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1 Introduction

Hadron colliders provide a rich environment for studying Quantum Chromodynamics (QCD).
Of particular interest are observables that are amenable to first principles perturbative
calculations, of which inclusive event shapes are some of the most well known examples.
A large number of event shape variables have been precisely measured at the LHC (see
e.g. [1–9]), and have been used for applications ranging from extracting the value of the strong
coupling constant [9], to deriving constraints on potential new colored particles [10, 11].

– 1 –



J
H
E
P
0
9
(
2
0
2
4
)
0
7
2

Due to remarkable theoretical progress, dijet event shapes in e+e− colliders are now
under excellent theoretical control, with state-of-the-art predictions incorporating next-to-
next-to-next-to-leading logarithmic (N3LL) [12–15] or N4LL resummation [16] of singular
contributions, next-to-next-to-leading order (NNLO) fixed order calculations [17–22], and
non-perturbative power corrections [13, 23–36]. However, event shapes at hadron colliders are
much less well understood. This is due not only to their increased perturbative complexity,
but also due to a lack of understanding of the applicability of factorization. In particular, it is
known that Glauber effects invalidate standard factorization formulas [37–54], both through
spectator interactions, and through the invalidation of collinear factorization for spacelike
splittings with multiple colored collinear Wilson lines [55]. Alternatively, this makes precision
measurements and high order calculations of hadron collider event shapes of significant
interest for understanding a variety of aspects related to QCD factorization.

For hadron collider event shapes, there has been spectacular recent progress on the
fixed order side, with the NNLO calculation of hadron collider event shapes [56]. However,
there has been much less progress in the study of resummation and factorization for hadron
collider event shapes. Next-to-leading logarithmic (NLL) resummation has been achieved
for a large number of observables [57, 58]. Next-to-next-to-leading logarithmic (NNLL)
resummation has only been achieved for zero-jet [59–61], and one-jet event shapes [62]. N3LL
resummation was recently achieved for one-jettiness [63]. However, the most interesting
dynamics occurs when there are multiple incoming and outgoing colored particles, which
first occurs for dijet event shapes. Due to the simultaneous complexity of the color flow and
the observables typically considered, relatively little progress has been made in extending
resummed calculations for dijet event shapes to higher perturbative orders. However, these
observables are interesting both practically, as well as theoretically, for studying the generic
structure of factorization theorems.

In this paper we uncover the perturbative simplicity of the transverse energy-energy
correlator (TEEC) dijet event shape observable and exploit this to achieve an unprecedented
N3LL accuracy for a hadron collider dijet event shape, extending the NNLL results presented
in [64], and describing some additional aspects of the calculation. While the TEEC has
been measured at the LHC [6, 7, 9] (we note that this measurement is on jets instead of
hadrons) and used to extract αs, it has received relatively little theoretical attention (see,
however, an NLO calculation of the TEEC for jets [65] and the recent remarkable NNLO
calculation [56].). For an interesting recent application of the TEEC to the study of saturation
at the future EIC, see [66–69]. On the other hand, the energy-energy correlator (EEC) e+e−

event shape has recently received significant theoretical attention, including analytic fixed
order calculation at NLO [70–72] in QCD, and to NNLO in N = 4 [73–76], a factorization
and derivation of the singular structure in the back-to-back limit [77, 78], an understanding of
the all orders structure in the collinear limit [79–83], numerical calculations and extractions
of αs [22, 84], and a fixed order calculation of the three-point correlator in the collinear
limit [85] and at general angles [86, 87]. They have also been applied in a wide range
of phenomenological applications from high energy to nuclear physics [88–99]. We will
illustrate how many of these nice features carry over to the back-to-back limit in the hadron
collider case.
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In this paper we derive an operator based factorization formula for the TEEC in the back-
to-back (dijet) region, which was first presented without derivation in [64]. This factorization is
derived using soft collinear effective theory (SCET) [100–103], and takes a remarkably simple
form, being essentially a projection of transverse momentum factorization onto a scattering
plane. In particular, the factorization formula involves the standard transverse momentum
dependent (TMD) beam functions, as well as the TMD fragmentation functions, making it
interesting for studying TMD dynamics. We describe the structure of the renormalization
group evolution, give all ingredients required to achieve N3LL resummation, and present
numerical results.

Our calculation incorporates a large number of the most precisely known perturbative
ingredients in QCD, namely the:

• Three loop quadrupole soft anomalous dimension [104, 105],

• Three loop rapidity anomalous dimension [106],

• Four loop cusp anomalous dimension [107–110],

• NNLO TMD PDFs [111–116],

• NNLO TMD Fragmentation functions [113, 115, 116],

• NNLO TEEC Soft function [64],

• NNLO 2 → 2 scattering amplitudes [117–124],

which illustrates the remarkable power of factorization, as well as the complexity of event
shapes in a hadron collider environment.

Since the publication of our original result for the TEEC [64], there has been significant
progress in perturbative calculations at hadron colliders, in particular the calculation of
2 → 3 jet cross section [125] and hadron collider event shapes [56] at NNLO (building on
significant progress in the understanding of the properties of 2 → 3 amplitudes at NNLO,
see e.g. [126–137]). This result provides the necessary order to match to our resummed
N3LL result. Additionally, many of the perturbative ingredients necessary to extend the
factorization to higher orders have appeared. These included the N3LO TMD PDFs and
fragmentation functions [138–141], the four loop rapidity anomalous dimension [16, 142], and
the 2 → 2 scattering amplitudes at three loops [143–146]. We therefore believe that it is
timely to discuss the higher order structure of hadron collider event shapes.

In addition to its direct phenomenological relevance, we believe that the TEEC provides
a particularly clean laboratory for studying factorization violation and rapidity factorization
at high perturbative orders. For the purposes of studying factorization violation, we also
highlight a particularly interesting feature of the TEEC, namely that it can be defined not
only for dijet production, but also for W/Z/γ+jet events by demanding that one of the energy
correlators lies on the W/Z/γ, as well as for Drell-Yan with the γ/Z decaying to leptons,
where both correlators are placed on the leptons. Using the results of this paper, the TEEC
in all these different final states can be computed at N3LL. We believe that by having the
same observable, but with distinct final states, at this level of perturbative accuracy, one
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can perform a detailed study of color flow and factorization violation. In particular, it is
known that the TEEC will factorize for the Drell-Yan process (where it is related to the
qT observable which factorizes [147–153]), while for the dijet process, it is known that it
will not factorize. For W/Z/γ, the status is unclear. In this sense, we can view the TEEC
as a generalization of qT to final state jets. We hope that this will enable advances in the
understanding of QCD in hadronic collisions.

An outline of this paper is as follows. In section 2 we define the TEEC and describe
its relation to the more familiar EEC observable. In section 3 we discuss the kinematics of
the TEEC in the back-to-back limit, and derive the factorization formula describing this
limit. We also briefly discuss factorization violation and the effect of underlying event. In
section 4 we discuss in detail the soft function appearing in the description of the TEEC
in the back-to-back limit, which is the primary new perturbative ingredient required for
the TEEC. In section 5 we present a solution to the color space matrix renormalization
group equations for the soft function. In section 6 we discuss linearly polarized beam and
jet functions that first contribute at N3LL. In section 7 we verify the singular structure
predicted by the factorization formula by comparing with a numerical calculation using the
NLO three jet cross section. We also make predictions for the singular behavior of the three
jet cross section at NNLO. In section 8 we present resummed results for the TEEC at NNLL
and N3LL. We conclude in section 9.

2 The transverse energy-energy correlator

In this section we define the TEEC, comparing its definition to the more standard EEC. We
also provide definitions of the TEEC which are applicable to color singlet production, and
for W/Z/γ+ jet production. We believe that the ability to compute the observable at N3LL
for three distinct final states, with different color flows will provide an important handle in
the study of QCD event shape that has not been available previously.

The EEC in e+e− is defined as [154–157]

dσ

d cosχ
=
∑
X

∫
dσe+e−→X

∑
a,b∈X

EaEb

Q2 δ(cos(θab)− cos(χ)) , (2.1)

where X is the hadronic final state, and a, b sum over the final state hadrons including
a = b. It measures the flow of energy in two calorimeters separated by an angle χ, as
shown in figure 1(a).

The TEEC is the natural extension of the EEC to a hadron collider, and measures the
flow of energy in two calorimeters separated by an angle ϕ in the plane transverse to the
beam axis as shown in figure 1(b). It is defined as [158]

dσ

d cosϕ
=
∑
X

∫
dσpp→X

∑
a,b∈X

ET,aET,b

|
∑

i∈X ET,i|2
δ(cosϕab − cosϕ) , (2.2)

with transverse energy ET =
√

p2T + m2 for a particle with invariant mass m and transverse
momentum pT . Much like the EEC, the TEEC exhibits singularities at the two extremes of
its phase space, which must be resummed to all orders. Much like the EEC, at ϕ = π we have
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(b)

Figure 1. a) The EEC observable in e+e− collisions measures the correlation between energy
depositions as a function of the angle χ on the sphere. b) The TEEC, which generalizes the EEC to
hadronic collisions, measures the correlation between energy depositions as a function of the angle ϕ

in the plane transverse to the scattering.

the back-to-back (dijet) region, which is characterized by Sudakov double logarithms. The
ϕ = 0 region is characterized by a collinear limit, which exhibits single collinear logarithms.
The focus in this paper will be on the back-to-back region. The resummation of the collinear
logarithms can be performed similarly to the case of e+e− [79], which represents an extension
of the jet calculus [159–161].

We can also define extensions of the TEEC for the case of V + jet and Drell-Yan (or more
generally arbitrary color singlet production). For the case of V + jet, we define the TEEC as

dσ

d cosϕ
=
∑
X

∫
dσpp→V +X

∑
a∈X

ET,a∑
i∈X

ET,i
δ(cosϕV a − cosϕ) , (2.3)

while for Drell-Yan, we define it as
dσ

d cosϕ
=
∫

dσpp→l++l−+Xδ(cosϕl+l− − cosϕ) . (2.4)

Note that in all cases, the definition of the TEEC is chosen such that it obeys a sum
rule, namely ∫

d cosϕ
dσ

d cosϕ
= σtot . (2.5)

The factorization formula that we will derive will trivially also apply to these cases. We
believe that having an observable defined for final states with 0, 1 and 2 final state jets,
all of which can be computed at N3LL, is particularly interesting from the perspective of
studying factorization violation. Another interest in defining the TEEC for these additional
final states, in particular W/Z/γ, is also that they might be the first to which one can match
at NNLO. For recent progress towards the pp → V + 2 jet amplitudes at NNLO, see [162].

We should also note that the TEEC observable is similar to other observables that
measure azimuthal correlations in DIS [163] in back-to-back jets in e+e− or pp [147], or
between jets and vector bosons [164–167].

– 5 –
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3 Factorization in the back-to-back limit

In this section, we derive the factorization formula for the TEEC in the back-to-back limit,
which was first presented without derivation in [64]. Due to the simplicity of the TEEC
observable, we will find that the factorization formula in this region can be expressed in
terms of well known functions used in the description of other observables, but combined in
a non-trivial way. This is particularly convenient, since it immediately allows us to derive
all required anomalous dimensions using existing results in the literature. The factorization
we present is expected to be violated at higher orders by Glauber contributions, and we
discuss this in section 3.3.

3.1 Kinematics

In this subsection, we identify the relevant kinematical regions for ϕ → π. We first review
the kinematics for the back-to-back limit of the EEC in e+e− colliders (details can be found
in [77]). We then generalize this discussion to the case of a hadron collider.

In e+e− collisions, it is customary to define a dimensionless variable, z = (1− cosχ)/2,
where χ is the angle between two outgoing particles with momenta ka and kb. In the
massless limit,

1− z = 1 + cosχ

2 = k0
ak0

b + k⃗a · k⃗b

2k0
ak0

b

. (3.1)

In the back-to-back limit, ka is almost anti-aligned with kb, and we have

1− z = 1− cos(π − χ)
2 ∼ (π − χ)2

4 +O((π − χ)4) . (3.2)

At leading power, ka and kb must come from the splitting of two almost back-to-back jets
with momentum p1 and p2. The two jets are not exactly back-to-back due to soft radiation.
Let χJ = p⃗1 · p⃗2/(|p⃗1||p⃗2|) be the angle between the two jets. Its deviation from the exact
back-to-back limit, χJ = π, is given by

(π − χJ)2
4 = k⃗2

s⊥
Q2 , (3.3)

where k⃗s⊥ is the transverse momentum of the soft radiation, defined either against p1, or
p2, or even the thrust axis of the whole event. Different choices for the axes only lead to
power suppressed effects, and are thus irrelevant to the discussion in this paper. χ differs
from χJ due to transverse recoil of ka and kb against p1 and p2, respectively. Taking this
into account, one obtains

(1− z) ∼
(

k⃗a⊥
ξaQ

+ k⃗b⊥
ξbQ

− k⃗s⊥
Q

)2

+O((1− z)2) , (3.4)

where k⃗a(b)⊥ is the transverse momentum of ka(b) against p1(2), and ξa(b) is the corresponding
longitudinal momentum fraction, i.e. ka(b) = ξa(b)p1(2) + ka(b)⊥. The fact that (1 − z)
can be related to the transverse momentum of soft or collinear states leads to enormous
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simplifications for resummation: 1) many of the ingredients for resummation can be adopted
from qT resummation for Drell-Yan/Higgs production at hadron colliders; 2) the vector
sum nature of eq. (3.4) admits a simple factorization of soft and collinear modes in impact
parameter space; 3) most importantly, the soft radiation is defined globally, avoiding the
need to partition the phase space into different angular directions as in the case of the beam
thrust (or N -jettiness) soft function.

Now we would like to apply the above observations to the TEEC in the back-to-back
limit. Much like for the EEC, it is convenient to work with the variable

zϕ = 1− cosϕ

2 . (3.5)

As compared to the case of e+e−, we use the subscript ϕ to emphasize that this variable
corresponds to the TEEC. We consider the LO partonic scattering process, p1+ p2 → p3+ p4.
Generalizing this to the hadronic scattering process will be straightforward in the factorization
formula. At LO, the correlation localizes at ϕ ≡ 0 in the azimuthal plane. The incoming
and outgoing momentum pi span the scattering plane, which we choose to be the x-z plane,
where the z-axis is the beam axis. Non-trivial ϕ dependence is generated through radiation
out of the scattering plane. In the back-to-back limit where ϕ → π, hard radiation out of
the plane is power suppressed, enforcing that the shape of the event is almost planar. After
integrating out the hard virtual contributions, the relevant low energy modes are collinear
radiation in the initial and final state, as well as global soft radiation. A simple derivation
shows that in this limit we have

1− zϕ = sin2 π − ϕab

2 = 1
4p2T

(
ka,y

ξa
+ kb,y

ξb
+ p1,y + p2,y − ks,y

)2
+O((1− zϕ)2) . (3.6)

Here p1 and p2 are initial state partons which enter the hard scattering vertex. Initial-state
splittings result in non-zero transverse momentum off the scattering plane, which we denote
as p1,y and p2,y. ka and kb are the momenta of final-state particles from p3 and p4 respectively,
whose transverse energy correlation is to be measured. They acquire non-zero transverse
momentum off the scattering plane due to final-state collinear splitting. ξa and ξb are their
respective longitudinal momentum fraction relative to p3 and p4. ks,y is the transverse
momentum of soft radiation off the scattering plane. pT is the LO transverse momentum of
p3 and p4 relative to the beam axis, which plays the role of hard scale in the problem. When
discussing the factorization in the back-to-back limit, we will often use

τ ≡ 1− zϕ , (3.7)

since it is the appropriate resolution variable for characterizing the back-to-back limit.
Comparing eqs. (3.4) and (3.6), one notices the close similarity between the two. The

two-dimensional transverse momentum in eq. (3.4) is replaced by the one-dimension transverse
momentum in eq. (3.6). There is also an additional contribution from initial-state physics in
eq. (3.6). This makes clear that one should view the TEEC in the back-to-back limit as a
sort of generalization of the standard qT observable to dijet final states.

– 7 –
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3.2 Factorization formula

We can now derive a factorization formula for the TEEC in the back-to-back limit. This
follows closely the derivation for the EEC in [77], which in turn builds on the factorization
formula for identified hadron production in the back-to-back limit [147, 148]. In particular,
we will use the approach of factorizing a multi-differential cross section in terms of beam and
fragmentation functions. We will then show that the integration over this multi-differential
cross section to obtain the TEEC allows the use of sum rules to eliminate non-pertubative
contributions from the fragmentation functions, as expected for an Infrared and collinear safe
observable. Throughout this section, we will suppress Lorentz indices for simplicity. At N3LL,
non-trivial spin structures give rise to interesting effects in the form of linearly polarized jet
and beam functions. We will discuss these in more detail in section 6.

To derive the factorization, we start with the expression

dσ

dzϕ
= 1

2
∑
h,h′

∫
dζh dζh′ ζh ζh′

d3σ

dζhdζh′dzϕ
, (3.8)

where h, h′ are summed over all the final-state hadrons, and d3σ
dζhdζh′dzϕ

is the triple differential
cross section measuring the transverse energy fraction with respect to the transverse energy of
the jet, ζh = ph,T /pT , and the relative angle zϕ. We will denote the momenta of the incoming
partons as pµ

1 and pµ
2 , and pµ

3 and pµ
4 are the outgoing parton level quarks or gluons. In the

limit that pµ
1 and pµ

2 have very small transverse energy, p⃗1, p⃗2, p⃗3, and p⃗4 are almost on a
plane, which we denote as zx-plane, and the transverse momenta of two outgoing partons
are nearly the same, which we denote pT .

In the limit that h and h′ are back-to-back, let hadrons h and h′ be emitted from p3 and
p4 respectively, so that their transverse energy fraction of ζh(h′) and longitudinal momentum
fraction ξh(h′) relative to p3(4) can be used interchangeably. From now on, we will replace
ζh(h′) in eq. (3.8) by ξh(h′). To leading power, we only need to consider recoil effects from
soft radiation and collinear fragmentation in the y-direction, so that

1− zϕ = sin2 π − ϕ

2 = 1
4p2T

∣∣∣∣kh,y

ξh
+ kh′,y

ξh′
+ p1,y + p2,y − ks,y

∣∣∣∣2 +O((1− zϕ)2). (3.9)

Compared with eq. (3.6), here we use h and h′ instead of a and b to emphasize that they
are hadrons. We can change the variable zϕ for the y-momentum qy = kh,y/ξh + kh′,y/ξh′ +
p1,y + p2,y − ks,y,

d3σ

dξh dξh′ dzϕ
=
∫

dqy
d3σ

dξh dξh′ dqy
δ

(
1− zϕ −

q2y
4p2T

)
. (3.10)

We now proceed to factorize the triple differential distribution,

∑
h,h′

d3σ

dξh dξh′ dzϕ
= 1

2s

∑
h,h′

∑′
X
⟨P1P2|X⟩δ(ξh − kh,T /pT )δ(ξh − kh′,T /pT ) (3.11)

× δ

(
zϕ − 1

2 − k⃗h⊥ · k⃗h′⊥

2|⃗kh⊥||⃗kh′⊥|

)
⟨X|P1P2⟩ ,

– 8 –



J
H
E
P
0
9
(
2
0
2
4
)
0
7
2

where s is the collision energy and we sum over all the hadronic states X. Here |P1,2⟩ denote
the incoming proton state, and kh and kh′ are two detected particles. k⃗h(h′)⊥ is the transverse
momentum of the detected particle against the beam axis. The phase space summation ∑′

X ,
is restricted by experimental cuts to select only hard scattering events. For example, the
ATLAS measurement for TEEC [6, 7, 9] imposes an average pT ≥ 250GeV for two leading
jets, and rapidity |Y | ≤ 2.5. Throughout this paper we work in the high energy limit such
that the detected hadrons are taken to be massless.

In the limit of zϕ → 1, the radiation in the event is restricted to lie in a plane, as
explained in section 3.1. An illustration of a typical event is depicted in figure 1(b), where
there are bunches of collinear particles emitted in the beam and jet directions (shown in
light blue), and soft particles emitted in all directions (shown in green). To describe the
dynamics in this limit, we use the soft collinear effective theory (SCET) [100–103], which
will allow us to provide a factorized description of the dynamics of the soft and collinear
radiation. Since the soft and collinear modes are on the same mass shell hyperbola, SCETII
is used to derive the factorization formula. Throughout this section, we do not consider cross
talk between the beam remnants and final-state jets, which could potentially invalidate the
factorization picture (A brief discussion of factorization violation is given in section 3.3).
However, there is evidence that such factorization violation effects exist due to the exchange
of Glauber gluons at high orders in perturbation theory. To the accuracy considered in this
paper, namely NNLO in fixed-order perturbation and N3LL in resummed perturbation theory,
we strongly believe that the factorization picture is not spoiled. At higher perturbative orders,
we believe that our factorization formula can serve as a concrete foundation for a quantitative
understanding of factorization violating effects at hadron collider.

To achieve a factorized description of the TEEC in the back-to-back limit, short distance
physics is first integrated out and matched onto a set of SCET hard operators which describe
the hard scattering. In our case, these are a set of hard operators that describe the short
distance 2 → 2 scattering processes, e.g., qq̄ → q′q̄′, qq̄ → gg, gg → gg, etc. We will take
qq̄ → q′q̄′ as the primary example in our derivation of factorization, but the generalization
to other processes is straightforward. The relevant leading power SCET hard operators
can be schematically written as

Oqq̄q′q̄′ =
∑

I

∑
Γ

CΓ
I χ̄2χ1χ̄

′
3χ

′
4ΓtI , (3.12)

where χi is the gauge invariant collinear quark or anti-quark field in the lightcone direction
ni, Γ is a basis of Dirac structures, and tI is a basis of color structures. CΓ

I is the Wilson
coefficient resulted from integrating out the hard modes. We have suppressed the color
indices, Lorentz indices, and kinematical dependence in eq. (3.12).

The leading power SCET Lagrangian describing the dynamics of the TEEC can be
written as

L(0) = L(0)
B1

+ L(0)
B2

+ L(0)
J1

+ L(0)
J2

+ L(0)
G . (3.13)

Here L(0)
G is the Glauber Lagrangian [53], which contributes to factorization violation. We

will return to this in section 3.3, but for now we set L(0)
G = 0. Once this is done, the dynamics
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of the different collinear sectors exactly factorizes. This implies that the external state also
factorizes into collinear and soft states,

|X⟩ → |X1⟩|X2⟩|X3⟩|X4⟩|Xs⟩ . (3.14)

From section 3.1 it’s convenient to define an auxiliary observable

qy = kh,y

ξh
+ kh′,y

ξh′
+ p1,y + p2,y − ks,y (3.15)

where we choose the y component to be the transverse component perpendicular to the
scattering plane spanned by the incoming beams and outgoing jets. Writing the triple
differential distribution for d3σ/(dξh dξh′ dqy) in terms of SCET hard operators and fields,
we obtain∑

h,h′

d3σ

dξh dξh′ dqy
= 1

2s
× 2×

∑
X1,X2,X3,X4,Xs

∑
h∈X3,h′∈X4

⟨P1P2|O†
qq̄q′q̄′ |X1⟩|X2⟩|X3⟩|X4⟩|Xs⟩

× δ(ξh − kh,T /pT )δ(ξh′ − kh′,T /pT )

× δ

(
qy −

(
kh,y

ξh
+ kh′,y

ξh′
+ p1,y + p2,y − ks,y

))
× ⟨X1|⟨X2|⟨X3|⟨X4|⟨Xs|Oqq̄q′q̄′ |P1P2⟩+ power corrections . (3.16)

At leading power, h and h′ are collinear particles belonging to final-state jets X3 and X4,
respectively. They cannot be soft, since the observable is weighted by the energy of the
detected particle. An overall factor of 2 arises due to restricting h to be in jet X3.

With the dynamics factorized, it is now a standard algebraic exercise to manipulate the
operators into matrix elements separately describing the dynamics of the different collinear
sectors, and the soft sector (for a detailed discussion in the context of jet cross sections at
the LHC, see [168]). We can write our full expression for the leading power TEEC cross
section in the back-to-back limit as
dσ(0)

dzϕ
= 1

16πs2

∑
channels

∑
IJ

∑
hh′

1
(1+δf3f4)Ninit

∫
dy3dy4dp2T

ξ1 ξ2
Hf1f2→f3f4

IJ (pT , y3, y4,µ) (3.17)

×
∫

dξhdξh′ ξh ξh′

∫
dqy δ

(
1−zϕ−

q2y
4p2T

)∫
dp1,y dp2,y dkh,y dkh′,y dks,y

×δ

(
kh,y

ξh
+ kh′,y

ξh′
+p1,y +p2,y −ks,y −qy

)
SJI(ks,y,µ, ν)

×Bf1/N1(p1,y, ξ1, µ, ν)Bf2/N2(p2,y, ξ2, µ, ν)Fh/f3(kh,y, ξh,µ, ν)Fh′/f4(kh′,y, ξh′ ,µ, ν) ,

Here, the superscript (0) denotes that this expression describes only the leading power
dynamics in the expansion about the back-to-back limit. Summing over channels includes
summing over the flavors of partons fi. Ninit is the number of initial states averaged over in
computing the cross section (Ninit = 22 × 32 for the qq initial state, Ninit = 22 × 3 × 8 for
the qg initial state, and Ninit = 22 × 82 for the gg initial state). SIJ is the soft function, B’s
are beam functions, F ’s are fragmentation functions, and the hard function HIJ is defined
in terms of the Wilson coefficients CΓ

I as

HIJ =
∑
Γ

CΓ
I CΓ∗

J , (3.18)
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with I indexing the different color structures and Γ indexing the different spins. We will
describe each of these functions in more detail shortly. The variables y3 and y4 are the
rapidities of partons p3 and p4, and ξ1 and ξ2 are the energy fractions of partons p1 and p2
relative to hadrons P1 and P2, which can be expressed as functions of the Born kinematics
pT , y3 and y4,

ξ1 =
pT√

s
(ey3 + ey4) , ξ2 =

pT√
s

(
e−y3 + e−y4

)
. (3.19)

As currently formulated, this factorization formula is not desirable, since it is expressed
in terms of transverse momentum dependent fragmentation functions (TMDFFs), which
are intrinsically non-perturbative objects. However, we expect that since the TEEC is an
Infrared and collinear safe observable, the only non-perturbative functions appearing in its
definition should be the PDFs (or more precisely the TMDPDFs). For perturbative transverse
momentum, we can perform an operator product expansion (OPE) to match the TMDFFs
onto the standard fragmentation functions, allowing us to use a sum rule to eliminate the
fragmentation functions from the result. We therefore briefly review the properties of the
TMD fragmentation functions and their OPE, to understand how to convert them into
perturbative jet functions.

The standard fragmentation functions (FFs) are defined as [153, 169–171]

dh/q(zh) =
1

2zhNc

∑
X

∫
db+

4π
eik−

h
b+/(2zh) trspin

〈
0
∣∣ /̄n
2χn(b+)

∣∣h, X
〉〈

h, X
∣∣χ̄n(0)

∣∣0〉 , (3.20)

dh/g(zh) = −
k−

h

(d − 2)(N2
c − 1)z2h

∑
X

∫
db+

4π
eik−

h
b+/(2zh) 〈0∣∣Bµ

n⊥(b
+)
∣∣h, X

〉〈
h, X

∣∣Bn⊥µ(0)
∣∣0〉 .

(3.21)

In eq. (3.17), the TMDFFs, denoted by F , are in the parton frame, by which we mean the
frame where the parton has zero transverse momentum. However, it is easier to define the
TMDFFs in the hadron frame, where hadron h has zero transverse momentum. We use D to
denote the hadron-frame TMDFFs, which in position space are defined as [172]

Dh/q (⃗b⊥, zh) =
1

2zhNc

∑
X

∫
db+

4π
eik−

h
b+/(2zh) trspin

〈
0
∣∣ /̄n
2χn(b)

∣∣h, X
〉〈

h, X
∣∣χ̄n(0)

∣∣0〉 , (3.22)

Dµν
h/g (⃗b⊥, zh) = −

k−
h

(d − 2)(N2
c − 1)z2h

∑
X

∫
db+

4π
eik−

h
b+/(2zh) 〈0∣∣Bµ

n⊥(b)
∣∣h, X

〉〈
h, X

∣∣Bν
n⊥(0)

∣∣0〉 .

(3.23)

Here we have used the SCET notation, where χn and Bµ
n are the gauge invariant n-collinear

quark and gluon fields respectively. The pair of fields are separated by bµ = (b+, 0−, b⃗⊥),
with b⃗⊥ the conjugate variable to the parton transverse momentum relative to hadron h.
Dµν

h/g can be decomposed into tensor structures as

Dµν
h/g = gµν

⊥
d − 2Dh/g +

(
gµν
⊥

d − 2 + bµ
⊥bν

⊥
b2T

)
D′

h/g , (3.24)
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where bT = |⃗b⊥|. Here, Dh/g is the unpolarized gluon contribution, while D′
h/g is the linearly

polarized gluon contribution. We leave the discussion for the linear polarization contribution to
section 6 and only consider Dh/g in this section. A detailed discussion of the relation between
the TMDFFs in the two frames can be found in [115, 116, 172]; here we simply state the result,

Fh/i(⃗b⊥/zh, zh) = z2−2ϵ
h Dh/i(⃗b⊥, zh) . (3.25)

The OPE of the TMDFF onto the standard FF, is given in momentum space by

Fh/i(k⃗h⊥, ξh) =
∑

j

∫
dzh

z3h
dh/j(zh, µ)Jji

(
k⃗h⊥
zh

,
ξh

zh

)
+ power correction , (3.26)

where Jij are finite matching coefficients, and dh/j are fragmentation functions. To convert
these TMDFFs as well as their matching coefficients to the ones shown in eq. (3.17) as
functions of the y-component momenta, one simply integrates out their x-components,

Fh/i(kh,y, ξh) =
∫

dkh,x Fh/i(k⃗h⊥, ξh) , and Jji (ky, ξ) =
∫

dkx Jji

(
k⃗⊥, ξ

)
, (3.27)

so that we have

Fh/i(kh,y, ξh) =
∑

j

∫
dzh

z2h
dh/j(zh)Jji

(
kh,y

zh
,

ξh

zh

)
+ power correction . (3.28)

We can now simplify the factorization formula in eq. (3.17), by using sum rules to
eliminate the dependence on the FF. Inserting eq. (3.28) into eq. (3.17), and changing
variables to ξi = ξh/zh, ξj = ξh′/zh′ , ki,y = kh,y/zh, kj,y = kh′,y/zh′ , we then find

dσ(0)

dzϕ
= 1

16πs2

∑
channels

∑
IJ

∑
ij

1
(1+δf3f4)Ninit

∫
dy3dy4dp2T

ξ1ξ2
dξidξjξiξj

∫
dqy δ

(
1−zϕ−

q2y
4p2T

)

×
∫

dp1,ydp2,ydks,ydki,ydkj,y δ

(
qy −

(
ki,y

ξi
+ kj,y

ξj
+p1,y +p2,y −ks,y

))
×Hf1f2→f3f4

IJ (pT , y3, y4,µ)Bf1/N1(p1,y, ξh, µ, ν)Bf2/N2(p2,y, ξ2, µ, ν)SJI(ks,y,µ, ν)

×
[∑

hh′

∫
dzh zh dh/i(zh,µ)

∫
dzh′ zh′ dh′/j(zh′ ,µ)

]
×Jif3 (ξi, ki,y,µ, ν)Jjf4 (ξj , kj,y,µ, ν) . (3.29)

We can now use the momentum-conservation sum rule∑
h

∫
dzh zh dh/j(zh, µ) = 1 , (3.30)

to cancel the non-perturbative fragmentation functions, arriving at an expression purely in
terms of the perturbative matching coefficients.

Using the Fourier representation of the delta function,

δ

(
qy −

(
ki,y

ξi
+ kj,y

ξj
+ p1,y + p2,y − ks,y

))

=
∫

dby

2π
exp

[
−ibyqy + iby

(
ki,y

ξi
+ kj,y

ξj
+ p1,y + p2,y − ks,y

)]
, (3.31)
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we now go to position space, and simplify our factorized expression to

dσ(0)

dzϕ
= 1

16πs2

∑
channels

∑
IJ

∑
ij

1
(1 + δf3f4)Ninit

∫
dy3dy4 pT dp2T

ξ1ξ2
dξidξj ξiξj (3.32)

×
∫

dby

2π

e−2iby

√
1−zϕ pT√

1− zϕ
Hf1f2→f3f4

IJ (pT , y3, y4, µ)SJI(by, µ, ν)

× Bf1/N1(by, ξ1, µ, ν)Bf2/N2(by, ξ2, µ, ν)Jif3

(
by

ξi
, ξi, µ, ν

)
Jjf4

(
by

ξj
, ξj , µ, ν

)
.

Finally, we define the jet function relevant to the TEEC as

JTEEC
q (by) =

∑
i

1∫
0

dξ ξ Jiq

(
by

ξ
, ξ

)
,

JTEEC
g (by) =

∑
i

1∫
0

dξ ξ Jig

(
by

ξ
, ξ

)
. (3.33)

This allows us to write the final factorized expression for the TEEC in the back-to-back limit as

dσ(0)

dτ
= 1

16πs2
√

τ

∑
channels

1
(1 + δf3f4)Ninit

∫
dy3dy4 pT dp2T

ξ1ξ2

∫ ∞

−∞

dby

2π
e−2iby

√
τpT

× tr
[
Hf1f2→f3f4(pT , y∗, µ)S(by, y∗, µ, ν)

]
× Bf1/N1(by, ξ1, µ, ν)Bf2/N2(by, ξ2, µ, ν)JTEEC

f3 (by, µ, ν) JTEEC
f4 (by, µ, ν) . (3.34)

Here we have used y∗ = (y3 − y4)/2, to denote the single jet rapidity in the partonic center-
of-mass frame. For simplicity, to make contact with the notation of [64], we have written
the factorized result in terms of τ ≡ 1 − zϕ, as defined in eq. (3.7).

This provides an expression for the leading power dynamics of the TEEC in the back-to-
back limit in terms of a number of remarkably simple functions combined in a highly non-trivial
way, and is the primary result of this work. All the functions appearing in this formula are
related in some manner to TMD dynamics. The TEEC therefore provides a natural extension
of the qT observable from color singlet production, to both W/Z/γ+ jet, and dijets.

3.2.1 Summary of factorized functions

For convenience, we now briefly summarize the known functions appearing in the TEEC
factorization formula, along with their RG evolution. We postpone a discussion of the soft
function, which is a new ingredient of our factorization formula, to section 4.

Hard functions. The hard functions Hf1f2→f3f4 describe the underlying microscopic scat-
tering for the partonic channel f1f2 → f3f4, and are independent of the TEEC measurement.
They are obtained as the infrared finite part of the 2 → 2 scattering amplitudes (For a
precise definition, see e.g. [173]). All relevant amplitudes are well known at one [174] and
two loops [117–124]. They have recently been computed at three loops [143–146]. The NLO
hard functions have been extracted in [173, 175], and the NNLO hard functions are available
in a Mathematica file in [176]. We use the results in [176] in our calculation.
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The hard functions satisfy a renormalization group equation
d

d lnµ2H = 1
2
(
ΓH H+H Γ†

H

)
, (3.35)

where

ΓH = −
∑
i<j

Ti ·Tjγcusp ln
σij ŝij − i0

µ2 +
∑

i

γi1+ γquad , (3.36)

where σij = −1 if both i and j are incoming or outgoing, and 1 otherwise. sij = 2pi · pj are
the Mandelstam variables. Here γi = γq, γg are the quark or gluon anomalous dimension.
This equation describes a non-trivial matrix evolution in the color space, and its solution will
be discussed in detail in section 5. The color space notation of [177] has been used here.

Beam function. The beam functions appearing in the factorization formula for the TEEC
can be obtained from the standard TMD beam functions. Unlike for the transverse momentum
spectrum of color singlet particles, the TEEC only measures the component of the momentum
out of the plane (recall that we have taken the Born scattering process to lie in the xz-plane,
so the momentum component out of the plane is the y-component). To obtain the TEEC
beam function from the standard TMD beam functions, we must therefore project them
onto the y-component. We first review the TMD beam functions, and then discuss their
projection for the TEEC.

The TMD beam functions are defined in terms of gauge invariant SCET fields as [178]

Bq(z = ω/P−
n , b⃗⊥) =

〈
P (Pn)

∣∣χ̄n(b⊥)
/̄n

2 [δ(ω − P̄n)χn(0)]
∣∣P (Pn)

〉
,

Bµν
g (z = ω/P−

n , b⃗⊥) = −ω
〈
P (Pn)

∣∣Bµ
n⊥(b⊥)[δ(ω − P̄n)Bν

n⊥(0)]
∣∣P (Pn)

〉
. (3.37)

Lorentz invariance allows the gluon TMD beam functions to be decomposed as

Bµν
g

(
z, b⃗⊥

)
= gµν

⊥
2 Bg

(
z, b⃗⊥

)
+
(

bµ
⊥bν

⊥
b2⊥

−
gµν
⊥
2

)
B′

g

(
z, b⃗⊥

)
, (3.38)

where the second term is referred to as the linearly polarized contribution. Physically, these
linearly polarized terms correspond to contributions that have an azimuthal dependence on
the angle out of the hard scattering plane. We will discuss in detail the linearly polarized
contributions to the beam and jet functions in section 6.

The TMD beam functions obey the µ and ν evolution equations

µ
d
dµ

Bi(z, b⃗⊥, µ, ν) = γB(µ, ω, ν)Bi(z, b⃗⊥, µ, ν) ,

ν
d
dν

Bi(z, b⃗⊥, µ, ν) = γB
ν (⃗b⊥, µ)Bi(z, b⃗⊥, µ, ν) , (3.39)

where i = q, g. The anomalous dimensions are given by

γB(µ, ω, ν) = 2Γcusp[αs(µ)] ln
ν

ω
− 2γi

C − γS

2 ,

γB
ν (⃗b⊥, µ) = −1

2γν (⃗b⊥, µ) . (3.40)

Here ω = zEcm is the large lightcone momentum.
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The beam functions for the TEEC can now be straightforwardly obtained from the TMD
beam functions with the replacement

bµ
⊥ → byyµ , (3.41)

where yµ is a unit vector in the y-direction, which is orthogonal to the plane of the Born
scattering process. This projection is trivial for the standard beam function, but gives rise to
an interesting azimuthal dependence for the linearly polarized beam function

Bµν
g (z, byyµ) = gµν

⊥
2 Bg (z, byyµ) +

(
yµyν −

gµν
⊥
2

)
B′

g (z, byyµ) . (3.42)

However, conveniently, the TEEC beam function can be obtained directly from the TMD
beam function, allowing us to use the high loop results available in the literature

The beam functions for the TEEC can be matched onto standard PDFs at small but
perturbative transverse momentum,

Bi/N (by, ξ, µ, ν) =
∑

j

∫
dz

z
Iij (z, Lb, LQ) fj/N

(
ξ

z
, µ

)
+ power corrections , (3.43)

where Lb = ln(b2yµ2/b20), b0 = 2e−γE , and LQ = ln(Q2/ν2), with Q = 2p0i , twice the energy
of the measured parton energy. The matching coefficients have been derived to two loops
in [111–116], and three loops in [138–141].

Jet functions. The jet functions appearing in the TEEC were already discussed in some
detail in the derivation of the factorization formula, since it was necessary to perform an
OPE of the TMDFFs onto standard FFs to obtain a factorization formula expressed entirely
in terms of perturbative functions.

Definitions for the jet functions appearing in the factorization theorem for the EEC in
e+e− collisions were first presented in [77], where it was shown that they could be obtained as
moments of the TMD matching coefficients Jij . The relation between the TEEC jet functions
and the EEC jet functions is identical to the relation between the TEEC beam functions and
the TMD beam functions, namely one must project them onto the component perpendicular
to the hard scattering plane using the substitution bµ

⊥ → byyµ. This is convenient, since the
EEC jet functions are known at two- [115, 116] and three- [139, 140] loops, allowing us to
immediately obtain the TEEC jet functions at the same order.

Explicitly, the jet functions appearing in the TEEC factorization formula can be obtained
from the EEC jet functions by the substitution,

JTEEC
q (by) = JEEC

q (bT = by) =
∑

i

1∫
0

dξ ξ Jiq

(
by

ξ
, ξ

)
,

JTEEC
g (by) = JEEC

g (bT = by) =
∑

i

1∫
0

dξ ξ Jig

(
by

ξ
, ξ

)
, (3.44)

and are obtained as moments of the (matching coefficients of the) TMD fragmentation
functions. Here we have suppressed Lorentz indices. Just as for the beam function, one
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(a) (b)

Figure 2. Examples of Glauber diagrams which could violate our factorization formula for the TEEC.
The Glaubers, which are illustrated by dashed red lines, couple distinct collinear sectors. For the
TEEC, pure spectator graphs, such as shown in a) cancel, while graphs that involve both active and
spectator partons, such as shown in b), are not expected to cancel.

also has linearly polarized jet functions. We will discuss their structure in section 6. The
RG evolution of the jet functions was derived in [77] from the known evolution of the TMD
fragmentation functions. It is given by

µ
dJTEEC

q (by, µ, ν)
dµ

=
[
−Γcusp(αs) ln

Q2

ν2 + 2γJ
EEC(αs)

]
JTEEC

q (by, µ, ν) , (3.45)

for the µ evolution, and

ν
dJTEEC

q (by, µ, ν)
dν

=


µ2∫

b2
0/b2

y

dµ̄2

µ̄2 Γcusp(αs(µ̄))− γr
EEC(αs(b0/by))

 JTEEC
q (by, µ, ν) , (3.46)

for the ν evolution.

3.3 Underlying event and factorization violation

Before continuing, we must make several comments regarding the validity of our factorization
formula. As described earlier, the leading power SCET Lagrangian describing the TEEC
in the back-to-back limit can be written as

L(0) = L(0)
B1

+ L(0)
B2

+ L(0)
J1

+ L(0)
J2

+ L(0)
G , (3.47)

where the Glauber Lagrangian [53], L(0)
G , which was set to zero in our derivation, couples

the different collinear directions, leading to potential violations of our formula. Example
diagrams involving Glaubers are shown in figure 2, where the Glauber gluons are shown as
red-dashed lines. In the above derivation, we have assumed that the Glauber Lagrangian
does not contribute, which allows us to derive a factorized formula expressed in terms of
functions describing the soft and collinear sectors with no connection other than through
kinematics. Full proofs of factorization have been given for Drell-Yan production, and the
qT spectrum in Drell-Yan production, in the seminal works of [147–153]. For the case of the
TEEC considered here, it is expected that Glaubers will contribute and factorization will be
violated. The TEEC is closely related to momentum imbalance dijet event shapes, for which
there is a growing body of evidence that factorization is violated [37–53]. This ultimately
arises due to amplitude-level factorization violation [44, 45, 50].
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Figure 3. The sensitivity of the TEEC to underlying event as modeled in Pythia. In a) we show the
full distribution, while in b) we show a zoomed in version of the back-to-back endpoint region. The
effects of the underlying event are small, and consistent with being a power correction. We also show
the result of using a model for the underlying event, which adds a uniform energy contribution, as
described in the text. We see that this simple model provides an excellent description of the effects of
the underlying event throughout the entire distribution.

There are a number of different effects that can break factorization. First, even in the
case of color singlet production, the imposition of a measurement function can block the
cancellation of Glauber gluons arising from spectator interactions such as shown in figure 2(a).
This can lead to a violation of factorization [42, 43, 53], as happens for ET , or beam
thrust. This type of factorization violation can lead to large corrections to observables, often
characterized by their sensitivity to multi-parton interactions (MPI). This has been studied
using a parton shower model for MPI in [179], and analytic models in [180]. Additionally,
when there are jets in the initial and final states, one can have an intrinsic failure of collinear
factorization [44, 50]. For the case of the TEEC, in principle both types of factorization
violation could contribute to the observable.

When discussing factorization violation, one must distinguish two types of factorization
violation, namely perturbative, i.e. at a scale ≫ ΛQCD, and non-perturbative, namely at
a scale ∼ ΛQCD. Non-perturbative factorization violation would imply that one could not
factorize into universal PDFs. For color singlet production, this would mean that the two
beams are non-perturbatively coupled, while with jets in the final state, it would imply some
non-perturbative coupling of the jets and the beams. Perturbative factorization violation,
on the other hand, can be explicitly calculated in perturbation theory, and therefore is less
of a concern unless it leads to infrared divergence in the cross section.

When the TEEC scale is perturbative, from the perspective of modes at the scale ΛQCD,
the TEEC measurement is inclusive over the final state, and we expect a cancellation of the
non-perturbative Glaubers. In this case, factorization violation is expected to be a power
correction. However, this argument can be violated if there are many successive spectator
interactions leading to a numerically large correction. This is particularly dangerous for
observables that are scalar sums. On the other hand, since the TEEC is related to a vector sum,
we expect it to be well behaved. In particular, we expect it to be a numerically true statement
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that non-perturbative factorization violation is a power correction. This can be tested at a
qualitative level in parton shower Monte Carlo using a model for the underlying event.

In figure 3, we illustrate the sensitivity of the TEEC to underlying event, as modelled
in Pythia [181, 182]. In figure 3(a) we show a plot over the whole range of the TEEC,
while in figure 3(b), we have zoomed into the back-to-back region. We see that overall the
effects of the underlying event are quite small, except right in the endpoint region where
the scale probed by the TEEC reaches ΛQCD. We believe that this minimal sensitivity to
the underlying event is quite promising, and ensures that the high perturbative accuracy
of our calculation is not destroyed by underlying event. We note that this is a significantly
different behavior than for the case of beam thrust, where large contributions from the
underlying event are observed (see e.g. [179]).

Interestingly, we can provide an excellent description of the underlying event by adding
an energy distribution that is uniform in the azimuthal angle to our perturbative calculation.
Inserting a shift in the energies into the formula for the TEEC in eq. (2.2), and expanding,
we find that this shifts the TEEC distribution as

1
σMPI

dσMPI
dϕ

= Q

Q + 2δE

( 1
σ

dσ

dϕ
+ 2

π

δE

Q

)
, (3.48)

where δE is the total energy added by MPI effects and Q = 500GeV is an approximation to the
total transverse energy of the hard scattering that will be used in our numerical results. The
result of this model is also shown in figure 3. We see that it provides an excellent description
of Pythia’s model of the underlying event for a value of the parameter δE ∼ 30GeV. It would
be interesting to measure this in experiment, and also to study its variation with the hard
scattering energy. The apparent simplicity of this description of the underlying event may
also allow it to be distinguished from hadronization effects. This has been studied for the jet
mass in [183], and it would be interesting to perform a similar study for the TEEC.

We can also ask to what extent our factorization formula can be violated perturbatively.
For ET and beam thrust, perturbative factorization violation occurs at N4LL [42, 43, 53],
through diagrams such as the one shown in figure 2(a). While a complete analysis of
perturbative Glauber contributions is beyond the scope of this paper, we make several
additional comments. First, we note that due to the measurement restriction being a vector
sum, following the arguments in [53], diagrams with Glaubers exchanged purely between
spectators, such as in figure 2(a), are expected to cancel for the TEEC. However, we do
believe that factorization will be violated by diagrams such as those shown in figure 2(b),
which we believe could give at most a constant at three loops. As has been shown, it is
expected that factorization violation should occur when there are two Glaubers, one collinear
emission, and one additional emission [44, 50]. We strongly expect that this is an N4LL
effect. For the case of so called super-leading logarithms [46–51], these effects modify the
structure of the logarithmic series. However, this arises since there are only single logarithms
in the observables of interest in their work. In our case we do not expect this to be the
case, however, we have not yet proven this assertion.

Nevertheless, we believe that pushing to as high perturbative orders as possible is useful,
since our factorization formula can be viewed as a baseline, on which factorization violating
effects can be added. We believe that due to the simplicity of the TEEC, it is an ideal
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observable to attempt to analytically understand the violation of factorization with final
state jets using the Glauber Lagrangian of [53]. We believe that this is particularly true
due to the fact that, as discussed in section 2, the TEEC can be defined for a color singlet
final state, for a final state with a single jet, and for dijets final state. Since it is known
that for the case of a color singlet factorization holds to all orders for the TEEC (since it
is related to the factorization for transverse momentum of a color singlet boson), and that
it is certainly violated for a dijet final state, we believe that this provides an extremely
concrete playground to understand theoretically, and also probe experimentally, the effects
of factorization violation. We leave this to future work.

3.4 Extension to Drell-Yan and W/Z/γ + jet

Although the focus in this paper is on the TEEC for a purely hadronic final state (which at
leading power in the back-to-back limit is a dijet final state), as we have discussed previously,
we find it interesting that we can also achieve the same level of perturbative accuracy for
the TEEC as measured on a leptonic final state in Drell-Yan, or on a W/Z/γ+ jet final
state, and we believe that this will be useful for studying the effects of factorization violation.
Therefore, for completeness, we also present the factorization formulas for the TEEC as
measured on these final states. All of the relevant factorization formulas can be trivially
obtained starting from the factorization formula for the purely hadronic final state, by
removing jet functions, altering the Wilson line structure in the soft functions, and using
the appropriate hard functions (For recent progress in the calculations of the relevant hard
functions, see [184, 185]).

For the case of Drell-Yan, we can simply eliminate the two jet functions, and obtain
dσ(0)

dτ
= 1

16πs2
√

τ

∑
channels

1
Ninit

∫
dyl+ dyl− pT dp2T

ξ1ξ2

∫ ∞

−∞

dby

2π
e−2iby

√
τpT (3.49)

× tr
[
Hf1f2→l+l−(pT , y∗, µ)S(by, y∗, µ, ν)

]
Bf1/N1(by, ξ1, µ, ν)Bf2/N2(by, ξ2, µ, ν) .

This is similar to the factorization for the transverse momentum of the vector boson. For
the case of V + jet, we have

dσ(0)

dτ
= 1

16πs2
√

τ

∑
channels

1
Ninit

∫
dy3dyV pT dp2T

ξ1ξ2

∫ ∞

−∞

dby

2π
e−2iby

√
τpT (3.50)

× tr
[
Hf1f2→f3V (pT , y∗, µ)S(by, y∗, µ, ν)

]
Bf1/N1(by, ξ1, µ, ν)

× Bf2/N2(by, ξ2, µ, ν)Jf3 (by, µ, ν) .

Renormalization group consistency holds for all these different factorization formulas. We
have used the same notation for the soft functions appearing in all the TEEC factorization
formulas, despite the fact that they contain different numbers of Wilson lines. The precise
definitions of the soft functions, as well as a discussion of their perturbative structure will
be given in section 4.

It would be extremely interesting to study the effects of underlying event and factorization
violation for these the TEEC observable on different final states, particularly since factorization
has been proven to hold for the TEEC on color singlet final states [147–153]. This provides a
baseline on top of which factorization violation and color flow effects can be studied. We
leave detailed phenomenological studies of the different final states to future work.
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Figure 4. The TEEC soft functions defined using the exponential rapidity regulator for (a) TEEC
for Drell-Yan (or qT ), (b) TEEC for W/Z/γ+ jet, (c) TEEC for dijets.

4 The transverse energy-energy correlator soft function

The key new perturbative ingredient entering our factorization formula is the TEEC soft
function. For multi-jet event shape observables, the soft function is typically the most
complicated function entering the factorization formula, since it depends on the directions
of all the different jets (For recent progress towards numerical calculations of soft functions
at NNLO, see [186–189], and for a semi-numerical calculation of the soft function for 2-
jettiness, see [190].). In this section, we highlight the remarkable perturbative simplicity
of the TEEC soft function, and we describe how this is related to the particular form of
the measurement.

The structure of the TEEC soft function is also of intrinsic theoretical interest, since it
provides an example of a rapidity divergent soft function with multiple (> 2) Wilson line
directions. While the structure of rapidity divergences and their associated renormalization
group evolution for soft functions involving two directions is by now quite well understood
(the rapidity anomalous dimension is known to four loops in both QCD [16, 106, 142] and
N = 4 super Yang-Mills [191]), and has been used to make phenomenological predictions
at N3LL [192], almost nothing is known about the rapidity anomalous dimension for soft
functions involving multiple directions. Part of the understanding of the structure of rapidity
divergences comes from the fact that for the particular case of two directions, they are related
by conformal symmetry to standard anomalous dimensions [142, 193, 194]. It would therefore
be interesting to understand to what extent this holds more generally, and the TEEC provides
a concrete example where these questions can be studied.

In section 4.1 we define the TEEC soft function and give its renormalization group
evolution. In sections 4.2 and 4.3 we present some details of the calculation of the soft
function at one and two loops. We then summarize our findings and discuss some directions
for future study in section 4.4.
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4.1 Definition and RG evolution

In this section, we will discuss simultaneously the TEEC soft functions for Drell-Yan, W/Z/γ+
jet and dijets. The TEEC soft functions are defined, using the exponential regulator of [195], as

Drell-Yan : S(by, y∗) = ⟨0|T [On1n2(0µ)]T [O†
n1n2(b

µ
y )]|0⟩ ,

W/Z/γ+jet : S(by, y∗) = ⟨0|T [On1n2n3(0µ)]T [O†
n1n2n3(b

µ
y )]|0⟩ ,

Dijets : S(by, y∗) = ⟨0|T [On1n2n3n4(0µ)]T [O†
n1n2n3n4(b

µ
y )]|0⟩ , (4.1)

as illustrated in figure 4 (There the temporal direction has necessarily been suppressed in (b)
and (c)). Here On1n2(x) = Y n1Y n2(x), On1n2n3(x) = Y n1Y n2Y n3(x), and On1n2n3n4(x) =
Y n1Y n2Y n3Y n4(x), with Y ni(x) = exp[i

∫
ds ni · As(sni + x)Ti] a semi-infinite light-like

soft Wilson line, and nµ
i = pµ

i /p0i the light-like direction of the incoming or outgoing parton
in the partonic center-of-mass frame. The directions of the Wilson lines are standard and
hence suppressed, as are gauge links at infinity. We have chosen coordinates such that
bµ

y = (0+, 0−, 0x, by) is in the direction ŷ perpendicular to the scattering plane, ŷ · ni = 0.
The soft functions defined in eq. (4.1) suffer from UV and rapidity divergences. Rapidity

divergences are regulated using the exponential regulator of [195]. The soft function, which
is a matrix in color space, satisfies the RG equation

dS
d lnµ2 = 1

2
(
Γ†

S · S+ S · ΓS

)
, (4.2)

with [196–199]

ΓS =
∑
i<j

Ti ·Tjγcusp ln
σijν2 ni · nj − i0

2µ2 −
∑

i

ci

2 γs1− γquad , (4.3)

where σij = −1 if both i and j are incoming or outgoing, and σij = 1 otherwise. Here
ν is the rapidity scale, and ci = CF or CA is the Casimir of the parton i. Here γcusp is
the cusp anomalous dimension [200], γs is the threshold soft anomalous dimension [201]
and γquad is the anomalous dimension for quadrupole color and kinematic entanglement,
which first appears at three loops [104, 105] for the case that there are four Wilson lines.
Its structure will be discussed in section 5, where we will also discuss the solution of the
RG evolution equation with color mixing.

The evolution equation associated with the rapidity scale ν is

dS
d ln ν2 = 1

2
(
Γ†

y · S+ S · Γy

)
, (4.4)

with

Γy =
(∫ b2

0/b2
y

µ2

dµ̄2

µ̄2 γcusp[αs(µ̄)] + γr[αs(b0/by)]
)∑

i

ci1+ γX [y∗, αs(b0/by)] . (4.5)

This is the generalization of the rapidity RGE [202, 203] for color singlet production to dijet
production at hadron colliders. Here γr is the rapidity anomalous dimension for the color
transverse momentum distribution [106], and b0 = 2e−γE .
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Thanks to the non-abelian exponentiation theorem [204, 205], we can write the TEEC
soft function as an exponential of web diagrams. We further separate web diagrams into
dipole, tripole and quadrupole contributions, by which we mean interactions involving two,
three, and four Wilson lines respectively,

S = exp
[
Sdip + Stri + Squad

]
. (4.6)

The dipole contribution starts at O(αs), where the calculation is naturally expressed as a
sum over dipoles. We will show in section 4.2 that1

Sdip = −
∑
i<j

Ti ·Tj Sij = −
∑
i<j

Ti ·Tj S⊥

(
Lb, Lν + ln ni · nj

2

)
, (4.7)

where S⊥(Lb, Lν) is the TMD soft function for color singlet production at hadron colliders
(which can be found up to three loops in [106])

The tripole soft function starts at O(α2
s); we will calculate it in section 4.3. The

quadrupole contribution starts at three loop: its µ dependent part is predicted by γquad,
while the constant piece is beyond the scope of this paper.

We note that if there were no Stri and Squad, the dipole contribution alone already
satisfies the rapidity RGE (4.4). Rapidity RG consistency then implies that Stri and Squad
are both free from rapidity divergences. We call the statement that rapidity divergences
in the soft function take a dipole form (or equivalently, that Stri and Squad are both free
from rapidity divergences) the “rapidity dipole conjecture”. We will show in section 4.3 that
for Stri this is indeed the case to two loops. However, it is far from obvious that Stri and
Squad will be free from rapidity divergences at higher loop order. It would be particularly
interesting to prove or to disprove the dipole conjecture. If the dipole conjecture turns out
to be wrong, it implies factorization violation.

While the renormalization group evolution predicts the logarithmic structure of the soft
functions, to achieve N3LL accuracy, we also need the soft function constants to two loops
(which provide the boundary conditions for the RG evolution).

4.2 Dipole contribution

In this section, we will show that each dipole soft function with general ni and nj can be
written as S⊥ with ν2 modified by the ni · nj/2 factor

We will perform a one loop calculation to demonstrate this. In the exponential rapidity
regulator of [195], the bare one loop integral for each dipole soft function is given by

Sij(by, τ) = 2(4π)2
(

µ2eγE

4π

) 4−d
2 ∫ ddk δ+(k2)

(2π)d−1
ni ·nj

(k ·ni)(k ·nj)
exp

(
−2k0τe−γE + iby ·k

)
, (4.8)

where d = 4− 2ϵ, δ+(k2) = θ(k0)δ(k2), and by is the impact parameter perpendicular to the
scattering plane, bµ

y = (0+, 0−, 0x, by). τ here is the rapidity regulator: at the end of the
1We have assumed here that the TMD soft function Sij takes the same expression no matter i and j being

incoming or outgoing. In [206], it was argued with contour deformation that the TMD soft function takes
the same universal expression for Drell-Yan, e+e− and semi-inclusive deep elastic scattering. It would be
interesting to use the Glauber SCET [53] to prove or disprove this.
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calculation, one keeps the leading term of τ → 0 and identify ν = τ−1. We work in the MS
scheme by a redefinition of the bare scale µ2

0 = µ2eγE /(4π). We then rescale ni,j to ñi,j as

ñi =
ni√

(ni · nj)/2
, ñj = nj√

(ni · nj)/2
, (4.9)

such that ñi · ñj = 2, and work in the lightcone frame in terms of ñi and ñj , i.e., we
decompose momentum k as,

kµ = k+

2 ñµ
j + k−

2 ñµ
i + kµ

⊥ , (4.10)

where k+ = ñi · k, k− = ñj · k. The one loop bare soft function now becomes

Sij(by, τ) = 2(4π)2
(

µ2eγE

4π

)2−d/2 ∫
dk−dk+dd−2k⊥

2(2π)d−1 δ+(k2) 2
k+k−

× exp
(
−
[√

ni · nj

2 (k+ + k−) + v⊥ · k

]
τe−γE + iby ·k

)
. (4.11)

Comparing this integral with the one-loop calculation in [195], we see that the only difference
is that 2k0 is replaced by the term in the square bracket instead of simply k+ + k−. Here
v⊥ is a perpendicular vector. The v⊥ · k part does not matter when we take the τ → 0 limit
since its contribution is O(τ) suppressed compared with iby ·k. The

√
ni·nj

2 is a multiplicative
factor to τ , which amounts to dividing ν2 by ni·nj

2 in the final result.
We expect that a similar argument can be generalized to all loop orders since there is only

single logarithm for ν (or single pole in η for the η regulator [202, 203]) in the exponential
of the soft function, and thus the subleading terms in τ → 0 do not matter.

Note that for 2 → 2 kinematics, we have the following kinematic relations

n1 · n2 = n3 · n4 = 2 ,

n1 · n3 = n2 · n4 = −2t̂

ŝ
,

n1 · n4 = n2 · n3 = −2û

ŝ
, (4.12)

where ŝ = (p1+p2)2, t̂ = (p1−p3)2 and û = (p2−p3)2 are the partonic Mandelstam variables.

4.3 Tripole contribution at two loops

In this section, we calculate the “tripole” contribution that arises at two loops, which correlates
three lines in the soft function. We will show that it is purely imaginary (antisymmetric and
thus Hermitian) at this order. Since the tree-level hard functions are real, the imaginary
constant piece of the soft function at two loops is not relevant at the accuracy with which
we work in this paper. However, the scale dependent part does contribute and is already
predicted in the imaginary part of the soft anomalous dimension in eq. (4.3).

According to [207], the double real contribution is dipole-like and is completely incor-
porated in Sdip. Therefore, we only need to calculate the real-virtual contribution. To this
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end, we make use of the tree-level and one-loop soft-gluon currents in [208],

J(0)µ
a (q) =

∑
i

Ta
i

pµ
i

pi · q
(4.13)

J(1)µ
a (q, ϵ) = − 1

16π2
1
ϵ2

Γ3(1− ϵ) Γ2(1 + ϵ)
Γ(1− 2ϵ)

× i fabc
∑
i ̸=j

Tb
i Tc

j

(
pµ

i

pi · q
−

pµ
j

pj · q

)[
4π pi · pj e−iπλij

2(pi · q) (pj · q) e−iπλiq e−iπλjq

]ϵ

(4.14)

where λAB = +1 if A and B are both incoming or outgoing, and λAB = 0 otherwise. The
real-virtual integrand is [208],

J(0)
µ (q) · J(1)µ(q, ϵ) + h.c.

= − 1
4π2

(4π)ϵ

ϵ2
Γ3(1− ϵ)Γ2(1 + ϵ)

Γ(1− 2ϵ)

{
CA cos(πϵ)

∑
i,j

′ [Sij(q)]1+ϵ (Ti ·Tj)

− 2i sin(πϵ)
∑
i,j,k

′Ski(q) [Sij(q)]ϵ (λij − λiq − λjq) (ifabc)Ta
kTb

iTc
j

}
. (4.15)

The dependence on whether partons are incoming or outgoing is encoded in λ,

λij − λiq − λjq = 1 (i, j both incoming), −1 (otherwise). (4.16)

The summation ∑ ′ stands for the sum over the different values of the indices. The soft
eikonal function is defined as

Sij(q) =
pi · pj

2 (pi · q) (pj · q) = sij

siqsjq
. (4.17)

As discussed above, here we will focus on the three Wilson-line contribution which is
represented as the last line of eq. (4.15).

Notice that only the imaginary part of the one-loop soft-gluon current survives in the
tripole contribution (last line of eq. (4.15)). According to [53], this imaginary part is exactly
the Glauber contribution. Therefore, we see that the tripole contribution at O(α2

s) in the
soft function is purely from Glaubers. This is quite interesting since it is very different from
the case for the dipole soft function, where Glauber effects only start to contribute at O(α3

s).
We now perform the calculation for the tripole contribution to the TEEC soft function

with four Wilson lines. Making use of color conservation

T1 +T2 +T3 +T4 = 0 , (4.18)

the color structure of the three-parton correlation can be reduced to fabcTa
1Tb

2Tc
3. For example,

fabcTa
1Tb

2Tc
4 = −fabcTa

1Tb
2Tc

3 − fabcTa
1Tb

2Tc
1 − fabcTa

1Tb
2Tc

2

= −fabcTa
1Tb

2Tc
3 , (4.19)

where we have used the relation

[Ta
k,Tb

j ] = iδkjfabcTc
k . (4.20)
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We define

Iijk = Ski(q) [Sij(q)]ϵ . (4.21)

The soft integrand becomes

fabc

∑
i,j,k

′Ta
kTb

iTc
j Ski(q) [Sij(q)]ϵ (λij − λiq − λjq)

= fabcTa
1Tb

2Tc
3
{
I123 − I124 + I132 − I134 − I142 + I143 − I213 + I214

− I231 + I234 + I241 − I243 − I312 + I314 + I321 − I324 − I341 + I342

+ I412 − I413 − I421 + I423 + I431 − I432
}

. (4.22)

The rapidity divergences cancel separately in each term of the form Iijk − Ijik, giving rise
to a rapidity finite result. The phase space integrals can be performed straightforwardly.
The final result is

Sbare
tri = ifabcTa

1Tb
2Tc

3 Sbare
tri =

(
αs

4π

)2
fabcTa

1Tb
2Tc

3 ln t̂

û

(
b2yµ2

4e−2γE

)2ϵ 8π

3

( 6
ϵ2

+ π2 +O(ϵ)
)

.

(4.23)

Notice that the color factor fabcTa
1Tb

2Tc
3 is a purely imaginary matrix once the color basis is

specified. The divergent terms appearing in this result can be predicted by the RG equation
with the imaginary part of the anomalous dimensions in eq. (4.3).

We can also obtain the result for the TEEC soft function with three Wilson lines, which
is relevant for W/Z/γ+jet. In that case, using the color conservation identity

T1 +T2 +T3 = 0 , (4.24)

we clearly see that the tripole contribution vanishes due to the antisymmetry of fabc,

Sbare
tri

∣∣∣
Three Wilson Lines

= 0 . (4.25)

It would be interesting to understand whether or not a tripole contribution can contribute
at higher perturbative orders.

In summary, this calculation explicitly shows that to two loops, the soft function is purely
dipole for the two and three Wilson line soft functions, and for the four Wilson line soft
function, there is a purely imaginary contribution.

4.4 Summary and discussion

We can summarize our one and two loop calculations as follows. The TEEC soft function
has the perturbative expansion

S(by, y∗, µ, ν) = 1+ αs

4π
S(1)(y∗, Lb, Lν) +

(
αs

4π

)2
S(2)(y∗, Lb, Lν) +O(α3

s) , (4.26)
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with

S(1)(y∗, Lb, Lν) = −
∑
i<j

(Ti ·Tj)S
(1)
⊥

(
Lb, Lν + ln ni · nj

2

)
,

S(2)(y∗, Lb, Lν) = −
∑
i<j

(Ti ·Tj)S
(2)
⊥

(
Lb, Lν + ln ni · nj

2

)
+ 1

2!
(
S(1)(y∗, Lb, Lν)

)2
+ ifabcTa

1Tb
2Tc

3 Stri(y∗, Lb) . (4.27)

Here S
(n)
⊥ (Lb, Lν) is the n-loop TMD soft function for color-singlet production at hadron

colliders, and Stri(y∗, Lb) is the purely imaginary tripole contribution calculated in eq. (4.23).
Our calculation also explicitly shows that at least to two loops, the color non-diagonal

rapidity anomalous dimension, γX , vanishes. This is guaranteed by rescaling invariance,
ni → eλini, but is a non-trivial check on our calculation. We note that the consistency of the
factorization formula, which is derived from demanding the rapidity scale independence of the
cross section implies that γX = 0 at all orders. This is a highly non-trivial statement, since at
three loops there is a scaling invariant cross ratio n1 ·n3 n2 ·n4/(n1 ·n2 n3 ·n4) = (1−tanh y∗)2/4.
If it is indeed true that γX = 0, then we believe that there should be some argument for
this fact purely at the level of the soft function definition. On the other hand, if γX ̸= 0,
then this would indicate an explicit violation of factorization.

We note that one must be careful in what is meant by the soft function when discussing
potential violations of factorization. In particular, it is normally assumed that Glauber
contributions can simply be absorbed into the directions of Wilson lines (or proven in certain
cases such as qT ). In the present case of the TEEC, where this is not expected to be true, one
should probably work with the true soft function, defined by removing the Glauber zero-bin

S = S̃ − S(G) , (4.28)

where S̃ denotes the naive soft function, and S(G) denotes is Glauber zero-bin [53]. Once
this Glauber zero-bin contribution is removed, we expect that the naive factorization formula
is not-violated. We are therefore led to the following conjecture

Rapidity dipole conjecture. The rapidity anomalous dimension for a soft function with
Wilson lines in distinct directions ni, is dipole to all loop order once the Glauber zero-bin
is performed.

It would be extremely interesting to prove or disprove this statement, and we believe
that it would improve our understanding of rapidity factorization with multiple collinear
directions, for which little is known. This motivates a direct calculation of the TEEC soft
function at three loops, as well as a better understanding of rapidity regularization for
multi-Wilson line soft functions.

Finally, along the lines of [142, 193, 194], it will be important to better understand the all
orders structure of rapidity anomalous dimensions for multi-Wilson line soft functions, perhaps
by relating them to standard virtuality (µ) anomalous dimensions. (For other recent work
understanding relations between anomalous dimensions defined by Wilson lines, see [209]). It
would be interesting to obtain the rapidity anomalous dimension for multi-Wilson line soft
functions in a similar manner, perhaps from some self crossing limit of a more complicated
Wilson loop structure (see e.g. [210]).
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5 Color evolution at N3LL

The beam and jet functions are color singlets, and their renormalization group evolution
structure is standard. The most complicated aspect of the renormalization at N3LL is the
non-trivial color evolution of the hard and soft functions. Since this is applicable to any
dijet soft function, and has not previously been presented at N3LL accuracy, we discuss it
in some detail with the hope that it will be useful more generally.

5.1 Hard and soft function anomalous dimensions

The soft function is a matrix in color space, and satisfies the RG equation

dS
d lnµ2 = 1

2
(
Γ†

S · S+ S · ΓS

)
. (5.1)

The anomalous dimension ΓS takes the form given in eq. (4.3), which we repeat here for
convenience [196–199]

ΓS =
∑
i<j

Ti ·Tjγcusp ln
σijν2 ni · nj − i0

2µ2 −
∑

i

ci

2 γs1− γquad . (5.2)

Here σij = −1 if both i and j are incoming or outgoing, and σij = 1 otherwise. ν is
the rapidity scale, and ci = CF or CA is the Casimir of the parton i. Here γcusp is the
cusp anomalous dimension [200], γs is the threshold soft anomalous dimension [201] and
γquad is the anomalous dimension for quadrupole color and kinematic entanglement, which
first appears at three loops [104, 105]. Here we use the color space notation of [177]. The
quadrupole anomalous dimension is universal (matter independent) [211], and can be written
as a function of the conformal cross ratios. For extensive earlier work on its structure,
see [197–199, 211–228], and for a detailed discussion summarizing the complete set of known
results and their consistency, see [229].

To our knowledge, the quadrupole term in the anomalous dimension matrix has not yet
entered into a physical observable. The quadrupole part of the soft anomalous dimension
can be written as a sum of two terms

∆ = 16(∆(3)
4 +∆(3)

3 ) . (5.3)

In [105] it was shown in detail how to analytically continue the functions appearing in the
quadrupole anomalous dimension to the physical region. However, in [230], an analytically
continued form was given for 13 → 24 kinematics (u = −s − t > 0), which is sufficient for
our purposes. Here we use the results of [230].

Restricting the general form of the quadrupole anomalous dimension to four external
partons, for ∆(3)

3 , we have

∆(3)
3 = −C fabefcde

∑
i=1...4

1≤j<k≤4
j,k ̸=i

{
Ta

i ,Td
i

}
Tb

jTc
k , (5.4)
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or very explicitly

∆(3)
3 = −C fabefcde

[ {
Ta

1,Td
1

}
(Tb

2Tc
3 +Tb

2Tc
4 +Tb

3Tc
4)

+
{
Ta

2,Td
2

}
(Tb

1Tc
3 +Tb

1Tc
4 +Tb

3Tc
4)

+
{
Ta

3,Td
3

}
(Tb

1Tc
2 +Tb

1Tc
4 +Tb

2Tc
4)

+
{
Ta

4,Td
4

}
(Tb

1Tc
2 +Tb

1Tc
3 +Tb

2Tc
3)
]

, (5.5)

where the constant C is given by

C = ζ5 + 2ζ3ζ2 . (5.6)

For the analytic continuation of ∆(3)
4 , we use the form given in [230]

∆(3)
4 = 1

4 fabefcde

[
Ta

1Tb
2Tc

3Td
4 S(x) +Ta

4Tb
1Tc

2Td
3 S(1/x)

]
, (5.7)

where

S(x) = 2H−3,−2+2H−2,−3−2H−3,−1,−1+2H−3,−1,0−2H−2,−2,−1+2H−2,−2,0−2H−2,−1,−2

−H−1,−2,−2−H−1,−1,−3+4H−2,−1,−1,−1−2H−2,−1,−1,0−H−1,−2,−1,0−H−1,−1,−2,0

+ζ3H−1,−1+4ζ3ζ2−ζ5+ζ2(6H−3−10H−2,−1+6H−2,0−H−1,−2−H−1,−1,0)

+ iπ
[
2H−3,−1−2H−3,0+2H−2,−2−4H−2,−1,−1+2H−2,−1,0−2H−2,0,0+H−1,−2,0

+H−1,−1,0,0+ζ2(3H−1,−1−4H−2)−ζ3H−1
]
. (5.8)

Here H are harmonic polylogarithms (HPLs), and the standard convention for the weights has
been followed. The argument of the HPLs has been suppressed, and is x = t/s. This result
contains explicit factors of iπ that are generated by the analytic continuation. While they do
not contribute to the cross section at the order that we work, they would be interesting to
understand from the perspective of Glaubers. We leave this to future work.

At N3LL, we also need the cusp anomalous dimension at four loops [110]. Its value,
as well as the value of all other anomalous dimensions required to derive the N3LL result
for the TEEC, are provided in appendix A.1.

5.2 Solving color evolution equations to N3LL

The anomalous dimensions of the hard function in eq. (3.36) can be decomposed as the sum
of a diagonal matrix and a non-diagonal matrix,

ΓH = ΓD
h (αs, µ)1+ γh(αs) , (5.9)

where γh is the non-diagonal matrix contribution, which can be written as

γh = αs

4π
γh
0 +

(
αs

4π

)2
γh
1 +

(
αs

4π

)3
γh
2 + · · · . (5.10)

– 28 –



J
H
E
P
0
9
(
2
0
2
4
)
0
7
2

The solution to the hard function RG equation is

H(µ) = U(µh, µ) H(µh) U †(µh, µ) , (5.11)

with

U(µh, µ) = exp
[∫ µ

µh

dµ̄

µ̄
ΓD

h (αs(µ̄), µ̄)
]

u(µh, µ). (5.12)

The factor
∫ µ

µh

dµ̄
µ̄ ΓD

h (αs(µ̄), µ̄) includes the evolution similar to a color singlet state. The
non-trivial color evolution is included in u which obeys the differential equations

d

d lnµ
u(µh, µ) = γh(αs(µ))u(µh, µ) ,

d

d lnµh
u(µh, µ) = −u(µh, µ)γh(αs(µh)) . (5.13)

The solution to these equations is

u(µh, µ) = P exp
[∫ αs(µ)

αs(µh)

dα

β(α)γh(α)
]

, (5.14)

where P denotes the ordering in the coupling constant with the scale in the coupling increasing
from left to right. The ordering operator is necessary when [γh(α1), γh(α2)] ̸= 0 . Here we
will give explicit expressions for the u matrix at NLL, NNLL and N3LL.

At NLL the u matrix is given by

uNLL(µh, µ) = V

(
αs(µ)
αs(µh)

)−
γ0

D
2β0

V −1 , (5.15)

where V is the matrix that diagonalizes the LO anomalous dimension

γ0
D = V −1 γh

0 V . (5.16)

Higher order QCD corrections can be included by expressing them in terms of uNLL as [231]

u(µh, µ) = K(µ)uNLL(µh, µ)K−1(µh) . (5.17)

From eq. (5.13), the differential equation for the matrix K up to NNLO is

β(αs(µ))
d

dαs(µ)
K(αs(µ))−

β(αs(µ))
2αs(µ)β0

K(αs(µ))γh
0

= αs(µ)
4π

γh
0K(µ) +

(
αs(µ)
4π

)2
γh
1K(µ) +

(
αs(µ)
4π

)3
γh
2K(µ) . (5.18)

Defining the perturbative expansion of K as

K = 1+ αs(µ)
4π

K0 +
(

αs(µ)
4π

)2
K1 + · · · , (5.19)
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we have

K0 +
1
2β0

[γh
0 , K0] =

β1γ
h
0

2β2
0

− γh
1

2β0
.

K1 +
1
4β0

[γh
0 , K1] =

1
4β0

(
β1
β0

γh
0K0 − γh

1K0 −
β2
1

β2
0

γh
0 +

β1
β0

γh
1 +

β2
β0

γh
1 − γh

2

)
. (5.20)

Using eq. (5.16) we transform K into S = V −1KV , and perturbatively expand Si as

S = 1+ αs(µ)
4π

S0 +
(

αs(µ)
4π

)2
S1 + · · · . (5.21)

The solution of eq. (5.20) is then given by

S0,IJ = δIJ
β1
2β2

0
(γ0

D)JJ − (V −1γh
1V )IJ

2β0 + (γ0
D)II − (γ0

D)JJ
,

S1,IJ = δIJ

4β0

(
β2
β0

− β2
1

β2
2

)
(γ0

D)JJ

+ 1
4β0 + (γ0

D)II − (γ0
D)JJ

(
V −1

(
β1
β0

γh
0K0 − γh

1K0 +
β1
β0

γh
1 − γh

2

)
V

)
IJ

. (5.22)

The expressions for the u matrices at NNLL and N3LL are

uNNLL(µh, µ) = V

(
1 + αs(µ)

4π
S0

) (
αs(µ)
αs(µh)

)−
γ0

D
2β0
(
1 + αs(µh)

4π
S0

)−1
V −1 ,

uN3LL(µh, µ) = V

(
1 + αs(µ)

4π
S0 +

(
αs(µ)
4π

)2
S1

) (
αs(µ)
αs(µh)

)−
γ0

D
2β0

×
(
1 + αs(µh)

4π
S0 +

(
αs(µh)
4π

)2
S1

)−1

V −1 . (5.23)

These matrices allow for the resummation up to N3LL for generic color mixing matrices,
and we believe that they will prove useful in many future studies of event shapes at hadron
colliders, or multi-jet event shapes in e+e− colliders.

6 Linearly polarized beam and jet functions

Another interesting feature of the TEEC which first appears at N3LL, is the presence of linearly
polarized jet and beam functions. Since the TEEC is measuring radiation perpendicular to
the scattering plane formed by the hard process, the helicity of gluons in the jets or beams
can lead to terms which have an azimuthal dependence as they are rotated through this plane.
These are described by the linearly polarized beam and jet functions. Similar polarization
effects in the collinear limit of the energy correlators were discussed in [232–234]. There the
effect came from the presence of other detectors, instead of the plane of the hard scattering
process. The matching coefficients for the gluonic TMD beam and fragmentation functions
can be decomposed into tensor structures as

Iµν
gi (ξ, b⊥) =

gµν
⊥

d − 2Igi(ξ, b⊥) +
(

gµν
⊥

d − 2 + bµ
⊥bν

⊥
b2T

)
I ′

gi(ξ, b⊥) . (6.1)

– 30 –



J
H
E
P
0
9
(
2
0
2
4
)
0
7
2

12− 10− 8− 6− 4− 2− 0

τln

40−

20−

0

20

40

  
[n

b
]

τ
/d

ln
σ

d

 =13 TeV sTEEC  

 > 500 GeV
T2

+p
T1

p

PDF4LHC15_nnlo_mc 

  LO singular

NLO singularδ 

NNLO singularδ

Figure 5. The fixed order singular behavior of the TEEC cross section at LO, NLO and NNLO
derived using our factorization formula.

For a detailed discussion and NNLO calculation for both TMD beam functions and fragmenta-
tion functions in our regulator, see [116]. The one loop matching coefficients and the one-loop
beam and jet functions for linearly polarized gluons are given in appendix A. Importantly,
they are first non-zero at one loop, where they give finite results.

An interesting feature of the TEEC on dijets, is that the tree level hard scattering matrix
elements are maximal helicity violating (MHV). Therefore, when contracted with a single
linearly polarized jet or beam function, the result vanishes. One must either have two linearly
polarized jet or beam functions, or a one-loop correction to the hard scattering matrix element
to get a non-vanishing NMHV amplitude combined with a single linearly polarized beam
or jet function. For a detailed discussion of the helicity structure of SCET hard matching
coefficients, and explicit results, see [173]. This shows that for the TEEC on dijets, effects
from linearly polarized beam and jet functions first enter as a constant at O(α2

s), namely
at N3LL. For this reason, they were not needed in our NNLL calculation [64]. This is in
distinction to the case of the TEEC on V + jets, or other related V + jet observables [166, 167],
where linearly polarized jet and beam functions enter at NNLL, since the hard function
does not have an MHV structure.

It would be interesting to study the phenomenological impact of these linearly polarized
terms in more detail. However, since the focus of this paper has been on the derivation of
the factorization formula, we leave such studies to future work.

7 Fixed order singular behavior

In [64], we verified that our factorization formula correctly reproduced the singular behavior
of the TEEC observable by comparing with numerical results obtained using Nlojet++ [235,
236] for all partonic channels. Here we can use our factorization formula, expanded to fixed
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Figure 6. The singular behavior of the TEEC cross section at NLO and NNLO. At NLO, we also show
the full result, as computed numerically using Nlojet++, as well as the non-singular contribution.
It would be interesting to compare to the recent calculation of the TEEC at NNLO [56, 125], but this
is beyond the scope of this paper.

order, to predict the NNLO singular behavior of the pp → 3 jet cross section in the τ → 0
limit. For simplicity, we neglect the linearly polarized terms.

For our numerical results we consider the conditions of the LHC at
√

s = 13TeV. We
select events with two leading jets having averaged jet PT ≥ 250GeV and individual jet
rapidity |Y | < 2.5, where the jets are defined using the anti-kT algorithm [237] with R = 0.4.
The TEEC is then computed on all particles with rapidity |y| < 2.5. For PDFs, we use the
PDF4LHC15_nnlo_mc [238] parton distribution functions. We take αs(MZ) = 0.118.

In figure 5 we show the singular structure at LO, NLO, and NNLO on a logarithmic scale,
and in figure 6 on a linear scale. In figure 6, we also show the non-singular contributions
(power corrections) at NLO. There has recently been progress in understanding the structure
of the power corrections for qT in color singlet production [239, 240] and the EEC [241, 242],
and it would be interesting to extend this to the case of the TEEC. As mentioned above, the
NNLO result is obtained under the assumption that there is no factorization violation at this
order, namely that our factorization formula predicts the complete singular structure. While
this remains to be proven, it is strongly suggested by previous work [44, 50].

8 Resummed results at N3LL

Although the main focus of this paper has been on the derivation of the factorization formula,
and the calculation of the relevant ingredients necessary for resummation at N3LL level, here
we provide illustrative numerical results to study the perturbative convergence. Ultimately,
to provide a complete description of the TEEC, one should match to fixed order perturbative
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Figure 7. Resummed results for the TEEC at NLL, NNLL and N3LL. Good perturbative convergence
is observed. It will be particularly interesting to match the N3LL result to the NNLO pp → 3 jet fixed
order calculation [125].

results. At N3LL, one should match to the NNLO calculation of the three jet cross section.
Remarkably, this has recently been achieved, and the NNLO calculation of the three jet cross
section [125], has enabled the NNLO calculation of hadron collider dijet event shapes [56].
This provides the perturbative accuracy necessary to match our resummed calculation to
fixed order perturbation theory. Unfortunately, performing this matching is beyond the
scope of the current paper, since these results just became available. Therefore, we settle for
illustrating the resummed singular results. Since we are not performing the full matching, for
simplicity, we do not include the linearly polarized contributions. These are straightforward
to include, and will be incorporated in phenomenological results in future work.

In figure 7 we present the resummed results at NLL, NNLL and N3LL, extending the
results of [64]. The scale uncertainty bands are constructed by varying all the scales by a
factor of 1/2 or 2 around their canonical values,

µh = Q , µj = b0/by , µs = b0/by , νj = Q , νs = b0/by , (8.1)

where subscripts h, j, s denote hard, jet, soft respectively. In order to avoid the Landau pole,
we replace by by by/

√
1 + b2y/b2max with bmax = 2GeV−1. Good perturbative convergence is

observed from NNLL to N3LL. The fact that the cross section goes negative as τ → 1 is
unphysical, and is a result of the fact that one should match to the full fixed order result. This
represents the first example of a dijet event shape resummed to this accuracy at the LHC.

9 Conclusions

Despite their interest for understanding QCD, hadron collider event shapes with final state
jets are notoriously difficult to calculate, and have so far resisted higher order resummation.
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In this paper we have derived a factorization formula for the TEEC in the back-to-back
limit, and shown that it exhibits a remarkable theoretical simplicity. This simplicity allowed
us to perform its resummation to N3LL, greatly extending the previous highest order NLL
resummation. Of particular interest, at N3LL, we first encounter a contribution from the
quadrupole anomalous dimension [104, 105], where the colors of all jets are entangled. This
represents, to our knowledge, the first time it has appeared in a physical event shape
observable. We also observe interesting contributions from linearly polarized gluons in both
beam and jet functions.

We also introduced definitions of the TEEC observable for Drell-Yan, and W/Z/γ+ jet
processes, and showed that they all fit into the same framework and can all be computed
to N3LL accuracy. The TEEC therefore provides a natural generalization of transverse
momentum observable to states with jets, making it a valuable probe of TMD dynamics
at hadron colliders.

A complete description of the TEEC description requires a number of further ingredients,
beyond the resummation of singular contributions presented here. First, we would like to
be able to match to the fixed order 2 → 3 jet amplitudes at NNLO, which have recently
become available [56, 125, 243–245]. Second, it will be important to understand the structure
of non-perturbative corrections to the TEEC in the back-to-back limit. Non-perturbative
corrections have been studied for the EEC [31, 84, 246–248], and we believe that using our
operator based definition, we can extend these studies to the TEEC.

It would be particularly interesting to measure the back-to-back limit of the TEEC pre-
cisely to study the resummation effects calculated in this paper in data. Recent measurements
of the TEEC have used jets instead of hadrons [9] to achieve increased precision. It would be
interesting to understand if this measurement could be done precisely on hadrons. On the
theory side, there has been significant progress in understand the incorporation of tracking
information [249–254] in perturbative calculations. This allows the calculation of the track
based TEEC, which perhaps could be measured more precisely.

Finally, it will be important to understand potential factorization violating effects. We
have shown that for the TEEC the contributions of the underlying event are quite small, and
are easily accounted for by adding an energy distribution that is uniform in the azimuthal
angle. We believe that perturbative factorization violation will occur at N4LL, and it would
be interesting to prove this. In particular, it will be interesting to compute the TEEC soft
function at N3LO to see if it has a quadrupole rapidity anomalous dimension, which would
provide a concrete illustration of the violation of factorization. We are also optimistic that
due to the simple perturbative structure of the TEEC observable, it can provide a playground
for understanding perturbative factorization violation, and we have highlighted how the
fact that the TEEC can be defined on a number of distinct final states may facilitate this
understanding. We intend to pursue these directions in future work.
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A Summary of perturbative ingredients

In this appendix, we summarize the perturbative ingredients entering our calculation.

A.1 Anomalous dimensions

We denote our anomalous dimensions as γ[αs, . . .], with the dots representing potential
dependence on kinematical variables. We expand them perturbatively in αs as,

γ[αs, . . .] =
∞∑

n=0

(
αs

4π

)n+1
γn[. . .] . (A.1)

The QCD beta function β[αs] = −2αs
∑

n=0(αs/(4π))n+1βn through to three loops is given
by [255, 256]

β0 =
11CA

3 − 2nf

3 ,

β1 =
34C2

A

3 − 10CAnf

3 − 2CF nf ,

β2 =
2857C2

A

54 + C2
F nf − 205CF CAnf

18 − 1415C2
Anf

54 +
11CF n2

f

9 +
79CAn2

f

54 ,

β3 =
149753

6 + 3564ζ3 −
(6508ζ3

27 + 1078361
162

)
nf +

(6472ζ3
81 + 50065

162

)
n2

f +
1093n3

f

729 .

(A.2)

The cusp anomalous dimension is given through to four loops by [107–110, 200, 257]

γcusp
0 = 4 ,

γcusp
1 = CA

(268
9 − 8ζ2

)
− 40nf

9 ,

γcusp
2 = C2

A

(
−1072ζ2

9 + 88ζ3
3 + 88ζ4 +

490
3

)
+ CAnf

(160ζ2
9 − 112ζ3

3 − 836
27

)
+ CF nf

(
32ζ3 −

110
3

)
−

16n2
f

27 ,

γcusp
3,q = 15526.5− 3878.93nf + 146.683n2

f + 2.454n3
f ,

γcusp
3,g = 13626.7− 3904.67nf + 146.683n2

f + 2.454n3
f . (A.3)

The full analytic result can be found in [110]. Note that at four loops the Casimir scaling
between quark and gluon cusp anomalous dimensions is broken. The quark and gluon
anomalous dimensions through to three loops are [258–262]

γq
0 = −3CF ,
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γq
1 = CACF

(
−11ζ2 + 26ζ3 −

961
54

)
+ C2

F

(
12ζ2 − 24ζ3 −

3
2

)
+ CF nf

(
2ζ2 +

65
27

)
,

γq
2 = −4880π2ζ3

81 + 82072ζ3
27 − 15328ζ5

9 − 2066π4

405 − 5062π2

81 − 196621
243

+
(
−7472ζ3

81 + 68π4

1215 + 4564π2

243 + 36236
729

)
nf +

(
−32ζ3

81 − 40π2

81 + 9668
2187

)
n2

f ,

γg
0 = −β0 ,

γg
1 = C2

A

(11ζ2
3 + 2ζ3 −

692
27

)
+ CAnf

(128
27 − 2ζ2

3

)
+ 2CF nf ,

γg
2 = −60π2ζ3 + 1098ζ3 − 432ζ5 −

319π4

10 + 6109π2

18 − 97186
27

+
(
460ζ3
9 + 107π4

45 − 635π2

27 + 59635
162

)
nf +

(
−56ζ3

9 + 10π2

27 − 1061
486

)
n2

f . (A.4)

The soft anomalous dimension up to three loops is [201]

γs
0 = 0 ,

γs
1 = CA

(
−808

27 + 22
3 ζ2 + 28ζ3

)
+ nf

(112
27 − 4

3ζ2

)
,

γs
2 = C2

A

(
−136781

729 + 12650
81 ζ2 +

1316
3 ζ3 − 176ζ4 − 192ζ5 −

176
3 ζ3ζ2

)
+ CAnf

(11842
729 − 2828

81 ζ2 −
728
27 ζ3 + 48ζ4

)
+ CF nf

(1711
27 − 4ζ2 −

304
9 ζ3 − 16ζ4

)
+ n2

f

(2080
729 + 40

27ζ2 −
112
27 ζ3

)
. (A.5)

The rapidity anomalous dimension up to three loops is [106]

γr
0 = 0 ,

γr
1 = CA

(
−808

27 + 28ζ3

)
+ nf

112
27 ,

γr
2 = C2

A

(
−297029

729 + 6392
81 ζ2 +

12328
27 ζ3 +

154
3 ζ4 − 192ζ5 −

176
3 ζ3ζ2

)
+ CAnf

(62626
729 − 824

81 ζ2 −
904
27 ζ3 +

20
3 ζ4

)
+ n2

f

(
−1856

729 − 32
9 ζ3

)
+ CF nf

(1711
27 − 304

9 ζ3 − 16ζ4

)
. (A.6)

A.2 Beam functions

The unpolarized TMD beam functions at one loop are given by

Iqq(z, Lb, LQ) = δ(1− z) +
(

αs

4π

) [
CF (−2LbLQ + 3Lb) δ(1− z)− P0, qq(z)Lb + 2CF (1− z)

]
+O(α2

s) ,

Iqg(z, Lb, LQ) =
(

αs

4π

) [
2z(1− z)− P0,qg(z)Lb

]
+O(α2

s) ,
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Igq(z, Lb, LQ) =
(

αs

4π

) [
− P0, gq(z)Lb + 2CF z

]
+O(α2

s) , (A.7)

Igg(z, Lb, LQ) = δ(1− z) +
(

αs

4π

) [
(−2CALbLQ + β0Lb) δ(1− z)− P0, gg(z)Lb

]
+O(α2

s) .

where P0,ij(z) are the LO splitting functions

P0,qq(z) = CF

[
3δ(1− z) + 4

[1− z]+
− 2(1 + z)

]
,

P0,qg(z) = 1− 2z + 2z2 ,

P0,gq(z) = 2CF

[
1 + (1− z)2

z

]
,

P0,gg(z) = 4CA

[
z

[1− z]+
+ 1− z

z
+ z(1− z)

]
+ β0δ(1− z) . (A.8)

The complete two-loop results using the exponential regulator used in this paper can be
found in [115, 116], and the three-loop results can be found in [138–141].

The linearly polarized beam functions at one loop are finite, and are given by

I ′
gq =

(
αs

4π

)
4CF

1− x

x
+O(α2

s) ,

I ′
gg =

(
αs

4π

)
4CA

1− x

x
+O(α2

s) . (A.9)

A detailed discussion, and results of two loops can be found in [116].

A.3 Jet functions

The TEEC jet functions are given at one loop by [77]

Jq(by, µ, ν) = Jq̄(by, µ, ν) = 1 +
(

αs

4π

)
CF (−2LbLQ + 3Lb + 4− 8ζ2) +O(α2

s) ,

Jg(by, µ, ν) = 1 +
(

αs

4π

)[
−2CALbLQ + β0Lb +

(65
18 − 8ζ2

)
CA − 5

18nf

]
+O(α2

s) . (A.10)

The complete two-loop results can be found in [115, 116], and the three-loop results
in [139, 140].

The linearly polarized gluon jet function at one loop is finite, which is given by

J ′
g(by, µ, ν) =

(
αs

4π

)(
CA

3 − Nf

3

)
+O(α2

s) , (A.11)

and results to two loops can be found in [116].
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