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Abstract: Eternal asymptotically AdS black holes are dual to thermofield double states
in the boundary CFT. It has long been known that black hole singularities have certain
signatures in boundary thermal two-point functions related to null geodesics bouncing off the
singularities (bouncing geodesics). In this paper we shed light on the manifestations of black
hole singularities in the dual CFT. We decompose the boundary CFT correlator of scalar
operators using the Operator Product Expansion (OPE) and focus on the contributions from
the identity, the stress tensor, and its products. We show that this part of the correlator
develops singularities precisely at the points that are connected by bulk bouncing geodesics.
Black hole singularities are thus encoded in the analytic behavior of the boundary correlators
determined by multiple stress tensor exchanges. Furthermore, we show that in the limit where
the conformal dimension of the operators is large, the sum of multi-stress-tensor contributions
develops a branch point singularity as predicted by the geodesic analysis. We also argue that
the appearance of complexified geodesics, which play an important role in computing the full
correlator, is related to the contributions of the double-trace operators in the boundary CFT.
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1 Introduction and summary

The AdS/CFT duality [1–3] provides a powerful laboratory for understanding quantum
gravity in the bulk and conformal field theory (CFT) on the boundary. In particular, it
relates black holes in AdSd+1 to the boundary CFTd at finite temperature [4, 5]. CFT
observables can hence be used to probe the interior of black holes and possibly the black
hole singularity, see e.g. [6–22].

In [8, 9], for d ≥ 3, signatures of black hole singularities were identified in the boundary
thermal two-point functions1

G(t) =
〈
ϕ(t, 0⃗)ϕ(0, 0⃗)

〉
β

(1.1)

where ϕ is a scalar CFT operator of conformal dimension ∆ and β is the inverse temperature.
In the limit of large ∆, G(t) can be computed using bulk geodesics connecting the two
boundary points where the operators are inserted. In [8] it was found that a specific
analytically continued G(t), which we denote as Ĝ(t), exhibits singularities of the form

Ĝ(t) ∝ 1
(t− t±c )2∆ , t→ t±c = ± βe∓

iπ
d

2 sin π
d

≡ ± β̃2 − i
β

2 , ∆ → ∞ . (1.2)

On the gravity side, considering complex time of the form t = tL − iβ/2, with tL ∈ R,
corresponds to analysing geodesics in the two-sided eternal AdS-Schwarzschild black hole.
The behavior (1.2) arises because the spacelike geodesics which connect the two asymptotic
regions of the black hole, approach a null geodesic bouncing off the future (past) black
hole singularity as t → t+c (t → t−c ), see right of figure 2. We will refer to the singular
behavior (1.2) as the bouncing singularities.

The correlator G(t) can only have singularities at t = 0 and t = −iβ. To obtain Ĝ(t),
which exhibits bouncing singularities, one observes [8] that2

L(t) = − lim
∆→∞

1
∆ logG(t), (1.3)

develops a branch point singularity at t = −iβ
2 . Analytically continuing L(t) through a

branch cut emanating from this branch point to the second sheet gives L̂(t). The latter is
given by the proper length of the bouncing geodesic and can be used to define

Ĝ(t) ≡ e−∆L̂(t) , (1.4)
1For simplicity, the spatial separation of the operators has been set to zero.
2To be more precise, L(t) is obtained by an analytic continuation from the analogous expression using the

Euclidean correlator G(τ), with t = iτ . This analytic continuation is subtle and as a consequence the limit
in (1.3) is not always well defined.
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which exhibits (1.2). In contrast, for t = tL − iβ/2, G(t) is given by a sum of two complex
geodesics which are regular for all tL.

In [9] it was found that the same bouncing geodesics have direct signatures in the Fourier
transform G(ω) of (1.1),3 albeit for large imaginary frequencies,

G(ω) ∝ ω2∆eit±c ω, ω → ±i∞, ∆ → ∞ . (1.5)

The results (1.2) and (1.5) raised a number of questions whose boundary understanding
has been elusive:

1. What is the CFT origin of the singular behavior in (1.2)?

2. What is CFT origin of the branch point singularity of L(t) at t = −iβ/2 in the large ∆
limit?

3. What is the boundary interpretation of the pair of complex geodesics which dominate
the correlator at t = tL − iβ/2 in the large ∆ limit?

4. What is the CFT origin of (1.5)?

5. The behavior (1.2) and (1.5) applies only to d ≥ 3, as for d = 2 (the BTZ black hole)
the black hole singularities are orbifold singularities rather than curvature singularities.
What is the boundary origin of this difference?

In this paper we address these questions by investigating the behavior of thermal
correlators of scalar operators by performing the Operator Product Expansion (OPE) in the
boundary theory. We will restrict our discussion to the boundary theory on flat space.

The OPE of two operators ϕ separated in Euclidean time τ = it can be written schemat-
ically as

ϕ(τ, 0)ϕ(0, 0) =
∑

n

Cnτ
∆n−2∆On(0), (1.6)

where n collectively labels all operators On with ∆n being their conformal dimension. The
Euclidean analytic continuation of G(t) can be written in terms of OPE as

G(τ) ≡ G(t = −iτ) = 1
τ2∆

∑
n

Cnvn

(
τ

β

)∆n

, ⟨On⟩β = vnβ
−∆n . (1.7)

Note that the sums in (1.6), (1.7) may have operators of the same conformal dimension
which only differ by their spin. In this case, each such operator contributes a separate
term in (1.6) and (1.7).

In holographic theories that are dual to Einstein gravity in the bulk,4 the correlator (1.7)
has a particularly simple structure

G(τ) = GT (τ) +G[ϕϕ](τ) . (1.8)
3For notational simplicity, we use the same notation G(ω) for the Fourier transform of G(t), distinguishing

them only by the arguments. Similarly, below we will use the same notation G(τ) for the Euclidean analytic
continuation of G(t).

4For example, in the case of N = 4 Super Yang-Mills theory in d = 4, this is the theory at large N and
strong coupling.
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GT (τ) is the contribution from OPEs involving multiple stress tensors, i.e. operators of
the schematic form (Tµν)n, with Tµν denoting the stress tensor, while G[ϕϕ](τ) is the con-
tribution from double-trace operators formed from ϕ, i.e. operators of the schematic form
ϕ(∂2)n∂i1 · · · ∂il

ϕ. GT (τ) will be referred to as the stress-tensor sector of the correlator [23].
It will also be convenient to define

LT (τ) = − lim
∆→∞

1
∆ logGT (τ) (1.9)

and similarly L[ϕϕ](τ).
In [24] a scheme for computing the OPE coefficients of multi-stress tensors for holographic

theories in even spacetime dimensions has been presented, which enables us to compute
GT (τ) explicitly as a series expansion in τ .5 The scheme is based on an ansatz that solves
the bulk equations of motion order by order in the near-boundary expansion. The resulting
OPE coefficients agree, for example, with the ones determined by bootstrap and related tech-
niques [23, 29–32], as well as with those obtained by solving the Fourier transformed equation
order by order in the OPE [21, 33–35].6 Other nontrivial checks include comparison with the
Regge limit holographic data [38–41] and geodesics in asymptotically AdS spacetimes [16, 42].

By studying the OPE data of n-stress tensor exchanges in the regime of large n, we
are able to resum the full stress-tensor sector for finite ∆ and show that GT (τ) contains
a singularity precisely of the form (1.2),7

GT (τ) ∝
1

(τ − τ±c )2∆− d
2
, τ → τ±c = β

2 ± i
β̃

2 = itc . (1.10)

We want to emphasise that despite the similar form to (1.2), this singular behaviour is
obtained in the opposite limit, by first fixing ∆ at a finite value and then finding the divergent
behaviour of the stress-tensor sector near the singularity. The result (1.10), combined with
general structure of the double-trace contribution G[ϕϕ](τ), as well as the geodesic analysis,
gives a boundary picture that sheds light on various questions mentioned earlier. Here we
highlight the main elements:

1. Black hole singularities are encoded in the analytic structure of the stress tensor sector
of thermal correlation functions. In particular, the bouncing singularity is present
at finite ∆ and can be accessed by analytically continuing the stress tensor sector
contribution GT (τ) to complex values of τ without the need of going to a different
sheet, which is needed to obtain L̂(t).

Heuristically, we may interpret the black hole geometry as being obtained from the
empty AdS by “condensing” multiple gravitons, which are roughly dual to multiple
stress tensors on the boundary. It thus makes intuitive sense that the black hole
singularities reflect the analytic behavior of the stress tensor sector. The stress-tensor
sector of thermal correlators thus possesses a large degree of universality and can serve
as a direct probe of the black hole structure.

5See [25–28] for generalisations to other bulk theories as well as to external operators with spin.
6See e.g. [36, 37] for additional examples of the OPE analysis of finite temperature holographic correlators.
7Since (1.2) only applies to the large ∆ limit, the exponents are also consistent.
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2. We expect that the OPE of G(τ) is uniformly convergent for all ∆ only for |τ | < β/2.
This is the regime where we can take the ∆ → ∞ limit inside the OPE and in doing
so neglect the contributions of double-trace operators. This is why for |τ | < β/2 the
stress-tensor sector OPE fully reproduces the geodesic length [24]. At leading order in
the large ∆ limit,

lim
∆→∞

G(τ) = lim
∆→∞


GT (τ) τ < β

2 ,

G[ϕϕ](τ) τ > β
2 ,

GT (τ) +G[ϕϕ](τ) τ = β
2 + itL, tL ∈ R .

(1.11)

The branch point singularity observed in L(t) at t = − iβ
2 in the geodesic analysis can be

understood from the large ∆ limit of G(τ). The appearance of new geodesic saddles at
this point is the consequence of the “sudden” turn-on of the double trace contribution.
In particular, the two terms in the last line of (1.11) can be identified respectively with
the contributions of the two complex geodesics in the gravity analysis.

In addition, for τ > β/2, the double-trace contribution ensures that the full correlator
satisfies the KMS condition [43, 44]. As such, double traces are inherently linked with
the periodicity in the temporal circle.

Finally, the full thermal correlator cannot contain singularities of the type (1.10). As
such, the double-trace sector must also contain a singularity at the same values as the
stress-tensor sector, but with opposite sign, so that the full correlator is regular.

3. We observe numerically that as ∆ is increased from a finite value to infinity, LT (τ)
computed using the OPE transitions between a function which is regular at τ = β/2
and has a singularity at (1.10) and a function whose radius of convergence is β/2, where
it develops a branch cut.

4. For d = 2, G(τ) is known exactly from conformal symmetry, and equals the corre-
sponding Virasoro vacuum block of the heavy-heavy-light-light correlator [45]. All
contributions come from the Virasoro descendants of the identity, which are the multi-
stress operators,8 with no double-trace contributions for any τ

G(τ) = GT (τ), d = 2 . (1.12)

Since G(τ) cannot have the bouncing singularities (1.10), neither can GT (τ). This is
related to the corresponding bulk geometry being regular.

When the CFT is put on a circle, the double-trace contributions are needed for thermal
correlators to be periodic on the spatial circle. On the other hand, the corresponding
bulk BTZ geometry develops an orbifold singularity. This suggests that the appearance
of the black hole orbifold singularity is intrinsically linked with non-trivial double-
trace contributions. This is in stark contrast with the situation in d ≥ 3, where the
analytic behavior of multiple stress-tensor exchanges appears to reflect bulk curvature
singularities.

8We discuss this in detail in appendix D.
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5. The behavior (1.10) does not directly say anything regarding the momentum space
behavior (1.5). It is known that (1.5) does survive to finite ∆ [46]. It is thus tempting
to speculate a relation

G(iωE) ∼
∫ ∞

−∞
dτ eiωEτGT (τ), ωE → ±∞, (1.13)

although with current available information, it is not possible to be more precise.

In section 4.4 we show that (1.11) also applies in the generalized free field (GFF) case
where the thermal correlator is given by the sum over thermal images of the vacuum correlator,

G(τ)(GF F ) = ⟨ϕ(τ)ϕ(0)⟩(GF F )
β =

∑
m∈Z

1
(τ +mβ)2∆ , (1.14)

The sum over images ensures that the correlator satisfies the KMS condition [43, 44], G(τ) =
G(β−τ). Note that in (1.14) the m = 0 term is the contribution of the identity, while all other
terms correspond to multi-trace contributions [47, 48].9 However, there are also differences —
unlike in the holographic case, L(τ)(GF F ) does not develop a branch point at τ = β/2.

The fact that double-trace operators do not contribute to holographic correlators for
τ < β/2 in the large-∆ limit was discussed in [24] (see also [16]). Another situation where
the boundary correlator only receives contributions from the stress-tensor sector appeared
in [42], where a particular near-lightcone limit was considered. In this limit, the correlators
receive contributions only from the leading twist multi-stress tensor operators and can be
related to spacelike one-sided geodesics.

The rest of this paper is organised as follows. In section 2 we review the relation between
spacelike geodesics in eternal Schwarzschild-AdS black holes and thermal correlation functions.
For definiteness, we focus on d = 4. In particular, we analyse the singularity associated with
the bouncing geodesic. In section 3 we then analyse the OPE coefficients associated with
n-stress-tensor exchanges in d = 4. By analysing the large-n behavior, we find (1.10). In
section 4, we use the OPE analysis of section 3 to give a boundary interpretation of the
results of section 2. In particular, we argue that the bouncing singularities originate from
the singular behaviour found at finite ∆ in the OPE analysis of the stress-tensor sector. We
discuss the results in other dimensions and the generalization to the boundary CFT on a
sphere, possible resolutions of the black hole singularities from α′ and GN corrections, and
various future perspectives in section 5.

Some more technical details are presented in the appendices. In appendix A we discuss
the general structure of thermal two-point functions. In appendix B we state the partial
differential equation that we solve to determine the holographic OPE data, while in appendix C
we discuss the validity of approximating the OPE series expansion by an integral. We also
present some additional arguments to support the main claims of this paper. The analysis of
the thermal correlator in two-dimensions is performed in detail in appendix D. In appendix E
and appendix F we analyse the subleading terms in the correlator near the bouncing singularity.
In the main part of the paper, we focus only on the d = 4 case, but we show in appendix G

9See also [49–51] for related earlier developments and [21, 52] for examples of recent work on manifestations
of KMS conditions in CFT.
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that the stress-tensor sector has a singularity at the complexified time tc which corresponds
to the bouncing geodesic in other dimensions as well (we explicitly checked d = 6 and d = 8).
Finally, in appendix H we discuss in detail the lowest-twist contributions to the OPE.

2 Black hole singularity from geodesics

The main object of interest in this paper are thermal two-point correlation functions of
identical operators

G(t, x⃗) =
〈
ϕ(t, x⃗)ϕ(0, 0⃗)

〉
β
, (2.1)

where β = T−1 denotes the inverse temperature. In field theories with holographic duals
these correlators can be calculated using the Green’s function of the scalar field propagating
in the asymptotically Anti-de Sitter black hole. When the mass, m, associated with the
bulk scalar field, or equivalently, the conformal dimension of the dual field theory operator,
∆, is large, then the correlation function can be approximated by summing over classical
saddles of the relevant path integral [6]

G(t, x⃗) ∼
∑

saddles
e−∆ L . (2.2)

These saddles correspond to the geodesics in the black-hole background that connect the
boundary points at which the operators are inserted and L denotes the regularised proper
length of the geodesic.

We will focus on the case where the bulk spacetime is a black brane in five dimensions10

with the metric

ds2 = − r2 f(r) dt2 + dr2

r2 f(r) + r2 dx⃗2 , (2.3)

where x⃗ = (x, y, z), so that dx⃗2 denotes the flat metric on R3, and

f(r) ≡ 1− µ

r4 . (2.4)

Note that in most of this paper we set the radius of AdS to unity. Near the spacetime
boundary, r → ∞, the metric (2.3) reduces to that of the Poincaré patch of AdS5. As such,
the conformal boundary is just four-dimensional Minkowski space R1,3. The parameter µ is
related to the inverse temperature β through µ = (π/β)4. For the remainder of this section,
we set µ = 1, which means that β = T−1 = π and the location of the black-hole horizon
is given by r0 = 1. The curvature singularity is at r = 0.

We are interested in the maximally extended spacetime which can be described by using
complexified Schwarzschild coordinates. The time coordinate t then has a real and imaginary
part, which we denote as11

t = tL − i tE , tL ∈ R , 0 ≤ tE < β . (2.5)

The Lorentzian section of this spacetime can be divided into four wedges in which the
imaginary part takes different constant values, summarised in figure 1. Regions I and III

10Examples in higher dimensions are discussed in appendix G.
11Note that we use a different sign convention for the imaginary part compared to [8, 9].
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I tE = 0

II

tE = β
4

IIItE = β
2

IV

tE = −β
4

tL

Figure 1. The Penrose diagram for the Lorentzian section of the maximally extended black-hole
geometry in AdS5. The spacetime separates into four regions with different constant values for the
imaginary part of the time-coordinate. The blue arrows depict the direction of Lorentzian time, tL, in
each region.

describe two spacelike separated regions outside the horizons. We choose the imaginary part
of the time coordinate in Regions I and III to be given by tE = 0 and tE = β/2 respectively.
Region II describes the interior of the black hole with tE = β/4, while Region IV is the
white hole region, where tE = −β/4. In essence, crossing a horizon corresponds to shifting
the imaginary part of the time coordinate by β/4.

In what follows we review the analysis of the geodesic approximation to the correlator
G(tL − iβ/2, x⃗), which can be interpreted as a two-sided correlator with the operators in (2.1)
being inserted at different asymptotic regions of the complexified spacetime (2.3). As shown
in [8, 9], real spacelike geodesics that connect the two asymptotic regions probe the interior
of the black hole, see figure 2. As they probe deeper into the interior, the geodesics become
more and more light-like with their proper length vanishing. This singular behavior is
incompatible with the general properties of thermal correlation functions, which shows that
such “bouncing geodesics” cannot contribute to the path integral. However, in the next section
we show that the diverging behaviour related to the bouncing geodesics is still encoded in
the stress-tensor sector of the OPE.

2.1 Geodesics in the Euclidean section

We begin by analysing geodesics in the Euclidean section of the black-brane spacetime

ds2 = r2 f(r) dτ2 + dr2

r2 f(r) + r2 dx⃗2 , x (2.6)

where f(r) is defined in (2.4) and τ ∼ τ + β is periodically identified.12 We can use the
symmetries of the metric to reduce the problem to the motion in a one-dimensional effective

12The coordinate τ is related to the usual time coordinate through Wick rotation, τ = i t = tE + i tL, which
explains our choice of sign for the imaginary part in (2.5). In this subsection, we take τ ∈ R, while we will
extend it to full complex space in subsequent sections.

– 8 –
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τ

Ẽ = 0

Ẽ → +∞

E = 0

E → ∞

tLtL

Figure 2. Diagrams for the Euclidean section (left) and the Lorentzian section (right) of the
complexified black-hole spacetime. In both, we plot spacelike geodesics: the Ẽ = E = 0 geodesic
(blue) can be drawn in both sections. On the left, the green curves depict geodesics with increasing
Ẽ, which correspond to taking the limit τ → 0. On the right, in purple, we plot real geodesics that
probe the black-hole interior. As E = −iẼ → ∞, the geodesics become light-like signalling singular
behaviour — these are the Bouncing geodesics [8, 9].

potential. In general, we can introduce the energy, Ẽ, associated with the time-translation
invariance, and linear momenta Pi, related to the R3 isometry. In the main text we limit
ourselves to the case with x = 0, so that all linear momenta are set to zero.13

Let the geodesic be parameterised by an affine parameter s and denote the derivative with
respect to this parameter with a dot, for example τ̇(s). The energy of a geodesic is given by

Ẽ = r2 f(r) τ̇ , (2.7)

defined in such a way that τ̇ > 0 for Ẽ > 0. The condition that the geodesic is everywhere
spacelike can be rearranged into

ṙ2 = r2 f(r)− Ẽ2 . (2.8)

Geodesics in the Euclidean section are pictured on the left of figure 2. They start at r = ∞
and probe the space up to a minimal value, rt, which we call the turning point, before
returning to the asymptotic boundary. The turning point is given by the largest real root
at which (2.8) vanishes

r2
t = 1

2

(
Ẽ2 +

√
Ẽ4 + 4

)
. (2.9)

13The case with non-vanishing spatial separation is considered in appendix F.
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The time difference between the endpoints of a geodesic is given by

τ ≡ τf − τi = 2
∫ ∞

rt

Ẽ dr

r2 f(r)
√
r2 f(r)− Ẽ2

= 1
2 log

Ẽ2 + 2 Ẽ + 2√
Ẽ4 + 4

− i

2 log

Ẽ2 + 2 i Ẽ − 2√
Ẽ4 + 4

 . (2.10)

Let us focus on the behaviour at high energies, Ẽ → ∞. In this limit, the turning point goes
toward the asymptotic boundary — such geodesics probe only the asymptotic region of space.
To see how the time difference scales with the energy, we expand (2.10)

τ = 2
Ẽ

− 8
5 Ẽ5

+O
(
Ẽ−9

)
, =⇒ Ẽ = 2

τ
− τ3

10 +O
(
τ7
)
, (2.11)

meaning that as the energy is increased, the time difference goes to 0.
The regularised proper length of the geodesic is given by

L = 2 lim
rmax→∞

∫ rmax

rt

dr√
r2 f(r)− Ẽ2

− log rmax

 = 1
2 log

( 16
Ẽ4 + 4

)
, (2.12)

where rmax is the UV cut-off length [9]. By expressing the energy as a function of τ we
find a logarithmic divergence at the origin

L = 2 log τ − π4

40

(
τ

β

)4
− 11π8

14400

(
τ

β

)8
+O

(
τ12
)
, (2.13)

where we have reinstated the appropriate units, using β/π = 1. When ∆ ≫ 1, the sum
over geodesics gives an approximation to the thermal correlation function. And by expo-
nentiating (2.13) we get the contribution from the spacelike geodesic connecting two points
on the Euclidean time circle

e−∆ L = 1
τ2∆

[
1 + ∆π4

40

(
τ

β

)4
+
(
9∆2 + 22∆

)
π8

28800

(
τ

β

)8
+O

(
τ12
)]

. (2.14)

In the next section we will show that this result is completely reproduced by only the
stress-energy sector in the large-∆ limit.

2.2 Contributions from different saddles

The expressions (2.10) and (2.12) can be analytically continued to complex Ẽ to obtain
geodesics in the real section of Schwarzschild spacetime. In particular, to obtain two-sided
correlation functions, we need to consider

τ = π

2 + itL, tL ∈ R . (2.15)

For this purpose, expanding (2.10) around Ẽ = 0+, we find

τ − π

2 = −Ẽ
3

6 +O(Ẽ5), L = log[2]− Ẽ4

8 +O(Ẽ8) , (2.16)
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which implies that L(τ) has a branch point singularity of the form (τ − π
2 )

4
3 at τ = π

2 . Solving
Ẽ in terms of τ we find three branches of solutions

Ẽ0 = (6r)
1
3 e

iθ
3 , Ẽ1 = Ẽ0 e

− 2πi
3 , Ẽ2 = Ẽ0 e

− 4πi
3 ,

π

2 − τ ≡ r eiθ . (2.17)

For π
2 − τ > 0 (i.e. θ = 0), Ẽ0 branch should be chosen. To analytically continue L(τ) to

τ given by (2.15), we decrease θ from 0 to −π
2 (for definiteness take tL > 0). A careful

analysis [8]14 shows that in the large ∆ limit:

1. For θ ∈ (−π
8 , 0], Ẽ0 is the only saddle contributing to G(τ).

2. For θ ∈ (−π
2 ,−

π
8 ], Ẽ0 is the dominant saddle, but now Ẽ1 also contributes as a

subdominant saddle, i.e.

G(τ) ∼ e−∆L(Ẽ0) + e−∆L(Ẽ1) . (2.18)

3. At θ = −π
2 , i.e. for two-sided geodesics, the two terms in (2.18) have the same norm

and thus contribute equally. Both Ẽ0 and Ẽ1 are complex, corresponding to complex
geodesics in the black hole spacetime.15

4. For θ ∈ [−7
8π,−

π
2 ), we still have (2.18), but now Ẽ0 contribution is subdominant.

5. For θ ∈ [−π,−7
8π) only Ẽ1 contributes. In particular, for θ = −π, i.e. τ > β/2, we have

Ẽ1 becomes real, negative, and

− 1
∆ logG(τ) = L(Ẽ1(τ)) = L(Ẽ0(β − τ)) = − 1

∆ logG(β − τ), τ ∈
(
β

2 , β
)
. (2.19)

This shows that G(τ) in the large ∆ limit satisfies the KMS condition.

6. The saddle corresponding to Ẽ2 does not lie on the steepest descent contour of the
integral to obtain G(τ) [8, 9], and never contributes to the correlator.

2.3 Bouncing geodesics

The Ẽ2 branch in (2.17), which never contributes to the correlator, corresponds to the two-
sided real geodesics presented in the right plot of figure 2. More explicitly, for θ = −π

2 we have

Ẽ2 = i E , E ∈ R+ , (2.20)

The turning point is then given by16

r2
t = 1

2
(√

E4 + 4− E2
)
. (2.21)

14See section 3.4 of the paper. While the discussion in section 3.4 was phrased as a model, it can be justified
using section 4.4 of [9].

15See [53, 54] for recent discussion of complexified geodesics in the de Sitter context.
16The analytic structure of the turning point as a function of the energy, rt(Ẽ), is discussed in [9]. This

function has branch cuts in the complex plane that can be associated to quasinormal modes of the black
hole. Then one can define rt(Ẽ) in the full complex Ẽ plane by starting from (2.8) for Ẽ ∈ R and analytically
continue through the origin. Physically this can be thought of as following the geodesics in the Euclidean
section as the real part of the energy is decreased from infinity to 0. At this point the geodesic crosses the cap or
equivalently traverses the double-sided Lorentzian section (see the two geodesics in blue in figure 2). One then
increases the imaginary part of the energy, E, causing the geodesics to probe the region behind the horizon.
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One can see that the turning point is inside the horizon for E2 > 0. In fact, as E → ∞, the
turning point approaches the origin as rt ∼ 1/E, meaning that in this regime the geodesics
probe the region near the singularity, see right of figure 2.

The time difference and the proper length of the two-sided geodesics corresponding to
Ẽ2 can be obtained by taking Ẽ = i E in (2.10) and (2.12)

τ = π

2 (1 + i) + 1
2 log

(
E2 − 2i E − 2√

4 + E4

)
− i

2 log
(
E2 + 2E + 2√

4 + E4

)
, (2.22a)

L̂ ≡ L(Ẽ2) =
1
2 log

( 16
E4 + 4

)
. (2.22b)

which matches the known results [8, 9]. We have also identified L̂, which was introduced
around (1.4), as the geodesic distance associated with Ẽ2. We keep the constant time shift
explicit — the real part corresponds to the shift of τ = β/2 which comes from the spacelike
geodesic crossing two horizons as it goes from the I to the III patch in the Lorentzian
section of the spacetime.

Denote the time shift observed above as

τc ≡
π

2 (1 + i) = π√
2
e

i π
4 , (2.23)

and expanding (2.22a) in large E gives

τ = τc −
2 i
E

+ 8 i
5E5 +O

(
E−9

)
, (2.24)

meaning that as E → ∞, and the spacelike geodesics become increasingly null-like, τ → τc. Let

δτ ≡ τc − τ , (2.25)

and perturbatively invert (2.22a) to express E as a function of δτ

E = 2i
δτ

− i

10 (δτ)3 +O
(
(δt)7

)
. (2.26)

One can then insert this into the expression for proper length and again find a logarithmic
divergence, only now as τ → τc

L̂ = 2 log δτ + π4

160

(
δτ

τc

)4
+O

(
δτ8

)
, (2.27)

where we have reinstated the units using π4 = β4 = −4 τ4
c . We note that the first correction

to the logarithmic divergence appears at order (δτ)4. We then find

Ĝ ≡ e−∆ L̂ = 1
(δτ)2∆

[
1− ∆π4

160

(
δτ

τc

)4
+O

(
δτ8

)]
, (2.28)

which exhibits the singular behavior (1.2).
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3 Black hole singularity from OPE

In this section we holographically extract the OPE coefficients of the n-stress tensor contri-
butions to the thermal correlator. We then find the large-n behaviour of these coefficients,
which allows us to resum the stress-tensor sector of the correlator near the radius of con-
vergence of the OPE. In d = 4, for finite ∆ we find singularities in the complex τ -plane,
located at τc = β√

2e
i π

4 +ik π
2 for k ∈ Z. These correspond to the singularities associated with

bouncing geodesics discussed in the previous section and are direct signatures of the black
hole singularity. We further show that these bouncing singularities disappear in the large
∆ limit, where we recover the branch point singularity at τ = β/2. This is consistent with
the geodesic analysis performed in the previous section.

3.1 Stress-tensor sector of the correlation function

Consider the scalar two-point function at finite temperature T = β−1

G(τ, x⃗) = ⟨ϕ(τ, x⃗)ϕ(0, 0)⟩β . (3.1)

Let the CFT be holographically dual to a planar AdS-Schwarzschild black hole in (d+ 1)-
dimensions and the scalar operators be dual to minimally coupled scalar fields in the bulk.
We again use the black hole metric in the Euclidean signature (2.6)

ds2 = r2 f(r) dτ2 + dr2

r2 f(r) + r2 dx⃗2 , (3.2)

with x⃗ = (x, y, z), and f(r) = 1− µ
rd . In this section we keep the parameter µ = (4π/d β)d

explicit. The equation of motion for the minimally coupled scalar

(□−m2)ϕ = 0 , m2 = ∆(∆− d) (3.3)

can be solved by a near-boundary expansion [24]. We first perform a coordinate transformation
(τ, x⃗, r) → (w, ρ, r)

ρ2 = r2 x⃗2 , w2 = 1 + r2(τ2 + x⃗2) , (3.4)

and write

ϕ(w, ρ, r) =
(
r

w2

)∆
ψ(w, ρ, r) , (3.5)

where (r/w2)∆ is the solution in the pure AdS space. The equation of motion (3.3) then
reduces to a differential equation for ψ(w, ρ, r), whose explicit form in arbitrary dimension d

is given in appendix B. Using the standard AdS/CFT dictionary, the boundary correlator
can be obtained by taking the limit

G(τ, x⃗) = 1
(τ2 + x⃗2)∆ lim

r→∞
ψ . (3.6)

Determining the function ψ using the bulk equation of motion determines the boundary
correlation function.
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There are two types of contributions to ψ — in terms of the CFT description, one
corresponds to the stress-tensor sector, while the other contains the contributions of the
double-trace operators. We restrict ourselves to non-integer conformal dimensions, in which
case the two sectors decouple17

ψ = ψT + ψ[ϕϕ] , (3.7)

where ψT denotes the stress tensor sector, which also includes the contribution dual to the
identity operator, while ψ[ϕϕ] denotes the double-trace contributions. We focus on the stress
tensor sector. Its near-boundary expansion is given by [24]

ψT = 1 +
∞∑

i=1

i∑
j=0

d i
2 −j∑

k=−i

ai
j,k

ρ2jw2k

rd i
, (3.8)

where 1 corresponds to the contribution of the identity operator. By inserting this ansatz
into the equation of motion of the bulk scalar and expanding to arbitrary order in 1/r, one
is able to determine the coefficients ai

j,k. Most importantly, through the dictionary (3.6),
this large-r expansion on the bulk side systematically maps to the OPE of the boundary
correlator, which for x⃗ = 0 reads18

GT (τ) =
1
τ2∆

∞∑
n=0

Λn

(
τ

β

)d n

, (3.9)

where the subscript in GT (τ) denotes that this is only the stress-tensor sector of the full
correlator, G(τ).19 Through this expression we are able to determine the stress-tensor
contributions to Λn using the near-boundary expansion of ψT .

It is important to emphasise that using this procedure one cannot determine the full
correlation function but only the stress tensor sector. Namely, double trace operators are
sensitive to the near-horizon behaviour, hence their OPE data cannot be determined from
the near-boundary analysis that is central to this method [24]. We also want to stress that
this method utilises two expansions in large-r: in (3.8) one first uses such an expansion to
solve the bulk equations of motion followed by a second r → ∞ limit to obtain the correlation
function (3.6). This double-r limit is crucial, but it makes the method conceptually less
transparent. Nonetheless, we consider the OPE data obtained from this method to be exact to
all orders in ∆. While we are currently lacking a definite proof that this is the case, the results
of this method were shown to be consistent with those obtained by alternative techniques.

In what follows, we focus on the correlation functions where the operators are inserted
at the same spatial points, with correlators at x⃗ ̸= 0 considered in appendix F.

3.2 OPE coefficients and the KMS condition

Let us now set d = 4. For small values of n, one can efficiently calculate the Λn as explicit
functions of ∆. After that, calculating Λn for general ∆ becomes too time-demanding, so

17For integer ∆ the two sectors mix and situation becomes more subtle [24].
18See appendix A for more details.
19With an abuse of nomenclature, we will still refer to GT (τ) as the correlator. The subscript should serve

as a reminder that it is just the stress-tensor sector contribution.
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Figure 3. Plots for Λ4 and Λ5 as functions of ∆. These OPE coefficients have poles at ∆ = 2, 3, . . . , 2n
and are regular for ∆ > 2n.

we first fix ∆ to a certain value and only then calculate Λn. Namely, as n grows, these
coefficients become more complicated functions of ∆. For example, the first few terms in
the small τ expansion of the correlator are given by

GT (τ) ≈
1
τ2∆

[
1 + π4 ∆

40

(
τ

β

)4
+ π8 ∆

(
63∆4 − 413∆3 + 672∆2 − 88∆ + 144

)
201600(∆− 4)(∆− 3)(∆− 2)

(
τ

β

)8
+ . . .

]
.

(3.10)
The expressions for Λn with higher n follow the same pattern as Λ2 above (see figure 3 for
Λ4 and Λ5 as functions of ∆) and can be schematically written as

Λn ∼ hn(∆)∏2n
k=2(∆− k)

, (3.11)

where hn(∆) is a polynomial function.
Fixing n and varying ∆, we can distinguish two regimes: ∆ ≤ 2n, where we find poles at

∆ = 2, 3, . . . , 2n, and ∆ > 2n, where the OPE coefficients have no poles in ∆. For fixed ∆,
the OPE coefficients in these two regimes behave differently, which can be seen in figure 4.
We see a significant change in the behaviour at a particular value n = n∗. Analysing the
dependence of this cross-over point on the conformal dimension, we find that n∗ = ∆/2,20

which is exactly where we find the last pole in Λn.
That the cross-over happens at this precise value of n should not be surprising. Namely,

recall from (3.9) that the conformal dimension of the (Tµν)n multi-stress tensor exchange
in d dimensions is ∆T n = nd, while those for double-trace operators have ∆m = 2∆+ 2m,
m = 0, 1, 2, . . .. They can mix when ∆T n = ∆m, which are exactly the locations of the poles
of ∆ in Λn for a fixed n, and are only possible for n ≥ n∗ with

n∗ ≡
2∆
d

d=4= ∆
2 , ⇐⇒ ∆∗

T n ≡ n∗ d = 2∆ . (3.12)

20In practice, we have taken n∗ to be the lowest integer greater than ∆/2, which is why all points lie just
above the ∆/2 line on the right plot in figure 4.
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Figure 4. On the left we plot the values of log |Λn| for ∆ = 75
2 . We see that at n∗ = 19, there is a

change of behaviour of the OPE coefficients. On the right, we plot the behaviour of n∗ as a function
of ∆ and find that n∗ = ∆/2 (red).

This explains the different behavior of Λn for n > n∗ and n < n∗ observed in the left plot
of figure 4. We can equivalently say that the cross-over point happens exactly at the point
where double-trace operators start contributing; for n < n∗, the series expansion for G(τ)
has only contributions from GT (τ).

In our analysis, we have no control over the double-trace contributions. Therefore, for
finite ∆, GT (τ) does not reproduce the full thermal correlation function. A simple check
of the importance of the double-trace exchanges comes from the failure of the stress-tensor
sector to satisfy the KMS condition. In figure 5, we plot numerically GT (τ) for various ∆,
and see that GT (τ) is not symmetric around τ = β/2 and thus GT (τ) ̸= GT (β − τ). The
stress-tensor sector contribution by itself does not satisfy the KMS condition and contains
no knowledge about the periodicity of the (Euclidean) time circle. Hence one role of the
double-trace sector is to ensure that the full correlator satisfies the KMS condition.

3.3 Asymptotic analysis of OPE coefficients for finite ∆ and bouncing
singularities

Let us now focus on the analysis of the coefficients Λn for large values of n and finite ∆. We
are thus interested in the regime where n > n∗ and both the stress-tensor and double-trace
contributions are appearing in the full correlator. As already mentioned above, calculating
Λn as explicit functions of ∆ is currently out of our computational reach. Instead we first
fix ∆ to a finite number: for each value of ∆ considered, we calculated n ≈ 50 coefficients,
which on a standard desktop computer takes around 10 days per ∆.

We find that for large values of n, the Λn can be approximated by (see figure 6)

Λa
n = c(∆) n2∆−3(

1√
2

)4n
ei π n

. (3.13)

One can be more precise and include 1/n corrections to (3.13). We analyse such terms
and how we obtained the form for Λa

n in detail in appendix E. The 1/n corrections become

– 16 –



J
H
E
P
1
0
(
2
0
2
4
)
1
0
5

Figure 5. The value of stress-tensor contribution to the thermal correlator for different values of ∆
near τ = β/2. We see that the stress-tensor sector is not symmetric around τ = β/2 and thus does
not satisfy the KMS condition, GT (τ) = GT (β − τ).

Figure 6. Ratio of the explicit results for Λn to the leading large-n prediction for different values of
∆ in d = 4.

especially important at large ∆, which can already be seen in figure 6, where the approach
to the asymptotic form is slower for higher ∆.

The coefficients Λa
n contain a non-trivial function c(∆), which has poles at ∆ = 2, 3, . . ..21

This diverging behaviour can be isolated through

c(∆) ≡ π∆ (∆− 1)
sin (π∆) ĉ(∆) , for ∆ > 0 , (3.14)

21As mentioned earlier, at integer values of ∆ the double trace operators can mix with the stress tensor
sector. The addition of these double traces should cancel the divergence and make the correlation function
finite [24].
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Figure 7. Numerical data for ĉ(∆) (blue) compared with the function given in (3.14) (red).

where the function ĉ(∆) is free of poles. It turns out (see figure 7), that this residual function
can be approximated by22

ĉ(∆) ≈ ∆
Γ
(
2∆ + 3

2

) 42∆

20 . (3.15)

We now insert the asymptotic form of Λn into the OPE of the correlator (3.9) and
approximate the sum with an integral23

GT (τ) ≈
1
τ2∆

∫ ∞

0
Λa

n

(
τ

β

)4n

dn = c(∆)Γ(2∆− 2)
τ2∆

− log

 τ4(
β√
2

)4
eiπ



−(2∆−2)

. (3.16)

While this form of the correlator is not valid for all values of τ , it gives us information about
its behaviour near singular points: namely, the (3.16) will diverge whenever the argument
of the logarithm is equal to 1, which is precisely at

τ = τc ≡
β√
2
ei π

4 +ik π
2 for k ∈ Z . (3.17)

Let δτ ≡ τc − τ . Near the critical values, the correlator takes the form

GT (τ ≈ τc) ∼
c(∆)Γ(2∆− 2)

4(2∆−2)
1
τ2

c

1
δτ2∆−2 , (3.18)

which is precisely of the form of the bouncing singularities (1.2) (see figure 8). The four-fold
rotational symmetry of the singularities (3.17) originates from the fact that multiplying by a
fourth root of unity τ → ei kπ

2 τ leaves all terms inside the sum in the OPE (3.9) invariant.
At first sight, one can now take the large-∆ limit of the correlator near the poles. To

make a valid comparison, we first define

LT ≡ − 1
∆ logGT (τ) , (3.19)

22That is, for ∆ ≳ 5/4 and up to ∆ ≈ 15, the ratio between the “numerical” values and (3.14) is equal to 1
up to 2%.

23We discuss the validity of this approximation in appendix C.
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β√
2
ei
π
4

−β β

τ

Figure 8. The poles of the stress-tensor sector of the thermal correlator in four dimensions in the
complex τ plane. The poles are located inside the circle of radius β.

which, using (3.18), gives

LT ≃ − 1
∆ log

[
c(∆)Γ(2∆− 2)

4(2∆−2)
1
τ2

c

]
+ 2∆− 2

∆ log δτ . (3.20)

If then one inserts the expression (3.14) (including (3.15)) for c(∆) then in the large-∆ limit
all ∆ dependence disappears24 and

lim
∆→∞

LT ≃ 2 log δτ . (3.21)

This appears to give the precise form of divergence expected from the bouncing geodesic (2.27).
However, the order of limits for (3.21) is different from that of (2.27). To obtain (3.21),

we first focused on the limit τ → τc and then took the large ∆ limit. On the other hand,
the bulk geodesic analysis corresponds to taking the large ∆ limit first. That the order of
limits is important can be seen from the structure of the Λn as functions of ∆, as indicated
in figure 3 and 4. To obtain (3.18), we first fixed ∆ and analyzed the asymptotic large
n behavior of Λn, which is in the regime n > n∗ = ∆/2. However, the geodesic analysis
corresponds to taking first ∆ → ∞, where the cross-over point also goes to infinity, n∗ → ∞,
and thus we are always in the regime n < n∗.

3.4 Asymptotic behavior in the large ∆ limit

To properly analyse the large ∆ limit and make contact with the geodesic results we first
need to take ∆ → ∞ and only then determine the OPE coefficients Λn. We show in this
subsection that the Euclidean geodesic results (2.10) and (2.12) are indeed recovered.

We begin by expanding the logarithm of (3.10) in small τ

LT = 2 log τ − π4

40

(
τ

β

)4
−
(
77∆3 − 483∆2 + 712∆ + 72

)
π8

100800 (∆− 4)(∆− 3)(∆− 2)

(
τ

β

)8
+ . . . . (3.22)

24At integer values of ∆, the prefactor c(∆) diverges (see (3.14)). However, in these cases, one finds log(∆)/∆
behaviour which vanishes as ∆ → ∞.
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Figure 9. The values of log
∣∣∣Λ̃n/∆

∣∣∣ for different ∆. The discrete data is joined for a clearer
presentation. When ∆ is small, we observe a change of behaviour at n = n∗ = ∆/2. For large ∆, this
cross-over point disappears and the data converges to a fixed curve, analysed in (3.28).

and compare this with the proper length of the geodesic in Euclidean space (2.13). We see
that logarithmic and the τ4 terms match,25 while the τ8 (and all higher order) terms differ.
This should not be surprising: the geodesic result can be meaningfully compared to the
correlation function only in the ∆ → ∞ limit, in which case

LT ≡ lim
∆→∞

LT = 2 log τ − π4

40

(
τ

β

)4
− 11π8

14400

(
τ

β

)8
+ . . . , (3.23)

is equal to (2.13). We checked the agreement explicitly up to order (τ/β)20. This importantly
shows that in the limit where the conformal dimension of the probe field is large, the stress
tensor sector completely reproduces the geodesic result.

When ∆ → ∞, we can also analyse the asymptotic behaviour of the expansion coefficients
in LT . In particular, inserting (3.9) into (3.19), we obtain

LT = 2 log τ −
∞∑

n=1

Λ̃n

∆

(
τ

β

)4n

, (3.24)

where Λ̃n are appropriate combinations of Λn and we have used the fact that Λ0 = 1. One
can then take the limit ∆ → ∞ as

LT = lim
∆→∞

LT = 2 log τ −
∞∑

n=1
Ln

(
τ

β

)4n

, (3.25)

where we have assumed that one can take the limit inside the series and thus

Ln ≡ lim
∆→∞

Λ̃n

∆ . (3.26)

25These terms are related to the exchange of identity and a single stress-tensor operator in the OPE and are
fixed by symmetry.
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Figure 10. Comparing the holographic data for ∆ = (108 + 1)/2 to the ansatz (3.28) and the
numerical data given by (3.30).

The first few Ln are given implicitly in (3.23). For higher values of n, we again analyse
the data for large but fixed ∆. For some ∆, we plot the values of log

∣∣∣Λ̃n/∆
∣∣∣ in figure 9.

For small enough ∆, we again observe the cross-over at n = n∗ to the asymptotic behaviour
analysed in the previous subsection. For large ∆, not only does this cross over get pushed to
infinity, but the curve stabilises to an asymptotic value, which we assume is given by

Λ̃n

∆ −−−−→
∆→∞

Ln +O
( 1
∆

)
. (3.27)

In practice, we analyse ∆ = (108 + 1)/2 and estimate Ln up to 1/∆ corrections. We find
that at large values of n, one can make an ansatz

Ln = c nb an
(
1 +O

( 1
n

))
, (3.28)

where a, b, and c are all constants. Then for n ≫ 1

logLn = log c+ b log n+ n log a+O
( 1
n

)
, (3.29)

which can be directly fitted to the Λ̃n/∆ data for ∆ = (108 + 1)/2 and we find26 (see
also figure 10)

log a = 4 log 2± 10−6 , b = −7
3 ± 10−4 log c = −2.050± 10−3 , (3.30)

In what follows we neglect the uncertainties which can be traced back to both 1/∆ and
1/n effects. We insert these values into the expansion (3.25) and approximate the sum

26We used the data from n = 10 to n = 36 and used the ansatz (3.28) with up to 1/n12 corrections.
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by an integral27

LT ≈ 2 log τ − c
∞∑

n=1
n−

7
3 24n

(
τ

β

)4n

≈ 2 log τ − c

∫ ∞

1
dnn−

7
3

(2 τ
β

)4n

= 2 log τ − cE 7
3

(
− log

(2τ
β

)4
)
. (3.31)

This function has a branch cut at all points at which the argument of the logarithm is
equal to 1, which is

τb =
β

2 e
iπ k

2 , k ∈ Z , (3.32)

which suggests four singularities in the complex-τ plane. Focusing on τ = β/2, we ex-
pand (3.31) around this point and find

LT ≈ −cΓ
(
−4
3

) ( 8
β

) 4
3
[
β

2 − τ

] 4
3
+ . . . ≈ −1.364

(
π

2 − τ

) 4
3
+ . . . , (3.33)

where we kept only the leading non-analytic behavior at τ = β/2, and in the second equality
inserted the value of c and taken β = π. The leading non-analytic behavior at τ = β/2 of the
Euclidean geodesic results (2.10) and (2.12) can be readily found from (2.16), which gives

L = −6
4
3

8

(
π

2 − τ

) 4
3
+ . . . ≈ −1.363

(
π

2 − τ

) 4
3
+ . . . . (3.34)

We see that the asymptotic analysis reproduces the location, the exponent, and the prefactor
of the branch point structure observed from bulk geodesics.

One can also study the large ∆ limit of the logarithm of the OPE coefficients. One can
perform the same analysis as above for a large value of ∆ and obtain

log Λn ∼ n log∆− log Γ(n+ 1) + n log
(
π4

40

)
+O

( 1
∆

)
, (3.35)

where the numerical value of log
(

π4

40

)
≈ 0.89004 gets reproduced by fitting up to ≈ 10−6

for ∆ = (108 + 1)/2. Exponentiating the above result yields

Λn = 1
n!

(
∆π4

40

)n (
1 +O

( 1
∆

))
. (3.36)

Inserting this into the OPE and assuming that one can trust these OPE coefficients up
to n → ∞ yields

GT (τ) ≈
1
τ2∆

∞∑
n=0

1
n!

(
π4 ∆ τ4

40β4

)n

≈ 1
τ2∆ exp

[
π4 ∆ τ4

40β4

]
, (3.37)

27We use the function

En(x) ≡
∫ ∞

1
t−n e−t x dt .
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where we neglected 1/∆ corrections. This result matches [16], where starting from (2.14), a
double-scaling limit is taken with ∆ → ∞ while τ/β → 0 such that ∆τ4/β4 is held fixed. The
significance of this double-scaling limit is that it can be obtained from the exponentiation
of the single stress tensor exchange. Indeed, we see that the argument of the exponent is
precisely the first non-logarithmic term in the proper length in (2.13). Therefore, taking
the large ∆ limit at the level of the OPE coefficients neglects all the higher order terms
in (3.23), since the information about these terms is encoded in the 1/∆ corrections in (3.36),
which are discarded. Since these higher order terms are crucial for the analytic structure
of the proper length, we are unable to see the branch cut when taking the ∆ → ∞ limit
at the level of the correlation function. As seen above, one needs to analyse the proper
length in order to see the branch cut.

3.5 Summary

Here we summarize the main results obtained in this section:

1. For a finite ∆, as indicated by figure 5, GT (τ) does not satisfy the KMS condition on
its own.

The double-trace contribution is thus also needed such that the KMS condition is
satisfied by the full correlator.

2. For a finite ∆, GT (τ) has singular behavior (3.18) at (3.17).

Full thermal correlation functions cannot have such singular behavior, and thus (3.18)
should be cancelled by G[ϕϕ](τ). That is, G[ϕϕ](τ) must have the same singular behavior,
but with an opposite sign.

3. In the ∆ → ∞ limit, the small τ expansion of LT (τ) (defined in (3.23)) precisely
recovers the small τ expansion of L(τ) obtained from gravity.

While we have only checked the agreement between LT (τ) and L(τ) in this limit up to
τ20, we will assume below that the agreement in fact holds to all orders in the small τ
expansion.

4. There is a crossover behavior in Λn at n∗ = ∆/2. As a result, in the large ∆ limit, the
singularity of GT (τ) at τc obtained at a finite ∆ is not directly seen, instead we find a
branch point singularity in LT (τ) at τ = β/2.

A possible scenario is that as ∆, and therefore n∗, increases the size of the region
around τ = τc where GT (τ) diverges shrinks and finally vanishes when ∆ → ∞. At the
same time, as ∆ increases, the behavior of LT (τ) near τ = β/2 gets closer and closer to
the singular behavior observed in the geodesic analysis (3.33). This would be another
signature of the noncommutativity of limits τ → τc and ∆ → ∞.

4 Boundary interpretation of the gravity results

We now use the results obtained from the OPE analysis of section 3 to interpret the gravity
results reviewed in section 2. While the singular behavior (3.18) has the same form as that
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in (1.2), the connection is not immediate, as (3.18) and (1.2) appear in different quantities and
in different regimes (one in GT at finite ∆, while the other in Ĝ at infinite ∆). What is more,
as discussed at the end of last section, the singular behavior (3.18) disappears in the large ∆
limit, which obscures its connection to the bouncing singularities and black hole singularities.

In this section, we argue that the singular behavior (3.18) can indeed be identified as
the boundary origin of (1.2) and thus the black hole singularities. Below we will restore β,
and when we say “for all τ” it always refers to Re τ ∈ (0, β).

4.1 Role of the double-trace contributions in the large ∆ limit

We first discuss the role of the double-trace contributions in the large ∆ limit. In section 3
we found that in the ∆ → ∞ limit, the small τ expansion of LT (τ) precisely recovers that of
L(τ) obtained from the geodesic analysis (i.e. item 3 of section 3.5). Furthermore, we have
shown that in the large ∆ limit, LT (τ) has a branch point singularity of the form (β

2 − τ)
4
3

at τ = β/2. That is, for large ∆, LT (τ) (and L(τ)) has a radius of convergence β/2, and the
double-trace contribution G[ϕϕ](τ) can be neglected in the large ∆ limit for τ < β/2.

That G[ϕϕ](τ) can be neglected for small τ has a simple explanation from the OPE
structure. The double-trace contribution G[ϕϕ](τ) has a small τ OPE of the form

G[ϕϕ](τ) =
1
β2∆

∞∑
k=0

Dk

(
τ

β

)2 k

(4.1)

where Dk are some constants. The appearance of even powers in (4.1) comes from the fact
that the double-trace operators ϕ(∂2)n∂i1 · · · ∂il

ϕ have dimensions 2∆ + 2n+ l and only the
ones with even l can have nonzero thermal expectation values in (1.7).

Comparing (4.1) with the analogous expression for the stress tensor sector (3.9) gives

G[ϕϕ](τ)
GT (τ)

∼
(
τ

β

)2∆ (
1 +O

(
τ2
))
, (4.2)

with the full G(τ) having the structure

G(τ) = 1
τ2∆

[ ∞∑
n=0

Λn

(
τ

β

)d n

+
∞∑

k=0
Dk

(
τ

β

)2 k+2∆
]
. (4.3)

We may conclude from the above equation that, in the large ∆ limit, the double-trace
contribution is always suppressed for all τ . This, however, assumes that we can take the
large ∆ limit inside the sum, which requires G(τ) to be uniformly convergent for all ∆ for all
τ . This is incorrect, since as mentioned earlier, LT (τ) develops a branch point singularity at
τ = β/2 in the large ∆ limit, and only has the radius of convergence equal to β

2 .28 Thus for
|τ | ≥ β/2, we need to sum the series for G(τ) first for finite ∆ and then take the large ∆ limit.

For |τ | ≥ β/2, we expect G[ϕϕ](τ) will be needed. After all, as mentioned earlier, the
double-trace contributions are needed for the full correlator to satisfy the KMS condition.
Now comparing with the discussion of section 2.2, we can identify

LT (τ) = L(Ẽ0(τ)) (4.4)
28Even if the series GT (τ) remains convergent in the large ∆ limit for all τ , it is possible that the full series

G(τ) may not be uniformly convergent for all ∆ for all τ . We will see an example of this in section 4.4.
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where L on the r.h.s. is the geodesic distance obtained from gravity. From (2.18), we can
further identify

L[ϕϕ](τ) = L(Ẽ1(τ)) (4.5)

which becomes important for θ ≤ −π
2 , with θ defined as β

2 − τ = reiθ. Furthermore, the
relative dominance between Ẽ0 and Ẽ1 saddles discussed there can now be written in terms
of the boundary language as

lim
∆→∞

G(τ) = lim
∆→∞


GT (τ) τ < β

2

G[ϕϕ](τ) τ > β
2

GT (τ) +G[ϕϕ](τ) τ = β
2 + itL, tL ∈ R

. (4.6)

In particular, GT (τ) and G[ϕϕ](τ) correspond respectively to the contributions from the two
complex geodesics on the gravity side.

One can ask why the uniform convergence stops at τ = β/2. If we consider a theory with
time-reversal symmetry, τ → −τ , that satisfies the KMS condition, G(τ) = G(β − τ), then
the branch point at which the OPE sum and the ∆ → ∞ limit cannot be exchanged can be
in principle at any 0 ≤ β∗ ≤ β/2. It would be interesting to explore this direction further.

4.2 Boundary interpretation of the bouncing singularities

We now turn to the boundary interpretation of the bouncing singularities (1.2).
The identification (4.4) is consistent with our numerical observation that the singular

behavior (3.18) is not directly seen in the large ∆ limit, as Ẽ0 corresponds to a complex
geodesic for τ = β/2 + itL, and is regular at τc = β

2 (1 + i). The same statement applies to
G[ϕϕ](τ). As we discussed in item (2) of section 3.5, at a finite ∆, G[ϕϕ](τ) should also have
a bouncing singularity at τc, but the identification (4.5) implies that the singularity is no
longer there in L[ϕϕ](τ). Nevertheless, we would like to argue that the bouncing geodesic
singularities (1.2) do originate from (3.18).

More explicitly, after obtaining GT (τ) from the OPE of multiple stress tensors, we can
expand LT (τ) near τ = β/2 as

LT (τ) ∼
(
β

2 − τ

) 4
3
+ . . . ≡ fT (y) , y ≡

(
β

2 − τ

) 1
3
, (4.7)

where we neglect the constant prefactor and terms that are regular at τ = β/2. Since
on the gravity side Ẽ1(τ) and Ẽ2(τ) are related to Ẽ0(τ) by phase multiplications (2.17),
we can then write

L[ϕϕ](τ) = fT

(
e−

2πi
3 y
)
, L̂(τ) = fT

(
e−

4πi
3 y
)
. (4.8)

That is, through the branch point singularity developed by LT (τ) at τ = β/2, both L[ϕϕ](τ)
coming from G[ϕϕ](τ), and L̂(τ) (2.27) corresponding to the bouncing geodesic are fully
determined from LT (τ).

While the singular behavior (3.18) of GT (τ) and G[ϕϕ](τ) have seemingly both disappeared
in themselves in the large ∆ limit, the bouncing singularities are not lost, but are transferred
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to L̂(τ). They are just not as manifest. This phenomenon is quite remarkable. As emphasized
in section 3, the bouncing singularities of GT (τ) at finite ∆ are controlled by the asymptotic
large n behavior in the regime n > n∗, while LT (τ) is given by Λn in the regime n < n∗
after first taking n∗ → ∞. Nevertheless, LT (τ) does contain the information regarding the
bouncing singularities, albeit indirectly.

At finite ∆, both GT (τ) and G[ϕϕ](τ) have bouncing singularities, then why do we say
that they originate from the stress tensor sector, not from the double-trace sector? We
already saw that in the large ∆ limit, both L[ϕϕ](τ) and L̂(τ) are determined from LT (τ).
This is not an accident; in fact, G[ϕϕ](τ) is also determined by GT (τ) for any ∆.

To make the point clear, recall the OPE computation of a vacuum four-point function

⟨0|V VWW |0⟩ =
∑
O

CV V OCW W O ⟨0|OO|0⟩ , (4.9)

where the four-point function is fully determined from the OPE data and vacuum two-point
functions. In contrast, in the OPE computation (1.7) of G(τ), the right hand side of the
equation involves the thermal expectation values of double-trace operators〈

ϕ(∂2)n∂i1 · · · ∂il
ϕ
〉

β
(4.10)

whose values require knowledge of thermal two-point functions of ϕ, which are just G(τ) =
⟨ϕ(τ)ϕ(0)⟩β (and derivatives thereof) evaluated at a fixed point. These two-point functions
are unknown but necessary in order to determine the OPE expansion. In other words, both
sides of (1.7) depend on G(τ), and it should be viewed as an equation to solve for G(τ),
rather than as an expression to calculate the left hand side as is the case for (4.9). The
inputs that we need to solve (1.7) are GT (τ), the OPE coefficients of ϕ(∂2)n∂i1 · · · ∂il

ϕ, as
well as imposing that G(τ) obeys the KMS condition and be analytic in Re τ ∈ (0, β). Thus
we can say G(τ) and G[ϕϕ](τ) are determined from GT (τ).

Finally, we comment that GT (τ) is closely connected to the bulk geometry, and thus enjoys
some level of universality. The OPE coefficients for k-stress tensor exchanges correspond in
the bulk to couplings of the bulk dual Φ of ϕ to multiple gravitons, i.e. couplings of the form
ΦΦhk, where h schematically denotes the bulk graviton. The thermal one-point function
vn for k stress tensors is given schematically by (⟨Tµν⟩β)k, i.e. k-th power of the boundary
stress tensor in the black hole geometry.

4.3 A speculation on the momentum space behavior and bouncing singularities

Now suppose the behavior (1.5) is also present at finite ∆. Then given (3.18), it is tempting
to speculate that

G(iωE) ∼
∫ ∞

−∞
dτ eiωEτ GT (τ) . (4.11)

We use ∼ in the above equation to indicate that while (under some assumptions) the right
hand side gives the correct qualitative behavior for G(iωE) in the limit ωE → ±∞, at the
moment we do not have enough information to specify a precise relation. As ωE → +∞,
we assume the behavior of GT (τ) at infinity is such that we can close the contour in the
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upper half complex τ -plane. Then the integral will mainly receive contributions from the
neighborhood of τ+

c = β
2 + i β̃

2 , leading to

G(iωE) ∼ eiωEτcω2∆−3
E ∝ (iωE)2∆−3ei(iωE)t+

c , ωE → +∞ . (4.12)

Similarly, for ωE → −∞, we close the contour in the lower half complex τ -plane, with the
main contribution coming from integration around τ−c = β

2 − i β̃
2 , leading to

G(iωE) ∼ (iωE)2∆−3ei(iωE)t−c , ωE → −∞ . (4.13)

4.4 Double-trace contributions in the GFF example

Now consider the following example

G(τ)(GF F ) = ⟨ϕ(τ)ϕ(0)⟩(GF F )
β =

∑
m∈Z

1
(τ +mβ)2∆ , (4.14)

which is obtained by taking the vacuum Euclidean two-point function of ϕ and adding images
in the τ direction such that it has periodicity β. The m = 0 term is the contribution of the
identity while all other terms correspond to multi-trace contributions [47, 48], as expanding
m ̸= 0 terms in τ we find a power series of the form (4.1). It will also be convenient to define

L(τ)(GF F ) = − lim
∆→∞

1
∆ logG(τ)(GF F ) (4.15)

It is easy to compute L(τ)(GF F ): it is given by

L(τ)(GF F ) = 2 log τ, τ < β

2 , L(τ)(GF F ) = 2 log(β − τ), τ > β

2 (4.16)

and has a cusp at τ = β/2.
We will see momentarily that the series in τ which defines 1

∆ logG(τ)(GF F ) is uniformly
convergent for all ∆ only for τ < β/2. Moreover, the GFF example satisfies (4.6), which
also applies in holography. It will be convenient to write

− 1
∆ logG(τ)(GF F ) = 2 log τ − 1

∆ log

1 + ∑
m ̸=0

τ2∆

(τ +mβ)2∆

 (4.17)

where we have separated the m = 0 term (the identity operator contribution). We can now
expand the second term for small τ ,

− 1
∆ logG(τ)(GF F ) = 2 log τ + lim

n→∞
L(n)(τ), L(n)(τ) =

n∑
k=0

ck(∆)
(
τ

β

)2∆+2k

(4.18)

where we have written the infinite series as a limit. Taking the large ∆ limit inside the
series amounts to the order of limits

lim
n→∞

lim
∆→∞

L(n)(τ) = 0, τ < β , (4.19)
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in which case all terms vanish. However, the limits n → ∞ and ∆ → ∞ may not be
exchangeable. For the other order of limits, we should take the large ∆ limit directly
in (4.17), which gives

lim
∆→∞

lim
n→∞

L(n)(τ) =

0, τ < β
2

−2 log τ + 2 log(β − τ), τ > β
2
. (4.20)

By comparing (4.19) and (4.20) we see that the limits can only be exchanged when τ < β/2.
From the Moore-Osgood theorem, it follows that the limit n → ∞ (the OPE) cannot be
uniformly convergent in ∆ for τ > β/2. This example nicely illustrates the role of double
traces: when τ is small, only the stress-tensor sector (identity) contributes in the large-
∆ limit and the double traces can be safely ignored. When τ > β/2, the double trace
contribution dominates.

Furthermore, for τ = β
2 + itL, tL ∈ R at large ∆ terms with m = 0 and m = −1

both contribute

G(GF F )
(
τ = β

2 + itL

)
≈ 1
τ2∆ + 1

(τ − β)2∆ . (4.21)

We thus see the GFF example (4.14) has exactly the same behavior as (4.6) except that
GT (τ) only has contribution from the identity and thus is always trivially convergent for
all τ even in the large ∆ limit.

5 Discussion

We showed that the stress tensor sector of the thermal two-point function of scalar operators
exhibits bouncing singularities at finite ∆. We argued that this singular behavior matches
the one observed in [8] from the bulk geodesic analysis, and can be interpreted as a boundary
reflection of black hole singularities. Since contributions from multi-stress tensor exchanges
do not depend on the specific details of the operators, they encode the universal features
of black hole singularities as probed by generic bulk fields. Furthermore, we expect that
two-point functions of general “light” operators in generic “heavy” states exhibit thermal
behavior at leading order in the 1/N expansion. Hence our conclusion can also be used to
explain the universality of black hole singularities in single-sided black holes formed from
gravitational collapse.

Our results also help elucidate the role of double-trace operator contributions, and in
particular connect them to geodesic results in the limit of large conformal dimensions.

Below we first discuss results in other dimensions, then give a boundary interpretation of
the gravity results for the boundary on a sphere, and finally offer some future perspectives.

5.1 Other spacetime dimensions

In the main text, we have focused on d = 4 for definiteness. Here we discuss the results
in other dimensions.

For d = 2, which is discussed in detail in appendix D, Euclidean function G(τ, x) (including
the spatial dependence) is known exactly from conformal symmetry, and can be shown to
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solely come from the Virasoro descendants of the identity, which are the multi-stress operators.
The stress tensor sector satisfies the KMS condition by itself, and does not have any unphysical
singularity. The corresponding bulk geometry is described by the AdS Rindler, and there
is no singularity behind the Rindler horizon.

The d = 4 discussion of the main text can be straightforwardly generalized to d = 6 and
d = 8. The geodesic analysis of [8] yields the bouncing singularities for general d at

τc =
β

2 ± i
β

2
cos π

d

sin π
d

= ±i βe
∓ iπ

d

2 sin π
d

. (5.1)

As discussed in appendix G, these singularities are exactly reproduced from the asymptotic
analysis of the stress tensor OPE in d = 6 and d = 8, with the behavior near the singularities

GT (τ) ∝
1

(δτ)2∆− d
2
, δτ = τc − τ . (5.2)

The −d
2 term in the exponent 2∆ − d

2 is somewhat curious and it would be interesting to
understand its meaning further.

Note that for d = 6, |τc| = β, while for d = 8, |τc| > β, which again highlights that the
stress tensor sector contribution GT (τ) does not obey the KMS condition. It is also curious
to note that for both d = 6 and d = 8 there are additional singularities other than (5.1)
(or their reflection in the left τ plane) at

d = 6 : τ = β, (5.3)

d = 8 : τ = β

2
e±i π

8

sin π
8
, (5.4)

These singularities have Re τ > β/2. It would be interesting to see whether they play a
role similar to the bouncing singularities.

5.2 Boundary theory on a sphere

Consider the boundary CFT on a sphere Sd−1 of radius R for d > 2. The decomposition (1.8)
still applies but the structure of each term becomes significantly more complicated. For
example, now the descendants of the multiple stress tensor operators can also contribute, and
there is a new dimensionless parameter β

R . Nevertheless, we expect that the boundary theory
interpretation we gave in this paper should still apply qualitatively. That is, there should be
singularities in the stress tensor sector contribution GT (τ) at a general finite ∆, which in the
large ∆ limit, “become” the bouncing singularities seen in the geodesic analysis. Below we
give a boundary interpretation of the gravity analysis given in section 3.3 of [8].

Figure 11 gives Euclidean time separation τ as a function of Ẽ obtained from bulk
Euclidean geodesics. In contrast with (2.16), at τ = β/2, there are three different real
solutions of Ẽ, labelled as Ẽ0, Ẽ1, Ẽ2 in the figure. Contribution from the Ẽ0 branch, which
is the unique real solution for sufficiently small τ , should again be identified with the large
∆ limit of LT . Contribution from the Ẽ1 branch should be identified with the double trace
contributions L[ϕϕ], while the middle branch Ẽ2 (in gray) does not contribute and gives rise
to the bouncing geodesics when extended to complex τ = β

2 + itL. Ẽ0, Ẽ1 again correspond
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Figure 11. τ as function of Ẽ obtained from the Euclidean geodesic analysis for the boundary theory
on a sphere.

to complex geodesics for such complex τ . The geodesic saddle Ẽ1 corresponding to the
double-trace piece starts appearing at some value τ1 < β/2 (denoted with a dot in figure 11),
but is subdominant for τ < β/2. Its contribution becomes the same as that from Ẽ0 at
τ = β/2. For τ > β/2, Ẽ1 (i.e. the double-trace piece) dominates. We see that the structure
is identical to (4.6).

In the large ∆ limit, LT (τ) is now analytic at β/2, but develops a square root branch
point singularity at some value τ2 > β/2 (see figure 11). Near τ = τ2, the geodesic distance
L̂(τ) corresponding to Ẽ2 branch can be obtained from LT as follows,

LT (τ) = fT (y), y ≡ (τ2 − τ)
1
2 , L̂(τ) = fT (−y) . (5.5)

Analytically continuing L̂(τ) to complex τ = β
2 + itL should yield the bouncing singularities.

In this case, the double-trace piece L[ϕϕ] is still determined from LT (τ) through a more
involved procedure. After finding L̂(τ) from LT (τ) at τ2 using (5.5), we continue L̂(τ) to
τ1, where L̂(τ) should encounter another square root branch point singularity. At τ1 we can
obtain L[ϕϕ](τ) from L̂(τ) using a parallel procedure as (5.5).

5.3 Future perspectives

Here we comment on some immediate extensions of our results and other future directions:

1. Subleading corrections and spatial dependence.

One can try to go a step further and analyze subleading corrections and spatial
dependence to the leading singular behavior we found in GT (τ) — we discuss corrections
in δτ in appendix E and the corrections in small x in appendix F. Our current analysis
is not enough for drawing further conclusions. We also analyzed the contributions of
lowest-twist operators in the stress-tensor sector. We summarise our early analysis
in appendix H. Interestingly, we find that the leading twist OPE coefficients grow
quicker than the Λn coefficients (which contain contributions from the [Tµν ]n operators
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of all twist) at large n and furthermore do not exactly reproduce the locations of
the bouncing singularities. This shows that the leading-twist exchanges are not the
dominant exchanges in the stress-tensor sector and that the subleading twists are crucial
to reproduce the singular behavior.

2. Leading twist OPE.

It is not surprising that the resummation of the leading twist contributions does not lead
to the correct bouncing singularities. The kinematical regime where the leading twist
contributions are dominant is the near-lightcone regime, where x− → 0 with x−(x+)3/β4

fixed. Clearly, this regime is very different from the x⃗ = 0 kinematics discussed in
this paper. The near-lightcone limit has its advantages — the OPE coefficients are
universal [24] and, furthermore, can be computed using CFT bootstrap [23]. In
addition, the geodesic analysis in this limit takes a simple form [42]. One may hope
that generalization of the results of the present paper to the near-lightcone regime may
provide a useful way of computing analytic observables which can probe black hole
singularities.

3. Nature of singularities of BTZ black holes?

For d = 2, when the spatial direction is a circle, the bulk system is described by a BTZ
black hole, which has an orbifold singularity. The singularity is invisible to the kind of
geodesic analysis reviewed in section 2, and thus to the kind of boundary correlation
functions discussed in this paper. The singularity is, however, visible from correlation
function of the form

⟨Φ(X)ϕ(0, 0)⟩β (5.6)

when the bulk point X is taken to the black hole singularity [55] (here Φ(X) is the
bulk field dual to boundary operator ϕ). Φ(X) can be expressed in terms of boundary
operators using bulk reconstruction, and thus (5.6) can be written in terms of boundary
correlation functions. It would be interesting to see whether it is possible to understand
the nature of the BTZ singularities in terms of features of the stress tensor or double-
trace contributions to the thermal correlation functions.

4. OPE structure for the boundary CFT on a sphere.

It would be desirable to use the stress tensor sector for the CFT on a sphere for d > 2
to check explicitly whether the bouncing singularities can be recovered and whether the
radius of convergence of the stress-tensor sector at large ∆ is larger than β/2. For this
purpose one can use the results of [24] for a spherical black hole geometry and repeat
our analysis.

5. Effects on the black hole singularities from α′ or GN corrections.

Connecting black hole singularities to the singularities of the stress tensor sector of
boundary thermal correlators opens up new avenues for understanding effects on the
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black hole singularities from α′ or GN corrections, and their possible resolutions at
finite α′ or GN .29

We will use the example of N = 4 super-Yang-Mills theory with gauge group SU(N) as
an illustration, for which α′ and GN translates into 1/

√
λ and 1/N2, where λ is the ’t

Hooft coupling.

Consider first a finite, but large λ in the large N limit, so that we can still talk about
bulk gravity in terms of spacetime geometry. In this case, there are two important
changes: (i) The coefficients Λn in (3.9) become λ-dependent [26]. (ii) At finite λ,
single-trace operators other than the stress tensor, which can include light operators dual
to other supergravity fields and operators corresponding to stringy modes, may develop
nonzero thermal expectation values, and can contribute to the exchanges in (1.7). More
explicitly, suppose the thermal expectation value of a single-trace operator O is nonzero
at finite λ, and O appears in the OPE expansion of ϕ(τ)ϕ(0), then in (1.8) we should
add contributions from the exchanges of On for n ∈ N. Denote such a contribution as
GO(τ), and we should sum over all possible such GO(τ).

(i) arises from λ-dependence of the OPE coefficients as well as the λ-dependence of
the thermal expectation value of the stress tensor. These corrections could change the
location of the bouncing singularities we saw in GT (τ), and can in principle be studied
perturbatively in 1/

√
λ expansion. (ii) will make the connection of the singularities in

GT to spacetime singularities discussed in section 4 more intricate. For example, in
the large ∆ limit, both GT (τ) and GO(τ) may contribute in the small τ regime, with
the contribution from GO interpreted as smearing of geodesics from interacting with
stringy excitations.

At finite N (i.e. finite GN in the bulk), equation (1.8) no longer applies. Neither the
notion of multiple stress tensor nor double-trace operators make exact sense. But in the
large N limit, it should be possible to study perturbative 1/N corrections to GT (τ), and
could lead to insights into the nature of the black hole singularities under perturbative
GN corrections.

6. Black hole in the presence of matter fields.

In this paper we considered the simplest Schwarzschild black hole. It is interesting to
consider solutions with matter fields turned on which can deform the black hole interior
as well as the region near the black hole singularities (see e.g. [57] for an example). On
the boundary side, this corresponds to turning on marginal or relevant deformations. It
would be interesting to see whether the stress energy sector still captures the bouncing
singularities.

Similarly, one can consider a spacetime corresponding to a spherically symmetric star.
The spacetime would still be described by the Schwarzschild metric outside the star’s
radius, which is greater than the horizon radius of a black hole with equal mass, while the
star’s interior would depend on the matter field configuration. It would be interesting

29An alternative approach addressing black hole singularities in higher derivative gravity can be found for
example in [56] and references therein.
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to see how our results are altered in this case, especially because such a star solution is
free of curvature singularities.

Since the stress-tensor sector is determined solely from the asymptotic expansion of the
bulk equations of motion and the star and black hole spacetimes are asymptotically
identical, the stress-tensor sector contributions to the OPE would be identical as well.
As such, one can speculate that all the details about the matter content and the star’s
interior will be contained within the double-trace sector.

However, a hidden working assumption used in this paper is that the near-boundary
expansion provides a reliable solution to the Klein-Gordon equation in the region
r ∈ (0,∞). For a Schwarzschild-AdS solution this is justified since the spacetime is
analytic everywhere apart from the singularity at r = 0. For solutions with matter
fields, this is no longer the case, since the Schwarzschild metric ceases to be the valid
description at a non-zero radius R0 > 0 (radius of the star), where a discontinuity in
the metric appears. One might thus question the validity of the method in this case. It
would be interesting to resolve this issue in detail.

7. Possible boundary origin of the BKL behavior.

In the presence of perturbations, there can be intricate chaotic dynamics in the approach
to the black hole singularities [58, 59], called the BKL or mixmaster behavior. Recently,
such chaotic behavior has been obtained inside a four dimensional asymptotically AdS
planar black hole [60]. The connection between the black hole singularities and multiple
stress tensor exchange on the boundary should be helpful to understand the boundary
origin of the chaotic behavior.
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A Structure of the correlation functions

In this appendix we discuss the stress-tensor sector of the thermal two-point function of
scalar operators (3.1). The contribution of the n-stress tensor (Tµν)n to the correlator is,
up to a constant, the (Tµν)n conformal partial wave30 (CPW) of the heavy-heavy-light-light

30Here, we are referring to conformal partial waves as defined in [61, 62]. Note that in modern CFT literature
this term is sometimes used in a different context.
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(HHLL) correlator on R× Sd−1
R [63]. Light and heavy refer to how the conformal dimensions

of the inserted operators scale with the central charge, CT , of the CFT. The conformal
dimension of the light operator, ∆, does not scale with the central charge, while for the
heavy operator it does, ∆H ∼ O (CT ).

Starting in flat space, the HHLL four-point function can be expanded in the corresponding
CPWs Ŵ∆′,J ′ as

G(z, z) ≡ ⟨OH(0)ϕ(z, z)ϕ(1)OH(∞)⟩ =
∑

∆′,J ′

c∆′,J ′Ŵ∆′,J ′ , (A.1)

where the sum runs over all primaries and c∆′,J ′ is a combination of OPE coefficients. The
flat space CPW are given by [61, 62]31

d = 2 Ŵ∆′,J ′ = 1
(ZZ)∆

(
k∆′+J ′(Z)k∆′−J ′(Z) + k∆′−J ′(Z)k∆′+J ′(Z)

)
(A.2)

d = 4 Ŵ∆′,J ′ = 1
(ZZ)∆

ZZ

Z − Z

(
k∆′+J ′(Z)k∆′−J ′−2(Z)− k∆′−J ′−2(Z)k∆′+J ′(Z)

)
(A.3)

d = 6 Ŵ∆′,J ′ = 1
(ZZ)∆

(
F0,0(Z,Z)−

J ′ + 3
J ′ + 1F−1,1(Z,Z)

− (∆′ − 4)(∆′ + J ′)2

16(∆′ − 2)(∆′ + J ′ + 1)(∆′ + J ′ − 1)F1,1(Z,Z) (A.4)

+ (∆′ − 4)(J ′ + 3)
(∆′ − 2)(J ′ + 1)

(∆′ − J ′ − 4)2

16(∆′ − J ′ − 5)(∆′ − J ′ − 3)F0,2(Z,Z)
)
,

where

kη(ξ) = ξ
η
2 2F1(η

2 ,
η
2 , η, ξ) , (A.5)

Fn,m(Z,Z) = (ZZ)
1
2 (∆′−J ′)

(Z − Z)3 (Fn,m(Z,Z)− Fn,m(Z,Z)) , (A.6)

Fn,m(Z,Z) = Z
J ′+n+3

Zm
2F1

(∆′ + J ′

2 + n,
∆′ + J ′

2 + n; ∆′ + J ′ + 2n;Z
)

× 2F1

(∆′ − J ′

2 − 3 +m,
∆′ − J ′

2 − 3 +m; ∆′ − J ′ − 6 + 2m;Z
)
. (A.7)

We will use that in the t-channel the relation between (Z,Z) and the cross-ratios (z, z) is
(Z,Z) = (1− z, 1− z).

We now map the flat space to R × Sd−1
R using

z = 1− Z = e−
τ
R
−i x

R , z = 1− Z = e−
τ
R

+i x⃗
R , (A.8)

where R is the sphere radius and x⃗ schematically denotes all coordinates besides τ . This
transformation introduces an overall prefactor in conformal partial waves

W∆′,J ′ = R−2∆(zz)
∆
2 Ŵ∆′,J ′ = R−2∆

(
(1− Z)(1− Z)

)∆
2 Ŵ∆′,J ′ . (A.9)

31Compared to [61] we omit the factor (−2)−J in the conformal waves.
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The W∆′,J ′ are the CPW on R × Sd−1
R , where the two light operators are inserted at 0

and (τ, x⃗) while the heavy operators sit at −∞ and +∞. Via the operator-state correspon-
dence, the correlator on R × Sd−1

R can be seen as a two-point function in a heavy state
⟨OH |ϕ(τ, x)ϕ(0, 0)|OH⟩.

Let us now focus on the exchanges of n-stress tensors, which have conformal dimension
∆′ = dn and spin J ′ = 0, 2, 4, . . . , 2n. Since these thermalize in heavy states [63], their
expansion in CPW (A.9) precisely matches the corresponding expansion in terms of thermal
conformal blocks [47]. We are interested in the OPE limit32 z, z → 1 (or equivalently
Z,Z → 0), which in R × Sd−1

R corresponds to τ, |x⃗| ≪ R.
First consider the case with x = |x⃗| = 0. In the regime τ ≪ R, the corresponding

CPWs simplify to

d = 2 W2n,J ′ ≈ 2τ−2∆
(
τ

R

)2n

(A.10)

d = 4 W4n,J ′ ≈ (1 + J ′)τ−2∆
(
τ

R

)4n

(A.11)

d = 6 W6n,J ′ ≈ 1
6(2 + J ′)(3 + J ′)τ−2∆

(
τ

R

)6n

. (A.12)

Each n-stress tensor exchange is multiplied by a factor of µn, where33

µ ∝ ∆H

CT
∝ ε

Rd

CT
∝
(
R

β

)d

. (A.13)

In the above, we used that the energy density ε is proportional to CT T
d [47, 49]. It is

convenient to isolate these dimensionful factors in the OPE coefficients and define

cd n,J ′ ≡ λn,J ′

(
R

β

)d n

, (A.14)

as in this case all dependence on the sphere radius R completely cancels out in the stress-
tensor sector of the thermal correlator34

d=2 GT (τ)=
1
τ2∆

(
1+2λ1,2

(
τ

β

)2
+

∞∑
n=2

[∑
J ′

2λn,J ′

](
τ

β

)2n
)
, (A.15)

d=4 GT (τ)=
1
τ2∆

(
1+3λ1,2

(
τ

β

)4
+

∞∑
n=2

[∑
J ′

λn,J ′(1+J ′)
](

τ

β

)4n
)
, (A.16)

d=6 GT (τ)=
1
τ2∆

(
1+ 10

3 λ1,2

(
τ

β

)6
+

∞∑
n=2

[∑
J ′

λn,J ′
(2+J ′)(3+J ′)

6

](
τ

β

)6n
)
, (A.17)

32In this limit we effectively work on Rd. It is however important to distinguish this from the original flat
space-time on which correlator (A.1) was formulated.

33In holographic theories, µ is also the mass parameter appearing in the metric of the AdS-Schwarzschild
black hole, see for example (2.4). For a black brane in d + 1 dimensions, the relation between µ and the
(inverse) Hawking temperature is

µ =
(

4πR

d β

)d

,

which scales with R/β exactly as in (A.13).
34The subscript in GT (τ) denotes that this is the stress-tensor sector and not the full correlator.
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where the sums over J ′ run over J ′ = 0, 2, . . . 2n. Finally, it is useful to introduce summed
coefficients Λn through

GT (τ) =
1
τ2∆

∞∑
n=0

Λn

(
τ

β

)d n

, (A.18)

which we use in the main text.
Now let x be small, but non-vanishing, such that x≪ τ ≪ R. For concreteness, we focus

only on d = 4. Mapping the flat space CPW (A.3) to R× Sd−1
R , taking the OPE limit, and

then expanding in x ≪ τ , we get the stress-tensor sector of the correlator as

GT (τ, x) =
1
τ2∆

(
1− ∆x2

τ2

) ∞∑
n=0

[
Λn +

(
2nΛn + Λ̃(1)

n

) x2

τ2

](
τ

β

)4 n

+O
(
x4
)
, (A.19)

with Λn defined in (A.18) and

Λ̃(1)
n = −1

6
∑

J ′=0,2,...,2n

J ′ (1 + J ′) (2 + J ′)λn,J ′ . (A.20)

Note that n = 0 corresponds to the identity contribution and thus Λ̃(1)
0 = 0, while at n = 1

the only non-vanishing contribution comes from the stress tensor with J ′ = 2.
To make the notation for x ̸= 0 more transparent, we generalise equation (A.18) to

GT (τ, x) =
1
τ2∆

∞∑
n=0

[
Λ(0)

n + x2

τ2 Λ(1)
n +O

(
x4

τ4

)](
τ

β

)dn

, (A.21)

where Λ(0)
n ≡ Λn and Λ(1)

n ≡ (2n−∆)Λn + Λ̃(1)
n . In the same way one can define Λ(m)

n for any
m. Note that the holographic method we used to determine the stress-tensor contributions
extracts λn,J ′ [24]. This means that in principle one can use this method to obtain the
coefficients Λ(m)

n to arbitrary high orders in m and n.
Let us conclude this appendix by comparing the above analysis with the expansion of

the correlator using the thermal conformal blocks formulated on S1
β × Rd−1 [47]

GT (τ, x) =
1

|τ2 + x2|∆
∞∑

n=0

∑
J ′=0,2,...,2n

λ̂n,J ′

∣∣τ2 + x2∣∣ dn
2

βdn
C
( d+2

2 )
J ′

(
τ√

τ2 + x2

)
, (A.22)

where C(ν)
J ′ (η) are Gegenbauer polynomials and λ̂n,J ′ are dimensionless coefficients. Imposing

x = 0 and restricting to d > 2, (A.22) simplifies to

GT (τ) =
1
τ2∆

∞∑
n=0

∑
J ′=0,2,...,2n

λ̂n,J ′

(
d−3+J

J

)( τ
β

)dn

. (A.23)

This can now be compared with the equations (A.16) and (A.17). For d = 4 one finds
λ̂n,J ′ = λn,J ′ , while in d = 6 there is a conventional difference by a factor (J + 1) in the
coefficients λn,J ′ and λ̂n,J ′ .

– 36 –



J
H
E
P
1
0
(
2
0
2
4
)
1
0
5

B Bulk equation of motion

In this appendix we give the explicit form of the equation of motion

(□−m2)ϕ = 0 , m2 = ∆(∆− d) (B.1)

in the background of (d + 1)-dimensional planar Euclidean Schwarzschild-AdS black hole
after the coordinate transformation

ρ2 = r2x⃗2 and w2 = 1 + r2(τ2 + x⃗2). (B.2)

Introducing the following ansatz for the scalar bulk field

ϕ(w, ρ, r) =
(
r

w2

)∆
ψ(w, ρ, r) , (B.3)

where (r/w2)∆ is the solution in the pure AdS space, “reduces” the Klein-Gordon equa-
tion (B.1) to [24](

∂2
r +C1∂

2
w+C2∂

2
ρ+C3∂r∂w+C4∂r∂ρ+C5∂w∂ρ+C6∂r+C7∂w+C8∂ρ+C9

)
ψ = 0 , (B.4)

with the coefficients Ci given by

C1 = f
(
ρ2 + (w2 − 1)2f

)
+ w2 − ρ2 − 1

r2w2f2 , (B.5)

C2 = 1 + fρ2

r2f
, (B.6)

C3 = 2
rw

(w2 − 1) , (B.7)

C4 = 2ρ
r
, (B.8)

C5 = 2ρ
r2wf

(
1 + (w2 − 1)f

)
, (B.9)

C6 = 1
f

df
dr + w2(10− 4∆) + 8∆

2rw2 + d− 4
r

, (B.10)

C7 =
(

1
rwf

df
dr − w2(2∆− 5)− 4∆− 1

r2w3

)(
w2 − 1

)
+ 3w2 − ρ2(1 + 4∆)

r2w3f
+ 1 + ρ2 + 4

(
1− w2 + ρ2)∆

r2w3f2 + (d− 4)C5
2ρ , (B.11)

C8 = 2(w2 − 2ρ2∆) + ρ2 (w2(5− 2∆) + 4∆
)
f

r2w2ρf
+ ρ

rf

df
dr + (d− 4)C2

ρ
, (B.12)

C9 = ∆
w2

(
(w2 − 2)2∆+ 4(1 + w2 − w4)

r2w2 + 4ρ2(∆ + 1)− w4(∆− 4)− 6w2

r2w2f

+ 2w2(1 + 2∆)− 4(1 + ρ2)(1 + ∆)
r2w2f2 − w2 − 2

rf

df
dr − (d− 4)(w

2 − 2)(f − 1)
r2f

)
, (B.13)

where f = 1 − µ
rd .
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C Validity of approximating the OPE by an integral

In the main text we have approximated the OPE sums by an integral, such as in (3.16). In
this appendix we now discuss the validity of this approximation.

We want to resum the OPE (3.9) where the coefficients are given by their asymptotic
form (3.13). Assume that this asymptotic form is a good approximation to the actual OPE
coefficients after a certain value n = n∗ and that one can neglect terms with n < n∗. The
first assumption comes from our analysis of OPE data. We can justify the second assumption
by noting that near the critical points τ ≈ τc, which are at the radius of convergence of the
stress-tensor OPE, all terms in the τ expansion contribute. One sees from (3.13) that for
large enough ∆ the OPE coefficients are increasing with n and thus close enough to the
critical points, the large-n terms will be the most important. All in all, to calculate the
stress-tensor contribution to the correlator, one has to evaluate a sum of the type

∞∑
n=n∗

na∆+bydn = yd n∗ Φ
(
yd,−a∆− b, n∗

)
, (C.1)

where Φ is the Hurwitz-Lerch transcendent, |y| ≤ 1, and a > 0 and b are constants. We
want to compute this sum in the limit y → 1, which corresponds to the correlator near
τ ≈ τc. For ∆ > −a+b

2 , one can expand

yd n∗ Φ(yd,−a∆− b, n∗)

= Γ(1 + a∆+ b)(− log yd)−(1+a∆+b) +
∞∑

k=0
ζ(−a∆− b− k, n∗)

(
log yd

)k

k! ,
(C.2)

where ζ is the generalised Riemann zeta function. The second term is regular at y = 1 for all
k, so it gives a subleading contribution to the correlator near the critical point. Therefore,
near τ ≈ τc we can approximate the sum (C.1) by

∞∑
n=n∗

na∆+bydn ≈ Γ(1 + a∆+ b)(− log yd)−(1+a∆+b) =
∫ ∞

0
na∆+bydn dn . (C.3)

This justifies the exchange of the sum for an integral from 0 to ∞.

D The KMS pole and OPE in d = 2

In this appendix we show how the KMS pole emerges from the OPE in d = 2. The finite
temperature two-point function is known in a closed form and the KMS pole can be seen
explicitly without the use of the OPE. Nevertheless, the recovery of the KMS pole from
the OPE can serve as a guideline for the analysis in higher dimensional cases, where the
thermal two-point functions are not known exactly.

D.1 KMS pole

Consider a scalar two-point function at finite temperature T = β−1

G(τ, x) = ⟨ϕ(τ, x)ϕ(0, 0)⟩β . (D.1)
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This can be rewritten, using the periodicity of the trace, as

G(τ, x) = 1
Z

Tr e−βHϕ(τ, x)ϕ(0, 0) = 1
Z

Tr e−βHϕ(β, 0)ϕ(τ, x) = G(β − τ,−x) , (D.2)

which is the KMS condition [43, 44]. Let us consider the case where x = 0. For a unit-
normalised scalar with scaling dimension ∆, the small τ behaviour is

G(τ) τ→0−−−→ 1
|τ |2∆ . (D.3)

From (D.2), it then follows that G also has a KMS pole at

G(τ) τ→β−−−→ 1
|β − τ |2∆ . (D.4)

This analysis is valid for any quantum field theory at finite temperature. When dealing with
CFTs one has the additional tool of the OPE with a non-vanishing radius of convergence,
which is typically determined by the first singular point encountered in the complex plane.
Thus, if there are no singularities closer to the origin, the KMS pole should be encoded
in the asymptotic behaviour of the OPE.

D.2 OPE analysis

Let us consider a CFT in two dimensions. Since Sβ × R is conformally equivalent to R2,
the two-point correlation function is known in a closed form [47], and in the case of two
identical scalar operators it is given by

G(τ, x) =
[
β

π
sinh

(
π(x− iτ)

β

)]−∆ [β
π
sinh

(
π(x+ iτ)

β

)]−∆
, (D.5)

where we have chosen the normalisation such that in the zero-temperature limit we recover
unit norm, i.e. limβ→∞G(τ, x) = (τ2 + x2)−∆.

Let us first set x = 0. In a two-dimensional CFT, only the Virasoro vacuum module
contributes to the thermal correlator. In other words, the only non-zero contribution comes
from the multi-stress tensors and thus the full correlator can be expanded as

G(τ) = 1
τ2∆

∑
n

Λn

(
τ

β

)2n

. (D.6)

The coefficients Λn can simply be read off from the expansion of the correlator (D.5) near
τ = 0. We are interested in the behaviour of the OPE near its convergence radius, where
we expect all terms in the expansion to be of similar magnitude. As such, we are interested
in the behaviour of Λn for large values of n. One finds that for large enough n these can
be written in a 1/n expansion (see figure 12)

Λn = 22∆

Γ(2∆) n
2∆−1

∞∑
k=0

ck(∆)
nk

= 22∆

Γ(2∆) n
2∆−1

(
1 + c1(∆)

n
+ . . .

)
, (D.7)
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Figure 12. Ratio of the explicit results for Λn to the leading large-n prediction Λa
n, given in (D.8),

for different values of ∆ in d = 2.

where we choose the overall prefactor in such a way that c0(∆) = 1, while all remaining ck(∆)
can be arbitrary functions of ∆. We see that as n → ∞ the coefficients tend to

Λa
n = 22∆

Γ(2∆) n
2∆−1 , (D.8)

which determines the leading order behaviour of the correlator. For τ near the radius of
convergence of the OPE (D.6), we can approximate the sum by an integral

G(τ) ≈ 1
τ2∆

∫ ∞

0
Λa

n

(
τ

β

)2n

dn =
[
−τ2 log

(
τ2

β2

)]−2∆

, (D.9)

where we have taken (D.8) for the OPE coefficients. We encounter a singularity when the
argument of the logarithm is equal to 1, which happens at τ = ±β where we find

G(τ) τ→±β−−−−→ 1
|β − τ |2∆ , (D.10)

which are exactly the KMS poles (D.4). This explicitly shows that the asymptotic OPE
analysis reproduces the first non-trivial poles of the full correlator (D.5) in the complex-τ
plane. However, as may be expected, the OPE analysis does not contain any information
about the higher order poles at |τ | > β.

Subleading analysis. The above analysis shows that KMS pole is already contained in
Λa

n, the leading behaviour of the OPE coefficients at large n. Let us now analyse the 1/n
corrections in (D.7). The coefficients ck(∆) are determined by carefully analysing Λn as a
function of ∆,35 see blue markers in figure 13.

35We discuss how to determine the form of (D.7) and the values ck(∆) from Λn in more detail in appendix E,
where we analyse the correlator in d = 4.
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Alternatively, one can follow a different approach to obtain coefficients ck(∆): insert the
full expansion (D.7) into the sum (D.6) and again approximate it with an integral

G(τ) = 22∆

Γ(2∆) τ2∆

∫ ∞

0
n2∆−1

(
τ

β

)2n (
1 + c1(∆)

n
+ c2(∆)

n2 + . . .

)
dn

=
[
−τ log

( |τ |
β

)]−2∆ [
1 + 2 c1(∆)

2∆− 1

(
− log

( |τ |
β

))

+ 4 c2(∆)
(2∆− 1)(2∆− 2)

(
− log

( |τ |
β

)2)
+ . . .

]
.

(D.11)

Expanding this result around36 τ = β then gives

G(τ) τ→β−−−→ 1
(β − τ)2∆

[
1 + 1

β

(
∆+ 2 c1(∆)

2∆− 1

)
(β − τ) (D.12)

+ 1
β2

(∆(6∆ + 7)
12 + (2∆ + 1)c1(∆)

2∆− 1 + 2 c2(∆)
(2∆− 1)(∆− 1)

)
(β − τ)2 + . . .

]
.

We thus see that the 1/n corrections in (D.7) translate to (β− τ) corrections to the correlator
near the KMS pole.

We can now use the exact form of the correlator (D.5) to determine the coefficients
ck(∆). Expand (D.5) around τ = β to first subleading order

G(τ) = 1
(β − τ)2∆

(
1 + ∆π2

3β2 (β − τ)2 +O
(
(β − τ)3

))
. (D.13)

This expression and (D.12) should match, which leads to

c1(∆) = ∆
(1
2 −∆

)
, c2(∆) = 1

24∆ (∆− 1)(2∆− 1)(6∆ + 4π2 − 1) , (D.14)

which can be continued to arbitrary k. One can compare these expressions with the direct data
obtained from analysing the asymptotic form of Λn and find perfect agreement, see figure 13.

Nonzero x. Let us now set x ̸= 0, so that x≪ τ . Essentially, we work in the limit where
x is the smallest length scale in the expression. Expanding the exact correlator (D.5) in
small x gives to leading order

G(τ, x) =
[
β

π
sin
(
π τ

β

)]−2∆
+∆x2

[
β

π
sin
(
π τ

β

)]−2(∆+1)
+O

(
x4
)
, (D.15)

where each term contains non-trivial poles at τ = mβ, with m ∈ Z. We expand each term in
the above series individually around τ = β, focusing only on the leading behaviour

G(τ, x) ≈ (β − τ)−2∆
[
1 + 1

(β − τ)2
∆x2

β2

]
. (D.16)

36One can equally expand around τ = −β, but we will focus on this pole without the loss of generality.
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Figure 13. The comparison between c1(∆) (left) and c2(∆) (right) as obtained from expansion of the
exact correlator (red curve) and the results from the direct analysis of Λn for large n (blue markers).

Naively, one would think that the x2 term is more divergent than the leading order term.
However, this expansion is only valid if x is the smallest parameter in the expression, i.e.
x2 ≪ (β − τ)2, in which case all corrections to the leading divergent behaviour in (D.16)
are small.

Similar to the analysis of the subleading (β− τ) contributions we would like to reproduce
this result using the OPE analysis. For that we take (D.15) and expand each term individually
in a series in τ

G(τ, x) = 1
τ2∆

[ ∞∑
n=0

Λ(0)
n

(
τ

β

)2n

+ ∆x2

β2

∞∑
n=0

Λ(1)
n

(
τ

β

)2n

+O
(
x4
)]

. (D.17)

Again, we can make an ansatz for asymptotic behaviour of the OPE coefficients

Λ(α)
n = c

(α)
0 (∆)na ∆+b , (D.18)

where we ignore all 1/n corrections, since we are only interested in the leading behaviour
at each order in x. We find

Λ(0)
n ≈ 22∆

Γ(2∆) n
2∆−1 , Λ(1)

n ≈ 22(∆+1)

Γ(2(∆ + 1)) n
2∆+1 . (D.19)

Inserting these values into (D.17) and replacing the sum with the integral leads to

G(τ, x) ≈ 1
τ2∆

∫ ∞

0

[
22∆

Γ(2∆) n
2∆−1 + ∆x2

β2
22(∆+1)

Γ(2(∆ + 1)) n
2∆+1

](
τ

β

)2n

dn

= 1
τ2∆

[(
− log |τ |

β

)−2∆
+ ∆x2

β2

(
− log |τ |

β

)−2(∆+1)]
. (D.20)

By expanding this near τ = β we exactly reproduce (D.16) — the asymptotic OPE analysis
reproduces the KMS poles of the exact two-point correlation function for x ̸= 0.

Let us conclude this appendix by noting that in the main text and in the appendices that
follow we repeat this analysis for thermal correlators in higher dimensions. In these cases we
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can still extract ck(∆) (respectively Λ(1)
n ) by careful analysis of the OPE coefficients. However,

since a closed form expression of the thermal correlator is not known, to cross-check these
results we compare them with the geodesic analysis at subleading δτ (respectively x ̸= 0).

E Analysis at subleading δτ in d = 4

In this appendix we analyse the contributions to LT (τ) subleading in δτ and how these
arise as 1/n corrections to the asymptotic form of the OPE coefficients. This analysis is
valid for any finite ∆. When ∆ → ∞ the situation becomes more subtle. As we argued in
section 3.4, in this limit, the cross-over point also goes to infinity, n∗ = ∆/2 → ∞, which
leads to disappearance of the bouncing singularity in LT (τ). However, as we saw in (3.21),
taking ∆ large after expanding the logarithm of the correlator near the bouncing singularity
leads to the behaviour expected from the bouncing geodesic. Below we examine if this match
persists beyond the leading order singularity. We also detail the procedure that we used in
the main text to determine the asymptotic form of the OPE coefficients Λn.

The main object of interest are the OPE coefficients Λn, as defined in (3.9). In particular,
we are interested in their behaviour when n is large. Ideally, one would find the exact
expressions of these OPE coefficients as functions of ∆, however, in practice, finding such
expressions for large n is computationally too expensive. As already mentioned in the
main part of this paper, it is more efficient to first fix ∆ and then calculate Λn for that
specific value. In this way, we are able to calculate Λn up to n ≈ 50 in about 5 days on
a standard desktop machine.

We find that for large enough n the OPE coefficients can be described by

Λn = c(∆) n2∆−3(
1√
2

)4n
eiπ n

∞∑
k=0

ck(∆)
nk

, (E.1)

where we choose c0(∆) = 1, so that this expression is in accord with the dominant contribu-
tion (3.13) used in the main text. Let us here briefly explain how we obtained this expression.
First, one draws inspiration from the two-dimensional analysis (D.7) and considers an ansatz
for the dominant contribution Λa

n = e−iπ nk̃n c(∆)na ∆+b. The first factor comes from the
observed oscillating sign of Λn, while k̃, a, and b are constants and c(∆) is a function which all
need to be determined by our analysis. The values of the three constants can be determined
by analysing different ratios of Λn as n and ∆ are varied. The expressions for c(∆) and ck(∆)
are then obtained numerically by analysing Λn as n is varied for fixed values of ∆. One first
assumes the 1/n expansion (E.1) and compares it with the values of Λn as a function of n.
This allows us to read off the coefficients ck(∆). This procedure gives, for example, the values
given in the blue markers in figure 7, figure 14, and figure 15.

Let us note that the accuracy of our analysis is limited by the number of Λn we can
calculate: the larger the n, the more accurate the asymptotic form (E.1) will be. A higher n
also means that we can include, in practice, a higher number of 1/n corrections, which in
turn allow for a more accurate values of ck(∆). An estimate of the value of n necessary for
an accurate determination of Λn for a given ∆ is given at the end of this appendix.
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The 1/n terms in (E.1) are mapped to the (τc − τ) corrections of the correlator. To see
this, we insert the full 1/n expansion of Λn into (3.9) and replace the sum with an integral

GT (τ) ≈
1
τ2∆

∫ ∞

0
Λn

(
τ

β

)4n

dn = c(∆)
τ2∆

∫ ∞

0
n2∆−3

(
τ

τc

)4n ∞∑
k=0

ck(∆)
nk

dn

= c(∆)
τ2∆

∞∑
k=0

ck(∆)Γ(2∆− 2− k)
[
− log

(
τ4

τ4
c

)]−(2∆−2−k)

, (E.2)

where τc is schematically one of the critical points defined in (3.17). We see that near
τ ≈ τc we get a sum of diverging terms with a pole of order 2∆ − 2 − k: the higher the
k, the milder the singularity.

In four dimensions, we lack an exact expression for the correlator (or the stress-tensor
sector of the correlator), so we cannot determine ck(∆) in a similar manner as in the two-
dimensional case. However, we can take the large-∆ limit and compare these results with the
expectation from the geodesic analysis. In particular, we know that the correlator obtained
from the bouncing geodesic expanded around the lightcone singularity receives the first
correction to the leading result at fourth order (2.28). Therefore, we insert (E.2) into (3.19)
and expand in δτ = τc − τ

LT ≈ − 1
∆ log

[
c(∆)Γ(2∆− 2)

4(2∆−2)
1
τ2

c

]
+ 2∆− 2

∆ log δτ +
∞∑

k=1
γk(∆)

(
δτ

τc

)k

, (E.3)

where γk(∆) are non-trivial combinations of ck(∆). Let us check if the ∆ → ∞ limit
reproduces the geodesic result (2.27), which means that

γ1(∆) = 0 , γ2(∆) = 0 , γ3(∆) = 0 , γ4(∆) = π4

160 , . . . , (E.4)

up to 1/∆ corrections. We only focus on γ1(∆) and γ2(∆). The former is given by

γ1(∆) = 1 + 1
∆ + 4 c1(∆)

∆(2∆− 3) , (E.5)

which can be expanded in large-∆ to first few orders

γ1(∆) = 1 + 1
∆ + 2 c1(∆)

∆2 + 3 c1(∆)
∆3 +O

(
∆−4

)
. (E.6)

For this expression to be consistent with the bouncing geodesic, the leading behaviour of
c1(∆) has to be given by

c1(∆) ∼ −∆2

2 + . . . , (E.7)

which cancels out the leading order term in (E.6). However, we can be slightly bolder and
assume that γ1(∆) = 0 for all ∆, which ensures absence of a linear term in the proper length
and the correlator. In this case, we can solve (E.5) directly and find

c1(∆) = −1
4(∆ + 1)(2∆− 3) , (E.8)
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Figure 14. The numerical values for c1(∆) (blue) compared with the data predicted by the geodesic
analysis (red). On the right, the close-up shows that even at small ∆ the geodesic results seems to
match the data to a relatively high degree. This suggests that even in the full correlator, there is no
term linear in δτ = τc − τ .

whose large ∆ behaviour agrees with (E.7). In figure 14, we plot the numerical data (in
blue) against this prediction (in red). We find good agreement not only at large ∆, but for
all values which strongly suggests that c1(∆) is given by (E.8). The expression for γ2(∆)
is more complicated

γ2(∆) = − 7
12 − 5

12∆ − 2 c1(∆)
∆(2∆− 3) +

8 c1(∆)2

∆(2∆− 3)2 − 8 c2(∆)
∆(6− 7∆ + 2∆2) (E.9a)

≈ − 7
12 − 5

12∆ − c1(∆)
∆2 −

4 c2(∆)− 2c1(∆)2 + 3
2 c1(∆)

∆3 +O
(
∆−4

)
. (E.9b)

Above we have not yet inserted the value of c1(∆) because it will help us illustrate an
important point as to why higher ck(∆) are inaccessible. As seen in (E.7), even in the
most agnostic estimate c1(∆) scales at most quadratically at large values of ∆. Therefore,
the c1(∆)2 factor in the fourth term will contribute at order ∆ in (E.9b).37 Such term
is incompatible with a smooth large-∆ limit, independent of whether the geodesic is the
bouncing geodesic or a non-singular complex geodesic. It therefore needs to be cancelled
by the leading order term in c2(∆), which in this case gives

c2(∆) ∼ ∆4

8 + . . . . (E.10)

It needs to be stressed that this behaviour does not contain any information about whether
the correlator is given by the bouncing geodesics or by the combination of two complex
geodesics. This is contained in the subleading behaviour of c2(∆), which can be determined
uniquely only if one knows the subleading behaviour of c1(∆). To illustrate this, let us

37We see from (E.9a) that c1(∆) appears at most quadratically in γ2 and thus no higher order term in the
1/∆ expansion will contribute at order ∆ when the value of c1(∆) is inserted.
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Figure 15. The numerical values for c2(∆) (blue) compared with the data predicted by the geodesic
analysis (red). On the right, the close-up shows that at small ∆ the geodesic prediction disagrees with
the numerical data. This is expected, since there is no reason for the geodesic result to be applicable
outside the regime where ∆ ≫ 1.

introduce an expansion

c1(∆) = c
(2)
1 ∆2 + c

(1)
1 ∆+ c

(0)
1 + . . . , c2(∆) = c

(4)
2 ∆4 + c

(3)
2 ∆3 + c

(2)
2 ∆2 + . . . , (E.11)

and insert it into (E.9b)

γ2(∆) = 2∆
[(
c

(2)
1

)2
− 2 c(4)

2

]
(E.12)

+ 1
12

[
−7− 12 c(2)

1 + 48 c(1)
1 c

(2)
1 + 72

(
c

(2)
1 − 48c(3)

2 − 168c(4)
2

)2
]
+O

( 1
∆

)
.

The term that scales with ∆ can be determined as explained above. But the term that
does not scale with ∆, and gives a finite contribution in the large-∆ limit, depends on the
subleading terms of both c1(∆) and c2(∆). Since we believe that c1(∆) can be determined
exactly (E.8), one can determine c(3)

2 and write

c2(∆) = ∆4

8 − 5∆3

24 +O
(
∆2
)
, (E.13)

but other, lower order terms are out of reach, since they are not constrained by the geodesic
result. We can compare this result with the data obtained from solving the bulk equations of
motion, which is pictured in figure 15. We see that while the asymptotic behaviours match,
we cannot say anything about the behaviour of c2(∆) for small values of ∆. In fact, one can
directly solve (E.9a) and determine c2(∆) using (E.8) in the process. Even in this case one
find significant deviation from the data obtained from the holographic calculation.

Of course, the geodesic analysis is expected to hold only at large values of the conformal
dimensions. We observed this already in section 3.2, where the geodesic analysis failed to
reproduce all 1/∆ corrections at higher orders of the τ = 0 OPE. However, c1(∆) predicted
from the analysis of the bouncing geodesic is in good agreement with the holographic data
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for all values of ∆. This suggests that the linear correction to the singularity, γ1(∆), vanishes
for all conformal dimensions and not just in the large-∆ limit. This is generically not true for
all other γk(∆), starting with γ2(∆), and suggest that for finite values of ∆, the contribution
to the correlator from the stress-tensor sector near the bouncing singularity goes as

GT (τ ≈ τc) ∼
c(∆)Γ(2∆− 2)

22(2∆−2)
1
τ2

c

1
(τc − τ)2∆−2

[
1 + γ2(∆)

(
τc − τ

τc

)2
+ . . .

]
, (E.14)

where γ2(∆) is some non-trivial function of ∆.
Higher order ck(∆) cannot be uniquely determined because we are unable to determine

c2(∆) to all orders — the reasoning is the same as with the subleading order in c2(∆) only
being accessible if we know c1(∆) to subleading order. One is only able to determine that
the leading behaviour at large ∆ is

ck(∆) ∼ (−1)k ∆2k

2k k! . (E.15)

One can show that this behaviour is compatible with the holographic data obtained from
solving the bulk equations of motion. However, as already discussed above, (E.15) does
not contain any information about the specific geodesic that contributes to the correlator

— this information is encoded in the subleading terms which we are unable to access with
out current precision.

The large-∆ behaviour (E.15) serves as a useful rough estimate for the amount of terms
in the 1/n expansion of Λn that give a considerable contribution at a fixed value of ∆. Let us
assume that we can determine the Λn coefficients up to some number nmax. At this point, the
1/n terms in (E.1) scale roughly as ∆2/nmax. For nmax ≲ ∆2 the apparent 1/n expansion
will not look convergent, since successive terms in the expansion will increase. In other words,
the analysis can only be trusted for ∆ ≲

√
nmax. In practice, we are able to reach nmax ≈ 50,

which would suggest that we can fully trust the results up to ∆ ≈ 7. It would thus be
important if the method of obtaining Λn could be optimised so that nmax would be increased.

The main conceptual goal of this appendix was to check whether taking the large-∆ limit
of the stress-tensor sector after we expanded the correlator near the bouncing singularity
reproduces the results predicted by the bouncing geodesic. In particular, we focused on the
subleading behaviour in δτ . While we found no obvious disagreement, we have also not found
any conclusive evidence that confirms a relation. Therefore, a more thorough analysis is
needed to establish a definite connection between these two results.

F Analysis at non-zero x in d = 4

In this appendix we consider thermal correlation functions of scalar operators where the
operators are inserted at a finite spatial distance, x ̸= 0. We begin by discussing spacelike
geodesics connecting the two insertion points and the effect of non-zero spatial distance on
the bouncing geodesics. We then perform the OPE analysis for the stress-tensor sector at
x ̸= 0, expand the logarithm of the correlator near the bouncing singularity and then take
the large-∆ limit. We find that due to a slower convergence, even the leading correction
to the bouncing singularity at non-vanishing x cannot be conclusively matched between
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the geodesic and stress-tensor OPE results. We conclude that a more detailed analysis is
needed to make a definite statement.

F.1 Semi-classical analysis

In contrast to the main part of the text, we work here directly in the Lorentzian signature and
consider spacelike geodesics in (2.3). Let us parameterise the geodesics as (t(s), r(s), x(s)),
where s ∈ R is the affine parameter. We can introduce conserved charges

E ≡ r2 f(r) ṫ , Pi ≡ r2 ẋi , (F.1)

where the dot denotes the derivative with respect to the affine parameter, which reduce
finding the geodesics to a one-dimensional problem. We refer to Pi as the momentum and
E as the (imaginary) energy, though we will omit the imaginary adjective in this appendix.
The signs in (F.1) are chosen in such a way that in Patch I of the complexified spacetime
(figure 2) the time increases for E > 0. Finally, we use the isometry of R3 and rotate the
spacetime such that only one component of the momentum is non-vanishing, for example
P1 ≡ P . Generalising to having all momenta non-trivial is straightforward.

Spacelike geodesics in (2.3) have to satisfy the local constraint

−r2 f(r) ṫ2 + ṙ2

r2 f(r) + r2 ẋ2 = 1 , (F.2)

which can be rewritten, using the expressions for the conserved charges, as

ṙ2 − r2 f(r)
(
1− P 2

r2

)
= E2 . (F.3)

This effectively reduces the problem to classical scattering of a point particle in the potential
(see figure 16)

V (r) = −r2 f(r)
(
1− P 2

r2

)
. (F.4)

The nature of the geodesics depends on the values of the conserved charges, which can be
seen from the turning point determined by the solution of E2 = V (r). When P = 0, the
potential is monotonically decreasing and goes to positive infinity at r → 0. As E → ±∞,
we get close to the singularity — these are the bouncing geodesics discussed in the main
text and in [8, 9]. When P ̸= 0, we have to distinguish between P > 1 and P < 1 regimes,
as was already pointed out in [8]. For P > 1, there exist one real turning point, which is
always outside the horizon. Such geodesics never probe the region near the singularity and
will not be of interest in our analysis. For P < 1, we can see that the behaviour near the
origin changes — the potential now reaches a maximal value inside the horizon before going
to negative infinity. While this drastically alters the strict |E| → ∞ limit, the behaviour
does not change if we consider the regime where P E ≪ 1. Namely, this regime is where
we can think of spatial displacement x (which is, as we will show, linearly related to the
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Figure 16. The potential V (r) for different values of momentum P . When P > 1, the turning points
are always outside the horizon and such geodesics do not probe the singularity. When 0 < P < 1,
the potential has a maximum inside the horizon. In our analysis, we consider the case where P (and
thus x) is the smallest parameter of the problem and analyse perturbative corrections to the leading
bouncing singularity due to non-vanishing spatial separation.

momentum P ) as the smallest scale in the problem and treat it as an expansion parameter.38

As such, we can compare the small x expansion on the geodesic side with the same expansion
in the stress-tensor OPE (A.21) — in analogy of what was done in the two-dimensional
example discussed in appendix D.

We want to calculate its regularised proper length and express it in terms of time and
position displacements. The latter are given by

t ≡ tf − ti = 2
∫ ∞

rt

E dr

r2 f(r)
√
E2 + r2 f(r)

(
1− P 2

r2

) , (F.5a)

x = xf − xi = 2
∫ ∞

rt

P dr

r2
√
E2 + r2 f(r)

(
1− P 2

r2

) . (F.5b)

whereas the proper length integral is

L = 2
∫ rmax

rt

dr√
E2 + r2 f(r)

(
1− P 2

r2

) . (F.6)

In the above, rt denotes the turning point of the geodesic, which is the largest real root
of E2 = V (r), and we have used a cut-off parameter rmax that will help us to regularise
the integral.

For P ̸= 0 these integrals can be evaluated in terms of incomplete elliptic functions [46].
To express the solutions, we first define q ≡ r2 and note that the turning point equation is

38Another justification as to why this is a valid expansion comes from the WKB analysis of the correlator [9].
There it was shown that the Fourier conjugate to the spatial distance x is actually Q = −i P . For purely
imaginary momentum, the potential is monotonically decreasing as a function of r. In that case the behaviour
of bouncing geodesics does not change as we increase x.
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a cubic equation in q. Let us denote the three, in general complex, solutions as q1, q2, and
q3, where q1 corresponds to the largest real root and is identified with the turning point.
Then one can show that the integrals (F.5) become

t = E√
q1(q3 − q2)

[ (q3 − q1)
(q1 − 1)(q3 − 1)Π

(
c

a
, ϕ, s

)
(F.7a)

− (q3 − q1)
(q1 + 1)(q3 + 1)Π

(
c̄

a
, ϕ, s

)
+ 2q2

3
(q3 − 1)(q3 + 1)F (ϕ, s)

]
,

x = 2P√
q1 (q3 − q2)

F (ϕ, s) , (F.7b)

where F (ϕ, s) and Π(z, ϕ, s) are incomplete elliptic integrals of the first and third kind
respectively, and we have used

a = q3 − q2
q1 − q2

, c = q3 − 1
q1 − 1 , c̄ = q3 + 1

q1 + 1 , s = q3
q1 a

, ϕ = arcsin
√
a . (F.8)

Finally, the proper length integral is given by

L = lim
rmax→∞

{
2
√

q1
q3 − q2

[
s aF (ϕ̃, s) + (1− s a)Π

(1
a
, ϕ̃, s

)]
− 2 log rmax

}
, (F.9)

where

ϕ̃ ≡ arcsin
(√

a
r2

max − q1
r2

max − q3

)
. (F.10)

One can check that when P = 0, these expressions reduce to (2.22).
We now use these expressions to calculate the leading x correction to the correlator near

the bouncing singularity. Our method is to expand the expressions in P and take the E → ∞
limit order by order. For example, at first order in P , the turning point (2.21) is given by

q1 = 1
2
(√

4 + E4 − E2
)
− P 2 E2

√
4 + E2

,+O
(
P 4
)
, (F.11)

which, when taking E → ∞ at each term separately, gives

q1 = 1
E2

[
1− ε2 −O

(
ε4
)]
. (F.12)

In the above, we have used

ε ≡ P E , (F.13)

which is a convenient expansion parameter in this double limit, since this calculation only
gives sensible results if x (or P in this instance) is the smallest parameter in the expansion.
As such, P ≪ 1/E or equivalently ε = P E ≪ 1, which is why this combination appears
naturally in this limit.

One can then expand (F.7) in ε and express the conserved charges as

E = 2
δt
, ε = 2

π

x

δt
, (F.14)
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where δt = −iδτ = −t − iτc. The proper length integral expanded in ε is

L ≈ 2 log 2− 2 logE + π

2E2 ε
2 , (F.15)

which, when expressed in terms of position space coordinates, gives

L = 2 log(δt) + x2

2π . (F.16)

In a saddle point approximation, the contribution from such a geodesic to the correlator
would be, to leading order in x

e−∆L ∼ 1
(δt)2∆

(
1− ∆

2π x
2
)
= 1

(δt)2∆

(
1− ∆π

2β2 x
2
)
, (F.17)

where in the last expression we reinstated the inverse temperature. This is the result that
we will compare to the OPE analysis.

F.2 OPE analysis

Let us now discuss the CFT side of the x ̸= 0 story. As discussed in appendix A, for
0 < x ≪ τ the decomposition of the correlator generalises to

G(τ, x) = 1
τ2∆

∞∑
n=0

[
Λ(0)

n + x2

τ2Λ
(1)
n +O

(
x4

τ4

)](
τ

β

)4n

, (F.18)

where Λ(0)
n ≡ Λn is the contribution at x = 0 that we examined in the main text. The

coefficients Λ(1) can be further decomposed as

Λ(1)
n ≡ (2n−∆)Λn + Λ̃(1)

n , (F.19)

where Λ̃(1)
n are given by (A.20) and can thus be determined using the same holographic

calculation as Λ(0)
n . Since the latter have already been analysed, we focus here on the

asymptotic behaviour of Λ̃(1)
n . We find that this data is well described by

Λ̃(1)
n = c(∆) n2∆−2(

1√
2

)4n
eiπ n

∞∑
k=0

dk(∆)
nk

. (F.20)

The most important difference compared to (3.13) is the power of the factor of n. As we will
see, this has significant effects on the degree of the singularity at first non-trivial correction
in x near the bouncing singularity. The prefactor c(∆) is chosen to be the same as in Λ(0)

n ,
in which case d0(∆) is not necessarily equal to 1. Let us note that the convergence of
the numerical data obtained from solving the bulk equation of motion to (F.20) is slower
compared to the convergence in the x = 0 case. We can trace this back to more prefactors in
the expression for Λ̃(1)

n (A.20) compared to Λ(0)
n (A.16). As such, the results in this appendix

are less reliable. Nonetheless, one is able to extract some information even with n ≈ 50
data points at each value of ∆.
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Combining (F.20) with the expansion for Λ(0)
n gives

Λ(1)
n = c(∆) n2∆−2(

1√
2 e

iπ
4
)4n

∞∑
k=0

dk(∆) + 2 ck(∆)−∆ ck−1(∆)
nk

, (F.21)

where we define c−1(∆) = 0. This, combined with the asymptotic form of Λ(0)
n , can be

inserted into the correlator expansion

GT (τ, x) ≈
c(∆)
τ2∆

∫ ∞

0
dn

[
n2∆−3 + x2

τ2 n
2∆−2

(
d0(∆) + 2 + d1(∆) + 2c1(∆)−∆

n

)](
τ4

τ4
c

)n

= c(∆)Γ(2∆− 2)
τ2∆

[
− log

(
τ4

τ4
c

)]2−2∆

(F.22)

×
{
1 + x2

τ2

[(2∆− 1)(d0(∆) + 2)
− log

(
τ4

τ4
c

) + d1(∆) + 2c1(∆)−∆
]}

,

where we have again replaced the sum with an integral, inserted τc using (3.17), and used
that c0(∆) = 1. In this expression we work only at leading order in n in the x0 term while
keeping the subleading contribution in the x2 term. We will shortly show why the subleading
correction is important. We can now expand the correlator around τ ≈ τc, which gives the
bouncing singularity together with several corrections

G(τ, x) ≈ c(∆)Γ(2∆− 2)
42∆−2

1
τ2

c δτ
2∆−2

[
1 + x2

τ2
c

γ̃1(∆) + x2

τc δτ

(2∆− 1)(2 + d0(∆))
4

]
, (F.23)

where we defined

γ̃1(∆) ≡ d1(∆) + −5 + 8∆ + 4∆2

8 d0(∆) + 2 c1(∆)− 5
4 + ∆+∆2 . (F.24)

To compare this analysis with the proper length of the bouncing geodesic we use (3.19)
and take the large-∆ limit

lim
∆→∞

LT = 2 log δτ + x2

τ2
c

[
3− 2∆
4∆ − d1(∆)

∆ − 2c1(∆)
∆ − 3(2∆− 1)d0(∆)

8∆

]

+ x2

τc δτ

(2∆− 1)(2 + d0(∆))
4∆ , (F.25)

where it should be understood that one needs to take ∆ → ∞ in all terms in this expression.
We immediately notice that in contrast to (F.16), the leading correction at x2 comes at order
1/δτ . For the two expressions to be compatible, we would have to find

d0(∆) = −2 +O
( 1
∆

)
. (F.26)

We compare this prediction with the numerical data coming from solving the bulk equations
of motion in figure 17. We note that in the range 0 ≲ ∆ ≲ 15, the numerical data is
roughly constant, but misses the value predicted by the geodesic analysis by about 10%.
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Figure 17. The geodesic prediction for d0(∆) (red) compared to the numerical data obtained using
the holographic method (blue). We see that there is significant mismatch between the two results.
We relate this to the slower convergence of the OPE data to the asymptotic form.

While we believe that this difference is due to the slow convergence of data toward the
asymptotic OPE ansatz (F.20) and that when the number of OPE coefficients calculated
is increased the numerical data will converge to the geodesic result, we currently cannot
show that this is the case.

Since we cannot conclusively say something about the most divergent term at order
x2 in (F.25), we cannot compare the second term (with the square bracket) which has a
counterpart in (F.16). However, we immediately run into an interesting problem: note that
in the geodesic result, the first correction is real, while in the result from the OPE analysis,
the analogous correction is multiplied by τ2

c , which is imaginary. Not only that, this value
differs based on which of the four poles was chosen to expand the correlator around. We
currently do not have a good understanding of this discrepancy and leave this interesting
avenue for future work. Let us also remark that from the CFT point of view having x ̸= 0
does not significantly alter the physics, while the behaviour of the (real) bouncing geodesic
changes [8] . It would be interesting to understand whether the difference in the prefactors
is related to this phenomenon.

G Black hole singularity in d = 6 and d = 8

In this appendix we show that the stress-tensor sector in six and eight dimensional holographic
CFTs also contains singularities at the critical values predicted by bouncing geodesics. In
d + 1 spacetime dimensions the value of τc is given by [8]

τ (d+1)
c = β

2 ± i
β

2
cos π

d

sin π
d

= ±i βe
∓ iπ

d

2 sin π
d

. (G.1)

Below we reproduce τc from the asymptotic analysis of the stress tensor OPE in d = 6
and d = 8.
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G.1 Singularity in six dimensions

We start by solving the 7-dimensional scalar equations of motion in the black-hole background
using the ansatz (3.8). By expanding the results and comparing them with the CPW
expansion (3.9), we extract the CFT data from the dual bulk theory. For example the
first two OPE coefficients are

Λ1 = 8π6∆
15309 (G.2)

Λ2 = 32π12∆
(
715∆5 − 6930∆4 + 17204∆3 − 9323∆2 + 26334∆ + 9000

)
167571318915(∆− 6)(∆− 5)(∆− 4)(∆− 3) . (G.3)

Again we are interested in the large-n behaviour of Λn. We find that as n grows, the OPE
coefficients tend to

Λa
n = j(∆)n2∆−4 , (G.4)

up to 1/n corrections which we do not here. In the above, j(∆) is an undetermined function
of the conformal dimension. An interesting difference compared to d = 4 is the absence
of an oscillating sign in Λa

n. Inserting these coefficients into the OPE and approximating
the sum with an integral gives

GT (τ) =
1
τ2∆

∫ ∞

0
Λa

n

(
τ

β

)6n

dn = j(∆)Γ(2∆− 3)
τ2∆

(
− log

(
τ6

β6

))3−2∆

. (G.5)

This expression has a singularity whenever the argument of the logarithm is equal to 1, which
is precisely at (see left panel of figure 18)

τc = βei kπ
3 for k ∈ Z . (G.6)

Interestingly, we note that all singularities are located on a circle of radius β and that two
of these critical points coincide with the positions where one expects KMS poles. When
comparing these critical values to the geodesic result (G.1)

τ (7)
c = β

2 ± i
β

2
√
3 = βe±i π

3 , (G.7)

we find a precise match.

G.2 Singularity in eight dimensions

We follow the same approach in d = 8. The first two coefficients are

Λ1 = π8∆
184320 (G.8)

Λ2 = π16∆
1156266432921600(∆− 8)(∆− 7)(∆− 6)(∆− 5)(∆− 4) ×

(
17017∆6

− 211666∆5 + 681619∆4 − 881554∆3 + 3831472∆2 + 2284352∆ + 1317120
)
. (G.9)

Overall we find that the leading asymptotic behaviour of the OPE coefficients is

Λa
n = Q(∆) n2∆−5

W 8n eiπ n
, (G.10)
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d = 6

β

β ei
π
3

τ d = 8

β

≈ 1.31β ei
π
8

τ

Figure 18. Poles in the complex τ plane in d = 6 and d = 8.

where Q(∆) is a function of the conformal dimension and W is a constant

W ≈ 1.3066 . (G.11)

We note that the Λa
n have an oscillating sign, similar to the four-dimensional case. Inserting

them in the OPE and performing the integral gives

GT (τ) =
1
τ2∆

∫ ∞

0
Λa

n

(
τ

β

)8 n

dn = Q(∆)Γ(2∆− 5)
τ2∆

(
− log

(
τ8

W β8 eiπ

))3−2∆

. (G.12)

I.e. the stress-tensor sector has a singularity at

τc = βW e
iπ
8 +k iπ

4 for k ∈ Z , (G.13)

which are pictured on the right in figure 18. This agrees with the geodesic analysis which
predicts the singularities at

τ (9)
c = β

2 ± i
β

2 cot π8 = β
e±i 3π

8

2 sin π
8
, (G.14)

since
1

2 sin π
8
≈ 1.3066 ≈W . (G.15)

It is interesting to note that in d = 8 these singularities are all located further away than
where we would expect to find the KMS poles. This further strengthens the argument that
the stress-tensor sector does not contain the information about the KMS poles and the
double-traces are needed to recover their location.

H Lowest-twist analysis

In the main body of the paper we have examined the summed coefficients Λn defined by the
expansion (A.18). It is also interesting to study the individual coefficients λn,J ′ corresponding
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to the contributions from multi-stress tensors with different spin J ′ (respectively twist ∆′−J ′).
We are mainly interested in the behaviour of the coefficients λn,2n that correspond to the
multi-stress tensors with the lowest twist. These coefficients are universal in holographic
theories [24] and one can calculate them using bootstrap techniques (see e.g. [23]).

Alternatively, one can develop an effective method39 to calculate λn,2n by combining the
bulk recursion relation found in [24], with the fact that only one coefficient of the bulk ansatz
contributes to the near-lightcone correlator at each order in 1/r expansion.40 Such coefficient
can be then mapped to the lowest-twist coefficient λn,2n. In practice we get this coefficient as

λn,2n =
(
−π

4

4

)n

bn,n . (H.1)

where bn,n can be systematically calculated by solving the recursion relation [24]:

4(j − 4i)bi,j = 4(1− j + i)(i− j − 1 + ∆)
j −∆ bi,j−1 − 4(1 + j −∆)bi−1,j+1 (H.2)

where i, j ∈ Z, bi,j = 0 for j /∈ [−i, i] and for all i < 0, and b0,0 = 1.
Analysing the coefficients λn,2n we find their leading large-n behaviour to be

λn,2n = A(∆)e
iπnn2∆−5/2

B4n
, (H.3)

where A(∆) is a function of the scaling dimension and value of the constant B ≈ 0.8968 . . ..
To compare this with the asymptotic form of Λn ∼ n2∆−3, we consider the coefficient

λn,2n multiplied by (1 + J), yielding the behaviour ∼ n2∆−3/2 which grows faster than the
overall summed coefficient Λn. Thus, terms with the subleading twists are crucial to ensure
that Λn has the correct overall scaling as observed in the main part of the paper. It would
be interesting to study this in more detail.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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