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for the Degree of Doctor of Philosophy

ABSTRACT

In this study a numerical model was used to examine the impact of
moisture on the dynamics of mountain lee waves. The model, which was
originally designed to simulate convective storms, was modified for
lee wave calculations and tested to verify its accuracy. The effects
of moisture on trapped and propagating waves were considered sepa-
rately. In both cases, the release of latent heat was found to signi-
ficantly influence the wave dynamics.

When moisture was introduced into the lowest layer of a two layer
tropospheric structure favorable for the development of trapped lee
waves, three different behaviors were encountered. If the atmosphere
was convectively unstable, any clouds which formed destroyed the lee
waves. If the effective moist stability in the wave environment was
weak, but positive, the waves were distorted and untrapped as the up-
stream humidity increased. If there was strong moist stability in the
lowest layer, changes in the upstream humidity changed the tuning
properties of the trapped waves. In the last instance, moisture could
amplify or damp the wave, depending on the wavenumber spectrum of the
orographic forcing. The presence of upper level moisture could either
damp or amplify trapped waves depending on the details of the dry wave
structure.

The investigation of propagating waves concentrated on atmo-
spheric structures in which there were no sharp gradients in the
Scorer parameter structure, so there was little downward partial
reflection of wave energy. The only moisture profiles considered were
ones in which the relative humidity was constant with height or a
cloud was present at low levels. When precipitation was not present,
the introduction of moisture into the flow damped the waves and
reduced the momentum flux. This effect was stronger in the finite
amplitude waves than in their linear counterparts. When precipitation
occurred, the wave amplitudes and the wave drags were stronger than
those produced by nonprecipitating flows, but, except for the case
where liquid water rained out instantly after condensation, the pre-
cipitating waves were still much weaker than the dry waves.

Thesis Supervisor: Dr. Ronald Prinn

Title: Associate Professor of Meteorology
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I. INTRODUCTION

Although dry mountain lee waves have been studied extensively for
the last 40 years, the influence of moisture on the dynamics of these
waves has received little attention. This lack of research is due in
part to the qualitative success with which dry dynamical formulations
have been able to reproduce lee wave flows, and in part to the
difficulty of including latent heating in theoretical models. There
is, however, evidence which suggests that moisture can significantly
modify the lee wave flow. Barcilon et al. (1979) have found that the
presence of low level moisture in an almost linear model reduces the
wave drag produced by hydrostatic mountain waves in an atmosphere with
constant upstream stability and windspeed. Lilly and Klemp (private
communication) have noted that their dry linear mountain wave model
tends to over-predict the actual wave response under conditions of
high upstream humidity. Larsson (1954) has flown airplanes through
lenticular clouds and observed that the upward motion at the leading
edge of the cloud is gomet imes twice as strong as the downward motion
at its trailing edge, suggesting that moisture may distort the
sinusoidal wave structure predicted by dry linear theory. In this
dissertation I will investigate the effects of moisture on mountain
lee waves.

Two previous studies have also been designed to assess the impact
of moisture on mountain waves. Barcilon et al. (1979) examined the
effects of nonprecipitating clouds on linear hydrostatic waves by

replacing the cloudy regions with dry regions of reduced stability.



Since the cloud boundaries were not known apriori, an iterative
procedure was used to match the clouds with the regions of upward
displacement and obtain a self-consistent flow. In order to study the
impact of precipitation, Barcilon et al. (1980) comsidered a similar
linear hydrostatic model in which any condensed water was assumed to
rain out instantly. In this second study, the iterative technique was
abandoned, and the perturbations produced by latent heating were
assumed to be small so that the cloud boundaries could be determined
from the dry streamline displacements. In both of these studies the
microphysics are very idealized, and the flow regimes examined are
limited to linear hydrostatic waves in an atmosphere in which the dry
and moist stabilities, and the windspeed, are constant with height.

In order to investigate a wider variety of realistic situations,
I will develop a numerical model to compute the influence of moisture
on mountain lee waves. The numerical approach has two basic
advantages. First, the microphysics can easily be incorporated in a
relatively realistic manner through a simple rain parameterization,
and second, the study need not be limited to flows for which dry
analytic solutions are available. 1In particular, the numerical model
can be designed to simulate nonlinear, nonhydrostatic compressible,
time dependent lee waves produced by mountains of arbitrary shape. It
is important to have the ability to investigate nonlinear wave
amplitudes since the influence of moisture is nonlinear and should be
free to interact with other nonlinearities. It is also important to
include nonhydrostatic effects since nonhydrostatic resonant waves are

among the preferred locatioms for wave clouds. Even though many of



the cases will be studied in an essentially steady state, there are
advantages to a time dependent calculation. The time dependent
approach guarantees that any steady state obtained is stable, and it
allows the simulation of convective regimes in which the atmospheric
response is inherently time dependent.

This dissertation is organized as follows: Chapter II is a
review of that portion of the voluminous literature on mountain lee
waves which is particularly relevant to the moisture problem. The
numerical model is described in chapter III. Tests are presented in
chapter IV in which the model is compared with other mountain wave
solutions. The effects of moisture on trapped and propagating waves
are discussed in chapters V and VI. The conclusions and opportunities

for future research are presented in chapter VII.



II. REVIEW OF MOUNTAIN WAVE RESEARCH

The basic flow pattern across a long ridge of mountains is
determined by the mountain width. If the ridge is sufficiently wide
so that the time required for air to cross it is greater than order
1/f, (where f is the Coriolis parameter), rotational effects generate
a disturbance with large displacements in the horizontal x-y plane.

As the width decreases, the perturbations in the horizontal plane
disappear and waves in the vertical x-z plane develop. 1In this thesis
we will concentrate on narrow mountain ridges (<100 km wide) so that
rotation can be neglected. When the wind blows over such a ridge, air
parcels are displaced vertically and, if the atmosphere is stably
stratified, upon passing the ridge they descend and oscillate about
their equilibrium levels. The gravity waves which result, called
mountain lee waves, have been observed in mountainous regions all over
the world. It is often convenient to divide mountain lee waves into
two categories; those which propagate vertically, and those whose wave
energy is trapped near the surface.

In this chapter we will briefly review some observations and
previous theoretical studies which are particularly relevant to the
moisture problem. We will be primarily concerned with the flow across
a very long uniform ridge, in which case the dynamics are
two dimensional. Trapped and propagating waves are considered

separately.
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A, Propagating Waves

Vertically propagating waves are often associated with large
mountains. They produce strong downslope winds in the lee of the
mountain, and exert a significant drag on the upper atmosphere which
can affect the larger, synoptic scale airflow. The potential
temperature field observed by Lilly and Zipser (1972) in a strong
propagating wave generated by the Front Range in the Colorado Rockies
is shown in Fig. 2.1. The flow at all heights is dominated by ome
very strong oscillation with a horizontal wavelength of approximately
60 km; only minimal wave activity appears further downstream. This
wave produced winds with gusts exceeding 50 ms~} in Boulder. Note the
presence of a cap cloud over the ridge crest and a small rotor cloud
in the short waves to the lee of the main wave.

The first mathematical investigations into the dynamics of these
waves relied on linear theory. 1In the standard approach the flow is
assumed to be two-dimensional, steady, inviscid and adiabatic. The
equations of motion, continuity, thermodynamics and state are
linearized about a horizontally uniform basic state with a mean flow
across the mountain. If, as is typically the case, the horizontal
windspeed is very much less than the speed of sound, these equations
may be manipulated to form the following equation for the vertical

velocity w

G +9 +kXN2)% = 0 , (2.1)
XX ZZ S

where
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Figure 2.1. Cross-section of the potential temperature field (K)
along an east-west line through Boulder, as obtained from analysis of
the Queen Air and Sabreliner data on 11 January 1972. For steady
adiabatic flow, these isentropes are good indicators of the
streamlines of the air motion. Data above the heavy dashed line are
from the Sabreliner, taken between 1700 and 2000 MST, while those
below this line are primarily from the Queen Air taken from 1330 to
1500. Flight tracks are indicated by the dashed lines, except for
crosses in turbulent portions. From Lilly and Zipser (1972).
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Wz) = N - z2__z_1g _lg | (2.2)

s =Z = - z

u u u 4 2
and
o 1/2 _ _

~ 2 _ 3%n 0 _ 3tn(p)

W (p_o) w, N g —— § = —p . (2.3)

Overbars refer to the vertically stratified basic state; the other
symbols are defined in the Appendix. Except near the surface where
;z is large, or when the temperature structure is nearly adiabatic,
the last three terms in kg(z) can be ignored. If the horizontal
structure is Fourier decomposed the equation for the amplitude of

the kN component, w(z) is:

- 2 2.4 _
vt (ks -k)w = 0 . (2.4)

A free slip boundary condition is applied at z = 0:

9z

w(0,x) = u(0) -2, (2.5)
ox

where zg (x) is the height of the mountain, WNote that this has been
linearized by applying it at z = 0 instead of z = zg. The solution

is determined by specifying the radiation boundary condition at

12



Analytic solutions to (2.4) may be obtained for certain choices
of zg when ki has a simple structure. Lyra (1943) and Queney
(1947, 1948) obtained solutions for an isothermal atmosphere with no
wind shear. Lyra studied rather unrealistic rectangular mountains,

but Queney chose a "Witch of Agnesi" mountain rofile
y P

(x) = ha’ (2.6)
z\X) T = > .

X + a

where h is the mountain height and a is the mountain half width at
half-height. Due to its easy Fourier decomposition and physically
realistic shape, this profile has been widely used in later studies.
Queney observed that the response of the airstream to the mountain
forcing depended upon the ratio of the effective mountain width and
the critical wavelength. The critical wavelength, Lo = 27/kg,
which is independent of the mountain, is the natural horizontal
wavelength which lee waves would approach asymptotically in the
absence of continued forcing. For mountains much narrower than Lc
the flow follows the terrain contours and no waves develop. For
mountains much wider than L. the flow is approximately hydrostatic,
and a single wave forms above the crest as illustrated in Fig. 2.2.
When the mountain width is the same order as L. the strongest
atmospheric response occurs, and several waves appear which damp
downstream; they are illustrated in Fig. 2.3. Large mountains are
usually much wider than the values of L. commonly encountered in
actual lee wave flows, so it is often appropriate to assume that

propagating waves are hydrostatic.

13
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Figure 2.2. Flow over a mountain whose width is large in comparison
to the critical wavelength. The effect of the density factor
(p/po)-l/z is ignored. From Holmboe and Klieforth (1957).
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Klemp and Lilly (1975) noted that the upstream flow during strong
mountain wave events in the Colorado Rockies frequently has a three
layer structure in which regions of strong stability in the lower
troposphere and the stratosphere surround a region of weak stability
in the upper troposphere. They constructed solutions for linear
hydrostatic waves with constant stability and vertical wind shear in
each layer of a multi-layer atmosphere, and found that the wave
amplitude was very semsitive to changes in the thickness of the
tropospheric layers. The strongest waves were obtained when there was
a phase shift of one-half vertical wavelength between the ground and
the tropopause. The wave amplification is produced by the partial
reflection of upward propagating wave energy at the interface between
adjacent layers.

Propagating mountain waves can produce large downward fluxes of
horizontal momentum which can significantly affect the synoptic scale
flow. Eliassen and Palm (1960) investigated the momentum transfer in
steady, linear mountain waves. They showed that the troughs and
crests must tilt upstream with height in waves which transfer energy
upward and momentum downward. They also noted that, in the absence of
resonant lee waves and critical levels, the vertical flux of
horizontal momentum is constant with height in a steady mountain
wave. However, as discussed by Klemp and Lilly (1980), the momentum
flux may approach its comstant steady state value very slowly in time

dependent flows.
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The preceding studies have been limited to small amplitude waves.
Long (1953,1955) obtained exact solutions for the statiomary flow of
an inviscid, incompressible, stratified fluid over an obstacle of
finite height. He showed that if 2p is constant and the density is
linear in z, the following equation for the deviation of a streamline
from its upstream height 8(x,z) can be derived without making any

small amplitude assumptions.

§ = 0 . (2.7)

This equation is linear and can easily be solved, however, the bottom

boundary condition:

8(x, zs(x)) = zs(x) , (2.8)

remains a problem since it cannot be linearized without invoking a
hypothesis that the disturbance is small, Long circumvented this by
first solving (2.7) with a linearized boundary condition and then
determining the finite amplitude mountain profile by solving (2.8) for
zg. This inverse approach has the disadvantage that the shape of
the mountain depends on NZ/G2 so that the N and u dependence of the
flow over an obstacle of fixed dimensions cannot easily be calcu-
lated.

More recently, Miles (1968) obtained solutions for certain
mountain shapes which can be specified directly. Figure 2.4 shows

computations by Huppert (in Appendix to Miles, 1968) for the flow over
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a half cylinder for various values of the parameter r = HN/u where H
is the maximum height of the obstacle. As r increases, the slope of
the wavefront steepens; at the critical value r = r¢ (ro is 1.3 in
the figure), the slope goes vertical. For r > r. the solutions may
not be valid because, in the vicinity of the overturned streamlines,
the fluid is convectively unstable.

Lilly and Klemp (1979) have obtained a solution to Long's
equation for hydrostatic flow over an obstacle of arbitrary shape.
They found that mountains with steep lee slopes and gentle windward
slopes generate stronger waves than a symmetric mountain of the same
height. The weakest waves were produced by mountains with steep
windward slopes and gentle lee slopes. Smith (1977) obtained the same
result from a perturbation analysis of the linear equationms.

Although the solutions to Long's equation include finite
amplitude effects exactly, they apply only to an incompressible
fluid. Long's approach has been extended to compressible fluids by
Claus (1964).

At present, in order to examine nonlinear lee waves in an
atmosphere with arbitrary windspeed and stability profiles, one must
rely on numerical simulation. Numerical models designed to calculate
the airflow over mountains must include careful treatments of the
upper and lower boundary conditions. While every numerical model
requires boundary conditions, the top and bottom boundaries are
critically important in the case of mountain waves. The bottom
boundary is important because that is where the forcing is applied.

At the top boundary it is important to minimize unphysical reflections
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of wave energy back into the computational domain. Since the
structure of mountain waves is very strongly affected by the
reflection or partial reflection of wave energy at various levels in
the atmosphere, an inadequate approximation to the radiation boundary
condition can seriously affect the results. Although a number of
investigators have applied numerical models to this problem, not all
have included a proper treatment of the upper boundary. I will
consider just the two most recent and careful studies.

Klemp and Lilly (1978) comstructed a time dependent, two dimen-
sional, adiabatic model. The model is hydrostatic, so it cannoct
produce resonant lee waves, but it seems capable of producing long
wave disturbances of the type shown in Fig. 2.1, which generate severe
downslope winds. The model uses isentropic coordinates, which elimi-
nates vertical advection terms and greatly simplifies the bottom
boundary condition since, in free slip adiabatic flow, the mountain
profile is an isentrope. However, isentropic coordinates cannot be
used to describe a breaking wave (in which the streamlines overturn).
Klemp and Lilly avoid overturning by the use of a turbulent ad justment
procedure which stabilizes the flow wherever the Richardson number
falls below 0.25. The reflection of energy at the top boundary is
minimized by adding a sponge layer, in which the viscosity gradually
increases with height, to the top of the computational domain. The
model has been able to convincingly reproduce analytic solutions and
gimulate the hydrostatic portion of the flow in two observational
cases. The isentropes calculated for the January 11, 1972 case are
shown in Fig. 2.5, and may be compared with the observations plotted

in Fig. 2.1.
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The numerical model developed by Clark and Peltier (1977) is

quite different. Their model is also time dependent, two dimensional,

and adiabatic, but it is based on the anelastic equations so it is
nonhydrostatic. The terrain is included through a coordinate trans-
formation which maps the computational domain, with its arbitrary
bottom boundary, into a rectangle. A sponge layer is used to remove
wave energy at the top boundary. Subgrid scale turbulence is
parameterized as a function of Richardson number after Lilly (1962).
Free slip conditions were assumed at the top and bottom of the model.
Like Klemp and Lilly, they have been able to simulate both
analytically calculable and observed flows rather well. Their
simulation of the January 11, 1972 mountain wave is shown in

Fig. 2.6.

Peltier and Clark (1979) have emphasized the importance of wave
breaking on the flow dynamics. In their calculations, after the
streamlines overturn the wave drag on the mountain increases far
beyond the value predicted by linear theory. They propose that the
turbulent region where the wave has broken reflects wave energy back
toward the surface, producing strong resonant waves. They have
criticized Klemp and Lilly's model on the grounds that an isentropic
coordinate model cannot represent a breaking wave (since the
transformation to isentropic coordinates is then undefined). They
also suggest that a hydrostatic model should not be used since it
eliminates resonant waves which may be important to the dynamics.
Further discussion of the merits of these models may be found in the
correspondence between Lilly and Klemp (1980), and Peltier and Clark

(1980).
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Only a few papers have appeared which consider the influence of
diabatic heating in clouds on the airflow over a mountain. The
approaches taken by Fraser et al. (1973) and Barcilon et al. (1979)
are similar. Fraser et al. were interested omly in obtaining a flow
model for use in predicting upslope precipitation; they do rot
consider resonant waves. Barcilon et al. do not examine resonant
waves either, but they are more concerned with the wave dynamics and
present calculations of the effect of moisture on mountain wave drag,
so I will concentrate primarily on their work.

Barcilon et al. (hereafter referred to as BJD) consider
linearized, inviscid, two dimensional motion, in hydrostatic balance.
They incorporate the diabatic heating by replacing the cloudy regions
with regions of reduced stability. Clouds are assumed to condense
when the displacement, &, of a streamline from its height upstream
exceeds a critical values §g. Condensation is allowed only at low
levels; at higher altitudes the air is assumed dry so that 85 = =,

The resulting equation for the streamline displacement is

25 = 0 6<°6

%+ N
Zzz 8

; (2.9)
25 L is +N(6-68) =0 8>8
8 w S

zZ2 S

where the mean windspeed T is constant with height. N is the moist

brunt Vaisala frequency, defined by Fraser et al. as

2

Nw = gb(lnBE)z . (2.10)

24



O is the equivalent potential temperature and b is a constant along
a streamline. This equation is linear inside and outside of the cloud
boundaries. However, the boundaries are not known apriori since they
are determined by the flow. BJD present an iterative numerical
technique in which the flow is adjusted until the cloud boundaries,
streamlines, and mountain profile are approximately selfconsistent.
The treament of condensation in BJD is similar to that used by Lilly
(1960) to study conditional instability, except that the switch
between dry and saturated stability is parameterized as a function of
streamline displacement by BJD and vertical velocity by Lilly.

BJD examine the flow across a broad Witch of Agnesi mountain for
the case where N, N, and u are constant with height. The dry
solution, obtained by Queney, is shown in Fig. 2.2. BJD found that as
the moisture content of the air increased the cloud boundaries shrank,
indicating a reduction in the upward displacement of the streamlines.
They noted that the mountain wave drag can be cut in half when the
upstream flow at low levels is very warm and moist. These results
suggest that the presence of moisture in a layer near the surface
damps the wave response.

No precipitation is allowed in the previous formulation. In a
later study Barcilon et al. (1980) denoted here as BJB, the effects of
rain and snow are estimated by assuming that any water vapor which
condenses falls out instantly as rain. In this case, the effects of
latent heat release are totally irreversible. In other respects the

approach in this second paper is similar to that just described,
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except that they no longer use an iterative scheme to match the
heating regions with the streamline displacements. Instead they
assume that the influence of latent heating on the flow is small

go that to a first approximation the cloud boundaries are determined
from the dry solution. Since there is a net heating of the flow, the
horizontal integrals used to obtain the streamline displacement, hori-
zontal windspeed, temperature and pressure do not converge.
Apparently, ignoring this, BJB evaluate them numerically, and conclude
that the presence of moisture in a layer near the ground can slightly
increase the mountain wave drag when rain is present.

These pioneering studies of moist mountain waves have produced
interesting results for idealized cases. However, they involve a
numerical approach which becomes cumbersome as the cloud boundaries
become complex, or an analytic approach which presumes that moisture
effects will be small and hence somewhat uninteresting. They do not
include rain in a realistic manner, and they rely on steady state,
linearized, hydrostatic equations. In particular, they do not apply
to trapped waves. I am not aware of any work which examines the

effects of moisture on ctrapped lee waves.

B. Trapped Waves

Trapped lee waves are usually produced by narrower ridges than
their propagating counterparts. Wave activity is confined to the
lower atmosphere, but can extend several wavelengths downstream from
the mountains. The wave drag associated with trapped waves is rather
small and confined to the lower troposphere. Laminar lenticular

clouds and turbulent rotor clouds sometimes appear in the crests of
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trapped waves. A train of lenticular clouds observed by Larsson
(1954) in the lee of the Ovik Mountains in Sweden is shown in

Fig. 2.7. Larsson found evidence of continued wave activity twelve
wavelengths downstream from the mountain. Note the cap cloud over the
mountain crest.

Scorer (1949) considered steady, linear mountain waves in an
atmosphere in which kg (Eq. 2.2) had a two layer structure.

Although ki was discontinuous, 8(z) and u(z) were chosen so that

they were continuous across the interface. He found that in order for
resonant waves to occur kg must decrease upwards in which case the
wave energy is trapped at lower levels. The requirement that kg
decrease with height means that either the windspeed must increase
upwards or the stability must decrease upwards. His calculated lee
waves are reproduced in Fig. 2.8. A misapplication of the radiation
boundary condition causes the troughs and crests in this figure to
tilt downstream. This does mnot, however, invalidate the resonant wave
analysis. Corby and Wallington (1956) have extended Scorer's work to
provide an extensive discussion of the effects of changes in the two
layer atmospheric structure and the mountain width on the resonant
wave amplitude.

Vergeiner (1971) and Smith (1977) compared lee waves observed in
the Colorado Rockies and the Appalachian Blue Ridge with steady linear
resonant wave theory. In order to approximate the detailed structure
in real atmospheric soundings they used multi-layer models with up to
15 layers. As shown in Fig. 2.9, Vergeiner was able to obtain good
agreement between linear theory and steady observed lee waves.

However, in order to obtain this agreement it was necessary to chose
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the mountain height and width in a rather ad hoc mamnner. Smith found
that linear theory correctly estimated the wavelength but badly
underestimated the wave amplitude in the observed waves.

In the remainder of this dissertation I will describe a
nonhydrostatic, nonlinear numerical model designed to simulate the
effects of moisture on mountain lee waves, and discuss the results of
those simulations. Both the propagating and trapped wave cases will

be discussed.
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III. DESCRIPTION OF THE NUMERICAL MODEL

A. The Dynamical Framework

The computer modzl is designed to calculate the two-dimensional
airflow over an infinitely long, uniform mountain barrier. The
Coriolis force is neglected since cnly narrow mountains with widths
much less than u/f (the mean wind speed divided by the Coriolis
parameter) will be considered. There are several models in the
literature that could be modified to simulate moist mountain waves in
two dimensions. The model which will be described in this chapter is
patterned very closely after the convective cloud model of Klemp and
Wilhelmson (1978). Their model was selected as a basis for this work
because it appeared to be at least as accurate and efficient as
competing schemes, and it was readily available to the author. Three
major modifications were made to the existing model; it was reduced

from three to twn dimensions; a terrain following coordinate system

was introduced; and a wave absorbing layer was added to the top of the

domain. Less significant changes were also made in the turbulent
mixing parameterization, the small time step differencing and the

lateral boundary conditious.

The basic continuity, thermodynamic and momentum equations in the

Klemp-Wilhemson (KW) model may be written in two dimensions as

follows:

8 = D 3.1
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6 - 6
gf.+c931=gu Med (3.2)
dt pM 3z B W
M
dm = R ,= du . W R (Ti+m) ds,
am LW s X (e (e Z) - o~ — 0 (3.3)
dt z c o9x 9z c 0 dt
v v v
4% = M +D (3.4)
dt $ $
vhere ¢ = 8, qy, Qs 9 and
ev = 0 (1 + .61 qv) R
d 3 ud . wo
8 = 68 (l-q-q) —_— et —
M v c qr ’ dt at ox 3z
. (3.5)
R/c R/c =
= R oll -
few = () P o=(oe) ¥, X E
Py pp M 2 c 8 (2)

In the above, p is the pressure, p is the total density, R is the gas
constant for dry air, 0 is the potential temperature, and u and w are
the horizontal and vertical velocity components. The mixing ratios of
water vapor, cloud water and rain water are qy, qc, and qr,
respectively. The terms D and M contain the contributions from

turbulent mixing and microphysics. The microphysics terms are

(pq -E) (3.6)
r

33



34

Mqv = -i_+E (3.7)

ch =M -A -C, (3.8)
M = L3 (hvg)-E_ +A_ +c (3.9)
q, > 9z r r T T *

Here L is the latent heat of vaporization; E, is the evaporation of
rain; A, and C, are the contributions of autoconversion and
collection to raindrop development and growth. The term Aq. is the
rate of condensation or evaporation of rain water; V is the raindrop
fall speed. The saturation mixing ratio, used to determine Aqc, is

calculated from Teten's formula

a,, = = ewp (17.27 Te-273y (3.10)
> Tle-36

The autoconversion and collection rates are given by the Kessler
parameterization which assumes that the spectrum of raindrop radius

follows a Marshall-Palmer distribution

t—3 - -1

A kl(qc a) s (3.11)
_ 0.875 -1

c. k,q.9, 8 (3.12)

The autoconversion threshold and rate constants have nominal values of

a = 0.5 gm/kg, k; = .001 s’l, kp = 2.2 s~l. The evaporation of

raindrops is given by
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- ,0.525
E = 1 (1 - qv/qu) ¢ (pqr) -1 (
n - 5 — 8 3.13)
P 5.4 x10° + 2.55 x 10 /(pqu)

where C is the ventilation factor

C = 1.6+ 1249 (5q )20 (3.14)
The raindrop fall speed is approximated as
_ - =1/2 _
V = 36.34 (pqr)°°13‘46 (_g_) s~} (3.15)

In Eqs. {3.10) to (3.15), p is expressed in millibars, P in grams per
cubic centimeter and gy, q. and q, in grams per kilogram.

The microphysics terms do not include ice, since the extra
computation required for its inclusion is not justified by its actual
importance. Although snow and ice can be associated with mountain
waves, in many cases of physical interest ice is not present. Even
when freezing does occur, the dynamical forcing produced is small
compared to that produced by condensation, since the latent heat of
vaporization is an order of magnitude larger than the latent heat of
fusion. Ice elso influences the dynamics in more subtle, though
minor, ways. In particular, ice crystals fall and evaporate at
different rates than liquid droplets. Unforcunately, it is impossible
to accurately capture such behavior without a vastly more complex

microphysical model.



When modeling phenomena on the scale of mountain lee waves; it is
impractical to use a computational mesh with sufficient resolution to
explicitly represent every scale of motion which influences the
waves. The effects of subgrid scale motions must be parameterized as
a functior of the larger scale flow. In the XKW model, this is done by
solving an additional prognostic equation for the subgrid scale
kinetic energy, frou which the eddy mixing coefficients are
determined. While this approach is more sophisticated than a simple
first order closure scheme, it is not primarily designed for
two-dimensional calculations. In this two-dimensional model,
sufficient accuracy is achieved with less numerical computation, by a
conventional first order closure formvlation which depends on the
relative strengths of stratification and shear (Lilly, 1962). Subgrid
scale effects are introduced to the velocity field calculations

through the terms D, and Dy

D, = (KMA)x + (KMB)Z . D, (KMB)x - (KMA)z (3.16)

where
A = (u - wz) R 8 = (u_ + wx) (3.17)
) Ry /2
K, = kbx be ,Def‘ (max (1 - " Ri, 0]) (3.18)
and
N? 2 2 2
Ri = —— Def = A + B (3.19)
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) 8 37— ° for q,<q,,
N = 2 (3.20)
€Lq ) . €L q, -1 dln®
Vs ] E
g(1+1.61 —Rr - (1 * —"_2—) —— » for 974y

¢ RT
%

8 is the equivalent potential temperature, and € = .622. The
expression for the moist Brunt-Vdisdld frequency is similar to that
derived by Deardorff (1976). The subgrid scale mixing terms in the

scalar equations (¢ = 6, gy, qc, Qr) are

D, = (Ryb), *+ (Ko, (3.21)

In the model k = 0.21 and Ky/Ky = 3 as suggested by Deardorff
(1971, 1972). A value of Ky/Ky = 3 allows turbulent mixing to
begin when Ri drops below 1/5, which is just slightly larger than the
comnonly accepted critical value for the stability of a shear flow,
Ri = 1/4.

Terrain is incorporated in the model by a transformation of the

vertical coordinate (Gal-Chen and Somerville, 1975)

(z - z.)
= LS (3.22)
S

where zg(x) is the terrain elevaticn and zg is the height of the
top of the modeling regions. Equations (3.1) to (3.4) may be written

in transformed form as



u, +uuy + (Gu + Hw)uc + cpeM(“x + G‘rl;) = D, (3.23)
(s, - 3,)
w, o+ (Gu + Hw)w; + chMHﬂ; = g 5 + D (3.24)
M

- R -
LR L (Gu + HW)(T + ");+‘U‘;("+ ﬂ)(ux+ Guc+ ch)
. de
I
R A+rm v (3.25)
c 6 dt
v v
¢ + ug + (Gu + Hw)t&c = D¢+ M¢ (3.26)
where
¢ = % . - ozp 92
X Zp - 2g X
2 (3.27)
H = ac = T
Jz Zp - 2Zg

B. The Numerical Model

The Eqs. (3.1) to (3.4) which govern the dynamics of mountain
waves are compressible, and therefore include sound waves. While the
sound waves are not meteorologically significant, they travel at high
speeds and thus severly limit tne time step in explicit numerical
integrations. In order to remove this computational burden, many
researchers have chosen the snelastic equations, which do not admit
sound waves, as the basis for their models. However, the anelastic

system requires the solution of a Poisson equation for the pressure at
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each time step, which can be time consuming. The presence of a
coordinate transformation makes the Poisson solution even less
efficient because it complicates the coefficient structure in the
pressure equation.

The KW model uses a technique for the soluti;n of the full
compressible equations in which the sound wave modes are integrated
separately, with a smaller time step than that used for the other
processes of meteorological interest. When a coordinate transfor-
mation is present, this technique seems to be more efficient than the
conventional anelastic approach. Since it avoids the approximations
used in deriving the anelastic system, while reducing the computa-
tional burden, the two time step technique is retained in this model.

1. Grid structure

The model uses the standard staggered mesh shown in Fig. 3.1.
Thermodynamic and moisture variables are all represented at g common
grid point; velocity variables are displaced half a grid interval from
that point. This arrangement improves the resolution in the pressure
gradient and divergence terms without requiring a reduction in the
large time step.

2. Small time step calculations

Although all the erms in Eqs. (3.1) to (3.4) have some influence
on the sound waves, only the pressure gradient terms in the momentum
equations and divergence terms in the pressure equation are
responsible for rapid sound wave propagation, It is useful to

linearize these terms and rewrite Eqs. (3.1) to (3.3) as
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Yt * cpeMx = fu

L cpeM“z = fw (3.28)

LI -

ot i Bo,) - 1,
c pb
M
where

_2 -——

¢ = ¢ RIIBM/c s

and the remainder of the equation (including the nonlinear part of the
divergence and pressure gradient terms) is collected in f,, f, and

fr. Now, the only terms which require a small time step for

numerical integration are on the left-hand side. The right-hand side
is updated on a large time step, At; it is held fixed over several
small time steps, AT, during which the left-hand side is integrated in
a stable manner. The small time step stability requirement

1/2 (.

(Courant-Friedrichs-Lewy condition) is cat/(x2 + Az?)
In mountain wave modeling, Ax is typically much larger than Az, so
extra efficiency can be achieved by making the small time step
implicit in the vertical. The finite difference representation of the
small time step equations, with the coordinate transformation
included, is

— £

- T T -
S+ c By (6,7 + 68y, ™ ) £ (3.29)
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-~ -5 2 _ =5 <t
ﬂTw + CprM l-l<6c1t>T P8, £, (3.30)
-2 ) _2
c T+i T+] c ~ = t
6.7+ — (6xu + GGZCU )+ —=z H<6;w>T £, (3.31)
p M °pPu

where for any independent vsriable %, the finite difference operators

are defined:

6n€¢(£) = (1/nAf) [¢(E + nAE/2) - ¢(E - nAE/2)] (3.32)

Fo°F = 1 a(e + a0 + o(E - a0 (3.33)

1 + € 1 - €

o(T + AT) + é(1) (3.34)

<$(g)> =
T

and w = Bauw. Only those vertical differences which remain in the
limit of flat terrain are treated implicitly.

In the original KW model the parameter € is zero in which case
the time differencing is Crank-Nicolson which is unconditionally
stable. However, this alone is not adequate to insure the stability
of the entire big step small-step integration cycle. A weak
instability was encountered in the sound wave modes while simulating
mountain waves in deep, very stable environments. This was eliminated
by adjusting €. When 0 < € <1 the scheme is unconditionally stable,
and in addition it slowly damps the sound wave modes. Tests were run
comparing the effects of different values of € on the mountain wave
solutions. A value of € = 0.2 was sufficient to completely eliminate

the sound wave instability without perceptibly influencing the gravity
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waves. The gravity waves are not affected because they change very
slowly over a single small time step. In this study € = 0.2.

It should be emphasized that the purpose of the two time step
technique is to treat the sound wave modes in a stable manner.
Efficiency in the small time step calculations is achieved at the
expense of accuracy in the sound wave modes themselves, but, since the
sound waves are not meteorologically significant, they need not be
accurately integrated. The gravity wave modes are still accurately
computed.

3. Large time step calculations

The differencing on the large time step is leap-frog, which
provides second order accuracy and avoids computational damping. The
vertical advection, pressure gradient and divergence terms are all
second order differences. Phase errors in advection terms are a major
source of error in numerical integrations. In general, the phase
error experienced by a wave of given physical dimensions can be
reduced by either reducing the grid size or using a higher order
difference scheme. Since, in mountain wave problems, there are often
more grid points per wavelength in the vertical than in the
horizontal, the overall accuracy of the model can be improved with
little extra computation by using a fourth order scheme for
horizontal advection. This is especially appropriate in linear and
mildly nonlinear mountain wave problems, since then all the strong
advection is in the horizontal. Therefore, centered fourth order
differences are used for all horizontal advection terms except the one

in the T equation. Second order differences are used for uTy



because the changes in 7 are dominated by sound wave propagation, not

horizontal advection.

The right-hand sides of the momentum and continuity equations,

with the coordinate transformation included are

4

fu = ;2 (462xu - G4xu] - (ﬁtb + Ha) 6;u
-cp(e; - 'B;(;)((an + c'&;;ﬁ*] + D (3.35)
':—; —
g, = g (48,9 - 8] - (@ 6 + mw)y u
% _ &5 \( 8
8> - 6 - Hé D 3.
+ (8¢ Mo)(raz_ & ;n) +D (3.36)
M
0
. 4
g o= Tusw - (4 G+ H)dT B —;“ (60 + €5y 8" + HOw)
_ 61 (M +D )
+ c2 MG * De + 9y 1y (3.37)
c © 0 i1 + .6lq
Vo v

and GMO is the mean 8y along a constant z s:rface (denoted 8y in

earlier equations). Since the operator (— ) averages along a constant
x

¢ surface, By, # Mg~ In practice, the terms in Eqs. (3.34) and

(3.35) involving the pressure gradient, and the entire fy expression

may be omitted with only minor effect on the solution; in fact, they

are omitted in the original three-dimensional KW model. They are

included in this model since the computational cost is mnot prohibi-
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tive, and their inclusion makes the finite difference equations
formally equivalent to the full Navier-Stokes equationms.
The scalar advection equations are all differenced identically

\_r
-x Ed

pun 4
) = 9 (46 -8 - (¥ s )
2:¢ 3 ( 2x¢ 4x¢) (u* G + Hw) C¢ + M¢ + D¢ (3.38)

The small and large time steps are meshed as follows. The scalar
equations for 9, qy, Q¢ and q, are stepped from t - At to t + At
by a single leap-frog step. The functioms f,, f, and fq are
evaluated at the central time level t. Finally, the u, w, and T
fields are stepped forward from t - At to t ¢ At with forward time
differencing on the small time step. The total number of small time
steps is 2At/AT.

4. Microphysical calculations

In the KW model, the microphysics are included through a two step
procedure suggested by Soong and Ogura (1973). In the first step, the
microphysical variables are advected and diffused with the terms Mg
ignored in Egs. (3.26). Then, in the second step, the temperature and
moisture fields are adiusted to include microphysical processes. The

rain water flux convergence is calculated
3 - i -
77 (qur) h52 C( qur) (3-39)

At the lowest grid level, a one sided difference is used; in order to

maintain linear stability, it is lagged in time et t - At.
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Autoconversion, collection and the evaporation of rainwater are
calculated as per Egs. (3.11) to (3.15). The evaporation of rain is
limited by the amount of additional water vapor required to saturate
the air. Let the values of 6, q, and q. at this point in the
calculation be denoted by an asterisk.

In order to complete the evaluation of My, we must determine
the amount of cloud, Ag., which must be condensed or evaporated in
order to bring © and g, into equilibrium with q5+At = qSZAt. of

course if the air is unsaturated, Aqc will be limited by qc*. We

require the adjustment to proceed moist adiabatically so that

*
gttdt , L qt+At = ox+ L g (3.40)
ey v - v
c I c I
P P

Teten's formula for the saturation mixing ratio (Eq. (3.10)) may be

lineaized about &* to obtain

t+At * 4093 T t+At .
a,, q,, [1 + —('ﬁm (e e*)] (3.41)

Eqs. (3.40) and (3.41) can be combined to obtain the desired

expression for Aqc,

x% *
q, - 9 %
v 8
ch = max e L0937 1. Y qc (3.42)

1+

s cp(ﬁe* - 36)°

The evaluation of My is completed according to Egs. (3.6) to (3.9).



5. Subgrid scale mixing calculations

The presence of the terrain transformation makes the evaluation
of horizontal second derivatives in the subgrid scale mixing terms

rather cumbersome. The finite differences are computed as follows:

—_
= 5xu + GGZCu - HS w

Al z
. (3.43)
= § + GS u - HS, w
) 2% z 27
x 4
Bi = Hﬁuu + 62xw + GGcw
(3.44)

B = HSu+ 8w+ Gszgw

2 4 X

The terms with subscript 1 are evaluated at thermodynamic points;

those with subscript 2 are calculated at vorticity points.

Continuing, we calculate

2 _ a2 2 2 _ .2 2
Defl A+ B] » Def2 A, + B, (3.45)
when
. 9 (T80)xq (2)xq (T+42)>0
Ri, = (3.46)
otherwise
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r agHGC(B + qv)

! (iP-ﬁ when qc(c—AC/2) x qc(C+AC/2)
>
=" x q_(x-8x/2) x q_(x+8x/2) > 0
(6 + — qv) (Def2)2 ¢ ¢
¢
Ri, = P (3.47)
x
8“6;5 .
———ee g ) otherwise

—0
X 2
L B (Defz)

(2) (1 1.61 eLa"s) (1 eLzavs )-l (3.48)
alz = + . + 3.48
: — =z *
RIB ch(ifG)
2 . 1/2
KMI = K°8x Ag Def, (max(0, 1-3Ri,)) /
(3.49)
KMZ = hx AL Defz(max(O, 1-3Ri2))1/2
and finally,
D, = Gx(KMIAl) + Gsr,(anAz) - nac(x%nz (3.50)
D, = Gx(KMZBZ) + GGC(KMIBI) - HSC(KMIAI) (3.51)
The mixing terms for 1lar variables are derived from Ky,
Ry = BKM (3.52)

1

let
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—z 4
§ = Ky (8,0 +cs;¢] (3.53)

then

2
= & 8 § .
D¢ xR+GCS+H cT (3.54)

6. Boundary conditions
The ground is the only physical boundary associated with the
mountain wave problem. We require the normal velocity to vanish at

the surface

3z
w = u—— att¢ = 0 (3.55)

As a result Gu + Hw = 0 at & =’0, so the vertical flux terms in
Eqs. (3.34) to (3.38) vanish at the lower boundary. The subgrid scale
mixing term also requires & boundary condition at the surface. Mixing
normal to the boundary is assumed to vanish at the boundary point.
This condition prevents the mean state vertical gradients from being
distorted by mixing near the ground.

The radiation boundary condition, which requires that all energy
transport be directed out of the domain, is approximated at the upper

boundary. This condition is crucial for the successful gsimulation of



vertically propagating mountain waves. There are, however, physical
situations in which downward propagating waves reflect from sharp
gradients in the atmospheric structure or regions of wave sverturning
and breakdown, and have a significant impact omn the wave dynamics
below. In such instances the correct solution can be obtained only by
applying this boundary condition above the reflecting layers.

The radiation boundary condition requires that waves which
propagate upward through the computational domain experience no
spurious reflection into a downward propagating mode when they
encounter the upper boundary. This requirement can be essentially
satisfied by adding an absorbing layer to the top of the model. The
boundary condition at the top of the absorbing layer is w = 0, which
is clearly reflective; however, waves entering the layer from below
are artifically damped by the absorber so that they have negligible
amplitude when they reach the upper boundary. Reflections from the
top boundary can thus be virtually eliminated. It is still possible
to produce reflections from the bottom or interior of the absorbing
layer due to the changes in wave propagation characteristics produced
by vertical variations in the artificial damping. These reflections
can be minimized by ensuring that the strength of the damping
increases very gradually as a function of height. However, if the
damping does increase very gradually, the layer must be quite thick,
or waves which reach the top will still have sufficient amplitude to
create troublesome reflections. From the standpoint of computational
efficiency, the absorbing layer should be as thin as possible, so a

compromise must be found between efficiency and accuracy.
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Klemp and Lilly (1978) have suggested that, for hydrostatic
waves; a minimum depth of ome vertical wavelength is necessary for a
reliable wave absorber. In mountain wave problems, this may require
that as much as one-half of the computational grid be devoted to the
absorbing layer. Both viscous and Rayleigh damping have been used in
absorbing layers (Clark, 1977; Klemp and Lilly, 1978). Rayleigh
damping has been chosen for this model because the second derivatives
required for viscous damping have a complicated finite difference
structure in the presence of the coordinate transformation. In the
absorbing layer, only the perturbations of a variable from its
upstream value are damped. The damping terms, which are added to the

right-hand sides of the u, w and 6 equations, are

R = (z)(u = u)
R = Tt(z)w (3.55)
w

Rg = 1(2)(6 - B)

The damping coefficient has the structure

0, for z S_zD
2 - Z z - 2
% (1 - cos ——0-1n), for 0% D <112
Z Zp - 2y =2 - 2y~
z) = s -z z - 2z (3.56)
St (2 - L), for Lo
2 z2p < Zp 2 2 z2p = 2
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where zj is the height of the bottom of the absorbing layer and (in
this instance only) T is 3.1416. Klemp and Lilly (1978) have shown
that for a single, linear hydrostatic wave, the absorbing layer will

be most effective when & satisfies

2 < a/ku 5 (3.57)

where k is the horizontal wave number. 1In actual simulatioms, @ is
chosen so that the dominant horizontal wave numbers satisfy
Eq. (3.57).

The finite difference formulation requires lateral boundary
conditions at the edges of the numerical domain; unfortunately, mno
horizontal boundaries are actually associated with the physical
problem. As a result, the imposed numerical boundary conditions are
completely artificialj their sole design is to make the termination of
the finite mesh as innocuous as possible. The lateral boundary
conditions specified in this model are similar to the wave permiable
boundary conditions proposed by Orlanski (1976). 1In the following we
will consider, without loss of generality, only situations in which
the mean horizontal windspeed, u, is positive. 1In the original
Orlanski procedure the phase speed, c, of a gravity wave impinging on
the boundary is estimated; then the flow variables are advected out
the downstream (upstream) boundary at a speed vtc (u-c). This will
allow the gravity wave to pass through the boundary with minimal
reflection.

A one-dimensional wave of uniform amplitude traveling

horizontally downstream will satisfy



u, + {(u + ¢) u, 0 (3.58)

the speed of propagationm, utc, is thus =-ug/ux. Orlanski's

original approach was to estimate the propagation speed as

u; !
et = Mo b7l b7l (3.59)

At t-1 _ t-1

Yp-1 = Yb-2

where b is the index of the downstream boundary point. Then uﬁ*l

may be estimated by upstream differencing as

*
o Wb = (ue ).AE (ut -t ) (3.60)
b b Ax b b-1

In this scheme utc*® is computed separately at each vertical level
along the lateral boundaries. In practice, this leads to large
variations in the propagation speeds calculated at adjacent boundary
points. In reality, the waves impinging on the boundary are not
one-dimensional, but have a vertical structure with some vertical
coherence, so Klemp and Lilly (1978) computed a vertical average of
u+c® and used this estimate at each point along the boundary. In
the K4 model, which was modified to create this model, c* is
specified externally to correspend to the faster gravity waves
propagating through the domain. This latter approach has the
disadvantage that utc™ will not approach zero if the flow approaches

steady state. In the KW model, this boundary condition is applied
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only to the equation for the horizontal velocity, whereas it is
applied to all the variables in the original Orlanski scheme.

The different boundary condition options were tested in this new
model in two ways. In the first type of test the model was compared
against linear analytic solutions. In the second type of test, the
model was compared against a "good" nonlinear solution obtained by
moving the lateral boundaries far upstream and downstream. The
boundary condition which performed best in these empirical tests is
essentially a modification of the Klemp and Lilly (1978) formula. As
in the KW model, it is applied only to the horizontal velocity field.
The estimated propagation speed is averaged in the vertical, and
weighted at each level by the approximate local strength of the wave,
ug. The calculations are arbitrarily moved five points in from the
boundary to reduce the feedback of boundary condition errors on the

phase speed calculations. Then utc® is given by

N
t t-1 t-1 t-1
* A kzl (vpog = upog) sen (oo - uy_s)
u+c = | . (3.61)
Ae Volaet -t
1 |Fee -5

Negative phase speeds are set to zero at the downstream boundary,
since the finite difference form (3.60) is unstable for ute® < 0. A
gimilar procedure is employed at the upstream boundary. Clearly, the
details of the phase speed calculations are rather ad hoc. The model
is not very sensitive to small changes in this calculation; the

formulation given seems to be slightly superior to the others tested.
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Boundary conditions are applied tc the horizontal advection terms
in the other prognostic equations as follows. At outflow boundaries,
the centered differences are replaced by one-sided upstream
differences. At inflow boundaries, horizontal gradients in the w, 0,
7 and q, fields are set to zero. The equations for qy and qc
are replaced by the requirements that q, + q. remain fixed at
inflow. Since the fourth order finite differences also require a
boundary condition at grid points one column inside the right and left
boundaries, second order differences are used at these locationms.
Finally, in specifying boundary conditions for the subgrid scale
mixing terms, it is assumed that no mixing normal to the boundary
occurs at a boundary point.

7. Initialization

The model is initialized by slowly increasing the wind speed
everywhere, from zero to its value in the mean upstream profile, over
a nondimensional time t = 4a/u, where a is the mountain half width.
The gradual start-up reduces the transients generated during initiali-
zation.

8. MNumerical smoothing

A small amount of numerical smoothing is applied to all fields,
throughout the domain, to control the growth of nonlinear instability
and filter out short wavelength modes, whose behavior cannot be
accurately represented by finite difference schemes. The smoother is

equivalent to a fourth order damper. Its numerical form is

V(000 * €59 = 4(0541 & 6;_1) * 69)) (3.62)



Y has a nominal value of .015 in the horizontal and .00l in the
vertical. In the absorbing layer Y gradually increases with height to
.0625 in the horizontal, the value at which 2Ax waves are completely
removed each time step. The hcrizontal smoothing coefficient is
increased in the wave absorbing layer to improve the short wavelength
absorption because Rayleigh damping attenuates short wavelengths less
efficiently than long wavelengths. A second order smoother is used at
grid points adjacent to the boundaries with a coefficient that matches
the interior smoothing for 2Ax scale éisturbances. No smoothing is
performed at boundary points. The smoother is applied only to the
perturbations of the variables from their values in the undisturbed
upstream flow.

The damping characteristics of this smoother are listed as a
function of wavenumber in Table 3.1. Note that the vertical damping
coefficient is so small that its influence is largely restricted to
9Az waves. The horizontal smoother has a strong impact on waves as
long as 5Ax in the computational domain, and 8Ax near the top of the
damping layer. In order to put these figures in perspective, note
that in a typical propagating wave simulation the strongest mountain
wave forcing is near 304x and the waves propagate approximately 2/3 of
a vertical wavelength in 100 time steps. The impact of this smoother
on the calculated flow fields and momentum flux was evaluated in
linear and weakly nonlinear cases (for which no numerical smoothing is
needed) by performing identical gimulations with and without
smoothing, and comparing the solutions. The differences were
negligible. Even in the momentum flux, which is a second order

quantity, they were confined to the third decimal place.
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Table 3.1.
The remaining amplitude, after 100 applications of the fourth order
smoother to a wave of unit amplitude, for several wavelengths and

smoothing coefficients.

Y= .001 Y= .015 Y= .0625
2Ax .20 0.0 0.0
4hx .67 .002 0.0
84x .97 . .60 .11

164x .998 .97 .87




Leap-frog time differencing allows the solutions at odd and even
time steps to gradually diverge. This is prevented by the following

time smoothing scheme.

‘¢i+At - 4)t:—At: + 24t F:
(3.63)
t t t+A -A
o = o+ n(eStAE - 2ef ¢ &)

Terms which have not yet been time smoothed are denoted by an
asterisk; n is 0.2, The first equation represents a standard leap-
frog step; the second, the time smoothing. This technique has been
analyzed by Asselin (1972) who found that it strongly damped the
computational mode without significantly impacting the physical mode.
The smoothing, applied at every time step, has a gentler impact on the
solution than schemes which rely on the use of a strong filter or an
Euler time step, once in a cycle with a large number of unsmoothed
steps.

9. Momentum flux calculations

The vertical flux of horizontal momentum is an important

diagnostic quantity in mountain wsve studies. The horizontal integral

M(z) = [ pu'w'dx (3.64)

-0

is approximated as follows. The velocity components u and w are
linearly interpolated from constant z to constant z surfaces at the

heights of the upstream u and w grid points. Then
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x P
' k - 5
M '21 = (Ui e ¥ Uik 25,) 05 o1 * Vi)

& . (3.65)

This calculation is not performed at grid levels below the height of

the mountain peak, because the path of horizontal integration would

intersect the terrain.
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IV. SIMPLE TESTS OF THE NUMERICAL MODEL

The numerical model described in Chapter III is very complex. 1Imn
this chapter we will examine its performance in simple situations
designed primarily to test the model. 1In later chapters there will be

more comparisons between model calculations and analytic theory.

A. Dry Linear Hydrostatic Solution
If the atmosphere is isothermal and the mean wind is constant

with height, then the Scorer parameter is a constant

W2 o= _8 - _ 8 | 4.1)

1f in addition the flow is hydrostatic, the wyyx term in Eq. (2.1) is
small, and the mountain wave solution is particularly simple. The
streamline displacements produced by a Witch of Agnesi mountain

(Eq. 2.6) satisfy

B -1/2 a cos ksz - x sin ksz
8(x,z) = L__) ha . (4.2)
p0 x + a

The velocity components may be obtained from the relations

w= w8 , u = 2L (p® . (4.3)
- Z
o)
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The streamlines and perturbation u and w fields calculated from
Eqs. (4.2) and (4.3), for the case T = 250°K, u = 20 m/s, a = 10 km,
h = 1 m, are displayed in Figs. 4.la, 4,2a and 4.3a. The
corresponding fields obtained with the numerical model are shown in
Figs. 4.lb, 4.2b and 4.3b. 1In this run, the computational domain
contains 80 points in the horizontal and 64 levels in the vertical;
the absorbing layer occupies the top 32 levels. The grid intervals
are Ax = 2 km, Az = 250 m; the large and small time steps are 20
seconds and 4 seconds, respectively. Figures 4.1 to 4.6 show only the
central portion of the domain, in which the grid indices run from 20
to 60 in the horizonmtal, and 1 to 32 in the vertical. The mountain is
centered in the domain.

Although the model is neither linear nor hydrostatic, the
influence of the nonlinear and nonhydrostatic terms should be almost
negligible for a ! m high, 10 km wide mountain. As an example,
consider the impact of nonhydrostatic effects on the momentum flux.
Klemp and Lilly (1980) have shown that in a flow such as this, where
Na/u = 10, the linear hydrostatic momentum flux is 98% of the full
nonhydrostatic value.

Examination of Figs. 4.1 through 4.3 shows that the mo@el
reproduces the linear solution rather well. The worst discrepancies
appear in the u' field far upstream from the mountain where the
magnitude of u' is small. This error is somewhat sensitive to the
location of the upstream boundary. Tests have been performed to
assess the semsitivity of this, and other solutions to the locations

of the lateral boundaries. It was determined that a satisfactory
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Figure 4.1. (a) Steady state streamlines from the linear hydrostatic
analytic solution for a 600 m high mountain. (b) Streamlines obtained
by numerical simulation for a 1 m high mountain at ut/a=60.
Perturbations are multiplied by 600 to normalize the wave amplitude.
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Figure 4.2. (a) Steady state perturbation horizontal velocity from
the linear hydrostatic solution for a 1 m high mountain. (b)
Perturbation horizontal velocity (X107 ms™!) obtained by numerical
simulation for a 1 m high mountain at ut/a=60.
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velocity (x107> ms™") obtained by

mountain at ut/a=60.

(a) Steady state vertical velocity from the linear

a 1 m high mountain, (b) Verticel
numerical simulation for a 1 m high
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compromise between accuracy and computational efficiency could be
obtained by locating the lateral boundaries nine mountain quarter
widths (9a) upstream and downstream.

Figure 4.4 shows the behavior of the momentum flux computed by
the model at several nondimensional times ut/a; the flux is normalized
by its linear analytic value. Below the absorbing layer, in the
region from 0 to 8 km, the momentum flux nearly becomes constant with
height, but remains a few percent below its linear steady state
value. Klemp and Lilly (1980) have calculated the time dependent
momentum flux behavior for the linear hydrostatic case in which a mean
wind is abruptly introduced at time zero. They found that, at a
height of one vertical wavelength (6.4 km), the flux did not reach 95%
of its steady state value until a nondimensional time of 35. (Since
the model is gradually initialized over four time units, three or four
should be subtracted from the times shown in Fig. 4.4 when comparing
with Klemp and Lilly's result.) The flux is developing a little more
slowly in this model, and even at a nondimensional time of 60, it is
still roughly 6% less than the linear analytic value. The difference
is not serious, but it may be interpreted as a practical limit on the
accuracy of the flux calculations.

The same run was repeated with the fourth order smoother turned
off. This change did not affect the vertical momentum flux profiles,
gso the small gradients in the fluxes shown in Fig. 4.4 are not due to
any dissipation explicity included in the numerical formulation. (The
subgrid scale mixing was inactive in these simulations because

Ri > 1/3 everywhere). On the whole, the behavior of the momentum



HEIGHT (km)

O|||l|l|||||I1I|l|I|
O Ol 02 03 04 05 06 O7F 08 09 |0

M/M,

Figure 4.4. Momentum flux normalized by its linear hydrostatic value
at several nondimensional times ut/a.
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flux, which as a second order quantity is more subject to error than

the velocity fields, appears satisfactory.

B. Dry Nonlinear Hydrostatic Solution

In order to examine the model's behavior in a very nonlinear
situation, it will be compared against the nonlinear 6 coordinate
model of Klemp and Lilly, KL, (1978). In the case to be considered,
the mean wind far upstream is 20 m/s and constant with height;
h = 1000 m, a =.20 km. A wide mountain was selected to minimize the
nonhydrostatic mountain forcing. The lowest 10 km represent a
troposphere in which the temperature decreases at a constant 6°C/km
from a surface value of 280°K. The region from 10-20 km is an
isothermal stratosphere which also contains the wave absorbing layer.
In this run, the computational domain contains 80 points in the
horizontal and 60 levels in the vertical; the absorbing layer occupies
the top 30 levels. The grid intervals are & = 4 km, Az = 333 m; the
large and small time steps are 16 seconds and 4 seconds,
respectively. The streamlinres and horizontal velocity field obtained
with the model are shown in Figs. 4.5b and 4.6b, which include only
the central portion of the domain in which the grid indices run from
10 to 70 in the horizontal and 1 to 30 in the vertical.

The streamlines and horizontal velocity field calculated by the
KL model are shown in Figs. &4.5a and 4.6a. Unlike the present model,
the KL model is hydrostatic and uses potential temperature as the
vertical coordinate. The turbulent mixing parameterization, the

strength and structure of the wave absorbing layer, and the positions
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Figure 4.5. (a) Streamlines from the hydrostatic KL model at
ut/a=50. (b) Streamlines from the nonhydrostatic model at ut/a=40.
Due to differences in the start—up procedures these times are roughly
equivalent.
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of the lateral boundaries are also different. Details of the KL model
and its application to this case may be foun. in Klemp and Lilly
(1978). Considering the difference in the models, Figs. 4.5 and 4.6
agree acceptably well. The biggest differences between the solutions
appear around the 10 km level, just below the interface with the wave
absorbing layer. It may be that the solutions are being influenced by
differences in the absorbing layer structure. Another source of dis-
agreement might be produced by nonhydrostatic effects which could be
significant where the highest horizontal wavenumbers appear in the
solution, around the steepened wavefront.

The KL solution remains almost steady in time, but the nonhydro-
static solution creeps very slowly toward larger amplitude and
eventually overturns. (Note that overturning is not formally allowed
by the 6 coordinate KL model.) It is not clear whether the small but
persistent nonsteadiness in this solution represents a real physical
behavior or is simply computational error. Nonsteadiness is not an
inherent feature in every model run; many other nonlinear simulations
do reach a virtually steady final state. Because of the
uncertainties introduced by this slight nonsteadiness, highly
nonlinear wave amplitudes will be avoided in the next two chapters in
which we examine the effects of moisture on trapped and propagating

mountain lee waves.
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V. THE EFFECTS OF MOISTURE ON TRAPPED LEE WAVES

The Scorer parameter is the maximum horizontal wavenumber with
which steady linear gravity waves can propagate in the vertical. If
the Scorer parameter decreases with height, there will be a range of
wavenumbers over which gravity waves can have a periodic vertical
structure only near the ground. If this decrease is abrupt and suf-
ficiently large, one or more trapped resonant waves can develop. When
such a wave is generated by airflow over a mountain of appropriate
horizontal scale it is called a trapped lee wave.

In this chapter we will examine the effects of moisture on
trapped lee waves. Our attention will be confined to nonprecipitating
clouds. In the real atmosphere, precipitation is almost never
produced in the short wavelength clouds which form in the crests of
trapped lee waves, because the liquid water content in these clouds is
too low. If rain or snmow is associated with a mountain wave event, it
usually falls from a cap cloud which impinges on the windward slopes
of the mountain. In this chapter we will consider only narrow ridges
which, although they are ideal for generating trapped resonant waves,
do not produce large cap clouds. The liquid water concentrations
generated by forced uplift, and the in-cloud residence time of the
water droplets in these small cap clouds are insufficient to produce

precipitation.
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A. Linear Trapped Waves

Before considering moisture, it is instructive to review the
dynamics of dry lee waves. We will follow the development of Scorer
(1949). Consider the behavior of trapped waves in a two layer
atmosphere where the Scorer parameter is equal to 1§ and 1% in the
upper and lower layers, respectively. Suppose that the interface is
at z = 0 and the base of the mountain at z = -H. The small effects of

compressibility on the Scorer parameter are neglected so that Eq.

(2.2) becomes

kKW = — - . (5.1)

-~

1f z, is the Fourier transformed mountain profile, the field of

vertical motion is given by the inverse transform

- ~1/2 © ~ .
wix,z) = (é;_) Re ! | ikuz (k) zﬁfigz_,elkxdk . (5.2)
% 0 §  w(-H,k)

Consider the case where ;z is zero at the interface, for a
wavenumber in the range 12 < k < 1], the solution to Eq. (2.4) in the

upper and lower layers is

>‘2
12 TY sin Alz)

wl(z,k) iAku(cos A

o, (5.3)

3

;2(z,k)
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where

-k, A (k) = Yk -1 . (5.4)

The small effects of compressibility have also been ignored in the
interface matching conditions. For further discussion of the matching
procedure see Vergeiner (1971). The resonant wave must have zero
vertical velocity at the ground downstream from the mountain, so the

resonant wavenumber k, must satisfy Gl(—ﬂ,kr) =0 or

Al
tan AIH = - = (5.5)

2

This equation will have at least one solution when

12 - 12 > (5.6)

2
1 4H2

Thus, for a given lower layer depth, a minimum difference in the
Scorer parameter is required to support resonant waves. If there is
more than one resonant mode, the mode with the lowest horizontal wave-
number dominates.

The most important contributions to the integral in Eq. (5.2)
come near k = 0 and the pole k = k.. The first may be evaluated
asymptotically and represents a vertically propagating wave which
decays downstream, The contribution from the pole at k = ky pro-

duces a train of shorter trapped waves which (in the inviscid case)
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extend downstream to infinity. The trapped wave streamlines may be

obtained exactly by residues, in the lower layer they are

-ak

A r
)e T sin (AI(H+Z)] sin k_x . (5.7)

1

1
H +

2

Gl(x,z) = =2ham (

The potential temperature, windspeed and Scorer parameter (kg)
profiles for a two layer atmosphere in which ki decreases abruptly
with height are shown in Fig. 5.1. Figure 5.2 shows the streamlines
and vertical velocity field produced when this flow encounters a small
amplitude mountain of the shape given in Eq. (2.6) with h = 1 m and
a = 2.5 km. In this simulation the domain contains 100 points in the
horizontal and 48 levels in the vertical; the absorbing layer occupies
the top 24 levels. The grid intervals are Ax = 800 m, Az = 333 m; the
large and small time steps are 12.5 and 2-1/12 seconds, respectively.
The model is run until the solution reaches a nearly steady state.
(This requires between 12000 and 16000 s.) Figure 5.2 includes only
the central part of the domain which ruams from x = =12 km to x = 36 km
in the horizontal and z = 0 to z = 8 km in the vertical. The mountain
peak is at x = 0. Trapped lee waves are clearly visible; a weak
vertically propagating wave is also present.

if the Scorer parameter used in the numerical calculations had a
perfect two layer vertical structure, at distances far downstream from
the mountain the streamlines in Fig. 5.2 should be given by Eq.

(5.8). However, as shown in Fig. 5.1, the two layer structure is not

perfect. The profile used in the calculations drops from a nearly
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Figure 5.1. Absolutely stable atmosphere favorable for the
development of dry lee waves. (a) Temperature and windspeed profiles,
dry adiabats are marked with a short dashed line, moist 2
psuedo-adiabats with a long dashed line. (b) Scorer parameter (kg
profiles, the dry Ky is marked with a solid line, the equivalent
saturated kg is dashed.
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Figure 5.2. (a) Streamlines, and (b) vertical velocities (x10™3 ms™1)
produced by a 1 m high mountain when RH=0% upstream. The streamline
displacements are multiplied by 300 for display.
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constant value of 1.0 x 100 w2 to a nearly constant value of 1.5 x
107 w2 in a transition layer two grid points deep. The finite depth
of this layer is due in part to the difficulty of resolving
discontinuities on a numerical grid , and in part to the difficulty of
determining realistic vertical profiles of u and 6 which produce a
single sharp discontinuity in Scorer parameter. Nevertheless, ki has
a basically two layer structure in the numerical calculations, so the
resulting flow should be given approximately by Eq. (5.7).

Table 5.1 gives the maximum vertical velocity (wpgy) and lee
wavelength predicted by Eq. (5.7) for interface heights in the range
3 - Az km to 3 + Az km. Over this range, the wavelength varies
between 8.7 and 10.3 km, and wpax, which exhibits a strong
sensitivity to H, varies between 4.9 X 10-3 and 7.8 x 10-3 ms“l,
respectively. The average wavelength and wpgy estimated from the
numerical run (Fig. 5.2) for waves well downstream from the mountain

are 9.6 km and 5.5 x 10~ ms~!

, respectively. These fall within the
range of Table 5.1. Given the coarse numerical resolution at the
interface, this rough quantitative agreement seems satisfactory.

As in the case just discussed, the dynamics of dry lee waves are
determined by the vertical profiles of u and 8, and the mountain con-
tour. The dynamics of moist waves also depend on the gsensible temper-
ature and the vertical profile of moisture. The importance of the
sensible temperature must not be overlooked; in order to obtain
practical results the vertical profile of sensible temperature must be

physically reasonable. Unrealistically high temperatures will allow

the air to hold so much water vapor that latent heat effects will be



Table 5.1
The effect of variations in the lowest layer depth on

resonant wavelength and vertical velocity

Lower layer depth, H Lee wavelength Maximum vertical velocity
(m) (km) (x 1073 ms™1)
2667 10.3 7.8
2833 5.7 6.9
3000 9.3 6.1
3167 9.0 5.5

3333 8.7 4.9




exaggerated. Similarly, if the air is unrealistically cold, latent
heat effects will be minimized. The physical cases described in this
chapter are roughly representative of springtime air masses flowing
over the Continental Divide in the Colorado Rockies.

Consider again the atmosphere shown in Fig. 5.1, and let the up-
stream flow be moist so that the lowest layér (between 0 and 3 km) is
saturated and contains a uniform cloud bearing 0.2 g kg"1 of liquid
water. Figure 5.3 shows the streamlines and vertical velocity field
for this case, which, except for the moisture, is identical to the one
ghown in Fig. 5.2. Since the waves generated by the 1 m high mountain
have small amplitude, the cloud never dissipates in the wave troughs
and latent heat effects are symmetric in the troughs and crests. The
practical effect of the latent heat released is to change the stabi-
lity, and hence the Scorer parameter, in the lowest layer. The
Brunt-Vaisili frequency applicable in a saturated region may be
written

Yﬁ d 1n GE

N, = 8 73.__32___ . (5.8)

This is essentially the same expression derived by Deardorff (1976),
where the ratio of the moist and dry adiabatic lapse rates Yo/ Y4
is

2 -1

Y Lq €L q

m Vs VS

_— = {1+ 14— ] (5.9)
Tq < RT > ( c R T>
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The saturated Scorer parameter structure obtained by replacing N2 by
Nﬁ in Eq. (5.1) is shown in Fig. 5.1b. Note that the two layer
structure is much weaker in the saturated case; in fact the decrease
in ki is too small to satisfy Eq. (5.8) so resonant trapped waves
should not occur. This is indeed the case; as shown in Fig. 5.3, the
waves are weak and vertically propagating. The addition of moisture
untraps the waves.

The dry and everywhere cloudy flows are limiting cases; consider
a situation where the lowest upstream layer is saturated but cloud-
free. The streamlines and vertical velocity field for this flow are
shown in Fig. 5.4. Condensation and evaporation occur only in the
wave crests, decreasing the local stability and increasing the local
wavelength, The flow in the troughs, which remain unsaturated, is
similar to the dry case. The waves develop broad flat crests and
narrow troughs, producing the distinctive asymmetry in the vertical
velocity field shown in Fig. 5.4b. The waves remain trapped although
their overall horizontal wavelength is much longer than in the dry
case. The maximum vertical velocities are slightly weaker than those
in the dry waves, but much stronger than the maximums in the every-
where cloudy case.

When the lowest layer is cloudy everywhere, the effects of
moisture can be approximated by replacing the moist layer with a dry
layer of suitably reduced stability. WNo similar simple a priori
approximation can be made in the partially cloudy case. The need to
determine the cloud boundaries makes even the small amplitude problem

difficult.
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Figure 5.4. As in Figs. 5.2 and 5.3, except that RH=100% in the
lowest layer upstream.
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Although they can produce useful results, small amplitude flows
are not the best situations in which to examine moisture effects,
since they produce only very small displacements. As a consequence,
they respond identically to flows in which RH = 0% and RH = 99%
upstream. In the next section we will remove this constraint by

examining the effects of moisture on firite amplitude flows.

B. Finite Amplitude Trapped Waves

1. Resonant wave distortion and untrapping due to the addition

of moisture

Consider again the atmosphere shown in Fig. 5.1. The height of
the mountain is increased to 300 m, and the linear runs described in
the previous section are repeated. All the computational parameters
except the mountain height are unchanged. The streamlines produced by
different amounts of upstream humidity are shown in Fig. 5.5. The
basic behavior is the same as in the linear case; the addition of
moisture to the flow distorts and, when enough water is present, un-
traps the lee waves. As shown in Fig. 5.5b, in the finite amplitude
case an upstream humidity of RH = 90% is sufficient to strongly affect
the flow.

The linear trapped wave solutions for a 300 m high mountain
(Figs. 5.2a and 5.4a) are distinctly weaker than the nonlinear solu-
tions for the same mountain (Fig. 5.5a,c). This agrees with the
observation of Smith (1976), who found that linear theory comsistently
underpredicted the amplitude of lee waves produced by the Blue Ridge.

The streamlines for the nonlinear waves also show more variation in
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Figure 5.5. Streamlines produced by a 300 m high mountain in the flow
shown in Fig. 5.1, for (a) RH=0%, (b) RH=90%, (c) RH=100%, (d)
RH=100% with 0.2 gm/kg of cloud, in the lowest layer upstream. Cloudy
regions are stipled.
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the amplitude of successive waves than their linear counterparts. The
difference between successive waves increases as the mountain height
increases and the flow becomes more nonlinear.

2. Resonant wave breakdown due to the addition of moisture to a

conditionally unstable layer

In the previous case, the lowest layer was absolutely stable, so
that latent heat release reduced, but did not destroy the local
stability. Dry lee waves can also exist in a region which is
conditionally unstable. The potential temperature, windspeed and ki
profiles for such an atmosphere are shown in Fig. 5.6. Although the
u and O profiles are different, the dry Scorer parameter structure is
nearly identical to that seen earlier in Fig. 5.1. As a result, the
streamlines for the dry lee wave golution (Fig. 5.7a) are very similar
to those for the previous run (Fig. 5.5a). However, when the flow is
initialized with RH = 90% in the lowest layer upstream, the two cases
are very different.

As shown in Fig. 5.7b-d, steady waves are not produced in the
conditionally unstable case. Condensation occurs in the crest of the
first lee wave, but then the cloudy regions act as buoyant plumes. At
first their ascent is limited by the lack of moisture in the upper
layer, but as more water mixes upward they rise higher and destroy the
lee wave structure. This is easy to observe in Fig. 5.7d where the
clouds are aligned with the updrafts, rather than the crests, in the
short wave turbulence. The two dimensional model probably does not
accurately simulate the details of the moist turbulent breakdown, but
I believe the basic character of the solution can be accepted with

confidence.
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3. Resonant wave detuning due to the removal of moisture

Suppose that the atmospheric structure is favorable for trapped
resonant waves when the lowest layer is saturated and cloudy up-
stream. If the cloud is sufficiently dense that the lee wave troughs
remain saturated, Eq. (5.9) can be used to compute an effective moist
Scorer parameter. Figure 5.8 shows the potential temperature,
windspeed and ki profiles for such a case; mnote that the moist Scorer
parameter structure is almost identical to the dry kﬁ structure in
Figs. 5.1 and 5.6. Since the Scorer parameter is nearly the same, the
linear waves produced by a 1 m high mountain in the cloudy atmosphere
should be almost identical to the dry linear waves discussed earlier.
A comparison of Figs. 5.9a and 5.2a shows that the two solutions agree
quite well. This comparison verifies that the moist processes are
represented properly in the numerical model.

In the finite amplitude case (Fig. 5.9b) the waves are similar
but distinctly stronger than their dry counterparts (Figs. 5.5a and
5.7a), and there is greater variation in amplitude between successive
waves. This is not necessarily gsurprising since the nonlinear terms
in the moist equations differ from those in the dry system. The
crucial difference seems to be produced by the curvature of the moist
adiabats. If the moist adiabats were straight (though not necessarily
of uniform slope), a saturated parcel would release the same amount of
latent heat every time it was lifted 1 m. In reality, as a parcel
rises it cools, so it holds less water vapor and releases less latent
heat over each successive meter of its vertical displacement. Thus,

in a saturated lee wave the effects of condensation are strongest in
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Figure 5.9. Streamlines produced by the flow shown in Fig. 5.8, (a)
by a 1 m high mountain when RH=100%Z and there is 0.2 gm/kg of cloud in
the lowest layer upstream, and by a 300 m high mountain when, (b)
RH=100% and there is 0.2 gm/kg of cloud, (c) RH=100%, (d) RH=0%, in
the lowest layer upstream. Cloudy regions are stipled. In (a) only,
the streamline displacements are multiplied by 300, producing a good
approximation to the linear solution for a 300 m high mountain.
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the wave troughs and weakest in the wave crests. The importance of
this asymmetry depends on the amplitude of the wave. It is insigni-
ficant in linear waves but, as shown by the difference between Figs.
5.5a and 5.9b, it has considerable influence in moderately strong
waves.,

When the lowest upstream layer is saturated but cloud-free,
condensation does not occur in the wave troughs, and the overall wave-
length is decreased. Trapped waves still occur as shown in Fig. 5.9c,
but since the mountain does not force this shorter wavelength as effi-
ciently, the wave amplitude is reduced. When the lowest layer is
completely dry, the wave amplitude and resonant wavelength are further
reduced as shown in Fig. 5.9d. When strong waves exist in a cloudy
atmosphere, the removal of moisture detunes the resonance reducing the

amplitude of the lee waves.

C. Moisture in the Upper Layer

One might well ask what effect the introduction of moisture above
a wave trapping interface has on the flow. If the upper layer is
conditionally unstable and rather moist, lee waves could conceivably
trigger a thunderstorm. Booker (1963) has suggested that mountain lee
waves might sometimes encourage the development of thunderstorms in
the Allegheny Mountains. Although the possibilities are interesting,
the study of lee wave induced thunderstorms is beyond the scope of
this investigation. If the upper level is absolutely stable, the
introduction of moisture could reduce the stability and Scorer para-

meter in that layer, thereby trapping lee waves which could propagate
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vertically if the air were dry. However, the upper troposphere, being
rather cold, does not contain much water vapor so latent heat effects
are reduced, and the impact of moisture on the Scorer parameter de-
creases accordingly. Therefore, the only waves which could be trapped
by changes in moisture in the upper layer would have a horizontal
wavenumber very close to the critical value which satisfies Eq. (5.6)
by equality. This situation requires a very special atmospheric
structure and probably has little physical significance.

A more common situation in which moisture at mid-tropospheric
levels might affect trapped lee waves occurs when the lower layer, in
which ki is large, is rather deep. 1f moisture is introduced to the
top of the lower layer, it can reduce the stability and Scorer para=
meter in that region to a value gimilar to that in the upper layer.
The practical effect is to move the wave trapping interface down,
increasing the lee wavelength and amplitude. The kg profiles for
this type of case are shown in Fig. 5.10a. The dry linear lee wave
flow is shown in Fig. 5.1la; weak trapped waves are visible. When the
flow is saturated and contains 0.2 g kg'l of cloud between the heights
of 2.3 and 4.0 km far upstream, the effective height of the wave trap-
ping interface is lowered and, as shown in Fig. 5.11b, a stronger wave
develops.

One might conclude from Table 5.1 that decreasing the height of
the wave-trapping interface always produces stronger lee waves.

Figure 5.12 shows the effects of changes in the interface height on

the wavelength and amplitude of the two lowest order trapped wave
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Figure 5.11. Streamlines produced by a 1 m high mountain by the
atmosphere shown in Fig. 5.10a when the upstream flow is, (a) dry,
and (b) saturated between the heights of 2.3 and & km. Cloudy regions
are stipled. The streamline displacements are multiplied by 300 for
display.
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modes. As predicted by Eq. (5.6), a minimum lower layer depth of

1.6 km is required to support mode one waves. A minimum depth of

5.1 km is necessary to support mode two waves. The amplitude of each
mode peaks sharply at a depth just slightly greater than the cutoff
value. When the atmosphere is capable of supporting both modes, the
higher order mode dominates. Further discussion of the effects of
changes in the dry atmospheric structure on resonant trapped waves may
be found in Corby and Wallington (1956). If moisture is added to the
top of & deep wave trapping layer in which the dry lee waves have a
mode two structure, the interface depth can be lowered thereby
eliminating the higher order mode and producing a weaker, shorter
wavelength response. Figure 5.10b shows the kg structure in such a
case, and Fig. 5.13a shows the dry linear lee waves which result.

When the upstream flow is saturated and contains 0.2 g kg"1

of cloud
between the heights of 3 and 6 km, as shown in Fig. 5.13b, the nodal
line at 3.5 km disappears, and much weaker waves form in the lowest
3 km. The atmosphere appears to have a three layer structure with
very weak short waves in the lowest layer, and stronger, longer waves
in the middle moist layer. In the top layer the waves decay with
height, but only 2 km of this region are shown in the figure, so the
decay is not obvious to the eye.

A deep layer of high kg like the one just discussed (Fig. 5.10b)
would be encountered only rarely in the real atmosphere. The
shallower layer (Fig. 5.10a) is probably much more common, 8O in

actual practice moisture at mid-tropospheric levels might be expected

to slightly increase the amplitude of trapped lee waves.
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Figure 5.13. Streamlines produced by a 1 m high mountain by the
atmosphere shown in Fig. 5.10b when the upstream flow is, (a) dry,
and (b) saturated between the heights of 3 and 6 km. Cloudy regions
are stipled. The streamline displacements are multiplied by 300 for

display.
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D. Practical Significance

In the preceding discussion we have often considered two limiting
cases, which always produced significantly different lee waves. In
the first case the flow is dry, snd in the second case some horizontal
layer remains saturated everywhere throughout the domain. In each of
these situations the lee wave response can be estimated without expli-
citly modeling the details of condensation and evaporation. In linear
flows it is possible to faithfully represent the effects of moisture
by replacing saturated horizontal layers by dry layers in which the
static stability is suitably reduced. In a nonlinear flow the same
gsimple substitution, while not exactly correct, still allows a reason-—
able approximation. When the flow is just partially saturated, the
effects of moisture can only be included by solving the complete moist
thermodynamic equatioms.

The influence of moisture is greatest when the atmosphere is
conditionally unstable, in which case an unsaturated lee wave can be
destroyed by moist convection. Moisture also plays a significant role
when the atmosphere is absolutely stable, but the effective saturated
stability is low sc that dry lee waves can be untrapped by an increase
in humidity. In these situations tbe release of latent heat can have
a rather dramatic effect on the waves even when the flow is only
partially saturated, and an accurate dynamical model must include the
complete moist thermodynamics. When changes in humidity serve only to
tune or detune the trapped wave response, moisture plays a less funda-
mental role in the dynamics. In this case, if RH < 1004 in the up-
stream flow, a qualitatively correct solution can be obtained by

ignoring moisture and solving the dry problem.
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The preceding discussion has concentrated on simple two layer
atmospheres. A variety of more complex structures could be examined
which might provide more dramatic examples of the irfluence of
moisture on trapped waves. Instead of attempting to construct an
exhaustive catalog of interesting physical cases, we have concentrated
on the basic physical behavior produced by the release of latent heat
when a single wave trapping interface is present, The results are
intended to serve as a basis for understanding more complicated situ-
ations. Nevertheless, the cases just discussed are representative of
real atmospheric flows; it should be possible to qualitatively verify

these results by cbservation.



VI. THE EFFECTS OF MOISTURE ON PROPAGATING MOUNTAIN WAVES

When stably stratified air flows over a large mountain barrier
such as the Sierra Nevada in California, or the Front Range in the
Colorado Rockies, gravity waves are produced with horizontal
wavelengths on the order of 50 km. These mountain waves are too long
to be trapped by the Scorer parameter values commonly encountered in
the upper troposphere, so they propagate vertically into the
stratosphere, where they eventually dissipate. The propagating waves
generated by large mountains can extract a significant amount of
momentum from the mean flow. Lilly (1978) has suggested that the drag
produced by a strong propagating mountain wave has an effect on the
earth's momentum budget comparable to that produced by a major
mid-latitude cyclone. In contrast, Smith (1976) observed that the
drag produced by trapped lee waves is often only a tenth of the drag
associated with surface friction. Both trapped and propagating waves
generate strong surface winds on the lee slopes of the mountain, but
since propagating waves are usually associated with larger mountains,
they are often responsible for the most severe downslope windstorms.
In this chapter we will examine the effects of moisture on propagating

mountain waves.

A. Small Amplitude Waves in an Atmosphere with Constant Wind and
Stability
1f the effects of compressibility on the Scorer parameter are

neglected to obtain Eq. (5.1) (usnally a good approximation), the
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Scorer parameter will be constant in an atmosphere with constant
windspeed and stability. 1In such a case, the streamline displacements
in the linear hydrostatic wave produced by the mountain contour in
Eq. (2.6) are given by Eq. (4.2). This wave propagates vertically;
except for the effects of decreasing density it is periodic in the
vertical with a wavelength of 2n/kg. The horizontal structure,
which unlike the resonant wave case is not periodic, 1is determined by
the mountain profile.

Figure 6.1 shows the streamline and perturbation horizontal

velocities computed by the model for a dry flow in which N = .0132 st

and u = 20 ms—). The mountain contour is specified by Eq. (2.6) with
h=1mand a =10 kn. In this gimulation the domain contains 90
points in the horizontal and 66 levels in the vertical; the wave
absorbing layer occupies the top 43 levels. The grid intervals are

Ax = 2 km, Az = 333 m; the large and small time steps are 20 and 5
seconds, respectively. The model is run until the solution reaches an
essentially steady state (20000 to 30000 s after start-up).

Figure 6.1 includes only the central portion of the domain, from

x = =60 km to x = 60 km in the horizontal and z = 0 to z = 11 km in
the vertical. The mountain peak is at x = 0.

Since the mountain height used in the computations is small, the
influence of the nonlinear terms in the model equations is also small,
and the solution obtained is approximately linear. The perturbations
have been multiplied by 1000 for display; as such, they represent the
linear solution for a 1 lm high mountain. This case is similar to the

test case presented in the first part of Chapter IV, except that in
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Figure 6.1, (a) Streamlines, and (b) horizontal velocities produced
by a 1 m high mountain in a flow with constant windspeed and stability
when RH=0% upstream. The perturbations are multiplied by 1000 for
display, as such they constitute a linear numerical solution for a

! km high mountain.



this instance the atmosphere is not isothermal so the dry stability is
reduced from .0196 to .0132 s 1.

Figures 6.2 and 6.3 show the waves produced in the same flow for
cases where RH = 100% with 0.0 and 0.2 g kg"1 of cloud upstream. No
rain is allowed in these rumns 8O condensation and evaporation are
reversible. A comparison of Figs. 6.1 through 6.3 shows that the
moist waves are appreciably weaker than the dry wave, The differences
in the horizontal windspeed maxima and minima are particularly
pronounced. In an atmosphere with constant N and u t%e horizontal
windspeed perturbations are proportional to N, so it is reasonable to
expect the reductionms in effective stability which occur in saturated
regions to have a strong impact on the horizontal windspeed. The
change in stability also has a large impact on the vertical
wavelength, which in the case of constant N and 3 is 27u/N. 1In the
dry case the first vertical half-wavelength, the height at which the
streamline contour is a mirror image of the mountain, is &.7 km; it
increases to 5.8 and 7.1 km in the partially cloudy and everywhere
cloudy cases.

In the everywhere cloudy atmosphere gshown in Fig. 6.3, the
effective moist stability Ng (given by Eq. (5.8)), increases from
.0062 s'1 at the surface to .0128 s~ ! at a height of 10 km. This
change in the stability occurs because the latent heat released when a
saturated air parcel is lifted a given distance decreases as
temperatures and water vapor concentrations decrease with height.
Since Ng changes by a factor of two in almost 2/3 of a vertical

wavelength, it is difficult to obtain accurate estimates of the
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Figure 6.2. As in Fig. 6.1, except that RH=100% in the upstream
flow. Cloudy regions are stipled.
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Figure 6.3. As in Fig. 6.2, except that RH=100% with 0.2 gm/kg of
cloud in the upstream flow.
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horizontal windspeed and vertical wavelength in the everywhere cloudy
case by approximating N with Ng in a W.K.B. sense. A much better
estimate can be obtained analytically for the effects of moisture on
the momentum flux.

The analytic linear momentum flux for a hydrostatic wave produced
by the mountain profile given by Eq. (2.6) in a dry atmosphere with
constant N and u is

M = _ p Nuh® . (6.1)
LC 4 0

Myc is independent of height. The momentum flux will remain
independent of height even when N or u change abruptly in certain
regions, but since partial reflections of the upward propagating wave
energy can occur wherever there are strong gradients in the Scorer
parameter, the flux maguitude cannot be calculated from Eq. (6.1).
However, if N and u change smoothly so that no reflections occur,
Eq. (6.1) can be applied using the surface values of N and u. Using
this approach with Ng = .0062 s=! yields a prediction for a momentum
flux in the everywhere cloudy case of 0.47 Myc. Figure 6.4 shows
the momentum fluxes produced in each of the simulations shown in
Figs. 6.1 through 6.3; the fluxes have been normalized by Mc. The
dry flux is almost constant with height below the wave absorbing
region (which begins at 11 km), and agrees well with its analytic
value. The flux in the everywhere cloudy case (RH = 100%,

qc = 0.2 g kg'l) also agrees well with the previously predicted

value of 0.47 Myc. The flux is similarly reduced in the partially
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cloudy wave. Note that the momentum fluxes are also constant with
height in the moist cases, since the essential effect of reversible
latent heating is only to change the etability.

With respect to momentum flux, streamline displacements, and
horizontal windspeeds, the partially cloudy case is very similar to
the everywhere cloudy case, and significantly different from the dry
case. This is opposite to the result obtained for trapped waves where
the partially cloudy waves resembled the completely dry waves more

nearly than the completely cloudy omes.

B. Small Amplitﬁde Waves in an Atmosphere with Constant Wind Shear

and Stability

In the real atmosphere one seldom encounters vertical profiles in
which the stability and windspeed are constant. In the following we
continue to assume a constant dry stability, but allow the windspeed
to increase realistically with height. The specified wind increases
linearly from 15 to 35 ms—! over a depth of 10 km. Above the 10 km
level, which is a representative height for the tropopause, the
windspeed remains a constant 35 ms~!. Klemp and Lilly (1975) have

obtained the steady state linear hydrostatic wave respomse for this

type of flow by transforming the vertical coordinate

z»nmlxn(1+ca), (6.2)
o

where ug is the surface windspeed and Gz = uga. If the terrain
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profile is specified by Eq. (2.6), the streamline displacements in the

constant shear layer satisfy

B 1/2 ha e—an/2
8(x,2) = (=) (a cos un + (ab - b _x) sin un) , (6.3)
p0 2 R I
x + a
where
2/ 2 no u? 2
uo(u + (cot ¢ - tan ¢) -'E_) -N N
b = cot ¢ ,
i 2 a 2 2
ug (u cot ¢ - 5) *N
2
uNuo(l + cot“¢) g
b = , (6.4)

I 2

u(2) (ucot ¢—.;) +N2

2 2
2= N9 s s X1+ D),
A o

uh

and Au is the change in windspeed across the shear layer. Note that
the vertical wavelength increases exponentially as a function of z in

the shear layer. The associated momentum flux is

| 2
u,. G u,.
W =13 w uln? ey <1+ (L sin 26) (._9_)+o(_9_)] 6.5)
4 0 I O LC 2 N N

LS

Mpc is the flux produced by a constant windspeed of ug. The appro-
ximate equality in Eq. (6.5) holds when the mean ghear is small enough
that the mean state Richardson number is much greater than 1. Details

of the solution procedure may be found in Klemp and Lilly.
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In the remainder of this investigation a wind profile with
constant tropospheric shear will be used instead of a constant
windspeed profile, since the constant shear assumption allows a better
approximation of observed winds. In addition, in the constant shear
case the Froude number (u/Nh) and the vertical wavelength, both of
which vary with height, are smallest in the lower troposphere. Thus,
the flow is most nonlinear in that region of the atmosphere where
water vapor concentrations are greatect and moisture effects most
pronounced.

Figure 6.5 shows the streamlines and horizontal velocities
produced by a dry flow with constant tropospheric shear. Note the
weak waves which appear to the lee of the main wave. These waves are
partially trapped due to the change in windspeed which forces the
Scorer parameter to decrease with height. Similar waves have been
observed in real atmospheric flows (see (Fig. 1.1). Except for the
windspeed (and the large and small time steps which were reduced to 16
and 5-1/3 seconds, respectively), the physical and computational
parameters for these runs are identical to those described in the
previous section. As before, the computations were performed on a l1m
high mountain; the perturbations were then multiplied by 1000 to
numerically obtain the linear solution for a 100G m high mountain.

The influence of moisture on this flow is illustrated in
Figs. 6.6 and 6.7 which show the streamlines and horizontal velocities
that develop when RH = 100% with 0.0 and 0.2 gm/kg of cloud in the
upstream flow. As in the constant wind case, the presence of moisture

reduces the streamline displacements and the perturbation horizental
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Figure 6.5. (a) Streamlines, and (b) horizoatal velocities produced
by a 1 m high mountain in a flow with constant stability and
tropospheric wind shear when RH=07 upstream. The perturbations are
multiplied by 1000 for display, as such they constitute a linear
numerical solution for a 1 km high mountain.

111



112

HEIGHT (km)

HEIGHT (km)

Figure 6.6. As in Fig. 6.5, except that RH=100% in the upstream
flow. Cloudy regions are stipled.
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Figure 6.7. As in Fig. 6.6, except that RH=100% with 0.2 gm/kg of
cloud in the upstream flow.



windspeeds, and increases the vertical wavelength. However, in this
case the changes are slightly more pronounced. As an example, the
vertical half-wavelength increases from 4.5 km in the dry flow, to 6.5
and 8.5 km in the partially cloudy and completely cloudy flows.

The momentum flux profiles for these runs are shown in Fig. 6.8.
As before, there is no precipitation so condensation and evaporation
only act to change the effective stability, and the flux profiles are
constant with the height below the wave absorbing region. The fluxes
are nondimensionalized by Myc; so the dry analytic flux has a scaled
value 0.93 according to Eq. (6.5). The partial reflection produced by
the discontinuity in wind shear at the tropopause is sufficient to
reduce the momentum flux 7% from its value in a constant property
atmosphere. The flux for the everywhere cloudy case, estimated by
replacing N with Ng = .0062 s'l, has a sczled value of 0.40. These
numbers agree with the numerical results in Fig. 6.8 very well. As
before, the moist fluxes are less than half the dry value, and the
partially cloudy case is much more similar to the completely cloudy
case than the completely dry case.

We have seen that the presence of moisture can strongly modify
the vertical wavelength. Klemp and Lilly (1975) have shown that
linear hydrostatic waves experience strong amplification ir
three-layer atmospheres where the phase shift across each of the two
lowest layers is nearly one quarter wavelength. A three-layer
atmosphere is often a good idealization of the actual upstream profile
during strong mountain wave events, &° this amplification process may

have a significant effect on real atmospheric waves. The ability of
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Figure 6.8. Vertical profiles of momentum flux produced for different
upstream humidities by linear waves in a flow with constant stability
and tropospheric wind shear. The fluxes are normalized by Mjg. The
wave absorbing layer begins at 1l km,
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moisture to alter the vertical wavelength, especially in the lowest
layer, should allow it to tune or detune the three-layer structure,
and significantly affect the mountain wave response. The influence of
moisture in such three-layer atmospheres was tested, and it appears to
be important. However, the flow in conditions favorable for a strong
wave response often does not reach a steady state because the wave
moves off the mountain and drifts downstream like a weak hydraulic
jump., It seems possible to stop the downstream drift by appropriately
including the effects of surface friction, but a careful treatment of
the boundary layer in mountainous terrain is beyond the scope of this
thesis. We therefore limit our investigation to flows in which the
neglect of surface friction does not appear to have a fundamental

impact on the wave dynamics.

C. Finite Amplitude Waves in an Atmesphere with Constant Stability

and Wind Shear

Although they can produce useful results, small amplitude flows
are not the best situations in which to examine moisture effects,
gince they produce only very small displacements. As a consequence,
they respond identically to flows in which RH = 0% and RH = 997%
upstream, In the following, we will examine the behavior of moisture
in waves which produce realistic vertical displacements. Consider
again the atmosphere with constant wind shear and stability described
in the previous section, and increase the mountain height to 1 km.
All other physical and computational parameters are unchanged, Four

different upstream moisture profiles are examined; dry, RH = 80%,
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RH = 100%, and low level cloud. The low level cloud case is
representative of the wettest realistic moisture profiles which might
be commonly encountered upstream of a mid-continental mountain range.

In this case the air upstream contains 0.2 g kg’1

of cloud between the
heights of 667 and 3000 m; the relative humidity drops smoothly to
zero 1 km above and below the cloud. The streamlines and horizontal
velocities produced by each of these flows are shown in Figs. 6.9 and
6.10. Note that the nonlinear dry wave is stronger than its linear
counterpart (Fig. 6.5). The steepening of the wave fronts in the dry
nonlinear wave (Fig. 6.9a) is in accord with the prediction of Miles
and Huppert (1969). Further discussion of the steepening of nonlinear
mountain waves may be found in Smith (1977), Lilly and Klemp (1979),
and Peltier and Clark (1979). As in the linear case, the addition of
moisture to the wave weakens it, but in the finite amplitude case the
damping effect is stronger. The influence of moisture is noticeable
in the RH = 80% case, and very important in the RH = 100% and low
cloud cases.

The momentum flux profile associated with each of these wave
regimes is plotted in Fig. 6.11. Although the fluxes are
approximately constant with height below the wave absorbing region,
small, long wavelength oscillations in its magnitude are visible in
the RH = 0% and RH = 80% cases. These variations may be caused by a
slight nonsteadiness of the solution, by weak reflections from the
wave absorbing layer, or by the finite integration limits ($9a) used
in the momentum flux calculations. In these nonlinear waves, the dry

momentum flux is 50% larger, and the flux for the RH = 100% case is
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Figure 6.9. Streamlines produced by a 1 km high mountain in a flow
with constant stability and tropospheric wind shear for upstream
moisture profiles in which (a) RH=0%, (b) RH=80% everywhere, (c)
RH=100% everywhere, and (d) low cloud lies between the heights of
667 m and 3000 m. Cloudy regions are stipled.

118



HEIGHT (km)
T N e N .

HEIGHT (km)

)

Figure 6.10. As in Fig. 6.9, except the variable displayed is
horizontal windspeed.

119



16 A .\\\
_ A X T
E 2 - \\\. .
= 12 \ \
e \ i i
o 1OF l i {
e "L .
T 8 'RH=IOO%I ‘l RH=80 %,
6 |- i )
£ /
i l jLow Cloud ( RH=0%
2 i \
0 | | I S | 1 ] | 1 | |

O 02 04 06 08
M/M

10 1.2

Figure 6.11. Vertical profiles of momentum flux produced for

different upstream humidities by finite amplitude waves in a flow with
constant stability and tropospheric wind shear.

The fluxes are

normalized by Mpc. The wave absorbing layer begins at 11 km.
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30% smaller, than the fluxes in the corresponding linear waves. The
presence of moisture appears to have a greater impact on the momentum
flux in finite amplitude waves. 1In this instance a total flux re-
duction of 75% is produced when the upstream flow is just at satu-
ration. When the upstream relative humditiy is only 80%, the momentum
flux produced by the partially saturated wave is 2/3 the flux for a
dry flow, showing that comparably small amounts of moisture can signi-
ficantly influence the wave drag.

In the preceding, the clouds have not been allowed to precipi-
tate, in which case the microphysics are reversible and the practical
effect of moisture is to decrease the stability in the saturated
regions. In principle, the moist flow could be calculated by re-
placing the clouds with regions of suitably reduced stability and
solving the dry problem. Barcilon et al. (1978) have taken such an
approach and found that in their small amplitude calculations, low
level moisture could reduce the wave drag by up to 50% in an atmo-
sphere with constant wind and stability., Their estimate is consistent
with the small amplitude results presented here. 1In finite amplitude

waves even gstronger wave drag reductions are possible.

D. The Importance of Precipitation

The strong downslope winds produced by mountain lee waves are
often accompanied by a large increase in surface temperature. Early
investigators attributed this to the latent heat released irreversibly
by precipitation deposited near the mountain summit. Later studies

have shown that a surface temperature rise can be produced by dry
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dynamics alone, and have tended to de-emphasize the importance of
precipitation. In this section we will describe the influence of
precipitation on the mountain waves examined in the last section.

The RH = 100% and low cloud simulations discussed in the previous
section, are repeated with the rain parameterization (see Chapter 111)
turned on. All the rain falls from the cap cloud which impinges on
the mountain peak; no rain forms in any of the wave clouds. In the
case where RH = 100% everywhere upstream, there was a maximum rainfall
rate of 5.4 mm hr"1 just to the lee of the mountain crest; the average
rainfall rate at elevations above 500 m (half the height of the

summit) was 2.9 mm hr'l. In the low cloud case the corresponding

maximum and average rates were 6.1 and 3.6 mm hr-!. The maximum
occurred 10 km upwind from the crest, with a secondary maximum just to
the lee of the crest. These are heavy, but not unrealistic,
precipitation rates. The RH = i00% case was run a second time with
the microphysics replaced by the assumption that liquid water rains
out instantly after condensation; then there is no evaporation and the
flow experiences the maximum net heating.

The momentum fluxes for the low cloud and RH = 100% cases are
shown in Fig. 6.12. The momentum flux is not calculated at levels
below the mountain height where the horizontal integral of u'w' would

pass through the terrain. However, the pressure drag across the

mountain

L dzs
M = -] p—dx , (6.6)
P e 4x
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Figure 6.12., The effects of rain on the vertical profiles of momentum
flux produced by upstream moisture profiles in which (a) there is low
cloud between the heights of 667 m and 3000 m, and (b) RH=100%
everywhere. The fluxes are normalized by Mjc. The pressure drag
associated with each wave is plotted at z=0, and connected to the
appropriate momentum flux profile by a dotted line. The wave
absorbing layer begins at 11 km.
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is computed at the surface. The pressure drag produced in each of the
previous cases is plotted at ground level in Fig. 6.12 and connected
to the corresponding momentum flux profile by a dotted line. Although
it is not explicitly calculated as such, a value on the dotted line
represents the momentum flux integrated along a horizontal level
interrupted by the terrain plus the surface pressure drag across that
portion of the mountain which extends above the level of integration.

The Eliassen-Palm theorem states that in the absence of dissi-
pation and diabatic heating, the momentum flux should be constant with
height. However, when precipitation occurs there is net heating, and
in the lowest 2 or 3 km, where this heating is present, the flux is
not constant with height. Except in the instant rain-out case, in
which there is also net heating at higher levels, the momentum flux is
constant with height above 3 km. In the low cloud case (Fig. 6.12a),
the mid-tropospheric momentum flux produced when precipitation is
present is 50% stronger than when it is absent, but it is still less
than half the value calculated when the flow is dry. 1In the RH = 100%
case (Fig. 6.12b), the "realistic” rain parameterization produces
only a slight increase in the momentum flux beyond that in the no rain
case, but when condensed water is rained out instantly, the increase
is very large (up to a factor of 3 near mountain top level). However,
even the fluxes produced with instant rain-out are weaker than those
in the dry wave.

Smith and Lin (unpublished manuscript) have investigated the
response of linear hydrostatic mountain waves to regions of specified

heating and cooling. They found that heating produces a disturbance



in the pressure field which can interact with the topography to
increase or decrease the low level momentum flux and surface pressure
drag depending on the phase of the induced pressure perturbation at
the ground. The net effect on the drag is thus a function of the
relative position of the mountain peak and the heating regions. It is
difficult to directly apply their results to the complicated heating
and cooling regions produced by these flows, and we will not attempt
to do so here. Instead we will concentrate on the qualitative changes
produced by precipitation in the low cloud case, a representative and
hopefully realistic situation.

The streamlines, horizontal velocity and heating fields for the
low cloud case are shown in Figs. 6.13 through 6.15. While the
precipitating flow is still much weaker than the dry flow, it is
significantly stronger than the nonprecipitating flow. Note in
particular the increase in low level windspeed on the lee side of the
terrain.

In an actual foehn wind, the air arriving at the base of the lee
slope is usually warm and dry. It is interesting to note in Fig. 6.13
that the cap cloud looks much more realistic in the precipitating case
because the cloud droplets, which otherwise sweep down the lee slope,
are rained out. The absence of lee side cloud may have a major
influence on the wave dynamics, since the stability in that region is
greatly increased when the air is unsaturated. A second difference
between the precipitating and nonprecipitating cases, which may have a
major influence on the dyanmics is shown in Fig. 6.15. The cooling
region in the descending part of the cap cloud is more concentrated,

and locally more intense, when rain is present.
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Figure 6.13. Streamlines produced by a 1 km high mountain in a flow
with constant stability and tropospheric wind shear, and low cloud
upstream (a) when no rain is allowed, (b) when rain is allowed.
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Figure 6.14, As in Fig. 6.13, except the variable displayed is
horizontal windspeed.
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Figure 6.15. As in Fig. 6.13, except the variable displayed is the
heating rate due to condensation and evaporation in watt-m/kg. In (a)
the velocity weighted integral of the heating along a streamline is
zero.,

128



129

Although there is net heating only in the precipitating case, the
total heating over the windward slope of the mountain is actually
slightly reduced when rain occurs (Fig. 6.15). This is consistent
with the results of Smith and Lin who predicted that uncompensated
heating should locally reduce the upward streamline displacements, and
thus reduce the forcing which produces the heating. In a case such as
this, where stable layers are mechanically lifted by the mountain,
this negative feedback is not nearly sufficient to entirely eliminate
the uplift.

Barcilon et al. (1980) have examined linear hydrostatic mountain
waves in an atmosphere with constant wind and dry stability. 1In their
calculations, condensed water is rained out immediately. The heat
released is assumed to produce only a small perturbation on the flow
so that the cloud boundaries are determined by the dry solution. They
found that irreversible latent heat release near mountain top level
produced a pressure drag slightly larger than that obtained in the dry
case. In the previous runs, when precipitation was allowed, the moist
waves were consistently stronger than their nonprecipitating
counterparts, but never as strong as the dry wave. When the realistic
rain parameterization is used, the precipitating waves were less than
half as strong as the dry wave. Only in the instant rain-out case did
the wave amplitude and drag approach that in the dry flow. This is
different from Barcilon's result, but since we have examined a
gsomewhat different situation (nonlinear waves in constant shear
instead of linear waves in a constant wind), this may merely reflect

the variety of ways in which precipitation can affect different



mountain wave flows. However, it does seem likely that the instant
rain-out assumption significantly exaggerates the influence of

precipitation.

E. Conclusions

We have examined the effects of moisture on propagating mountain
waves., In the cases considered, the dry Scorer parameter did not
change abruptly with height so partial downward reflections of wave
energy did not occur. In a future study, it would be interesting to
examine the ability of moisture to tune or detune propagating mountain
waves in multi-layer atmospheres. However, the basic nonreflective
cases presented here are more useful for a first investigation because
they are simple, yet realistic, situationms.

In these nonreflective cases, when precipitation is not present
clouds act to damp the waves and reduce the momentum flux. This
effect is stronger in finite amplitude waves than in their small
amplitude counterparts. When precipitation occurs, the wave
amplitudes and momentum fluxes are stronger than those produced by
nonprecipitating flows, but still significantly weaker than in the dry
case., The investigation of precipitation effects was limited to
:ﬁoi%ture profiles where the relative humidity upstream was uniform
with height, or concentrated in low level clouds. Other behaviors
might be produced by different moisture distributions, but since the
temperature, and hence the potential for large amounts of latent
heating, decreases rapidly with height in the real atmosphere, the

profiles considered may be the most physically significant.
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VII. CONCLUSION

In the preceding chapters the effect of moisture on the dynamics
of mountain lee waves has been investigated by numerical simulation.
The numerical model, which was originally designed to simulate
convective storms, was modified for lee wave calculations and tested
to verify its accuracy. The model seems capable of simulating linear
and moderately nonlinear mountain waves quite well, but its ability to
faithfully calculate the wave response in very nonlinear conditions
(particularly when the wave breaks) has not been demonstrated, 1In
this thesis we have considered only those situations to which the
model can be applied with confidence, the linear and moderately
nonlinear mountain waves. In the actual atmosphere, most mountain
wave activity probably occurs at moderately nonlinear wave amplitudes,
so this restriction does not significantly reduce the applicability of
the results. However, the strongest and most important mountain wave
events may be associated with wave breaking, so further study of the
dynamics of moist and dry breaking waves seems warranted.

Moisture appears to affect trapped lee waves in several ways.
When moisture is introduced into the lowest layer of a two layer
tropospheric structure favorable for the development of trapped lee
waves, three different behaviors are encountered. If the atmosphere
is convectively unstable, any clouds which form act like buoyant
plumes and destroy the lee waves. If the effective moist stability in
the wave environment is weak, but positive, the waves are distorted

and untrapped as the upstream humidity increases. If there is strong
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moist stability in the lowest layer, changes in the upstream humidity
chapge the tuning properties of the trapped waves. In the last
instance, moisture can amplify or damp the wave, depending on the
wavenumber spectrum of the orographic forcing.

In the real atmosphere, the potential influence of latent heating
decreases, along with the available water vapor, as the temperature
decreases with height. As a consequence, variations in the lower
tropospheric humidity probably have a éreater practical impact on lee
wave dynamics than changes in the moisture content at higher levels.
Nevertheless, there are at least two situations where changes in mid-
tropospheric moisture can exert a significant influence on trapped lee
waves. In the first, weak dry waves can be amplified by the addition
of mid-level moisture which effectively reduces the height of the wave
trapping interface. In the second case, the lower layer is very deep,
8o that in the absence of moisture, strong waves form with a single
nodal line in the middle of the layer. If mid-level moisture is
introduced, the deep two layer structure is destroyed, the waves
weaken, and the nodal line disappears.

The investigation of trapped waves concentrated on atmospheres
with a simple two-layer Scorer parameter structure. Although the
windspeed and stabilities in those atmospheres were realistic, the
Scorer parameter structure in any individual sounding would certainly
be more complicated. In fact, when trapped lee waves are observed in
the atmosphere, the actual Scorer parameter often has a rough two or
three layer structure. The addition of a third layer is sometimes

required by the presence of a well mixed layer near the ground. Corby

132



133

and Wallington (1956) have examined the effects of a low-level
adiabatic layer on dry linear trapped waves and found that the general
conclusions reached with a two-layer model are equaily applicable to
the three-layer situation. Thus, one might expect that in most
instances, the influence of moisture on trapped waves in the real
atmosphere should be qualitatively similar to the behaviors in the two
level cases described here.

In the study of propagating waves, the only atmospheres examined
were cones in which the dry Scorer parameter did not change abruptly
with height, so there was little downward partial reflection of wave
energy (at least in the dry case). Although the windspeed profiles
examined were realistic, the assumption of constant stability was
not. During actual mountain wave events there is likely to be a
region of relatively low stability in the upper troposphere sandwiched
between regions of high stability in the stratosphere and lower
troposphere., Partial reflections may occur from sharp gradients in
the Scorer parameter structure at the layer interfaces, which
significantly change the wave amplitude. In such multi-layer
situations, the presence of moisture might greatly modify the waves
by tuning or detuning the Scorer parameter structure, The study of
moisture effects on propagating waves in multi-layer atmospheres
certainly warrants further research. Nevertheless, the basic
nonreflective, constant stability cases presented here are very useful
for a first investigation such as this, since they are simple, yet

reasonably realistic. However, because of this limitation, the
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results presented in this thesis should not be generalized to
propagating waves in which the atmospheric stability changes rapidly
with height.

In the nonreflective case, when precipitation is not present
clouds act to damp the waves and reduce the momentum flux. This
effect is stronger in finite amplitude waves than in their small
amplitude counterparts. When precipitation occurs, the wave
amplitudes and momentum fluxes are stronger than those produced by
nonprecipitating flows, but still significantly weaker than in the dry
case. The investigation of precipitation effects was limited to
moisture profiles where the relative humidity upstream was uniform
with height, or concentrated in low level clouds. Other behaviors
might be produced by different moisture distributions and this
possibility should be considered in future investigatioms, but since
the temperature, and hence the potential for large amounts of latent
heating, decreases rapidly with height in the real atmosphere, the
profiles considered may be the most physically significant.

When precipitation occurs, the momentum flux in the propagating
waves is not constant with height. It is not trivial to predict
apriori how the latent heat release in precipitating waves will affect
the momentum flux divergence, but since the strong momentum fluxes
associated with large propagating waves can have a significant impact
on the synoptic scale flow, this area also deserves further research.
One might start with the work of Smith and Lin (unpublished
manuscript) who discuss the effects of externally specified heating on

linear hydrostatic waves.
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In both trapped and propagating waves, one could try to
approximate the effects of moisture by assuming that the flow is
completely saturated in certain horizontal layers, and replacing the
dry stability with a suitably reduced stability representative of that
in the saturated flow. In the propagating wave case it seems possible
to roughly estimate the actual flow by such a procedure. In the
trapped wave case, a better result can generally be obtained by
ignoring moisture altogether and estimating the wave structure based
on the dry flow. However, both of these procedures yield only rough
estimates which can be misleading, particularly when the saturated
stability is low. An accurate calculation of the flow can only be
obtained by explicitly including the moisture field in the

computations.,
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APPENDIX: LIST OF SYMBOLS
autoconversion of cloud to rain
half-width of Witch of Agnesi Mountain
collection of cloud by raindrops
mean state speed of sound
specific heat of air at constant pressure
specific heat of air at constant volume
Coriolis parameter
effective gravity
horizontal wavenumber
resonant horizontal wavenumber
Scorer parameter
eddy diffusivity of heat

eddy diffusivity of momentum

depth of the lower layer in the two layer trapped-wave

etmospheres
height cf Witch of Agnesi mountain

latent hest ¢o condensation

momentum flux computed by numerical simulation

linear hydrostatic momentum flux for an atmcsphere with

constant windspeed and stability {also M)

linear hydrostatic momentum flux £or an atmosphere with

constant wind shear and stability
pressure drag across the mountain

Brunt-Vaisald frequency
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Ng effective Brunt-Vaisdld frequency for small displacements in
saturated air

P pressure

qy mixing ratio of water vapor

qc mixing ratio of cloud water

q, mixing ratio of rain water

Qyg Saturation mixing ratio

R gas constant for dry air

RH relative humidity

T sensible temperature

u horizontal velocity

v raindrop fall speed

X horizontal coordinate perpendicular to the mountain ridge axis
w vertical velocity
z vertical coordinate

zg terrain height
zp height of the top of the modeling region
Y4 dry adiabatic lapse rate

Yp, moist adiabatic lapse rate

8 deviation of a streamline from its height far upstream
€ ratio of the molecular weights of dry air and water vapor
(] potential temperature

8r  equivalent potential temperature
Oy 8(1 + .61 q,){1 - q; - qy)
4 transformed vertical coordinate

w perturbation nondimensional pressure
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I mean nondimensional pressure

P density of moist air



