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Abstract
Multi-agent Reinforcement Learning (MARL) is a powerful tool for training autonomous 
agents acting independently in a common environment. However, it can lead to sub-optimal 
behavior when individual incentives and group incentives diverge. Humans are remark-
ably capable at solving these social dilemmas. It is an open problem in MARL to replicate 
such cooperative behaviors in selfish agents. In this work, we draw upon the idea of formal 
contracting from economics to overcome diverging incentives between agents in MARL. 
We propose an augmentation to a Markov game where agents voluntarily agree to binding 
transfers of reward, under pre-specified conditions. Our contributions are theoretical and 
empirical. First, we show that this augmentation makes all subgame-perfect equilibria of 
all Fully Observable Markov Games exhibit socially optimal behavior, given a sufficiently 
rich space of contracts. Next, we show that for general contract spaces, and even under 
partial observability, richer contract spaces lead to higher welfare. Hence, contract space 
design solves an exploration-exploitation tradeoff, sidestepping incentive issues. We com-
plement our theoretical analysis with experiments. Issues of exploration in the contracting 
augmentation are mitigated using a training methodology inspired by multi-objective rein-
forcement learning: Multi-Objective Contract Augmentation Learning. We test our meth-
odology in static, single-move games, as well as dynamic domains that simulate traffic, 
pollution management, and common pool resource management.
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1  Introduction

We study the problem of how to get selfishly motivated agents to act pro-socially 
through the lens of Multi-Agent Reinforcement Learning (MARL). To solve this prob-
lem, we wish to give agents the option to propose and accept contracts with the aim of 
encouraging prosocial behavior.

As an example, consider the Cleanup domain, depicted in Fig. 1. Agents get reward 
for picking apples that only grow if a nearby river is unpolluted. In a pro-social solution 
to Cleanup, agents need to work together: one cleans while the other eats apples. How-
ever, self-interested agents cannot sustain this solution. Cleaning has no direct benefit, 
so selfish agents focus exclusively on picking apples. A social dilemma ensues.

This article studies contracts as voluntary commitments by all agents to zero-sum 
modifications of the environment reward, so-called social contracts, as a detail-free 
method of mitigating social dilemmas. More specifically, contracts transfer rewards 
between agents depending on contractible observations. Contracts are proposed by 
agents, and can be vetoed by any single agent—enacting the contract is voluntary. Even 
upon acceptance, agents may still choose any action, only their rewards for these actions 
are changed by the contract. We show, both game-theoretically and empirically, that 
providing agents with the option to contract allows for optimal system performance, in 
the sense of maximizing sum of agents’ rewards, regardless of the initial reward signal.

Consider again the problem of teaching agents to harvest in a polluted orchard where 
agents are only rewarded for picking apples. In a contract, an agent could propose 
that an agent receives a small reward bonus rclean for each polluted river square that is 
cleaned. All other agents are “charged” a reward penalty of − rclean

n−1
 to “fund” this bonus. 

Harvesting agents prefer this to an outcome with no apples as long as the bonus from 
picking apples offsets the cost. Non-harvesting agents prefer this contract as long as the 
bonus is small enough to be offset by the benefits of having apples grow.

Fig. 1   We evaluate our method in the Cleanup domain [14]. a A representation of the environment. The 
different agents correspond to the pink, yellow, and purple tiles. Agents are rewarded for picking apples 
(green), but apples will only grow if the river (blue) is clean of pollution (brown). Agents can clean up 
pollution, but aren’t directly rewarded for cleaning. This creates a social dilemma where no agents clean 
because they don’t expect to benefit from cleaning directly. b An illustration of the solution that our con-
tracting augmentation facilitates. In the Cleanup domain, one agent commits to “pay” the other to clean the 
river. As a result, the agents are able to coordinate on policies that maximize the total reward across both 
agents
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To understand the workings of contracting quantitatively, consider the classic Pris-
oner’s Dilemma [39]. The tables in Table 1 show the payoffs for the unmodified game 
(Table 1a) and the modified incentives (Table 1b) under the following contract:

Any agent who defects is fined 1.5 units of reward by the other agent.

If both defect, both pay, and the payments cancel. In this modified game, cooperation is 
dominant, and hence (C, C) is the only Nash equilibrium.

Would the agents agree to this contract if proposed? If it is rejected, they subse-
quently play the game in Table 1a which has a unique Nash equilibrium of (D, D), yield-
ing a reward of −2 for both agents. However, if it is accepted, they subsequently play 
the game in Table  1b which has a Nash equilibrium of (C,  C), yielding a reward of 
−1 for both agents. Thus, agents want to accept the contract and subsequently play the 
socially optimal outcome. Hence, merely the option to commit to a state-action depend-
ent reward transfer, or enter into a formal contract, mitigates a social dilemma, even 
among selfish agents.

In a real-world multi-agent system, contractible observations may be thought of as 
indices of system behavior, e.g., a tally of desirable actions taken by person. Accepted 
contracts are held in a ledger of contracts, and impact rewards of agents directly.

In this article, we advance the understanding of contracting for multi-agent systems 
with the following four contributions: 

1.	 We formalize Formal Contracting as a generic augmentation of Markov games (i.e., 
non-cooperative MARL);

2.	 We prove that this augmentation makes socially optimal behavior a subgame-perfect 
equilibrium (SPE), and that every SPE of the augmented game is socially optimal, if 
sufficiently complex contracts are allowed and the game is sufficiently observable in a 
sense we specify;

3.	 We prove in more general settings that more expressive contracts allow for higher system 
performance in terms of the sum of rewards;

4.	 We implement the contracting augmentation using state-of-the-art deep reinforcement 
learning. Contracting improves system performance in several complex game environ-
ments. We propose an algorithm to overcome exploration challenges, which performs 

Table 1   (a) Prisoner’s Dilemma (b) Prisoner’s Dilemma after signing a contract in which a defector trans-
fers 1.5 reward to a cooperator

With this contract in force, cooperating becomes a dominant action for both players

(a) Without Contract

C D

C −1,−1 −3,0
D 0,−3 −2,−2

(b) With Contract

C D

C −1,−1 −1.5,−1.5
D −1.5,−1.5 −2,−2
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close to, or better than, a joint controller after a fixed number of time periods in complex 
dynamic domains such as Cleanup and Harvest, see Hughes et al. [14].

The rest of this article is structured as follows. We provide preliminaries and define our 
augmentation in Sect. 2. In Sect. 3, we show that formal contracting mitigates social dilem-
mas as long as contracts can detect deviations from a socially optimal policy profile. In 
Sect. 4 we formalize the notion of contractible features, and prove that the system perfor-
mance improves with richer contracting features. We describe our evaluation methodol-
ogy and introduce a learning algorithm exploiting the notion of subgame perfection, multi-
objective contract augmentation learning, in Sect. 5. Experimental results are presented in 
Sect. 6. We review related work in Sect. 7. In Sect. 8, we discuss the real-world application 
and enforcement of contracts, fairness concerns, and avenues for future work. Appendices 
contain proofs, additional statements and experiments, a formal definition of a more gen-
eral contracting augmentation, and hyper-parameter settings for our experiments.

2 � Formal contracting

2.1 � Background

2.1.1 � Fully observable markov games

We define an N-agent Fully Observable Markov Game (FOMG) as a 6-tuple, 
M = ⟨S, s0,A, T ,R, �⟩ , where

•	 S is a state space;
•	 s0 ∈ S is the initial state;
•	 A = A1 × A2 ×⋯ × An is the space of action profiles a = (a1, a2,… , an) for N agents;
•	 T ∶ S × A → Δ(S) is a transition function;
•	 R ∶ S × A → [−Rmax,Rmax]

n is a (bounded) reward function mapping state-action pro-
files to reward vectors for the n agents; and

•	 � ∈ [0, 1) is a discount factor.

We will use bold symbols to denote sets of tuples. Agents choose policies �i ∶ S → Δ(Ai) , 
i = 1, 2,… ,N . We write � ∶= (�1,�2,… ,�N) to denote a policy profile. For a policy pro-
file � , we denote by

the value to agent i ∈ [N] ∶= {1, 2,… ,N} . The expectation in (1) is on the process 
st ∼ T(st−1, at−1) and at,i ∼ �i(st) , t = 1, 2,… . A subscript ()−i denotes a partial profile of 
policies or actions or policies excluding agent i, e.g., �−i ∶= (�1,�2,… ,�i−1,�i+1,… ,�N).

2.1.2 � Partially Observable Markov Games

An N-agent Partially Observable Markov Game (POMG) is an 8-tuple

(1)V�
i
(s0) ∶= �

[
∞∑
t=0

� tRi(st, at)

]
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S, s0,A and T are defined as in Fully Observable Markov Games. Ω is an observation space, 
and O ∶ S → Δ(Ω)n an observation model, mapping world states to a tuple of observa-
tions. In POMGs, agents’ policies condition on sequences of observations and actions, 
�i ∶ H → Δ(Ai) , where H denotes the set of observation-action histories. Denote

where the expectation is given with respect to the process ht+1 = (ht ∶ ot, at) ,   :   denot-
ing concatenation, st ∼ T(st−1), ot ∼ O(st) and at,i ∼ �i(ot) . Write V�

i
(h0) ∶= V�

i
(�) for the 

empty history ∅ . For the choice Ω = S , Oi(s, a) = (s, a) for all s ∈ S , the class of POMGs 
recovers FOMGs.

We will consider an additional observation model which we call the contractible obser-
vations. Let P be a POMG, and O0 ∶ S × A → Δ(Ω0) (where Ω0 is a distinct observation 
space). We denote the observations depending on a particular strategy profile � by a super-
script, i.e. o�

t
 is the observation at timepoint t when agents follow the strategy profile �.

Definition 1  Observation model O0 is sufficient to detect deviators from � in POMG P if, 
for all i = 1, 2,… , n and �′

i
≠ �i , we have that

To unpack this equation, an observation model is sufficient to detect deviation if some 
future observations are able to distinguish � from any policy profile in which a single agent 
deviates, (�i,�−i) . For example, an observation model that observes which agents defect in 
the prisoners dilemma is sufficient to detect deviations from the profile � where all agents 
cooperate.

2.1.3 � System performance and optimality

This article measures system performance through welfare,

We refer to a policy profile that maximizes welfare as jointly optimal: 
�∗ ∈ argmax�W

�(s0) . A policy profile � is Pareto-optimal if there is no policy profile �′ 
such that V�

i
(s0) ≤ V��

i
(s0) for all i = 1, 2,… ,N , with a strict inequality for at least one 

agent. Intuitively, in such profiles, there are no “win-wins”: no agent can attain higher 
reward without at least one other agent losing reward.

2.1.4 � Stable policy profiles and equilibria

In social dilemmas, social and individual incentives diverge. In our game-theoretic analy-
sis, we use an equilibrium notion to capture outcomes of selfish incentives. One poten-
tial solution concept is Nash equilibrium. A policy profile is Nash equilibrium if unilateral 

P = ⟨S, s0,Ω,A, T ,O,R, �⟩.

V�
i
(h) ∶= �

[
∞∑
t=0

� tRi(st, at)
|||||
ht

]

ℙ

[
∃t ∈ ℕ ∶ o

(��
i
,�−i)

0t
≠ o�

0t

]
= 1.

W�(s0) ∶=

N∑
i=1

V�
i
(s0).
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deviation is suboptimal for all agents. Formally, a policy profile � is a Nash equilibrium 
if for any agent i ∈ [N] and any policy ��

i
∶ S → Δ(Ai) (or ��

i
∶ H → Δ(Ai) in POMGs), 

V�
i
(s0) ≥ V

(��
i
,�−i)

i
(s0).

While this solution concept is common, it has its drawbacks, because it is too permis-
sive. For example, in Cleanup, a policy profile in which agents never clean (likely a non-
cooperative outcome of the Cleanup game from Sect.  1) under some contract even if it 
is in their best interest, and another agent not proposing this contract, would be a Nash 
equilibrium: no agent would benefit unilaterally from changing their behavior. The “threat” 
of one of the agents to not clean, however, is non-credible, as, if the contract were active, 
they would rather clean. Compare [29, Section 5.5] on non-credible threats and subgame 
perfection.

To avoid non-credible threats, we model selfish incentives in MARL with subgame-per-
fect equilibria (SPE). Subgame perfection requires that for any state s or history h, there 
cannot be a profitable deviation to another policy, for any agent. This is stronger than a 
Nash equilibrium, which only requires this to hold at the initial state s0.

Definition 2  (Subgame-Perfect Equilibrium) A policy profile � is a subgame-perfect Nash 
equilibrium or subgame-perfect for a POMG if for all histories h ∈ H , agents i = 1, 2,… ,N 
and policies ��

i
∶ H → Δ(Ai) , we have1

2.2 � The contracting augmentation

Contractible observation-dependent reward transfers are the main object of study in this 
article. Here, we formalize these augmentations within Markov games (Fig. 2).

Definition 3  (Contract) A contract is a function � ∶ Ω0 → ℝ
N whose range consists of 

zero-sum vectors, i.e.

for any (�1, �2,… , �N) ∈ range(�) . We denote a generic set of contracts by �.

Contracts, once accepted, act on the reward that agents receive by transferring reward 
from one agent to another. In this sense, no new reward is created through contracting. 
Moreover, the information used by the contracting logic is modeled by a corresponding 
contracting observation.

Definition 4  (Contracting Model) A contracting model is a 2-tuple C = ⟨O0,�⟩ , where 
O0 ∶ S × A → Δ(Ω0) is a contractible observation model and � is a contract space.

V
�
i
(h) ≥ V

(��
i
,�−i)

i
(h).

N∑
i=1

�i = 0

1  Some histories might never be reached. We will assume for this article that such “off-path” values can 
be chosen arbitrarily. The research program on equilibrium refinements studies how to discipline off-path 
beliefs, compare [9, ch. 4].
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This allows us to define the contract augmentation.

Definition 5  (C-Augmented Game) Let M = ⟨S, s0,A, T ,R, �⟩ be an FOMG 
and C = (O0,�) be a contracting model. The i-proposing, C-augmented game is 
MC = ⟨S�, (i, 0),A�, T �,R�, �⟩ , with the components listed below. If the contractible obser-
vations are clear from context (e.g. when the full state S is provided to the contract), we 
write MΘ instead of MC.

We describe the notation first for FOMGs.

2.2.1 � States

The augmented state space is

States have the following meanings:

•	 (i, 0) : Agent i has the opportunity to propose a contract � ∈ �;
•	 (i,�) : � ∈ � awaits acceptance or rejection by all agents;
•	 (s, 0) : The game is in state s ∈ S with a null contract, 0(s, a) = 0 , for all s ∈ S, a ∈ A , in 

force;
•	 (s,�) : The system is in state s with contract � ∈ � in force.

S� = ([N] ∪ S) × ({0} ∪�).

Fig. 2   The Contracting Augmentation. Top: Agents can propose contracts: state-dependent, zero-sum, addi-
tive augmentations to their reward functions. Other agents can accept or decline proposed contracts. Left: 
In case of declination, the interaction between agents happens as before. Right: In case of acceptance of the 
contract, the reward of the agents is altered according to the rules of the contract
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We will implicitly assume that contractible observation models always perfectly observe 
the proposed contract, and whether contracts were accepted.

2.2.2 � Actions

The action spaces for the agents are

which corresponds to actions in the game ( Ai ), proposal actions ( � ) and the acceptance 
action ( {acc}).

2.2.3 � Transitions

There are deterministic transitions, given by

for any contract � ∈ � and any action profile a ∈ A . Here, we denoted 
acc ∶= (acc, acc,… , acc) the profile of unanimous acceptance of a contract.

Transitions in states (s, 0) and (s,�) are as in the underlying game M,

for any s ∈ S , � ∈ � and a ∈ A.

2.2.4 � Rewards

for � ∈ � and s ∈ S . In states (s,�) , the actions acc and � yield a high negative reward. The 
first line means that depending on a state-action profile pair, reward is transferred between 
the agents. The second line refers to reward being transferred on signing a contract.

2.2.5 � Partially observable markov games

In order to generalize the above construction to POMGs, we consider a set of con-
tracts Θ = {Ω0 → ℝ

N} which depend on the contractible observation model 
O0 ∶ S × A → Δ(Ω0) , in general distinct from the observation models for each agent. We 
recover contracting in a FOMG for contractible observations O0(s, a) = (s, a) . The environ-
ment dynamics are the same as in the augmentation for FOMGs. It remains, hence, to gen-
eralize the observation and reward model to POMGs.

The observation space for the agents then becomes Ω� = ([N] ∪ Ω) × ({0} ∪ Θ) . Agents 
observe the proposer, the contract proposed or in force, and, if they are in a game state, 
they also recieve their individual observations in the base POMG, as below

A�
i
= Ai ∪� ∪ {acc}

T �((i, 0), (�, a−i)) =

{
(i,�), for any (�, a−i)

(i, 0) else.

T �((i,�), a) =

{
(s0,�) if a = acc

(s0, 0) otherwise.

T �((s,�), a) = T(s, a)

R
�((s,�), a) = R(s, a) + �(s, a),

R
�((i,�), acc) = �(acc).
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To unpack this notation, observe that (s,�) ∈ S� is a state in the augmented game, and a is 
an action profile.

In the contracting augmentation, once enforced, the expected rewards of agents are 
directly changed, according to

That is, the rewards are sampled according the contractible observation model. As in 
FOMGs, R((i,�), acc) = �(acc) . Note that agents maximize their reward as modified under 
the contract, so there is no concept of “breaking” a contract. The incentives that align 
agents’ behavior with pro-social goals are encoded in the reward function.

2.2.6 � Expressiveness

We define a notion of comparison for a subclass of contracting models. A contracting 
model C = (O0,�) has greater expected transfer expressiveness than C� = (O�

0
,�′) , written 

C
� ⪯ETE C if, for all �′ ∈ �′ , there exists � ∈ � such that

Note that the inequality in ETE comes from the quantifier order—if one contract space 
has less ETE than the other, any contract in the first can be replicated in the second in 
expectation.

3 � Formal contracting mitigates social dilemmas

In this section, we show that formal contracting, given a sufficiently rich set of contracts, 
mitigates social dilemmas in many fully and partially observable settings. Find a summary 
of our results in the first column of Fig. 3.

Theorem 1  (Optimality of Contracting) Let M = ⟨S, s0,A, T ,R, �⟩ be a Fully Observable 
Markov game. If all observations are contractible, O0(s, a) = (s, a) , then the contracting 
space

 

1.	 There exists an SPE of MC;
2.	 For any SPE � of MC , there is a jointly optimal policy profile �∗ of M such that 

�((s,�), a) = �∗(s, a) for the contract � that agent i chooses in �.

The theorem shows that, under the assumption of richness, contracting mitigates social 
dilemmas in game-theoretic equilibrium.

O�
i
((s,�), a) =

{
(Oi(s, a),�) s ∈ S

(s,�) s ∈ [n]

R�
i
(s, a) = Ri(s, a) + �o∼O0(s,a)

[�i(o)].

(2)�o∼O�
0
(s,a)[�

′(o)] = �o∼O0(s,a)
[�(o)].

Θfull = {(S × A) ∪ {acc} → ℝ},
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Proof Sketch  For any socially optimal policy profile �∗ , we can construct a “forcing con-
tract” �∗ , which sets a high penalty for not playing �∗ . A signing bonus for this contract 
transfers all utility gained or lost by playing �∗ for all agents but the proposer to the pro-
poser. The main part of the proof is to show that this is the (only) optimal choice for the 
proposer from �full , subject to agents accepting the contract. 	�  ◻

The full proof can be found in Appendix A. The conclusions of this theorem, along with 
those of Theorem 4, are illustrated in Fig. 4.

Fig. 3   A table summarizing the theoretical results proven in Sects. 3 and 4. The columns along the top list 
theorem types, which are (1) optimality when you have a contracting space with sufficient richness, (2) 
monotonicity in the size of the contract space (3) monotonicity in the space of contractible features. The 
rows list the various problems setups considered in these sections

Fig. 4   Under detectable deviations, possible welfare levels at equilibrium improve to optimality as the com-
plexity of Θ grows, if spaces allow for arbitrary unconditional transfers (see discussion in Sect. 4)
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The same result continues to hold for POMGs if deviations are detectable, even if the 
whole state is not necessarily observed. In this case, it might not be immediately possi-
ble to punish deviations. However, the contracting logic can simply wait a finite amount 
of time until a deviation occurs, and the precise agent that committed it is determined, 
which must occur by the detectable deviation assumption. This is more precisely articu-
lated below.

Theorem  2  (Optimality of Contracting with Detectable Deviations) Let 
P = ⟨S, s0,Ω,A, T ,O,R, �⟩ be a POMG, and O0 a contractible observation model that has 
detectable deviations from some socially optimal policy profile �∗ . Then, the same conclu-
sions as in Theorem 1 hold, if we require � = �full and C ⪰ETE Cfull = (�full,O0).

This result, however, fails to hold if the joint observations are unable to detect devia-
tions from �∗ . If this were the case, the mechanism behind the forcing contract no longer 
goes through, because contracts can’t necessarily sanction agents appropriately for behav-
iour deviating from �∗ , and so in general can’t compel all agents to act in a way that exactly 
maximizes welfare.

For an extreme example of this, suppose contractible observations are perfectly unin-
formative, Ω0 = {0} . In this case, reward transfers cannot condition on actions played in 
the course of the game at all, and hence are irrelevant for any agent in computing best 
responses. The augmented game then has the same subgame-perfect equilibria as the origi-
nal game.

4 � More possible contracts improve welfare

Even without full observability or detectable deviations, contracts can still be useful. We 
show that in both FOMGs and POMGs, system performance as measured by social welfare 
improves for more expected-transfer-expressive ( ⪯ETE ) contracting models.

Restrictions on the capability to contract correspond to some contracts being impermis-
sible in the environment. Reasons for such a restriction in practice may be desirable to 
incorporate domain knowledge into the contract design, or simply to improve exploration 
landscape for reinforcement learning.

In defining our order on system performance, we use M + � as the game following the 
acceptance of a contract � . Note that the system performance definition is complicated by 
the existence of potentially multiple equilibria, compare [7]. We can show, though, that the 
performance of the worst and the best stable outcome, that is, a variant of welfare of the 
worst and best subgame-perfect equilibria, improve. As it might be possible that the pro-
posing agent has an optimal contract they would like to propose, e.g. if there is a limit point 
of utility for them that is not achievable, we define a notion of best and worst equilibrium 
that considers cases in which the proposer takes an arbitrarily close to optimal contract. For 
finite contract spaces, this issue disappears, and the reader can view the following results as 
being about the worst and best subgame-perfect equilibria of MC.

Definition 6  (WCSPW and BCSPW) Let M be a Markov game, and C = ⟨O0,�⟩ be a con-
tracting model. For � ∈ � , we define the worst-case resp. best-case subgame-perfect wel-
fare under � as
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We also define the supremum over the contract choices.

These are bounds on the welfare under subgame perfection, which is attained if the pro-
poser’s choice of a contract has an optimal choice. Note that otherwise a subgame-perfect 
equilibrium fails to exist, as Proposition 3 shows.

Before stating the main result of this section, we formalize the intuition that the pro-
poser may specify an arbitrary transfer at the moment a contract is signed.

Definition 7  We say a contracting space � admits arbitrary unconditional transfers if and 
only if, for any � ∈ � , and any v ∈ ℝ

N , we have that �� ∈ � , where �′ is identical to � , 
except for an additional transfer of v at contract acceptance.

The above means that the contracting space is rich enough to allow the proposing agent 
to redistribute a certain amount of reward unconditionally, at the start of the episode. With 
this defined, we have:

Proposition 3  (W,B bound equilibrium welfare) Let � admit arbitrary unconditional 
transfers, augmenting a Markov game M. Then, we have that, for any � ∈ SPE(MC)

If W(C) = sup�∈� WCSPWC(�) resp. B(C) = sup�∈� BCSPWC(�) are attained by some �∗ , 
and moreover for such �∗ we can take �∗ attaining WCSPWC(�

∗) resp. BCSPWC(�
∗) , then 

there is � ∈ SPE(MC) such that W�(s0) = W(C) resp. W�(s0) = B(C).

Proof Sketch  We sketch this proof for first inequality. The second is analogous.
We first show the second assertion assuming that the supremum in (3) and (4) each are 

attained. Let �∗ ∈ argmax�∈�WCSPWC(�) and denote by �∗ be an SPE attaining (3) and � 
any subgame-perfect equilibrium in M. We construct an SPE for MC , by first defining �∗

tr
 (tr 

referring to “transfer”) as

where the vector v

(3)
WCSPWC(�) ∶= inf

�∈SPE(M+�)
WM+�,�(s0)

BCSPWC(�) ∶= sup
�∈SPE(M+�)

WM+�,�(s0).

W(C) = sup
�∈Θ

WCSPWC(�)

B(C) = sup
�∈Θ

BCSPWC(�).

W(C) ≤ W�(s0) ≤ B(C).

�∗
tr
(o) =

{
v o = acc

�∗(o) o ≠ acc

v =

⎛
⎜⎜⎜⎜⎝

∑n

i=2
V
M+�∗ ,�∗

i
(s0) − V

M,�

i
(s0)

V
M,�∗

2
(s0) − V

M+�∗,�

2
(s0)

⋮

VM,�∗

n
(s0) − VM+�∗,�

n
(s0)

⎞⎟⎟⎟⎟⎠
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We have �∗
tr
∈ � as � admits arbitrary unconditional transfers. It is an SPE as no agent at 

no point has an incentive to deviate. All agents except for the proposing agent are compen-
sated exactly to the point of indifference; the proposing agent maximizes its reward, under 
the constraint of agents accepting the contract. Now, taking an arbitrary SPE, we have that 
full surplus extraction, i.e. unconditionally transferring all excess reward from the non-
proposers to the proposer, must occur at every SPE (otherwise, the proposing agent could 
unilaterally change by simply performing this extraction, and changing nothing else). But 
this directly ties the proposer’s reward at all SPE to the welfare attained across all agents: 
hence, in order for the propose to get better payoff than W(C) at equilibrium, the welfare 
attained at equilibrium must be higher. Therefore, W(C) acts as a lower bound on the pos-
sible welfare attained across all SPE of the contracting game.

By choosing �∗ to be close to sup�∈� WCSPWC(�) we can generalize to the case where 
the exact value is not attained. 	�  ◻

Arbitrary unconditional transfers are necessary for Proposition 3 to hold. We provide 
a counterexample to Proposition 3 without arbitrary unconditional transfers in Sect. 4.5. 
In this, the proposer cannot internalize social welfare due to limits of transferring reward, 
and hence has an incentive to propose a contract decreasing equilibrium welfare in order to 
improve its individual reward.

The main theorem of this section is the following monotonicity result.

Theorem  4  (Monotonicity in Contract Spaces) We have that the bounds W(C) and B(C) 
are both monotonically increasing quantities in C : that is, when C1 ⪯ETE C2 , we have 
W(C1) ≤ W(C2) and B(C1) ≤ B(C2)

Proof  Let C1 ⪯ETE C2 . We show the proof only for W : the proof for B is identical. In order 
to establish the desired inequality, given that the expression

is defined by a supremum, it is enough to show that, for any �1 ∈ Θ1 , there exists a �2 ∈ Θ2 
such that WCSPWC1

(�1) ≤ WCSPWC2
(�2) . But by definition of ⪯ETE , for any �1 ∈ Θ1 , 

there exists a �2 ∈ Θ2 which matches expected transfers at all state-action transitions—
hence all payoffs in the POMG augmented by C1 are matched exactly by such �2 ∈ Θ2 at all 
states and observation histories. Hence, all subgame-perfect equilibria attainable under C1 
are attainable in C2 , as needed. 	�  ◻

The implications of this result are illustrated in Figs. 4 and 5—specifically, whenever 
contracting models are nested in expressiveness, welfare in subgame-perfect equilibrium 
increases, whether or not optimal performance is attained in the limit of complexity. We 
apply Theorem 4 in special cases.

4.1 � Deterministic contractible features

Here, we formalize the relationship between contracting models and contracting on a 
set of features � of the state s ∈ S . Let � ∶ S → Ψ be a generic (deterministic) feature 
map. For instance, in the harvest problem from Sect.  1, one might contract based on 
the number of apples near to an agent, and indicator variables for whether or not those 

W(C) = sup
�∈Θ

WCSPWC(�)
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apples have a sufficiently high density of neighboring apples (recall that apples only 
grow in high-density regions of apples). We define the feature-based contracting model 
on feature mapping � through the observation model O0(s, a) = �(s) , when paired with 
the space of all �-dependent contracts �full , and denote it by C� = (�� ,�).

Corollary 5  (Feature Monotonicity) Let M be a Markov game and �1,�2 two feature mod-
els such that � ∶ Ψ2 → Ψ1 and �◦�2 = �1 . Then,

Proof  By Theorem 4, it suffices to show that C�1
⪯ETE C�2

 . Let �1 ∈ ��1
 . We have that

Hence, in the definition of ⪯ETE , we can choose �2 = �1◦� as a contract in Θ�2
 . As it is 

pointwise the same contract, they match in expectation, as in Equation (2). 	� ◻

This result gives that, by Proposition 3, adding features to your contracting space 
shifts the region of possible equilibrium welfares upwards. This motivates the monoto-
nicity in Figs. 4 and 5.

4.2 � Random contractible features in a fully observable markov game

Noisy features still give rise to monotonicity. Concretely, let � ∶ S × Z → Ψ be a 
mapping for a random variable Z. This gives rise to a contractible observation model 
O0(s, a) = �(s, z) , which may be random.

W(C�1
) ≤ W(C�2

)

B(C�1
) ≤ B(C�2

).

�1◦�1(s, a) = �1◦(�◦�2)(s, a)

= (�1◦�)◦�2(s, a).

Fig. 5   Under general partial observability, possible welfare levels at equilibrium improve, without necessar-
ily reaching optimal social welfare, assuming arbitrary unconditional transfers
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Proposition 6  (Monotonicity of Random Features) Let M be an FOMG, and sup-
pose we have that s → �2 → �1 form a Markov chain. Then, W(C�1

) ≤ W(C�2
) and 

B(C�1
) ≤ B(C�2

).

Note that this result subsumes the deterministic case, as the second arrow in the above 
Markov chain takes the role of � in that definition.

Proof  We proceed, analogously to the deterministic feature case, by showing that any ran-
dom contract �1 ∈ ��1

 has expected transfers matched by some contract �2 ∈ ��2
 , hence 

verifying C�1
⪯ETE C�2

 , and then applying Theorem 4 for the desired result.
Let �1 ∈ ��1

 . Then, since S → �2 → �1 is a Markov chain, we know there exists a 
Markov kernel � s.t. �1 = �◦�2 . From this, we define the contract �2 ∈ ��2

 by the follow-
ing expectation

which is a function only of �2 . This contract choice is as desired since, by the tower prop-
erty of conditional expectation:

Hence, C�1
⪯ETE C�2

 , and we can apply Theorem 4, as needed. 	�  ◻

4.3 � Random contractible features in a partially observable markov game

Note that, in no step for the above sections do we rely on full observability for indiviual 
agents. Moreover, the case of random features in a deterministic game is subsumed by dif-
ferent choices of contractible observations O0 , and so no further extension is required on 
that front. Therefore, we have the fully general result:

Theorem 7  Let P = ⟨S, s0,O,A, T ,O,R, �⟩ be a POMG, and let C = ⟨O0,Θ⟩ be a contract-
ing model. Then, the conclusions in Proposition 3, Corollary 5, Proposition 6 all continue 
to hold for PC , when WCSPWC and BCSPWC minimize and maximize over the space of all 
equilibria of recurrent policy profiles Π ∶ Hi → ΔAi , and with contracts depending on con-
tracting observation O0.

4.4 � Contracting and decentralized markov processes

Above, we have argued that sufficiently expressive contracting removes strategic pressures 
on individual agents, and ensures that agents are incentivized to enact a socially optimal 
policy profile. One way to interpret this is that sufficiently expressive contracting in fully-
observed Markov games is a reduction from solving social dilemmas to solving decentral-
ized Markov decision processes (DEC-MDPs) at equilibrium [2]. DEC-MDPs are Markov 
games where agents all share a common reward, and our theory says that at all SPE of a 
(sufficiently expressive) contract-augmented game, agents act as if they are attempting to 
coordinate on optimizing a common scalar reward of 

∑
Ri.

�2 ∶= �[�1|�2],

��2∼�2(s,a)
[�2(�2)] = ��1∼�1(s,a)

[��2∼�(�1)
[�(�2)|�1]] = ��1∼�1(s,a)

[�1(�1)]
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Analogously, in decentralized partially observed Markov decision processes (DEC-
POMDPs, Bernstein et  al. [2]), all agents are given an identical scalar reward to maxi-
mize, but potentially different observation models. A natural follow-up question is whether 
DEC-POMDPS admit a similar reduction. Unfortunately, the answer is negative. Partially-
observed contracting with even Cfull poses an additional restrictions beyond DEC-POM-
DPs. Agent policies depend on observation-action histories, and the contracts depend on 
the state through a different observation model. This means that it may be impossible for 
contracts which are functions of the true state to perfectly track all agent’s current observa-
tion-action histories—thus, it may be impossible to enforce socially optimal policy profiles 
as a function of these histories. (This restriction can be relaxed if observation-action his-
tories are deterministic function of the true state, which we could call history-transparent 
POMDPs, for which such a reduction holds.)

4.5 � Necessity of arbitrary unconditional transfers

As a last result in this section, we show that our restriction to contract spaces that admit 
arbitrary unconditional transfers was necessary. Welfare does not necessarily increase 
when moving to ⪯ETE-greater contract spaces when the spaces involved do not admit arbi-
trary unconditional transfers.

Example 1  (Bribing the Contract Proposer) Recall the Prisoner’s Dilemma of Table  1a, 
with the row player as the contract proposer. We can consider � = {0,�} (recalling the 
null contract 0 having no effect on the original game), where � imposes the choice (C, 
C) for both agents with high penalty (say, -10) of defecting, with an additional uncondi-
tional transfer of 0.5 from the proposer to the column player, and �� = {0,�,��} , where �′ 
imposes a penalty of −10 on only the column player for defecting, and a transfer of 1.25 
for cooperating. Then, for � , we get the proposer has an incentive to select � over null 
contract 0 , attaining reward −1.5 at equilibrium, but in the second space, the proposer has 
a stronger incentive to select �′ , where it gets a reward of −1.25 at equilibrium (in all cases, 
these contracts give reward greater than −2 for both proposing and accepting agents, and 
hence are incentive-compatible in proposal, acceptance, and in selection at the given equi-
librium). Thus, even though �′ has more possible contracts to choose from, worse welfare 
are attained in the limit due to poor incentives for the proposing agent.

5 � Evaluation

We now evaluate the performance of the contracting augmentation. First, we introduce 
the baseline methods used to evaluate our approach. Then, we introduce our experimen-
tal domains. Finally, we provide details on MOCA, our training procedure for contracting. 
Replication code can be found at https://​github.​com/​Algor​ithmic-​Align​ment-​Lab/​contr​acts.

5.1 � Evaluation

We evaluate MOCA by comparing to the following baselines.

https://github.com/Algorithmic-Alignment-Lab/contracts
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•	 Joint Training a centralized algorithm with joint action space A = ×N
i=1

Ai chooses 
actions to maximize welfare (e.g. with reward 

∑
Ri);

•	 Separate Training Agents selfishly maximize their reward, with no modification;
•	 Gifting Agents can “gift” [23] another agent at every timestep by directly transferring 

some of their reward;
•	 Vanilla Contracting Run off-the-shelf deep RL on the contract-augmented versions of 

the respective domains.

We train all domains with 2, 4, and 8 agents, using Proximal Policy Optimization (PPO) 
[35] with ray rllib’s [22] implementation (we report our hyperparameter settings in Appen-
dix C). In each domain, we train gifting agents with a lower bound of 0 and an upper bound 
equivalent to the transfer value in the given constract space. This allows the same magni-
tude of transfers in gifting and contracts, for fair comparison. In one of the games, Emer-
gency Merge, we reduced the gifting values to 10 per timestep, as this improved gifting’s 
performance. On the Prisoner’s Dilemma and the Public Goods game, we trained agents 
for 1 M environment steps, and the complex dynamic games are trained for 10 M environ-
ment steps. In the study on monotonicity (Sect.  6.3), we run the environment for 15  M 
environment steps.

5.2 � Games

We test on several classes of games. We use Prisoner’s Dilemma and a Public Goods game 
as static, simultaneous-move games, and Harvest, Cleanup, and Emergency Merge as 
dynamic domains.

5.2.1 � Prisoner’s dilemma

The N-agent Prisoner’s Dilemma has two actions per agent, cooperate and defect. If all 
agents cooperate, they each get reward N, and if all defect, they all get reward 1. However, 
if some defect and some cooperate, the ones that cooperate get reward 0 and the ones that 
defect get reward N + 1 . Again, the socially optimal outcome is the one where all agents 
cooperate, but only Nash equilibrium is where all agents defect. We run an additional 
timestep after the matrix game is played for gifting actions to take place.

5.2.2 � Public goods

We study the following public goods game [17]. Agents choose an investment ai ∈ [0, 1] , 
and get reward Ri(a) =

1.2

N

∑N

j=1
aj − ai , i.e. they are given their share of the public returns, 

the investment returning 20%, minus their own investment level. At social optimum, all 
agents choose ai = 1 to get optimal joint reward. However, selfish agents are not incentiv-
ized to invest at this high level, as they would like to free-ride on the other agents’ efforts.

5.2.3 � Harvest

In Harvest, from Hughes et al. [14], agents move along a square grid to consume apples, 
gaining a unit of reward. Apples grow faster if more apples are close by, which leads 
to incentives to overconsume now, leading to an intertemporal dilemma. We choose 
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engineered features to limit the amount of computational resources needed. In particular, 
agents receive their position and orientation, the coordinates and orientation of the closest 
other agent, the position of the nearest apple, the number of apples close to the agent, the 
total number of apples, and the number of apples eaten by each agent in the last timestep. 
We don’t allow agents to use a punishment beam following Lupu and Precup [23]. The 
environment runs for 1,000 timesteps per episode.

5.2.4 � Cleanup

In Cleanup, also from Hughes et  al. [14], agents similarly move along a square grid to 
consume apples and gain one unit of reward. Apples only spawn if a nearby river contains 
a number of waste objects lower than a threshold. Removing a waste object is a costless, 
but also rewardless, task. Apple-picking agents can free-ride on other agents, which leads 
to degraded performance. The observation space used for agents is simplified to limit com-
putational requirements, and agents are passed their position and orientation, the position 
and orientation of the closest agent, the positions of the closest apple and waste object, and 
the number of current apples and waste objects. The environment runs for 1,000 timesteps 
per episode.

5.2.5 � Emergency merge

A set of N − 1 cars approaches a merge, an ambulance behind them, compare Fig. 6. The 
ambulance incurs a penalty of 100 per timestep that it has not reached the end of a road 
segment past the merge. The cars in front also want to get to the end of the road segment, 
but incur a penalty of only 1 per timestep. They are limited to one-fourth of the velocity 
that the ambulance can go. We assume access to controllers preventing cars from colliding 
(stopping cars short of crashing into another car) and managing merging, and so the actions 
ai ∈ [−0.1, 0.1] only control the forward acceleration of each vehicle. A dilemma arises as 
cars prefer to drive to the merge fast, not internalizing the strong negative effect this has on 
the ambulance. The environment resets after 200 rounds. Note that here, due to the asym-
metry of agent capabilities and rewards, attaining optimal social welfare cannot be done via 
Pareto improvement within the original game.

5.3 � Contract spaces

We consider low-dimensional contract spaces for different domains. 

Fig. 6   A depiction of the emer-
gency merge domain
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Prisoner’s dilemma	� Contracts are parameterized by a transfer � ∈ [0,N] for defecting, 
which is distributed to the other agents in equal proportions.

Public goods	� Contracts are parameterized by a transfer � ∈ [0, 1.2] , agents 
transfer �(1 − ai) , which is distributed to the other agents in equal 
proportions.

Harvest	� Contracts are parameterized by � ∈ [0, 10] . When an agent takes a 
consumption action of an apple in a low-density region, defined as 
an apple having less than 4 neighboring apples within a radius of 5, 
they transfer � to the other agents, which is equally distributed to the 
other agents.

Cleanup	� Contracts are parameterized by � ∈ [0, 0.2] , which correspond to 
a payment per garbage piece cleaned, paid for evenly by the other 
agents.

Emergency car	� The ambulance can propose a per-unit subsidy of � ∈ [0, 100] to 
the cars at the time of ambulance crossing. Each car is transferred 
� times its distance behind the ambulance at time of merge by the 
ambulance. If a car is ahead of the ambulance at time of reward, it 
pays the ambulance � times its distance ahead of the ambulance.

5.4 � Training

The contracting augmentation yields a Markov game, for which one could directly train 
agents with deep reinforcement learning (we will call this vanilla contracting). How-
ever, as can be observed from Figs. 7,  8,  9, and  10 this implementation of contracting 
does not outperform joint training in problems with more complex dynamics, or higher-
dimensional state and action spaces. To fix this, we propose an algorithm inspired by 
multi-objective reinforcement learning, compare [1], which we call Multi-Objective 
Contract Augmentation Learning (MOCA). We present it in Algorithm 1. MOCA con-
sists of two phases: first, the algorithm draws random contracts (which, in the language 
of multi-objective reinforcement learning, can be viewed as different “objectives”). This 
can be used to estimate V�

i
(s0,�) , i = 1, 2,… ,N for the initial state s0 and any contract 

� , i.e. the values for agents when contract � ∈ � is in force. This allows it to learn esti-
mates of the utility agents will get under a particular contract. Due to random sampling, 
these estimates are not biased by contract exploration, which may be an issue when 
using deep reinforcement learning directly.

In a second phase, we freeze play following (s0,�) for any contract � and the policy at 
states (i, 0) and (i,�) . We do so by choosing a contract repeatedly from the policy �i(i, 0) , 
and use as a proxy for acceptance the expected probability of acceptance, 

∏N

j=1
�j(i,�) . 

In order to help exploration of the contract space in this stage, we sample � agents from 
the space of non-proposing agents, and only use these agent’s accept-reject probabilities 
in determining contract acceptance. Here, the introduced � becomes a tunable hyper-
parameter, for which � = 2 obtained strong performance across all domains, which 
we report in Sect. 6. We update the weights for the actions of all agents at �i(i, 0) and 
�j(i,�) , for j = 1, 2,… , n . Finally, the algorithm returns the so-obtained policy profile.
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Fig. 7   Welfare throughout training the benchmark algorithms for the simple tabular games (including a 
vanilla implementation of contracting using off-the-shelf deep reinforcement learning). We have joint train-
ing (in blue), separate training (in orange), gifting (in green), and vanilla contracting (in red), presented. In 
simple static domains, contracting achieves welfare that attains or exceeds the returns from jointly training 
agents. For each figure, the x-axis plots number of environment steps (e.g. all agents taking an action is one 
step), and error is one standard deviation over 5 independent runs
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Fig. 8   Welfare throughout training the benchmark algorithms for the more complicated dynamic games 
(including a vanilla implementation of contracting using off-the-shelf deep reinforcement learning algo-
rithms). We have joint training (in blue), separate training (in orange), gifting (in green), and vanilla con-
tracting (in red), presented. In the simpler Merge domain, contracting achieves welfare that is close to joint 
training, but more complex domains (i.e. Harvest and Cleanup), biased policy exploration due to the dif-
ficulty of learning best responses has a greater effect. Therefore, vanilla contracting suffers in performance. 
For each figure, the x-axis plots number of environment steps (e.g. all agents taking an action is one step), 
and error is one standard deviation over 5 independent runs
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Fig. 9   Experimental results including MOCA, for the simple tabular domains. From left to right, we have 
joint training (in blue), separate training (in orange), gifting (in green), vanilla contracting (in red), and 
MOCA (in purple), presented. Every plot is the mean social reward per episode at the end of training (1 M 
plays of the static games) for each of the 5 algorithmic setups tested. Cells vary across number of agents 
present (2, 4, 8), environments (Prisoner’s Dilemma, Public Goods) with each cell comparing different 
algorithms. Error bars denote one standard deviation over five independent runs. For Prisoner’s Dilemma, 
MOCA attains higher social reward than both gifting and separate training. However, it fails to match 
joint training in Public Goods, since this is a domain with simple environment dynamics where learning 
to respond to contracts is difficult, so early best responses are more likely to be informative, and biasing 
towards these early on is likely to help performance. In 8-agent prisoner’s dilemma, contracting outper-
forms joint training, which is a result of the large action space of the joint problem
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Fig. 10   Experimental results including MOCA, for the more complex dynamic games. From left to right, 
we have joint training (in blue), separate training (in orange), gifting (in green), vanilla contracting (in 
red), and MOCA (in purple), presented. Every plot is the mean social reward per episode at the end of 
training (10 M environment steps) for each of the 5 algorithmic setups tested. Cells vary across number 
of agents present (2, 4, 8), environments (Harvest, Cleanup, Emergency Merge) with each cell comparing 
different algorithms (joint, gifting, separate, vanilla contracting, MOCA). Error bars denote one standard 
deviation over five independent runs. For these more complex dynamic games, contracting leads to higher 
social reward than gifting and separate training, and always at least matches that of joint training, except for 
2-agent Harvest and Cleanup, where sufficient resources are available to make these very mild social dilem-
mas, as the higher welfare resulting from separate training compared to joint training shows. In Emergency 
Merge, both vanilla contracting and MOCA contracting significantly outperforms separate training. In sev-
eral domains, contracting outperforms joint training, which is a result of the large action space of the joint 
problem
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Algorithm 1   Multi-objective contract-augmentation learning (MOCA)

We evaluate the performance of the final trained algorithm on rollouts. The choice of 
length of the two periods (e.g. the 9

10
 th for the first phase) is arbitrary—what matters is 

that both phases of training get adequate samples for learning to (1) converge in the sub-
game conditioned on a choice of contract in all cases, and (2) converge in the subgame 
of contract proposal, before playing the base Markov game. For the study in Sect. 6.3, 
we only run the second stage for 1% of the environment timesteps of the first, which was 
sufficient for close to optimal performance. Failure to do so in the first case leads to bad 
best responses to a given choice of contract, which may negatively affect social welfare 
as agents no longer respond (subgame) rationally to the proposed contract. Failure in the 
second case means the proposer chooses a suboptimal contract, leading to potentially 
suboptimal welfare.

5.5 � Monotonicity

Finally, in addition to assessing the performance of contracting (vanilla and MOCA) on 
these domains, we also wish to empirically validate the monotonicity analysis for poli-
cies shown in Sect. 4. To study this, we considered Cleanup with 4 agents, and explored 
whether or not Proposition 6 held in a complex, dynamic game. Recall that our choice 
of contract for this domain depends on agents being compensated for cleaning a river. 
To study feature monotonicity, we take the same underlying contracting logic, but intro-
ducing a probability � ∈ {0, 0.25, 0.5, 0.75, 1} that a given cleaning action is unobserved 
by the contract. This is equivalent to keeping Θ constant, but altering O0 , in the con-
tracting model we used earlier for the Cleanup domain. Notice that � = 0 represents 
is equivalent to the contracting experimented with earlier, and � = 1 is equivalent to 
the separate training baseline. Our theory would suggest that, because the 1-0 random 
features for detection of contracts form a Markov chain with decreasing � , we ought to 
have decreasing welfare as � increases.
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6 � Results

We first present a sample of our experiments with our baselines, which motivate the need 
for MOCA (Algorithm 1), in Figs. 7 and  8. Then, we discuss overall trends from experi-
ments including MOCA, Figs. 9 and  10. Finally, we discuss results analysing the perfor-
mance of contracting under randomized features, as compared to predictions from theory, 
as seen in Fig. 11.

6.1 � Contracting using deep reinforcement learning in the contracting 
augmentation

Consider first Figs. 7 and  8. We observe that, in Prisoner’s Dilemma and Public Goods, 
the baseline implementation of contracting is sufficient to achieve optimal or near-optimal 
performance, as can be seen by contracting either matching or surpassing the social welfare 
of training all agents jointly, and vastly surpassing the welfare of both gifting and separate 
training (both of which converge to socially suboptimal Nash equilibrium welfare). How-
ever, in more complex domains, such as Cleanup, this ceases to be the case. One potential 
reason for this is that, in these domains, learning the best responses to contracts becomes 
much more challenging, and so estimates of value for given contracts are less reliable early 
in training. Therefore, the proposing agent may benefit from additional exploration of the 
space of contracts, the main feature of MOCA. As seen in Figs. 9 and  10, MOCA again 
attains higher social welfare than joint training, separate training, and gifting. However, 
since intermediate levels of reward are not directly comparable with the baselines (since 
contracts are randomly sampled in the first stage of training, and are not run for the same 
number of timesteps in the second stage), MOCA is omitted from Figs. 7 and  8. For this, 

Fig. 11   Experimental validation of contract feature monotonicity. To evalutate the theory of Sect.  4, we 
study the performance of MOCA contracting after introducing a probability � of failing to detect contract-
ible behaviour. This frames the detection of contractible behaviour as a random feature, and our contracts 
can be understood as contracting on such random features. Viewed in this way, we can predict from Prop-
osition 6 that welfare should decrease with increasing � , which is exactly what we observe in Fig.  11a. 
The decay, however, is far from linear, as we see a plateau for middle values of � , and a sharp drop from 
� = 0.75 to � = 1.0 . Moreover, our theory does not predict anything about which parameter is selected at 
equilibrium, and none in particular emerges from this experiment, as seen in Fig. 11b. This experiment was 
run on Cleanup with 4 agents, with the contractible behaviour being the agent cleaning the river, and was 
averaged over 5 seeds, the error plotted being one standard deviation. Only 1% of environment steps used in 
the first stage are used in the second stage here – see Appendix C for details
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results are presented in Figs. 9 and  10 with bar plots summarizing welfare at the end of 
training, for all evaluated methods.

6.2 � Multi‑objective contracting augmentation

Now, we take a closer look at the full results in Figs. 9 and  10. In the simpler domains 
(Fig. 9), MOCA, like vanilla contracting, attains higher social welfare than for separately 
trained agents and agents trained with gifting. In Prisoner’s Dilemma, contracting reaches 
joint optimality for 2, 4, and 8 agents. A smaller action space (and hence easier explora-
tion) is a potential reason for why contracting can perform even better than joint training, 
since the action space for joint training grows exponentially in the number of agents. In 
Public Goods, especially for higher number of agents, joint training interestingly outper-
forms MOCA, but not vanilla contracting. One possible reason for this is that, uniquely in 
our suite of environments, learning best responses to each contract is challenging, while 
the socially optimal policy is itself trivial to execute. Therefore, early in training, it is likely 
that socially optimal play is learned as a response to some of the contracts, particularly for 
those � which are near-optimal. Therefore, biasing contract exploration early on is good 
for performance. In complex environments, since the socially optimal contracts are harder 
to execute, early biasing of contract exploration is unlikely to be well-informed, and so 
converging onto a poor contract proposal algorithm is likely in vanilla contracting at scale.

In the more complex domains (Fig.  10), MOCA in almost all cases at least matches 
the level of social welfare of joint training, and often far exceeds it. The exceptions to this 
trend are 2-agent Harvest and 2-agent Cleanup—in both cases, joint training and separate 
training exhibit strong performance (the former performing comparably to MOCA in both 
cases, the latter only for Harvest). The reason for this is that the two-agent settings for this 
problem are not strong social dilemmas, since the agents do not interact enough to create 
the social dilemmas, either by overconsuming the same patch of land in Harvest, or by 
consuming each other’s apples in Cleanup. Notably, this trend even applies in cases where 
the vanilla contracting fails (particularly in Harvest and Cleanup), motivating MOCA. In 
the Emergency Merge domain, MOCA, contracting with a standard PPO training, and joint 
training, all perform similarly, given the fact that this is a substantially lower-dimensional, 
and simpler in terms of best-response policies, than Harvest or Cleanup.

6.3 � Experiments on monotonicity

From our theory, we would predict that the average welfare attained by contracting, if 
agents have learned to enact subgame perfect equilibria in the contracting game, should 
decrease as we inject noise into the contracting process. Indeed, we find that this happens, 
see Fig. 11a. Specifically, we find that, in Cleanup with 4 agents, as we increase the prob-
ability that agents cleaning the river go unnoticed in the contract, the lower that attained 
social welfare becomes when learned with MOCA. However, we note that the monotonic-
ity we see in this dynamic setup is not uniform: we see a significant drop when adding any 
noise at all, then a relative plateau for middle values of � , and a sharp drop when going 
from � = 0.75 to � = 1.0 . However, our theory doesn’t say anything about which contracts 
are actually selected in each case, and as we see in Fig. 11b, no strong pattern emerges 
between � and contract parameter. Moreover, there seems to be a strong amount of vari-
ance regarding the precise selected contract at all levels.
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7 � Related work

We review related work in Computer Science and Economics.
Our work aims to mitigate social dilemmas in games. In addition to classical static 

social dilemmas such as Prisoner’s Dilemma (compare [39]) and a public goods game 
(compare [17]), we also consider more complex social dilemmas such as the Harvest and 
Cleanup domains of Hughes et al. [14]. Cooperation and prosociality in complex domains 
are of keen interest to MARL researchers, with related challenges including dilemmas like 
Gathering and Wolfpack [21], the StarCraft challenge [33], or more recently with MARL 
results in Diplomacy [20].

We relate to the study of augmentations of Markov games to enhance pro-social behav-
ior. Gifting [23, 42] is an augmentation expanding agents’ action spaces to allow for reward 
transfers to other agents. Wang et al. [42] prove that gifting is unable to change the set of 
Nash equilibria of the underlying game. Our approach differs from gifting in that contract-
ing forces commitment to a given modification of reward before taking an action in the 
original game, and that this commitment is binding for the length of time the contract is 
in force. This improves total welfare by incentivizing play that was not a Nash equilibrium 
in the unaugmented game. Relatedly, contracts in the sense of Hughes et al. [15], which 
we will call binding contracts, are contracts that force certain actions and do not allow 
for reward transfers. They will only ever be enacted when all agents are made better off 
when a contract is accepted, greatly limiting the effectiveness of the system design. For 
example, no agent will ever consent to a binding contract cleaning trash in Cleanup. Fur-
ther, since binding contracts are action-level contracts, the system designer would have to 
manually encode a “clean trash” policy, instead of relying on a reward signal to incentivise 
them to clean. Other work augments Markov games with auxiliary rewards to incentiv-
ize socially beneficial outcomes, without using 

∑
Ri directly, which can be unstable. For 

instance, Radke et  al. [31] uses multi-task learning to examine the effect of trading off 
individual, small team, and overall social objectives in designing proxy rewards for agents 
in a multiagent system. They find that considering auxiliary rewards comprised of com-
binations of these can be more effective surrogate objectives than pure social welfare in 
promoting prosocial outcomes—we achieve a similar effect by desigining contract spaces 
which make credit assignment easier for learning prosocial behaviour in MARL.

A large class of prior work has considered different forms of agent commitments. Smith 
[36] proposes the contract net protocol, which allocates tasks among agents and commits 
them to complete a particular task. Hughes et al. [15] is a recent study in this line of work. 
The paper considers multi-agent zero-sum games in which agents may give other agents 
the option to commit to taking a particular action. Hughes et  al. [15]’s contracts— as 
opposed to our concept of formal contracts—might be insufficient to induce the desired 
joint behavior, as agents will only commit to actions which improve their own individual 
welfare over the basic game, leading to Pareto optima, which may not be jointly optimal. 
Han et al. [11] considers the idea of commitments, without transfers, in evolutionary game 
theory. McAleer et al. [24] lets an auxiliary agent propose a Pareto-optimal equilibrium in 
a game. Sandholm and Lesser [34] suggests endowing agents with the ability to decommit 
from a task and paying a side payment. Our approach can be seen as “soft commitment” 
in which agents always only incur a cost in terms of reward when taking different actions, 
but are not forced to take a particular action. Sodomka et al. [37] considers the proposal 
of commitment and side payments, and reaches social cooperation in 2-player games. We 
provide a general approach that only considers reward transfer without the need to commit 
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to actions. The idea of negotiations between rounds to arrive to a commitment to an action, 
was considered in De Jonge and Zhang [4]. Formal contracting does not have the dynamic 
structure of a negotiation and lets a proposing agent make a take-it-or-leave-it offer. Other 
related publications study the emergence and learning of social norms [19, 41] as well as 
conventions [18]. In contrast to the present paper, these do not require explicit consent by 
agents.

Another related paradigm to ours is Stackelberg Learning. In such models, typically, a 
special agent, the principal, optimizes incentives for other agents in a bi-level optimization 
problem. Stackelberg learning has received a lot of attention in strategic Machine Learn-
ing [12, 25, 44] and has been used to learn large scale mechanisms such as auctions [3, 6]. 
Also, Yang et al. [43]’s approach of learning to incentivize other agents may be seen as 
an instance of Stackelberg Learning. Monderer and Tennenholtz [26] considers a media-
tor’s problem in Normal-Form Games. In contrast to Stackelberg Learning, the focus of 
formal contracts is that no additional agents—i.e. Stackelberg leaders—are introduced into 
an environment, but instead contract-proposing agents are embodied in the environment.

Formal contracts have been considered as an alternative to relational contracts in the 
fields of organizational Economics, see [10] and [8, 5.2.3]. The setting of an agent propos-
ing state-dependent reward transfers has received considerable attention in contract eco-
nomics, compare the literature following [27], and mechanism design, compare [16, 28, 
40]. In our proof of Theorem 1, we use a forcing contract, compare [13].

8 � Discussion

We expand on the assumption that a single agent proposes a contract, remark that is crucial 
for our results, and examine its resulting fairness implications, in Sect.  8.1. We discuss 
approaches to scaling formal contracting to more complex domains in Sect. 8.2. We dis-
cuss fairness concerns for contracting in Sect. 8.3.

8.1 � Limitations for formal contracting

One crucial assumption in our analysis is that a single agent proposes contracts. Game-
theoretic analysis, given in Appendix B.1, shows that if two or more agents are allowed 
to propose in a game, SPEs may be socially suboptimal. The intuition is that an agent i 
may choose a contract to affect the state distribution in a way that gives the agent a rejec-
tion reward when j proposes a contract, hence increasing their reward when contracting. 
Our game-theoretic analysis also showed that unfair outcomes might result from contracts. 
Insofar as proposal by different agents and joint optimal behavior are incompatible, system 
designers who would like to ensure fairness need to design contracts in a way that limit the 
number of transfers that can be made, potentially at the expense of welfare.

8.2 � Scaling formal contracting

The clearest avenue for future work is in scaling contracts to more realistic domains. Here, 
we outline three ways to do that.

First, contracts in this work were hand-engineered with relevant internal logic, in order 
to make the transfers a useful signal. For this approach to scale, a complexity tradeoff must 
be managed: Contracts need to be flexible enough to extract enough relevant information 
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to incentivize welfare-optimal play, while being simple enough for MARL agents to allow 
fast learning of which contracts to choose and accept. Domain-independent techniques for 
designing contract spaces would greatly improve the scalability of the method.

Manually managing this complexity tradeoff is undesirable. In particular, there may be 
domains whose social dilemmas are not transparent, or where it might be hard to design 
concise yet powerful contractible observation models. Therefore, learning which aspects of 
a state are useful for contracting will allow us to scale the approach to more realistic sce-
narios while keeping contract space sizes low.

Even with a fixed contract space, sample efficiency may be improved. MOCA took a 
first step into improving contract learning, by decreasing the bias in estimated V�

i
(s0,�) 

values. MOCA outperformed benchmarks in all, even complex, dynamic, environments 
that exhibited a social dilemma. Increasing sample efficiency will allow the use of formal 
contracting to mitigate social dilemmas in even more complex domains. One potential way 
to increase the sample efficiency of the first phase of MOCA is to leverage more of the lit-
erature on multi-task reinforcement learning methods [5, 30, 32, 38].

8.3 � Fairness

One striking observation in the proof of Proposition 3 is that agents j ∈ [N] ⧵ {i} are indif-
ferent between accepting the contract �∗ and not accepting it. Hence, the contract may lead 
to an improvement in welfare relative to � , but no agents except agent i = 1 gets any benefit 
from this improvement. In many decentralized learning tasks, this is not of concern. For 
example, if a robot fleet needs to coordinate which locations to service, low reward for 
some of the agents is not of concern, as long as system performance (that is, welfare) is 
high. In others, this behavior may be unfair. Trading off fairness and welfare is an avenue 
for future work.

9 � Conclusion and future work

To close, in this work, we propose a novel augmentation to POMGs, termed formal con-
tracting, which helps mitigate the occurrence of social dilemmas that may arise as a result 
of conflicting agent incentives. This augmentation can be applied in a modular way, to any 
POMG, requiring access only to the reward function, which we modify only with zero-
sum transfers (hence leaving welfare unaffected in all states). Theoretically, we show that 
this augmentation carries several desirable theoretical properties: (1) contracting in settings 
when deviations from prosocial policy profiles are detectable have only welfare-maximiz-
ing SPEs, and (2) whenever a contracting space admits arbitrary unconditional transfers, 
contracting can only improve SPE welfare compared to the original POMG, and improves 
as contracting spaces get richer (in the sense of an order ≺ETE we define). We discuss the 
implications of these results in several settings and discuss the relationship between con-
tracting and decentralized Markov processes.

We also demonstrate the power of contracts in tabular games (Prisoner’s Dilemma and 
Public Goods), and more complex sequential-move games (Harvest, Cleanup, and a novel 
self-driving car domain Merge). We propose a specialized algorithm for contracting, Multi-
Agent Contract Augmentation Learning, and matches or exceeds the welfare of training all 
agents with one controller. We also verify that our theoretical predictions hold. Contracts 
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with more observability into agent deviation attains higher welfare. In a discussion, we dis-
cuss scaling contracting, fairness concerns, and generalizability of our theory.

There are several avenues for future work, of which we highlight three: one is locality 
of contracting, which refers to contracts that are only binding for subsets of the observation 
space. A second direction is to allow contract spaces to change over time and be adjusted 
by agents. Finally, contracting in the presence of collusion by agents is an avenue for future 
work—both our theoretical guarantees and empirical experiments are in a setting where 
agents have selfish incentives but do not collude to take advantage of other agents.

Omitted proofs

We provide the proof of Theorem 2, from which Theorem 1 is a direct consequence.

Proof of Theorem 2  Consider any � ⊇ �full . Fix an arbitrary socially optimal policy profile 
�∗ , and consider a forcing contract �∗ which punishes any deviation from �∗ by − Rmax

�T (1−�)
 , 

where T is the time that a deviation is detected. Let the signing transfer for �∗ be such that 
all payoff gain for a non-proposer due to �∗ over no contract is transferred to the proposer. 
Moreover, let �0 be an SPE of the unaugmented Markov game M. Note that the punishment 
is a larger negative reward than any reward that can be achieved in the game from the out-
set. Hence, after acceptance of the contract, �∗ constitutes an SPE. By construction, after 
rejection of the contract, it also constitutes an SPE. By definition, all agents but the pro-
poser are indifferent between accepting and rejecting the contract. In particular, accepting 
it is an SPE. It remains to show that the proposer cannot get more payoff than under �∗ . All 
other agents need to get at least VM,�0

i
(s0) to accept a contract, it is impossible for the pro-

poser, in any contract following a contract that is accepted, to get more welfare than

This is exactly like the payoff that �∗ yields.
It remains to show that all SPE must lead to a jointly optimal policy profile in M + � for 

the contract proposed by � . First observe that it cannot be optimal for the proposer to pro-
pose a contract that wouldn’t be accepted (proposing �∗ would yield higher payoff). Hence, 
only accepted contracts are proposed at SPE. Note that if a jointly sub-optimal policy pro-
file �′ would be played following the proposed contract � , the proposer payoff would be 
bounded by

which is lower than what the proposer would get under �∗ . 	�  ◻

Proof of Proposition 3  As in the proof sketch, we only consider the first inequality in depth 
here only: the upper inequality follows by exchanging WCSPW for BCSPW, “worst case 
subgame-perfect equilibrium” with “best case subgame-perfect equilibrium”, changing 
argmin into argmax , and exchanging inequalities in the second part of the proof and the 
section headings.

W�∗

(s0) −

N∑
i=2

V
M,�0

i
(s0).

W��

(s0) −

N∑
i=2

V
M,�0

i
(s0) < W�∗

(s0) −

N∑
i=2

V
M,�0

i
(s0),
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We first show the second claim – that is, assuming �∗ and �∗ are attained, we wish to 
construct an SPE attaining W(C) . Fix a Markov game M, a contracting space � that admits 
arbitrary unconditional transfers to augment it and an arbitrary observation model O0 , giv-
ing contracting model C . As the supremum in (3) is attained, there is an SPE attaining �∗ in 
MC . Let �∗ ∈ argmax�∈�WCSPW(�) , and

Then, take

Moreover, define the following vector

and the following contract

Since � admits arbitrary unconditional transfers, we have �∗
tr
∈ � . Then, the following is an 

SPE: first, the proposing agent proposes �∗
tr
 , all agents accept this contract: for other con-

tract choices, agents accept or reject based on whether the expected value under worst-case 
SPE in M + � is higher than VM,�

i
(s0) (and accepting in the case of a tie). Once contracts � 

are selected, in all subgames M + � , agents play the worst-case SPE in M + �.
To argue this is an SPE, we proceed by backwards induction: once contracting is 

accepted or rejected, each agent plays a worst-case SPE, and moreover agents decide to 
accept or reject contracts appropriately according to the expected value under both. Then, 
it simply suffices to argue that �∗

tr
 gives the proposer maximal value amongst all choices of 

contract, given the responses of other agents subsequently. Upon playing �∗
tr
 , agents have 

their value under the contract extracted exactly to the point of indifference ( VM,�

i
(s0) ), and 

hence accept the contract. They then play �∗ , given that M + �∗
tr
 has exactly the same SPE 

as M + �∗ , as all comparisons of value are unaffected by a constant shift of reward in all 
episodes. The proposing agent therefore gets payoff:

This is maximal: suppose for contradiction a contract giving strictly higher payoff for the 
proposer was available in �′ , which leads to equilibrium profile �′ . If the proposer proposes 
a contract rejected in the SPE, then no contract is implemented and agents play � in M, giv-
ing proposer value

�∗ ∈ argmin�∈SPE(M+�∗)W
�(s0)

� ∈ argmin�∈SPE(M)W
�(s0)

v =

⎛
⎜⎜⎜⎜⎝

∑N
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V
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i
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Therefore, for a contract �′ which is accepted, and with worst-case equilibrium �′ played in 
M + �� , transfers from non-proposing agent i > 1 to the proposing agent cannot be greater 
than VM+��,��

i
(s0) − V

M,�

i
(s0) . Further, the proposing agent has a reward of (1) its own value 

under the game, plus (2) the time-discounted transfers through the game M + �� . From this:

This establishes that the policy profile here is indeed an SPE for the extended game MC.
Now on to the first claim. Let � be any SPE for MC , �0 the equilibrium of M that is 

played absent a contract in force. Denote �� the profile of sub-policies following the pro-
posal of contract � . We show that � must achieve at least welfare W(C).

Let 𝜀 > 0 . As the contract space admits arbitrary unconditional transfers, for any choice 
of contract � ∈ � , the proposer can attain, by selecting some �� ∈ � and unconditionally 
transferring welfare at SPE to itself,

where each agent gets 𝜀 > 0 beyond their non-contract value as an incentive to accept the 
contract. Under such �′,

for i = 2, 3,… ,N . Hence, as 𝜀 > 0 can be arbitrarily small, substituting in and rearranging 
(4), we get

Now, for all �SPE in the support of SPE � , these must be a best response for the proposer 
among all choices of contract. In particular, they must be better than any choice of �′ – 
hence, substituting (5), supremizing over Θ , and letting � → 0 gives

which proves the claim. 	�  ◻
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M+�� ,��

1
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� t��
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]
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Generalizations of contracting

Repeated proposals

Next, we prove that the statements of Theorem 1 continue to hold if we have an agent i that 
repeatedly proposes contracts. For a Markov game M, we say that a state s ∈ S is unreachable 
from state s0 is there is no sequence of action profiles a1, a2,… , at−1 ∈ A such that st = s.

Proposition 8  Consider a general formulation in the sense of Appendix B.2 such that there 
is an agent i such that (0, j) , j ≠ i is unreachable from (0, i) , and that (s, 0) is unreachable 
from (s�,�) for any s, s� ∈ S , � ∈ � . Then, the conclusions of Theorem 1 continue to hold.

Proof  First, observe that the strategies in which agent i repeatedly proposes a contract �∗ 
as in the proof of Theorem 1 is an SPE: At each proposal and acceptance state, the agent 
can assume that the value is as if the agent proposes an efficient contract in the next pro-
posal state. As in previous proofs more informally, we invoke the single-deviation princi-
ple for SPE (compare [29]) stating that to check an SPE, it is sufficient to only consider 
deviations by one agent at a time. First, observe that there is no reason for the proposer to 
propose another contract to the other agents, as the upper bound on value demonstrated in 
Theorem 1 continues to hold. The forcing contracts still exist and incentivize all agents to 
follow �∗ . Finally, rejection of all contracts is again not possible as the proposing agent’s 
best response would not be defined. Hence, the statement continues to hold for a repeatedly 
proposing agent.

The uniqueness of such an equilibrium follows equivalently, as an upper bound on the 
proposal agent is exactly attained at each proposal point. 	�  ◻

Finally, we show by means of an example that this statement breaks if multiple agents may 
propose a contract.

Example 2  Consider a repeated Prisoner’s Dilemma in which agent 1 may propose 
as long as (C,  D) has been played. Then, agent 2 proposes thereafter. Consider Pris-
oner’s Dilemma, Table 1a. An SPE of this game involves proposal of a forcing contract 
on (C,  D) with values after a signing bonus that leads to values (−2 + �,−1 − �) . All 
contracts that give agent 1 more value are rejected. It is a best response for agent 2 to 
accept, as long as (−1 − �)∕(1 − �) , the value of accepting this contract, is larger than 
−2 + 0 × �∕(1 − �) = −2 . The best such contract is the one with the largest � for which this 
inequality holds.

Conditional proposals

In this section, we present the augmentation for several proposing agents. Let 
M = ⟨S, s0,A, T ,R, �⟩ be an N-agent Markov game, � be a contract space as before. To gen-
eralize, we require one additional component: define the contracting initiation dynamics to be 
a function

P ∶ {(� ∪ {0}) × S × A} ∪ {init} → Δ([N] ∪ {0} ∪ {∙})
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which determine whether or not a new contract phase begins or ends at a given state of M, 
and if one begins, which agent is proposing the contract. More specifically, sampling from 
P(init) at the start of an episode, or from P(�, s, a) at state-action (s, a) under contract � , 
either: 

1.	 Agent i is given the option to propose a new contract, and the game is frozen ( i ∈ [N]);
2.	 None of the agents proposes a contract, but the current contract stays in force, and the 

game continues ( 0 ), or;
3.	 The current contract becomes void, and no agent proposes a new contract, and again the 

game continues ( ∙)

We again assume that the contracting space � contains the null contract 0(s, a) ≡ 0 . 
Define the contract-augmented Markov game M� = ⟨S�, S0,A�, T �,R�, �⟩ as

with S0 being state ((s0, 0), i) (e.g. agent i proposing a contract at the start of an episode) 
with probability ℙ[P(init) = i] and (s0, 0) otherwise. Note that, in contrast to the definition 
of S′ in Sect. 2.2, we use tuples (s, 0) more generally to denote cases where state s is frozen 
in the game while agents are negotiating a contract (which can now happen during the 
game, and not just at the start). For example, to capture the contracting initiation dynamics 
of Sect. 2.2 in this general model, we have P(init) = 1 almost surely, and P(⋅) = 0 almost 
surely for any other state (i.e., contracting is initiated and proposal rights given to agent 1 
with certainty at the start of an episode, and that contract is held in force for the remainder 
of the episode).

More complex augmentations can be constructed in a similar way. Examples of such 
augmentations are multiple contracts in force at the same time, majority of acceptance 
as opposed to unanimity, and contract overriding only if new contracts are accepted. 
Exploring such augmentations is an avenue for future work.

Hyperparameter settings

In this section, we describe the hyperparameters we experimented with in the process 
of developing the study of Sect. 6.

S� = (S ∪ (S × {0})) × (� ∪ [N])

A� = A ∪ � ∪ {acc}

T �((s,�), a) =

⎧⎪⎨⎪⎩

T(s, a) P(�, s, a) = 0

(s, 0) P(�, s, a) = ∙

(0, i) P(�, s, a) = i

T �(((s, 0), i), (�, a−i)) = ((s, 0),�)

T �(((s, 0),�), a) =

�
(s,�) a = acc

(s, 0) else.

R((s,�), a) = R(s, a) + �(s, a).
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Optimization details

In all methods, we used a learning rate of � = 10−4 . Experimentation with 
� = 10−2, 10−6, 10−8, 10−10 , as well as a linearly decaying learning schedule from 
� = 10−2 to 10−10 , none of which improved performance on any method, the smaller 
learning rates significantly degrading the sample efficiency of the methods involved.

Training happened using stochastic gradient descent, with 30 SGD updates per train-
ing iteration and a momentum of 0.99. For all methods second phase of MOCA, training 
batches consisted of 12000 sampled timesteps for the static dilemmas, and 120000 sam-
pled timesteps for the dynamic games, all of them with minibatches of size 4092. Other 
minibatch values attempted for these methods were 128,  256,  1024 and 40000, all of 
which were found to degrade the performance, the first two very significantly.

However, in training �(s,�) , we restricted ourselves to 10% of timesteps used in train-
ing �(0, 0) (and the baseline algorithms), and therefore found that sampling 128 epi-
sodes per training iteration, and using a minibatch size of 128 (in all domains) was suf-
ficient for strong performance. For the monotonicity study, we used 100,000 timesteps, 
1% of total environment steps.

Model architectures

On all algorithms, we experimented with 32 × 32 , 64 × 64 , 256 × 256 , 64 × 64 × 64 , 
256 × 256 × 256 , and 1024 × 1024 MLP networks, and took the models of minimal 
complexity attaining maximal performance. For separate training, gifting, and con-
tracting, we found 64 × 64 MLP networks to be this value, while for joint training, due 
to the added complexity of the joint policy, we found that expanding the network to a 
256 × 256 MLP architecture yielded the highest performance.

Environment horizon and discount factors

All domains have discount factor � = 0.99 . Moreover, the maximum horizon for the 
matrix domains was 2, for the Public Goods Dilemma was 100, for Emergency Merge 
was 200 (although episodes can terminate earlier by cars reaching the end early), and 
for both Harvest and Cleanup was 1000.

PPO‑specific parameters

We used a standard KL-coefficient of 0.2, KL-target of 0.01, clip parameter of 0.3, value 
function coefficient of 1.0, entropy coefficient of 0.0, for all experiments in all domains.

Novel hyperparameters

As mentioned in the main text, we introduced a novel hyperparameter � , governing the 
number of agents sampled in the accept-reject decision for contracts. In all experiments, 
we used � = 2.
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Other unmentioned hyperparameters are as found in the default settings in the RLLib 
implementation of PPO [22].
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