [95] that generate a large number of proposals and
refine them, Detic performs object detection as a direct set prediction problem, predicting
a fixed number of object instances directly from the image. Additionally, Detic provides
instance-level segmentation masks, distinguishing between different instances of the same
object class, such as two different dogs in the same image. To ensure that each predicted
object corresponds to a ground truth object, Detic employs a bipartite matching loss that
considers both the class of the object and its spatial location. The input image in Detic is
divided into a grid of patches, each flattened and linearly embedded into a feature vector,
with positional encodings added to retain spatial information. The Transformer encoder
processes these embedded patches using multi-head self-attention layers and feed-forward
neural networks, capturing global context and relationships between different parts of the
image. A fixed set of learnable object queries is used in the decoder, representing potential
objects in the image and interacting with the encoded image features through cross-attention
mechanisms. Finally, the decoder outputs are processed by prediction heads to generate final
detections, including the class of the object, bounding box coordinates, and segmentation
masks.

2.4.2 YOLO

YOLO (You Only Look Once) [96] is a family of Convolutional Neural Network (CNN)
models designed for real-time object detection. Unlike traditional methods that use a region
proposal-based approach, YOLO reframes object detection as a single regression problem,
straight from image pixels to bounding box coordinates and class probabilities. YOLO
employs a single neural network to predict bounding boxes and class probabilities directly
from full images in one evaluation, a single-stage approach that contrasts with the two-stage
methods used by R-CNN, which first generate region proposals and then classify them. The
input image is divided into an S×S grid, with each grid cell responsible for predicting a fixed
number of bounding boxes and their associated confidence scores, as well as the probability
distribution over classes. Each bounding box is defined by four coordinates (x, y, width,

41

height), a confidence score indicating the likelihood that the box contains an object, and
the class probabilities. The confidence score reflects the accuracy of the bounding box and
whether it contains an object, calculated as the intersection-over-union between the predicted
box and the ground truth box. Each grid cell also predicts the conditional class probabilities
for the object if the object center falls into that cell. YOLO’s faster models are particularly
suitable for real-time SLAM problems.

2.5 Summary

This chapter has reviewed the formulation of the visual SLAM problem and discussed the
critical components of visual semantic SLAM systems, spanning the front-end and back-end.
We have reviewed past work in both underwater visual SLAM and semantic SLAM and
posed our goal of underwater semantic SLAM using the GAPSLAM algorithm developed by
Huang and Leonard [87]. We also reviewed the two primary object detectors that we will
use in our work: Detic and YOLO. In the next chapter, we will evaluate GAPSLAM in a
terrestrial environment before discussing our new real-time underwater implementation and
experiments in the following chapters.

42

Chapter 3

Preliminary Study

Before embarking on the adaptation and evaluation of GAPSLAM in an underwater envi-
ronment, we first present the results from a terrestrial implementation in a small lab that
uses a motion capture system for ground truth.

3.1 Evaluation of SLAM

3.1.1 Ground Truth

In order to benchmark and measure how effective GAPSLAM is in mapping objects and the
robot’s current state with reference to the map, an absolute reference frame, referred to as
GT, is required. The most common way of comparing different SLAM systems is to compare
the final trajectories to the ground truth trajectory for a given dataset. This is because a
trajectory is the collection of the localized robot state through time, which is accomplished
simultaneously with the mapping of objects from observations made from the current robot
pose. Therefore, the two cannot be separated and a more accurate trajectory equates to a
more accurate map as well [97].

Trajectory comparisons for GAPSLAM were presented by Huang [87] for a large lab/office
environment. However, there is room to improve regarding this experiment as it uses pseudo-
GT from a single loop of ORB-SLAM3, which is not ideal. While it is known how accurate
ORB-SLAM3 is from previous experiments with GT, using ORB-SLAM3 as pseudo-GT for
GAPSLAM is ultimately validating an estimate with another estimate that was run under
different conditions and comes with risks. It can be useful to get a rough estimate for
comparable feature-based SLAM methods when running experiments similar to the one that
validated ORB-SLAM3 with GT. However, when comparing GAPSLAM to ORB-SLAM3
it is expected that there is a possibility of non-negligible deviation for certain experimental
setups, because while ORB-SLAM3 will always have sufficient features to work with in
an office environment, that is not the case for GAPSLAM, where admitted object classes,
quantity and their specific layout in the space can greatly affect performance.

Therefore, simultaneous GT testing for GAPSLAM and ORB-SLAM3 was planned. The
twelve low-latency camera Vicon motion capture system [98] at MIT building 32-339 was
used to compare GAPSLAM to ORB-SLAM3 and the ground truth. A Vicon motion capture

43

system is considered to be high-performance and tracks object based on markers. In a typical
lab setup, three or more markers are attached in a unique geometric configuration to each
rigid-body object for identification. Multiple cameras that are sensitive to the reflective rays
from the markers are mounted to monitor a capture volume. A host computer is connected
to all cameras processing reflective ray detection. The camera poses and absolute scale of
the real world can be determined by calibration algorithms. With calibrated cameras, the
three-dimensional position of a marked object can be determined if the object is in view of
multiple cameras at the same time. A typical Vicon system setup is capable of determining
position with millimeter accuracy and with a measurement update frequency greater than
100 Hz.

3.1.2 EVO

Ground truth must not only be the most accurate method but its data must also have accu-
rate timestamps. While compared trajectories do not need to have identical timestamps or
the same number of datapoints, timestamps between different compared trajectories must
share the same reference point with regards to time. This is because different SLAM systems
and methods for determining trajectory often have different spatial reference points and dif-
ferent scales or multipliers, and the transformation matrices required to unify the trajectory
reference points are typically unknown. Therefore, time is often the only common reference
point that allow legitimate comparison.

Evaluation of Odometry and SLAM (EVO) [99], is a framework that uses timestamps to
compare various trajectories from the same dataset. It supports TUM [100], KITTI [101],
EuRoC [82] and Robot Operating System (ROS) bag files [102]. For the GAPSLAM eval-
uations, TUM format was used, which contains eight columns of data: timestamp, position
(x, y, z), and quaternion rotation (qx, qy, qz, andqw). EVO is useful because it can visualize
the plotting of multiple trajectories, as well as quantifying the APE between trajectories.
EVO has options to align trajectories and correct scales using Sim(3) Umeyama [74] [75]
alignment of rotation, translation and scale. One of the most important parameters in EVO
for APE and trajectory comparison is the t_max_diff. An optimal value is required for this
parameter because if it is set too low, then only a small fraction of the compared trajectory’s
data points will be used in the comparison, yielding drastically different results. Too high
of a value increases the chances of irrelevant outliers being included due to excessive lack of
constraints allowed in comparison. The t_max_diff parameter was tune so that at least 95
percent of the data points were used in the comparison.

3.2 Vicon Room Experiment

ORB-SLAM3 was compared to both Detic GAPSLAM and YOLOv8 GAPSLAM across
three runs, where each run consisted of three Vicon reflectors rigidly attached to an Intel
D435i camera, which did a full loop around the Vicon room using a manual push cart as a
platform. Essentially, the camera was mounted to a flexible hinge that allowed pitch angle
changes and z-axis motion because it was fitted on the backside of the laptop’s screen. The
laptop was on the pushcart, acting as the server that was timestamping and storing the Vicon

44

Figure 3.1: Comparison of Detic (red) and YOLO (green) GAPSLAM and ORB-SLAM3
(blue) against the Vicon motion capture system ground truth (black slotted) trajectory on
Vicon 1 dataset.

Figure 3.2: x− y − z Comparison of Detic (red) and YOLO (green) GAPSLAM and ORB-
SLAM3 (blue) against the Vicon motion capture system ground truth (black slotted) tra-
jectory on Vicon 1 dataset.

Metric Detic GAPSLAM YOLOv8 GAPSLAM ORB-SLAM3
max 0.417 0.417 0.420
mean 0.143 0.144 0.144
median 0.129 0.131 0.132
min 0.016 0.023 0.023
rmse 0.166 0.167 0.168
sse 4.339 4.385 4.409
std 0.085 0.085 0.086

Table 3.1: Best APE results w.r.t. translation part (m) with Sim(3) Umeyama alignment
for Detic GAPSLAM, YOLOv8 GAPSLAM and ORB-SLAM3 on Vicon 1 dataset.

45

Figure 3.3: Comparison of Detic (red) and YOLO (green) GAPSLAM and ORB-SLAM3
(blue) against the Vicon motion capture system ground truth (black slotted) trajectory on
Vicon 2 dataset.

Figure 3.4: x− y − z Comparison of Detic (red) and YOLO (green) GAPSLAM and ORB-
SLAM3 (blue) against the Vicon motion capture system ground truth (black slotted) tra-
jectory on Vicon 2 dataset.

Metric Detic GAPSLAM YOLOv8 GAPSLAM ORB-SLAM3
max 1.664 1.673 1.680
mean 0.577 0.574 0.577
median 0.415 0.409 0.416
min 0.074 0.071 0.078
rmse 0.686 0.683 0.686
sse 123.165 122.060 123.165
std 0.369 0.369 0.370

Table 3.2: Best APE results w.r.t. translation part (m) with Sim(3) Umeyama alignment
for Detic GAPSLAM, YOLOv8 GAPSLAM and ORB-SLAM3 on Vicon 2 dataset.

46

Figure 3.5: Comparison of Detic (red) and YOLO (green) GAPSLAM and ORB-SLAM3
(blue) against the Vicon motion capture system ground truth (black slotted) trajectory on
Vicon 3 dataset.

Figure 3.6: x− y − z Comparison of Detic (red) and YOLO (green) GAPSLAM and ORB-
SLAM3 (blue) against the Vicon motion capture system ground truth (black slotted) tra-
jectory on Vicon 3 dataset.

Metric Detic GAPSLAM YOLOv8 GAPSLAM ORB-SLAM3
max 0.158 0.146 0.125
mean 0.048 0.055 0.044
median 0.037 0.045 0.041
min 0.002 0.003 0.004
rmse 0.057 0.062 0.051
sse 0.820 0.979 0.648
std 0.029 0.027 0.024

Table 3.3: Best APE results w.r.t. translation part (m) with Sim(3) Umeyama alignment
for Detic GAPSLAM, YOLOv8 GAPSLAM and ORB-SLAM3 on Vicon 3 dataset.

47

pose data via Ethernet as well as the D435i video frames via Universal Serial Bus (USB).
The same keyframes were used for both GAPSLAM and ORB-SLAM3 to ensure a direct
comparison, and each run was relatively accurate to GT with only a minor APE difference
between the different methods. On the Vicon 2 dataset 3.2 however, the loop closure was not
detected, resulting in more significant APEs for ORB-SLAM3, and consequently both Detic
and YOLO GAPSLAM as well. One unexpected observation was that a significant portion
of the APE originated from the z-axis as shown in figures 3.2, 3.4, and 3.6. A small portion
of this APE is likely due to the flexible hinge that allowed vibration from the small bumps
on the floor to produce a number of blurry images in the relatively low 30 FPS camera.
The most significant source of z-axis APE is likely due to insufficient constraints due to less
opportunities for loop closures to impact the z-axis as the motion predominantly occurred
in the x-y plane.

Metric Detic 0.60 Detic 0.65 Detic 0.70 Detic 0.75 Detic 0.80 Detic 0.85 Detic 0.90
max - 0.158 0.174 0.153 0.173 0.163 0.160
mean - 0.052 0.054 0.056 0.062 0.049 0.048
median - 0.045 0.043 0.051 0.058 0.037 0.040
min - 0.006 0.003 0.005 0.005 0.006 0.002
rmse - 0.060 0.064 0.063 0.070 0.059 0.057
sse - 0.920 1.055 1.019 1.227 0.884 0.820
std - 0.030 0.035 0.030 0.031 0.033 0.031
Total Run Time (s) - 12.760 10.160 9.350 7.610 6.470 5.910
Total Objects - 139 105 74 46 21 10
Gaussian-Only Objects - 31 14 14 8 3 1
Non-Gaussian Objects - 108 91 60 38 18 9
Gaussian Ratio - 0.223 0.133 0.189 0.174 0.143 0.100

Table 3.4: APE w.r.t. translation part (m) with Sim(3) Umeyama alignment for Detic
GAPSLAM on Vicon 3 dataset across different detection score filters. Object detection
score filter of 0.60 failed for default Detic GAPSLAM settings, so it was omitted. It does
successfully run however, if running parameters are slightly tuned.

Metric YOLO 0.60 YOLO 0.65 YOLO 0.70 YOLO 0.75 YOLO 0.80 YOLO 0.85 YOLO 0.90
max 0.174 0.162 0.159 0.150 0.149 0.146 0.151
mean 0.055 0.056 0.058 0.056 0.057 0.056 0.055
median 0.045 0.048 0.049 0.049 0.050 0.050 0.048
min 0.005 0.008 0.007 0.007 0.005 0.003 0.007
rmse 0.064 0.063 0.065 0.062 0.063 0.063 0.062
sse 1.056 1.018 1.078 0.987 1.011 0.993 0.979
std 0.033 0.030 0.030 0.028 0.027 0.027 0.028
Processing Time (s) 2.10 3.57 2.50 2.86 2.55 2.37 1.99
Total Objects 32 29 24 22 15 10 7
Gaussian-Only Objects 4 3 2 2 4 3 0
Non-Gaussian Objects 28 26 22 20 11 7 7
Gaussian Ratio 0.125 0.103 0.083 0.091 0.267 0.300 0.000

Table 3.5: APE w.r.t. translation part (m) with Sim(3) Umeyama alignment for YOLOv8
GAPSLAM on Vicon 3 dataset across different detection score filters.

Unexpectedly, there was no significant APE difference between YOLO and Detic GAPSLAM
as shown in the Vicon 1 results table 3.1 and the Vicon 2 results table 3.2. The dataset that
resulted in the biggest difference between Detic and YOLO was Vicon 3 3.3, which was also

48

the dataset that has the lowest mean APE with ORB-SLAM3 having even lower mean APE.
Comparison between YOLO and Detic across various object detection score filters is shown
in tables 3.4 and 3.5. While Detic used the default unfiltered Large Vocabulary Instance
Segmentation (LVIS) [103] list of 1024 object classes the default YOLOv8 model was trained
on 80 classes, which meant that Detic was guaranteed to detect a much larger number of
objects given the same minimally acceptable object detection score filter.

Because the VO in this run was highly accurate as shown in the ORB-SLAM3 results for
the Vicon 3 results table 3.3, having a large number of total objects did not directly correlate
to overall accuracy, as there were other performance metrics that were impaired. Aside
from taking a longer duration to process frames, Detic having a large list of object classes
disadvantages precision and recall, where there is an increased chance for false positives and
false negatives during detection. Certain objects fall within multiple detection classes due to
similarity in appearance or function. For example, Detic in the Vicon room often mistakes
the trash can as the bucket class, and the Lego class gets mistaken for the toy class. This
multiple interpretation is shown in figure 3.9, where the only consistent detections across all
three frames is the purple particle filter inside the box on the left, although there is only a
small amount of rotation and translation between frames, especiall from the left frame to
middle frame.

Although object detections may be semantically similar or equivalent, this alternate inter-
pretation of the objects in the frames could result in a transient new landmark of a different
class that is only observed once. When this occurs, it adversely affects optimization by
denying a potential loop closure, delaying GAPSLAM reinitialization as well as maintaining
an erroneous observation in the factor graph by being detected as a different class from its
previous frame, potentially alternating classes from one frame to another. Objects being
comprised of component objects such as the chair class being further divided into cushion
class could also potentially contribute to this problem.

Although not a direct correlation, a metric of importance in the Vicon 3 dataset was
the Gaussian Ratio, which was the ratio of reinitialized Gaussian-only objects relative to
the total number of detected objects. This was expected because Gaussian-only landmarks
indicate great confidence in the observation. Generally, a higher Gaussian Ratio resulted
in better max and mean APE. Vicon 3 runs that performed well that did not have a good
Gaussian Ratio had a small number of total detections instead, which was also an expected
result as a small number of total objects meant there was a smaller chance of transient
erroneous observations as described above.

3.2.1 Differences from Original GAPSLAM Experiment

ORB-SLAM3 outperformed GAPSLAM in the Vicon 3 dataset, which was not the case
for the results of the original GAPSLAM experiment (shown in [87]). The main cause of
GAPSLAM outperforming ORB-SLAM3 in the original experiment was that ORB-SLAM3
was unable to detect the loop closure after three loops of the experiment environment. In
the case of our experiment where the loop closure is detected for both GAPSLAM and
ORB-SLAM3 in the Vicon 3 dataset, ORB-SLAM3 has a slight advantage in accuracy as it
uses over one thousand matched ORB features while GAPSLAM only relies on a handful of
landmarks as shown in table 3.3. Additionally, whereas [87] used only nine classes of objects

49

Figure 3.7: Semantic map of objects and trajectory of YOLO and Detic GAPSLAM produced
in the Vicon 3 dataset for an object detection score of 0.65. Object classes are not labeled
in the figure, but is recorded and can be retrieved.

Figure 3.8: Frame 136 of the Vicon 3 dataset. with original on the left, YOLO without
segmentation in the middle, and Detic with segmentation on the right.

Figure 3.9: Comparison of adjacent frames processed by Detic in the Vicon 1 dataset.

50

(cup, cereal box, trash can, skateboard, office chair, football, bottle, traffic cone, and toy car)
that had strong recall rates resulting in a reduced number of false positive object detections,
the Vicon room experiments did not use any filters for any unfavorable classes. This further
increased refinement for [87] compared to the map and trajectory generated in the Vicon
room.

3.3 Summary

Having evaluated our GAPSLAM system in a lab environment with motion capture, in the
next chapter, we proceed to discuss the integration of GAPSLAM with the software system
of the BlueROV2 underwater vehicle.

51

52

Chapter 4

Methodology

This chapter describes our online underwater object-based SLAM system for the BlueROV2.
The overall system achitecture is depicted in Figure 4.1. The system uses ROS to commu-
nicate with the vehicle sensors and Redis to communicate with the graphical processor as
well as to make the real-time visualization available.

Figure 4.1: System architecture of online GAPSLAM for the pool experiment. The thin
arrows show the procedural flow of data of GAPSLAM, while the thick arrows show the
dependency of GAPSLAM on Redis for each transfer of data from one module to another.

4.1 Hardware

The platform chosen to test underwater GAPSLAM was BlueROV2, which is one of the ROV
assets of MIT’s Marine Robotics Group. Although the ideal vehicle to implement underwater
GAPSLAM should be a tether-free AUV in order to allow the vehicle more potential to be
autonomous, commercially available AUVs [104] are generally equipped with a processor

53

with frequency of 0.1 to 1.0 GHz that cannot handle the significant graphical requirements
of real-time object detection for images that have hundreds of pixels for width and height
in file size. This is because graphics-intensive tasks has traditionally not been required
on commercial AUVs, and demand has only appeared in cutting-edge research projects in
very recent years at the time of writing. Therefore, for this experiment the BlueROV2
was equipped with a tether that connects to a laptop with a dedicated graphical processor.
Essentially, the BlueROV2’s Raspberry Pi 4 [105] is only used to network the vehicle’s sensors
to the laptop’s processors via ROS. The laptop used for front-end graphics processing and
back-end factor graph optimization is the Maingear Vector Pro 2, which is equipped with
an Intel i9-12900H Central Processing Unit and an NVIDIA RTX 3080Ti Mobile Graphics
Processing Unit.

(a) The MIT Marine Robotics Group’s
BlueROV2 setup, including laptop and ex-
tension cable.

(b) The MIT Marine Robotics Group’s
BlueROV2 present at the Z-Center pool.

Figure 4.2: MIT Marine Robotics Group’s BlueROV2 and setup.

4.2 Robot Operating System

The BlueROV2 [106] has on board the BlueOS Linux operating system, which makes ROS
the interface of choice when communicating with the laptop. ROS is ideal for running
experiments with GAPSLAM on real robots because on board sensor data can be linked
to ROS topics, which can be configured to automatically transmit a timestamped message
containing sensor data when data becomes available. The timestamps are reliably measured
in microseconds, and is a common point of reference for all ROS topics, which is essential
in sensor fusion and setups where there are multiple machines working together across the
same network.

4.3 Redis Server

Redis [107] is an in-memory data structure store that serves as a database, cache, and message
broker. It supports a wide array of data structures such as strings, hashes, lists, sets, sorted

54

sets with range queries, bitmaps, hyperlogs, geospatial indexes, and streams. The primary
advantage of Redis lies in its in-memory storage capability, which enables extremely fast
read and write operations, essential for applications where low latency and high throughput
are critical. This attribute makes Redis particularly suitable for real-time applications like
GAPSLAM, where it can efficiently handle the rapid transfer of video frames.

Moreover, Redis offers a diverse set of data structures. These include binary-safe strings
that can store any data type, hashes for object storage, lists which are linked lists of strings,
sets which are unordered collections of unique strings, and sorted sets that allow sorting of
elements based on scores. Redis also provides specialized data structures such as bitmaps,
HyperLogs, geospatial indexes, and streams for specific use cases. Redis also incorporates
a publish/subscribe messaging paradigm, where messages are published to channels, and
clients subscribe to these channels to receive updates, further enhancing its utility as a
message broker.

4.4 EKF Odometry

One of the main problems with adapting GAPSLAM for underwater operations is that VO
fails more frequently in underwater environments due to a lack of features. In the indoor pool
environment at MIT’s Zesiger Center (Z-Center), where the initial underwater evaluation of
GAPSLAM was performed, ORB-SLAM3 lost track at 27 percent completion and could not
finish the dataset [63]. Similar performance was also observed in Grimaldi’s work [106],
where most of the tests performed using ORB-SLAM3 without perfect illumination failed.
Past experiments where ORB-SLAM3 succeeded were ones where after image enhancement,
there was plenty of diverse and robust features throughout the entirety of the dataset. In
the case of our indoor pool dataset, there were sections of video between the objects where
the camera frames captured only a blurry white pool wall with no discernible features. Even
with advanced image enhancement leveraging machine learning or higher resolution cameras,
it is not possible to create features that are not there in the first place. Therefore it was
determined that ORB-SLAM3 and VO was not suitable for the indoor pool dataset.

In order to avoid failure and have a common reference point for comparing GAPSLAM
and OAS-SLAM, we added EKF odometry fusing DVL, IMU and pressure sensor data [63]
to GAPSLAM [30], [31]. The IMU provides data on the vehicle’s acceleration, orientation,
and angular rates, which can be used to estimate its position in x, y and z, and orientation
over time. However, due to errors and drift, IMU data alone are usually insufficient for
precise navigation.

A DVL measures the velocity of the vehicle relative to the seafloor or water column by
using the Doppler effect. The DVL emits acoustic pulses and measures the frequency shift of
the echoes reflected from the seabed or suspended particles in the water. The frequency shift
is proportional to the velocity of the vehicle, allowing the DVL to calculate the speed in 3D
along its four beams oriented at fixed angles. The pressure sensor, often integrated with a
temperature sensor, is used to measure the depth of the underwater vehicle by measuring the
hydrostatic pressure, which is directly proportional to depth, exerted by the water column
above it. The EKF is a state estimation algorithm that combines measurements from its
input sensors. The EKF maintains a state vector that includes the vehicle’s position, velocity,

55

orientation, and sensor biases. Using the vehicle’s motion model matrix and IMU data, the
EKF predicts the current state and its error covariance matrix via differentiation [108]. The
EKF updates the state estimate using observations from the DVL and pressure sensor. The
measurements are compared to the predicted state, and the discrepancies (residuals) are
used to correct the state estimate. This robust sensor fusion reduces trajectory drift from
noise accumulation.

While it was possible to pair every EKF output with every image topic message to be
processed by GTSAM, doing so overloaded the solver with redundant factors numbering in
the thousands, causing the system to become underdetermined and insolvable. There were
too many adjacent frames where there was negligible changes going from frame to frame,
which caused the system to become less sparse. In ORB-SLAM3, keyframes are selected for
efficient map building and optimization, and EKF GAPSLAM required a similar framework.
A filter was implemented in order to adapt the number of factors managed by the solver.
The ROS message filter was used to match the EKF topic to the camera topic, and a message
pair was admitted only when there was both sufficient overlap and change in the next frame.
This helped make the solver operate efficiently while keeping the frame rate high enough
to be useful for real-time operation. Furthermore, the transformation matrix of equation
(4.1) from the EKF odometry’s navigation frame to the camera frame was calibrated and
were applied to the odometry so that both camera and odometry shared the same frame of
reference.

T usb_cam
nav =

cos(1.5708) − sin(1.5708) 0 −0.01586
sin(1.5708) cos(1.5708) 0 0

0 0 1 0.1877
0 0 0 1

 (4.1)

4.5 Custom YOLOv8 Model Training

The default model for YOLOv8 only has 80 different object classes, and none of them are
objects typically found underwater. Therefore, it was required to train a YOLO model
capable of detecting underwater objects. Because underwater GAPSLAM was going to be
compared to OAS-SLAM, the YOLO model for underwater GAPSLAM was fine-tuned from
the baseline in the same manner as described by Singh et al. [63].

Training a YOLOv8 model on a custom dataset involves several critical steps to ensure
precise object detection. Initially, gathering and preparing the dataset is essential, which
includes collecting images that represent the target objects. Each image must be anno-
tated with bounding boxes around the objects of interest, specifying the coordinates of the
bounding boxes and class labels.

The dataset is then divided into training, validation, and possibly test sets to robustly
train the model and evaluate its performance accurately. Setting up the YOLOv8 envi-
ronment follows, requiring the installation of necessary software and dependencies such as
Python, PyTorch, and the YOLOv8 framework.

Configuration of training parameters is carried out in a configuration file. This file in-
cludes settings such as paths to the training and validation datasets, the number of classes,

56

model architecture specifics, learning rates, batch size, and the number of epochs. Fine-
tuning these parameters based on the dataset’s size and complexity is crucial for optimizing
training performance. Monitoring the model’s performance through metrics like loss and ac-
curacy during training is vital for making necessary adjustments to the training parameters.

Post-training, evaluating the model’s performance on the validation set is essential, and
adjusting detection confidence thresholds is necessary to balance precision and recall effec-
tively. The results of this step are shown in figures 4.3 and 4.4. PR is important because it
provides a comprehensive view of a model’s performance, especially in imbalanced datasets,
while F1 is important as it offers a single, balanced metric that considers both precision and
recall. Further fine-tuning and retraining may be required based on the evaluation results to
achieve desired accuracy and performance, although the results in the figure show that the
model is trained to have excellent performance in both precision and recall, with a reason-
able trade-off of only two objects out of the thirteen having decent scores instead of excellent
scores like the remainder of object classes. The trash-bin and tire classes would be removed
from the pool experiment due to their relatively lacking performance.

Figure 4.3: PR curve. Other than the trash-bin and tire classes, the object classes have
excellent precision and recall.

The above tasks were implemented by using 230 hand-labeled images including every
object class in the datasets to fine-tune a YOLOv8 network over 25 epochs. The 230 images
were augmented with rotation and blurring to produce a dataset of 691 training images. A
sample of test images, that appear highly similar to the target environment, but not identical
due to blurring and rotation, is shown in figure 4.5 having detected all of the objects in custom
classes it was trained on with high confidence scores. The trained underwater YOLO model
also defines the limits for this implementation of underwater GAPSLAM: prior knowledge
of the environment and objects of interest must be known in order to operate as expected.

57

Figure 4.4: F1 Confidence Curve, which shows a balanced metric that considers both pre-
cision and recall. It is shown here that the fish-cage and hand-net classes also have below
average confidence for specific ranges of F1 scores.

Furthermore, while object detection data for training is easy to label, data for segmen-
tation is more challenging as there is increased annotation complexity. For segmentation
tasks, each object in the training images must be annotated with pixel-level precision, re-
quiring manual outlining of the exact shape of each object. This is more time-consuming
and intricate compared to bounding box annotations used for detection tasks. Therefore, the
underwater YOLO detector was trained only to detect and not segment. This was accepted
because it was expected that switching from object segmentation masks to bounding boxes
in the front-end would negligibly impact the performance of GAPSLAM. This is because
for most objects, the centroid of the object segmentation mask is not significantly different
from the centroid of the bounding box.

4.6 Summary

This chapter has described the architecture for our underwater SLAM, discussed our incor-
poration of IMU and DVL sensor fusion to improve odometry, and described custom model
training for YOLOv8 for the target underwater objects. In the next chapter, we describe
our main results, processing a BlueROV2 dataset obtained in the MIT Z-Center pool.

58

Figure 4.5: Batch of 16 generated test images for validating prediction in the target environ-
ment. Compared to the original input, generated images are randomly blurred and rotated.

59

60

Chapter 5

Results and Analysis

5.1 Introduction

This chapter provides the main results of the thesis: experimental evaluation of the GAPSLAM
system adapted to operate underwater using the BlueROV2. We use the same experimental
setup as used by Singh et al. [63] to evaluate their OAS-SLAM method. A series of objects
were placed in the Z-Center pool near the pool walls. The main difference between their
experiment and ours is in the selection of data, which results from the differing methodology.
However it is convenient that we can make a direct comparison between the two methods.

GAPSLAM uses both Gaussian and NG landmarks as well as reinitialization to improve
the back-end optimization of SLAM, while OAS-SLAM utilizes GA only to represent uncer-
tainties in measurements and states, using the iSAM2 solver. OAS-SLAM instead focuses
on object detection as well as trajectory and map accuracy. Precision and recall for both the
PA and UMAP camera-sonar sensor fusion methods are compared against YOLO. This is a
significant difference from underwater GAPSLAM, which focuses only on mapping and tra-
jectory estimating using a monocular camera, with object classes known in advance and uses
pre-trained detectors. Meanwhile, the novel PA and UMAP algorithms of the OAS-SLAM
identify, localize, classify, and map marine objects without a priori knowledge of object
classes by leveraging unsupervised object segmentation. This advantage is showcased in
the OAS-SLAM outdoor tank dataset, which contains objects that cannot be detected by
off-the-shelf object detectors in their default settings. Our approach works only for objects
that fit one of the a priori known object classes. The metric these two SLAM systems have
in common, and the metric to evaluate any SLAM system is the trajectory APE from a
common experiment, which is the focus of this section.

5.2 Z-Center Pool Experiment

The BlueROV2 travels across the Z-Center indoor pool while maintaining a set altitude
and an approximately three meter distance from the wall. The pool is twenty-five meters
long, and the indoor pool dataset is comprised of three runs: the one object one loop run
(1obj1loop) in UMAP only, the two objects one loop run (2obj1loop) in both PA and UMAP,
and the two object two loops run (2obj2loop) in both PA and UMAP. During each loop, the

61

BlueROV2 is oriented to continuously face the same pool wall that is parallel to the path
and travel in a line to the other side of the pool. The path was carefully steered to avoid
the pool drain cover panels, which adversely effect the measurements of the DVL when the
robot is directly above the panel. The loop is completed when the BlueROV2 retraces its
path and returns to the location where it started from. Various underwater objects with
at least two objects of each class (lobster cage, seaweed, hand net, towfish, tire, pipe) were
evenly spaced and placed in a line parallel to the wall. A visualization of the experiment
layout is given in figure 5.1.

Figure 5.1: In order to compare YOLO GAPSLAM to the OAS-SLAM PA method [63], the
same pool experiment dataset is used.

The following are the BlueROV2 sensors that are essential to GAPSLAM: odometry is
obtained by fusing a Teledyne Impulse Doppler velocity log, a VectorNav IMU, and a Bar30
pressure sensor using an Extended Kalman Filter. A monocular Sony Exmor IMX322 camera
with 1920 by 1080 resolution and 30 FPS is used to capture a stream of camera images [63].

Although a system for discerning GT was not available in the pool, setting up the ex-
periment to guarantee loop closures, having a highly accurate odometry as well as having
an accurate pseudo-GT comparable to the actual GT from a previous experiment provides a
reliable framework for trajectory evaluation. Furthermore, OAS-SLAM and GAPSLAM are
both in essence sparse landmark-based SLAM systems and therefore are more comparable
to each other as they share distinct identifiable landmarks factors as reference points.

OAS-SLAM combined with YOLO was chosen as the pseudo-GT, which was also the
pseudo-GT used by Singh et al. [63] for their indoor and outdoor experiments. The EKF
odometry of BlueROV2 is highly accurate; in the outdoor experiment at WHOI [63] the
APE of the odometry was only 0.02m more than PA OAS-SLAM, and surprisingly was
0.01m more accurate than pseudo-GT [63] when data from a low-cost Hybrid Long/Inverted
Ultra-Short Baseline (iLBL-USBL) acoustic beacon system was used to obtain a GT trajec-
tory. Therefore, when combined with loop closures, it was expected that the already quite
reliable odometry would allow trajectories produced by OAS-SLAM to be even more accu-
rate. YOLOv8, although not perfect in recall, has perfect precision across all indoor and
outdoor experiments, and has the highest average score over PA and UMAP when precision
and recall are combined. Although not perfect, this justifies selecting YOLO OAS-SLAM
as pseudo-GT because it is expected to be highly accurate while being the best available
method.

GAPSLAM was also compared to ground truth in the previous motion capture experi-

62

ment, and was demonstrated to be highly accurate. As such, it is expected for GAPSLAM,
which uses the same reliable EKF odometry, to have a similar or better APE differential for
the indoor pool experiment in comparison to the motion capture experiment.

5.3 Results

Tables 5.1 and 5.2, and 5.3 show some of our main results from the pool experiment, compar-
ing our YOLO GAPSLAM against Singh et al.’s OAS-SLAM, for two different trajectories.
There were mixed results. While OAS-SLAM performed significantly better than odome-
try, GAPSLAM only outperformed odometry in the 2obj1loop run by 20 percent and the
2obj2loop run by 10 percent. YOLO GAPSLAM did well considering that OAS-SLAM mit-
igates depth and scale ambiguity by making a direct measurement with the SONAR, but
GAPSLAM did have the advantage of being able to use the same trained YOLOv8 as the
pseudo-GT. As shown in figures 5.3, 5.5 and 5.7 the APE is focused in the z-axis just like
in the Vicon room experiment.

Metric YOLO GAPSLAM UMAP OAS-SLAM EKF Odometry
max 1.618 0.809 1.580
mean 0.943 0.079 0.817
median 0.973 0.057 0.847
min 0.183 0.007 0.098
rmse 0.979 0.119 0.866
sse 516.169 13.295 850.609
std 0.260 0.089 0.286

Table 5.1: APE w.r.t. translation part (m) with Sim(3) Umeyama alignment for YOLO
GAPSLAM, EKF Odometry, and 1obj1loop UMAP method. PA method was not available
for this run.

Metric YOLO GAPSLAM PA OAS-SLAM EKF Odometry
max 0.449 0.327 0.999
mean 0.195 0.108 0.233
median 0.191 0.113 0.106
min 0.007 0.009 0.006
rmse 0.225 0.126 0.344
sse 28.907 16.528 123.221
std 0.112 0.065 0.254

Table 5.2: APE w.r.t. translation part (m) with Sim(3) Umeyama alignment for YOLO
GAPSLAM, PA OAS-SLAM, and EKF Odometry.

63

Figure 5.2: One object per each class, one loop of the pool. GT is in black, blue is
GAPSLAM, green is EKF odometry, and red is UMAP OAS-SLAM.

Figure 5.3: One object per each class, one loop of the pool in x− y− z view. GT is in black,
blue is GAPSLAM, green is EKF odometry, and red is UMAP OAS-SLAM.

Metric YOLO GAPSLAM PA OAS-SLAM EKF Odometry
max 2.689 1.670 3.002
mean 1.288 0.970 1.409
median 1.251 0.930 1.300
min 0.292 0.260 0.113
rmse 1.343 1.020 1.513
sse 1933.778 109.550 3348.240
std 0.379 0.290 0.553

Table 5.3: APE w.r.t. translation part (m) with Sim(3) Umeyama alignment for YOLO
GAPSLAM, 2obj2loop PA, and EKF Odometry.

64

Figure 5.4: Two objects per each class, one loop of the pool. GT is in black, green is
GAPSLAM, blue is EKF odometry, and red is PA OAS-SLAM.

Figure 5.5: Two objects per each class, one loop of the pool in x − y − z view. GT is in
black, green is GAPSLAM, blue is EKF odometry, and red is PA OAS-SLAM.

65

Figure 5.6: Two objects per each class, two loops of the pool. GT is in black, red is
GAPSLAM, blue is EKF odometry, and green is PA OAS-SLAM.

Figure 5.7: Two objects per each class, two loops of the pool in x − y − z view. GT is in
black, red is GAPSLAM, blue is EKF odometry, and green is PA OAS-SLAM.

66

5.4 Analysis

In our experiments, we encountered some shortcomings that require further study. Unless
there is reinitialization of the GA of the landmark using linearization points from an asso-
ciated NG particle filter via samples with the highest probability, and unless reinitialization
reduces the largest eigenvalue of the samples of the marginal posterior of the landmark suf-
ficiently, the system is still not confident about the landmark and it will remain in the NG
set. Consequently the landmark, which is still not purely Gaussian, will not be recorded
on the map for the final result as shown in figure 5.8. This poor quality map that consists
of unvisualized particle filters is a problem for GAPSLAM because a lack of Gaussian-only
landmarks not only indicates poor data association, but also a lack of confidence in the map’s
scale.

What was unexpected, however, was that GAPSLAM was able to perform relatively
accurately for the 2obj1loop run even though the system was having significant data asso-
ciation problems. For most of the scenario, the objects were constantly being detected as
multiple distinct landmark observations of the same class, which added invalid NG factors to
the pose graph. YOLO GAPSLAM underperformed in the 1obj1loop experiment, which was
somewhat expected as there were less objects to generate landmarks factors and complete
loop closures. Additionally, its trajectory was not shorter than 2obj1loop and it had equal
potential to accumulate odometry errors. What was unexpected was that 1obj1loop was
outperformed by odometry, which indicates that while OAS-SLAM succeeded in completing
its loop closure, GAPSLAM failed to make loop closures or made invalid ones such that
the trajectory become adversely affected. One expected result that was observed was that
the 2obj1loop run performed significantly better than the 2obj2loop run. Although there
were more opportunities for loop closure in the 2obj2loop run, travelling twice the distance
was guaranteed to accumulate greater odometry drift, and ultimately affecting the SLAM
trajectory as well.

In the indoor experiment by Huang [87], only 58 percent of runs without reinitialization
returned solutions despite having RMSE values comparable to those with reinitialization.
This record is consistent with our observations in the pool experiment. GAPSLAM without
reinitialization is essentially the Gaussian solver with additional priors on landmarks. Un-
derwater GAPSLAM had a reduced number of reinitializations due to poor data association
and was not robust to errors encountered during MAP estimation. Changing the running
parameters swayed the results excessively, which was not experienced in the Vicon room
experiment. Effects of changing running parameters will be discussed in the next chapter.
GTSAM ’s indeterminant linear system detection error, which is the result of undercon-
strained variables and the system being underdetermined, occurred frequently if the running
parameters were not set to optimal values. Furthermore, even for runs with identical running
parameters, there was often a minor variance in the APE between each runs. Likewise, a
previously stable configuration could end up unexpectedly not completing during a repeat
run. Thus, our results were somewhat brittle, and more experimentation is required to take
steps toward creating a robust underwater visual navigation system.

67

Figure 5.8: Map generated by YOLO GAPSLAM. Objects failed to reinitialize their Gaus-
sian Approximations, due to incorrect data association. GAPSLAM does not record objects
on the map unless they reinitialize and meet a confidence threshold.

5.5 Summary

In summary, this chapter has presented our main experimental results for underwater GAPSLAM
in the Z-Center pool. While the results are preliminary, we achieved a basic proof-of-concept
for underwater semantic SLAM. The next chapter further discusses some of the open ques-
tions arising from our work.

68

Chapter 6

Discussion

While previous chapter showed some success in providing the first implementation of GAPSLAM
underwater, the experiments also highlight a number of difficult questions about data as-
sociation and object detector performance in the underwater setting. In this chapter, we
discuss a few of these issues and illustrate more of the challenges using data taken in a tank
on the MIT campus, using Detic.

6.1 Limitations of Monocular SLAM

Monocular SLAM faces challenges during forward-facing sideways motion, including scale
ambiguity, limited parallax, feature loss, and depth estimation difficulties. GAPSLAM was
expected to mitigate some of these issues by using semantic landmarks for scale estima-
tion and loop closures because Gaussian representations of object poses and particle filters
help manage uncertainty for depth in sideways motion through incremental resampling and
reinitialization. While semantic information and probabilistic techniques offer improvements
over feature-based methods such as ORB-SLAM3, they don’t resolve all issues inherent to
sideways-only motion in monocular SLAM, as demonstrated by the relative reduction in
trajectory accuracy going from the Vicon room to the Z-Center pool.

For monocular SLAM, the design of experiment is critical. OAS-SLAM while monoc-
ular, is resistant to depth or scale ambiguity because it can measure distance with sonar.
GAPSLAM, which cannot leverage additional observation sensors is more susceptible to
depth and scale ambiguity when there is a lack of diversity of views. Taking the same path
to return to the starting point to finish the run may be advantageous for loop closures, but
for monocular setups it is a compromise as the diversity of viewpoints is reduced. Addition-
ally, in figures 3.2, 3.4 and 3.6 from chapter 3.3, it was seen that the majority of the APE
originates from the z-axis, because a lack of motion in z equals a lack of opportunities for
loop closures to affect z APE. Accurate monocular depth and scale estimation is crucial for
constraining the z-axis. However, with motion only in the x − y plane, depth estimation
becomes more challenging, especially for features directly in front of the camera.

As such, the Vicon room experiment setup was essentially a 2D SLAM problem although
the APE calculation in EVO was in 3D. Upwards and downwards translation and rotation,
which occurred in the original GAPSLAM experiment should have been leveraged. However,

69

MahalanobisDistances
Distortion

same_class_lmks
solver
rbt_var
meas_xy
meas_cov

cur_rbt_mat
cur_rbt_mat_inv
cam_intrinsic
cam_model
lmk2jointCov

mahalanobis_distances

Figure 6.1: Mahalanobis Distances Distortion Function Diagram

there was a legitimate reason why z-axis motion was decided to not be included in the Vicon
room experiments. Having a person carry the laptop connected to the Vicon system by
ethernet, and connected to the D435i camera by USB was tricky, and attempts degraded
experimental data due to bodies occluding the reflector balls from the Vicon cameras.

For the pool experiment, let x̂ be the dimension that BlueROV2 primarily travelled during
the experiment, let ŷ be the dimension perpendicular to x̂, going towards the objects and
let ẑ be the dimension parallel to the direction of gravity, where on one end is the air-water
boundary and the pool bottom on the opposite end. Although not as lacking as motion in ẑ,
the pool experiments had only minor translation in ŷ compared to x̂. As such, loop closures
had the most effect on x̂, which has the highest correlation with the x-axis, in all runs and
it had the least amount of APE as shown in figure 5.3, 5.5 and 5.7. In hindsight, it was a
blessing that BlueROV2 had to manoeuvre around the pool drains to avoid problems passing
over the drains had on the DVL. Although this introduced a minor amount of motion blur,
YOLO was robust to it and this added ŷ motion and an increase in diverse viewpoints to
allow GAPSLAM to have smaller APE than odometry for two of the three runs.

6.2 Mahalanobis Distances in GAPSLAM

Upon reviewing the logs generated during GAPSLAM runs, new NG objects were con-
sistently created for the same object due to the larger than expected Mahalanobis distance
between objects of the same class previously in chapter 2.3.4. Shown in figure 6.1, the Maha-
lanobisDistancsesDistortion function outputs the Mahalanobis distance. If the Mahalanobis
distance exceeds the threshold of 99 percent confidence level of the chi-squared distribution,
then different-class objects are not rejected and same-class objects are not associated with
each other, creating new landmarks. The threshold for the chi-squared distribution was
incrementally increased and decreased, but changes in both directions had adverse effects,
only increasing trajectory mean APE.

Mahalanobis distance in GAPSLAM is computed using several key parameters. The
same_class_lmks represents the number of landmarks in a new frame that share a class

70

GAPSLAM

resample_bw
prior_cov_scale
reinit_tol
lmk_sample_num

solver

Figure 6.2: Solver Function Diagram

with an existing landmark and are within a specified pixel_range threshold. This pixel
range is a crucial operating parameter in GAPSLAM. The calculation also incorporates the
camera’s intrinsic matrix and model, which are pre-calibrated using underwater checkerboard
imagery.

The solver, an instance of the GAPSLAM solver class (detailed in Figure 6.2), is cen-
tral to this process. It utilizes parameters such as resampling bandwidth for non-Gaussian
landmarks, prior covariance scale, reinitialization tolerance for Gaussian landmarks, and the
number of landmark samples. The solver’s capabilities include retrieving joint covariance
matrices for variables like the robot state variable (rbt_var).

Additional components include the lmk2jointCov dictionary, which stores covariance in-
formation for landmark-measurement associations, and the cur_rbt_mat and cur_rbt_mat_inv,
which are 4x4 matrices representing the robot’s 3D pose used for coordinate frame trans-
formations. The meas_xy and meas_cov parameters represent the mean coordinates and
standard deviations of the object’s center, derived from the object detector’s segmentation
mask.

As explained in chapter 4.5, the custom trained YOLOv8 model is only capable of detec-
tion, and not segmentation. Consequently, the entire bounding box of the object detection
must be treated as the object segmentation mask. Normally, this would not be a problem as
the center of the bounding box is typically the center of the object as well, or the discrepancy
is negligible.

6.3 Troubleshooting

6.3.1 Unexpected Behavior of Custom YOLOv8 Model

The custom underwater YOLOv8 model had an unexpected behavior that would heavily af-
fect the Mahalanobis distance calculation, which is crucial for data association. The bound-
ing box of an object would consistently become smaller or larger between frames as shown
in figure 6.3, even though there was negligible movement from the robot. To the GAPSLAM
system, this would appear as the object becoming smaller and larger going from frame to

71

frame, without experiencing the necessary rotation or translation to warrant this perceived
observation. Consequently, this could result in significant and unexpected fluctuations in the
meas_xy and meas_cov parameters and wrongly push the resulting Mahalanobis distance
outside of the threshold.

Figure 6.3: Frame 161 and 162 of the 2obj1loop pool experiment run. The bounding box has
thinner margins around the tire on the left side for 161.

6.3.2 MIT Tank Experiment with Detic and GoPro9

In order to determine whether the inconsistent bounding boxes of the custom YOLOv8
detector was resulting in poor data association, another experiment was executed at the
indoor tank of MIT Building 1-225, with object classes that had good precision and recall
in Detic. The experiment used a GoPro9 camera containing an IMU. The camera and IMU
were calibrated using the OpenIMUCameraCalibration method [109], and the video file was
converted to a ROS bag file by the parsing method from Joshi et al. [110] previously used for
underwater GoPro9 visual-inertial SLAM. The BlueROV2 was unsuitable for this experiment
due to DVL errors experienced in the relatively shallow tank. Objects were aligned similarly
to the Z-Center pool experiment, but the overall trajectory had a rectangular box shape
instead of being near linear.

Figure 6.4: Initial frames of the tank experiment in MIT Building 1-225.

After the run was complete, it was realized that the tank experiment encountered the
same problem as the pool experiment, which resulted in the runs failing to complete. The

72

changing shape of the bounding boxes was discovered to be only a minor part of the under-
lying problem. Seen in figure 6.4, the experiment starts at a good state where the particle
filter is centered on the object detection, and going from frame to frame, the particles filter
converges until reinitialization results in the removal of the NG landmark and displaying
only the small green Gaussian-only landmark. Up until this point, this was identical to the
successful GAPSLAM run in the Vicon room experiment.

(a) Unexpected increasing uncertainty in a
Gaussian-only landmark after having its cor-
responding landmark removed removed from
the NG set.

(b) New NG landmarks are growing more un-
certain each frame.

Figure 6.5: Comparison of landmark uncertainties in different scenarios.

However, as seen in figure 6.5a, the Gaussian-only landmark that was expected to only
become more accurate with additional views became extremely uncertain only after several
frames from its removal from the NG set. Furthermore, as shown in Figure 6.5b, each
new particle filter and their respective Gaussian landmark become more uncertain going
from one frame to the next. From these observations, it can be inferred that there is error
accumulating in the solver. This system behavior is not exclusive to the tank experiment;
for certain configurations of the pool experiment, this error accumulation was observed as
well, leading to GTSAM’s indeterminant linear system detection error for underdetermined
systems.

6.3.3 Effects of Running Parameters on GAPSLAM

Careful selection of a reduced max_range, increased reinit_tol, reduced resample_bw, re-
duced samples_per_path and reduced min_unimodal_eig allowed a stable Gaussian-only
landmark to appear as shown in figure 6.7a, but this result had worse trajectory APE than
the results from chapter 5.3, where there were no Gaussian-only landmarks.

During the pool experiment, it was discovered that these five from all the GAPSLAM
running parameters show in figure 6.6 were the decision variables for underwater GAPSLAM.
This is because increasing and decreasing the five parameters as described above adds artifi-
cial constraints to the system, limiting range and density of particle filter sampling as well as
restricting Gaussian reinitialization and removal of particle filters. While this decreases the
risk of encountering a GTSAM indeterminant linear system detection error while allowing
loop closure to reinitialize a single Gaussian-only landmark, it had adversely effected the

73

remainder of the NG landmark observations, reducing overall trajectory APE. The best re-
sults from chapter 5.3 was achieved by balancing constraints from the five decision variables
with better uncertainty handling, avoiding particle degeneracy, and properly exploring the
state space for NG landmarks.

When considering the results from chapter 5.3 and figure 6.7, it can be concluded that
whether the goal is to aim for better trajectory accuracy or aim for a more stable system,
there is a limit on how well the system can perform due to the limits of monocular visual
SLAM systems discussed previously, as well as due to the EKF odometry covariance currently
being unknown, which is discussed in the next section.

6.3.4 Visual vs Inertial Odometry Covariance

From the results of chapter 6.3.2, it can be determined that Mahalanobis distance data asso-
ciation and the GAPSLAM solver, while important, are likely contributing negligibly to the
observed errors. Even in the Vicon room experiments, multiple NG landmarks were created
for some objects although ultimately there was no problem as data association executed
correctly and only one landmark was reinitialized to Gaussian-only.

As seen at the beginning of the tank experiment, resampling, reinitialization and data
association was operating as expected, but measurements became degraded due to error
accumulation in the same manner as the pool experiment. The potential sources of this
error include measurement noise, robot pose uncertainty, and odometry covariance. While
measurement noise has been addressed via utilizing a more robust object detector in the
tank experiment and robot pose uncertainty is modelled by the prior covariance matrix that
only affects the initial robot pose, the odometry covariance values for a new underwater
environment have never been verified, and the default values from the original experiment
was used without determining their viability. The odometry covariance, while not directly
visible in the GAPSLAM data association algorithm, plays a crucial role in propagating
uncertainty through the system, affecting both Gaussian and NG landmark estimations.

The odometry covariance is proportionally scaled by a critical running parameter called
translation_scale. While this framework was sufficient for modelling uncertainty for GAPSLAM
utilizing VO, it has been revealed by experimentation that this is not the case for inertial
EKF odometry utilizing sensors from a real robot, where the errors are measured in metric
units and not scalar values such as ratios or pixel dimensions. Odometry covariance values
as well as translation_scale have been arbitrarily and incrementally increased and decreased,
with adverse effects or no effect on the trajectory APE.

Further research is needed to better model the various sources of uncertainty discussed
above, including underwater camera calibration, to better realize our dream of a robust
object-based SLAM system for the challenging underwater domain.

74

Listing 6.1: YAML Configuration
artificial_prior_cov: 1
detection_score: 0.5
min_da_pts_prct: 0.1
min_max_range:
- 0.1
- 20.0
min_mhl_dist: 9.21034037197618
min_unimodal_eig: 0.1
odom_pose_cov:
- 6.853891945200942e-06
- 6.853891945200942e-06
- 6.853891945200942e-06
- 9.0e-06
- 9.0e-06
- 9.0e-06
preprocess: true
prior_pose_cov:
- 0.0001
- 0.0001
- 0.0001
- 0.0001
- 0.0001
- 0.0001
rbt_path_num: 1
reinit: true
reinit_tol: 0.03
resample_bw: 0.02
rot_tol: 1.7453292519943294e-06
sampleDA: true
sample_per_path: 500
scale: 1
trans_tol: 3.0e-05

Figure 6.6: YAML Configuration for the system running parameters.

75

(a) GAPSLAM map from run with reduced
max_range, increased reinit_tol, reduced re-
sample_bw, reduced samples_per_path and re-
duced min_unimodal_eig, which reduces the ef-
fectiveness of NG landmarks but results in one
successful Gaussian-only landmark during loop
closure for one of the earlier landmarks.

(b) GAPSLAM map from a run with a config-
uration similar to the map on the left. How-
ever, when a second Gaussian-only landmark is
reinitialized, the Gaussian mean and joint co-
variance continues to grow rapidly. Fortunately,
this run completed before the GTSAM indeter-
minant linear system detection error triggered.

Figure 6.7: The green Gaussian-only landmark has been partially cut out from the visu-
alizations in both the left and right GAPSLAM maps because the extrinsic matrix that
transforms the map’s observer from the robot camera’s intrinsic matrix was not expected to
require reconfiguration while in actuality it did. This is due to an unexpected and significant
variance in the trajectory that occasionally occurs from one run to another.

76

Chapter 7

Conclusion

7.1 Summary of Contributions

In summary, our main contributions have been as follows:

1. This work develops the design of a visual semantic SLAM system capable of running
on underwater robots such as AUVs and ROVs.

2. This work explores ground truth trajectory evaluations of SLAM systems in order to
validate their accuracy.

3. This work establishes benchmarks for the proposed SLAM system by comparing it with
other state-of-the-art underwater SLAM systems, aiming to identify areas for further
improvement.

7.2 Comparison with Related Work

Compared to OAS-SLAM, the advantage of underwater YOLO GAPSLAM is that at 10
FPS it runs appropriately fast for real-time operation on medium to low-speed robots like
BlueROV2. While OAS-SLAM processes data association in real-time in a similar manner to
GAPSLAM, the open-set object detector using PA and UMAP is computationally demand-
ing and consequently unable to operate at a real-time rate expected for BlueROV2, even
with medium to high-end commercial graphical processors. However, our implementation of
GAPSLAM is unable to operate without prior knowledge of the environment, and appears
to be significantly less accurate in missions that lack rotation resulting in a lack of diverse
viewing angles, leading to depth and scale ambiguity. Thus we can see the trade-off when
attempting to create a real-time system, there is a drop in performance and capability.

The following summarizes lessons learned for GAPSLAM from the Z-Center pool and
GoPro9 tank experiments discussed in chapter 6:

1. Object detectors that do not have consistent and tight bounding boxes around detec-
tions introduce additional measurement noise, which is not critical but may degrade
GAPSLAM performance.

77

2. Key running parameters can loosen or tighten constraints for GTSAM, and manipu-
lating them can balance the trade-off between performance and stability.

3. Both the pool and tank experiments start off as expected with particle filters converging
at the center of object bounding boxes. However, as the run progresses new particle
filters initiate with more uncertainty and are less likely to start converging. This is
likely due to improperly modelled odometry covariance.

4. Experimental setup is critical for monocular systems like GAPSLAM. Diversity of
views for objects and balanced movement in x, y, z as well as roll, yaw and pitch are
critical to performance.

7.3 Future Research

Our work raises many questions for future research, primarily related to uncertainty model-
ing, domain shift, and data association. We discuss more in these topics below.

7.3.1 EKF Odometry Covariance Measurement

In order to progress with improving GAPSLAM performance on BlueROV2, proper knowl-
edge of its odometry uncertainty is required. Measuring the EKF odometry covariance
matrix for a real underwater robot involves a systematic process of data collection and anal-
ysis. To determine the values for each element of the covariance matrix, the robot would
need to be operated in a controlled environment where its true position and orientation can
be accurately tracked, possibly using external sensors or a motion capture system. Multiple
trials of the robot’s movement should be conducted, comparing the EKF’s estimated position
and orientation with the ground truth measurements. The variances (σ2) for each dimension
(x, y, z) and rotation (ϕ, θ, ψ) would be calculated from the differences between the esti-
mated and true values across these trials. This process accounts for the uncertainties in the
robot’s motion model and sensor measurements. The resulting covariance matrix provides a
quantitative measure of the uncertainty in the robot’s odometry estimates, which is crucial
for accurate state estimation and navigation in underwater environments. Other running
parameters should then be tuned using the new odometry covariance matrix as a reference.

7.3.2 Domain Shift

An important improvement to the current configuration of underwater GAPSLAM would the
refine the underwater YOLO model to include more underwater object classes and develop
it to both detect and segment objects with more consistency in the bounding boxes and
masks. In addition, it is important to consider that while fine-tuning YOLO from the
baseline method performs well, it has received training data of the exact objects in the same
scene and lighting conditions as the test data. This means that even if the experiment
is replicated in the same pool in the future, if there are any visual changes at all from the
original experiment there is no guarantee that the model trained will enjoy the same precision
and recall it did in the datasets used in the experiment [63].

78

This is primarily due to domain shift, which refers to the discrepancy that occurs when a
machine learning model is trained on one domain (source domain) but tested on a different
domain (target domain). This is particularly challenging in the context of underwater scenes
due to the unique and variable conditions found underwater. Consistent results, while likely
in this case, are not guaranteed. And of course, the target environments of interest for Naval
applications are much more challenging.

Lighting is not the only impact on domain shift as water color, turbidity, marine life or
a lack thereof, different cameras, and other environmental conditions can result in domain
shift and cause object detectors trained in a different domain to not operate as expected.
Furthermore, Chen et al. [111] have demonstrated that domains can be analysed and mapped
against each other. Some domains overlap, allowing object detectors of one domain to operate
correctly in the intersection zone of multiple domain distributions while others do not. In
order for underwater GAPSLAM to operate robustly across various underwater settings, the
challenge of domain-shift must be resolved in future research.

Image enhancement, used in previous works for feature-based visual SLAM is not a
solution for underwater visual semantic SLAM. Wang et al. [112] discovered that underwater
image enhancement suppresses the performance of object detection. Especially, it inhibits
the detector to detect the hard cases as the image enhancement may introduce noise and
increase the interference caused by the background. The current SOTA in domain-shift
mitigation for universal underwater object detection is domain adaptation [113] [114] and
domain generalization [115]. Both domain generalization and domain adaptation aim to
address the challenge of domain shift but there are key differences in their approaches and
assumptions:

Domain Adaptation

Domain adaptation involves training a model on source domain data while adapting it to per-
form well on a target domain. During training, access to the target domain data is available,
which can be either labeled or unlabeled. The training process includes techniques to align
the source and target domains, ensuring the model performs effectively across both. Key
techniques for domain adaptation include feature alignment, where the feature distributions
of the source and target domains are aligned using methods like Maximum Mean Discrepancy
(MMD) [116] or adversarial training. Instance reweighing assigns different weights to source
domain instances based on their similarity to target domain instances. Domain-adversarial
training involves adversarial learning, where a domain classifier is trained to distinguish be-
tween source and target domain features, while the feature extractor is trained to confuse the
domain classifier. Additionally, generating target-like data using techniques like UW-GAN
that was discussed in the related works helps create target-like data from source domain
data, further enhancing the model’s adaptability.

Domain Generalization

Domain generalization aims to train a model that is inherently robust to domain shifts and
can generalize well to unseen domains without having access to the target domain data
during training. The model must be robust to domain shifts by learning from multiple

79

source domains, utilizing only source domain data during training, which emphasizes the
need for robust feature extraction and generalization capabilities. Key techniques for domain
generalization include feature alignment across source domains, ensuring that features of the
same class from different source domains are similar, often using contrastive learning or
semantic alignment losses. Data augmentation techniques increase the diversity of training
data through methods like domain mixup, which interpolates between features from different
domains, and style transfer, which transforms images from one domain to another. Self-
supervised learning employs self-supervised tasks to improve the robustness of the model
without requiring labeled data. Meta-learning [117] trains the model to quickly adapt to
new domains by learning from a few examples. Aggregation-based methods use multiple
domain-specific classifiers and aggregate their outputs to enhance generalization.

7.3.3 Batch Data Association

Data association is another aspect for improvement in any SLAM system. While the cur-
rent heuristic for data association for GAPSLAM is tolerable given accurate odometry, good
initialization, precise object detector and diverse viewpoints, a data association scheme that
is more robust and less sensitive to a variety of system running parameters in adverse con-
ditions like the pool experiment is desired. Zhang et al. [118] proposed K-means clustering
for batch data association in his approach for Data-Association-Free SLAM (DAF-SLAM).
K-means clustering is a technique for solving the SLAM problem where the associations be-
tween measurements and landmarks are unknown. The method involves both an inner and
an outer optimization loop. The inner loop focuses on solving for the robot poses, landmark
positions, and data association given the k number of landmarks.

min
x∈SE(d)n,y∈Rd×K

(
fodom(x) +

m∑
k=1

min
jk∈[K]

||RT
ik
(yjk − tik)− z̄k||2Σ

)
(7.1)

Here, x represents the robot poses, y represents the landmark positions, z̄k is the mea-
surement of a landmark position, ik is the index of the robot pose associated with the k-th
measurement, jk is the unknown index of the landmark, and Rik and tik are the rotation and
translation components of the robot pose xik . Σ represents the measurement noise covariance
matrix.

The DAF-SLAM algorithm solves this problem through an iterative process. It begins
with an initial guess for the robot poses x. Each measurement is then projected to the world
frame based on the current estimate of x: ẑk = Rik z̄k + tik . Landmark positions y are ini-
tialized using k-means++ on the projected measurements: y = k-means++(ẑ1, . . . , ẑm, K).
Measurements are then assigned to landmarks using k-means clustering: y, j1, . . . , jm =
k-means(ẑ1, . . . , ẑm, K). Finally, robot poses x and landmark positions y are updated given
the current data associations jk: x, y = SLAM(x, y, j1, . . . , jm). These steps are iterated for
a fixed number of iterations (set to 15 in the paper).

The outer problem focuses on estimating the number of landmarks K. This is formulated
as:

min
K∈N

(f ∗
slam(K) + βK) (7.2)

80

where f ∗
slam(K) is the minimized SLAM objective value for a given K, and β is a parame-

ter that penalizes the use of more landmarks. The outer loop uses a multi-resolution gridding
technique. It starts with the interval [1, m], where m is the number of measurements, and
uniformly evaluates f ∗

slam(K) + βK at NK = 11 values within this interval, including both
endpoints. It then finds the optimal Kn∗ out of these NK values, shrinks the interval to
[Kn∗−1, Kn∗+1], and repeats until the interval size is 1. This approach makes approximately
NK logNK/2(m) evaluations of f ∗

slam(K), which is more efficient than naive gridding over all
possible K values.

This combined approach leverages both efficient clustering methods and robust SLAM
optimization techniques. While Gaussian-only landmarks in GAPSLAM are generally well
associated, majority of the landmarks generated in GAPSLAM are NG, often generated from
the same object. Under adverse conditions such as the one encountered in chapter 5 where
only NG landmarks are available, K-Means clustering has potential for improving data asso-
ciation by reconnecting observation factors initially associated with the multiple additional
NG landmarks that were incorrectly generated from the same object. Subsequently, com-
bining K-Means clustering with the class names and number of objects provided by YOLO
for each video frame, an avenue for pruning the non-existent landmarks can also be pursued.
Applying the batch data association method described here to our underwater data would
be an exciting topic for future research.

7.3.4 Interface with Control System via Mission Planner

Linear and non-linear Proportional–Integral–Derivative (PID) control systems have been
designed for the BlueROV2 by Wu [119] via immersion tank testing, and simulated on
MATLAB. In order for an autonomous mission planning module to control the BlueROV2,
there must be an interface between the GAPSLAM map and t he mission planner, as well
as an interface between the mission planner and the PID controller. The combined system
would be able to generate a map and operate within without being given the map in prior.
Rosen et al. [120] provides a block diagram architecture of such a system in figure 7.1.

Figure 7.1: Sensor measurements Ỹ are received and processed, and a state estimate X̂ is
communicated to the rest of the system. The dotted loop indicates active perception, where
the planner proactively chooses its controls uk to reduce the uncertainty in the predicted
state estimate X̂k that is expected after uk is applied.

81

7.4 Conclusion

This thesis has presented the design, implementation, and evaluation of an online underwater
visual-inertial semantic SLAM system for the BlueROV2 platform. The system leverages the
GAPSLAM algorithm, adapted for the unique challenges of the underwater environment.

The experimental results demonstrated that the adapted GAPSLAM system achieves
comparable accuracy to the state-of-the-art in trajectory estimation, marginally outper-
forming pure EKF odometry with only Non-Gaussian landmarks. However, the system
faced challenges in landmark reinitialization and mapping due to data association issues,
highlighting areas for future improvement. Active SLAM, in which the AUV actively seeks
out good objects for loop closures, could be an interesting avenue for future research to
improve loop closing performance.

7.5 Summary

In conclusion, this thesis has demonstrated the potential of adapting advanced SLAM tech-
niques like GAPSLAM for underwater environments. While challenges remain, particularly
in uncertainty modeling, semantic mapping and data association, the system’s performance
in trajectory estimation shows promise for enhancing the autonomy of underwater vehicles.
The underwater GAPSLAM system represents a significant step towards more capable and
versatile underwater SLAM systems, potentially advancing the capabilities of autonomous
underwater exploration and mapping across various applications including environmental
monitoring, resource exploration, and underwater infrastructure inspection.

82

References

[1] Research and Markets, Global $2.65 billion unmanned underwater vehicles market
2017-2021, https://globenewswire.com/news- release/2017/03/10/934263/0/en/
Global - 2 - 65 - Billion - Unmanned - Underwater - Vehicles - Market - 2017 - 2021 . html,
Accessed: 20 June 2024, 2017.

[2] L. Levin, “Sustainability in deep water: The challenges of climate change, human
pressures, and biodiversity conservation,” Oceanography, vol. 32, pp. 170–180, Jun.
2019. doi: 10.5670/oceanog.2019.224. url: https://doi.org/10.5670/oceanog.2019.
224.

[3] E. Cody, “Oil prices and their impact on the global economy,” The New York Times,
Jan. 2008. url: https://www.nytimes.com/2008/01/11/business/worldbusiness/
11iht-oil.1.9147825.html.

[4] C. Bücker, World ocean review 3, marine resources – opportunities and risks, 2014.
url: https://wedocs.unep.org/20.500.11822/9553.

[5] J. Bao, D. Li, X. Qiao, and T. Rauschenbach, “Integrated navigation for autonomous
underwater vehicles in aquaculture: A review,” Information Processing in Agriculture,
vol. 7, no. 1, pp. 139–151, 2020, issn: 2214-3173. doi: https ://doi .org/10.1016/
j . inpa . 2019 . 04 . 003. url: https : / /www . sciencedirect . com/ science / article / pii /
S221431731930071X.

[6] R. B. Wynn, V. A. Huvenne, T. P. Le Bas, et al., “Autonomous underwater vehicles
(AUVs): Their past, present and future contributions to the advancement of marine
geoscience,” Marine Geology, vol. 352, pp. 451–468, 2014, 50th Anniversary Special
Issue, issn: 0025-3227. doi: https://doi.org/10.1016/j.margeo.2014.03.012. url:
https://www.sciencedirect.com/science/article/pii/S0025322714000747.

[7] H. Niu, S. Adams, K. Lee, and N. Bose, “Applications of autonomous underwater
vehicles in offshore petroleum industry environmental effects monitoring,” Journal of
Canadian Petroleum Technology, vol. 48, pp. 12–16, May 2009. doi: 10.2118/09-05-
12-GE.

[8] Lloyd’s Register, Marine safety report 2023, Lloyd’s Register Group Limited, Lon-
don, UK, Accessed: 20 June 2024, 2023. url: https://www.lrfoundation.org.uk/
publications/marine-safety-report-2023.

83

https://globenewswire.com/news-release/2017/03/10/934263/0/en/Global-2-65-Billion-Unmanned-Underwater-Vehicles-Market-2017-2021.html
https://globenewswire.com/news-release/2017/03/10/934263/0/en/Global-2-65-Billion-Unmanned-Underwater-Vehicles-Market-2017-2021.html
https://doi.org/10.5670/oceanog.2019.224
https://doi.org/10.5670/oceanog.2019.224
https://doi.org/10.5670/oceanog.2019.224
https://www.nytimes.com/2008/01/11/business/worldbusiness/11iht-oil.1.9147825.html
https://www.nytimes.com/2008/01/11/business/worldbusiness/11iht-oil.1.9147825.html
https://wedocs.unep.org/20.500.11822/9553
https://doi.org/https://doi.org/10.1016/j.inpa.2019.04.003
https://doi.org/https://doi.org/10.1016/j.inpa.2019.04.003
https://www.sciencedirect.com/science/article/pii/S221431731930071X
https://www.sciencedirect.com/science/article/pii/S221431731930071X
https://doi.org/https://doi.org/10.1016/j.margeo.2014.03.012
https://www.sciencedirect.com/science/article/pii/S0025322714000747
https://doi.org/10.2118/09-05-12-GE
https://doi.org/10.2118/09-05-12-GE
https://www.lrfoundation.org.uk/publications/marine-safety-report-2023
https://www.lrfoundation.org.uk/publications/marine-safety-report-2023

[9] W. Zhang, P. Zhuang, H.-H. Sun, G. Li, S. Kwong, and C. Li, “Underwater image en-
hancement via minimal color loss and locally adaptive contrast enhancement,” IEEE
Transactions on Image Processing, vol. 31, pp. 3997–4010, 2022. doi: 10.1109/TIP.
2022.3177129.

[10] R. J. Davies-Colley and D. G. Smith, “Optically pure waters in Waikoropupu Springs,
Nelson, New Zealand,” New Zealand Journal of Marine and Freshwater Research,
vol. 29, no. 2, pp. 251–256, 1995. doi: 10.1080/00288330.1995.9516658.

[11] A. Jesus, C. Zito, C. Tortorici, E. Roura, and G. De Masi, “Underwater object classi-
fication and detection: First results and open challenges,” in OCEANS 2022 - Chen-
nai, IEEE, Feb. 2022. doi: 10.1109/oceanschennai45887.2022.9775417. url: http:
//dx.doi.org/10.1109/OCEANSChennai45887.2022.9775417.

[12] B. Joshi, N. Vitzilaios, I. Rekleitis, et al., “Experimental comparison of open source
visual-inertial-based state estimation algorithms in the underwater domain,” Nov.
2019, pp. 7227–7233. doi: 10.1109/IROS40897.2019.8968049.

[13] Parks Australia, Geospatial data: Coral sea marine park - detailed boundaries, https:
//atlas.parksaustralia.gov.au/node/50640, Accessed: 2024-08-08, 2024.

[14] X. Hua, X. Cui, X. Xu, S. Qiu, Y. Liang, X. Bao, and Z. Li, “Underwater object
detection algorithm based on feature enhancement and progressive dynamic aggrega-
tion strategy,” Pattern Recognition, vol. 139, p. 109 511, 2023, issn: 0031-3203. doi:
https://doi.org/10.1016/j.patcog.2023.109511. url: https://www.sciencedirect.com/
science/article/pii/S003132032300211X.

[15] D. Park, W. Chung, and J. Kim, “Analysis of electromagnetic waves attenuation for
underwater localization in structured environments,” International Journal of Con-
trol, Automation and Systems, vol. 18, pp. 575–586, Mar. 2020. doi: 10.1007/s12555-
019-0548-9.

[16] I. I. Smolyaninov, Q. Balzano, and A. B. Kozyrev, “Surface electromagnetic waves at
seawater-air and seawater-seafloor interfaces,” IEEE Open Journal of Antennas and
Propagation, vol. 4, pp. 51–59, 2023. doi: 10.1109/OJAP.2022.3231885.

[17] M. H. G. Thomas, “The use of GPS for underwater navigation, sea trial results,” in
Proceedings of the 8th International Technical Meeting of the Satellite Division of The
Institute of Navigation (ION GPS 1995), Palm Springs, CA, Sep. 1995, pp. 949–955.

[18] J. Zhang, Y. Han, C. Zheng, and D. Sun, “Underwater target localization using long
baseline positioning system,” Applied Acoustics, vol. 111, pp. 129–134, 2016, issn:
0003-682X. doi: https : //doi . org/10 . 1016/ j . apacoust . 2016 . 04 . 009. url: https :
//www.sciencedirect.com/science/article/pii/S0003682X16300937.

[19] Y. Cong, C. Gu, T. Zhang, and Y. Gao, “Underwater robot sensing technology: A
survey,” Fundamental Research, vol. 1, no. 3, pp. 337–345, 2021, issn: 2667-3258. doi:
https://doi.org/10.1016/j.fmre.2021.03.002. url: https://www.sciencedirect.com/
science/article/pii/S2667325821000522.

84

https://doi.org/10.1109/TIP.2022.3177129
https://doi.org/10.1109/TIP.2022.3177129
https://doi.org/10.1080/00288330.1995.9516658
https://doi.org/10.1109/oceanschennai45887.2022.9775417
http://dx.doi.org/10.1109/OCEANSChennai45887.2022.9775417
http://dx.doi.org/10.1109/OCEANSChennai45887.2022.9775417
https://doi.org/10.1109/IROS40897.2019.8968049
https://atlas.parksaustralia.gov.au/node/50640
https://atlas.parksaustralia.gov.au/node/50640
https://doi.org/https://doi.org/10.1016/j.patcog.2023.109511
https://www.sciencedirect.com/science/article/pii/S003132032300211X
https://www.sciencedirect.com/science/article/pii/S003132032300211X
https://doi.org/10.1007/s12555-019-0548-9
https://doi.org/10.1007/s12555-019-0548-9
https://doi.org/10.1109/OJAP.2022.3231885
https://doi.org/https://doi.org/10.1016/j.apacoust.2016.04.009
https://www.sciencedirect.com/science/article/pii/S0003682X16300937
https://www.sciencedirect.com/science/article/pii/S0003682X16300937
https://doi.org/https://doi.org/10.1016/j.fmre.2021.03.002
https://www.sciencedirect.com/science/article/pii/S2667325821000522
https://www.sciencedirect.com/science/article/pii/S2667325821000522

[20] X. Wang, X. Fan, P. Shi, J. Ni, and Z. Zhou, “An overview of key SLAM technologies
for underwater scenes,” Remote Sensing, vol. 15, no. 10, p. 2496, 2023. doi: 10.3390/
rs15102496. url: https://www.mdpi.com/2072-4292/15/10/2496.

[21] B. Singh, REMUS AUVs, LinkedIn, Accessed: 24 June 2024, 2024. url: https ://
www.linkedin.com/pulse/remus-auvs-baljeet-singh/.

[22] Woods Hole Oceanographic Institution, REMUS 100, https://www2.whoi.edu/site/
osl/vehicles/remus-100/, Ocean Systems Laboratory, 2023.

[23] J. Zhou, T. Yang, and W. Zhang, “Underwater vision enhancement technologies: A
comprehensive review, challenges, and recent trends,” Applied Intelligence, vol. 53,
pp. 3594–3621, 2023, Accepted 11 May 2022, Published 01 June 2022, Issue Date
February 2023. doi: 10.1007/s10489-022-03767-y. url: https://doi.org/10.1007/
s10489-022-03767-y.

[24] A. Kirillov, E. Mintun, N. Ravi, et al., Segment anything, 2023. arXiv: 2304.02643
[cs.CV]. url: https://arxiv.org/abs/2304.02643.

[25] D. Reis, J. Kupec, J. Hong, and A. Daoudi, Real-time flying object detection with
YOLOv8, 2024. arXiv: 2305.09972 [cs.CV]. url: https://arxiv.org/abs/2305.09972.

[26] T. Lai, “A review on visual-SLAM: Advancements from geometric modelling to learning-
based semantic scene understanding using multi-modal sensor fusion,” Sensors, vol. 22,
p. 7265, Sep. 2022. doi: 10.3390/s22197265.

[27] Davison, “Real-time simultaneous localisation and mapping with a single camera,” in
Proceedings Ninth IEEE International Conference on Computer Vision, 2003, 1403–
1410 vol.2. doi: 10.1109/ICCV.2003.1238654.

[28] I. Abaspur Kazerouni, L. Fitzgerald, G. Dooly, and D. Toal, “A survey of state-
of-the-art on visual SLAM,” Expert Systems with Applications, vol. 205, p. 117 734,
2022, issn: 0957-4174. doi: https : //doi . org/10 .1016/ j . eswa .2022 .117734. url:
https://www.sciencedirect.com/science/article/pii/S0957417422010156.

[29] A. Macario Barros, M. Michel, Y. Moline, G. Corre, and F. Carrel, “A comprehensive
survey of visual SLAM algorithms,” Robotics, vol. 11, no. 1, 2022, issn: 2218-6581.
doi: 10.3390/robotics11010024. url: https://www.mdpi.com/2218-6581/11/1/24.

[30] J. C. Kinsey, R. M. Eustice, and L. L. Whitcomb, “A survey of underwater vehicle
navigation: Recent advances and new challenges,” in IFAC Conference of Manoeuver-
ing and Control of Marine Craft, Invited paper, Lisbon, Portugal, Sep. 2006.

[31] L. Paull, S. Saeedi, M. Seto, and H. Li, “AUV navigation and localization: A review,”
IEEE Journal of Oceanic Engineering, vol. 39, no. 1, pp. 131–149, 2014. doi: 10 .
1109/JOE.2013.2278891.

[32] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques.
MIT Press, 2009. url: http://mcb111.org/w06/KollerFriedman.pdf.

[33] F. Dellaert, “Factor graphs and gtsam: A hands-on introduction,” Georgia Insti-
tute of Technology, Tech. Rep. GT-RIM-CP&R-2012-002, Sep. 2012. url: https :
//repository.gatech.edu/server/api/core/bitstreams/b3606eb4- ce55- 4c16- 8495-
767bd46f0351/content.

85

https://doi.org/10.3390/rs15102496
https://doi.org/10.3390/rs15102496
https://www.mdpi.com/2072-4292/15/10/2496
https://www.linkedin.com/pulse/remus-auvs-baljeet-singh/
https://www.linkedin.com/pulse/remus-auvs-baljeet-singh/
https://www2.whoi.edu/site/osl/vehicles/remus-100/
https://www2.whoi.edu/site/osl/vehicles/remus-100/
https://doi.org/10.1007/s10489-022-03767-y
https://doi.org/10.1007/s10489-022-03767-y
https://doi.org/10.1007/s10489-022-03767-y
https://arxiv.org/abs/2304.02643
https://arxiv.org/abs/2304.02643
https://arxiv.org/abs/2304.02643
https://arxiv.org/abs/2305.09972
https://arxiv.org/abs/2305.09972
https://doi.org/10.3390/s22197265
https://doi.org/10.1109/ICCV.2003.1238654
https://doi.org/https://doi.org/10.1016/j.eswa.2022.117734
https://www.sciencedirect.com/science/article/pii/S0957417422010156
https://doi.org/10.3390/robotics11010024
https://www.mdpi.com/2218-6581/11/1/24
https://doi.org/10.1109/JOE.2013.2278891
https://doi.org/10.1109/JOE.2013.2278891
http://mcb111.org/w06/KollerFriedman.pdf
https://repository.gatech.edu/server/api/core/bitstreams/b3606eb4-ce55-4c16-8495-767bd46f0351/content
https://repository.gatech.edu/server/api/core/bitstreams/b3606eb4-ce55-4c16-8495-767bd46f0351/content
https://repository.gatech.edu/server/api/core/bitstreams/b3606eb4-ce55-4c16-8495-767bd46f0351/content

[34] S. Godio, A. Carrio, G. Guglieri, and F. Dovis, “Resolution and frequency effects on
UAVs semi-direct visual-inertial odometry (SVO) for warehouse logistics,” Sensors,
vol. 22, Dec. 2022. doi: 10.3390/s22249911.

[35] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International
Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[36] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust features,” Com-
puter Vision and Image Understanding, vol. 110, no. 3, pp. 346–359, 2008.

[37] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative
to SIFT or SURF,” in 2011 International Conference on Computer Vision, 2011,
pp. 2564–2571. doi: 10.1109/ICCV.2011.6126544.

[38] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regres-
sion,” The American Statistician, vol. 46, no. 3, pp. 175–185, 1992.

[39] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic al-
gorithm configuration,” in International Conference on Computer Vision Theory and
Application VISSAPP’09), INSTICC Press, 2009, pp. 331–340.

[40] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography,” in Readings
in Computer Vision, M. A. Fischler and O. Firschein, Eds., San Francisco (CA):
Morgan Kaufmann, 1987, pp. 726–740, isbn: 978-0-08-051581-6. doi: https://doi.
org/10.1016/B978-0-08-051581-6.50070-2. url: https://www.sciencedirect.com/
science/article/pii/B9780080515816500702.

[41] D. Nistér, O. Naroditsky, and J. R. Bergen, “Visual odometry,” in Proceedings of the
2004 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2004, IEEE Computer Society, 2004, pp. 652–659, isbn: 0-7695-2158-4.
doi: 10.1109/CVPR.2004.265. url: https://doi.ieeecomputersociety.org/10.1109/
CVPR.2004.265.

[42] F. Fraundorfer and D. Scaramuzza, “Visual odometry : Part II: Matching, robustness,
optimization, and applications,” IEEE Robotics & Automation Magazine, vol. 19,
no. 2, pp. 78–90, 2012. doi: 10.1109/MRA.2012.2182810.

[43] Y.-H. Lee, C. Zhu, G. Giorgi, and C. Guenther, “Stereo vision-based simultaneous
localization and mapping with ranging aid,” in 2018 IEEE/ION Position, Location
and Navigation Symposium (PLANS), 2018, pp. 404–409. doi: 10.1109/PLANS.2018.
8373407.

[44] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard, “Evaluation
of RGB-D SLAM systems,” Journal of Field Robotics, vol. 29, no. 6, pp. 846–864, 2012.
doi: 10.1109/ICRA.2012.6225199.

[45] Y. Yang and G. Huang, “Acoustic-inertial underwater navigation,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), 2017, pp. 4927–4933.
doi: 10.1109/ICRA.2017.7989571.

86

https://doi.org/10.3390/s22249911
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/https://doi.org/10.1016/B978-0-08-051581-6.50070-2
https://doi.org/https://doi.org/10.1016/B978-0-08-051581-6.50070-2
https://www.sciencedirect.com/science/article/pii/B9780080515816500702
https://www.sciencedirect.com/science/article/pii/B9780080515816500702
https://doi.org/10.1109/CVPR.2004.265
https://doi.ieeecomputersociety.org/10.1109/CVPR.2004.265
https://doi.ieeecomputersociety.org/10.1109/CVPR.2004.265
https://doi.org/10.1109/MRA.2012.2182810
https://doi.org/10.1109/PLANS.2018.8373407
https://doi.org/10.1109/PLANS.2018.8373407
https://doi.org/10.1109/ICRA.2012.6225199
https://doi.org/10.1109/ICRA.2017.7989571

[46] S. Balasubramanian, A. Rajput, R. W. Hascaryo, C. Rastogi, and W. R. Norris,
Comparison of dynamic and kinematic model driven extended kalman filters (ekf) for
the localization of autonomous underwater vehicles, 2021. arXiv: 2105.12309 [cs.RO].
url: https://arxiv.org/abs/2105.12309.

[47] S. T. Krauss and D. J. Stilwell, Unscented kalman filtering on manifolds for AUV
navigation – experimental results, 2022. arXiv: 2210 . 06510 [cs.RO]. url: https :
//arxiv.org/abs/2210.06510.

[48] M. Betke and Z. Wu, “An introduction to data association in computer vision,” in Data
Association for Multi-Object Visual Tracking. Cham: Springer International Publish-
ing, 2017, pp. 1–6, isbn: 978-3-031-01816-9. doi: 10.1007/978-3-031-01816-9_1.
url: https://doi.org/10.1007/978-3-031-01816-9_1.

[49] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjustment–
a modern synthesis,” Vision algorithms: theory and practice, pp. 153–177, 1999.

[50] J. Nocedal and S. J. Wright, Numerical Optimization. Springer Science & Business
Media, 2006.

[51] J. J. Moré, “The Levenberg-Marquardt algorithm: Implementation and theory,” in
Numerical Analysis, ser. Lecture Notes in Mathematics, G. Watson, Ed., vol. 630,
Springer Berlin Heidelberg, 1978, pp. 105–116.

[52] Georgia Tech, Georgia Tech Smoothing and Mapping (GTSAM): A Library for Smooth-
ing and Mapping, 2021. url: https://gtsam.org/.

[53] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert, “iSAM2: In-
cremental smoothing and mapping with fluid relinearization and incremental variable
reordering,” in 2011 IEEE International Conference on Robotics and Automation,
2011, pp. 3281–3288. doi: 10.1109/ICRA.2011.5979641.

[54] M. Grimaldi, D. Nakath, M. She, and K. Köser, “Investigation of the challenges of
underwater-visual-monocular-slam,” ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, vol. X-1/W1-2023, pp. 1113–1121, Dec.
2023, issn: 2194-9050. doi: 10 .5194/isprs- annals - x- 1-w1- 2023- 1113- 2023. url:
http://dx.doi.org/10.5194/isprs-annals-X-1-W1-2023-1113-2023.

[55] Y. Song, J. Qian, R. Miao, W. Xue, R. Ying, and P. Liu, “HAUD: A high-accuracy
underwater dataset for visual-inertial odometry,” in 2021 IEEE Sensors, 2021, pp. 1–
4. doi: 10.1109/SENSORS47087.2021.9639465.

[56] S. Rahman, A. Q. Li, and I. Rekleitis, “SVIn2: An underwater SLAM system using
sonar, visual, inertial, and depth sensor,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2019. doi: 10.1109/ICRA.2019.
8907638. url: https://cs.paperswithcode.com/paper/an-underwater-slam-system-
using-sonar-visual.

[57] T. Guerneve, K. Subr, and Y. Petillot, “Underwater 3D structures as semantic land-
marks in SONAR mapping,” in 2017 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2017, pp. 614–619. doi: 10 .1109/IROS.2017 .
8202215.

87

https://arxiv.org/abs/2105.12309
https://arxiv.org/abs/2105.12309
https://arxiv.org/abs/2210.06510
https://arxiv.org/abs/2210.06510
https://arxiv.org/abs/2210.06510
https://doi.org/10.1007/978-3-031-01816-9_1
https://doi.org/10.1007/978-3-031-01816-9_1
https://gtsam.org/
https://doi.org/10.1109/ICRA.2011.5979641
https://doi.org/10.5194/isprs-annals-x-1-w1-2023-1113-2023
http://dx.doi.org/10.5194/isprs-annals-X-1-W1-2023-1113-2023
https://doi.org/10.1109/SENSORS47087.2021.9639465
https://doi.org/10.1109/ICRA.2019.8907638
https://doi.org/10.1109/ICRA.2019.8907638
https://cs.paperswithcode.com/paper/an-underwater-slam-system-using-sonar-visual
https://cs.paperswithcode.com/paper/an-underwater-slam-system-using-sonar-visual
https://doi.org/10.1109/IROS.2017.8202215
https://doi.org/10.1109/IROS.2017.8202215

[58] M. Machado, P. Drews, P. Núñez, and S. Botelho, “Semantic mapping on underwater
environment using sonar data,” in 2016 XIII Latin American Robotics Symposium and
IV Brazilian Robotics Symposium (LARS/SBR), 2016, pp. 245–250. doi: 10.1109/
LARS-SBR.2016.48.

[59] M. dos Santos, P. Drews, P. Núñez, and S. Botelho, “Object recognition and semantic
mapping for underwater vehicles using sonar data,” Journal of Intelligent & Robotic
Systems, vol. 91, pp. 279–289, 2018.

[60] J. McConnell and B. Englot, Predictive 3d sonar mapping of underwater environments
via object-specific bayesian inference, 2021. arXiv: 2104.03203 [cs.RO]. url: https:
//arxiv.org/abs/2104.03203.

[61] G. Vallicrosa, K. Himri, P. Ridao, and N. Gracias, “Semantic mapping for autonomous
subsea intervention,” Sensors, vol. 21, no. 20, 2021, issn: 1424-8220. doi: 10.3390/
s21206740. url: https://www.mdpi.com/1424-8220/21/20/6740.

[62] Ó. Álvarez-Tuñón, L. R. Marnet, L. Antal, M. Aubard, M. Costa, and Y. Brodskiy,
Subpipe: A submarine pipeline inspection dataset for segmentation and visual-inertial
localization, 2024. arXiv: 2401.17907 [cs.CV]. url: https://arxiv.org/abs/2401.
17907.

[63] K. Singh, J. Hong, N. R. Rypkema, and J. J. Leonard, Opti-acoustic semantic slam
with unknown objects in underwater environments, 2024. arXiv: 2403.12837 [cs.RO].
url: https://arxiv.org/abs/2403.12837.

[64] O. Powar, “A review: Underwater image enhancement using dark channel prior with
gamma correction,” International Journal for Research in Applied Science and Engi-
neering Technology, vol. V, pp. 421–426, Mar. 2017. doi: 10.22214/ijraset.2017.3077.

[65] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B.
Romeny, and J. B. Zimmerman, “Adaptive histogram equalization and its variations,”
Computer vision, graphics, and image processing, vol. 39, no. 3, pp. 355–368, 1987.

[66] K. Köser, Y. Song, L. Petersen, E. Wenzlaff, and F. Woelk, Robustly removing deep sea
lighting effects for visual mapping of abyssal plains, 2021. arXiv: 2110.00480 [cs.CV].
url: https://arxiv.org/abs/2110.00480.

[67] R. Mur-Artal and J. D. Tardós, “ORB-SLAM: A versatile and accurate monocular
SLAM system,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[68] C. Campos, R. Elvira, J. J. Gómez, J. M. M. Montiel, and J. D. Tardós, “Orb-slam3:
An accurate open-source library for visual, visual-inertial and multi-map slam,” IEEE
Transactions on Robotics, vol. 37, no. 6, pp. 1874–1890, 2021.

[69] J. Engel, T. Schoeps, and D. Cremers, “LSD-SLAM: Large-scale direct monocular
SLAM,” vol. 8690, Sep. 2014, pp. 1–16, isbn: 978-3-319-10604-5. doi: 10.1007/978-
3-319-10605-2_54.

[70] J. Bian, S. Wang, C. Li, and M. Li, “BAD-SLAM: Bundle adjusted direct RGB-
D SLAM,” in IEEE International Conference on Robotics and Automation (ICRA),
IEEE, 2020, pp. 10 540–10 546.

88

https://doi.org/10.1109/LARS-SBR.2016.48
https://doi.org/10.1109/LARS-SBR.2016.48
https://arxiv.org/abs/2104.03203
https://arxiv.org/abs/2104.03203
https://arxiv.org/abs/2104.03203
https://doi.org/10.3390/s21206740
https://doi.org/10.3390/s21206740
https://www.mdpi.com/1424-8220/21/20/6740
https://arxiv.org/abs/2401.17907
https://arxiv.org/abs/2401.17907
https://arxiv.org/abs/2401.17907
https://arxiv.org/abs/2403.12837
https://arxiv.org/abs/2403.12837
https://doi.org/10.22214/ijraset.2017.3077
https://arxiv.org/abs/2110.00480
https://arxiv.org/abs/2110.00480
https://doi.org/10.1007/978-3-319-10605-2_54
https://doi.org/10.1007/978-3-319-10605-2_54

[71] K. M. Jatavallabhula, S. Saryazdi, G. Iyer, and L. Paull, Gradslam: Automagically
differentiable slam, 2020. arXiv: 1910.10672 [cs.RO]. url: https://arxiv.org/abs/
1910.10672.

[72] H. Gupta and K. Mitra, Unsupervised single image underwater depth estimation, 2019.
arXiv: 1905.10595 [cs.CV]. url: https://arxiv.org/abs/1905.10595.

[73] B. Yu, J. Wu, and M. J. Islam, UDepth: Fast monocular depth estimation for visually-
guided underwater robots, 2023. arXiv: 2209.12358 [cs.CV]. url: https://arxiv.org/
abs/2209.12358.

[74] S. Umeyama, “Least-squares estimation of transformation parameters between two
point patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 13, no. 4, pp. 376–380, 1991. doi: 10.1109/34.88573.

[75] C. Allen-Blanchette, S. Leonardos, and J. Gallier, “Motion interpolation in sim(3),”
in 2014 IEEE International Conference on Robotics and Automation (ICRA), IEEE,
2014, pp. 339–345. doi: 10.1109/ICRA.2014.6906900.

[76] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and
J. J. Leonard, “Past, present, and future of simultaneous localization and mapping:
Toward the robust-perception age,” IEEE Transactions on Robotics, vol. 32, no. 6,
pp. 1309–1332, Dec. 2016, issn: 1941-0468. doi: 10 .1109/tro .2016.2624754. url:
http://dx.doi.org/10.1109/TRO.2016.2624754.

[77] T. Qin, P. Li, and S. Shen, A general optimization-based framework for local odometry
and mapping with multiple sensors, 2019. arXiv: 1901.03642 [cs.RO]. url: https:
//arxiv.org/abs/1901.03642.

[78] Stereolabs, “ZED: Stereo camera for 3d perception,” in IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), IEEE, 2016, pp. 1–2. url:
https://www.stereolabs.com/zed/.

[79] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-based
visual–inertial odometry using nonlinear optimization,” The International Journal of
Robotics Research, vol. 34, no. 3, pp. 314–334, 2015. doi: 10.1177/0278364914554813.

[80] T. Qin, P. Li, and S. Shen, “VINS-mono: A robust and versatile monocular visual-
inertial state estimator,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1004–
1020, 2018. doi: 10.1109/TRO.2018.2853729.

[81] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman filter for
vision-aided inertial navigation,” in Proceedings 2007 IEEE International Conference
on Robotics and Automation, IEEE, 2007, pp. 3565–3572. doi: 10.1109/ROBOT.
2007.364024.

[82] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. Achtelik, and
R. Siegwart, “The EuRoC micro aerial vehicle datasets,” The International Journal of
Robotics Research, vol. 35, no. 10, pp. 1157–1163, 2016. doi: 10.1177/0278364915620033.

[83] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear Regression
Analysis, 5th. John Wiley & Sons, 2012, pp. 64–66, isbn: 9780471754954.

89

https://arxiv.org/abs/1910.10672
https://arxiv.org/abs/1910.10672
https://arxiv.org/abs/1910.10672
https://arxiv.org/abs/1905.10595
https://arxiv.org/abs/1905.10595
https://arxiv.org/abs/2209.12358
https://arxiv.org/abs/2209.12358
https://arxiv.org/abs/2209.12358
https://doi.org/10.1109/34.88573
https://doi.org/10.1109/ICRA.2014.6906900
https://doi.org/10.1109/tro.2016.2624754
http://dx.doi.org/10.1109/TRO.2016.2624754
https://arxiv.org/abs/1901.03642
https://arxiv.org/abs/1901.03642
https://arxiv.org/abs/1901.03642
https://www.stereolabs.com/zed/
https://doi.org/10.1177/0278364914554813
https://doi.org/10.1109/TRO.2018.2853729
https://doi.org/10.1109/ROBOT.2007.364024
https://doi.org/10.1109/ROBOT.2007.364024
https://doi.org/10.1177/0278364915620033

[84] J. Sattar, G. Dudek, A. Xu, J. Zacher, M. Pleau, and C. Prahacs, “The Aqua au-
tonomous underwater vehicle,” IEEE Journal of Oceanic Engineering, vol. 40, no. 2,
pp. 330–339, 2015. doi: 10.1109/JOE.2014.2353475.

[85] J. Civera, D. Gálvez-López, L. Riazuelo, J. D. Tardós, and J. M. M. Montiel, “To-
wards semantic SLAM using a monocular camera,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE, 2011, pp. 1277–1284.

[86] X. Wang, R. Girdhar, S. X. Yu, and I. Misra, Cut and learn for unsupervised object
detection and instance segmentation, 2023. arXiv: 2301.11320 [cs.CV]. url: https:
//arxiv.org/abs/2301.11320.

[87] Q. Huang and J. J. Leonard, GAPSLAM: Blending gaussian approximation and par-
ticle filters for real-time non-gaussian SLAM, 2023. arXiv: 2303.14283.

[88] J. L. Puga, M. Krzywinski, and N. Altman, “Bayes’ theorem,” Nature Methods, vol. 12,
pp. 277–278, Mar. 2015. url: https://doi.org/10.1038/nmeth.3335.

[89] C. M. Bishop, Pattern Recognition and Machine Learning. New York, USA: Springer,
2006, ch. 4, p. 213.

[90] P. Torma, A. György, and C. Szepesvári, “A markov-chain monte carlo approach to si-
multaneous localization and mapping,” in Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, Y. W. Teh and M. Titterington,
Eds., ser. Proceedings of Machine Learning Research, vol. 9, Chia Laguna Resort,
Sardinia, Italy: PMLR, May 2010, pp. 852–859. url: https://proceedings.mlr.press/
v9/torma10a.html.

[91] Y. Dodge, “Mahalanobis distance,” in The Concise Encyclopedia of Statistics. New
York, NY: Springer New York, 2008, pp. 325–326, isbn: 978-0-387-32833-1. doi: 10.
1007/978-0-387-32833-1_240. url: https://doi.org/10.1007/978-0-387-32833-
1_240.

[92] K. Pearson, “X. on the criterion that a given system of deviations from the probable in
the case of a correlated system of variables is such that it can be reasonably supposed
to have arisen from random sampling,” The London, Edinburgh, and Dublin Philo-
sophical Magazine and Journal of Science, vol. 50, no. 302, pp. 157–175, Jul. 1900.
doi: 10.1080/14786440009463897. url: https://doi.org/10.1080/14786440009463897.

[93] X. Zhou, C. Jia, V. Koltun, and P. Krähenbühl, Detecting twenty-thousand classes
using image-level supervision, 2022. arXiv: 2201.02605 [cs.CV]. url: https://arxiv.
org/abs/2201.02605.

[94] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, Attention is all you need, 2023. arXiv: 1706.03762 [cs.CL]. url:
https://arxiv.org/abs/1706.03762.

[95] X. Xie, G. Cheng, J. Wang, X. Yao, and J. Han, Oriented r-cnn for object detection,
2021. arXiv: 2108.05699 [cs.CV]. url: https://arxiv.org/abs/2108.05699.

[96] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified,
real-time object detection, 2016. arXiv: 1506.02640 [cs.CV]. url: https://arxiv.org/
abs/1506.02640.

90

https://doi.org/10.1109/JOE.2014.2353475
https://arxiv.org/abs/2301.11320
https://arxiv.org/abs/2301.11320
https://arxiv.org/abs/2301.11320
https://arxiv.org/abs/2303.14283
https://doi.org/10.1038/nmeth.3335
https://proceedings.mlr.press/v9/torma10a.html
https://proceedings.mlr.press/v9/torma10a.html
https://doi.org/10.1007/978-0-387-32833-1_240
https://doi.org/10.1007/978-0-387-32833-1_240
https://doi.org/10.1007/978-0-387-32833-1_240
https://doi.org/10.1007/978-0-387-32833-1_240
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1080/14786440009463897
https://arxiv.org/abs/2201.02605
https://arxiv.org/abs/2201.02605
https://arxiv.org/abs/2201.02605
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2108.05699
https://arxiv.org/abs/2108.05699
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640

[97] W. Burgard, C. Stachniss, G. Grisetti, B. Steder, R. Kuemmerle, C. Dornhege, H.
Kleinehagenbrock, and T. Schulz, “A comparison of SLAM algorithms based on a
graph of relations,” in Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2009, pp. 2089–2095. url: https://gki.informatik.uni-freiburg.de/papers/
burgard_et_al_iros09.pdf.

[98] B. Liu and N. Paquin, Viconmavlink: A software tool for indoor positioning using a
motion capture system, 2018. arXiv: 1811.11878 [cs.RO]. url: https://arxiv.org/
abs/1811.11878.

[99] M. Grupp, EVO: Python package for the evaluation of odometry and SLAM. https:
//github.com/MichaelGrupp/evo, 2017.

[100] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for
the evaluation of RGB-D SLAM systems,” in 2012 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, IEEE, 2012, pp. 573–580. doi: 10.1109/
IROS.2012.6385773.

[101] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Are we ready for autonomous driving?
the KITTI vision benchmark suite,” in 2012 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), IEEE, 2012, pp. 3354–3361. doi: 10.1109/CVPR.
2012.6248074.

[102] Stanford Artificial Intelligence Laboratory et al., Robotic operating system, version ROS
Melodic Morenia, May 23, 2018. url: https://www.ros.org.

[103] A. Gupta, P. Dollár, and R. Girshick, Lvis: A dataset for large vocabulary instance
segmentation, 2019. arXiv: 1908.03195 [cs.CV]. url: https://arxiv.org/abs/1908.
03195.

[104] M. Barisic, S. Kragelund, T. Masek, and Z. Vukić, “An online auv trajectory re-
planning software architecture based on the moos,” Jan. 2009.

[105] Ultralytics, Raspberry pi: Convert model to NCNN and run inference, 2024. url:
https://docs.ultralytics.com/guides/raspberry-pi/#convert-model-to-ncnn-and-run-
inference.

[106] M. Galdamez, J. Muntz, and M. Ferretti, Bluerov2: An open-source platform for
rapid development and validation of autonomous underwater vehicles, 2020. arXiv:
2011.10488 [cs.RO]. url: https://arxiv.org/abs/2011.10488.

[107] D. Eddelbuettel, A brief introduction to redis, 2022. arXiv: 2203.06559 [stat.CO].
url: https://arxiv.org/abs/2203.06559.

[108] Y. Xiao, X. Ruan, X. Zhang, and P. Dong, “Monocular visual-inertial state estimation
for micro aerial vehicles,” MATEC Web of Conferences, vol. 139, p. 00 068, Jan. 2017.
doi: 10.1051/matecconf/201713900068.

[109] S. Urban, OpenICC: An open imu and camera calibrator, https://github.com/urbste/
OpenImuCameraCalibrator.

[110] B. Joshi, M. Xanthidis, S. Rahman, and I. Rekleitis, “High definition, inexpensive,
underwater mapping,” in IEEE International Conference on Robotics and Automation
(ICRA), 2022, pp. 1113–1121. doi: 10.1109/ICRA46639.2022.9811695.

91

https://gki.informatik.uni-freiburg.de/papers/burgard_et_al_iros09.pdf
https://gki.informatik.uni-freiburg.de/papers/burgard_et_al_iros09.pdf
https://arxiv.org/abs/1811.11878
https://arxiv.org/abs/1811.11878
https://arxiv.org/abs/1811.11878
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo
https://doi.org/10.1109/IROS.2012.6385773
https://doi.org/10.1109/IROS.2012.6385773
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2012.6248074
https://www.ros.org
https://arxiv.org/abs/1908.03195
https://arxiv.org/abs/1908.03195
https://arxiv.org/abs/1908.03195
https://docs.ultralytics.com/guides/raspberry-pi/#convert-model-to-ncnn-and-run-inference
https://docs.ultralytics.com/guides/raspberry-pi/#convert-model-to-ncnn-and-run-inference
https://arxiv.org/abs/2011.10488
https://arxiv.org/abs/2011.10488
https://arxiv.org/abs/2203.06559
https://arxiv.org/abs/2203.06559
https://doi.org/10.1051/matecconf/201713900068
https://github.com/urbste/OpenImuCameraCalibrator
https://github.com/urbste/OpenImuCameraCalibrator
https://doi.org/10.1109/ICRA46639.2022.9811695

[111] X. Chen, Y. Lu, Z. Wu, J. Yu, and L. Wen, Reveal of domain effect: How visual
restoration contributes to object detection in aquatic scenes, 2020. arXiv: 2003.01913
[cs.CV]. url: https://arxiv.org/abs/2003.01913.

[112] Y. Wang, J. Guo, W. He, H. Gao, H. Yue, Z. Zhang, and C. Li, Is underwater image
enhancement all object detectors need? 2023. arXiv: 2311.18814 [cs.CV]. url: https:
//arxiv.org/abs/2311.18814.

[113] Z. Wang, L. Shen, M. Yu, K. Wang, Y. Lin, and M. Xu, Domain adaptation for
underwater image enhancement, 2021. arXiv: 2108 .09650 [cs.CV]. url: https ://
arxiv.org/abs/2108.09650.

[114] J. Wen, J. Cui, B. Zhao, B. Han, X. Liu, Z. Gao, and B. M. Chen, A real-time
framework for domain-adaptive underwater object detection with image enhancement,
2024. arXiv: 2403.19079 [cs.CV]. url: https://arxiv.org/abs/2403.19079.

[115] Y. Chen, P. Song, H. Liu, L. Dai, X. Zhang, R. Ding, and S. Li, Achieving domain gen-
eralization in underwater object detection by domain mixup and contrastive learning,
2023. arXiv: 2104.02230 [cs.CV]. url: https://arxiv.org/abs/2104.02230.

[116] F.-X. Briol, A. Barp, A. B. Duncan, and M. Girolami, Statistical inference for gener-
ative models with maximum mean discrepancy, 2019. arXiv: 1906.05944 [stat.ME].
url: https://arxiv.org/abs/1906.05944.

[117] J. Vanschoren, Meta-learning: A survey, 2018. arXiv: 1810.03548 [cs.LG]. url: https:
//arxiv.org/abs/1810.03548.

[118] Y. Zhang, O. A. Severinsen, J. J. Leonard, L. Carlone, and K. Khosoussi, Data-
association-free landmark-based slam, 2023. arXiv: 2302.13264 [cs.RO]. url: https:
//arxiv.org/abs/2302.13264.

[119] C.-J. Wu, “6-dof modelling and control of a remotely operated vehicle,” Academic
Supervisor: Assoc. Prof. Karl Sammut, Master of Engineering Thesis, Flinders Uni-
versity, Adelaide, Australia, Jul. 2018.

[120] D. M. Rosen, K. J. Doherty, A. T. Espinoza, and J. J. Leonard, Advances in inference
and representation for simultaneous localization and mapping, 2021. arXiv: 2103.05041
[cs.RO]. url: https://arxiv.org/abs/2103.05041.

92

https://arxiv.org/abs/2003.01913
https://arxiv.org/abs/2003.01913
https://arxiv.org/abs/2003.01913
https://arxiv.org/abs/2311.18814
https://arxiv.org/abs/2311.18814
https://arxiv.org/abs/2311.18814
https://arxiv.org/abs/2108.09650
https://arxiv.org/abs/2108.09650
https://arxiv.org/abs/2108.09650
https://arxiv.org/abs/2403.19079
https://arxiv.org/abs/2403.19079
https://arxiv.org/abs/2104.02230
https://arxiv.org/abs/2104.02230
https://arxiv.org/abs/1906.05944
https://arxiv.org/abs/1906.05944
https://arxiv.org/abs/1810.03548
https://arxiv.org/abs/1810.03548
https://arxiv.org/abs/1810.03548
https://arxiv.org/abs/2302.13264
https://arxiv.org/abs/2302.13264
https://arxiv.org/abs/2302.13264
https://arxiv.org/abs/2103.05041
https://arxiv.org/abs/2103.05041
https://arxiv.org/abs/2103.05041

	Title page
	Abstract
	Acknowledgments
	Biographical Sketch
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Summary of Contributions
	1.3 Thesis Overview

	2 Literature Review
	2.1 Visual SLAM
	2.1.1 Factor Graphs
	2.1.2 Front-End
	2.1.3 Back-End
	2.1.4 Interaction Between Front-End and Back-End

	2.2 Related Work
	2.2.1 Underwater Monocular SLAM
	2.2.2 Underwater Visual SLAM with Sensor Fusion
	2.2.3 Underwater Semantic Visual SLAM with Sensor Fusion

	2.3 GAPSLAM
	2.3.1 Gaussian Approximation
	2.3.2 Marginal Posterior of Non-Gaussian Landmarks
	2.3.3 Reinitialization
	2.3.4 GAPSLAM Data Association

	2.4 Object Detectors
	2.4.1 Detic
	2.4.2 YOLO

	2.5 Summary

	3 Preliminary Study
	3.1 Evaluation of SLAM
	3.1.1 Ground Truth
	3.1.2 EVO

	3.2 Vicon Room Experiment
	3.2.1 Differences from Original GAPSLAM Experiment

	3.3 Summary

	4 Methodology
	4.1 Hardware
	4.2 Robot Operating System
	4.3 Redis Server
	4.4 EKF Odometry
	4.5 Custom YOLOv8 Model Training
	4.6 Summary

	5 Results and Analysis
	5.1 Introduction
	5.2 Z-Center Pool Experiment
	5.3 Results
	5.4 Analysis
	5.5 Summary

	6 Discussion
	6.1 Limitations of Monocular SLAM
	6.2 Mahalanobis Distances in GAPSLAM
	6.3 Troubleshooting
	6.3.1 Unexpected Behavior of Custom YOLOv8 Model
	6.3.2 MIT Tank Experiment with Detic and GoPro9
	6.3.3 Effects of Running Parameters on GAPSLAM
	6.3.4 Visual vs Inertial Odometry Covariance

	7 Conclusion
	7.1 Summary of Contributions
	7.2 Comparison with Related Work
	7.3 Future Research
	7.3.1 EKF Odometry Covariance Measurement
	7.3.2 Domain Shift
	7.3.3 Batch Data Association
	7.3.4 Interface with Control System via Mission Planner

	7.4 Conclusion
	7.5 Summary

	References

