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Modeling technology pathways and retrofit adoption to achieve
city-wide building emissions reduction goals

by

Zachary M. Berzolla

Submitted to the Department of Architecture
on April 11, 2024 in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN BUILDING TECHNOLOGY

ABSTRACT

Achieving net zero emissions from buildings by 2050 is an unprecedented challenge that
will require an all-in effort at local, state, federal, and international levels. The exact path
to reach this goal in existing buildings varies widely from one community to another. Thus
local planning efforts and a bottom-up approach is needed to attain emissions reduction
goals. This dissertation lays out a framework to create technology pathway roadmaps to
help cities around the world identify actionable strategies to achieve their building emissions
reduction goals. These “technical potential” roadmaps can help policymakers quantify the
exact requirements in terms of retrofits, workforce, and material to attain their end goals.
The application of these tools in 24 cities around the world are discussed. A sound roadmap
is only as good as its implementation, and currently retrofit rates lag what is necessary
to achieve 2050 goals on time. One of the oft-cited barriers to retrofit adoption is the
high upfront cost. This dissertation documents a survey carried out by the author and the
resulting model used to help quantify households’ willingness to pay for retrofits. Leveraging
the willingness to pay model enables policymakers to analyze the techno-economic pathways
to their goals. Finally, one of the greatest challenges to achieve emissions reduction goals
is the timeline of retrofit adoption. Under the current business as usual retrofitting rate,
less than a fifth of the building stock will be retrofitted by 2050. To help policymakers
grasp this temporal challenge, this dissertation introduces a novel application of technology
diffusion models that can quantify retrofit adoption over time. The tools developed in this
dissertation are aimed at providing communities of all sizes with data-driven insights to meet
their ambitious but necessary building-related decarbonization goals in a timely manner.

Thesis supervisor: Christoph F. Reinhart
Title: Professor of Building Technology
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Chapter 1

Introduction

Climate change is one of the defining challenges of the 21st century. The landmark Paris
Agreement codified a limit on global mean warming of 2°C and subsequent Intergovernmental
Panel on Climate Change (IPCC) reports have emphasized the need to limit warming to 1.5°C
to avoid the most catastrophic impacts of climate change [1]. As seen in Figure 1.1, remaining
below 2°C of global warming necessitates limiting total global carbon dioxide emissions to
930 GtCO2 by 2050 [2]. Achieving these targets will require deep decarbonization across all
sectors: transportation, agriculture, industry, the power system, and buildings [3]. Buildings

Figure 1.1: Emissions budget to achieve Paris Agreement goals. Figure from [2], used with
permission of the author.

account for approximately 40% of global carbon emissions so reducing emissions from the
built environment is therefore key to combating climate change [3]. Emissions from cities in
particular are dominated by buildings. In New York City for example, buildings account for
70% of annual emissions [4].

Recognizing that buildings offer significant emissions reduction opportunities, govern-
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ments from local to national levels have begun to set greenhouse gas (GHG) emissions
reduction goals for their buildings. To date, over 300 cities and governments have set net
zero by 2050 or sooner targets [5]. In the European Union (E.U.), the target is 50% below
1990 levels by 2030 with carbon neutrality in 2050 [6]. Achieving these goals means that
by 2050 a city’s entire building stock, including new construction between now and then,
will need to reduce emissions as much as possible and then offset any remaining emissions
to achieve carbon neutrality. While usually based on current emissions levels and aligned
with the Paris Agreement’s net zero by 2050, the targets are often politically-motivated and
rarely science-based. Plans for actually achieving these targets are few and far between.

Furthermore, the pace and scale at which changes need to be implemented to meet net
zero targets in less than 30 years is daunting. The current building retrofit rate is less than
1% and yet 85% or more of all buildings need to be net zero carbon by 2050 [3]. “The E.U.
has thus proposed a ‘renovation wave’ that will double the rate of retrofit, improve energy
standards, and pool these efforts to benefit from economies of scale [7]. However, specific
measures and timelines have not been published” [8].1 The U.S. has likewise announced an
effort to retrofit homes to emit 50% less carbon and reduce energy costs by 20% by 2033
[9]. Advances in building technology and decreases in costs over the last two decades have
proven that net zero construction is possible across most types of buildings, putting these
goals within reach [10]. Net zero buildings are so efficiently designed that they use very
little energy and when combined with on-site renewables, they produce as much energy as
they consume over the course of the year, which roughly translates into net zero operational
carbon emissions [11].

Cost is often a concern when pushing the envelope with any technology. A study in
Massachusetts, USA found that net zero designs can actually save on upfront costs when
integrated design is used, although sometimes the cost premiums can rise to 7% [12]. Even
then, the net zero upgrades had payback times of less than 8 years, which can further be
reduced with government subsidies [12]. Given these economics, net zero new construction
—especially for residential buildings — is becoming more and more commonplace. Net zero
new construction can now technically be adopted anywhere in the U.S. at economic prices
[12]. If legislation required it, net zero new construction could become the norm everywhere.

Complicating decarbonization efforts, however, is the decentralized nature of building
energy use regulation in the U.S. While federal authority to regulate the energy use of
equipment in all buildings already exists, there is no mechanism to require minimum energy
efficiency standards for all buildings in the U.S. Instead, building energy code decisions are
delegated to individual states. In California, for example, building codes require all new
homes must be built to be net zero ready as of 2023 [13]. In New York, legislation was
recently passed that will begin to phase out fossil fuel combustion in new construction,
a key step towards net zero [14]. Yet this patchwork approach leaves building codes in
many states behind the times. 40 states have state-wide residential building energy codes
that specify minimum construction standards for new buildings or substantial renovations
[15]. Furthermore, only 13% of residential buildings in the U.S. by floor area uses the most
current code; with 23 states using codes from 2009 or earlier, as shown in Figure 1.2 [16].
Out-of-date codes leave substantial energy cost and emissions savings on the table for little-

1The preceding paragraph is reprinted in its entirety from the author’s previous paper [8].
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to-no additional upfront cost and furthermore have little impact on the majority of existing
residential buildings.

Figure 1.2: U.S. states with residential building codes and their year. Older codes are less
efficient. Figure courtesy of Christoph Reinhart, used with permission.

Adoption of up-to-date building codes can push the envelope for building energy use
but these codes generally only apply to new construction. According to a recent study by
McKinsey, over 80% of the building square footage that exists today will still be in use in
2050 [17]. If cities are to meet their 2050 emissions reduction goals, it is therefore critical
to decarbonize existing buildings. The U.S. has 105 million individual residential buildings
today [18]. Compared to the 5.5 million commercial buildings (everything from offices to
warehouses, many of which are owned by only a handful of companies) and 350,000 industrial
buildings (i.e. factories), residential buildings are 95% of all buildings in the U.S. [19]. The
same concepts for achieving net zero new construction apply to retrofits of existing buildings
but the sheer number of individual decisionmakers that need to be convinced to retrofit their
buildings by 2050 makes residential decarbonization an extremely challenging and impactful
problem.

To achieve retrofitting goals, a handful of cities and states have set caps on building-
related emissions using building performance standards, as shown in Figure 1.3 [20]. Build-
ing performance standards are enforceable code for existing buildings that require gradual
emissions reductions toward net zero by a set date [20]. Buildings that do not comply with
the emissions cap in a given year are fined based on their emissions above this cap [20]. The
collected fines are then usually used to support additional retrofitting efforts. In this way,
these standards are similar to energy efficiency charges that consumers pay to their utility
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Figure 1.3: U.S. states with building performance standards. 11 cities and one county also
have these standards in place. Figure created by the author using data from [20].

per kilowatt-hour they use, but these are only phased in if they use more than a certain
amount in a given year. Even then, most building performance standards focus on larger
buildings over 25,000 ft2 or more.

Given the lack of building performance standards in all but a handful of locales, col-
lective local action will be required to physically change the building stock. Thus local
governments provide the most viable pathway to reducing energy use and emissions in the
built environment.

This dissertation is not the first to suggest a focus on local action to affect change in
building decarbonization at the local and national level around the world. The Global Build-
ing Performance Network is a group of 300 buildings professionals around the globe working
to promote building decarbonization polices and actions. They have outlined a theory of
change for their organization with a goal of getting all new buildings to zero emissions by
2030 and all buildings to zero emissions by 2050 [21]. In order to achieve this goal, there
are inputs, change levers, intermediate outcomes, and breakthrough outcomes that must be
attained, as shown in Figure 1.4. The Global Building Performance Network focuses on

Figure 1.4: Key steps in the Theory of Change. Figure created by the author from information
in [21].

four key inputs: funding to invest in key areas; people that are committed to the work as a
calling; networks to aggregate impact and scale innovation; and trust as a partner for gov-
ernment, community and industry [21]. They have four main change levers: policy reform
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with bottom-up and evidence-based strategies; market transformation to encourage private
sector engagement; providing more universal access to climate-ready and resilient housing;
and cultivating an ecosystem of experts and practitioners to scale and sustain decarboniza-
tion progress [21]. Taken together, the organization has been able to leverage substantial
philanthropic investment to create policy change in India, Indonesia, and China — three
countries with greatly increasing energy use and an outsized share of global emissions. The
network’s focus has been on policy adoption in the “Global South” where emissions from new
construction is expected to increase significantly [21].

Drawing on this exemplar, this dissertation focuses on nations that together account for a
substantial share of global emissions today and have a large amount of pre-existing buildings
that will need to be retrofitted to achieve emissions goals. The main goal of the theory
of change is the same: decarbonizing all buildings by 2050. The actual inputs and levers
will vary by the geography, but the central belief is that this goal will only be achieved if
communities around the world are empowered to make data-driven building decarbonization
policy decisions. This bottom-up approach is key to action in the buildings sector given
the number of distributed decisionmakers. There are many preconditions for achieving this
long-term goal but key inputs identified in this research include:

• Widely available data to inform models

• Accessible tools to leverage the data to inform policymakers

• A knowledgeable workforce to both employ the tools and implement the recommended
policies

• Receptive policymakers interested in engaging with the provided information

• Funding to carry out the modeling and ultimately the policies

• Educated constituents and communities that are aware of, engaged with, and support-
ive of planned actions

Despite national emissions reduction pledges and calls for change, most communities
have no concrete plans for how to achieve their emissions reduction goals. This dissertation
leverages widely available GIS datasets and puts forward new and more accessible tools and
information to help policymakers push forward decarbonization of their respective building
stocks. These efforts, when part of larger collective action, can amount to tangible emissions
reductions globally. Ultimately, this work aims to inform and catalyze the transformation
that must take place in the world’s building stock in the next quarter century.

This dissertation focuses on retrofitting opportunities in existing buildings as a foun-
dational first step for city governments to consider before pursuing other carbon emission
reduction strategies, including carbon offsets, direct air capture, etc. Parallel analysis is
necessary to evaluate emissions impacts from industry, transport, land use, and new con-
struction. For the latter case, unless all new buildings are built to net-zero standards starting
today, the challenge cities face in meeting their building-related emissions reduction goals
will only be heightened.
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1.1 Building Energy Models

Simulation tools, namely Building Energy Models (BEM) are widely used to aid in cost-
effective net zero building design. BEMs were created to help architects and engineers design
new buildings and retrofit old ones to be more efficient. These models are built around
physics-based heat flow equations that are used to calculate building energy consumption
and size heating and cooling equipment [22]. EnergyPlus is the most common BEM tool in
the U.S. and many countries abroad [22]. First developed in the 1990’s by the U.S. DOE,
EnergyPlus must have several key inputs:

• Building geometry (i.e., the shape of the building)

• Building construction (e.g., the materials and thickness of walls)

• Equipment specification (e.g., heating and cooling equipment efficiency)

• Schedules (e.g., occupancy, lighting, equipment)

• Weather data [22]

In both new and retrofit net zero projects, building energy modelers create different
packages of upgrades and test them using BEMs to determine the most cost-effective ways
of achieving a net zero building while also enhancing indoor thermal comfort and health.
Common upgrades include using more insulation, specifying more efficient heating, cooling,
ventilation, and hot water equipment, conducting extensive air sealing, installing more effi-
cient lighting, buying high-efficiency (e.g. EnergyStar in the U.S.) appliances, and installing
rooftop solar. These strategies are lumped together to create technology pathways to net
zero: combinations of physics-based interventions in the built environment that achieve net
zero energy use in a given year.

While identifying technology pathways towards a single net zero building is a proven field
with lots of commercial activity, hiring a building energy modeler to create a BEM for every
building in a city, let alone the country or the world, is infeasible. To scale to whole cities
and help decisionmakers evaluate the best technology pathways to achieve their emissions
reduction goals, a new paradigm is needed: Urban Building Energy Models (UBEMs).

1.2 Urban Building Energy Models

UBEMs apply the same BEM approach of using physics-based heat flow equations to
simulate energy use of buildings at the urban scale [23]. Instead of simulating the geometry
of a single building, geometries of all the buildings in a city are simulated together. These
geometric data are becoming more widely available at the city-scale through the advent
of open-data portals and large-scale remote sensing [24]. Common formats such as GIS
shapefiles or CityGML files provide building footprint and height data that can be used to
generate 2.5D models [25]. In addition to building geometry, the aforementioned weather
files used in BEM can also be used in UBEMs. Finally, the non-geometric properties of
building construction, equipment specification, and occupancy schedules need to be defined
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[26]. Instead of defining these properties for a single building, they are defined for all buildings
with a similar program type, age, or category, called an archetype (for example, single-family
homes built before 1980) [26]. In order to implement their emissions goals for their building
portfolio at urban scales, cities should at a minimum understand what energy savings certain
building upgrades would yield at the archetype level. The definition of archetypes will be
further discussed in Section 2.2.3

1.2.1 UBEM Key Ingredients

“UBEM is a bottom up approach that has been developed to serve as the analytical
backbone for the decision processes laid out above. The field has flourished in recent years,
leading to increasingly robust urban data streams that start from Geographic Information
System (GIS), Light Detection and Ranging (LiDAR), and tax assessor databases and end in
synthetic hourly building energy demand profiles for current and potential future conditions
[24]. Depending on the availability of historic building energy use data, a variety of modeling,
simulation, and calibration approaches have been developed [27]. The result is a somewhat
confusing plethora of UBEM modeling methods for researchers, urban planning teams, energy
policy makers, utilities, and building owners to choose from (or rather, get lost in)” [24].2

1.2.2 UBEM Simulation Tools

There are a variety of different UBEM simulations tools available today developed by aca-
demic groups and national labs, each with its own strengths and weaknesses. The prominent
ones include: CityBES, TEASER, CitySim, SimStadt, City Energy Analyst, ResStock/-
Comstock, and UMI [23]. Several tools use reduced order models (i.e. resistor-capacitor
electrical circuit analogies) to model building energy use [23]. While much faster, these are
black-box models with little tying them to the physical geometry. ResStock/Comstock is a
hybrid tool. It is solely used in the U.S. and runs actual EnergyPlus simulations for repre-
sentative buildings seeded with non-geometric properties derived from statistical datasets in
that region [28]. ResStock/Comstock is pre-run on a supercomputer, meaning the results are
instantly available and useful for state- and country-scale analyses [29]. In smaller commu-
nities, the number of representative buildings and the fact it is not tied to actual geometries
means it may not be best suited to helping the average mid-sized American town (or any
city in another country) get to its emissions goals. Other tools such as CityBES and UMI
leverage EnergyPlus and the full geometry of the buildings which ties results to the actual
composition of the modeled community [23].

UMI, developed by the MIT Sustainable Design Lab, is a plugin for the Rhinoceros3D
computer-aided design (CAD) environment [30]. The energy module in UMI can be used
to simulate space conditioning energy use (e.g., heating, ventilation, and air conditioning),
hot water energy use, and equipment and lighting loads [30]. UMI uses machine learning
techniques, namely k-means clustering, on solar radiation, cardinal direction, and archetype
to identify representative clusters [31]. Each cluster is simulated with EnergyPlus using a
representative two-zone shoebox that has all the parameters of that clusters’ archetype [31].

2The preceding paragraph is reprinted in its entirety from the author’s previous paper [24].
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The results from the shoebox are then multiplied by the floor areas in the cluster, providing
city-scale results with a laptop [31]. The shoeboxer method was shown to be accurate at
the archetype-level, which is acceptable when providing stock-level analyses for policymakers
[31]. For more details see Section 2.4.1.2. While UMI is used in this dissertation because it
is scalable and freely available, the workflows and analysis methods contained herein could
be carried out with other physics-based UBEM tools that are tied to the geometry of the
actual buildings in a community.

1.3 Dissertation Overview

This dissertation aims to address the challenge of providing scalable, actionable, city-
scale analysis to policymakers trying to get their community’s buildings to net zero on the
compressed timelines that the climate crisis requires. Chapter 2 will provide an overview of
recent collaborative UBEM development efforts to make the UBEM process more accessible.
Chapter 3 will outline the eight steps to streamline the urban modeling process and scale
this from neighborhood models to full-scale city models. Chapter 4 is focused on quantifying
the impacts of building retrofit adoption under a business as usual scenario. Chapter 5 takes
this a step further by conducting a metric survey to quantify homeowners willingness to
pay for retrofits. This survey provides more localized information to policymakers trying to
understand the levers they can pull to steer their whole jurisdiction towards their emissions
reduction goals. Chapter 6 applies the results of this metric survey to the UBEM results
obtained in Chapter 3 and introduces a novel application of a diffusion model to understand
the possible range of retrofit adoption at the city-scale. Chapter 7 discusses the key takeaways
and looks to the future.

1.4 Hypotheses

Achieving net zero global emissions by 2050 is an unprecedented challenge that will
require an all-in effort at local, state, federal, and international levels. While the technologies
to achieve these goals in every sector are not all available today, most buildings can cost-
effectively achieve net zero with today’s technology. How to do that varies widely around the
world and local planning is required to push this forward. Additionally, the current retrofit
rate is paltry compared to the rate needed to meet global goals. Thus jurisdictions will need
to implement policies and programs to catalyze the right retrofits at a rapid-enough pace.
This dissertation is focused on providing data-driven insights to communities of all sizes to
help them plot a path forward to meet their ambitious but necessary decarbonization goals.
This dissertation documents the systematic testing of UBEM analyses at the stock level to
drive local net zero planning and policy formulation. The key research questions include:

1. How do you make an UBEM analysis accessible to cities anywhere and what concrete
value do policymakers gain from them?

2. What factors influence a household’s willingness to pay for building retrofits?
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3. How does willingness to pay and the realities of retrofit adoption affect a community’s
ability to meet its emissions reduction goals?

28



Chapter 2

Streamlining the Urban Building Energy
Modeling Process

This chapter presents a review of efforts to streamline the UBEM creation process to make
UBEMs available to almost any community in the world. This collaborative foundational
work to easily generate UBEMs, define their characteristics, and test the workflow in eight
case study cities paves the way for the new contributions in Chapters 3, 4, 5, and 6. In this
chapter, the key parameters are defined, data sources for scalable modeling are identified,
the key roles involved in the process are discussed, and neighborhood-size case study UBEMs
in eight cities around the world are presented. The latter leads to key insights to inform
policymakers that justifies the need to build UBEMs for all communities. This chapter is
intended as an abridged review to bring the reader up to speed on key developments in
UBEMs that the author has contributed to. It is drawn in large part from four papers (cited
below) the author has previously co-authored in a journal publication elsewhere and has
reprinted here. Some sections (e.g. Section 2.3 and Section 2.4) are taken directly from the
corresponding article while others are the result of combinations of sections of these previous
articles. For unabridged versions, the readers are directed to the original articles:

• Yu Qian Ang, Zachary Michael Berzolla, and Christoph F. Reinhart. From concept to
application: A review of use cases in urban building energy modeling. Applied Energy,
279:115738, December 2020.

• Niall Buckley, Gerald Mills, Christoph Reinhart, and Zachary Michael Berzolla. Using
urban building energy modelling (UBEM) to support the new European Union’s Green
Deal: Case study of Dublin Ireland. Energy and Buildings, 247:111115, September
2021.

• Yu Qian Ang, Zachary Michael Berzolla, Samuel Letellier-Duchesne, Violetta Jusiega,
and Christoph Reinhart. UBEM.io: A web-based framework to rapidly generate urban
building energy models for carbon reduction technology pathways. Sustainable Cities
and Society, 77:103534, February 2022.

• Yu Qian Ang, Zachary Michael Berzolla, Samuel Letellier-Duchesne, and Christoph F.
Reinhart. Carbon reduction technology pathways for existing buildings in eight cities.
Nature Communications, 14(1):1689, April 2023.
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2.1 Introduction

Most previous UBEM studies have focused on the evolving methods used to model mul-
tiple buildings at a time. For example, Olkkonen et al. developed optimization methods on
top of the iterative “what-if” scenarios in their model of the entire Finnish building stock
[32]. Some tools are focused solely on calculating the current emissions from operational
and embodied carbon in buildings [33]. There are several excellent papers that provide a
thorough review of the different UBEM tools [23], the strengths and weaknesses of different
UBEM approaches [34], and the growth of research in this field [35]. Many of these studies
evaluate the effectiveness of differing technology pathways, identifying the most cost and
carbon savings-effective approach [36], [37]. In select cases, the energy-saving potential from
retrofitting existing buildings — for example, in San Francisco, CA and Venice, Italy — was
calculated [38], [39]. However, those studies do not report if and how the authors engaged
with local governments. The LA100 and Carbon Free Boston studies are notable excep-
tions where experts from a U.S. National Lab or university collaborated with Los Angeles
and Boston, respectively to develop carbon reduction pathways using custom-built, fully
integrated cross-sector models [40], [41].

Despite advances in UBEM modeling techniques, several challenges hamper the widespread
application of UBEM in practice and policy. Most critically, existing UBEM tools require the
individuals building these models to have training in energy policy, Geographic Information
System (GIS), and building energy modeling. This selection criterion has limited UBEM’s
use to a select group of building science researchers and specialist consultants. Another prac-
tical concern that drives up the cost of these models is that the collection, consolidation, and
pre-processing of existing urban datasets remains tedious and time-consuming. The reason
for this can at least partially be attributed to a lack of well-maintained national datasets and
common data formats, leaving municipalities to manage their own data with limited — if any
— national guidance [25]. Third, defining the physical make-up, properties, characteristics,
and systems for buildings in UBEMs to create building simulation templates is laborious and
requires expert knowledge of local (historic and current) building practices. These building
simulation templates, while commonly deployed for building-level analysis, become arduous
to create and assign at the urban scale, especially if the building stock is not homogeneous.
Finally, simulation results in their native format can be unintuitive and not directly action-
able for policymakers, who either do not have sufficient time or technical understanding to
interpret them. This chapter focuses on making these models more accessible and readily
available to inform policy design and development.

2.2 Key Components of an UBEM

This section discusses the three main components of an UBEM: weather data, geom-
etry, and non-geometric properties that inform archetypes such as construction practices,
schedules, and equipment.
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2.2.1 Weather Data

EnergyPlus, the engine that underlies most UBEM tools, uses a standardized weather file
format, EnergyPlus Weather (EPW), that is available for 10,000+ locations worldwide [22].
EPW files are usually created from typical meteorological year (TMY) data, which draw on
at minimum 12 years of measured weather data [42]. TMYs are intended to represent the
average weather during the historical period by picking 12 months, usually from different
years, that are the most similar to the mean conditions for that month over the historical
period [42].

2.2.2 Geometry

In the context of open-data movements around the world, where public agencies are in-
creasingly amenable to sharing spatial and built environment datasets such as GIS shapefiles,
CityGML, and property tax assessment databases, UBEM is meant to lower the barriers to
entry for policymakers, urban planning practices, and municipalities working on their first
urban or neighborhood analysis, and thus contribute to the proliferation of and access to
UBEMs worldwide. Many planning authorities or GIS departments at state, county, or city
level provide open data in the form of GIS shapefiles. These shapefiles include building foot-
prints, jurisdiction or municipality boundaries and districts, street centerlines/midlines, and
others, which, together with information on building heights or number of storeys/levels,
are sufficient to construct an urban geometry model. These geometric models are one key
ingredient to creating an UBEM.

2.2.3 Non-Geometric Properties: Archetypes

Once the geometric data is handled, the buildings must be divided into similar groups
or archetypes. Typically, national building data is desegregated into archetypes using seg-
mentation and characterization; segmentation filters the building stock into groups based on
dimensions, age, and use, while characterization describes the construction materials, ther-
mal properties, usage patterns and heating and cooling systems of these groups [43]. The
acquisition process can be greatly simplified by using archetypes that categorize buildings
into types based on shared properties that are linked to historic national/cultural construc-
tion methods. Construction period and usage type (i.e., residential, commercial, retail, etc.)
are the most commonly utilized fields. Although the use of archetypes means that individual
building detail is lost, the fundamental differences between types of buildings is captured in
the associated data.

For all archetypes, building simulation templates must be developed. These templates
contain non-geometric building information that ranges from construction practices to us-
age schedules, setpoints, and Heating, Ventilation, and Air Conditioning (HVAC) system
performance. This is the most challenging part of the analysis, as it usually requires expert
knowledge of each city’s current and historic construction practices. Although automatic
generation of zones using CAD and design environments such as Revit, Rhinoceros 3D, and
SketchUp (and their associated plugins) is possible, the process of inputting building prop-
erties and characteristics is usually decoupled from geometry creation [26]. This has led to
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commercial energy modeling software, such as Design-Builder, providing pre-defined tem-
plates using default values to facilitate data entry [44]. Some of these templates represent
typical constructions while others incorporate considerations for code compliance. Building
science practitioners typically assign these templates based on literature, prior knowledge,
heuristic/prescriptive rules, procedural methods, and references such as guides published by
professional bodies (e.g., ASHRAE Handbook of Fundamentals and International Organiza-
tion of Standards (ISO) building codes, etc.).

Many different approaches have been studied to segment building stocks and define their
simulation templates. In North America, Farahbakhsh et al. and Huang and Brodrick
developed archetypes to simulate building energy use under different future scenarios [45],
[46]. Heiple and Sailor used Department of Energy (DOE) archetypes run with a BEM
software to generate building energy profiles; these archetypes were linked to a geographic
building database for a case-study area in Houston, Texas [47]. The estimated aggregated
building energy use compared well with observed data at this scale. Davila et al. used
a similar process to generate building data suited to running a UBEM for thousands of
buildings across Boston [48].

In the European Union, the Energy Performance of Buildings Directive prompted surveys
of the building stock within each member state [49]. The data generated have been used to
create building archetypes that could be employed to estimate annual energy use for space
heating and cooling using a consistent methodology (ISO EN 13790) [50]. The archetypes
permit evaluation of energy efficiency measures based on technology and policy interventions
applied to the aggregate building stock [51], [52]. Heeren et al. used building archetypes
created by the Swiss Federal Office of Energy to simulate different energy saving scenarios
based on current and future energy saving plans [51]. Mata et al. also assessed energy
efficiency measures across the Swedish national and regional building stock using a BEM
and hourly climate data to account for dynamic outdoor conditions [53], [54]. Simulations
on 1,400 sample buildings were used to assess 12 efficiency measures applied to the entire
Swedish housing stock; the results indicated that these measures could reduce the overall
residential energy demand by 53%. Mata et al. extended this work to create building
archetypes for Germany, Spain, France, and the UK that were used to estimate the energy
use of the residential and commercial building stock [55]. In Ireland, the dwelling energy
assessment procedure uses ISO EN 13790 to generate building energy performance certificates
(EPCs) that are required for buildings that are sold and/or rented [56]. Famuyibo et al. and
Ali et al. used these data to generate archetypes using clustering techniques that were
subsequently used to simulate energy use and evaluate energy efficiency measures at a large
scale [57], [58].

2.2.3.1 Required Template Characteristics

In the hierarchy shown in Figure 2.1, building templates are constructed from and com-
prise zone definitions, constructions, and windows. Each zone definition is made up of zone
conditioning, ventilation, and internal load parameters, which can be adjusted with sched-
ules of different granularities. Construction assemblies such as walls, roofs, and floors are
built using material definitions, which contains specific thermal properties such as solar ab-
sorptance, specific heat, etc., as well as other parameters such as cost and embodied energy.
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Similarly, glazing units are constructed using glazing and gas material modules, through
which thermal and optimal properties such as solar transmittance and reflectance can be
defined.

Figure 2.1: Building template structure in the template database library. Figure from [59].

2.2.3.2 Common Template Sources

This section introduces a concept of creating national building archetype libraries that
characterize representative buildings in a country. Once these libraries are developed, any
city building an UBEM can use the appropriate archetypes for their country and climate
zone, without having to build the archetypes from scratch. Having these libraries readily
available to any city thus greatly streamlines the modeling process. This work stems largely
from a collaboration with Niall Buckley and is documented in [8].

For the U.S., the DOE offers detailed building descriptions for 16 program types and 16
climate zones in the form of Commercial Reference Building EnergyPlus models [60]. The
DOE also developed prototype residential buildings representing new construction standards
and the ResStock database which provides a statistically-representative model for residential
buildings of all ages across the country [61], [62]. These datasets contain all the necessary
information (equipment loads, schedules, heating systems, etc.) to build a national template
library with all major building types and climate zones. The process of creating templates
was automated using Archetypal, a Python-based library that compiles building simulation
templates from EnergyPlus model files [63].

For Europe, the Episcope Tabula project was designed to aid the energy retrofit processes
in the European housing sector by making the energy needs of buildings and the retrofit
options more transparent and effective [64]. Tabula is used to inform property owners,
developers, and stakeholders on the best energy saving measures to implement for different
types of buildings. The Tabula database contains much of the data required to perform
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UBEM energy simulations. This approach can thus be used for any city in Europe where
the Tabula archetypes have been mapped to a geographically-referenced and categorized
building stock.

The Tabula webtool shows photographs that typify residential building archetypes along
with data on construction properties and heating systems [65]. Tabula data includes the
information needed to run a thermal model to estimate annual energy demand (kWh/m2)
based on typical weather information. Moreover, the results of different energy efficiency
measures, such as wall/roof insulation are also included in the webtool. Tabula building
data have been standardized to reduce complexity and enable comparison of building energy
performance within Europe [66]. Ballarini et al. and Dascalaki et al. have linked Tabula
archetypes with census information on the building stock in Italy and Greece, respectively,
to estimate the potential for implementing energy efficiency at the urban scale [67], [68].

Figure 2.2: The workflow used to create UBEM templates from the Tabula dataset. The
geographic database categorizes georeferenced building envelopes into Tabula archetypes and
generates a GIS database. The EnergyPlus templates are created from Tabula data and then
used to generate UMI template files. The geographic database is integrated with the BEM
templates within UMI. Figure from [8]

Figure 2.2 depicts a workflow developed by Buckley et al. for creating UBEM tem-
plates from Tabula, which consists of two streams that are merged within the UMI modeling
framework [8]. The first stream of work creates a GIS database of buildings each of which is
categorized into a Tabula archetype; the details of this work are described in [69]. The sec-
ond stream describes the conversion of the Tabula database associated with each archetype
into templates suited for running UMI. ClimateStudio, a dynamic BEM that uses the En-
ergyPlus engine, is used to create the UMI templates; this has the advantage of allowing
evaluations of BEM simulations against the annual energy use intensity (EUI) data associ-
ated with each Tabula archetype. The products of these two streams are merged to create a
geographic database of building templates for UMI, which is used to simulate EUI across a
neighborhood and test the efficacy of place-based climate change policies.
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2.3 Generating an UBEM: UBEM.io

To streamline the UBEM modeling process, UBEM.io, a web framework/tool that largely
automates the generation and analysis of UBEMs for stock-level carbon reduction studies
was developed. UBEM.io offers several key capabilities. First, the urban model generator
module allows users to automatically generate urban building geometries using simple GIS
files – a format that urban and city planners are already used to maintaining and manip-
ulating. Second, UBEM.io includes a pre-built building template library for the U.S. and
Irish building stocks based on the methodology described in the previous section. These
libraries could be expanded further as needed if data is available. Third, UBEM.io adopts
an archetype approach to automatically assign simulation templates to buildings belonging
to the same categories with similar physical and mechanical representations. This eliminates
the need for manual (building-by-building) template assignment, which is time-consuming
and difficult to track at the urban scale. UBEM.io also includes an urban model visualizer
module that specifically focuses on the effective comparisons of multiple carbon reduction
scenarios. Finally, UBEM.io is built in a modular manner that is highly scalable, allowing
quick and seamless addition of functionalities and modules from third parties. It should be
noted that UBEM.io does not seek to replicate or replace any existing UBEM tools. Instead,
it aims to act as an enabler and aggregator for a broader audience to start using any or all
the existing UBEM tools. UBEM.io does not implements its own energy simulation or heat
transfer equations but rides on the simulation engine of the tool that it is interfacing with.

2.3.1 UBEM.io Template Database

To overcome the laborious process of defining and assigning templates, UBEM.io includes
a template library database seeded with the template libraries developed in Section 2.2.3.
The system is designed to generate template upgrades and create various custom scenar-
ios for cities and municipalities in real time.1 For example, for a city looking to enhance
wall constructions or lighting fixtures, UBEM.io’s backend API can pull wall assembles with
lower U-values, as well as assign lower lighting power densities to zones, while keeping other
template modules constant. The outcome is a set of automatically generated UBEMs rep-
resenting various scenarios that the city/municipality might want to explore. Users are also
able to customize building templates based on their building stock, and use those template
libraries in the UBEMs generated by UBEM.io.

UBEM.io streamlines the entire workflow from technical details to policymaking, saving
significant amounts of time and effort. Figure 2.3 compares the time required to build an
UBEM using UBEM.io versus the conventional approach. UBEM.io greatly reduces the
time required for downstream UBEM processes such as building the urban geometry and
assigning building templates. Typically, most energy modelers in consultancy teams are
tasked to clean/process GIS files as well as to retrieve building heights — from LiDAR or
other channels. Using UBEM.io, is it assumed that the city/municipality already has a set
of GIS files as well as building height data. The GIS modeler prepares this data on UBEM.io
and hands a .uio file over to the energy modeler, who just has to validate there are no errors

1For more technical details, refer to the full paper: Ang et al. [59].
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in the file. The time taken to build UBEMs using conventional methods is consistent with
academic literature as well as informal validation with consultants [70].

Figure 2.3: Estimated time required using conventional methods of developing UBEMs vs
UBEM.io for a medium-sized city. Figure from [59].

2.4 Technology Pathways for Neighborhoods in 8 Cities

This section presents the first study in which a scalable UBEM approach supported by
UBEM.io has been tested with multiple, diverse city representatives to understand whether
local teams can learn how to use and independently apply the method and provide lasting
value for participating jurisdictions [71]. The findings offer insight into what type of building
retrofit packages energy policymakers are currently considering for their existing building
stock and how resulting carbon emission reductions compare to politically motivated targets.

This section resulted from a collaboration with representatives from eight cities and
municipalities around the world to analyze technology pathways to reduce annual carbon
emissions in existing buildings based on retrofitting measures and onsite rooftop photo-
voltaic (PV). These cities participated in a three-day virtual workshop in 2021 led by the
author and collaborators from MIT, hereafter referred to as “the workshop.” The case study
cities were Braga (Portugal), Cairo (Egypt), Dublin (Ireland), Florianopolis (Brazil), Kiel
(Germany), Middlebury (Vermont, United States), Montreal (Canada), and Singapore. A
requirement for participation was that teams, usually coming from academic research groups,
had some expertise in building energy modeling as well as existing relationships with local
city representatives. The cities studied are diverse with different climates, socioeconomic
demographics, cultures, governing structures, and sizes.

The goal for the collaboration was to train city representatives to conduct an urban
building energy analysis of a “seed” UBEM — a concept introduced for this project. A
seed UBEM is a scaled-down UBEM that covers a limited part of a jurisdiction. Working
with seed UBEMs (and fewer buildings) in the workshop is useful for staying nimble and
supporting on-the-spot analysis. A seed model should ideally represent the city’s overall
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building stock — i.e., covers building typologies that represent a significant fraction of all
buildings—and extend over an area that will soon undergo substantial renovation efforts. If
well chosen, the seed model will easily scale up after the workshop and the simulation and
analysis results are indicative of the entire stock model since — with more buildings — the
difference introduced stems mainly from building geometry.

2.4.1 Methods

A consistent study framework was deployed across the eight cities. Specifically, first
the team identified the policy objectives and carbon emissions reduction goals described
in Table 2.1. Although the participating cities differ in size, climate, demographics, urban
typologies, and building characteristics, most cities in the study had at least economy-wide
carbon emissions reduction strategies or climate action plans. These targets are broadly in
line with the Paris Climate Agreement, with most plans including a near-term target and a
longer-term goal aiming for economy-wide net-zero emissions by 2050. However, only five out
of the eight participating cities indicated that they had a detailed carbon inventory, and only
four had carbon reduction plans specifically for buildings. Most participating cities originally
derived their buildings’ carbon reduction goals and targets using a mix of in-house teams,
government agencies, and external consultants. Only two cities reported having previously
used data-driven methods to inform their targets.

With targets in place, each city identified prototypical regions representing the local
building stock (the aforementioned “seed” neighborhoods). Next, the local GIS managers
gathered geometric data such as Geographic Information System (GIS)) files containing
building footprints and building heights, as well as non-geometrical properties of the building
stock, including but not limited to construction properties, window-to-wall ratios, mechanical
system types, and occupancy profiles. In addition, TMY weather files were retrieved from
freely available public repositories for each of the eight jurisdictions. To study the impact of
climate change on the city of Braga, CCWeatherGen tool was used to generate a morphed
weather file for 2080 that represents the potential future climate in the region [72].

For each city, two retrofit upgrade scenarios were defined that mostly correspond to
shallow (lower cost and/ or easier to implement) and deep (more expensive and/or harder
to implement) retrofits. The different high-level scenarios are documented in Table 2.1.

2.4.1.1 Building Templates

Drawing on UBEM.io’s template library, a collection of templates was assigned for each
city. For the U.S. and Canada, the U.S. DOE Commercial Reference Building were used
for Middlebury and Montreal [60]. For Dublin, data from the Tabula Project, as discussed
in Section 2.2.3, were used. A similar approach was adopted for Kiel, as Germany had
also participated in the Tabula project. For Braga, the UBEM templates were previously
developed for the Portuguese building stock by Monteiro et al. [73]. For Cairo, validated
building templates from a previous project in Kuwait were used [74]. In Singapore, the team
started with the U.S. Department of Energy Reference Buildings for Climate Zone 2A and
worked with local building science experts who were part of the city’s modeling team to
adjust them to the local context [60]. In Florianopolis, templates were provided by building
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simulation experts from the Federal University of Santa Catarina, who also participated in
the workshop. The final simulation settings are described in Table 2.2.

With all the pre-requisite data in place, UBEMs were constructed via UBEM.io using
the input GIS, TMY, and template settings described above. Multiple operational energy
simulations were then run using UMI to obtain energy use, carbon emissions, and peak
demand. Peak demand is the hour in the year when the electricity consumption is maximal
across all electricity end-uses in the buildings, setting the yearly peak demand value (in kW).
In addition to building retrofits, the maximum onsite electricity generation potential from
PV was predicted assuming full rooftop utilization to provide an upper physical limit for
onsite carbon emission reductions. To separate the emissions reduction contributions from
building upgrades and grid decarbonization, future carbon emissions are shown as a range,
assuming current and projected future grid emissions, respectively.

2.4.1.2 Uncalibrated UBEMs

These UBEMs are “uncalibrated,” meaning the template values are not systematically
adjusted so the energy use of the city aligns with measured data. Instead, tacit knowledge of
the building stock is leveraged to ensure that the templates use values that are broadly rep-
resentative of the given archetype’s standard construction practices. Using an uncalibrated
UBEM greatly reduces the time required to implement it. Due to the law of large numbers,
uncalibrated UBEMs have been shown to yield close results (usually less than 15% error in
energy use intensity) compared to actual energy use at the building stock level [27]. A recent
review article of over 50 UBEM studies found that aggregate monthly error in uncalibrated
models ranged from 10-20% [75]. These levels of accuracy are in line with American Society
of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 140 [76].
These findings were confirmed by Bass et al., who developed an uncalibrated UBEM with
51,000 buildings in Chattanooga, Tennessee and compared the accuracy of their model to
measured 15-minute electricity data [77]. They found that at the archetype-level, results
were consistent with the measured data, but at the individual building level results varied
widely [77].

Buffat et al. similarly found that error in an uncalibrated UBEM ranged from 1-18%
in mixed use and multifamily buildings in Switzerland [78]. Their error range in single
family buildings was higher, ranging from 29-25%, but they found that “buildings with low
agreement between modeled and measured demand level themselves out over the study area”
[78]. This is a common result — given the high accuracy at aggregate spatial resolutions,
more than half of all UBEM studies use uncalibrated models [75]. Figure 2.4 shows similar
findings across a wide range of case studies. Further study by the author and collaborators
show that only using a handful of archetypes is similarly accurate for the same “law of large
numbers” reason [79]. Thus for city-scale policy analyses, uncalibrated UBEMs are thus
good enough to provide information to policymakers.
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Figure 2.4: Uncalibrated UBEM errors of less than 15% is common across a wide range of
case studies. Figure adapted from results in [27], used with permission of the author.

2.4.2 Results

2.4.2.1 Energy Use

Onsite baseline EUI predicted by the models range from under 89 kWh/m2 for Braga
to 329 kWh/m2 for Middlebury, as shown in Figure 2.5. EUIs are mainly influenced by
program type, climate, construction standards, mechanical systems, and urban typology.
EUI subcategories for heating, cooling, lighting, domestic hot water, and equipment reflect
these relationships — i.e., Cairo, Florianopolis, and Singapore are cooling-demand dominated
with no heating loads. In contrast, Dublin, Kiel, Middlebury, and Montreal are heating-
dominated.

In all cases except for Braga, EUIs fall for both shallow and deep retrofits. In Braga, where
residents are expected to widely adopt air conditioning (AC) units in residential construction
due to a warming climate, the EUI goes up, driven by an increase in cooling energy use.
The overall EUI increases by 24%, although heating demand decreases slightly due to milder
winter temperatures. Retrofitting windows and fixed window overhang shading has a small
impact in Florianopolis, with a simulated decrease in EUI of only 8%. Given the high cost
of these measures, they were not included in the shallow or deep retrofit scenarios. In the
other cities, shallow retrofits that address low-hanging fruit like reducing plug and equipment
loads lead to decreases in EUI between 13% (Dublin) to 36% (Cairo). Cairo has the largest
energy efficiency gains from shallow retrofits since reducing internal loads from lighting and
equipment has the dual advantage of also reducing cooling loads.

Deeper retrofits naturally lead to more considerable savings, from 32% in Middlebury to
66% in Kiel. Heat pumps achieve the largest energy efficiency gains in heating-dominated
climates even though these savings do not necessarily correspond to the lowest operating costs
due to the widespread availability of low-cost natural gas. Kiel, for example, has significant
needs for space heating and heat pumps are effective in reducing overall energy use but are
historically more expensive to operate than natural gas furnaces. This changed in 2022,
with gas prices soaring due to the conflict in Ukraine, underlining the volatility of relying
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Figure 2.5: Energy use intensities from each city. Figure from [71].

on fossil fuels. Dublin, like Kiel, has a high proportion of its EUI associated with heating
and domestic hot water needs but opted to reduce heating loads through weatherization
and insulation. However, additional steps to reduce heating emissions will need to be taken
eventually. In Montreal, using natural gas instead of electricity only slightly impacts EUI
but raises emissions since the hydro-powered grid is so clean. In contrast, installing heat
pumps shaves off 28% from the baseline EUI, primarily from heating and cooling needs.

2.4.2.2 Photovoltaic Modeling and Simulation

To simulate rooftop PV potential, the EnergyPlus PV module is invoked via ClimateS-
tudio [80]. The simulations assume PV module efficiencies of 15%, with modules installed
on all rooftop areas in the seed UBEMs. The calculations consider shading from neighboring
buildings when estimating potential electricity generation from PV. Figure 2.6 shows the
resulting monthly solar energy yield for each municipality.

2.4.2.3 Building-Related Peak Demand

There is widespread consensus that decarbonizing the building sector will require the
electrification of all heating systems, while the electric grid will increasingly rely on renewable
energy. To realize both strategies simultaneously, it is crucial to minimize the strain that
buildings place on the grid. Figure 2.7 accordingly shows each city’s hourly annual electricity
peak demand from buildings for the three scenarios. This value represents the hour in the
year when the combined electricity demand across all existing buildings (minus onsite PV
production, if applicable) is highest. Each peak hour’s date and time stamp are included in
each column. Given that most policy representatives mentioned rooftop PV to reduce onsite
carbon emissions, the fourth column in Figure 2.7 shows annual peaks for the deep retrofit
scenario combined with PV deployment across all building rooftops.
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Figure 2.6: Solar results for each city. Figure from [71].

In Cairo, Florianopolis, and Singapore, shallow retrofits reduce the annual peak from
9% to 29%, while deep retrofits reduce the annual peak from 39% to 55%. In Dublin, the
heating is provided by natural gas in all scenarios, so the electric peak demand from buildings
is driven purely by winter lighting and equipment loads and is only slightly reduced in the
shallow scenario. In Cairo, Braga, and Kiel, the peaks remain around the same time of
year and occur in the evening/morning for cooling/heating-dominated climates. Given the
limited availability of sunlight during those times, the deployment of PV did not affect
the peak loads much except in Florianopolis, where the January 23rd 5pm mid-summer
peak is delayed to March 23rd at 6pm and reduced by 20%. In Montreal, switching to
natural gas or heat pumps for space heating would reduce the peak by a factor of three
or more due to the inefficiency of the current baseline electric resistance heat. In Kiel
and Middlebury, introducing electric heat pumps more than doubles the peak demand from
buildings, suggesting that only electrifying heating would require adding substantial capacity
to the power grid in these regions. In Middlebury, the buildings’ peak demand hour would
further shift from the cooling-driven summer afternoon to winter mornings. However, if
further combined with envelope retrofitting measures, the peak in Middlebury could be
reduced to even lower levels than the current baseline. Similarly, the widespread adoption of
AC units in Braga will put a significant strain on the grid that could be somewhat prevented
through deep retrofitting measures. These case studies highlight the importance of an energy
efficiency first approach when retrofitting buildings. The findings are consistent with studies
underlining the importance of buildings in grid demand management and energy policy
planning [81]. Generating units to address these peak loads — especially in the United States
— typically rely on fossil fuels and can be costly to operate [82]. Reducing peak demand from
buildings thus leads to fewer fossil-fueled generation plants being brought online, decreases
total annual power grid emissions, and reduces the need to build new distribution systems
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Figure 2.7: Peak demand for each city. Figure from [71].

[83].
Overall, the results show that the widespread use of rooftop PV will not significantly

help utilities manage their building-related electricity peaks due to a temporal mismatch in
production and demand. However, renewable energy will play a key role in reducing overall
building-related carbon emissions as they provide a zero-carbon source of electricity to power
electrified buildings.

2.4.2.4 Carbon Emissions

Figure 2.8 shows annual carbon emissions for the baseline, shallow, and deep retrofit
scenarios with and without PV deployment across 100% of all rooftops. For the shallow
and deep scenarios, results are shown as ranges assuming 2021 and projected 2050 emission
factors for electricity and fossil fuels as documented in Table 2.2. The underlying values
were provided by city representatives, referenced from reports, and cross-checked where
possible. Note that Cairo did not have a grid decarbonization target. The ranges help
to separate emissions reductions from buildings and the grid. Where applicable, the city’s
carbon emissions reduction targets from Table 2.1 are also shown. Without additional grid
decarbonization efforts, total carbon emission reductions for buildings range from 13% to
36% for shallow retrofits and 34% to 84% for deep retrofits across all eight municipalities. If
projected grid decarbonization plans for 2050 are fully realized, those numbers increase to
100% for shallow and deep retrofits in some municipalities.

Singapore’s building energy use is modeled as all-electric, and the projected grid emission
reductions would help it surpass its 2050 target for both shallow and deep retrofits. Much
of the grid decarbonization will need to come from off-site sources as rooftop solar can only
contribute a small part of the investigated residential high-rise buildings that make up much
of Singapore’s building stock.
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Figure 2.8: Carbon emissions for each city. The range of emissions shown captures current
and future predicted emissions from the various jurisdictions. Figure from [71].

Cairo has no publicly available grid emissions reduction plans (nor emissions goals), and
the rooftop solar production potential can reduce current emissions by 21% from baseline.

Florianopolis has the potential to meet its 2050 target through Brazil’s overall goal of
a fully decarbonized grid. Over 80% of those reductions from the baseline can be realized
onsite through deep retrofits and rooftop PV.

Braga’s rooftop solar potential is substantial and can contribute all the carbon-free elec-
tricity needed to meet its electrical needs in the deep retrofit scenario. However, achieving
their 2050 targets will require the electrification of all other end uses. The situation is the
same in Kiel, Middlebury, and Montreal, where the grid is already largely decarbonized
and/or rooftop PV could cover the remaining onsite electricity demand. While traditional
net-zero analyses assume that onsite fossil fuel consumption can be offset by rooftop solar,
this accounting practice does not work when the local grid is fully decarbonized. Given
that domestic hot water contributes substantially to these cities’ energy use (as seen in Fig-
ure 2.5), it is curious that none of them opted for domestic hot water heat pumps. It is
crucial that municipalities embrace a fully decarbonized system, whether fully electrified or
through green hydrogen or some other carbon-neutral fuel.

In Dublin, the combination of rooftop PV and the projected decarbonized grid can more
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than halve the remaining emissions in the deep retrofit scenario. Given this decarbonized
grid, electrification of the heating system could help Dublin meet a future net-zero target.

2.4.3 Post-Workshop Follow Up

During the workshop’s final day, all teams suggested that the UBEM approach could
support their jurisdiction’s efforts to reduce building-related carbon emissions. In September
2022 — twenty months after the workshop — all eight city representatives were contacted to
understand “what (if any) activity, follow-up modeling efforts, use of the results, discussion,
legislation/policymaking, or any other outcome resulted from the workshop.” Seven out of
eight representatives responded to the request and reported the following activities.

In Braga, to facilitate further use of UBEMs, the local participating partner (Instituto
Superior Técnico of Lisbon) developed a building template library for all of Portugal, tested
in another workshop led by the author in 2022 involving representatives from three additional
Portuguese cities: Porto, Coimbra, and Lisbon.

The Climate Action Coordinator for Dublin shared that the city secured funding from
the national government—through the Public Sector Innovation Fund—to “further utilize
UBEMs to model retrofit options.”

In Florianopolis, the study became part of a guiding principles report for public policies.
This report was developed through the Efficient Cities Project of the Brazilian Council for
Sustainable Construction to advise the Municipality of Florianopolis in setting up its energy
efficiency program.

The University of Kiel, in collaboration with Shell Germany, built an UBEM of the whole
city that contains around 36,000 buildings. The city is interested in using the data to inform
the management of its district heating network and future incentive programs.

Following the workshop, the author mentored a team from Middlebury College in ex-
panding the seed UBEM to the entire town of Middlebury. The model has grown further
and now covers all of Addison County’s 23 towns, with approximately 12,000 buildings. A
representative survey to better characterize the building stock was carried out in the sum-
mers of 2022 and 2023. This information is being used to better characterize heating sources
for the UBEM and plot a path to county-wide goals.

The Université de Montréal, in collaboration with the municipal government, has devel-
oped a “virtual island” model of the whole metropolitan area. The project is funded by the
Institut Trottier de l’Énergie, and efforts are underway to calibrate the model using select
measured data and develop plans for a heat-sharing network in neighborhoods undergoing
major redevelopment.

In Singapore, students from the National University of Singapore expanded the seed
model, focusing on solar energy potential for high-rise buildings.

2.4.4 Discussion

The three-day workshop experiment and post-workshop survey confirm the widely re-
ported political momentum among city governments to reduce carbon emissions. While
many cities recognize the urgency to reduce carbon emissions of their existing building stock
and have established ambitious targets, municipal representatives struggled to define clear
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technology pathways that they can communicate to their constituents. These representatives
thus appreciate data-driven methods to guide their policy development. While leveraging
UBEMs to provide this information to policymakers has typically been costly and time-
intensive, this chapter lays out various improvements that streamline the UBEM creation
process for many cites around the world. These methods were tested through the three day
workshop and clearly shown to fill this need.

These UBEM analyses also revealed a harsh reality for many cities. For many cites aspir-
ing to reach net-zero carbon emissions — such as Braga, Florianopolis, Kiel, and Montreal
— a full-scale implementation of what their representatives consider a deep retrofit along
with deployment of PV on all rooftops can only reach this goal for existing buildings if their
grid is decarbonized at the same time and heating and hot water end uses are fully electri-
fied [84]–[86]. This need extends to cold climates where heat pump manufacturers now also
offer viable solutions [87]. However, in cities like Montreal, owners thinking of adopting heat
pumps now face two barriers: it is currently cheaper to heat a building with natural gas,
and there is still widespread (if disproven) skepticism as to whether the latest generation of
air-source heat pumps can reliably heat a building in such a cold climate [88]. As a transi-
tional solution, existing electric resistance heating systems in Montreal could remain in place
and back up newly installed heat pumps if needed. Otherwise, owners who decide today to
switch to natural gas-based heating will likely remain with that technology for decades [89].
Most participating municipalities in the study also disregarded the remaining fuel use from
domestic hot water, which faces the same dilemma as the electrification of space heating
but (at least for the study participants) currently seems to receive less attention. A reason
for this may be that domestic hot water heat pump installations in cold climates remain
somewhat rare.

The study also revealed that policymakers must contend with certain factors that are
outside their jurisdiction. Figure 2.8 highlights the tight relationship between buildings and
the electric grid, showing they must be decarbonized together. While municipalities are
probably in a better position to help their constituents to renovate their buildings, only
utilities understand the impact of such changes on the grid along with other trends, such
as the widespread adoption of electric vehicles. It therefore seems that rather than working
with a single cross-sector carbon reduction target, cities need specific guidance on how much
savings their building stock needs to accomplish and at what time. This workshop shows
that UBEM-based approaches can help implement those building-specific targets.

A major workshop finding is that each city’s specific technology measures significantly
vary due to climate, political, and economic boundary conditions, and the state of existing
buildings. There is no one-size-fits-all approach for the built environment. It should be
stressed that while the technology measures modeled and explored in this study consider
local building stock characteristics, they would not necessarily deliver the most cost-effective
decarbonization or EUI reductions nor move the city/municipality most expediently towards
its stated carbon goal. This is not surprising. Decades ago, individual building energy
models were developed to help design teams identify the most suitable combination of energy
conservation measures for a particular building project.

While the seed UBEMs used in this workshop provide a first benchmark result, cities
with non-homogenous building stocks will need to model their entire building stock. The re-
quired effort mainly consists of additional simulation time and data storage, i.e., cost, rather
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than human resources or additional expertise. Fortunately, four out of eight participating
municipalities of varying size (Dublin, Kiel, Middlebury, and Montreal) did manage to secure
public or private funding to make UBEMs an integral part of their decarbonization planning,
whether managing local energy infrastructure, such as district heating systems, establishing
retrofit incentive programs, or communicating their goals to their residents. Therefore this
approach is scalable and municipalities worldwide should conduct similar data-driven studies
to establish baselines and predict the saving potential for various technologies. The resulting
policy plans, which describe what upgrades need to happen in which type of buildings, can
be effective for political consensus building as individual homeowners, who ultimately have
to pay for implementing those changes, can understand how their contributions fit within a
larger context. Such an analysis also ensures that cities do not overlook energy use from, for
example, domestic hot water.

2.5 Summary

Politically driven carbon reduction goals for existing buildings are currently somewhat
disconnected from technical realities in terms of both the extent of considered upgrades and
the speed of implementation. Urban building energy models offer actionable information for
municipal decision-makers to identify technology pathways to retrofit their existing buildings.
They also ensure that no emissions-reducing interventions are left on the table in the quest
to achieve ambitious but necessary emissions-reduction goals. This chapter discusses how
previous work developing an easy to use web app, UBEM.io, and a solid workflow to create
template libraries in North America and Europe can be used to build UBEMs anywhere
in the world. This workflow was clearly tested with case studies in eight cities in a wide
variety of climates. The next step, discussed in Chapter 3, is to define who is involved in
this workflow and what the tasks are to simplify the modeling process and make it accessible
to any community without requiring a university or national lab led research team.
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Chapter 3

An eight-step simulation based
framework to help cities reach
building-related emissions reduction
goals

This chapter presents a novel eight-step framework for applying UBEMs to whole cities.
The framework integrates three key personas developed in Ang et. al (2022) and draws on
experiences from the eight cities workshop and additional follow-on workshops around the
world [59]. In total, this framework has been used in 18 cities in 12 countries. In addition
to the technical pathway to achieve the jurisdiction’s goals, key implementation challenges
such as workforce and material shortage are quantified. This chapter is an edited version of
the author’s journal paper published in a standalone format:

Zachary Berzolla, Yu Qian Ang, Samuel Letellier-Duchesne, and Christoph Reinhart.
An eight-step simulation-based framework to help cities reach building-related emissions
reduction goals. Environmental Research: Infrastructure and Sustainability. October 2023.
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3.1 Introduction

One of the first city-wide UBEMs was built for the City of Boston by the MIT Sustainable
Design Lab using publicly available GIS datasets in 2016 [48]. This model provided actionable
information to policymakers on how Boston could achieve its net zero energy goals through
efficiency retrofits and also was used to identify the energy use requirements for developing
critical load microgrids [90]. This UBEM, however, took over a year of development work,
required highly specialized experience in GIS data, energy models, and energy policy, and lots
of manual labor to build. In short, the approach was not widely scalable outside of academia
or a highly-experienced modeling team with former academics. Even then, because of the
specialized expertise required, the costs to do this kind of study puts it out of reach for
all but the largest of cities. Yet mitigating GHG emissions to prevent the worst of global
warming and adapting to the impacts of climate change requires action in every community.
This chapter lays out an eight-step framework aimed at overcoming these challenges.

A key development to simplify the UBEM modeling process in collaboration with Yu
Qian Ang was identifying the concept of three key personas critical to creating any UBEM:
a GIS manager, a sustainability champion, and an energy modeler [59]. This chapter builds
on the three key personas and experience gained developing UBEMs in eight cities around the
world that illustrated the needs and challenges policymakers face when trying to achieve their
stated emissions reduction goals, as described in Section 2.4. Leveraging these experiences,
this chapter prescribe an innovative framework for communities around the world to create
and use uncalibrated UBEMs at the city-scale to develop retrofitting programs to meet their
emissions reduction goals. The framework reduces the cost and complexity of a whole-city
UBEM putting the models at the disposal of communities of all sizes, not just the largest
cities. Through a case study of Oshkosh, Wisconsin, a small American city with 13,100
residential buildings and 66,000 residents, this chapter details how the eight-step process
works and its scalability and accessibility to any community with the requisite data. In the
U.S. alone, the approach used for Oshkosh opens the door to addressing emissions reductions
in the 78 million housing units outside of major cities [91].

This chapter is organized as follows: Section 3.2 presents the framework for communities
to use an UBEM for emissions reduction planning, Section 3.3 discusses how this frame-
work was applied to Oshkosh, and Section 3.4 focuses on challenges with implementing the
technology pathways and takeaways for future studies in other communities.

3.2 Methods

The emissions reduction goals, local climate, building construction, and requirements of
communities around the world vary widely [71]. Yet despite their differences, every com-
munity, from a small farming town to a big metropolis, can follow the eight-step framework
outlined in Figure 3.1 to create an UBEM that covers their entire building stock. The key
innovation of the eight-step framework is defining the roles each of the three personas —
GIS manager, sustainability champion, and energy modeler — plays in each step based on
experience with case studies around the world. These steps are specifically chosen so that
each persona works on tasks that are already under their purview and they are thus already
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Figure 3.1: Eight steps to meeting a community’s emissions reduction goals. The key per-
sonas for each step are defined. A sustainability champion (in yellow), a GIS manager (in
blue), and an energy modeler (in green).

familiar with. In this way, the framework streamlines the modeling process so communities
save time, money, and resources.

The GIS manager is in charge of the community’s GIS dataset, usually a shapefile,
geojson, or a CityGML file [92]. These positions exist because GIS data is used for everything
from property taxes to life safety. GIS datasets contain accurate footprints of buildings so
that the digital depiction of a property is accurate and thus property taxes are not over or
under charged [93].

The sustainability champion can take many forms but they are also commonplace. In
many mid-to-large cities, this is a salaried position whose job is to support the city and
its residents in being more sustainable. In smaller communities this could be a volunteer,
volunteer group, a function of the city council, or a secondary responsibility of a city staff
member. In most jurisdictions, the sustainability champion is a generalist, dealing with
everything from recycling and compost to buildings and transportation. The sustainability
champions are a convener, they know the right people within the city government and within
the broader community that need to be involved in any given project. They write grants to
get funding for projects and are usually a respected voice in the broader community when it
comes time to implementation. They are not usually, however, technical experts. Building
emissions are just one part of their portfolio and they rely on others to inform them of best
practices for building decarbonization.

The energy modeler is deeply familiar with individual building energy models. The field of
building energy modeling has proliferated in the last decades with the growth of Leadership
in Energy and Environmental Design (LEED) and other similar building-rating systems.
Modelers are familiar with building technologies and the construction practices of the local
building stock. Either through their collaborations with local engineers or intrinsic knowledge
from previous projects, they understand what can and cannot be physically implemented in
their local communities. Through the eight-step process, they apply their individual building
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energy modeling skills to whole communities at one time.

3.2.1 Step 1: Feasibility Check

The first step for any community looking to meet their emissions reduction goals is to
ensure they have the people and data that will be integral to their study. The sustainability
champion initiates this step. Do they have baseline energy and emissions data for their build-
ing stock from a recent greenhouse gas (GHG) emissions inventory? If not, they will need
to conduct a GHG study using city-wide energy use data (e.g. natural gas and electricity)
and current emissions factors for these sources. These energy consumption data can usually
be provided by the local utility in an aggregated form without causing data privacy issues.
With a baseline established, does the community have specific emissions reduction targets
defined? With this key background information in hand, they engage the GIS manager to
ensure they have all the necessary GIS data. At this point, the community is well-situated
to put out a bid for an energy modeler to join the team.

3.2.2 Step 2: Define Project Scope

The scoping consultation is where the energy modeler, GIS manager, and sustainability
champion formulate a series of questions they want to explore. Once the key building-
retrofit related questions have been agreed upon, the sustainability champion can work with
the energy modeler to transform these questions into strategies that can be studied with an
UBEM. At this stage, the team is ready to define the scope of the study - e.g. what building
types to include and which power grid decarbonization projections to use. This information
should ideally come from a reputable source such as a local utility’s goals or the National
Renewable Energy Laboratory (NREL)’s Cambium dataset [94].

3.2.3 Step 3: GIS Data Preparation

In Step 3, the GIS manager is tasked with preparing the city’s GIS dataset to be used
for the UBEM. While they have never built an UBEM before, all the requisite data, detailed
in Table 3.1, fall within their domain expertise. Leveraging the GIS manager’s expertise in

Table 3.1: Required data for building simulation.

Property Source Common Approach More Detailed Ap-
proach

Footprint Shapefile/Geojson OpenStreetMap
[95]

Aerial imagery

Height Tax assessor Extrapolate from
floors

Use LiDAR data

Use Type Tax assessor Zoning data Detailed description
Age Tax assessor Year of construc-

tion
Year of last renova-
tion
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preparing the GIS file means that the energy modeler can focus solely on modeling building
physics. This keeps costs on the project low since the GIS manager and sustainability
champion are usually salaried positions in the city (or are volunteers).

3.2.4 Step 4: Build the Baseline UBEM

In Table 3.1 the GIS manager already identified the common parameters used to segment
building stocks [55]. The energy modeler’s job is now focused on defining the simulation in-
puts (the equipment specification, construction properties, heating and cooling systems, and
schedules that are part of any energy model) based on the previously defined segmenta-
tion. These data have typically been a chokepoint in creating UBEMs, oftentimes requiring
hundreds of hours of pre-processing [96]. The use of standardized archetypes describing rep-
resentative building construction and use properties has helped streamline this process [26].
Creating archetypes previously required expert knowledge of the local building stock and a
substantial amount of time, limiting the ability for small towns to afford UBEMs. Leveraging
UBEM.io’s library of building templates removes this barrier. Templates are currently avail-
able for anywhere in the U.S. based on U.S. Department of Energy prototypes and creating
template libraries for other countries from national databases such as TABULA has been
proven out in Buckley et al., as described in Section 2.2.3 [8]. Crucially, these templates
only need to be created once for each region and then they can be accessed and used by all
communities on UBEM.io or other repositories.

With templates defining the building’s simulation properties defined, selected, and as-
signed to the various geometries in the GIS file, the UBEM model can be created. The GIS
footprints are extruded to the given height and assigned a template based on their segmen-
tation characteristics.

3.2.5 Step 5: Run the Baseline UBEM

With these data in place, the model is run using urban building energy modeling software.
For stock-level analysis, physics-based models such as EnergyPlus are most common and are
more accurate than other model types such as regression-based statistical or reduced order
models [92]. UBEM.io is built to export to the Urban Modeling Interface (UMI) although
the eight-step framework outlined in this chapter can be used with any other physics-based
urban modeling software such as CityBES or TEASER [92]. No matter the tool being used
for analysis, when the model is run, it should be compared to measured baseline energy use
data such as electricity and natural gas consumption to test for accuracy. To properly make
this comparison, the model must be run with measured weather data for the same time
period as the measured energy data (i.e. an annual meteorological year (AMY)) [97].

The resulting model is uncalibrated; the results will be based off the geometries and
simulation parameters. As part of defining the templates, the energy modeler can use their
tacit knowledge of the building stock to tweak the templates to better reflect the local context.
While the parameters can be manually tweaked as the modeler sees fit, this is not meant
to be a building-by-building level of effort. Using an uncalibrated model does not mean
that the results will be inaccurate. As mentioned in Chapter 2 Section 2.3, uncalibrated
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UBEMs are usually within 15% of the measured data the archetype-level. These results
are in part due to well-defined templates from national building stock surveys and in-part
due to energy modelers’ expertise and tacit knowledge of the local building stock. If the
UBEM results are more than 15% off from the baseline inventory, then the emissions factor
assumptions and templates need to be revisited. While previous studies have stressed the
need to use calibrated models, the focus has usually been on providing detailed data at
the archetype-level [98]. An uncalibrated model provides sufficient information to answer
policymaker questions at the stock-level [43]. Calibration efforts and the data privacy issues
that arise when using building-level measured energy data would unnecessarily increase the
time, cost, and complexity of the UBEM study, limiting its scalability.

3.2.6 Step 6: Create Building Upgrades

With a plausible baseline model established, the energy modeler turns their efforts to
defining different building upgrade scenarios. These upgrades should represent feasible solu-
tions that can be carried out in the majority of buildings in that category. Upgrades should
be tailored to the building typology and region. Once several different upgrade strategies
are identified, they can be simulated and the process moves to Step 7 to identify the best-
performing options. Rapid iteration at this stage is critical.

This is usually the most labor-intensive step for the energy modeler, yet most upgrades
follow similar patterns for different regions and building types. UBEM.io has pre-defined
common upgrade packages to help modelers speed up the process. Additionally, standard-
ized upgrades could be developed at the state or national level, as has been done in the
TABULA project [64]. Once a few “off the shelf” scenarios have been tested, the energy
modeler can identify further improvements that are specific to the community. Using the
standard scenarios as a starting point greatly reduces study costs and opens UBEMs to every
community.

3.2.7 Step 7: Analyze Scenarios

From the options studied in Section 3.2.6, the energy modeler narrows down the rec-
ommended upgrades to a handful of strategies that enable the city to achieve its emissions
reduction goals. Computational tools such as optimization can play a role in helping the
team identify the most impactful and cost-effective options. This is a crucial step as too many
options can overwhelm decisionmakers. Before the energy modeler presents these strategies
to the sustainability champion and/or other local government representatives, they must be
translated from technical terms into easy to understand concepts. Furthermore, the energy
modeler should conduct some basic cost/benefit and payback analyses as part of this step
to ensure that all recommendations presented are reasonable economically for all involved.

3.2.8 Step 8: Present Findings and Develop Implementation Plans

With a simple message and a small number of potential retrofit options, the energy
modeler presents their results to the sustainability champion. They must lay out the different
technology pathways to achieve the city’s emissions goals and the costs and savings associated
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with implementing these pathways. At this point, the energy modeler hands the project and
data back to the sustainability champion for implementation. The sustainability champion
can leverage the data from the modeler to draw conclusions about the size of the workforce
needed to implement these technology pathways. The champion might involve the GIS
manager for data visualization but in general they have now been given all the information
they need to design programs and policies to implement the technology pathways.

The outputs of an UBEM are designed to communicate the need for collective building
retrofits to meet a community’s emissions reduction goal. Nolan et al. showed that messages
about neighbors’ energy conservation behavior spurred people to conserve more energy [99].
Jachimowicz et al. showed that people will save energy if they think other people in their
area care about saving energy [100]. Furthermore, Alcott and Rogers showed that long-
term reductions in energy consumption require repeated communication efforts in order to
create lasting change [101]. Thus to catalyze homeowner action, the sustainability champion
will likely need to create a well-publicized demonstration project of the proposed retrofits
while also streamlining the implementation for all residents. Furthermore, by educating the
population that upgrading a home to be more energy efficient is both desirable and necessary
to reach community goals, the uptake of the retrofit program should increase [102].

Finally, implementation needs to be accessible to all. This is where straightforward
financing options through local banks or on-bill financing in collaboration with the local
utility can make a big difference. If homeowners have easy access to capital and quick
payback periods, they will be more inclined to carry out retrofits [103], [104]. Ultimately,
successfully encouraging widespread program adoption will require a multi-pronged approach
that makes building upgrades a simple and financially attractive process.

3.3 Results

The above described emissions reduction framework is demonstrated in the town of
Oshkosh, Wisconsin, USA. Oshkosh is a midwestern city with 66,000 residents in ASHRAE
climate zone 5A - cool humid. In many respects it is typical of any small American city,
with an actively-engaged volunteer sustainability advisory board that sets goals and runs
sustainability programs and a small paid planning department that manages the GIS data.
For this analysis, the GIS manager was a town employee from the planning department
and the sustainability champion was the town’s volunteer sustainability committee. Like
most communities of its size, Oshkosh does not have the resources to commission an energy
modeler to build a traditional UBEM model from the ground up. Yet using the previously
outlined eight-step framework, the Oshkosh UBEM was built in a matter of tens of hours
instead of hundreds of hours for a traditional UBEM [59]. In conversations with practicing
energy modelers who were introduced to the eight-step framework presented here, the cost
estimate for such a study is approximately $15,000. While substantial for the operating
budget of a small community, this cost is on-par with grants provided by non-profits and
utility energy programs.
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3.3.1 Step 1: Oshkosh Feasibility Check

After a quick check, Oshkosh has access to all the necessary data to build an UBEM.
Their planning department has a GIS shapefile with building footprints for the entire city
and tax assessor data with building use type and age. Through ICLEI – Local Governments
for Sustainability (a coalition of over 1,700 city and state governments around the world),
Oshkosh conducted a baseline greenhouse gas emissions inventory using measured gas and
electricity consumption data for residential buildings from the local utility [105]. Oshkosh
and ICLEI used the emissions inventory to inform a series of emissions reduction targets: 25%
by 2025, 40% by 2035, and 80% by 2050 [106]. In terms of residential building emissions,
this translates to city-wide residential building targets of 178,000 metric tons of CO2e in
2025, 143,000 metric tons in 2035, and 47,500 metric tons in 2050.

3.3.2 Step 2: Defining Project Scope

With the baseline data in place, the author, acting as an energy modeler, met with the
Oshkosh sustainability champions. The team discussed the capabilities of UBEM tools and
the questions that they wanted to explore. Ultimately, the questions focused on identifying
cost-effective retrofits and renewable energy to meet their emissions reduction goal. These
questions are aligned with that of most other sustainability-minded communities around the
world.

The team agreed to use NREL’s 2021 Cambium data for grid emissions to provide consis-
tency between today’s emissions and projected future emissions. Cambium contains state-by-
state projections for the cost and emissions of electricity in the U.S. out to 2050. Cambium’s
2022 (the first year in the database) long-run marginal emissions (0.59 kg CO2/kWh) are
roughly in line with the 0.54 kg CO2/kWh emissions factor provided by the local utility,
Wisconsin Public Service [107]. This is higher than the U.S. average of 0.40 kg CO2/kWh
and the E.U. average of 0.23 kg CO2/kWh but lower than other areas of the world [108],
[109]. The other main source of emissions in the study area is from natural gas furnaces
for heating and hot water. The emissions factor for natural gas was assumed to be 0.18 kg
CO2/kWh.

In consultation with the sustainability champion, it was assumed that all new buildings
built in Oshkosh will be efficient enough to not significantly impact emissions – i.e. all new
buildings from 2022 onward were ignored. This assumption could be revisited at a later
date as the progress of retrofits is reviewed, but it was a low priority because of the limited
building stock growth rate of Oshkosh over the past ten years. The sustainability champion
also narrowed the scope of the study down to only residential buildings. The reason for this
decision was two-fold. First of all, residential buildings are the predominant building type
in Oshkosh and their distributed ownership makes them a much more challenging sector to
retrofit compared to the handful of owners of the commercial buildings in Oshkosh. Second,
the narrowed scope provides a learning opportunity for the city that they can apply to other
building types.
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3.3.3 Step 3: Preparing the GIS Data

With the study scope defined, UBEM.io was used to import all the GIS data provided
by the GIS manager. Some key pre-processing was involved in this step, mainly assigning
all sheds and similar auxiliary structures to the shading layer and determining building
ownership. Owner-occupancy was identified by the sustainability champion as a key factor
in whether a building will be eligible for retrofit given current incentive programs. Since the
city’s GIS file did not have a category denoting whether a structure is owner-occupied, the
mailing address for the tax bill and the building’s physical address were compared. If the
two were the same, then the building was assumed to be owner-occupied. Across Oshkosh,
74% of residential buildings were calculated to be owner-occupied. Additional checks were
carried out to ensure that building geometries did not overlap and there were unique ids for
each geometry.

3.3.4 Step 4: Build the Baseline UBEM

The final UBEM included 13,100 residential buildings. Nearly all the residential buildings
in Oshkosh are single family attached or detached homes, with a few multi-family buildings.
Due to Oshkosh’s low-density housing, the construction practices do not differ much between
the single and multi-family low-rise residential buildings of the same vintage. Thus the
residential archetypes are segmented only by age of construction. The three categories are:
pre-1980 residential, post-1980 residential, and new residential (anything built after 2004).
1980 in particular reflects the post-oil crisis implementation of building energy codes across
the U.S. that led to standard energy-efficient construction practices. Each building in the
city was assigned non-geometric properties along the divisions of these archetypes using the
DOE’s age-appropriate residential building data and some tacit knowledge of the building
stock with salient characteristics documented in Table 3.2 [61], [110]. In this study, due to
the lack of additional data, all on-site combustion of fossil fuels is assumed to be natural gas.

Table 3.2: Oshkosh baseline building archetype characteristics. These values are based on
the U.S. DOE residential prototype buildings and ResStock data.

Arche-
type

Annual
Fuel
Uti-
lization
Effi-
ciency

Equip-
ment
Power
Density

Lighting
Power
Density

Infil-
tration

Wall
Insu-
lation
Ther-
mal
Resis-
tance

Attic
Insu-
lation
Ther-
mal
Resis-
tance

Floor
Insu-
lation
Ther-
mal
Resis-
tance

Window
Thermal
Trans-
mittance

(W/m2) (ACH) (m2K/W) (W/m2K)
Pre-
1980

80% 15 7.5 0.75 0.53 6.3 None 2.0

Post-
1980

80% 10 5.0 0.75 2.3 6.3 0.70 2.0

New 95% 3.0 1.5 0.20 4.4 8.6 0.70 2.0
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3.3.5 Step 5: Run the Baseline UBEM

UMI was used to simulate the full model of Oshkosh in about five hours on a standard
Windows desktop with 8 cores and 32 GB of RAM. With prodding from the Oshkosh officials,
the local utility provided 2019 electricity and natural gas consumption data for residential
buildings in Oshkosh. Thus, the model was run using a 2019 AMY weather file created from
measured data at the local airport using diyepw [111].

The model results were compared to the emissions from the carbon inventory and found
to be within 9% of the measured data. The 9% error meets the ASHRAE 140 Standard and
falls within the range of expected values (5% to 15%) for an archetype-level study [43], [77].
While not absolutely conclusive, the alignment between measured and modeled data showed
that using DOE templates to create archetypes predicts the energy use and emissions of
Oshkosh’s buildings well.

3.3.6 Step 6: Create Building Upgrades

With a thus “plausible” baseline model, the focused turned to different technology path-
ways that could be combined to meet Oshkosh’s emissions reduction goals. It is key to note
in Figure 3.3 that natural gas is the predominant source of residential emissions. Conse-
quently, even if the electric grid decarbonizes significantly as the Cambium dataset suggests,
Oshkosh will not be able to meet its emissions goals without transitioning away from fossil
fuels for heating, hot water, and other end uses. The baseline model also showed that pre-
1980 and post-1980 residences account for nearly all of Oshkosh’s emissions. Consequently,
in consultation with the sustainability champion, post-2004 residences were not considered
for retrofits. Three retrofit strategies were defined. The first is focused on energy efficiency,
the second takes the efficiency and electrifies equipment and heating, and the third includes
all of the energy efficiency and electrification retrofits and adds photovoltaics.

The energy efficiency upgrade strategies investigated are based on the DOE’s ENERGY
STAR Certified Home program [112]. This nationwide program defines prescriptive insu-
lation and airtightness goals by climate zone for new construction that greatly decrease a
building’s energy consumption but do not rise to passive house standards. This means homes
could be further upgraded if desired, but the goal is to use strategies that are low-cost and
scalable. While meant for new construction, the prescriptive requirements work well in
retrofits as well. The insulation upgrades (listed in Table 3.3) generally require a layer of
continuous external insulation that would coincide with siding replacement and adding in-
sulation in wall cavities if they are un-insulated (e.g. in pre-1980 residences). The standards
further specify air sealing all cracks, adding further insulation in the roof, and installing some
underfloor insulation between the basement and first floor. The program also requires all
lighting to be LEDs and all appliances to be ENERGY STAR certified. Finally, the furnace
needs to be upgraded to an ENERGY STAR certified 95%+ efficient unit.

The second stage retrofit consists of electrifying the heating system using a cold climate
heat pump for heating/cooling and a heat pump water heater for hot water in addition to the
energy efficiency upgrade package. This retrofit enables Oshkosh to eliminate the buildings’
natural gas consumption.

While the electrification upgrades provide the potential that a decarbonized electricity
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Table 3.3: Oshkosh upgrade requirements by archetype. Note the windows were not upgraded
because their payback period is over 20 years.

Arche-
type

Annual
Fuel
Uti-
lization
Effi-
ciency

Equip-
ment
Power
Density

Lighting
Power
Density

Infil-
tration

Wall
Insu-
lation
Ther-
mal
Resis-
tance

Attic
Insu-
lation
Ther-
mal
Resis-
tance

Floor
Insu-
lation
Ther-
mal
Resis-
tance

Window
Thermal
Trans-
mittance

(W/m2) (ACH) (m2K/W) (W/m2K)
Pre- &
Post-
1980

95% 3.0 1.5 0.15 4.4 8.6 5.3 2.0

Note: air changes per hour (ACH) is unitless.

grid will help Oshkosh meet it’s goals, the city and its residents can be actively involved in
this work by deploying distributed energy resources such as rooftop PV. This has the further
added benefit of being a good financial choice for most buildings. To this end, the final
upgrade analyzed differing amounts of rooftop PV. Using the EnergyPlus PV module with
a conservative 15% efficient PV panel and a 90% efficient inverter, the team simulated the
electricity production potential of all the rooftop area in Oshkosh. The validated EnergyPlus
PV module uses a full solar radiation analysis that accounts for shading, reflections, and
temperature-dependence [113]. Based on the simulated average yearly electricity production
potential from this PV across all of Oshkosh, the required cumulative PV array size was
scaled to the remaining emissions reduction needs after the electrification retrofit.

3.3.7 Step 7: Analyze Scenarios

The three technology pathways developed in Step 6 require increasing amounts of effort
but also lead to decreasing energy use intensity. As seen in Figure 3.2, the efficiency up-
grade leads to a 61% decrease in energy use, mostly from heating, and the efficiency and
electrification upgrade leads to an 84% energy use reduction.

The PV retrofit includes approximately 78 MW of installed PV. This requires approxi-
mately 30% of the rooftop area in Oshkosh, although it could be installed on a mixture of
rooftops and the ground or procured through a power purchase agreement. An array this
size produces 30 kWh/m2 of electricity across Oshkosh annually, resulting in a nearly net
zero EUI and Oshkosh achieving its 2050 target.
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Figure 3.2: The energy use intensities by end use of the baseline model for the two technology
pathways in Oshkosh. The PV pathway is excluded as the consumption EUI does not change
from the electrification upgrade.

3.3.8 Step 8: Present Findings and Implementation

While the energy use reductions presented in Step 7 are laudable, the city is ultimately
concerned with the emissions reduction potential of the technology pathways that are feasible
and economical for residents. Persuading homeowners to upgrade their homes will require a
combination of economic and social capital. On the economic side, costs for each upgrade
are tabulated based on RSMeans and NREL Electrification Futures Study data using the
approximately 220 m2 DOE prototype single family home for area-dependent costs [61],
[114], [115]. Using the energy savings based on simulations and utility costs the savings and
payback periods for the different upgrade packages that each homeowner can choose from
are calculated. This analysis is required to ensure that technically feasible pathways are
economically feasible for homeowners.

In carrying out a payback period analysis, the energy modelers would find that although
heat pumps lead to substantial emissions reductions, the efficiency and electrification upgrade
has a payback period of 43 years for pre-1980 residences. This is longer than the lifetimes
of heat pumps so the electrification upgrade does not make economical sense in Oshkosh at
the moment. This currently occurs because the cost of natural gas is so low compared to the
cost of electricity. These economics are community-specific and may change as the cost of
electricity and natural gas shift in the coming years. Consequently, the best course of action
for homeowners in Oshkosh is either the efficiency or efficiency + electrification + solar
retrofit (where the low-cost solar electricity negates the economic issues with electrification).
The final combinations of the strategies presented to Oshkosh are shown in Figure 3.3. These
strategies empower Oshkosh to take charge of achieving its emissions reduction goals through
local retrofits but also place them in the context of emissions reduction efforts on the power
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grid. Given 2050 projected grid emissions, the third retrofit actually enables Oshkosh to
meet nearly net-zero emissions goals.

Figure 3.3: The strategies for Oshkosh to meet its emissions reduction goals. It is only
through a combination of all three strategies (energy efficiency, electrification, and photo-
voltaics) that Oshkosh can meet its 2050 goal. The addition of grid decarbonization lets
Oshkosh achieve nearly net zero by 2050.

A clear takeaway from these results is that Oshkosh cannot meet its emissions reduction
goals through efficiency and grid decarbonization alone. They must electrify their end uses
in order to achieve their 2050 goals. Additionally, while this goal is technically feasible,
current retrofitting rates hover around 1% a year, making achieving them by 2050 unlikely
[7]. The key for Oshkosh will thus be motivating homeowners to partake in these upgrades.
An example “back of the envelope” calculation to present the technology pathways to owners
of pre-1980 residences is shown in Table 3.4. This information could be turned into graphics
and provided as part of the implementation process. It is meant to show homeowners that
their individual contributions matter and make economic sense. They also urge action and
would be distributed via local channels such as town meetings and the planning office.

The additional savings for post-1980 residences versus the pre-1980 residences detailed in
Table 3.4 come from the 10% increase in the average floor area of these newer homes across
Oshkosh. This trend toward bigger houses is common across the country, and while it raises
retrofit costs a little bit, the resulting savings are more pronounced. The costs factor in
federal tax credits available in 2022 and assume aggregation of PV installations to attain a
commercial-scale installation price of $1,720/kW [116].
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Table 3.4: Back of envelope calculations for pre- and post 1980 homes to undergo retrofits.

Energy Efficiency Retrofit Energy Efficiency, Heat Pumps, Solar
Pre-1980 Post-1980 Pre-1980 Post-1980

Save Each Year $1,000 $1,500 $1,600 $2,000
Pay Now $10,000 $8,700 $23,000 $22,000
Break Even Year 10 5.5 15 10
Emissions Reduc-
tions

30% 85%

3.4 Discussion

The eight-step framework outlined in this paper has been successfully applied in Oshkosh,
WI, at cost and effort levels that are scalable across the U.S. wherever GIS data sets are
available. The Oshkosh case study highlights a few key takeaways for applying the eight-
step process in other municipalities. First, the goals need to be clearly set to guide all
decision making. Second, the boundary conditions must be agreed upon at the outset of the
study. This includes what types of buildings to include, what emissions are counted, what
baseline data set is used, and how the power grid emissions are expected to evolve. The
grid emissions, in particular, have an outsized impact on the results. Another key takeaway
from the Oshkosh case study is that although end use electrification is not always economical
today, its emissions reduction potential as the grid decarbonizes will be critical to meeting
emissions reduction goals. These facts are not unique to Oshkosh and will be a challenge for
communities around the world that will need to be accounted for in any emissions reduction
planning.

There is an opportunity to use this framework to engage whole regions at a time. For
example, the suburbs of Boston are all similar in composition and one energy modeler could
build an UBEM for the entire area and engage with communities’ respective sustainability
champions to tweak results presentations as needed. This efficiency in modeling is enabled
by breaking down the modeling process into the discrete tasks listed in this chapter. To
further demonstrate the validity of this approach, models were developed in collaboration
with eleven communities in North America and four in Europe: Petaluma, CA, USA; Bristol,
VT, USA; Sandy Springs, GA, USA; Codman Square, Boston, MA, USA; Everett, MA,
USA; Framingham, MA, USA; Natick, MA, USA; Somerville, MA, USA; Reading, MA,
USA; San Pedro Garza Garcia, Mexico; Calgary, Canada; Zagreb, Croatia; Porto, Portugal;
Lisbon, Portugal; and Rotterdam, The Netherlands. The development of these UBEMs and
their respective findings are discussed in Chapter 7 with additional information available at
www.ubem.io/case-studies.

3.4.1 Putting the retrofits in perspective

The author calculated the job creation potential of similar efficiency and electrification
retrofit packages in Oshkosh and four other cities around the U.S. [117]. The energy efficiency
package was estimated to require 91 hours per home and the efficiency, electrification, and
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PV package 157 hours per home based on RSMeans data [114], [117]. Using these numbers,
an assumption of 25 years of retrofits and 1,560 on-the-job hours per year per full-time
equivalent worker, at least 31 and 53 workers respectively will be needed in Oshkosh alone
each year to implement these packages. According to utility rebate data from 2015 through
May 2021, less than 1,500 heat pumps were installed in Wisconsin in total, with only 136
contractors across the whole state performing these installations [118]. Even then, nearly
25% of these systems were installed by the same five contractors [118]. Oshkosh accounts for
just half a percent of the state’s housing stock, so even if equally distributed, statistically
there is only one contractor in the city that can perform the requisite retrofits [119]. On the
other hand, Vermont, with 1/8th of the population of Wisconsin, installed over 10,300 heat
pumps in 2020 [118], [120]. Based on a twenty-five year retrofitting program, 525 retrofits
would be needed each year, which is nearly equal to the number of heat pumps installed
across the whole state in 2020 [118]. Clearly, the workforce required to implement retrofits
in Wisconsin will need to grow exponentially in the coming years. Yet current efforts across
the state are lagging behind — a recent press release lauded the funding of 42 trainees for
clean energy and water efforts in 2023, not even enough to meet the needs of Oshkosh, let
alone the rest of the state [121]. This issue goes beyond Wisconsin, with the U.S. and Europe
already constrained on heat pump installations by the lack of skilled craftspeople to install
them [122].

Furthermore, with so few heat pumps currently being installed the supply chains to
support this scale of retrofitting will need to be ramped up. One specific challenge is the
raw materials required. Heat pumps require supply-constrained components such as Copper,
Nickel, Aluminum, steel, and several microprocessors for the control panels, pumps, and fans
[122], [123]. The semiconductor challenge is more systemic, with heat pumps often being de-
prioritized when supply is short [122]. Even with the raw material, the International Energy
Agency has found that current manufacturing capacity for heat pumps is 60% below what it
needs to be to achieve 2050 goals [122]. While some of the systemic supply chain issues might
affect long-term retrofitting, the U.S. installed 4.3 million heat pumps in 2022. This pace,
which, if kept up, puts retrofitting at least 75% of the U.S. building stock with a heat pump
in 25 years in the realm of possibilities [124]. While these numbers are specifically focused
on heat pumps, similar issues in energy efficiency measure installation (e.g. insulation) will
also need to be addressed.

Finally, there is the issue of adoption (or lack thereof) of building retrofits in rental units.
Due to the Landlord-Tenant problem, renters are unlikely to invest in any efficiency upgrades
and the landlords have little incentive to invest either [125]. Consequently, rental units are
unlikely to be retrofitted and significant emissions reduction potential is missed. As shown
in Figure 3.4, when rental units are not retrofitted, renter-dominated neighbors in Oshkosh
have substantially higher emissions in 2050. This leads to a significant decrease in emissions
reduction from the full technical potential. Whether by regulation or through creative on-bill
financing tied to the address not the renter, there are pathways to overcome this challenge
but they have yet to be addressed in Oshkosh [126].
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Figure 3.4: Area-normalized emissions from residential buildings at the census block level in
Oshkosh. Red areas will need to be focus areas for new programs and policies that engage
rental units in retrofits.
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3.5 Summary

This chapter presented an eight-step UBEM-based framework for communities to identify
technology pathways for their building stock to reach previously defined carbon reduction
targets. The eight steps were developed and refined through previous case studies at the
neighborhood level in cities around the world. Its application at the city-scale is illustrated
in this chapter through a case study of 13,100 buildings in Oshkosh, WI, USA. By clearly
defining the role for the GIS manager, sustainability champion, and energy modeler in each
step, these powerful models can be built at the city-scale for approximately $15, 000, less
than a tenth the cost of bespoke UBEMs built by consultants for large cities. This cost level
makes them accessible to diverse communities, no matter the size. The Oshkosh UBEM
was used to identify economically-feasible retrofit strategies that can be rolled out across
the building stock to achieve their emissions reduction goals. UBEMs can also quantify the
lost emissions reductions potential across a city when systemic barriers such as the lack of
retrofits in renter-occupied units are accounted for. They can also identify the most cost-
effective and coordinated way to approach retrofits in a specific city. Finally, as shown in this
chapter, UBEMs can also be used to quantify additional impediments to retrofit adoption
such as a lack of a trained workforce or adequate supply chains. The ultimate goal of these
quantification efforts is to motivate policymakers to find creative solutions to longstanding
issues to drive building retrofit adoption to the levels required to reach communities’ 2050
goals.
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Chapter 4

Developing a Building Retrofit Adoption
Model

In this chapter, the adoption of the retrofit packages for Oshkosh, WI proposed in Chap-
ter 3 are evaluated. The best available model quantifying the ultimate market penetration of
an energy efficient technology is used to evaluate adoption rates under increasingly realistic
scenarios. The UBEM model is leveraged to provide spatially-resolved emissions reduction
results that helps inform policymakers of the consequences of business-as-usual adoption.
This chapter is an edited version of the standalone publication:

Zachary Berzolla, Yu Qian Ang and Christoph Reinhart, “Combining Urban Building En-
ergy Models with Retrofit Adoption Models for Time-Dependent Carbon Emissions Projec-
tions,” in Proceedings of the 2022 ACEEE Summer Study on Energy Efficiency in Buildings.
August 2022.
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4.1 Introduction

The preceding chapters document improvements in the technical ability to model technol-
ogy pathways to a communities’ greenhouse gas emissions reduction goals. These analyses,
however, ignore the socioeconomic realities of the residents of the investigated buildings as
well as how fast these various technologies may be implemented. Additionally, the current
1% adoption rate of building retrofits is far too low to achieve anything near the technically
feasible technology pathways that would get a city to its emissions reduction goals in 30 years
[3]. Furthermore, communities are diverse with differing socioeconomic and demographic sta-
tuses – such as income, education, and home ownership levels. These factors, among others,
will affect the actual adoption of retrofits in the built environment, crucial to meeting the
city’s emissions reduction goals. For example, the U.S.’s weatherization assistance program
(WAP), which is aimed at low-income homeowners, only leads to an average energy savings
of 25%, far below levels needed to achieve emissions reduction goals [127].

Different technology upgrades also compete. For example, an owner who purchases a
new, high efficiency gas furnace today effectively locks in this technology and the underlying
infrastructure for the coming decades. To help cities better gauge the speed and type of
upgrades residents will consider, this chapter introduces a framework that connects UBEM-
based emissions reduction predictions with a census block level technology adoption model.
Both modeling approaches are bottom-up, based on individual buildings and thus comple-
ment each other. This approach supports micro-scale predictions of when and where retrofits
of various types are likely to occur. This information is crucial for policymakers aiming to
speed up the progress to meet looming carbon reduction deadlines while ensuring that no
neighborhood is left behind. Following a review of technology adoption research, this chapter
presents an initial building retrofit adoption model for buildings and apply it to the city of
Oshkosh, WI.

4.2 Background

Just because a technology exists and is economically sensible, i.e. the person paying for
the technology will eventually get their investment back, does not mean that it will ever
be widely implemented. Economic feasibility is of course a necessary requirement for most
investments which is why literature on building retrofits has thus far focused on this metric
at the individual building, city, and country scale [89]. For example, Wilson et al. studied
economically-feasible retrofits in terms of eliminating retrofit packages that did not achieve
a simple payback period of less than five years, and suggested that homeowners typically
consider only retrofits with a quick payback period [28]. To further understand technology
adoption over time, another key factor has been identified: market potential [128]. Whereas
economic potential depends on the cost of the upgrade and the income of the potential home-
owners, market potential tries to understand what percentage of all economically feasible
retrofits will ultimately be implemented and/or adopted [128]. Transferring these concepts
to the building retrofit market, an adoption analysis needs to account for the actual pool
of eligible residences and the relative cost of various retrofit options vis-à-vis inhabitants’
household income.
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Interestingly, while there is extensive literature on the adoption of products such as
Roger’s “Diffusion of Innovation,” there is very little documented data on adoption of build-
ing retrofits [129]. To the best of the author’s knowledge, the only in-depth study of building
retrofit adoption was carried out for the U.S. Department of Energy by the Arthur D. Lit-
tle company as part of a broader energy technology potential model in the 1970s [130]. In
this chapter, total market potential for building retrofits such as insulation and equipment
upgrades are predicted based on two key factors: upfront cost and payback period. Yet no
additional modeling or analysis for the built environment along similar lenses has been done
since. There is, however, expansive literature on the adoption of solar photovoltaic (PV)
arrays [131], [132]. While an analogy to PV is useful, the deep building energy retrofits
required to meet emissions goals are a lot more disruptive to residents’ life and the eco-
nomics are more uncertain, especially considering the potential rebound effect of somewhat
increased energy consumption post-retrofit [133]. Consequently, more research must be done
to better understand the potential for the adoption of building retrofits. To develop a sense
for the required order of magnitude of different adoption rates, the initial adoption model
is based on the oft-cited baseline building retrofit rate of 1% [3]. This figure is an upper
estimate as it includes non-energy renovations of buildings and additions. While some of
these renovations may be driven by thermal performance goals, many are driven by own-
ers’ desires to remodel their homes for various reasons. These renovations may or may not
include more efficient construction practices. An old home that is remodeled may get new,
higher-performance windows simply because that is what is available on the market today.
These non-energy driven retrofits are important because the cost of certain upgrades such
as new windows may be cost prohibitive on their own. However, these energy efficiency
co-benefits are likely limited and are encompassed by the 1% retrofit rate assumption. For
example, in Massachusetts, while 9% of owner-occupied single family homes are renovated
each year, only 5% of these include adding insulation, for a less than 0.5% overall adoption
rate [134]. In the U.S. as a whole, the American Housing Survey estimates that the rate for
retrofits that included insulation in 2020 was a paltry 0.07% [18].

Another confounding factor for building upgrades is ownership: It is nearly impossible
for tenants to initiate the installation of photovoltaics or other building retrofits and they
are not incentivized to do so [135]. There have been proposed approaches to overcome the
landlord/tenant barrier in Europe, but barring major policy shifts that require landlords to
meet energy efficiency standards in rental units and/or substantially expanded budgets to
adequately incentivize landlords to take action, few if any rental units will be voluntarily
retrofitted [136]. Therefore, in this analysis the pool of eligible homes is limited to only
those that are owned to reflect current political realities in the U.S. Scenarios where home
ownership is not accounted for show the potential emissions reductions if new policies or
incentives are implemented to break down this ownership barrier.

4.3 Methods

For this study, the state of the art in urban building energy modeling is combined with
existing adoption models to predict the adoption of technology pathways defined and tested
with the UBEM. Three levels of refinement to the 1% retrofitting rate are presented to
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illustrate how adoption occurs in the city. This model draws on the UBEM developed in
Chapter 3. In the previous chapter, two main pathways to Oshkosh’s emissions reduction
goals are outlined: energy efficiency (EE) and energy efficiency, electrification, and solar
(EE+HP+PV). These same upgrades are considered in this chapter.

4.3.1 Adoption Model

For the initial adoption model, it is assumed that 1% of the building stock will be ren-
ovated each year. As explained above, this assumption is probably optimistic and does not
yet consider the effect of more targeted incentive structures. For the baseline scenario, called
“1% all buildings,” the adoption rate for all buildings is assumed to be the same. For each
year in the projection, a dice is thrown for all buildings in the UBEM model deciding whether
the building is retrofitted, with a 1% total likelihood that each building is upgraded to either
EE or EE+HP+PV, equating to 0.5% for each upgrade. Given the 20+ year lifespan of a gas
furnace, packages EE and EE+HP+PV are mutually exclusive. Accordingly, it is assumed
that only one package or the other will ever be adopted per building between now and 2050.
Once the building has been retrofitted, it is ignored in future years. Given that ownership
and household income affect the adoption of retrofits, a further, more realistic scenario with
varying adoption rates between buildings and upgrade packages is also introduced.

4.3.2 Ownership

One of the major limitations in predicting adoption is that retrofits occur at the individual
building level but key metrics such as ownership and income are only readily available from
census data that is reported at the block level. While ownership data was available in
Oshkosh, for broader applicability this chapter proposes a stochastic modeling approach to
assign census data to individual buildings. These characteristics are assigned to buildings
before each model simulation based on its likelihood from the census data. E.g., if a building
falls in a block group with 25% ownership according to the census, the refined model scenario,
called “1% with ownership,” throws the dice for each building to determine owner occupancy
before beginning the thirty-year retrofit adoption simulation. For the example building,
this will stochastically happen once every four iterations. Buildings that are not owner-
occupied are not considered for retrofit. To maintain an overall annual retrofit adoption
rate of 1%, an adjusted adoption rate for the initial pool of owned eligible buildings is
calculated. For Oshkosh, where approximately 70% of residences are owned across the city,
the effective adoption rate for owner occupied buildings is 1.6%. This rate is evenly split
between packages, leading to 0.8% for each.

4.3.3 Upfront Cost and Payback Period

Building retrofits, especially the “deep” retrofits required to meet emissions reduction
goals, are expensive. It is thus expected that EE will have a higher adoption rate than
EE+HP+PV. To attempt to quantify this split, a third model scenario, “1% with ownership
and costs” uses a market penetration analysis inspired by the Arthur D. Little model [130].
The Little model predicts the total market penetration of a building technology based on the
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Figure 4.1: Outline of adoption model. This full model is used for the upfront cost and
payback period with the adoption rate varied based on the Little Model. The ownership
model instead considers these adoption rates as equal between the two packages. Ownership
is not accounted for in the baseline model.

upfront cost and the undiscounted simple payback period [130]. The Little model is from
1979 so the first cost is normalized based on the $16,841 national median household income
in 1979 [137]. The resulting first cost as a percent of median household-income is shown
in Figure 4.2. For the upgrades considered in Oshkosh, costs from Chapter 3 and the 2020
median household income from Wisconsin ($61,747) are used [119].

The predicted market penetration percentages from the graphs in Figure 4.2 are multi-
plied together to give a total market penetration for each upgrade, as shown in Table 4.1.
Leveraging the Little model market penetration provides insight into the split in adop-
tion between the two measures, assuming the 1.6% (1% effective) adoption rate for all up-
grades to owned residence. For example, in pre-1980 residences, EE is five times as likely
as EE+HP+PV and thus the adoption rate is 1.33% for EE and 0.267% for EE+HP+PV.
The average adoption rates for all building types and ownership combinations are given in
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Figure 4.2: Arthur D. Little market penetration by first cost normalized by median household
income (left) and payback period (right). Total penetration is determined by multiplying
the two factors together. Adapted from [130]

Table 4.1: Market penetration predicted by the Little model for the upgrade packages.

Archetype EE EE+HP+PV
Pre-1980 5% 1%
Post-1980 19% 4%

Table 4.2.

Table 4.2: Adoption rates in the various scenarios tested.

Condition Archetype Upgrade Adoption Rate
1% all buildings Pre-1980 & Post-1980 EE 0.50%

EE+HP+PV 0.50%
1% all owned Pre-1980 & Post-1980 EE 0.80%

EE+HP+PV 0.80%
1% with ownership and costs Pre-1980 EE 1.33%

EE+HP+PV 0.27%
1% with ownership and costs Post-1980 EE 1.32%

EE+HP+PV 0.28%

For the “1% all owned” scenario, for an effective adoption rate of 1%, the adoption rate
is 1.6%. For the “1% with ownership and costs,” the 1.6% adoption rate is split up based on
the ratio of the predicted final market penetrations given in Table 4.1

4.4 Results

The adoption model was run for 30 years to simulate the adoption of building retrofits
through 2050, the year Oshkosh has set for its 80% emissions reduction goal. The refinements
for predicting adoption in the methods section are run and the results presented in Figure 4.3.
In order to test model stability, the simulations were run through 100 iterations leading to
mean emissions results with standard deviations to define the uncertainty in the results. In all
scenarios for all years, the standard deviation never exceeded 0.31%. This means there is very
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little uncertainty in the model and it is stable across different stochastic runs. A profound but
expected result is the 1% with ownership and costs scenario leads to the smallest emissions
reductions of all scenarios. This occurs because homeowners are a lot more likely to pick
EE than EE+HP+PV and EE only leads to an average 30% emissions reduction per home
compared to an average 85% emissions reduction per home for EE+HP+PV. This is seen in
Figure 4.4, where the total number of residences retrofitted to each package diverges. The
fossil fuel lock-in that results is made clear by the 1% with ownership result in Figure 4.3.
Ultimately, the analysis shows that the predicted emissions reductions in 2050 do not come
close to approaching Oshkosh’s 2050 emissions target or the theoretical maximum for each
pathway investigated. It is especially clear from Figure 4.3 that higher adoption rates will
be necessary if Oshkosh is to meet its emissions reduction goals.

Figure 4.3: Range of 2050 emissions results for the Oshkosh case study with different adoption
model refinements. The high and low bounds are set by the mean of 2050 results for each
the two upgrade scenarios over 100 stochastic runs.

The other glaring issue is that even 100% EE+HP+PV adoption in owned residences
leaves almost a third of the buildings (and emissions) in the baseline (non-retrofit) state. If
this gap is addressed, the theoretical maximum of 100% adoption of EE+HP+PV shown in
Figure 4.3 can be reached.

Looking only at overall emissions reduction will not lead to an equitable decarbonization
future. The three scenarios examined in this study paint disparate pictures when it comes to
the spatial distribution of upgrades and which upgrades occur. By assigning the predicted
retrofit status in 2050 to the original buildings in an UBEM, the fraction of buildings up-
graded in each census block becomes apparent. In Figure 4.5a, the 1% all buildings scenario,
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Figure 4.4: Building retrofits per year for the 1% with Ownership and Costs scenario. In
both the baseline and ownership scenarios the retrofits per year are all roughly the same.

the retrofits are evenly split between the two packages. The mean percent of residences
upgraded per census block is 27% and upgraded buildings are fairly evenly distributed be-
tween blocks, as seen by most blocks falling into the 25-30% category. The minimum percent
retrofitted in any block is 18%, while the max is 35%.

In Figure 4.5b the 1% all owned scenario, the inequity in terms of which buildings are
upgraded becomes apparent. WAP-eligibility is used as a proxy for income in this analysis.
The lowest percent of residences upgraded per block (0% to 5%) occur in blocks with the
highest WAP-eligibility (62% - 91%). Meanwhile, the highest percent of retrofits (35% -
40%) occurs in blocks with the lowest WAP-eligibility (11% and 17%). Furthermore, the
minimum retrofitting rate falls to 5% and the maximum is 37%. The equity impacts mirror
but enhance the 1% all owned scenario, with the lowest percentage of retrofits in the lowest
income blocks. Consequently, the more realistic 1% all owned and 1% with ownership and
cost scenarios show that residences in lower-income census blocks are left behind compared
to other parts of the city.
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(a) 1% all buildings scenario (b) 1% all owned scenario

Figure 4.5: Spatial adoption prediction in 2050. Each census block in Figure 4.5b is labeled
in blue text with the percent of WAP-eligible residences per census block.

4.5 Discussion

The Intergovernmental Panel on Climate Change (IPCC) states that buildings will play
a pivotal role in meeting global emissions reduction targets, estimating that the emissions of
existing residential buildings can be reduced by 50% to 75% in many geographical regions
[138]. The analysis in this paper confirms that current adoption of building retrofits is far
too low to achieve anything near the technically feasible technology pathways identified in
Chapter 3 that would get a city to its emissions reduction goals. The retrofits that do occur,
especially when costs and ownership are considered, are EE-like packages that are inadequate
to meet ambitious emissions reduction goals. Furthermore, the mutually exclusive nature
of EE and EE+HP+PV leads to disparate future outcomes. Homeowners who continue to
install the natural gas furnaces in EE lock in natural gas infrastructure for the foreseeable
future. Additionally, the cost of maintaining the aging natural gas distribution infrastructure
to supply the furnaces will fall on these homeowners who cannot afford to install EE+HP+PV
(or do not own the residence) and must remain connected to the gas utility. Beyond the
financial and climatic harms represented by this pathway, these homes will continue to be
affected by the adverse health effects of gas appliances, further exacerbating health issues
amongst lower-income populations [139].

It is well documented that low-income – as well as Black, Hispanic, and Native American
households – have household energy costs that are a greater proportion of their income (ap-
proximately 8% to 10% compared with 2% for the average household), with studies suggesting
that low-income households face three times higher energy burdens than other households
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[140], [141]. Many of these households are eligible for the U.S. Department of Energy’s WAP
program, which in theory provides a low-to-no cost home retrofit to homeowners. Unfortu-
nately, the 25% average energy savings from a WAP project is far lower than the 38% energy
savings from EE or the 62% energy savings of EE+HP+PV in this analysis 1 [127]. When
you further consider that Blacks, Hispanics, and Native Americans own homes at 25% to
30% lower rates than non-Hispanic white homeowners, the discriminatory nature of energy
burdens becomes clear [142]. It is therefore crucial from both an equity and an emissions
reduction standpoint that cities have a strategy to ensure their rental buildings are also
retrofitted to the necessary standards. By presenting data on the loss in emissions reduction
potential when rented residences are excluded, policymakers can justify new ordinances that
target rental efficiency measures specifically, such as the one passed in Burlington, VT in
2021 [143]. There are only a handful of municipalities that have enacted such legislation and
this framework is meant to help address this glaring issue most cities face in meeting their
emissions reduction goals in the built environment [144].

The mapping of adoption by block group with key demographic data such as WAP-
eligibility used in Figures 4.4, 4.5a and 4.5b is a crucial tool for city decisionmakers trying
to pursue equitable decarbonization of the built environment. These maps — which can be
created at different levels of granularity — will be helpful for city decisionmakers trying to roll
out programs that change the way building retrofits are adopted, by targeting specific areas
of a city. For example, decisionmakers can focus on areas that have high WAP-eligibility and
low predicted upgrade percentages. This kind of targeted outreach will likely be necessary
to raise adoption rates.

4.6 Conclusion

Information about building retrofit adoption is crucial to communities trying to achieve
their emissions reduction goals in the built environment. Most analyses today assume build-
ings will automatically be retrofitted as technology improves. The framework presented in
this paper provides key decisionmakers with an understanding of where buildings retrofits
will naturally occur and under what financial parameters, so they can target programs to
support adoption towards buildings that would otherwise not participate. This framework
not only provides decisionmakers with the temporal accompaniment to their emissions re-
duction goals, but it also provides them with the ability to target programs that support
higher rates of building retrofit adoption and address the longstanding inequality in the built
environment. While net zero emissions reduction goals in most municipalities are physically
feasible if deep energy retrofits are implemented and the grid decarbonizes, the current
retrofitting rate of 1% is not nearly enough to achieve the full technical potential by 2050,
when most communities’ net zero targets are set. Furthermore, when accounting for more
realistic adoption based on building ownership and retrofit cost, the actual adoption rate and
therefore emissions reduction drops even further. When accounting for these crucial factors,
the distribution of retrofits is clearly unjust, disproportionately occurring in high-income,
high-ownership areas of a city. While it is not surprising that retrofits are currently limited

1Note: to compare to the WAP findings, these are energy savings not carbon savings from the Oshkosh
retrofits.
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to wealthy homeowners, the disparity laid bare in this analysis should be a call to action
for policymakers. Cities around the world need to address the inequity in the adoption of
building retrofits while also greatly expanding support to all retrofit projects to drive higher
adoption rates of more comprehensive retrofit packages that will put communities on target
to meet their emissions reduction goals. Ultimately, the results presented in this chapter are
a more realistic baseline for how emissions reductions in the built environment will play out
in most communities. The framework presented here can and should be used by communities
around the world looking to equitably achieve their GHG emissions reduction goals.

4.7 Summary

The adoption model presented in this chapter shows that homeowners are not going
to implement technology pathways fast enough to achieve their emissions reduction goals.
Furthermore, the current paradigm in adoption will lead to inequity in emissions reductions
and lock in fossil fuel equipment in many households due to lower-cost fossil fuel retrofits.
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Chapter 5

Deal or No Deal: Homeowners’
Willingness to Pay for Residential
Building Retrofits

This chapter presents the methods and results of a willingness to pay study carried out
via internet survey of 2,000 households in Massachusetts and New York. The resulting model
predicts homeowners’ willingness to pay for retrofits of differing upfront costs based on their
socioeconomic and household energy data. This chapter is an edited version of a journal
article the author has co-authored that is currently under review and is also published as a
preprint available at SSRN:
Berzolla, Zachary M., Ting Meng, and Christoph Reinhart. “Homeowners’ Willingness to
Pay for Residential Building Retrofits.” Under Review
Berzolla, Zachary and Meng, Ting and Reinhart, Christoph, Homeowners’ Willingness to Pay
for Residential Building Retrofits (August 10, 2023). Available at SSRN: https://ssrn.com/abstract=4536734
or http://dx.doi.org/10.2139/ssrn.4536734
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5.1 Introduction

In the U.S., 80% of the buildings that will be in use in 2050 already exist today [17].
Yet currently less than 1% of the building stock is retrofitted annually, well below the rate
needed to achieve net zero global emissions by 2050 [3]. One complicating factor in the
residential building sector is the sheer number of distributed owners that will need to be
convinced to retrofit their buildings. There are many systemic barriers to achieving a higher
retrofitting rate, but the high upfront cost of building retrofits is one major hurdle. The deep
building retrofits necessary to achieve emissions reduction goals can easily cost $50,000 or
more, which seems unrealistic for most households in the U.S. where the median household
income is $70,784 [145], [146]. Consequently, low-income households are less likely to adopt
energy saving measures even if they would be economically beneficial for them in the long-run
[147].

If homeowners are going to be convinced to retrofit en masse to meet 2050 goals, signif-
icant financial subsidies will be needed to make building retrofits economically attractive.
The U.S. and other governments have recently made enormous sums of money available for
supporting building retrofitting activities. In the U.S., the 2022 Inflation Reduction Act
includes $8.8 billion in rebates and an unlimited amount of tax credits worth over $3,200
per home per year for building retrofits [148], [149]. Given the daunting costs of retrofitting
almost all existing buildings, retrofitting programs cannot afford to over-subsidize infra-
marginal purchases. In other words, policymakers should design programs to give individual
households the minimum amount of subsidies necessary to convince them to take action.
Current programs fall short, with 60% of the tax credits for solar panels and 90% of the tax
credits for electric vehicles going to households in the top 20% of household income in the
U.S. [150]. To find this balance, the author explored the use of willingness to pay studies,
which is commonly used to price various consumer goods. To the authors knowledge, no
other studies have focused on homeowners’ willingness to pay for deep building efficiency
retrofits for their homes.

This study fills that gap by identifying homeowners’ willingness to pay for deep building
efficiency retrofits costing up to $50,000 based on novel survey data from the Northeastern
U.S. With this information in hand, policymakers can more readily determine adequate
levels to stimulate building retrofit adoption for different household types without overly
subsidizing inframarginal purchases.

Section 5.2 presents prior willingness to pay literature for energy and energy efficiency
technologies. Section 5.3 outlines the survey used to capture homeowners willingness to
pay for energy efficiency retrofits in Massachusetts and New York and discuss the data
collected and its analysis. Section 5.4 presents the results of the survey data and its use
to predict whether or not homeowners are likely to pay for the upgrades at varying upfront
cost and payback periods. Section 5.5 discusses the implications of the willingness to pay
data. Finally, Section 5.6 outlines how this survey can be used to support policy decisions
to subsidize the adoption of efficiency technologies in the built environment.
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5.2 Background

The first (and only) study the author is aware of relating the cost of building technologies
to their total market penetration was carried out by the Arthur D. Little company in the
1970s, as discussed in Chapter 4 [130]. However, these data are now out of date and do not
capture any socio-economic factors that might influence an individuals’ propensity to pay
for an upgrade. More recently, Dong and Sigrin used surveys in four states to determine
homeowners willingness to pay for photovoltaic (PV) panels [131]. They required a minimum
of 100 respondents per state to seed their models and looked specifically at owner-occupied
single family homes [131]. They asked respondents about their required net monthly bill
savings or required simple payback time [131]. The survey instrument used in this chapter
draws from Dong and Sigrin and applies some of the methods to energy efficiency retrofits
of buildings.

In terms of energy efficiency retrofits in particular, there is very little existing literature
at the scale of a deep retrofit. The only study of willingness to pay for energy efficiency in
residential buildings that the author is aware of focused on consumers’ willingness to pay for
a $1,000 water heater [151]. This study elicited discount rates for individuals and tied them
back to socio-economic factors, with higher education levels leading to lower discount rates
(and thus greater willingness to pay for energy efficiency) [151]. However, willingness to pay
$1,000 for an appliance purchase is very different from willingness to pay for a $50,000 deep
energy retrofit that this chapter explores.

On the deeper retrofit side, Lai et. al. studied past retrofits in New York City multifamily
properties and found that an internal rate of return of 21% was required for most retrofits –
corresponding roughly to a five year simple payback. This agrees with the commonly-cited
five-year simple payback period advanced by [28]. Schleich, Faure, and Meissner conducted
a demographically representative survey of 6,600 homes in Europe looking at past energy
efficiency adoption decisions. They found that residents’ propensity to have adopted at least
one retrofit measure in the past ten years increased 3.6% when they had easier assess to
capital [103]. With $100,000 in low-to-no interest funding for efficiency retrofits available in
many European states, this should mean access to capital is not an issue. However, Zhao
et. al surveyed approximately 500 households in Florida to understand whether tax credits
or interest-free loans were more effective at promoting adoption of efficiency retrofits [147].
They found that tax credits were much more effective than interest-free loans at increasing
adoption [147]. As one would expect, they also found that retrofit adoption decreased as the
upfront cost increased [147]. This is likely driven in part because debt-averse households,
approximately 22% of all households in the European survey, are less likely to adopt [103].

Drawing on the rebate-focused approach, Shen et al. conducted a study on heat pump
adoption and found that a rebate program led to an approximately 5% increase in the
adoption rate of heat pumps, which was a 26% increase over the baseline [152]. While rebates
were the best tool to spur adoption, they were less effective for lower income households
[152]. Other studies have looked at the impact of rebates on the uptake of EnergyStar
appliances. Datta and Gulati found that for every additional rebate dollar provided for
EnergyStar clothes washers, the total market share increased by 0.4% [153]. They did not
find statistically significant results for the two other appliances they studied — dishwashers
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and fridges — but this was most likely due to exogenous factors such as the high percentage
of EnergyStar-rated dishwashers on the market, for example [153]. The most closely related
study was carried out in Germany using a revealed choice method from a standard residential
energy consumption survey [154]. They found up to 50% of those partaking in subsidy
programs are free-riders, meaning they would have adopted the retrofit without the subsidy.
The German model specifically looked at energy costs, income, and information access as
the key factors predicting consumers’ willingness to pay for retrofits [154]. It is clear from
Dong and Sigrin that additional socioeconomic factors need to be taken into account when
predicting willingness to pay for retrofits in the U.S. [131].

One common concern with willingness to pay surveys is their reliability. Respondents
often overstate their actual preferences by about 21% since they do not have to spend actual
money in the moment [155]. This limitation is acknowledged by framing most of the model
around a decision of whether a respondent would or would not pay for an upfront cost no
matter the specifics. This binary decision is called the retrofit “deal or no deal.” Assuming
that most people have a clear sense of the maximum amount that they would, in the best of
circumstances, spend on a certain amenity, “no deal” votes have the highest certainty. The
goal for this chapter is thus to show how this kind of metric survey can provide a floor on
the minimum public funding required to stimulate building efficiency retrofits independent
of any other systemic issues that need to be resolved. Furthermore, these data can later be
used to help identify how to best distribute the funding.

5.3 Methodology

The data for this study was collected via internet survey. The survey was distributed to
2,000 customers of a large investor-owned utility in Massachusetts and New York State. The
utility serves several million residential customers, providing both natural gas and electricity
services, although in some regions they only provide one or the other. The customers are
part of a focus group for the utility designed to be representative of their broader residential
customer base. The respondents received a small financial reward for completing the survey
but the reward was independent of their responses.

5.3.1 Survey Design

The survey included 16 questions. Respondents were asked to estimate their average
monthly electricity and oil, natural gas, wood, or propane bill. Key demographic data was
collected such as their household income bracket, zip code, and highest level of education.
Information about their residence was also collected: the year it was built, the number of
bedrooms (a proxy for square footage), whether or not they own it, and the number of people
residing there. They were asked questions about their energy knowledge: how they thought
their energy bills compared to their neighbor (higher, same, lower), how concerned they
were about carbon emissions (in a five-point likert scale), and to rank the top three factors
affecting their decision when thinking about home efficiency upgrades (environment, energy
costs, value of residence, ease of selling their residence, comfort, and health). Respondents
were also asked four questions about their willingness to pay for energy efficiency retrofits
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to their residences based around five levels of upfront cost: $500, $5,000, $10,000, $25,000,
and $50,000. The first question asked respondents the longest payback time they would
accept up to “more than 10 years,” including “too expensive” and “I’d do it anyway.” The
second question asked respondents the minimum savings on their monthly energy bill they
would be willing to accept for the different upfront costs. The question was populated
based on respondents’ earlier reported monthly energy bill amounts and presented absolute
monthly savings amounts in increments of 10%. For example, a household that reported
monthly energy bills of $250 would have been offered monthly savings from the retrofit
amounting to $25, $50, etc., up to $250. Respondents could again choose “too expensive”
or 0% (corresponding to “I’d do it anyway”). While the answers to the latter two questions
are technically redundant, since payback time determines monthly savings, the questions
were asked given that previous surveys found that many respondents have a hard time
conceptualizing these numbers [131]. The key summary statistics describing the responses
can be found in Table 5.1.

5.3.2 Data Overview

The survey yielded 1,136 responses for a 57% response rate. Of those responses, 167
were ultimately dropped from the final analysis. 110 of these were dropped because the
respondents were not homeowners. Renters are generally constrained in their ability to
carry out a deep energy retrofit of their residence and, even if they were able to convince the
building owner to do so, they do not necessarily benefit from the upgrade economically. This
is born out empirically in Massachusetts, where 93% of participants in the utility-funded
efficiency program are homeowners [156]. Three responses were dropped because they stated
that their energy bills were greater than $9,500 a month ($114,000 a year), which is three
standard deviations above the mean. These responses are either typos, their yearly energy
use, or they were running a commercial business with a residential rate. Three were dropped
because their zip code was not a valid US zip code, 18 were dropped because they preferred
not to answer about their highest level of education, and 33 were dropped because they did
not know their building’s approximate age.

5.3.3 Data Pre-Processing

Income has been known to be a key factor in willingness to pay for efficiency measures
for decades [130]. 152 respondents chose “prefer not to answer” for the household income
question. This represented a significant number of responses and since income is key to
the analysis, several methods were tested for providing replacement income data for these
respondents. The first method assigned income based on the respondent’s zip code. This
analysis relied on the IPUMS dataset which provided median household income at the census
tract level based on the 2020 American Community Survey 5-year estimates [157]. These
median incomes were then mapped to zip codes based on the U.S. Department of Housing
and Urban Development’s 2020 ZIP Crosswalk data [158]. The second approach utilized
an ordered probit regression based on respondents education and number of bedrooms to
predict respondents income. The coefficients for these factors were all of similar magnitudes
and were all significant. The regression methodology placed more respondents in the highest
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income category (34% vs. 23%) at the expense of a more uniform distribution throughout
the rest of the income categories versus the ZIP methodology. When applied to the main
dataset, however, the significant factors and their signs did not change, so the income by
ZIP code method was chosen to be used for all future analyses since it is the simplest and
most repeatable.

The income categories used in the survey were large, with a substantial number of re-
sponses in the “greater than $150,000 income” bin. To better estimate the median income
and the responses in this high-income bin, the author used von Hippel et al.’s bin smoothing
approach [159]. This method applies a distribution on top of the income bins gathered in the
survey to provide more accurate income estimates. Using this approach, the median income
in the dataset is $94,827. This is substantially higher than the national median household
income of $70,784 or the median household income of New York of $75,157, but aligns well
with the median household income in Massachusetts of $89,026 [146], [160].

5.3.4 Analysis Approach

Multiple regressions were carried out on the two main willingness to pay response ques-
tions asking about maximum payback time and minimum percent savings on monthly energy
bills. The first regression for each is based on the principle that the most important question
is whether the respondent will even consider the upfront cost no matter the duration of the
payback time or percent savings. Thus a logit regression is used to identify the attributes
that influence a respondents’ willingness to pay for a deal at all. The explanatory variables
include the year the residence was built, the number of bedrooms in the residence, the num-
ber of residents in the residence, the yearly energy cost for the residence, the respondents
education, the respondents income, the respondents concern about emissions from their res-
idence, the upfront cost, and how much energy respondents think they use versus their
neighbor. Further differentiation in required payback time for only those that are willing
to pay is analyzed using an ordered probit regression. The same explanatory variables are
used for this model as with the logit model. Differentiation in the minimum percent savings
for only those that are willing to pay is analyzed using an ordinary least squares regression.
Since the payback period is calculated based on respondents’ energy cost, this variable is
removed from the explanatory variables but all the rest remain. The explanatory variables
were checked for multicollinearity with all having a variance inflation factor less than 10, as
detailed in Appendix A.1.

5.4 Results

5.4.1 Survey Results

Some key high-level trends in the data include that 33% of respondents were not at
all concerned about their carbon emissions while only 8% were extremely concerned about
them. 88% of respondents own their residence, with 64% living somewhere built before 1980,
when energy codes first started to be implemented. These homes are the most likely to need
substantial energy efficiency retrofits. Respondents care a lot about energy costs, with 91%
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ranking it as their number one or two concern. Comfort, which is harder to quantify, was
next highest, with 67% of respondents ranking it as their number one or two concern. 81%
of respondents have completed a post-secondary degree, nearly double the national average
of 48% [161]. Additional summary statistics can be found in Table 5.1.

Table 5.1: Summary statistics of survey questions.

Question Mean S.D. Unit Description
Year built 2.8 0.95 1 - 4 1= 2006-2022, 2= 1981-2005, 3=

1946-1980, 4= before 1945
Highest education
level

3.9 1.20 0-5 0= some H.S. or less, 1= H.S.
diploma or GED 2= some college,
3= associates degree, 4= bache-
lors degrees, 5= graduate or pro-
fessional degree

# of bedrooms 3.2 0.94 bedrooms 1 bedroom= 0, 2= 1, 3= 2, 4= 3,
5= 4, 6+= 5

# of residents 2.6 1.34 residents Raw number
Annual household in-
come

3.2 1.49 0 - 5 0= < $25k, 1= $25k-$50k, 2=
$50k-$75k, 3= $75k-$100k, 4=
$100k-$150k, 5= > $150k

Concern about emis-
sions

1.4 1.29 0 - 4 0= not at all, 1= slightly, 2=
somewhat, 3= moderately, 4= ex-
tremely

Energy use vs. neigh-
bor

1.0 0.77 0 - 2 2= higher, 1= same, 0= lower

Energy cost 3.4 2.02 Thousand $ Reported annual energy use
Upfront cost N/A N/A Thousand $ The survey asked about five dif-

ferent upfront costs: $0.5, $5,
$10, $25, $50

Note: Year built is the only variable that does not start at zero because the zero response
corresponds to unknown date.

5.4.2 Retrofit: Deal or No Deal

The decision of whether the consumer is willing to pay for a given upfront cost provides
a powerful deal or no deal framework to this analysis. It can be assumed that not even
the best payback terms or additional non-monetary benefits such as comfort or reducing
emissions will convince a consumer to invest in the retrofit. While differentiating between
specific levels of payback might be harder in the abstract, the ability to say that an upfront
cost is just too much gives a no deal decision high credibility. The significant factors for a
logit regression on whether a respondent is willing to pay at all are detailed in Table 5.2.

Upfront cost is the largest factor (as seen by the standardized coefficient in Table 5.2)
in willingness to pay for a deal by far. This leads to a deal or no deal framework driven
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Table 5.2: Results for logit model on deal or no deal for the payback
question.

Variable Coef. (est. err.) Std. Coef. (est. err.) P-value
Year built -0.051 (0.031) -0.066 (0.033)
Education 0.110 (0.026) 0.093 (0.034) ***
# bedrooms 0.272 (0.043) 0.194 (0.037) ***
# residents 0.087 (0.030) 0.085 (0.036) **
Income 0.046 (0.005) 0.322 (0.036) ***
Concern 0.271 (0.030) 0.274 (0.034) ***
Upfront cost -0.058 (0.002) -1.000 (0.037) ***
Neighbor -0.029 (0.051) -0.023 (0.037)
Energy cost -0.012 (0.021) -0.025 (0.038)

Note: P-values: *= 0.05, **= 0.01, ***= 0.001. In the
standardized model all explained variables are standardized by

their mean and standard deviation.

largely by upfront cost. The author illustrates this in Figure 5.1 with data populated from a
post-estimation prediction using mean responses for all factors and varying the upfront cost.
While on average 86% of all households are willing to pay for a retrofit costing $500, only 26%
are willing to pay for a retrofit costing $50,000. The high and low bounds on this willingness
to pay are detailed in Table 5.3. It is interesting to note that only 13% of respondents are
willing to pay for a $50,000 retrofit when this is put in terms of their monthly energy bill
savings. There was general agreement, however, at the low-end of the upfront cost spectrum
(86% vs. 88% willing to pay $500). The differentiation at $50,000 can likely be attributed to
the fact that someone with the median monthly energy cost of $287 would have a payback
time of 14.5 years for this upgrade if their energy savings were 100% of their monthly bill.
This is much longer than the ten-plus years asked in the payback question. To further show
that this is the case, the median required percent savings for the $50,000 upfront cost is
90%, which corresponds to a 16.1 year payback with respondents energy costs. The rest of
the chapter focuses on using the payback-period derived willingness to pay because this is
the most optimistic case.

Unsurprisingly, income is also a large determiner in homeowners’ willingness to pay for
retrofits. As seen in Table 5.4, for every thousand dollars in additional income a household
makes, they are 1% more likely to be willing to pay for a given upfront cost. Consequently,
income will be a driving factor deciding whether or not a household will pay for a given
retrofit package cost. Furthermore, homeowners with bigger houses are more likely to be
willing to pay, with the odds of a deal increasing 4% for every additional bedroom beyond
two they have in the house. Similarly, each increase in a five-point scale of residents’ concern
about CO2 emissions beyond “slightly concerned” increased their willingness to pay by 4%.
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Figure 5.1: Retrofit deal or no deal prediction based on upfront cost.
Note: The green area is the percent of respondents willing to pay for an efficiency retrofit at

that upfront cost. Those in the white “no deal” area will not pay for a retrofit of that
upfront cost no matter the payback period.

Table 5.3: Willingness to pay for building retrofits (as percent of all
households).

Upfront Cost Willingness to Pay Lower Bound Upper Bound
$500 86% 73% 93%
$5,000 82% 67% 91%
$10,000 78% 61% 89%
$25,000 60% 31% 77%
$50,000 26% 13% 44%

Note: Median values are used for all post-estimation predictions for
willingness to pay. Upper and lower bounds are one standard

deviation away from the mean value.
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Table 5.4: Marginal effects, odds ratio, and confidence inter-
vals (CI) for respondents willingness to pay for a retrofit.

Variable Odds Ratio 95% CI Marginal Effects
Year built 0.95 0.89 - 1.91 -1%
Education 1.12 1.06 - 1.17 2%
# bedrooms 1.31 1.21 - 1.43 4%
# residents 1.09 1.03 - 1.16 1%
Income 1.05 1.04 - 1.06 1%
Concern 1.31 1.24 - 1.39 4%
Upfront cost 0.94 0.94 - 0.95 1%
Neighbor 0.97 0.88 - 1.07 0%
Energy cost 0.99 0.95 - 1.03 0%
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5.4.3 Payback Period

Even if a homeowner is willing to pay for a given upfront cost, they may have additional
provisions on the deal, specifically a maximum acceptable payback time. The results of
the ordered probit regression on the payback period data for those willing to pay for at
least one of the upfront costs is detailed in Table 5.5. The homeowner’s income, education
level, energy cost, and their concern about emissions are all significant factors affecting the
required payback time for a given upfront cost.

Table 5.5: Results for the ordered probit model on payback period.

Variable Coef. (est. err.) Std. Coef. (est. err.) P-value
Year built 0.008 (0.019) −0.015 (0.018)
Education −0.099 (0.017) −0.132 (0.019) **
# bedrooms 0.008 (0.022) 0.049 (0.020)
# residents −0.041 (0.015) −0.125 (0.020)
Income 0.007 (0.002) 0.053 (0.020) **
Concern 0.067 (0.014) 0.149 (0.018) ***
Upfront cost 0.023 (0.001) 0.255 (0.019) ***
Neighbor −0.025 (0.026) −0.033 (0.021)
Energy cost −0.049 (0.010) −0.093 (0.021) ***

Note: P-values: *= 0.05, **= 0.01, ***= 0.001. In the standardized model
all explained variables are standardized by their mean and standard

deviation.

Table 5.6: Odds ratio and confidence in-
terval for the ordered probit regression on
payback period.

Variable Odds Ratio 95% CI
Year built 0.98 0.95 - 1.02
Education 0.95 0.92 - 0.99
# bedrooms 0.97 0.93 - 1.01
# residents 1.02 0.99 - 1.05
Income 1.01 1.00 - 1.01
Concern 1.08 1.05 - 1.11
Upfront cost 1.02 0.94 - 0.95
Neighbor 1.03 0.98 - 1.09
Energy cost 0.95 0.93 - 0.97

The increasing required payback time as upfront cost rises can be seen in the orange line
in Figure 5.2. While the increase in acceptable payback time with increased cost is counter-
intuitive for those used to working in finance, it bodes well for building retrofits. More
comprehensive retrofitting packages tend to bundle lower cost and quick payback measures —
such as efficient appliances, solid state lighting, and weatherization — with more costly and
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longer payback upgrades such as added wall insulation, heat pumps, and photovoltaics. As
a consequence, deep retrofit packages have higher payback times than low retrofit packages.

Figure 5.2: Retrofit deal or no deal with orange payback curve showing the predicted median
required payback time.

There are a few salient takeaways from the payback period analysis in Table 5.6. First,
as homeowners’ education increases by one level, the odds that they will accept a longer
payback period decreases by 5%. On the contrary, those that are “moderately concerned”
about emissions from their homes are 1.31 times more likely to accept a two-year longer pay-
back than those only somewhat concerned. For the “greater than 10 years” payback period,
this translates into 10% more acceptance of this long payback period for those extremely
concerned vs. those not at all concerned.

The percent savings on a monthly energy bill regression led to similar significant factors
and results. Overall, however, respondents were more optimistic in their willingness to pay
for a more expensive deal when it is put in terms of payback period instead of required
percent savings. This is in agreement with [131]. For those that were willing to pay for the
deal, there was good correspondence between the median payback times for the raw question
and the derived payback from the percent savings question, as seen in Figure 5.3. While
the medians agree for each payback period, there is a lot of variation in the percent savings
responses which shows that the “average person” is logical in their decision-making, even if
not every respondent was.

5.4.4 Robustness Checks

Several analyses were carried out to test for the regressions’ robustness. As in [147], the
responses were split into low-and high-income groups by the median-income. This leads to a
roughly even split in the dataset. While there are slight changes in the subsamples reflecting
heterogeneity in the results, all the significant variables used in the full dataset retain the
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Figure 5.3: Respondents’ longest acceptable payback period versus the payback period de-
rived from respondents’ minimum required energy bill savings.

same direction and magnitudes. To further test for robustness of the regression, insignificant
factors were dropped from the regression. As each variable is dropped from the deal/no deal
regression, the remaining variables all remain significant and their coefficients do not change
sign. Tables with the robustness test results can be found in Appendix A.

5.5 Discussion

Ultimately, the deal or no deal model developed based on 969 included survey respon-
dents across the Northeastern U.S. is a robust approach for identifying the maximum upfront
cost for a retrofit package that homeowners would be willing to pay for. Most people in-
trinsically understand if a specific upfront cost is out of their reach economically. Thus a
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“no deal” prediction means that person will absolutely not pursue a retrofit at that upfront
cost. Additional subsidies will be needed to convince them to retrofit. When a household
falls into the “deal” prediction, the result is more nuanced. Households might have specific
requirements (such as a payback period) or impediments to them carrying out the retrofit.
These factors will all have to be dealt with to realize full adoption.

Concern about emissions from residences was a particularly strong indicator of a home-
owner’s willingness to pay for a deal and a longer payback time. This agrees with Nolan
et al. who concluded that showing messages about neighbors’ energy conservation behavior
spurred people to conserve more energy [99]. While as of 2022 more than 70% of Americans
believe in climate change, only half believe their individual actions (e.g. changing the emis-
sions from their residences) have an effect on climate change [162]. This disparity leaves the
door open for significant improvements through education campaigns.

The model developed in this chapter can be used to estimate the required incentives
needed to retrofit all residential, owner-occupied buildings in a given city, utility service
territory, state, or country. For example, using post-estimation analysis the subsides required
for the surveyed owner-occupied households to be willing to pay for a “deep” $50,000 retrofit
can be predicted. The initial subsidy offered is $0 and then subsides are increased in $1,000
increments until the cost to the homeowner is $0. The deal or no deal model is run each time
the subsidy is increased. Because households’ willingness to pay is probabilistic, the model
is run one hundred times and the median results are taken. The standard deviations are not
shown as they are minimal. Of the 969 households, 32% are willing to pay for the upgrade
with no subsidies and zero households are fully subsidized. The cost to the government to
subsidize all the houses requiring subsidy is $2.5 million. The homeowners spend $46 million
of their own money on the retrofits, meaning every dollar of subsidy activates $18 of private
investment. This is the absolute lowest amount that the government will spend because the
incentives are tuned to the exact upfront cost owners are willing to pay (in thousand dollar
increments). While this level of customization is not feasible in the real world, it shows that
at least some additional gradation in subsidies can still activate homeowners investment in
retrofits.

A limitation of this work is that it focuses on owner-occupied buildings because renters
are rarely incentivized to invest in energy efficiency. Landlords traditionally have not been in-
centivized to invest in efficiency either. However, Collins and Curtis found that most renters
are willing to pay an average of $450 a year more in rent for energy efficient apartments [104].
While this opens up a retrofit costing landlords about $5,000 with a (longer-than usually ac-
cepted) 10-year payback time, the deep energy retrofits required in the Northeastern U.S. are
an order of magnitude more costly at approximately $50,000. Thus, additionally incentives
and/or regulations such as New York’s Local Law 97 or Burlington, Vermont’s minimum
housing code weatherization ordinance for rental units will need to be implemented.

This survey was limited to the Northeastern U.S., specifically Massachusetts and New
York. While the median income of respondents was higher than the national average, it
is more in line with the median incomes of the surveyed states. Massachusetts and New
York also have higher costs of living, 148% and 125% of the national average, respectively
[163]. With Massachusetts and New York comprising roughly half of the Northeastern U.S.’s
population, the author believes this survey is representative for the region. In the absence of a
broader survey, since respondents’ median incomes aligned with the respective state’s median
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incomes, the willingness to pay model developed in this chapter could be used across the
U.S. At the same time, further distribution of surveys across the country (using the survey
instrument available in the original paper) to better characterize U.S.-wide willingness to
pay for retrofits would benefit policymakers. Using this model outside the U.S. would likely
require administering the survey in additional countries first.

5.6 Conclusion and Policy Implications

If cities and countries globally are to achieve their stated Paris Agreement emissions
reduction goals, “deep” energy retrofits to achieve net zero in 80% of today’s building stock
are needed in the next 26 years. The actual upgrades will vary by geography and climate,
but are generally costly, on the order of tens of thousands of dollars or more per residence.
Many households globally lack the upfront capital and/or income to finance these retrofits.
If jurisdictions are to meet their stated emissions reduction goals, governments will need to
supply generous subsidies to many households.

The model presented in this chapter enables policymakers to quantify the amount of
required subsidies to make building retrofits acceptable to any owner-occupied household.
For example, for a median household in the dataset, the model predicts that households
are only likely to pay for a $50,000 retrofit 29% of the time. The same household is likely
to pay for a $25,000 retrofit 64% of the time, so a $25,000 subsidy would lead to a 32%
increase in retrofit adoption. The model can help policymakers reduce retrofitting subsidy
costs by decreasing inframarginal subsidies, focusing on those most in need and stretching
limited government funding further. However, the model does not yet address questions of
equity that policymakers must ponder along with budget constraints. For example, should
policymakers try to limit rebates for high-income households willing to pay for a $50,000
upfront cost so that incentive money is available only for those that are only willing to pay
lower amounts?

Given the hassle factor typically encountered when pursuing a deep building retrofit, U.S.
policymakers have thus far often chosen to make the financial benefits so attractive that those
who would have been willing to pay an even higher upfront adopt without hesitation. This
approach — used previously for solar, electric vehicles, and other energy technologies —
relies on technology cost learning curves, where more installations, no matter who installs
them socio-economically, will bring down the cost for everyone in the medium term. How
to prioritize limited funding is ultimately up to policymakers to decide, but the willingness
to pay model developed in this chapter can provide quantification of the necessary subsidy
costs for a given jurisdiction.

Beyond providing a baseline assessment of the subsidies required to convince households
to retrofit, the model can help policymakers identify levers they can pull to stimulate retrofit
adoption. By changing the input assumptions, policymakers can evaluate the impact of
non-economic levers such as homeowners concern about emissions from the their residence.
By doing this, they can thus evaluate the impact of an outreach and education campaign
to raise households’ concern about emissions and thereby reduce the required subsides. For
example, if communities are able to move the majority of their residents from “slightly
concerned” to “extremely concerned,” homeowners will be 12% more likely to be willing to
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pay for a $50,000 retrofit. In the aforementioned post estimation analysis of nearly 1,000
households in Massachusetts and New York, if all households are “extremely concerned”, the
subsidies required to convince homeowners to be willing to pay for the $50,000 retrofit are
reduced from $2.5 million to $1.2 million. The education and outreach program leads 44% of
households to be willing to pay for the $50,000 upfront cost without any subsidies versus the
32% before. In this sample of 1,000 representative homes, this program could probably be
implemented for less than $200,0000 and the million dollar savings spent on other pressing
priorities.

5.7 Summary

The model presented in this chapter provides policymakers with a powerful tool to eval-
uate different policy levers and subsidy amounts for building retrofits. The deal or no deal
model evaluates levers such as direct subsides to reduce upfront cost, targeting subsidies
at specific income brackets, or educating households about the impact of their emissions,
and quantifies their impacts on homeowners willingness to retrofit. Ultimately, households’
concern about emissions from their residences ranks next to upfront cost and income as the
top driving factors in households willingness to pay for a retrofit. The model further found
that for a payback period of five years, the commonly cited maximum payback period ac-
ceptable to most of the public, homeowners are willing to pay around $25,000 for a retrofit.
At this upfront cost, the median household has a 64% likelihood of adoption, a significant
improvement over the 29% likelihood at $50,000. Tacking on the educational program’s 12%
increase in adoption likelihood, nearly 80% of all households would adopt. This information
is meant to guide policymakers in ensuring that building retrofit adoption rates rise com-
mensurate with the need to retrofit most of the world’s existing buildings in the next 26 years.
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Chapter 6

Modeling techno-economic adoption of
building energy retrofits at the city-scale

This chapter applies the willingness to pay model developed in Chapter 5 to the UBEM
of Oshkosh, WI as a follow-on to the adoption model of Chapter 4. Census data are assigned
to each household and a building-by-building geometry-based cost model is used to better
quantify retrofitting cost. The model is then run for the same three retrofit packages across
all of Oshkosh. Finally, a novel application of a diffusion model is used to set retrofitting
rates based on historic adoption patterns for building-related components. This chapter can
help policymakers understand the challenges to achieving high adoption rates for retrofits
and how to best direct their limited funding. This chapter is an edited version of a journal
article that the author has submitted for review:

Zachary Berzolla*, Zoe De Simone*, and Christoph Reinhart. “Modeling techno-economic
adoption of building energy retrofits at the city-scale.” in preparation * equal contributions
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6.1 Introduction

As described in previous chapters, cities around the world are striving to meet aggressive
emissions reduction goals in the built environment. In much of the U.S., common retrofit
packages usually include deep energy retrofits coupled with heat electrification and a clean
electricity supply [164]. These retrofits can be expensive, often costing $30,000 or more
[164]. To date, literature has cited the high upfront cost of retrofits as the key impediment
to retrofit adoption [165], [166]. This lack of adoption threatens to derail communities’
plans to achieve emissions reduction targets. This chapter strives to understand whether
households in a U.S. city — Oshkosh, WI — are willing to pay for retrofits and what their
rate of adoption means for achieving the city’s emissions reduction goals. Understanding
this key piece of information at the city-scale can help policymakers understand whether the
technology pathways (retrofit packages) they defined to meet their city’s emissions reduction
goals are actually financially feasible for their residents. Furthermore, understanding the
timing of this feasibility can inform whether retrofits will be adopted quickly enough to
achieve the city’s 80% emissions reduction target by 2050.

Chapter 4 combined UBEMs and adoption models to show how they can help policy-
makers understand how retrofits will be adopted in their jurisdiction. It further showed how
adoption of these retrofits would affect achieving emissions reduction goals and how current
policies would exacerbate inequitable adoption of building retrofits, namely that higher in-
come neighborhoods would have higher adoption rates than lower income neighborhoods.
This model was based on Department of Energy data from the 1970s and lacked any con-
nection to socio-economic data, leaving an opening for further study of retrofit adoption
today. To fill in this gap, the author carried out the willingness to pay study detailed in
Chapter 5. In this chapter, the model of homeowners’ willingness to pay is applied to an
UBEM of the city of Oshkosh, Wisconsin to determine households’ willingness to pay for
three different retrofit packages. Households that are willing to pay for a retrofit package
are then put into a “potential adopters” pool and randomly chosen to implement the retrofit
based on a spread of common adoption rates from the literature (discussed in Section 6.2)
that determines when the household will actually implement the retrofit. Combining these
data with yearly emissions data per building provides annual building-related emissions in
the city each year to 2050.

6.2 Methods

The willingness to pay model developed in Chapter 5 requires nine inputs: year built,
highest education level, the number of bedrooms in the residence, the number of residents,
annual household income, households’ concern about emissions, household energy use versus
their neighbors, the household’s annual energy cost, and the retrofit’s upfront cost [167]. The
energy cost and emissions for the region are also needed. These data are not all available from
one source for Oshkosh so five different sources are combined — UBEM data from Chapter 3
[167], American Community Survey 5-year estimate census data [168], NREL’s Cambium
grid emissions data [169], Yale’s Project on Climate Change Communication environmental
attitudes model [170], and a retrofit cost model based on NREL’s REMDB [171] (discussed
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in Section 6.2.4) — to create a dataset for all of Oshkosh, as shown in Figure 6.1. Where
values are not available on a building-level, they are stochastically assigned. Certain factors
such as the energy costs, emissions from grid electricity, and the retrofit cost vary with time.

Figure 6.1: Workflow used to integrate data.

6.2.1 UBEM Data

The GIS file from Oshkosh contains the year built and the number of bedrooms in the
residence. The file does not specify the number of occupants, but this is inferred from
the number of bedrooms. Households are assumed to think they use the same amount of
energy as their neighbor, the finding in Chapter 5. Once the UBEM is run, the model has
energy consumption data for electricity and delivered fuels for every building in baseline
and retrofitted status. These values do not change from year to year. There are three
scenarios studied in this analysis taken from previous work and described in Table 6.1:
energy efficiency (EE), energy efficiency and electrification (EE+HP), and energy efficiency,
electrification, and solar (EE+HP+PV) [164].

Table 6.1: Retrofit package requirements for EE and EE+HP. EE+HP+PV adds approxi-
mately 6kW of rooftop solar to each residence.

Package COP
Equipment

Power
Density

Lighting
Power

Density
Infiltration Wall

Insulation
Attic

Insulation
Floor

Insulation
Window
U -Value

(W/m2) (ACH) (m2K/W) (W/m2K)

EE 0.95 3.0 1.5 0.15 4.4 8.6 5.3 2.0
EE + HP 3.0 3.0 1.5 0.15 4.4 8.6 5.3 2.0
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6.2.2 Energy Costs and Emissions

The annual energy costs in the baseline state are calculated using the UBEM’s energy
consumption data and the appropriate years’ retail rate projections from NREL’s Cambium
data. The mid-case Cambium scenario is used for these analyses. This dataset also provides
emissions values for the electricity use in that year which will be used to calculate city-wide
emissions at every time step.

6.2.3 Socio-Economic Data

The education level and household income data are not available at a household level due
to privacy concerns. To assign these characteristics, the U.S. Census’s American Community
Survey five year estimates for the respective census tracts in Oshkosh is queried [119]. Build-
ings are assigned a given census tract based on their geographic location from the UBEM.
A value for education and income is assigned to each individual building using a stochastic
process based on distributions of these characteristics centered on the mean value reported
by the census.

Residents concern about the environment is not a factor that is captured in the U.S.
Census but it is a key factor in the willingness to pay analysis. The Yale Program on
Climate Communication’s climate opinions maps are utilized to inform this variable [170].
This national study characterizes Americans feelings about the environment and climate
change. Specifically this dataset estimates the percentage of all residents who think that
global warming is caused mostly by humans at the county level for the whole U.S. [170].
For Winnebago County, WI, where Oshkosh is located, the study estimates that 54.9% of
the county’s residents are concerned [170]. To implement this information in the model, a
stochastic assignment based on a distribution centered on the given value are assigned to
the households in Oshkosh.

6.2.4 Retrofit Cost

To identify the total retrofit cost for all of Oshkosh, the author and collaborators de-
veloped a cost estimating model for UBEMs. This model calculates the areas for all the
relevant building characteristics such as the wall area, ground floor area, window area, roof
area, and total square footage all based on the geometry in the UBEM. Each retrofit is then
categorized into its volumetric cost and/or its unit cost. These cost data are drawn from
RSMeans as well as data from the National Renewable Energy Laboratory’s REMDB [114],
[171]. Heat pump costs are based on the moderate scenario in the NREL Electrification Fu-
ture Study, including its technology learning curve [115]. These heat pump costs are likely
not representative of actual installed costs but are the best estimates available today. Simi-
larly, there are open questions about how reliable RSMeans is for estimating specific project
costs in different parts of the country. However, until better cost estimating information is
developed, these are the best available sources to inform policymakers today. Retrofit pack-
ages are assembled by combining different retrofits. The costs of certain retrofits, namely
solar and heat pumps, are assumed to get cheaper over time due to learning curves, as shown
in Figure 6.2. Using this model, the retrofit cost for each household is calculated. Together,

96



Figure 6.2: Mean retrofit costs per household each year. The energy efficiency costs are
assumed to be time-invariant. The costs of heat pumps decline over time, but solar declines
the fastest.

these data provide costs for each building to be retrofit based on its respective geometric
characteristics. While not perfect, this method provides a good estimate of costs for any
building at a level of detail required for the willingness to pay model.

6.2.5 Willingness to Pay

With all these data in place, the willingness to pay model is run. The model provides a
likelihood that each household is willing to pay for a given retrofit. This serves as a cost-test
determining how financially feasible a given retrofit is for a household (and also accounts
for non-economic factors such as environmental concern). A proverbial dice is then thrown
and if the households’ willingness to pay likelihood exceeds the resulting random probability
from the dice roll, they are designated as willing to retrofit. The highest-cost package that
the household is willing to pay for given their dice roll is chosen. This household is then
placed in the pool of all households that are willing to retrofit. Once a household is in the
pool, it is assumed to stay there until it is retrofitted. This pool will grow over time as the
technology becomes cheaper (as seen in Figure 6.2) and more households are willing to pay
for the upfront cost of a retrofit. Not every household that is willing to pay, however, will
retrofit in the first year they are in the pool of adopters. To capture the pace of adoption
over time, a Bass diffusion model is implemented.

6.2.6 Bass Diffusion Model

The Bass diffusion model was first proposed in 1969 by Bass [172]. This model relates
the purchase of a consumer good to the number of previous buyers. The model captures how
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quickly a technology is adopted over time. This model was adapted by Rogers (1976) and
can help define what is now referred to as an early adopter, as shown in Figure 6.3 [129].
The biggest unknown in Figure 6.3 is the actual dates of the x-axis. For some technologies,
50% or more market share is achieved in just a few years, where for others it takes decades.
Identifying this timeline is the crux of the challenge for predicting building retrofit adoption.

Figure 6.3: Early-adopters S-curve showing the yearly adoption rate (blue) and total market
share (red). Figure created by the author based on information in [129].

This model is used because once households are identified as willing to pay and put
into the appropriate “pool of potential adopters,” they will not all retrofit at once. The
model captures all the non-technical aspects of adoption that affect the rate of uptake:
social parameters, technology-specific growth challenges, scalability of the technology, etc.
The model is parameterized by two key components: the imitation (q) and innovation (p)
parameter [172]. The basic model is formulated according to Equation (6.1).

f(t) =
1− e−(p+q)t

1 + q
p
e−(p+q)t

(6.1)

The imitation and innovation parameters vary by the product. The most commonly
used values of p and q, p = 0.03 and q = 0.38, are from a meta-study covering a broad
range of technologies [173]. One specific technology studied in this timeframe was room air
conditioning (AC) diffusion in the U.S. over a 12 year period with a total potential market
size of 50 million households [174]. Shrinivasan et al. used nonlinear estimation techniques
based on the historic adoption of room AC and found p = 0.0094 and q = 0.3748 [174]. This
is an aggressive diffusion rate that reflects what happens when there is no other technology
available to meet consumers’ needs. In the early days of AC adoption, households that did
not adopt them had no easily accessible alternative mechanical cooling technology. On the
other end of the spectrum, Hlavinka et al. conducted an analysis of ductless heat pump
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adoption in single-family homes in the U.S. Pacific Northwest [175]. They found p = 0.002
and q = 0.068, reflecting early adoption of these units in a market with existing alternatives,
leading to adoption rates of less than 1% per year predicted over the next 30 years [175].
While a pessimistic scenario, this likely reflects a business as usual case for most retrofits,
given that current retrofitting rates are around 1% per year. More recently, Uidhir et al.
found that there is no literature on whole-home retrofit diffusion rates available [176]. They
set p = 0.015 and q = 0.2 by backcasting from the 100% retrofit adoption required to
meet Ireland’s emissions reduction goals [176]. Although not grounded in actual data, this
approach lays out the theoretical path to a 2050 full adoption scenario.

This chapter uses the three aforementioned Bass diffusion curves to bracket potential
adoption. The window air conditioners represent a fast adoption rate when a disruptive
technology comes onto the market and outperforms all other technologies on the market,
hereafter referred to as a “disruptive technology” option. The heat pumps in the Pacific
Northwest represent a business as usual slow adoption rate, hereafter called “business as
usual.” Finally, the Irish backcasting curve represents the requisite adoption to meet policy
goals, hereafter called the “2050 minimum.” The resulting adoption and total market share
for the different Bass diffusion adoption rate curves are shown in Figure 6.4a.

(a) The three Bass diffusion curves for the
adoption rates used in these analyses.

(b) Cumulative adoption or market share for
the given adoption rates out to 2050.

Figure 6.4: Bass Diffusion model implementation

As seen in Figure 6.4b, business as usual does not lead to enough adoption by 2050 for
even 20% of all households to be retrofitted. The “disruptive technology” diffusion rate leads
to a 95% market share by 2041, almost 10 years ahead of the goal. As one would expect
for a solution designed via backcasting, the 2050 minimum, achieves the 95% market share
target in 2050.

6.3 Results and Discussion

6.3.1 Technical Potential

The technical potential for emissions reduction assumes all buildings in Oshkosh are
retrofit to a given package. The resulting city-wide emissions from full adoption, taken from
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Chapter 3, can be seen in Figure 6.5. This figure shows that grid decarbonization leads
to a substantial improvement in baseline emissions but full adoption of any of the three
packages leads to much greater emissions reductions. It is crucial to note in Figure 6.5 that
the EE+HP retrofit leads to more carbon emissions today compared to just EE, reflecting
the relatively dirty grid in Wisconsin for the coming few years. This only lasts for less
than two years, with a crossover predicted in 2025. This shows how important looking at
future grid emissions projections are for making policy decisions in such a dynamic system.
Ultimately, the figure shows how the full deep retrofit, heat electrification, and rooftop solar
EE+HP+PV is necessary to achieve nearly-net zero emissions in Oshkosh by 2050.

Figure 6.5: Emissions reduction potential for each retrofit package adopted to 100% in
Oshkosh. Techno-economic potential assumes adoption of only the packages that households
are willing to pay for.

6.3.2 Willingness To Pay Results

To evaluate whether retrofit adoption will achieve this full technical potential, it is critical
to understand which households are in the pool of potential adopters in the first place.
This is where the willingness to pay analysis comes into play. By running the analysis
for Oshkosh with the relevant census-derived socio-economic data, households can be put
into five different pools: renter-occupied, potential adopters for EE, potential adopters for
EE+HP, potential adopters for EE+HP+PV, and not willing to pay for any package (they
would need additional incentives or factors to adopt). Renters are assumed to never adopt,
given the split incentive and historical lack of adoption among rental units. Within this
framework, where only 26% of households in Oshkosh are renters, the pool of potential
adopters is fairly large. The breakdown between these pools can be seen in Figure 6.6.
Ultimately, 9,153 of the 13,100 households in this study of Oshkosh are willing to pay for
one of the three packages. If all those households adopt, the emissions reduction potential
in Oshkosh can attain the “techno-economic potential line in Figure 6.5. One reason most
households are willing to pay for retrofits is that the EE package had a median cost across
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Oshkosh of only $11,000, which, according to the the willingness to pay model, should be
acceptable to most households. High income census tracts where the median income is over
$100,000 leads to high willingness to pay for the EE+HP+PV retrofit which had a median
cost of $40,000.

Figure 6.6: Willingness to pay breakdown across Oshkosh. Only the households in green are
willing to pay for the retrofits.

A key finding of the willingness to pay model shown in Figure 6.6 is that only 8% of all
owner-occupied households are not willing to pay for a retrofit. This means incentives are
not the main limiting factor to retrofit adoption. Therefore, additional money will not help
much to increase retrofit adoption in Oshkosh among owner-occupied houses. In this analysis,
the answer to Oshkosh’s adoption challenges is not necessarily more money to households.
Instead, limited resources should be funneled toward overcoming two major burdens to
realizing full potential: renter-occupied housing and implementation programs that foster
a knowledgeable and available workforce, makes it easy to for homeowners to retrofit, and
educates households about the benefits of retrofitting. Addressing renter-occupied housing
is outside the scope of this chapter, although a good example of retrofitting rented affordable
housing is documented in [177]. Additionally, a small amount of money could be spent on
top-up payments to the 12% of households that adopt the EE package to get them to adopt
the EE+HP package. This will help avoid the lock-in of fossil fuel infrastructure that comes
if households install a fossil fuel heating system today instead of a heat pump.

6.3.3 Diffusion Results

With the willingness to pay data in place, the diffusion model is run from 2024 to 2050.
Each year, the number of households that are willing to pay for a retrofit are identified as
the pool of potential adopters. Each year, this pool is randomly sampled to pick households
that will adopt based on the diffusion model’s predicted adoption rate for that year. The
progression of this model in Oshkosh is shown in Figure 6.7.

101



(a) Yearly adoption for Oshkosh with three
different Bass diffusion curves.

(b) Cumulative adoption prediction numbers
for Oshkosh.

Figure 6.7: Diffusion of retrofits in Oshkosh.

6.3.4 Emissions Results

With only those willing to pay identified and the diffusion model run for these households,
the resulting energy use and emissions across Oshkosh in each year can then be tabulated.
There are two salient takeaways from Figure 6.8. First, the business as usual diffusion
scenario and the no retrofits scenarios are nearly identical. This aligns with the results found
for a flat 1% adoption rate in Berzolla et al. (2022) [178]. In short, many households are
willing to pay for a retrofit but few actually choose to do so because of natural inertia or other
exogenous factors, leading to minuscule emissions reductions. Yet achieving high adoption
rates that would translate to greater emissions reductions has been shown to be possible
in the past in the “disruptive technology” example. Bridging the gap between “business as
usual” and “disruptive technology” diffusion is thus the core challenge.

For a community looking to achieve this level of adoption, there are two likely pathways
to attain it: make the retrofits highly desirable or make regulations such that there is no
alternative to adopting at the disruptive technology rate. On the desirability front, Tesla
has shown that electric vehicles can be a desirable status symbol and drive rapid adoption.
If communities can show that net zero homes are the “Teslas” of houses, then this level
of adoption might be possible. On the regulation-driven front, two non-mutually exclusive
options are building performance standards and building codes that make energy efficient
buildings and heat pumps the de-facto choice. For example, Washington State recently
introduced new building codes that will require high efficiency heating equipment — so
efficient that only heat pumps can meet the requirements [179]. The U.S. states of Maryland,
Colorado, Washington, and Oregon have implemented building performance standards that
require large commercial buildings to lower their emissions each year toward net zero by 2050
or sooner or else faces fines for every ton they are over the cap [20]. This approach could
be applied to smaller households too, although it has not yet at the state-level. No single
policy will likely be the silver bullet to achieve the “disruptive technology” rate of adoption
for building retrofits. Communities will need to track retrofit adoption and adjust programs
to meet their goals.

Second, Oshkosh faces a challenge of rental units not being renovated since the landlord
rarely has the incentive to do so. 26% of all households in Oshkosh are renters so the only
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Figure 6.8: Oshkosh-wide results for the three different diffusion scenarios compared to the
baseline of no retrofits and the technical potential, 100% adoption of the EE+HP+PV retrofit
package. They grey area is the range of likely outcomes depending on the actual diffusion
rate.

emissions reductions from these buildings comes from the decarbonization of the electricity
supply. Even if the former issue is solved and adoption looks like the 2050 minimum or
“disruptive technology” pathways, there is a gap of over 100,000 tons of CO2 emissions in
Figure 6.8 between the technical potential if all buildings are retrofitted and if only those
that are willing to pay are retrofitted. Leveraging the finding that most owner-occupied
households do not need subsidies frees up money that can be used to target the remaining
households and make retrofits feasible for landlords.

There is one additional aspect that cannot be captured in the analysis of Oshkosh-wide
emissions alone. As shown in Berzolla et al. (2023), there are areas in Oshkosh that have
lower emissions reductions because they are predominantly renter-occupied neighborhoods.
It is critical to address and prioritize emissions reductions in these neighborhoods. However,
this must be a both-and approach. Otherwise, Oshkosh risks a “tale of two cities” where
certain neighborhoods adopt and others are left to shoulder the burden of the remaining
natural gas grid and all the negative impacts of burning fossil fuels in homes [178]. These
disparities will be less apparent in the high adoption scenarios but will nevertheless be a
concern for equitable adoption of retrofits.

One of the challenges with achieving the same growth as disruptive technology in the
Heating, Ventilation, and Air Conditioning (HVAC) industry is that by and large the industry
is not yet ready to put its full force behind heat electrification. If a households’ furnace dies,
the household will call their HVAC company who can usually replace it with a new furnace
within a day or two. Retrofitting in a heat pump can often take much more time if the unit is
even available — they often have to be special ordered or are on back order. Plus, there is an
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acute lack of workforce trained to install heat pumps and so finding a contractor to install a
heat pump when you need it can be difficult. If there is no alternative other than a heat pump
and adequate workforce training to ease the transition, these challenges could be alleviated.
Furthermore, the energy efficiency measures, especially the air sealing and insulation in the
EE package used in this chapter, are key to cost-effectively and comfortably using a heat
pump in many regions of the country (especially in Oshkosh with its cold winters). But
these EE measures cannot be done overnight, so they must be staged before the current
heating system wears out. This could be done — buildings with old heating systems could
be first priority for energy efficiency retrofits and funding — but this is not current practice.
This efficiency first approach will have the further benefits of reducing the demands of
electrification on the power grid and reducing the upfront cost for implementation since a
smaller heat pump will be needed once the building is weatherized.

6.3.5 Applicability Elsewhere

This analysis identified non-monetary factors as the key challenge to achieving the retrofit
adoption necessary to achieve Oshkosh’s emissions reduction goal. A lack of trained work-
force and misinformation about the economics of heat pumps are endemic issues in the
U.S. so money spent to counter these challenges will help raise the retrofitting rate in all
cases. Additionally, money spent on policy to create a “disruptive technology” landscape
for households will also help drive up the retrofitting rate. However, there will be areas in
the country where households are not willing to pay for most retrofits and thus spending
money on subsidizing retrofits will be crucial to seeing substantial adoption. For example,
willingness to pay for retrofits is highly tied to income and so low-income areas will have
much smaller pools of potential adopters. Willingness to pay is high in Oshkosh because the
EE package is cheap enough and lower-income areas tend to be smaller and thus have lower
retrofitting costs, making their likelihood of being willing to pay higher. This is one of the
biggest benefits of calculating the retrofit cost based on the actual building geometry. In the
real world, there will likely be additional costs that this model does not account for, such as
remediating mold or lead that are pre-existing.

6.4 Conclusion

The model developed in this chapter is designed to help identify programs and policies
necessary to achieve full technical potential emissions reductions given the socio-economic
realities of a city. It leverages a previously developed willingness to pay model that provides
a likelihood a household will adopt a retrofit based on the upfront cost of the retrofit and
their socio-economic indicators. By defining this information based on census data for every
building in Oshkosh, the model can decide whether or not a household will retrofit and to
which package. Encouragingly, only 8% of owner-occupied households are not willing to pay
for any retrofit. This shows there is an economically-captive market for retrofit in Oshkosh.
Achieving Oshkosh’s emissions goals is thus not an issue of having enough money to give
to households to encourage them to retrofit as it is a follow-through challenge of getting
households to actually implement retrofits. To this end, this chapter introduces a novel
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application of a diffusion model to analyze how adoption will play out based on a range
of diffusion rates from the literature. As expected, a “business as usual” adoption rate of
1% is incompatible with achieving 2050 emissions reduction goals. However, adoption that
mimics the rise of “disruptive technology” can lead to 92% retrofit adoption in owner-occupied
homes by 2050. If the latter adoption rate is attained, the only thing keeping Oshkosh from
achieving it’s emissions goals is addressing the emissions from renter-occupied housing.

Thus this chapter shows that one of the most crucial policies to achieve Oshkosh’s emis-
sions reduction goals is to either implement programs that make deep retrofits highly desir-
able so that adoption rates mimic the “disruptive technology” or to implement policies that
require a high adoption rate of energy efficiency, heat electrification, and solar retrofits such
as building performance standards. If well-implemented, these policies will ultimately reach
every household and help Oshkosh achieve its goals. While this analysis has been demon-
strated in Oshkosh, WI, it can be carried out in other cities in the U.S. where a UBEM
has been built and census data is available. Given that 66% of all households nationally are
owner-occupied and in Oshkosh this was only a little higher at 74%, this result will likely hold
in most communities in the U.S. The biggest difference will likely arise in communities with
higher retrofitting costs, more renters, and lower household incomes, as fewer households will
be willing to pay for the retrofit’s cost. Either way, this approach can be used to quantify
emissions reduction gap cites face with current policies and motivate further policymaking
to address these challenges.

6.5 Summary

By combining the willingness to pay model and building-based cost and energy savings,
this chapter enables bottom-up modeling of retrofit adoption in a city. For the first time,
households that are identified as willing to pay for a retrofit are placed into a “pool of
potential adopters.” These households are then sampled from for yearly adoption based on
a diffusion model, with likely diffusion rates sampled and a range of outcomes shown. The
results show that Oshkosh retrofitting is diffusion-limited, not upfront cost-limited. In a
business-as-usual diffusion scenario of a 1% adoption rate, emissions reductions are minimal
and mimic the results found in Chapter 4. In a higher diffusion rate scenario with adoption
following that of window air conditioners when they were first introduced (a “disruptive
technology” scenario), emissions reductions can achieve their techno-economic potential in
owned homes. This chapter thus shows that in Oshkosh (although not necessarily in every
community) funding is best spent on building out programs and policies to support retrofit
adoption rather than solely on subsidizing the retrofits themselves.
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Chapter 7

Conclusion

This dissertation has outlined the systematic use of UBEMs and accompanying techno-
economic analyses to drive net zero planning and policy formulation for any community in
the world. This dissertation is the first time to the author’s knowledge that UBEMs have
been leveraged in a highly repeatable manner specifically to inform policymakers. This work
is driven by a theory of change that data-driven local collective action is a key avenue to
achieving global emissions reduction goals. By empowering data-driven decision-making in
the built environment through the techno-economic and adoption model development, this
dissertation hopes to help policymakers incentivize the right programs and implement the
best policies to achieve emissions reduction pledges in line with the Paris Agreement. In
addition to the in-depth case study of Oshkosh, WI, these tools have been proven through
successful case studies in 24 cities globally which is discussed in Section 7.1 of this Chapter.

This chapter revisits the hypothesis from Chapter 1 and discusses them given the findings
of the proceeding chapters. Finally, Section 7.7 will evaluate the impact the tools developed
in this dissertation can have in the world and some broader challenges that will need to be
addressed.
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7.1 Applying the 8 Step Framework Globally

One of the core research focuses for this dissertation has been streamlining the process to
build an UBEM to support data-driven decision-making for any community trying to achieve
their emissions reduction goals in the built environment. One of the key methods used to
advance this goal has been iterative development of the UBEM tools, namely UBEM.io,
through workshops run by the author. To date, these workshops have touched 24 commu-
nities on five continents (see Figure 7.1 for a complete list). Each successive workshop has

Figure 7.1: Cities modeled in workshops the author has led. Cities in green introduced the
sustainability champions as a key component of the work, cities in blue leveraged a local
GIS manager, and cities in orange partnered with local energy modelers as well.

helped refine the tool and helped simplify the modeling process to reduce the time, cost,
and effort for building an UBEM. The workshops have further created a wealth of knowl-
edge around opportunities to better engage and provide additional value to policymakers by
layering analyses on top of UBEMs and creating opportunities to partner with community-
based organizations to ensure these models and their findings have staying power and go on
to inform policy changes.

The first workshop, held in January 2021 and documented in detail in Section 2.4, showed
how the models and results varied widely and justified the need to carry out UBEM mod-
eling around the world. This first workshop was characterized by engagement with city
representatives who brought their city’s goals and retrofit ideas. Each team had several MIT
students working over three days acting in the then-unnamed roles of energy modelers and
GIS managers to provide results. The participating cities were recruited through collabora-
tions with local universities. A lot of effort and hand-holding was required to gather all the
necessary data and ensure it would work for the modeling efforts.

The second workshop was held virtually in January 2022. The focus was instead regional,
on North America, to try and tease out common challenges among communities. In this
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workshop, drawing on lessons learned from the 2021 workshop, the focus was on identifying
GIS managers and sustainability champions in each community that would support the
modeling effort and shepherd its use after the workshop. The city of Sandy Springs, Georgia,
was a perfect example. The team from the town included the “sustainability manager” and
their GIS specialist. Working with them, getting the appropriate data was easy and it
worked on the first attempt. They also provided helpful links to their broader policy goals.
In Monterrey, Mexico, the author worked with a whole team of consultants who were helping
the city in its energy transition. They again were very knowledgeable about energy modeling
and had access to all the right data. These two examples showed how their is no one size
fits all approach to UBEM modeling, but the UBEM.io pipeline was flexible to handle them
all.

Leaving this workshop, the author and his advisor spent substantial time documenting
the entire UBEM process on a companion website to UBEM.io. This website acts as a
step-by-step guide for any community looking to build an UBEM and addresses frequently
asked questions along the way. In collaboration with other researchers, key data checks were
also integrated into UBEM.io so that data issues could be rapidly identified and addressed
in GIS software by the respective GIS managers. The result is that on-boarding for future
modeling exercises can be done in a 30 minute group call where key information about the
UBEM process is shared and city representatives asked to fill out online forms and test
their own data to ensure it works before the workshop even starts. This greatly reduces the
workload during the workshop and helps to keep the focus on technical retrofit pathways.
Ultimately, the broad range in climate zones across North America (2A in Mexico and 7 in
parts of Canada) meant that these retrofit pathways varied widely from city to city. The
main benefit of the regional approach was the ease of scheduling that came from working
across only three time zones instead of 12.

The next workshop, held in September 2022 in Lisbon, Portugal, was the first held
in person. The workshop brought together stakeholders from several communities across
Europe from Portugal, the Netherlands, and Croatia. Once again, the GIS managers and
sustainability champions were a key first point of contact. The vice-mayor of Zagreb, Croatia
acted as one sustainability champion, as he was tasked by the mayor with making the city
more sustainable. Furthermore, every GIS manager the team interacted with knew exactly
what to do when asked for the GIS data and produced it in a matter of hours. One was
even somewhat offended when asked if the data “was clean” and passed the UBEM.io checks.
The level of sophistication for using GIS data in Europe led in part to this success. For the
first time, the energy modelers also came from local communities as well. Some modelers
were employed by energy programs for their respective cities and others came from research
institutions that partnered with the cities for their decarbonization planning. This was a
key step in separating the UBEM process from an academic institution-led process.

The key improvement for this workshop was a total redesign of UBEM.io that added in
the ability to hand over files between the GIS manager and energy modeler easily, specify
retrofit packages on the website and update the model, and a visualizer to work with the
results online once the model was run. With these improvements, the energy modelers only
needed a background in individual building energy modeling to participate. The focus of
the workshop was thus teaching them how to transition their thinking to the urban-scale
and was greatly enhanced by the familiar setup of defining retrofits as “measures” that could
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be applied through the web app. After an hour touching on key concepts, these modelers
knew exactly what to do and were quick to push the envelope of modeling possibilities. By
bringing the energy modelers all together in one room and zooming in the sustainability
champions, teams could learn quickly from each other. The synergies of all being in one
room helped enhance the overall product.

One of the other outcomes of this workshop was the need for city governments to engage
in a series of follow-up exercises after building the initial UBEM. These analyses include
carefully considering the costs to homeowners of the desired upgrades, raising awareness of
existing incentive programs among eligible citizens, and potentially lobbying for new subsidy
programs that ensure retrofit measures are implemented across the demographic spectrum.
Training a local workforce to implement those changes at fair costs is also vital. These issues
thus became a central focus for this dissertation.

The culmination of these efforts was a workshop held in person at MIT in January
2024. This workshop engaged communities across Massachusetts in collaboration with the
Metropolitan Area Planning Commission (MAPC). MAPC is a state government organiza-
tion tasked with helping 101 communities in the metro Boston area with all their planning
needs. They have been engaging on emissions reduction planning for several years but had
not provided energy model-driven results to date. This workshop was a test case to see how
they could leverage an UBEM to provide a value-added service to their communities. By
leveraging MAPC’s existing relationships with cities and their status as a trusted go between
with community based organizations, recruiting interested cities was easy. 12 communities
expressed their interest in participating during a week-long call for interested parties. From
this list, five communities were chosen based on their socio-economic, geographic, and build-
ing type diversity. Each community leveraged their GIS departments to provide the requisite
GIS data and had a sustainability champion join the introductory and concluding sessions
via zoom. The energy modelers came from both MAPC and several local firms that are
traditionally focused on building energy modeling.

Half a day of the workshop was focused on implementation challenges ranging from costs
to workforce development and equity impacts. A nationally-renowned workforce development
expert, Dr. Girard Melancon, joined to lead the conversation and learn from the challenges
each community faces. Dr. Melancon sits on the U.S. DOE’s 21st Century Workforce
Advisory Board and shared numerous key takeaways for each community attempting to
address their workforce shortage to implement retrofits.

January 2024 was the first workshop where non-academic partners were the sole partici-
pants. The success of this arrangement showed that UBEM modeling can be scaled to any
community in the world, regardless of whether an academic institution or consulting firm
plays an anchoring role. This was confirmed by MAPC expressing its desire at the end of the
workshop to continue these efforts and grow the UBEMs to be a service they can offer as part
of their broader decarbonization planning efforts for communities. Having a governmental
organization excited to take the lead for UBEM planning is a monumental outcome of these
efforts.

In summary, through four years of development UBEM.io can now be used by non-
experts in the field to successfully build an UBEM, evaluate techno-economic pathways to
emissions reduction goals, and identify key implementation tasks to achieve these goals. By
breaking down the UBEM process into core focus areas and tapping into existing expertise
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in communities, the modeling process can happen quickly and cheaply, therefore making it
scalable to any community with the requisite data.

7.2 UBEM Accessibility

In Chapter 3, a scalable eight-step process to make UBEMs accessible to any community
is tested with a case study of Oshkosh, Wisconsin. Drawing on several previous advances in
the literature, this process leverages already existing expertise in the GIS manager, Sustain-
ability Champion, and Building Energy Modeler to open UBEM analyses to communities at
relatively low time and thus cost. It is estimated that a small American city like Oshkosh
would only need about $15,000 to implement a stock-level UBEM using UBEM.io. This
framework is applied to a total of 24 cities on five continents through the workshops de-
scribed in Section 7.1. The broad application and its success in these diverse case studies
have demonstrated the approach’s efficacy in aiding policymakers with their decision-making.
Thus the eight-step framework makes community-scale UBEMs achievable for
any community in the U.S. with the proper data and a small grant from the
utility, a nonprofit, or the federal government, making them readily scalable.
Furthermore, leveraging the geometry-based approach of a bottom-up UBEM, these analy-
ses showed that UBEMs can readily quantify material and labor requirements to
implement the requisite technology pathways. This information enables policy-
makers to develop policies and programs to overcome any technical, material,
and labor-related roadblocks to achieving their goals. These key takeaways can
inform next steps for a community to take as they strive to reach net zero by 2050 or sooner.

7.3 Willingness to Pay for Retrofits

In Chapter 5, the author conducted a survey of households across two Northeastern U.S.
states and leveraged regression analyses to model how likely homeowners of varying socio-
economic background are to pay for a retrofit. This chapter showed that homeowners
income, concern about emissions, and upfront cost drive their willingness to pay
for retrofits. The research also found that for the median of a five-year payback period, the
average homeowner would be willing to pay for a roughly $25,000 retrofit. This novel finding
adds a cost threshold to the oft-cited five-year payback time threshold commonly used in
the literature. It also found that for the average household, a $25,000 subsidy on a $50,000
deep energy retrofit would more than double (from 27% to 61%) a household’s likelihood
of adopting this retrofit. Additionally, an education campaign that raises concern about
emissions from a household from an average of “slightly concerned” to “extremely concerned”
would increase the likelihood of adoption by 12%. Thus a key outcome of this work is
that a combination of an educational campaign about the impact of household
emissions and $25,000 in rebates to lower upfront costs for the average household
in the study could increase the likelihood they pursue a $50,000 deep energy
retrofit from 27% to 78%. This chapter greatly improves policymakers’ understanding
of a homeowner’s financial decision-making when it comes to pricey deep energy retrofits.

110



The ability to use this model to identify the techno-economic retrofit potential, as discussed
in the first section of Chapter 6, has wide-ranging impacts for implementing policies and
programs to support communities’ emissions reduction goals.

7.4 Modeling Adoption

Techno-economic modeling using UBEMs and willingness to pay is a necessary but not
sufficient step to achieving communities’ emissions reduction goals. Even with the mate-
rial, workforce, and technology to retrofit entire communities quantified, retrofits will not
happen overnight. The planning process for complex retrofits can take months or years and
households will take time to come to the decision on their own. Incorporating a realistic
retrofitting rate into UBEM techno-economic pathways can thus help policymakers under-
stand how their emissions reductions will proceed over time. Chapter 4’s review of building
retrofit adoption literature leads to iterative improvements in adoption modeling from most
optimistic to most realistic. It clearly shows that the emissions from rented buildings can
significantly decrease emissions reduction potential across a city. Furthermore, because of
longstanding redlining practices and other realities, most rental housing and low-income
housing are co-located in geographic areas within individual communities. When viewed
spatially, this leads to areas of the city with little-to-no retrofit adoption and thus a tale
of two cities, with some neighborhoods adopting retrofits and others left be-
hind. The economic realities of retrofit adoption today lead to inequity at the
city-level that will need to be addressed in order to ensure a just transition.
Chapter 6 refines this model by implementing a willingness to pay criteria and a diffusion
model to better estimate actual adoption rates in Oshkosh and thus yearly emissions. The
key finding is that in owner-occupied housing in Oshkosh, households’ willingness
to pay for a retrofit is not a significant barrier to emissions reduction, with 92%
of all owner-occupied households willing to pay for one of the retrofit packages.
Instead, the key barrier is the rate of adoption of these retrofits, governed by
the non-financial challenges such as availability of a trained workforce, ease of
implementation, and whether desirability or policy requirements are in place
that could create a “disruptive technology” adoption scenario. Subsidies could thus
be better spent to prevent the lock-in of business as usual fossil fuel equipment, addressing
the aforementioned renter adoption challenge, and dealing with the non-financial implemen-
tation challenges. Without increasing implementation rates beyond a “business as usual”
1%, any chance of achieving net zero by 2050 is lost.

7.5 Future Work

This dissertation has been focused on rapidly and cheaply developing UBEM models
for communities around the world and using these models to help inform policymakers.
Specifically, the focus has been on identifying technology pathways to reduce operational
energy-related emissions, quantifying the subsidies required to get a household to pay for a
retrofit, and identifying the impacts of non-monetary programs that can support retrofits.
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This dissertation was focused on operational energy use for buildings and did not delve
into embodied energy. As buildings become more efficient, their embodied energy becomes
a larger portion of their overall emissions. For example, one case study found that the
embodied energy of super-efficient Passive House buildings account for 77% of their lifetime
emissions [180]. This does not have to be the case, as more cognizant choices of low-embodied
energy materials can reduce this figure substantially. UBEMs are well-positioned to answer
embodied energy questions as well. Sory (2023) introduced a method for doing this using the
same UBEM tools used in this dissertation, albeit not yet in a way that is repeatable at the
same scale [181]. Future efforts in this area could provide policymakers with complementary
embodied energy information.

7.6 Addressing the Theory of Change Pre-Conditions

Cities today face structural issues in deployment and roll out beyond the techno-economic
ones captured in the previous chapters. If policymakers go through the aforementioned
process of building an UBEM, designing technology pathways, and identifying the required
resources to make retrofits financially acceptable to all residents, their work will only be
starting. The policymakers will need to leverage this information to set clear direction
for their city and everyone working on the issue from local non-profit housing owners to
individual homeowners. Their cooperation will be necessary to braid together the city, state,
utility, and federally-funded incentives that will make retrofits financially feasible for all
residents to overcome the financial barriers to retrofit adoption.

Chapter 1 identified six key pre-conditions to the theory of change required to achieve
widespread building decarbonization by 2050 put forth in this dissertation. These pre-
conditions are: widely available data to inform models, accessible tools to leverage the data
to inform policymakers, a knowledgeable workforce to both employ the tools and implement
the recommended policies, receptive policymakers interested in engaging with the provided
information, funding to carry out the modeling and ultimately the policies, and educated
constituents and communities that are aware of, engaged with, and supportive of planned
actions. This dissertation’s contributions to each of these pre-conditions are addressed below.

7.6.1 Widely Available Data

As seen by modeling efforts in 24 cities around the world, the necessary GIS data to build
an UBEM can be found in a wide array of countries on six continents. By engaging a local
GIS manager, this data is usually easy to access and manipulate as needed.

7.6.2 Accessible Tools

While initial UBEM tools required a PhDs’ worth of knowledge to use, UBEM.io has
overcome this by breaking down the modeling process into discrete steps for the energy
modeler, GIS manager, and sustainability champion that draws on their existing expertise.
The workshops have again shown that these tools are accessible. Furthermore, by partnering
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with MAPC and essentially handing the tool over to them for further use, the UBEM tools
can have a greater impact beyond academia. This ultimately is a great arbiter of accessibility.

7.6.3 Knowledgeable Workforce

This is a two-fold problem and this dissertation focuses on the first part. The author has
undertaken extensive efforts to foster a knowledgeable workforce that can use UBEM tools
to help make data-driven building decarbonization policy a reality around the world. The
author has delivered talks to:

• 150 participants from across India, including the Minister of Power, in a U.S. Agency
for International Development webinar

• 100+ stakeholders across the 22 communities that have participated in UBEM model-
ing workshops

• 30+ building simulation experts through an International Building Performance Sim-
ulation Association webinar on UBEM.io

• 200+ total scientists, engineers, and policymakers through conference presentations at
the American Physical Society New England Spring 2023 Section meeting, American
Geophysical Union Fall 2023 meeting, Getting to Zero Forum Fall 2021 meeting, and
the Fall 2021 ASHRAE Building Performance Analysis Conference

These talks have educated scientists and engineers about the possibilities for using UBEM
tools to effect change in their own communities.

As for developing the workforce to implement the modeled retrofits, this is a whole dif-
ferent issue. This dissertation has shown in Chapter 3 that UBEM can be used to quantify
the required workforce and engage policymakers on the need to address the current work-
force gap in the energy efficiency sector. Additional efforts to actually train a workforce are
beyond the scope of this dissertation.

7.6.4 Receptive Policymakers

In general, most communities that engage in building an UBEM have receptive policy-
makers that want to leverage the information provided to benefit their community. In fact,
recent funding from the federal government under the Inflation Reduction Act to support
emissions reduction planning has been accepted in all but four U.S. states [182]. This shows
that policymakers across the political spectrum are interested in understanding the emis-
sions reduction potential (and the usually accompanying energy savings and job creation)
that building retrofits can bring. Thus overall, policymakers in the U.S. are receptive to
engaging on emissions reduction planning. In the four states that have not accepted the
funding, it has instead been sent to the largest cities in those states to support their own
city-level work [182]. This shows that real progress has been made towards policymaker
acceptance of the need to conduct decarbonization planning across the country.
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7.6.5 Funding

The willingness to pay model developed in this dissertation was designed to help identify
the funding requirements necessary to support high rates of retrofit adoption. Thankfully,
during the course of this research, the U.S. passed the Inflation Reduction Act which has
provided substantial federal funding to support many of the retrofits included in common
UBEM packages. This additional funding for both modeling efforts (as described above) and
implementing retrofits is crucial to achieving the long-term decarbonization goal.

7.6.6 Educated Residents

Educating households across the U.S. and the world about the benefits of decarbonization
retrofits is challenging. One way to succeed in the grassroots-level action needed to convince
thousands of individual owners to take action is to engage people through their communities
and trusted organizations will be key to achieving this goal. Chapter 5 showed how much
an education campaign can increase a household’s willingness to pay for a retrofit. This
information can be used to support the need to fund programs that engage community
members in a wide variety of ways. Ultimately, one approach that has been shown to
be incredibly useful in reaching low-income, non-native English speaking, and/or minority
populations in a healthcare setting is the use of a “patient navigator” [183]. These navigators
“foster trust and empowerment within the communities they serve” and work with patients
to help them deal with the healthcare system, picking the right insurance plans, choosing
the right doctors, etc. so they can get the best outcomes [183]. A similar approach was used
to help households navigate signing up for insurance plans when the U.S. Affordable Care
Act healthcare mandate went into effect in 2014 [184]. Healthcare navigators provided free,
unbiased advice to households and business trying to choose plans and submit documents.

Training and supporting “retrofit navigators” could therefore be a key way to build sup-
port and increase adoption of building retrofits in any community. These retrofit naviga-
tors will promote retrofits, coordinate subsidies, aggregate retrofits to crate bulk purchasing
programs, set up resident support programs, and organize block-level coordinated retrofit
projects to drive adoption even among low-income communities. Even if ultimately some
households do not pursue a retrofit that year, their unbiased knowledge about the potential
benefits of retrofitting will be greatly improved. For example, when it comes to installing
heat pumps, too often households only know what their HVAC contractors tell them — which
today is often outdated or biased information about how heat pumps are not cost-effective or
will not work in cold climates. Despite being disproven for most areas in academic literature
and field studies, these rumors persist and hinder heat pump adoption. An unbiased naviga-
tor could help households wade through the confusing array of information and prepare to
decarbonize their home. This approach has, in fact, been implemented in Framingham, MA,
a Boston-area community that joined the January 2024 workshop. The leveraged federal
funding to support one position starting in 2023 to help community members prepare for
retrofits.

This section has ultimately shown that between policy shifts at the national scale such
as the Inflation Reduction Act and experiences working with communities around the world
documented in this dissertation, all of the necessary pre-conditions to achieve the goal of
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decarbonizing all buildings by 2050 have been met. Thus, the hard work now comes in
implementing change levers and achieving intermediate outcomes on the path to attaining
the ultimate goal.

7.7 Looking Forward

For a city, state, or other jurisdiction to be successful in convincing the majority of its
residents to retrofit their buildings, the implementation program will need to be of a scale
and scope that is unrivaled anytime in recent history. The challenges are numerous but
salient issues will need to be addressed such as: how to train the required workforce, secure
the necessary materials, provide financial mechanisms to fund retrofits for those without
the upfront capital, and engage individual residents to carry out the retrofits. While the
challenges are numerous, the frameworks and analyses presented herein are intended to
make the first parts of the problem tractable for a large number of communities. Through
unwavering commitment to reaching emissions reduction goals in the necessary timeframe
and collective action by millions of communities around the globe, a more sustainable, climate
change resilient future is possible for the world’s citizens.
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Appendix A

Chapter 5 Appendix Tables

This appendix is taken directly from the Appendix of the journal paper behind Chapter 5. It
can be found here: Berzolla, Zachary and Meng, Ting and Reinhart, Christoph, Homeowners’
Willingness to Pay for Residential Building Retrofits (August 10, 2023). Available at SSRN:
https://ssrn.com/abstract=4536734 or http://dx.doi.org/10.2139/ssrn.4536734

A.1 Robustness Tables

Table A.1: Variance inflation factor
(VIF) for each variable in the logit and
ordered probit models.

Variable Logit VIF Probit VIF
Year built 3.9 6.9
Education 7.0 9.3
# bedrooms 9.7 8.0
# residents 8.1 5.7
Income 3.8 3.8
Concern 2.2 2.3
Upfront cost 2.3 2.0
Neighbor 3.2 3.2
Energy cost 5.2 5.1
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Table A.2: Results for the deal/no deal
regression when dropping insignificant fac-
tors.

Variable Coef. (est. err.) P-Value
Education -0.088 (0.023) ***
# bedrooms 0.243 (0.040) ***
# residents 0.066 (0.028) *
Income 0.047 (0.005) ***
Concern 0.263 (0.029) ***
Upfront cost 0.023 (0.002) ***

Table A.3: Robustness results for a deal/no deal logit regression with households split by the
median income.

Variable Low-Income Coef. (est. err.) P-Value High-Income Coef. (est. err.) P-Value
Year built -0.101 (0.042) * 0.059 (0.052)
Education 0.104 (0.034) ** 0.068 (0.046)
# bedrooms 0.239 (0.056) *** 0.327 (0.069) ***
# residents 0.050 (0.043) 0.093 (0.044) *
Income 0.112 (0.002) *** 0.027 (0.007) ***
Concern 0.298 (0.041) *** 0.249 (0.044) ***
Upfront cost -0.063 (0.003) *** -0.053 (0.003) ***
Neighbor -0.012 (0.068) -0.006 (0.081)
Energy cost -0.035 (0.028) 0.017 (0.032)

P-values: *= 0.05, **= 0.01, ***= 0.001. In the standardized model all explained variables are
standardized by their mean and standard deviation.
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Table A.4: Robustness results for a payback ordered probit regression regression with households
split by the median income.

Variable Low-Income Coef. (est. err.) P-Value High-Income Coef. (est. err.) P-Value
Year built -0.030 (0.028) 0.018 (0.026)
Education -0.082 (0.021) *** -0.013 (0.027)
# bedrooms 0.034 (0.031) -0.069 (0.030) *
# residents -0.042 (0.025) -0.006 (0.018)
Income 0.041 (0.013) *** 0.004 (0.003)
Concern 0.092 (0.022) *** 0.086 (0.019) ***
Upfront cost 0.026 (0.002) *** 0.020 (0.002) ***
Neighbor -0.038 (0.039) 0.124 (0.036) ***
Energy cost 0.003 (0.016) -0.037 (0.014) **

P-values: *= 0.05, **= 0.01, ***= 0.001. In the standardized model all explained variables are
standardized by their mean and standard deviation.
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Chapter 1 Figures
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Figure B.1: Emissions budget to achieve Paris Agreement goals. Figure from [2], used with
permission of the author.
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Figure B.2: U.S. states with residential building codes and their year. Older codes are less
efficient. Figure courtesy of Christoph Reinhart, used with permission.
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Figure B.3: U.S. states with building performance standards. 11 cities and one county also
have these standards in place. Figure created by the author using data from [20].
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Figure B.4: Key steps in the Theory of Change. Figure created by the author from informa-
tion in [21].
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Chapter 2 Figures
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Figure C.1: Building template structure in the template database library. Figure from [59].
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Figure C.2: The workflow used to create UBEM templates from the Tabula dataset. The
geographic database categorizes georeferenced building envelopes into Tabula archetypes and
generates a GIS database. The EnergyPlus templates are created from Tabula data and then
used to generate UMI template files. The geographic database is integrated with the BEM
templates within UMI. Figure from [8]
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Figure C.3: Estimated time required using conventional methods of developing UBEMs vs.
UBEM.io for a medium-sized city. Figure from [59].
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Figure C.4: Uncalibrated UBEM errors of less than 15% is common across a wide range of
case studies. Figure adapted from results in [27], used with permission of the author.
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Figure C.5: Energy use intensities from each city. Figure from [71].
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Figure C.6: Solar results for each city. Figure from [71].
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Figure C.7: Peak demand for each city. Figure from [71].
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Figure C.8: Carbon emissions for each city. The range of emissions shown captures current
and future predicted emissions from the various jurisdictions. Figure from [71].
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Chapter 3 Figures

133



Figure D.1: Eight steps to meeting a community’s emissions reduction goals. The key
personas for each step are defined. A sustainability champion (in yellow), a GIS manager
(in blue), and an energy modeler (in green).
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Figure D.2: The energy use intensities by end use of the baseline model for the two technology
pathways in Oshkosh. The PV pathway is excluded as the consumption EUI does not change
from the electrification upgrade.

Figure D.3: The strategies for Oshkosh to meet its emissions reduction goals. It is only
through a combination of all three strategies (energy efficiency, electrification, and photo-
voltaics) that Oshkosh can meet its 2050 goal. The addition of grid decarbonization lets
Oshkosh achieve nearly net zero by 2050.
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Figure D.4: Area-normalized emissions from residential buildings at the census block level
in Oshkosh. Red areas will need to be focus areas for new programs and policies that engage
rental units in retrofits.
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Chapter 4 Figures
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Figure E.1: Outline of adoption model. This full model is used for the upfront cost and
payback period with the adoption rate varied based on the Little Model. The ownership
model instead considers these adoption rates as equal between the two packages. Ownership
is not accounted for in the baseline model.
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Figure E.2: Arthur D. Little market penetration by first cost normalized by median household
income (left) and payback period (right). Total penetration is determined by multiplying
the two factors together. Adapted from [130]
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Figure E.3: Range of 2050 emissions results for the Oshkosh case study with different adop-
tion model refinements. The high and low bounds are set by the mean of 2050 results for
each the two upgrade scenarios over 100 stochastic runs.
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Figure E.4: Building retrofits per year for the 1% with Ownership and Costs scenario. In
both the baseline and ownership scenarios the retrofits per year are all roughly the same.
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Figure E.5: Spatial adoption prediction in 2050 in the 1% all buildings scenario
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Figure E.6: Spatial adoption prediction in 2050 in the 1% all owned scenario. The blue text
is the percent of WAP-eligible residences per census block.
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Figure F.1: Retrofit deal or no deal prediction based on upfront cost.
Note: The green area is the percent of respondents willing to pay for an efficiency retrofit at

that upfront cost. Those in the white “no deal” area will not pay for a retrofit of that
upfront cost no matter the payback period.

Figure F.2: Retrofit deal or no deal with orange payback curve showing the predicted median
required payback time.
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Figure F.3: Respondents’ longest acceptable payback period versus the payback period de-
rived from respondents’ minimum required energy bill savings.
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Chapter 6 Figures
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Figure G.1: Workflow used to integrate data for the willingness to pay adoption model.
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Figure G.2: Mean retrofit costs per household each year. The energy efficiency costs are
assumed to be time-invariant. The costs of heat pumps decline over time, but solar declines
the fastest.
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Figure G.3: Early-adopters S-curve showing the yearly adoption rate (blue) and total market
share (red). Figure created by the author based on information in [129].
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(a) The three Bass diffusion curves for the adoption rates used in these analyses.

(b) Cumulative adoption or market share for the given adoption rates out to 2050.

Figure G.4: Bass Diffusion model implementation
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Figure G.5: Emissions reduction potential for each retrofit package adopted to 100% in
Oshkosh. Techno-economic potential assumes adoption of only the packages that households
are willing to pay for.
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Figure G.6: Willingness to pay breakdown across Oshkosh. Only the households in green
are willing to pay for the retrofits.
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(a) Yearly adoption for Oshkosh with three different Bass diffusion curves.

(b) Cumulative adoption prediction numbers for Oshkosh.

Figure G.7: Diffusion of retrofits in Oshkosh.
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Figure G.8: Oshkosh-wide results for the three different diffusion scenarios compared to
the baseline of no retrofits and the technical potential, 100% adoption of the EE+HP+PV
retrofit package. They grey area is the range of likely outcomes depending on the actual
diffusion rate.

155



Appendix H

Chapter 7 Figures

156



Figure H.1: Cities modeled in workshops the author has led. Cities in green introduced the
sustainability champions as a key component of the work, cities in blue leveraged a local
GIS manager, and cities in orange partnered with local energy modelers as well.
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