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A Branched Convolutional Neural Network for Forecasting the
Occurrence of Hazes in Paris Using Meteorological Maps with
Different Characteristic Spatial Scales
Chien Wang

Laboratoire d’Aerologie, University of Paul Sabatier, 31400 Toulouse, France; wangc@mit.edu

Abstract: A convolutional neural network (CNN) has been developed to forecast the occurrence of
low-visibility events or hazes in the Paris area. It has been trained and validated using multi-decadal
daily regional maps of many meteorological and hydrological variables alongside surface visibility
observations. The strategy is to make the machine learn from available historical data to recognize
various regional weather and hydrological regimes associated with low-visibility events. To better
preserve the characteristic spatial information of input features in training, two branched architectures
have recently been developed. These architectures process input features firstly through several
branched CNNs with different kernel sizes to better preserve patterns with certain characteristic
spatial scales. The outputs from the first part of the network are then processed by the second part, a
deep non-branched CNN, to further deliver predictions. The CNNs with new architectures have been
trained using data from 1975 to 2019 in a two-class (haze versus non-haze) classification mode as well
as a regression mode that directly predicts the value of surface visibility. The predictions of regression
have also been used to perform the two-class classification forecast using the same definition in
the classification mode. This latter procedure is found to deliver a much better performance in
making class-based forecasts than the direct classification machine does, primarily by reducing false
alarm predictions. The branched architectures have improved the performance of the networks in
the validation and also in an evaluation using the data from 2021 to 2023 that have not been used
in the training and validation. Specifically, in the latter evaluation, branched machines captured
70% of the observed low-visibility events during the three-year period at Charles de Gaulle Airport.
Among those predicted low-visibility events by the machines, 74% of them are true cases based
on observation.

Keywords: deep learning; geospatial and big data analysis; air quality; aerosols; data science

1. Introduction

A low-visibility event (LVE) or severe haze can interrupt many economic activities and
daily life, causing economic loss and threatening human health. The formation of haze, in
many cases, is a result of elevated atmospheric aerosol abundance under favorable weather
and hydrological conditions [1–3], leading to the enhancement of scattering and absorption
of sunlight by (specifically wetted) particles that can effectively lower the visibility at
Earth’s surface [4,5].

It is apparent that an accurate forecasting of LVE occurrence could mitigate the eco-
nomic or societal impacts caused by such events. However, for many current meteorology
or atmospheric chemistry models, their forecasting skill of LVE—the skill to accurately
predict both meteorological conditions and atmospheric aerosol abundance—is still quite
limited due to various reasons [2,3]. In practice, the forecast of a low-visibility event is
typically made for airports within a short lead time (hour or so), commonly using sim-
plified (e.g., one-dimensional or single column) weather models or regression models de-
rived with certain machine learning algorithms alongside data from a single measurement
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station [6–10]. However, model intercomparisons have identified significant differences
among the predicted outcomes by these simple meteorological models, even for the cases
under ideal weather conditions [6], implying issues in the generalization of such modeling
efforts. On the other hand, the results of regression models using limited data still display
a considerably high error [9]. Analysis based on decadal data mining has found that the
occurrence of LVEs can be associated with a wide variety of weather conditions, and some
of them might be beyond common understanding [3]. Such a reality could make haze fore-
casting using the above-mentioned conventional approaches with limited data and simple
models even more difficult. The lack of satisfactory forecasting skills for these “traditional”
approaches, on the other hand, also reflects our insufficient knowledge about weather or
hydrological conditions, particularly on a regional scale that favor the occurrence of LVEs.

As an alternative approach to the conventional numerical models, deep learning
has gained ground in atmospheric and climate applications in recent years, including,
e.g., severe weather forecasting and analysis, forecasting weather patterns associated with
certain weather extremes, and predicting sea fogs as well as heavy precipitation distribution,
just to name a few [11–14], where pattern-to-event or pattern-to-pattern forecast platforms
were developed by adopting various types of convolutional neural networks (CNN). The
use of CNNs in such applications often uses their advantage of handling a great number of
high-dimensional images to possibly reveal certain highly nonlinear relationships, e.g., non-
typical weather regimes associated with a targeted event. Similarly, a deep convolutional
neural network called HazeNet has been developed and tested to forecast haze events in
Singapore, Beijing, and Shanghai [3,15]. In previous efforts, trained with multi-decadal
reanalysis and observational data, HazeNet has demonstrated its capability to deliver
reasonable predictions of the targeted LVE events under the influence of a large variety of
different regimes.

It has been recognized in the previous efforts that preserving certain large- or medium-
scale spatial weather or hydrological patterns in training by, e.g., adopting selected rel-
atively large kernel sizes (kernel size defines the grid range for convolution calculation)
could assist the machine in learning much more easily and thus improving its performance
in making predictions [3,15]. This paper reports a recent effort to further the attempt to
preserve the information of different spatial characteristics of various weather features by
adopting new, branched CNN architectures. The paper is organized to present data and
training, validation, and evaluation methodology after this Introduction. Then, the training
and validation results of the machine will be discussed, followed by the result from an
evaluation using data from 2021 to 2023 that are entirely independent of the training and
validation process. The last section summarizes the major findings of this study.

2. Data and Methodology
2.1. Data

Two types of data are needed in a supervised learning procedure. The first type of
data is the targeted outcomes (often observations), normally called labels. Labels can be in
a format of categorized logic marks (i.e., 0 or 1 for the outcome of a given class or event)
for classification or digital data for regression. The second type of data needed is the input
features for the machine to produce the predictions. With these two types of data, the
learning can be conducted continually as the coefficients of CNNs are being optimized
based on the difference between the predicted and targeted outcomes.

Same to the previous efforts of forecasting low-visibility events in Singapore, Beijing,
and Shanghai [3,15], the surface visibility observations from the site of Charles de Gaulle
Airport (CDG) in Paris, obtained from the Global Surface Summary of the Day (GSOD)
dataset [16], are used as the observations or targeted outcomes for supervised learning.
Here, the daily mean, rather than the hourly visibility, is used to represent a situation
beyond the measurement site since the lifetime of aerosols inside the planetary boundary
layer can be a few days [17]. In fact, data from two other airports, besides CDG in the Paris
area, i.e., Oly and Le Bourget, from the GSOD collection were also analyzed, though many
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missing records from these two sites were identified. In comparison, CDG possesses the
longest continual record among the three. In addition, the daily mean visibilities measured
by these three airports were found to be well correlated during most of their overlapping
periods (e.g., Le Bourget and CDG visibility data have a linear correlation from 1975 to
2021 with R2 = 0.7). It thus suggests that the daily visibility measured at CDG airport
is a good metric to reflect the situation of metropolitan Paris rather than just over the
measurement site. Compared to the situations in Singapore, Beijing, and Shanghai, Paris is
unique in having nearly an equal number of ‘wet’ (fog or mist) and ‘dry’ (haze without
fog, i.e., relative humidity below saturation) LVEs. In addition, it is not known for having
frequent and long-lasting exposure to the long-range transport of aerosols like dust in
Beijing and Shanghai or smoke in Singapore. The most common seasons for LVEs to appear
are early spring and winter (Figure 1), when high-pressure systems often occupy France
and bring cold while moist airmass from the Atlantic, alongside stable weather conditions.
A relatively well-developed planetary boundary layer under such a condition would
benefit the condensation of vapor on the surface of aerosols and, thus, effectively lower
the visibility. Such knowledge, however, only provides a general idea of the occurrence
of LVEs. As demonstrated in the previous work, the actual weather conditions associated
with LVEs can display a very large variability from the “typical” ones [3].
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Figure 1. Daily average surface visibility in km observed at Paris Charles de Gaulle Airport (CDG)
since 1975. An unknown systematic switch in statistics occurred during 2000–2002 (the 25th to
27th year after 1975) that affects mostly on the results in the clear (high percentile) than haze (low
percentile) days.

Using GSOD observations, the labels for training and validation are derived in both a
categorized logic format for classification and a quantitative format (i.e., visibility in nu-
merical quantity) for regression, and both are in the format of a time series. In classification,
the low-visibility day (LVD hereafter) is defined as a day with daily average visibility (vis.
hereafter) equal to or lower than the 25th percentile of the long-term (here 1975 to 2019)
historical observational data (hereafter P25, i.e., 7.89 km for CDG; see Table 1). There were
4110 such days observed at CDG from 1975 to 2019; among them, 1736 were marked with a
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fog label, while 2374 were otherwise; in total, they accounted for roughly 42% and 58% of
the total LVDs, respectively. Because the frequent appearance of fog and misty conditions in
Paris is very likely related to an elevated atmospheric aerosol concentration in many cases,
all the low-visibility days, regardless of whether bearing a fog mask in the observational
record, are thus used to label the LVDs. Note that the GSOD visibility data of CDG contain
a systematic shift from 2000 to 2002 (Figure 1), which affected the higher annual percentile
more than the 25th and 15th percentiles of vis. based on the analysis; the latter—the targets
of this forecasting effort—only experienced a slight increase in quantity. This could likely
reflect an improvement in the overall air quality or simply a change in reference objects for
the measurement. Therefore, data from these years are kept in training to maximize the use
of available data.

Table 1. The 5th, 10th, 15th, 20th, and 25th percentile (denoted as P5, P10, P15, P20, and P25,
respectively) of historical surface daily visibility (vis.) data measured at Paris Charles de Gaulle
Airport during 1975 and 2019 (16,436 samples in total).

P5 P10 P15 P20 P25

vis. (KM) 3.70 5.15 6.44 7.24 7.89

Events without fog label 251 665 1241 1788 2374

All events 878 1670 2579 3359 4110

On the other hand, the input features used in training and validation are two-dimensional
daily maps of eighteen selected meteorological and hydrological variables (Table 2) over
a domain of 96 by 128 grids, covering a large part of western Europe, including France,
alongside the Atlantic Ocean (Figure 2), obtained from the ERA5 reanalysis data produced
by the European Centre for Medium-range Weather Forecasts, or ECMWF [18]. The
choice of adopting such a rather large domain serves a dual purpose to identify the
regional weather patterns associated with haze and to reduce the influence of noisy small-
scale patterns on learning. These chosen variables reflect the general atmospheric and
hydrological status under the influence of different weather systems. The horizontal spatial
resolution of these maps is 0.25 degrees. The input data have the same number of samples
as the labels (i.e., 16,436), though each sample is a 96 by 128 by 18 matrix or image.

Table 2. Input features, all from ERA5 reanalysis data; here branch 1 is the branch with smaller kernel
and branch 2 with larger kernel in HazeNetb2 shown in Figure 3. Paris local time is UTC + 1.

Short Name Long Name Branch in HazeNetb2

REL Surface relative humidity 1

DREL Diurnal change in REL, [14:19]mean–[6:12]mean 1

DT2M Diurnal change of 2 m in temperature 1

T2MS Daily standard deviation of 2 m in temperature 1

U10 10 m wind, zonal component 1

V10 10 m wind, meridional component 1

TCW Total column water 1

TCV Total column water vapor 1

DTCV Diurnal change in TCV 1

BLH Height of planetary boundary layer 1
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Table 2. Cont.

Short Name Long Name Branch in HazeNetb2

DBLH Diurnal change in BLH 1

SW1 Volumetric soli water, layer 1 1

SW2 Volumetric soil water, layer 2 1

LCC Low cloud cover 1

Z500 Geopotential at 500 hPa level 2

D500 Diurnal change in Z500 2

Z850 Geopotential at 850 hPa level 2

D850 Diurnal change in Z850 2
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Figure 3. Diagrams of various architectures of HazeNet. Here Max represents a MaxPooling layer,
Ave is an Average layer. For 2D convolutional layer, “128, 1 × 1” represents a layer with 128 filter
sets and a kernel size of 1 × 1. Each convolutional layer is followed by a batch normalization layer
unless otherwise indicated. The bottom part in HazeNetb and HazeNetb2 is a CNN consisting of
8-convolutional layers with 3 × 3 kernels, adopted from the last part of original HazeNet (see [3]).
Part of the charts were drawn using visualkeras package (Gavrikov, P., 2020, https://github.com/
paulgavrikov/visualkeras; accessed on 14 October 2024).

2.2. Training–Validation–Evaluation Strategy

Data preparation. The training and validation of the network use the labels and input
data covering the period from 1 January 1975 to 31 December 2019. The entire 16,436 pairs
of label–input samples were randomly shuffled and then grouped into two sets, with 75%
(i.e., 12,327 samples) going to the training set and 25% (4109 samples) going to the validation
set. As a common procedure in machine learning and deep learning, input features were
normalized into the range of [−1, +1] before training and validation. This normalization
of the training set and validation set was performed separately to avoid the leaking of
information from the latter to the former. As in [3], these two datasets are hereafter reserved
only for their designated purpose in practice. Therefore, the validation result is, in fact,
independent of the training process, only serving as a performance indicator.

Training and validation. The training in this study has been conducted in both
classification and regression mode. The classification is a two-class training task: class

https://github.com/paulgavrikov/visualkeras
https://github.com/paulgavrikov/visualkeras
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1 is the LVDs, defined as a day with vis. equal to or lower than the 25th percentile
(7.89 km; Table 1) of the long-term (1975 to 2019) observations at CDG, while class 0 is
for the other cases. In the regression training mode, the CNN directly predicts a digital
value of vis. in km. The two different training modes differ in the activation of the last
dense layer (all-connected neural network layer), i.e., sigmoid (2-class) [19] or softmax
(multi-class) [20] for the classification, linear for the regression (the activation function is an
operator applied to the neurons before being mapped into the next layer of the network
to introduce nonlinearity). Their loss functions are also different: a binary cross entropy
(categorical cross entropy in multi-class cases) [21] for the classification, while a mean
absolute percentage error for the regression. In classification training, since the two classes
are imbalanced in terms of the frequency of occurrence, a class weight has been applied
to increase the weight of coefficients associated with the much less frequent class 1 (see
also [3]).

The training is driven by input features from the training dataset, and the machine is
then optimized based on the discrepancy between the training label (i.e., observations in
the training dataset) and prediction. This process is continued until the stop point. The
length of training, in this study, is at least 2000 epochs (each epoch is a training step that
uses the entire training dataset) and is largely independent of the validation performance.
This is to force the performance of the network to converge. At the end of each epoch
during training, the validation is performed by feeding the entire validation dataset into the
machine in training to directly produce predictions, and the scores are derived. The time
series of various validation scores can be used to observe the convergence of the machine’s
performance during training, as well as for other purposes, such as checking for possible
overfitting. The primary scores for classification include precision, recall, and an F1 score;
all are statistical metrics particularly useful for imbalanced cases derived based on the
so-called confusion matrix (Ref. [3]) since accuracy would be a biased metric for such cases.
For regression, the performance is measured by the mean absolute percentage error.

The predictions obtained from the regression training can be presented using the
performance metrics of classification as well, i.e., derived based on the predicted hits on
different classes using the same class definition in classification mode. This provides a
convenient way to compare the performances between the two different training modes
using the same metrics, which will be hereafter referred to as regression classification.

Evaluation. In addition to the training–validation procedure, labels, and input features
covering the years from 2021 to 2023, totaling 1095 samples obtained from the same
data sources and derived in the same procedure as described previously for training and
validation data, are also prepared for a separate evaluation of the machines after training.
This evaluation is entirely independent of the training–validation procedure since the
machines have never had access to this dataset before (training and validation use data
from 1975 to 2019). Therefore, it is, in fact, a blind forecasting test using real-world cases.
To distinguish this evaluation from the validation, the names used here will be kept in the
later discussions.

2.3. Architecture Improvement

The previous version of HazeNet reported in [3] is a VGG-type [22], 57-layer deep
CNN with more than 20 million parameters (Figure 3, the upper panel). Note that the
longitudinal–latitudinal data of many meteorological and hydrological variables used in
training–validation as input features are actually images with many more channels than
the 3-channel RGB images used in common CNN image recognition practices.

It is well known that the characteristic spatial and temporal scales of meteorological
features likely differ from each other [23,24]). For example, the upper panels of Figure 4
are normalized maps of four meteorological variables, from left to right: surface relative
humidity (REL) alongside its diurnal change (DREL), a diurnal change of 2m temperature
(DT2M), and the daily standard deviation of 2m temperature (T2MS). Each of these figures
contains many small spatial-scale patterns, reflecting local weather changes. In contrast,
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four normalized maps in the lower panels, showing a geopotential at 500 (Z500) and 850 hPa
(Z850), along with their corresponding diurnal changes (D500 and D850), respectively,
consist of smoothly distributed color belts across many grids. These distributions reflect
the characteristics of large-scale atmospheric circulation or weather systems, which evolve
much slower than the smaller scale patterns and are less sensitive to the impact factors of
the latter, such as clouds, rainfall, boundary layer processes, and so forth, as seen in the
upper panels. Therefore, a key issue in making CNN effectively learn these maps involves
recognizing patterns of weather or hydrological features with different characteristic spatial
scales, which, in many cases, far exceed the pixel level of the maps. Therefore, high
resolution at the pixel level, in such cases, is not necessarily the most critical factor in
improving the learning, making it a different task from common image recognition projects.

In the previous version of HazeNet (Figure 3, the upper panel), to reduce the difficulty
in learning complex weather maps, relatively large kernel sizes were adopted for the first
two convolutional layers, despite the additional computational cost. Since the kernel size
of a CNN layer decides the grid range of convolution calculation, putting larger kernels in
the first two layers can effectively prioritize the learning of less complicated patterns with
large and medium spatial scales [3]. The drawback of such a configuration, however, is
that it might filter out some smaller-scale features that could be useful in recognizing and
distinguishing weather regimes. To better preserve the spatial information on both a large
scale and smaller scale contained in different features and thus make the network learn
better a wider variety of weather conditions associated with LVEs, two new architectures
were introduced in the HazeNet in this study. These new architectures each consisted of
two parts; the first part contained certain branches of CNN to process inputs with different
kernel sizes, either letting all features be processed together by each branch (Figure 3, the
mid-panel, i.e., HazeNetb) or letting features be processed by different branches based on
their characteristic scales (Figure 3, the lower panel, i.e., HazeNetb2). Outputs from various
branches were then concatenated along the filter dimension and sent to the second part of
the network, a VGG-type CNN containing 8 convolution layers with a 3 × 3 kernel, taken
from the bottom part of the original HazeNet (see [3] for details). The new architectures are
apparently inspired by the ideas of Inception Net [25], ResNet [26], and a 1 × 1 layer, or
‘network in network’ [27], for various designated purposes. Multiple parallel branches with
different kernel sizes can lead to the effective learning of pixel-wise patterns or channel-wise
correlations, sharing certain ideas with the attention module for image recognition [28].

Figure 5 shows the outputs of the second convolutional layer (just before the 3 × 3 kernel
layer) in the original HazeNet. The displayed patterns contain the color blocks that are
likely defined by the features with larger spatial scales while still carrying certain signatures
of the smaller-scale features. On the other hand, from the result of the branched HazeNetb
(Figure 6), the output of each branch clearly displays a pattern with the prioritized charac-
teristic scale enforced by its kernel size. Additionally, it can be seen from the outputs of
HazeNetb2 in Figure 7 that such an effect can be further enhanced by arranging different
features to go through different branches based on their characteristic scales.

Besides the benefit of better-preserving patterns with different characteristic scales,
the branched architectures can also lower the complexity of the machine. For instance, the
total parameters of about 20 million in HazeNet have been reduced to nearly 11 million in
HazeNetb, and further to 10.6 million in HazeNetb2. However, due to the utilization of
large kernel sizes, the training time of branched machines is longer than that of HazeNet,
with a nearly 10% increase in HazeNetb and a 40% increase in HazeNetb2 compared to
that of HazeNet. Each training of the branched architectures requires 33 to 45 GPU hours
using an Nvidia Tesla V100 GPU, depending on the configuration.
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3. Performance in Validation of Trained Machines

The previously described training strategy has led to the production of stable vali-
dation scores at the end of each training session and made the performance comparison
between machines with different configurations more objective (Figure 8). Note that each
validation, whenever conducted, uses the entire validation dataset and consists of nearly
12 years’ worth of observations. The performances of various versions of HazeNet in
validation clearly indicate that the two branched architectures have both delivered better F1
scores in the regression–classification mode for events with vis. equal or lower than the 25th,
20th, and 15th percentiles than the non-branched version, while the latter performed better
for events equal or lower than the 10th and 5th percentiles of the long-term observations
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(Figure 9 and Table 3). The evolution of regression–classification scores with the probability
of targeted LVEs shown in Table 3 demonstrates that the accuracy of all machines increases
with the lowering of probability, indicating the effect of increasing the imbalance (i.e., the
ratio of non-targeted to targeted events). On the other hand, the F1 score decreases with
probability, implying the forecasting skill of the machines is lower in low-probability cases
than in higher ones. In comparison, in the regular classification, the difference between
these three architectures is rather smaller. Note here that to smooth out potential small
variations in performance metrics along the training progression, the quantities of metrics
shown in Figure 9 and Table 3 are their last 100-epoch means.
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score ([−inf, 1]), all derived based on the so-called confusion matrix (Ref. [3]) for their definitions).
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Figure 9. The F1 scores of machines with different architectures obtained from the end of training
session validation (last 100-epoch means). Here P25C represents the results from classification mode
for events with vis. equal or lower than the 25th percentile of long-term observations, while P25 and
P15 are the results from regression–classification mode, here P15 is for events with vis. equal or lower
than the 15th percentile of long-term observations.
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On the other hand, the predicted vis. by all trained regression machines have demon-
strated statistically significant (with nearly zero p values) correlations with the observations
contained in more than 12 years’ worth of validation data, with an R2 of 0.54, 0.61, and
0.59 for HazeNet, HazeNetb, and HazeNetb2, respectively. The performances of the two
branched versions are, again, better than that of the original HazeNet. The performance in
regression could be a likely reason behind the outcome, as all machines in the regression
classification mode, regardless of adopted architecture, have produced better performances
in validation than their twins trained in pure classification mode (Figure 9 and Table 3).
The advantage of regression–classification machines is primarily reflected in their precision
scores, i.e., the ratio of true-to-total predicted LVDs, while their recall scores (ratio of pre-
dicted to total observed LVDs) stayed nearly the same as in the classification mode (Table 3).
In other words, the regression–classification forecasts are made by using predicted vis.
quantities from regression have mainly led to a reduction in the so-called false positive
(false alarm) cases in comparison to the results of the trained classification machines, im-
plying that the latter might tend to be confused by the similar weather patterns associated
with cases across the definition line of LVDs.

Table 3. The validation performances of HazeNet with different architectures in classification and
regression–classification. Shown are last 100-epoch means. The best scores are highlighted with
bold font.

Accuracy Precision Recall F1-Score

Classification (P25C)

HazeNet 0.851 0.717 0.721 0.719

HazeNetb 0.858 0.732 0.724 0.728

HazeNetb2 0.854 0.726 0.718 0.722

Regression–Classification (P25)

HazeNet 0.875 0.815 0.680 0.741

HazeNetb 0.885 0.826 0.713 0.765

HazeNetb2 0.882 0.806 0.725 0.763

Regression–Classification (P20)

HazeNet 0.892 0.800 0.679 0.734

HazeNetb 0.896 0.811 0.683 0.742

HazeNetb2 0.894 0.796 0.694 0.742

Regression–Classification (P15)

HazeNet 0.905 0.750 0.665 0.705

HazeNetb 0.913 0.784 0.670 0.723

HazeNetb2 0.909 0.756 0.681 0.716

Regression–Classification (P10)

HazeNet 0.928 0.722 0.586 0.647

HazeNetb 0.925 0.735 0.530 0.616

HazeNetb2 0.926 0.733 0.547 0.627

Regression–Classification (P5)

HazeNet 0.952 0.698 0.342 0.459

HazeNetb 0.950 0.721 0.255 0.377

HazeNetb2 0.952 0.759 0.272 0.400
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The best forecast performer among the three versions of HazeNet in validation was
HazeNetb. The other branched architecture, HazeNetb2, generally performed better than
the original HazeNet, particularly in the regression–classification mode, and produced close
but slightly lower scores than HazeNetb, possibly due to its more complicated structure,
which might require longer training and certain additional optimizations. Considering the
required training time, HazeNetb apparently possesses the edge among the three architec-
tures in terms of cost–benefit. Note that the similar advantage of branched architecture
over the non-branched one is also found in the testing of previously studied cases in Beijing
and Shanghai.

4. Evaluation of the Trained Machines Using 2021 and 2023 Data

Up to this point, all the training and validation have been performed using historical
data from 1975 to 2019, while the performance of the trained machines using data beyond
the training and validation dataset is still unknown. To further evaluate the performance
of HazeNet, a “blind forecast” evaluation of various trained HazeNet versions has been
conducted by feeding them with data from the year 2021 to 2023 to produce predictions.
Note that the data used in the evaluation have not been utilized in the training–validation
procedure. During these three years (i.e., 1095 days), there were, in total, 118 LVDs observed
at the CDG site with a vis. lower or equal to P25 or 7.89 km. Machines trained in both
the classification and regression–classification modes have been evaluated. Note that this
is just a limited evaluation of the performance of trained machines with real-world data
beyond their training dataset. Only the long-term use of the machines driven by real-
time forecasting data, perhaps, could better evaluate the machines while improving them
continuously through re-training.

The evaluation results suggest that both branched architectures have achieved bet-
ter performance in both the classification mode and regression–classification mode com-
pared to the original HazeNet (Figure 10 and Table 4). The F1 score of the branched
architecture is about 4–5% higher than that of the original HazeNet in the classification
mode (P25C) and 6–7% higher in the regression–classification mode (P25). The perfor-
mance improvements achieved by branched architectures in evaluation, particularly in the
regression–classification mode, are even more significant than those reflected in the vali-
dation. Comparing the two branched architectures, HazNetb2 delivered a slightly higher
F1 score than HazeNetb in the regression–classification mode, while the latter performed
better in classification. Again, the regression–classification machines, regardless of the
adopted architecture, achieved F1 scores of about 10% or higher compared to those obtained
by their classification twins. Like the finding in the validation analysis, the advantage of
the regression–classification machines in the precision score is much more evident than
in the recall score. For example, in the case of HazeNetb2, precision is 0.66 versus 0.42,
and recall is 0.74 versus 0.70 in regression–classification versus classification, respectively.
Regarding the scores of regressions machines before being translated into classification
metrics, HazeNetb2 produced a 9.92% mean absolute percentage error, while HazeNetb
obtained 9.82%; both were lower than the same metrics of HazeNet in 10.02%. The evalua-
tion results also demonstrate, as shown in Table 4, that the performances of all machines
generally degrade as the probability of targeted events decreases.
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Table 4. The performances of different network architectures in evaluation (data of year 2021–2023).
The best scores are highlighted with bold font.

HazeNet HazeNetb HazeNetb2

Mean absolute percentage error (%) 10.02 9.82 9.92

R2 0.53 0.58 0.54

F1 score of P25C 0.56 0.58 0.53

F1 score of P25 0.65 0.69 0.70

F1 score of P20 0.67 0.65 0.66

F1 score of P15 0.56 0.59 0.60

F1 score of P10 0.54 0.47 0.51
Note: Correlations between predicted and observed surface visibility by three machines are all statistically
significant since p values are all practically zero. P25 P20, P15, and P10 represents the LVDs defined with daily vis.
lower or equal to the 25th, 20th, 15th, and 10th percentile of long-term observations (118, 78, 55, and 26 LVDs),
respectively, derived from regression–classification. While P25C is the same as P25 except for direct classification.
All the machines did not show any skill in predicting P5 events, which only has 3 such observed LVDs.

The observed versus predicted vis. in quantities by the trained branched machine of
HazeNetb2 are displayed in Figure 11. Firstly, the machine has produced a seasonality
of LVEs in Paris that matches the observed result very well. Secondly, the point-to-point
comparison between the predicted and observed vis. show a rather small overall discrep-
ancy, indicating that the machine has captured an observed evolution of vis. reasonably
well. For LVDs defined with a vis. equal or lower than P25 (marked in Figure 11b with a
solid black line), HazeNetb2 has captured 70% of the observed events during the three-year
period (or a recall of 0.70 in terms of regression–classification mode metric), while 74% of
the predicted LVDs are true cases based on observations (precision = 0.74). Its accuracy
in forecasting both LVDs and no-haze cases is 93%, evidently exceeding the frequency of
non-haze events of 89%, i.e., the no-skill score in a highly imbalanced classification forecast
obtained by predicting solely in the overwhelming class. Note that though a model like
HazeNet would be unlikely to achieve a perfect score in forecasting the occurrence of haze,
because such occurrence is not determined by the weather conditions alone. Mitigation
measures enforced by policy decisions, for example, could reduce, if not eliminate, the
chance for haze to appear in many cases.
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Figure 11. Evaluation results of HazeNetb2 using data from 2021 to 2023: (a) a scatter plot of predicted
versus observed quantities of vis. in km; and (b) the same comparison but displayed as time series.
Total number of LVD (P25) during the 3-year period is 118.

5. Summary and Conclusions

A deep-learning platform, HazeNet, has been developed to forecast the occurrence of
low-visibility events or hazes in the Paris area. To better preserve the information regarding
the characteristic spatial scales of different features in training, two branched architectures
have recently been developed. These machines have been trained and validated using
multi-decadal (1975–2019) daily regional maps of eighteen meteorological and hydrological
variables as input features and surface visibility observations as the targets. The goal was
to train the deep CNNs to recognize various regional weather and hydrological regimes
associated with the occurrence of low-visibility events in the greater Paris area.

The branched architectures have reduced the number of total parameters of the ma-
chines from more than 20 million in the original non-branched version of HazeNet to
just above 10 million. While the computational expense in training these branched ma-
chines is clearly increased, the introduction of the branched architectures has improved
the performance of the CNNs in validation and, more evidently, in an evaluation using the
most recent observational data from 2021 to 2023, which have never been used in training
and validation. As an example, one of the trained machines with branched architecture
(i.e., HazeNetb2) has successfully predicted 70% of the observed low-visibility events
during the three-year period at Paris Charles de Gaulle Airport. Among those predicted
low-visibility events by the machine, 74% of them are true cases based on observation.
Another interesting result is that the regression–classification machines (using predicted
visibility in quantity from regression to make class-based forecast), regardless of adopted
architecture, are apparently favored, rather than their trained classification twins based
on the performances in validation and evaluation. A major reason behind this is that the
pure classification machines tend to produce a higher number of false alarms, i.e., a lower
precision than regression–classification machines do, likely due to confusion on the simi-
lar weather patterns possessed by certain events on different sides of the LVD definition
line. This result thus suggests training a regression machine first, even for performing
a class-based forecast of hazes. Combining the required training time and performance,
the branched HazeNetb appears to be the architecture to pick among the three from a
cost–benefit point of view.

It is worth indicating that the performance in the validation and evaluation of HazeNet
reflects statistics of performance metrics obtained from a forecast of about 15 years of real-
world cases. Its skill comes from learning using more than 30 years of observational data
that are independent of the ones used in validation and evaluation. Jointly, these cases cover
nearly all the observations that are useful and available to this study. An additional benefit
of machines like HazeNet is that they can be progressively re-trained and thus further
improved whenever the most recent observations or any new type of useful data become
available. An interesting fact to note, though, is that the machines like HazeNet (which
could extend to traditional deterministic atmospheric models too) developed to only use
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weather conditions as the input for haze forecasting would be unlikely to achieve a perfect
score, owing to, e.g., the implementation of certain air-pollution mitigation measures. In
addition, a trained HazeNet is only for applications in the targeted area. It needs to be
re-trained for anywhere else.

An interesting question regarding the deep-learning machine is whether any specific
input feature (s) appears to be more important than others to the performance. This has
been partially explored for the branched HazeNet, where 11 features were firstly selected
from the original 18 based on a comparison of pattern-similarity between each pair of
features throughout the entire dataset; then, the machines were trained and validated
using the input with reduced features. The result showed that the machines trained with a
reduced input set did not suffer an evident performance setback compared to the scores
achieved by their 18-input counterparts. However, more experiments are still needed
to evaluate the generalization of such a feature selection method [29]. Apparently, the
performance of the branched CNNs can be further improved through, e.g., architecture
optimization or parameter tuning. Such an extensive effort, however, clearly exceeds the
scope of the current exploratory study and could be accomplished in a future effort.
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