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Abstract: Mental workload, visuospatial processes and autonomic nervous system (ANS) activity
are highly intertwined phenomena crucial for achieving optimal performance and improved mental
health. Virtual reality (VR) serves as an effective tool for creating variety of controlled environments to
better probe these features. This study investigates the relationship between mental and visuospatial
workload, physiological arousal, and performance during a high-demand task in a VR environ-
ment. We utilized a modified version of the popular computer game TETRIS as the task, involving
25 participants, and employed a physiological computing VR headset that simultaneously records
multimodal physiological data. Our findings indicate a broadband increase in EEG power just prior
to a helper event, followed by a spike of visuospatial engagement (parietal alpha and beta 0-1-3 s)
occurring concurrently with a decrease in mental workload (frontal theta 2–4 s), and subsequent
decreases in visuospatial engagement (parietal theta at 14 s) and physiological arousal (HRV at 20 s).
Regression analysis indicated that the subjective relief and helpfulness of the helper intervention was
primarily driven by a decrease in physiological arousal and an increase in visuospatial engagement.
These findings highlight the importance of multimodal physiological recording in rich environments,
such as real world scenarios and VR, to understand the interplay between the various physiological
responses involved in mental and visuospatial workload.

Keywords: mental workload; visuospatial processing; virtual reality; EEG; heart rate variability

1. Introduction

Mental and visuospatial workloads are among the key drivers in human cognitive
processes [1–4]. Studies in this field have particularly focused on the prefrontal and parietal
cortices. The prefrontal cortex plays important roles in executive functions, such as the
capacity for self-control and short and long-term planning, which are widely regarded as
among the most crucial aspects of the human mind [5,6]. The parietal cortex, on the other
hand, is regarded to be critically important in visuospatial information processing and
working memory, and in the control of behavioral responses [7–9]. Interconnected systems
of visuospatial working memory and attention are also critical for human interaction with
rich stimulus environments. These systems are mediated by the frontoparietal network,
though the degree to which they are dissociable is debated, with both working memory
and attention is associated with activity in both the prefrontal cortex and the posterior
parietal [10]. In addition, the ANS and the interaction between its two parts, the sympathetic
and parasympathetic systems, are involved in top-down and bottom-up directions of
mental workload [11,12]. Maintaining a healthy equilibrium in the operation of these
systems can help people achieve optimal performance, better mental health, and improved
well-being [13–15].
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Studies focused on detecting and quantifying mental workload have increasingly used
physiological measures, which have various advantages over using only self-reported mea-
sures, as the latter are not optimal in continuous assessment and are prone to retrospective
reconstruction of the perceived mental workload [16]. Common physiological measures
of workload and engagement include electroencephalography (EEG) recordings from the
parietal and prefrontal regions of the brain [17,18] and measures of cardiac activity reflect-
ing the state of ANS [19]. Although conflicting reports exist (for a recent review, see [20]),
most studied EEG indices include increased frontal theta [21] and beta [22], increased
parietal beta [23] and theta [24], and decreased parietal alpha [25,26] band powers. As a
complementary modality to EEG, functional Near-Infrared Spectroscopy (fNIRS) studies
also have shown similar findings, with increased prefrontal activation during elevated
mental workload [27]. Cardiac indices for increased mental workload and physiological
arousal include increased heart rate (HR) and decreased heart rate variability (HRV) [28,29].
As discussed in previous research, while these measures provide valuable insights on their
own, using a multimodal approach can provide more robust representations of mental
workload, as each signal modality represents different facets of mental workload [30,31].

While measuring physiological markers is critical in mental workload studies, the
experimental environment and behavioral response elicited in participants are equally im-
portant. In behavioural sciences, researchers have studied virtual reality (VR) experiment
environments as both an exciting focus of study [32,33] and a tool for designing realistic
experiments [34,35]. VR is a valuable platform for studying participants’ behaviors as it is
easy to create any number of environments. These environments can be designed to be safe,
controllable, replicable, and accessible to participants from a variety of backgrounds and
with a variety of needs [36,37]. Most importantly, VR is capable of efficiently generating
realistic new environments that are a powerful tool for psychological researchers [38–40].
There have been important advancements in using VR as an experimental platform to
study mental workload. Gupta et al. [41] tracked multiple signal modalities (EEG, HRV
and Electrodermal Activity (EDA)) and subjective questionnaires to investigate the trust
level towards an auditory virtual agent under different mental workload levels. In another
study, Zhang et al. [42] used multimodal physiological data (EEG, EDA, Electromyography
(EMG) and skin temperature) in a VR-based driving system to track the mental workload of
users with Autism Spectrum Disorder, aiming to build a system that facilitates learning by
adjusting task difficulty. Utilizing real-time EEG data in a VR environment, Dey et al. [43]
presented an adaptive training system that can adjust task difficulty to an optimal chal-
lenging level to facilitate learning. The reader is further referred to the recent review by
Hadjiaros et al. [44]. While these recent studies provide valuable insights in terms of mental
workload corresponding to the prefrontal cortex activity, little attention has been given
to visuospatial processing in the literature. Furthermore, the temporal dynamics of the
central and autonomic nervous system activity in the context of mental workload in VR
environments requires further research.

The study presented here aims to explore the relationship between visual-spatial
cognitive demands, prefrontal cognitive workload, and the autonomic nervous system
during a high-demand task in virtual reality. The popular computer game TETRIS was
modified and used as the task in the experiment, which involved 25 participants. We used
Galea [45], a physiological computing VR headset that simultaneously records physiological
data (EEG, EDA, EMG, and PPG). We study the dynamics of the autonomic and central
nervous systems, with a focus on the activity of visuospatial workload in the parietal
region and the balance between the sympathetic and parasympathetic responses. To better
probe these temporal characteristics, we have added a new feature to the classic game of
TETRIS called “helper event” that introduces a swift change in task difficulty. Once the
stack of pieces reaches 60% of the height of the playing field, a ball-shaped helper piece
appears. It can be played like any other tetromino piece, and when placed, it clears the
four rows of squares underneath it and sets the game level to 5, slowing down the speed at
which the pieces fall. The findings of the study highlight the importance of cognitive and
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visuospatial workload in subjective experience and tension relief, as well as the significance
of maintaining optimum mental workload for maximizing performance and balanced
autonomic nervous system activity. This exploratory study contributes to the growing
understanding of the relationship between cognitive load, visuospatial engagement, the
autonomic nervous system, and performance.

The study hypothesizes a decrease in cognitive load, visuospatial engagement, and
physiological arousal following the helper event, which suddenly makes the game easier.
The study also hypothesizes that the physiological signals examined would be correlated
with subjective questionnaire responses about the impact of the helper event.

Overall, this study aims to explore the relationship between the central and autonomic
nervous system phenomena and cognitive state, particularly in the context of the helper
clear event in a highly demanding scenario.

2. Methods
2.1. Participants

A total of 34 participants (15 male, 16 female, three non-binary; ages 18 to 44) par-
ticipated in this study. Inclusion criteria were as follows: normal or corrected-to-normal
vision; no known history of epileptic seizures, migraines, or vestibular dysfunction; no
known history of claustrophobic events when using VR headsets; ability to set and follow
instructions for 30 min. Participants had varying levels of familiarity with VR and the game
TETRIS. The data was collected from 34 total participants, but 5 subjects were excluded
based on performance criteria, 3 were excluded on the basis of channel data quality and 1
subject was excluded based on outlier timing. Ultimately, 25 subjects were available for
data analysis.

2.2. Experimental Protocol

The experiment involved playing a modified version of the computer game TETRISTM

in VR. The game implementation adhered to the original source code and was implemented
in Unity3D (2020.3.11f1; Unity Software, Inc., San Fransico, CA, USA). The TETRIS game
involves tetrominoes, which are geometric shapes made of four squares linked edge to
edge in various arrangements, that descend one at a time vertically from the top of the
computer screen. While a tetromino piece falls, the player can manipulate the piece (moving
it left, right and rotating). The goal of TETRIS is to arrange the pieces so that complete
horizontal rows are formed. When this is done, the squares in that row vanish, and players
receive points.

In this experiment, participants used the provided controller to manipulate the pieces.
The game also incremented in level every 10 s of the game. Each level would have a set
speed at which the tetromino pieces fall, and this speed would increase logarithmically
with the level of the game. This was done to produce an increase of difficulty throughout
the game.

There were two sessions of the experiment: intervention and control. Both times, the
TETRIS game followed the general rules described above. The intervention session had
one additional helper condition. When the stack of pieces reach 60% of the height of the
playing field, a ball shaped helper condition appears. This helper piece can be played
like any other tetromino piece, and once it is placed, it immediately clears the four rows
of squares underneath it and sets the game level to 5, decreasing the speed at which the
pieces fall. To reduce possible confusion, researchers explained to each participant before
beginning the intervention session that there would be a new piece appearing at some
point during the game, that this place can be manipulated like any other tetromino, and
that this piece will clear four rows once it is placed. The control condition did not include
the helper intervention and had no other variations from the regular rules of TETRIS.

Each participant completed both the intervention and control conditions. The order in
which each participant completed the intervention and control conditions was randomized
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to minimize the effects of novelty from the controllers and test environment on cognitive
load from the experimental conditions.

2.3. Procedure

For both intervention and control sessions, the experiment had the following procedure
as outlined in Figure 1, right diagram. First, participants filled out two pre-experiment
questionnaires. Second, participants were met with a headset fitting and signal impedance
check. Third, a 50-s calibration occurred to remove motion artifacts in subsequent data using
Neuropype (see Data Preprocessing). Fourth, there was a second, 30-s-long calibration with
eyes closed, during which baseline alpha signals were collected. Fifth, after calibration,
participants played a tutorial of the TETRIS game for 30 s. This was done to help reduce the
effects that new controllers and unfamiliarity with the game may have on mental workload.
Sixth, participants played a game of TETRIS with either the intervention or the control
condition. Seventh, after the game, participants were asked to fill out a post-experiment
questionnaire. Lastly, participants were debriefed on the experiment and could provide
feedback if needed.
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Figure 1. Left: Plot of live physiological data stream from Galea headset (left screen), TETRIS VR
environment (right screen), User wearing VR headset. Right: Outline of experiment procedure. For
each of the two sessions, participants completed two pre-experiment questionnaires. Then, a headset
fitting session was conducted. Once the headset was fitted, calibration data was collected (regular
and eyes-closed). After a brief tutorial session, participants played either the intervention or control
version of TETRIS. After completion of the game, the participant filled out two post-experiment
questionnaires, and was debriefed on the session.

2.4. Apparatus

The Galea headset was used to present VR content and to collect physiological data [45].
The VR content was presented on the Valve Index Headset (Valve Corporation, Bellevue,
WA, USA). Participants used the Valvue Index Controllers. Electroencephalography (EEG)
was collected with a sampling rate of 250 Hz from dry electrodes placed according to the
international 10–20 system at Fp1, Fp2, Fz, CPz, POz, PO3, PO4, Oz, O1, and O2. Headset
fitting sessions were conducted prior to the start of the experiment to ensure that impedance
from EEG electrodes were under 10 uVrms. Photoplethysmography (PPG) was collected
using a particle and proximity sensor on the forehead

The Galea headset generates a stream of physiological measurements. Simultaneously,
Unity3D creates a stream on which event markers from game events are written. In
particular, the moments of interest were (1) start and end of calibration, (2) start and end of
tutorial, (3) start and end of game, (4) when stack of tetromino pieces reached 60% of height
of playing field. Additional event markers were sent during the intervention condition
when the helper piece appeared at the top of the screen and when the helper piece cleared
rows. The streams from Galea and Unity3D were merged using Lab Streaming Layer
(LSL) [46].
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3. Data Preprocessing
3.1. EEG

Collected EEG data were preprocessed by Neuropype (Syntrogi Inc., La Jolla, CA,
USA). The stream generated by the Galea headset was inputted to the Neuropype pipeline
with deterministic timing option to ensure replicability of the offline data stream. Then, a
1–35 Hz finite impulse response (FIR) bandpass filter was applied. For artifact removal,
data from the 50-s calibration was taken as a baseline, and artifacts were removed with
a noise amplitude threshold of 4 standard deviations and a sliding window of 1 s. This
threshold was determined for our settings by visually inspecting the resultant timeseries
for noise, such as muscle artifacts, eye blinks and eye movements. Resultant time series
was then exported for further analysis. Additionally, artifact regression node was utilized
for EEG data with heart rate pulsation artifacts. Through this node, PPG channels were
labeled as artifact channels, as they had similar signal waveforms with pulsation artifacts,
and the heart beat artifacts were subtracted using recursive least squares method.

3.2. PPG

Collected PPG data were preprocessed using “peakdet”, a Python-based peak detec-
tion toolbox [47]. First, a 0.7–2.0 Hz bandpass filter was applied to the PPG channels, and
an aggressive automatic peak detection was run on the data. Then, the detected peaks were
manually inspected, so that faulty peaks are deselected and undetected peaks are selected.

4. Measurements
4.1. EEG

For each subject and for each of the target electrodes, power was calculated for each of
the Alpha (8–13 Hz), Beta (15–30 Hz), and Theta (4–8 Hz) frequency bands for each second
using 75% overlapping 4 s windows. The MATLAB ‘bandpower’ function was used to
calculate the average power in the target frequency range (R2022a, The MathWorks Inc.,
Natick, MA, USA).

4.2. PPG

From the pre-processed PPG data, beats per minute (BPM) was calculated via a simple
average for each second using 90% overlapping 10-s sliding windows. Heart rate variability
(HRV) was measured using Root Mean Square of Successive Differences (RMSSD), again
for each second using 90% overlapping 10-s sliding windows. RMSSD was utilized to
account for the relatively short time window [48].

4.3. Baseline

The last s seconds of data from the beginning of the game to the first helper event
(stack reached 60% of the height of the playing field) was taken, where s is the smallest
number of available seconds across all subjects. From this data, baseline measurements
of the means and standard deviation were taken for both power and PPG data for each
subject and each electrode.

5. Analysis
5.1. Normalization

Given that power values are bounded (at 0) the alpha power data at any given second
was highly non-normal, with a rightward skew. As such a log transform was performed
to normalize the data. Thus for each data point for each subject the log of the alpha
power was taken. This allows us to use statistics that assume normally distributed data for
subsequent analysis.

xnorm = log(x) (1)
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5.2. Standardization

Given that the channel signal for each electrode/subject, as well as the corresponding
power signals, vary based on factors beyond differences in underlying neural activity (e.g.,
signal impedance) the power signal was standardized for each electrode for each subject.
Such standardization are often called “z-scores”.

z =
(x − xbase)

sbase
(2)

The standardized data was used for subsequent analysis. This effectively weights the
contribution of each electrode for each subject’s power signal equally, preventing large varia-
tions due to signal quality across subjects/electrodes from distorting the group level data.

5.3. Time-Series Analysis

Power and PPG data were calculated, then examined over time at the group level.
Specifically, once all subjects’ data were standardized and normalized, the data were
centered over the game event of the helper piece dropping and clearing rows. This was
done by simply aligning all time series for each helper event. Then, data were collapsed
across electrodes (CAE) per region by simple averages of prefrontal and midline frontal
(Fp1, Fp2, Fz), and parieto-occipital (PO3, PO4, POz) electrodes. Subsequent analysis was
done for each second within the analysis window starting at the helper clear event to the
end of the game, which varied for each subject. For each second in the analysis window, a
group level one sample t-test was done to detect deviations from the baseline. A p-value
cutoff of 0.05 was used to determine a significant event.

5.4. Linear Regression Models

A variety of regression models were examined in this work, both to predict the
behavioral performance improvement associated with the helper clear event, as well as to
predict questionnaire responses regarding the helper clear event collected after gameplay.
Performance, in our setting, was operationalized as the gameplay time in a given block,
namely baseline and post helper timeframes.

For each investigated question, linear models were iteratively created and tested.
Possible predictors were selected from the significant group level deviations observed in
the time series analysis. Of the group level deviations from baseline activity the deviation
with the most significant (lowest p-value) correlation between the subject’s EEG/PPG
data and the variable to be predicted was used as the first predictor variable for a linear
model. Then the next most significant correlation between subject EEG/PPG data and the
questionnaire was added to the model. This iteratively continued until the p-value of the
corresponding linear model began to increase as additional predictors were added. This
iterative approach, rather than an exploratory approach searching a broad combination of
predictor variables, both provides a simple means of model comparison as well as helps
control type II statistical error.

6. Results
6.1. Performance Improvement

Baseline performance did not deviate significantly from normality in either session
(session 1: p = 0.8604; session 2: p = 0.7518), and no significant difference was observed
in baseline performance between sessions (p = 0.5975). For the session containing post-
helper-clear, performance did not deviate from normality (session 1: p = 0.1749). In contrast,
post-helper-clear event performance did significantly deviate from normality when no helper
occurred (session 2: p = 0.0056). Although there was no helper piece appearing, the event was
marked anyways, using the criteria explained in Experimental Protocol. This deviation may
reflect a low bound of possible time played scores. A rank sum test identified a significant
difference in post-helper-clear event performance across groups (p = 2.1982 × 10−6), with
better performance occurring in the group that received the helper clear.
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6.2. Time-Series Analysis

This section presents the time series analysis results for both EEG power and PPG data.
Table 1 highlights the significant events identified for each data stream and corresponding
p-values. For all data streams, the time series analysis are graphically depicted in Figure 2
with the x-axis representing time and the y-axis representing normalized and standardized
group data. Band power results are shown in a collection of prefrontal and midline frontal
[Fp1 Fp2 Fz] and parieto-occipital [PO3 PO4 POz] electrodes. As described in the methods
section, CAE power data in the corresponding region of interest is reported with respect to
a baseline. Time series analysis for the PPG data is also shown below for both heart rate as
well as heart rate variability measured in terms of RMSSD. Positive values mean increases
in the corresponding measure relative to baseline and negative values indicate decreases
relative to the baseline measurement. The dark blue line represents the estimated mean
value, flanked by the the upper (yellow) and lower (light blue) bounds of a 95% confidence
interval of the estimated mean. Significant events, as measured by single sample t-tests,
are shown as vertical dotted lines in Figure 2 and reported in detail in the corresponding
sections in Table 1.

Table 1. Table showing the statistically significant events around the helper condition (t = 0 s) for
frontal Theta power (FTP), parietal Theta power (PTP), frontal alpha power (FAP), parietal alpha
power (PAP), frontal Beta power (FBP), and parietal Beta power (PBP) based on EEG power spectrum
collapsed across electrodes (CAE). We also report the significant events of PPG changes including
beats per minute (-BPM) and root-mean square of successive differences (RMSSD).

FTP-CAE FAP-CAE FBP-CAE

Time of event −7 2 3 4 16 35 50 −4 4 51 52 −4 −3 0
Estimated Mean −0.2277 −0.3511 −0.5505 −0.4547 −0.3108 −0.246 −0.3552 0.4499 −0.2924 −0.2932 −0.3696 0.517 0.4408 0.3164
p-value 0.029 0.0108 1.4708 × 10−6 1.8957 × 10−4 0.0379 0.0375 0.0424 0.0332 0.0314 0.0422 0.0031 0.0181 0.0065 0.044
PTP-CAE PAP-CAE

Time of event −7 1 5 6 9 14 16 38 0 1 36 46
Estimated Mean −0.3068 −0.3854 −0.594 −0.5093 −0.4159 −0.3427 −0.3812 −0.2841 −0.3995 −0.3977 0.3977 0.4674
p-value 0.0447 0.0056 3.8388 × 10−4 0.0061 0.0076 0.0465 0.0402 0.0325 0.0157 0.0162 0.0198 0.0496
PBP-CAE PPG-BPM PPG-RMSSD

Time of event −3 −2 1 2 3 −5 −1 0 7 −2 12 13 14 20
Estimated Mean 0.4917 0.4533 0.2963 0.4025 0.4699 −0.3912 −0.5192 −0.5427 −0.4698 0.5353 0.4936 0.5047 0.5202 0.5547
p-value 0.0146 0.0487 0.0203 0.0317 0.0191 0.0221 0.0276 0.0235 0.0232 0.025 0.0411 0.0402 0.0476 0.0447
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Figure 2. Figures show the significant deviations from baseline for EEG and PPG signals before and
after the helper event. (a) Frontal Theta power collapsed for electrodes Fp1, Fp2, Fz. (b) Parietal
Theta power collapsed for electrodes POz, PO3, PO4. (c) Frontal Beta power collapsed for electrodes
Fp1, Fp2, Fz. (d) Parietal Beta power collapsed for electrodes POz, PO3, PO4 (e) Frontal alpha power
collapsed for electrodes Fp1, Fp2, Fz. (f) Parietal alpha power collapsed for electrodes POz, PO3, PO4.
(g) Heart rate, in beats per minute, deviation from baseline. (h) RMSSD, a measure of HRV, deviation
from baseline.

Key events are summarized here, and detailed discussions can be found in the Discus-
sion. The effects of the helper event (at t = 0) span multiple data streams over 20 s. Prior to
the helper event, there was a notable increase in broadband EEG power, specifically in the
frontal and parietal beta at 3 s, and in the frontal alpha at 4 s before the event, along with a
positive trend across other power signals. Additionally, distinct changes were observed in
parietal and frontal EEG activity, including a parietal beta increase from 1–3 s, a parietal
alpha decrease from 0–1 s, and a frontal theta decrease from 2–4 s. Further post-event
observations included a decrease in parietal theta at 14 s, an increase in HRV from 12–14
and at 20 s, and a decrease in heart rate at 7 s.

6.3. Predicting Performance Improvement

This section shows the results of a linear regression analysis predicting the magnitude
of performance improvement using the significant deviations from baseline power and
PPG activity that were observed in the time series analysis described above. A significant
model (Fd f=21 = 9.25; p = 0.00121) was obtained, with significant parietal predictors of
performance improvement including parietal Beta activity at 3 s and parietal Theta activity
at 5 s. The model has a high degree of predictive validity with an R2 = 0.457, and an
adjusted R2 = 0.407.

ŷ = β0 + β1x1 + β2x2 (3)

x1 ≡ Parietal Beta at 3 s (4)

x2 ≡ Parietal Theta at 5 s (5)

Table 2 shows the individual contributions of the estimated components.
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Table 2. Performance improvement model coefficients.

Coefficient Estimate p Value

β0 158.12 1.7066 × 10−8

β1 −49.843 0.0029947
β2 58.048 0.0045931

Here we see that both parietal Beta and Theta power were significantly predictive of
the performance improvement induced by the helper clear event, with the directionality
of the effect of each predictor opposed. Low parietal Beta power and high parietal Theta
power predicts the largest performance improvement. This directionality is inversely
related to the overall effect of the deviations from baseline observed in both measures.

Figure 3 shows the observed performance improvement on the x-axis, and the pre-
dicted performance improvement, as calculated by our linear model, on the y-axis.

Figure 3. Estimated vs observed performance improvement—Estimated performance improvement
is shown on the x-axis and observed performance improvement on the y-axis. Performance improve-
ment is estimated as a linear combination of selected physiological signals that significantly deviate
from baseline activity following the appearance of a helper during gameplay.

We conducted a post-experiment questionnaire to gather feedback from participants
about the effectiveness of the helper condition in the game “the ball shaped piece in a
game”, specifically its impact on the helper and helper clear event. We selected a subset of
questions from the questionnaire and scored the responses using a standardized system of
integers. We then created linear models based on a standardized equation to investigate
the relationship between different variables and gain insights into the impact of the ball
shaped piece on participants’ gameplay experience. These questions were: (1) Was the ball
shaped piece helpful in the game? If yes, how helpful was it?; (2) Was the effect of the
ball shaped piece relieving? If yes, how relieving was it?; (3) Did you notice that the game
became slower immediately after the ball cleared some rows? If not, how much longer did
it take for you to realize that the game was now slower?; (4) After [the] ball cleared some
rows and slowed down the game, did you feel a tension relief in your body? If yes, to what
degree did you feel this?

Questionnaire responses were scored, converting the selected options to integers. For
questions 1, 2, & 4 responses were scored as: “Very” = 4, “Moderately” = 3, “Fairly” = 2,
“Slightly” = 1, “Not at all” = 0. Question 3 was scored as: “I did not realize” = 4, “Within a
couple moves” = 3, “Within one move” = 2, “Almost immediately” = 1, “Immediately” = 0.

For each investigated question, linear models based on the equation below were
iteratively created and tested.



Computers 2024, 13, 246 10 of 16

The results of the most statistically significant of the observed models are reported
here for each of the four investigated questions. Figure 4 displays the observed and
estimated questionnaire responses, as calculated by these linear models. Questions 1, 2
and 4 each had significant models, as measured both by the significance of the F-statistic
corresponding to the linear model as well as the significance of the correlation coefficient
between the estimated values using the linear model and the observed values. As a note,
in the cases where the selected linear model used only a single predictor, the statistical
significance of both the linear model and the correlation coefficient are equivalent. In the
cases where multiple predictors are used the linear regression statistical results indicate the
degree to which one or more of the predictors has a significant linear relationship with the
questionnaire response. The correlation results are a more direct measure of the predictive
validity of the model, indicating the extent and significance of the relationship between the
predicted and observed values. The R2 value indicates the percentage of variance in the
observed data explained by the linear model of the predictor variables.

Figure 4. Estimated vs observed questionnaire responses - For each of the four questionnaire re-
sponses regarding the helper, estimated vs observed questionnaire responses are displayed. Questions
1, 2 and 4 showed statistically significant (p > 0.05) models.

6.3.1. Question 1: Was the Ball Shaped Piece Helpful in the Game? If Yes, How Helpful
Was It?

Our linear regression variables were x1 ≡ PPG HRV at 20 s, and x2 ≡ Parietal Beta at
3 s. Table 3 shows the individual contributions of the estimated components. The results
of the linear model as a whole, as determined by the F-statistic vs. constant model (3.65)
was significant with a p-value (df = 22) = 0.0426. There was furthermore a significant
correlation (p = 0.011; R2 = 0.2494) between the predicted and observed questionnaire
response values.

Our findings indicate that the parietal Beta activity just following the helper clear
event and the heart rate variability 20 s following the helper clear event are significantly
related to subjective reports of how helpful the helper was. The correlation results indicate
that 25% of the variance in subject questionnaire responses to question 1 is explained by
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a linear combination of the PPG HRV data 20 s after the helper clear event and parietal
Beta activity 3 s after the helper clear event. While the individual predictor variables were
not significant when individually tested (see table), the significance of the overall model
indicates a significant effect. This may indicate a degree of correlation between the predictor
variables, though a statistically significant correlation was not observed (p > 0.05). Given
that this model’s performance exceeded the performance of a model with only a single
predictor variable, both terms likely contribute. The significant intercept term indicates, as
expected, that the mean questionnaire responses differ from 0.

Table 3. Individual contributions of the estimated components for question 1, 2, 3, and 4.

Coeff. est. SE tstat p Value Coeff. est. SE tstat p Value

Q1 Q 2

β0 1.6765 0.25031 6.6977 9.8599 × 10−7 2.5109 0.20266 12.389 2.1483 × 10−11

β1 0.62915 0.28374 2.2173 0.037241 −0.48211 0.22578 −2.1353 0.044115

β2 0.43876 0.22425 1.9566 0.063211 0.40724 0.20894 1.9491 0.06415

Q 3 Q 4

β0 1.6421 0.3560 4.6124 0.000012 1.6765 0.2503 6.6977 9.86 × 10−7

β1 −0.7636 0.43776 −1.7461 0.0941 0.62915 0.28374 2.2173 0.0372

β2 - - - - 0.43876 0.2243 1.9566 0.0632

6.3.2. Question 2: “Was the Effect of the Ball Shaped Piece Relieving? If Yes, How Relieving
Was It?”

In this case, our regression variables were x1 ≡ Parietal Theta at 14 s, and x2 ≡ Parietal
Beta at 2 s. Table 3 below shows the individual contributions of the estimated components.
The results of the linear model as a whole, as determined by the F-statistic vs. constant
model (5.39) was significant with a p-value (df = 22) = 0.0124. There was furthermore a
significant correlation (p = 0.0027; R2 = 0.329).

Our findings indicate that the parietal Beta activity just following the helper, and
parietal Theta 14 s following the helper, is significantly related to subjective reports of the
relief experienced following the helper clear event. The correlation results indicate that 33%
of the variance in the subject questionnaire responses can be explained by this linear model.

6.3.3. Question 3: Did You Notice That the Game Became Slower Immediately after the Ball
Cleared Some Rows? If Not, How Much Longer Did It Take for You to Realize That the
Game Was Now Slower?

Our regression variable in this case is x1 ≡ Parietal Theta at 9 s. Table 3 shows the
individual contributions of the estimated components. The results of the linear model as a
whole, as determined by the F-statistic vs. constant model (3.05) was not significant with
a p-value (df = 22) = 0.0941. There was furthermore no significant correlation (p = 0.0953)
between the predicted and observed questionnaire response values.

The intercept term, as expected, was significant. This indicates that the average
questionnaire responses were greater than zero, though the insignificant finding of the
linear model as a whole indicates there is no linear relationship between the investigated
predictor variables and this particular questionnaire response.

6.3.4. Question 4: After the Ball Cleared Some Rows and Slowed Down the Game, Did You
Feel a Tension Relief in Your Body? If Yes, to What Degree Did You Feel This?

The regression model variables were x1 ≡ Frontal Beta at −3 s, and x2 ≡ Parietal
Beta at 3 s. Table 3 shows the individual contributions of the estimated components. The
results of the linear model as a whole, as determined by the F-statistic vs. constant model
(5.36) was significant with a p-value (df = 22) = 0.0127. There was furthermore a significant
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correlation (p = 0.0028; R2 = 0.3276) between the predicted and observed questionnaire
response values.

Our findings indicate that the frontal Beta activity just prior to the helper clear and
parietal Beta activity just following are significantly related to subjective reports regarding
the degree of tension relief subjects report following the helper clear event. The correlation
results indicate that 33% of the variance in the subject questionnaire responses is explained
by a linear combination of the Frontal Beta activity just prior and Parietal Beta just following
the helper clear event.

7. Discussion

The present study investigated the impact of a helper event in VR Tetris gameplay
on various cognitive and physiological measures. Following a helper intervention that
cleared tiles, we observed group level decreases in mental and visuospatial workload
(as measured by frontal and parietal oscillatory activity) and in physiological arousal (as
measured by heart rate and heart rate variability). Furthermore, a significant benefit to
performance was observed due to the helper clear event. Subsequent predictive analysis,
however, indicates that performance improvement was not predicted by the significant
decrease in frontal Theta, but rather by parietal activity commonly associated with visu-
ospatial processes [49,50]. Although they were not specifically directed, processes such as
visuospatial working memory and attention were constantly challenged during gameplay
due to the nature of Tetris [51? ]. The present findings are consistent with a model of
dissociable but interacting functions of the prefrontal and posterior parietal cortices. Our
results suggest that performance in VR Tetris, a spatial task in a rich visual environment,
is driven by parietal activity associated with visuospatial processing, rather than frontal
activity. This dissociation may be due to the visuospatially rich quality of the task load [24].
This framework, and these results, highlights the importance of multiunit EEG recordings
that cover a broad area of the scalp, thus networks of brain regions, when investigating
VR environments using EEG. Frontal electrodes alone are not sufficient to capture the
activity of the frontoparietal network that drives performance improvement in this task,
and parietal electrodes may miss significant deviations in cognitive load.

7.1. Temporal Dynamics of Helper Response

The differences from baseline across data streams were largely focused on here in
terms of those that contributed to substantial linear models of subjective questionnaire
responses regarding the helper event, as well as those that provide specific insight in
relation to our stated hypotheses.

The first event of note is an increase of both frontal and parietal beta power from
baseline 3 s prior to the helper clear event, corresponding for most subjects to the time after
the helper notification but before the clear event itself. This corresponds to an elevation
across power signals. While significant deviations were observed in Frontal Alpha and
Beta as well as Parietal Beta, there was a positive trend among all other power signals.
This broadband increase in power from baseline may indicate a generalized increase in
engagement, mental load, and fatigue [53], corresponding to an increase in mental and
visuospatial workload [22,23] (frontal and parietal beta). This may reflect the high degree
of task difficulty that subjects faced prior to the helper event occurring. The frontal beta
at −3 s was a selected predictor variable with a positive coefficient in the linear model
of questionnaire responses related to the subjective sensation of tension relief from the
body, indicating the larger the positive deviation from baseline the more tension relief
subjects reported. The tension relief may actually reflect the return to baseline rather than
the elevated cognitive load itself. While this result differs from our hypothesis of a decrease
in beta power following the helper clear event, the general pattern of a return to baseline
from an elevated cognitive load preceding the helper clear event is consistent with the
model underlying the hypothesis. In particular that the helper clear event itself reduces
cognitive load.
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The second event of note is a sustained increase in parietal beta from baseline 1–3 s
following the helper clear. At 0–1 s there is additionally a significant decrease from parietal
alpha. This is consistent with a spike in visual-spatial engagement following the helper
clear [23,25,26]. This increase in engagement may reflect the subject’s re-evaluation of the
game state. Subject’s parietal beta power in this period is one of the selected predictive
variables for linear models for all three of significant linear models reported, regarding how
helpful and relieving the helper was, as well as the degree to which subjects reported tension
leaving their body. The subjective reporting of how helpful/relieving the helper was is
significantly and robustly (across question wording) related to degree to which visuospatial
engagement was devoted to re-evaluating the game state post helper clear event. At the
same time, as predicted, was a large decrease in frontal theta power indicating a decrease
in cognitive load [21]. While the decrease in frontal theta was significant, subjective reports
of how helpful/relieving the helper intervention was were more driven by the broadband
increase in power prior to intervention, as well as parietal activity and physiological arousal
after the helper event occurred. While the directionality of the cognitive load finding is
in line with our hypothesized result, that subjective reports of the helpfulness was driven
more by parietal activity was a deviation from our hypothesis.

The third event of note is a decrease in parietal theta power at 14 s and a subsequent
increase in heart rate variability 20 s following the helper clear event. There were additional
significant increases from baseline in heart rate variability 12–14 s following the helper clear
and a significant decrease in heart rate 7 s following the helper clear, implying a change in
the ANS balance in favor of parasympathetic tone [28,29]. The decrease in parietal theta
(a selected predictor in the linear model of how relieving the ball was) may indicate a
corresponding decrease in sustained visuospatial engagement [24] in return reflecting a
more relaxed approach to gameplay. This is consistent with the hypothesized and observed
decrease in physiological arousal following the helper clear event as evidenced by the heart
rate data. Furthermore the heart rate variability at 20 s was a selected predictor variable
with a positive coefficient in the linear model of the question relating to the helpfulness of
the helper clear. The effects of the helper clear event observed here spans multiple data
streams across a time interval of over 20 s. The data streams include frontal and parietal
EEG data as well as PPG heart rate variability data that in turn predict 25–33% of the
variance observed in subjective questionnaire responses about how helpful or relieving the
helper event was.

7.2. Limitations

Although present exploratory study provides insight into the dynamics of mental and
visuospatial workload in VR environments, several limitations should be noted. Despite
randomizing the order of intervention and control conditions and providing a tutorial
session, individual variations in prior in experience with VR and Tetris might have still
influenced the results. Future investigations could benefit from a more controlled selection
process to address these individual differences more effectively. Additionally, although
our task included a rich visuospatial environment, future studies could exploit the full,
ambulatory potential of VR systems by utilizing mobile brain-body imaging. Furthermore,
while we used a broad range of electrodes to cover the frontoparietal network, central
electrodes near sensorimotor cortex might have been affected due to hand movements. It
is previously reported that event-related desynchronization (ERD) may be observed in
parietal electrodes due to volume conduction [24]. These effects could be isolated in future
studies by utilizing source localization methods and increased number of electrodes [54].
Moreover, although fluctuations in EEG power bands and HR and HRV values have been
extensively used and validated as a means to measure workload, further analysis methods
such as event-related spectral perturbations (ERSPs), functional connectivity analyses, and
emotion classification systems using spatio-temporal image encodings [55] could provide
deeper insights. Additionally, incorporating physiological modalities such as EDA, EOG,
EMG and skin temperature could be utilized to better probe the effects of mental workload.
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Finally, although Tetris was chosen for its well-defined cognitive and visuospatial demands,
future research should explore a range of tasks with varying cognitive requirements to
assess the generalizability of our results. Investigating different types of VR activities and
real-world scenarios could also provide a more comprehensive understanding of how
mental workload and visuospatial engagement varies across diverse contexts.

7.3. Conclusions

In this study we observed a broadband increase in EEG power just prior to the helper
event followed by a spike of visuospatial engagement (parietal alpha and beta 0-1-3 s)
that occurred concurrently with decrease in mental workload (frontal theta 2–4 s), in turn
followed by a subsequent decrease in visuospatial engagement (parietal theta at 14 s) and
decrease in physiological arousal (HRV at 20 s). While as expected there was a decrease
in cognitive load in response the helper clear event, subjective relief and the subjective
reports about how helpful the event was were more driven by physiological arousal and the
parietal oscillatory response to the helper, commonly regarded as a proxy for visuospatial
processes. Furthermore, our findings suggest the plausibility of the modulation of ANS
balance using help interventions in VR tasks. By using online task load modifications
similar to our helper piece, it may be possible to optimize workload in favor of overall
mental health and well-being.
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