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Abstract

Lithium ion batteries (LiBs) are a pivotal energy storage technology that are widely
adopted for their high energy density and safety. From a macroscopic level, LiBs
operate at a micrometer lengthscale, but consist of many active material nanoparti-
cles which participate in reversible electrochemical reactions that store and release
energy. These particles control the crucial processes for energy storage in macroscopic
devices, generating a process spanning multiple length and time scales in LiBs. How-
ever, despite the ubiquitous application of LiBs in many industries, degradation limits
their lifespan, hindering their broader applicability in usages demanding high energy
density and extended lifespans, such as electric vehicles (EVs). Dominant degrada-
tion occurs at the nanoparticle level involving various mechanisms, such as formation
of resistive films on the particle surface or surface phase transformations in common
LiB materials. The effects of degradation are observed at the macroscopic level from
electrochemical responses such as voltage or current measurements. Bridging the
gap between microscopic and macroscopic scales to extract particle level degradation
mechanisms from electrode scale responses is essential for understanding LiB degra-
dation. These methods can be used to quantify degradation in battery materials for
second life use, designing degradation resistant materials, and more.

Here, I propose a comprehensive multiscale framework that initially models LiB
degradation at a single particle scale, using nickel rich materials as an example, then
projects single particle degradation into population scale for both solid solution and
phase separating materials. Furthermore, I analyze and design improved pulse diag-
nostics using hybrid pulse power characterization (HPPC) methods to extract physical
microscopic degradation mechanisms from electrode-level responses. Overall, I set up
a consistent framework modeling degradation from single particle to population level
and vice versa in LiBs.

Thesis Supervisor: Martin Z. Bazant
Title: E. G. Roos Professor of Chemical Engineering
Professor of Mathematics
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1 a) Example image of a lithium ion battery electrode, with many par-

ticles in both the cathode and anode that participate in electrochem-

ical reactions. b) Different regimes of behavior are observed based

on whether values in the spinodal voltage or larger voltages are ap-

plied, where particle-by-particle or concurrent [8] behavior can be ob-

served. The particle-by-particle behavior is from the appearance of an
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tion current fraction is plotted with respect to different overpotentials.

State of charge variation plays a minimal role in the reduction current

fraction, causing reduction current fractions at different SOC values to

overlap. The reduction current fraction values for pulse experiments at

5, 20, and 100 mV overpotentials are shown as red points. d) Kinetic

fraction of surface blockage is plotted at different state of charge values

for varying overpotentials. . . . . . . . . . . . . . . . . . . . . . . . . 165

20



5 Sensitivity analysis of each degradation mechanisms on the fitness 𝑊

for a NMC532-graphite cell for a 100mV (dis)charge voltage pulse or

for a 1C (dis)charge current pulse at a cathode state of charge of 0.8

and anode state of charge of 0.4. The effects of film resistance for (a)

the cathode, (b) the surface blockage for the cathode, (c) the electrolyte

concentration, (d) the film resistance for the anode, and (e) the surface

blockage of the anode are plotted for this cell for values close to the

initial degradation state. . . . . . . . . . . . . . . . . . . . . . . . . . 166

6 Comparison of fitting linearized or exact objective functions to simu-

lated results for full cell simulation for NMC532-graphite at ten dif-

ferent degradation points for each degradation mechanism for volt-

age/current pulse HPPC is shown. (a,d) are the film resistance mecha-

nisms for the cathode and anode; (b,e) are the surface blockage mech-

anisms for the cathode and anode, and (c) is the electrolyte loss mech-

anism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7 Comparison of fitting linearized objective function to exact results

for full cell NMC532-graphite simulation at nine different degradation

points for a combined set of simulations with all degradation mecha-

nisms present. (a,d) are the film resistance mechanisms for the cathode

and anode, (b,e) are the surface blockage mechanisms for the cathode

and anode, and (c) is the electrolyte loss mechanism. . . . . . . . . . 167

1 Figure displaying the scope of this thesis, from modeling particle level

degradation [12] to projecting particle level to population scale degra-

dation [13, 14], and finally applying electrode level understanding of

diagnostics to particle level [15, 16]. . . . . . . . . . . . . . . . . . . . 170

2 a) Example of improved surface coatings for transition metal oxide

cathode materials [17]. b) Example of improved electrode utility from

microstructural and particle level design choices [18]. c) Example of

the impact of improved diagnostics on cycle life prediction [1]. . . . . 176

21



1 Stability of the system at various Biot numbers using a Butler-Volmer

reaction rate, where the white shaded area surrounds the unstable

region. The temperature of the solution is also plotted on the same

plot using a heatmap. The solid white area is the area with no steady

state energy balance solution. . . . . . . . . . . . . . . . . . . . . . . 215

2 Stability of the system using a CIET reaction rate at various Biot

numbers, where the white shaded area surrounds the unstable region.

The temperature of the solution is also plotted on the same plot using

a heatmap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

3 Heat generation terms of each of the porous electrode scale model terms

relative to each other. 𝑄𝜇 is from the effect of (𝜇𝑟𝑒𝑠−𝜇)𝑅, 𝑄𝑇 𝑑𝑠
𝑑𝑐

is from

the differential entropy effect, 𝑄𝑙𝑦𝑡𝑒,Ω is from the Ohmic heat generation

in the electrolyte, 𝑄𝑠𝑙𝑑,Ω is from the Ohmic heat generation in the solid,

and 𝑄𝑙𝑦𝑡𝑒,𝑘 is from the Fourier’s law heat flux in the system. . . . . . 218

22



Chapter 1

Introduction

Rechargeable battery demand is projected to grow exponentially in the next decade.

Lithium ion batteries, ubiquitous in our society for renewable energy storage pur-

poses [19], operate through various processes such as electrochemical reactions, solid

diffusion, and electrolyte diffusion. However, these same processes also impose inher-

ent performance limitations on batteries [19]. These limitations hinder applications

of lithium ion batteries as energy storage devices in many industries. Understanding

the constraints on kinetic and transport timescales is often key to conceptualizing

and designing better lithium ion batteries. A lithium ion battery typically consists

of two electrodes made of active material that store and release lithium-ion electron

pairs through intercalation reactions on the particle surface, releasing electrochemical

energy [20]. Lithium-ion rich electrolyte facilitates transport between the electrodes

during charging and discharging. This multiscale structure enables efficient reversible

energy storage but also introduces complex interactions between different timescales

within the electrode.

1.1 Battery Degradation

A significant factor preventing more widespread application of lithium ion batteries

is degradation, which leads to reduced performance over time. Various degradation

mechanisms affect the active material. For instance, the graphite anode often develops
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a solid electrolyte interphase layer which increases resistance and reduces usable ca-

pacity [21]. The anode can also undergo lithium plating and form dendrites [22], which

can induce short circuits and remove usable lithium capacity from a cell. Significant

experimental [23, 24] and theoretical [21, 25, 26] efforts have been directed towards

investigating the degradation of graphite electrodes, resulting in substantial progress

in recent years. Electrochemical measurements have revealed strong asymmetry in

solid electrolyte interphase (SEI) growth between charge and discharge cycles [24].

Imaging techniques, including cryo-transmission electron microscopy, have been used

to observe the formation of a two-layer SEI in situ, visually documenting SEI growth.

On the modeling frontier, computational studies using atomistic techniques have ex-

tracted transport properties of lithium ions and electrons through an idealized SEI

layer [26]. Additionally, continuum scale models have incorporated the effects of SEI

on the electrode scale, highlighting the role of lithium ion diffusivity through the SEI

in the long timescale dynamics of interphase growth [21]. Similar mesoscale models

have found asymmetry between charge and discharge cycles of SEI growth, hypothe-

sizing that the SEI acts as a mixed ion-electron conductor with conductivity varying

as a function of lithium concentration [25].

Cathodes can undergo various types of degradation, particularly in nickel-rich ma-

terials, which can experience phase transformations and densification at the surface.

These changes modify reaction kinetics and decrease surface diffusivity [27, 28]. Such

phase transitions often accompany oxygen gas release in nickel rich materials [29].

Other common degradation mechanisms in nickel-rich materials include transition

metal dissolution, where metals leach into the electrolyte [30]. Mechanical issues such

as particle cracking and intercalation stress in polycrystalline particles also pose signif-

icant challenges [31]. Recent advances in experimental and computational techniques

have enhanced our understanding of these degradation mechanisms. Atomistic simu-

lations have provided thermodynamic insights into surface phase transformations [32]

and the effects of nickel content [33]. Continuum electrochemical models [34], such

as shrinking core-type models, have revealed the impacts of electrochemical cycling

on single particles. To validate these, finite element and finite volume models have
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Figure 1: a) Using a figure from Ref. [1], the impact of degradation on the macro-
scopic level response of lithium ion batteries is seen through capacity loss with respect
to cycle number, which varies based on manufacturing conditions. b) From Ref. [2],
single particle level degradation mechanisms such as formation of resistive films, me-
chanical cracking, and surface phase transformations are shown to be the cause of
device level capacity loss.

highlighted the role of high voltage cycling in mechanical fracture [35]. Experimen-

tal techniques like X-ray absorption spectroscopy, X-ray diffraction, and scanning

transmission electron microscopy [28, 36, 27] have been instrumental in visualizing

these degradation processes. These imaging methods have documented increased sur-

face phase transformations, cation disordered intermediate phases, and varying phase

compositions at the surface under high voltage cycling.

Degradation mechanisms manifest at the microscopic level but are observed macro-

scopically through electrochemical signals, as shown in Fig. 1a. It often appears as

a loss in macroscopic capacity, typically illustrated through capacity loss relative to

cycle number [1]. After degradation, voltage shifts as a function of capacity are in-

dicative of battery deterioration. The criteria for degradation, such as the common

benchmark of 80% of usable capacity [37], are arbitrarily chosen and do not neces-
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sarily correlate with power output or other critical performance metrics for energy

storage devices.

Increased degradation significantly affects the operation of a lithium ion battery.

In battery management systems, optimized operation [38] can be applied to improve

performance for second life applications [39], but without knowledge of degrada-

tion mechanisms, neither precise optimized operation nor choice of accurate recy-

cling strategies are possible. While impedance measurements [40, 41] have been used

to extract some degradation mechanisms, such as resistance growth or area specific

impedance [42], the lack of a physics-based framework hinders a comprehensive un-

derstanding of degradation. Recent work [2] has separated degradation mechanisms

successfully into phenomenological degradation behavior, such as loss of lithium in-

ventory and loss of active material. These lumped parameters are difficult to connect

directly with specific physical degradation mechanisms. Even when physical mecha-

nisms are identified, designing experiments to extract such details can be challenging.

Therefore, a complete overhaul of the degradation framework is necessary to extract

information on microscopic mechanisms. This will enable more accurate comprehen-

sion and management of degradation processes, ultimately leading to better battery

performance and longevity.

In this work, I aimed to analyze degradation from a microscopic to a macroscopic

scale, and then overhaul the traditional methods of modeling degradation to apply

physically driven degradation mechanisms instead of phenomenological ones. First,

I investigated a major microscopic degradation mechanism in nickel rich materials—

surface phase transformations, studied through cation disorder, an intermediate phase

between layered and densified phases [12]. After this, I applied statistical mechanical

methods to bridge multiple single particle degradation mechanisms to electrode scale.

This involved formulating a fitness framework for extracting the degraded reaction

rate for each particle, enabling the understanding of how individual particle degrada-

tion contributes to overall electrode performance [13]. Since many battery materials

are phase separating, scaling analyses for phase separating battery particle popula-

tions were analyzed using eigendecompositions to extract timescales [14]. Following,
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I investigated hybrid pulse power characterization (HPPC) techniques, which are a

diagnostic technique applying intermittent rests and pulses [15]. Voltage pulse HPPC

methods were designed, applying the fitness framework to extract physical degrada-

tion mechanisms. This step involved creating diagnostic protocols that could identify

specific degradation mechanisms through controlled voltage pulses. Then, optimal

design of these voltage pulse HPPC methods was performed with model-based design-

of-experiment methods for accurate and fast estimation of degradation parameters,

which is not expanded on in this thesis but can be found in Ref. [16]. A bidirec-

tional strategy was applied in this thesis where microscopic degradation mechanisms

were incorporated into a macroscopic model, and conversely, microscopic mechanisms

were extracted from macroscopic electrode responses, making our approach practical

for real-world applications. By integrating these steps, I created a comprehensive

framework to accurately diagnose battery degradation from a fundamental physical

perspective, leading to improved battery management and extended lifespan.

1.2 Multiscale Modeling of Batteries

Before delving into an in-depth analysis of the following work, it is crucial to establish

physical understanding of the timescales associated with various processes in lithium

ion batteries. During charging, intercalation reactions occur at the surface of active

material particles at the anode and deintercalation at the cathode, whereas during

discharge, the reverse processes occur. Solid diffusion from the surface to the bulk

mediates the storage of lithium ions in the material. At the particle level, timescales

of solid diffusion and reaction compete, such that mass conservation can be modeled

by
𝜕𝑐

𝜕𝑡
= −∇ · j, (1)

with a reactive boundary condition −n ·j = 𝑅, where j is the diffusion driven flux and

𝑅 is the surface reaction rate. The competing timescales at the single particle level [3]

are the solid diffusion timescale 𝜏𝐷,𝑝 = 𝐿2
𝑝/𝐷𝑝, the process timescale 𝜏𝐼,𝑝 = 𝐼−1, and

the reaction timescale 𝜏𝑅,𝑝 = 𝐿𝑝𝑐𝑚𝑎𝑥/𝑖0. Here, 𝐿𝑝 is the particle length, 𝐷𝑝 is the
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Figure 2: a) Example showing single particle reaction-diffusion behavior for a nickel
rich material, which has solid solution thermodynamics, or for lithium iron phosphate,
with phase separating thermodynamics. b) Competition between the process, reac-
tion, and diffusion timescales trigger the appearance of different bulk phenomena in
phase separating materials such as intercalation wave behavior or shrinking core be-
havior [3], with figures showing behavior of the different regimes taken from Ref. [3].

solid particle diffusivity, 𝐼 is the applied C-rate, 𝑐𝑚𝑎𝑥 is the maximum concentration

per particle, and 𝑖0 is the exchange current density of the material.

As analyzed in Ref. [3], competition between the reaction timescale, process

timescale and diffusion timescale influences whether core-shell behavior or interca-

lation wave behavior in phase separating particles appears, as shown in Fig. 2. When

𝜏𝐼,𝑝 ≫ 𝜏𝐷,𝑝, the quasi-equilibrium (reaction limited) regime is attained, characterized

by intercalation processes occurring at a much slower rate compared to diffusion pro-

cesses. This is ideal for the application of the reaction-limited model in the current

work. Most common battery electrode materials lie in the reaction limited regime [3].

Exceptions occur at high pulses, when the dimensionless current is large (𝑖/𝑖0 ≥ 103),

or when particle size is large (as in graphite platelets), such that 𝐿𝑝 ≥ 105 nm.

Here, 𝑖 is the dimensionalized applied current. Thus, we can frequently assume that

the system is reaction limited [3], allowing us to neglect solid state diffusion in the
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particles.

At the electrode scale, similar timescale arguments apply. In the macroscopic

design of an electrode, limitations stemming from electrolyte diffusion/conduction or

solid conduction can significantly modify cell-level behavior [43]. However, due to the

substantial amount of carbon additives in battery manufacturing, solid electronic con-

duction rarely is limiting. Consequently, limitations arising from electrolyte transport

are often of primary interest in pulse processes. These limitations can be effectively

understood through scaling analyses. From porous electrode style transport equa-

tions in Ref. [44], we observe that electrolyte scale transport is captured along the

electrode with lithium ion mass conservation in the electrolyte

𝜕(𝜀𝑐𝑙)

𝜕𝑡
=

1

𝜈+
(−∇ · F𝑙,+ +𝑅𝑉,+) , (2)

where 𝜀 is the porosity, 𝑐𝑙 is the lithium concentration in electrolyte, 𝜈+ is the number

of ions per molecule of neutral salt, F𝑙,+ is the flux of lithium ions, and 𝑅𝑉,+ is the

volumetric reaction rate of the lithium ions. Charging occurs during the electrode

process timescale as

𝜏𝐼,𝑙 =
𝜈+𝜀𝑐𝑙

(1− 𝜀)𝑃𝐿𝐼𝜌𝑠
, (3)

where 𝑃𝐿 is the volumetric electrode loading, 𝐼 is the C-rate of the electrode, and 𝜌𝑠

is the lithium site density of the active material. For electrolyte diffusion limitation,

we observe

𝜏𝐷,𝑙 =
𝜀𝑎𝐿2

𝑙

𝐷𝑙

, (4)

which is the timescale on which electrolyte diffusion occurs, where 𝑎 is the Brugge-

man scaling coefficient, 𝐿𝑙 is the electrode length, and 𝐷𝑙 is the effective electrolyte

diffusivity. For electrolyte conduction, we observe that

𝜏𝜎,𝑙 =
𝜀𝑎𝐿2

𝑙 𝑐𝑙𝑧+𝑒
2𝜈+

𝑡0+𝜎𝑙𝑘𝐵𝑇
(5)

is the electrolyte transport timescale, where 𝑧+ is the valence number of lithium ions,

𝜎𝑙 is the electrolyte conductivity, and 𝑡0+ is the transference number.
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Figure 3: Figure displaying models appearing at different scales for a lithium ion
battery, from single particle to population to electrode. Electrode scale figure is
taken from Ref. [4].

When we compare the particle and electrode level timescales, the limiting timescales

become apparent. Generally, in particle level mechanisms, solid diffusion timescales

occur on the range of 𝜏𝐷,𝑝 ∼ 0.01−100 s [45, 46, 3], while reaction timescales occur on

𝜏𝑅,𝑝 ∼ 1 − 10 s. At the electrode level, process timescales depend on applied C-rate

and are in the range of 𝜏𝐼,𝑝 ∼ 1000 s for a 1C charge process, and can be shorter

for higher C-rates or longer for lower C-rates. Using electrolyte transport parame-

ters from Ref. [47], we observe that 𝜏𝐷,𝑙 ∼ 10 s and 𝜏𝜎,𝑙 ∼ 10 s. In comparison, on

the electrode scale, the process timescale for a 1C charge is 𝜏𝐼,𝑙 ∼ 0.01 s for lithium

iron phosphate, and is faster for higher C-rates. Particle-level reaction and diffusion
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interact with electrode-scale transport limitations, resulting in a complex interplay

of length and timescales that poses significant challenges for electrode modeling. A

single-particle level model alone is insufficient to accurately capture the system-level

behavior of a porous electrode, but allows us to gain insight into how to bridge scales

to electrode level.

A hierarchical set of models can be used to capture these electrodes, shown in

Fig. 3. Single particle models can capture the timescales of reaction and diffusion in a

nanoparticle, using standard reaction-diffusion models. Because of the computational

efficiency of single particle models, the incorporation of complicated physical models

is usually performed with single particles [48]. However, single particle behavior

does not capture that of a collection of particles under a current constraint for solid

solution [49] or phase separating materials [50]. To capture population level behavior,

population dynamics models, which capture many-particle interactions through the

current constraint, can be applied. Initially, simple models capturing transformation

and relaxation timescales were formulated, which eventually evolved to more rigorous

models incorporating accurate reaction rates from chemical master equations [51, 11,

52]. These models can capture effects on particle activation fraction and distribution

broadening [51, 13]. Despite being less efficient than single particle models, population

models are more accurate.

However, electrolyte and electronic transport effects on the electrode scale are still

not properly captured in population dynamics models, which can often be limiting

factors at high currents [48]. Porous electrode theory couples the particle level and

electrode level continuum modeling with a standard single particle model, neglecting

many particle effects. Conservation equations on electrolyte and electronic conduc-

tion are postulated in the full cell. These standard porous electrode models [53, 54]

have been developed to model the behavior of lithium ion batteries by Newman

and coworkers. Standard porous electrode models are more computationally expen-

sive than single particle or population dynamics models. However, porous electrode

models do not incorporate the thermodynamics of phase separation or many-particle

effects, which play a role from single particle behavior to active particle fraction.
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To remedy this, multiphase porous electrode theory [55, 44] was formulated to in-

clude many particle as well as thermodynamic effects to properly capture behavior

of phase separating electrodes. Through these models, the active particle fraction

can be accurately captured, which can be computationally expensive because of the

fine discretization needed at particle level to model phase boundaries, as well as at

electrode level to capture transport limitations.

1.3 Particle Level Degradation

Starting our investigation at the particle level allows us to integrate reactions and

solid diffusion processes while considering degradation at this scale. Nickel rich ma-

terials are an increasingly common class of cathode materials [56] valued for their

high energy and power densities. Compared to lithium iron phosphate cathodes,

nickel rich materials can offer up to 50% higher energy density. Typically synthesized

in layered form, these materials generally have varying ratios of nickel, manganese,

and cobalt (LiNi𝑥Mn𝑦Co𝑧O2), which respectively contribute to capacity, stability,

and better kinetics of the materials [57]. The nickel content in recent years in these

materials has increased to reduce cobalt usage. This shift is motivated by the high

cost and negative environmental impact associated with cobalt [58], as well as the

strong correlation between cobalt mining and human rights violations, such as child

labor and unsafe worksites. Nickel-rich materials, with their high energy density and

reduced environmental toxicity, offer a promising alternative, but come with their

own set of challenges. The high energy density and reduced environmental toxicity

of these materials come at the expense of increased degradation and electrochemical

instability in higher nickel content materials [33]. Cycling-induced particle crack-

ing commonly occurs in nickel-rich particles, especially after repeated charging and

discharging cycles [59]. Especially at high voltages (≥ 4.5V), surface phase trans-

formations and oxygen release [27] can rapidly degrade the active material surface,

leading to densification and transformation into various phases such as spinel, rock

salt, and disordered rock salt [32]. Though specific surface phases vary based on cy-
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cling conditions, a disordered layer always appears in between the surface and bulk

phases.

Much work has been performed to investigate these mechanisms. Experimental

cycling of nickel-rich cells has provided insights into cathode degradation at the sur-

face [28, 60], revealing varying thicknesses of different surface phases. Investigations

from atomic scale simulations with density functional theory of nickel rich degrada-

tion mechanisms [32, 61] have been performed to extract formation energies of various

phases under different electrochemical conditions. However, there exists a discrep-

ancy in the timescales between the predictions offered by the current atomistic models

(nanoseconds) and the operating timescales of the battery (hours) [43]. To accurately

capture degradation in a battery, modeling techniques must be computationally effi-

cient enough to operate on timescales of at least hours. Additionally, these techniques

do not capture the multiscale structure of lithium ion batteries. Thus, there is a

pressing need for degradation modeling to accurately simulate degradation processes

within the timescales relevant to battery degradation.

Hence, in Chapter 2, our aim is to develop a mesoscale model for the degradation

of nickel-rich materials at the single particle level, focusing on cation disorder as a

proxy for surface phase transformations. We leverage the periodic layered structures

of these crystalline materials to formulate a thermodynamic model of defect formation,

which is then incorporated into a single particle reaction-diffusion model. Our model

successfully captures the degradation behavior of a single particle under the whole

voltage operating window for these systems.

1.4 Particle Level to Electrode Level

Degradation mechanisms primarily occur at the single particle level, ultimately man-

ifesting in observable effects at the electrode scale. Electrochemical methods, such as

voltage measurements or capacity loss curves, are commonly used to quantify degra-

dation in electrodes [1]. However, deconvoluting the different electrochemical signals

is challenging due to the lack of physics-based models that connect microscopic degra-
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dation processes to macroscopic behavior. Moreover, the criteria used to determine

degradation, such as reaching 80% of the original capacity, lack physical relevance to

the battery’s performance requirements, particularly in terms of power output [62].

Therefore, there is a need to develop more physically meaningful degradation criteria

related to power fade to better assess the degradation of lithium-ion cells in practical

applications.

1.4.1 Solid Solution Materials

To develop a more physically meaningful macroscopic degradation criterion, we exam-

ine solid solution materials, which have a monotonically increasing/decreasing chem-

ical potential with increased lithium concentration. As discussed in Sec. 1.2, the

interplay between different timescales indicates that a single particle model for degra-

dation is insufficient for scaling degradation to the electrode level. Consequently, we

need statistical mechanical methods to map degradation from the particle level to

the electrode scale. In biological systems, concerted behavior between individuals in

a population is well documented [63, 64], particularly in the context of evolution.

Analogously, in electrochemical systems, concerted population behavior has been ob-

served through electrochemical oscillations in voltage measurements [65]. Population

scale behavior is often simplified using a population balance (Fokker-Planck) model,

where heterogeneity in driving force is accounted for via an effective diffusivity [66].

In genotype evolution, different “states of health” of genes can lead to modified ef-

fectiveness of reproductivity, which is frequently modeled using a fitness landscape.

Analogously, in battery systems, the rate capability of each battery particle can be

compared to the “fitness” of each gene. Here, the fitness indicates the effectiveness of

a single particle in storing and releasing energy through an electrochemical reaction

relative to the rest of the population. By applying similar methods to capture the rate

capability of each particle, we can develop a framework for mapping single-particle

degradation to the system level. This approach is investigated in detail in Chapter 3,

where we explore these methods for deriving a macroscopic degradation criterion that

better reflects the physical degradation mechanisms at play in lithium ion batteries.
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1.4.2 Phase Separating Materials

Many common battery materials, such as lithium iron phosphate [67] and graphite [68],

are all thermodynamically phase separating rather than solid solution materials. Here,

phase separation implies that the chemical potentials of these materials change non-

monotonically as lithium is inserted or extracted to reach different concentrations [69].

Consequently, varying fractions of (meta)stable phases in phase separating materials

appear instead of the full spectrum of possible concentrations. At the single-particle

scale, this behavior manifests as intercalation waves rather than bulk/surface quasi-

equilibrium behavior [3]. At the population scale [8, 65], macroscopic voltage oscilla-

tions are observed. While portions of this behavior were explained through simulated

models using multiphase porous electrode theory [8], these explanations have been

predominantly phenomenological. The energy barrier of the chemical potential has

been found to significantly influence the activation behavior of the particles. Due to

the nonlinear kinetics and explicit concentration dependence of reaction rates, asym-

metry in activation behavior between charge and discharge has also been observed,

with a transition between low and high active particle fractions noted only during the

discharge process. However, the mathematical theory behind these behaviors is still

not yet developed.

From a theoretical perspective, simplified population models [11, 70] have also

been studied to obtain equilibrium or near equilibrium behavior of populations, but

do not capture dynamical transformation behavior in the spinodal gap. In a porous

electrode, where the process timescale is controlled by the applied current or voltage,

dynamical studies are more important than near-equilibrium studies. The applied

voltages or currents often modify the free energy landscape, which is not accounted for

in near-equilibrium studies. Here, we perform a nonequilibrium study capturing the

timescales by mapping the reaction rates and thermodynamic potentials to an effective

nonequilibrium free energy landscape. Using the eigenvalues of the Liouville operator,

we extract timescales of the population transformation behavior using properties of

the effective free energy landscape. When comparing these timescales with the total
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Figure 4: Example hybrid power pulse protocol, showing intermittent rests and pulses.
Voltage pulses are applied and the (degraded) current responses are recorded for
future diagnostics purposes.

process timescale, the physical mechanism behind the transitions between the low

and high active particle fraction regimes becomes clear. This approach allows for

direct prediction of active particle fraction and potential from a population with a

defined C-rate. For future applications, these techniques can be particularly useful

for predicting active particle fraction in pulses, specifically for diagnostics pulses. We

investigate these points in Chapter 4.

1.5 Electrode Level to Particle Level

1.5.1 Pulse Diagnostics

To determine optimized operations for a battery pack or make second life decisions

post recycling in a practical way, it is crucial to first estimate extent of microscopic

degradation in lithium ion batteries. Much effort has been dedicated to estimat-

ing degradation in lithium ion cells. High-precision coulometry tests can accurately
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estimate some degradation modes, but require equipment with high measurement

precision [71, 72]. Techniques such as electrochemical impedance spectroscopy (EIS)

measure the linear response of a cell to small perturbations, but only accurately cap-

ture near equilibrium behavior [73]. These low rate perturbations do not push the

battery to its operational limits. Other pulse-type diagnostics, such as hybrid pulse

power characterization (HPPC) [62, 74], use nonequilibrium measurements to extract

information. These measurements alternate rest and pulse measurements, as shown

in Fig. 4, to capture nonequilibrium cell behavior at high rates, which are the regimes

lithium ion batteries commonly operate in.

Pulse measurements are also commonly used to extract information about diffusiv-

ities, employing techniques such as galvanotstatic/potentiostatic intermittent titra-

tion techniques (GITT/PITT) [75, 76]. Despite widespread use of pulse techniques in

electrochemistry, their impact on cells is still poorly understood. Though attempts

to analyze pulse protocols through porous electrode simulations [77, 78] have been

made, selection and design of different pulse experiments is still fairly arbitrary. Un-

justified choices in state of charge and pulse magnitude design of HPPC protocols

were made in the initial design of protocols [62], which have not been modified in

the last twenty years. In addition, the physical analysis of pulse dynamics, which

operate in the reaction-limited regime due to the high pulse magnitudes [3], is still

insufficient.

We desire to establish a physical interpretation of pulses that can extract degra-

dation mechanisms. In view of bridging particle level and electrode level degradation

from physically derived particle level degradation mechanisms, we attempt to incor-

porate these methods into the interpretation of pulses. We use the rate capability,

or “fitness” derived in the previous chapter, as a new power fade metric to determine

degradation of cells. These methods will be expounded in Chapter 5.

1.5.2 Optimal Design of Diagnostics

The analysis of pulse diagnostics in the previous chapter significantly enhances the

application of diagnostics to battery systems. Current trends in battery manage-
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ment systems include using rule or optimization based methods to manage energy

systems, jointly optimizing cycle life and performance [79]. This optimization re-

quires intimate knowledge of the current degradation state of the cells. However, in

many battery management systems or recycling protocols, there is insufficient time

to perform traditional slow pulse diagnostics on cells [38]. Fast and accurate pulse

diagnostics on lithium ion battery cells are required for efficient diagnostics towards

second life or battery management applications. These topics are further investigated

in Ref. [16], an extension of the current work using optimal design-of-experiment for

pulse diagnostics design.

1.6 Conclusion

Here, our analysis of degradation and its applications in lithium ion batteries begins

at the single particle level, where nickel-rich degradation mechanisms are modeled.

The single particle level degradation models are projected to population level through

a Fokker-Planck model to understand population scale degradation for solid solution

materials. Additionally, timescale analyses of population scale behavior for phase

separating materials, which are common in lithium ion batteries, are performed to

understand their nonequilibrium behavior. Following this, we extract specific degra-

dation mechanisms from diagnostics through a physical analysis of pulses, connecting

macroscopic pulses to specific particle level degradation mechanisms. Optimal design

is applied to these protocols for non-phase separating materials, ensuring efficient and

accurate diagnostics.
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Chapter 2

Single Particle Layered-Oxide

Cathode Degradation

Theory of layered-oxide cathode degradation in Li-ion batteries by

oxidation-induced cation disorder [12]

2.1 Introduction

2.1.1 Motivation

As Li-ion batteries continue to revolutionize energy storage and power global elec-

trification, it is increasingly important to understand the microscopic degradation

mechanisms that limit their efficiency, rate capability, and lifetime at the particle

scale. Degradation is exacerbated by efforts to increase energy density, while lower-

ing material costs. This tradeoff is well illustrated by nickel-rich cathode materials,

based on nickel-manganese-cobalt (NMC) layered oxides [33, 80]: as scarce and ex-

pensive cobalt is replaced by more plentiful and affordable nickel, the nickel-rich oxide

cathode degrades more easily at the high voltages required for high energy density

The present chapter is based on my published work in the Journal of the Electrochemical Soci-
ety [12].
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batteries. The microscopic mechanisms are still poorly understood, so it is critical to

develop a predictive theory of degradation at the particle level, in order to understand

and optimize this tradeoff.

Nickel-rich materials degrade with cycling by a variety of possible mechanisms

[81, 82, 83, 84], such as phase transformations, cation disorder, surface reconstruction

[28, 27], particle cracking [31, 85, 59], and transition-metal dissolution [86, 87]. No-

tably, the various possible degradation mechanisms depend on the specific transition-

metal chemical properties of different nickel-rich materials. Some nickel-rich degra-

dation mechanisms, such as transition metal dissolution, can affect degradation at

the anode through increasing the conductivity of the solid-electrolyte interphase on

the graphite anode. This happens by the incorporation of transition metal ions dis-

solved in the solution from cathode degradation [30, 88]. An additional complexity

is that nickel-rich layered oxides are currently being developed into many different

compositions with added transition metals such as cobalt, manganese, and aluminum,

which all have varying chemical properties. The degradation mechanisms of nickel-

rich materials all are coupled, with cation disorder driving much of the bulk phase

transitions and the surface phase transformations [89]. Here we seek to elucidate the

physical mechanisms behind degradation of nickel-rich cathode materials to increase

battery lifetime and reduce safety risks during operation from degradation-induced

short circuits.

Although Li-ion battery capacity fade has been the focus of extensive research,

most studies have focused on degradation mechanisms in the standard graphite an-

ode, such as solid electrolyte interphase growth [21, 24, 25, 90] and lithium plating

[91, 92]. However, recent experiments have shown that the amount of cathode and

anode degradation in batteries is on par with each other, especially in nickel-rich

materials [93]. Cycling experiments with microscopy techniques have been performed

to visualize cathode degradation at the atomic scale [28, 94, 27, 60], providing nec-

essary experimental support for modeling at the particle level. However, there have

been few attempts to model cathode degradation beyond atomistic simulations or ma-

chine learning with limited physical insight [95]. Atomic scale studies using density
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functional theory and other methods have been used to study cathode degradation

[96, 32, 61] to calculate the formation energies of these phases and the relationship

between diffusivity coefficients and defects, but because of the scale at which degra-

dation happens in a battery, this is impossible to translate directly into a porous

electrode scale battery model. The timescales of interest in atomic scale modeling are

on the scale of nanoseconds at most, but the scale at which a battery operates is from

hours to months, especially when degradation starts becoming of interest. There is a

crucial need to develop cathode degradation models that can be applied at the porous

electrode scale in battery simulations.

Phase transformations at the surface and bulk, one of the main degradation mech-

anisms in nickel rich materials, have been observed since the initial characterization

of nickel rich materials [97, 32, 98, 99]. Phase transformations and surface reconstruc-

tion, shown in Fig. 1a, increase after cycling [60], and the phases formed are highly

dependent on the material used [32, 61]. Based on the varying cycling protocols used

during (de)intercalation, the amount of phase transformations and the thicknesses of

the surface reconstruction layers change [60, 100]. Spinel, rock salt, and disordered

rock salt phases, along with other phases such as 𝛾 phases have all been measured

experimentally [32, 60, 28], but no agreements have been reached over the phases

formed, except that the phases are denser than the original layered phases. These

dense surface phases affect operation of a battery, modifying the kinetics and trans-

port of these materials, causing batteries to become unusable after a certain point in

their cycle life [101, 102, 103].

These phase transformations in the bulk and surface of cathode materials are a

well-known degradation mechanism in nickel rich materials that have been studied

with many experimental imaging techniques [28, 104, 105]. Computationally, density

functional theory and Monte Carlo simulations have been used to study the effect of

cation disorder on these phases [32, 106, 61, 107]. Limitations based on computa-

tional power create difficulties in modeling the entire disorder process using quantum

mechanical first-principles methods. Understanding and reducing the degradation of

batteries is an important barrier to the continued electrification of our current energy
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storage systems [81, 97]. Thus, studying the amount of disorder, which drives the

transitions to denser surface phases, is critical to studying the long-time operation of

batteries and the continued expansion of decarbonized energy storage methods [108].

Here, we propose a physics-based mesoscale model that can be used to predict the

long-term effects of cation disorder and phase transformations of nickel rich materials

on degradation. The free energy is based on electrostatics in periodic layered crystal

structures and does not require any empirical fitting of data. It is derived directly from

measured material properties, such as electronegativities of the transition metals. In

addition, this model can be applied to any form of layered nickel-rich battery material

to study the effects of disordered regions. The thermodynamic model is then coupled

to a simple model of the irreversible surface oxidation reaction (with a fitted rate

constant and onset potential) and cation diffusion into the bulk, in order to predict

the dynamics of degradation in layered oxides.

2.1.2 Background

It is important to note that the phase transformations associated with surface degra-

dation are driven by defects, which can be created in the synthesis of these materials

[109, 110] and also increase during battery operation [111]. We take advantage of

this to aid our modeling of degradation in nickel-rich cathodes, as well as go through

some of the history in physics of using lattice models and dipoles to model structures.

Defects trigger phase transformations to denser phases, such as rock salt, spinel,

or disordered rock salt structures usually found at the surface of NMC materials

[27, 60, 61, 94, 112].

The main defect for nickel rich crystal structures is the antisite defect [96], which

can be observed as a kind of Schottky defect in an ionic solid lattice [113, 114, 115].

The description of the “anion” defect in our case is not an ionic defect but a negatively

charged electron, while the cation defect is a lithium ion in the analogue to Schot-

tky disorder. The equilibrium concentration of Frenkel/Schottky defects is usually

denoted by equilibrium constants using the law of mass action, 𝐾𝑒𝑞 = 𝑒−𝐺/𝑘𝐵𝑇 , in

terms of the free energy of formation 𝐺 [115]. However, it is challenging to estimate
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formation energies without atomic scale calculations. We instead turn to a method

driven by topological defects in physics of studying this kind of disorder.

The theory behind our model was inspired by Kosterlitz and Thouless’s ground-

breaking work on 2D-topological defects [116, 117]. The defects in this model are

described by “twisting” of ordered structures to form “vortices”. The idea behind our

lattice model, shown in Fig. 1a, is that for NMC defects the antisite defect is the most

energetically favorable [96], which makes them the driving force for phase transitions

in nickel rich materials. They can also be thought of as “flipping” structures that are

normally topologically perfect, but through entropy and electrostatic changes from

the configurational “flip” can have modified energies. Since the lattice changes in

these materials are quite small between the fully lithiated and empty states [118], we

do not account for lattice size changes in this material.

In Kosterlitz-Thouless (KT) transitions, the separation of the interaction energies

into entropy, core interactions, and mean field interactions with the bulk is another

key to the correct calculations of topological defect theory. This is analogous to

ionic Born solvation modeling, but instead of ion-water systems, our current system

is a solid state system where electrostatics dominate [119]. The energy required to

create a cavity in the solution is analogous to the “core” interaction energy, while the

integrated electrostatic interactions with the bulk is analogous to the “bulk” of the

electrostatic energies.

The energetic barrier of transitions from a perfect NMC lattice to the disordered

phase using statistical models of layered lattices was captured based on the fact that

electrostatic interactions dominate in these ionic crystals [120] and the radii of nickel

and lithium ions are similar in size. The phases formed in the densified states are still

uncertain from experimental measurements, but we know the phase transformations

are driven by cation disorder, so the amount of defects formed can be used as an

indicator for the amount of surface reconstruction or phase transformations [121].

Highly disordered nickel in the lithium layer [61] indicates the occurrence of spinel or

rock salt phase transitions.

In the traditional Butler-Volmer (BV) phenomenological model of intercalation
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Figure 1: a) Schematic of surface reconstruction and phase transformations in a
cathode particle, happening from the edge of the particle to the bulk. b) Microscopic
schematic of cation disorder defined by the lithium and electrons at the transition
metal sites, where a nickel migrates from a transition metal layer to an empty site
in a lithium layer. The dipoles are defined as from the transition metal sites to the
lithium sites. c) Schematic representation of disorder in our model from layer to layer.
The yellow center are the “core” interactions while everything outside counts as the
“bulk” interactions.

kinetics in battery materials, classical ion transfer is assumed to be the dominant re-

action mechanism and the electronic degrees of freedom are not considered [53, 122].

In contrast, electron transfer is generally described using Marcus theory [123, 124]

for localized (metallic) electron transfer, or Marcus-Hush-Chidsey theory for delocal-

ized electron transfer [125, 126], in case of Faradaic reactions at liquid/solid electrode

interfaces. Bai and Bazant first hypothesized that electron transfer to reduce the

electrode host could be rate-limiting in Li-ion batteries, compared to the fast step of

lithium ion insertion, and showed the MHC theory could predict curved Tafel plots

for lithium iron phosphate electrodes [127]. Fraggedakis et al. then derived a general

theory of coupled-ion electron transfer (CIET) applied to lithium intercalation reac-

tion kinetics [128] with strong experimental support from nanoscale x-ray imaging of

lithium concentration evolution [50] and from pulsed electrochemical measurements

for a wide range of Li-ion battery materials [129]. In stark contrast to BV mod-

els, the CIET theory connects reaction rates to microscopic material properties and

predicts curved Tafel plots with concentration-dependent limiting currents at high

overpotentials.
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The basic idea behind CIET is that lithium ion transfer into the lattice is ac-

companied by the formation of a neutral polaron quasi-particle by electron transfer

to a weakly coupled reduced state of the solid host, typically involving a reduced

transition metal cation. We theorize that ion-electron pairs are also key features of

defects in intercalation materials, which may be modeled as dipoles in the dominant

electrostatic free energy of the electrode. These dipoles can also be seen as “bound”

defects [114], which can be important in intermetallics. The dipolar behavior of elec-

trostatics [130] interacting with the change of charges at the core are shown in this

study to qualitatively reproduce the large difference in amount of defects driven at

different cutoff voltages [131, 57, 132].

Lattice models, commonly used in physics, can be used to study layered materials,

where the energy calculations are further simplified by the layered effect. Such models

of nickel-rich cathodes have been used to study the effect of cation disorder on voltage

profiles [133, 134]. Nearest-neighbor lattice models have also been used to model the

temperature dependent order-disorder transition of different lithium layered oxide

materials [135, 97, 136]. However, in these models often only the nearest-neighbor or

next nearest-model terms were used to study these effects, neglecting the electrostatic

environment and ignoring convergence of the electrostatic interactions. These models

were also not expanded to formulate chemical potential models for dynamic free

energy models.

Here, we present a general microscopic theory of cation disorder in ionic crystals,

specifically applied to nickel-rich oxide degradation. Using dipole-charge interactions

assuming a mean field made up of alternating dipole layers from the ion-electron

pairs placed at the Li-TM sites as shown in Fig. 1b, we verify the convergence

of these electrostatic calculations (shown in Appendix B) and present a rigorous

electrostatic mean field model. These dipole interactions have been theorized to play

a role in the formation of these disordered materials [137, 138, 139]. Then, accounting

for configurational entropy, a free energy model for the material is derived, which

can be used to derive chemical potentials for dynamic simulations. This model is

derived mainly for disorder and not for intercalation, but a verification of the chemical
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potential reveals that the voltage range is on the same order as a battery intercalation

material, as shown in Fig 4c, further validating our results.

We formulate this model as a first order approximation to be used as a theoretical

model for any layered oxide cathode material disorder that one wishes to study. The

model can also be extended to materials such as lithium iron phosphate [46] where

analogous iron-antisite defects have found to be important in determining the particle-

size-dependent effective diffusivity. The ideas based in electrostatics and statistical

thermodynamics come together to formulate a model for studying degradation of

lithium oxide materials.

2.2 Theory

2.2.1 Bulk

Chemical Potential

The model is formulated as follows. Based on the alternating locations of the nickel

and lithium layers, dipoles of alternating directions are formed between the nickel

and lithium layers in the mean field approximation, where “even” and “odd” layers

have dipoles in alternating directions, as shown in Fig. 1c. However, in addition to

the fact that the bulk dipole layers alternate directions when a nickel atom migrates

to a lithium layer, the core part of the interaction is also modified when a defective

configuration is formed. We account for this similarly to Kosterlitz and Thouless

[116], where these energy calculations are separated into a “core” term and a “bulk”

term, where the bulk term is accounted for from the alternating layers and the core

term is from the charge interactions near the defective site.

To calculate the difference between energies of the defective and normal con-

figurations ∆𝐺 = 𝐺1 − 𝐺2 = 𝐻 − 𝑇𝑆, we find the difference between the two

states–a defective configuration where a nickel atom has moved to a lithium site

𝐺2, and a non-defective configuration where the nickel atom is in its original nickel

site 𝐺1, based on the crystal structure of LiNiO2 from the Cambridge Structural
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Database [140, 141]. The mean field dipoles can be defined at different concen-

trations of lithium 𝑐, defect concentrations of nickel 𝑣, and ratios of nickel man-

ganese cobalt 𝑥 : 𝑦 : 𝑧. The variable names used in this paper are redefined in

Appendix 2.9 for clarity. The dipoles in the structure are shown in Fig. 1b us-

ing electronegativity, defined from the positively charged lithium sites (from the

lithium ion placed in the sites) to the negatively charged nickel-manganese-cobalt

sites (from the electron localized on the transition metal), with the dipole written as

𝜇0 = 𝑒r0 ((𝑥− 2𝑣)EN𝑁𝑖 + 𝑦EN𝑀𝑛 + 𝑧EN𝐶𝑜 − EN𝐿𝑖), where r0 is the vector distance

between transition metal site and lithium site, and EN is the electronegativity of

the atom or the “attractiveness” of an atom to electrons [142]. We see that there

are alternating rows of dipoles pointing in opposite directions from the formulation

of dipoles in this model. Only the dipoles added by intercalation are considered in

this crystal structure and not the ions pre-existing in the non-intercalated structure,

since when an energy difference is calculated between the original and defective state,

the intercalation host crystal interactions cancel out. To avoid the fact that many

electronegativity scales are based on formation energies, the Allred-Rochow scale was

chosen. This scale is more simplistic than other electronegativity scales and generally

uses the ideas of electrostatics based on effective nuclear charge, consistent with our

theory [143].

In the lithium layers and transition metal layers, there are automatic constraints

on the concentrations of lithium and defective nickel in the lithium layers, or nickel

and vacancies in the transition metal layers. The definition of the material ratio gives

us that 𝑥 + 𝑦 + 𝑧 = 1, and from the site constraint of lithium atoms, we know that

𝑐+ 𝑣 ≤ 1. By the mass constraint of nickel atoms, 𝑣 ≤ 𝑥 must always be true. These

constraints are automatically satisfied by how the entropy equation was defined.

We consider the perfect configuration 𝐺1 before a defect is formed in the core as

well as a defective configuration 𝐺2. Assuming that the neutral lattice contains a

lithium-electron pair for notation purposes, the reaction that occurs can be written

in Kroger-Vink notation as V
′
Li + NixNi → Ni·Li + V

′′
Ni. For comparison, the lithium

intercalation reaction written in Kroger-Vink notation is e
′
+ V

′
Li + Li· + NixNi →
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LixLi +NixNi. Since the oxygen lattice around lithium and nickel ions are identical and

the radii of lithium and nickel are very similar, by symmetry the oxygen atoms can

be neglected in the modeling of the crystal structure and only the lithium and nickel

layers are considered. The crystal structure used was taken from the the Materials

Project structure mp-632864 for LiNiO2 [144, 145, 146, 147, 148].

In this structure, dipoles are formed from the intercalated lithium ion, which is

positively charged, interacting with the localized electron on the transition metal ion.

Thus, we have alternating layers of dipoles that form the bulk of the electrostatic free

energies of the crystal structure. When an antisite defect is formed, one of the dipoles

is broken and forms a broken “core,” which is also called the defect core for future

reference. When studying the energetic interactions of antisite defect formation, we

can separate the interactions into the broken “core” term as well as the electrostatic

bulk interaction terms, shown in Fig. 1c where the circled yellow site is the broken

core and the outside is the mean field term.

We first start by studying the bulk interaction term, also known as the mean field

(MF) term. It simplifies the problem to consider splitting the dipole layers between

the ones pointing “up” and the ones pointing “down” by the symmetry between these

layers. In the following notation, “even” indicates the layer that a core electron would

belong to if it was moved half a layer up and the alternating layers pointed downward

in the diagram, while “odd” indicates a layer that the core electron would belong

to if it was moved half a layer down and the alternating layers pointed upward in

the diagram. The definition of the dipole is thus always positive in “odd” layers and

negative in “even” layers in the original configuration, while it is always negative in

“odd” layers and positive in “even” layers in the defective configuration as shown in

Fig. 1c [149]. The electrostatic interactions in the layers are thus opposite to each

other. By the definition of charge-dipole interactions, the even and odd interactions
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will be

𝐻𝑀𝐹,𝑒𝑣𝑒𝑛 = −1

2

𝑐𝑞𝑒

4𝜋𝜀

∑︁
𝑖∈𝑒𝑣𝑒𝑛

∑︁
𝑗∈𝑖

−𝜇0 · 𝑟𝑖𝑗

𝑟3𝑖𝑗

𝐻𝑀𝐹,𝑜𝑑𝑑 = −1

2

𝑐𝑞𝑒

4𝜋𝜀

∑︁
𝑖∈𝑜𝑑𝑑

∑︁
𝑗∈𝑖

𝜇0 · 𝑟𝑖𝑗

𝑟3𝑖𝑗
,

(1)

where the factor of 1
2

accounts for the fact that the charges are split over a dipole in

the layer above and the layer below, and the −𝑐𝑞𝑒 prefactor accounts for the amount

of dipoles at each site in a mean field description, since only the intercalated lithium

sites 𝑐 can have lithium-electron dipoles [150, 130, 151, 152]. Here, 𝑒 is a unit charge

and 𝑞 is the magnitude of the charge. We sum over the layers in the crystal structure

indexed by 𝑖, which are separated into even and odd layers, and then sum over the

sites in the 𝑖th layer indexed by 𝑗. Since the dipole vector, 𝜇0, is defined as pointing

from the transition metal layer to the lithium layer, assuming the centered atom is

the red lithium site, the even layers are shown in the image are the orange dipole

layers, while the odd layers are the blue dipole layers. Here, the distance 𝑟𝑖𝑗 is the

distance between the center of the dipole 𝜇0 and the defect center, and the scalar 𝑟𝑖𝑗

is the magnitude of that vector.

Because ions in this problem are assumed to only move as a result of defects

or intercalation and the induced dipoles from electronic movement are ignored, the

dielectric constant applied is the static dielectric constant of this material. These

approximations cause our simple theoretical model to neglect induced many-body

interactions that are not captured by a mean-field model, but it is a good first ap-

proximation. The full mean-field theory is then written as

𝐻1,𝑀𝐹 = (𝐻𝑀𝑉𝑒𝑣𝑒𝑛 +𝐻𝑀𝑉𝑜𝑑𝑑
)

𝐻2,𝑀𝐹 = − (𝐻𝑀𝑉𝑒𝑣𝑒𝑛 +𝐻𝑀𝑉𝑜𝑑𝑑
) ,

(2)

split over the even and odd layers.

The broken “core” of the structure is studied next. It is known that the defective

nickel is more likely to be in the reduced (+3) oxidation state. Since at the core, there
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Figure 2: Detailed schematic of charge-dipole model, where in 𝜇𝑖𝑗, 𝑖 is the layer index,
which can be either “even” or “odd”, and 𝑗 is the atom number in the layer. “0” is the
central site where the antisite defect occurs.

is only one negatively charged transition metal interacting with the mean field, this

greatly simplifies our energy calculation to be interactions with the two lithium ions

within the vicinity of the layer, shown in Fig. 1c. We use charge-charge interactions

to model the core interactions. In the core, only half of the ions on the edges are

considered (the other half is used to generate the dipoles in the mean field terms).

Thus, at each end of the core, we have a nickel-lithium interaction from the nickel to

the edge. The electrostatic core interactions in the two configurations are found to

be

𝐻1,𝑐𝑜𝑟𝑒 = −(1− 𝑣)

2

(︂
𝑐(𝑞𝑒)2

4𝜋𝜀𝑟0
+

𝑐(𝑞𝑒)2

4𝜋𝜀(3𝑟0)

)︂
𝐻2,𝑐𝑜𝑟𝑒 = −(1− 𝑣)

2

(︂
𝑐(𝑞𝑒)2

4𝜋𝜀(2𝑟0)
+

𝑐(𝑞𝑒)2

4𝜋𝜀(2𝑟0)

)︂
.

(3)

This gives us

𝐻𝑀𝐹 = 𝐻2,𝑀𝐹 −𝐻1,𝑀𝐹

𝐻𝑐𝑜𝑟𝑒 = 𝐻2,𝑐𝑜𝑟𝑒 −𝐻1,𝑐𝑜𝑟𝑒

(4)

as the final enthalpic interaction energy difference between the defective and bulk

configurations.

By using the definition of dipole charge-interactions [130], the final mean field
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energy difference between the two configurations is found to be

𝐻𝑀𝐹 = − 𝑐𝑞𝑒

4𝜋𝜀

(︃∑︁
𝑖∈even

∑︁
𝑗∈𝑖

𝜇0 · r𝑖𝑗
|𝑟𝑖𝑗|3

−
∑︁
𝑖∈odd

∑︁
𝑗∈𝑖

𝜇0 · r𝑖𝑗
|𝑟𝑖𝑗|3

)︃
, (5)

is the vector between the center of dipole 𝑖𝑗 and the defect center and 𝜇0 is the dipole

between lithium sites to transition metal sites defined in the previous solution, where

𝑟𝑖𝑗 = |r𝑖𝑗|.The defect core interaction difference is found to be

𝐻𝑐𝑜𝑟𝑒 =
(𝑞𝑒)2(1− 𝑣)𝑐

12𝜋𝜀𝑟0
, (6)

The final electrostatic energy is found to be

𝐻 = 𝐻𝑀𝐹 +𝐻𝑐𝑜𝑟𝑒, (7)

shown in Figs. 3b and 3e. The electrostatic energies in these materials were found

to be lower at a state with more defects, indicating that a highly defective state is

energetically favorable. This is expected as the formation of such a state reduces the

magnitude of electrostatic interactions between layers.

In this electrostatics problem, the dielectric constant 𝜀 is estimated using the

Clausius-Mosotti relation for a spherical inclusion in a homogeneous effective medium.

Since the dielectric response of the material is based on the interactions induced by

other atoms and the energies converge quickly in these structures (shown in Appendix

B), in the core and near field interactions, a simple dielectric constant can be used in

this model. The movement of the ionic lattice is considered in this problem, so the

low frequency (static) dielectric constant needs to be applied. The dielectric constant

can be found to change with the amount of intercalation or defects locally. When

the crystal structure is nearly perfect, the dielectric constant for layered lithium oxide

materials has been found to linearly decrease with the increase of defect concentration,

specifically for lithium niobium oxide [153, 154, 155].

We seek an approximation rule to calculate the average dielectric constant of

materials at different concentrations and to reproduce the behavior seen for lithium
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Figure 3: a), b), and c) are the entropy, enthalpy, and Gibbs free energy calculations
for NMC532, while d), e), and f) are the entropy, enthalpy and Gibbs free energy
calculations for NMC111. Because of the total site constraint in the lithium layer in
the crystal structure, when the concentration in the lithium layer is above a certain
level, there are not enough sites for nickel to have a high concentration of defects
in the system, so there are white triangular regions of no solution for the entropy
calculations. This also causes there to be regions of no solutions for the free energy
calculations.

metal oxide materials. The dielectric constant of metal oxides is estimated following

the additive rule in “well-behaved” metal oxides, based on Clausius-Mosotti dielectric

theory [156, 157], which has been found to work extremely well for many kinds of

oxide materials [158, 159]. The additive rule has been found to be a good predictor of

the dielectric constant of oxide materials even before measurement, with the dielectric

constant 𝜀 obtained from
𝜀− 1

𝜀+ 2
=

4

3
𝜋
∑︁
𝑖

𝛼𝑖𝑛𝑖, (8)

where 𝛼𝑖 is the polarizability of the atom 𝑖 and 𝑛𝑖 is the number density of atom 𝑖. For

our material, we consider atom types Li, Ni, Mn, Co, and O. The dielectric constant

decreases with respect to lithium concentration and defect concentration, as shown

in Appendix C. This dielectric constant calculation is only valid for bulk dielectric

constants since we do not consider image charge effects from the bulk/electrolyte

interface.

The second part of the energy from the configurational entropy of the model can

be split into two parts. First, in the lithium layers, the sites are either filled with
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lithium, defective nickel, or empty, which can be written as

Ω𝐿𝑖 =
𝑁 !

(𝑁𝑐)!(𝑁𝑣)!(𝑁(1− 𝑐− 𝑣))!
, (9)

where 𝑁 is the total number of lithium sites considered. In addition, the nickel layers

are either filled with nickel or empty, with the following number of combinations

Ω𝑁𝑖 =
(𝑁𝑥)!

(𝑁𝑣)!(𝑁(𝑥− 𝑣))!
. (10)

The total configurational entropy change is described as

𝑆 =𝑘𝐵 ln (Ω𝐿𝑖 * Ω𝑁𝑖)

≈𝑘𝐵𝑁 (𝑥 ln𝑥− 𝑐 ln 𝑐− (1− 𝑐− 𝑣) ln (1− 𝑐− 𝑣)

−2𝑣 ln 𝑣 − (𝑥− 𝑣) ln (𝑥− 𝑣)) ,

(11)

which is plotted in Figs. 3a and 3d for NMC532 and NMC111 separately. The

configurational free energy prefers moderate values for 𝑣 and 𝑐 because of the higher

number of possible states at at these concentrations. More importantly, the entropy of

the configuration limits the accessible states at higher lithium concentrations, because

it is physically impossibly for high concentrations of defects to be reached at high

lithium concentration from lack of available sites, creating the inaccessible triangular

regions in Fig. 3a and d.

The final free energy can be described as 𝐺 = 𝐻 − 𝑇𝑆 from Eqs. 7 and 11,

plotted in Figs. 3d and 3f. More information on these calculations can be seen

in Appendix 2.8. This free energy is dominated by the electrostatics, but there

is a strict cutoff from the possible available sites in the entropic component. The

diffusional chemical potentials, which describe the dynamic behavior of the model,

can be defined from the free energy. The diffusional chemical potentials are defined

as 𝜇𝑐 = 𝛿𝐺
𝛿𝑐

for intercalation and 𝜇𝑣 = 𝛿𝐺
𝛿𝑣

for defects, shown in Fig. 4, and the

analytical solutions for the chemical potentials can be found in Appendix A. From

Figs. 4b and 4d, at lower concentration, there is a larger driving force towards a
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Figure 4: a) Intercalation chemical potential for a NMC532 material. b) Defect
chemical potential for a NMC532 material. c) Intercalation chemical potential when
defect amount is close to zero and the contributions from enthalpy and entropy. We
also plot an open circuit voltage from experimental measurements [5] for comparison.
d) Defect chemical potential when the defect concentration is close to 0 and the
contributions from entropy and enthalpy. (Potentials are shifted in c) and d) by an
arbitrary reference potential for ease of readability.)

more defective state, qualitatively matching experimental measurements where the

high voltage/low concentration regions cause more cation disorder. Since the chemical

potential is defined with an arbitrary reference value, for ease of comparison between

the intercalation and the defect chemical potential we choose to shift the reference

potentials to overlap. The chemical potential contribution from entropy is derived

analytically in the appendix, while the contribution from enthalpic terms is calculated

numerically in Appendix A, and the contributions are plotted in Figs. 4c and 4d. For

both intercalation and defect formation, the enthalpic chemical potential dominates

the trend in these materials.
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Figure 5: Nickel ratio effect on the a) intercalation and b) defect formation chemical
potentials of the material. The solid lines are for the calculated values, while the
dotted lines are from experimentally measured values from Ref. [6].

The advantage of these simplistic models is that they can be applied to nickel rich

materials of any composition and provide a rough estimate of the energy of any of

these new compositions of materials in Fig. 5. In the previous discussion, Figs. 3c

and 3f provide an example of different ratios of nickel in the crystal structures for

NMC532 and NMC111. Experimentally, higher nickel ratio materials were revealed

to have larger voltage ranges [6] and degrade more quickly than lower nickel ratio

materials [84], which is also shown in our theoretical predictions for chemical poten-

tial of these materials in Fig. 5. Our model follows the general trend of increasing

nickel content causing a larger slope in the chemical potential for intercalation. The

different electronegativity of the transition metal materials, which modifies the dipole

magnitude, causes this change in slope. In addition, the nickel concentration plays an

important role in the entropy cutoff by controlling the maximum amount of nickel in

the material that can form defects. Though the enthalpic interactions dominate, the

entropic interactions also become important in restricting the strict limits of amount

of defects. At lower concentrations, the driving force towards defect formation is

higher for larger nickel content materials, which has been observed experimentally

as well [6]. We note that though the model for “intercalation” description was not

as complex, we still capture the effect of the transition-metal concentration on the

intercalation chemical potential of the material. The slope changes near delithiated

and fully lithiated for lithium intercalation are expected to come from different ion-

ization potentials of the lattice since the lithium-rich or poor regions exist in a highly

charged state [160].
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Dynamic Model

Using the free energy models formulated above, chemical potentials, which are the

driving forces for dynamic models, can be derived for the material. We model the

most simplistic version of a battery model–a single particle model. The dynamic

model at the surface is described using a single particle reaction-diffusion model with

a driving force from the diffusional chemical potential gradient. Both the lithium

concentration 𝑐 in the lithium layer and the defect concentration 𝑣 in the lithium layer

are modeled through nonequilibrium thermodynamic driving forces, the gradients of

chemical potential [161, 162]. The boundary conditions applied for both models are

applied through the intercalation reaction for lithium concentration and the oxygen

degradation reaction at the surface, described in the following section.

A simple single particle model [48] was used in this system to model the cycling

behavior, based on more complicated porous electrode models [122]. For intercalation,

the simple form of mass conservation with a diffusive driving force can be described

as
𝜕𝑐

𝜕𝑡
= −∇ · F𝑐, F𝑐 = −𝐷𝑐𝑐

𝑘𝐵𝑇
∇𝜇𝑐, (12)

where 𝐷𝑐 ∝ (1 − 𝑣) because of the effect of “blocked” sites on the diffusivity of the

material [46, 163]. In addition, because of the change of the maximum number of

required sites, during cycling, the chemical potential parameter actually varies with

𝜇𝑐(𝑐/(1 − 𝑣)) to rescale to the proper number of total sites. The dynamic equation

for conservation of defects is described as

𝜕𝑣

𝜕𝑡
= −∇ · F𝑣, F𝑣 = −𝐷𝑣𝑣

𝑘𝐵𝑇
∇𝜇𝑣, (13)

if we assume a constant diffusivity coefficient for both models for the flux Fc/v in

the bulk. For simplicity, we assume that the diffusion coefficients are constant. The

boundary equations applied for the particle are

−n · F𝑣 = 𝑖𝑖𝑛𝑡 (14)
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for surface reaction of intercalation 𝑖𝑖𝑛𝑡. [164, 69] For the defect concentration, a sim-

ple degradation mechanism explained in 2.2.2 is prescribed, which gives the boundary

condition of

−n · F𝑐 = 2𝑖𝑜𝑥𝑦. (15)

2.2.2 Surface

Intercalation

Since blocked sites from defects play a central role in our theory, it is imperative to

use an accurate reaction model that captures configurational entropy and polaron for-

mation energies. For this purpose, the recent theory of coupled ion-electron transfer

(CIET) for ion intercalation [128] is adopted as the boundary condition, where the

concept of ion-electron polaron pairs complements the idea of dipole pairs to describe

the electrostatic interactions among disordered cations. In CIET theory, the blocked

sites play a much more dominant role than in classical Butler-Volmer models, be-

cause theory predicts a reaction-limited current 𝑖𝑙𝑖𝑚 which has a strong asymmetry

dependence on all of the species concentrations: 𝑖𝑙𝑖𝑚 = 𝑐+(1 − 𝑐 − 𝑣)𝑖*𝑟 for negative

overpotentials and 𝑖𝑙𝑖𝑚 = 𝑐(1− 𝑐− 𝑣)𝑖*𝑟 for positive overpotentials [129].

These limits arise from the general form of the intercalation rate given by

𝑖𝑖𝑛𝑡 = 𝑖*𝑟

∫︁ ∞
−∞

(1− 𝑐− 𝑣) (𝑐+𝑛𝑒𝑝𝑟𝑒𝑑(𝜀)− 𝑐(1− 𝑛𝑒)𝑝𝑜𝑥(𝜀)) 𝜌𝑑𝜀, (16)

where the conditional probability that an electron of energy 𝜀 relative to the Fermi

level participates in reduction or oxidation is given by

𝑝𝑟𝑒𝑑/𝑜𝑥(𝜀) =
1√︀

4𝜋𝜆/𝑘𝐵𝑇
exp

(︂
−(𝜆± 𝜂𝑓 ∓ 𝜀)2

4𝜆𝑘𝐵𝑇

)︂
. (17)

Here, 𝑐 is the dimensionless lithium ion concentration (filling fraction) in the host

crystal; 𝑣 is the dimensionless defect concentration, or the nickel filling fraction in the

lithium layers; 𝑐+ is the lithium ion concentration at the reacting surface, related to

the nearby electrolyte concentration by an adsorption isotherm, assuming fast surface
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adsorption compared to CIET intercalation; 𝑛𝑒(𝜀) is the Fermi-Dirac distribution,

and 𝜂𝑓 is the formal overpotential defined as 𝑒𝜂𝑓 = 𝑒𝜂 + 𝑘𝐵𝑇 ln 𝑐+
𝑐

[129]. As the

overpotential is 𝑒𝜂 = 𝜇𝑅 − (𝜇𝑂 + 𝑛𝜇𝑒) [69] where 𝑛 is the number of electrons, we see

that the overpotential 𝑒𝜂 = 𝜇𝑐−𝑘𝐵𝑇 ln 𝑐++ 𝑒∆𝜑, is related to the difference between

the intercalation chemical potential 𝜇𝑐 and the potential difference ∆𝜑 = (𝜑𝑒 − 𝜑)

between the solid 𝜑𝑒 and the electrolyte 𝜑. The parameters in the model are 𝜆,

the Marcus reorganization energy for electron transfer; 𝑖*𝑟, the prefactor for current

related to electronic coupling and the ion-transfer energy; 𝜌(𝜀), the energetic density

of states (band structure).

Our reaction rate differs from the typical CIET model for lithium intercalation

since the empty sites must also be reduced by the number of blocked sites in the

material from defects, contributing to the factor by 𝑣. Under the assumption that

the electron donor is metallic, we can assume a uniform density of state [165, 126]

which allows us to use the simple and accurate approximation of the MHC formula

by Zeng et al. [166] to derive a closed formula for the CIET reaction rate for lithium

insertion:

𝑖𝑖𝑛𝑡 = 𝑖*𝑟(1− 𝑐− 𝑣)

⎛⎝ 𝑐+

1 + exp
(︁

𝜂𝑓
𝑘𝐵𝑇

)︁ − 𝑐

1 + exp
(︁
−𝜂𝑓
𝑘𝐵𝑇

)︁
⎞⎠ erfc

⎛⎝𝜆−
√︁
1 +

√
𝜆+ 𝜂2𝑓

2
√
𝜆𝑘𝐵𝑇

⎞⎠ ,

(18)

which reduces to the form given by Zhang et al. [129] in the limit of a defect-free

host crystal, 𝑣 = 0.

Defects

In the bulk, phase transformations and cation disorder are triggered by the oxidation

of reactive oxygen ions at the solid surface, typically an edge plane of the layered

oxide crystal. [167, 168]. At high voltages, degradation at the surface is much

more pronounced, especially those triggered by oxygen vacancy formation and oxygen

changes at the surface [36, 169, 170]; experimentally, oxygen vacancy formation at
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high voltages has also been observed [171]. Since the dielectric “bulk” of the medium

consists of oxygen ions, and the lithium and nickel ions only interact at close range

for quick convergence of the free energies, we assume that the bulk dielectric constant

is affected by the local oxygen, defect, and lithium concentrations, where the oxygen

vacancies are assumed to not propagate into the bulk, as shown in Fig. 6a [61]. It is

generally considered that oxygen evolution only happens at the surface of nickel rich

electrodes because of the large migration barrier of the oxygen in the bulk [172, 173].

Recent experiments, however, have suggested that oxygen vacancies can propagate

into the bulk [29, 167]. After the first couple cycles, bulk induced oxygen vacancy

degradation can start influencing the degradation of overlithiated oxides [167, 29].

For simplicity, we can assume that oxygen vacancies propagate slowly into the bulk

and account for them at the surface only. As such, we will have an oxygen boundary

condition only occurring at the surface.

The loss of available oxygen at the interface can be explained by several possible

mechanisms, sketched in Fig. 6a. In the simplest possible mechanism, oxygen ions

are oxidized at the surface according to the half reaction, O2− → 0.5O2 + 2e−, and

there is a loss of oxygen ions at the surface in the lattice [167] that can be released

as gases [6], which has been experimentally observed. Another possible mechanism

involves oxidation and dehydrogenation of the organic electrolyte solvent, which has

been observed experimentally [7, 174]. We propose that this reaction could release

electrons to the crystal that trigger cation disorder while creating a reactive hydroyxl

group on the surface, again involving the reactive oxygen ion at the edge plane.

The reaction can be modeled as EMC/EC → DeH EMC/EC+ + H+ + 2e−, where

the proton and dehydrogenated electrolyte product can bond with the oxygen at the

surface. The products have been experimentally observed through FT-IR experiments

for EMC and EC.

Experimentally, we know that the amount of oxygen degradation significantly af-

fects the amount of cation disorder [175, 176]. For the oxygen release mechanism, we

postulate that when oxygen is oxidized in a material, the loss of two oxygens in a

bulk requires the solid to accept electrons to conserve charge neutrality, which occurs
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through oxidation of transition metals. One electron is required for the electrochemi-

cal reaction, and one is required for the oxidation of the nickel ion to +3 state. The full

reaction can be written in Kroger-Vink notation as 2Ni·Ni+Ox
O → 2NixNi+V··O+0.5O2.

Thus, the amount of oxygen degradation increases the concentration of the reduced

nickel (+3) in the material, which heightens the possibility of cation disorder. For the

dehydrogenation mechanism, we propose that dehyrogenation releases two electrons,

one which is required at the electrode and the other which oxidizes the nickel ion.

Thus, the amount of reduced nickel in the material also decreases, causing a similar

effect as the gas release mechanism to the cation disorder in the system.

For the simplest model, we assume the dependence of the reactant, the reduced

nickel, in the defect formation reaction is linear. We know that 𝑖𝑣 is proportional

to the amount of oxygen loss, which is 𝑖𝑜𝑥𝑦. Thus we apply 𝑖𝑣 = 𝑖𝑜𝑥𝑦 to the defect

formation conservation equation boundary equation to obtain −n · F𝑐 = 𝑖𝑣 = 𝑖𝑜𝑥𝑦.

This simple boundary condition which includes the electrochemical surface reaction

components of our degradation can be applied to the model, while keeping the focus

on the bulk defects triggering phase transformations. The formation voltage for this

reaction is roughly 𝐸𝜃 = 4.4V, which also depends on the ratios of transition metals

as well as the electrolyte used [120, 175]. Therefore, the overpotential driving this

reaction is 𝑒𝜂 = 𝐸𝜃 + 𝑒∆𝜑.

Based on the observation that oxygen formation reaction is irreversible, a simple

Tafel reaction model was used for the oxidation current

𝑖𝑜𝑥𝑦 = 𝑘0,𝑜𝑥𝑦𝑐𝑜𝑥𝑦 exp

(︂
𝜂

𝑘𝐵𝑇

)︂
, (19)

with a reaction parameter of exchange current density 𝑘0,𝑜𝑥𝑦, shown in Fig. 6b,

assuming that the increase of oxidation products (e.g. oxygen gas) is usually released

to the environment [164]. 𝑐𝑜𝑥𝑦 is the concentration of oxygen ions at the solid surface,

which can be modeled by the conservation equation in Appdx. 2.8. The magnitude

of reaction drops off as 𝜂 ≤ 0, and increases as 𝜂 > 0, and the amount of reaction

decreases linearly as the amount of oxygen vacancies increase.
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Figure 6: a) Schematic of oxygen reaction and change of dielectric constant at the
surface of the particle, where the yellow circles are oxygen ions. Nickel is driven into
the bulk crystal, and the oxygen reaction at the electrolyte interface forms oxygen
vacant sites, free electrons, and releases oxygen gas or other oxidation products to the
electrolyte. The mechanisms of oxygen release and dehydrogenation of EMC/EC are
both proposed in this model [6, 7]. b) Evans diagram of the oxygen reaction model
used and behavior relative to voltage applied. The coupled-ion electron transfer
intercalation reactions are plotted as well at bulk (𝑣 = 0) and defective (𝑣 = 0.1)
phases with different lithium concentrations. It can be seen that defective phases
reduce the magnitude of the intercalation reaction through blockage of available sites.

2.3 Simulations

2.3.1 Cycling

Using a model of NMC532 for the defective system and a open circuit voltage profile of

NMC532 from Colclasure et al. [5], we perform reaction-diffusion simulations with a

single particle model as described in Section 2.2.1 to study the surface degradation of

nickel-rich electrodes and are able to qualitatively reproduce the high voltage growth

of the cation disordered phase at the surface using a single particle model to simulate

cycling in an electrochemical cell. A single particle model is able to capture the

electrochemical behavior without the complexity of electrolyte diffusion limitation

or cell size limitations. In these simulations, we do not aim for a perfect fit of the

model, but attempt to show that qualitatively correct behavior can be achieved using

these ideas. Using a cutoff voltage of 4.4 V vs. Li/Li+ for oxygen formation, we can

reproduce the behavior observed at surfaces for nickel rich electrodes [36, 27] based

on the fact that the overpotential at high voltages will be positive in some regions,
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Figure 7: a) Voltage plots for the first five cycles between low and high voltage
simulations for NMC532. Higher voltage cycling tends to exceed the potential for
oxygen formation. b) Defect growth in the first 100 cycles at the surface of the
particle. c) Defect growth at the end of the first 100 cycles throughout the length of
the particle, where 𝑅 = 0 is the center of the particle and 𝑅 = 100 nm is the edge
of the particle. d) Capacity loss during cycling with voltage limits of either 4.3V or
4.5V.

increasing the oxygen formation reaction amount as in Fig. 7a. The experimental

results that were used for comparison were selected based on criteria described in

Appendix 2.10.

For this set of simulations, the exchange current density for intercalation and

reorganization energy are taken to be roughly 𝑖*𝑟 = 8A/m2 for NMC532 and 𝜆 =

3.78𝑘𝐵𝑇 for NMC111 since data for NMC532 was not freely available [129]. In our

simulations, roughly 20 nm of the cation disorder growth in the high voltage model

was achieved using an oxygen reaction parameter of 𝑘0,𝑜𝑥𝑦 = 5 × 10−6A/m2. The

diffusion coefficient for intercalation was assumed to be 𝐷𝑐 = 1 × 10−12(1 − 𝑣)m2/s

[177, 178] by the scale of diffusion measured experimentally, while for defects it was

assumed to be 𝐷𝑣 = 5× 10−24m2/s. A single spherical particle of radius 𝑅 = 100 nm

was used to model a NMC battery nanoparticle with a discretization of 200 finite

difference volumes, where details are seen in Appendix 2.8. This particle defect

concentration initialized at a homogeneously distributed distribution of the optimal

defect concentration of 2% in the particle [179], so the initial concentration 𝑣(𝑡 =

0) = 0.02. The initial concentration of lithium in NMC532 𝑐(𝑡 = 0) was set to 0.4.

Single particles of NMC532 such that 𝑥 = 0.5 are cycled at 1C for 100 cycles,

with a set of low voltage simulations with higher voltage cutoffs up to 4.3V and a set
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of high voltage simulations up to 4.5V, modeling the experimental behavior in Yan

et al. [60]. The lower voltage cutoff was permanently set to 3.75V. More information

on the numerical simulations can be seen in Appendix 2.8. The amount of cation

disorder growth post cycling and the overpotentials in the simulations are shown in

Figs. 7b and 7c. In these ranges, based on the asymmetry of the Butler-Volmer

reaction, there is more oxygen formation at the surface of the particle, causing cation

disorder to initiate at the surface and diffuse inward. At high voltages, the amount

of cation disorder nears the amount measured in experiments to be roughly 20 nm,

close to the experimental measurement of 25 nm of disorder [60]. The surface phase

appears when the amount of defects is high and grows inward towards the center

of the particle as the amount increases. Meanwhile, there is almost no growth for

the low voltage phase, similarly to the experimental measurement of 2 nm of cation

disorder [60]. From our simulated results, we see that there is a larger amount of

capacity fade happening after 100 cycles at higher voltages than at lower, with most

of it happening at the surface of the particle at higher voltages. We see our model is

able to reproduce the experimental data observed qualitatively.

2.3.2 Voltage Hold

In addition to cycling results from a constant current perspective, the cutoff voltage

with respect to the system is also an important parameter. Voltage hold tests are

also often performed to understand the degradation of batteries [180, 170] at higher

voltage. Three constant current cycles at C/20 were performed and constant voltage

holds of 10 h were performed for the NMC532 single particle model described above

in Fig. 8. The effect of the oxygen reaction potential, which is applied at 4.4V in

our system, was found to be quite significant. Large amounts of capacity growth are

found at voltage holds past the oxygen reaction potential, while minimal amounts

are found at lower voltages. The amount of time spent at higher potentials is crit-

ical to controlling the amount of degradation in the particle, which is also observed

experimentally [6].

From the simulated data for constant current cycling and voltage holds at high
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Figure 8: Three C/20 cycles are performed before a 10 h voltage hold is applied to
particles at voltage of 4.2V, 4.3V, and 4.4V for NMC532. a) The surface defect
amount 𝑣 is plotted as a function of the fraction of the total simulation time. The
voltage hold occurs around 60 h in the simulation. b) The variation of the capacity
loss within a battery, where the distance is from the center of the particle to the edge,
is plotted. c) The total capacity loss in the battery is plotted as a function of the
fraction of total simulation time.

potentials shown, we see that high voltage cycling in nickel rich electrodes causes ir-

reversible effects on the degradation of the particle. The degradation behavior shows

that the operation time at lower voltages contributes negligibly to degradation of

the electrode. Thus, for cases where preventing degradation is extremely important,

avoiding the higher voltage range is crucial. If higher voltage operation is necessary,

higher voltage operation should be applied later in the operation of the battery, to

push back the onset of irreversible degradation. Experimental data from voltage hold

simulations can be used to “invert” kinetic parameters for the degradation models

described in these papers to infer more accurate exchange current densities for degra-

dation reactions as shown in Appendix 2.7. Data provided at different cutoff voltages

provides very impactful information on the voltage cutoffs for when degradation oc-

curs [29].

The application of different coatings or additives may help reduce the amount

of oxygen reaction in the particle, helping control the amount of degradation [181].

Commercialized batteries, especially for nickel rich materials, have different types
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of additives and coatings, such as aluminium oxides [182], carbon coatings [183],

and others [184]. These can change the surface kinetics and dielectric properties

of materials. Coating materials reduce the amount of degradation by reacting with

the surface layers to form a more stable interface, changing the kinetic properties

of degradation. Using such related models to understand how coatings change the

kinetic properties of degradation, or the redox potential at the interface, may prove

extremely useful in future material design.

2.4 Appendix: Diffusional Chemical Potentials

Simple formulae for the entropic contributions to the diffusional chemical potentials

for intercalation and defects, respectively, are given by

−𝑇 𝜕𝑆
𝜕𝑐

= 𝑘𝐵𝑇 ln
𝑐

1− 𝑐− 𝑣
(20)

−𝑇 𝜕𝑆
𝜕𝑣

= 𝑘𝐵𝑇

(︂
ln

𝑣

𝑥− 𝑣
+ ln

𝑣

1− 𝑐− 𝑣

)︂
(21)

based on our ideal solid solution models for lithium ion intercalation between the

nickel oxide layers and for vacancy-mediated defects within the layer. Expressions for

the enthalpic contributions from dipole-dipole interactions, core energy, and dielectric

decrement are more complicated and must be calculated numerically. Combining

the enthalpic and entropic contributions, we obtain the total diffusional chemical

potentials for lithium intercalation and vacancy-mediated defects, respectively:
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𝜇𝑐 =
𝜕𝐻

𝜕𝑐
(22)

= − 𝑞𝑒

4𝜋𝜀

(︃∑︁
𝑖∈even

∑︁
𝑗∈𝑖

𝜇𝑖𝑗 · r𝑖𝑗,0
|𝑟𝑖𝑗,0|3

−
∑︁
𝑖∈odd

∑︁
𝑗∈𝑖

𝜇𝑖𝑗 · r𝑖𝑗,0
|𝑟𝑖𝑗,0|3

)︃
+

(𝑞𝑒)2(1− 𝑣)

12𝜋𝜀𝑟0
− ∆𝐻(𝑐, 𝑣)

𝜀

𝜕𝜀

𝜕𝑐

+𝑘𝐵𝑇 ln
𝑐

1− 𝑐− 𝑣
(23)

𝜇𝑣 =
𝜕𝐻

𝜕𝑣
(24)

=
𝑐𝑞𝑒2EN𝑁𝑖

2𝜋𝜀

(︃∑︁
𝑖∈even

∑︁
𝑗∈𝑖

𝜇𝑖𝑗 · r𝑖𝑗,0
𝜇𝑖𝑗|𝑟𝑖𝑗,0|3

−
∑︁
𝑖∈odd

∑︁
𝑗∈𝑖

𝜇𝑖𝑗 · r𝑖𝑗,0
𝜇𝑖𝑗|𝑟𝑖𝑗,0|3

)︃
− (𝑞𝑒)2𝑐

12𝜋𝜀𝑟0
− ∆𝐻(𝑐, 𝑣)

𝜀

𝜕𝜀

𝜕𝑣

+𝑘𝐵𝑇

(︂
ln

𝑣

𝑥− 𝑣
+ ln

𝑣

1− 𝑐− 𝑣

)︂
(25)

where 𝜇𝑖𝑗 = |𝜇𝑖𝑗|.

2.5 Appendix: Convergence of Calculations

The convergence of electrostatic dipole-charge calculations is shown in Fig. 9. It is

well known that charge-charge interactions in an electrostatic system will not converge

above three dimensions [117]. However, based on the order of magnitude reduction

from dipole-charge interactions, these interactions converge quite quickly.

2.6 Appendix: Dielectric Constant Calculations

The dielectric constant plotted with the Maxwell-Garnett equation for Li𝑐Ni𝑥Mn𝑦Co𝑧O2

is shown as below as the additive rule. The additive rule is

𝜀− 1

𝜀+ 2
=

4

3
𝜋
∑︁
𝑖

𝛼𝑖𝑛𝑖, (26)

where 𝛼𝑖 is the polarizability of the atom 𝑖 and 𝑛𝑖 is the number density of atom 𝑖

[156, 157]. There is an decrease the dielectric constant with the amount of decrease

in lithium concentration in the material.
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Figure 9: Convergence of electrostatic calculations with respect to the cutoff distance
from the center of the defect.

2.7 Appendix: Analytical Solution

Assuming solid diffusion is not limiting, using a simplified single particle model, we

can predict the scaling of the amount of degradation in the first few cycles with a

voltage hold. Here, we first start with the reaction rate integrated over time

𝑄𝑙𝑜𝑠𝑠 =

∫︁ 𝜏

0

𝑗𝑑𝑒𝑔𝐴𝑑𝑡

=

∫︁ 1

0

𝜏𝑘0,𝑑𝑒𝑔 exp (𝜂 + 𝜇(𝑐)− 𝜇𝑑𝑒𝑔)𝑑𝑐

∝ 𝜏

∫︁ 1

0

exp (2arcsinh
(︂

𝑅𝑐𝑚𝑎𝑥

6𝜏𝐹𝑘0(𝑐)

)︂
+ 𝜇(𝑐)− 𝜇𝑑𝑒𝑔)𝑑𝑐

∝ 𝜏𝑁

∫︁ 1

0

exp (2arcsinh
(︂

𝑅𝑐𝑚𝑎𝑥

6𝜏𝐹𝑘0(𝑐)

)︂
+ 𝜇(𝑐)− 𝜇𝑑𝑒𝑔)𝑑𝑐.

(27)

Since the exponential term is quite small when the voltage is not above the cutoff

voltage, the capacity loss scales with the amount of time spent in a higher voltage

regime, which indicates a linear scaling with the number of cycles. For a voltage hold,
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Figure 10: Dielectric Constant Measured with the Additive Rule.

this equation simplifies to

𝑄𝑙𝑜𝑠𝑠 =

∫︁ 𝜏

0

𝑘0,𝑑𝑒𝑔 exp (𝑉 − 𝜇𝑑𝑒𝑔)𝑑𝑡

= 𝑘0,𝑑𝑒𝑔𝜏 exp (𝑉 − 𝜇𝑑𝑒𝑔).

(28)

This relation is linear with respect to time spent in the voltage hold, as shown in

Fig. 8c, and depends exponentially on the value of the voltage hold. If we assume

the degradation voltage is at 𝜇𝑑𝑒𝑔, then the exchange current density for voltage loss

is generally

𝑘0,𝑑𝑒𝑔 =
𝑄𝑙𝑜𝑠𝑠

𝜏 exp (𝑉 − 𝜇𝑑𝑒𝑔)
. (29)

2.8 Appendix: Numerical Implementation

The two separate numerical calculations were both implemented in MATLAB and

can be found at https://github.com/lightningclaw001/public_paper_scripts/

tree/main/cation_disorder_defect. The thermodynamic model was calculated

using the unit cell of Materials Project structure mp-632864 for LiNiO2 [144, 145,

146, 147, 148]. The unit cell was reproduced and based on the convergence calcula-

tions in Appendix 2.5, a cutoff of 20 Å. Atoms within the convergence criteria were

summed with Eq. 7 to find the enthalpy, which combined with Eq. 11, gives the total

free energy 𝐺 = 𝐻 − 𝑇𝑆. The analytical solutions to the chemical potentials were
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calculated as Appendix 2.4, or as 𝜇𝑐 =
𝛿𝐺
𝛿𝑐

or 𝜇𝑣 =
𝛿𝐺
𝛿𝑣

.

A spherical single particle finite difference model [48] (reaction diffusion model)

was implemented for Eqs. 12, 14 for concentration, and Eqs. 13, 15 for vacancies.

The sphere was discretized into 𝑛 sections, with ∆𝑥 as the size of each section, where

the boundary conditions Eqs. 14 and 15 were applied at the edges, and 𝑟𝑖 is the

radius at the center of each discretization. The fluxes 𝐹𝑖−0.5 were defined at the edges

of the discretizations (at 𝑟𝑖−0.5). The bulk equations for concentration were then

𝑑𝑐𝑖
𝑑𝑡

= − 1

𝑟2𝑖

(𝑟2𝑖+0.5𝐹𝑐,𝑖+0.5 − 𝑟2𝑖−0.5𝐹𝑐,𝑖−0.5)

∆𝑥
, (30)

where the fluxes are defined as

𝐹𝑐,𝑖+0.5 = −
(𝐷𝑐𝑐(1− 𝑣)𝜇𝑐)

⃒⃒
𝑖+1

− (𝐷𝑐𝑐(1− 𝑣)𝜇𝑐)
⃒⃒
𝑖

∆𝑥
. (31)

At the boundary, the flux 𝐹𝑐,𝑛+0.5 = −𝑖𝑖𝑛𝑡 is related to the intercalation current.

For the vacancies in the system, we have similar discretizations such that

𝑑𝑣𝑖
𝑑𝑡

= − 1

𝑟2𝑖

(𝑟2𝑖+0.5𝐹𝑣,𝑖+0.5 − 𝑟2𝑖−0.5𝐹𝑣,𝑖−0.5)

∆𝑥
, (32)

where the fluxes are defined as

𝐹𝑣,𝑖+0.5 = −
(𝐷𝑣𝑣𝜇𝑣)

⃒⃒
𝑖+1

− (𝐷𝑣𝑣𝜇𝑣)
⃒⃒
𝑖

∆𝑥
. (33)

At the boundary, the flux 𝐹𝑣,𝑛+0.5 = −𝑖𝑣 = 2𝑖𝑜𝑥𝑦 is related to the oxygen degradation

current, where the conservation equation is written as

𝜕𝑐𝑜𝑥𝑦
𝜕𝑡

= 2𝜋𝑟𝑛∆𝑥 𝑖𝑜𝑥𝑦. (34)

An additional algebraic constraint for the current constraint was added so that

𝑛∑︁
𝑖=1

𝑣𝑖
𝑑𝑐𝑖
𝑑𝑡

= 𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡, (35)
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where 𝑣𝑛 is the volume fraction of each section, 𝑣𝑖 =
𝑟3𝑖+0.5−𝑟3𝑖−0.5

𝑟3𝑛
. The ode solver ode15s

was used to solve this problem with relative and absolute tolerances of 1× 10−8.

2.9 Appendix: Symbols

Here, we have appended a table of the symbols used in this paper for ease of under-

standing:
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Symbol Meaning Units

𝑐 lithium concentration in the solid material dimensionless

𝑐+ Li+ concentration in the electrolyte M

𝑣 defect concentration dimensionless

𝑥 nickel concentration in NMC material dimensionless

𝑦 manganese concentration in NMC material dimensionless

𝑧 cobalt concentration in NMC material dimensionless

𝜇0 dipole pointing from transition metal layer to the lithium layer C·m

r𝑖𝑗 distance vector between the defect center and site 𝑖𝑗 m

𝑟𝑖𝑗 magnitude of distance vector between the defect center and site 𝑖𝑗 m

𝜀 dielectric constant, see Appendix C F/m

r0 distance vector between a transition metal-lithium dipole m

𝑟0
magnitude of distance vector between

a transition metal-lithium dipole
m

𝐻 enthalpy 𝑒𝑉

𝑆 entropy 𝑒𝑉/𝐾

𝐺 Gibbs free energy, 𝐺 = 𝐻 − 𝑇𝑆 𝑒𝑉

𝜇𝑐 chemical potential for intercalation 𝑘𝐵𝑇

𝜇𝑣 chemical potential for defect formation 𝑘𝐵𝑇

𝐷𝑐 diffusion coefficient for lithium concentration m2/s

F𝑐 flux for lithium diffusion m/s

𝐷𝑣 diffusion coefficient for defect formation m2/s

F𝑣 flux for defect formation m/s

𝑖𝑖𝑛𝑡 intercalation current A/m2 s

𝑖𝑜𝑥𝑦 oxygen degradation current A/m2 s

𝑖*𝑟 exchange current density A/m2 s

𝜆 reorganization energy 𝑘𝐵𝑇

𝜂 overpotential 𝑘𝐵𝑇/𝑒

𝜂𝑓 formal overpotential, 𝜂𝑓 = 𝜂 + ln 𝑐+
𝑐 𝑘𝐵𝑇/𝑒

𝜑 potential difference between electrolyte and solid 𝑘𝐵𝑇
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2.10 Appendix: Experimental Data Selection

To obtain experimental data about disorder, recent microscopy experiments are very

useful in discovering the amount of disorder in the system. Many experimentalists use

gas formation or other mechanisms [6] to deduce the amount of phase transitions, but

for our model specifically studying cation disorder, it is imperative to have a spatially

defined set of experiments with clear experimental cutoffs for a specific material.

In addition, many common experimental measurements for phase transitions also

measure the oxidation state of different atoms, but this does not give the necessary

information because it discusses more the specific phases that we see [28]. Since our

paper is focused on cation disorder, which is the trigger for phase transformations,

knowing the amount of densified phases such as rock salt or spinel phases does not

provide the exact data we want. We have chosen experimental data with a good

set of electrochemical range (voltage cutoffs) as well as spatial range, along with a

material that we are interested in, which needs to be nickel rich and layered [60].

Similar material is also well-characterized for modeling purposes in terms of open

circuit voltage and electrochemical parameters [5], which was also previously verified

and tested by the authors, and compared with other experiments and simulations [49].

Coupled ion electron transfer kinetics parameters for nickel rich materials were also

obtained with this set of materials [129]. Thus, we chose this set of experiments to

model and compare because of a) rigor of experiments and well-planned and defined

experiments b) availability of modeling infrastructure and kinetic and thermodynamic

parameters.
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Chapter 3

Degradation from Single Particle to

Electrode Level (Solid Solution)

Population effects driving active material degradation in intercalation

electrodes [13]

3.1 Introduction

Though an accurate model of single particle level degradation for nickel rich cathodes

was formulated for surface reconstruction, the many different types of degradation

indicate that more forms of degradation need to be accounted for in modeling. For

example, cathode degradation is generally caused by particle level physical mecha-

nisms such as electrochemical resistance growth from films at the electrode/electrolyte

interface [24, 25], phase transformations and loss of kinetic abilities at the surface or

bulk [27, 185], as well as electrolyte loss [186, 187]. The apparent capacity loss from

the convolution of these mechanisms cannot be physically explained by a single degra-

dation mechanism, since it is caused by many degradation mechanisms, and results in

slightly different behavior in electrode-level phenomena. To understand this problem

The present chapter is based on my published work in the journal of Physical Review E [13].
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through modeling, the multiscale nature of the porous electrode problem indicates

that the models need to be coarse grained over many degradation mechanisms to

extract macroscopic degradation behavior.

Electrode-level degradation phenomena is seen in capacity loss curves and in

voltage-capacity curves [1]. This is seen through impedance experiments, where

impedance growth has been found to be mainly from the cathode side [40, 188,

189, 101], while anode degradation is generally motivated by solid electrolyte inter-

phase formation and lithium plating [91, 24]. Understanding the increase of cathode

impedance is a critical step of deconvoluting electrode-level degradation. Previous

work [40, 41] has identified resistance growth as a large component of this failure, but

has not clarified the separation of all the different mechanisms. To deconvolute these

particle level mechanisms, it is imperative to understand the different relationships

between the particle level driving forces and electrode-level behavior of the degrada-

tion mechanisms, especially in relation to particle population dynamics. This reveals

a more complete understanding of electrode degradation.

In many physical theories, single particle models are used, but can be inaccurate

due to not accounting for interactions between particles. This concerted behavior be-

tween individuals in population dynamics has been observed in many systems, from

biological systems such as fireflies [190, 63] to electrochemical oscillations in batteries

[65]. In a battery, the effects of population dynamics can appear in solid solution

materials [49] as well as in phase separating materials as each particle activates and

phase transitions [55, 10, 8, 191]. Past biological modeling used population dynam-

ics [192, 193, 194] studied with the Fokker-Planck equation [195] to understand the

growth and eventual death of biological populations [196, 197]. The idea of a fitness

landscape [197], where the fitness represents the reproductive rate of a genotype, or

“effectiveness”, was incorporated into these models to explain why populations evolve

towards certain traits. We can similarly apply this idea to model particle population

dynamics in lithium-ion batteries.

For a battery, the fitness can be envisioned for each particle as the effectiveness

of carrying the current load, as shown in Fig. 1 for a population distribution affected
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Figure 1: Schematic of particle size distribution effect on current distribution in a
constant current charge or discharge simulation for a battery. a) The absolute value
of the capacity change fraction of each particle is plotted with respect to the cycle
number as the system is degraded. This accounts for effects of degraded charge
transfer kinetics and particle size contributions by reducing the nondegraded current
to the degraded current. b) A snapshot at a single time point for a sample of degraded
or nondegraded particles of small or large particle sizes is shown, where the capacity
change distribution splits the current between the different particles based on their
size effects and degradation.

by degradation effects and particle size effects. Fig. 1a shows the fitness as a rate

of change of the capacity fraction of each particle, which is the capability of carrying

current. However, fitness landscapes can also evolve depending on the environment

they are in [196, 64], which in turn affects the evolution of population dynamics,

called coevolution [198]. In a system of battery particles, the fitness landscape of the

particles changes [199] as the battery is cycled, similarly to how the fitness of different

genotypes changes with evolution [200]. Thus, it is important to quantify the fitness

landscape of battery particle systems as they evolve.

In this work, through methods of population dynamics coupled with electrochem-

ical kinetics in a simple battery model, we gain an understanding of active material

degradation at the particle scale and how it affects electrode-level degradation phe-

nomena. We simulate an interacting population of particles in a single electrode

volume in a porous electrode. Initially, particle size effects influence the current dis-

tribution in the population, while as the battery is cycled, degradation also influences

the current distribution. Fitness and degradation are observed to have an autocat-
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alytic relationship from the simulations. We use specific degradation mechanisms

to understand the effect on the electrode-level behavior of each of these materials.

Inversely, experimental information on the capacity loss profile and voltage-capacity

curves may provide insight on the particle level degradation mechanisms present.

3.2 Theory

In porous electrode theories, single particle models are often used to described the

active material interactions of the system [122], which can be inaccurate from not

accounting for interparticle interactions. To remedy this, we formulate a theory in

porous intercalation electrodes featuring the cumulative effect of population dynam-

ics including degradation. We consider particles with a size distribution, each of

which is treated homogeneously during (de)intercalation. The population 𝑓(𝑡, 𝑐; 𝑟) is

the probability distribution of particles with radius 𝑟 and concentration 𝑐 at time 𝑡.

The evolution of population 𝑓(𝑡, 𝑐; 𝑟) can be tracked by the modified Fokker-Planck

equation. During evolution, the fitness function 𝑊 is introduced to modify the inter-

calation rate of degradation. The analytic expressions of fitness functions for three

degradation modes are derived.

3.2.1 Conservation Equation

A porous electrode is normally modeled using volume discretizations at the electrode

scale, with single particle models in each volume to simulate the particle level interca-

lation and diffusion mechanisms of lithium ions [122, 53]. To account for interparticle

interactions, many active material particles need to be modeled in the same volume,

which are under the same voltage. The dynamics of a population can be driven by

controlled parameters imposed on the system [201, 202], such as the applied current

or voltage. Neglecting transport limitations at the electrode scale, these models can

be simplified to a single volume.

We can use the Fokker-Planck equation, which is commonly used to simulate

population dynamics of evolving probability distributions 𝑓(𝑡, 𝑐; 𝑟) of multiple fields
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(such as concentration and particle size) under time evolution, to model this as

𝜕𝑓

𝜕𝑡
= − 𝜕

𝜕𝑐
(𝑓𝑅) +

𝜕

𝜕𝑐

(︂
𝐷
𝜕

𝜕𝑐
(𝑓𝑊 )

)︂
. (1)

In this equation, the first term is from the mean of the reaction happening amongst

the particles in the system, while the second term is from the variance of the reaction

amongst the particles. The variables are defined as 𝑅, the volumetric reaction rate

derived from the mean of the transition rates, and𝐷, the thermal diffusivity related to

the fluctuations of the transition rates [203], with the full definitions in Appendix 3.4.

The full derivation of the modified Fokker-Planck equation accounting for the fitness

value can be seen in Appendix 3.4 and reveals that the appearance of the fitness

function 𝑊 is from the change in the effective reaction rate from degraded charge

transfer kinetics and particle size effects [51, 194, 193, 70]. For better understanding

of interparticle effects, we write this in the form where the volumetric reaction is

replaced by the nondegraded intercalation rate per area multiplied by the fitness of

the battery 𝑊 as
𝜕𝑓

𝜕𝑡
= − 𝜕

𝜕𝑐
(𝑓 �̄�𝑊 ) +

𝜕

𝜕𝑐

(︂
𝐷
𝜕

𝜕𝑐
(𝑓𝑊 )

)︂
, (2)

where 𝐷 = 𝑘𝑘𝐵𝑇/𝑁𝑡 is the thermal diffusivity parameter, 𝑘 = �̄�/𝜂 for a linear form of

the reaction rate, and 𝑁𝑡 is the maximum number of molecules in the system. Here

�̄� is the nondegraded intercalation current per area, 𝑖 is the real intercalation current

per area, 𝑅 is the real volumetric reaction rate per volume, and 𝑊 = 𝑅/̄𝑖 is the

fitness function, which is defined and expounded in the following section.

3.2.2 Intercalation Kinetics

The intercalation kinetics control the mean of the time evolution of the system as

defined in Eq. 2, and thus an accurate description of kinetics becomes imperative

[51, 204, 205]. For electrochemical systems, well-known physical models exist for ther-

modynamically consistent reactions such as the Butler-Volmer reaction [206, 122, 53].

Increasingly complex models as coupled ion electron transfer (CIET) theory [128, 129]
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have been further derived and verified experimentally from x-ray imaging of lithium

iron phosphate materials to account for electron availability from the density of states

of the intercalation material. These intercalation models can be used to quantify the

heterogeneity and degradation growth in a population of battery particles.

The general form of the intercalation reaction takes the form of

𝑖(𝜂) = 𝑘0(𝑐)ℎ(𝜂); ℎ(𝜂) = 𝑟← − 𝑟→, (3)

where 𝑘0(𝑐) is a transition state term describing the overall rate of reaction (incorpo-

rating exchange current density) and ℎ(𝜂) is from the thermodynamic driving force

composed of a forward 𝑟→ and backward reaction 𝑟← driven by the overpotential

𝑒𝜂 = (𝑒𝜑𝑠 + 𝜇(𝑐))− (𝑒𝜑+ + 𝑘𝐵𝑇 ln 𝑎+) , (4)

where 𝑐 is the concentration of the intercalated lithium, 𝜇(𝑐) is the chemical potential

of the intercalated lithium, 𝜑+/𝑠 is the lithium ion electrical potential in electrolyte

or solid, and 𝑎+ is the activity of the lithium ions in electrolyte.

When there is no degradation accounted for in the system, the intercalation reac-

tion can be similarly defined as

�̄�(𝜂) = 𝑘0(𝑐)ℎ̄(𝜂), (5)

where the overbar indicates a system without degradation. The Butler-Volmer reac-

tion rate is modeled with transition state theory as

�̄�(𝜂) = 𝑘0(𝑐) (exp (−𝛼𝜂)− exp ((1− 𝛼)𝜂)) , (6)

with the thermodynamically consistent prefactor 𝑘0(𝑐) = 𝑘*0𝑐
𝛼(1 − 𝑐)1−𝛼𝑎1−𝛼+ , where

𝑘*0 is the reaction current prefactor, 𝛼 is the charge transfer coefficient, and 𝑎+ is the

activity coefficient for the electrolyte. The reaction rate from coupled ion electron

transfer, which accounts for electron availability, is modeled using an approximation
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as [128, 166]

�̄�(𝜂) = 𝑘0(𝑐) (𝑎+helper(−𝜂𝑓 , 𝜆)− 𝑐helper(𝜂𝑓 , 𝜆)) , (7)

with prefactor 𝑘0(𝑐) = 𝑘*0(1− 𝑐), where the helper function is defined as [166]

helper(𝜂𝑓 , 𝜆) =
√
𝜆𝜋

1 + exp (−𝜂𝑓 )
erfc

⎛⎝𝜆−
√︁

1 +
√
𝜆+ 𝜂2𝑓

2
√
𝜆

⎞⎠ . (8)

Here, the formal overpotential is defined as 𝑒𝜂𝑓 = 𝑒𝜂 − 𝑘𝐵𝑇 ln 𝑐
𝑎+

, which is the over-

potential with the ionic concentration dependencies removed, and 𝜆 is the Marcus

reorganization energy for electron transfer in the solid material. In this electro-

chemical reaction, the overall reaction is driven by the difference between the reduc-

tion and oxidation reactions, �̄� = �̄�𝑟𝑒𝑑 − �̄�𝑜𝑥, where �̄�𝑟𝑒𝑑 = 𝑘0(𝑐)𝑎+helper(−𝜂𝑓 , 𝜆) and

�̄�𝑜𝑥 = 𝑘0(𝑐)𝑐helper(𝜂𝑓 , 𝜆). There is a limiting current reached with this model from the

density of states of the material used with respect to overpotential, 𝑖𝑙𝑖𝑚 = 𝑘*0(1− 𝑐),

unlike the Butler-Volmer model, which grows exponentially with overpotential [129].

Kinetic behavior at high overpotentials is strongly affected by the correct choice of

reaction kinetics.

An important term we will encounter is the idea of an inverse differential resis-

tance, or differential conductance, 𝜕�̄�
𝜕𝜂

, which is first mentioned in Refs. [164, 69] to ex-

plain the idea of autocatalytic reactions. Since degradation affects the overpotential,

the differential conductance reveals the acceleration of the reaction with overpoten-

tial. Experimentally, this differential conductance also appears in the charge transfer

resistance term in electrochemical impedance spectroscopy measurements [206]. A

negative differential conductance means that the reaction is self-driving or autocat-

alytic, as opposed to a reaction that is self-limiting or autoinhibitory. This differential

conductance incorporates an effect from the driving force term ℎ(𝜂) as well as from

the transition state term 𝑘0(𝑐). For a solid solution material, the effect of the driv-

ing force term is generally autocatalytic, with the exception of Marcus-type electron

transfer reactions, which may have inverted regions causing local values of autoin-

hibitory reactions [207, 126]. However, the effect of the transition state term is not
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necessarily autocatalytic and can amplify nonheterogeneity in population dynamics,

as explored in Ref. [51].

3.2.3 Fitness Function

As seen from the population evolution equation (Eq. 2), the fitness of particle popu-

lation dynamics, especially in relation to resistance evolution as the battery is cycled,

is important to quantify [21, 208, 25, 24]. The coupling of degradation evolution, ki-

netics, and particle size distributions in a porous electrode model is difficult to model

because capturing multiscale effects [209] and calculating implicit solutions numer-

ically at each step in the Fokker-Planck solution is computationally expensive. We

aim to formulate in a simple manner the solution of the Fokker-Planck equation with

the formulation of the fitness function 𝑊 .

The fitness model captures a ratio between the real and ideal currents, which

linearizes the kinetics of the system. The advantage of using a fitness function formu-

lation is that from the definition of the fitness variable, we keep the original formu-

lations of our reaction rates without having to self consistently solve implicit kinetic

equations in the population balance. This becomes especially difficult for models with

a film resistance contribution, as implicit solutions are necessary for these models. In

addition, with the use of a fitness function model, there is a separation between the

different contributions of particle size as well as modes of degradation on fitness, so

there is a clear dominant mechanism from degradation.

The nondegraded intercalation current without degradation �̄� is the reference that

the current at a certain overpotential reaches with no degradation. In physical parti-

cles, there are often degradation effects, especially as the particles are cycled, so the

real current magnitude |𝑖| is generally smaller than the nondegraded current magni-

tude |̄𝑖|. The general definition of the fitness, or “performance”, is the ratio of the

volumetric reaction rate accounting for particle size and degradation effects, or

𝑊 =
𝑅

�̄�
, (9)
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where 𝑅 is the volumetric reaction rate and �̄� is the nondegraded intercalation current

per area without any resistance. This is an important ratio that relates our known

electrochemical reaction data �̄�, the nondegraded current, with the real volumetric

current 𝑅. In physical terms, 𝑊 can also be thought of as an effectiveness parameter

that indicates the ability to accept current, representing the performance of a battery,

since a higher effectiveness indicates a better performing particle. However, a better

performing particle is also more sensitive to degradation effects, so infinitely small

particles are not the most beneficial in electrode design.

Intercalation currents in battery particles are usually modeled as surface reactions

[54, 44]. However, the total capacity in the system depends on the particle volume.

Solid diffusion is often not limiting in intercalation materials, where reaction limita-

tions tend to be more important in nanoscale systems [3]. Under this assumption,

there is a simple scaling of the particle size (radius 𝑟) relating the reaction rate per

volume 𝑅 to the reaction rate per area 𝑖 as 𝑉 𝑅 = 𝐴𝑖, where 𝑉 is the particle vol-

ume and 𝐴 is the particle area. Using this, for spherical particles, the fitness can be

simplified to

𝑊 =
1

𝑟

𝑖

�̄�
, (10)

which relates the particle filling rate to the current density as shown earlier. This

introduces a separation between particle size effects 1/𝑟 and degraded charge transfer

effects 𝑖/̄𝑖. The initial distribution of the “fitness” is determined by the size of the

particle distribution as 𝑊 = 1/𝑟 since there is no degradation.

3.2.4 Degradation Models

From the degraded charge transfer effect of fitness 𝑖/̄𝑖, we see that the degradation

buildup on each particle also plays a role in the fitness. Mechanically and electro-

chemically, there are many different modes of degradation in a lithium-ion battery

[81]. For simplicity, we only consider the most important electrochemical degradation

modes in lithium ion batteries. There are three possible modes of electrochemical ac-

tive degradation in a battery material that we will consider. The first is formation
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of a film resistance on the battery, based on some film-forming reaction, such as

solid-electrolyte interphase formation [21, 210]. The result of this is an increased

surface resistance that mainly plays a role in affecting the kinetics by reducing the

overpotential.

The second mode of degradation is through the reduction of active material, from

phase transformations into rock salt or spinel phases (such as in nickel rich materi-

als), which cause changes in surface kinetics and active material capacity [211, 212].

This would result in the loss of active material, which plays a role through rescaling

the available lithium concentration in the system. It mainly reduces the number of

available sites in the transition state, which affects the reaction kinetics.

The last mode of degradation is a general contribution from degradation in the

battery, either in the cathode or anode, as a loss of electrolyte in the system from

degradation reactions. This can be modeled with a loss in electrolyte concentration

[21, 186].

Since we use nickel-rich materials as an example, degradation reactions are mod-

eled at higher voltages [83, 57] using a simple Tafel reaction to define the degradation

current as

𝑖𝑑𝑒𝑔 = 𝑘0,𝑑𝑒𝑔 exp
(︀
𝜇0
𝑑𝑒𝑔 − 𝜇𝑟𝑒𝑠 + 𝑖𝑅𝑓

)︀
(11)

where 𝜇0
𝑑𝑒𝑔 is the cutoff potential for degradation.

Resistive Film

A resistive film may form as a type of solid electrolyte interphase on the cathode [213,

94] or anode [214] and grow continuously. Experimental measurements of resistive

interface growth have found that though the initial amount of growth is quite rapid,

even past the initial stages, there is often continuous growth of resistive film on active

material [23]. For any intercalation reaction, when a resistive film grows, it affects the

current 𝑖 through the reduction of the overpotential to 𝜂 + 𝑖𝑅𝑓 with film resistance

𝑅𝑓 .

From the definition of the fitness of the reaction rate in Eq. 10, it is necessary to
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obtain 𝑖/̄𝑖 when there is a resistive film. The simplest electrochemical reaction is a

symmetric Butler-Volmer model, which can be solved with fewer simplifications than

the generic Butler-Volmer model because of the symmetry of the model. If we do a

Taylor expansion on this system and assume that the charge transfer coefficient is

symmetric, we can obtain an analytic expression for the driving force term in Eq. 46.

We obtain the fitness value any given time as

𝑊 =
1

𝑟
[1 + 𝛼𝑖 coth (𝛼𝜂)𝑅𝑓 ] +𝒪(𝑅2

𝑓 ). (12)

A more general case can be found by linearizing the full kinetic model with respect

to the overpotential. Using this, we can avoid the need to find an implicit solution of

this problem. A natural dependence on the differential conductance occurs from how

resistance affects overpotential. The ratio of the degraded to nondegraded current is

found to be
𝑖

�̄�
=

1

1−𝑅𝑓
𝜕�̄�
𝜕𝜂

+𝒪(𝑅2
𝑓 ) (13)

from the linearizations in Appendix 3.81, where the second order solution can be seen

in Appendix 3.6. Thus, the fitness value is found to be

𝑊 =
1

𝑟

(︂
1−𝑅𝑓

𝜕�̄�

𝜕𝜂

)︂−1
+𝒪(𝑅2

𝑓 ), (14)

which is the general formula for any reaction rate. The specific analytical formulas

for each reaction rate (Butler-Volmer and CIET) can be found in Appendix A.

For the resistive film model, with the electrochemical cycling of a battery, the

resistance on a particle 𝑅𝑓 (Ω ·𝑚2) changes as

𝑑𝑅𝑓 (𝑡, 𝑐, 𝑟)

𝑑𝑡
= 𝛽𝑖𝑑𝑒𝑔, (15)

with the value of the degradation current per area 𝑖𝑑𝑒𝑔 from Eq. 11. The resistivity

per amount of reaction is 𝛽 = 𝑛MM/(𝐹𝜎𝜌), which is the resistivity per amount of

resistance reaction in units of Ω·𝑚4/𝐶. This is a property of the material which makes
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up the resistive film. It is related to the conductivity of the material 𝜎, the density of

the material 𝜌, the number of lithium atoms per chemical formula in the film material

𝑛, Faraday’s constant 𝐹 , as well as the molecular mass of the film material MM. For

materials such as lithium carbonate which form inorganic films in batteries, we expect

the resistivity parameter 𝛽 to be on the range of 10−7 − 10−5 Ω ·m4/C [215]. Since

we are only concerned with the dependence of the resistance with the particle size, we

can take the mean value of Eq. 15 over the concentration distribution using Appendix

3.5.

Surface Blockage

The model of fitness in surface blockage is similarly defined to the approximate solu-

tion of the resistance formation model. The surface blockage model is a homogeneous

version of a model for phase transitions from cation disorder-induced degradation,

especially common in nickel rich materials, which involves a change in surface con-

centration as well as bulk availability [12, 28, 60]. The rescaled capacity is defined as

𝑐. Since there is a loss of active material in this model, in the chemical potential model

of the active material, the real concentration needs to be rescaled by the amount of

capacity loss as 𝜇𝑐(𝑐/𝑐) instead of 𝜇𝑐(𝑐). The value of degraded to nondegraded cur-

rent is shifted as a result, as the reaction is affected by the rescaled chemical potential

as well as the reduction in the number of available sites, which influences the reaction

rate through transition state theory. We can calculate these two effects separately.

We first calculate the effects from the reaction rate without prefactor, which comes

from the effect of overpotential on this mechanism. The ratio of the degraded to

nondegraded reaction rate without the prefactor is found to be

ℎ

ℎ̄
≈ 1 +

1

ℎ̄

𝑐(1− 𝑐)

𝑐2
𝜕𝜇𝑐

𝜕𝑐

𝜕ℎ̄

𝜕𝜂
(16)

from a Taylor expansion of ℎ in Appendix 3.82, where we again see a form similar

to the differential conductance. This change in maximum capacity plays a role by

limiting the current in these coupled-ion electron transfer reactions. If we mainly
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consider surface effects, we can neglect this term.

Following, we can calculate the effects of the prefactor ratios, which consist of the

surface effects. For an nondegraded Butler-Volmer current, the ratios of the prefactors

is
(︀
𝑐−𝑐
1−𝑐

)︀1−𝛼 from the thermodynamically consistent Butler-Volmer equation [69]. For

the coupled-ion electron transfer reaction, the ratios of the prefactors is 𝑐−𝑐
1−𝑐 when the

transition state is assumed to occupy one site. Thus, the total fitness for the surface

blockage model results in

𝑊 ≈ 1

𝑟

(︂
𝑐− 𝑐

1− 𝑐

)︂𝑛

+𝒪((𝑐− 1)2), (17)

where 𝑛 = 1 − 𝛼 for the Butler-Volmer equation, and 𝑛 = 1 for the coupled-ion

electron transfer reaction rate.

For a model of surface blockage, the amount of degradation is classified by

𝑑𝑐(𝑡, 𝑐, 𝑟)

𝑑𝑡
= − 𝑖𝑑𝑒𝑔𝐶

𝜌𝑠,𝑚𝑎𝑥𝑟
(18)

an equation that scales with the size of the battery particle and the total site density

of the material. Here, 𝐶 is the Coulomb number and 𝜌𝑠,𝑚𝑎𝑥 is the maximum site

density of the material in mol/m3. This equation can again be integrated over all

concentration values for an average value per particle size as in Appendix 3.5.

Electrolyte Loss

In a full battery cell, the amount of degradation should be affected by degradation

on the other electrode (anode) as well. The formation of degradation on the anode

will often lead to a loss of usable lithium capacity from the lithium consumed in the

side reaction to form products [216]. These products consist of the solid electrolyte

interphase, cathode electrolyte interphase, and others. Since we are modeling a per-

fect electrolyte bath, which does not use an opposing electrode, we cannot “consume”

lithium ions on the other electrode and reduce the total usable lithium concentration.

Thus, electrolyte loss needs to be prescribed in the system, which we choose to be
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linear for simplicity [21]. We call this degradation mechanism electrolyte loss since it

reduces the available electrolyte.

In the Butler-Volmer equation, the electrolyte concentration affects the transition

state prefactor as 𝑘0(𝑐) ∝ 𝑐1−𝛼+ . In addition, there is a subtle effect on shifting the

overpotential from the entropic component. From linearizing the reaction rate without

prefactor ℎ in Appendix 3.83 and applying the definition of the thermodynamic factor
𝜕 ln 𝑎+
𝜕 ln 𝑐+

from Ref. [122], which relates the activity in a Stefan-Maxwell concentrated

electrolyte with the lithium ion concentration, we can obtain the fitness value. We

see that the fitness value in a Butler-Volmer equation is simply found to be

𝑊 =
𝑎1−𝛼+

𝑟

[︂
1 +

1

ℎ̄

𝜕 ln 𝑎+
𝜕 ln 𝑐+

𝑘𝐵𝑇
𝜕ℎ̄

𝜕𝜂
(1− 𝑐+)

]︂
+𝒪((𝑐+ − 1)2) (19)

with our linear approximation for concentrated solutions. A dilute solution approxi-

mation can also be used, where the thermodynamic factor is unity.

For coupled ion electron transfer, the effect of electrolyte is more complicated

[129]. In the reduction reaction, since the electrolyte is a reactant, there is a direct

concentration dependence on the reduction reaction, but not on the oxidation reac-

tion. In addition, in the formal overpotential, the electrolyte does not influence the

amount of available sites in the overpotential except through the activity in a con-

centrated solution. Thus, it does not change the overpotential of the reaction for a

dilute model [128]. As derived in Appendix 3.83, we see that

𝑊 =
1

𝑟

[︂
1− 𝜕 ln 𝑎+

𝜕 ln 𝑐+

�̄�𝑟𝑒𝑑
�̄�

(1− 𝑐+)

]︂
+𝒪((𝑐+ − 1)2) (20)

is the fitness value for the electrolyte loss model if a CIET reaction rate is used. For

a CIET reaction rate, the reduction current ratio in the total reaction contributes

strongly to scaling the value of the fitness function. This causes the fitness in inter-

calating systems to be lower than in deintercalating systems for this model.

Assuming that the initial electrolyte concentration is unity, the degradation rate
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for a half-cell model with a electrolyte loss can be prescribed using the simple relation

𝑐+ = 1− 𝑘𝑡, (21)

where 𝑘 > 0 is a parameter that reduces the availability of electrolyte with time in

units of M/hr if the initial concentration is 1 M and 𝑡 is the amount of time spent

cycling the battery in hours.

Combined Model

These three degradation models can be combined into an overall fitness value to

account for multiple degradation effects to the first order approximation. Similarly,

if other fitness values for different degradation mechanisms are also derived, they can

be combined into such an overall fitness value. The value of the combined fitness

function for the Butler-Volmer equation is

𝑊 ≈ 𝑎1−𝛼+

𝑟

(︂
𝑐− 𝑐

1− 𝑐

)︂1−𝛼

[1 + 𝛼𝑖 coth(𝛼𝜂)𝑅𝑓 ]

[︂
1 +

1

ℎ̄

𝜕 ln 𝑎+
𝜕 ln 𝑐+

𝑘𝐵𝑇

𝑒

𝜕ℎ̄

𝜕𝜂
(1− 𝑐+)

]︂
. (22)

For the coupled-ion electron transfer system, the overall fitness function can be written

as

𝑊 ≈ 1

𝑟

(︂
𝑐− 𝑐

1− 𝑐

)︂
1

1−𝑅𝑓
𝜕�̄�
𝜕𝜂

[︂
1− �̄�𝑟𝑒𝑑

�̄�
(1− 𝑐+)

𝜕 ln 𝑎+
𝜕 ln 𝑐+

]︂
. (23)

From each of these equations, we can see the explicit contributions of particle

size and the three different degradation modes we are modeling (resistive film, sur-

face blockage, and electrolyte loss). The separate effects of each degradation mode

contribute to the overall fitness, aiding understanding of which modes are the most

detrimental and should be mitigated to preserve the current capability of the battery.
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3.3 Simulations

3.3.1 Numerical Setup

Here, we attempt to model the degradation of a nickel manganese cobalt oxide blend

electrode with a ratio of 5:3:2 (NMC532) under constant current cycling and capture

the evolution of capacity changes and degradation with time evolution. Using the

Fokker-Planck model in Eq. 2, we model a single electrode volume. We simulate each

degradation mode separately to analyze their individual effects. Simulations were

performed with MATLAB using autodifferentiation from CasADi [217] to increase

speed of solving the DAE system. The Fokker-Planck numerical simulations were

performed until end of life for each degradation and reaction model. Simulation

parameters and details were reported in Appendix 3.9.

3.3.2 Analysis

We first focus on the particle level details of degradation, and then analyze how

dynamics at the microscale affects electrode-level degradation. From the particle level

details of kinetics and degradation, we observe the heterogeneity between particles

in intercalation. To understand their contributions to degradation, the fitness values

in the simulation are observed. The heterogeneity of degradation at the particle

level scale and the autocatalytic relationship between fitness and degradation are

discussed. Following this, microscale degradation is then used to explain electrode-

level phenomena, with the voltage curves and the capacity loss data as an example.

Heterogeneity at the particle level is then found to heavily influence electrode-level

degradation effects, especially from the smaller particles.
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Particle Level Heterogeneities

In a single cycle, the average concentration at each particle radius is plotted in Fig.

3.3.2a,b and the variance of the concentrations is plotted below in Fig. 3.3.2c,d.

We observe that even the differences between these reaction rates can cause hetero-

geneity in the intercalation of particles. This is influenced by the “limiting current”

for coupled-ion electron transfer type reactions from the electron availability, while

the Butler-Volmer reaction grows exponentially with overpotential and is unbounded.

This limiting current is bounded by the transition state value 𝛾‡ = (1 − 𝑐)−1, which

shows up in both reaction rates, but because of the exponential form of the Butler-

Volmer equation, it affects the coupled-ion electron transfer reactions more strongly.

This causes an asymmetry between charge and discharge in the CIET reaction rate,

stemming from the prefactor. The asymmetry in discharge is discussed further in

Refs. [51, 49].

The heterogeneity at the particle level scale representing the effectiveness of each

particle is described by the fitness. This describes each particle’s inherent current-

carrying capability. The initial value of performance is defined by the inverse particle

size as shown in Fig. 2a. After cycling, the fitness function 𝑊 is plotted in Fig. 2,

where the analytical values can be found in Appendices 3.2.4, 3.2.4, and 3.2.4. The

fitness becomes infinitely small from the unbounded behavior of Butler Volmer reac-

tions for some values in Fig. 2b, where the reaction is infinitely large for intermediate

concentrations. This causes asymptotic behavior in the Butler-Volmer solution for

the resistive film and electrolyte loss models.

We observe that as the battery is cycled, the value of the fitness function is reduced

from degradation accumulation. Overall, the reduction of the fitness values drives

further increases in heterogeneity in degradation, which triggers more heterogeneous

reduction in the fitness values. Thus, we observe an autocatalytic effect between

fitness and degradation.

This autocatalytic relationship between fitness and degradation is further seen in

Fig. 3. The relative degradation parameter with respect to the maximum parameter
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Figure 2: a) The initial fitness value �̄� = 1/𝑟 is plotted in the first cycle with
respect to each concentration and particle size at a single time point during the initial
cycle. b,c,d,e,f,g) For each Butler-Volmer/coupled ion electron transfer reaction rate,
the fitness values 𝑊 from a set of simulations each with a single degradation mode
towards the end of cycling are plotted with respect to concentration and particle size
at a single time point during one of the last few cycles.

at each time is plotted for the Butler-Volmer or coupled ion electron transfer reactions

with the degradation mechanisms from film resistance or surface blockage. Resistance

growth asymmetry happens in the first couple cycles in Fig. 3a and b, where more

resistance forms on the larger particles and reaches steady values after the first few

cycles to attempt to homogenize the system. Initially, no autocatalytic behavior is

observed as the initial resistance formation seen is part of the “formation cycling”

in battery electrodes [218, 219] to stabilize the system and reduce the homogeneity

between the particle sizes.

The second step of nonheterogeneity in resistance formation appears after forma-
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Figure 3: a,b) For a set of simulations with only resistive film growth, relative resis-
tance at each cycle to the maximum resistance at each cycle is plotted with respect
to cycle number and particle size, for the Butler-Volmer and coupled ion electron
transfer reactions. c,d) For a set of simulations with only surface blockage increase,
surface blockage at each cycle relative to the maximum surface blockage at each cycle
is plotted with respect to cycle number and particle size, for the Butler-Volmer and
coupled ion electron transfer reactions. (The degradation mechanism of electrolyte
loss is prescribed so it has no heterogeneity). This plot displays the heterogeneity
growth in degradation as we cycle the battery.

tion cycling in the battery lifetime and reduces the overall capacity of the battery

as shown in Fig. 3. Because of the larger fitness values for small particles, there

is a higher capacity change fraction distributed to them, causing more degradation

from the higher amounts of degradation current. This degradation growth behavior

becomes autocatalytic as more asymmetry in degradation growth is observed with

cycling. This is seen in the later cycles in Fig. 3ab, where more resistance forms on

the smaller particles towards the end of life. Similarly, for the surface blockage mech-

anism, there is an autocatalytic effect on degradation favoring smaller particles. This

is coupled with the fitness values, which eventually lose all their available capacity

towards end of life and leaves only larger particles operational. Thus, for both the

surface blockage and resistance formation models, heterogeneity grows autocatalyt-

ically as we cycle the batteries, with degradation favoring the smaller particles and

larger particles remaining more stable.

From the combined observations of particle level degradation at different particle

sizes, we theorize that the terminating behavior of battery capacity is not caused
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Figure 4: The voltage discharge and charge curves from simulations with a single
degradation mechanism with respect to the state of charge of the cathode are plotted
at the beginning, middle, and end cycle of each set of simulations with each reaction
model (BV/CIET for a,c,e and b,d,f) and degradation mechanism (resistive film for
a and b, capacity loss for c and d, and electrolyte loss for e and f).

by the average particle size, but rather the smaller particle sizes. As observed in

Fig. 3, at later stages in cycling, degradation starts to accumulate on all particles,

but especially quickly on smaller particles, which require larger amounts of poten-

tial to charge/discharge and thus causes a stronger drop in battery capacity. This

autocatalytic behavior between fitness and degradation drives a strong heterogeneity

in fitness values in Fig. 2 as the battery is cycled. This continually favors smaller

particles as the system reaches end of life in Fig. 3.

Electrode-Level Measurements

The effects of heterogeneous degradation effects can be shown to influence the experi-

mental measurements of electrode-level electrochemical phenomena. The shifting and

hysteresis behavior of the voltage curve provides important pieces of electrode-level

information from cycling the degraded cells. The capacity loss profile can also be
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observed and information on the degradation mechanisms can be extracted from the

shape of these curves.

Expansion of the voltage curves, or hysteresis, occurs from kinetic limitations in

the system, which are often caused by degradation mechanisms that do not degrade

the active material. For the electrolyte loss mechanism in Fig. 4, the formal overpo-

tential for the coupled-ion electron transfer reaction does not contain any electrolyte

effects. The main influence of degradation is on the kinetics in the reduction direction

of the reaction. Thus, there is no shift in the open circuit voltage (OCV) curves and

only an “expansion” of the charge/discharge curve around the original open circuit

voltage, which occurs from the limitations on the kinetics. The apparent shift in the

open circuit voltage comes from the need to apply higher electrolyte potentials to

compensate for lower electrolyte concentrations. There is an asymmetry between in-

sertion and deinsertion since the influence of electrolyte concentration appears solely

in the reduction reaction.

Shifts in the voltage measurement, however, generally occur from either shifts in

overpotentials required or active material ranges. The surface blockage mechanism

observes a leftward shift compared to the potential of the original model, occurring

from the reduction of available transition state sites and the shift in the OCV. This

causes the change in active material range in the surface blockage mechanism, which

generates a shift in the overpotential ranges, translating to the accessible voltage

range. Similarly, because of the shifted overpotentials for the Butler-Volmer formula-

tion for the electrolyte loss mechanism, there is a downward shift of the open circuit

voltage curve. This is in contrast to the surface blockage mechanism, since there is

not a change in range of active material voltage, but a shift in the electrolyte poten-

tial applied. This generates a downward movement on the voltage curve instead of

leftward shift of charging range.

The electrode-level behavior of “expansion” and “shifting” of the discharge curves

provides us with macroscopic information on the contributions of the degradation

mechanisms from kinetic effects or changes in the overpotential (which can be caused

by electrolyte concentration loss or active material degradation). Generally, a combi-
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Figure 5: a,b,c) The capacity cutoff for each cycle with respect to the cycle number
for BV/CIET is plotted for sets of simulations with the three separate degradation
mechanisms in the first row, while the real relative electrochemical capacity loss from
the integrated degradation current with respect to the cycle number is plotted in the
second row in d) and e). For the electrolyte loss model, because the electrochemical
capacity loss is from the anode, we instead plot the prescribed degradation of elec-
trolyte concentration with respect to cycle number in f). g) We plot the capacity loss
curve with respect to cycle number for a set of simulations with all three degradation
mechanisms implemented for the two reaction models.

nation of these will contribute to the physical degradation of voltage curves. Through

observing the expansions and shifts of the degraded charge/discharge curve, we can

learn about whether degradation consists of active material degradation or electro-

chemical changes in kinetics at the surface.

In capacity loss curves, a linear drop in capacity is observed in Fig. 5, which later

rolls over into a steeper capacity loss curve when more degradation has accumulated.

Each degradation mechanism contributes differently to the terminal behavior of the

capacity. The resistance formation mechanism and surface blockage mechanism both

cause sharp terminating curves, but the resistive film mechanism is much smoother

than that of the surface blockage mechanism. The electrolyte loss mechanism has a

smooth and nonlinear drop off as the concentration of electrolyte drops, especially at

lower electrolyte concentrations.

The different shapes of these drop offs may be able to give insight into the dom-
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inance of different degradation mechanisms from the experimental observation of

capacity loss plots. In addition, a set of simulations where all three models were

combined was performed, where it can be seen that the dominant degradation mech-

anism tends to override the capacity loss curve (in, this case, the surface blockage

mechanism) in Fig. 5g.

3.4 Appendix: Derivation of the Modified Fokker-

Planck Equation

The derivation of Fokker-Planck with resistance evolution in these systems is similar

to that of biological evolution with a fitness landscape. In fact, we expect to see the

fitness effects more strongly as we apply current/voltage to a control system instead

of letting the population evolve naturally as in genetics. Starting from the Langevin

equation, we can derive the Fokker-Planck equations needed as follows. The Langevin

equation for the filling of a battery particle, assuming no solid diffusion limitation, is

𝑉𝑗 �̇�𝑗 = −𝐴𝑗 (𝑖𝑗(∆𝜇) + 𝐹𝑗(𝑖𝑗)) , 𝑗 = 1 . . . 𝑁, (24)

where 𝑉 is the total volume of the particle, 𝐴 is the area of the particle, 𝑐 is the

concentration of the particle, which is the site density of the intercalation material

scaled by the maximum site density, 𝑐 = 𝜌/𝜌𝑠,𝑚𝑎𝑥, 𝑖 is the reaction rate caused by the

difference between the reservoir potential 𝜇𝑟𝑒𝑠 and the particle potential 𝜇, which is

related to the driving force ∆𝜇 = 𝜇𝑟𝑒𝑠 − 𝜇, and 𝐹 (𝑖) is the random force for particle

𝑗, which depends on the reaction magnitude 𝑖 by the fluctuation-dissipation theorem

[220, 161]. In a battery particle, we know the volume of a particle scales with the

particle size as 𝑉𝑗 ∝ 𝑟3𝑗 and the surface area scales with the particle size as 𝐴𝑗 ∝ 𝑟2𝑗 ,

where 𝑟𝑗 is the radius of a spherical particle. We can simplify the Langevin equation

into

�̇�𝑗 = − 1

𝑟𝑗
(𝑖𝑗 + 𝐹𝑗(𝑖𝑗)) , 𝑗 = 1 . . . 𝑁. (25)
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In a reactive system, for 𝑗 = 1 . . . 𝑁 particles, every particle obeys the Langevin

equation under a total constraint. Reactions happening directly between the particles

are assumed to be nonexistent [221] and reactions only happen between the active

material particles and the environment.

This constraint is usually some form of constant current or voltage. For constant

current, we expect that
∑︀

𝑗 𝑚𝑗 �̇�𝑒𝑓𝑓,𝑗 = Rxn𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 for applying a current constraint

from all particles, or for constant voltage that 𝜇𝑟𝑒𝑠 = 𝜇𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 for all particles 𝑖.

If we assume that the probability density of particles in the system is at 𝑓(𝑐),

we can convert this system of Langevin equations into a Fokker-Planck equation

(acknowledging that the system is not deterministic from the noise term 𝐹 (𝑖)) [66,

203]. At each concentration variable, we need to take a small time increment such

that we can sum the transition rates leaving and arriving at the current concentration

as the chemical master equation

𝑓(𝑡+∆𝑡, 𝑐; 𝑟) = 𝑓(𝑡, 𝑐; 𝑟) + ∆𝑡

∫︁ 1

0

𝑝(𝑐− 𝑐′, 𝑐′)𝑓(𝑡, 𝑐′; 𝑟)𝑊 (𝑡, 𝑐′, 𝑟)𝑑𝑐′

−∆𝑡

∫︁ 1

0

𝑝(𝑐′, 𝑐)𝑓(𝑡, 𝑐; 𝑟)𝑊 (𝑡, 𝑐, 𝑟)𝑑𝑐′.

(26)

Here, 𝑝(𝑥, 𝑦) is the transition matrix from state 𝑦 to 𝑥 before dampening the transition

probabilities with the fitness. It needs to be weighed by the changes in the transition

state matrix because there is a modified amount of transitions happening from the

changes in the fitness variable.

The derivation of Fokker-Planck with resistance evolution in these systems is sim-

ilar to that of a fitness landscape in genetics. We can start with the chemical master

equation, which comes from the continuum limit of the previous equation to derive

the full Fokker-Planck equation

𝜕𝑓(𝑡, 𝑐; 𝑟)

𝜕𝑡
=

∫︁ *
𝑑𝑐′𝑝(𝑐−𝑐′, 𝑐′)𝑓(𝑡, 𝑐′; 𝑟)𝑊 (𝑡, 𝑐′, 𝑟)−

∫︁ *
𝑑𝑐′𝑝(𝑐′−𝑐, 𝑐)𝑓(𝑡, 𝑐; 𝑟)𝑊 (𝑡, 𝑐, 𝑟),

(27)

and change the integration variable 𝑐 or 𝑐′ to the difference between these two variables

𝑦 = 𝑐− 𝑐′.
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We take a Taylor expansion of the system only around the change of concentration

variable 𝑦. The Taylor expansion on the term in the integral returns

𝑝(𝑦, 𝑐− 𝑦)𝑓(𝑐− 𝑦)𝑊 (𝑐− 𝑦) = 𝑝(𝑦, 𝑐)𝑓(𝑐)𝑊 (𝑐)

− 𝑦
𝜕

𝜕𝑐
(𝑝(𝑦, 𝑐)𝑓(𝑐)𝑊 (𝑐))

𝑦2

2
+

𝜕2

𝜕𝑥2
(𝑝(𝑦, 𝑐)𝑓(𝑐)𝑊 (𝑐)) + ...

(28)

We know that there is no flux when there is no concentration change, so then the

zeroth order term from the expansion is zero. Thus, only including the first and the

second order term of the expansion, we see that the chemical master equation now

is converted to the Fokker-Planck equation, which after moving the integrals into the

derivative terms is revealed as

𝜕𝑓(𝑡, 𝑐; 𝑟)

𝜕𝑡
= − 𝜕

𝜕𝑐

[︂
𝑓(𝑐)𝑊 (𝑐)

(︂∫︁
𝑑𝑦𝑦𝑝(𝑦, 𝑐)

)︂]︂
+

1

2

𝜕2

𝜕𝑐2

[︂
𝑓(𝑐)𝑊 (𝑐)

(︂∫︁
𝑑𝑦𝑦2𝑝(𝑦, 𝑐)

)︂]︂
(29)

to obtain the Fokker-Planck equation we are familiar with. For simplicity in notation,

we define the first order term as the reaction rate such that 𝑖 =
∫︀ 1

0
𝑑𝑐′𝑐′𝑝(𝑐′, 𝑐) to rep-

resent the driving velocity from the mean in concentration change from the transition

probabilities. The second order term as 𝐷 =
∫︀ 1

0
𝑑𝑐′𝑐′2𝑝(𝑐′, 𝑐) represents the fluctua-

tions, or the variance from the concentration change for the transition probabilities.

From the definition of the intercalation reaction rate and the definition of a diffusion

coefficient explicitly defined above, we see that

𝜕𝑓

𝜕𝑡
= − 𝜕

𝜕𝑐
(𝑓𝑅) +

𝜕

𝜕𝑐

(︂
𝐷
𝜕

𝜕𝑐
(𝑓𝑊 )

)︂
. (30)

where 𝐷 = 𝑘𝑘𝐵𝑇/𝑁𝑡 and 𝑘 = 𝑖/𝜂 for a linear form of the reaction rate mapping

to previously electrochemical Fokker-Planck methods. This is the full Fokker-Planck

equation with the resistance evolution terms [51, 164, 194, 70].
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3.5 Appendix: General Properties of the Fokker-

Planck Model

Some general properties need to be defined in these systems. Since we assume there

cannot easily be particle size changes in the system, we see that

∫︁ 1

0

𝑓(𝑡, 𝑐; 𝑟)𝑑𝑐 = 𝑔(𝑟), (31)

which is constant with time as the size distribution 𝑔(𝑟) of the particles. The average

over all the volumes for any property 𝑥 can be defined as

⟨𝑥⟩ =
∫︀∞
0

∫︀ 1

0
𝑥𝑟3𝑓(𝑡, 𝑐; 𝑟)𝑑𝑐𝑑𝑟∫︀∞

0

∫︀ 1

0
𝑟3𝑓(𝑡, 𝑐; 𝑟)𝑑𝑐𝑑𝑟

=

∫︀∞
0

∫︀ 1

0
𝑥𝑟3𝑓(𝑡, 𝑐; 𝑟)𝑑𝑐𝑑𝑟∫︀∞
0
𝑟3𝑔(𝑟)𝑑𝑟

, (32)

since the volume of each particle is of a different size, which scales with 𝑟3.

3.6 Appendix: Second Order Solution to Resistive

Film Model

The second order Taylor expansion to the resistive film model is as below:

𝑖 = �̄�+
𝜕𝑖

𝜕𝑅𝑓

⃒⃒⃒⃒
𝑅𝑓=0

𝑅𝑓+
1

2

𝜕2𝑖

𝜕𝑅2
𝑓

⃒⃒⃒⃒
𝑅𝑓=0

𝑅2
𝑓+𝒪(𝑅3

𝑓 ) = �̄�+𝑖𝑅𝑓
𝜕�̄�

𝜕𝜂
+𝑅2

𝑓

1

2

(︃(︂
𝜕�̄�

𝜕𝜂

)︂2

+ 𝑖
𝜕2�̄�

𝜕𝜂2

)︃
+𝒪(𝑅3

𝑓 ).

(33)

The ratio between the degraded and nondegraded currents in the second order is

given by

𝑖

�̄�
=

(︃
1−𝑅𝑓

𝜕�̄�

𝜕𝜂
−𝑅2

𝑓

1

2

(︃
�̄�−1
(︂
𝜕�̄�

𝜕𝜂

)︂2

+
𝜕2�̄�

𝜕𝜂2

)︃)︃−1
+𝒪(𝑅3

𝑓 ). (34)
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The fitness value of the landscape is given by

𝑊 (𝑡, 𝑐, 𝑟, 𝑅𝑓 ) ≈
1

𝑟

1

1−𝑅𝑓
𝜕�̄�
𝜕𝜂

−𝑅2
𝑓
1
2

(︂
�̄�−1
(︁

𝜕�̄�
𝜕𝜂

)︁2
+ 𝜕2 �̄�

𝜕𝜂2

)︂ . (35)

The second order model is not used in the simulations, but is given as an example to

show how higher order terms would be derived.

3.7 Appendix: Analytical Differential Conductance

The transition state prefactor for the thermodynamically consistent Butler-Volmer

equation is

𝑘0(𝑐) = 𝑘*0𝑐
𝛼(𝑎+(1− 𝑐))1−𝛼, (36)

where 𝛼 is the charge transfer coefficient, 𝑎+ is the electrolyte activity coefficient, and

𝑘*0 is the current rate prefactor. The analytical differential conductances are reported

in the following sections where all values are reported in non-dimensionalized form. In

these functions, the exchange current density is actually the fitted prefactor [3] that

includes the lumped reaction rate prefactors. For coupled ion-electron transfer, the

formal overpotential is 𝑒𝜂𝑓 = 𝑒𝜂 + 𝑘𝐵𝑇 ln 𝑎+
𝑐

to satisfy the De Donder relation [129].

In future equations, it is assumed that the overpotential 𝜂 is nondimensionalized with

the dimensional group 𝑒
𝑘𝐵𝑇

. In this series of equations, the helper function is found

to be

helper(𝜂𝑓 , 𝜆) =
√
𝜆𝜋

1 + exp (−𝜂𝑓 )
erfc

⎛⎝𝜆−
√︁
1 +

√
𝜆+ 𝜂2𝑓

2
√
𝜆

⎞⎠ (37)

and the derivative of the helper function with respect to the formal overpotential is

found to be

𝑑helper
𝑑𝜂𝑓

(𝜂𝑓 , 𝜆) =

√
𝜋 exp (−𝜂𝑓 )

√
𝜆erfc

(︂
𝜆−

√︁
𝜂2𝑓+
√
𝜆+1

2
√
𝜆

)︂
+

(exp (−𝜂𝑓 )+1)𝜂𝑓 exp

⎛⎝−(√𝜂2
𝑓
+
√
𝜆+1−𝜆)

2

4𝜆

⎞⎠
√︁

𝜂2𝑓+
√
𝜆+1

(exp (−𝜂𝑓 ) + 1)2
.

(38)
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In fact, though 𝑑helper
𝑑𝜂𝑓

(𝜂𝑓 , 𝜆) is not strictly equal to 𝑑helper
𝑑𝜂

(𝜂𝑓 , 𝜆), to the first order

approximation of a Taylor expansion, if the perturbation to the electrolyte concen-

tration and solid concentration at any given time is small, this solution is correct.

The derivation is shown in the following equation

𝑑helper
𝑑𝜂

=
𝑑helper

𝑑𝜂𝑓 − 𝑘𝐵𝑇𝑑 ln 𝑎+ + 𝑘𝐵𝑇𝑑 ln 𝑐

=
𝑑helper
𝑑𝜂𝑓

[︂
1 + 𝑘𝐵𝑇

𝑑 ln 𝑎+
𝑑𝜂𝑓

− 𝑘𝐵𝑇
𝑑 ln 𝑐

𝑑𝜂𝑓

]︂
+𝒪(∆𝑎2(+))

≈ 𝑑helper
𝑑𝜂𝑓

.

(39)

We thus use this approximation for most of our solutions, since perturbations to the

electrolyte and solid lithium concentrations are not that large.

The second derivative of the helper function can also be found analytically to be

𝑑2helper
𝑑𝜂2𝑓

(𝜂𝑓 , 𝜆) = − 1

2 (𝑒−𝜂𝑓 + 1)3

⎛⎝−4
√
𝜋𝑒−2𝜂𝑓

√
𝜆erf

⎛⎝𝜆−
√︁
𝜂2𝑓 +

√
𝜆+ 1

2
√
𝜆

⎞⎠
+ 2

√
𝜋𝑒−2𝜂𝑓 (𝑒𝜂𝑓 + 1)

√
𝜆erf

⎛⎝𝜆−
√︁
𝜂2𝑓 +

√
𝜆+ 1

2
√
𝜆

⎞⎠

+
𝜂2𝑓 (𝑒

−𝜂𝑓 + 1)
2
𝑒−

(
√

𝜂2
𝑓
+
√
𝜆+1−𝜆)

2

4𝜆

(︁
𝜆−

√︁
𝜂2𝑓 +

√
𝜆+ 1

)︁
𝜆
(︁
𝜂2𝑓 +

√
𝜆+ 1

)︁
+

2 (𝑒−𝜂𝑓 + 1)
2
𝑒−

(
√

𝜂2
𝑓
+
√

𝜆+1−𝜆)
2

4𝜆√︁
𝜂2𝑓 +

√
𝜆+ 1

−
2𝜂2𝑓 (𝑒

−𝜂𝑓 + 1)
2
𝑒−

(
√

𝜂2
𝑓
+
√

𝜆+1−𝜆)
2

4𝜆(︁
𝜂2𝑓 +

√
𝜆+ 1

)︁3/2
+
4 (𝑒𝜂𝑓 + 1) 𝜂𝑓𝑒

−
(
√

𝜂2
𝑓
+
√
𝜆+1−𝜆)

2

4𝜆
−2𝜂𝑓√︁

𝜂2𝑓 +
√
𝜆+ 1

⎞⎟⎠ .

(40)
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3.8 Appendix: Partial Derivatives

3.8.1 Film Resistance

For the film resistance model, the partial derivative with respect to the film resistance

can be found as
𝜕𝑖

𝜕𝑅𝑓

=
𝜕𝑖

𝜕𝜂

𝜕𝜂

𝜕𝑅𝑓

= 𝑖
𝜕�̄�

𝜕𝜂
, (41)

which naturally evokes the value of the differential conductance. The Taylor expan-

sion of the system with respect to 𝑅𝑓 is

𝑖 = �̄�+
𝜕𝑖

𝜕𝑅𝑓

⃒⃒⃒⃒
𝑅𝑓=0

𝑅𝑓 +𝒪(𝑅2
𝑓 ) = �̄�+ 𝑖𝑅𝑓

𝜕�̄�

𝜕𝜂
+𝒪(𝑅2

𝑓 ), (42)

where all derivatives are evaluated at no degradation (we will neglect the evaluation

terms for some future derivatives). By combining terms and dividing by �̄�, we see

that
𝑖

�̄�
=

1

1−𝑅𝑓
𝜕�̄�
𝜕𝜂

+𝒪(𝑅2
𝑓 ), (43)

which gives

𝑊 =
1

𝑟

(︂
1−𝑅𝑓

𝜕�̄�

𝜕𝜂

)︂−1
+𝒪(𝑅2

𝑓 ). (44)

For a symmetric Butler-Volmer model, it becomes more convenient to separate

the prefactor effect and the driving force effect as 𝑖 = 𝑘0(𝑐)ℎ(𝑐, 𝜂). Thus, we can

expand the system as
𝑖

�̄�
=
𝑘0
𝑘0

ℎ

ℎ̄
=
ℎ

ℎ̄
. (45)

When linearizing a symmetric Butler-Volmer model, a Taylor expansion of the driving

force term shows that

ℎ(𝜂, 𝑖, 𝑅𝑓 ) = ℎ̄(𝜂)

[︃(︃ ∑︁
𝑘=2𝑛,𝑛∈N

(𝛼𝑖𝑅𝑓 )
𝑘

𝑘!

)︃
+

(︃ ∑︁
𝑘=2𝑛+1,𝑛∈N

(𝛼𝑖𝑅𝑓 )
𝑘

𝑘!

)︃
coth𝛼𝜂

]︃
. (46)
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We see that to the first order,

𝑊 =
1

𝑟
[1 + 𝛼𝑖 coth (𝛼𝜂)𝑅𝑓 ] +𝒪(𝑅2

𝑓 ) (47)

3.8.2 Appendix: Surface Blockage

For the surface blockage model, we separate the reaction rate effects into the prefactor

effects from 𝑘0(𝑐) and the reaction effects from ℎ(𝜂). Similarly to the approximation

for resistance formation (but using ℎ instead of 𝑖), a Taylor expansion can be per-

formed on ℎ(𝜂) with respect to 𝑐− 1 so that

ℎ = ℎ̄+
𝜕ℎ

𝜕𝑐

⃒⃒⃒⃒
𝑐=1

(𝑐− 1) +𝒪(𝑐2) ≈ ℎ̄+
𝑐(1− 𝑐)

(𝑐− 1)2
𝜕𝜇𝑐

𝜕𝑐

𝜕ℎ̄

𝜕𝜂
. (48)

Again, we see a form of differential conductance appear in this solution, since the

differential conductance without the transition state prefactor can be obtained with

the following relation
𝜕ℎ

𝜕𝑐
=
𝜕ℎ

𝜕𝜂

𝜕𝜂

𝜕𝑐
= − 𝑐

𝑐2
𝜕𝜇𝑐

𝜕𝑐

𝜕ℎ̄

𝜕𝜂
. (49)

If we divide both sides of Eq. 48 by ℎ̄, we see that the ratio of the degraded to

nondegraded reaction rate without the prefactor is found to be

ℎ

ℎ̄
≈ 1 +

1

ℎ̄

𝑐(1− 𝑐)

𝑐2
𝜕𝜇𝑐

𝜕𝑐

𝜕ℎ̄

𝜕𝜂
. (50)

In addition, the effects from 𝑘0(𝑐) are shown as

𝑘0(𝑐)

𝑘0(𝑐)
=
𝑐− 𝑐

1− 𝑐
(51)

for CIET and
𝑘0(𝑐)

𝑘0(𝑐)
=

(︂
𝑐− 𝑐

1− 𝑐

)︂1−𝛼

(52)
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for the BV reaction. Combining the two effects, we see that the fitness for the surface

blockage model is

𝑊 ≈ 1

𝑟

(︂
𝑐− 𝑐

1− 𝑐

)︂𝑛(︂
1 +

1

ℎ̄

𝑐(1− 𝑐)

𝑐2
𝜕𝜇𝑐

𝜕𝑐

𝜕ℎ̄

𝜕𝜂

)︂
, (53)

where 𝑛 = 1 − 𝛼 for BV and 𝑛 = 1 for CIET. The effects of the latter term can be

neglected if we focus on surface effects, so the approximation is

𝑊 =
1

𝑟

(︂
𝑐− 𝑐

1− 𝑐

)︂𝑛

+𝒪
(︀
(1− 𝑐)2

)︀
. (54)

3.8.3 Appendix: Electrolyte Loss

For the electrolyte loss model, we operate exactly as we did in the surface blockage

model, separating the reaction into the prefactor and the driving force components

𝑖 = 𝑘0ℎ for a Butler-Volmer system. We can separate the contributions from the

transition state (performing a Taylor expansion on 𝑐+ − 1) and the non-transition

state effects

ℎ = ℎ̄+
𝜕ℎ

𝜕𝑐+

⃒⃒⃒⃒
𝑐+=1

(𝑐+−1)+𝒪(𝑐2) ≈ ℎ̄+
𝜕ℎ

𝜕𝜂

⃒⃒⃒⃒
𝑐+=1

𝜕𝜂

𝜕𝑐+

⃒⃒⃒⃒
𝑐+=1

(𝑐+−1) = ℎ̄+
𝑘𝐵𝑇

𝑒

𝜕 ln 𝑎+
𝜕 ln 𝑐+

𝜕ℎ̄

𝜕𝜂
(1−𝑐+).

(55)

For the overpotential for BV, 𝜕𝜂
𝜕𝑐+

= −𝑘𝐵𝑇
𝑒𝑐+

𝜕 ln 𝑎+
𝜕 ln 𝑐+

, while for a coupled-ion electron

transfer kinetic system, there is no dependence on formal overpotential on the elec-

trolyte concentration ( 𝜕𝜂𝑓
𝜕𝑐+

= 0). We also define the thermodynamic factor as 𝜕 ln 𝑎+
𝜕 ln 𝑐+

,

which will be used in concentrated solution models [122]. We see that

ℎ

ℎ̄
=

[︂
1 +

1

ℎ̄

𝜕 ln 𝑎+
𝜕 ln 𝑐+

𝑘𝐵𝑇

𝑒

𝜕ℎ̄

𝜕𝜂
(1− 𝑐+)

]︂
, (56)

and since 𝑘0
𝑘0

= 𝑎1−𝛼+ , easily

𝑊 =
𝑎1−𝛼+

𝑟

[︂
1 +

1

ℎ̄

𝜕 ln 𝑎+
𝜕 ln 𝑐+

𝑘𝐵𝑇

𝑒

𝜕ℎ̄

𝜕𝜂
(1− 𝑐+)

]︂
. (57)

For a coupled-ion electron transfer reaction, a Taylor expansion needs to be per-
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formed directly on the electrolyte concentration on 𝑖 since the effect of the electrolyte

is convoluted throughout the reaction rate. We obtain

𝑖 = �̄�+
𝑑𝑖

𝑑𝑐+
(𝑐+ − 1) +𝒪

(︀
(1− 𝑐+)

2
)︀

(58)

where the full derivative of the current with respect to electrolyte concentration is

𝑑𝑖

𝑑𝑐+
=

𝜕𝑖

𝜕𝜂𝑓

𝜕𝜂𝑓
𝜕𝑐+

+
𝜕𝑖

𝜕𝑐+
, (59)

with the differential conductance seen again. Since there is no dependence of the elec-

trolyte concentration on the formal overpotential approximation ( 𝜕𝜂𝑓
𝜕𝑐+

= 0), the elec-

trolyte concentration dependence purely affects the reduction reaction in the coupled-

ion electron transfer formulation 𝜕𝑖
𝜕𝑐+

= 𝑖𝑟𝑒𝑑
𝑐+

𝜕 ln 𝑎+
𝜕 ln 𝑐+

, where 𝑖𝑟𝑒𝑑 = 𝑘*0(1−𝑐)𝑎+helper(−𝜂𝑓 , 𝜆)

is the reduction contribution to the driving force. For a Stefan-Maxwell formulation,

we see that
𝑑𝑖

𝑑𝑐+
= 𝑖𝑟𝑒𝑑𝑐

−1
+

𝜕 ln 𝑎+
𝜕 ln 𝑐+

, (60)

and thus, we see that
𝑖

�̄�
=

[︂
1− �̄�𝑟𝑒𝑑

�̄�
(1− 𝑐+)

𝜕 ln 𝑎+
𝜕 ln 𝑐+

]︂
, (61)

which gives

𝑊 =
1

𝑟

[︂
1− �̄�𝑟𝑒𝑑

�̄�
(1− 𝑐+)

𝜕 ln 𝑎+
𝜕 ln 𝑐+

]︂
+𝒪

(︀
((1− 𝑐+)

2
)︀
. (62)

3.9 Appendix: Simulation Parameters

An open circuit voltage model from Ref. [5] was used for the NMC532 solid active

material. A constant exchange current density of 𝑘*0 = 10A/m2 for the intercala-

tion reaction, while the reorganization energy in MHC/Marcus kinetics was found

to be 3.78 kBT [129]. The thermal diffusivity parameter in the system 𝐷0 was set

to be 0.05 kBT, and the degradation reaction formation voltage was set to 4.1V

for all degradation mechanisms considered [83]. The generalized Butler-Volmer re-

action rate [69] or coupled ion electron transfer reaction [128] were used to model
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the electrochemical ion insertion reaction. A current control system with a C-rate

of 1C was used in each of the model systems starting at a concentration of 0.45,

charging from 3.7V to 4.1V until the battery dies. Discretizations of 0.002 for

the concentration and 10 nm were used for the radius, which was discretized from

10 nm to 300 nm. A normal distribution with an average of 100 nm and a variance

of 100 nm was selected to perform this set of simulations, which is an abnormally

large distribution used so that a wide variance of particle sizes could be sampled.

For electrolyte, a dilute solution model of 1 M is used. The BV reaction rate as

well as the localized and delocalized electron limits of CIET were used to study

this system, which are displayed in Appendix A. The fitness values were used with

the approximation from Eq. 14. The scripts used to run this set of simulations

can be found in the public repository lightningclaw001/public_paper_scripts under

the folder fitness_distribution (https://github.com/lightningclaw001/public_

paper_scripts/tree/main/fitness_distribution) for the different models.

The degradation parameters are listed below. A resistivity of 1Ω ·m4/C was used

in the resistive film simulations for the film material. The exchange current density

of the degradation reaction for the BV reaction for resistive film formation was set to

0.04A/m2, while for the CIET reaction it was set to 0.2A/m2. The exchange current

density of the degradation reaction 𝑘0,𝑑𝑒𝑔 was set to 0.03A/m2 for the surface blockage

mechanism reactions. For the electrolyte loss reaction mechanism, the coefficient for

electrolyte loss 𝑘 was set to 0.003M/hr. The capacity loss and electrolyte loss models

were chosen so that 90% of the original capacity is achieved roughly at the end of

lifetime.

For all degradation models, the total intercalation current is then found to be

⟨Rxn𝑖𝑛𝑡⟩ =
𝑑⟨𝑐⟩
𝑑𝑡

=

∫︀∞
0

∫︀ 1

0
𝑐𝑟3 𝑑𝑓

𝑑𝑡
𝑑𝑐𝑑𝑟∫︀∞

0
𝑟3𝑔(𝑟)𝑑𝑟

(63)

integrated over the total volume of the system, where 𝑔(𝑟) =
∫︀ 1

0
𝑓(𝑐, 𝑟)𝑑𝑐 is the

constant probability distribution of the particle sizes. The total degradation current
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is then similarly found to be

⟨Rxn𝑑𝑒𝑔⟩ =
∫︀∞
0

∫︀ 1

0
𝑐𝑟2𝑖𝑑𝑒𝑔𝑑𝑐𝑑𝑟∫︀∞

0
𝑟3𝑔(𝑟)𝑑𝑟

=

∫︀∞
0
𝑟2⟨𝑖𝑑𝑒𝑔⟩𝑔(𝑟)𝑑𝑟∫︀∞
0
𝑟3𝑔(𝑟)𝑑𝑟

, (64)

since in the system, we only calculate the averaged amount of degradation over all

particles of the same size 𝑔(𝑟). Thus, the total applied current in the system is system

is found to be ⟨Rxn𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡⟩ = ⟨Rxn𝑖𝑛𝑡⟩+ ⟨Rxn𝑑𝑒𝑔⟩.

Because the Butler-Volmer reaction grows exponentially as the overpotential in the

system increases, the large values of the overpotential cause artificial numerical errors

to be introduced because of the magnitude of reaction rates at high overpotentials.

Thus, it becomes necessary to add a damping function multiplied to the reaction

rates at the high overpotential terms to prevent this from happening, causing the

Fokker-Planck equation to become

𝜕𝑓

𝜕𝑡
= − 𝜕

𝜕𝑐
(𝑓𝑖𝑊𝜁) +

𝜕

𝜕𝑐

(︂
𝐷
𝜕

𝜕𝑐
(𝑓𝑊𝜁)

)︂
(65)

Because the material is not thermodynamically phase separating, there is a very low

density of the population at these high overpotential concentrations, so the damping

function does not affect the solution of the system. We choose a damping function

𝜁(𝜂, 𝑧) =
1

2
(tanh (−(|𝜂| − 𝑧)) + 1) , (66)

where 𝑧 is the cutoff value for the overpotential, which we set to 𝑧 = 8kBT. This

damping function is symmetric with respect to 𝜂 = 0 and dampens the overlarge

values of reaction rate caused by the unphysically high overpotential from Butler-

Volmer.

Because of the difficulty of numerically solving the reaction rate for many implicit

solutions as would be required especially for a model with the resistive film buildup,

we instead turn to our analytical approximations performed in Sec. 3.2.4 and use

the 𝒪(3) approximation for the Butler-Volmer equation in Eq. 12, and the 𝒪(2)

approximation for the coupled ion electron transfer solution in Eq. 14 for the Fokker-
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Figure 6: The percentage errors of the analytical solutions are plotted below for each
reaction mechanism and degradation mechanism.

Planck Eq. 2. The errors to the numerical approximations are shown in Appendix

3.10. The other degradation mechanisms of surface blockage and electrolyte loss have

simpler equations to solve and do not need implicit solutions for the intercalation

rates, so their full solutions to Eq. 1 are used in the simulations. In the full model

with all three degradation models, since it is necessary to solve the implicit reaction

rate, we apply the approximations to the fitness function in Eqs. 22 and 23.

3.10 Appendix: Numerical Error

The 𝒪(4) error for the Butler-Volmer resistance reaction or the 𝒪(2) error for the

other reaction rates and degradation mechanisms are shown in Fig. 6 for the approx-

imate solutions to the analytical solutions. The exact degradation mechanisms are

simulated for the surface blockage and the electrolyte loss solutions, but the error of

the analytical solutions are provided for reference.
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Chapter 4

Degradation from Single Particle to

Electrode Level (Phase Separating)

Scaling analysis of mosaic phase separation in Li-ion batteries [14]

Methods of statistical physics [222, 223, 224, 225] enable the description of emer-

gent macroscopic phenomena for interacting ensembles, as in liquids and glasses [226,

227] or population genetics [228]. Despite their importance, the understanding of

these many-body systems remains incomplete, especially for open systems driven far

from equilibrium [229, 164]. Lithium ion batteries and other engineered devices often

belong to this class of systems, where macroscopic control can be exerted (e.g. current

or voltage), but the non-equilibrium thermodynamics of particle-level heterogeneities

(local compositions and phases) cannot be controlled.

These particle level heterogeneities in lithium ion batteries consist of electrochem-

ically active particles ranging in size from nano to micrometers [230, 231], which

participate in electrochemical reactions. Lithium ion-electron pairs intercalate into

or out of active material particles, which enables reversible storage of electrochemical

energy. Many of these materials phase separate into high and low lithium concen-

The present chapter is based on my submitted work [14].
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tration phases during (de)intercalation, such as graphite [232, 233, 234, 91, 235, 10,

236, 237, 238], lithium iron phosphate (LFP) [239, 240, 8, 50, 241, 242], lithium

titanate (LTO) [243, 244], lithium titania anatase [245] and lithium cobalt oxide

(LCO) [246, 247], introducing intriguing coupled behavior such as voltage oscilla-

tions and history dependence [65, 13, 51, 49]. In these electrodes, total current or

voltage control is applied on a macroscopic scale, reflecting that of a population of

battery particles. Thus, the macroscopic feedback of such devices is dependent on

the response of many microscopic particles.

Experimental observations in LFP [8] and graphite [238] porous electrodes have

shown that the fraction of particles carrying the majority of the electrochemical cur-

rent, deemed the active particle fraction, responds significantly to the magnitude and

direction of the applied current. Such behavior includes a transition from particle-

by-particle intercalation, which indicates a low active particle fraction, to concurrent

intercalation [8], indicating high active particle fraction, where increased current re-

sults in the activation of a greater population of the electrode. The effect of the

current on this transition suggests that nonequilibrium dynamics are responsible.

To investigate these dynamics, linear stability analysis of a single lithium iron

phosphate particle [67, 164] reveals the suppression of phase separation at high dis-

charge rates. Specifically at high rates, where nonequilibrium effects are introduced,

suppression is caused by explicit concentration dependence (autocatalysis) [164, 51]

in the reaction rates. This leads to kinetically-driven phase separation in the single

particle stability factor from competition between solid diffusion and autocatalysis

driven by reactions. Beyond single particle stability, macroscopic phase separation

introduces non-uniform intercalation between particles [8], requiring population scale

investigation in the nonlinear regime. Population balance models [51, 193] have been

applied to investigate the (dis)charge behavior of phase separating particle popula-

tions. Thermodynamically, bimodal and unimodal regimes appear in the concentra-

tion distribution with increasing applied current as observed from simulations [193].

Thus, we aim to investigate the active particle fraction, which characterizes the be-

havior of phase separating populations [238, 8], whose physical interpretation remains
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Figure 1: a) Example image of a lithium ion battery electrode, with many particles in
both the cathode and anode that participate in electrochemical reactions. b) Different
regimes of behavior are observed based on whether values in the spinodal voltage
or larger voltages are applied, where particle-by-particle or concurrent [8] behavior
can be observed. The particle-by-particle behavior is from the appearance of an
nonequilibrium energy barrier in the region with an effective energy barrier, while
the concurrent behavior is deterministic because there is no barrier. c) The active
particle fraction, which relates the reaction timescales to the process timescales, can
be low or high depending on the timescale interplay between the macroscopic and
microscopic. The low active particle fraction region corresponds to the region with
a barrier, while the high active particle fraction region corresponds to a barrier-less
transition.

to be fully elucidated.

To investigate these problems, many particle simulations of phase separating elec-

trodes [55, 10] have been performed using multiphase porous electrode theory [44],

validating experimental observations of voltage oscillations [65] and asymmetry in

active particle fraction [8] between charge and discharge. Specifically, activation be-

havior in simulations of these populations has been found to change with thermody-

namic barrier height in the spinodal gap for the chemical potential [8]. While the

phenomenology observing the transition has been established, the underlying math-

ematical theory driving these nonequilibrium transitions remains to be fully under-
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stood. There is no simple theory to aid direct design of increased utilization through

active particle fraction in electrodes.

Here, we aim to formulate a mathematical theory for predictive analysis of in-

creased activation in electrodes. Scaling analyses are utilized to shed light on pop-

ulation timescale competition. In single particles of phase-separating electrode ma-

terials, such as LFP [50, 248] and graphite [91], the competition between the re-

action, applied current (process), and diffusion timescales in a single particle for

a phase separating material lead to various regimes of intercalation patterns, such

as core-shell and intercalation wave behavior [3]. Additionally, coupled ion-electron

transfer (CIET) reactions [249, 128] can directly control surface pattern formation

by electro-autocatalysis [164]. However, since many-particle systems are nonlinear,

single-particle scaling analyses are insufficient for determining the behavior of a multi-

particle system. Scaling analyses derived from population balances predict timescale

competition on a multi-particle scale through the active particle fraction, enabling

direct prediction of a transition between stochastic and deterministic regimes.

The active particle fraction scales with the ratio between the single particle re-

action timescale and the many particle process timescale, found to be asymmetric

between charge/discharge. Our predicted analytical results are validated by compar-

ison with multiphase porous electrode theory simulations [43], electrochemical mea-

surements [9], and operando x-ray diffraction experiments [8], matching timescale

trends and observed asymmetries between charge and discharge in the active particle

fraction. This highlights the significant role played by nonequilibrium barriers and

stochastic effects in determining population behavior, particularly within the spinodal

gap.
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4.1 Theory

4.1.1 Single Particle Model

Lithium ion batteries utilize active material particles ranging from nano to microm-

eter size at electrodes for energy storage and release with electrochemical reactions.

Electrolyte solutions containing lithium ions facilitate current flow between the spa-

tial distribution of the electrodes, which is incorporated into electrode-scale modeling

[43]. However, even at the same electrolyte volume, population effects can be ob-

served. We focus on a spatial volume where the bath is assumed to be homogeneous,

and each particle is in contact with an electrolyte reservoir, whose potential can be

controlled externally through 𝜇𝑟𝑒𝑠, the reservoir potential in the electrolyte. For a sys-

tem without transport effects, the reservoir potential essentially the applied voltage in

a lithium ion battery. Electrochemical reactions on the surface and solid diffusion in

the bulk drive the (de)intercalation process in the electrode. The intercalated lithium

ion conservation equation in each particle 𝑛 can be written as

�̇�𝑛 = −∇ · j𝑛, (1)

describing the nondimensionalized concentration of lithium in the active material 𝑐

with the flux j𝑛 = −𝐷𝑐/𝑘𝐵𝑇 ∇𝜇, driven by the chemical potential 𝜇 gradient and

parameterized by the solid diffusivity 𝐷. We apply a reaction boundary condition of

−n · j𝑛 = 𝑖𝑛(𝑐, 𝜇𝑟𝑒𝑠) where n is the direction normal to the particle surface pointing

outward and 𝑖𝑛(𝑐, 𝜇𝑟𝑒𝑠) is the surface reaction rate dependent on intercalated lithium

ion concentration and electrolyte bath potential [69].

Integrating Eq. 1 over the particle volume 𝑉 and defining 𝑐𝑛 = 𝑉 −1
∫︀
𝑉
𝑐𝑛𝑑𝑉 as the

average particle concentration, 𝐴 as the surface, and 𝐿 ∼ 𝑉/𝐴 as the characteristic

length, we observe that the conservation equation can now be written as

˙̄𝑐𝑛 = 𝑉 −1
∮︁
𝐴

𝑖(𝑐𝑛, 𝜇𝑟𝑒𝑠)𝑑𝐴+ 𝑉 −1
∮︁
𝐴

(𝑖(𝑐𝑛, 𝜇𝑟𝑒𝑠)− 𝑖(𝑐𝑛, 𝜇𝑟𝑒𝑠)) 𝑑𝐴. (2)
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Here, the differences from surface concentration to bulk introduce error in the bulk-

averaged equation for concentration, found to be

𝜉𝑛 = 𝑉 −1
∮︁
𝐴

(𝑖(𝑐𝑛, 𝜇𝑟𝑒𝑠)− 𝑖(𝑐𝑛, 𝜇𝑟𝑒𝑠)) 𝑑𝐴, (3)

which is highly history-dependent, changing based on diffusion limitations between

the surface and bulk as well as between different regions on the surface. The appear-

ance of this error is from the difference in surface concentration to average concentra-

tion in the particle, which can be driven by either spatial heterogeneities or diffusion

limitations. For this model, the error, which we will further introduce as noise, is

only induced by error in the model from neglecting diffusion limitations. Spatial het-

erogeneities can also induce noise, which is not explicitly included in the Langevin

equation modeled.

Thus, for a 1D particle, assuming all future 𝑐𝑛 refer to the average concentration,

and applying the volume averaged reaction rate 𝑅 = 𝑉 −1
∮︀
𝐴
𝑖𝑑𝐴, the conservation

equation for a battery particle is analogous to a Langevin equation where the white

noise is driven by spatial heterogeneity of concentration

�̇�𝑛 = 𝑅(𝑐𝑛, 𝜇𝑟𝑒𝑠) + 𝜉𝑛. (4)

This model is driven by the reaction rate 𝑅, which is dependent not only on the

concentration 𝑐𝑛, but also on the reservoir chemical potential 𝜇𝑟𝑒𝑠. The formula of

the reaction rate is expounded in Sec. 4.1.4.

Using our general mass conservation equation in Eq. 2 by comparing the reaction

rate to diffusivity, the maximum deviation of surface to bulk concentration is found

to scale with the timescale ratio between single particle diffusion and reaction, ∆𝑐 ∼

𝜏𝐷/𝜏𝑅 [3]. If we perform a Taylor expansion on the magnitude of the noise from

Eq. 3, the noise is thus bounded by the single particle reaction-diffusion timescale

competition [3] such that 𝜉 ≤
⃒⃒
𝑑𝑅
𝑑𝑐

𝜏𝐷
𝜏𝑅

⃒⃒
. The time dependent solution from an analytical

approximation to the reaction-diffusion equation can be found in Appendix 4.5, where

a colored noise with a timescale of 𝜏𝑅 can be used as an approximation.
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Using proper reaction models, the mass conservation in a reaction-limited phase

separating single particle can be mapped to the problem of motion of a Brownian par-

ticle in a potential well [250]. Brownian motion is often modeled using the Langevin

equation [251, 252], where motion is driven by a potential gradient and includes a

white noise process as in Eq. 1.4 in Ref. [250]. The spatial potential gradient is the

main driving force for movement in the particle.

The equilibrium thermodynamics of a single phase separating particle is well char-

acterized [241]. However, the nonequilibrium energy barrier is distinct from the equi-

librium miscibility gap, where both barriers are plotted in Fig. 2a for a linear reaction

rate. Comparing Eqs. 4 and the Langevin equation for Brownian motion, the nonequi-

librium barrier from integrated reaction rates is found to be the potential 𝑅 ∼ −∇Φ,

assuming that the integrated reaction rates are path-independent and the noise is

near memory-less [251]. For simple linear reaction rates, the potential can be found

analytically (shown in Fig. 2a later in the manuscript), while for nonlinear reaction

rates, the direct potential cannot be integrated. However, potential differences and

their derivatives are found through the integrated reaction rate such that

Φ(𝑐𝑓 )− Φ(𝑐0) = −
∫︁ 𝑐𝑓

𝑐0

𝑅(𝑐, 𝜇𝑟𝑒𝑠)𝑑𝑐 (5)

from the final concentration 𝑐𝑓 to the initial concentration 𝑐0. This provides an

estimation of the nonequilibrium transformation barrier at any applied voltage for a

single particle, similarly to Ref. [164]. The shapes of the potential well and the barrier

heights control the timescales of the transformation process.

4.1.2 Many Particle Model

An averaged conservation equation (Eq. 4) for each of the particles can be con-

structed. However, when dealing with a large number of particles, the number of

variables increases quickly and makes calculations intractable, necessitating various

forms of averaging. By eliminating fast variables [253], the number of variables can

be significantly reduced to a set of “slow” macroscopic descriptors, aligning with ther-
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modynamic observations [254]. Integration can be performed by elimination of fast

variables through projection operations [255, 252, 254, 224]. These methods are ap-

plicable only if the autocorrelation time of the Langevin noise is much smaller than

the timescales of large variation [253]. For stochastic differential equations [256], this

implies that the timescale of the noise term must be substantially shorter than that

of the driving force.

In a reacting particle which is reaction limited, this assumption indicates that the

difference in reaction rate from the exact surface concentration to the averaged bulk

concentration is small. This condition ensures that no additional timescales, such

as solid diffusion, convolute the integration of the reaction timescale, which is true

for most battery materials and particle lengthscales except graphite platelets [3]. If

this condition is satisfied, we can map this system to a Fokker-Planck equation to

describe a reaction limited system of particles [13], shown in the projection operation

in Appendix 4.6. Assuming white noise, this equation can be described with the

operator ℒ𝐷, describing the evolution of the population given an initial distribution

as
𝜕𝑓

𝜕𝑡
= ℒ𝐷𝑓 =

𝜕(𝑓𝑅)

𝜕𝑐
+

𝜕

𝜕𝑐

(︂
𝐷𝑐
𝜕𝑓

𝜕𝑐

)︂
, (6)

where the diffusivity 𝐷𝑐 is analogous to the thermal diffusivity [51], which is related

to the Langevin noise magnitude through the fluctuation dissipation theorem [252],

2𝐷𝑐𝛿(𝑡 − 𝑡′) = ⟨𝜉(𝑡)𝜉(𝑡′)⟩, if the noise is assumed to be white. (The exact solution

finds that the noise is colored, indicated in Appendix 4.5, but the magnitudes are

quite small).

Error bounds on the Langevin equation inform the noise magnitude in the Fokker-

Planck equation. From the bounds of the Langevin equation, we see that the mag-

nitude of the noise in the Fokker-Planck equation is bounded by the values in the

Langevin equation as 𝐷𝑐 ≤ 1
2

(︁
𝑑𝑅
𝑑𝑐

𝜏𝐷
𝜏𝑅

)︁2
. From Ref. [3] and the expected magni-

tude of the stability function, the magnitude of the diffusivity is expected to be

𝒪(10−1) ∼ 𝒪(10−15) s−1 depending on intercalation material and applied C-rate.
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Figure 2: a) Potential barrier for a linear reaction rate as an example displaying
the energy barriers at different applied voltages. The equilibrium thermodynamic
barrier is plotted in dotted blue for reference. b) Different barrier heights are shown
for the Butler-Volmer and coupled ion-electron transfer reaction rates at different
applied voltages. c) The absolute value of the single particle stability criterion of the
maxima and non-global minima are plotted for different potentials for the BV and
CIET models. A clear asymmetry is seen in the evaluation of the slopes between
charge and discharge.

4.1.3 Extraction of Process Timescales

The equilibrium solution to the Fokker-Planck equation can be found from properties

of the operator ℒ𝐷 governing of the evolution of population dynamics [250, 257]. The

solution can be expanded around its eigenfunctions, where the equilibrium solution

corresponds to the eigenvalue with value zero [258]. Importantly, the timescale in

which the equilibrium limit is reached is determined by the first nonzero eigenvalue

of the operator. The timescale is proportional to the inverse of the first nonzero

eigenvalue, 𝜏 = −1/𝜆1, suggesting that for each applied voltage, a process timescale

representing a C-rate can be extracted.

We observe that the effective nonequilibrium potentials as derived in Eq. 5 for

our particle exist in two possible regimes. The first arises when there are two local

minima and an energy barrier separating them. This region occurs when the applied

voltage is within the miscibility gap and is caused by a metastable concentration

solution for zero reaction. This metastable concentration introduces a local maxima

in the nonequilibrium barrier, differing from the equilibrium barrier, as in Fig. 2a. In

this regime, results are stochastic, as noise is required to initiate barrier hopping for
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individual particles. This regime corresponds to particle-by-particle intercalation [8].

In the other limit, at voltages that are outside the miscibility gap, there is no energy

barrier. This regime is deterministic as no barrier crossing is required. Thus, two

different timescales are extracted from these regimes.

In the stochastic regime, methods analogous to those for solving the Brownian

particle problem can be applied to the intercalation process, where the transformation

timescales depend on potential differences. For lithium iron phosphate, based on a

boundary layer expansion [250], the first nonzero eigenvalue is found to be

𝜆𝑠 ∼ −
√︀
𝑑𝑅/𝑑𝑐(𝑐max)|𝑑𝑅/𝑑𝑐(𝑐min)|

2𝜋
exp

(︂
−𝐷−1𝑐

∫︁ 𝑐max

𝑐min

𝑅(𝑐)𝑑𝑐

)︂
, (7)

where 𝑠 indicates the stochastic regime. Here, 𝑐min and 𝑐max are the non-global

minima or maxima of the potential, both found when the reaction rate is zero

(𝑅(𝑐min,max, 𝜇𝑟𝑒𝑠) = 0). This is analogous to Kramer’s problem of barrier cross-

ing [259]. From the eigenvalues, the timescale in the stochastic region appears as

𝜏𝑠 ∼
2𝜋√︀

𝑑𝑅/𝑑𝑐(𝑐max)|𝑑𝑅/𝑑𝑐(𝑐min)|
exp

(︂
𝐷−1𝑐

∫︁ 𝑐max

𝑐min

𝑅(𝑐)𝑑𝑐

)︂
. (8)

The barrier height of the potential as well as the curvature of the maxima and minima

control the passage time from the local to the global minima [260] in transition state

theory.

The barrier height can be obtained from the integrated reaction rate between the

local minima and maxima, plotted in Fig. 2a for the Butler-Volmer and coupled ion

electron transfer reaction rates, where the reaction rates are described in Section 4.1.1.

The different barrier magnitudes in the stochastic regime are shown in Fig. 2b at

varying applied voltages. While the magnitude of the barrier is expected to affect

behavior within the spinodal gap, the stability criterion of the reaction [164] (the slope

of the kinetics) also influences observed macroscopic asymmetries between charge and

discharge. The curvature of the maxima and minima are found from the slope of the

reaction kinetics when the rate is zero. The curvature of the potential happens to
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be the single particle stability criteria [164], used in Ref. [67] to indicate whether a

single particle will phase separate. Suppression of phase separation at discharge is

predicted from a single particle model of lithium iron phosphate.

Similarly, the population scale model predicts significantly shorter timescales for

relaxation during the discharge process as observed in Fig. 3c from larger magnitudes

of the single particle stability criterion at the local maxima. In a broader sense, in

the stochastic region, this suggests that the discharge process is more stable rela-

tive to charge at a population scale due to the longer timescales required to achieve

equilibrium, driven by single particle stability at the local maxima.

In the deterministic regime, when no nonequilibrium energy barrier exists, similar

approximations can be applied to find that the eigenvalues are deterministic [261, 262].

The deterministic timescale is directly found to be

𝜏𝑑 ∼ −0.5𝐷−1𝑐

(︂∫︁ 𝑐𝑓

𝑐0

𝑅(𝑐)𝑑𝑐

)︂−1
, (9)

where 𝑑 indicates deterministic, outside the voltage range corresponding to the spin-

odal gap. This timescale coincides with the concurrent intercalation mechanism [8].

An equality boundary condition between the deterministic and stochastic timescales

when there is no nonequilibrium potential barrier can be applied. This is denoted by

the critical applied voltage 𝜇𝑟𝑒𝑠,𝑐𝑟𝑖𝑡 such that

𝜏𝑑(𝜇𝑟𝑒𝑠,𝑐𝑟𝑖𝑡) = 𝜏𝑠(𝜇𝑟𝑒𝑠,𝑐𝑟𝑖𝑡). (10)

The combination of these two timescales indicate the introduction of a piecewise

process timescale, where the stochastic timescale is observed if the applied voltage

corresponds to the spinodal gap, while the deterministic one is observed if not,

𝜏𝑝 =

⎧⎪⎨⎪⎩𝜏𝑠 |𝜇𝑟𝑒𝑠| ≤ 𝜇𝑟𝑒𝑠,𝑐𝑟𝑖𝑡

𝜏𝑑 |𝜇𝑟𝑒𝑠| > 𝜇𝑟𝑒𝑠,𝑐𝑟𝑖𝑡

. (11)

The selection of which timescale should be calculated depends on whether the voltage
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is in the spinodal gap. This transition correlates with the passage between particle-

by-particle to concurrent intercalation.

4.1.4 Reaction Models

The correct choice of reaction models is important to accurate model the inter-

calation process, as it impacts energy barriers, prefactors, and other stability cri-

teria. Reactions are driven by the overpotential from the electrochemical poten-

tial differences between the electrolyte and intercalation solid, indicated as 𝑒𝜂 =

(𝑒𝜑s + 𝜇(𝑐)) − (𝑒𝜑+ + 𝑘B𝑇 ln 𝑎+) + 𝑖𝑅f, where 𝜇(𝑐) is the chemical potential of the

intercalated lithium, 𝜑+/𝜑s are electrical potentials of lithium ions in the electrolyte

and solid, and 𝑐 is the intercalated lithium concentration. The traditional volumetric

Butler-Volmer (BV) reaction rate is modeled with transition state theory as

𝑅 = 𝑘0(𝑐) (exp (−𝛼𝜂)− exp ((1− 𝛼)𝜂)) , (12)

with the prefactor 𝑘0(𝑐) = 𝑘*0𝑎
1−𝛼
𝑂 𝑎𝛼𝑅, where 𝑘*0 is the reaction current prefactor, 𝛼

is the charge transfer coefficient, and 𝑎𝑅 or 𝑎𝑂 are the activity of the oxidation or

reduction agent. We assume 𝑘*0 = 1 s−1 for the Butler-Volmer reaction rate [241].

However, the standard Butler-Volmer model does not account for electron avail-

ability in the intercalation solid, which can become limiting at higher overpoten-

tials [128, 249]. We account for this with the coupled-ion electron transfer (CIET)

model, applying an analytic approximation for a simplified expression [166] given by

𝑅 =
𝑘*0(1− 𝑐)√

4𝜋𝜆
(ℋ(−𝜂𝑓 , 𝜆)− 𝑐ℋ(𝜂𝑓 , 𝜆)) , (13)

where the formal overpotential is 𝜂𝑓 and the reorganization energy in the intercalation

solid is 𝜆. The formal overpotential 𝑒𝜂𝑓 = 𝑒𝜂 − 𝑘𝐵𝑇 ln 𝑐 separates ion concentration
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Figure 3: a) The transformation timescales of the intercalation process inside and
outside the spinodal gap (indicated with the vertial dashed lines) are shown, with
green or blue triangles indicating simulation data for the BV or CIET reaction mod-
els. Aquamarine and blue lines display the range of the theoretical model for the BV
or CIET reaction models, where the bottom line shows the limit when the barrier
influence is zero, while the top line displays the limit for a large impact from the
barrier. Orange crosses show predicted timescales from Ref. [9] of voltage hold exper-
iments for an LFP electrode. Inside the spinodal gap the process is stochastic, while
outside the gap the process is deterministic, leading to the appearance of two regimes.
b) The C-rate response from timescale analyses at different voltages are shown. The
duplicate C-rate solutions at different voltages are indicated with a horizontal black
line at |C-rate| = 0.18. c) The predicted active particle fraction at different C-rates is
shown from the required particle fraction active necessary from the minimum voltage
required in a) in aquamarine or dark blue for BV/CIET reactions. Orange crosses
indicate experimental data from Ref. [8], while dark orange triangles indicate porous
electrode simulation data from the same paper.

from the standard overpotential 𝑒𝜂. The helper function ℋ(𝜂𝑓 , 𝜆) is defined as

ℋ(𝜂𝑓 , 𝜆) =

√
𝜆𝜋

1 + exp (−𝜂𝑓 )
erfc

⎛⎝𝜆−
√︁
1 +

√
𝜆+ 𝜂2𝑓

2
√
𝜆

⎞⎠. (14)

We assume that the exchange current prefactor 𝑘*0 = 10 s−1 for the coupled ion elec-

tron transfer rate [129].
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4.2 Analysis

We perform the above analytical timescale analyses for lithium iron phosphate, a

common phase separating cathode material [67]. Single particle reaction rates [128]

coupled with equilibrium thermodynamics can be integrated to extract nonequilib-

rium barriers and timescales. For lithium iron phosphate, a transition between the

regimes with and without a barrier is observed based on applied potential in Fig. 2a.

This indicates the appearance of the transition between the stochastic and determinis-

tic timescales. We validate these timescale analyses with multiphase porous electrode

theory simulations [44, 241, 242] with voltage control to extract timescales of phase

transformations from a population. (Parameters and the model for the voltage con-

trol simulations were described in Appendix 4.3.) Experimental measurements from

Refs. [9] and [8] were used for validation.

4.2.1 Process Timescale

A clear two phase regime is observed between the stochastic and deterministic regions

as in Fig. 3c for both theory and simulations. By extracting process timescales from

the intercalation process in Eq. 11, specific timescales from the two phase transition

can be observed. For current control, the process timescale is directly found to be

the inverse C-rate, 𝜏𝑝 ∼ C-rate−1 [3].

For voltage control, the process timescale can be predicted from the applied volt-

age in Eq. 11, observed in Fig. 3a. In the spinodal gap, the process timescales are

driven by the energy barrier and the curvature of the barrier (which contributes to

the prefactor in Eq. 7). The barrier height and the single particle stability criterion

(𝑑𝑅/𝑑𝑐), which affects the prefactor, are shown respectively in Fig. 2b/c. The mag-

nitude of the concentration induced noise influences the contribution of the barrier

height to the timescale. If the white noise magnitude is large (𝐷𝑐), the effects of the

potential barrier are diminished and the single particle stability criteria dominates the

timescale measurement, as shown in the lower limit of the theoretical prediction in the

spinodal gap for Fig. 3a. The upper limit indicates when the barrier effects are more
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pronounced, shown in the upper limit of the theoretical prediction in the spinodal

gap. Strong asymmetry with fast reactions for discharge is observed in porous elec-

trode simulations when barrier effects are diminished, suggesting that barrier effects

are minimal and single particle stability controls timescales.

Additionally, theoretical predictions show local maxima in the transformation

timescales are observed at the critical voltages that eliminate the energy barrier.

The appearance of local maxima matches experimental observations in Ref. [9] for

lithium iron phosphate (dis)charge timescales under voltage holds, shown with orange

crosses, as well as porous electrode simulation results shown with triangles, both in

Fig. 3a. The appearance of the maxima arises from the decrease in timescale in

both the deterministic region and the spinodal region when voltages further from the

critical voltage are applied.

4.2.2 Reaction Timescale

The single particle reaction timescale under voltage control is directly found to be

𝜏𝑅 ∼ 𝑅−1. However, the selection of the single particle reaction timescale under

current control is subtle, as multiple chemical potential solutions can generate the

same C-rate at varying active particle fractions, as shown in Fig. 3. However, when

specific C-rates are applied, reproducible voltages, which give rise to repeatable active

particle fractions, are selected for each C-rate, despite the multiplicity of solutions.

This repeatability is caused by the principle of energy minimization, where the system

chooses the minimum voltage needed to extract the same current [263]. The minimum

voltage principle also gives rise to a nonequilibrium zero current voltage gap discussed

in Appendix 4.4. From the selection of the minimum applied voltage, a single particle

reaction timescale for voltage control can be found. Thus, the reaction timescale is

directly related to the minimum voltage required for a certain current, found through

the reciprocal of the single particle reaction rate calculated at that voltage.
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4.2.3 Timescale Competition

The single-particle reaction timescale 𝜏𝑅, which indicates the activation of all particles

concurrently, competes with the process timescale 𝜏𝑝. This competition is observed

through changes in the active particle fraction (APF), described by the fraction of

particles carrying the majority of the current [8]. Experimentally, the active particle

fraction is found by setting a specific current cutoff and defining the active particle

fraction as the fraction of particles whose current is above a certain value. How-

ever, in practice it has been found that the trend relating active particle fraction is

uncorrelated with the specific current cutoff value [8].

Thus, since the active particle fraction is roughly uncorrelated with the cutoff

value, the low rate particles do not contribute much to the total current and can

be neglected in the total current calculation. The approximation can be made that

C-rate = APF × 𝑅, indicating that the total C-rate is carried by the reaction rate

of the activated particles. The active particle fraction can then determined from the

fraction of single particles needed to extract the macroscopic current,

APF ∼ 𝜏𝑅
𝜏𝑝
, (15)

as illustrated in Fig. 3c. The active particle fraction is essentially a nondimensional-

ized factor proportional to the ratio between the reaction and the process timescales.

Competition between the reaction timescale and the process timescale alters the active

particle fraction, indicating that the timescale ratios relate single particle to popu-

lation properties. When the reaction timescale selected by the minimum voltage is

large relative to the process timescale, more particles are needed to carry the current,

resulting in a higher active particle fraction. Conversely, if the reaction timescale is

smaller, fewer particles are required and the active particle fraction is smaller. From

a physical perspective, the predicted active particle fraction represents a nondimen-

sionalized measure that assesses the utility of the electrode particles at the applied

voltage.

This observation facilitates the transition between the low vs. high particle ac-
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tivation fraction regimes between small and large C-rates, leading to the observed

asymmetry between charge and discharge. Analytical approximations of the active

particle fraction indicate that the active particle fraction appears physically as com-

petition between the single particle reaction and population process timescale. The

asymmetry is validated with constant current porous electrode theory simulations

shown by triangles, as well as operando x-ray diffraction experiments [8] under con-

stant current shown by crosses. When a low C-rate is applied, low voltage values in

the miscibility gap satisfy the current constraint, causing the intercalation process

to be in the stochastic regime. At higher C-rates, larger voltage values outside the

miscibility gap are required to extract more current. When a high C-rate is applied,

asymmetry between charge and discharge appears because of the shorter timescales

predicted in the discharge process, as seen in Fig. 3b. This is caused by differences

in nonequilibrium barrier heights in the (dis)charge process in Fig. 2b, generating

asymmetry in process timescales observed in Fig. 3c.

4.3 Simulation and Theory Parameters

A free energy model includes the homogeneous term

𝑔ℎ(𝑐) = Ω𝑐(1− 𝑐) + 𝑘𝐵𝑇 (𝑐 ln 𝑐+ (1− 𝑐) ln (1− 𝑐)) (16)

in the total free energy

𝐺(𝑐,∇𝑐) =
∫︁
𝑉

(︂
𝑔ℎ(𝑐) +

1

2
𝜅|∇𝑐|2

)︂
𝑑𝑉, (17)

where Ω is the regular solution parameter and 𝜅 is the gradient penalty term based on

the Cahn-Hilliard free energy. The chemical potential is found to be the variational

derivative of the free energy 𝜇 = 𝛿𝐺
𝛿𝑐

. An Allen-Cahn [69] reaction model, found to be

suitably appropriate for modeling reaction limited nanoparticles, was used as

�̇� = −∇ · j+𝑅 (18)
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to model our equation with the Butler-Volmer reaction rate. The Butler-Volmer

reaction is modeled as in Ref. [69] as

𝑅 = 𝑘0𝑎
1−𝛼
𝑙 𝑎𝛼𝑅/𝛾

‡ (︀𝑒−𝛼𝜂 − 𝑒(1−𝛼)𝜂
)︀
. (19)

Here, the activity of the reduction agent 𝑎𝑅 = 𝑐
1−𝑐 , while the transition state is related

to the number of blocked sites 𝛾‡ = (1 − 𝑐)−1. The electrolyte activity 𝑎𝑙 is set to 1

when there is no change in electrolyte concentration.

In our simulations, we perform a voltage hold of 3 hours for each set of simulations,

using 100 particles in each simulation for many particle effects. The simulations were

conducted in a single volume with the Allen-Cahn reaction model [69]. The absolute

and relative tolerance were both set to 1 × 10−6 with an average particle size of

100 nm and a standard deviation of 0.1 nm and an initial concentration of 0.02 or

0.98, depending on whether a higher or lower voltage is applied. An electrolyte

concentration of 1000mol/m3 using an electrolyte model from Ref. [77] was used as

the bath. In the electrode materials, a solid diffusivity of 5.3×10−19m2/s was applied.

The gradient penalty term 𝜅 was assigned to be 5.0148×10−10J/m, while the regular

solution parameter was Ω = 1.8560× 10−20J/atom.

The cutoff for active particle fraction was set to be 5× 10−4s−1 arbitrarily, but we

note that as long as the cutoff is consistent, the exact value is not important.

4.4 Appendix: Zero Current Voltage Gap

The nonequilibrium barrier modifies the magnitude of the zero current voltage barrier,

as observed in Fig. 4. The zero current voltage barrier is generated by the difference

between the minimum voltage needed to extract the low C-rate values. Unlike the

equilibrium barrier derived from thermodynamic properties, this barrier is triggered

by the minimum voltage needed to access a certain timescale. Experimentally mea-

sured zero current voltage barriers, such as 0.8 kBT predicted in Ref. [11] and 1.4 kBT

in Ref. [10], are much smaller than the 4 kBT equilibrium barrier predicted in Ref. [8],

126



Figure 4: The zero current voltage gap [10, 11] for a lithium iron phosphate material
plotted by showing the minimum voltage required to access certain C-rates, with the
scale of experimental measurements (1 kBT) for reference.

which does not account for the nonequilibrium reactions in the barriers. In contrast,

our observations indicate that the predicted zero current voltage barrier is approxi-

mately ∼ 1 kBT for both reaction rates, aligning much more closely with experimental

measurements. This suggests that it is necessary to capture the nonequilibrium bar-

rier to accurately model the spinodal gap.

4.5 Appendix: Solution to Time Correlation Func-

tion

The time dependent value of the noise can be predicted by the analytical solution of

the spherical reaction diffusion equation, found in Ref. [48]. Based on the definition

of the noise and its dependence on the difference between surface and bulk values, we

observe that

𝜉(𝑡) ≈ 3
𝑑𝑅

𝑑𝑐

∫︁ 1

0

(︁
𝑐(�̃�)− 𝑐(1)

)︁
�̃�2𝑑�̃�, (20)

where �̃� is the nondimensionalized radius based on the particle size 𝐿. This analysis

is based on scaling of the conservation equation. Using the Fourier expansion in

Refs. [48, 264] as well as a Taylor series at the boundary, expanding the concentrations
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such that 𝑐(�̃�) = 𝑐(1) + 𝑑𝑐
𝑑�̃�
(�̃�− 1), the noise is approximated as

𝜉(𝑡) ≈ 3
𝑑𝑅

𝑑𝑐

∫︁ 1

0

𝑑𝑐

𝑑𝛿

𝑑𝛿(𝑚)

𝑑𝑚

𝑑
(︁
𝑚(�̃�)−𝑚(1)

)︁
𝑑�̃�

(�̃�− 1)�̃�2𝑑�̃�, (21)

which indicates that the noise is approximated as

𝜉(𝑡) ≈ 3
𝐽𝐿C-rate
𝑐𝑠,𝑚𝑎𝑥𝐷(𝑐)2

𝑑𝐷

𝑑𝑐
(𝑐)

∫︁ 1

0

(︃
�̃�−

∞∑︁
𝑘=1

2

𝜆𝑘
exp

(︂
−𝜆

2
𝑘𝐷

𝐿2
𝑡

)︂
cos (𝜆𝑘�̃�) csc (𝜆𝑘)

)︃(︁
�̃�− 1

)︁
�̃�2𝑑�̃�,

(22)

where we assume that the state of charge is approximately 𝑐 = 𝑡C-rate. The eigenval-

ues are found with sin𝜆𝑘−𝜆𝑘 cos𝜆𝑘 = 0. Since the Fourier terms are much smaller in

magnitude than �̃�, we observe that the correlation function is observed to be nearly

exponential with a time constant of 𝜏𝑅. Through numerical solutions to the corre-

lation function, it is found that a near exponential approximation can be used such

that the correlation function can be approximated as

⟨𝜉(𝑡)𝜉(𝑡+ 𝜏)⟩ ≈ Γ𝑒−𝑡/𝜏𝑅 , (23)

where Γ = 𝒪(10−29) for lithium iron phosphate. Thus, we assume that the noise

generated from diffusion limitations can be approximated as colored noise with a

time constant of 𝜏𝑅. If the colored noise satisfying Eq. 23 is applied, we observe that

a new Langevin equation can be modeled as

�̇� = 𝑅 +
√
Γ𝜉(𝑡). (24)

To linear order, the solution for the single particle equation can be approximated to

be

𝑐 =
√
Γ

∫︁ 𝑡

0

𝜉(𝜏)𝑒−𝜏
−1
𝑅 (𝑡−𝜏)𝑑𝜏, (25)

where 𝜏−1𝑅 is an averaged timescale representing the driven reaction rate such that

𝜏𝑅 =
(︁∫︀ 1

0
𝑅(𝑐)𝑑𝑐

)︁−1
, which is the exchange current density for a linear reaction rate.

By multiplying Eq. 24 by 2𝑐 and averaging, we find that the variance evolution is
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shown as

𝑑 ⟨𝑐2⟩
𝑑𝑡

= −2 ⟨𝑅𝑐2⟩+ 2
√
Γ ⟨𝑐(𝑡)𝜉(𝑡)⟩

≈ −2 ⟨𝑅𝑐2⟩+ 2
√
Γ ⟨𝜉(𝑡)𝜉(𝑡)⟩

= −2 ⟨𝑅𝑐2⟩+ Γ𝜏𝑅

(︁
1− 𝑒−2𝜏

−1
𝑅 𝑡
)︁
.

(26)

Similarly, applying the integral over 𝑐2 to the marginal over the noise in the Fokker-

Planck equation as in Eq. 6 indicates that

𝜕 ⟨𝑐2⟩
𝜕𝑡

= −2 ⟨𝑅𝑐2⟩+ 2𝐵(𝑡), (27)

where 𝐵(𝑡) is the noise in the Fokker-Planck equation. The solution of the noise is

mapped to

𝐵(𝑡) =
1

2
Γ𝜏𝑅

(︁
1− 𝑒−2𝜏

−1
𝑅 𝑡
)︁
. (28)

A modified Fokker-Planck equation to the linear order accounting for the effects of

colored noise can be observed as

𝜕𝑓

𝜕𝑡
= ℒ𝐷𝑓 =

𝜕(𝑓𝑅)

𝜕𝑐
+ Γ

𝜕

𝜕𝑐

(︂
1

2
𝜏𝑅

(︁
1− 𝑒−2𝜏

−1
𝑅 𝑡
)︁ 𝜕𝑓
𝜕𝑐

)︂
. (29)

However, the magnitude of this noise is small enough that a white noise approximation

is sufficient, which is applied in the manuscript.

4.6 Appendix: Projection Operation

We assume that the white noise can be expanded in powers of the correlation time [265],

assumed to be a Markov process with a stationary distribution of 𝑒(𝜉). Thus, we can

separate a linear operator on the 𝜉 dependence such that

𝒲(𝜉|𝜉′) = 𝑊 (𝜉|𝜉′)− 𝛿(𝜉 − 𝜉′)

∫︁
𝑊 (𝜉′′|𝜉)𝑑𝜉′′, (30)
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with a transition probability of 𝑊 (𝜉|𝜉′) describing the transition between states 𝜉′

and 𝜉. The projection 𝑃 (𝑐, 𝜉|𝑐′, 𝜉′) = 𝑒(𝜉)𝛿(𝑐− 𝑐′) can be applied to eliminate the fast

variables on each conservation equation (Eq. 4), indicating that 𝑃𝜌(𝑐, 𝜉) = 𝑒(𝜉) ⟨𝑓⟩

using ⟨𝑎⟩ =
∫︀
𝜉
𝑒(𝜉)𝑎(𝜉)𝑑𝜉 to indicate the average over the noise. We note that 𝑃𝒲 = 0

is satisfied, since 𝒲 operates independently of 𝑐. The joint probability distribution

𝑓(𝑐, 𝜉, 𝑡) [253] follows

𝜕𝑓(𝑐, 𝜉, 𝑡)

𝜕𝑡
= −

∑︁
𝑖

𝜕

𝜕𝑐𝑖
(𝑅𝑖 + 𝜉𝑖) 𝑓 +𝒲𝑓. (31)

We apply the projection 𝑃𝑓 = 𝑒(𝜉) ⟨𝑓⟩ [253], where we integrate over the noise to

eliminate fast variables, observing that

𝜕𝑓

𝜕𝑡
= − 𝜕

𝜕𝑐𝑖

(︀
⟨𝑅⟩+ ⟨∆𝜉𝑖𝒲−1∆𝜉𝑗⟩

)︀
𝑓. (32)
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Chapter 5

Extracting Particle Degradation

From Electrodes with Pulses

Physics-informed design of hybrid pulse power characterization tests for

rechargeable batteries [15]

5.1 Introduction

Post degradation, degradation metrics are required for determining the remaining

utility of the cell. A key metric in the design of Li-ion battery materials is rate

capability for discharge [266, 267, 268], but there is a complex, material-dependent

trade-off between increased cycling rates and reduced battery lifetime. Capacity fade

and internal degradation resulting from long-term use of Li-ion batteries must be

rapidly and accurately quantified in order to improve their performance, reliability,

and safety [81, 269, 270, 271] and inform second-use and end-of-life decisions [39].

Degradation of Li-ion batteries stems from a plethora of physical mechanisms, such

as solid electrolyte interphase (SEI) formation [272, 21, 24, 21, 25] and lithium metal

plating [92, 91, 273, 236] at the anode and structural changes at the cathode, such

The present chapter is based on my published work in the Journal of the Electrochemical Soci-
ety [15].
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as oxidation-induced cation disorder [12], rock-salt phase-transitions and densifica-

tion [27, 185], anti-site defects [46], and secondary particle cracking [85, 274]. These

degradation mechanisms lead to losses in rate capability by lowering accessible ca-

pacity at the same current or power within the operating voltage range. When this

measure of state of health (SoH) reaches a given threshold, such as 80% of the nominal

capacity under slow discharge, the battery is considered to have reached the end of

its useful life, but the internal state of degradation is unknown and difficult to assess.

During the course of battery operation, assessing the performance and health

of a cell is a challenging task, normally addressed by intermittent diagnostic tests.

Various types of diagnostic tests are performed non-destructively to evaluate the

ability of a battery to store and release energy, typically after a battery has undergone

significant electrochemical cycling [2, 275]. High-precision coulometry tests can infer

different degradation modes from measurements [72, 71, 276], but require equipment

with extreme measurement precision. Reference performance tests (RPT) measure

the ability of a battery to charge and discharge a specific current [277, 278, 279].

Electrochemical impedance spectroscopy (EIS) quantifies the frequency-dependent

response to small AC perturbations [280, 281]. Hybrid pulse power characterization

(HPPC) tests utilize large intermittent current pulses and rest periods to capture the

behavior of a cell under high currents far from equilibrium [74, 282, 62, 283]. All of

these tests can be leveraged for interpretable machine learning of battery degradation,

based on cell-level SoH and performance, such as internal resistance and accessible

capacity [284, 285, 286, 287, 288], but connections to microscopic kinetic parameters

could lead to more robust feature engineering and insights into the internal state of

degradation.

To comprehensively understand the operational limits of a battery in diagnostics,

it is essential to subject it to high-rate perturbations. It is advantageous to initiate

experiments from an equilibrium state, as it facilitates better calibration and supplies

a more controlled starting point for assessing behavior, which most diagnostic tests do

not provide. For example, RPT tests impose a current constraint for a full (dis)charge,

so the battery is continuously residing in a nonequilibrium state. Conversely, EIS is
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generally performed near equilibrium in batteries, since applying a DC bias (as is often

done in fuel cells) results in drifting spectra associated with dynamical heterogeneities

and varying state of charge. Among the various diagnostic tests available, HPPC tests

stand out, as they offer an abundance of kinetic information far from equilibrium yet

are calibrated against equilibrium conditions.

State-of-the-art experimental design of diagnostics using pulses lacks a systematic

basis to distinguish and quantify different degradation mechanisms. Information is

typically extracted by fitting lumped parameters that are only qualitatively connected

with degradation mechanisms, such as the loss of active material, loss of lithium

inventory, or increasing area-specific impedance [289, 42]. While such results from

diagnostic tests provide valuable insights, they are difficult to connect unambiguously

with root causes of degradation [290, 1, 37, 291]. These observed “symptoms” do not

offer a direct mapping to specific mechanisms that can be rigorously captured in

physical models, such as film resistance and electrolyte concentration loss [12, 13].

The introduction of pulse measurements in electrochemistry is not a recent devel-

opment, as they are frequently used to extract information on diffusive dynamics [20]

with Galvanostatic and Potentiostatic Intermittent Titration Techniques (GITT, PITT) [292,

75, 76]. Pulse measurements are sometimes interpreted by porous electrode theory

(PET) simulations [77, 78, 293, 128, 129, 294]. Despite their widespread utiliza-

tion [295, 296], however, there is still inadequate understanding of how pulses affect

cells. For HPPC tests in particular, the theoretical understanding of pulse dynam-

ics in the short-time reaction-limited regime is incomplete, and no clear rationale

for selecting specific states of charge and currents for the applied pulses is available.

While some progress has been made with porous-electrode type modeling to simu-

late HPPC, as shown in Fig. 1b with pulses from measurements similar to industry-

standard HPPC [74, 297, 62, 298, 299], these protocols have not yet been optimized

to extract maximum information.

Current methods approaching experimental design with PET simulations present

significant computational challenges due to the extensive search space and the signifi-

cant computational time required [300]. Although efficient numerical solver backends
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Figure 1: a) A comparison of the physical description of pulsing and resting in a
battery cell, where lithium ions in the electrolyte are purple and battery particles
are blue. b) Voltage response to a current pulse and c) current response to a voltage
pulse and the effects of degradation on a pulse measurement in an industry-standard
HPPC measurement are shown, with the pulse and rest sections displayed.

such as SUNDIALS [301] can help overcome these challenges [4], such problems are

still rate limiting. As battery management systems move towards health monitoring

and applying optimized protocols during operation, simple optimization problems to

extract degradation from diagnostics become more attractive [38]. Previous work [74]

analyzing HPPC modeling with porous electrode theories applied sensitivity stud-

ies for cell-specific models without providing general analysis of information content

extracted from pulses. Furthermore, PET-type simulations often suffer from poor

identifiability of parameters inferred from experimental data [300, 302, 303], which

complicates attempts to predict improved experimental design. These problems have
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hindered progress in the search for optimal protocols [304, 305], especially for battery

management systems. Thus, simpler models of pulse diagnostics for a generalized

design framework are necessary.

In view of these challenges, we choose to tackle this problem by establishing a phys-

ical interpretation of certain simulated cell behavior subject to pulsed conditions, and

attempt to find a comprehensive method to understand pulse experiments. Because

degradation mechanisms are convoluted between the two electrodes, distinguishing

physical degradation mechanisms for a full cell is not a simple task. To address this

challenge, we develop a theoretical framework to separate mechanisms for a half-cell

material using the fitness framework for voltage pulses, and then expand the frame-

work to a full cell. Our investigations have led to the development of an explicit

representation that separates degradation mechanisms for full cells and can be used

as a direct function for optimization problems. We demonstrate that voltage pulses

using the fitness framework reliably extract dominant degradation mechanisms using

multivariable optimization, and validate these results with porous electrode simula-

tions. Overall, our analysis has also led us to propose voltage pulses, a novel method

of measuring battery degradation, using a “fitness” framework [13]. The key advan-

tage of the voltage pulse method is the explicit physical separability of degradation

mechanisms from the fitness framework, shown in Eq. 13, which indicates that loss in

fitness can be directly attributed to each degradation mechanism. This contrasts with

implicit formulations in current pulses, simplifying numerical calculations. Asymmet-

ric effects of the cathode/anode on the full cell system based on kinetic parameters

are predicted from our explicit model, which increase numerical efficiency in opti-

mization problems. Voltage pulses also provide other physical advantages, such as

mitigating electrode heterogeneity that results from phase separation [8] and electro-

autocatalysis [49], which increases diagnostics accuracy. Current response is also

closely linked to rate capability, which holds higher importance in high-rate battery

operation relative to conventional degradation metrics, such as practical capacity and

lifetime [306, 307].

This implementation of physics-informed HPPC significantly enhances the qual-
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ity of information gathered compared to industry-standard HPPC experiments. The

method demonstrates an asymmetric sensitivity of information to degradation param-

eters between charge and discharge from differing scales of cell kinetics. It enables

us to discern the physical roots behind degradation symptoms more accurately and

efficiently. The impact of different states of charge and voltages on probing distinct

degradation mechanisms is also explored [42]. Our investigations also shed light on

the limitations of HPPC experiments, specifically the fact that degradation mecha-

nisms at the overpotential dominant electrode (the electrode where the overpotentials

are larger than that at the opposing electrode) are extracted more easily than those

at the non overpotential dominant electrode.

5.2 Theory

5.2.1 Degradation Mechanisms and Models

During a pulse, lithium ion-electron pairs (de)intercalate into the solid active material

or electrolyte, driven by a current or voltage hold. This large perturbation over short

timescales offers signifcant insight into the electrochemical dynamics [3]. Since ion

diffusion timescales in the electrolyte and solid are much longer than the reaction

timescales, the latter are most discernable immediately after the pulse is applied.

Even at shorter timescales, double layer relaxation tends to dominate [308, 309, 310],

so the experimental choice of measurement times must be tailored to avoid this effect.

Timescale analysis is performed in the cell modeling sections.

In this context, we begin with a theoretical examination of the behavior within the

battery during a pulse, providing guidance on how diagnostic experiments should be

structured. We consider three common physical types of degradation related to power

fade: film resistance 𝑅𝑓 , which introduces an additional resistance to the overpoten-

tial applied to the (de)intercalation reaction, typically arising from solid electrolyte

interphase formation [24]; surface blockage 𝑐 of kinetics, which reduces the number

of available sites at the surface for intercalation, arising from phase transformations
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at the surface [13, 12]; and electrolyte loss from parasitic reactions, which changes

the availability of the reactant, the concentration of lithium ions in the electrolyte

solution 𝑐+ [311]. Many common degradation mechanisms can be lumped into these

three categories, such as cathode electrolyte interphase (CEI) [210] or graphite solid

electrolyte interphase (SEI) [21, 24, 25, 312] growth for the film resistance mecha-

nism, structural disordering/phase transitions in nickel-rich materials for the surface

blockage [12], and electrolyte decomposition for the electrolyte loss mechanism [81].

Other types of degradation mechanisms could be integrated as well. By systematically

studying the impact of these degradation mechanisms within pulse experiments, we

elucidate their individual contributions, facilitating design of diagnostic experiments

tailored to distinguish degradation factors.

In order to assess the impact of cell degradation on rate capability, we employ

multiphase porous electrode theory (MPET) simulations [44, 55] based on nonequi-

librium thermodynamics [69] to compare the pulse response of a degraded cell and

the response prior to degradation. Importantly, MPET captures the rate-dependent

populations of active particles sustaining the applied current [10, 8, 234, 51], which

control internal resistance and parasitic side reactions [49, 273, 91, 12, 13]. Degrada-

tion manifests itself by gradually altering the current or potential response from cycle

to cycle, and the model attributes these changes to a number of physical mechanisms.

The response to large pulses is initially dominated by reaction kinetics [3]. Both

cathode and anode kinetics contribute to cell performance during this period, and

degradation from both electrodes collectively impacts current capacity. The net

Faradaic reduction current at an electrode is the difference between the reduction

and oxidation currents [20],

𝑖 = 𝑖red − 𝑖ox (1)

which depend on the overpotential 𝜂, expressed as the change in free energy of the

intercalation reaction per electron charge transferred [69],

𝑒𝜂 = (𝑒𝜑𝑠 + 𝜇(𝑐))− (𝑒𝜑+ + 𝑘𝐵𝑇 ln 𝑎+) + 𝑖𝑅𝑓 , (2)
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where 𝑐 is the concentration of the intercalated lithium in the solid, 𝜇(𝑐) is the chem-

ical potential of the intercalated lithium, 𝜑+/𝑠 represents the lithium-ion electrical

potential in electrolyte or solid, 𝑎+ is the activity of the lithium ions in electrolyte

depending on its concentration 𝑐+, 𝑖 denotes the intercalation current density, and

𝑅𝑓 is the film resistance from degradation.

As an alternative to the traditional approach of modeling electrochemical reaction

rates with the Butler-Volmer equation [20], we adopt the general quantum-mechanical

framework for intercalation reaction kinetics provided by coupled ion-electron trans-

fer (CIET) theory [249, 128] based on equilibrium thermodynamics [69]. The theory

has two simple limits [249]: 1) For fast electron transfer with slow ion transfer (“ion-

coupled electron transfer”, ICET), the theory predicts Butler-Volmer kinetics with a

new form of the exchange current that captures the microscopic physics more accu-

rately; 2) in the opposite limit of rate-limiting electron transfer (“electron-coupled ion

transfer”, ECIT), the theory combines Marcus kinetics of electron transfer [313, 314]

with corrections for nonequilibrium thermodynamics of ion transfer [69]. The latter

was first proposed as a mechanism for lithium intercalation in lithium iron phos-

phate [127, 128], and recently validated by inverse learning from x-ray images [50, 249].

Given this rigorous validation for one important Li-ion battery material, we assume

ECIT kinetics in our study, but we do not expect major changes to our results with

other limits of CIET theory. The differences between ECIT and ICET are most pro-

nounced at large overpotentials, while both limits of CIET theory predict a similar

concentration-dependent exchange current at small overpotentials, which vanishes lin-

early at high filling fractions [249]. This universal concentration dependence of CIET

kinetics has the strongest effect on degradation and capacity loss, as the reaction rate

vanishes as the theoretical capacity is approached. Changes to the specific reaction

model would only change the sensitivity to the underlying degradation parameters at

large overpotentials relative to the reorganization energy (typically several 100 meV).

It is convenient that an accurate analytical approximation of the ECIT rate is
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available [166, 249, 128], given by

𝑖 =
𝑘*0(𝑐− 𝑐)√

4𝜋𝜆
(𝑎+ℋ(−𝜂𝑓 , 𝜆)− 𝑐ℋ(𝜂𝑓 , 𝜆)) , (3)

in terms of the exchange current prefactor 𝑘*0, the rescaled capacity after degradation

𝑐, and the formal overpotential 𝜂𝑓 and Marcus reorganization energy 𝜆, each scaled

to the thermal energy (𝑘𝐵𝑇/𝑒), where the function ℋ(𝜂𝑓 , 𝜆) is defined as

ℋ(𝜂𝑓 , 𝜆) =

√
𝜆𝜋

1 + exp (−𝜂𝑓 )
erfc

⎛⎝𝜆−
√︁
1 +

√
𝜆+ 𝜂2𝑓

2
√
𝜆

⎞⎠. (4)

The dimensionless formal overpotential is defined as 𝑒𝜂𝑓 = 𝑒𝜂 − 𝑘𝐵𝑇 ln 𝑐
𝑎+

, where

the ionic concentration dependencies are removed since ionic concentration is con-

sidered separately as a reactant. As with other reaction models, the reduction cur-

rent 𝑖red = 𝑘*0(𝑐 − 𝑐)𝑎+ℋ (−𝜂𝑓 , 𝜆) /
√
4𝜋𝜆 dominates during intercalation, while the

oxidation current is 𝑖ox = 𝑘*0(𝑐 − 𝑐)𝑐ℋ (𝜂𝑓 , 𝜆) /
√
4𝜋𝜆, which is dominant during de-

intercalation. An important prediction of CIET theory is the linear decay of the

reaction rate in the approach to complete filling of the (degraded) lattice, 𝑖 ∼ (𝑐− 𝑐),

which requires a vacancy for the transition state [249, 128]. This leads to a strong

effect of electro-autocatalysis [164], which leads to more homogeneous concentration

profiles with higher resistance during intercalation and more unstable heterogeneous

profiles with lower resistance during de-intercalation, as observed in recent experi-

ments on both phase-separating [50] and solid-solution [49] cathode active materials.

5.2.2 Cell Models

Single Particle Model

A single particle model serves as the simplest representation emphasizing active ma-

terial intercalation of the electrode. This model captures interplay between active

material reaction and diffusion processes [43] using the particle lengthscale to es-

timate reaction area in a full electrode. During a pulse, the interplay between
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timescales for reaction, diffusion and applied current determine the concentration

profiles that arise within single particles [3], which can develop either bulk-surface

quasi-equilibrium or diffusion-limited core-shell patterns. For phase separating ma-

terials, the former regime involves intercalation waves sweeping across the surface of

the particle [315, 69], but as we consider here, for non-phase separating materials, the

bulk-surface quasi-equilibrium structure corresponds to nearly uniform solid concen-

tration, which is ideal for degradation estimation. In this case, it is only necessary to

avoid solid diffusion limitation leading to non-uniform core-shell concentration pro-

files. In order to estimate the conditions for quasi-equilibrium, we perform a scaling

analysis of the reaction-diffusion equation for a particle,

𝜕𝑐

𝜕𝑡
= −∇ · F+𝑅, (5)

such that 𝜏𝐷,𝑝 = 𝐿2
𝑝/𝐷𝑝 and 𝜏𝐼,𝑝 = 𝐼−1 are the solid diffusion and process timescales,

respectively. Here, 𝐿𝑝 is the particle length, 𝐷𝑝 is the solid particle diffusivity, and

𝐼 is the applied C-rate. When 𝜏𝐼,𝑝 ≫ 𝜏𝐷,𝑝, the quasi-equilibrium/reaction limited

regime is reached, the ideal region for the application of the reaction-limited model

in the current work. Conveniently, as observed in Fig. 4ab of Ref. [3], most common

battery electrode materials lie in the reaction-limited regime. Exceptions occur at

large pulses, when the dimensionless current is large (𝑖/𝑖0 ≥ 103), or when particle

size is large (as in graphite platelets), such that 𝐿𝑝 ≥ 105 nm. Here, 𝑖0 is the related

to the exchange current density of the material, and 𝑖 is the dimensionalized applied

current. Thus, for our pulse measurements, we assume that the system is reaction

limited [3], allowing us to neglect solid state diffusion in the particles.

The system consists of a single active material particle in an idealized electrolyte

bath, corresponding to a half cell electrode only. We define 𝜑 = 𝜑𝑠 − 𝜑+ as the

difference between the solid and electrolyte potential, which is the electrical potential

difference applied to the kinetic interface. Within this single-particle model, the

electrolyte potential applied to the single particle is denoted as 𝜑, while the current is

𝑖, representing the rate of lithium-electron pairs intercalating or deintercalating into
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Figure 2: Goodness-of-fit results for the linear approximation and the exact calcula-
tion of the fitness 𝑊 for each degradation mechanism in a full cell NMC532-graphite
cell for a 100mV (dis)charge pulse are shown at various states of degradation, from
least to most degraded at a cathode state of charge of 0.8 and anode state of charge
of 0.4. The effects of film resistance on the (a) cathode and (d) anode, the surface
blockage of the (b) cathode and (e) anode, and the electrolyte concentration loss are
plotted for this cell at values close to the initial nondegraded state.

the active material. The relationship between the current and potential is dictated

by the reaction kinetics, modeled by the coupled-ion electron transfer kinetics. To

account for the complexities of a full cell, further extensions to the model are required

as discussed below.

Full Cell Model

In a realistic electrode, the single-particle model falls short at accurately capturing

the cell-level transport limitations. To represent these interactions more realistically,

electrode-scale models are employed, which more accurately capture the interplay be-

tween electrolyte transport and kinetics within the electrode. Since our primary focus

is capturing the kinetics of the cell with a specific emphasis on degradation, we aim

to incorporate the effects of the interacting cathode and anode in a full cell. From the

macroscopic design of an electrode, limitations from electrolyte diffusion/conduction

or solid conduction can aid the proper selection of timescales for pulse selection [43].
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However, because of the large amount of carbon additives added in battery manu-

facturing, solid electronic conduction rarely is limiting. Thus, the limitations from

electrolyte transport are often found to be of the most interest in a pulse process.

These limitations can be understood using a scaling analysis.

From porous electrode style transport equations in Ref. [44], we observe that

electrolyte-scale transport is captured along the electrode with lithium-ion mass con-

servation in the electrolyte,

𝜕(𝜀𝑐𝑙)

𝜕𝑡
=

1

𝜈+
(−∇ · F𝑙,+ +𝑅𝑉,+) , (6)

where 𝜀 is the porosity, 𝑐𝑙 is the lithium concentration in electrolyte, 𝜈+ is the number

of ions per molecule of neutral salt, F𝑙,+ is the flux of lithium ions, and 𝑅𝑉,+ is the

volumetric reaction rate of the lithium ions. Charging occurs during the electrode

process timescale as

𝜏𝐼,𝑙 =
𝜈+𝜀𝑐𝑙

(1− 𝜀)𝑃𝐿𝐼𝜌𝑠
, (7)

where 𝑃𝐿 is the volumetric electrode loading, 𝐼 is the C-rate of the electrode, and

𝜌𝑠 is the lithium site density of the active material. If measurements occur after

this timescale, we can properly capture the pulse reaction dynamics. Analogously,

the measurement timescale is the experimental timescale at which measurements are

extracted, 𝜏𝑚,𝑙 = 𝑡pulse. For electrolyte diffusion limitation, we observe that

𝜏𝐷,𝑙 =
𝜀𝑎𝐿2

𝑙

𝐷𝑙

, (8)

which is the timescale on which electrolyte diffusion occurs, where 𝑎 is the Brugge-

man scaling coefficient, 𝐿𝑙 is the electrode length, and 𝐷𝑙 is the effective electrolyte

diffusivity. For electrolyte conduction, we observe that

𝜏𝜎,𝑙 =
𝜀𝑎𝐿2

𝑙 𝑐𝑙𝑧+𝑒
2𝜈+

𝑡0+𝜎𝑙𝑘𝐵𝑇
(9)

is the electrolyte transport timescale, where 𝑧+ is the valence of lithium ions, 𝜎𝑖 is
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the electrolyte conductivity, and 𝑡0+ is the transference number.

When the process timescale, electrolyte diffusion timescale, and electrolyte con-

duction timescales are compared, the timescales at which measurements should be

applied become apparent. Using electrolyte transport parameters from Ref. [47], we

observe that 𝜏𝐷,𝑙 ∼ 10 s and 𝜏𝜎,𝑙 ∼ 10 s. This indicates that electrolyte transport

limitation occurs after the pulse is taken if measured around 𝜏𝑚,𝑙 ∼ 1 s. We avoid

transport limitation when the measurement timescale 𝜏𝑚,𝑙 is selected properly, and

can use these approximations then. Thus, in the context of a full cell, when a voltage

hold is applied, only the voltage difference 𝜑applied = 𝜑𝑠,𝑐 − 𝜑𝑠,𝑎 between the cathode

and the anode is controlled. (In this full cell, we use the subscript 𝑎 to refer to the

anode, and the subscript 𝑐 to refer to the cathode.) From the full cell constraint on

the system, the total amount of cathode reaction must equal the anode reaction. The

solid electrical potentials, 𝜑𝑠,𝑐 and 𝜑𝑠,𝑎, can be determined through a porous electrode

theory model using current or voltage constraints.

Overall, our simple full cell electrode model has the governing equations

𝑓𝑎𝑖𝑎(𝜑𝑎, 𝑅𝑓,𝑎, 𝑐𝑎, 𝑐+) = −𝑓𝑐𝑖𝑐(𝜑𝑐, 𝑅𝑓,𝑐, 𝑐𝑐, 𝑐+)

𝑓𝑎𝑖𝑎(𝜑𝑎, 𝑅𝑓,𝑎, 𝑐𝑎, 𝑐+) = 𝑖cell,
(10)

from the equality of the total anode and cathode reaction, where the reaction rates

are defined with Eq. 3. In this equation, 𝑓 represents the dimensionless factor

𝐿(1 − 𝜀)𝑃𝐿⟨𝐴𝑝

𝑉𝑝
⟩, which relates the particle-scale current to the electrode-scale cur-

rent densities for each electrode, where 𝐿 is the length of the electrode, 𝑃𝐿 is the

volume loading of the solid material at the electrode, 𝜀 is the porosity of the elec-

trode material, 𝐴𝑝 is the particle area, 𝑉𝑝 is the particle volume, and ⟨⟩ indicates the

averaged parameter over the entire electrode. For the current density descriptions,

𝑖𝑎 and 𝑖𝑐 are the average particle level intercalation currents densities at the cathode

and anode, while 𝑖cell is the total cell-level intercalation current density. From the two

constraints in Eq. 10, in a current control system, the cell current is fixed and the

two voltage variables 𝜑𝑎 and 𝜑𝑐 are determined through the constraints. In contrast,

143



for a voltage control system, the difference between the cathode and anode voltages,

𝜑𝑐−𝜑𝑎, is fixed and thus the cell-level current and absolute voltage values are variable.

5.2.3 Cycling Conditions

Current Pulses

When subjecting two cells to an identical current pulse, one in a nondegraded con-

dition and the other in a degraded condition, differences emerge in voltage behavior.

In contrast, the full cell current values are the same for both the nondegraded and

degraded cells because of the current constraint. From the current constraint in a

nondegraded cell, Eq. 10 holds. In a degraded cell, an analogous current constraint

holds as

𝑓𝑎𝑖𝑎(𝜑𝑠,𝑎 +∆𝜑𝑠,𝑎) = −𝑓𝑐𝑖𝑐(𝜑𝑠,𝑐 +∆𝜑𝑠,𝑐) = 𝑖cell, (11)

but the voltage response is different. The voltage difference in the nondegraded cell

is 𝜑𝑠,𝑐 − 𝜑𝑠,𝑎. For the degraded cell, it contains an additional term from the voltage

shift for degradation, resulting in ∆𝜑𝑠,𝑐 −∆𝜑𝑠,𝑎 + (𝜑𝑠,𝑐 − 𝜑𝑠,𝑎). The two current hold

equations (Eqs. 10, 11) can be solved for the exact solution of the voltage difference.

Though an approximate linear solution of this model can be derived for the half cell,

there is no absolute fitness for the full cell since the reference potentials between

electrodes are arbitrary (the half cell linearizations are shown in Appendix 5.8). The

only viable solution is an implicit solution for the current pulses.

Voltage Pulses

Analogously to the current pulses, we target an exact solution for the potential shift

by resolving the current constraints. Voltage pulses have an advantage over cur-

rent pulses in phase-separating materials, since most voltages chosen are outside the

voltage corresponding to the miscibility gap in phase separating materials. In addi-

tion, the non-coupled behavior of voltage control avoids particle-by-particle and other

population effects seen in current pulses [8], since all particles are connected to the

bath. To streamline our analysis, new notation (such as the fitness variable 𝑊 ) is
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introduced.

When a cell is subject to a voltage pulse before degradation occurs, the resulting

current response is denoted as �̄�; upon degradation, the degraded response is 𝑖. We

establish a relationship between the responses with the fitness 𝑊 = 𝑖/̄𝑖, which is the

ratio between the degraded and nondegraded current. This describes the change in

rate capability of the battery [13] by linking it to physical degradation parameters.

The exact solution of the current ratios for one electrode is the fitness

𝑊 =
𝑖(𝜑,𝑅𝑓 , 𝑐, 𝑐+)

�̄�(𝜑,𝑅𝑓 = 0, 𝑐 = 1, 𝑐+ = 1)
. (12)

Since the same voltage is applied before and after degradation, it can be seen from

Ref. [13] that a linear approximation can be applied to the degradation parameters

since the degradation amount is small. The fitness is found for a coupled ion-electron

transfer reaction to be

𝑊 =
𝑖

�̄�
=
𝑐− 𝑐

1− 𝑐

1

1−𝑅𝑓
𝜕�̄�
𝜕𝜂

[︂
1− �̄�red

�̄�
(1− 𝑐+)

𝜕 ln 𝑎+
𝜕 ln 𝑐+

]︂
. (13)

This equation provides direct physical insight into the factors influencing each degra-

dation mechanism, and indicates that the contribution of each degradation mechanism

is separable.

There are many advantages to applying the fitness framework relative to the anal-

ysis of raw electrochemical measurements, expounded in Ref. [13]. The linearized

fitness framework is shown to be accurate at small amounts of degradation, which is

true for any operational battery. In addition, each degradation mechanism is separa-

ble using this framework, simplifying the attribution of rate capability loss to specific

degradation mechanisms. The explicit relationship between the rate capability and

each degradation mechanism also eases numerical computation, in contrast to im-

plicit solutions. Finally, the rate capability loss of each of the mechanisms is also

physically correlated with kinetic parameters, introducing physical interpretability to

the framework.
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The physical interpretability is introduced by kinetic parameters that modulate

the influence of degradation on fitness reduction. Specifically, the film resistance

mechanism correlates with the differential conductance, denoted as 𝜕�̄�
𝜕𝜂

[164], which

characterizes the rate of current acceleration in response to an increase in potential.

For a coupled ion-electron transfer reaction, the differential conductance reaches a

maximum from the limiting current (observed in Fig. 6b for a nickel manganese cobalt

oxide electrode material). In comparison, using a Butler-Volmer reaction model will

cause the differential conductance to grow exponentially. Both calculations are shown

in Appendix D of Ref. [13]. Thus, the Butler-Volmer reaction model would indicate

a higher impact of film resistance on the rate capability of a particle. Similarly,

the electrolyte concentration mechanism is primarily related to the reduction current

fraction in the total current, �̄�red/̄𝑖 for the coupled ion electron transfer model. This

arises because electrolyte concentration only participates as a reactant in the reduc-

tion reaction. In contrast, when using the standard Butler-Volmer reaction model,

the differential conductance replaces the reduction current fraction as the kinetic pref-

actor modulating degradation effects on rate capability, shown in Eq. 22 in Ref. [13].

This indicates a larger sensitivity of the fitness loss with the Butler-Volmer model with

respect to the electrolyte concentration. Overall, using a less physical Butler-Volmer

type expression indicates a stronger impact of degradation parameters on fitness loss

than the more physical coupled-ion electron transfer model.

As we extend the half cell model to a full cell, the presence of degradation, char-

acterized by kinetic changes in the electrodes, introduces a shift in the behavior of

the system. When the system is degraded, due to the current constraint requirement

and the altered kinetics, the same absolute potentials 𝜑𝑠,𝑐,𝑎 cannot be applied to the

cathode and the anode. This discrepancy arises because the equality in current is no

longer maintained. To ensure the current constraint is still satisfied on the full cell,

there is a necessity for a potential shift ∆𝜑 to be applied to both the solid potential

at the anode and cathode. Consequently, the voltage in this degraded full cell is cal-

culated as (𝜑𝑠,𝑐 +∆𝜑)− (𝜑𝑠,𝑎 +∆𝜑) = 𝜑𝑠,𝑐 − 𝜑𝑠,𝑎, resulting in the same experimental

voltage as previously measured. In short, this shift in potentials at both electrodes is
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essential to maintain the current constraint in the presence of degradation.

We use specific notation to distinguish between fitness values with (𝑊 ) and with-

out (�̂� ) the voltage shift. Analogously to Eq. 10, with the inclusion of the voltage

shift, the modified current constraint 𝑓𝑎𝑖𝑎(𝜑𝑠,𝑎 +∆𝜑) = −𝑓𝑐𝑖𝑐(𝜑𝑠,𝑐 +∆𝜑) holds. This

equation is solved implicitly to determine the value of the voltage shift. Once the

voltage shift is determined, the fitness 𝑊 can then be found by ensuring equality of

the fitness values between the cathode and anode in the full cell as

𝑊 =
𝑖(𝜑𝑠,𝑐 +∆𝜑,𝑅𝑓,𝑐, 𝑐𝑐, 𝑐+)

�̄�(𝜑𝑠,𝑐, 𝑅𝑓,𝑐 = 0, 𝑐𝑐 = 1, 𝑐+ = 1)
=

𝑖(𝜑𝑠,𝑎 +∆𝜑,𝑅𝑓,𝑎, 𝑐𝑎, 𝑐+)

�̄�(𝜑𝑠,𝑎, 𝑅𝑓,𝑎 = 0, 𝑐𝑎 = 1, 𝑐+ = 1)
. (14)

Linear Approximation for Degradation Though we have found an exact im-

plicit solution for this problem, implicit solutions can be computationally inefficient,

particularly for optimization processes. Obtaining an explicit solution for complex

problems can significantly reduce optimization time and provide valuable physical in-

sights. We take advantage of the explicit linearized fitness framework and perform a

first-order linearized approximation for the voltage shift to simplify the calculations.

After linearization for the voltage shift, we apply the fitness approximation of the half

cell described in Eq. 13, generating an explicit expression for effects of degradation

on the response. This approach combines computational efficiency with a high degree

of accuracy.

Eq. 14 holds true in the exact solution of a voltage pulse problem. However, the

full cell fitness is not only defined by the effects of degradation as the half cell fitness is,

but also by a voltage shift from ensuring current equality between the two electrodes.

We attempt a simple linear approximation to capture these effects. Initially, using the

linear approximation in each electrode for the rate capability, the fitness without the

voltage shift is found to be the current ratio �̂�𝑎,𝑐 = 𝑖𝑎,𝑐/̄𝑖𝑎,𝑐. To include the effects of

the voltage shift, we introduce 𝜒, which denotes the fractional change in the current

with potential shift relative to that without

𝜒𝑎,𝑐 = 𝑖𝑎,𝑐(𝜑𝑠,𝑎,𝑐 +∆𝜑)/𝑖𝑎,𝑐(𝜑𝑠,𝑎,𝑐)− 1. (15)
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The overall fitness is obtained through the ratio of degraded Eq. 10 with the nonde-

graded version, resulting in

𝑊 = �̂�𝑎(𝜒𝑎 + 1) = �̂�𝑐(𝜒𝑐 + 1). (16)

This expression captures the overall change in current in the full cell, incorporating

both degradation and voltage shift effects when there is less degradation. The full

cell fitness thus captures the half cell fitnesses with the inclusion of a voltage shift

term.

To the first order, the voltage shift term can be approximated using a Taylor

expansion on 𝜒 based on the voltage shift:

𝜒 =
𝜕𝜒

𝜕𝜑
∆𝜑+𝒪((∆𝜑)2) ≈ �̂�−1�̄�−1

𝜕�̄�

𝜕𝜂
∆𝜑. (17)

Applying this approximation to Eq. 16, the voltage shift is approximated as

∆𝜑 =
�̂�𝑐 − �̂�𝑎

𝑓𝑎
𝜕�̄�
𝜕𝜂 𝑎

+ 𝑓𝑐
𝜕�̄�
𝜕𝜂 𝑐

�̄�cell (18)

with Eq. 10 constraining the full cell current equality. Thus, using Eqs. 17 and 18,

the overall fitness is a weighted sum over the cathode and anode fitnesses

𝑊 =

�̂�𝑐 + �̂�𝑎

𝑓𝑐
𝜕�̄�
𝜕𝜂 𝑐

𝑓𝑎
𝜕�̄�
𝜕𝜂 𝑎

1 +
𝑓𝑐

𝜕�̄�
𝜕𝜂 𝑐

𝑓𝑎
𝜕�̄�
𝜕𝜂 𝑎

, (19)

which approximates the shifted fitness by considering the voltage change. This ex-

pression is a reweighted sum of the ratio between the electrode scale and kinetic

capabilities of the electrodes, where 𝑓 represents the rescaling to the electrode area

from the particle area and 𝜕𝑖
𝜕𝜂

is the differential conductance, reflecting the kinetic

capability of the electrode material.

The explicit representation of the fitness term in a full cell offers a direct physical

understanding of asymmetric effects from each electrode in a full cell model. The
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conductance ratio
(︁
𝑓𝑐

𝜕�̄�
𝜕𝜂 𝑐

)︁
/
(︁
𝑓𝑎

𝜕�̄�
𝜕𝜂 𝑎

)︁
represents a ratio of the conductances of the

cathode relative to the anode for the entire electrode. This ratio is influenced by

both material properties and electrode design, particularly the reactive surface area.

From the limiting values of the formulae, the results of the full cell indicate that when

the anode differential conductance is larger than that of the cathode, the fitness of the

cathode dominates the full cell. Conversely, if the cathode differential conductance is

larger than that of the anode, the fitness of the anode dominates. The conductance

ratio thus aids distinguishing between electrodes by the different scales modulating

the half-cell fitness influences on the full cell.

In most balanced full cells, 𝑓𝑎 ∼ 𝑓𝑐 to minimize total mass of the cell, causing

𝑓𝑎/𝑓𝑐 to be constant and electrode design dependent (neglecting small changes from

degradation). The main variable affecting the conductance ratio is the differential

conductance of the cathode and the anode. These are dependent on the kinetic

properties of the intercalation reaction occurring in the electrode, as well as the

state of charge and applied voltage. An electrode is referred to as “overpotential

dominant” when the overpotential at one electrode is significantly larger than that at

the opposing electrode, which often occurs when the exchange current densities of the

electrodes differ by orders of magnitude. This concept relates to the dominance of

the performance of one electrode to overall cell behavior. Special cases with respect

to half cell electrodes or switching between dominant electrodes are considered in

Appendix 5.10.

The explicit calculations from the linear approximation accelerate the optimiza-

tion process compared to the implicit exact solution. The linearized model almost

exactly matches the implicit solution in the feasible range of degradation for the dom-

inant electrode. For instance, consider a NMC532-graphite cell in which the anode is

potential dominant. The linear and exact approximate values from voltage pulses are

plotted in Fig. 2, where differential conductance is derived in Appendix D in Ref. [13].

A good match is seen at the overpotential dominant electrode (anode), whereas at

the non overpotential dominant electrode (cathode), the fitness values are smaller and

the accuracy is reduced.

149



Figure 3: HPPC simulation shown for a single pulse size, with six different values
of state of charge 𝑐0 where the pulses are performed, with slow charges between the
different state of charge values. The pulse experiments are repeated for each pulse
value. The pulses are performed using the protocol in Algorithm 1.

5.3 Simulated Diagnostics

5.3.1 Virtual Experimental Design

Our primary goal of understanding pulses is to employ them in full cell diagnostics

to quantitatively assess the extent of degradation in a cell. Determining the absolute

degradation level in a specific cell is challenging due to significant variability between

cells during manufacturing [316, 317]. Instead, we aim to establish a relative measure

of degradation for each cell compared to its initial state, enabling more meaningful

evaluation of battery degradation across different cells.

Based on our theory of voltage pulse measurements, Eq. 13 illustrates that degra-

dation parameters influence half-cell kinetics jointly with kinetic-related parameters

such as the differential conductance or the reduction current fraction. Figs. 4bc

present the kinetically related differential conductance values and reduction current

fractions at different states of charge and overpotentials, while Fig. 4d displays the

effect of the surface blockage on the current at different states of charge. Applying

high overpotentials generates a wide range of differential conductance values, which

influences the calculation of the film resistance. The reduction current fraction is

subject to a singularity when there is no current. This is seen in the denominator of
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the reduction current fraction for the CIET reaction model,

�̄�red
�̄�

=
ℋ(−𝜂𝑓 , 𝜆)

ℋ(−𝜂𝑓 , 𝜆)− 𝑐ℋ(𝜂𝑓 , 𝜆)
. (20)

This indicates that in the linearized approximation, higher voltage pulse values have

more numerical accuracy for estimating electrolyte loss. On the contrary, overpoten-

tial does not influence the fitness calculation for the surface blockage mechanism, and

instead variations in states of charge are needed to observe changes in the current

response. In summary, a wide spectrum of states of charge and large voltage pulse

sizes are necessary to differentiate between the various degradation mechanism val-

ues. These considerations are valuable for designing industrial HPPC tests, where

previously the choice of pulse size is arbitrary [62].

To account for the needs of varied pulse sizes and states of charge, we design

a set of HPPC experiments, shown in Algorithm 1, that perform voltage/current

pulses relative to the open circuit voltage at various states of charge for a single pulse

size. This method is able to capture physical degradation mechanisms, and more

importantly, quantify and separate each physical degradation mechanism, especially

the dominant mechanism.

5.3.2 Virtual Experimental Procedure

The procedure is to perform current or voltage pulses of size 𝑖cell or ∆𝑉 in our HPPC

analysis with alternating pulses and rest states (Algorithm 1). Knowledge of the open

circuit voltage curve OCV(𝑐0) is necessary for this design structure, which may be

difficult to validate once degradation occurs in a full cell. To ensure closeness to the

true open circuit voltage curve, we perform voltage holds in between states of charge

to ensure minimal influence of kinetics [164]. The rest and pulse times can vary with

different battery material and design.
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for 𝑐0 in all states of charge tested do

/* move the battery to the next state of charge */

do a 0.05 C current hold until the voltage is at OCV(𝑐0);

/* rest the battery */

do a zero current hold for 𝜏rest;

/* equilibrate the battery to reduce the kinetic effects from

moving to the next state of charge */

do a voltage hold at OCV(𝑐0) until the current magnitude is less than

0.001 C;

/* rest the battery */

do a zero current hold for 𝜏rest;

/* perform a charge pulse */

do a voltage or current hold for 𝜏pulse at OCV(𝑐0) + ∆𝑉 or 𝑖cell current;

/* rest the battery */

do a zero current hold for 𝜏rest;

/* perform a discharge pulse */

do a voltage or current hold for 𝜏pulse at OCV(𝑐0)−∆𝑉 or −𝑖cell current;

end

Algorithm 1: HPPC protocol.

5.4 Simulation Results

For each system, the HPPC protocol denoted in Algorithm 1 is executed using mul-

tiphase porous electrode theory simulations [53, 54, 43] implemented in the open-

source MPET software package [44], which captures the electrode-scale transport

and particle-scale kinetics in a full cell battery electrode. Porous electrode simu-

lations capture the transport and kinetics of an electrode at two scales, with trans-

port at the electrode scale covering electrolyte diffusion/conduction and solid conduc-

tion, and reactions/solid diffusion occurring at particle level. Simple one-dimensional

Cahn-Hilliard [69] (similar to reaction-diffusion) models are used to capture particle
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dynamics, modified to include fluxes from phase separating thermodynamics. Conser-

vation equations for lithium ion mass and charge are applied at the electrode scale,

capturing macroscopic transport between the cathode, separator, and anode. The

current responses from voltage pulses, and voltage responses from current pulses, are

used to optimize for the state of degradation and compared with the reference solu-

tion. The fitted solutions are extracted from pulse responses for the HPPC protocol

at both the degraded and nondegraded states.

The objective function was assessed at the initial time measurement of the pulse

from simulations, chosen for its accuracy in capturing kinetic information. We for-

mulate the objective functions for minimization to ensure that each state of charge

carries equal weight. For voltage pulses, the objective function is

𝑓min = min
deg

∑︁
𝑐0

(︂
𝑊 − 𝑖

�̄�

)︂2

, (21)

while for current pulses, the objective function is

𝑓min = min
deg

∑︁
𝑐0

(︂
∆𝑉predicted

∆𝑉measured
− 1

)︂2

, (22)

where deg = {𝑅𝑓,𝑐/𝑎, 𝑐𝑐/𝑎, 𝑐+} are the degradation parameters under consideration.

The fmincon function in MATLAB was used to execute the optimization procedure.

The code for the procedure is provided in lightningclaw001/public_paper_scripts

under the folder smart_HPPC (https://github.com/lightningclaw001/public_

paper_scripts/tree/main/smart_HPPC).

The optimization tests are conducted on a NMC532-graphite full cell. Kinetic

parameters are obtained from Ref. [129], while electrode-scale parameters are obtained

from Ref. [300]. Specific details regarding the porous electrode scale and kinetic

parameters used are reported in Appendixes 5.5 and 5.6. A range of degradation

parameters are assessed across various degradation states, spanning nine points from

least to most degraded. Timescales of 𝜏rest = 20min and 𝜏pulse = 0.6 s for resting and

pulsing are employed, which was sufficient for relaxation in the simulations. For the
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cathode, the filling fraction values of 𝑐0 are set from 0.3 to 0.8 with a spacing of 0.1,

which encompassed a total of six state of charge values for the cathode. The anode

filling fraction values correspondingly varied from 0.9 to 0.4. The filling fraction values

are derived from the parametrized ranges of the active material. Voltage pulses of

100mV or current pulses of 0.1C are applied, corresponding to the typical magnitude

of common HPPC experiments [62, 3].

As seen in Fig. 4, the use of high voltage pulses allows for a broader range of infor-

mation to be extracted due to wider variation in differential conductance values. This

leads to more precise results for the film resistance values. Moreover, the utilization

of higher filling fractions assesses a wide variance of surface blockage prefactors, as

seen in Fig. 4d. This accounts for the increased sensitivity of surface blockage effects

at lower filling fractions for the cathode, corresponding to higher filling fractions for

the anode.

The optimization solutions for the exact method and linear approximation are

shown in Fig. 6 for the voltage and current pulses respectively. With the large number

of possible degradation mechanisms, only the dominant degradation mechanisms can

be captured feasibly because of the insensitivity of degradation at the non-dominant

electrode. This is mainly because of the differing electrode sensitivities, as observed

in Fig. 5. Hence, multiple simulations are performed where the dominant degradation

mechanism is different for each, plotted in Fig. 6. Some optimization error can be

attributed to the averaging of porous electrode-scale effects.

For the current pulse results, only optimization results from the exact solution

can be obtained. In contrast, for the voltage pulse results, both the exact solution

and linearized result are calculated. The linear approximation exhibited a signifi-

cant advantage in terms of computational efficiency. From the optimization speed,

the linear approximation averaged roughly 1 s for each degradation state, relative to

roughly 100 s per degradation state for the exact solution. For the current pulses,

the computational demands are more substantial. A single current pulse took 200 s

to solve, since separate cathode and anode potentials are extracted, increasing the

number of variables in the system. In summary, optimizing from voltage pulses was
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more efficient than current pulses. Specifically, the linearized approximation for volt-

age pulses had a tenfold speed-up relative to the exact solution, which only required

a small trade-off in accuracy.

Due to the large number of degradation parameters, a sensitivity analysis was per-

formed on the full cell to understand the dominance of different degradation mech-

anisms (Fig. 5). Voltage and current pulses using the implicit solutions are used

for this analysis. Current pulses appeared extremely insensitive relative to voltage

pulses in extracting degradation mechanisms, highlighting a benefit of using voltage

pulses. The higher sensitivity of anode degradation parameters can be attributed to

the lower exchange current density of graphite, which is approximately two orders

of magnitudes lower than that of the nickel-rich material in the model. This causes

overpotential dominance at the graphite anode.

In the sensitivity calculations for voltage pulses, we observe asymmetry between

the charge and discharge directions for almost all degradation mechanisms. For the

overpotential dominant electrode, sensitivity of degradation parameters depends on

the fitness of the overpotential dominant electrode since 𝑊 ≈ �̂�d from Eq. 19, where

�̂�d is the fitness of the overpotential dominant electrode. The directionality of inter-

calation at the overpotential dominant electrode during charge or discharge controls

the sensitivity of the cell fitness. In the current cell setup, the overpotential dominant

graphite anode deintercalates during discharge and intercalates during charge. Specif-

ically as seen in Fig. 4bc, the magnitudes of differential conductance and reduction

current fraction during deintercalation are both larger than the intercalation values.

Since these parameters relate the fitness to the degradation parameters, the fitness

is more sensitive during discharge, when the anode is deintercalating, compared to

charge, as seen in Fig. 5cd for these two degradation mechanisms. In contrast, since

the surface blockage mechanism is not potential dependent, no asymmetry appears

between the charge and discharge directions for the anode as seen in Fig. 5e. Overall,

when degradation parameters are at the overpotential dominant electrode or affect

both electrodes, the sensitivity of cell fitness is dominated by the fitness of the over-

potential dominant electrode.
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For the degradation parameters at the non overpotential dominant electrode, sim-

plifications lead to

𝑊 ≈

(︃
1 +

𝑓nd
𝜕�̄�
𝜕𝜂 nd

𝑓d
𝜕�̄�
𝜕𝜂 d

)︃−1
�̂�nd, (23)

where 𝑑 indicates overpotential dominant, 𝑛𝑑 is non overpotential dominant, and �̂�

is the fitness at the non overpotential dominant electrode. From the definition of a

overpotential dominant electrode, this indicates that the conductance ratio between

electrodes is large, meaning that the prefactor
(︂
1 +

𝑓nd
𝜕�̄�
𝜕𝜂 nd

𝑓d
𝜕�̄�
𝜕𝜂 d

)︂−1
is necessarily large.

Thus, the conductance ratio is more significant on the full cell fitness relative to the

fitness of the non overpotential dominant electrode �̂�nd. The larger differential con-

ductances during intercalation in the cathode, as seen in Fig. 5a, result in higher

sensitivity in the cell fitness when discharging, where the non overpotential dominant

cathode is intercalating, relative to charge. Unlike the overpotential dominant elec-

trode, when degradation parameters are at the non overpotential dominant electrode,

the cell fitness is dominated by the conductance ratios in the cell and not the fitness of

the non overpotential dominant electrode. This elucidates the difficulty in resolving

degradation mechanisms at non dominant electrodes.

Overall, a clear distinction between the information gain between charge and dis-

charge pulses is observed. The information gain is asymmetric and depends on both

the battery state of charge and overpotential dominance of electrodes. In degradation

at both electrodes, the direction where the overpotential dominant electrode deinter-

calates is more sensitive. This is caused by asymmetry in kinetic factors correlating

degradation to fitness for the overpotential dominant electrode, or dominance of the

conductance ratio from the non overpotential dominant electrode. When the anode

is overpotential dominant, discharge pulses contain more information about degrada-

tion, while the opposite is true when the cathode is overpotential dominant.

The results from these optimization procedures highlight the advantages of uti-

lizing voltage pulses in this context. When it comes to learning degradation mech-

anisms, the necessity for optimization is evident, and mathematically simplifying

the optimization problem becomes important. Voltage pulses offer several distinct
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advantages. Firstly, they are able to quickly and explicitly approximate extent of

degradation with the explicit expression, resulting in a significant reduction in fitting

time, often by two orders of magnitude. This efficiency can be highly beneficial in

practical applications. In addition, the sensitivity of current pulses is much weaker

as compared to voltage pulses, as seen in Fig. 5. The stronger sensitivity of volt-

age pulses makes them a more effective diagnostic tool for capturing degradation

behavior. Importantly, compared to current pulses, which introduce much nonlin-

ear behavior from the coupled current control equation, fewer population effects are

revealed from voltage control systems. Furthermore, voltage pulses are more physi-

cally tied to rate capability and directly related to degradation mechanisms as seen

in the explicit approximation. The ability to gain deeper insights into the underlying

physical mechanisms makes voltage pulses a superior choice in diagnostics.

5.5 Appendix: Variable Definitions

For ease of readability, variable definitions are placed in the following table. The

subscript 𝑎 depicts the anode, and the subscript 𝑐 depicts the cathode. Bars above

variables are used to define the value of the variable without any degradation or

potential shift (e.g, �̄� = 𝑅(. . . , 𝑅𝑓 = 0, 𝑐 = 1, 𝑐+ = 1, 𝜑𝑠, . . . )). Hats are used

to define the variables without any voltage shift (e.g. �̂� = 𝑅(. . . , 𝑅𝑓 = 0.01, 𝑐 =

0.99, 𝑐+ = 0.99, 𝜑𝑠, . . . )). The real solution is given without any hats or bars (e.g.

𝑖 = 𝑅(. . . , 𝑅𝑓 = 0.01, 𝑐 = 0.99, 𝑐+ = 0.99, 𝜑𝑠 +∆𝜑, . . . )).
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Variable

Name

Definition NMC532

Cath-

ode

Graphite

Anode

Units

𝑐 lithium concentration in

solid

– – nondimensional

𝑖 current density – – A/m2

𝑖red reduction current contribu-

tion to total density

– – A/m2

𝜂 overpotential (driving force

of reaction)

– – 𝑘𝐵𝑇

𝑘*0 exchange current density 10 [129] 0.2 [129] A/m2

𝜆 reorganization energy of in-

tercalation solid

3.78 [129] 5 [129] 𝑘𝐵𝑇

𝜀 porosity 0.4 0.4 nondimensional

𝑃𝐿 volumetric loading of active

material

0.69 0.69 nondimensional

𝐿 length of electrode 5e-5 8.7e-5 m

𝐴𝑝 area of particle 𝑝 – – m2

𝑉𝑝 volume of particle 𝑝 – – m3

⟨𝑟𝑝⟩ mean particle 𝑝 radius 1e-7 1e-7 m

ThermFac thermodynamic factor
𝜕 ln 𝑎+
𝜕 ln 𝑐+

[43]

– – nondimensional

𝑅𝑓 film resistance – – Ω ·m2

𝑐 rescaled capacity – [12] – nondimensional

𝑐+ electrolyte concentration – – M

𝑊 fitness value 𝑖/̄𝑖 [13] – – nondimensional

𝑓 porous electrode rescaling

ratio, 𝐿(1− 𝜀)𝑃𝐿⟨𝐴𝑝

𝑉𝑝
⟩

626.8 1100.6 nondimensional

𝜒 current ratio before and af-

ter potential shift 𝑖(𝜑𝑠 +

∆𝜑)/𝑖(𝜑𝑠)

– – nondimensional
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5.6 Appendix: Full Cell Simulation Parameters

In the full cell, 10 volumes were used to discretize the cathode and the anode, while

5 volumes were used to discretize the separator. Both the relative and absolute toler-

ance were set to 1×10−6. The temperature in the simulations was set to 298K. It was

assumed that there was enough carbon additives in the cell to cause the solid conduc-

tivity to have minimal effects. The Bruggeman exponents for the tortuosity were set

to 1.5 for the cathode, the anode, and the separator [318]. A Stefan-Maxwell concen-

trated electrolyte model where the thermodynamic factor, diffusivity, and transfer-

ence number were from Ref. [47] and the conductivity was from Ref. [77] was used in

our parametrization. In the particle-scale models, a Cahn-Hilliard reaction-diffusion

model [69] was used to describe the solid particles, with spherical shaped particles

for both the graphite and the NMC532. The explicit activity contribution for the

electrolyte is

𝑎+ = 𝑐
601/620
+ exp

(︁
−1299/5000− (24𝑐

1/2
+ )/31 + (100164𝑐

3/2
+ )/96875

)︁
, (24)

analytically integrated from Ref. [47].

5.7 Appendix: Reference Electrode Fitness

Following the protocols in Ref. [13], we see that for a reference electrode, if the foil

reaction is defined with a simple Butler-Volmer reaction as

𝑖𝑎 = 2𝑘0
√
𝑎+ sinh

(︁𝜂
2

)︁
, (25)

then the differential conductance is found to be

𝜕𝑖𝑎
𝜕𝜂

= 𝑘0
√
𝑎+ cosh

(︁𝜂
2

)︁
, (26)
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and
𝐷𝑖𝑎
𝐷𝑐+

=
𝜕𝑖𝑎
𝜕𝑐+

+
𝜕𝑖𝑎
𝜕𝜂

𝜕𝜂

𝜕𝑐+
=

𝑖𝑎
2𝑐+

𝜕 ln 𝑎+
𝜕 ln 𝑐+

(︂
1− 𝑘𝐵𝑇

𝑒
coth

(︁𝜂
2

)︁)︂
. (27)

Because material-scale degradation does not generally happen at the reference elec-

trode, the linearized fitness for a half-cell electrode is described as

�̂�𝑎 = 1− 1

2

(︂
1− 𝑘𝐵𝑇

𝑒
coth

(︁𝜂
2

)︁)︂𝜕 ln 𝑎+
𝜕 ln 𝑐+

(1− 𝑐+) (28)

without any dependencies on film resistance or surface blockage from the cathode.

5.8 Appendix: Current Pulse Linear Approximation

For a model single particle, a current pulse will lead to a voltage response. The

voltage response can be expressed in terms of the overpotential fitness variable 𝑈 ,

which is defined as the ratio of the measured overpotential in the degraded state and

overpotential in the non-degraded state for a half cell. For a half cell, where the direct

measurement of the electrode potential is possible, we can write the fitness variable

exactly as

�̂� =
𝜑− 𝜑(𝑐)

𝜑− 𝜑(𝑐)
=
𝜂

𝜂
=

𝜂(𝑖, 𝑅𝑓 , 𝑐, 𝑐+)

𝜂(𝑖, 𝑅𝑓 = 0, 𝑐 = 1, 𝑐+ = 1)
. (29)

Analogous to the linear approximation of current fitness variable in (13), we also

derive a linear approximation of 𝑈 in the limit of small degradation variables. We per-

turb the non-degraded state by the degradation variables independently, and multiply

each correction to the fitness variable, such that �̂� ≈ �̂�𝑅𝑓
�̂�𝑐�̂�𝑐+ :

�̂� =

(︂
1 +

𝑖𝑅𝑓

𝜂

)︂(︃
1 +

(︂
𝜕𝑖

𝜕𝜂

)︂−1
𝜂−1𝑘0ℎ(𝜂)(𝑐− 1)

)︃

×

(︃
1 +

(︂
𝜕𝑖

𝜕𝜂𝑓

)︂−1
𝜂−1𝑘*0(1− 𝑐)𝑔(−𝜂𝑓 , 𝜆)(𝑐+ − 1)

)︃
.

(30)

Importantly, this equality constraint in the linear approximation highlights one

drawback of doing current pulses, primarily being the extra computational effort
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needed to get a linear estimate of the degradation parameters from current pulses. In

the following, we provide derivations of the individual components of �̂� .

A useful derivative for the full derivative which is used in later derivations is

𝐷𝜂

𝐷𝑅𝑓

=
𝜕𝜂

𝜕𝑌
+
𝜕𝜂

𝜕𝑖

𝜕𝑖

𝜕𝑌
, (31)

where 𝑌 can be any degradation variable of 𝑅𝑓 , 𝑐, or 𝑐+.

5.8.1 Film Resistance

To determine �̂�𝑅𝑓
, we can write the Taylor expansion of 𝜂 with respect to 𝑅𝑓 . In this

expression, we can directly evaluate 𝐷𝜂/𝐷𝑅𝑓 = 𝜕𝜂/𝜕𝑅𝑓 since 𝜕𝑖/𝜕𝑅𝑓 = 0.

𝜂 = 𝜂 +
𝜕𝜂

𝜕𝑅𝑓

⃒⃒⃒⃒
𝑅𝑓=0

𝑅𝑓 +𝒪(𝑅2
𝑓 ). (32)

By the definition of the overpotential, it is clear that the fitness variable is defined as

�̂�𝑅𝑓
= 1 +

𝑖𝑅𝑓

𝜂
+𝒪(𝑅2

𝑓 ). (33)

5.8.2 Rescaled Capacity

To determine �̂�𝑐, we can write the Taylor expansion of 𝜂 with respect to 𝑐. Since

𝐷𝜂

𝐷𝑐
=
𝜕𝜂

𝜕𝑖

𝜕𝑖

𝜕𝑐
=

(︂
𝜕𝑖

𝜕𝜂

)︂−1
𝜕𝑖

𝜕𝑐
, (34)

we see that

𝜂 = 𝜂 +
𝐷𝜂

𝐷𝑐

⃒⃒⃒⃒
𝑐=1

(𝑐− 1) +𝒪(𝑐2) = 𝜂 +

(︂
𝜕𝑖

𝜕𝜂

)︂−1
𝜕𝑖

𝜕𝑐 𝑐=1
(𝑐− 1) +𝒪(𝑐2). (35)

Plugging in the values for the differential conductance gives that

�̂�𝑐 = 1 +

(︂
𝜕𝑖

𝜕𝜂

)︂−1
𝜂−1𝑘0ℎ(𝜂)(𝑐− 1) +𝒪(𝑐2), (36)
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where ℎ(𝜂) is the overpotential-dependent part of the reaction as 𝑖 = 𝑘*0(1− 𝑐)ℎ(𝜂).

5.8.3 Electrolyte Loss

To simplify calculations, we use the formal overpotential, since this preemptively

removes the electrolyte loss dependence from the model. Since

𝐷𝜂𝑓
𝐷𝑐+

=
𝜕𝜂𝑓
𝜕𝑖

𝜕𝑖

𝑐+
=

(︂
𝜕𝑖

𝜕𝜂𝑓

)︂−1
𝜕𝑖

𝜕𝑐+
=

(︂
𝜕𝑖

𝜕𝜂𝑓

)︂−1
𝑘*0(1− 𝑐)𝑔(−𝜂𝑓 , 𝜆). (37)

Since 𝜕𝑖
𝜕𝜂𝑓

= 𝜕𝑖
𝜕𝜂

, we can directly use this derived relationship in the Taylor expansion

of the overpotential. To determine �̂�𝑐+ , write the Taylor expansion of 𝜂 with respect

to 𝑐+,

𝜂 = 𝜂 +
𝐷𝜂

𝐷𝑐+

⃒⃒⃒⃒
𝑐+=1

(𝑐+ − 1) +𝒪(𝑐2+). (38)

Upon combining these equations, we can determine the fitness variable as an

implicit formula to the equation

�̂�𝑐+ = 1 +

(︂
𝜕𝑖

𝜕𝜂𝑓

)︂−1
𝜂−1𝑘*0(1− 𝑐)𝑔(−𝜂𝑓 , 𝜆)(𝑐+ − 1) +𝒪(𝑐2+). (39)

Though these analyses can be done directly for a half cell, they do not provide

any inherent information on degradation of the full cell. The full cell fitness is

𝑈 =
�̂�𝑐𝜑𝑐 − �̂�𝑎𝜑𝑎

𝜑𝑐 − 𝜑𝑎

≈ �̂�𝑐(𝜂𝑐 − 𝜇𝑐(𝑐𝑐))− �̂�𝑎(𝜂𝑎 − 𝜇𝑎(𝑐𝑎))

(𝜂𝑐 − 𝜂𝑎)− (𝜇𝑐(𝑐𝑐)− 𝜇𝑎(𝑐𝑎)))
.

(40)

Because the intercalation potentials for the solid depend on the reference potential,

there is no absolute 𝑈 value that can be calculated for a full cell. Thus, the lin-

earization only works at at the half cell level and cannot be brought to the full cell

level.
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5.9 Appendix: Multiple Degradation Mechanisms

A set of full cell simulations of NMC532-graphite with all degradation mechanisms

present is shown in Fig. 7. The function does well at separating the dominant mech-

anism (the surface blockage mechanism for the anode, and then the electrolyte con-

centration loss mechanism) and quantitatively performs well in separating each of

the degradation mechanisms, but does not perform as well qualitatively. The linear

model drifts especially at the non kinetically limiting electrode because, as seen in

Fig. 2, the cathode values especially do not capture the implicit contribution and drift

at larger degradation amounts.

5.10 Appendix: Special Cases of Linearized Fitness

To preferably measure one electrode over the other, special care can be taken to

consider the state of charge that the pulse is performed at. Based on the conductance

ratio between the electrodes, we can approximate the state of charge dependence on

the ratios as 𝑓𝑐𝑘0,𝑐(1−𝑐𝑐)
𝑓𝑎𝑘0,𝑎(1−𝑐𝑎) , where the cathode and anode state of charges are related

through mass conservation. The approximate weights between the cathode and the

anode fitnesses can be tuned by the state of charges used to measure the materials.

A special case is the half cell with a lithium counter electrode. In this scenario,

𝑓𝑎 = 1 since the lithium counter electrode is a foil. We also assume there is no

degradation at the reference electrode �̂�𝑎 = 1. As a result, the overall fitness value

can be expressed as

𝑊 =
�̂�𝑐 + 𝑓𝑐

𝜕�̄�
𝜕𝜂 𝑐/𝑎

1 + 𝑓𝑐
𝜕�̄�
𝜕𝜂 𝑐/𝑎

. (41)

In a half cell with a lithium reference electrode, the reference electrode is primar-

ily affected by electrolyte loss and no other degradation mechanisms, as detailed in

Appendix 5.7. Due to the fact that the foil only has active area on the surface and

not within the electrode, 𝑓𝑐/𝑓𝑎 ≫ 1, the cathode is always potential dominant. This

dominance at the cathode arises from the limited surface area available at the anode,
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making it difficult to separate the degradation mechanisms at the cathode material.

Given this dominance at the cathode, it is not desirable to conduct HPPC pulses on

half cells.
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Figure 4: a) Tafel plot for a coupled-ion electron transfer reaction relative to the
overpotential for a NMC532 model at different states of charge, which gives rise to
different differential conductance behavior as well as reduction current fraction in the
next two plots. b) Differential resistance values for a NMC532 model captured at
different overpotentials for various states of charge are plotted. Specifically, pulses
at 5, 20, and 100 mV overpotentials are plotted at the red points. c) Reduction
current fraction is plotted with respect to different overpotentials. State of charge
variation plays a minimal role in the reduction current fraction, causing reduction
current fractions at different SOC values to overlap. The reduction current fraction
values for pulse experiments at 5, 20, and 100 mV overpotentials are shown as red
points. d) Kinetic fraction of surface blockage is plotted at different state of charge
values for varying overpotentials.
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Figure 5: Sensitivity analysis of each degradation mechanisms on the fitness 𝑊 for a
NMC532-graphite cell for a 100mV (dis)charge voltage pulse or for a 1C (dis)charge
current pulse at a cathode state of charge of 0.8 and anode state of charge of 0.4. The
effects of film resistance for (a) the cathode, (b) the surface blockage for the cathode,
(c) the electrolyte concentration, (d) the film resistance for the anode, and (e) the
surface blockage of the anode are plotted for this cell for values close to the initial
degradation state.

Figure 6: Comparison of fitting linearized or exact objective functions to simulated
results for full cell simulation for NMC532-graphite at ten different degradation points
for each degradation mechanism for voltage/current pulse HPPC is shown. (a,d) are
the film resistance mechanisms for the cathode and anode; (b,e) are the surface block-
age mechanisms for the cathode and anode, and (c) is the electrolyte loss mechanism.
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Figure 7: Comparison of fitting linearized objective function to exact results for full
cell NMC532-graphite simulation at nine different degradation points for a combined
set of simulations with all degradation mechanisms present. (a,d) are the film resis-
tance mechanisms for the cathode and anode, (b,e) are the surface blockage mecha-
nisms for the cathode and anode, and (c) is the electrolyte loss mechanism.
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Chapter 6

Conclusions

Our multiscale model for understanding degradation can capture the effects of degra-

dation from a single particle scale to a population scale, and then eventually to a

porous electrode scale, as shown in Fig. 1. Microscopic degradation mechanisms were

investigated at a particle level, using surface phase transformations of nickel rich mate-

rials as an example, and incorporated into population scale effects for solid solution or

phase separating populations. Population balances with nickel rich materials were de-

veloped as an example for solid solution materials, while simple linearized models were

applied and validated to represent the influence of degradation on kinetics. Scaling

analyses using timescale competition for phase separating materials were developed

to observe the competition between population and single particle timescales, using

lithium iron phosphate as an example. The extraction of microscopic degradation

mechanisms from macroscopic electrochemical responses using pulse diagnostics was

also explored. Physical interpretations of pulses were formulated for a full cell elec-

trode and proven to extract microscopic degradation mechanisms from particle level.

These protocols were eventually optimized with model based design-of-experiment to

extract particle level degradation efficiently and optimally from macroscopic signals.

169



Figure 1: Figure displaying the scope of this thesis, from modeling particle level
degradation [12] to projecting particle level to population scale degradation [13, 14],
and finally applying electrode level understanding of diagnostics to particle level [15,
16].

6.1 Particle Level Degradation Mechanisms

In this study, we demonstrate the formulation of a degradation model that accounts

for cation disorder coupled with oxygen formation at the surface of nickel-rich layered

materials. Due to the high commercial availability of nickel, these materials are in-

creasingly recognized as the next generation of battery cathode materials. These free

energy models, combined with an oxygen vacancy boundary condition, qualitatively

explain why high voltage cycling causes more phase transformations and disorder [60]

in battery materials. To the authors’ knowledge, this is the first model of free energy

for cation degradation that can be easily derived from first principles which is appli-

cable to continuum-scale battery simulations. It merges the detailed understanding

of crystal structures from first principles with the computational tractability required

for continuum-level battery modeling. This approach eliminates the need for experi-

mental data to characterize the chemical potential functions or free energy models for

degradation, requiring experimental data only to determine the kinetic parameters of

degradation. This significantly enhances the practical applicability of the models.
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These degradation models can be applied to porous electrode models to study the

effects of various macroscopic battery parameters, such as particle size and charging

rate, on cation disorder growth in the active materials [54, 53]. Cycling simulations

at different operating conditions, such as constant current and constant voltage, can

model their effects on inducing cation disorder and thus phase transformations in a

battery, a crucial step to the study of long term maintenance of battery operation.

Insight from single particle cycling simulations of these particles reveal that the degra-

dation caused by higher voltage operation in these materials is irreversible and that

if avoiding degradation is imperative, higher voltage ranges should be applied later

in the operation of a battery. From a materials design perspective, maintaining a

balanced Ni-Co-Mn ratio is thermodynamically preferable. Although Ni-rich materi-

als have more attractive techno-economics, they are predicted to be less stable as the

Ni concentration increases, promoting the blocking of lithium sites by nickel disorder

[84].

6.2 Particle Level to Electrode Level

6.2.1 Solid Solution Materials

Degradation on populations of solid solution materials was mapped from a single par-

ticle level to an electrode level using a population balance equation. By employing

the concept of fitness functions from biological populations, this idea was adapted to

model the degradation of battery particles of varying sizes in a lithium-ion battery.

The coevolution of fitness with reaction and degradation on these battery particles

is simulated as the battery is cycled with the Fokker-Planck equation, using different

intercalation reaction models. For all reaction models, the fitness function values

are found to grow heterogeneously as the battery is cycled, starting with the initial

formation cycles. This heterogeneous growth reflects the varying degradation rates

among individual particles within the battery, which accumulate differently over suc-

cessive charge-discharge cycles. After the formation cycles, degradation accumulates
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while preferring smaller particles. The degradation growth on the smaller particles

from the autocatalytic behavior between fitness and degradation contributes to the

eventual death of the battery [188]. This overall trend causes the smaller particles

to lose their usable capacity faster and contribute to the failure of the battery before

the larger particles do.

From our simulations, we also learn that particle level degradation mechanisms

drive electrode-level behavior of the system, and the shape of the behavior of electrode-

level current-voltage relations gives insight into which of the degradation mechanisms

is most dominant. “Expansion” of voltage curves can be attributed to changes in

reaction kinetics, while “shifts” of the voltage curves are attributed to active material

degradation or changes in overpotential. Asymmetric effects between intercalation

and deintercalation in the voltage curve can be attributed to electrolyte loss effects

from their stronger contribution to the reduction reaction. In addition, the shape

of the capacity loss curve gives insight into the mode of degradation that is most

dominant. Electrolyte loss has smoother terminal behavior, while resistive film and

surface blockage all have sharper capacity loss drops.

Such a model of fitness evolution for driven electrochemical reactions can be ex-

panded to systems beyond a simple Fokker-Planck model. These simple degradation

mechanisms can be applied to porous electrode models [53, 54, 122] to study the effect

of degradation at macroscopic scale. The development of simple, physically driven

degradation models which can be applied to porous electrode scale simulations pro-

vide support for data-driven modeling of degradation, aiding solutions to the major

challenges in developing and designing better Li-ion batteries [319].

6.2.2 Phase Separating Materials

Beginning with single-particle conservation equations, we derive a population bal-

ance model to describe the behavior of active material particles in a lithium-ion

battery during a (dis)charge process. Different timescales in the problem are revealed

through the process. Through the eigendecomposition of this population scale model,

we identify two regimes of stochastic and deterministic intercalation in the process
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timescale, depending on whether the applied voltage lies within the miscibility gap

or not. Asymmetry driven by the single particle stability criterion on timescales in

the stochastic regime is observed in the process. Predictions on the voltage values

under different applied currents are made through minimizing applied voltage, which

then reveals the single particle reaction timescales. The observation of particle acti-

vation fraction as a nondimensional factor integrating competition between reaction

and process timescales is revealed.

Such timescale analyses provide simple analytic estimations to phenomena such

as active particle fraction and population timescales for intercalation. These simple

predictions allow for unprecedented direct analysis of phase separating particle pop-

ulations, aiding the design and analysis of common phase separating materials such

as lithium iron phosphate or graphite. This work can predict and control optimized

operation of phase separating materials to improve utility through increased particle

activation fraction.

6.3 Electrode Level to Particle Level

6.3.1 Pulse Diagnostics

An analysis of the physics behind pulse diagnostics was performed to extract degra-

dation behavior from macroscopic measurements to particle level, focusing on hybrid

pulse power characterization techniques (HPPC). The goal of this work has been to

enhance the physical understanding of HPPC protocols as a means to diagnose battery

degradation behavior. Such detailed physical information transcends the conventional

lumped degradation modes, which merely offer insights into the “symptoms” of bat-

tery degradation. In this work, models for both current and voltage response during

the pulse were formulated, generating expressions that directly relate physical degra-

dation parameters to the observed response. Furthermore, we have demonstrated the

benefits of using voltage pulses instead of current pulses, including stronger sensitiv-

ity with respect to degradation, explicit linear extraction of degradation mechanisms,
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faster optimization, and mitigated population effects relative to current pulses for

phase separating materials. Discharge pulses are found to contain more information

in cases of anode overpotential dominance, while charge pulses are better for cathode

overpotential dominance. We have shown that it is possible to extract the dominant

degradation mechanisms from each electrode with a physics-based optimized HPPC

protocol. This is key to tying together physics-based modeling [53, 54] with diag-

nostics obtained from battery experiments without the need for lumped degradation

modes commonly used in battery degradation [320, 37]. With these physical degrada-

tion parameters, we can diagnose the physical-driven reasons for battery failure and,

in turn, design future batteries to mitigate capacity loss.

Our derivations provide some generic useful physical insights. The overpotential-

dominant electrode with slower kinetics dominates full cell electrochemical responses,

which makes it difficult to probe the properties of the opposing electrode. For pulse

schemes, the corresponding fitness variables are directly proportional to the ratio of

instantaneous power. This relationship is crucial for assessing instantaneous power

output, which is challenging without conducting experiments. These straightforward

and explicit linear approximations provide a direct link between physically meaning-

ful degradation parameters and power, offering a simplified pathway for evaluating

the state of health of a battery system. Even without experimental validation, the

increased physical understanding behind sensitivity and information gain in pulses,

as well as pulse design methods in a full cell and the limitations of these techniques,

are useful for optimal design. This deeper understanding of pulse diagnostics can lead

to more accurate and faster degradation assessments, enabling better management

and longer life for lithium-ion batteries.

Overall, a simple model that provides tractable analytical methods of extracting

degradation mechanisms from single particle level was developed in this work, using

approximations in Ref. [13]. Some drawbacks of our approach include a necessary

physical understanding of the impact of degradation on the kinetics of the electrode

material to be included in the model. In addition, mathematical models of the reaction

kinetics must be selected before the optimization can be performed, although one can
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imagine automating this process with inverse learning from data. Chemo-mechanics,

microstructural effects [236], and phase separating dynamics have also been neglected

in this model. Some degradation mechanisms, such as lithium plating and surface

degradation in nickel-rich materials, can have similar electrochemical signatures, pos-

ing challenges in their differentiation. In addition, though the theoretical analysis of

these experiments has revealed much about the practicality and also limitations of

HPPC diagnostics, experimental validation is a crucial step. Experimental validation

of our framework is imperative for our desire to apply diagnostics to real life battery

systems. Forthcoming works will be focused on improved design-of-experiments for

optimal HPPC and rigorously verifying these methods through experiments, using

test pulses to validate the accuracy of our model for capturing degradation. By ad-

dressing these challenges and validating our models experimentally, we can enhance

the reliability and applicability of our diagnostics framework. This will ultimately

contribute to better battery management, longer battery lifespans, and more effec-

tive second-life applications, significantly advancing the field of lithium-ion battery

technology.

6.3.2 Optimal Design of Pulses

An extension to this study, performed in Ref. [16], proposes a novel framework for

optimizing HPPC protocols to extract degradation information related to the kinetics

of lithium-ion batteries by considering properties specific to the reaction model and

electrode materials. A two-objective optimization was defined by formulating the

parametric uncertainty for reaction-limited degradation [15] and the diagnostic time

using scaling analysis [3]. Model-based design-of-experiment was used to minimize

the parametric uncertainty while the diagnostic time was used as a constraint to

construct the Pareto front. While the degradation state is not known a priori (which

is necessary for designing the optimal HPPC protocol), a generalized optimal HPPC

protocol was designed by applying the mean-field average approach over an expected

feasible region. The robustness of the designed HPPC protocols was evaluated by

performing Markov Chain Monte Carlo simulations for various degradation states.
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Figure 2: a) Example of improved surface coatings for transition metal oxide cathode
materials [17]. b) Example of improved electrode utility from microstructural and
particle level design choices [18]. c) Example of the impact of improved diagnostics
on cycle life prediction [1].

These optimally designed pulses can be used to reduce required diagnostics time in

high-power applications such as electric vehicles [62].

6.4 Outlook

Our multiscale model can be used in many directions for future applications, as

shown in Fig. 2. Firstly, at the single particle level, improved operation can be

designed from reaction-diffusion behavior. Our theory of degradation may help guide

the development of surface modifications to stabilize transition metal oxides, where an

example is shown in Fig. 2a. From a kinetic perspective, for a given NMC composition,

the surface treatment must limit oxidation reactions that trigger cation disorder by

passivating the reactive oxygen ions at the edge plane and blocking electron transfer

to the electrolyte. Well known ceramic coatings, such as alumina (Al2O3), zirconia

(ZrO2), magnesium oxide (MgO), and other oxide materials, are able to perform

these functions and can extend the cycle life of of nickel-rich oxides [321, 182, 7].

Some coatings, such as niobium oxides (NbO), not only passivate oxygen and block

electron transfer, but also introduce more stable ions, such as Nb5+, into the crystal

structure near the surface at transition metal or lithium sites [322]. Our theory would

suggest that such inserted ions from the coating may exchange with the more unstable
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nickel ions and reduce the likelihood of cation reduction and disorder at the surface.

Overall, guidance on synthesis of nickel rich materials or coatings be performed with

future extensions of this model, providing overall predictions of optimal synthesis

temperatures related to equilibrium thermodynamics.

Using our population scale models, improved electrode scale utility can also be

designed and achieved from synthesis parameters such as particle size distribution, or

operating conditions such as current or voltage, as indicated in Fig. 2b. Differences in

particle size distributions are influenced by synthesis conditions such as temperature,

precursor particle size, and timescales [323]. Our work can help with selection of the

desired particle size distribution, guiding specific operation conditions of synthesis.

This work also allows for design of electrode utility at different voltages or current,

calculated from the varying amounts of power that can be extracted from the system.

For phase separating materials, the active particle fraction can significantly impact

the utility [8] at a population level. Even for solid solution materials, the appearance

of fictitious phase separation [49] also indicates that higher utility distributed between

particles can be achieved at a population scale. We expect that improved electrode

scale utility can be impactful for both solid solution and phase separating devices.

We envision that in the future, these methods could help detect changes in degra-

dation that are difficult to discern using conventional techniques. Our method al-

lows for the determination of dominant degradation mechanisms for each electrode in

operando, which allows for a pivotal method of detection and prevention of battery

failure. Some factors, such as coupling between transition metal cathode degradation

with resistive film growth on the graphite electrode, may need to be added to these

models for more accurate modeling [324]. Moreover, the determination of the failure

mechanism can also guide the selection of second life application for the degraded

battery [325, 326, 327]. For instance, batteries retired from electric vehicles might

still have sufficient capacity and power output for less demanding applications, such

as stationary energy storage. Understanding the specific degradation mechanisms

can help with repurposing, ensuring that the second life application maximizes the

remaining useful life of the battery. The integration of advanced degradation diag-
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nostics into battery management systems can significantly enhance the reliability,

longevity, and economic value of lithium-ion batteries across their lifetime.

Additionally, the combination of these simpler population models and faster HPPC

diagnostics can allow for improved diagnostics in the future, as indicated in Fig. 2c.

These methods could even be incorporated for better model-based diagnostics, or

data-driven diagnostics to determine better features representing degraded states.

Enhanced diagnostics for batteries in use cases such as electric vehicles can improve

range estimation, ensure safety, and extend battery life. Additionally, advanced diag-

nostics can facilitate more efficient recycling and reuse of battery materials, thereby

reducing environmental impact. Overall, this work will pave the way for more physi-

cally grounded methods of understanding and measuring degradation in lithium ion

batteries, from the particle to electrode scale.
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Appendix A

Nonisothermal Open Driven Systems

A.1 Introduction

The coupling of reactions and transport has been found to affect the stability of phase

separation of a system [328]. Specifically, thermodynamic stability of electrochemical

systems has been found to affect the operation of lithium ion batteries and control

macroscopic phase separation of these systems [164, 165]. Reactions often end up con-

trolling the operational stability of these systems, as seen in the suppression of phase

separation in lithium iron phosphate at high charging rates [67, 3, 329]. Spontaneous

phase separation in these systems sometimes lead to undesired behavior, like phase

separation in battery intercalation, which causes immense strain on the intercalation

material and can lead to particle cracking and intergranular strain [330]. In opera-

tion, it can lead to localized degradation such as lithium plating and be potentially

hazardous to battery users [92].

Nonisothermal effects can also play a role in the coupling of transport processes

and reactions in a system. Temperature effects on the phase stability of systems

have been noted in systems such as drug-polymer dispersion, block copolymer melts,

and even biological transcription [331, 332, 333, 334]. Heat transfer and temperature

effects influence stability of open driven systems, especially since temperature also af-

fects reaction rates of the system, the transport coefficients, as well as the magnitude

of driving forces of the system [161]. Thermal driven fluxes can appear in gaseous sys-
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tems which can directly affect the transport processes in a system [161]. In this study

we will isothermal thermodynamic stability to consider the thermodynamic stability

of open driven systems, but in a nonisothermal fashion, with emphasis placed on the

role of temperature and heat transfer related material properties on the stability of

the system. We formulate a generalized theory for all open systems, but apply it to

a battery intercalation system for specific applications.

Battery intercalation systems, considered open driven systems, are highly depen-

dent on temperature effects because of reaction heat generation and sensitivity of

material properties to temperature. As fast charging becomes preeminent in electric

vehicles, temperature variation in batteries significantly increases. Thus, it becomes

even more important to understand the effects of temperature on these systems, es-

pecially its effects on phase separation, which plays a large role in degradation in

these systems [335, 336]. In addition, higher and lower temperature operation of bat-

tery systems also become more common, as electric vehicles expand to regions with

colder winters and warmer summers, and as global warming starts to affect our entire

ecosystem. Temperature effects play strong role in degradation and dendrite forma-

tion in a battery [337, 338, 339]. Since the temperature of a battery systems not only

influences properties of the active material electrodes themselves [340, 341] but also

the conductivity and diffusivity of the electrolyte, which often play critical roles in

the lifetime of a battery [342, 47], porous electrode battery models often include cor-

relations of temperature effects on the open circuit voltage and electrolyte properties,

as well as energy balances on the general battery system, such as the porous electrode

model softwares LIONSIMBA and dualfoil to remedy this [45, 343, 344, 345, 346]. It

remains to be seen how temperature effects on phase stability carry over into battery

operation, especially in a multiphase material [44], since these effects have not been

included before.

The reaction rate model introduced also has a large effect on the current of the sys-

tem. Since Butler-Volmer (BV) is a phenomenological reaction rate which is unphys-

ical at high overpotentials because it does not account for electron transfer limitation

[347], the artificial inflation of the current often causes the misunderstanding that
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electrode reactions can contribute greatly to temperature gradients inside lithium-

ion batteries [348]. Thus, many current battery models mistakenly attribute much

heat generation to the electrode reactions, since electron transfer limitation is not

accounted for in BV models. To account for this temperature dependent multiphase

porous electrode model, a study of temperature stability and battery material prop-

erties on battery intercalation is necessary and will be performed in this paper.

Though temperature dependent models of catalysis and battery intercalation ex-

ist, to our knowledge, nonisothermal thermodynamic stability has not been studied

before in a manner suitable for phase separation. A thermodynamically consistent

theory on transport in nonisothermal open driven systems is derived in a rigorous

fashion and applied to our problem of choice for intercalation in lithium-ion batteries.

Though this problem has been worked on considering surface reactions in lithium-

ion batteries [349], the general system of heterogeneous/homogeneous reactions has

not been considered. Temperature dependent models for ion intercalation and for

photocatalysis generally involve an energy balance as well as temperature dependent

properties like electrolyte diffusivity, but no model that takes into account the effect

of temperature on phase separation has ever been studied with thermodynamically

consistent reaction rates, though more general models have been developed before

[350, 351].

Our goal is to create a temperature dependent and thermodynamically consistent

multiphase porous electrode model using the more physical quantum ion-electron

transfer reaction rates, which requires understanding of how temperature stability

affects open driven systems to understand phenomena in these temperature depen-

dent models such as intercalation and photocatalysis, where stability of a system

is extremely important for operation. To do this, first we build upon general non-

isothermal nonequilibrium thermodynamics from transport laws including diffusion,

reaction, and coupling interactions between the energy and mass balances and show

these equations below, which can be applied to many other systems. Upon this, we

try to perform a full analysis of the nonisothermal effects in battery intercalation

materials, and analyze the effects of the contributions of each type of heat generation
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on the system, incorporated into a porous electrode model software. We find that

the effects of reaction heat generation are often over-accounted for because of the

physically incorrect Butler-Volmer model at high overpotentials.

A.2 Theory

A.2.1 Balance Laws

We aspire to set up a thermodynamically consistent framework for transport theory

in open system thermodynamics. We consider an open system of a battery particle

with a certain reaction 𝑅 happening at the particle surface, which depends on the

system it is applied for. To understand the phase stability in our system, which may

have contributions from mechanics and mass and energy transfer, we need to proceed

with the balance laws in our system.

Mass Conservation

For a multicomponent system, we can use the mass averaged definitions of the material

properties. The concentration of each component 𝑖 can be defined as 𝑐𝑖, where
∑︀
𝑐𝑖 =

1. The mass density in our system can be described as 𝜌 =
∑︀

𝑖 𝜌𝑖𝑐𝑖 and the mass

averaged velocity as v = (
∑︀

𝑖 𝜌𝑖v𝑖)/𝜌, which are the reference frame for velocity

chosen in this problem. The mass averaged flux is J = (
∑︀

𝑖 𝜌𝑖J𝑖)/𝜌 averaged over all

the particle species, where 𝜌 is the average density, and all terms beyond first order

nonlinear terms are dropped.

The overall mass balance is [352, 162, 353].

𝑑

𝑑𝑡

∫︁
𝑉

∑︁
𝑖

𝜌𝑖𝑑𝑉 = −
∫︁
𝐴

∑︁
𝑖

n · J𝑖𝑑𝐴. (1)

Summing these two equations, the divergence theorem and Reynold’s Transport The-

orem can be applied to find that [352]

∫︁
𝑉

�̇�+∇ · (𝜌v) 𝑑𝑉 =

∫︁
𝑉

−∇ · J𝑑𝑉, (2)
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where the sum of the divergence of the fluxes sums to zero when the system is closed

for the bulk system. This term is extremely important in differentiating between open

and closed systems in energy and momentum balances, as we will see later. The mass

conservation equation is equivalent to the concentration conservation equation since

we work with intercalation materials in this problem.

The mass boundary condition over the reactive area applies as the surface trans-

port theorem to be [354]

𝑑

𝑑𝑡

∫︁
𝑆

𝜌𝑑𝑆 =

∫︁
𝑆

�̇�+∇ · (𝜌v) 𝑑𝑆, (3)

for any surface point with density 𝜌.

Momentum Conservation

We start with the general momentum balance of the system, applying the divergence

theorem to the system.

𝑑

𝑑𝑡

∫︁
𝑉

(︃∑︁
𝑖

𝜌𝑖v𝑖

)︃
𝑑𝑉 =

∫︁
𝐴

t · n𝑑𝐴+

∫︁
𝑣

∑︁
𝑖

𝜌𝑖bi𝑑𝑉, (4)

with the traction t defined on the boundary 𝐴 [352]. Since the momentum is a linear

function of the density, we expect that the average value of the total momentum

balances should hold, in terms of average momentum
∑︀

𝑖 𝜌𝑖v𝑖 = 𝜌v and average body

force b0 = (
∑︀

𝑖 𝜌𝑖b𝑖)/𝜌. This equation is valid for any system, open or closed.

Differences between open and closed systems appear when the time dependent

term is separated, since mass is no longer conserved in an open system. The mass

balance can be applied to the momentum conservation equation through Reynold’s
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transport theorem as

𝑑

𝑑𝑡

∫︁
𝑉

𝜌v𝑑𝑉 =

∫︁
𝑉

𝜕(𝜌v)

𝜕𝑡
+∇ · (𝜌v ⊗ v) 𝑑𝑉

=

∫︁
𝑉

𝜌v̇ + v (�̇�+∇ · (𝜌v) + 𝜌∇ · v) 𝑑𝑉

=

∫︁
𝑉

𝜌v̇ + v (−∇ · J+ 𝜌∇ · v) 𝑑𝑉

(5)

after applying the mass balance derived for the open system in the first step. Thus,

for our open system, the mass fluxes in this system affect the momentum balance

as well. Compared to that of a closed system, where the spatial movement of fluxes

would have been nonexistent over the entire interval, the spatial divergence of the

fluxes do not disappear in open systems. Thus, our system simplifies to

𝜌 (v̇ + v∇ · v)− v∇ · J = ∇ ·T+ 𝜌b0 (6)

using the localization theorem. For a closed system, the divergence of fluxes would

disappear.

Energy Conservation

We notice that this generation of internal energy in an open system does not just

include generation terms observed in a closed system—it accounts for the effect of

the open system mass flux terms on the entropy of the system. This is not simply

the chemical potential that is generated, but a combination of chemical potential and

entropy. In addition, the amount of stress that is generated also needs to include

the open system generation of stress, which is in the last term of the heat generation

equation. The inclusion of the extra generation terms from an open system provides

a framework to study the energy balance of the system for the time dependent terms.

The energy balance, where the specific energy is defined per mole as 𝑒𝑖 = 𝑢𝑖 +
1
2
|v𝑖|2

is defined as
𝑑

𝑑𝑡

∫︁
𝑉

∑︁
𝑖

𝜌𝑖𝑒𝑖𝑑𝑉 = −
∫︁
𝐴

∑︁
𝑖

n · J𝑒,𝑖𝑑𝐴+𝑊0, (7)
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where 𝑊0 is the conventional external power [352] defined as

𝑊0 =

∫︁
𝑆

∑︁
𝑖

𝜌𝑖t𝑖 · v𝑖𝑑𝐴+

∫︁
𝑉

𝜌𝑖b𝑖 · v𝑖𝑑𝑉 (8)

applying the divergence theorem and J𝑒,𝑖 is the heat flux for species 𝑖, and the sym-

metry and definition of the stress tensor [355, 356]. The conventional external power

comes from the effect of the surface traction term and the body forces. Here, we see

that the energy flow is from all of the mass and heat fluxes in the system. Because

there are external fields in our system, the flux is a combination of the Fourier heat

flux as well as internal energy transported by the external fields applied. Thus, the

flux can be defined using linear irreversible thermodynamics [161] as

J𝑒 = Q+
∑︁
𝑖

(𝑢𝑘 + 𝐹𝑧𝑖𝜑)J𝑖 (9)

from the electric field, where 𝐹 is the Faraday constant, 𝑧𝑘 is the ion number, and 𝜑 is

the electric potential. Again, defining the average energy as 𝜌𝑒 =
∑︀

𝑖 𝜌𝑖𝑒𝑖 and average

flux as 𝜌J𝑒 =
∑︀

𝑖 𝜌𝑖J𝑒,𝑖, we can apply these averages and the divergence theorem as

∫︁
𝑉

𝜕

𝜕𝑡
(𝜌𝑒) +∇ · (𝜌𝑒v)𝑑𝑉 =

∫︁
𝑉

−∇ · J𝑒𝑑𝑉 +𝑊0. (10)

Applying the same principle as in the momentum balance, by a first order expansion

of the first derivative, we see that∫︁
𝑉

𝜕

𝜕𝑡
(𝜌𝑒) +∇ · (𝜌𝑒v)𝑑𝑉

=

∫︁
𝑉

𝜌(�̇�)𝜌 + 𝑒 (�̇�+∇ · (𝜌v)) + 𝜌𝑒∇ · v𝑑𝑉

=

∫︁
𝑉

𝜌(�̇�)𝜌 + 𝑒 (−∇ · J) + 𝜌𝑒∇ · v𝑑𝑉.

(11)

We transform the conventional external power by the divergence theorem as

𝑊0 =

∫︁
𝑉

∑︁
𝑖

𝜌𝑖

(︁
v𝑖 ·

(︁
∇ · T̃+ b𝑖

)︁
+∇v𝑖 : T

)︁
𝑑𝑉. (12)
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We notice that even the conventional external power changes for an open system—the

mass flux terms—affect the amount of kinetic energy in the system. Applying the

conservation equation for momentum, we obtain that

𝑊0 =

∫︁
𝑉

1

2
𝜌 ˙(|v|2) + |v|2 (𝜌∇ · v −∇ · j) +T : D 𝑑𝑉, (13)

where the stretching D is the conjugate variable to the Cauchy stress T. The power

expended by the Cauchy stress, the internal power, is elastic. Neglecting the second

order terms and keeping only the first order ones, the total energy balance can be

written using the localization theorem as

𝜌
(︀
(�̇�)𝜌 +

(︀
𝑒− |v|2

)︀
∇ · v

)︀
−
(︀
𝑒− |v|2

)︀
∇ · j = −∇ · J𝑒 +T : D+

1

2
𝜌 ˙(|v|2) (14)

where the density is held constant in the first term.

Finally, we need to supply the boundary conditions of the system for mass, energy,

and momentum. Using the divergence theorem terms that appear at the interface, we

let the subscript 𝑠 depict surface in all the following interface balances, which apply

as boundary conditions for our problems. This applies for the energy balance as

𝜌𝑠�̇�𝑠 = ∇ ·T · v𝑠 + 𝜌𝑠b𝑠,0 · v𝑠 + [𝜌(𝑢− 𝑢𝑠)(v − v𝑠)− v ·T+ q] · n. (15)

The momentum balance at the interface is

𝜌𝑠 (v̇𝑠 + v𝑠∇ · v𝑠)− v𝑠∇ · J𝑠 + [𝜌(v − v𝑠)(v − v𝑠)− t] · n = ∇ ·T𝑠 + 𝜌𝑠b𝑠,0, (16)

analogously derived from the balance at the bulk. For nondeforming surfaces, the

energy and mass boundary conditions are simply applied as constant flux conditions

−n · j = 𝑅.
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Temperature Balance

The temperature balance of the system needs to be defined from a combination of

the energy balance as well as local equilibrium laws. The energy balance for an open

system was derived in a previous section. We can apply the definition of the energy

𝜌𝑒 =
∑︀

𝑖 𝜌𝑖𝑢𝑖 +
1
2

∑︀
𝑖 𝜌𝑖|v𝑖|2 and 𝜌𝑢 =

∑︀
𝑖 𝜌𝑖𝑢𝑖, to the energy balance of the system to

obtain

𝜌 ((�̇�)𝜌 + 𝑢∇ · v)− 𝑢∇ · J = −∇ · J𝑢 +T : D. (17)

We can apply the identities defined above relating the internal energy to chemi-

cal potential and heat and mass transfer and write
∑︀

𝑖 𝜌𝑖𝑐𝑣,𝑖 = 𝜌𝑐𝑣 and
∑︀

𝑖 𝜌𝑖ℎ𝑖 =

𝜌𝐿𝑖𝑀,𝑟𝑒𝑓𝑐ℎ𝐿𝑖𝑀 + 𝜌𝑀,𝑟𝑒𝑓 (1− 𝑐)ℎ𝑀 for the heat capacity and enthalpy per mass. How-

ever, to obtain the relation of the temperature change to the heat generation as

well as mass transfer and momentum transfer in the system, we apply our previous

derivation of internal energy change in the system. The energy change is found to

be 𝜌�̇� = 𝜌𝑐𝑣�̇� + 𝜌ℎ�̇�+
(︁
T𝑒 + 𝜌𝑇

(︁
− 𝛼

𝜅𝑇
I+ 𝜕𝑠

𝜕𝜀𝑘𝑗

⃒⃒
𝑘 ̸=𝑗

)︁)︁
: D as derived in the appendix

section.

Substituting this relation into the internal energy balance and removing the second

order correcting terms, we obtain

𝜌𝑐𝑣�̇�+𝜌ℎ�̇�+𝜌𝑢∇·v = −∇·Q−J·∇𝑢+𝜌𝑇

(︃
T𝑝 +

𝛼

𝜅𝑇
I− 𝜕𝑠

𝜕𝜀𝑘𝑗

⃒⃒⃒⃒
𝑘 ̸=𝑗

)︃
: D+I𝑒 ·E. (18)

We do not have an enthalpy generation term in the first term since the internal

energy is kept constant, which constitutes our energy balance of the system. The

ohmic heat generation term comes from the fact that E = −∇𝜑 is the electric field

and I𝑒 =
∑︀

𝑘 𝐹𝑧𝑘J𝑘 is the current. Because our system is elastic, only the dissipative

(plastic) stresses on the momentum balance affect the temperature balance of the

system and not the elastic Cauchy strain. We see that our system is an open system,

so the chemical potential and entropy changes from the mass balance also affect the

energy balance of the system. For a closed system, the effect of mass change would

disappear on the system.
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Dimension Reduction

Here, we will perform dimensional reduction on our mass conservation, energy conser-

vation, and momentum conservation equations, integrated over the normal direction

to the reactive area, to achieve the Allen-Cahn reaction models derived in previous

work [69, 164]. This section provides a derivation from the full transport models to

the simplified electrochemical models often used in literature.

Here, we first start by combining the bulk and surface mass balances. The in-

finitesimal surface within the boundary 𝑆 where the reaction happens can be called

𝑊 . We call the combined total volume 𝑈 = 𝑉 ∪𝑊 , which has the boundary 𝑆. We

define 𝐿 as the length normal to the boundary area term 𝑆, which is the direction

we will be dimensionally reducing our system in. The generalized transport theorem

requires that for our bulk with a dividing surface that [354]

𝑑

𝑑𝑡

∫︁
𝑉

𝜌𝑑𝑉 =

∫︁
𝑉

�̇�𝑑𝑉 +

∫︁
𝑆

𝜌v · n𝑑𝑆 −
∫︁
𝑊

[𝜌v𝑠 · n]𝑑𝑊. (19)

from summing over transport in all phases, where [𝜌n] = (𝜌𝑖𝑛 − 𝜌𝑜𝑢𝑡) ·n is the change

of 𝜌 at the boundary when there is flux both entering and leaving the boundary. By

the divergence theorem, we can separate the contributions of convection into the bulk

term as well as the surface term

∫︁
𝑆

𝜌v · n𝑑𝑆 =

∫︁
𝑉

∇ · (𝜌v)𝑑𝑉 +

∫︁
𝑊

[𝜌v · n] 𝑑𝑊. (20)

We see that our transport theory with the bulk next to a dividing surface becomes

𝑑

𝑑𝑡

∫︁
𝑉

𝜌𝑑𝑉 =

∫︁
𝑉

�̇�+∇ · (𝜌v)𝑑𝑉 +

∫︁
𝑊

[𝜌(v − v𝑠) · n]𝑑𝑊. (21)

Thus, if we sum with the transport theorem of mass conservation at the surface, the

total mass balance is

𝑑

𝑑𝑡

(︂∫︁
𝑉

𝜌𝑑𝑉 +

∫︁
𝑊

𝜌𝑑𝑊

)︂
=

∫︁
𝑆

(�̇�+∇ · (𝜌v)) 𝑑𝑉+

∫︁
𝑊

(�̇�+∇ · (𝜌v) + [𝜌(v − v𝑠) · n]) 𝑑𝑊.

(22)
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To obtain the boundary condition, if we apply the divergence theorem to the left

hand side of the equation, we see that

𝑑

𝑑𝑡

(︂∫︁
𝑈=𝑉 ∪𝑊

𝜌𝑑𝑉

)︂
=

∫︁
𝑆

−n · J𝑑𝑆, (23)

or that the volumetric integral can be converted into the flux through the two-

dimensional boundary. Generally, in systems where the reaction happens at the

boundary, this term is generated from the reaction. The general transport equation

becomes ∫︁
𝑆

−n · (J+ [𝜌(v − v𝑠)]) 𝑑𝑆 =

∫︁
𝑈

(�̇�+∇ · (𝜌v)) 𝑑𝑈, (24)

where 𝑈 is the total volume containing both the bulk and the boundary. Since the

definition of the reaction rate is the flux into the boundary at a certain time, defined

as

±𝑅 = n · (J+ [𝜌(v − v𝑠)]) (25)

where + is for reactants and - is for products [69] is applied as the boundary condition

in this system. Thus, we see that

∫︁
𝑆

−𝑅𝑑𝑆 =

∫︁
𝑈

�̇�+∇ · (𝜌v) 𝑑𝑈 (26)

is the general solution.

We aim to integrate over the normal direction 𝐿 to the reaction area to dimen-

sionally reduce the system, and then apply the localization theorem. Thus, we see

that

�̇�+∇ · (𝜌v) = −𝑅
𝐿
, (27)

recovers the Allen-Cahn equation commonly used for intercalation materials such as

lithium iron phosphate [69, 164].
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A.2.2 Open System Thermodynamics

The thermodynamics in our particle can be defined now that the balance laws of

the system have been well-defined. We defined some necessary properties for a 3D

particle. Here, K is a tensor that represents energy penalties in different directions

from the phase boundaries, C as the elastic tensor at constant temperature, and M

is the stress-temperature modulus at constant strain [352]. Later we will attempt to

formulate the Helmholtz free energy of a particle from the homogeneous, interfacial

and mechanical free energies, which resembles the one formulated for an isothermal

system, where 𝑐 = 𝑐LiM/𝑐𝑚𝑎𝑥 in the entire system [315, 69].

We first define the mechanics equations laid out in this problem. Based on the

linear theory of elasticity [352], it can be assumed that the strain tensor is defined

as 𝜀 = 1
2

(︁
∇u+ (∇u)𝑇

)︁
, where u is the displacement field based on material coor-

dinates u = x−X, where X is the undeformed configuration and x is the deformed

configuration [352]. The elastic strain 𝜀𝑒 = 𝜀 − 𝜀𝑐 is one of the field variables in

the system, where the chemical or stress free strain is 𝜀𝑐 = 𝜀0𝑐 by Vergard’s law

[357]. The deformation gradient F is defined as F = ∇x ≈ I+∇u in linear elasticity

theory [352]. Since the volume change of the system 𝑑𝑣 is based on the deformation

of the system for the fiber 𝑑𝑋𝑖𝑗 = 𝐹𝑖𝑗𝑑𝑥𝑖𝑗, we see that the real volume formed by the

deformed tetrahedron is known to be 𝑑𝑣 = 𝐽𝑑𝑣0 [358, 352], where 𝐽 = det (F).

The free energy of an intercalation material should be defined not by the volume,

but by the amount of lithiation host sites that exist in the material, regardless of

density changes that may occur from mechanical volume changes. It becomes ap-

parent from volume changes in our system that the number of intercalation sites is

the most important criteria which determines the amount of free energy, which can

change with elastic volume expansion. Thus, we define most quantities in the system

per mole of intercalation site instead of per volume. Concentration related units are

per maximum site density of the intercalation material 𝜌𝑠𝑐0,𝑚𝑎𝑥. Since we realized

that the total amount of the M site material does not change in the system, but

only switches between the LiM and M states, before and after volume deformation,
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the total amount changes are equivalent [352]. The reference amount of material is

thus found to be 𝑐𝑚𝑎𝑥 = 𝐽𝑐0,𝑚𝑎𝑥. Thus, the most accurate description of specific

free energy for this system in units of energy per moles of intercalation species is

𝑓ℎ = 𝑓ℎ/𝑐0,𝑚𝑎𝑥, and after volume deformation 𝑓ℎ/𝐽 , where 𝑓ℎ is the molar form and

𝑓ℎ is the volumetric form of specific free energy. By similar arguments, the gradient

energy term K and the elasticity tensor C both need to be reformulated to be per

molar of maximum intercalation sites to be K̃ = K/𝐽 and C̃ = C/𝐽 .

Thus, the specific free energy of intercalation materials can be defined by the

density of the M species. The free energy for a simple thermoelastic material is

𝐹 =

∫︁
𝑉

𝐽

(︂
𝑓ℎ +

1

2
∇𝑐 · K̃∇𝑐+ 1

2
𝜀𝑒 : C̃ : 𝜀𝑒 + (𝑇 − 𝑇0)M̃ : 𝜀𝑒

)︂
𝑑𝑉0, (28)

where the last term is from the mechanical strain of the system, with 𝜀 as is the

strain, 𝜀0 as the lattice expansion from chemical effects with Vergard’s law so that

𝜀𝑐 = 𝜀0𝑐 [359, 360, 352, 330, 357]. In this equation, the strain terms can also be

combined into the Piola stress TRR = 2 𝛿𝐹
𝛿𝜀𝑒

, where the stress-temperature modulus

and the elasticity tensor can both be seen as chain rule components of the second

Piola stress, C = 2𝜕TRR

𝜕𝜀𝑒
and M = 𝜕TRR

𝜕𝑇
. By the free energy simplifications above,

the free energy can be written more simply as

𝐹 =

∫︁
𝑉

(︂
𝑓ℎ +

1

2
∇𝑐 ·K∇𝑐+ 1

2
𝜀𝑒 : C : 𝜀𝑒 + (𝑇 − 𝑇0)M : 𝜀𝑒

)︂
𝑑𝑉0, (29)

Often, for small deformations, the Jacobian of the deformation gradient can be ne-

glected since its value is close to unity. The formulation of the Helmholtz free energy

initiates our thermodynamically consistent theory of open system thermodynamics,

but does not represent either the rate controlled or chemical potential controlled

systems that we are interested in.

We can fully define our open system through the combination of the interior of the

particle, the boundary of our particle, and the environment (electrolyte) surrounding

the particle. Each of the mass, energy, and momentum balances in these cases will

be carefully defined, with different fluxes depending on whether voltage or current
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control is needed. The boundary conditions of this system must also be carefully

formulated to account for deformation of the surface [354]. We choose the dividing

surface to be the interface between the solid and electrolyte phase in our system.

When there is a dividing surface in our system, the application of the divergence

theorem becomes slightly different from what is normally expected. In the following

equation, 𝑉 is the entire control volume, made up of the bulk of the particles 𝑉𝑏, the

interface 𝑆, and the bulk of the electrolyte environment 𝑉𝑒.∫︁
𝑉

𝑃v · n𝑑𝑉 =

∫︁
𝑏

∇ · (𝑃v)𝑑𝑉𝑏 +
∫︁
𝑆

[𝑃v · n]𝑑𝐴+

∫︁
𝑒

∇ · (𝑃v) 𝑑𝑉𝑒, (30)

where [𝑃v · n] = (𝑃 𝑖 − 𝑃 𝑗)n𝑖,𝑗 is difference between the different phases.

Phase field equations have long been used to model phase transition mechanics in

continuum systems, with applications from Cahn and Hilliard in materials science and

Ginzburg and Landau in superconductivity [357, 361, 362]. The appearance of exter-

nal fields, such as electric fields, in these phase field equations has also been coupled

with these phase field equations for critical phenomena [363]. However, these deriva-

tions from free energy models implicitly indicate that entropy is the extensive variable

from the choice of the free energy functional, rather than temperature, which is not

an issue for systems with small variations in temperature. The appropriate thermo-

dynamic potential in a nonisothermal system would be entropy, instead of free energy

[364]. The nonisothermal thermodynamics of an open driven system in nonequilbrium

needs to be formulated based on an entropy functional, based on the fact that naive

treatment of nonisothermal models can violate the second law of entropy generation

[365, 366]. Different systems require different equilibrium potentials.

Based on the isothermal nonequilibrium thermodynamics in Ref. [69] for reactive

systems and general work from Cahn and Hilliard, we formulate the nonisothermal

functionals as below in an open system with a simple single particle model using

mass and energy balances [365, 361, 357]. Because we have an open system, based

on the different types of control that are applied to the system, different equilibrium

thermodynamic ensembles must be chosen [367]. The system is no longer isothermal,
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which also requires a change in equilibrium potentials from nonisothermal systems.

For isothermal rate control, since the number of particles is the extensive variable,

the Helmholtz free energy 𝐹 = 𝑈 − 𝑇𝑆 should be chosen to define the equilibrium of

the system. For isothermal chemical potential control, since the chemical potential is

the extensive variable, the potential should be Legendre transformed into the grand

potential Ω = 𝐹 − 𝜇𝑁 to define equilibrium and driving forces in the system. Sim-

ilarly, for a nonisothermal rate controlled system, the Helmholtz free energy should

be Legendre transformed to the entropy potential 𝑆 to add temperature variations as

the extensive variable. For a nonisothermal chemical potential controlled system, a

Massieu free energy functional can be applied for a system with temperature varia-

tions such that Ψ = 𝑈
𝑇
− Ω

𝑇
. The above equilibrium potentials and their corresponding

flux equations and conservation equations for each system will be discussed. We will

use the following system to show that in an Allen-Cahn/Cahn-Hilliard reaction model,

although the extensive variables are different, the same mass conservation equation

is reached using both of these systems. The only difference between these two models

is the diffusive driving force, which requires the chemical potential to be monotonic

to be able to derive a consistent thermodynamic model [368, 369].

Rate Control

Different potentials need to be applied for different types of control on the system.

For a system under rate control, since in a nonisothermal system, temperature is also

an extensive variable, we transform the potential to an entropy potential 𝑆, which

indicates that

𝑆 =

∫︁
𝑉

(︂
𝑠ℎ −

1

2

1

𝑇
∇𝑐 ·K∇𝑐− 1

2

1

𝑇
𝜎 : 𝜀𝑒 − 1

𝑇
(𝑇 − 𝑇0)M : 𝜀𝑒

)︂
𝑑𝑉0 (31)

if K is constant with temperature, with 𝑠ℎ = 𝑢
𝑇
− 𝑓ℎ

𝑇
, assuming that the equations

including the order parameter are still valid when the temperature is not a constant,

and 𝜎 = 𝛿𝐹
𝛿𝜀

= C : 𝜀𝑒 is the elastic stress field. Thus, 𝑆 is the equilibrium potential of

a nonisothermal reaction control system.
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The chemical potential of the active material is defined as

𝜇 =
𝛿𝐹

𝛿𝑐
=
𝜕𝑓ℎ
𝜕𝑐

−∇ ·K∇𝑐− 𝜎 : 𝜖0 = 𝜇Θ + 𝑘𝐵𝑇 ln 𝑎. (32)

Since 𝜀 = 1
2

(︁
∇u+ (∇u)𝑇

)︁
and 𝜎 is a symmetric matrix, we know that ∇u : 𝜎 =

𝜀 : 𝜎. In addition to these arguments, we obtain by their definitions the functional

derivatives

𝛿𝑆

𝛿𝑢
=

1

𝑇
𝛿𝑆

𝛿𝑐
=

(︂
𝜕𝑠ℎ
𝜕𝑐

+
1

𝑇
∇ ·K∇𝑐+ 1

𝑇
𝜎 : 𝜀0

)︂
= −𝜇

𝑇

𝛿𝑆

𝛿𝜀
= −𝜎

𝑇
− M

𝑇
(𝑇 − 𝑇0) = −TRR

𝑇
,

(33)

since within a small error, for linear elasticity, the Cauchy (T) and Piola stresses are

the same and will be used interchangeably in the future analysis. In the stress field,

the first term represents the stress from the change in volume of the system from

elastic stress, while the second term is a stress tensor. The remaining terms come

from the nonlocal effects of concentration on the microstructure, assuming a first

order response theory [370, 371, 372]. These are the forces found in linear irreversible

thermodynamics if we assume that the elasticity tensor is nonisothermal, with the

last set of equations written in tensor form.

By the volume change and the fact that this system is open, we realize that

the conservation equations for this system are nontrivial and should be written in

a thermodynamically consistent manner to ensure that the correct quantities. First

of all, the amount of the intercalation site material changes only with volume defor-

mation, but the total amount over the entire volume does not change with reaction

or stress/strain. We define the volume of the intercalated system to be 𝑉 , which is

defined as the 𝐽𝑉0 from the elastic deformation of the system. We call this density of

intercalation site material per volume by 𝑛, and see that the total intercalation site

amount is constant no matter the amount of deformation. With the different con-

centrations of lithium intercalated in the sites in the system, the density, energy, and
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momentum are are affected by these concentration changes. Since the system is an

intercalation system, only two types of material are considered—the empty intercala-

tion site, M, which contains an empty lithium site, and LiM, the intercalated site. We

can simplify a set of two mass balances into one concentration balance using the fact

that 𝑐𝐿𝑖𝑀 + 𝑐𝑀 = 1, letting 𝑐𝐿𝑖𝑀 = 𝑐 for future notation. As mentioned earlier, ap-

plying the constraint that the two concentrations sum to one, the two concentrations

can simplify to one equation using the barycentric velocity defined by concentration

v = v𝐿𝑖𝑀𝑐+ v𝑀(1− 𝑐).

Since reaction happens at the boundary, a simple reaction boundary condition is

−n · J = 𝑅 can describe the system, where by the definition of the reaction Li+ +

M + e– −−→ LiM, we see that 𝑅 = 𝑅𝐿𝑖𝑀 = −𝑅𝑀 is the molar reaction rate. For

consistent notation, J𝑖,𝑚 will refer to mass flux of component 𝑖, while j𝑖 =
J𝑖,𝑚

𝑀𝑊𝑖
will

refer to molar flux of component 𝑖, where j𝐿𝑖𝑀 = j. Since 𝛿𝐹
𝛿𝑆

= 𝑇 to convert the flux

definitions to that of an isothermal system [369], for nonisothermal conditions, the

molar flux is

J𝑏 =
∑︁

𝑘∈{𝑐,𝑢}

𝑀𝑏,𝑘𝑇∇
(︂
𝛿𝑆

𝛿𝑘

)︂
(34)

where 𝑀𝑖,𝑗 the nonisothermal Onsager flux coefficients, which will be derived below

[162]. The molar flux terms are equivalent to the ones defined above in nonequilibrium

thermodynamics per intercalation site, meaning that the mass fluxes can be defined

as

j𝑏 =
∑︁

𝑘∈{𝑐,𝑢}

𝑀𝑏,𝑘𝑛MW𝐿𝑖𝑇∇
(︂
𝛿𝑆

𝛿𝑘

)︂
. (35)

Chemical Potential Control

For a chemical potential controlled system, we need to switch the equilibrium potential

to the grand potential. The arguments of Plapp [369], by the definition of the grand

potential, are usually applied when the chemical potential is monotonous or when the

free energy is convex. Since the definitions of the susceptibilities are used, this method

cannot be fully mapped to a phase separating system because the susceptibilities

diverge at critical points. However, the same principles can be applied to understand
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the dynamics of the system. The grand potential which will be used for a system

under voltage control can be formulated as

Ω =

∫︁
𝑉

(︂
𝜔ℎ +

1

2
∇𝑐 ·K∇𝑐+ 1

2
𝜎 : 𝜀𝑒 + (𝑇 − 𝑇0)M : 𝜀𝑒

)︂
𝑑𝑉, (36)

where 𝜔ℎ = 𝑓ℎ − 𝜇𝑐, the commonly used grand potential such that Ω = 𝐹 − 𝜇𝑁 .

The susceptibilities, 𝜒𝑐 = 𝜕𝑐
𝜕𝜇

can be used to derive the conservation equations in

the system which is the form derived by Plapp. Plapp’s derivation does not account

for variation of temperature in energy and mass conservation. We apply the same

methods as above to obtain a Massieu function [373] [367]

Ψ = 𝑆 +
𝜇

𝑇
𝑁 → Ψ =

𝑈

𝑇
− Ω

𝑇
, (37)

where the concentration is replaced by − 𝜇
𝑇

as the independent variable. Similarly to

the Legendre transform to entropy performed in the previous section based on Penrose

and Fife [365, 366], this acknowledges the temperature variations of the system. Here,

since 𝜓ℎ = 𝑢
𝑇
− 𝜔ℎ

𝑇
, we obtain the Massieu free entropy as

Ψ =

∫︁
𝑉

(︂
𝜓ℎ −

1

2

1

𝑇
∇𝑐 ·K∇𝑐− 1

2

1

𝑇
𝜎 : 𝜀𝑒 − 1

𝑇
(𝑇 − 𝑇0)M : 𝜀𝑒

)︂
𝑑𝑉. (38)

For the Massieu free entropy, the elasticity tensor and the stress-temperature modulus

are identical to the one from entropy, so we will continue using the notation in the

previous section to define those parts. The functional derivatives are

𝛿Ψ

𝛿𝑢
=

1

𝑇
;

𝛿Ψ

𝛿
(︀
− 𝜇

𝑇

)︀ = 𝑐 ;

𝛿Ψ

𝛿𝜀
= −𝜎

𝑇
− M

𝑇
(𝑇 − 𝑇0) = −TRR

𝑇
,

(39)

similarly to the approach taken to derive Eq. 33. Here, the flux terms need to be

defined from deviation from Massieu free entropy, which can be defined as

j̃b =
∑︁

𝑘∈{− 𝜇
𝑇
,𝑢}

�̃�𝑏,𝑘𝑇∇
(︂
𝛿Ψ

𝛿𝑘

)︂
(40)
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for mass and energy and momentum separately. Though not explicitly written under

the theory of thermoelasticity, we see that our equations are consistent with thermoe-

lasticity [352].

A.2.3 Linear Stability Analysis

A general linear stability analysis can be applied to the system to understand the effect

of perturbations on the stable states of the system. As an example, we perform a

linear stability analysis on the rate control system. Assuming that u = (𝑐, 𝑇,v)T and

ū =
(︀
𝑐, 𝑇 , v̄

)︀T is the steady state solution, we perform concentration and temperature

perturbations with u(x, 𝜏) = ū+𝛿, where 𝛿 = (𝛿𝑐, 𝛿𝑇, 𝛿v)𝑇 = 𝜖𝑒𝜎𝑡+𝑖kx where 𝜎 is the

growth rate, k is the perturbation wave vector, and 𝛿 is the perturbation amplitude

vector. The growth rate and the perturbation wave vector are the same for both

terms, and only the perturbation amplitudes vary. However, we realize that the time

constant for temperature changes is much smaller than that of concentration (which

will be proved later in the discussion), indicating that we can assume that the energy

balance is nearly at equilibrium. Considering only a first order perturbation in 𝜀,

we get a set of linear equations where the growth factor 𝜎 can be found by solving

the secular equation det |J− 𝜎e1| = 0 for J is the first order perturbation terms for

(𝑐, 𝑇 ) from the spatial side of the partial differential equation. For the rate controlled

systems

�̇�+∇ · (𝜌v) = −∇ · J+ 𝜌𝑅

𝜌𝑐𝑣�̇� + 𝜌ℎ�̇�+ 𝜌𝑢∇ · v = −∇ ·Q− J · ∇𝑢+ 𝑇
𝛼

𝜅𝑇
I : D+ I𝑒 · E

𝜌v̇ + 𝜌v∇ · v = v∇ · J+∇ · T̂+ 𝜌b0.

(41)

All the Onsager coefficients 𝐿𝑖𝑗(𝑐, 𝑇 ) are functions of concentration and temperature,

and the equilibrium solutions of the problem are all indicated with bars. If we convert

the balance equations into a concentration dependent format based by total number
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of intercalation sites by dividing all equations by 𝜌𝑐0,𝑚𝑎𝑥, we see that

�̇�+∇ · (𝑐v) = −∇ · j+𝑅,

𝑐𝑣�̇� + ℎ�̇�+ 𝑢∇ · v = −∇ · q− j · ∇𝑢+ 𝑇
𝛼

𝜅𝑇
I : d+ i𝑒 · E

v̇ + v∇ · v = v∇ · j+∇ ·T+ b0.

(42)

We assume that the heat capacity 𝑐𝑣, the reaction rate 𝑅, the enthalpy ℎ, and the

internal energy 𝑢 are defined per unit of intercalation material. In addition, i𝑒 =∑︀
𝑘 𝐹𝑧𝑘j𝑘/𝜌 is the current per density per unit intercalation material, and d = D/𝜌

is the stretching per unit intercalation material. We let 𝑑𝑅
𝑑𝑐

= 𝜕𝑅
𝜕𝑐

+ 𝜕𝑅
𝜕𝜇

(︀
𝜕𝜇ℎ

𝜕𝑐
+ 𝜅|k|2

)︀
and 𝑑𝑅

𝑑𝑇
= 𝜕𝑅

𝜕𝑇
+ 𝜕𝑅

𝜕𝜇
𝜕𝜇ℎ

𝜕𝑇
in the following calculations, terms representing temperature

and concentration dependence respectively without the gradient terms for simplicity

in notation.

Performing a linear stability analysis on this system, we obtain that, keeping only

the positive values, and recalling that the perturbation to the internal energy can be

defined as 𝛿𝑢 = 𝑐𝑣𝛿𝑇 + ℎ𝛿𝑐 +
(︁
T− 𝑇 𝛼

𝜅𝑇
I
)︁
: 𝛿v, the real parts of the linear stability

analysis are defined as

⎡⎢⎢⎢⎣
𝜎 +∇ · v̄ 0 ∇𝑐

ℎ̄𝜎 + 𝑐𝑣∇ · v̄ 𝑐𝑝𝜎 + ℎ̄∇ · v̄
(︁
T− 𝑇 𝛼

𝜅𝑇
I
)︁
∇ · v̄

0 0 𝜎 +∇v̄

⎤⎥⎥⎥⎦ 𝛿 =

⎡⎢⎢⎢⎣
�̄�|k|2 𝜕𝜇

𝜕𝑐
+ 𝑑𝑅

𝑑𝑐
�̄�|k|2 𝜕𝜇

𝜕𝑇
+ 𝐷𝑅

𝐷𝑇
0

0 𝑘|k|2 −𝜎𝑇 𝛼
𝜅𝑇
I :

−v̄�̄�|k|2 𝜕𝜇
𝜕𝑐

+ 𝑏0 −v̄�̄�|k|2 𝜕𝜇
𝜕𝑇

0

⎤⎥⎥⎥⎦ 𝛿

(43)

where the reaction rate is per volume instead of per mass. We assume that the heat

capacity 𝑐𝑣 and the internal energy 𝑢 are defined per unit of intercalation material.
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A.3 Applications

A.3.1 Ion Intercalation System

Reactions in systems can generally be separated into two types, heterogeneous re-

actions and homogeneous reactions [69]. For the application of an ion intercalation

system, this is no different. We look at ion intercalation in LFP as an example

to study our model. Accordingly, these transport equations over a certain volume

have been split into two models—the first, the Cahn-Hilliard model, where the reac-

tion only happens at the surface and diffusion within the particle drives the internal

differences, such that a reactive boundary condition is applied. In the second, the

Allen-Cahn model, reactions are assumed to happen homogeneously through the sys-

tem, which can be modeled by averaging over the entire particle volume. Physical

intercalation materials require by the Cahn-Hilliard model because reactions can only

occur at the surface, where both electrolyte and intercalation solid exist, but lithium

iron phosphate as an intercalation material has been successfully modeled using the

Allen-Cahn reaction model [241] because it is reaction limited [3].

For the Allen-Cahn reaction model, based on the large diffusion values in the ion

channels, diffusion in other directions was neglected for LFP. In general, it can be

understood that depth-averaging in a system can be performed in a model where

the phase boundary and diffusion can be neglected in other directions [315]. For

simplicity, mechanical effects will be ignored in these models. Following Ref. [164], we

implement a spherical particle with mass and energy balances to solve for the steady

state solution. Temperature and concentration are assumed to be homogeneous in

the particles, and the particle only exchanges mass with its environment.

We set up a particle in which an intercalation reaction happens on the solid/electrolyte

boundary, with an electrolyte reservoir bath surrounding the particle. The reaction is

described as Li+ + e– + M −−→ LiM, where Li+ is the intercalation species, e– is the

electron, M are the empty intercalation sites, and LiM is the intercalated species. We

observe the conservation equations in the interior of the particle. These are identical

to those in the environment bulk, since both of these systems are open systems next
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to a boundary. Since our system is an open system in terms of mass, we do not

expect conservation laws for closed systems to hold for such a system. For consis-

tency in defining our averages, we use mass averages in our definitions. We have two

species in our system, the fully lithiated LiM and the nonintercalated M component

in the system, where M depends on the cathode material. The mass density in our

system can be described as 𝜌 = 𝑐𝜌𝐿𝑖𝑀 +(1− 𝑐)𝜌𝑀 = 𝜌𝑀 + 𝑐𝜌𝐿𝑖 with 𝜌𝐿𝑖𝑀 = 𝑐𝜌𝐿𝑖𝑀,𝑟𝑒𝑓

and 𝜌𝑀 = (1 − 𝑐)𝜌𝑀,𝑟𝑒𝑓 , and the mass averaged velocity in this system is described

as v = 𝜌𝐿𝑖𝑀v𝐿𝑖𝑀 + 𝜌𝑀v𝑀 , which is the reference frame for velocity chosen in this

problem.

To have a full understanding of the full 3D model of coupled fluxes in these

systems, from the previous solution of the fluxes defined for the chemical potential

control system, the Onsager fluxes are then found to be

j = Lc,c∇
(︂
𝛿𝑆

𝛿𝑐

)︂
+ Lc,u∇

(︂
𝛿𝑆

𝛿𝑢

)︂
q = Lu,c∇

(︂
𝛿𝑆

𝛿𝑐

)︂
+ Lu,u∇

(︂
𝛿𝑆

𝛿𝑢

)︂ (44)

for this system, with Lc,c = D(c,T)𝑐
𝑘𝐵

and Lu,u = 𝑘𝑇 2 with the diffusivity and con-

ductivity tensors, with a Fourier approximation of heat conductivity, as quantified

by Onsager [374, 375, 376, 377]. The Curie principle then requires Lc,u = Lu,c,

which based on the Soret/Dufour coefficients, gives Lu,c = DT(c,T)𝑐(1− 𝑐)𝑇 2 where

ST = DT

D
is the Soret coefficient [378, 161, 162]. Here, the 𝑐(1 − 𝑐) should be scaled

by the total concentration, which we neglect in the notation. For each field, this

simplifies to [162]

j =
D(c,T)𝑐

𝑘𝐵
∇
(︁
−𝜇

𝑇

)︁
+DT(c,T)𝑐(1− 𝑐)𝑇 2∇

(︂
1

𝑇

)︂
q = DT(c,T)𝑇 2∇

(︁
−𝜇

𝑇

)︁
+ 𝑘𝑇 2∇

(︂
1

𝑇

)︂
.

(45)

However, for most systems, we can neglect the co-diffusion terms. Next, we discuss

the conservation equations for a heterogeneous reaction case and for a homogeneous

reaction case.
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Heterogeneous Reaction

For the case of a heterogeneous reaction, at the interface, the boundary conditions

can be described by

−n · j = 𝑅 (46)

where 𝑅 indicates the boundary reaction term if there are no momentum changes in

the system. The mass balance can be described by the heterogeneous Cahn-Hilliard

equation, which is
𝜕𝑐

𝜕𝑡
= −∇ · j. (47)

For LFP-like phase separating systems with an anisotropic interfacial thickness or slow

currents, fast diffusion in the 𝑦 axis can be observed, which indicates that a depth-

averaged model can be used to gain physical insight into the system [330, 241, 67, 379].

As mentioned earlier, diffusivity of LFP in the 𝑦 direction, however, is many orders

of magnitude higher than in the other directions, thus indicating that we can neglect

diffusion in the 𝑥 and 𝑧 directions, only considering diffusion in the 𝑦 direction [380].

We simplify and leave a flux divergence that only depends on the 𝑦 component. In

our general depth-averaged equation for any converved quantity 𝑏, we see that

𝜕

𝜕𝑡

∫︁
𝑦

𝑏𝑑𝑦 = −
∫︁
𝑦

∇ · jb𝑑𝑦 +
∫︁
𝑦

𝐵𝑉 𝑑𝑦. (48)

Applying the result of the depth-averaged model, assuming that 𝐿𝑦 is the depth of

the particle, we apply the divergence theorem where 𝑅 indicates a surface reaction

for a Cahn-Hilliard model. Diffusion can often be neglected in these models. If

we nondimensionalize the set of equations above using 𝑐 = 𝑐
𝑐𝑚𝑎𝑥

, 𝑇 = 𝑇
𝑇𝑏

, �̃� =

𝑅
𝑘0 exp (−𝐸𝐴/𝑘𝐵𝑇𝑏)

, 𝑡 = 𝑘0 exp (−𝐸𝐴/𝑘𝐵𝑇𝑏)𝑡
𝐿𝑦𝑐𝑚𝑎𝑥

, ℎ̃ = ℎ
𝑘𝐵𝑇𝑏

, and ℎ̃𝑟𝑒𝑠 = ℎ𝑟𝑒𝑠

𝑘𝐵𝑇𝑏
where 𝑐𝑚𝑎𝑥 is the

maximum species concentration, and drop all of the tildes and bars in future notation,

we obtain
𝜕𝑐

𝜕𝑡
= 𝑅(𝑐,∇𝑐, 𝜇𝑟𝑒𝑠, 𝑇 ). (49)

Most electrochemical reactions can be characterized with a heterogeneous reaction
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using a Cahn-Hilliard model. The depth-averaged model in 1D can sometimes be used

to model reaction limited particles, but is not accurate for all systems, as there are

systems where internal phase separation happens in waves and diffusion in the ion

channels drives the phase separation throughout the depth of the particle [330]. For

these systems, a full (not depth-averaged) model is required.

For a Allen-Cahn model with homogeneous reaction, since the Biot numbers are

assumed to be large, for a depth averaged model, we integrate both the simplified mass

and energy conservation equations over the length of the 𝑦 direction of the particle,

where we assume that both concentration and energy are homogeneous within the

𝑦 direction of particle. Because of the large Biot number, diffusive fluxes and Soret

diffusion, which is much smaller than diffusion in a solid system, can be neglected.

The Allen-Cahn equation can be written as

𝜕𝑐

𝜕𝑡
= 𝑅(𝑐,∇𝑐, 𝜇𝑟𝑒𝑠, 𝑇 ), (50)

where the reaction term is assumed to be homogeneous. Ultimately, if we ignore

diffusion as in a nanoparticle, the Cahn-Hilliard reaction and the Allen-Cahn reaction

converge to the same form with the difference of surface reaction or bulk reaction.

For an energy balance, the dependence of the ratio of heat transfer driven by the

mass flux into the system to the diffusive heat flux indicates the importance of the

inclusion of separate terms. The Biot number for heat transfer, Bi𝑇 , gives a good

indication of which one is the better model. Since heat conduction is extremely fast in

a particle, causing the Bi𝑇 to be extremely small (10−4), it is necessary to include the

conduction term in the system. The heat flux boundary condition for a Cahn-Hilliard

model is described as Eq. 46 where the volume averaged energy balance results in

[352] by the divergence theorem

𝑐𝑣
𝜕𝑇

𝜕𝑡
+ Bi𝑇ℎ𝑅 = −ℎ𝑇 (𝑇 − 𝑇𝑙), (51)
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where 𝑇𝑙 is the electrolyte temperature. Nondimensionalizing this equation leads to

𝑐𝑣
𝜕𝑇

𝜕𝑡
=

1

𝜁
(−(𝑇 − 𝑇𝑙)− Bi𝑇ℎ𝑅) (52)

where 𝜁 = 𝑐𝑚𝑎𝑥ℎ𝑇

𝑘0 exp (−𝐸𝐴/𝑘𝐵𝑇𝑏)𝜌𝑐𝑣
scales between the mass and energy balance and Bi𝑇 =

𝑘𝐵𝑘0 exp (−𝐸𝐴/𝑘𝐵𝑇𝑏)
ℎ𝑇

is the Biot number for heat transfer.

Homogeneous Reaction

For an Allen-Cahn model where reaction can be assumed to happen homogeneously

in the system, similarly to the Cahn-Hilliard model, because of the small Biot heat

transfer numbers, diffusion through the system cannot be ignored. This can be written

as ∫︁
𝑉

𝑐𝑣
𝜕𝑇

𝜕𝑡
𝑑𝑉 =

∫︁
𝑉

−∇ · q𝑑𝑉 − ℎ𝑅𝑉, (53)

Neglecting the non-Fourier terms which are small, we recover ℎ𝑇 = 𝑘
Δ𝑥

, giving

𝑐𝑣
𝜕𝑇

𝜕𝑡
= −ℎ𝑇

𝐿𝑝

(𝑇 − 𝑇𝑙)− ℎ𝑅, (54)

where ℎ𝑇 is the heat transfer coefficient, 𝐴 is the area, and 𝑇𝑙 is the temperature of

the bath, assuming a homogeneous system. Conversion to temperature per volume

gives

𝑐𝑣
𝜕𝑇

𝜕𝑡
= −ℎ𝑅− ℎ𝑇

𝐿𝑝

(𝑇 − 𝑇𝑙), (55)

where 𝐿𝑝 is the characteristic lengthscale of a particle and 𝑐𝑣 is the heat capacity of

the active material. Nondimensionalizing this equation leads to a slightly different

form from the Cahn-Hilliard reaction

𝑐𝑣
𝜕𝑇

𝜕𝑡
=

1

𝜁
(−(𝑇 − 𝑇𝑙)− Bi𝑇ℎ𝑅) , (56)

where 𝜁 = 𝑐𝑚𝑎𝑥ℎ𝑇

𝑘0 exp (−𝐸𝐴/𝑘𝐵𝑇𝑏)𝐿𝑝𝜌𝑐𝑣
scales between the mass and energy balance and Bi𝑇 =

𝑘𝐵𝑘0 exp (−𝐸𝐴/𝑘𝐵𝑇𝑏)𝐿𝑦

ℎ𝑇
is the Biot number for heat transfer for an Allen-Cahn reaction.
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A.3.2 General Porous Electrode Theory

The general heat generation equation used in most battery models, derived from the

Gibbs Helmholtz relation, is only valid for solid solution materials, or when open

circuit voltage relations are used to model batteries [343, 381],

𝑑𝐻

𝑑𝑡
= 𝑇 2 𝑑

𝑑𝑇

(︂
𝑈0

𝑇

)︂
= 𝑇

𝑑𝑈

𝑑𝑇
− 𝑈, (57)

where 𝑈 is the open circuit voltage, which appears as a free energy term. As the Gibbs

Helmholtz relation relies on thermodynamic partial derivatives that are correct only

in closed, single component systems, this equation is not always correct. Our entire

system, though it is closed by mass, is not a single component system. Changes in the

amount of intercalated species change the entropy increase of the different species,

which in turn changes the temperature of the system.

Now that we have defined the system, coupled with the open system is the elec-

trolyte (reservoir), which needs to be fully defined with our open system relations.

We assume that the reservoir chemical potential is set by the control value of the

system, the reaction rate. Based on the intercalation reaction, the system is only

affected through the reaction based on the ACR/CHR mass balances through the

reservoir potential. However, the enthalpy effects of the system are not “controlled,”

and the energy of the open system is affected by the temperature and the potential

of both the system and the reservoir, where the temperature of the reservoir is also

changing since it is not controlled like the reservoir potential. Thus, the energy bal-

ance of the reservoir also needs to be defined since the temperature is not controlled.

We realize that we have to define the energy balances of the particle and electrolyte

jointly because of the shared reference chemical potential between the two.

A similar energy and mass balance must be applied to the reservoir systems,

with the same nonisothermal flux terms as indicated above, in a control volume that

contains the electrolyte surrounding a certain number of active material particles. We

can construct a simplified electrolyte model to prove that in a single particle model,

with only moderate changes in chemical potential, that the change of electrolyte
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temperature is minimal with respect to the bulk environment. The addition of a

charge balance, from ion transport in the electrolyte and intercalation reactions, can

be added to the system, where 𝜌𝑒 =
∑︀

𝑖 𝑧𝑖𝑒𝑐𝑙,𝑖, the charge density of the system. Here,

we can apply charge neutrality at the scale we are studying. The current density in

the electrolyte can be defined as the sum of ionic fluxes il =
∑︀

𝑖 𝑧𝑖𝑒jl,i from the cations

and anions in a current controlled system to be

𝜕𝑐𝑙,𝑖
𝜕𝑡

= −∇ · jl,i +𝑅𝑙,𝑖

𝑐𝑣
𝜕𝑇

𝜕𝑡
= −∇ · q+𝑄𝑙,𝑖 + 𝜎𝑙(∇𝜑𝑙)

2 + 𝜎𝑠(∇𝜑𝑠)
2

𝜕𝜌𝑒,𝑙
𝜕𝑡

= −∇ · il +
∑︁
𝑖

𝑧𝑖𝑒𝑅𝑙

(58)

with reactions and heat generation happening throughout the particles

𝑅𝑙,𝑖 =
∑︁

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑉𝑝

(︂
−𝜕𝑐
𝜕𝑡

)︂

𝑄𝑙 =
∑︁
𝑖

(︃ ∑︁
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

(ℎ𝑙,𝑖 − ℎ𝑟𝑒𝑠)𝑉𝑝

(︂
−𝜕𝑐
𝜕𝑡

)︂
− 𝜎 :

𝜕𝜀𝑒

𝜕𝑡

)︃
,

(59)

neglecting mechanical effects. 𝑄𝑙 can be defined as the energy generated in the entire

volume (including particles and electrolyte) [352]. Since electrolyte fluxes are similarly

nonisothermal, the Onsager flux relations are the same as used above, excepting the

Seebeck and Peltier effects. From the assumption of a binary electrolyte, the current

density can be calculated from the fluxes of the cations and anions.

Here, to justify our previous assumption that the bulk electrolyte temperature is

constant at the prescribed temperature, we perform scaling. For simplicity, in a single

particle current control system, we assume that the reservoir system is homogeneous

and diffusive effects are small. We apply an integral over the electrolyte volume to

obtain
𝜕𝑐𝑙
𝜕𝑡

=
∑︁

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑉𝑝
𝑉𝑙

(︂
−𝜕𝑐
𝜕𝑡

)︂
− 1

𝑉𝑙
∇ · jl. (60)

For the energy balance, we apply the mass balance and then convert the energy bal-
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ance to a volumetric form for particle per electrolyte volume for scaling comparisons,

different from the usual definition of “volumetric.” Applying the mass balance, we get

that

𝑐𝑣,𝑙
𝜕𝑇𝑙
𝜕𝑡

=
∑︁

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑉𝑝
𝑉𝑙

(−ℎ𝑟𝑒𝑠)
(︂
−𝜕𝑐
𝜕𝑡

)︂
+

∑︁
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

ℎ𝑇
𝐿𝑝

𝑉𝑝
𝑉𝑙

(𝑇 − 𝑇𝑙)−
1

𝑉𝑙
∇ · ql +

𝜎𝑠
𝑉𝑙
(∇𝜑𝑠)

2

(61)

while making the same assumptions about reversible work as earlier, where 𝜎𝑙 is the

conductivity of the electrolyte, since the current can be found from the current to be

i𝑙 = −𝜎𝑙∇𝜑l from the definition of the electric field. This is the energy balance for

the electrolyte in the system.

To justify our assumption that the electrolyte temperature is assumed to be con-

stant with regard to the particle, if we assume that 1) the electrolyte is well mixed and

can be locally modeled with a single volume, 2) heat transfer with the environment

can be modeled with a flux term, 3) resistive heating is small, and 4) assuming that

each of the particles are indistinguishable with a total of M particles, we obtain

𝑐𝑣,𝑙
𝜕𝑇𝑙
𝜕𝑡

=𝑀
𝑉𝑝
𝑉𝑙
ℎ𝑟𝑒𝑠𝑅 +𝑀

ℎ𝑝
𝐿𝑝

𝑉𝑝
𝑉𝑙

(𝑇 − 𝑇𝑙)−
ℎ𝑙
𝐿𝑙

(𝑇𝑙 − 𝑇𝑏) +
𝜎𝑠(∇𝜑𝑠)

2

𝑉𝑙
, (62)

where 𝐴𝑝/𝑙 is the particle or electrolyte area, 𝐿𝑝/𝑙 is the particle or electrolyte length-

scale, 𝑉𝑝/𝑙 is is the volume of the particle or electrolyte, and ℎ𝑝/𝑙 is the heat transfer

coefficient for the particle or electrolyte. Since the time constant for the energy bal-

ance is much smaller than that of the mass balance, we can assume our system is

psuedo-steady in the energy balance, with

𝑇𝑙 ≈
𝑀 𝐴𝑝

𝐴𝑙

(︁
𝐿𝑝

ℎ
ℎ𝑟𝑒𝑠𝑅 + 𝑇

)︁
+ 𝑇𝑏

𝑀 𝐴𝑝

𝐴𝑙
+ 1

. (63)

Under the assumption that 𝑀𝐴𝑝/𝐴𝑙 ≪ 1, then the steady temperature of electrolyte

can be assumed to be roughly the bulk electrolyte temperature. This requires the

active area of the particles to be much smaller than that of the electrolyte in the

system. In a single particle system, 𝐴𝑝/𝐴𝑙 ≪ 1 is true, indicating that this is a
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valid assumption. (Macroscopically, this type of parameter can be related to 𝑀 𝑉𝑝

𝑉𝑙
=

(1− 𝜖)𝑃𝐿, the fraction of active material of the system.) Our assumptions are correct

for a single particle system, but in a battery, since the fraction of active material in the

entire cathode/anode area is roughly 40% and the electrolyte volume lengths tend to

be much larger than the particle scale, the electrolyte temperature is 𝑇𝑙 ≈ 𝐿𝑝

ℎ𝑇
ℎ𝑟𝑒𝑠𝑅+𝑇 ,

indicating that this assumption is not physically indicative of a real battery.

As an added check, the sum of the energy balances of these two systems in a single

particle model brings us to the form of

∑︁
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑉𝑝
𝑑𝑢

𝑑𝑡
+ 𝑉𝑙

𝑑𝑢𝑙
𝑑𝑡

=
∑︁

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

(ℎ− ℎ𝑟𝑒𝑠)𝑅−∇ · ql + 𝜎𝑠(∇𝜑𝑠)
2 + 𝜎𝑙(∇𝜑𝑙)

2, (64)

where we recover the (ℎ − ℎ𝑟𝑒𝑠)𝑅 term expected from simple closed system reaction

kinetics terms. We note that the reaction rate is defined as lithium ions generated

per electrolyte volume. Each term in these formulations matches the energy balances

derived in previous models [122, 45].

A.3.3 Reaction Rate

Two different reaction rates–the Butler-Volmer (BV) reaction, and coupled ion elec-

tron transfer [347] are applied to this system.

Butler-Volmer

The thermodynamically reversible BV reaction is commonly used for electrochemical

reactions because of its simplicity [349], but does not take into account electron

availability in the system. It assumes that ion transfer is the limiting step in the

reaction. For Butler-Volmer, which is a thermodynamically consistent transition state

theory, we assume a general thermodynamically consistent Butler-Volmer reaction

rate of the form where 𝑘0 = 𝑘0,0𝑒
−𝐸𝐴/𝑘𝐵𝑇𝑏 is the exchange current at the reference

temperature 𝑇𝑏, 𝜇 is the chemical potential of species M, and 𝜇𝑟𝑒𝑠 is the reservoir

chemical potential. The Butler-Volmer equation is a transition state theory equation.

The transition state chemical potential 𝜇𝑒𝑥
‡ , is defined as 𝜇𝑒𝑥

‡ = 𝑘𝐵𝑇 𝑙𝑛𝛾‡+(1−𝛼)𝜇𝑟𝑒𝑠+
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𝛼𝜇. We assume the transition state chemical potential excludes a single surface site

and gives 𝛾‡ = (1− 𝑐)−1. This simplifies to

𝑅 = 𝑘0,0𝑒
−(𝐸𝐴/𝑘𝐵𝑇−𝐸𝐴/𝑘𝐵𝑇𝑏)

𝛾1−𝛼𝑟𝑒𝑠 𝛾
𝛼

𝛾‡

(︀
𝑒−𝛼𝑒𝜂/𝑘𝐵𝑇 − 𝑒(1−𝛼)𝑒𝜂/𝑘𝐵𝑇

)︀
. (65)

where 𝑒𝜂 = 𝜇 − 𝜇𝑟𝑒𝑠 is the overpotential, which drives the reaction kinetics in the

system. In an electrochemical system, the reaction rate 𝑅 is related to the current as

𝐼 = 𝑛𝑒𝑅.

Coupled-Ion Electron Transfer

A realistic electrochemical reaction is neither fully limited by the ions, nor by the

electrons, but accounts for the availability of both of these materials. The coupled

ion electron transfer reaction model is a first principles reaction model that takes

into account the effect of electron availability, specifically with the density of state,

of the system [347]. Electron transfer reactions were first modeled by Marcus and

coworkers, then extended to electrochemical reactions [124, 313]. Hush then extended

Marcus theory to account for delocalized electronic states [126, 125]. In recent years,

Fraggedakis et al. [347] formulated the full theory of coupled ion electron transfer

based on careful experiments which were further verified with different intercalation

materials [129]. In coupled ion electron transfer (CIET), the density of states of the

electron donor 𝜌(𝜀) is taken into account in the reaction rate, defined as

𝑅 =

∫︁
𝜌(𝜀) (𝑅→(𝜀)−𝑅←(𝜀)) 𝑑𝜀 (66)

If there is a localized electron state, we recover Marcus theory, with 𝜌(𝜀) = 𝛿(𝜀− 𝜀𝑖),

while if we consider a metallic donor, we recover the Marcus-Hush-Chidsey (MHC)

model, with 𝜌(𝜀) = 1, where 𝜀 is the energy level. Zeng et al. [166] formulated a

simple analytical equation to simplify the reaction rate of the system.

For ion intercalation with nondimensionalized values, we use the modified over-
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potential 𝜂𝑓 = 𝜇− 𝜇𝑟𝑒𝑠 − 𝑇 ln 𝑐
1−𝑐 . The reaction should be described by

𝑅 =

∫︁ ∞
−∞

𝜌(𝜀)
𝑘0,0√
𝑇
𝑒−(𝐸𝐴/𝑘𝐵𝑇−𝐸𝐴/𝑘𝐵𝑇𝑏)

(︂
𝑛(𝜀)(1− 𝑐)𝑒−

(𝜆+𝜂𝑓−𝜀)2

4𝜆𝑇 − (1− 𝑛(𝜀))𝑐𝑒−
(𝜆−𝜂𝑓−𝜀)2

4𝜆𝑇

)︂
𝑑𝜀,

(67)

with either the MHC or Marcus DOS functions. Here, 𝑛(𝜀) is the Fermi-Dirac distri-

bution and 𝜆 is the reorganization energy.

A.3.4 Simplified Linear Stability Analysis

A simplified form of the linear stability analysis performed in Sec. A.2.3 can be

applied to our ion intercalation system. We place our particle in a reservoir of chemical

potential 𝜇𝑟𝑒𝑠 and temperature 𝑇𝑏, and choose the system to be the particle. By the

analysis in Sec. A.3.1, we know that the temperature of the electrolyte in a single

particle system can be assumed to be the bulk temperature, which is assumed to be

constant at 𝑇𝑏 in our model. Since the reaction rate is much larger than diffusion in

this system, the diffusion term in the mass balance is neglected to simplify the system.

In the following linear stability analysis, we include the modification of the use of the

heat transfer coefficient instead of the heat conductivity. Assuming that the system

is homogeneous in concentration and temperature, and the heat transfer coefficient

has no temperature or concentration dependence, our mass and energy balances can

be written as below:
𝜕𝑐

𝜕𝑡
= 𝑅 (68)

𝑐𝑣
𝜕𝑇

𝜕𝑡
= −ℎ𝑇

𝐿
(𝑇 − 𝑇𝑏)− ℎ𝑅. (69)

If we nondimensionalize the set of equations above using 𝑐 = 𝑐
𝑐𝑚𝑎𝑥

, 𝑇 = 𝑇
𝑇𝑏

, �̃� = 𝑅
𝑘0

,

𝜏 = 𝑘0𝑡
𝑐𝑚𝑎𝑥

, ℎ̃ = ℎ
𝑘𝐵𝑇𝑏

, ℎ̃𝑟𝑒𝑠 = ℎ𝑟𝑒𝑠

𝑘𝐵𝑇𝑏
, and ℎ̃𝑇 = ℎ𝑇

ℎ𝑇,𝑟
where 𝑐𝑚𝑎𝑥 is the maximum species

concentration and 𝑘0 = 𝑘0,0 exp
(︁
− 𝐸𝐴

𝑘𝐵𝑇𝑏

)︁
, we obtain

𝜕𝑐

𝜕𝜏
= �̃� (70)
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𝜕𝑇

𝜕𝜏
= 𝜁

(︁
−(𝑇 − 1)ℎ̃𝑇 − ℎ̃Biheat�̃�

)︁
, (71)

where Biheat =
𝑘𝐵𝑘0
ℎ𝑇,𝑟

, the Biot heat transfer number, represents heat from the chemical

potential to external heat transfer. For simplicity, we also neglect the tildes on the

nondimensionalized equations. In this equation, 𝜁 =
𝑐𝑚𝑎𝑥ℎ𝑇,𝑟

𝑘0𝐿𝑐𝑣
is the scale of heat

transfer to reaction. The heat transfer coefficient in these systems is quite large,

often causing the 𝜁 value to be orders of magnitude larger than unity.

The full linear stability analysis for this system is found by solving

𝜎I𝛿 = J𝛿, (72)

where

J =

[︃
𝜕𝑅
𝜕𝑐 + 𝜕𝑅

𝜕𝜇

(︁
𝜕𝜇ℎ

𝜕𝑐 + 𝜅|k|2
)︁

𝜕𝑅
𝜕𝑇 + 𝜕𝑅

𝜕𝜇
𝜕𝜇ℎ

𝜕𝑇

−Bi𝑇 𝜉
(︁
ℎ̄
(︁

𝜕𝑅
𝜕𝑐 + 𝜕𝑅

𝜕𝜇

(︁
𝜕𝜇ℎ

𝜕𝑐 + 𝜅|k|2
)︁)︁

+ �̄�𝜕ℎ
𝜕𝑐

)︁
−𝜉
(︁(︀

ℎ̄𝑇 + 𝜕ℎ𝑇

𝜕𝑇 (𝑇 − 1)
)︀
+ Bi𝑇 ℎ̄

(︁
𝜕𝑅
𝜕𝑇 + 𝜕𝑅

𝜕𝜇
𝜕𝜇ℎ

𝜕𝑇

)︁)︁
]︃
.

(73)

The solution of the equation det|𝜎I𝜎 − J𝛿| = 0, if we assume that the heat transfer

coefficient ℎ𝑇 is not dependent on temperature or concentration, gives the full solution

of

𝜎 =
1

2

(︂
𝑑𝑅

𝑑𝑐
− 𝜉

(︂
1 + Bi𝑇

𝑑𝑅

𝑑𝑇
ℎ̄

)︂

±

√︃(︂
𝑑𝑅

𝑑𝑐
− 𝜉

(︂
1 + Bi𝑇

𝑑𝑅

𝑑𝑇
ℎ̄

)︂)︂2

+ 4𝜉

(︂
𝑑𝑅

𝑑𝑐
− Bi𝑇 �̄�

𝜕ℎ

𝜕𝑐

𝑑𝑅

𝑑𝑇

)︂⎞⎠ ,

(74)

where the real parts of the critical solution are the solution to the problem. Assuming

that 𝜎 ≪ 0, and neglecting the second order term, we solve a linear problem,

𝜎 =
𝜉
(︀
𝑑𝑅
𝑑𝑐

− Bi𝑇 𝑑𝑅
𝑑𝑇

𝜕ℎ
𝜕𝑐

)︀
𝜉
(︀
1 + Bi𝑇 𝑑𝑅

𝑑𝑐
ℎ̄
)︀
− 𝑑𝑅

𝑑𝑐

. (75)

Under the assumption of large 𝜉, we will see that the limit for this solution converges

to the same solution that we solve for in the psuedo-steady linear stability analysis

shown below.
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An even simpler version of the full linear stability analysis can be considered from

the separation of timescales. Since the timescale of heat transfer in the system is

significantly faster than that of mass transfer, we further assume that the energy

balance is already at equilibrium

0 = −(𝑇 − 1)ℎ̃𝑇 − ℎ̃Bi𝑇 �̃�. (76)

We write several useful derivatives for this phase separating system, 𝜕𝜇
𝜕𝑐

= 𝜕𝜇ℎ

𝜕𝑐
+

𝜅|k|2 and 𝜕𝜇

𝜕𝑇
= 𝜕𝜇ℎ

𝜕𝑇
, where �̃� = 𝜅𝑐𝑚𝑎𝑥. Keeping only the terms that are first order in

𝜖 and neglecting all mechanical effects, our system of equations to solve becomes⎡⎣𝜎 0

0 0

⎤⎦ 𝛿 = J𝛿, (77)

where

J =

[︃
𝜕𝑅
𝜕𝑐 + 𝜕𝑅

𝜕𝜇

(︁
𝜕𝜇ℎ

𝜕𝑐 + 𝜅|k|2
)︁

𝜕𝑅
𝜕𝑇 + 𝜕𝑅

𝜕𝜇
𝜕𝜇ℎ

𝜕𝑇

−Bi𝑇
(︁
ℎ̄
(︁

𝜕𝑅
𝜕𝑐 + 𝜕𝑅

𝜕𝜇

(︁
𝜕𝜇ℎ

𝜕𝑐 + 𝜅|k|2
)︁)︁

+ �̄�𝜕ℎ
𝜕𝑐

)︁
−
(︀
ℎ̄𝑇 + 𝜕ℎ𝑇

𝜕𝑇 (𝑇 − 1)
)︀
− Bi𝑇 ℎ̄

(︁
𝜕𝑅
𝜕𝑇 + 𝜕𝑅

𝜕𝜇
𝜕𝜇ℎ

𝜕𝑇

)︁
]︃

(78)

The growth factor 𝜎 can be found by solving the secular equation det |J− 𝜎e1| = 0,

if we again assume that the heat transfer coefficient is not affected by the temperature

or concentration. This leads to

𝜎 =
−Bi𝑇 �̄�𝜕ℎ

𝜕𝑐
𝑑𝑅
𝑑𝑇

+ 𝑑𝑅
𝑑𝑐

1 + Bi𝑇 ℎ̄𝑑𝑅
𝑑𝑇

. (79)

Because of the finite size of the particle, the critical value of the perturbation is

k = 2𝜋
𝐿

, where 𝐿 is the characteristic length of the nanoparticle. The critical stability

value is found to be

𝜎 =
−Bi𝑇 �̄�

(︁
𝜕ℎ
𝜕𝑐

𝑑𝑅
𝑑𝑇

+ 𝜕𝑅
𝜕𝜇

𝜕𝜇ℎ

𝜕𝑇
𝜅|k|2

)︁
+ 𝜕𝑅

𝜕𝜇
𝜅|k|2 + 𝑑𝑅

𝑑𝑐

1 + Bi𝑇 ℎ̄𝑑𝑅
𝑑𝑇

. (80)

From the solution for the critical stability value, we can see that the main competition
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between stability and instability is between the isothermal dependence of reaction rate

on concentration 𝑑𝑅
𝑑𝑐

and the dependence of reaction rate on temperature 𝑑𝑅
𝑑𝑇

, scaled

by the Biot number which relates the ratios of mass transport to heat transport.

The competition between these two terms will determine the stability of the system.

At low Biot number, we expect the solution to converge to the isothermal models

derived in Refs. [67, 165], while at higher Biot number, the autocatalytic effect of

temperature starts to affect the stability more.

Stability depends on where positive values of the critical stability value appear.

Since the stability of the system depends on 𝑑𝑅
𝑑𝑐

and 𝑑𝑅
𝑑𝑇

, the reaction dependence on

concentration and temperature, which indicates that the reaction rate used to model

the system will affect the stability of the system. In our following analysis, using

different reaction models, the expected magnitudes of 𝑑𝑅
𝑑𝑐

and 𝑑𝑅
𝑑𝑇

play important roles

determining the stability of our system. The stability is highly dependent on the

ratio of the Biot number to heat transfer coefficient if the temperature dependence

of heat transfer coefficient is small, indicating that thermal coatings, or conductivity

with system is very important to the system as well. This leads us to study the

importance of material properties, especially the Biot number, on the stability of the

system.

At large Biot numbers, where the denominator of the critical stability value

changes sign or approaches zero, the stability of the system is significantly affected.

When the Biot number is large, 𝑑𝑅
𝑑𝑇

plays a much larger role in affecting the critical

stability of the system, such that this value may approach zero. At high Biot number,

fluctuations in the stability solutions may be induced near these values.

A.4 Results and Discussion

A.4.1 Butler-Volmer Reaction

Our open system model can be applied to an intercalation system for lithium-ion

battery materials. We can perform the analysis on lithium intercalation in a phase
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separating material such as lithium iron phosphate (LFP), where the LFP particle is

the system and the electrolyte solution is the environment. We model the reaction

as Li+ + e– + M −−→ LiM, where M is LiC6 and M𝑟𝑒𝑠 is Li+ for LFP. As mentioned

earlier, the process timescale for reaction in the system is significantly larger (1014 if

assuming a C-rate of 1) than the timescale for conductive heat transfer, indicating

that at the timescales we are interested in, the temperature balance can be modeled

with a pseudo-steady approximation. Thus, we see that this justifies our assumption

that temperature can be approximated with the pseudo-steady state approximation.

In the equilibrium chemical potential of an intercalation material, the entropic

term includes nonisothermal effects as shown in Fig. 1. A decrease in temperature

causes the spinodes to become more prominent and increases the miscibility gap of

the chemical potential. Thus, for a system fully in equilibrium, we expect increased

phase separation and a smaller nucleation barrier to overcome for lower temperatures.

However, in our intercalation systems, we never encounter systems that are fully in

equilibrium. Instead, our systems are always driven by some potential or reaction,

indicating that the system is rarely in equilibrium. This requires us to study the effects

of temperature on these systems more carefully, coupled with the mass, energy, and

momentum balances in these systems.

We can apply the regular solution model to model the chemical potential of lithium

in LFP our system [241]. For this system, the regular solution model applied gives

𝜇 = Ω(1− 2𝑐) + 𝑘𝐵𝑇 ln (
𝑐

1− 𝑐
)− 𝜅∇𝑐2, (81)

where Ω is the regular solution parameter, the second term is from the entropic

contribution, and the last term is from the phase boundary energy. Applying the

value of k𝑐𝑟𝑖𝑡 =
2𝜋
𝐿

to this system from the particle size [241], we obtain the phase

diagram for stability with the above parameters applied to the system. Since the

temperature effect on the heat conduction coefficient for the system is expected to be

small, we simplify the critical growth rate at equilibrium above as Eq. 80.

Using the parameters Ω = 4.0𝑘𝐵𝑇𝑏, 𝜅 = 0.684𝑘𝐵𝑇𝑏𝐿
2 with a particle size of
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𝐿 = 100 nm, and 𝑘0 = 10A/m2 [67, 382, 383], we obtain that Bi𝑇 = 1 × 10−5 in

this system [384, 385]. For parameters in this system, we can assume that ℎ =

10 − 100W/(m2K) since conductive heat transfer between an intercalation material

and an electrolyte is taking place. [386] The activation energy is 𝐸𝐴 = 50 kJ/mol

and the exchange current density appears as 𝑘0(𝑇 = 298K) = 1.1A/m2, which gives

us 𝑘0,0 = 3.98 × 1027(m2·s) for surface intercalation, giving us a Biot number of

Bi𝑇 = 1 × 10−10 for graphite [387, 388]. We note that the Biot number for different

materials can be quite different, and thus this is a parameter whose effect should

be studied carefully in intercalation systems. A study on the effect of the change of

the Biot number reflects how material properties can affect the stability of an open

driven system is performed. If we study the phase stability for ion intercalation of

LFP using the model defined above, we separately control the current and the voltage

to affect the stability of the system and consider the effects of constant current or

voltage charging on the nonisothermal stability of the system, which are the two basic

common modes of battery intercalation/deintercalation.

The equilibrium temperature of the system is determined by the energy balance

of the system, where 𝑇 = −Bi𝑇ℎ𝑅+1 is true at steady state. This is generally true in

our system from the large timescale difference between the energy and mass balances.

In Fig. 1, we see that for a phenomological Butler-Volmer reaction rate which grows

exponentially with overpotential, the temperature and the stability of the system are

both highly influenced by the value of the Biot number. From a low Biot number, we

see almost an exact replicate of the stability diagram under nonisothermal conditions.

At a high Biot number, even in the suppressed phase separation regime [67], phase

separation appears in these systems. The region of instability at higher Biot number

significantly increases with respect to the lower Biot number values. This is through

the increased effect of 𝑑𝑅
𝑑𝑇

as the Biot number increases, which destabilizes the system

from the autocatalytic properties of the Arrhenius function. For the localized and

delocalized cases for the reaction kinetics, because the reaction currents are much

smaller from the limiting current [347], there is a minimal effect on temperature on

the stability of these reaction rates. The physical picture of limitation from electron
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Figure 1: Stability of the system at various Biot numbers using a Butler-Volmer
reaction rate, where the white shaded area surrounds the unstable region. The tem-
perature of the solution is also plotted on the same plot using a heatmap. The solid
white area is the area with no steady state energy balance solution.

availability prevents the destabilizing seen in Butler-Volmer kinetics.

Although the solutions are not trustworthy at higher overpotential values because

the kinetics are not limited by electron availability at high overpotentials, we can still

gain valuable insight from lower overpotentials. We expect a breakdown of the model

at higher overpotentials or currents. Bi is highly dependent on material properties

and system properties, and in general the system is more stable at lower Bi ratios if we

use a Butler-Volmer reaction rate. For temperature stability, we should add thermal

coatings or pick more thermally conductive fluids and materials. For example, the

Biot number is very small, so temperature effects are much smaller, but for graphite,

Bi is significantly larger, so more thermally dissipative additives or coatings should
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be added to the materials. Because of our previous analysis where increased Biot

number means a stronger autocatalytic effect from temperature, this destabilizes the

system. However, we know that the Butler-Volmer reaction rate does not capture the

effects of electron transfer, which can be rate-limiting in electrochemical reactions

and thus cause current to be limiting. Thus, we turn to a first principles coupled

ion-electron transfer model (CIET), which takes into account the coupled transfer of

ions and electrons in the model.

A.4.2 Coupled Ion Electron Transfer

We see that the main temperature dependence in the Butler-Volmer reaction equa-

tion, other than the energy scalings of the system, is first in the Arrhenius reaction

rate dependence, and second in the overpotential temperature dependence from the

entropic term. For the CIET equations, the modified overpotential, specifically for

a lattice model as decribed for LFP, has no temperature dependence in the overpo-

tential since the entropic term is removed in the overpotential. There is only the

Arrhenius temperature dependence on the reaction coefficient as well as a 1/
√
𝑇 scal-

ing from quantum tunneling in the reaction coefficient [347, 129]. To both BV and

CIET, increased temperature increases stability in both systems for voltage control.

For Butler Volmer, an increase in temperature increases the reaction coefficient, but

the overpotential term decreases from the increased temperature. Thus, the driving

force for the reaction decreases, decreasing the overall reaction rate and driving the

reaction to stability. However, for CIET, the quantum tunneling term reduces the

reaction rate at increased temperature, which also drives the reaction to stability.

Thus, we expect that for CIET, the temperature effects on the kinetics are weaker

than the Butler-Volmer system.

Since Butler-Volmer is a phenomenological model, a first principles model will

most likely capture the temperature effects of the stability of the system much bet-

ter. Here we compare Butler-Volmer and couple ion-electron transfer with localized

and delocalized electron densities, which can be simplified to Marcus/Marcus-Hush-

Chidsey kinetics. In Fig. 2, we see that Bi has almost no effect on the stability of
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Figure 2: Stability of the system using a CIET reaction rate at various Biot numbers,
where the white shaded area surrounds the unstable region. The temperature of the
solution is also plotted on the same plot using a heatmap.

the system, as well as the steady state temperature solutions not changing at all with

the change in Bi. Under the assumption of a single particle model, we know that

because CIET has a limiting reaction rate, unlike BV, which grows exponentially at

high overpotentials. Thus, the temperature in a coupled ion electron transfer system

is more stable than a BV system. Especially in Eq. 80, we know that because of the

limiting reaction rate for CIET, from Eq. 76, the effect of the Biot number on the

stability of the system is reduced because the current is small. Because of this, there

is no solution breakdown at higher overpotentials. We see why there is little effect of

the Biot number on the steady state temperature or the stability of the system.
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Figure 3: Heat generation terms of each of the porous electrode scale model terms
relative to each other. 𝑄𝜇 is from the effect of (𝜇𝑟𝑒𝑠−𝜇)𝑅, 𝑄𝑇 𝑑𝑠

𝑑𝑐
is from the differential

entropy effect, 𝑄𝑙𝑦𝑡𝑒,Ω is from the Ohmic heat generation in the electrolyte, 𝑄𝑠𝑙𝑑,Ω is
from the Ohmic heat generation in the solid, and 𝑄𝑙𝑦𝑡𝑒,𝑘 is from the Fourier’s law heat
flux in the system.

A.5 Porous Electrode Scale Model

The nonisothermal model was implemented into our in-house porous electrode the-

ory [122, 54] software Multiphase Porous Electrode Theory (MPET) [44] for the the

lithium cobalt oxide-graphite cell model in Refs. [389, 45] using the parameters from

Ref. [45]. The effect of heat generation from each term is modeled below to under-

stand what the comprehensive reasoning behind the heat generation in the systems

is caused by.

From the heat generation modeled in Fig. 3, we see that the main cause of heat
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generation is the reversible entropic heat generation term. However, this term is ideal-

ized and most likely is overestimated in this system. The term that generates the most

heat is then most likely to be the Ohmic heat generation term from the electrolyte,

especially at higher C-rates. As the temperature increases in these systems, the effect

on electrolyte conductivities and diffusivities is extremely large [5, 390], and Ohmic

heat generation becomes very important. The Fourier heat diffusion also increases

from the heat generation increase, most likely because of increased temperature at

high C-rates, which causes larger thermal gradients.

A.6 Conclusion

In this study, we derive a novel general nonisothermal modeling of coupled mass and

energy balances in an open driven system. We apply this model to an intercalation

reaction in battery particles with the standard Butler-Volmer reaction rate as well as

the first principles-based coupled ion electron transfer to study the stability coupled

with the steady state temperature solution of the system [347]. We find there is a

breakdown of the model for the traditional Butler-Volmer reaction model because of

the exponential growth of current at high overpotentials, which is nonphysical and can

be remedied with a first-principles based reaction model [165]. In the Butler-Volmer

reaction model, we see that with the increase of the material property Bi, which refers

to the ratio of the reaction rate versus the external heat transfer, the stability of the

system decreases while the steady state temperature increases, because the reaction

rate grows exponentially with the BV model. Meanwhile, using a first principles

reaction model that takes into account electron transfer limitations, reaction has little

effect on the steady state temperature or the stability of the system. Temperature

changes and instabilities in battery systems are a result of transport limitations and

not reaction heat in the system. From our general porous electrode calculations, we

see that the heat generated from reactions is much smaller than that of other sources.

Though there are many factors in temperature increase such as slow diffusion, ohmic

heat from resistance buildup, and reaction heat generation from the system, in our
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battery temperature models, reactions are not the reason that battery systems are

destabilized or temperatures increase. This important conclusion indicates that we

can shift our focus in battery thermal modeling to other sources such as Ohmic heat

generation, contrary to popular belief in battery models that electrode reactions can

be a large heat source [348].

Our general nonisothermal model of coupled mass and energy balances in open

driven systems can be generalized to other applications as well. We expect that we

can also apply a similar nonisothermal modeling of open driven systems to other

systems, such as photocatalysis, electrodeposition, and other systems, where the non-

linear coupling of concentration and temperature will return interesting effects on the

stability of the system.

A.7 Appendix: Gibbs Fundamental Equation

To get a temperature balance from our energy balance, a local equilibrium assumption

needs to be applied. Assuming local equilibrium in the system, we can start from

Gibb’s fundamental equation

𝑑𝑢 = 𝑇𝑑𝑠+T𝑒 : 𝑑𝜀+
∑︁
𝑖

𝜇𝑖𝑑𝑐𝑖 (82)

for strain 𝑑𝜀. The definition of the unit volume in the system under deformation needs

to be clarified. We can start from the local form of the combined first and second law

of thermodynamics for a unit volume, where 𝑑𝑣 is the deformed unit volume and 𝑑𝑣0

is the unit volume. We can first derive a couple useful equalities that will be used

later from the first law of thermodynamics. Within a linear approximation in a unit

volume, the dilation of the system is easily found to be [391]

𝑑𝑣 = ((1 + 𝑣𝑥𝑥)(1 + 𝑣𝑦𝑦)(1 + 𝑣𝑧𝑧)− 1) 𝑑𝑣0 ≈ tr(∇u)𝑑𝑣0. (83)

We separate the stress into deviatoric and dilational portions, −𝑃 I + T𝑝 = T

where 𝑃 = −1
3
Tr(T) which is defined from the negative of the average normal stress
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[352, 392], and 𝑝 represents the deviatoric (plastic) stress. As stated earlier, since

𝜀 = 1
2

(︁
∇u+ (∇u)𝑇

)︁
and T𝑒 = T − T𝑝 ≈ TRR − T𝑝 is a symmetric matrix, we

know that the stress-strain term can be completely represented for such an elastic

system by the Cauchy stress tensor and and strain as ∇u : (TRR −T𝑝) = 𝜀 : T𝑒 and

𝑑∇u : T𝑒 = 𝑑𝜀 : T𝑒. The pressure-volume term (in the linear approximation) for an

elastic system can be defined to be

−𝑃𝑑𝑣 = −𝑃 tr(𝑑∇u) = (−𝑃 I) : 𝑑∇u = T𝑒 : 𝑑𝜀. (84)

Substituting the differential relations from the entropy relation [354], and by the

principles of frame indifference [352], we realize that the entropy is also affected by

the different control variables in the system, so that the full differential of entropy is

derived as

𝑑𝑠 =
𝜕𝑠

𝜕𝑇

⃒⃒⃒⃒
𝑐𝑖,𝜀𝑘𝑗

𝑑𝑇 +
∑︁
𝑘,𝑗

𝜕𝑠

𝜕𝜀𝑘𝑗

⃒⃒⃒⃒
𝑇,𝑐𝑖,𝜀𝑥 ̸=𝑘,𝑦 ̸=𝑗

𝑑𝜀𝑘𝑗 (85)

+
∑︁
𝑖

𝜕𝑠

𝜕𝑐𝑖

⃒⃒⃒⃒
𝑇,𝑐𝑗 ̸=𝑖,𝜀𝑘𝑗

𝑑𝑐𝑖. (86)

Since we know that the stress-strain contributions can be separated in to the devia-

toric and and hydrostatic terms, we can separate the full differential of entropy again

into

𝑑𝑠 =
𝜕𝑠

𝜕𝑇

⃒⃒⃒⃒
𝑣,𝑐𝑖,𝜀𝑘𝑗

𝑑𝑇 +
∑︁
𝑘 ̸=𝑗

𝜕𝑠

𝜕𝜀𝑘𝑗

⃒⃒⃒⃒
𝑇,𝑐𝑖,𝜀𝑥 ̸=𝑘,𝑦 ̸=𝑗 ,𝑣

𝑑𝜀𝑘𝑗 (87)

+
𝜕𝑠

𝜕𝑣

⃒⃒⃒⃒
𝑇,𝑐𝑖,𝜀𝑘𝑗

𝑑𝑣 +
∑︁
𝑖

𝜕𝑠

𝜕𝑐𝑖

⃒⃒⃒⃒
𝑣,𝑇,𝑐𝑗 ̸=𝑖,𝜀𝑘𝑗

𝑑𝑐𝑖. (88)

and the thermodynamic relations 𝜕𝑠
𝜕𝑇

⃒⃒
𝑣,𝑐𝑖

= 𝑐𝑣
𝑇

and 𝜕𝑠
𝜕𝑣

⃒⃒
𝑇,𝑐𝑖

= 𝛼
𝜅𝑇

, and 𝜇𝑖+𝑇
𝜕𝑠
𝜕𝑐𝑖

⃒⃒
𝑣,𝑇,𝑐𝑗 ̸=𝑖

=

ℎ𝑖, we can obtain

𝑑𝑢 = 𝑐𝑣𝑑𝑇 +
∑︁
𝑖

ℎ𝑖𝑑𝑐𝑖 +

(︃
T𝑒 + 𝑇

(︃
− 𝛼

𝜅𝑇
I+

𝜕𝑠

𝜕𝜀𝑘𝑗

⃒⃒⃒⃒
𝑘 ̸=𝑗

)︃)︃
: 𝑑𝜀, (89)
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where 𝑐𝑣 is the isochoric heat capacity, 𝛼 is the coefficient of thermal expansion under

isobaric circumstances, 𝜅𝑇 is the isothermal compressibility, and ℎ𝑖 is the enthalpy of

the system.

If we separate the contributions of the enthalpy effect on the strain, we see that the

effects on the strain can be separated into the Gell-Mann matrices in each direction.

There are two normal stress states 𝜆3 and 𝜆8 which are represented by the , while the

remaining 6 matrices are all from the shear stress states. Here we see that for

𝜕𝑠

𝜕𝜀𝑘𝑗

⃒⃒⃒⃒
𝑘 ̸=𝑗

=
∑︁

𝑖=1..8,𝑖 ̸=3,8

𝛽𝑖
𝑆𝑇,𝑖

(90)

where 𝛽𝑖 is the coefficient of thermal shear deformation in the 𝑖 direction and 𝑆𝑇,𝑖 is

the isothermal shear compliance [393]. We will define the sum of these terms as

𝑑𝑢 = 𝑐𝑣𝑑𝑇 +
∑︁
𝑖

ℎ𝑖𝑑𝑐𝑖 +

(︃
T𝑒 + 𝑇

(︃
− 𝛼

𝜅𝑇
I+

𝛽𝑗
𝑆𝑇𝑗

𝜆𝑗

⃒⃒⃒⃒
𝑗 ̸=3,8

)︃)︃
: 𝑑𝜀. (91)
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