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Abstract
Many approaches for addressing global optimization problems typically rely on relaxations
of nonlinear constraints over specific mathematical primitives. This is restricting in applica-
tions with constraints that are implicit or consist of more general primitives. Trying to address
such limitations, Bertsimas and Ozturk (2023) proposed OCTHaGOn as a way of solving
very general global optimization problems by approximating the nonlinear constraints using
hyperplane-based decision-trees and then using those trees to construct a unifiedMIOapprox-
imation of the original problem.We provide extensions to this approach, by (i) approximating
the original problem using other MIO-representable ML models besides decision trees, such
as gradient boosted trees, multi layer perceptrons and suport vector machines (ii) proposing
adaptive sampling procedures for more accurate ML-based constraint approximations, (iii)
utilizing robust optimization to account for the uncertainty of the sample-dependent training
of the ML models, (iv) leveraging a family of relaxations to address the infeasibilities of the
final MIO approximation. We then test the enhanced framework in 81 global optimization
instances. We show improvements in solution feasibility and optimality in the majority of
instances.We also compare against BARON, showing improved optimality gaps and solution
times in more than 9 instances.

Keywords Global optimization · Machine learning · Mixed integer optimization · Robust
optimization

1 Introduction

Global optimizers aim to solve problems of the following form:

min f (x)

s.t. gi (x) ≤ 0, i ∈ Ī ,

h j (x) = 0, j ∈ J̄ ,

x ∈ Z
m × R

n−m,

(1)
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where f , gi , hi represent the objective function, the inequality constraints and the equality
constraints respectively. The objective function and constraints may lack desirable mathe-
matical properties like linearity or convexity, and the decision variables may be continuous
or integer.

Most approaches in the global optimization literature, attempt to solve problem (1) by
approximating it with more tractable optimization forms. For this purpose, they often use a
combination of gradient-basedmethods, outer approximations, relaxations andmixed integer
optimization (MIO). For instance, the popular nonlinear optimizer CONOPT uses a gradient-
based approach in its solution process. As noted in [1], CONOPT finds an initial feasible
solution using heuristics, performs a series of gradient descent iterations and then confirms
optimality via bound projections. During the gradient-based part of the algorithm, CONOPT
linearizes the constraints and performs a series of linear-search gradient-based iterations,
while preserving feasibility at each step.

A different approach is the one detailed by [2], which uses outer approximations. This
approach simplifies the problem by approximating the constraints via linear and nonlinear
cuts, while preserving the initial feasible set of the problem. Such approach can only be
used with constraints that obey a particular mathematical structure, such as linearity of
integer variables and convexity of the nonlinear functions [3], or concavity and bilinearity
[4], where the functions involved are amenable to efficient outer approximations. Although
such approaches are effective in some scenarios, they haven’t found extensive use as they
they are restricted to certain classes of problems.

Another approach is the one used by the well-established commercial optimizer BARON,
which combines MIO with convex relaxations and outer approximations. As detailed in [5],
BARONuses a branch-and-reducemethod,which partitions the domain of the constraints and
objective into subdomains, and attempts to bound the decision variables in each subdomain
depending on the mathematical form of the constraints. This approach produces a branch-
and-bound tree that offers guarantees of global optimality, which is analogous to the branch-
and-bound process used for solvingMIO problems. A similar approach is used by the popular
solver ANTIGONE. As described in [6], ANTIGONE first reformulates the problem, detects
specific mathematical structure in the constraints and then uses convex underestimators in
conjunction with a branch-and-cut method in order to recursively find the optimal solution.

Although all such approaches are very effective in dealing with certain types of global
optimization problems, they each have their own weaknesses. For instance, gradient-based
approaches depend on good initial feasible solutions and cannot easily handle integer vari-
ables. Also, approaches that leverage relaxations and outer approximations are restricted
to specific types of nonlinearities, thus being ineffective against more general problems.
Finally, approaches that use branching or MIO-based methods inevitably suffer from the
curse of dimensionality due to their combinatorial nature.

At the same time, for reasons of efficiency, many global optimizers only allow constraints
that use a subset of all the mathematical primitives. For instance, the optimizer BARON can
only handle functions that involve exp(x), ln(x), xa and bx where a and b reals. However,
real-world problems may contain constraints with a much richer set of primitives, such
as trigonometric and piecewise-discontinuous functions, where it is not always possible
to reduce the problem to a form compatible with the global optimizer. At the same time,
such optimizers are generally ineffective in cases where the constraints lack an analytical
representation.

Motivated by all those scenarios, [7] proposed OCTHaGOn, a global optimization frame-
work that attempts to solve very general global optimization problems by combiningMachine
Learning with mixed integer optimization (MIO). The framework can be used in problems
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that involve many types of constraints, such as convex, non-convex, and constraints that
involve very general mathematical primitives. The main requirements of the method is that
the decision variables involved in nonlinear constraints are bounded and that the nonlinear
constraints can be evaluated quickly. Under these assumptions, OCTHaGOn first samples
the nonlinear constraints for feasibility and trains a hyperplane-based decision tree (OCT-
H, [8, 9]) on those samples. It does that for every non-linear constraint and then uses the
MIO-representation of the resulting decision trees to construct an MIO approximation of
the original problem. In then solves approximating MIO and uses a local-search projected
gradient descent method to improve the solution in terms of both feasibility and optimality.

Despite its generality, the OCTHaGOn framework sometimes yields infeasible or subopti-
mal solutions due to being approximate in nature. Hence, in this paper, we provide extensions
to OCTHaGOn in order to improve both feasibility and optimality of the generated solutions.
We enhance the framework by leveraging adaptive sampling, robust optimization, constraint
relaxations and a variety of MI-representable ML models to create better approximations of
the original problem. We test the enhanced framework in a number of Global Optimization
benchmarks, and we show improved optimality gaps and solution times in the majority of test
instances. We also compare against the commercial optimizer BARON, showing improve-
ments in a number of instances.

1.1 Machine learning in optimization

The interplay between machine learning (ML) and mathematical optimization has been an
active area recently. [10] provides a survey of different optimization methods from an ML
standpoint. In another survey ([11]), the authors show how fundamental ML tasks, such as
classification, regression and clustering can be formulated as optimization problems. Addi-
tionally, a lot of emphasis has been placed on using ML for aiding the formulation and
solution of optimization problems. For instance, ML has been used to assist with the solution
of difficult and large-scale optimization formulations (e.g. [12, 13]), and it has also been used
to speed-up tree search search [14] and guide branching in MIP problems [15].

Apart from the general interplay of ML and optimization, an area that has garnered a lot
of interest is the incorporation of ML models as surrogates into an optimization problem.
Namely, [16] explores various formulations for representing linear model decision trees in an
optimization context, [17] provides efficient formulations for the MIO-representation of tree
ensembles, and [18] provides strong formulations for representing ReLU neural networks.
Open-source frameworks have also been proposed for representing ML models using MIO
formulations, including optimization with constraint learning (OptiCL, [19]) and optimiza-
tion and machine learning toolkit (OMLT, [20]).

The idea of usingmodels as optimization surrogates has also been applied to some extent in
the context of global optimization. The solver ARGONAUT ([21]) uses constrained sampling
techniques to build surrogate representations of unknown constraints, which are then globally
optimized. Although this approach bears some resemblance to ours, we employ very different
sampling and solution techniques, we use standardML surrogatemodels while ARGONAUT
uses analytical surrogate functions (e.g. quadratic, signomial), and we also end up with a
linear MIO representation, while ARGONAUT constructs a nonlinear MIO approximation.
Another approach with similar differences to ours is the ALAMO framework ([22]), which
attempts to learn algebraic functions from data by solving nonlinear MIO problems.

Another framework that uses data-driven surrogates to solve global optimization problems
is OCTHaGOn [7]. OCTHaGOn samples the non-linear constraints and learns the non-
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linearities using MIO representable decision trees with hyperplanes (OCT-Hs/ORTs, [8, 9]).
The trained decision trees are embedded as constraints into a mixed integer optimization
(MIO) formulation that approximates the original problem. After a solution to the MIO is
obtained, a local repair is performed to address for infeasibility and suboptimality which
stem from the approximation errors of the decision trees. In our work, we extend this method
and provide significant improvements as outlined in Sect. 1.2.

1.2 Contributions

Our approach for solving global optimization problems is an improvement of OCTHaGOn
[7] with the following key differences and enhancements:

(i) Different ML models: OCTHaGOn only uses hyperplane-based decision trees (OCT-
H) as constraint approximators, but we extend the approach to other types of MIO-
representable MLmodels, such as support vector machines, gradient boosted trees, and
multi-layer perceptrons. We also employ a method for selecting which of those models
to use for which constraint.

(ii) Adaptive sampling: We propose an adaptive sampling procedure that helps generate
high-quality samples of the nonlinear constraints for more accurate constraint approxi-
mations. We then demonstrate that this method is very effective in reducing feasibility
gaps of the obtained solutions.

(iii) MIO relaxations: The ML-based MIO approximation of the original problem can
sometimes be infeasible. To eliminate such infeasibilities, we relax constraints of the
resulting MIO in a way that makes the MIO approximation feasible if the original
problem is also feasible.

(iv) Robust optimization:We utilize robust optimization to account for the uncertainty of
the sample-dependent training of the MLmodels. In particular, we attempt to model the
uncertainty in the trained parameters of the ML approximators, and we then use robust
optimization to correct for this uncertainty.

We test the framework on 81 global optimization instances, with 77 of those being part
the standard benchmarking library MINLPLib. We show that our enhancements reduce the
optimality gaps of OCTHaGOn in 36 instances, while increasing the gap in only 5. We also
show that in 9 out of the 81 instances, the enhanced framework provides better or faster
solutions than BARON.

Overall, we demonstrate that despite its heuristic nature, the enhanced framework, is
a promising method for finding globally optimal solutions in a variety of instances. The
framework can be applied in problems with very general convex and non-convex constraints,
which may include a wide range of mathematical primitives Hence, due to its generality,
the method can be used in problems that are incompatible with traditional global optimizers
such as BARON and ANTIGONE.

2 OCTHaGOn

Since our method is an extension of OCTHaGOn, we will use this section to present the
steps involved in the OCTHaGOn framework. OCTHaGOn [7] attempts to solve Global
Optimization problems using a combination of ML and MIO. It relies on creating decision-
tree based approximations of the nonlinear constraints, embedding those approximations in
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an approximatingMIO, and then solving and improving the solution resulting from that MIO
to obtain a high-quality solution of the original problem.

Due to its nature, OCTHaGOn can also be used to solve problems with very general
constraints. The only requirement is that the user of the framework supplies bounds for the
variables involved in the nonlinear constraints. If such bounds are not provided, the quality
of the solution returned by the framework can be adversely affected.

2.1 Algorithmic process

OCTHaGOn addresses problems of the following form:

min f (x)

s.t. gi (x) ≤ 0, i ∈ Ī ,

h j (x) = 0, j ∈ J̄ ,

x ∈ Z
m × R

n−m,

(2)

where the functions f , gi , h j can be non-convex.
OCTHaGOn attempts to create and solve an MIO approximation of Problem (2) in the

following steps:

1. Standard form problem generation: In order to create the MIO approximation of
problem (2), we first separate the linear from the non-linear constraints. We also find the
constraints that define explicit bounds [xk, xk] for every optimization variable xk that is
involved in a nonlinear constraint. If a variable xk doesn’t have an explicit bound (either
from above or below), we attempt to compute that bound by minimizing/maximizing
that variable subject to the linear constraints of (2). Note that having explicit variable
bounds is essential for the step 2 of the methodology. Then, after determining the variable
bounds, we rewrite our original problem into the following form:

min
x

f (x)

s.t. gi (x) ≤ 0, i ∈ I ,

h j (x) = 0, j ∈ J ,

Ax ≥ b, Cx = d,

xk ∈ [xk, xk], k ∈ [n].

(3)

The linear constraints of this resulting formulation are directly passed to theMIO approx-
imation, while the non-linear ones are approximated using steps 2–6.

2. Sample and evaluate nonlinear constraints: For each nonlinear constraint gi (x) ≤ 0,
we generate samples of the form Di = {(x̃k, ỹk)}nk=1 where ỹk = 1{g(x̃k) ≤ 0} and 1{·}
is the indicator function. In order to chooses the points x̃1, . . . , x̃k where the samples
are evaluated, the framework uses the following sampling methods: boundary sampling,
latin hypercube sampling (LH sampling) and kNN Quasi-Newton sampling. Boundary
sampling samples the corners of the hyper-rectangle that is formed by the bounds of
the decision variables (i.e. for each decision variable x j of the constraint, we have that
x j ∈ [¯x j , x̄ j ] after computing bounds in step 1). LH sampling, due to its space-filling
characteristics, is then used to obtain constraint samples from the interior of the decision-
variable hype-rectangle (i.e. each decision variable x j is sampled in the range [¯x j , x̄ j ]).Finally, kNN Quasi-Newton sampling is proposed by the authors as a way to sample
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the boundaries of the constraints, given the already generated samples from the previous
steps.

3. Train decision tree: Hyperplane based decision trees (OCT-H, [8, 9]) are trained on the
datasets Di to approximate the feasibility space of the nonlinear constraint gi (x) ≤ 0.
This yields decision tree aproximators c̄i (x) such that c̄i (x) � 1{gi (x) ≤ 0}. If we have
a non-linear objective, then this objective is approximated with regression trees (ORT-H,
[8, 9]) instead of classification trees.

4. Generate mixed-integer (MIO) approximation: The trained decision trees c̄i (x) are
transformed into an efficient MIO representation by extracting the corresponding hyper-
plane splits and then using disjunction formulations. The resulting representations are
then embedded as constraints of the form c̄i (x) = 1 into the approximation MIO of
problem (2).

5. Solve MIO approximation: The MIO approximation of problem (2) is solved using
commercial solvers, such as IBM CPLEX and Gurobi.

6. Check and improve solution: The MIO is just an approximation of the original global
optimization problem, so the solution of step 5 can be near-optimal and near-feasible.
In order to account for this, the framework first measures the feasibility of the solution
with respect to the nonlinear constraints, then it computes the gradient of the nonlinear
objective and constraints (i.e. using automatic differentiation), and finally it performs a
sequence of projected gradient descent steps to help improve feasibility and optimality
of the solution.

The authors of OCTHaGOn test the framework against various benchmarks of the MINLP
library, and demonstrate that in many cases, it works well compared to traditional global
optimizers such as CONOPT, IPOPT and BARON.

3 Enhancements

In this section, we propose a variety of improvements on top of OCTHaGOn which improve
the quality of the solutions generated by the framework. We first provide a brief outline of
the solutions steps of the enhanced framework. For each step, we also indicate whether the
step is the same as OCTHaGOn, whether it is an enhanced version of an OCTHaGOn step,
or whether it is a new step. The outline of the different steps are shown below:

1. Standard form problem generation: We separate the linear from the nonlinear con-
straints and attempt to compute bounds for the variables involved in the nonlinear
constraints. Then, we initialize the MIO approximation of the original problem with
the linear and bound constraints. The non-linear constraints will be approximated and
included in this MIO approximation in steps 2–4.

2. Sample and evaluate nonlinear constraints (enhanced step):We sample the nonlinear
constraints in the following 4 steps: (i) Boundary sampling, (ii) latin hypercube sampling,
(iii) KNN Quasi-Newton sampling and (iv) OCT-based adaptive sampling. The first 3
sampling steps are the same as the ones used in OCTHaGOn and are used to obtain
an initial set of samples. Then, we use OCT-based adaptive sampling, which is part of
our enhancements, to adaptively obtain high-quality samples in areas where the nonlin-
ear constraints are not approximated well by the ML learners (e.g. near the constraint
boundaries).

3. ML model training (enhanced step): For each nonlinear constraint, we train a series
of MIO-representable ML models (namely OCT-Hs, MLPs, SVMs and GBMs) on the
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samples generated during step 2. We measure the accuracy of those models on a test
set, and for each nonlinear constraint, we pick the model that demonstrates the best
predictive performance. We then use the model for approximating the corresponding
nonlinear constraint. We follow a similar process to approximate the non-linear objective
(if such objective is present), but in this case, we use regression instead of classification
models. The enhancement in this step is the training of multiple ML models (MLPs,
SVMs, GBMs), besides the decision trees (OCT-Hs) which are the only models used by
OCTHaGOn.

4. Generate MIO approximation (enhanced step): For each one of the nonlinear con-
straints, we take the corresponding ML approximator from the last step and we represent
it using an MIO formulation. Then, we embed all the MIO approximations into a unified
MI formulation. In this formulation, we also include the linear constraints (and objec-
tives) of the original problem. The enhancement in this step is that besides the decision
trees (OCT-Hs) used by OCTHaGOn, we also formulate and represent the additional ML
models (MLPs, SVMs and GBMs) using a MIO formulation.

5. Introduce robustness (new step): In order to account for the uncertainty in the trained
parameters of the ML constraint approximators, we utilize Robust Optimization. We
assume that the trained parameters of SVMs, GBMs and OCT-Hs lie in p-norm uncer-
tainty sets, and we modify the MIO representation of the learners by considering the
corresponding robust counterparts. The level of robustness is controlled by the parame-
ter ρ, where a value of ρ = 0 means that we don’t account for robustness, while higher
values of ρ lead to more robust and more conservative solutions.

6. Constraint relaxation (new step): In certain cases, the MIO approximation of the orig-
inal problem is infeasible, due to the inexact nature of the constraint approximators.
To account for this issue, we relax the MIO constraints, while introducing a relaxation
penalty into the objective.

7. Solve MIO approximation: We solve the MIO approximation of the original problem
using commercial solvers, such as IBM CPLEX and Gurobi.

8. Improve solution (enhanced step): Since the MIO solution can be near-optimal or
near-feasible, we perform a series of projected gradient descent iterations in order to
help improve feasibility and optimality. In this PGD step, we use the same procedure as
in OCTHaGOn, but we also use momentum in order to reduce the chances of landing in
local optima.

In the next parts of Sect. 3, we will analyze and justify each of the proposed enhancements
we made.

3.1 Enhancement 1: MLmodel training

One of the key aspects of OCTHaGOn framework is the approximation of nonlin-
ear constraints using MIO-representable ML models. For this, OCTHaGOn only uses
hyperplane-based decision trees (OCT-H and ORT-H, [8, 9]) which are improved gener-
alizations of classification and regression trees (CARTs). However, there are many more
MIO-representable ML models. In this work, besides decision trees, we also utilize support
vectors machines (SVM), gradient boosting machines (GBMs) and multi-layer perceptrons
withReLUactivations (MLPs), all ofwhich are representable using a linearMIO formulation.
The way we train and embed the different models into an MIO formulation is described
below:
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• Support vector machines: Support vector machines are ML models that use a suitable
hyperplane to make predictions, either for classification [23] or regression [24]. For the
purpose of thiswork,we are only considering the case of linear SVMsandwe are not using
any type of kernel, since our goal is to generate linear and tractable MIO approximations
of the constraints. In fact, after training a linear SVM,we can easily embed its predictions
into a linear MIO by adding the following linear constraint:

ySV M = β0 + xTβ, (4)

where β, β0 are the trained model parameters of the SVM.
More information about training and embedding the SVM models can be found in
“Appendix A.1”.

• Decision trees:Decision trees (DTs) are ML models that partition the observation space
into disjoint leaves after a sequence of splits. Due to their inherent interpretability and
their ability tomodel non-linear relationships in data, they have been used a lot in practice.
[25] first introduced classification and regression trees (CART), a framework that greedily
partitions the observation space using parallel splits (i.e. splitting by 1 feature at a time).
Ever since, decision tree models have been revised and extended.
In this work, we use a generalized version of DTs which also allow for hyperplane splits
instead of just parallel splits (OCT-H, [8]). In this setting, each intermediate node of the
tree is associated with a split of the form aTi x ≤ bi with ai ∈ R

n . Training of the the
hyperplane-based DTs is done the Interpretable AI software [26]. Then, following [7],
we can represent the output of the generalized DT with the following big-M formulation:

|L|∑

i=1

zi pi = yDT ,

|L|∑

i=1

zi = 1,

aTj x ≤ b j + M(1 − zi ), ∀i ∈ L, j ∈ L(Li ),

aTj x ≥ b j − M(1 − zi ) + ε, ∀i ∈ L, j ∈ R(Li ).

(5)

Here, L is the set of leaves, pi is the prediction at leaf i , L(Li ) is the set of intermediate
nodes that have leaf i on their left subtree and R(Li ) is the set of intermediate nodes that
have leaf i on their right subtree.
More Information about representing and embedding DTs using anMIO formulation can
be found in “Appendix A.2”.

• Gradient boosting machines: Gradient boosted machines (GBM) can be represented
as ensembles of base-learners, where each learner is trained sequentially to correct the
mistakes of the previous learner. After training, if we use yi to denote the prediction of
the i-th learner, then the output of the GBM model can be represented as:

y =
n∑

i=1

ai yi , (6)

where ai are weights associated with each learner. In theory, many different types of
models can be used as based-learners for GBM, but we will limit our focus to decision
trees, which are used most often in practice. There are multiple ways we can represent a
trained GBM ensemble using an MIO formulation. The simplest way is to embed each
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tree independently using Formulation (5) and then link the tree predictions using Eq. (6).
This method is used in [19] and has the problem that it uses big-Ms and ε constants,
which may lead to weaker formulations with numerical instabilities.
For this reason, we instead use the ensemble formulation presented in [17], which avoids
these problems. Then, to connect this formulation with the decision variables x of the
original problem, we use the linking constraints presented in [27]. The detailed formu-
lation can be found in “Appendix A.3”.

• Neural networks:Neural networks have been shown to be very powerful models both on
classification and regression tasks. Although not all types of Neural Networks are MIO
representable, some of them are. For the purpose of this work, we will limit our focus to
multi-layer perceptrons (MLP) with rectified linear unit activations (ReLU). This class
of models are MIO-representable through a linear big-M formulation [28].
In our work, we use a standard big-M formulation shown in [19]. The exact formulation
can be found in “Appendix (A.4)”. Better formulations for representing MLPs have also
been proposed.Most notably, the authors on [18] propose an idealMIO formulationwith-
out continuous auxiliary variables. However, we opt for the simpler big-M formulation
since its significantly easier to embed into our framework without additional solution
steps. At the same time, in the types of global-optimization instances we test our frame-
work, the bottleneck is sampling and model training and not MIO solution time. Thus,
the choice of formulation does not have a significant effect in the overall performance of
the framework.

Based on the above, we can use multipleMIO-representable models to approximate a nonlin-
ear objective or constraint. Choosing which model type to use for each nonlinear constraint
(or objective) is an important task, since this choice heavily determines the quality of the
resulting MIO approximation. Hence, following [19], we employ a cross-validation pro-
cedure to determine the best model type for each nonlinear function. For each nonlinear
objective/constraint, we train a model of each type, and we use R2/accuracy to select the best
model that will be used for the approximation. Then, we construct a MIO approximation of
the following form:

min
x∈Rn

yML_REGR(x)

s.t. y(i)
ML(x) ≥ ai , i ∈ I ,

Cx ≤ d.

(7)

Here yML_REGR(x) is the MIO-representation of the regressor that best approximates the
objective. Then, y(i)

ML(x) is the MIO-representation of the classifier that best approximates
the constraint gi (x) ≤ 0 and ai is a fixed threshold that depends on the classifier model type.
For instance, for MLPs we have that y(i)

ML(x) = yMLP and ai = 0, and for GBMs we have

y(i)
ML(x) = yGBM and ai = 0.5.

3.2 Enhancement 2: sampling

In order to have good approximations of the nonlinear constraints, we need high quality
samples. The samples need to capture the non-linear and non-convex feasible regions of the
constraints, which means that a static sampling procedure (such as uniform sampling) is not
enough. In particular, the sample-generation process should not be agnostic to the sampled
constraint, but it should instead adapt to the landscape of the function we are attempting to
sample.

123



Journal of Global Optimization

The sampling procedure of OCTHaGOn involves three steps: Boundary Sampling, LH
sampling and kNN Quasi-Newton sampling. Both Boundary Sampling and LH sampling
are static sampling procedures, since they sample all functions in the same manner, without
taking into account the values of those functions to determine where to sample. On the other
hand, kNN Quasi-Newton sampling is an adaptive sampling procedure which attempts to
sample the constraints on the feasibility boundary.

For our approach, we initially use the same three steps as OCTHaGOn in order to generate
a first set of samples. Then, we propose an adaptive sampling method in order to generate
even more fine-grained samples for the constraints. Our method is called OCT sampling and
attempts to iteratively resample the constraint in areas that the learners have high uncertainty
in approximating. Those can be areas where we don’t have many samples but we have
nonlinearities andmixed-feasibility regions, making it harder for the learners to approximate.
To detect such areas, we train OCT-H learners in different subsets of samples, and we find
regions where there is a high prediction disagreement between the trained learners.
A brief outline of the method is decribed below (detailed algorithm in “Appendix A.5)”:

1. We start with an initial set of samples generated using Boundary Sampling, LH sampling
and kNN Quasi-Newton sampling.

2. We train different OCT-H trees on different subsets/perturbations of the current samples.
3. We find polyhedral areas where there is high prediction disagreement between the trees.

These areas are intersections of tree leaves.
4. We resample those polyhedral areas using hit-and-run sampling [29].
5. We repeat the process from Step 2 to obtain even more samples.

An example of implementing OCT Sampling is shown in Fig. 1. By applying Steps 1–3 in
this example, our method first finds the region where the OCT-H trees have high prediction
disagreement. This region is a union of polyhedra and is shown in red in Fig. 1a. Then, the
method samples the region using hit-and-run sampling as shown in Fig. 1b.

We notice that in this example, the uncertain region has a number of properties. First, there
are very few samples inside the region. Secondly, the region is located on a mixed-feasibility
area of the constraint (i.e. very close to the decision boundary). Thirdly, the region captures
the most nonlinear part of the constraint. All of those properties make the region ideal for
sampling, since the lack of samples, the mixed feasibility and the nonlinearity in this area
means that region is hard to approximate by the learners.

We also notice that in this example, there are multiple regions that satisfy one of those
properties, but very few that satisfy all three. For instance, we can easily see regions that
are not well sampled, but those regions are not chosen since they are on the interior of the
constraint (and thus easier to predict correctly by all the OCT models). There are also other
regions on the feasibility boundary which are not chosen since they are well sampled (and
thus the OCT models agree on their predictions in those regions).

3.3 Enhancement 3: relaxations

As we described in previous sections, in order to solve global Optimization Problems, we
first create aMIO approximation of the original problem and we then optimize over this MIO
in order to receive an approximate solution x∗. Then, we perform a local-search PGD step
in order to repair the solution x∗ in terms of both feasibility and optimality.

However, due to the nature of this approach, it may occur that the MIO approximation
is not feasible, even if the original problem is feasible. For instance, if a constraint is very
difficult to satisfy, then we may have very limited feasible samples of that constraint. Thus
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Fig. 1 Behavior of OCT sampling on a nonlinear constraint. OCT Sampling first detects the regions of high
prediction uncertainty (shown in red) and then samples the region using hit-and-run sampling. (Color figure
online)

the learner may approximate the constraint as infeasible almost everywhere, leading to an
infeasible MIO.

To mitigate this issue, we relax the approximating MIO so that it will always have a
feasible solution, provided that the original problem is also feasible. In particular, given the
approximation MIO of Eq. (7), we relax it as follows:

min
x∈Rn ,u∈R yML_REGR(x) + λ

∑

i∈I
ui

s.t. y(i)
ML(x) + ui ≥ ai , i ∈ I ,

Cx ≤ d,

ui ≥ 0, i ∈ I ,

(8)

where ui are the relaxation variables and λ is a parameter that determines how much to
penalize relaxed constraints. By including this relaxation variable in the constraints, we are
ensuring that the MIO approximate constraints won’t introduce any infeasibilities. Also, the
more we increase the penalty λ, the more the MIO solver will prioritize solutions with small
values of the variable ui and thus less relaxed constraints will be. However, we also have to
note that we first attempt to solve the problem without relaxations, and if the approximating
MIO is infeasible, then we resolve using the described relaxation technique.

3.4 Enhancement 4: robustness

When using ML models to approximate nonlinear functions through samples, there can be a
great deal of uncertainty in the learnedmodel parameters. In particular, training on a different
set of samples can lead to different model parameters and thus different approximations of
the nonlinear function. To partially account for this issue, we will use Robust Optimization
when embedding the ML learners into the final MIO.

Robust optimization (RO) is a methodology for dealing with uncertainty in the data of an
optimization problem [30]. In our approach, however, wewill use RO to deal with uncertainty
not in the model data, but in the trained model parameters. For all types of models, we chose
to model uncertainty using the p-norm uncertainty set Uρ

p = {x ∈ R
n : ||x||p ≤ ρ}. The

precise way of defining the uncertainty is slightly different across the learners, so we will
describe each of the different models separately:
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• Support vector machines: In the case of SVMs, we attempt to model the fact that after
training the SVM, there is uncertainty in the values of the coefficient vector β. For our
use-case, we will choose to model β using multiplicative uncertainty, in order to scale
the coefficients of β proportionally to their nominal values. More concretely, if an SVM
is used to approximate a constraint g(x) ≤ 0 and β̄0 and β̄ are the nominal parameters
of the SVM after training, then we approximate g(x) ≤ 0 with the uncertain constraint:

β̄0 + (β̄ � (1 + z))T x ≥ 0, ∀z ∈ Uρ
p , (9)

where � denotes the element-wise vector product and 1 is the vector of ones. Then, by
using the tools presented in [31], this constraint can be written equivalently as:

β̄0 + β̄T x − ρ||β̄ � x||q ≥ 0, (10)

where || · ||q is the dual norm of || · ||p (i.e. 1
q + 1

p = 1).
• Decision trees: gradient boosted machines In the case of decision trees, we will model

the uncertainty in the coefficient vectors a j of the hyperplane splits. As with SVMs, we
will again use multiplicative uncertainty to scale the coefficients proportionately to their
nominal values. In this case, multiplicative uncertainty is crucial, as it allows us to keep
the zero elements of the coefficient vectors constant. For instance, if the original decision
tree uses parallel splits, we only want to consider uncertain vectors a j that represent
parallel splits, an effect which will be captured by using multiplicative uncertainty.
More formally, if we want to approximate the constraint g(x) ≤ 0 with a decision tree
and ā j is the coefficient vector of the j node of the tree after training, then the splitting
constraints of Eq. (5) will take the following form after accounting for uncertainty:

(ā j � (1 + u))T x ≤ b j + M(1 − zi ), ∀u ∈ Uρ
p , ∀i ∈ L, j ∈ L(Li ),

(ā j � (1 + u))T x ≥ b j − M(1 − zi ) + ε, ∀u ∈ Uρ
p , ∀i ∈ L, j ∈ R(Li ),

(11)

Again, by using the tools in [31], we can write the above constraints equivalently as:

āTj x + ρ||ā j � x||q ≤ b j + M(1 − zi ), ∀i ∈ L, j ∈ L(Li ),

āTj x − ρ||ā j � x||q ≥ b j − M(1 − zi ) + ε, ∀i ∈ L, j ∈ R(Li ),
(12)

where || · ||q is the dual norm of || · ||p .

4 An illustrative example

To better illustrate the different steps of the enhanced optimizationmethodology, we consider
the following non-convex problem:

min
x∈Rn

f (x) = −x2

s.t. g1(x) = −0.43 ln(x1 − 0.5) − 1.1 − x1 + x2 ≤ 0,

g2(x) = −x2 + 0.33 ln(x1 − 0.4) + 1.2 − 0.2x1 ≤ 0,

g3(x) = −x2 + 1.1x1 + 0.3 ≤ 0,

g4(x) = −x2 − 1.5x1 + 2.6 ≤ 0,

0.51 ≤ x1 ≤ 1.5,

0.3 ≤ x2 ≤ 1.6.

(13)
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To facilitate understanding of the method, we chose a problem with 2 variables and a linear
objective, although the methodology also supports non-linear and non-convex objectives.

4.1 Standard form generation

The first step is to separate the linear from the non-linear constraints and bring the problem
into the standard form described in Eq. (3). After doing that, Problem (13) becomes:

min f (x) = −x2 Objective
s.t. g1(x) = −0.43 ln(x1 − 0.5) − 1.1 − x1 + x2 ≤ 0, Nonlinear

g2(x) = −x2 + 0.33 ln(x1 − 0.4) + 1.2 − 0.2x1 ≤ 0, constraints
g3(x) = −x2 + 1.1x1 + 0.3 ≤ 0, Linear

g4(x) = −x2 − 1.5x1 + 2.6 ≤ 0, constraints
0.51 ≤ x1 ≤ 1.5, Variables

0.3 ≤ x2 ≤ 1.6. and bounds

The linear constraints and the linear objective are directly passed to the MIO model. The
nonlinear constraints involving g1 and g2 will be approximated in the next steps of the
methodology. However, before proceeding into the next steps, we make sure that all variables
of the nonlinear constraints are bounded. If they aren’t, then we attempt to compute bounds
the way that is described in Sect. 2

4.2 Sampling of nonlinear constraints

In this step, we sample the nonlinear constraints g1(x) ≤ 0 and g2(x) ≤ 0. The goal is to
obtain samples {(x̃k,1{g1(x̃k) ≤ 0})}Nk=1 and {(x̃k,1{g2(x̃k) ≤ 0})}Nk=1 that will be used to
train ML models for approximating the nonlinear constraints g1(x) ≤ 0 and g2(x) ≤ 0.

The sampling is performed in the following steps: (i) boundary sampling, (ii) latin hyper-
cube sampling, (iii) kNN quasi-newton sampling and (iv) OCT-based adaptive sampling. The
first 3 sampling steps are the same as the ones used in OCTHaGOn and are described in detail
in Sect. 2. Then, sampling step (iv), which is part of our enhancements, is used to adaptively
obtain more refined samples in areas where the nonlinear constraints are not approximated
well by the ML learners (e.g. near the feasibility boundaries of the constraint). This step is
described in detail in Sect. 3.2.

After applying those sampling steps, we can see the samples obtained for the constraints
g1(x) ≤ 0 and g2(x) ≤ 0 in the Figs. 2a and 2b respectively. By examining the samples and
the orange feasibility regions of the constraints, we can see that the adaptive sampling proce-
dures we used has helped generate samples near the boundaries of the constraint feasibility
regions, which is essential for good ML approximations.

4.3 Model training

Given the samples we obtained from the previous step, we train a number of learners in order
to approximate the nonlinear constraints g1(x) ≤ 0 and g2(x) ≤ 0. The learners are trained
on the datasets D1 = {(x̃k,1{g1(x̃k) ≤ 0})}Nk=1 and D2 = {(x̃k,1{g2(x̃k) ≤ 0})}Nk=1 that
contain the samples for the constraints g1(x) ≤ 0 and g2(x) ≤ 0 respectively. For each one
of those datasets, we separated the samples into a training and a validation set. We then used
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Fig. 2 Feasible region and samples of the nonlinear constraints

Fig. 3 ML approximation of the nonlinear constraints

the training sets to train a multi-layer perceptron (MLP), a support vector machine (SVM),
a gradient boosted machine (GBM) and Hyperplane-based decision tree (OCT). Then, we
measured the accuracy of those models in the respective validation sets and for each of the
2 constraints, we picked the learner that demonstrated the highest accuracy.

In the case of the constraint g1(x) ≤ 0, the best learner was the MLP with an accuracy of
0.97, whereas in the case of the constraint g2(x) ≤ 0, the best learner was the OCT with an
accuracy of 0.99. The ML approximation for the constraints involving g1 and g2 are shown
in Figs. 3a and 3b respectively.

4.4 MIO representation

In this step, we represent the trained learners using an MIO formulation as described in
Sect. 3.1. In particular, the OCT approximator of the constraint g2(x) ≤ 0 can be shown in
Fig. 4 in the form of a hyperplane-based decision tree. The tree consists of 3 non-terminal
and 4 terminal (leaf) nodes. The leaf nodes that correspond to feasible regions are the ones
shown in blue.

In order to represent this decision tree using an MIO formulation, we introduce 4 binary
auxiliary variables (z1, z2, z3, z4), 1 for each leaf. Each auxiliary variable becomes active if
and only if x lies in the corresponding leaf. Then, we use a big-M formulation to encode the
output of the Decision Tree, as shown next to Fig. 4. Note that in the resulting formulation,
yOCT is the output of the decision tree and ε is a small positive constant used to model
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Fig. 4 OCT approximator of g2(x) ≤ 0

Fig. 5 MLP approximator of g1(x) ≤ 0

strict inequalities. Then, given the MIO representation of the decision tree of Fig. 4, we can
approximate the constraint g2(x) ≤ 0 with the constraint yOCT ≥ 0.5.

Next, the trained MLP that approximates the constraint g1(x) ≤ 0 is shown in Fig. 5. This
MLP consists of 2 input nodes, 3 hidden nodes with ReLU activations and 2 output nodes.
It was trained using Negative Log Likelihood loss in a binary classification task, so that it
predicts that the constraint is feasible whenever o2 ≥ o1 (i.e. o1 and o2 are the output nodes
shown in Fig. 5). Note here that although we have a binary classification task, we have used 2
output nodes instead of 1, where an output pair (o1, o2) = (1, 0) corresponds to an infeasible
input x, while an output pair (o1, o2) = (0, 1) corresponds to a feasible input x.

In order to model the MLP using MIO, we first use a vector of continuous variables ai to
represent the input of the i-th layer of theMLP (i.e. the input of the first hidden layer is denoted
as a2, the input of the next layer as a3 etc). Then, for the hidden layer, we additionally use a
vector of binary variables v2 to model the ReLU activation. The resulting big-M formulation
is described in Eq. (14), whereW1,W2 are theweightmatrices and b1, b2 are the biasmatrices
of the trained MLP. Using this notation, the constraint g1(x) ≤ 0 can be approximated with
the constraint yMLP ≥ 0, where yMLP is given in Eq. (14).

Then, we combine the MIO formulations of the OCT and the MLP into a unified MIO
formulation. In this formulation, we also include the linear constraints of the original prob-
lem, and this way we end up with an MIO approximation of the problem. In Fig. 6 we can
see the resulting MIO approximation of the feasible space against the actual feasible space
of the original problem. We can see that the non-convexity of the feasible region is cap-
tured by the MIO formulation, and thus by optimizing over this MIO approximation, we are
(approximately) solving the original problem.
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Fig. 6 MIO approximation of feasible space

4.5 Robustness

Constructing a data-drivenMIO aproximation of the original problem is not always accurate,
in part due to the uncertainty introduced by the sampling process. This uncertainty be partially
accounted for by introducing a level of robustness into the MIO formulation. For example,
following the steps we described in Sect. 3.4, we can rewrite the MIO representation of the
OCT-H of Fig. 4 in the following robust way:

yOCT = z1 + z2 + z3,

1 = z1 + z2 + z3 + z4,

x2 − ρ||x2||q ≥ 0.9319 − M(1 − z1),

x2 + ρ||x2||q ≤ 0.9319 + M(1 − z2) − ε,

0.1712x1 − 0.06246x2 + ρ||0.1712x1 − 0.06246x2||q ≤ 0.06421 + M(1 − z2) − ε,

x2 + ρ||x2||q ≤ 0.9319 + M(1 − z3) − ε,

0.1712x1 − 0.06246x2 − ρ||0.1712x1 − 0.06246x2||q ≥ 0.06421 − M(1 − z3),

0.4823x1 − 0.4313x2 + ρ||0.4823x1 − 0.4313x2||q ≤ 0.04902 + M(1 − z3) − ε,

x2 + ρ||x2||q ≤ 0.9319 + M(1 − z4) − ε,

0.1712x1 − 0.06246x2 − ρ||0.1712x1 − 0.06246x2||q ≥ 0.06421 − M(1 − z4),

0.4823x1 − 0.4313x2 − ρ||0.4823x1 − 0.4313x2||q ≥ 0.04902 + M(1 − z4).
(15)

Next, depending on the value of q (which is determined by the type of uncertainty we are
protecting against), we reformulate the norm operators in a tractable way. For instance, if we
want to protect against L1 or L∞ uncertainty sets, then q takes the value∞ and 1 respectively,
and the robust MIO can be easily reformulated using linear constraints. On the other hand,
if we want to protect against L2 uncertainty, then the resulting MIO is conic quadratic.

Note that the extend to which we include robustness into our MIO approximation is
determined by the hyperparameter ρ: a value of ρ = 0 indicates that we don’t want to
consider robustness, while higher values of ρ correspond to bigger uncertainty sets and more
conservative robust counterparts. For the purpose of this example, we use a value of ρ = 0.1.
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Fig. 7 PGD trajectory

4.6 Solve MIO and improve

After having constructed an MIO approximation of Problem 13, we optimize over this
approximation using Gurobi. The initial solution we get is [x1, x2] = [1.108, 0.937] with an
objective value of−1.108. This initial solution is not optimal, due to the MIO approximation
error shown in Fig. 6.

We then proceed to improve the solution using the PGD local-search procedure described
in Sect. 2. Note that in this procedure, we also introduce momentum and we conditionally
utilize second order information for faster and more accurate convergence. The resulting
solution after 10 iterations of the repair procedure is [x1, x2] = [1.1497, 0.875] with an
objective value of −1.1497, which is the global optimum. The trajectory followed by the
PGD iterations can be seen visually in Fig. 7.

5 Computational experiments on benchmarks

In order to test the new framework,whichwewill refer to asGoML (global optimization using
machine learning), we use a number of global optimization problems from the literature. We
focus on continuous non-convex optimization problems where the optimization variables are
all bounded. The reason we concentrate on problems with bounded variables is that GoML
and OCTHaGOn both require variable bounds in order to perform the initial sampling steps.
In case variable bounds are not provided, the frameworks try to infer those bounds, but we
will only focus on already bounded problems in order to have a more consistent ground of
comparison.

5.1 GoML implementation

The GoML framework is implemented in Julia and has been tested on Julia 1.6.2 with an
Interpretable AI version of 2.2 and Gurobi 8 as the underlying MIO solver. The implemen-
tation of GoML can be found on https://github.com/margaeor/GoML.jl. The code has been
built on top of the publicly available OCTHaGOn repository.
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5.2 Experimental procedure

In order to perform the experiments, we use 2 different versions of our GoML framework. In
the first version (GoMLBase), we use the standard convex version ofGurobi to solve theMIO
approximation of the original problem. This means that we pass directly to Gurobi the linear
constraints (and objectives) of the original problem, and we approximate all the non-linear
ones using ML models. This approach is analogous to the one used by OCTHaGOn. In the
second version (GoML NonCVX), we also pass the convex constraints and the non-convex
quadratic constraints directly to Gurobi, and we use ML to approximate only the non-convex
constraints that are not quadratic. The second approach leverages the ability of Gurobi 8.0 to
solve non-convexMINLP problems, as long as the non-convex constraints are quadratic. The
caveat of this approach is that some of the benchmarks contain only non-convex quadratic
constraints and objectives, and thus in those instances, GoML NonCVX offloads all the
constraints (and objective) to Gurobi. However, in many of those instances, GoML Base is
also able to solve them equally well, as seen in Table 3.

Both versions of GoML have a number of hyperparameters, the most important of which
is the robustness radius ρ and the relaxation coefficient λ. In order to determine the best value
of those hyperparameters, we perform a grid search. In particular, we run GoML for different
values of the hyperparameters and we keep the solution with the best objective value. For
the robustness parameter ρ, we use values ρ = 0 (i.e. no robustness) and ρ = 0.01, 0.1, 1
which represent uncertainty sets of different sizes. For the relaxation coefficient λ, we first
experiment with no relaxations (corresponding to λ = ∞) and then, with varying levels of
relaxation penalties (λ = 102 and λ = 104). Finally, for each instance, we also vary the type
of sampling we do (i.e. we solve the instance both with and without OCT Sampling).

If we use a naive grid search approach and we solve the problem from scratch for each
combination of hyperparameters, then our approach will perform very poorly time-wise.
However, we notice that when we change the robustness and relaxation parameters, we don’t
need to retrain the learners, since both robustness and relaxations are applied to the MIO
approximations after the learners are trained. Hence, in our grid search, we first sample and
train the ML models, and we then re-embed the models and resolve the MIO for each value
of ρ and λ, without having to retrain the models. This observation is really important, since
the sampling and training steps take the vast majority of the solution time (i.e. in many cases,
more than 95%).

5.3 Results

Using grid-search as mentioned above, we test GoML Base and GoML NonCVX against
continuous global optimization problems fromMINLPLib [32]. For our benchmarks, we use
problems that contain between 1 and 110 variables and between 1 and 88 constraints. We
first benchmark our framework (GoML base) against OCTHaGOn, in order to see the effect
of our enhancements. Then, we compare against BARON [33], a well-established global
optimizer for mixed-integer nonlinear programs. For all methods, we measure the percent
optimality gap and the solution time in seconds. We set a pre-specified time limit of 1500s
for all solvers, and we run our experiments in a Dell Inspiron Laptop with an 8-core Ryzen
5700U processor clocked at 1.8GHz and 16GB of RAM.

In Figs. 8a and 8b we compare the optimality gaps of GoML Base against OCTHaGOn
and BARON respectively among 77 MINLPLib instances. By examining Fig. 8a, we can see
that GoML Base has better optimality gaps than OCTHaGOn in 36 out of the 77 instances,
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Fig. 8 Comparison of GoML Base, BARON and OCTHaGOn optimality gaps for each instance. The x-axis
represents the instance ID (from 0 to 76) and the y-axis represents the percentage optimality gap. Solutions
that are infeasible are assigned a gap of 106 in the plot, while solutions that have a gap within 0.1% of the
optimal solution are considered optimal. For easier comparison, the instances are sorted from left to right by
increasing gap of the GoML framework

and worse optimality gaps in only 5 of the 77 instances. This means that GoML Base offers
solutions that are at least as good as OCTHaGOn in 72 out of the 77 instances, validating
that our enhancements are indeed effective.

On the other hand, based on Fig. 8b, BARON is able to solve 73 out of the 77 instances
to optimality, which is expected since those problems have long been used as benchmarks in
the global optimization literature. However, in 3 of the 77 instances, GoML Base provides
solutions with better optimality gaps than BARON. Additionally, in another 4 of the 77
instances, both GoML Base and BARON solve the problem to optimality, but GoML base
has better solution times (timing results available in “Appendix B”).

Finally, in Figs. 9a and 9b we also show the cumulative performance plots of all the
methods in terms of both optimality gap and execution time. By examining the figures, it
is evident that GoML Base has generally much better gaps than OCTHaGOn, but worse
execution times. This is to be expected, since OTHGaGOn only uses a subset of models
and does not perform grid-search. On the other hand, with the exception of BARON, the
method that strikes the best balance between optimality gap and time is GoML NonCVX.
In particular, in the majority of instances, GoML NoNCVX has better optimality gaps and
execution time than bothGoMLBase andOCTHaGOn. Also, in around 50%of the instances,
GoML NonCVX has better execution time than BARON.

5.4 Performance attributions

To better understand the effect of the various enhancements on the overall performance of
the algorithm, we ran GoML Base on the 77 MINLPLib instances both with and without the
various enhancements (i.e. robustness, OCT sampling and relaxations). Then, we measured
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Fig. 9 Cumulative performance plots of the different methods with respect to optimality gap and time. The
y-axis represents the proportion of instances where an algorithm has a gap (or execution time) less than the
threshold defined by the x-axis

the number of instances in which a particular enhancement improved, kept the same or dete-
riorated the optimality gap. The result is shown on Fig.10a. We also tested the performance
of the framework by removing one MLmodel at a time (i.e. MLP, SVM, OCT, GBM). Then,
we measured the number of instances in which the inclusion of each specific model improves
the optimality and feasibility gap. The result is shown on Fig.10b. Finally, to better quantify
the effect of OCT Sampling, we measured the average percentage constraint violation of the
final solution both with and without OCT Sampling. The comparison is shown on Fig. 10c.

By examining Fig. 10a, we notice that each enhancement improves the optimality gap in
at least 20 of the 77 instances. Out of the various enhancements, robustness seems to have
the biggest effect on optimality gap, improving the gap in around 40 instances. On the other
hand, OCT sampling seems to have the smallest effect on optimality gap. However, as per
Fig. 10c, OCT Sampling offers a very substantial improvement in feasibility gap, which is
directly related to the fact that OCT sampling helps build accurate constraint approximators
through high-quality sampling.

In any case, we should note that as seen on Fig. 10a, there are also a handful of instances
where the gap becomes worse as a result of the enhancements. However, this is not prob-
lematic, and is precisely the reason why the algorithm involves a grid-search procedure as
discussed in Sect. 5.2. Effectively, this procedure applies the framework on each instance
with and without the various enhancements, and then keeps the best solution, hence negating
the potential adverse effect of specific enhancements in specific instances.

Apart from the enhancements of Fig. 10a, the choice of ML models also has an effect on
optimality and feasibility gaps. According to Fig. 10b, MLP and GBM are the most helpful in
reducing feasibility gaps, while OCTs and MLPs help the most in reducing optimality gaps.
On the other hand, SVM seems to offer the least improvement overall, which is expected
since it is the simplest model.
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Fig. 10 Effects of the various enhancements and ML models on optimality and feasibility gaps

6 Experiments on real-world and synthetic examples

In this section, we test our approach in some synthetic and real world problems. The purpose
of this section is to explore problems that aren’t part of the popular MINLP benchmarks of
Sect. 5.

6.1 Quadratic and sigmoid

First, we consider the following class of synthetic problems:

min
x

cT x

s.t.
1

1 + exp{−Qi (x)} ≤ 0.5, i = 1, . . . , 
m/2�,
Qi (x)

1 + exp{−Qi (x)} ≥ −0.5, i = 
m/2� + 1, . . . ,m,

xk ∈ [xk, xk], k ∈ [n],
x ∈ R

n,

(16)
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Table 1 GoML vs BARON in Quadratic–Sigmoid problems

n m GoML Obj BARON Obj BARON LB GoML Opt. Gap BARON Opt. Gap

10 2 −22.83 −23.04 −23.04 0.9% 0

50 4 −177.27 −0.225 −189.728 ≤ 6.56% ≥ 99.9%

70 2 −255.85 −0.5711 −257.285 ≤ 0.8% ≥ 99.8%

Bold indicates the solution with the best objective value

where Qi (x) is a quadratic:

Qi (x) = xT Ai x + dTi x + fi . (17)

In this problem, the objective is linear and the constraints involve quadratic and sigmoid
functions. Finally, we also impose bounds on the decision variables, forcing them to belong
to a particular hyper-rectangle. In order to benchmark our framework in instances of this
problem, we first choose a dimension n and a number of nonlinear constraints m. Then, we
randomly generate the cost vector c and the quadratic parameters Ai , di and fi for each
i = 1, . . . ,m. We repeat the same process for different values of n and m. Finally, we run
the GoML Base framework in the generated instances and we compare against BARON.

In Table 1 we can see the resulting objective values returned by the 2 methods for problem
instances of different sizes. We also record the lower bound calculated by BARON during
the solution process. Finally, since the optimal solution of the instances is not known a-priori,
we use the lower bound returned by BARON and the best feasible solution across the two
methods to calculate bounds on the optimality gap of GoML and BARON. Those bounds are
recorded in Table 1.

Our experiments show that BARON solves the problem to optimality for small values of
n, but performs very poorly for bigger n. For instance, for n = 70 and m = 2, BARON
terminates early with a solution that has an optimality gap of at least 99.8%, while the
optimality gap of GoML is at most 0.8%. A similar pattern is seen for n = 50 and m = 4,
where BARON terminates early with an optimality gap of at least 99.9%, while GoML has
an optimality gap of at most 6.56%.

6.2 Speed reducer problem

Following [7], we also test the method in the Speed Reducer problem proposed by [34]. This
is a real world problem with the goal of designing a gearbox for an aircraft engine under
geometrical, structural and manufacturing constraints. The problem is described below:
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min
x

0.7854x1x
2
2

(
3.3333x23 + 14.9334x3 − 43.0934

) − 1.5079x1
(
x26 + x27

) +
+ 7.477

(
x36 + x37

) + 0.7854(x4x
2
6 + x5x

2
7 )

s.t. − 27 + x1x
2
2 x3 ≥ 0,−397.5 + x1x

2
2 x

2
3 ≥ 0,

− 1.93 + x2x46 x3
x34

≥ 0,−1.93 + x2x47 x3
x35

≥ 0,

110.0x36 −
((

745x4
x2x3

)2

+ 16.9 × 106
)0.5

≥ 0, (18)

85.0x37 −
((

745x5
x2x3

)2

+ 157.5 × 106
)0.5

≥ 0,

40 − x2x3 ≥ 0, x1 − 5x2 ≥ 0, 12x2 − x1 ≥ 0,

x4 − 1.5x6 − 1.9 ≥ 0, x5 − 1.1x7 − 1.9 ≥ 0,

x ≥ [2.6, 0.7, 17, 7.3, 7.3, 2.9, 5],
x ≤ [3.6, 0.8, 28, 8.3, 8.3, 3.9, 5.5],
x3 ∈ Z. (19)

In Table 2 we compare the solution given by the enhanced GoML framework with the
solutions given by OCTHaGOn and IPOPT. The optimal solutions, objectives and timings
for OCTHaGOn and IPOPT are all retrieved from [7]. We also compare against the optimum
by [35], which according to [7], is the best known optimum in the literature. We observe
that the ML-based global optimization methods (OCTHaGOn, GoML) perform very well in
this real world problem, being able to find the optimal solution in a reasonable time. Also,
OCTHaGOn, GoML and IPOPT all provide a better solution than that of [35].

According to the results, IPOPT solves the problem to optimality, beating OCTHaGOn
and GoML with respect to solution time. We should, however, note that as described in [7],
in order for IPOPT to be applied to that problem, the integrality constraint of x3 needs to
be relaxed, since IPOPT does not handle integer variables. In this particular problem this
was not an issue, since the optimal value returned by IPOPT for x3 was indeed an integer.
However, IPOPT cannot be used for general MINLP problems. On the other hand, the Mixed
Integer nature of OCTHaGOn and GoML natively allows enforcing integrality constraints.

We should note that the solutions of Table 2 with x6 = 3.3502 may appear infeasible
when plugged to the original problem. This happens because despite the precision of 10−4

used in Table 2, the high nonlinearities of constraints (18) and (19) lead to infeasibilities
unless very high precision is used. In reality, both GoML and OCTHaGOn return a value

Table 2 Comparison of methods in the speed reducer problem

x1 x2 x3 x4 x5 x6 x7 Objective Time (s)

Lin & Tsai [35] 3.5 0.7 17 7.3 7.7153 3.3503 5.2867 2994.472 476

OCT-HaGOn 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.355 32.6

GoML 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.355 37

IPOPT 3.5 0.7 17.0∗ 7.3 7.7153 3.3502 5.2867 2994.355 4.2
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of x6 = 3.35021466 and x7 = 5.28665446, which make the constraints feasible within a
tolerance of 10−5 and yield an objective value of 2994.35458.

7 Discussion

In this section, we discuss the limitations of the approach and suggest avenues for future
work.

7.1 Contributions

In this work, we provided extensions to the global optimization framework OCTHaGOn, in
order to improve feasibility and optimality of the generated solutions. We tested the frame-
work on a mix of 81 Global Optimization instances, with 77 of those being part the standard
benchmarking libraryMINLPLib and the rest being part of real-world and synthetic instances.
Our results showed that in the majority of instances, our enhancements improve the optimal-
ity gaps and solutions times of OCTHaGOn. We also identified a number of instances where
the enhanced framework provides better or faster solutions than BARON.

Overall, we showed that despite its approximate nature, the enhanced framework, is a
promising method in finding globally optimal solutions in various types of problems. The
framework can potentially be applied in very general global optimization problems, including
problems with constraints that are convex, non-convex and constraints with very general
primitives, with the basic assumption that the user specifies bounds for the decision variables.
Hence, due to its generality the method can be used in problems that are incompatible with
traditional global optimizers such as BARON and ANTIGONE.

7.2 Limitations

The enhanced framework demonstrates promise in tackling a variety of global optimization
problems, but it is still a work in progress and comes with its own sets of limitations.

Since the method relies on ML-based approximations of the original problem, it does not
necessarily produce globally optimal solutions. The PGD step at the end of the method gen-
erally helps in finding high-quality solutions, but without offering any optimality guarantees
such as the ones provided by BARON. This means that although the framework performs
well in a wide range of problems, it is actually a heuristic method without any optimality
guarantees. Additionally, the PGD repair step assumes that the nonlinear constraints support
automatic differentiation (AD). Although this is a soft assumption to make, it may not be true
for certain types of constraints. In some cases, the lack of AD can be addressed by approxi-
mately evaluating the gradients (i.e. through finite differencing). However, this approach also
has its limitations, since it may produce very noisy estimates of the gradient.

Another limitation of the method has to do with its stated assumptions. The frame-
work assumes that the decision variables involved in nonlinear constraints have prespecified
bounds, where in practice bounds may not be available. In case where bounds are not spec-
ified, the method attempts to compute them through an optimization process, although this
is not always effective, since user-specified bounds usually lead to much more precise solu-
tions. The method also assumes that the nonlinear constraints, are fast to evaluate. If this
is not the case, such as in implicit or simulation-based constraints, then it may be difficult
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for the framework to produce high-quality and efficient solutions, since our solution process
inherently obtains many samples from each nonlinear constraint.

Another consideration about the method is computational speed. Although the framework
is relatively fast for small and medium-sized problems, the computational time can rise
significantly with the number of variables and nonlinear constraints. The main bottleneck of
themethod is the training of theMLmodels, and particularly of the hyperplane-based decision
trees (OCT-H),which are used in the sampling and approximationphases of the framework.To
partially account for this problem,we restrict the use ofOCT-Hs to smaller problems, although
the ML training time still rises linearly with the number of nonlinear constraints. Another
speed-related consideration has to do with the complexity of the MIO approximations. For
small and medium-sized problems, the complexity of the MIO approximation is usually very
small compared to the capabilities of commercial solvers like Gurobi and CPLEX. However,
an increase in the number of variables accompanied with an increase in model complexity
(e.g. deeper trees and more layers for MLPs) can significantly affect MIO solution times.

8 Conclusion

In this work, we implemented a range of enhancements to improve the OCTHaGOn [7]
global optimization framework. We used ML-based sampling, Robust Optimization, and
other techniques to improve the optimality and feasibility gaps of the solutions generated by
OCTHaGOn.We then demonstrated the effect of our enhancements through a range of global
optimization benchmarks. We compared the framework against the commercial optimizer
BARON, andwe showed improved solution times and optimality gaps in a subset of problems.
More concretely, we showed that in the majority of test instances, the enhancements improve
the optimality gaps and solution times of OCTHaGOn. We also showed that in 9 instances
(i.e., 7 MINLP and 2 synthetic instances), the enhanced framework yields better or faster
solutions than BARON.

The overall method is a general way of addressing global optimization problems, that is
generally new in the global optimization literature. It can handle constraints that are convex,
non-convex or consist of very general mathematical primitives. The method only requires
bounds of the decision variables involved in the nonlinear constraints. Although the method
is still new, it can potentially be used in a number of different applications, especially in areas
where typical global optimizers cannot be used.

Appendix A Enhancement details

In this appendix we provide supplementary information about the various enhancements.
We discuss about the training and MIO-representation of the different ML models. We also
provide a detailed description of OCT Sampling.

A.1 Support vector machines

Support vector machines are ML models that use a suitable hyperplane to make predictions,
either for classification [23] or regression [24]. In this work, we use linear SVRs and SVCs
to approximate nonlinear objectives and constraints respectively.
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In order to approximate a nonlinear objective with SVMs, we train a support vector
regressor (SVR) on regression samples of the objective. Training an SVR is done in a very
similar way as linear regression, but in a way that we penalize residuals greater than an
ε threshold [19, 24]. Then, we can embed the SVR predictions using the following linear
constraint:

ySV R = β0 + xTβ. (A1)

On the other hand, in order to approximate a nonlinear constraint, we train a support vector
classifier (SVC) on feasibility samples of the constraint. The training process is very similar
to the SVR, but in this case yi are labels. Then, we can approximate the nonlinear constraint
with the following constraint:

β0 + xTβ ≥ 0, (A2)

where β, β0 are the trained model parameters of the SVM.

A.2 Decision trees

For the purpose of this work, we will model the generalized version of decision trees which
includes hyperplane splits [8], since this version can also capture the standard CART trees
with parallel splits. In particular, a decision tree can be modeled as a binary tree with non-
terminal (intermediate) and terminal (leaf) nodes. Each non-terminal node Ni represents a
split of the form aTi x ≤ bi , and each leaf node Li is associated with a prediction pi , where
ai , bi , pi are model parameters learned through training. Then, given an input vector x, we
can make predictions as follows: starting from the root N1, we check whether aT1 x ≤ b1. If
the condition is satisfied, then we proceed to the left child of the root. Otherwise, we proceed
to the right child. We recursively repeat this process by checking the split condition of the
nodes and continuing traversing the tree until we reach a leaf node. When a leaf node Li is
reached, we output the prediction pi . If we now use L(Li ) and R(Li ) to denote the set of
non-terminal nodes for which leaf Li is contained in their left and right subtree respectively,
then each leaf Li is described by the following polyhedron:

Pi =
( ⋂

j∈L(Li )

{x ∈ R
n : aTj x ≤ b j }

)⋂ ( ⋂

j∈R(Li )

{x ∈ R
n : aTj x > b j }

)
. (A3)

Then, the decision tree predicts pi if and only if x ∈ Pi . Note here that the polyhedra
P1,P2, . . . are disjoint and their union MIO representable (i.e. can be represented by a set
of linear MI constraints). Additionally, we should mention that this representation can also
be used to describe decision trees with parallel splits (i.e., CART). In particular, if all the
vectors ai are binary with

∑
j a

( j)
i = 1, then all the splits in the tree are done in a single

feature at a time, and the polyhedrons Pi are hyper-rectangles.
Let’s now use L to denote the set of leaves. If we want to embed the tree predictions into

our MIO under a regression setting, then we can use the following set of constraints to do so:
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|L|∑

i=1

zi pi = yDT ,

|L|∑

i=1

zi = 1,

aTj x ≤ b j + M(1 − zi ), ∀i ∈ L, j ∈ L(Li ),

aTj x ≥ b j − M(1 − zi ) + ε, ∀i ∈ L, j ∈ R(Li ),

(A4)

where yDT represents the output of the decision tree and z ∈ {0, 1}|L| is a vector of binary
variables.

On the other hand, if we want to approximate a nonlinear constraint, we first train a
classification DT on samples of the constraint, and we then impose the following additional
constraint:

yDT ≥ 0.5, (A5)

which ensures that we will land on a feasible leaf.

A.3 Gradient boosted trees

In order to represent a gradient boosted tree (GBT) using an MIO formulation, we use the
formulations from [17] with the coupling constraints from [27]. In particular, let’s assume
that we have a trained Gradient Boosted Tree (GBT) with T trees. Our goal is to express
the output of the GBT as a Mixed-Integer function of the input variable x. We will assume
that xi ∈ [vL

i , vUi ]. For each variable xi , we order all the possible breakpoints of the GBT
ensemble: uLi = ui,0 < ui,1 < · · · < ui,mi < ui,mi+1 = uUi . We use binary variable yi, j to
model whether xi < ui, j for i ∈ [n] and j ∈ [mi ]. We also use binary variable zt,l to model
whether tree t ∈ {1, . . . , T } selects leaf � ∈ leaves(t) or not. We also use the following
notation:

• splits(t) is the set of split nodes of tree t .
• left(s) is the set of leaf nodes of the left subtree of split node s.
• right(s) is the set of leaf nodes of the right subtree of split node s.
• i(s) ∈ {1, . . . , n} is the index of the variable that participates in split s.
• j(s) ∈ {1, . . . ,mi(s)} is the index of the breakpoint we split when at node s.
• at is the weight of each tree in the ensemble.
• pt,� is the prediction at leaf � of tree t .

Then, following [27], we can represent the GBT ensemble with the following formulation:

yGBT =
T∑

t=1

∑

�∈leaves(t)
at · pt,� · zt,�

∑

�∈leaves(t)
zt,� = 1, ∀t ∈ {1, . . . , T },

∑

�∈left(s)
zt,� ≤ yi(s), j(s), ∀t ∈ {1, . . . , T }, s ∈ splits(t),

∑

�∈right(s)
zt,� ≤ 1 − yi(s), j(s), ∀t ∈ {1, . . . , T }, s ∈ splits(t),
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yi, j ≤ yi, j+1, ∀i ∈ N , j ∈ {1, . . . ,mi − 1} ,

xi ≥ vi,0 +
mi∑

j=1

(vi, j − vi, j−1)(1 − yi, j ), ∀i ∈ {1, . . . , n},

xi ≤ vi,mi+1 +
mi∑

j=1

(vi, j − vi, j+1)yi, j , ∀i ∈ {1, . . . , n},

yi, j ∈ {0, 1}, ∀i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi } ,

zt,� ≥ 0, ∀t ∈ {1, . . . , T }, � ∈ leaves(t).

This formulation avoids big-Ms and ε constants which are present in the standard decision
tree formulation (Eq. (A4)). It should be noted that for approximating a nonlinear objective,
the formulation can be used as-is, while if we want to approximate a nonlinear constraint,
we also need to add the feasibility constraint:

yGBT ≥ 0.5. (A6)

A.4 Neural networks

In this work, we use multi-layer perceptrons (MLPs) with ReLU activations. Such networks
consist of an input layer, L − 2 hidden layers with ReLU activations and an output layer.
Following [19], if we define Nl as the set of nodes of l-th hidden layer of the network, then
the value vli of each node i ∈ Nl is calculated as a weighted average of the node values of
the previous layer. The result is passed through a ReLU activation yielding the following
formula:

vli = max

{
0, βl

i0 +
∑

j∈Nl−1

βl
i jv

l−1
j

}
, (A7)

where βl
i is the vector of coefficients for node i in layer l retrieved after training. The benefit

of such models is that due to their nonlinearities, they can be used to model very complex
nonlinear constraints and objectives compared to linear models.

For our use-case, we will only consider MLPs with 1 output neuron. In particular, for
the regression task, we train an MLP regressor on the dataset DR = {(x̃k, f (x̃k))}nk=1 using
Mean Squared Error (MSE) loss, and we then use the following constraints to represent the
output of the MLP:

yMLP =βL
00 +

∑

j∈NL−1

βL
0 jv

L−1
j ,

uli ≥ βl
i0 +

∑

j∈Nl−1

βl
i jv

l−1
j , ∀l = {2, . . . , L − 1}, i ∈ Nl ,

uli ≤ βl
i0 +

∑

j∈Nl−1

βl
i jv

l−1
j − M(1 − zil), ∀l = {2, . . . , L − 1}, i ∈ Nl ,

uli ≤ Mzil , ∀l = {2, . . . , L − 1}, i ∈ Nl ,

uli ≥ 0, ∀l = {2, . . . , L − 1}, i ∈ Nl ,

u1i = xi , ∀i ∈ [n],
zil ∈ {0, 1},

(A8)
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where xi is the input variable and yMLP is the model’s output, which is an approximator of
the objective f (x). Here, we rely on a big-M formulation to model the ReLU activations,
which can be tightened through an appropriate choice of M [19].

For classification, we train an MLP on the dataset DC = {(x̃k,1{g(x̃k) ≤ 0})}Nk=1 using
binary cross-entropy loss and a sigmoid activation on the output node. Then, we approximate
the constraint g(x) ≤ 0 using the formulation (A8), butwith the additional constraint yMLP ≥
0. This new constraint is used to ensure that the output logit is positive, which corresponds
to an output probability greater than 0.5.

A.5 OCT sampling

Below we present the detailed steps that we follow during OCT sampling. Let’s assume
that we want to approximate the constraint g(x) ≤ 0 and we already have samples D =
{(x̃k,1{g(x̃k) ≤ 0})}Nk=1 for the feasibility of that constraint. The goal of OCT sampling is
to resample parts of the constraint which are difficult to approximate. In order to do that,
we will use hyperplane-based decision trees (OCT-H, [8, 9]) which are one of the types of
learners we use for constraint approximations.

The procedure we follow is the following:

1. Learner training: We generate K random subsets D1, . . . , DK ⊂ D of the dataset D,
with a fixed size |Di | = C, ∀i ∈ [K ]. We then train one OCT-H learner Ti on each
dataset Di .

2. Identify ambiguous samples: In this step, we identify points x1, x2, . . . for which there
is a high prediction discordance between the learners T1, . . . , TK . The goal of identifying
such points is that those points are indicators of areas where there is a poor generalization
from our learners, and thus areas that are worth resampling. In order to find such points,
let’s use Ti (x) to denote the binary prediction of the i-th learner given an input vector x.
We then define the following quantities:

P(x) = |{i ∈ [K ] : Ti (x) = 1}|,
N (x) = |{i ∈ [K ] : Ti (x) = 0}|. (A9)

Then, we find a subset of points of D for which there is a high discordance between the
predictions of T1, . . . , TK . This set of points S is defined as follows.:

S = {x ∈ D : |P(x) − N (x)| ≤ K τ }, (A10)

where τ ∈ [0, 1] is a threshold that determines the target level of predictor discordance.
The higher the value of τ , the less the level of discordance is needed for a point x to be
included in S.

3. Identify ambiguous polyhedra: The goal of this step is to identify polyhedral regions
where the points of S reside. As we discussed in “Appendix A.2”, in a hyperplane-based
decision tree Ti , every leaf L(i)

j ∈ Li is represented by a polyhedron P(i)
j , while the

polyhedra of the different leaves are disjoint. Hence, the decision tree Ti assigns every
point x ∈ R

n to exactly 1 leaf-polyhedron, which we will denote as P(i)(x). Then, for
every point x ∈ S, we take the intersection P(x) of those leaf polyhedras of the different
trees T1, . . . , TK , where:

P(x) =
K⋂

i=1

P(i)(x). (A11)
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Note that P(x) is a polyhedron as an intersection of polyhedras. We then create the set
of polyhedras C = {P(x) : x ∈ S}, which has the following property:

|P(x) − N (x)| ≤ K τ, ∀x ∈ P, P ∈ C. (A12)

Thismeans that if we pick any point x from any polyhedronP ∈ C, then the predictions of
the trees T1, . . . TK for that point are guaranteed to have a particular level of disagreement.

4. Sample ambiguous polyhedra: The goal of this step is to generate samples from the
interior of the polyhedra P ∈ C. As we mentioned before, those polyhedra represent
areas where there is a high level of disagreement between the predictors T1, . . . , TK . In
order to sample those polyhedra, we will use the hit-and-run algorithm [29] which is a
Markov Chain Monte Carlo (MCMC) method for generating samples in the interior of a
convex body. In particular, given a non-empty polyhedron P = {x ∈ R

n : Ax ≤ b}, we
can generate samples on its interior using the following procedure:

(i) Pick a starting point x0 ∈ R
n which lies in the interior of the polyhedron P .

(ii) Generate a unit random direction u ∈ R
n

(iii) Calculate the minimum andmaximum values of λ ∈ R such that x0+λu ∈ P . Those
values λmin and λmax can be calculated in close form by requring that λu ≤ b− Ax.
Note that for general polyhedras, it can happen that λmax = +∞ or λmin = −∞, but
the polyhedras we examine are all bounded, so λmax and λmin are finite.

(iv) Pick a λ∗ uniformly at random from the set [λmin, λmax] and generate sample x∗ =
x0 + λ∗u.

(v) Repeat the procedure from step (ii) using x∗ as the new starting point. Terminate
whenever we generate the required number of samples.

We then follow this procedure to generate samples for all polyhedra P ∈ C. If the set
P ∈ C contains 2 polyhedra with the same representation more than once, then we only
sample one of them.

Appendix B Computational results

In this appendix, we are presenting more in-depth computational results on the MINLPLib
instances, and we are also testing the method against piece-wise linear constraint approxi-
mators introduced into Gurobi 10.0.

B.1 MINLPLib results

In Table 3,we can see the detailed comparison ofGoMLBase,GoMLNonCVX,OCTHaGOn
andBARONon theMINLPlib benchmarks. For every example,we report theMINLP instance
name, the number of variables, the optimality gap (in percentage) and the time (in seconds).

When the optimality gap is below 0.1%, we consider the solution optimal and we record
"GOpt" in the table. In the case of GoMLNonCVX, we use an asterisk ∗ to label the instances
where the problems are non-convex quadratic and are thus solved in their entirety by Gurobi
Non-Convex (i.e. our framework does not approximate any constraint in these instances).

Also, when a method fails to produce a feasible solution to the problem, we record "Inf"
in the respective columns.
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Fig. 11 Optimality gap comparison in MINLPLib instances for GoML and Gurobi with General Constraints.
A percentage optimality gap of 106 is used to represent an infeasible solution

B.2 GoML versus Gurobi general constraints

Our computational experiments were performed using Gurobi 8.0, which only allows for
linear, convex quadratic and non-convex quadratic constraints. However, at the time of sub-
mission, the latest version of Gurobi (i.e. version 10) introduced support for a subset of more
general nonlinear functions, which are approximated through piece-wise linear approxima-
tions [36]. Those functions include polynomials, exponentials, logarithms and trigonometric
entities, but are exclusively univariate (i.e. functions of more than 1 variable are not sup-
ported). The representation of such univariate nonlinear functions f (x) is done by constraints
of the form y = gen_constr f (x) which are referred to as "General Constraints" in Gurobi
10 documentation [36].

In light of this, we also chose to compare our method against Gurobi with General Con-
straints on the MINLPLib instances. However, the comparison is not straightforward. As
we mentioned, General Constraints are only supported for univariate nonlinear functions,
and don’t directly support function compositions. For this reason, in order to make many
MINLPLib instances compatible with the General Constraints, we had to make the follow-
ing transformations:

1. A univariate nonlinear function f (x) is approximated with a Gurobi General Constraint
of the form y = gen_constr f (x). Then, the new variable y is used to represent the
nonlinear function in the original constraint where the nonlinear function was located.

2. In multivariate polynomials, we first represent every exponentiated variable with a new
variable that is tied to a Gurobi General Power Constraint y = xa . Then, we recursively
replace pairs of variables in the original constraint with a new variable representing the
bilinear term. We do that until we end up with only General Constraints and bilinear
terms.

3. A composition of the form f (g(x1, . . . , xn)) where f (x) is a nonlinear function is
replaced with f (y) with a new constraint y = g(x1, . . . , xn). This step is repeated
recursively.
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An example of applying steps (1) and (2) is shown below:

x31 x2x3 + x4 sin x ≤ 0 ⇒
⎧
⎨

⎩

y1 = x31 (Gen. Constr)
y2 = sin x (Gen. Constr)
y1x2x3 + x4y2 ≤ 0

⇒

⎧
⎪⎪⎨

⎪⎪⎩

y1 = x31 (Gen. Constr)
y2 = sin x (Gen. Constr)
y3 = y1x2
y3x3 + x4y2 ≤ 0

With transformations of this form, we are able to bring many of the MINLPLib instances in
a form that contains only (i) general constraints involving univariate nonlinear functions and
(ii) bilinear terms. This format is generally supported by Gurobi 10+. Then, we compared
the optimality gaps of Gurobi with general constarints against our GoML framework. The
results are shown in Fig. 11. We notice that Gurobi with general constraints demonstrates
poor performance in our MINLPLib instances. It has a better optimality gap than GoML in
only 10 out of the 74 instances, while GoML outperforms Gurobi with general constraints in
49 out of the 74 instances. It should be noted however, that by tweaking the approximation
parameters of the general constraints (e.g. increasing the piece-wise terms) the performance
might have been better, but we opted for using the default parameters in our experiments.
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