
Instrumenting Observability in a Decentralized
Microservice Architecture

by

Helen X. Liu

S.B. Computer Science and Engineering and Business Analytics, MIT, 2023

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2024

© 2024 Helen X. Liu. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Helen X. Liu
Department of Electrical Engineering and Computer Science
August 9, 2024

Certified by: Michael Cafarella
Principal Research Scientist at MIT CSAIL, Thesis Supervisor

Certified by: Aleks Ryabin
Director of Engineering at NetApp, Inc., Thesis Supervisor

Accepted by: Katrina LaCurts
Chair
Master of Engineering Thesis Committee

2

Instrumenting Observability in a Decentralized Microservice
Architecture

by

Helen X. Liu

Submitted to the Department of Electrical Engineering and Computer Science
on August 9, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

ABSTRACT

Software systems have increased in complexity over time, and with this increased com-
plexity has come an increased need to keep these systems organized and functioning effi-
ciently. Observability is closely attached to ensuring this correct and effective system func-
tion. Without system monitoring, it is difficult to pinpoint when errors occur and correct
them at their sources. Monitoring systems also helps to understand a system from the out-
side by allowing developers to ask questions about the system’s state and function without
needing to know the details of what comprises the system’s internal behavior. While there
are existing solutions for observability frameworks, these solutions do not target microser-
vice architectures, which are used more and more with expansive code bases, such as those
likely to be employed in an industry environment. They also require extensive configuration
to be fully integrated with a pre-existing system. As such, the challenge lies primarily in
adapting observability solutions to a decentralized, microservice architecture found in an
industry setting. The existing solutions also come with advantages and disadvantages for
different situations, so they are often incomplete in addressing an entire system’s needs. The
integrated system created here satisfies our system’s requirements of a consolidated observ-
ability platform while also enabling future customizations, thereby allowing problems to be
identified more quickly and proactively.

Thesis supervisor: Michael Cafarella
Title: Principal Research Scientist at MIT CSAIL

Thesis supervisor: Aleks Ryabin
Title: Director of Engineering at NetApp, Inc.

3

4

Acknowledgments

I would like to thank NetApp for all the support and guidance I received on this thesis project
during my time there. More specifically, I would like to give a special thanks to Narasimha
Reddy, for unfailingly taking time out of his day to assist me on any and all problems I ran
into; to Ajay Aggarwal, for consistently providing me with feedback and a sounding board
for my ideas; to Aleks Ryabin, for always asking the critical questions I needed to answer
to guide my project in the right direction; along with everyone else that I met who eagerly
helped me in any way they were able to at any time. I felt welcomed with open arms the
entire time I was hosted at NetApp, and the warmth of all the people there made my time
so pleasant. Without everybody’s insights, I would not have completed anywhere as much
as I did in my project.

I would also like to thank Michael Cafarella for assisting on and advising this thesis. I
would like to thank the 6-A program and the EECS department as a whole for providing me
with the resources to extend my time at MIT and complete my graduate education here.

Finally, I would like to thank my family for all of their constant love and support, without
which I would not be where I am today. Thank you to my parents and my sisters for always
being my biggest supporters.

5

6

Biographical Sketch

Helen Liu received her S.B. degree in Computer Science and Engineering and Business Ana-
lytics from MIT in 2023. She then continued her studies at MIT as a Master of Engineering
student in Computer Science, graduating in September 2024 upon acceptance of this thesis.

She has previously participated in numerous research projects. Her first exposure to re-
search being in materials science, for which she is a second author for a paper published in
the Nature Materials scholastic magazine, "Scalable optical manufacture of dynamic struc-
tural color in stretchable materials" [1]. Since then, she has completed research in updating
models to screen for pulmonary diseases, designing a web application for reducing inconsis-
tencies and polarization in the media, and predicting specific images of gene expression given
other, less expensive images of the same genes.

Her research experience culminates in this research project centered around observability
in decentralized software systems.

7

8

Contents

Title page 1

Abstract 3

Acknowledgments 5

Biographical Sketch 7

List of Figures 11

List of Tables 13

1 Introduction 15
1.1 Context . 15
1.2 Problem Statement . 17
1.3 Existing Solutions . 19
1.4 Related Work . 20
1.5 Design Goals . 23

2 Metrics 26
2.1 Metrics and Micrometer Overview . 26
2.2 Implementation . 28

2.2.1 Connection to Backend . 29
2.2.2 Customizable Switches . 33
2.2.3 Custom Metrics . 35
2.2.4 Dynamic Tags . 35

3 Logs and Traces 38
3.1 Logs . 38

3.1.1 OpenTelemetry Collector . 39
3.1.2 Logs Ingestion Endpoint . 41

3.2 Traces . 42
3.2.1 Distributed Tracing . 42
3.2.2 OpenTelemetry Java Agent . 44

9

4 Results 46
4.1 State of Metrics . 46
4.2 State of Logs . 50
4.3 State of Traces . 51
4.4 Overall Impact . 51

5 Other Considerations and Future Work 54
5.1 Future Work on Metrics . 54
5.2 Future Work on Logs . 55
5.3 Future Work on Traces . 55
5.4 Other Considerations . 56

Conclusion 58

A OpenTelemetry Collector Configuration 60

B Code for Metric Filters 62

C Code for Dynamic Tenant Tags for HTTP Metrics 64

D OpenTelemetry Collector Configuration to Parse Logs 66

References 71

10

List of Figures

1.1 Example of a user request executed in a system with a microservice architecture 16
1.2 Overall final architecture . 25

2.1 A single Kubernetes cluster . 32
2.2 The relationship between Kubernetes clusters 33
2.3 Flow chart for metrics . 33

3.1 Flow chart for logs . 42
3.2 Distributed trace example, provided by Datadog [23] 43
3.3 Flow chart for traces . 45

4.1 Average free bytes available on the disk, by service 47
4.2 Percent of system CPU usage, by service . 47
4.3 Log messages by time, source (which service it originated in), message text,

and severity level . 50

5.1 Flow chart for metrics, logs, and traces . 56

11

12

List of Tables

4.1 Default metrics that help measure the golden signals of monitoring 48

13

14

Chapter 1

Introduction

As software systems become increasingly complex, maintaining their organization and effi-

ciency becomes more critical. Observability plays a vital role in ensuring the proper func-

tioning of these systems, allowing for errors to be detected and corrected. It encompasses

three key elements: metrics, logs, and traces, each serving distinct purposes in monitoring

system behavior. While frameworks for observability already exist, they often do not cater

to the decentralized nature of microservice architectures commonly found in industry set-

tings. Adapting these frameworks to suit such architectures presents a significant challenge.

Moreover, existing solutions may be insufficient, as they come with their own sets of advan-

tages and disadvantages, leaving certain system needs unaddressed. Our integrated system

addresses these challenges by meeting observability requirements while ensuring flexibility

and customizability, facilitating quicker and more proactive problem identification.

1.1 Context

A microservices architecture is commonly employed in software systems to speed up applica-

tion development by allowing developers to work on different sections of a system in parallel

while minimizing the risk of interference from each other. It also provides a more clear-cut

separation of different functions, creating a more organized architecture as well. A service

15

[2] is a building block of a microservices architecture system that is designed to carry out

one specific function. It handles all tasks related to that function, and it communicates with

other services within the architecture to handle more involved problems, such as end-to-end

tasks that require many related but distinct pieces.

Let us walk through an example of a user request being executed in a system that employs

a microservice architecture. In this fabricated situation, laid out below in Figure 1.1, the user

wants to start a subscription to use the web application’s product, so they make a request

to create this subscription. This request first passes through the service responsible for the

web application’s user interface (UI). The web UI service then makes API calls to both

the service responsible for handling user accounts and the service responsible for handling

billing and payments. Each of these services in turn accesses its related database, with the

user’s account being updated with the new subscription in the accounts database and the

new payment for the subscription being logged in the payments database. This example is a

simple version of a microservice architecture; in a real-world example, there would be many

more services interacting with each other and with other components beyond databases.

Figure 1.1: Example of a user request executed in a system with a microservice architecture

16

1.2 Problem Statement

The systems we are monitoring in our paper have a few metrics in place already, but these

metrics have many limitations. First, they lack granularity and do not exist on a service-

by-service basis. Given that a microservice architecture involves extensive communication

between services, it is a huge pitfall to only be able to obtain metrics for certain services

and not others, and it is even more of a problem to have all these metrics in different forms

and accessed in different places as well, instead of all together in a single, standardized,

consolidated interface.

These existing metrics in our systems also do not include any application performance

metrics, which monitor the state of different applications. Application performance metrics

include metrics on the web server and metrics on memory usage. In an industry setting,

especially one in which software is being used by users external to the company, this can

be detrimental in assessing the source of user-facing issues that arise and thus detrimental

to the business value of the company. In these situations, it is always best to be proactive

where possible in identifying and resolving bugs or system failures, ideally before users even

realize they are present.

Logs, on the other hand, are already fully present in our systems, but they use a third-

party software that does not handle metrics or traces and cannot support many other back-

ends. We want to create a cohesive observability framework that can fully incorporate all

three components of observability and is flexible in export, so we need to migrate logs to this

framework. Since there are no traces currently in our systems, we also need to incorporate

traces into this framework from scratch.

Without relevant and specific metrics, it becomes much more difficult to effectively mon-

itor large software systems. The same can be extended to logs and traces. We want all of

these observability data points to be service-specific to be able to use them best, and having

them all consolidated in one place would allow developers to use them most efficiently.

17

To extend our example of a user request from the previous section, say we have a developer

whose job it is to ensure this web application operates consistently and reliably. They receive

a complaint from the user that the user’s requests to the application are very slow, so they

first want to determine whether the issue is user-specific or system-wide. However, since

they do not have any metrics on the performance of the application, they must rely on other

users complaining in order to see if the issue is system-wide.

Let us assume there are no other complaints, so the issue is likely user-specific. From

here, we want to see if the issue applies to just one or all of the services with which the

user is interacting. The developer would be able to figure this out quickly if they had access

to service-specific metrics on HTTP request response times, but since they do not, they

cannot easily figure out which services are affected. The developer also cannot easily figure

out where the problem originates because they do not have access to traces that can show

them which components the user request touched and the time spent to execute each call

to a component, which would have drastically narrowed down the potential sources of error.

Finally, assuming the developer eventually approximately locates where the issue is, they

still cannot easily identify which lines of code are the problem because they have to parse

through hundreds of lines of log messages to see which log events (emitted from running

code) are erroring out and causing requests to take longer. As such, they will take much

longer to fix the issue than they would have if they had access to a complete observability

platform.

As we have now seen, the current state of the system we are examining is not good

enough. The system does not adequately provide sufficient tools for monitoring its different

parts, much less gauging its health as a whole. The next section will elaborate on existing

solutions for observability frameworks that accomplish the same goals as the ones we aim

to reach, but these solutions do not target microservice architectures, which are increasingly

used in industry settings. As such, the goal of this research is to adapt existing observability

solutions to a decentralized, microservice architecture. In this architecture, scalability is very

18

important as application development speeds up and services are created to fulfill new needs

that arise. If developers needed to manually configure metrics in every new service that was

created, it would be very costly from a time (and thus, money) perspective. Flexibility is also

crucial, for each service does not have identical needs to every other service, thus requiring a

highly customizable framework that can be tailored to a specific service whenever necessary.

With these goals in mind, we aim to create an observability framework that can thus identify

problems more quickly and proactively.

1.3 Existing Solutions

As mentioned previously, there are numerous existing solutions for observability already. In

this section, we will introduce the relevant solutions to our paper.

Spring Boot [3] is a framework to help build web-based applications. In our system, most

services already use Spring Boot. Within the Spring Boot framework is a dependency called

Spring Boot Actuator [4], which monitors and manages the web application. This depen-

dency comes pre-loaded with Micrometer [5], facilitating an easy integration of Micrometer

with existing Spring Boot services. Micrometer is used for application observability, which

is exactly what we want to configure in our systems; it is one of the only such frameworks,

making it the most well-documented as well. Micrometer allows users to instrument their

code once then export all the observability data to one or more of their chosen backend

systems, which aggregate the data they receive into a visual representation, such as a chart

or a graph. Micrometer provides much of the functionality we want in our framework, as

it provides many default application performance metrics, along with the ability to instru-

ment further custom metrics. For this reason, a couple services in our system already use

Micrometer individually.

The main issue with Micrometer is that much of the existing work done with it primarily

uses the assumption of a single-service architecture. This work is not conducive to applying

19

Micrometer to large, pre-existing codebases employing a decentralized microservice architec-

ture (i.e. those often found in industry settings), as the challenge now lies in integrating

this framework into what is already there. For this, the OpenTelemetry Collector [6] and

OpenTelemetry Protocol [7] are helpful.

OpenTelemetry, like Micrometer, is also a framework for observability that can be ex-

ported to any backend system. The relevant aspects of OpenTelemetry to this project are

the OpenTelemetry Collector and the OpenTelemetry Protocol (OTLP). The OpenTeleme-

try Collector acts as a centralized middleman to which data can be easily exported, and it

then processes and exports that data in turn to one or more backends. It provides a high

degree of flexibility in data export, as it is simple to change the configuration of backends to

which data is sent. Meanwhile, the OpenTelemetry Protocol provides a standard shape and

format with which data can be exported. Being able to convert data into this format helps

with integrating the framework into the existing architectures, which is why we chose to use

it with the various components of observability in our framework.

1.4 Related Work

With system monitoring and observability being a rapidly developing area, there are a few

existing papers that provide a comprehensive overview on frameworks that are currently

being used, along with what the most important criteria are to consider when designing a

new framework.

Observability is an ever-evolving issue because the systems that need to be observed

are constantly changing. One major change was the shift to decentralized microservice

architectures from a single-service, monolith architecture. Because of this shift, systems now

have a lot more moving parts, i.e. more parts that need to be observed. Another change was

the shift to cloud-native technologies. An infrastructure hosted in the cloud results in more

flexibility and reliability while enhancing performance simultaneously. However, this shift

20

affected observability work by requiring it to be more dynamic in order to reflect the more

dynamic nature of cloud computing. With these increasingly complex systems, it became

more important to have increased visibility into them as well. The various components of

observability provide this necessary context and insight into the state and performance of a

system, thus minimizing the time it takes for developers to understand what is happening

in a system.

In line with these shifted observability needs, Karumuri, Solleza, Zdonik, & Tatbul [8]

provide a detailed discussion of how important observability is, especially in an industry

setting like the one we have in this paper. They use an incident from Slack as an example of

where observability was used to identify the root cause of the issue, and they bring up the

very important point of observability also being a data management problem. With all of

this observability data, it becomes critical to manage the data well such that site reliability

engineers (SREs) can effectively utilize it to monitor systems rather than be overwhelmed

and lost in the flood of new data. We have kept this in mind as we developed our framework,

and this need for organization is a key part of why we treat metrics, logs, and traces (the three

components of observability) separately. However, this was not the primary objective of our

research because we found that for our business purposes, it was more important to focus

on a different design principle that Karumuri et al. bring up: flexibility in a distributed

environment. With the distributed nature of so many software systems used in industry

today, our primary goal once we established the framwework was to ensure we could easily

apply it to all parts of a system, which we describe some more in the next section.

Niedermaier, Koetter, Freymann, & Wagner [9] interviewed many software professionals

to compile a list of key challenges to and requirements for an observability framework. One

such challenge was a lack of experience, time, and resources to master and integrate existing

technologies. We similarly discovered this challenge at the beginning of our project when

we first met with developers to discuss the key features of the observability framework.

We thus created the framework that we describe in this paper so that other developers

21

within the company have an easy way of monitoring the systems without needing extensive

experience, time, or resources. By integrating Micrometer and OpenTelemetry only once, and

by using these tools that enable data to be exported to any backend, SREs and developers

who have little experience with these technologies can access compiled observability data

in the monitoring backend, allowing this data to be easily seen and interpreted regardless

of experience level. Like Karumuri et al., Niedermaier et al. also expressed concern over

the flood of data that comes in from an observability system. Because this is a concern we

also share, we performed some calculations on our final framework to estimate how many

data points are regularly emitted in chapter 4, where we look at the state of our research

on from different perspectives. Finally, a major requirement of observability systems that

Niedermaier et al. concluded from their interviews was that it should be an all-in-one

solution, which we had also realized ourselves and subsequently prioritized.

In a different paper, Usman, Ferlin, Brunstrom, and Taheri [10] conducted a survey on

observability tools for microservices. Their survey reaffirmed the status of the Cloud Native

Computing Foundation’s (CNCF) open-source OpenTelemetry project as the emerging in-

dustry standard for managing observability data. They also mention the SRE’s four "golden

signals" of monitoring: latency, traffic, errors, and saturation. The SREs we spoke to men-

tioned these golden signals as well, so we made sure to include them in our evaluation of our

framework in chapter 4. Overall, we agreed strongly with Usman et al. in their emphasis of

the importance of a unified platform for data, along with easy customizability of the various

components involved in the overarching observability framework. They mention decoupling

data sources from data sinks, which is what we aim to address in having a separated-out

flow of data across various technologies, as seen later in Figure 1.2 in the following section.

The main difficulty in using observability frameworks that people have already created is

that each system we want to monitor is different, so what other people have done frequently

does not apply to what we want to do now. Every system is unique, and part of the challenge

of this research is figuring out how to integrate the open-source frameworks we mentioned

22

in the previous section with the microservice architecture and custom backend that we are

working with in this industry setting.

1.5 Design Goals

The existing work with Micrometer has primarily focused on single-service applications. As

many companies now employ microservice architectures, it is necessary to expand upon this

work to apply the Micrometer framework to these more decentralized systems. Our aim is

to ensure that each microservice does not have to implement an observability solution itself,

as this is impractical for scalability from the perspective of developers’ time. Instead, we

want every service to consume a single tool in line with a common framework, with the

option to include any desired tags on metrics and override default settings of which metrics

are exported. We thus need to configure this framework in a common component across all

services.

We also need to ensure future flexibility and customizability. While the Micrometer

façade builds in the ability to create custom metrics, extending this ability in a decentral-

ized architecture presents challenges around having a standardized convention of doing so.

The idea of flexibility can be applied to exporting observability data. The backend to which

data is exported can change over time, and it may also vary from service to service, so we

aim to explore what the best strategy is to achieve this flexibility in data export, includ-

ing potentially using existing solutions such as the OpenTelemetry Collector. One item to

consider here is the "push" versus "pull" method of exporting metrics, and the flexibility of

both. We will elaborate in this more in subsection 2.2.1.

A further goal for the project is to build in support for dynamic tags. Each meter

in Micrometer, keeping track of a specific metric, has a name and a variable number of

customizable tags represented as key-value pairs. Micrometer does not currently provide

support for tag values to change dynamically as a variable, despite many developers asking

23

for this feature; tag values are thus represented statically as strings. This is because the

Micrometer system maintains an internal map of registered metrics using names and tags, so

dynamic tagging would make collisions possible for metrics with the same name to suddenly

have the same tags too, and the system would end up merging the two metrics arbitrarily.

The static meter tags are thus for the purpose of making the meter registry, where all the

meters are stored, collision-resistant.

However, dynamic tags would allow businesses to provide a very helpful level of granu-

larity to the metrics that they desire. For example, many companies have services that are

multi-tenant [11], which means that a single software resource can be used by multiple end

users or groups. As such, it is important to be able to filter out metrics specific to different

tenants using the same resource, but a tenant’s identifier is a field that changes between

tenants, hence the need for dynamic tagging. We aim to enable dynamic tagging for the

most important use cases and circumvent these built-in Micrometer limitations.

Another goal for the project is to extend this observability framework from metrics to

OpenTelemetry-based logs and traces. Since observability typically refers to all three com-

ponents of metrics, logs, and traces, we would like to first lay the foundation for metrics,

then subsequently broaden the scope of the framework to logs and traces. For logs and

traces, we want to export them in OpenTelemetry format because only after everything is

in the same format can we begin to integrate metrics, logs, and traces through contextual

correlation, which will help with the challenge of distributed tracing—tracing a related call

across services.

When the project is complete, it should look like the flow chart in Figure 1.2. In this

figure, we see that there are three flows for the three components of observability that all

go into one OpenTelemetry Collector. From there, each component has a different HTTP

endpoint on the custom backend product we are using because metrics, logs, and traces

data all have different shapes according to the OTLP specifications. However, once they are

ingested, they are able to be visualized in the same backend platform. This is only a quick,

24

high-level overview; we will explain the parts of this flow chart more in-depth in subsequent

chapters.

Figure 1.2: Overall final architecture

25

Chapter 2

Metrics

As mentioned previously, the three major components of observability—metrics, logs, and

traces—have distinct but vital roles in system monitoring. Metrics refer to specific data

combined from measuring events. They offer statistics on various aspects of a system in

order to then be used to identify patterns and eventually provide a baseline against which

to measure current systems to better sense when something amiss has occurred.

In this chapter, we provide an overview of which metrics are helpful to have, what fea-

tures of our observability framework regarding metrics are most important, and how we

implemented these features in our system.

2.1 Metrics and Micrometer Overview

There are many types of metrics, but not all of them are relevant and helpful in an observ-

ability context. Furthermore, in the context of a software system that employs a microservice

architecture, many of the existing metrics in our system lack sufficient granularity to tunnel

into specific services, as they do not exist on a service-to-service basis. They also do not in-

clude any application performance metrics, such as metrics on the web server or on memory

usage. As such, there is a lack of visibility into these software systems.

When instrumenting metrics into a service, we want to make sure that the method

26

by which these metrics are instrumented is extensible to other services within the same

architecture to maintain a certain degree of standardization. With this in mind, we decided

to utilize the Micrometer package, included in Spring Boot Actuator.

Micrometer collects measurements using Meters of different types, with the primary

meter types being Timers, Gauges, and Counters. As a brief overview, Timer objects

measure the latency duration and frequency of events, with each Timer reporting the total

time and count of each event. Gauge objects are used as a handle on the current value of

a metric, changing only when it samples the measurement it is in charge of and holding no

information on what occurs between samples. Counter objects provide a count of a metric

by only ever incrementing by a fixed, positive amount. A helpful Meter object to have in

our example from the previous chapter would have been a Timer object measuring HTTP

request response times. Having this metric would have helped our developer narrow down the

user’s problem to the specific service(s) and HTTP endpoint(s) that were affected, thereby

reducing the scope of the engineer’s work.

A few other Meter primitives include DistributionSummary, LongTaskTimer, Function-

Counter, FunctionTimer, and TimeGauge, but these primitives are used less often, so they

are not as relevant in our proposed observability framework currently. Regardless of type,

each Meter is held in a MeterRegistry, which holds the most recent value of the meter.

Every monitoring system supported by Micrometer has its own MeterRegistry. For ex-

ample, the OpenTelemetry Protocol (OTLP) is supported by Micrometer, so there is an

OtlpMeterRegistry specific to OTLP.

Micrometer auto-instruments many metrics on various parts of the system by default,

depending on which software technologies are being used by the system in which the library

is located. For example, our system uses the Apache Log4j2 [12] logger, so there are au-

tomatically metrics that measure the log4j2 events emitted, tagged by the different levels

for log messages. Other common groupings of metrics include metrics on the Java Virtual

Machine, system CPU, HTTP requests, data source connections, threads, disk space, and

27

the application startup time.

2.2 Implementation

Making changes that apply to all services within a microservice architecture is challenging.

To remedy this, it is beneficial to have a custom library from which all services inherit.

Within this common library, developers can put Spring Boot packages to equip the child

services with the Spring Boot framework, helpful for building web-based Spring applications

in Java. To add in Micrometer, we added the Spring Boot Actuator package to our common

library.

Adding Spring Boot Actuator configures additional functionality beyond having Microme-

ter available. By including the Actuator package, certain /actuator web endpoints become

available on the service, with the option to configure more if necessary [4]. The default

endpoints are /health and /info, which show basic application health information and in-

formation about the application itself, respectively. Additional endpoints that are helpful for

visualizing service-specific metrics are /metrics and /prometheus, both of which show all

the metrics being tracked by Micrometer, with the latter exposing these metrics in a format

that can be scraped by a Prometheus server [13]. This /prometheus endpoint will be more

relevant in the next section, when discussing the manner in which to export each service’s

metrics to the same backend visualization platform.

The main requirements of our observability framework, decided upon in conjunction with

relevant stakeholders looking for expanded observability metrics in the services they are in

charge of, are as follows:

• Can be visualized in the existing backend platform

• Can customize how much information is being transmitted

• Provides a standardized way of instrumenting custom metrics specific to a certain

service

28

• Includes tenant ID as a tag on metrics to obtain more granular data on the multitenant

services

In the following subsections, we will explain how our implemented solution addresses

each of these points.

2.2.1 Connection to Backend

As mentioned earlier, the metrics auto-instrumented by Micrometer are readily available at

a service’s /actuator/metrics and /actuator/prometheus web endpoints if the endpoints

are enabled. From here, the challenge was to figure out how to get the metrics into a

visualization platform.

Here we decided to use the OpenTelemetry Collector [6]. A few factors went into this

decision:

1. The backend to which data is exported can change over time. We wanted to ensure

that we would not need to set up a whole new export mechanism in order to export

data to a different backend, should we choose to do so later.

2. We may want to export data to more than one backend. For example, it would be

nice for debugging purposes to also export our data to the console to see whether any

metrics are being dropped when exporting to our chosen backend product.

3. Where we want to export data may vary from service to service, so we want to provide

flexibility and customizability for each service by giving it the option to export to

different backends in this microservice architecture.

OpenTelemetry provides the industry standard for observability, as an open source project

from the Cloud Native Computing Foundation. Before this, there was no real standard, but

OpenTelemetry supplies many different components that altogether fill this hole. The most

important components to this project are the OpenTelemetry Protocol (OTLP) [7] and the

29

OpenTelemetry Collector. OTLP provides a standard shape and format to telemetry data,

while the Collector acts as a proxy that can be used to receive, process, and export telemetry

data, i.e. metrics, logs, and traces. It consolidates everything in one place, and that makes it

very useful when configuring different telemetry data, especially if the telemetry data comes

from various sources. OpenTelemetry is designed to be extensible and customizable, which

makes it fit well into the scope of this project.

Next, the question arose of whether we wanted a "push" or a "pull" mechanism for

exporting our metrics, and we wanted to consider the scalability of both. The "push"

method refers to having servers regularly send data to a backend database, which places

the responsibility on the servers, while the "pull" method has the backend services regularly

querying data from the servers, thereby placing the responsibility on the backend services.

In terms of the tradeoffs of each, having a "push" method would require all services to know

where to push to, while a "pull" method would offer more flexibility in changing backends

but would be more complex to implement, as Micrometer is not configured optimally for

this.

Since we decided to use the OpenTelemetry Collector for the above reasons, we actually

are able to use a combination of the "push" and the "pull" methods to reap the advantages of

both while avoiding their corresponding disadvantages. To "pull", we can have the Collector

scrape data from one of the endpoints to which all of a service’s metric data is available. Since

the Collector has a built-in Prometheus scraping functionality, it is no longer complicated to

implement because we only need to make the /actuator/prometheus web endpoint available

for the Collector to be able to ingest the metrics data. To "push", the Collector then can

process this data however we configure it to [14], and the transformed data can be exported to

whichever backend system (or systems if multiple) we would like to use. Since the Collector

first aggregates all the data from the different services, there is now only one entity pushing

to the backend service, which nullifies the problem of having all services know where to

push data. Having this Collector be easily configurable helps us satisfy our initial needs

30

of wanting flexibility in export because we can edit the receivers, processors, and exporters

configurations of the Collector to change the backend to which we export data, export data

to multiple backends, and customize which services send data to which backends.

Because we are using the OpenTelemetry Collector, the /actuator/prometheus endpoint

is particularly useful because it exposes all of the metric data on the same web page, as

opposed to the /actuator/metrics endpoint, which requires indexing into a metric name

(i.e. calling a specific /actuator/metrics/<metric.name> endpoint) to get a single metric’s

data. Having all the metric data for a given service in one place is important so that the

Collector can pull this data all at once using its built-in Prometheus configuration to act

like a Prometheus server scraping data. In this way, the Collector can easily obtain an entire

service’s metrics efficiently.

Kubernetes [15] is a very commonly used system for microservice architectures, so we

utilize it in our project. OpenTelemetry supports Kubernetes very well, as both are open-

source projects created by the Cloud Native Computing Foundation. Thus, we will use

Kubernetes to deploy the Collector. See Appendix A for an example of a basic Collector

configuration using OTLP to receive and export data.

To give a brief overview of how Kubernetes works in our system, Figure 2.1 shows the

structure of a single Kubernetes cluster. Within this cluster, represented by the yellow

rectangle, are several nodes, represented by pink boxes. Each node provides a copy of

the same system, with each node running all of a system’s microservices as pods. Each

microservice is run on its own pod, and the OpenTelemetry Collector is also run on its own

pod.

31

Figure 2.1: A single Kubernetes cluster

Figure 2.1 shows one possible configuration of the OpenTelemetry Collector, although

there are multiple possible configurations of the Collector that would result in different

diagrams. In this diagram, we have configured the Collector as a Kubernetes daemonset,

which means that each node has its own Collector that monitors only the microservices

within its node. We decided that this mode was optimal because it ensured that any one

Collector would not confuse the information collected from one service with another copy of

the service on another node.

As shown in Figure 2.2, there are several Kubernetes clusters that interact with each

other. For the sake of separability and compartmentalization, it is best to use a single tenant

for monitoring multiple Kubernetes clusters. In this way, the OpenTelemetry Collectors on

all of the nodes in all of the clusters used in production can push their collected data to this

one monitoring backend. All the monitoring data is thus aggregated in one centralized place

for developers to easily access and interpret.

32

Figure 2.2: The relationship between Kubernetes clusters

After setting up the OpenTelemetry Collector, we then have to set up a custom receiver

for our backend system to process the exported metrics. Since OTLP already provides a

standardized shape for telemetry data, we decided to set up an HTTP endpoint that receives

OTLP data. Using OpenTelemetry’s Java library, we are able to parse the metric data into

details to reformat into the existing backend’s expected shape.

The final end-to-end pipeline for the metrics component of our observability framework

is below in Figure 2.3 as follows:

Figure 2.3: Flow chart for metrics

2.2.2 Customizable Switches

We wanted to give the option to easily remove metrics data, should developers not want to

use it for some reason. To do this, we added in customizable switches to turn off exporting

33

metrics. The Collector obtains metric data by scraping from the /actuator/prometheus

endpoint of a given service, but we can stop this export of metric data by removing the end-

point as a whole. Despite having the /health, /info, and /prometheus endpoints enabled

by default, each service can still customize which /actuator endpoints it exposes, so by over-

riding these endpoints to exclude the /prometheus endpoint, a service can remove its metrics

from detection by the Collector. These endpoints can be overridden by either by setting the

management.endpoints.web.exposure.include property in an application.properties

file within the service or by changing an environment variable on the Kubernetes pod.

Furthermore, each service can selectively choose to export (or not export) certain groups

of metrics. We included this feature in case there were any automatically instrumented sets

of metrics that were definitively unhelpful to have for a given service. Micrometer has a

MeterFilter object [5] that can be used to create rules around which metrics to include and

to transform these metrics as well. In order to allow developers to configure which metrics

to export, we created a Spring Bean [16] of a MeterFilter that would take in a comma-

delimited string environment variable, which is something easily changed at any point in

time by a developer, and filter out any metric that had a name starting with one of the

arguments. For example, if we wanted to filter out metrics on the Java virtual machine and

log4j2 logger, we would set "jvm,log4j2" as the environment variable. The MeterFilter

is specifically configured for the PrometheusMeterRegistry, which is the MeterRegistry

for the Prometheus backend service. Since we are using the Collector to scrape from the

/actuator/prometheus endpoint, this MeterFilter works as we would like by filtering

out the specified metric groups from the /actuator/prometheus endpoint such that the

Collector never scrapes them.

See Appendix B for the code to implement filters on different groups of metrics.

34

2.2.3 Custom Metrics

Despite Micrometer providing the majority of helpful observability metrics out-of-the-box

where there were none before, services can sometimes have service-specific needs for metrics

that would be very helpful to see. As part of our observability framework, we wanted to

make sure there would be a standardized method for developers to configure any additional

custom metrics.

The first major consideration was how to represent all the different Meter primitives

within our system. We wanted to be able to edit and customize the metrics within our

system, but we were not able to directly edit the Meter source code from Micrometer, so we

decided to make a wrapper parent class for Meter, with individual wrapper classes inheriting

from this parent class for each Meter primitive, i.e. Timer, Counter, Gauge, etc. Having

these wrapper classes thus allows us and future developers to easily make changes to all

custom metrics within the microservice architecture at once.

The second major consideration was how to address naming these custom metrics. There

should be a standardized naming convention because custom metrics must be specially con-

figured, so they should have a higher degree of importance attributed to them. As such, we

decided the best and most straightforward method would be to prefix all custom metrics

with "custom." automatically. This is done in the Meter parent class wrapper, such that

future developers do not need to consider it when they are adding in new custom metrics.

2.2.4 Dynamic Tags

The most challenging feature to implement was dynamic tags. Multiple tags, each with a key

and value, are associated with each Meter. The primary reason for implementing dynamic

tags is to incorporate tenant IDs as a tag on each Meter because the services are multi-tenant,

meaning that multiple tenants (users) use the same resource. Having tenant ID included

on the metrics would then provide a much-needed layer of insight into which tenant a given

35

metric applies to, instead of having a blanket metric compiling the data across all users. In

cases like HTTP request metrics, it is not very helpful to see these aggregated metrics. For

example, if a user is having trouble with accessing a certain HTTP endpoint, the aggregate

metrics would not tell the developer much helpful information, but tenant-specific metrics

would allow the developer to see which endpoint and which users are being affected so that

the developer can proactively fix the bug. Since Meters with the same tags are automatically

combined, we wanted to make it so that each metric is updated based on which tenant is

using the resource, which also means that the tags cannot be statically set ahead of time

because they change dynamically based on the current tenant.

Micrometer does not currently have an out-of-the-box solution for dynamic tags. While it

initially seems like it would be a relatively easy feature to implement by converting the static

values for each tag to dynamic variables, the way in which Micrometer represents its Meters

prevents this feature change. Within the meter registry, any two Meters are considered the

same if they are the same type and have the same name and tags. With dynamic tags, two

Meters could then suddenly become one when a dynamic tag value collides with a static tag

value on another meter [17].

Implementing a custom solution for dynamic tags proved to be complicated as well be-

cause each Meter does not always maintain a reference to the meter registry that it is attached

to, so branching off a new metric every time a tag value changes would not necessarily work

because it would not be added automatically to the original Meter’s registry, in which case

it would not show up anywhere. Furthermore, for certain types of Meters like Timers, all

of the options used to create the original Meter are not preserved after it is created, so any

newly created Meters of these types would be missing information [18].

Given the challenges with implementing a generic dynamic tags feature that could be

applied to any Meter, we decided to narrow the scope of the feature to more directly address

the problem at hand: seeing tenant IDs on HTTP metrics. Once we did this, it became a

much easier problem to solve. Spring Boot 3, the most recent version of Spring Boot as of the

36

time of this paper’s writing, includes a new component for handling HTTP requests called

ServerRequestObservationConvention. The default HTTP metrics that Micrometer pro-

vides [4] includes tags for request method type (e.g. GET), the exception class name if any

exception is thrown (e.g. NullPointerException), HTTP status codes (e.g. 404), outcome

(e.g. success), and Uniform Resource Identifier (URI) template (e.g. /api/user/{id}).

This new ServerRequestObservationConvention component now allows us to add on to

this list of default tags by overriding the DefaultServerRequestObservationConvention’s

getLowCardinalityKeyValues() method, which is only invoked for metrics (in contrast, the

getHighCardinalityKeyValues() method is only invoked for traces) [19].

See Appendix C for the code to implement dynamic tags for tenant IDs on HTTP request

metrics. When overriding the getLowCardinalityKeyValues() method, we add in another

method additionalTags(), which checks for the presence of custom header "X-Tenant-ID",

and adds it in as a tag if so. If the header is not present, we set this tag value to "null". This

is important because Micrometer cannot handle having two metrics that are nearly identical

(in type, name, tags, etc.) except with one having an additional tag as well. Micrometer will

only display one of these almost-identical metrics, and it will choose to display whichever

one is accessed first. Without this "null" default value then, all the desired metrics will not

show up. This workaround also makes sense from a logical perspective though because all

metrics without a tenant ID associated with it should be grouped together if they are the

same in every other way. They can also be filtered on having a "null" tag value, whereas

they would not be able to be filtered out otherwise.

Even though we were not able to fully configure dynamic tags on all metrics, we are at

least able to configure dynamic tags for the specific metrics that matter most to have them.

37

Chapter 3

Logs and Traces

Logs and traces are the two major components of observability aside from metrics. To

reiterate, logs record events and can show users more information about these events, such

as which ones occurred and when they occurred. They can provide any information that a

developer wishes to know about the state of the system at the time the event occurred, as

long as there is a way to access that state through code. Traces extend the idea of logs by

building in a causal ordering of events, helping users trace the outcome of an error back to

the error itself. In a microservice architecture, this requires communication and coordination

between distributed services. Traces provide a sequence to the events described by logs. This

assists developers in gaining a better idea of what happened as a whole and how the different

events are interconnected.

Metrics, logs, and traces are all important in observability, and these three components

ultimately form the observability framework that we are establishing in our decentralized

system.

3.1 Logs

There are logs emitted for every kind of event. As such, it is easy to get bogged down in

a flood of logs, making it difficult for developers to parse through them all to find helpful

38

information. At a certain point, they are more helpful to not have rather than to have. This

balance of having too much information versus too little information can be mitigated if

there is an effective way to organize the logs and sift through them easily.

In the rest of this section, we describe a system that allows developers to utilize all of

the information provided by logs efficiently in their development by using a standardized log

message structure and sectioning out each category of information, thereby helping develop-

ers debug faster with only the most relevant pieces of information. To return to our running

example of the developer fixing the user’s slow requests issue, having organized logs would

have allowed the developer to filter log messages from a specific service with a certain log

level (e.g. FATAL, ERROR, WARN), thereby removing the need for them to parse though

hundreds, if not thousands, of log messages. Once the developer identifies some problematic

log messages, they can then narrow down the sections of code that emitted these log events

to focus on only those snippets.

3.1.1 OpenTelemetry Collector

We first return to the OpenTelemetry Collector. There are a couple ways to install the

OpenTelemetry Collector. For metrics, we used the OpenTelemetry Kubernetes Operator,

which automatically installs the Collector into a Kubernetes system and actively monitors

its instances. The Kubernetes Operator is the fastest method because it abstracts out much

of the configuration work. However, another method that provides more customizability is

to install the Collector via a Helm chart [20].

A Helm chart is a collection of files that create a set of Kubernetes resources. It can be

very simple, creating only a single Kubernetes pod, or it can be very complex, with a hier-

archical directory structure and interconnected custom resources. OpenTelemetry provides

a Helm chart to install the Collector, and this Helm chart can be easily edited by developers

to completely customize the Collector for the developer’s purposes [21].

OpenTelemetry’s Collector Helm chart comes with a set of configurable presets for a

39

few common tasks that require complex alterations to the Kubernetes deployment of the

Collector. Enabling any of these presets abstracts away these complicated steps by triggering

the associated Helm charts when used. The preset that is particularly helpful to us here is

the logsCollection preset. One limitation of using presets, however, is that they are not

easily configurable. In the future, we hope to rectify this problem. More on that in chapter 5.

Without the preset, our Kubernetes containers send all of their logs to standard output.

Currently, our system uses FluentBit, which scrapes these Kubernetes logs from standard

output [22]. FluentBit is another Cloud Native Computing Foundation (CNCF) open-source

project, designed to integrate well with other CNCF projects such as Kubernetes and Open-

Telemetry. Its focus is to streamline performance and consume fewer resources. Like the

OpenTelemetry Collector, it is used to manage telemetry data from various sources and pro-

cess this data in one place. However, since we are already using the OpenTelemetry Collector

for metrics purposes, we wanted to explore whether we would be able to process log messages

through the Collector as well, instead of using FluentBit. Enabling this functionality would

open the door to potentially removing the need for FluentBit and consolidating the technical

stack by one less product.

Similar to how FluentBit scrapes the Kubernetes logs from standard output, we can

configure the OpenTelemetry Collector to scrape logs from standard output as well. Part

of what the logsCollection preset does to handle this is to configure a Filelog receiver,

which is a type of receiver on the Collector that scrapes and parses logs from files. The

Filelog receiver can only collect logs on the specific Kubernetes node that the Collector is

running on, and having multiple Collectors on the same node produces duplicate log data,

so it is recommended that this preset be used with Collectors being run in the Kubernetes

daemonset mode. The daemonset structure means that there is exactly one Collector running

on each node, as seen in Figure 2.1. We are already running the Collector in the daemonset

mode for metrics, so this aligns well with our pre-existing Collector setup.

Now that we have configured the Collector to scrape the logs from the Kubernetes pods’

40

standard output files, we then need to ensure we are parsing these logs correctly. We had

to make numerous tweaks to the logsCollection preset’s parsers because the structure of

our logs did not line up with what the parsers expected. These changes can be made by

overriding the Filelog receiver automatically instrumented by the preset and updating the

operators involved in the receiving of the data to expect the correct form of log messages.

For the configuration we used, see Appendix D. Developers may customize this configuration

to their specifications.

3.1.2 Logs Ingestion Endpoint

At this point, we have successfully scraped the logs and parsed out the information required

to achieve the OTLP specification for logs [7]. Our next and final step is to connect these

logs, being piped through the Collector, to our monitoring backend.

We modeled our approach to connect logs to our monitoring backend off of our previous

approach to connect metrics to our monitoring backend. In line with the principles of

using a microservice architecture, we set up a new HTTP endpoint in a separate service

for ingesting and managing log messages. This new HTTP endpoint expects to receive log

data in accordance with the OTLP specifications and uses OpenTelemetry’s Java library to

reformat the data into the existing back end’s expected shape. Future developers can choose

to configure various transformations and filters for log messages in this layer (in addition to

the operators in the Collector) if they so choose.

With the connection to the backend implemented, the log messages from Kubernetes

pods are now able to be scraped into the Collector and exported to the monitoring backend

system, where the logs can be filtered and sorted by different parts of the message according

to what is most relevant and useful to the developer.

The final end-to-end pipeline for the logs component of our observability framework is

below in Figure 3.1 as follows:

41

Figure 3.1: Flow chart for logs

3.2 Traces

Traces are perhaps the most complex element of observability. They involve many moving

parts, whereas metrics only need to track one measure at a time, and logs essentially are

print statements triggered when their code is accessed. In contrast, since traces provide a

causal ordering of events, they must span different types of events and record which event

leads to which other event. This becomes even more difficult in a microservice architecture,

where calls span different services, each with its own purpose. This is where distributed

tracing comes in.

3.2.1 Distributed Tracing

Distributed tracing is a method of tracking application requests across services and databases,

with many spans comprising a single trace. It is especially important and relevant in a

microservice architecture, where there are many interconnected services constantly commu-

nicating with each other to serve a single user request. Figure 3.2 gives an example of a

distributed trace.

42

Figure 3.2: Distributed trace example, provided by Datadog [23]

The figure above shows how a trace can span many different types of events, from API

and function calls to database accesses to user requests. Throughout the trace, the trace

ID remains constant, but each event has a different span ID, representing the entire action

conducted in the event. Many spans comprise a single trace. For example, in the figure,

the dark blue bar represents the length of time that it took the system to execute the

"PROCESS COUPON" function call. We also can see that this function call was triggered by

the green "FRAUD CHECK" API call because the dark blue bar started exactly where the green

bar ended, and the "PROCESS COUPON" function call subsequently triggered the light blue

"STORE COUPON" write to database because the dark blue bar ends exactly where the light

blue bar begins.

As evidenced by the different levels of bars in the graph, a single request can trigger

multiple actions. This is part of what makes distributed tracing so difficult; there can be

a large number of spans in one trace within a distributed system if the services within the

system are highly interconnected. Each span must always keep track of who its parent is,

i.e. which action/span triggered it.

The graph provides a very simple example of all the events that can be triggered by

43

a single user request. In a more complex and connected system, there can be many more

services and components involved in a single user request. It can thus be very complicated for

a developer to debug a single issue because the issue could have originated in many different

places. Having distributed traces would help the developer tremendously by narrowing down

the specific chain of events that led to the issue, so the developer needs only to examine each

event in the chain to pinpoint where the error occurred. For example, if the developer from

our previous scenario involving a user’s slow HTTP requests had access to distributed traces,

they would be able to narrow down the components they look at to be only the ones that

the user’s request touched, which would be easily accessible by simply following the trace

for that one request. Seeing the time spent to execute each call further allows the developer

to tunnel down into which specific component in the flow is contributing the most to the

user’s high latency issue. It is in this way that traces help developers to determine the origin

of errors, and because they include the timing of each call, they are particularly helpful for

high latency errors.

3.2.2 OpenTelemetry Java Agent

As we already instrumented OpenTelemetry components through much of the system for

metrics and logs, it was natural to continue using OpenTelemetry for traces. OpenTelemetry

has a Java agent that provides automatic instrumentation for metrics, logs, and traces.

A Java agent is a specific type of file that contains compiled Java code and uses the Java

Instrumentation API that the Java Virtual Machine (JVM) provides to alter the low-level

code that is loaded into the JVM [24]. This means that the Java agent is run every time

Java code is run. A Java agent can be loaded in either statically, by adding in a -javaagent

flag whenever an application is started up, or dynamically, by attaching the agent to code

that is already running via the Java Attach API.

The OpenTelemetry Java agent can automatically instrument traces into a distributed

system. It does this by injecting byte-code into the JVM that creates a trace for each request

44

and corresponding spans to follow the actions carried out by the request through the entire

microservice system. By using the OpenTelemetry Java agent and exporting the traces, we

are thereby able to configure distributed traces into our system. From there, we can export

these traces in OTLP format to the Collector, which will parse them into trace objects that

include the trace ID and span ID, allowing for distributed traces to be correlated.

The existing system had no support for traces, while it did already have some support

for metrics and logs, so there is still much work to be done on this front. This work includes

creating a new service specifically for traces and processing the traces exported to the Col-

lector. The new service then needs to have an HTTP endpoint to receive OTLP-formatted

traces and export them to the monitoring backend visualization platform.

When the future work on traces is completed, the final end-to-end pipeline for the traces

component of our observability framework should look like Figure 3.3:

Figure 3.3: Flow chart for traces

More on this in chapter 5.

45

Chapter 4

Results

Much of the data that exists in today’s systems within industry settings are not helpful to

developers and end up introducing a lot of noise into the system as a result. The major

goals of this research were to successfully instrument a new framework for observability into

a distributed, microservice architecture, and to have this framework provide the information

that developers needed to effectively monitor large systems while still being highly customiz-

able for future developers to iterate upon. In the next few sections, we review the results of

implementing everything we discussed in the previous chapters.

4.1 State of Metrics

While there are many metrics that provide information that already exist in systems, they

often have many limitations: they may be incomplete if there are not many of them; they may

lack granularity if they do not exist by service; and they may provide insufficient visibility

into the system if they do not contain any application performance metrics (e.g. metrics on

the web server, memory usage metrics). However, after building in end-to-end compatibility

in our system with Micrometer and the OpenTelemetry Collector, each service now has over

50 metrics available that exist specifically for that service. It is likely that a service has

more than 50 metrics available too depending on which technologies they use, as Micrometer

46

provides metrics by default for all frameworks that are being used as long as the framework

is supported. A service will also have more metrics available if it requires tenant-specific

HTTP metrics, as each tenant will have its own set of HTTP metrics then, or if it has many

HTTP endpoints enabled, as each endpoint will have its own set of HTTP metrics. On

average though, assuming dynamic tags on tenant IDs are not yet enabled and there is only

1 HTTP endpoint on the service, each service now has 60 metrics out-of-the-box, compared

to 0 metrics before this framework was implemented.

Figure 4.1 and Figure 4.2 below provide examples of metric graphs available on the

monitoring backend after fully configuring Micrometer and the OpenTelemetry Collector.

Each metric graph can also be filtered by tags, which is where dynamic tags for tenant IDs

on HTTP metrics are very helpful.

Figure 4.1: Average free bytes available on the disk, by service

Figure 4.2: Percent of system CPU usage, by service

The graphs in Figure 4.1 and Figure 4.2 only provide examples of 2 out-of-the-box metrics.

47

However, we want to evaluate how useful these default metrics really are. Interviews with

SREs operationally managing SaaS (software-as-a-service) products revealed that it was most

important to have metrics that measured the four "golden signals" of monitoring: latency–

the time it takes to service a request; traffic–a measure of how much demand is being placed

on the system; errors–the rate of requests that fail; and saturation–how "full" the service is.

Luckily, we are able to identify default metrics in our framework that satisfy each of these

golden signals. Table 4.1 lists which default metrics are helpful in measuring each golden

signal.

Table 4.1: Default metrics that help measure the golden signals of monitoring

Signal Metric
Latency - HTTP server requests seconds max, separable by status

and method (to track error latency as well)
- application ready time seconds

Traffic - HTTP server requests seconds count, separable by
method

Errors - HTTP server requests seconds count, separable by status
(i.e. not 200)
- log4j2 events total, separable by level (i.e. error/fatal)

Saturation - system CPU usage
- system load average
- process CPU usage
- JVM buffer memory used, in bytes
- JVM garbage collection overhead percent
- JVM memory usage after garbage collection percent
- JVM memory used, in bytes
- JVM memory max, in bytes
- executor pool size threads
- executor pool max threads
- disk free bytes
- disk total bytes

Now that we have seen that the default metrics of our framework satisfy SRE require-

ments, let us look at the custom metrics part of the framework. There are 2 parts to creating

a custom metric: the measurement-specific portion of writing functions to take these mea-

surements and the integration-specific portion of incorporating these measurements as a new

48

metric in the meter registry. The former part can vary greatly in complexity and effort, based

off of what is being measured, but the latter part is within our control, so we will focus on

that. With the new framework, the integration portion of creating a custom metric requires

only one line, for example:

List<String> customMetric = (new CustomGauge<>(meterRegistry, "measurements",

new ArrayList<>(), List::size)).getObj();

With this one line, we successfully instrument a custom Gauge object with a name that

automatically begins with "custom.", as our framework has dictated. Any further standard-

izations we want to apply to all of our custom metrics can be changed in the CustomMetric

wrapper class, instead of needing to edit each individual custom metric, as was the case

previously.

Since this framework has not been fully rolled out, we cannot say for certain how many

custom metrics will be required given that it seems like the default metrics satisfy require-

ments so far, but we will approximate that custom metrics will comprise 10% of all metrics,

with the remaining 90% being the default metrics. With the declaration of a custom metric

requiring only 1 line of code then, the number of additional lines of code to create a custom

metric is minimal. Operating under the assumption of custom metrics comprising 10% of all

metrics, and using the previous measurement of 60 default metrics on average added in each

service, we can estimate the total number of additional lines of code needed in our framework

to be approximately 6 if all the functions required to perform the metric’s measurements

are already present. As this is a relatively small number, and it still ensures standardization

across all custom metrics, we consider our framework to be successful on the custom metrics

front.

The main benefit of instrumenting metrics in this observability framework is to shift the

approach towards system monitoring to be more proactive rather than reactive. Since this

research is targeted towards industry uses, it is important to note that oftentimes in industry

settings, developers only fix problems once an issue is propagated through the system and

49

results in an error. However, by monitoring multiple metrics across all parts of a system, we

are able to create a baseline measure of what to expect in a correctly operating system, so we

can be more proactive in identifying and resolving potential sources of issues by seeing when

a metric deviates from what we would expect instead of waiting until errors are reported.

4.2 State of Logs

Figure 4.3 below provides an example of a logs graph available on the monitoring backend

after configuring the logsCollection preset on the Collector and the logs ingestion HTTP

endpoint on the monitoring backend service. Users are able to filter by the log message’s

severity level (to filter out the more important messages) and source as well. They can also

sort the messages by time or select a specific frame of time to evaluate, thus enabling them

to ignore any logs that are not relevant to their work.

Figure 4.3: Log messages by time, source (which service it originated in), message text, and
severity level

50

4.3 State of Traces

Traces are a little more complicated because our framework has not provided a comprehensive

solution for them. Instead, we mainly gained a deeper understanding of what was possible

with automatic instrumentation and what we may still want to manually instrument: the

OpenTelemetry Java agent supports REST endpoint accesses and database accesses, so the

bulk of what developers want to see is already present. Any additional manual instrumen-

tation would be minimal.

4.4 Overall Impact

Our framework instruments observability data for metrics, logs, and traces, which results in

increased amounts of data for our system. While we cannot publicly reveal the exact amount

of load our system can handle, we can provide an equation that approximates the number

of data points emitted per second, including the estimated number of custom metrics. The

following equation uses s to represent the number of services in the microservice architecture

and p to represent the number of pods (replicas) per service. By default, the OpenTelemetry

Collector pushes data once every 60 seconds, but this frequency is configurable.

total data points = 66 metrics ∗ s ∗ p ∗ 1 push/60 seconds

= 1.1sp data points pushed per seconds

The previous equation assumes that dynamic tags are not yet enabled on HTTP metrics,

so if we assume that dynamic tags are enabled for tenant IDs on HTTP metrics and we are

only using one HTTP endpoint per service, the new equation becomes the following, with t

51

representing the number of tenants for a single resource:

total data points = (65 metrics + 1 HTTP metric ∗ t) ∗ s ∗ p

∗ 1 push/60 seconds

= (65 + t)/60sp data points pushed per second

To give an idea of what scale this is on, we can plug in some sample values into this

equation. A given system usually has less than 100 services, but for a scaled scenario, we

can assume s = 100. The number of pods per service is usually 2, but it can go up to 10,

so in our scaled scenario, p = 10. Finally, the number of tenants for a given resource can

fluctuate depending on the system, but we will assume that large systems have 500 tenants,

and the average system has 200 tenants, so for the scaled scenario, we will assume t = 500.

(65 + t)/60sp = (65 + 500 tenants)/60 ∗ 100 services ∗ 10 pods/service

= 9, 417 total data points per second

This is a scaled scenario. To give an example of an average scenario, let us assume s = 50,

p = 2, and t = 200:

(65 + t)/60sp = (65 + 200 tenants)/60 ∗ 50 services ∗ 2 pods/service

= 442 total data points per second

Given that all of these values can vary from system to system and depend on specific

configuration details of the OpenTelemetry Collector, these numbers are only provided to

give an approximate idea of how many data points are being exported by our framework.

With an observability framework that generates metrics and traces and consolidates

them with logs in one common Collector, SREs and developers now have access to much

more information on the state of their systems than they did before, and they have many

52

more tools at their disposal to help them debug issues as well. Users benefit from this

framework too because they now have the ability to visualize OTLP-formatted data from any

source. Since OpenTelemetry is the emerging industry standard, this means that there are

many more products that can be integrated with this monitoring backend, making it a more

comprehensive platform overall. For example, Amazon Web Services’ (AWS) CloudWatch

[25], which is a separate, open-source observability platform, can export observability data

in OTLP format, so users who employ multiple observability solutions can now consolidate

their data in one complete monitoring backend platform.

53

Chapter 5

Other Considerations and Future Work

Observability is a continuously developing field as the systems we monitor continue to develop

and change—the tools we use to monitor these systems must then develop and change as

well. There is always more to do to monitor a system. With this in mind, here are a few

ideas for future work on developing out this observability framework.

5.1 Future Work on Metrics

The following are features that may be added to make our proposed framework further

extensible and customizable:

• Extend the custom metric wrapper classes to all Meter primitives, since only 4 are rep-

resented right now: Counter, Timer, and Gauge. Unrepresented Meter primitives in-

clude DistributionSummary, LongTaskTimer, FunctionCounter, FunctionTimer,

and TimeGauge.

• Configure support for users with data already in OTLP format to use the metrics

ingestion HTTP endpoint. This work should be minimal, primarily ensuring the data

that users are exporting are encoded and formatted properly, since the endpoint already

ingests the OTLP format.

54

5.2 Future Work on Logs

There is still more that can be done with logs to clean up the organization of the code:

• Implement the logsCollection preset manually to reduce redundancy when customiz-

ing the component. Currently we are using the preset to establish a baseline setup,

then we override that with various customizations to the Filelog receiver of the Open-

Telemetry Collector, but if we configure the collection of log data manually instead of

using the preset, we will not need to override anything in order to customize the Col-

lector.

• Extract more of the parsing and processing of the logs into the services to keep the

Collector more lightweight and scalable. There may be some experimentation required

in finding the perfect balance.

5.3 Future Work on Traces

Future work on traces can be broken down into the following steps:

1. Decide whether any manual instrumentation is necessary. If so, OpenTelemetry pro-

vides a Java SDK (software development kit) that is very helpful in configuring dis-

tributed tracing. It will automatically instrument anything that it can first, along

with anything the developers build in. The benefit of manual instrumentation is that

the observability system can focus on capturing custom metadata in specific areas of

interest.

2. Create an HTTP endpoint that can receive traces in OTLP format, parse them, and

represent them in the custom backend.

3. Correlate trace IDs to logs by adding attributes into logs in order to see which logs

correspond with a given trace, thereby further filtering out extraneous log messages.

55

Once traces can be processed and ingested into the monitoring backend, the overall flow

of observability data will look like the diagram below in Figure 5.1.

Figure 5.1: Flow chart for metrics, logs, and traces

5.4 Other Considerations

There are a few other considerations to have moving forward, beyond the future work that

needs to be done. Some of these considerations pertain to monitoring ongoing developments

in the observability space, and others pertain to tradeoffs that may occur in certain design

decisions.

With metrics, we had limited the scope of the goal for dynamic tags to only apply to

HTTP metrics, but ideally, we would be able to implement dynamic tags for any type of

metric. Since this problem is mainly solvable by the Micrometer developers, it is important

to monitor future iterations of Micrometer to see if any updates make dynamic tags more

feasible to implement.

With logs, we must weigh the tradeoffs of cutting out FluentBit in favor of the Open-

Telemetry Collector. There is still much to be done in terms of seeing how much is stream-

56

lined from having all the observability components piped through the same technology (the

OpenTelemetry Collector) as opposed to having them all be processed separately in different

technologies. If there is a significant performance impact, it may be worth considering rein-

stating FluentBit, as it is specifically designed for streamlining performance and consuming

fewer resources.

With traces, one technology that we explored was eBPF tracing [26]. eBPF, which

originally stood for extended Berkeley Packet Filter but is now considered a standalone term,

allows programs to run within an operating system, so developers can add functionality to

the operating system at runtime. When extending this technology to tracing, it means

that tracing is lightweight, scalable, and fast, as eBPF programs track instructions as they

execute. Since eBPF operates at the level of the kernel, it cannot access native Kubernetes

data; however, it is able to get information (such as IP address, source, and destination)

that can then be correlated with Kubernetes pods. There are two main approaches to

implementing an eBPF program: kernel probes (kprobes) and user probes (uprobes). Kernel

probes have security and privacy concerns, as they do not work with Transport Layer Security

(TLS), while user probes have scalability concerns, as they need to be implemented for each

client library being used and must be updated every time a library is updated.

OpenTelemetry has an eBPF Collector, but it is still being updated frequently. Given all

of these concerns, we decided against using eBPF tracing, as it is still a rapidly developing

area, and implementing it would make the entire microservice system subject to frequent up-

dates and likely more frequent breakages too. However, it is certainly something to consider

for the future, once updates stabilize and security tightens.

57

Conclusion

This thesis describes an observability framework incorporating the three key elements of

observability: metrics, which are data collected from measuring events; logs, which record

events and provide more information and context about them; and traces, which provide a

sequential ordering of events. This framework is relevant to every company in the industry

because observability plays a key role in keeping systems up and running.

We developed this framework originally with the design goals of flexibility and customiz-

ability in mind, and we have achieved these goals. By ensuring the framework does not

need to be implemented in every microservice in order to be utilized, but still allowing for

microservices to override generalized features, we create a balance between a scalable system

and a flexible one. By laying out a framework for custom metrics and using technologies

with modifiable configurations like the OpenTelemetry Collector, we ensure that our system

is customizable.

Prior to the work described in this thesis, we have seen that many systems do not have

any sufficient solution to the issue of observability, much less observability in a microservice

architecture. Some had very few metrics, with even less of these metrics being helpful

towards monitoring an application’s performance, and there was no organized way to parse

out valuable data in log messages, along with no distributed traces whatsoever.

The observability framework that we laid out here integrates seamlessly into the existing

services and backend monitoring platform. The many features of our framework are as

follows:

58

• All of the services within the microservice architecture are able to reflect the same

changes by making the changes in a base library that all of the services inherit from.

• Any service can choose to stop exporting observability data points by simply switching

off that feature using a specific application property, and any service can similarly

choose to stop exporting certain groups of observability metrics by specifying them in

a different application property.

• Should the default metrics provided by Micrometer lack in anything, developers can

create their own custom metrics in a standardized manner using the custom metric

wrapper classes.

• Tenant IDs are also included in HTTP metrics to identify more easily which tenants

are being affected by a given issue.

• Metric graphs are available in the monitoring platform, separable by a metric’s tags or

any other attribute.

• Log messages can be processed in many different ways through either the OpenTeleme-

try Collector or in the microservices.

• Log graphs are also available in the backend monitoring platform, separable by at-

tributes such as timestamp, source, and severity level.

• Distributed traces are automatically instrumented throughout the services by using

OpenTelemetry’s Java agent.

There is still much work to be done on this framework, as evidenced by chapter 5, but

it has great potential to help SREs manage and streamline system observability within our

microservices. In this way, we can reduce the time both SREs and developers need to spend

on identifying and debugging issues, and we can increase efficiency as a whole.

59

Appendix A

OpenTelemetry Collector Configuration

This is a sample configuration for the OpenTelemetry Collector that receives telemetry data

via OTLP, processes the data in batches, and exports the data via OTLP.

1 receivers:

2 otlp:

3 protocols:

4 http:

5 endpoint: 0.0.0.0 :4318

6 processors:

7 batch:

8

9 exporters:

10 otlp:

11 endpoint: otelcol :4317

12

13 service:

14 pipelines:

15 traces:

16 receivers: [otlp]

60

17 processors: [batch]

18 exporters: [otlp]

19 metrics:

20 receivers: [otlp]

21 processors: [batch]

22 exporters: [otlp]

23 logs:

24 receivers: [otlp]

25 processors: [batch]

26 exporters: [otlp]

61

Appendix B

Code for Metric Filters

This is a Spring Boot configuration class that customizes our Micrometer meter registry

configuration. With the addition of this configuration class, users can change the values of

an environment variable during runtime to filter out which metrics are exported based on

the prefix of the metric (determined by what the metric measures), delimited by commas.

For example, using a value of "jvm,log4j2" for the environment variable filters out all JVM

and log4j2 logger metrics from the registry, so they will not be exported to the monitoring

backend.

1 import io.micrometer.core.instrument.config.MeterFilter;

2 import io.micrometer.prometheus.PrometheusMeterRegistry;

3 import org.springframework.context.annotation.Bean;

4 import org.springframework.context.annotation.Configuration;

5 import org.springframework.boot.actuate.autoconfigure.metrics

6 .MeterRegistryCustomizer;

7 import java.util.Arrays;

8

9 @Configuration

10 public class MeterRegistryConfig {

11 @Bean

62

12 public MeterRegistryCustomizer <PrometheusMeterRegistry >

configurePrometheusExport(String prometheusMetrics) {

13 if (prometheusMetrics.length () > 0) {

14 return (registry) -> registry.config () .meterFilter(

MeterFilter.deny ((id) ->

15 Arrays.stream(prometheusMetrics.split(",")).anyMatch(

m -> id.getName () .startsWith(m))));

16 }

17 return (registry) -> {};

18 }

19 }

63

Appendix C

Code for Dynamic Tenant Tags for

HTTP Metrics

This is a custom-built class that extends a Spring Boot 3 component in order to allow HTTP

metrics to have dynamic tags. Our example uses a tenant’s ID, contained in the header of

an HTTP request, as the dynamic tag value.

1 import io.micrometer.common.KeyValues;

2 import org.springframework.http.server.observation

3 .DefaultServerRequestObservationConvention;

4 import org.springframework.http.server.observation

5 .ServerRequestObservationContext;

6 import org.springframework.stereotype.Component;

7

8 @Component

9 public class CustomServerRequestObservationConvention extends

DefaultServerRequestObservationConvention {

10 @Override

11 public KeyValues getLowCardinalityKeyValues(

ServerRequestObservationContext context) {

64

12 return super.getLowCardinalityKeyValues(context).and(

additionalTags(context));

13 }

14

15 protected KeyValues additionalTags(

ServerRequestObservationContext context) {

16 KeyValues keyValues = KeyValues.empty ();

17 String headerString = context.getCarrier () .getHeader("X-

Tenant -ID");

18 if (headerString == null) {

19 headerString = "null";

20 }

21 keyValues = keyValues.and("custom.header", headerString);

22 return keyValues;

23 }

24 }

65

Appendix D

OpenTelemetry Collector Configuration

to Parse Logs

This is a sample configuration for the OpenTelemetry Collector, more specifically the oper-

ators involved in parsing the logs through the Filelog receiver. I have extrapolated parts

of the configuration that are not relevant to the operators’ configuration with the asterisk

("*") character. Much of this is adapted from the logsCollection preset code [27].

1 mode: daemonset

2

3 presets:

4 logsCollection:

5 enabled: true

6

7 config:

8 receivers:

9 filelog:

10 *

11 operators:

12 - type: router

66

13 id: get -format

14 routes:

15 - output: parser -docker

16 expr: ’body matches "^\\{" ’

17 - output: parser -crio -severity

18 expr: ’body matches "^[^ Z]+ .*(INFO|DEBUG|TRACE|WARN|

ERROR|FATAL)"’

19 - output: parser -crio

20 expr: ’body matches "^[^ Z]+ "’

21 - output: parser -containerd

22 expr: ’body matches "^[^ Z]+Z"’

23 - type: regex_parser

24 id: parser -crio -severity

25 regex:

26 ’^(?P<time >[^ Z]+) (?P<stream >stdout|stderr) (?P<logtag

>[^]*)

27 .* ?(?P<sev >INFO|DEBUG|TRACE|WARN|ERROR|FATAL)]? ?(?P<log

>.*)$’

28 timestamp:

29 parse_from: attributes.time

30 layout_type: gotime

31 layout: ’2006 -01 -02 T15 :04:05 .999999999Z07 :00’

32 severity:

33 parse_from: attributes.sev

34 - type: remove

35 field: attributes.sev

36 - type: recombine

37 id: crio -severity -recombine

38 output: extract_metadata_from_filepath

67

39 combine_field: attributes.log

40 source_identifier: attributes["log.file.path"]

41 is_last_entry: "attributes.logtag == ’F’"

42 combine_with: ""

43 max_log_size: 102400

44 - type: regex_parser

45 id: parser -crio

46 regex: ’^(?P<time >[^ Z]+) (?P<stream >stdout|stderr) (?P<

logtag >[^]*) ?(?P<log >.*)$’

47 timestamp:

48 parse_from: attributes.time

49 layout_type: gotime

50 layout: ’2006 -01 -02 T15 :04:05 .999999999Z07 :00’

51 - type: recombine

52 id: crio -recombine

53 output: extract_metadata_from_filepath

54 combine_field: attributes.log

55 source_identifier: attributes["log.file.path"]

56 is_last_entry: "attributes.logtag == ’F’"

57 combine_with: ""

58 max_log_size: 102400

59 - type: regex_parser

60 id: parser -containerd

61 regex:

62 ’^(?P<time >[^ ^Z]+Z) (?P<stream >stdout|stderr) (?P<logtag

>[^]*)

63 ?(?P<log >.*)$’

64 timestamp:

65 parse_from: attributes.time

68

66 layout: ’%Y-%m-%dT%H:%M:%S.%LZ’

67 - type: recombine

68 id: containerd -recombine

69 output: extract_metadata_from_filepath

70 combine_field: attributes.log

71 source_identifier: attributes["log.file.path"]

72 is_last_entry: "attributes.logtag == ’F’"

73 combine_with: ""

74 max_log_size: 102400

75 - type: json_parser

76 id: parser -docker

77 output: extract_metadata_from_filepath

78 timestamp:

79 parse_from: attributes.time

80 layout: ’%Y-%m-%dT%H:%M:%S.%LZ’

81 - type: regex_parser

82 id: extract_metadata_from_filepath

83 regex: ’^.*\/(?P<namespace >[^_]+)_(?P<pod_name >[^_]+)_(?P<

uid >[a-f0 -9\ -]{36}) \/(?P<container_name >[^\._]+) \/(?P<

restart_count >\d+)\.log$’

84 parse_from: attributes["log.file.path"]

85 - type: move

86 from: attributes.stream

87 to: attributes["log.iostream"]

88 - type: move

89 from: attributes.container_name

90 to: resource["k8s.container.name"]

91 - type: move

92 from: attributes.namespace

69

93 to: resource["k8s.namespace.name"]

94 - type: move

95 from: attributes.pod_name

96 to: resource["k8s.pod.name"]

97 - type: move

98 from: attributes.restart_count

99 to: resource["k8s.container.restart_count"]

100 - type: move

101 from: attributes.uid

102 to: resource["k8s.pod.uid"]

103 - type: move

104 from: attributes.log

105 to: body

106 - type: remove

107 field: attributes.time

108 exporters:

109 *

110 service:

111 *

70

References

[1] B. H. Miller, H. Liu, and M. Kolle, “Scalable optical manufacture of dynamic

structural colour in stretchable materials,” Nature Materials, vol. 21, no. 9,

pp. 1014–1018, 2022, Publisher: Nature Publishing Group, issn: 1476-4660. doi:

10.1038/s41563-022-01318-x. [Online]. Available:

https://www.nature.com/articles/s41563-022-01318-x (visited on 05/20/2024).

[2] “What is microservices architecture?” Google Cloud. (2024), [Online]. Available:

https://cloud.google.com/learn/what-is-microservices-architecture (visited on

05/20/2024).

[3] “Spring boot,” Spring Boot. (2024), [Online]. Available:

https://spring.io/projects/spring-boot (visited on 05/21/2024).

[4] “Spring boot actuator,” Spring Docs. (2024), [Online]. Available:

https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html

(visited on 03/24/2024).

[5] “Micrometer documentation :: Micrometer.” (2023), [Online]. Available:

https://docs.micrometer.io/micrometer/reference/ (visited on 05/24/2024).

[6] C. N. C. Foundation. “OpenTelemetry collector,” OpenTelemetry. (2024), [Online].

Available: https://opentelemetry.io/docs/collector/ (visited on 03/26/2024).

[7] C. N. C. Foundation. “OTLP specification 1.1.0,” OpenTelemetry. (2024), [Online].

Available: https://opentelemetry.io/docs/specs/otlp/ (visited on 03/27/2024).

71

https://doi.org/10.1038/s41563-022-01318-x
https://www.nature.com/articles/s41563-022-01318-x
https://cloud.google.com/learn/what-is-microservices-architecture
https://spring.io/projects/spring-boot
https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html
https://docs.micrometer.io/micrometer/reference/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/specs/otlp/

[8] S. Karumuri, F. Solleza, S. Zdonik, and N. Tatbul, “Towards observability data

management at scale,” ACM SIGMOD Record, vol. 49, no. 4, pp. 18–23, 2021, issn:

0163-5808. doi: 10.1145/3456859.3456863. [Online]. Available:

https://dl.acm.org/doi/10.1145/3456859.3456863 (visited on 07/10/2024).

[9] S. Niedermaier, F. Koetter, A. Freymann, and S. Wagner, “On observability and

monitoring of distributed systems: An industry interview study,” in vol. 11895, 2019,

pp. 36–52. doi: 10.1007/978-3-030-33702-5_3. arXiv: 1907.12240[cs]. [Online].

Available: http://arxiv.org/abs/1907.12240 (visited on 07/01/2024).

[10] M. Usman, S. Ferlin, A. Brunstrom, and J. Taheri, “A survey on observability of

distributed edge & container-based microservices,” IEEE Access, vol. 10,

pp. 86 904–86 919, 2022, Conference Name: IEEE Access, issn: 2169-3536. doi:

10.1109/ACCESS.2022.3193102. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/9837035 (visited on 07/01/2024).

[11] “Multitenant architecture.” (2024), [Online]. Available:

https://www.cloudflare.com/learning/cloud/what-is-multitenancy/ (visited on

05/24/2024).

[12] “Log4j,” Apache Logging. (2024), [Online]. Available:

https://logging.apache.org/log4j/2.x/ (visited on 07/06/2024).

[13] “Prometheus overview,” Prometheus Docs. (2024), [Online]. Available:

https://prometheus.io/docs/introduction/overview/ (visited on 03/24/2024).

[14] C. N. C. Foundation. “Transforming telemetry,” OpenTelemetry. (2024), [Online].

Available: https://opentelemetry.io/docs/collector/transforming-telemetry/ (visited

on 03/28/2024).

[15] C. N. C. Foundation. “Using OpenTelemetry with kubernetes,” OpenTelemetry.

(2024), [Online]. Available:

https://opentelemetry.io/docs/kubernetes/getting-started/ (visited on 03/28/2024).

72

https://doi.org/10.1145/3456859.3456863
https://dl.acm.org/doi/10.1145/3456859.3456863
https://doi.org/10.1007/978-3-030-33702-5_3
https://arxiv.org/abs/1907.12240 [cs]
http://arxiv.org/abs/1907.12240
https://doi.org/10.1109/ACCESS.2022.3193102
https://ieeexplore.ieee.org/abstract/document/9837035
https://www.cloudflare.com/learning/cloud/what-is-multitenancy/
https://logging.apache.org/log4j/2.x/
https://prometheus.io/docs/introduction/overview/
https://opentelemetry.io/docs/collector/transforming-telemetry/
https://opentelemetry.io/docs/kubernetes/getting-started/

[16] “Basic concepts: @bean and @configuration :: Spring framework,” Spring Docs.

(2024), [Online]. Available: https://docs.spring.io/spring-

framework/reference/core/beans/java/basic-concepts.html (visited on 04/01/2024).

[17] J. Schneider. “Micrometer issue #2223 · micrometer-metrics/micrometer,” GitHub.

(2020), [Online]. Available:

https://github.com/micrometer-metrics/micrometer/issues/2223 (visited on

05/27/2024).

[18] J. Schneider. “Micrometer issue #535 · micrometer-metrics/micrometer,” GitHub.

(2018), [Online]. Available: https://github.com/micrometer-

metrics/micrometer/issues/535#issuecomment-433647380 (visited on 05/27/2024).

[19] “Observability support,” Spring Framework. (2024), [Online]. Available:

https://docs.spring.io/spring-

framework/reference/integration/observability.html#observability.config (visited on

05/27/2024).

[20] C. N. C. Foundation. “Helm charts,” Helm Docs. (2024), [Online]. Available:

https://helm.sh/docs/topics/charts/ (visited on 05/28/2024).

[21] C. N. C. Foundation. “OpenTelemetry collector chart,” OpenTelemetry. Section:

docs. (2024), [Online]. Available:

https://opentelemetry.io/docs/kubernetes/helm/collector/ (visited on 05/28/2024).

[22] C. N. C. Foundation. “What is fluent bit? | 3.0 | fluent bit: Official manual.” (2024),

[Online]. Available: https://docs.fluentbit.io/manual/about/what-is-fluent-bit

(visited on 06/04/2024).

[23] Datadog. “What is distributed tracing? how it works & use cases,” Datadog. (2022),

[Online]. Available:

https://www.datadoghq.com/knowledge-center/distributed-tracing/ (visited on

06/27/2024).

73

https://docs.spring.io/spring-framework/reference/core/beans/java/basic-concepts.html
https://docs.spring.io/spring-framework/reference/core/beans/java/basic-concepts.html
https://github.com/micrometer-metrics/micrometer/issues/2223
https://github.com/micrometer-metrics/micrometer/issues/535#issuecomment-433647380
https://github.com/micrometer-metrics/micrometer/issues/535#issuecomment-433647380
https://docs.spring.io/spring-framework/reference/integration/observability.html#observability.config
https://docs.spring.io/spring-framework/reference/integration/observability.html#observability.config
https://helm.sh/docs/topics/charts/
https://opentelemetry.io/docs/kubernetes/helm/collector/
https://docs.fluentbit.io/manual/about/what-is-fluent-bit
https://www.datadoghq.com/knowledge-center/distributed-tracing/

[24] A. Precub. “Guide to java instrumentation,” Baeldung. (2024), [Online]. Available:

https://www.baeldung.com/java-instrumentation#what-is-a-java-agent (visited on

06/06/2024).

[25] “APM tool - amazon CloudWatch - AWS,” Amazon Web Services, Inc. (2024),

[Online]. Available: https://aws.amazon.com/cloudwatch/ (visited on 07/02/2024).

[26] “eBPF | an introduction and deep dive into the eBPF technology.” (2024), [Online].

Available: https://ebpf.io/what-is-ebpf/ (visited on 06/06/2024).

[27] “logsCollection configuration | opentelemetry-helm-charts,” GitHub. (2021), [Online].

Available: https://github.com/open-telemetry/opentelemetry-helm-

charts/blob/8319c0fcfdab578f94224fb6b7eefd33944702fa/charts/opentelemetry-

collector/templates/_config.tpl (visited on 06/04/2024).

74

https://www.baeldung.com/java-instrumentation#what-is-a-java-agent
https://aws.amazon.com/cloudwatch/
https://ebpf.io/what-is-ebpf/
https://github.com/open-telemetry/opentelemetry-helm-charts/blob/8319c0fcfdab578f94224fb6b7eefd33944702fa/charts/opentelemetry-collector/templates/_config.tpl
https://github.com/open-telemetry/opentelemetry-helm-charts/blob/8319c0fcfdab578f94224fb6b7eefd33944702fa/charts/opentelemetry-collector/templates/_config.tpl
https://github.com/open-telemetry/opentelemetry-helm-charts/blob/8319c0fcfdab578f94224fb6b7eefd33944702fa/charts/opentelemetry-collector/templates/_config.tpl

	Title page
	Abstract
	Acknowledgments
	Biographical Sketch
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Existing Solutions
	1.4 Related Work
	1.5 Design Goals

	2 Metrics
	2.1 Metrics and Micrometer Overview
	2.2 Implementation
	2.2.1 Connection to Backend
	2.2.2 Customizable Switches
	2.2.3 Custom Metrics
	2.2.4 Dynamic Tags

	3 Logs and Traces
	3.1 Logs
	3.1.1 OpenTelemetry Collector
	3.1.2 Logs Ingestion Endpoint

	3.2 Traces
	3.2.1 Distributed Tracing
	3.2.2 OpenTelemetry Java Agent

	4 Results
	4.1 State of Metrics
	4.2 State of Logs
	4.3 State of Traces
	4.4 Overall Impact

	5 Other Considerations and Future Work
	5.1 Future Work on Metrics
	5.2 Future Work on Logs
	5.3 Future Work on Traces
	5.4 Other Considerations

	Conclusion
	A OpenTelemetry Collector Configuration
	B Code for Metric Filters
	C Code for Dynamic Tenant Tags for HTTP Metrics
	D OpenTelemetry Collector Configuration to Parse Logs
	References

